WorldWideScience

Sample records for binary star clusters

  1. Eclipsing binaries in open clusters

    DEFF Research Database (Denmark)

    Southworth, John; Clausen, J.V.

    2006-01-01

    Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August......Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August...

  2. Unveiling hidden properties of young star clusters: differential reddening, star-formation spread, and binary fraction

    Science.gov (United States)

    Bonatto, C.; Lima, E. F.; Bica, E.

    2012-04-01

    Context. Usually, important parameters of young, low-mass star clusters are very difficult to obtain by means of photometry, especially when differential reddening and/or binaries occur in large amounts. Aims: We present a semi-analytical approach (ASAmin) that, when applied to the Hess diagram of a young star cluster, is able to retrieve the values of mass, age, star-formation spread, distance modulus, foreground and differential reddening, and binary fraction. Methods: The global optimisation method known as adaptive simulated annealing (ASA) is used to minimise the residuals between the observed and simulated Hess diagrams of a star cluster. The simulations are realistic and take the most relevant parameters of young clusters into account. Important features of the simulations are a normal (Gaussian) differential reddening distribution, a time-decreasing star-formation rate, the unresolved binaries, and the smearing effect produced by photometric uncertainties on Hess diagrams. Free parameters are cluster mass, age, distance modulus, star-formation spread, foreground and differential reddening, and binary fraction. Results: Tests with model clusters built with parameters spanning a broad range of values show that ASAmin retrieves the input values with a high precision for cluster mass, distance modulus, and foreground reddening, but they are somewhat lower for the remaining parameters. Given the statistical nature of the simulations, several runs should be performed to obtain significant convergence patterns. Specifically, we find that the retrieved (absolute minimum) parameters converge to mean values with a low dispersion as the Hess residuals decrease. When applied to actual young clusters, the retrieved parameters follow convergence patterns similar to the models. We show how the stochasticity associated with the early phases may affect the results, especially in low-mass clusters. This effect can be minimised by averaging out several twin clusters in the

  3. The Frequency of Binary Stars in the Globular Cluster M71

    Science.gov (United States)

    Barden, S. C.; Armandroff, T. E.; Pryor, C. P.

    1994-12-01

    The frequency of binary stars is a fundamental property of a stellar population. A comparison of the frequency of binaries in globular clusters with those in the field halo and disk populations tests the similarity of star formation in those environments. Binary stars in globular clusters also act as an energy source which ``heats" the cluster through super-elastic encounters with other stars and binaries. Such encounters can not only profoundly affect the dynamical evolution of the cluster, they can disrupt the widely separated binaries and catalyze the formation of exotic objects such as blue stragglers, x-ray binaries, and milli-second pulsars. We have used the KPNO 4-m and the multi-fiber instruments Nessie and Hydra to measure radial velocities at 4 epochs over two years for a sample of 126 stars in the globular cluster M71. Velocity errors are under 1 km s(-1) for the brighter stars and under 2 km s(-1) for the majority of our data set. These velocities will be valuable for studying the kinematics of M71, but here we focus on searching for binaries. The faintest stars are at V=17, or just above the main sequence turnoff. Our sample is thus deeper than any published globular cluster binary search utilizing spectroscopic techniques. By observing smaller stars, we double the number of decades of binary periods sampled compared to previous studies and come within a factor of 4 of the shortest possible periods for turnoff stars. This wider period window has produced the largest known sample of binaries in a globular cluster. Four stars show velocity ranges larger than 20 km s(-1) , nine have ranges larger than 10 km s(-1) , and others are clearly variable. We will compare the radial distribution of these stars to that predicted by theory and derive the main-sequence binary fraction.

  4. Consequences of dynamical disruption and mass segregation for the binary frequencies of star clusters

    International Nuclear Information System (INIS)

    Geller, Aaron M.; De Grijs, Richard; Li, Chengyuan; Hurley, Jarrod R.

    2013-01-01

    The massive (13,000-26,000 M ☉ ) and young (15-30 Myr) Large Magellanic Cloud star cluster NGC 1818 reveals an unexpected increasing binary frequency with radius for F-type stars (1.3-2.2 M ☉ ). This is in contrast to many older star clusters that show a decreasing binary frequency with radius. We study this phenomenon with sophisticated N-body modeling, exploring a range of initial conditions, from smooth virialized density distributions to highly substructured and collapsing configurations. We find that many of these models can reproduce the cluster's observed properties, although with a modest preference for substructured initial conditions. Our models produce the observed radial trend in binary frequency through disruption of soft binaries (with semi-major axes, a ≳ 3000 AU), on approximately a crossing time (∼5.4 Myr), preferentially in the cluster core. Mass segregation subsequently causes the binaries to sink toward the core. After roughly one initial half-mass relaxation time (t rh (0) ∼ 340 Myr) the radial binary frequency distribution becomes bimodal, the innermost binaries having already segregated toward the core, leaving a minimum in the radial binary frequency distribution that marches outward with time. After 4-6 t rh (0), the rising distribution in the halo disappears, leaving a radial distribution that rises only toward the core. Thus, both a radial binary frequency distribution that falls toward the core (as observed for NGC 1818) and one that rises toward the core (as for older star clusters) can arise naturally from the same evolutionary sequence owing to binary disruption and mass segregation in rich star clusters.

  5. On the incidence of close binary stars in globular clusters and the nature of the cluster X-ray sources

    International Nuclear Information System (INIS)

    Trimble, V.

    1977-01-01

    Recent calculations suggest that the globular clusters could not have formed with more than 20 per cent of the normal Population I fraction of their stars in binary systems. The fact that the clusters have more than their fair share of novae and U Geminorum stars (three each out of approximately 200 of each known, while the clusters contain only about 10 -4 of the mass and 10 -3 of the luminosity of the galaxy) therefore becomes surprising. The hypothesis of binary capture within cluster cores suggested to account for the clusters' high X-ray luminosity provides a few extra systems, but neither it nor any of the similar encounter or capture mechanisms suggested can account for the novae and U Gen stars, which remain puzzling. The number of Algol-type and W UMa eclipsing binaries predicted by these hypotheses do not conflict with data presently available, but careful searches for them would constitute a critical test of the theories. (author)

  6. Effect of binary stars on the dynamical evolution of stellar clusters. II. Analytic evolutionary models

    International Nuclear Information System (INIS)

    Hills, J.G.

    1975-01-01

    We use analytic models to compute the evolution of the core of a stellar system due simultaneously to stellar evaporation which causes the system (core) to contract and to its binaries which cause it to expand by progressively decreasing its binding energy. The evolution of the system is determined by two parameters: the initial number of stars in the system N 0 , and the fraction f/subb/ of its stars which are binaries. For a fixed f/subb/, stellar evaporation initially dominates the dynamical evolution if N 0 is sufficiently large due to the fact that the rate of evaporation is determined chiefly by long-range encounters which increase in importance as the number of stars in the system increases. If stellar evaporation initially dominates, the system first contracts, but as N/subc/, the number of remaining stars in the system, decreases by evaporation, the system reaches a minimum radius and a maximum density and then it expands monotonically as N/subc/ decreases further. Open clusters expand monotonically from the beginning if they have anything approaching average Population I binary frequencies. Globular clusters are highly deficient in binaries in order to have formed and retained the high-density stellar cores observed in most of them. We estimate that for these system f/subb/ < or = 0.15

  7. Formation of the First Star Clusters and Massive Star Binaries by Fragmentation of Filamentary Primordial Gas Clouds

    Science.gov (United States)

    Hirano, Shingo; Yoshida, Naoki; Sakurai, Yuya; Fujii, Michiko S.

    2018-03-01

    We perform a set of cosmological simulations of early structure formation incorporating baryonic streaming motions. We present a case where a significantly elongated gas cloud with ∼104 solar mass (M ⊙) is formed in a pre-galactic (∼107 M ⊙) dark halo. The gas streaming into the halo compresses and heats the massive filamentary cloud to a temperature of ∼10,000 Kelvin. The gas cloud cools rapidly by atomic hydrogen cooling, and then by molecular hydrogen cooling down to ∼400 Kelvin. The rapid decrease of the temperature and hence of the Jeans mass triggers fragmentation of the filament to yield multiple gas clumps with a few hundred solar masses. We estimate the mass of the primordial star formed in each fragment by adopting an analytic model based on a large set of radiation hydrodynamics simulations of protostellar evolution. The resulting stellar masses are in the range of ∼50–120 M ⊙. The massive stars gravitationally attract each other and form a compact star cluster. We follow the dynamics of the star cluster using a hybrid N-body simulation. We show that massive star binaries are formed in a few million years through multi-body interactions at the cluster center. The eventual formation of the remnant black holes will leave a massive black hole binary, which can be a progenitor of strong gravitational wave sources similar to those recently detected by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO).

  8. A Long-Period Totally Eclipsing Binary Star at the Turnoff of the Open Cluster NGC 6819 Discovered with Kepler

    DEFF Research Database (Denmark)

    Sandquist, Eric L.; Mathieu, Robert D.; Brogaard, Karsten

    2012-01-01

    We present the discovery of the totally eclipsing long-period (P = 771.8 d) binary system WOCS 23009 in the old open cluster NGC 6819 that contains both an evolved star near central hydrogen exhaustion and a low-mass (0.45 Msun) star. This system was previously known to be a single-lined spectros......We present the discovery of the totally eclipsing long-period (P = 771.8 d) binary system WOCS 23009 in the old open cluster NGC 6819 that contains both an evolved star near central hydrogen exhaustion and a low-mass (0.45 Msun) star. This system was previously known to be a single......-lined spectroscopic binary, but the discovery of an eclipse near apastron using data from the Kepler space telescope makes it clear that the system has an inclination that is very close to 90 degrees. Although the secondary star has not been identified in spectra, the mass of the primary star can be constrained using...... other eclipsing binaries in the cluster. The combination of total eclipses and a mass constraint for the primary star allows us to determine a reliable mass for the secondary star and radii for both stars, and to constrain the cluster age. Unlike well-measured stars of similar mass in field binaries...

  9. A YOUNG ECLIPSING BINARY AND ITS LUMINOUS NEIGHBORS IN THE EMBEDDED STAR CLUSTER Sh 2-252E

    Energy Technology Data Exchange (ETDEWEB)

    Lester, Kathryn V.; Gies, Douglas R.; Guo, Zhao, E-mail: lester@chara.gsu.edu, E-mail: gies@chara.gsu.edu, E-mail: guo@chara.gsu.edu [Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, P.O. Box 5060, Atlanta, GA 30302-5060 (United States)

    2016-12-01

    We present a photometric and light curve analysis of an eccentric eclipsing binary in the K2 Campaign 0 field, which resides in Sh 2-252E, a young star cluster embedded in an H ii region. We describe a spectroscopic investigation of the three brightest stars in the crowded aperture to identify which is the binary system. We find that none of these stars are components of the eclipsing binary system, which must be one of the fainter nearby stars. These bright cluster members all have remarkable spectra: Sh 2-252a (EPIC 202062176) is a B0.5 V star with razor sharp absorption lines, Sh 2-252b is a Herbig A0 star with disk-like emission lines, and Sh 2-252c is a pre-main-sequence star with very red color.

  10. Close Binaries in the Orion Nebula Cluster: On the Universality of Stellar Multiplicity and the Origin of Field Stars

    Science.gov (United States)

    Duchene, Gaspard; Lacour, Sylvestre; Moraux, Estelle; Bouvier, Jerome; Goodwin, Simon

    2018-01-01

    While stellar multiplicity is an ubiquitous outcome of star formation, there is a clear dichotomy between the multiplicity properties of young (~1 Myr-old) stellar clusters, like the ONC, which host a mostly field-like population of visual binaries, and those of equally young sparse populations, like the Taurus-Auriga region, which host twice as many stellar companions. Two distinct scenarios can account for this observation: one in which different star-forming regions form different number of stars, and one in which multiplicity properties are universal at birth but where internal cluster dynamics destroy many wide binaries. To solve this ambiguity, one must probe binaries that are sufficiently close so as not to be destroyed through interactions with other cluster members. To this end, we have conducted a survey for 10-100 au binaries in the ONC using the aperture masking technique with the VLT adaptive optics system. Among our sample of the 42 ONC members, we discovered 13 companions in this range of projected separations. This is consistent with the companion frequency observed in the Taurus population and twice as high as that observed among field stars. This survey thus strongly supports the idea that stellar multiplicity is characterized by near-universal initial properties that can later be dynamically altered. On the other hand, this exacerbates the question of the origin of field stars, since only clusters much denser than the ONC can effectively destroyed binaries closer than 100 au.

  11. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Matthew J. Benacquista

    2013-03-01

    Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  12. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers.

    Science.gov (United States)

    Rodriguez, Carl L; Amaro-Seoane, Pau; Chatterjee, Sourav; Rasio, Frederic A

    2018-04-13

    We present models of realistic globular clusters with post-Newtonian dynamics for black holes. By modeling the relativistic accelerations and gravitational-wave emission in isolated binaries and during three- and four-body encounters, we find that nearly half of all binary black hole mergers occur inside the cluster, with about 10% of those mergers entering the LIGO/Virgo band with eccentricities greater than 0.1. In-cluster mergers lead to the birth of a second generation of black holes with larger masses and high spins, which, depending on the black hole natal spins, can sometimes be retained in the cluster and merge again. As a result, globular clusters can produce merging binaries with detectable spins regardless of the birth spins of black holes formed from massive stars. These second-generation black holes would also populate any upper mass gap created by pair-instability supernovae.

  13. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers

    Science.gov (United States)

    Rodriguez, Carl L.; Amaro-Seoane, Pau; Chatterjee, Sourav; Rasio, Frederic A.

    2018-04-01

    We present models of realistic globular clusters with post-Newtonian dynamics for black holes. By modeling the relativistic accelerations and gravitational-wave emission in isolated binaries and during three- and four-body encounters, we find that nearly half of all binary black hole mergers occur inside the cluster, with about 10% of those mergers entering the LIGO/Virgo band with eccentricities greater than 0.1. In-cluster mergers lead to the birth of a second generation of black holes with larger masses and high spins, which, depending on the black hole natal spins, can sometimes be retained in the cluster and merge again. As a result, globular clusters can produce merging binaries with detectable spins regardless of the birth spins of black holes formed from massive stars. These second-generation black holes would also populate any upper mass gap created by pair-instability supernovae.

  14. Interacting binary stars

    CERN Document Server

    Sahade, Jorge; Ter Haar, D

    1978-01-01

    Interacting Binary Stars deals with the development, ideas, and problems in the study of interacting binary stars. The book consolidates the information that is scattered over many publications and papers and gives an account of important discoveries with relevant historical background. Chapters are devoted to the presentation and discussion of the different facets of the field, such as historical account of the development in the field of study of binary stars; the Roche equipotential surfaces; methods and techniques in space astronomy; and enumeration of binary star systems that are studied

  15. DETERMINING THE AGE OF THE KEPLER OPEN CLUSTER NGC 6819 WITH A NEW TRIPLE SYSTEM AND OTHER ECLIPSING BINARY STARS

    International Nuclear Information System (INIS)

    Brewer, Lauren N.; Sandquist, Eric L.; Jeffries, Mark W. Jr.; Orosz, Jerome A.

    2016-01-01

    As part of our study of the old (∼2.5 Gyr) open cluster NGC 6819 in the Kepler field, we present photometric (Kepler and ground-based BVR C I C ) and spectroscopic observations of the detached eclipsing binary WOCS 24009 (Auner 665; KIC 5023948) with a short orbital period of 3.6 days. WOCS 24009 is a triple-lined system, and we verify that the brightest star is physically orbiting the eclipsing binary using radial velocities and eclipse timing variations. The eclipsing binary components have masses M B  = 1.090 ± 0.010 M ⊙ and M C  = 1.075 ± 0.013 M ⊙ , and radii R B  = 1.099 ± 0.006 ± 0.005 R ⊙ and R C  = 1.069 ± 0.006 ± 0.013 R ⊙ . The bright non-eclipsing star resides at the cluster turnoff, and ultimately its mass will directly constrain the turnoff mass: our preliminary determination is M A  = 1.251 ± 0.057 M ⊙ . A careful examination of the light curves indicates that the fainter star in the eclipsing binary undergoes a very brief period of total eclipse, which enables us to precisely decompose the light of the three stars and place them in the color–magnitude diagram (CMD). We also present improved analysis of two previously discussed detached eclipsing stars in NGC 6819 (WOCS 40007 and WOCS 23009) en route to a combined determination of the cluster’s distance modulus (m − M) V  = 12.38 ± 0.04. Because this paper significantly increases the number of measured stars in the cluster, we can better constrain the age of the CMD to be 2.21 ± 0.10 ± 0.20 Gyr. Additionally, using all measured eclipsing binary star masses and radii, we constrain the age to 2.38 ± 0.05 ± 0.22 Gyr. The quoted uncertainties are estimates of measurement and systematic uncertainties (due to model physics differences and metal content), respectively

  16. THE CONTRIBUTIONS OF INTERACTIVE BINARY STARS TO DOUBLE MAIN-SEQUENCE TURNOFFS AND DUAL RED CLUMP OF INTERMEDIATE-AGE STAR CLUSTERS

    International Nuclear Information System (INIS)

    Yang Wuming; Bi Shaolan; Tian Zhijia; Li Tanda; Liu Kang; Meng Xiangcun

    2011-01-01

    Double or extended main-sequence turnoffs (DMSTOs) and dual red clump (RC) were observed in intermediate-age clusters, such as in NGC 1846 and 419. The DMSTOs are interpreted as that the cluster has two distinct stellar populations with differences in age of about 200-300 Myr but with the same metallicity. The dual RC is interpreted as a result of a prolonged star formation. Using a stellar population-synthesis method, we calculated the evolution of a binary-star stellar population. We found that binary interactions and merging can reproduce the dual RC in the color-magnitude diagrams of an intermediate-age cluster, whereas in actuality only a single population exists. Moreover, the binary interactions can lead to an extended main-sequence turnoff (MSTO) rather than DMSTOs. However, the rest of the main sequence, subgiant branch, and first giant branch are hardly spread by the binary interactions. Part of the observed dual RC and extended MSTO may be the results of binary interactions and mergers.

  17. COMBINED EFFECTS OF BINARIES AND STELLAR ROTATION ON THE COLOR-MAGNITUDE DIAGRAMS OF INTERMEDIATE-AGE STAR CLUSTERS

    International Nuclear Information System (INIS)

    Li Zhongmu; Mao Caiyan; Chen Li; Zhang Qian

    2012-01-01

    About 70% of intermediate-age star clusters in the Large Magellanic Clouds have been confirmed to have broad main sequence, multiple or extended turnoffs, and dual red giant clumps. The observed result seems to be at odds with the classical idea that such clusters are simple stellar populations. Although many models have been used to explain the results via factors such as prolonged star formation history, metallicity spread, differential reddening, selection effect, observational uncertainty, stellar rotation, and binary interaction, the reason for the special color-magnitude diagrams is still uncertain. We revisit this question via the combination of stellar rotation and binary effects. As a result, it shows 'golf club' color-magnitude diagrams with broad or multiple turnoffs, dual red clumps, blue stragglers, red stragglers, and extended main sequences. Because both binaries and massive rotators are common, our result suggests that most color-magnitude diagrams, including extended turnoff or multiple turnoffs, can be explained using simple stellar populations including both binary and stellar rotation effects, or composite populations with two components.

  18. The K2 M67 Study: A Curiously Young Star in an Eclipsing Binary in an Old Open Cluster

    Science.gov (United States)

    Sandquist, Eric L.; Mathieu, Robert D.; Quinn, Samuel N.; Pollack, Maxwell L.; Latham, David W.; Brown, Timothy M.; Esselstein, Rebecca; Aigrain, Suzanne; Parviainen, Hannu; Vanderburg, Andrew; Stello, Dennis; Somers, Garrett; Pinsonneault, Marc H.; Tayar, Jamie; Orosz, Jerome A.; Bedin, Luigi R.; Libralato, Mattia; Malavolta, Luca; Nardiello, Domenico

    2018-04-01

    We present an analysis of a slightly eccentric (e = 0.05), partially eclipsing, long-period (P = 69.73 days) main-sequence binary system (WOCS 12009, Sanders 1247) in the benchmark old open cluster M67. Using Kepler K2 and ground-based photometry, along with a large set of new and reanalyzed spectra, we derived highly precise masses (1.111 ± 0.015 and 0.748 ± 0.005 M ⊙) and radii (1.071 ± 0.008 ± 0.003 and 0.713 ± 0.019 ± 0.026 R ⊙, with statistical and systematic error estimates) for the stars. The radius of the secondary star is in agreement with theory. The primary, however, is approximately 15% smaller than reasonable isochrones for the cluster predict. Our best explanation is that the primary star was produced from the merger of two stars, as this can also account for the nondetection of photospheric lithium and its higher temperature relative to other cluster main-sequence stars at the same V magnitude. To understand the dynamical characteristics (low measured rotational line broadening of the primary star and low eccentricity of the current binary orbit), we believe that the most probable (but not the only) explanation is the tidal evolution of a close binary within a primordial triple system (possibly after a period of Kozai–Lidov oscillations), leading to merger approximately 1 Gyr ago. This star appears to be a future blue straggler that is being revealed as the cluster ages and the most massive main-sequence stars die out. Based on observations made at Kitt Peak National Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation; with the Tillinghast Reflector Echelle Spectrograph (TRES) on the 1.5 m Tillinghast telescope, located at the Smithsonian Astrophysical Observatory’s Fred L. Whipple Observatory on Mt. Hopkins in Arizona; the HARPS-N spectrograph on the Italian Telescopio Nazionale

  19. COMPACT STELLAR BINARY ASSEMBLY IN THE FIRST NUCLEAR STAR CLUSTERS AND r-PROCESS SYNTHESIS IN THE EARLY UNIVERSE

    International Nuclear Information System (INIS)

    Ramirez-Ruiz, Enrico; MacLeod, Morgan; Trenti, Michele; Roberts, Luke F.; Lee, William H.; Saladino-Rosas, Martha I.

    2015-01-01

    Investigations of elemental abundances in the ancient and most metal deficient stars are extremely important because they serve as tests of variable nucleosynthesis pathways and can provide critical inferences of the type of stars that lived and died before them. The presence of r-process elements in a handful of carbon-enhanced metal-poor (CEMP-r) stars, which are assumed to be closely connected to the chemical yield from the first stars, is hard to reconcile with standard neutron star mergers. Here we show that the production rate of dynamically assembled compact binaries in high-z nuclear star clusters can attain a sufficient high value to be a potential viable source of heavy r-process material in CEMP-r stars. The predicted frequency of such events in the early Galaxy, much lower than the frequency of Type II supernovae but with significantly higher mass ejected per event, can naturally lead to a high level of scatter of Eu as observed in CEMP-r stars

  20. COMPACT STELLAR BINARY ASSEMBLY IN THE FIRST NUCLEAR STAR CLUSTERS AND r-PROCESS SYNTHESIS IN THE EARLY UNIVERSE

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Ruiz, Enrico; MacLeod, Morgan [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Trenti, Michele [Kavli Institute for Cosmology and Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Roberts, Luke F. [TAPIR, California Institute of Technology, Pasadena, California 91125 (United States); Lee, William H.; Saladino-Rosas, Martha I. [Instituto de Astronomía, Universidad Nacional Autónoma de México, México DF 04510, México (Mexico)

    2015-04-01

    Investigations of elemental abundances in the ancient and most metal deficient stars are extremely important because they serve as tests of variable nucleosynthesis pathways and can provide critical inferences of the type of stars that lived and died before them. The presence of r-process elements in a handful of carbon-enhanced metal-poor (CEMP-r) stars, which are assumed to be closely connected to the chemical yield from the first stars, is hard to reconcile with standard neutron star mergers. Here we show that the production rate of dynamically assembled compact binaries in high-z nuclear star clusters can attain a sufficient high value to be a potential viable source of heavy r-process material in CEMP-r stars. The predicted frequency of such events in the early Galaxy, much lower than the frequency of Type II supernovae but with significantly higher mass ejected per event, can naturally lead to a high level of scatter of Eu as observed in CEMP-r stars.

  1. High-resolution spectroscopic observations of binary stars and yellow stragglers in three open clusters: NGC 2360, NGC 3680, and NGC 5822

    Energy Technology Data Exchange (ETDEWEB)

    Sales Silva, J. V.; Peña Suárez, V. J.; Katime Santrich, O. J.; Pereira, C. B.; Drake, N. A.; Roig, F., E-mail: joaovictor@on.br, E-mail: jearim@on.br, E-mail: osantrich@on.br, E-mail: claudio@on.br, E-mail: drake@on.br, E-mail: froig@on.br [Observatório Nacional/MCT, Rua Gen. José Cristino, 77, 20921-400 Rio de Janeiro (Brazil)

    2014-11-01

    Binary stars in open clusters are very useful targets in constraining the nucleosynthesis process. The luminosities of the stars are known because the distances of the clusters are also known, so chemical peculiarities can be linked directly to the evolutionary status of a star. In addition, binary stars offer the opportunity to verify a relationship between them and the straggler population in both globular and open clusters. We carried out a detailed spectroscopic analysis to derive the atmospheric parameters for 16 red giants in binary systems and the chemical composition of 11 of them in the open clusters NGC 2360, NGC 3680, and NGC 5822. We obtained abundances of C, N, O, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, and Nd. The atmospheric parameters of the studied stars and their chemical abundances were determined using high-resolution optical spectroscopy. We employ the local thermodynamic equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. The abundances of the light elements were derived using the spectral synthesis technique. We found that the stars NGC 2360-92 and 96, NGC 3680-34, and NGC 5822-4 and 312 are yellow straggler stars. We show that the spectra of NGC 5822-4 and 312 present evidence of contamination by an A-type star as a secondary star. For the other yellow stragglers, evidence of contamination is given by the broad wings of the Hα. Detection of yellow straggler stars is important because the observed number can be compared with the number predicted by simulations of binary stellar evolution in open clusters. We also found that the other binary stars are not s-process enriched, which may suggest that in these binaries the secondary star is probably a faint main-sequence object. The lack of any s-process enrichment is very useful in setting constraints for the number of white dwarfs in the open cluster, a subject that is related to the birthrate of these kinds of stars in open clusters and also to the age of a

  2. High-resolution Spectroscopic Observations of Binary Stars and Yellow Stragglers in Three Open Clusters : NGC 2360, NGC 3680, and NGC 5822

    Science.gov (United States)

    Sales Silva, J. V.; Peña Suárez, V. J.; Katime Santrich, O. J.; Pereira, C. B.; Drake, N. A.; Roig, F.

    2014-11-01

    Binary stars in open clusters are very useful targets in constraining the nucleosynthesis process. The luminosities of the stars are known because the distances of the clusters are also known, so chemical peculiarities can be linked directly to the evolutionary status of a star. In addition, binary stars offer the opportunity to verify a relationship between them and the straggler population in both globular and open clusters. We carried out a detailed spectroscopic analysis to derive the atmospheric parameters for 16 red giants in binary systems and the chemical composition of 11 of them in the open clusters NGC 2360, NGC 3680, and NGC 5822. We obtained abundances of C, N, O, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, and Nd. The atmospheric parameters of the studied stars and their chemical abundances were determined using high-resolution optical spectroscopy. We employ the local thermodynamic equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. The abundances of the light elements were derived using the spectral synthesis technique. We found that the stars NGC 2360-92 and 96, NGC 3680-34, and NGC 5822-4 and 312 are yellow straggler stars. We show that the spectra of NGC 5822-4 and 312 present evidence of contamination by an A-type star as a secondary star. For the other yellow stragglers, evidence of contamination is given by the broad wings of the Hα. Detection of yellow straggler stars is important because the observed number can be compared with the number predicted by simulations of binary stellar evolution in open clusters. We also found that the other binary stars are not s-process enriched, which may suggest that in these binaries the secondary star is probably a faint main-sequence object. The lack of any s-process enrichment is very useful in setting constraints for the number of white dwarfs in the open cluster, a subject that is related to the birthrate of these kinds of stars in open clusters and also to the age of a

  3. Close binary stars

    International Nuclear Information System (INIS)

    Larsson-Leander, G.

    1979-01-01

    Studies of close binary stars are being persued more vigorously than ever, with about 3000 research papers and notes pertaining to the field being published during the triennium 1976-1978. Many major advances and spectacular discoveries were made, mostly due to increased observational efficiency and precision, especially in the X-ray, radio, and ultraviolet domains. Progress reports are presented in the following areas: observational techniques, methods of analyzing light curves, observational data, physical data, structure and models of close binaries, statistical investigations, and origin and evolution of close binaries. Reports from the Coordinates Programs Committee, the Committee for Extra-Terrestrial Observations and the Working Group on RS CVn binaries are included. (Auth./C.F.)

  4. Black holes in binary stars

    NARCIS (Netherlands)

    Wijers, R.A.M.J.

    1996-01-01

    Introduction Distinguishing neutron stars and black holes Optical companions and dynamical masses X-ray signatures of the nature of a compact object Structure and evolution of black-hole binaries High-mass black-hole binaries Low-mass black-hole binaries Low-mass black holes Formation of black holes

  5. Planets in Binary Star Systems

    CERN Document Server

    Haghighipour, Nader

    2010-01-01

    The discovery of extrasolar planets over the past decade has had major impacts on our understanding of the formation and dynamical evolution of planetary systems. There are features and characteristics unseen in our solar system and unexplainable by the current theories of planet formation and dynamics. Among these new surprises is the discovery of planets in binary and multiple-star systems. The discovery of such "binary-planetary" systems has confronted astrodynamicists with many new challenges, and has led them to re-examine the theories of planet formation and dynamics. Among these challenges are: How are planets formed in binary star systems? What would be the notion of habitability in such systems? Under what conditions can binary star systems have habitable planets? How will volatiles necessary for life appear on such planets? This volume seeks to gather the current research in the area of planets in binary and multistar systems and to familiarize readers with its associated theoretical and observation...

  6. Some properties of spectral binary stars

    International Nuclear Information System (INIS)

    Krajcheva, Z.T.; Popova, E.I.; Tutukov, A.V.; Yungel'son, L.R.; AN SSSR, Moscow. Astronomicheskij Sovet)

    1978-01-01

    Statistical investigations of spectra binary stars are carried out. Binary systems consisting of main sequence stars are considered. For 826 binary stars masses of components, ratios of component masses, semiaxes of orbits and orbital angular momenta are calculated. The distributions of these parameters and their correlations are analyzed. The dependences of statistical properties of spectral binary stars on their origin and evolution are discussed

  7. A First Estimate of the X-Ray Binary Frequency as a Function of Star Cluster Mass in a Single Galactic System

    Science.gov (United States)

    Clark, D. M.; Eikenberry, S. S.; Brandl, B. R.; Wilson, J. C.; Carson, J. C.; Henderson, C. P.; Hayward, T. L.; Barry, D. J.; Ptak, A. F.; Colbert, E. J. M.

    2008-05-01

    We use the previously identified 15 infrared star cluster counterparts to X-ray point sources in the interacting galaxies NGC 4038/4039 (the Antennae) to study the relationship between total cluster mass and X-ray binary number. This significant population of X-Ray/IR associations allows us to perform, for the first time, a statistical study of X-ray point sources and their environments. We define a quantity, η, relating the fraction of X-ray sources per unit mass as a function of cluster mass in the Antennae. We compute cluster mass by fitting spectral evolutionary models to Ks luminosity. Considering that this method depends on cluster age, we use four different age distributions to explore the effects of cluster age on the value of η and find it varies by less than a factor of 4. We find a mean value of η for these different distributions of η = 1.7 × 10-8 M-1⊙ with ση = 1.2 × 10-8 M-1⊙. Performing a χ2 test, we demonstrate η could exhibit a positive slope, but that it depends on the assumed distribution in cluster ages. While the estimated uncertainties in η are factors of a few, we believe this is the first estimate made of this quantity to "order of magnitude" accuracy. We also compare our findings to theoretical models of open and globular cluster evolution, incorporating the X-ray binary fraction per cluster.

  8. Social stars: Modeling the interactive lives of stars in dense clusters and binary systems in the era of time domain astronomy

    Science.gov (United States)

    MacLeod, Morgan Elowe

    This thesis uses computational modeling to study of phases of dramatic interaction that intersperse stellar lifetimes. In galactic centers stars trace dangerously wandering orbits dictated by the combined gravitational force of a central, supermassive black hole and all of the surrounding stars. In binary systems, stars' evolution -- which causes their radii to increase substantially -- can bring initially non-interacting systems into contact. Moments of strong stellar interaction transform stars, their subsequent evolution, and the stellar environments they inhabit. In tidal disruption events, a star is partially or completely destroyed as tidal forces from a supermassive black hole overwhelm the star's self gravity. A portion of the stellar debris falls back to the black hole powering a luminous flare as it accretes. This thesis studies the relative event rates and properties of tidal disruption events for stars across the stellar evolutionary spectrum. Tidal disruptions of giant stars occur with high specific frequency; these objects' extended envelopes make them vulnerable to disruption. More-compact white dwarf stars are tidally disrupted relatively rarely. Their transients are also of very different duration and luminosity. Giant star disruptions power accretion flares with timescales of tens to hundreds of years; white dwarf disruption flares take hours to days. White dwarf tidal interactions can additionally trigger thermonuclear burning and lead to transients with signatures similar to type I supernovae. In binary star systems, a phase of hydrodynamic interaction called a common envelope episode occurs when one star evolves to swallow its companion. Dragged by the surrounding gas, the companion star spirals through the envelope to tighter orbits. This thesis studies accretion and flow morphologies during this phase. Density gradients across the gravitationally-focussed material lead to a strong angular momentum barrier to accretion during common envelope

  9. Astronomy of binary and multiple stars

    International Nuclear Information System (INIS)

    Tokovinin, A.A.

    1984-01-01

    Various types of binary stars and methods for their observation are described in a popular form. Some models of formation and evolution of binary and multiple star systems are presented. It is concluded that formation of binary and multiple stars is a regular stage in the process of star production

  10. Neutron star/red giant encounters in globular clusters

    International Nuclear Information System (INIS)

    Bailyn, C.D.

    1988-01-01

    The author presents a simple expression for the amount by which xsub(crit) is diminished as a star evolves xsub(crit) Rsub(crit)/R*, where Rsub(crit) is the maximum distance of closest approach between two stars for which the tidal energy is sufficient to bind the system, and R* is the radius of the star on which tides are being raised. Also it is concluded that tidal capture of giants by neutron stars resulting in binary systems is unlikely in globular clusters. However, collisions between neutron stars and red giants, or an alternative process involving tidal capture of a main-sequence star into an initially detached binary system, may result either in rapidly rotating neutron stars or in white dwarf/neutron star binaries. (author)

  11. Young and Waltzing Binary Stars

    Science.gov (United States)

    2001-10-01

    ADONIS Observes Low-mass Eclipsing System in Orion Summary A series of very detailed images of a binary system of two young stars have been combined into a movie . In merely 3 days, the stars swing around each other. As seen from the earth, they pass in front of each other twice during a full revolution, producing eclipses during which their combined brightness diminishes . A careful analysis of the orbital motions has now made it possible to deduce the masses of the two dancing stars . Both turn out to be about as heavy as our Sun. But while the Sun is about 4500 million years old, these two stars are still in their infancy. They are located some 1500 light-years away in the Orion star-forming region and they probably formed just 10 million years ago . This is the first time such an accurate determination of the stellar masses could be achieved for a young binary system of low-mass stars . The new result provides an important piece of information for our current understanding of how young stars evolve. The observations were obtained by a team of astronomers from Italy and ESO [1] using the ADaptive Optics Near Infrared System (ADONIS) on the 3.6-m telescope at the ESO La Silla Observatory. PR Photo 29a/01 : The RXJ 0529.4+0041 system before primary eclipse PR Photo 29b/01 : The RXJ 0529.4+0041 system at mid-primary eclipse PR Photo 29c/01 : The RXJ 0529.4+0041 system after primary eclipse PR Photo 29d/01 : The RXJ 0529.4+0041 system before secondary eclipse PR Photo 29e/01 : The RXJ 0529.4+0041 system at mid-secondary eclipse PR Photo 29f/01 : The RXJ 0529.4+0041 system after secondary eclipse PR Video Clip 06/01 : Video of the RXJ 0529.4+0041 system Binary stars and stellar masses Since some time, astronomers have noted that most stars seem to form in binary or multiple systems. This is quite fortunate, as the study of binary stars is the only way in which it is possible to measure directly one of the most fundamental quantities of a star, its mass. The mass of a

  12. New CCD photometric investigation of the early-type overcontact binary BH Cen in the young star-forming Galactic cluster IC 2944

    Science.gov (United States)

    Zhao, Er-Gang; Qian, Sheng-Bang; Zejda, Miloslav; Zhang, Bin; Zhang, Jia

    2018-05-01

    BH Cen is a short-period early-type binary with a period of 0.792d in the extremely young star-forming cluster IC 2944. New multi-color CCD photometric light curves in U, B, V, R and I bands are presented and are analyzed by using the Wilson-Devinney code. It is detected that BH Cen is a high-mass-ratio overcontact binary with a fill-out factor of 46.4% and a mass ratio of 0.89. The derived orbital inclination i is 88.9 degrees, indicating that it is a totally eclipsing binary and the photometric parameters can be determined reliably. By adding new eclipse times, the orbital period changes in the binary are analyzed. It is confirmed that the period of BH Cen shows a long-term increase while it undergoes a cyclic oscillation with an amplitude of A 3 = 0.024 d and a period of P 3 = 50.3 yr. The high mass ratio, overcontact configuration and long-term continuous increase in the orbital period all suggest that BH Cen is in the evolutionary state after the shortest-period stage of Case A mass transfer. The continuous increase in period can be explained by mass transfer from the secondary component to the primary one at a rate of Ṁ 2 = 2.8 × 10‑6 M ⊙ per year. The cyclic change can be plausibly explained by the presence of a third body because both components in the BH Cen system are early-type stars. Its mass is determined to be no less than 2.2 M ⊙ at an orbital separation of about 32.5 AU. Since no third light was found during the photometric solution, it is possible that the third body may be a candidate for a compact object.

  13. Instabilities in Interacting Binary Stars

    Science.gov (United States)

    Andronov, I. L.; Andrych, K. D.; Antoniuk, K. A.; Baklanov, A. V.; Beringer, P.; Breus, V. V.; Burwitz, V.; Chinarova, L. L.; Chochol, D.; Cook, L. M.; Cook, M.; Dubovský, P.; Godlowski, W.; Hegedüs, T.; Hoňková, K.; Hric, L.; Jeon, Y.-B.; Juryšek, J.; Kim, C.-H.; Kim, Y.; Kim, Y.-H.; Kolesnikov, S. V.; Kudashkina, L. S.; Kusakin, A. V.; Marsakova, V. I.; Mason, P. A.; Mašek, M.; Mishevskiy, N.; Nelson, R. H.; Oksanen, A.; Parimucha, S.; Park, J.-W.; Petrík, K.; Quiñones, C.; Reinsch, K.; Robertson, J. W.; Sergey, I. M.; Szpanko, M.; Tkachenko, M. G.; Tkachuk, L. G.; Traulsen, I.; Tremko, J.; Tsehmeystrenko, V. S.; Yoon, J.-N.; Zola, S.; Shakhovskoy, N. M.

    2017-07-01

    The types of instability in the interacting binary stars are briefly reviewed. The project “Inter-Longitude Astronomy” is a series of smaller projects on concrete stars or groups of stars. It has no special funds, and is supported from resources and grants of participating organizations, when informal working groups are created. This “ILA” project is in some kind similar and complementary to other projects like WET, CBA, UkrVO, VSOLJ, BRNO, MEDUZA, AstroStatistics, where many of us collaborate. Totally we studied 1900+ variable stars of different types, including newly discovered variables. The characteristic timescale is from seconds to decades and (extrapolating) even more. The monitoring of the first star of our sample AM Her was initiated by Prof. V.P. Tsesevich (1907-1983). Since more than 358 ADS papers were published. In this short review, we present some highlights of our photometric and photo-polarimetric monitoring and mathematical modeling of interacting binary stars of different types: classical (AM Her, QQ Vul, V808 Aur = CSS 081231:071126+440405, FL Cet), asynchronous (BY Cam, V1432 Aql), intermediate (V405 Aql, BG CMi, MU Cam, V1343 Her, FO Aqr, AO Psc, RXJ 2123, 2133, 0636, 0704) polars and magnetic dwarf novae (DO Dra) with 25 timescales corresponding to different physical mechanisms and their combinations (part “Polar”); negative and positive superhumpers in nova-like (TT Ari, MV Lyr, V603 Aql, V795 Her) and many dwarf novae stars (“Superhumper”); eclipsing “non-magnetic” cataclysmic variables(BH Lyn, DW UMa, EM Cyg; PX And); symbiotic systems (“Symbiosis”); super-soft sources (SSS, QR And); spotted (and not spotted) eclipsing variables with (and without) evidence for a current mass transfer (“Eclipser”) with a special emphasis on systems with a direct impact of the stream into the gainer star's atmosphere, which we propose to call “Impactor” (short from “Extreme Direct Impactor”), or V361 Lyr-type stars. Other

  14. Ultracompact X-ray binary stars

    NARCIS (Netherlands)

    Haaften, L.M. van

    2013-01-01

    Ultracompact X-ray binary stars usually consist of a neutron star and a white dwarf, two stars bound together by their strong gravity and orbiting each other very rapidly, completing one orbit in less than one hour. Neutron stars are extremely compact remnants of the collapsed cores of massive stars

  15. Hypervelocity stars from young stellar clusters in the Galactic Centre

    Science.gov (United States)

    Fragione, G.; Capuzzo-Dolcetta, R.; Kroupa, P.

    2017-05-01

    The enormous velocities of the so-called hypervelocity stars (HVSs) derive, likely, from close interactions with massive black holes, binary stars encounters or supernova explosions. In this paper, we investigate the origin of HVSs as consequence of the close interaction between the Milky Way central massive black hole and a passing-by young stellar cluster. We found that both single and binary HVSs may be generated in a burst-like event, as the cluster passes near the orbital pericentre. High-velocity stars will move close to the initial cluster orbital plane and in the direction of the cluster orbital motion at the pericentre. The binary fraction of these HVS jets depends on the primordial binary fraction in the young cluster. The level of initial mass segregation determines the value of the average mass of the ejected stars. Some binary stars will merge, continuing their travel across and out of the Galaxy as blue stragglers.

  16. The symbiotics as binary stars

    International Nuclear Information System (INIS)

    Plavec, M.J.

    1982-01-01

    The author envisages at least three models that can give a symbiotic object: He has called them, respectively, the PN symbiotic, the Algol symbiotic, and the novalike symbiotic. Their properties are briefly discussed. The most promising model is one of a binary system in the second stage of mass transfer, actually at the beginning of it: The cool component is a red giant ascending the asymptotic branch, expanding but not yet filling its critical lobe. The hot star is a subdwarf located in the same region of the Hertzsprung-Russell diagram as the central stars of planetary nebulae. It may be closely related to them, or it may be a helium star, actually a remnant of an Algol primary which underwent the first stage of mass transfer. In these cases, accretion on this star may not play a significant role (PN symbiotic). Perhaps more often, the subdwarf is a ''rejuvenated'' degenerate dwarf whose nuclear burning shells were ignited and are maintained by accretion of material coming from the red giant in the form of a stellar wind. Eruptions are often inevitable: this is the novalike symbiotic. A third alternative is a system in the first stage of mass transfer, where the photons needed for ionization of the nebula come from an accretion disk surrounding a main sequence star: an Algol symbiotic. In spite of considerable observational effort, the symbiotics are known so poorly that it is hard to decide between the models, or even decide if all three can actually exist. (Auth.)

  17. A ROSAT Survey of Contact Binary Stars

    Science.gov (United States)

    Geske, M. T.; Gettel, S. J.; McKay, T. A.

    2006-01-01

    Contact binary stars are common variable stars that are all believed to emit relatively large fluxes of X-rays. In this work we combine a large new sample of contact binary stars derived from the ROTSE-I telescope with X-ray data from the ROSAT All Sky Survey (RASS) to estimate the X-ray volume emissivity of contact binary stars in the Galaxy. We obtained X-ray fluxes for 140 contact binaries from the RASS, as well as two additional stars observed by the XMM-Newton observatory. From these data we confirm the emission of X-rays from all contact binary systems, with typical luminosities of approximately 1.0×1030 ergs s-1. Combining calculated luminosities with an estimated contact binary space density, we find that contact binaries do not have strong enough X-ray emission to account for a significant portion of the Galactic X-ray background.

  18. BINARY DISRUPTION BY MASSIVE BLACK HOLES: HYPERVELOCITY STARS, S STARS, AND TIDAL DISRUPTION EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, Benjamin C. [Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Rm 201, Salt Lake City, UT 84112 (United States); Kenyon, Scott J.; Geller, Margaret J.; Brown, Warren R., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: wbrown@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-04-20

    We examine whether disrupted binary stars can fuel black hole growth. In this mechanism, tidal disruption produces a single hypervelocity star (HVS) ejected at high velocity and a former companion star bound to the black hole. After a cluster of bound stars forms, orbital diffusion allows the black hole to accrete stars by tidal disruption at a rate comparable to the capture rate. In the Milky Way, HVSs and the S star cluster imply similar rates of 10{sup -5} to 10{sup -3} yr{sup -1} for binary disruption. These rates are consistent with estimates for the tidal disruption rate in nearby galaxies and imply significant black hole growth from disrupted binaries on 10 Gyr timescales.

  19. Pulsar-irradiated stars in dense globular clusters

    Science.gov (United States)

    Tavani, Marco

    1992-01-01

    We discuss the properties of stars irradiated by millisecond pulsars in 'hard' binaries of dense globular clusters. Irradiation by a relativistic pulsar wind as in the case of the eclipsing millisecond pulsar PSR 1957+20 alter both the magnitude and color of the companion star. Some of the blue stragglers (BSs) recently discovered in dense globular clusters can be irradiated stars in binaries containing powerful millisecond pulsars. The discovery of pulsar-driven orbital modulations of BS brightness and color with periods of a few hours together with evidence for radio and/or gamma-ray emission from BS binaries would valuably contribute to the understanding of the evolution of collapsed stars in globular clusters. Pulsar-driven optical modulation of cluster stars might be the only observable effect of a new class of binary pulsars, i.e., hidden millisecond pulsars enshrouded in the evaporated material lifted off from the irradiated companion star.

  20. Binary neutron star merger simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bruegmann, Bernd [Jena Univ. (Germany)

    2016-11-01

    Our research focuses on the numerical tools necessary to solve Einstein's equations. In recent years we have been particularly interested in spacetimes consisting of two neutron stars in the final stages of their evolution. Because of the emission of gravitational radiation, the objects are driven together to merge; the emitted gravitational wave signal is visualized. This emitted gravitational radiation carries energy and momentum away from the system and contains information about the system. Late last year the Laser Interferometer Gravitational-wave Observatory (LIGO) began searches for these gravitational wave signals at a sensitivity at which detections are expected. Although such systems can radiate a significant amount of their total mass-energy in gravitational waves, the gravitational wave signals one expects to receive on Earth are not strong, since sources of gravitational waves are often many millions of light years away. Therefore one needs accurate templates for the radiation one expects from such systems in order to be able to extract them out of the detector's noise. Although analytical models exist for compact binary systems when the constituents are well separated, we need numerical simulation to investigate the last orbits before merger to obtain accurate templates and validate analytical approximations. Due to the strong nonlinearity of the equations and the large separation of length scales, these simulations are computationally demanding and need to be run on large supercomputers. When matter is present the computational cost as compared to pure black hole (vacuum) simulations increases even more due to the additional matter fields. But also more interesting astrophysical phenomena can happen. In fact, there is the possibility for a strong electromagnetic signal from the merger (e.g., a short gamma-ray burst or lower-energy electromagnetic signatures from the ejecta) and significant neutrino emission. Additionally, we can expect that

  1. Young stars in the old galactic cluster NGC 188

    International Nuclear Information System (INIS)

    Veer, F. van 't

    1984-01-01

    We first briefly discuss the age of the oldest known galactic clusters, according to recently published determinations. The now definitely established membership of our W UMa type contact binaries in this cluster is difficult to understand if the age of these stars is that of the cluster. It appears therefore that these binaries are much younger and that the several episodes of star formation took place in NGC 188. This conclusion is reached after a new study of the mean density of the four contact binaries and a critical discussion of the chemical composition and the mixing length parameter. (orig.)

  2. Evolution of massive close binary stars

    International Nuclear Information System (INIS)

    Masevich, A.G.; Tutukov, A.V.

    1982-01-01

    Some problems of the evolution of massive close binary stars are discussed. Most of them are nonevolutionized stars with close masses of components. After filling the Roche cavity and exchange of matter between the components the Wolf-Rayet star is formed. As a result of the supernovae explosion a neutron star or a black hole is formed in the system. The system does not disintegrate but obtains high space velocity owing to the loss of the supernovae envelope. The satellite of the neutron star or black hole - the star of the O or B spectral class loses about 10 -6 of the solar mass for a year. Around the neighbouring component a disc of this matter is formed the incidence of which on a compact star leads to X radiation appearance. The neutron star cannot absorb the whole matter of the widening component and the binary system submerges into the common envelope. As a result of the evolution of massive close binary systems single neutron stars can appear which after the lapse of some time become radiopulsars. Radiopulsars with such high space velocities have been found in our Galaxy [ru

  3. Do stellar clusters form fewer binaries? Using moderate separation binaries to distinguish between nature and nurture

    Science.gov (United States)

    Reiter, Megan

    2017-08-01

    Fewer wide-separation binaries are found in dense stellar clusters than in looser stellar associations. It is therefore unclear whether feedback in clusters prevents the formation of multiple systems or dynamical interactions destroy them. Measuring the prevalence of close, bound binary systems provide a key test to distinguish between these possibilities. Systems with separations of 10-50 AU will survive interactions in the cluster environment, and therefore are more representative of the natal population of multiple systems. By fitting a double-star PSF, we will identify visual binaries in the Orion Nebula with separations as small as 0.03. At the distance of Orion, this corresponds to a physical separation of 12 AU, effectively closing the observational gap in the binary separation distribution left between known visual and spectroscopic binaries (>65 AU or PhD thesis.

  4. MEASUREMENT OF THE RADIUS OF NEUTRON STARS WITH HIGH SIGNAL-TO-NOISE QUIESCENT LOW-MASS X-RAY BINARIES IN GLOBULAR CLUSTERS

    International Nuclear Information System (INIS)

    Guillot, Sebastien; Rutledge, Robert E.; Servillat, Mathieu; Webb, Natalie A.

    2013-01-01

    This paper presents the measurement of the neutron star (NS) radius using the thermal spectra from quiescent low-mass X-ray binaries (qLMXBs) inside globular clusters (GCs). Recent observations of NSs have presented evidence that cold ultra dense matter—present in the core of NSs—is best described by ''normal matter'' equations of state (EoSs). Such EoSs predict that the radii of NSs, R NS , are quasi-constant (within measurement errors, of ∼10%) for astrophysically relevant masses (M NS >0.5 M ☉ ). The present work adopts this theoretical prediction as an assumption, and uses it to constrain a single R NS value from five qLMXB targets with available high signal-to-noise X-ray spectroscopic data. Employing a Markov chain Monte-Carlo approach, we produce the marginalized posterior distribution for R NS , constrained to be the same value for all five NSs in the sample. An effort was made to include all quantifiable sources of uncertainty into the uncertainty of the quoted radius measurement. These include the uncertainties in the distances to the GCs, the uncertainties due to the Galactic absorption in the direction of the GCs, and the possibility of a hard power-law spectral component for count excesses at high photon energy, which are observed in some qLMXBs in the Galactic plane. Using conservative assumptions, we found that the radius, common to the five qLMXBs and constant for a wide range of masses, lies in the low range of possible NS radii, R NS =9.1 +1.3 -1.5 km (90%-confidence). Such a value is consistent with low-R NS equations of state. We compare this result with previous radius measurements of NSs from various analyses of different types of systems. In addition, we compare the spectral analyses of individual qLMXBs to previous works.

  5. Measurement of the Radius of Neutron Stars with High Signal-to-noise Quiescent Low-mass X-Ray Binaries in Globular Clusters

    Science.gov (United States)

    Guillot, Sebastien; Servillat, Mathieu; Webb, Natalie A.; Rutledge, Robert E.

    2013-07-01

    This paper presents the measurement of the neutron star (NS) radius using the thermal spectra from quiescent low-mass X-ray binaries (qLMXBs) inside globular clusters (GCs). Recent observations of NSs have presented evidence that cold ultra dense matter—present in the core of NSs—is best described by "normal matter" equations of state (EoSs). Such EoSs predict that the radii of NSs, R NS, are quasi-constant (within measurement errors, of ~10%) for astrophysically relevant masses (M NS>0.5 M ⊙). The present work adopts this theoretical prediction as an assumption, and uses it to constrain a single R NS value from five qLMXB targets with available high signal-to-noise X-ray spectroscopic data. Employing a Markov chain Monte-Carlo approach, we produce the marginalized posterior distribution for R NS, constrained to be the same value for all five NSs in the sample. An effort was made to include all quantifiable sources of uncertainty into the uncertainty of the quoted radius measurement. These include the uncertainties in the distances to the GCs, the uncertainties due to the Galactic absorption in the direction of the GCs, and the possibility of a hard power-law spectral component for count excesses at high photon energy, which are observed in some qLMXBs in the Galactic plane. Using conservative assumptions, we found that the radius, common to the five qLMXBs and constant for a wide range of masses, lies in the low range of possible NS radii, R_NS =9.1^{+ 1.3}_{- 1.5} \\,km (90%-confidence). Such a value is consistent with low-R NS equations of state. We compare this result with previous radius measurements of NSs from various analyses of different types of systems. In addition, we compare the spectral analyses of individual qLMXBs to previous works.

  6. Close-binary central stars of planetary nebulae

    International Nuclear Information System (INIS)

    Bond, H.E.; Grauer, A.D.

    1987-01-01

    Recent observations of PN central stars identified as binary systems are reviewed. The theoretical significance of binary central stars is discussed, and the characteristics of UU Sge, V 477 Lyr, MT Ser, LSS 2018, VW Pyx, and the central star of HFG 1 are briefly summarized. All of these binaries are shown to have periods less than 1 day, and it is estimated that about 10 percent of all binary central stars are close binaries. 27 references

  7. Detection of binaries in the core of the globular cluster M15 using calcium emission lines

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, B W [Rijksuniversiteit Utrecht (Netherlands). Inst. of Astronomy; Rutten, R G.M. [Astronomical Inst. ' Anton Pannekoek' , Amsterdam (Netherlands); Callanan, P J [Oxford Univ. (UK). Dept. of Astrophysics; Seitzer, Patrick [Space Telescope Science Inst., Baltimore, MD (USA); Charles, P A [Oxford Univ. (UK). Dept. of Astrophysics Observatorio del Roque do los Muchachos, Santa Cruz de La Palma, Tenerife, Canary Islands (Spain); Cohn, H N; Lugger, P M [Indiana Univ., Bloomington, IN (USA). Dept. of Astronomy

    1991-05-09

    M12 is the prototypical collapsed-core globular cluster. Having undergone collapse, its core is believed now to be expanding, with energy for the re-expansion provided by binary stars, which turn gravitational potential energy into kinetic energy. Because these binary stars are generally more massive than single stars, they will have settled to the centre of the cluster. We report here that several of the stars at the core of M15 show Ca II H- and K-line emission characteristic of young, rapidly rotating stars and close binaries. We argue that the emission from M15 comes from primordial binaries, in which a period of spin-up has led to magnetic field generation by enhanced dynamo action, which in turn causes heating of the stellar chromospheres. If this interpretation is correct, the Ca H and K emission may provide an important diagnostic tool of the binary population in cluster cores, and thus of the cluster dynamics. (author).

  8. Detection of binaries in the core of the globular cluster M15 using calcium emission lines

    International Nuclear Information System (INIS)

    Murphy, B.W.; Callanan, P.J.; Charles, P.A.; Cohn, H.N.; Lugger, P.M.

    1991-01-01

    M12 is the prototypical collapsed-core globular cluster. Having undergone collapse, its core is believed now to be expanding, with energy for the re-expansion provided by binary stars, which turn gravitational potential energy into kinetic energy. Because these binary stars are generally more massive than single stars, they will have settled to the centre of the cluster. We report here that several of the stars at the core of M15 show Ca II H- and K-line emission characteristic of young, rapidly rotating stars and close binaries. We argue that the emission from M15 comes from primordial binaries, in which a period of spin-up has led to magnetic field generation by enhanced dynamo action, which in turn causes heating of the stellar chromospheres. If this interpretation is correct, the Ca H and K emission may provide an important diagnostic tool of the binary population in cluster cores, and thus of the cluster dynamics. (author)

  9. Star formation history: Modeling of visual binaries

    Science.gov (United States)

    Gebrehiwot, Y. M.; Tessema, S. B.; Malkov, O. Yu.; Kovaleva, D. A.; Sytov, A. Yu.; Tutukov, A. V.

    2018-05-01

    Most stars form in binary or multiple systems. Their evolution is defined by masses of components, orbital separation and eccentricity. In order to understand star formation and evolutionary processes, it is vital to find distributions of physical parameters of binaries. We have carried out Monte Carlo simulations in which we simulate different pairing scenarios: random pairing, primary-constrained pairing, split-core pairing, and total and primary pairing in order to get distributions of binaries over physical parameters at birth. Next, for comparison with observations, we account for stellar evolution and selection effects. Brightness, radius, temperature, and other parameters of components are assigned or calculated according to approximate relations for stars in different evolutionary stages (main-sequence stars, red giants, white dwarfs, relativistic objects). Evolutionary stage is defined as a function of system age and component masses. We compare our results with the observed IMF, binarity rate, and binary mass-ratio distributions for field visual binaries to find initial distributions and pairing scenarios that produce observed distributions.

  10. A simple model for binary star evolution

    International Nuclear Information System (INIS)

    Whyte, C.A.; Eggleton, P.P.

    1985-01-01

    A simple model for calculating the evolution of binary stars is presented. Detailed stellar evolution calculations of stars undergoing mass and energy transfer at various rates are reported and used to identify the dominant physical processes which determine the type of evolution. These detailed calculations are used to calibrate the simple model and a comparison of calculations using the detailed stellar evolution equations and the simple model is made. Results of the evolution of a few binary systems are reported and compared with previously published calculations using normal stellar evolution programs. (author)

  11. Asteroseismic effects in close binary stars

    Science.gov (United States)

    Springer, Ofer M.; Shaviv, Nir J.

    2013-09-01

    Turbulent processes in the convective envelopes of the Sun and stars have been shown to be a source of internal acoustic excitations. In single stars, acoustic waves having frequencies below a certain cut-off frequency propagate nearly adiabatically and are effectively trapped below the photosphere where they are internally reflected. This reflection essentially occurs where the local wavelength becomes comparable to the pressure scale height. In close binary stars, the sound speed is a constant on equipotentials, while the pressure scale height, which depends on the local effective gravity, varies on equipotentials and may be much greater near the inner Lagrangian point (L1). As a result, waves reaching the vicinity of L1 may propagate unimpeded into low-density regions, where they tend to dissipate quickly due to non-linear and radiative effects. We study the three-dimensional propagation and enhanced damping of such waves inside a set of close binary stellar models using a WKB approximation of the acoustic field. We find that these waves can have much higher damping rates in close binaries, compared to their non-binary counterparts. We also find that the relative distribution of acoustic energy density at the visible surface of close binaries develops a ring-like feature at specific acoustic frequencies and binary separations.

  12. Cataloging the Praesepe Cluster: Identifying Interlopers and Binary Systems

    Science.gov (United States)

    Lucey, Madeline R.; Gosnell, Natalie M.; Mann, Andrew; Douglas, Stephanie

    2018-01-01

    We present radial velocity measurements from an ongoing survey of the Praesepe open cluster using the WIYN 3.5m Telescope. Our target stars include 229 early-K to mid-M dwarfs with proper motion memberships that have been observed by the repurposed Kepler mission, K2. With this survey, we will provide a well-constrained membership list of the cluster. By removing interloping stars and determining the cluster binary frequency we can avoid systematic errors in our analysis of the K2 findings and more accurately determine exoplanet properties in the Praesepe cluster. Obtaining accurate exoplanet parameters in open clusters allows us to study the temporal dimension of exoplanet parameter space. We find Praesepe to have a mean radial velocity of 34.09 km/s and a velocity dispersion of 1.13 km/s, which is consistent with previous studies. We derive radial velocity membership probabilities for stars with ≥3 radial velocity measurements and compare against published membership probabilities. We also identify radial velocity variables and potential double-lined spectroscopic binaries. We plan to obtain more observations to determine the radial velocity membership of all the stars in our sample, as well as follow up on radial velocity variables to determine binary orbital solutions.

  13. Star Cluster Structure from Hierarchical Star Formation

    Science.gov (United States)

    Grudic, Michael; Hopkins, Philip; Murray, Norman; Lamberts, Astrid; Guszejnov, David; Schmitz, Denise; Boylan-Kolchin, Michael

    2018-01-01

    Young massive star clusters (YMCs) spanning 104-108 M⊙ in mass generally have similar radial surface density profiles, with an outer power-law index typically between -2 and -3. This similarity suggests that they are shaped by scale-free physics at formation. Recent multi-physics MHD simulations of YMC formation have also produced populations of YMCs with this type of surface density profile, allowing us to narrow down the physics necessary to form a YMC with properties as observed. We show that the shallow density profiles of YMCs are a natural result of phase-space mixing that occurs as they assemble from the clumpy, hierarchically-clustered configuration imprinted by the star formation process. We develop physical intuition for this process via analytic arguments and collisionless N-body experiments, elucidating the connection between star formation physics and star cluster structure. This has implications for the early-time structure and evolution of proto-globular clusters, and prospects for simulating their formation in the FIRE cosmological zoom-in simulations.

  14. Evolution of highly compact binary stellar systems in globular clusters

    International Nuclear Information System (INIS)

    Krolik, J.H.; Meiksin, A.; Joss, P.C.

    1984-01-01

    We have calculated the secular evolution of a highly compact binary stellar system, composed of a collapsed object and a low-mass secondary star, in the core of a globular cluster. The binary evolves under the combined influences of (i) gravitational radiation losses from the system, (ii) the evolution of the secondary star, (iii) the resultant gradual mass transfer, if any, from the secondary to the collapsed object, and (iv) occasional encounters with passing field stars. We calculate all these effects in detail, utilizing some simplifying approximations appropriate to low-mass secondaries. The times of encounters with field stars, and the initial parameter specifying those encounters, were chosen by use of a Monte Carlo technique; the subsequent gravitational interactions were calculated utilzing a three-body integrator, and the changes in the binary orbital parmeters were thereby determined. We carried out a total of 20 such evolutionary calculations for each of two cluster core densities (1 and 3 x 10 3 stars pc -3 ). Each calculation was continued until the binary was disrupted or until 2 x 10 10 yr had elapsed

  15. MEASUREMENT OF THE RADIUS OF NEUTRON STARS WITH HIGH SIGNAL-TO-NOISE QUIESCENT LOW-MASS X-RAY BINARIES IN GLOBULAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Guillot, Sebastien; Rutledge, Robert E. [Department of Physics, McGill University, 3600 rue University, Montreal, QC, H2X-3R4 (Canada); Servillat, Mathieu [Laboratoire AIM (CEA/DSM/IRFU/SAp, CNRS, Universite Paris Diderot), CEA Saclay, Bat. 709, F-91191 Gif-sur-Yvette (France); Webb, Natalie A., E-mail: guillots@physics.mcgill.ca, E-mail: rutledge@physics.mcgill.ca [Universite de Toulouse, UPS-OMP, IRAP, Toulouse (France)

    2013-07-20

    This paper presents the measurement of the neutron star (NS) radius using the thermal spectra from quiescent low-mass X-ray binaries (qLMXBs) inside globular clusters (GCs). Recent observations of NSs have presented evidence that cold ultra dense matter-present in the core of NSs-is best described by ''normal matter'' equations of state (EoSs). Such EoSs predict that the radii of NSs, R{sub NS}, are quasi-constant (within measurement errors, of {approx}10%) for astrophysically relevant masses (M{sub NS}>0.5 M{sub Sun }). The present work adopts this theoretical prediction as an assumption, and uses it to constrain a single R{sub NS} value from five qLMXB targets with available high signal-to-noise X-ray spectroscopic data. Employing a Markov chain Monte-Carlo approach, we produce the marginalized posterior distribution for R{sub NS}, constrained to be the same value for all five NSs in the sample. An effort was made to include all quantifiable sources of uncertainty into the uncertainty of the quoted radius measurement. These include the uncertainties in the distances to the GCs, the uncertainties due to the Galactic absorption in the direction of the GCs, and the possibility of a hard power-law spectral component for count excesses at high photon energy, which are observed in some qLMXBs in the Galactic plane. Using conservative assumptions, we found that the radius, common to the five qLMXBs and constant for a wide range of masses, lies in the low range of possible NS radii, R{sub NS}=9.1{sup +1.3}{sub -1.5} km (90%-confidence). Such a value is consistent with low-R{sub NS} equations of state. We compare this result with previous radius measurements of NSs from various analyses of different types of systems. In addition, we compare the spectral analyses of individual qLMXBs to previous works.

  16. Formation of a contact binary star system

    International Nuclear Information System (INIS)

    Mullen, E.F.F.

    1974-01-01

    The process of forming a contact binary star system is investigated in the light of current knowledge of the W Ursae Majoris type eclipsing binaries and the current rotational braking theories for contracting stars. A preliminary stage of mass transfer is proposed and studied through the use of a computer program which calculates evolutionary model sequences. The detailed development of both stars is followed in these calculations, and findings regarding the internal structure of the star which is receiving the mass are presented. Relaxation of the mass-gaining star is also studied; for these stars of low mass and essentially zero age, the star eventually settles to a state very similar to a zero-age main sequence star of the new mass. A contact system was formed through these calculations; it exhibits the general properties of a W Ursae Majoris system. The initial masses selected for the calculation were 1.29 M/sub solar mass/ and 0.56 M/sub solar mass/. An initial mass transfer rate of about 10 -10 solar masses per year gradually increased to about 10 -8 solar masses per year. After about 2.5 x 10 7 years, the less massive star filled its Roche lobe and an initial contact system was obtained. The final masses were 1.01359 M/sub solar mass/ and 0.83641 M/sub solar mass/. The internal structure of the secondary component is considerably different from that of a main sequence star of the same mass

  17. The birth of star clusters

    CERN Document Server

    2018-01-01

    All stars are born in groups. The origin of these groups has long been a key question in astronomy, one that interests researchers in star formation, the interstellar medium, and cosmology. This volume summarizes current progress in the field, and includes contributions from both theorists and observers. Star clusters appear with a wide range of properties, and are born in a variety of physical conditions. Yet the key question remains: How do diffuse clouds of gas condense into the collections of luminous objects we call stars? This book will benefit graduate students, newcomers to the field, and also experienced scientists seeking a convenient reference.

  18. Star clusters and associations

    International Nuclear Information System (INIS)

    Ruprecht, J.; Palous, J.

    1983-01-01

    All 33 papers presented at the symposium were inputted to INIS. They dealt with open clusters, globular clusters, stellar associations and moving groups, and local kinematics and galactic structures. (E.S.)

  19. Star clusters in evolving galaxies

    Science.gov (United States)

    Renaud, Florent

    2018-04-01

    Their ubiquity and extreme densities make star clusters probes of prime importance of galaxy evolution. Old globular clusters keep imprints of the physical conditions of their assembly in the early Universe, and younger stellar objects, observationally resolved, tell us about the mechanisms at stake in their formation. Yet, we still do not understand the diversity involved: why is star cluster formation limited to 105M⊙ objects in the Milky Way, while some dwarf galaxies like NGC 1705 are able to produce clusters 10 times more massive? Why do dwarfs generally host a higher specific frequency of clusters than larger galaxies? How to connect the present-day, often resolved, stellar systems to the formation of globular clusters at high redshift? And how do these links depend on the galactic and cosmological environments of these clusters? In this review, I present recent advances on star cluster formation and evolution, in galactic and cosmological context. The emphasis is put on the theory, formation scenarios and the effects of the environment on the evolution of the global properties of clusters. A few open questions are identified.

  20. STAR FORMATION IN DENSE CLUSTERS

    International Nuclear Information System (INIS)

    Myers, Philip C.

    2011-01-01

    A model of core-clump accretion with equally likely stopping describes star formation in the dense parts of clusters, where models of isolated collapsing cores may not apply. Each core accretes at a constant rate onto its protostar, while the surrounding clump gas accretes as a power of protostar mass. Short accretion flows resemble Shu accretion and make low-mass stars. Long flows resemble reduced Bondi accretion and make massive stars. Accretion stops due to environmental processes of dynamical ejection, gravitational competition, and gas dispersal by stellar feedback, independent of initial core structure. The model matches the field star initial mass function (IMF) from 0.01 to more than 10 solar masses. The core accretion rate and the mean accretion duration set the peak of the IMF, independent of the local Jeans mass. Massive protostars require the longest accretion durations, up to 0.5 Myr. The maximum protostar luminosity in a cluster indicates the mass and age of its oldest protostar. The distribution of protostar luminosities matches those in active star-forming regions if protostars have a constant birthrate but not if their births are coeval. For constant birthrate, the ratio of young stellar objects to protostars indicates the star-forming age of a cluster, typically ∼1 Myr. The protostar accretion luminosity is typically less than its steady spherical value by a factor of ∼2, consistent with models of episodic disk accretion.

  1. Orbital Decay in Binaries with Evolved Stars

    Science.gov (United States)

    Sun, Meng; Arras, Phil; Weinberg, Nevin N.; Troup, Nicholas; Majewski, Steven R.

    2018-01-01

    Two mechanisms are often invoked to explain tidal friction in binary systems. The ``dynamical tide” is the resonant excitation of internal gravity waves by the tide, and their subsequent damping by nonlinear fluid processes or thermal diffusion. The ``equilibrium tide” refers to non-resonant excitation of fluid motion in the star’s convection zone, with damping by interaction with the turbulent eddies. There have been numerous studies of these processes in main sequence stars, but less so on the subgiant and red giant branches. Motivated by the newly discovered close binary systems in the Apache Point Observatory Galactic Evolution Experiment (APOGEE-1), we have performed calculations of both the dynamical and equilibrium tide processes for stars over a range of mass as the star’s cease core hydrogen burning and evolve to shell burning. Even for stars which had a radiative core on the main sequence, the dynamical tide may have very large amplitude in the newly radiative core in post-main sequence, giving rise to wave breaking. The resulting large dynamical tide dissipation rate is compared to the equilibrium tide, and the range of secondary masses and orbital periods over which rapid orbital decay may occur will be discussed, as well as applications to close APOGEE binaries.

  2. A binary origin for 'blue stragglers' in globular clusters.

    Science.gov (United States)

    Knigge, Christian; Leigh, Nathan; Sills, Alison

    2009-01-15

    Blue stragglers in globular clusters are abnormally massive stars that should have evolved off the stellar main sequence long ago. There are two known processes that can create these objects: direct stellar collisions and binary evolution. However, the relative importance of these processes has remained unclear. In particular, the total number of blue stragglers found in a given cluster does not seem to correlate with the predicted collision rate, providing indirect support for the binary-evolution model. Yet the radial distributions of blue stragglers in many clusters are bimodal, with a dominant central peak: this has been interpreted as an indication that collisions do dominate blue straggler production, at least in the high-density cluster cores. Here we report that there is a clear, but sublinear, correlation between the number of blue stragglers found in a cluster core and the total stellar mass contained within it. From this we conclude that most blue stragglers, even those found in cluster cores, come from binary systems. The parent binaries, however, may themselves have been affected by dynamical encounters. This may be the key to reconciling all of the seemingly conflicting results found to date.

  3. A binary neutron star GRB model

    International Nuclear Information System (INIS)

    Wilson, J.R.; Salmonson, J.D.; Wilson, J.R.; Mathews, G.J.

    1998-01-01

    In this paper we present the preliminary results of a model for the production of gamma-ray bursts (GRBs) through the compressional heating of binary neutron stars near their last stable orbit prior to merger. Recent numerical studies of the general relativistic (GR) hydrodynamics in three spatial dimensions of close neutron star binaries (NSBs) have uncovered evidence for the compression and heating of the individual neutron stars (NSs) prior to merger 12. This effect will have significant effect on the production of gravitational waves, neutrinos and, ultimately, energetic photons. The study of the production of these photons in close NSBs and, in particular, its correspondence to observed GRBs is the subject of this paper. The gamma-rays arise as follows. Compressional heating causes the neutron stars to emit neutrino pairs which, in turn, annihilate to produce a hot electron-positron pair plasma. This pair-photon plasma expands rapidly until it becomes optically thin, at which point the photons are released. We show that this process can indeed satisfy three basic requirements of a model for cosmological gamma-ray bursts: (1) sufficient gamma-ray energy release (>10 51 ergs) to produce observed fluxes, (2) a time-scale of the primary burst duration consistent with that of a 'classical' GRB (∼10 seconds), and (3) the peak of the photon number spectrum matches that of 'classical' GRB (∼300 keV). copyright 1998 American Institute of Physics

  4. Binarity and Variable Stars in the Open Cluster NGC 2126

    Science.gov (United States)

    Chehlaeh, Nareemas; Mkrtichian, David; Kim, Seung-Lee; Lampens, Patricia; Komonjinda, Siramas; Kusakin, Anatoly; Glazunova, Ljudmila

    2018-04-01

    We present the results of an analysis of photometric time-series observations for NGC 2126 acquired at the Thai National Observatory (TNO) in Thailand and the Mount Lemmon Optical Astronomy Observatory (LOAO) in USA during the years 2004, 2013 and 2015. The main purpose is to search for new variable stars and to study the light curves of binary systems as well as the oscillation spectra of pulsating stars. NGC 2126 is an intermediate-age open cluster which has a population of stars inside the δ Scuti instability strip. Several variable stars are reported including three eclipsing binary stars, one of which is an eclipsing binary star with a pulsating component (V551 Aur). The Wilson-Devinney technique was used to analyze its light curves and to determine a new set of the system’s parameters. A frequency analysis of the eclipse-subtracted light curve was also performed. Eclipsing binaries which are members of open clusters are capable of delivering strong constraints on the cluster’s properties which are in turn useful for a pulsational analysis of their pulsating components. Therefore, high-resolution, high-quality spectra will be needed to derive accurate component radial velocities of the faint eclipsing binaries which are located in the field of NGC 2126. The new Devasthal Optical Telescope, suitably equipped, could in principle do this.

  5. Carbon stars in lmc clusters revisited

    OpenAIRE

    Marigo, Paola; Girardi, Leo Alberto; Chiosi, Cesare

    1996-01-01

    Examining the available data for AGB stars in the Large Magellanic Cloud (LMC) clusters, we address the question about the mass interval of low- and intermediate-mass stars which eventually evolve into carbon stars (C stars) during the TP-AGB phase. We combine the data compiled by Frogel, Mould & Blanco (1990) - near infrared photometry and spectral classification for luminous AGB stars in clusters - with the ages for individual clusters derived from independent methods. The resulting distrib...

  6. Hyperfast pulsars as the remnants of massive stars ejected from young star clusters

    Science.gov (United States)

    Gvaramadze, Vasilii V.; Gualandris, Alessia; Portegies Zwart, Simon

    2008-04-01

    Recent proper motion and parallax measurements for the pulsar PSR B1508+55 indicate a transverse velocity of ~1100kms-1, which exceeds earlier measurements for any neutron star. The spin-down characteristics of PSR B1508+55 are typical for a non-recycled pulsar, which implies that the velocity of the pulsar cannot have originated from the second supernova disruption of a massive binary system. The high velocity of PSR B1508+55 can be accounted for by assuming that it received a kick at birth or that the neutron star was accelerated after its formation in the supernova explosion. We propose an explanation for the origin of hyperfast neutron stars based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star which attained its peculiar velocity (similar to that of the pulsar) in the course of a strong dynamical three- or four-body encounter in the core of dense young star cluster. To check this hypothesis, we investigated three dynamical processes involving close encounters between: (i) two hard massive binaries, (ii) a hard binary and an intermediate-mass black hole (IMBH) and (iii) a single stars and a hard binary IMBH. We find that main-sequence O-type stars cannot be ejected from young massive star clusters with peculiar velocities high enough to explain the origin of hyperfast neutron stars, but lower mass main-sequence stars or the stripped helium cores of massive stars could be accelerated to hypervelocities. Our explanation for the origin of hyperfast pulsars requires a very dense stellar environment of the order of 106- 107starspc-3. Although such high densities may exist during the core collapse of young massive star clusters, we caution that they have never been observed.

  7. Observations of binary stars by speckle interferometry

    International Nuclear Information System (INIS)

    Morgan, B.L.; Beckmann, G.K.; Scaddan, R.J.

    1980-01-01

    This is the second paper in a series describing observations of binary stars using the technique of speckle interferometry. Observations were made using the 2.5-m Isaac Newton Telescope and the 1-m telescope of the Royal Greenwich Observatory and the 1.9-m telescope of the South African Astronomical Observatory. The classical Rayleigh diffraction limits are 0.050 arcsec for the 2.5-m telescope, 0.065 arcsec for the 1.9-m telescope and 0.125 arcsec for the 1-m telescope, at a wavelength of 500 nm. The results of 29 measurements of 26 objects are presented. The objects include long period spectroscopic binaries from the 6th Catalogue of Batten, close visual binary systems from the 3rd Catalogue of Finsen and Worley and variable stars. Nine of the objects have not been previously resolved by speckle interferometry. New members are detected in the systems β Cep, p Vel and iota UMa. (author)

  8. Star clusters and K2

    Science.gov (United States)

    Dotson, Jessie; Barentsen, Geert; Cody, Ann Marie

    2018-01-01

    The K2 survey has expanded the Kepler legacy by using the repurposed spacecraft to observe over 20 star clusters. The sample includes open and globular clusters at all ages, including very young (1-10 Myr, e.g. Taurus, Upper Sco, NGC 6530), moderately young (0.1-1 Gyr, e.g. M35, M44, Pleiades, Hyades), middle-aged (e.g. M67, Ruprecht 147, NGC 2158), and old globular clusters (e.g. M9, M19, Terzan 5). K2 observations of stellar clusters are exploring the rotation period-mass relationship to significantly lower masses than was previously possible, shedding light on the angular momentum budget and its dependence on mass and circumstellar disk properties, and illuminating the role of multiplicity in stellar angular momentum. Exoplanets discovered by K2 in stellar clusters provides planetary systems ripe for modeling given the extensive information available about their ages and environment. I will review the star clusters sampled by K2 across 16 fields so far, highlighting several characteristics, caveats, and unexplored uses of the public data set along the way. With fuel expected to run out in 2018, I will discuss the closing Campaigns, highlight the final target selection opportunities, and explain the data archive and TESS-compatible software tools the K2 mission intends to leave behind for posterity.

  9. Dynamics of star clusters

    International Nuclear Information System (INIS)

    Goodman, J.; Hut, P.

    1985-01-01

    The enigma of core collapse receives much attention in this volume. In addition, several observational papers summarize recent techniques and results and discuss the stellar dynamical implications of the enormous progress in the quality of surface photometry, proper motion studies, radial velocity determinations, as well as space-based measurements in a variety of wavelengths. The value of these Proceedings as a standard reference work is enhanced by the inclusion of two appendices, featuring English translations of two seminal papers on stellar dynamics published in Russian and not previously available in a Western language. A third appendix contains an up-to-date catalogue of observationally determined parameters of galactic globular clusters, as well as theoretically inferred parameters. This catalogue will prove to be an essential reference for phenomenonological studies and an ideal testing ground for new theoretical developments. (orig.)

  10. Massive binary stars and self-enrichment of Massive binary stars and self-enrichment of

    NARCIS (Netherlands)

    Izzard, R.G.; de Mink, S.E.; Pols, O.R.; Langer, N.; Sana, H.; de Koter, A.

    2013-01-01

    Globular clusters contain many stars with surface abundance patterns indicating contributions from hydrogen burning products, as seen in the anti-correlated elemental abundances of e.g. sodium and oxygen, and magnesium and aluminium. Multiple generations of stars can explain this phenomenon, with

  11. Statistical investigation of spectroscopic binary stars

    International Nuclear Information System (INIS)

    Tutukov, A.V.; Yungelson, L.R.

    1980-01-01

    A catalog of physical parameters of about 1000 spectroscopic binary stars (SB), based on the Batten catalog, its extensions, and newly published data has been compiled. Masses of stars' components (M 1 and M 2 ), mass ratios of components (q=M 1 /M 2 ) and orbital angular momenta are computed, wherever possible. It is probable that the initial mass function of the primaries is non-monotonic and is described only approximately by a power-law. A number of assumed 'initial' distributions of M 1 , q and the semiaxes of orbits were transformed with the aim of obtaining 'observed' distributions taking into account the observational selection due to the luminosities of the components, their radial velocities, inclinations of the orbits, and the effects of matter exchange between the components. (Auth.)

  12. Age and helium content of the open cluster NGC 6791 from multiple eclipsing binary members. II

    DEFF Research Database (Denmark)

    Brogaard, K.; VandenBerg, D. A.; Bruntt, H.

    2012-01-01

    Models of stellar structure and evolution can be constrained by measuring accurate parameters of detached eclipsing binaries in open clusters. Multiple binary stars provide the means to determine helium abundances in these old stellar systems, and in turn, to improve estimates of their age. In th...

  13. BINARY NEUTRON STARS IN QUASI-EQUILIBRIUM

    International Nuclear Information System (INIS)

    Taniguchi, Keisuke; Shibata, Masaru

    2010-01-01

    Quasi-equilibrium sequences of binary neutron stars are constructed for a variety of equations of state in general relativity. Einstein's constraint equations in the Isenberg-Wilson-Mathews approximation are solved together with the relativistic equations of hydrostationary equilibrium under the assumption of irrotational flow. We focus on unequal-mass sequences as well as equal-mass sequences, and compare those results. We investigate the behavior of the binding energy and total angular momentum along a quasi-equilibrium sequence, the endpoint of sequences, and the orbital angular velocity as a function of time, changing the mass ratio, the total mass of the binary system, and the equation of state of a neutron star. It is found that the orbital angular velocity at the mass-shedding limit can be determined by an empirical formula derived from an analytic estimation. We also provide tables for 160 sequences, which will be useful as a guideline of numerical simulations for the inspiral and merger performed in the near future.

  14. RADIAL VELOCITIES OF GALACTIC O-TYPE STARS. II. SINGLE-LINED SPECTROSCOPIC BINARIES

    International Nuclear Information System (INIS)

    Williams, S. J.; Gies, D. R.; Hillwig, T. C.; McSwain, M. V.; Huang, W.

    2013-01-01

    We report on new radial velocity measurements of massive stars that are either suspected binaries or lacking prior observations. This is part of a survey to identify and characterize spectroscopic binaries among O-type stars with the goal of comparing the binary fraction of field and runaway stars with those in clusters and associations. We present orbits for HDE 308813, HD 152147, HD 164536, BD–16°4826, and HDE 229232, Galactic O-type stars exhibiting single-lined spectroscopic variation. By fitting model spectra to our observed spectra, we obtain estimates for effective temperature, surface gravity, and rotational velocity. We compute orbital periods and velocity semiamplitudes for each system and note the lack of photometric variation for any system. These binaries probably appear single-lined because the companions are faint and because their orbital Doppler shifts are small compared to the width of the rotationally broadened lines of the primary.

  15. Circumstellar disks around binary stars in Taurus

    International Nuclear Information System (INIS)

    Akeson, R. L.; Jensen, E. L. N.

    2014-01-01

    We have conducted a survey of 17 wide (>100 AU) young binary systems in Taurus with the Atacama Large Millimeter Array (ALMA) at two wavelengths. The observations were designed to measure the masses of circumstellar disks in these systems as an aid to understanding the role of multiplicity in star and planet formation. The ALMA observations had sufficient resolution to localize emission within the binary system. Disk emission was detected around all primaries and 10 secondaries, with disk masses as low as 10 –4 M ☉ . We compare the properties of our sample to the population of known disks in Taurus and find that the disks from this binary sample match the scaling between stellar mass and millimeter flux of F mm ∝M ∗ 1.5--2.0 to within the scatter found in previous studies. We also compare the properties of the primaries to those of the secondaries and find that the secondary/primary stellar and disk mass ratios are not correlated; in three systems, the circumsecondary disk is more massive than the circumprimary disk, counter to some theoretical predictions.

  16. Circumstellar disks around binary stars in Taurus

    Energy Technology Data Exchange (ETDEWEB)

    Akeson, R. L. [NASA Exoplanet Science Institute, IPAC/Caltech, Pasadena, CA 91125 (United States); Jensen, E. L. N. [Swarthmore College, Department of Physics and Astronomy, Swarthmore, PA 19081 (United States)

    2014-03-20

    We have conducted a survey of 17 wide (>100 AU) young binary systems in Taurus with the Atacama Large Millimeter Array (ALMA) at two wavelengths. The observations were designed to measure the masses of circumstellar disks in these systems as an aid to understanding the role of multiplicity in star and planet formation. The ALMA observations had sufficient resolution to localize emission within the binary system. Disk emission was detected around all primaries and 10 secondaries, with disk masses as low as 10{sup –4} M {sub ☉}. We compare the properties of our sample to the population of known disks in Taurus and find that the disks from this binary sample match the scaling between stellar mass and millimeter flux of F{sub mm}∝M{sub ∗}{sup 1.5--2.0} to within the scatter found in previous studies. We also compare the properties of the primaries to those of the secondaries and find that the secondary/primary stellar and disk mass ratios are not correlated; in three systems, the circumsecondary disk is more massive than the circumprimary disk, counter to some theoretical predictions.

  17. ANALYSIS OF DETACHED ECLIPSING BINARIES NEAR THE TURNOFF OF THE OPEN CLUSTER NGC 7142

    Energy Technology Data Exchange (ETDEWEB)

    Sandquist, Eric L.; Serio, Andrew W.; Orosz, Jerome [San Diego State University, Department of Astronomy, San Diego, CA 92182 (United States); Shetrone, Matthew, E-mail: esandquist@mail.sdsu.edu, E-mail: aserio@gemini.edu, E-mail: jorosz@mail.sdsu.edu, E-mail: shetrone@astro.as.utexas.edu [University of Texas, McDonald Observatory, HC75 Box 1337-L Fort Davis, TX 79734 (United States)

    2013-08-01

    We analyze extensive BVR{sub C}I{sub C} photometry and radial velocity measurements for three double-lined deeply eclipsing binary stars in the field of the old open cluster NGC 7142. The short period (P = 1.9096825 days) detached binary V375 Cep is a high probability cluster member, and has a total eclipse of the secondary star. The characteristics of the primary star (M = 1.288 {+-} 0.017 M{sub Sun }) at the cluster turnoff indicate an age of 3.6 Gyr (with a random uncertainty of 0.25 Gyr), consistent with earlier analysis of the color-magnitude diagram. The secondary star (M = 0.871 {+-} 0.008 M{sub Sun }) is not expected to have evolved significantly, but its radius is more than 10% larger than predicted by models. Because this binary system has a known age, it is useful for testing the idea that radius inflation can occur in short period binaries for stars with significant convective envelopes due to the inhibition of energy transport by magnetic fields. The brighter star in the binary also produces a precision estimate of the distance modulus, independent of reddening estimates: (m - M){sub V} = 12.86 {+-} 0.07. The other two eclipsing binary systems are not cluster members, although one of the systems (V2) could only be conclusively ruled out as a present or former member once the stellar characteristics were determined. That binary is within 0. Degree-Sign 5 of edge-on, is in a fairly long-period eccentric binary, and contains two almost indistinguishable stars. The other binary (V1) has a small but nonzero eccentricity (e = 0.038) in spite of having an orbital period under 5 days.

  18. The Mass-Ratio Distribution of Visual Binary Stars

    NARCIS (Netherlands)

    Hogeveen, S.J.

    1990-01-01

    The selection effects that govern the observations of Visual Binary Stars are in- vestigated, in order to obtain a realistic statistical distribution of the mass-ratio q = Msec=Mprim. To this end a numerical simulation programme has been developed, which `generates' binary stars and `looks' at

  19. Do All O Stars Form in Star Clusters?

    Science.gov (United States)

    Weidner, C.; Gvaramadze, V. V.; Kroupa, P.; Pflamm-Altenburg, J.

    The question whether or not massive stars can form in isolation or only in star clusters is of great importance for the theory of (massive) star formation as well as for the stellar initial mass function of whole galaxies (IGIMF-theory). While a seemingly easy question it is rather difficult to answer. Several physical processes (e.g. star-loss due to stellar dynamics or gas expulsion) and observational limitations (e.g. dust obscuration of young clusters, resolution) pose severe challenges to answer this question. In this contribution we will present the current arguments in favour and against the idea that all O stars form in clusters.

  20. Cataclysmic Variables and Active Binary Stars in Omega Centauri

    Science.gov (United States)

    Arias, T.; Brochmann, M.; Dorfman, J. L.; White, M. V.; Cool, A. M.

    2004-12-01

    We report findings from our ongoing research on the globular cluster Omega Centauri (NGC 5139) using a 3x3 mosaic of Wide Field Camera pointings with the HST Advanced Camera for Surveys (ACS). The data consist of F435W (B435), F625W (R625), and F658N (Hα ) images and cover roughly 10x10 arcminutes, out to beyond the cluster's half-mass radius. Our current work is a search for cataclysmic variables (CVs) and active binaries (ABs) (e.g., RS CVn and BY Dra stars) as counterparts to X-ray point sources previously detected with Chandra. The ACS field encompasses 109 of the Chandra sources, 20-50 of which are likely to be cluster members according to our statistical estimates (the rest being primarily active galaxies). Using DAOPHOT to obtain photometry in 20x20 arcsecond patches surrounding each X-ray source, we are constructing color-magnitude diagrams to search for stars with Hα -R625 and/or B435-R625 colors indicative of CVs or ABs in ˜ 1 arcsecond Chandra error circles. With roughly half of the patches analyzed, several AB candidates and only a small number of CV candidates have emerged. Our tentative conclusion is that CVs may be significantly rarer in Omega Cen than in 47 Tuc, in contrast to the comparable numbers ( ˜100) predicted for these two clusters from tidal capture theory (Di Stefano and Rappaport 1994). Alternatively, the CVs could be strongly concentrated toward the cluster center, and thus not yet appear in our sample. To date, most of the patches we have analyzed are 3-4 arcminutes from the cluster center and thus are outside the cluster core (radius 2.6 arcminutes). Our continuing work should soon enable us to resolve this question. This work is supported by NASA grant GO-9442 from the Space Telescope Science Institute.

  1. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    International Nuclear Information System (INIS)

    Haghighipour, Nader; Kaltenegger, Lisa

    2013-01-01

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results

  2. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Haghighipour, Nader [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States); Kaltenegger, Lisa [MPIA, Koenigstuhl 17, Heidelberg, D-69117 (Germany)

    2013-11-10

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results.

  3. Star Formation in the Orion Nebula Cluster

    Science.gov (United States)

    Palla, Francesco; Stahler, Steven W.

    1999-11-01

    We study the record of star formation activity within the dense cluster associated with the Orion Nebula. The bolometric luminosity function of 900 visible members is well matched by a simplified theoretical model for cluster formation. This model assumes that stars are produced at a constant rate and distributed according to the field-star initial mass function. Our best-fit age for the system, within this framework, is 2×106 yr. To undertake a more detailed analysis, we present a new set of theoretical pre-main-sequence tracks. These cover all masses from 0.1 to 6.0 Msolar, and start from a realistic stellar birthline. The tracks end along a zero-age main-sequence that is in excellent agreement with the empirical one. As a further aid to cluster studies, we offer an heuristic procedure for the correction of pre-main-sequence luminosities and ages to account for the effects of unresolved binary companions. The Orion Nebula stars fall neatly between our birthline and zero-age main-sequence in the H-R diagram. All those more massive than about 8 Msolar lie close to the main sequence, as also predicted by theory. After accounting for the finite sensitivity of the underlying observations, we confirm that the population between 0.4 and 6.0 Msolar roughly follows a standard initial mass function. We see no evidence for a turnover at lower masses. We next use our tracks to compile stellar ages, also between 0.4 and 6.0 Msolar. Our age histogram reveals that star formation began at a low level some 107 yr ago and has gradually accelerated to the present epoch. The period of most active formation is indeed confined to a few×106 yr, and has recently ended with gas dispersal from the Trapezium. We argue that the acceleration in stellar births, which extends over a wide range in mass, reflects the gravitational contraction of the parent cloud spawning this cluster.

  4. Merger of binary neutron stars: Gravitational waves and electromagnetic counterparts

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Masaru

    2016-12-15

    Late inspiral and merger phases of binary neutron stars are the valuable new experimental fields for exploring nuclear physics because (i) gravitational waves from them will bring information for the neutron-star equation of state and (ii) the matter ejected after the onset of the merger could be the main site for the r-process nucleosynthesis. We will summarize these aspects of the binary neutron stars, describing the current understanding for the merger process of binary neutron stars that has been revealed by numerical-relativity simulations.

  5. Finding binaries from phase modulation of pulsating stars with Kepler

    Science.gov (United States)

    Shibahashi, Hiromoto; Murphy, Simon; Bedding, Tim

    2017-09-01

    Binary orbital motion causes a periodic variation in the path length travelled by light emitted from a star towards us. Hence, if the star is pulsating, the observed phase of the pulsation varies over the orbit. Conversely, once we have observed such phase variation, we can extract information about the binary orbit from photometry alone. Continuous and precise space-based photometry has made it possible to measure these light travel time effects on the pulsating stars in binary systems. This opens up a new way of finding unseen brown dwarfs, planets, or massive compact stellar remnants: neutron stars and black holes.

  6. Is the Coma cluster binary dominated?

    International Nuclear Information System (INIS)

    The, L.S.; White, S.D.M.

    1990-01-01

    It is investigated whether the model of an expanding cluster dominated by a massive binary galaxy, first suggested by Valtonen and Byrd (1979), is consistent with optical data on the surface density and velocity dispersion of the Coma cluster. The evolution of this model is simulated for a wide variety of initial conditions. It is found that galaxy counts in the model can be made to agree with observation, but that the observed velocity dispersion profile cannot be reproduced. A number of other arguments suggest that the central galaxies in Coma cannot be as massive as required by the model. This model is not a viable representation of the Coma cluster. 25 refs

  7. Compact stars and the evolution of binary systems

    NARCIS (Netherlands)

    van den Heuvel, E.P.J.

    2011-01-01

    The Chandrasekhar limit is of key importance for the evolution of white dwarfs in binary systems and for the formation of neutron stars and black holes in binaries. Mass transfer can drive a white dwarf in a binary over the Chandrasekhar limit, which may lead to a Type Ia supernova (in case of a CO

  8. SPB stars in the open SMC cluster NGC 371

    Science.gov (United States)

    Karoff, C.; Arentoft, T.; Glowienka, L.; Coutures, C.; Nielsen, T. B.; Dogan, G.; Grundahl, F.; Kjeldsen, H.

    2008-05-01

    Pulsation in β Cep and slowly pulsating B (SPB) stars are driven by the κ mechanism which depends critically on the metallicity. It has therefore been suggested that β Cep and SPB stars should be rare in the Magellanic Clouds which have lower metallicities than the solar neighbourhood. To test this prediction we have observed the open Small Magellanic Cloud (SMC) cluster NGC 371 for 12 nights in order to search for β Cep and SPB stars. Surprisingly, we find 29 short-period B-type variables in the upper part of the main sequence, many of which are probably SPB stars. This result indicates that pulsation is still driven by the κ mechanism even in low-metallicity environments. All the identified variables have periods longer than the fundamental radial period which means that they cannot be β Cep stars. Within an amplitude detection limit of 5 mmag no stars in the top of the Hertzsprung-Russell diagram show variability with periods shorter than the fundamental radial period. So if β Cep stars are present in the cluster they oscillate with amplitudes below 5 mmag, which is significantly lower than the mean amplitude of β Cep stars in the Galaxy. We see evidence that multimode pulsation is more common in the upper part of the main sequence than in the lower. We have also identified five eclipsing binaries and three periodic pulsating Be stars in the cluster field.

  9. Eclipsing binary stars with a δ Scuti component

    Science.gov (United States)

    Kahraman Aliçavuş, F.; Soydugan, E.; Smalley, B.; Kubát, J.

    2017-09-01

    Eclipsing binaries with a δ Sct component are powerful tools to derive the fundamental parameters and probe the internal structure of stars. In this study, spectral analysis of six primary δ Sct components in eclipsing binaries has been performed. Values of Teff, v sin I, and metallicity for the stars have been derived from medium-resolution spectroscopy. Additionally, a revised list of δ Sct stars in eclipsing binaries is presented. In this list, we have only given the δ Sct stars in eclipsing binaries to show the effects of the secondary components and tidal-locking on the pulsations of primary δ Sct components. The stellar pulsation, atmospheric and fundamental parameters (e.g. mass, radius) of 92 δ Sct stars in eclipsing binaries have been gathered. Comparison of the properties of single and eclipsing binary member δ Sct stars has been made. We find that single δ Sct stars pulsate in longer periods and with higher amplitudes than the primary δ Sct components in eclipsing binaries. The v sin I of δ Sct components is found to be significantly lower than that of single δ Sct stars. Relationships between the pulsation periods, amplitudes and stellar parameters in our list have been examined. Significant correlations between the pulsation periods and the orbital periods, Teff, log g, radius, mass ratio, v sin I and the filling factor have been found.

  10. The Fate of Neutron Star Binary Mergers

    Energy Technology Data Exchange (ETDEWEB)

    Piro, Anthony L. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Giacomazzo, Bruno [Physics Department, University of Trento, via Sommarive 14, I-38123 Trento (Italy); Perna, Rosalba, E-mail: piro@carnegiescience.edu [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)

    2017-08-01

    Following merger, a neutron star (NS) binary can produce roughly one of three different outcomes: (1) a stable NS, (2) a black hole (BH), or (3) a supramassive, rotationally supported NS, which then collapses to a BH following angular momentum losses. Which of these fates occur and in what proportion has important implications for the electromagnetic transient associated with the mergers and the expected gravitational wave (GW) signatures, which in turn depend on the high density equation of state (EOS). Here we combine relativistic calculations of NS masses using realistic EOSs with Monte Carlo population synthesis based on the mass distribution of NS binaries in our Galaxy to predict the distribution of fates expected. For many EOSs, a significant fraction of the remnants are NSs or supramassive NSs. This lends support to scenarios in which a quickly spinning, highly magnetized NS may be powering an electromagnetic transient. This also indicates that it will be important for future GW observatories to focus on high frequencies to study the post-merger GW emission. Even in cases where individual GW events are too low in signal to noise to study the post merger signature in detail, the statistics of how many mergers produce NSs versus BHs can be compared with our work to constrain the EOS. To match short gamma-ray-burst (SGRB) X-ray afterglow statistics, we find that the stiffest EOSs are ruled out. Furthermore, many popular EOSs require a significant fraction of ∼60%–70% of SGRBs to be from NS–BH mergers rather than just binary NSs.

  11. Wide- and contact-binary formation in substructured young stellar clusters

    Science.gov (United States)

    Dorval, J.; Boily, C. M.; Moraux, E.; Roos, O.

    2017-02-01

    We explore with collisional gravitational N-body models the evolution of binary stars in initially fragmented and globally subvirial clusters of stars. Binaries are inserted in the (initially) clumpy configurations so as to match the observed distributions of the field-binary-stars' semimajor axes a and binary fraction versus primary mass. The dissolution rate of wide binaries is very high at the start of the simulations, and is much reduced once the clumps are eroded by the global infall. The transition between the two regimes is sharper as the number of stars N is increased, from N = 1.5 k up to 80 k. The fraction of dissolved binary stars increases only mildly with N, from ≈15 per cent to ≈25 per cent for the same range in N. We repeated the calculation for two initial system mean number densities of 6 per pc3 (low) and 400 per pc3 (high). We found that the longer free-fall time of the low-density runs allows for prolonged binary-binary interactions inside clumps and the formation of very tight (a ≈ 0.01 au) binaries by exchange collisions. This is an indication that the statistics of such compact binaries bear a direct link to their environment at birth. We also explore the formation of wide (a ≳ 5 × 104 au) binaries and find a low (≈0.01 per cent) fraction mildly bound to the central star cluster. The high-precision astrometric mission Gaia could identify them as outflowing shells or streams.

  12. Simulations of Fractal Star Cluster Formation. I. New Insights for Measuring Mass Segregation of Star Clusters with Substructure

    International Nuclear Information System (INIS)

    Yu, Jincheng; Puzia, Thomas H.; Lin, Congping; Zhang, Yiwei

    2017-01-01

    We compare the existent methods, including the minimum spanning tree based method and the local stellar density based method, in measuring mass segregation of star clusters. We find that the minimum spanning tree method reflects more the compactness, which represents the global spatial distribution of massive stars, while the local stellar density method reflects more the crowdedness, which provides the local gravitational potential information. It is suggested to measure the local and the global mass segregation simultaneously. We also develop a hybrid method that takes both aspects into account. This hybrid method balances the local and the global mass segregation in the sense that the predominant one is either caused by dynamical evolution or purely accidental, especially when such information is unknown a priori. In addition, we test our prescriptions with numerical models and show the impact of binaries in estimating the mass segregation value. As an application, we use these methods on the Orion Nebula Cluster (ONC) observations and the Taurus cluster. We find that the ONC is significantly mass segregated down to the 20th most massive stars. In contrast, the massive stars of the Taurus cluster are sparsely distributed in many different subclusters, showing a low degree of compactness. The massive stars of Taurus are also found to be distributed in the high-density region of the subclusters, showing significant mass segregation at subcluster scales. Meanwhile, we also apply these methods to discuss the possible mechanisms of the dynamical evolution of the simulated substructured star clusters.

  13. Simulations of Fractal Star Cluster Formation. I. New Insights for Measuring Mass Segregation of Star Clusters with Substructure

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jincheng; Puzia, Thomas H. [Institute of Astrophysics, Pontificia Universidad Católica, Av. Vicuña Mackenna 4860, Casilla 306, Santiago 22 (Chile); Lin, Congping; Zhang, Yiwei, E-mail: yujc.astro@gmail.com, E-mail: tpuzia@gmail.com, E-mail: congpinglin@gmail.com, E-mail: yiweizhang831129@gmail.com [Center for Mathematical Science, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 4370074 (China)

    2017-05-10

    We compare the existent methods, including the minimum spanning tree based method and the local stellar density based method, in measuring mass segregation of star clusters. We find that the minimum spanning tree method reflects more the compactness, which represents the global spatial distribution of massive stars, while the local stellar density method reflects more the crowdedness, which provides the local gravitational potential information. It is suggested to measure the local and the global mass segregation simultaneously. We also develop a hybrid method that takes both aspects into account. This hybrid method balances the local and the global mass segregation in the sense that the predominant one is either caused by dynamical evolution or purely accidental, especially when such information is unknown a priori. In addition, we test our prescriptions with numerical models and show the impact of binaries in estimating the mass segregation value. As an application, we use these methods on the Orion Nebula Cluster (ONC) observations and the Taurus cluster. We find that the ONC is significantly mass segregated down to the 20th most massive stars. In contrast, the massive stars of the Taurus cluster are sparsely distributed in many different subclusters, showing a low degree of compactness. The massive stars of Taurus are also found to be distributed in the high-density region of the subclusters, showing significant mass segregation at subcluster scales. Meanwhile, we also apply these methods to discuss the possible mechanisms of the dynamical evolution of the simulated substructured star clusters.

  14. Radio emission from symbiotic stars: a binary model

    International Nuclear Information System (INIS)

    Taylor, A.R.; Seaquist, E.R.

    1985-01-01

    The authors examine a binary model for symbiotic stars to account for their radio properties. The system is comprised of a cool, mass-losing star and a hot companion. Radio emission arises in the portion of the stellar wind photo-ionized by the hot star. Computer simulations for the case of uniform mass loss at constant velocity show that when less than half the wind is ionized, optically thick spectral indices greater than +0.6 are produced. Model fits to radio spectra allow the binary separation, wind density and ionizing photon luminosity to be calculated. They apply the model to the symbiotic star H1-36. (orig.)

  15. Tidal and magnetic interactions in close binary stars

    International Nuclear Information System (INIS)

    Campbell, C.G.

    1983-03-01

    The thesis investigates the nature of non-synchronous motions in members of close binary stars under the influence of gravitational and magnetic fields existing in these systems, and the evolution of such motions in different classes of binaries. Largely convective stars are considered and a solution is found for the fluid flow associated with the non-synchronous rotation of such a secondary in a close binary system, taking tidal and rotational forces into account. The tidal velocity field is calculated for a low mass white dwarf secondary star in a twin - degenerate binary. It is found that the synchronisation times can be comparable to the lifetime of the binary so that some asynchronism may remain present. (U.K.)

  16. Search for OB stars running away from young star clusters. II. The NGC 6357 star-forming region

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Kroupa, P.; Oh, S.

    2011-11-01

    Dynamical few-body encounters in the dense cores of young massive star clusters are responsible for the loss of a significant fraction of their massive stellar content. Some of the escaping (runaway) stars move through the ambient medium supersonically and can be revealed via detection of their bow shocks (visible in the infrared, optical or radio). In this paper, which is the second of a series of papers devoted to the search for OB stars running away from young ( ≲ several Myr) Galactic clusters and OB associations, we present the results of the search for bow shocks around the star-forming region NGC 6357. Using the archival data of the Midcourse Space Experiment (MSX) satellite and the Spitzer Space Telescope, and the preliminary data release of the Wide-Field Infrared Survey Explorer (WISE), we discovered seven bow shocks, whose geometry is consistent with the possibility that they are generated by stars expelled from the young (~1-2 Myr) star clusters, Pismis 24 and AH03 J1725-34.4, associated with NGC 6357. Two of the seven bow shocks are driven by the already known OB stars, HD 319881 and [N78] 34. Follow-up spectroscopy of three other bow-shock-producing stars showed that they are massive (O-type) stars as well, while the 2MASS photometry of the remaining two stars suggests that they could be B0 V stars, provided that both are located at the same distance as NGC 6357. Detection of numerous massive stars ejected from the very young clusters is consistent with the theoretical expectation that star clusters can effectively lose massive stars at the very beginning of their dynamical evolution (long before the second mechanism for production of runaway stars, based on a supernova explosion in a massive tight binary system, begins to operate) and lends strong support to the idea that probably all field OB stars have been dynamically ejected from their birth clusters. A by-product of our search for bow shocks around NGC 6357 is the detection of three circular

  17. Contamination of RR Lyrae stars from Binary Evolution Pulsators

    Science.gov (United States)

    Karczmarek, Paulina; Pietrzyński, Grzegorz; Belczyński, Krzysztof; Stępień, Kazimierz; Wiktorowicz, Grzegorz; Iłkiewicz, Krystian

    2016-06-01

    Binary Evolution Pulsator (BEP) is an extremely low-mass member of a binary system, which pulsates as a result of a former mass transfer to its companion. BEP mimics RR Lyrae-type pulsations but has different internal structure and evolution history. We present possible evolution channels to produce BEPs, and evaluate the contamination value, i.e. how many objects classified as RR Lyrae stars can be undetected BEPs. In this analysis we use population synthesis code StarTrack.

  18. Binary Star Fractions from the LAMOST DR4

    Science.gov (United States)

    Tian, Zhi-Jia; Liu, Xiao-Wei; Yuan, Hai-Bo; Chen, Bing-Qiu; Xiang, Mao-Sheng; Huang, Yang; Wang, Chun; Zhang, Hua-Wei; Guo, Jin-Cheng; Ren, Juan-Juan; Huo, Zhi-Ying; Yang, Yong; Zhang, Meng; Bi, Shao-Lan; Yang, Wu-Ming; Liu, Kang; Zhang, Xian-Fei; Li, Tan-Da; Wu, Ya-Qian; Zhang, Jing-Hua

    2018-05-01

    Stellar systems composed of single, double, triple or higher-order systems are rightfully regarded as the fundamental building blocks of the Milky Way. Binary stars play an important role in formation and evolution of the Galaxy. Through comparing the radial velocity variations from multi-epoch observations, we analyze the binary fraction of dwarf stars observed with LAMOST. Effects of different model assumptions, such as orbital period distributions on the estimate of binary fractions, are investigated. The results based on log-normal distribution of orbital periods reproduce the previous complete analyses better than the power-law distribution. We find that the binary fraction increases with T eff and decreases with [Fe/H]. We first investigate the relation between α-elements and binary fraction in such a large sample as provided by LAMOST. The old stars with high [α/Fe] dominate with a higher binary fraction than young stars with low [α/Fe]. At the same mass, earlier forming stars possess a higher binary fraction than newly forming ones, which may be related with evolution of the Galaxy.

  19. THE CLOSE BINARY FRACTION OF DWARF M STARS

    International Nuclear Information System (INIS)

    Clark, Benjamin M.; Blake, Cullen H.; Knapp, Gillian R.

    2012-01-01

    We describe a search for close spectroscopic dwarf M star binaries using data from the Sloan Digital Sky Survey to address the question of the rate of occurrence of multiplicity in M dwarfs. We use a template-fitting technique to measure radial velocities from 145,888 individual spectra obtained for a magnitude-limited sample of 39,543 M dwarfs. Typically, the three or four spectra observed for each star are separated in time by less than four hours, but for ∼17% of the stars, the individual observations span more than two days. In these cases we are sensitive to large-amplitude radial velocity variations on timescales comparable to the separation between the observations. We use a control sample of objects having observations taken within a four-hour period to make an empirical estimate of the underlying radial velocity error distribution and simulate our detection efficiency for a wide range of binary star systems. We find the frequency of binaries among the dwarf M stars with a < 0.4 AU to be 3%-4%. Comparison with other samples of binary stars demonstrates that the close binary fraction, like the total binary fraction, is an increasing function of primary mass.

  20. THE CLOSE BINARY FRACTION OF DWARF M STARS

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Benjamin M. [Penn Manor High School, 100 East Cottage Avenue, Millersville, PA 17551 (United States); Blake, Cullen H.; Knapp, Gillian R. [Princeton University, Department of Astrophysical Sciences, Peyton Hall, Ivy Lane, Princeton, NJ 08544 (United States)

    2012-01-10

    We describe a search for close spectroscopic dwarf M star binaries using data from the Sloan Digital Sky Survey to address the question of the rate of occurrence of multiplicity in M dwarfs. We use a template-fitting technique to measure radial velocities from 145,888 individual spectra obtained for a magnitude-limited sample of 39,543 M dwarfs. Typically, the three or four spectra observed for each star are separated in time by less than four hours, but for {approx}17% of the stars, the individual observations span more than two days. In these cases we are sensitive to large-amplitude radial velocity variations on timescales comparable to the separation between the observations. We use a control sample of objects having observations taken within a four-hour period to make an empirical estimate of the underlying radial velocity error distribution and simulate our detection efficiency for a wide range of binary star systems. We find the frequency of binaries among the dwarf M stars with a < 0.4 AU to be 3%-4%. Comparison with other samples of binary stars demonstrates that the close binary fraction, like the total binary fraction, is an increasing function of primary mass.

  1. Interacting star clusters in the Large Magellanic Cloud. Overmerging problem solved by cluster group formation

    Science.gov (United States)

    Leon, Stéphane; Bergond, Gilles; Vallenari, Antonella

    1999-04-01

    We present the tidal tail distributions of a sample of candidate binary clusters located in the bar of the Large Magellanic Cloud (LMC). One isolated cluster, SL 268, is presented in order to study the effect of the LMC tidal field. All the candidate binary clusters show tidal tails, confirming that the pairs are formed by physically linked objects. The stellar mass in the tails covers a large range, from 1.8x 10(3) to 3x 10(4) \\msun. We derive a total mass estimate for SL 268 and SL 356. At large radii, the projected density profiles of SL 268 and SL 356 fall off as r(-gamma ) , with gamma = 2.27 and gamma =3.44, respectively. Out of 4 pairs or multiple systems, 2 are older than the theoretical survival time of binary clusters (going from a few 10(6) years to 10(8) years). A pair shows too large age difference between the components to be consistent with classical theoretical models of binary cluster formation (Fujimoto & Kumai \\cite{fujimoto97}). We refer to this as the ``overmerging'' problem. A different scenario is proposed: the formation proceeds in large molecular complexes giving birth to groups of clusters over a few 10(7) years. In these groups the expected cluster encounter rate is larger, and tidal capture has higher probability. Cluster pairs are not born together through the splitting of the parent cloud, but formed later by tidal capture. For 3 pairs, we tentatively identify the star cluster group (SCG) memberships. The SCG formation, through the recent cluster starburst triggered by the LMC-SMC encounter, in contrast with the quiescent open cluster formation in the Milky Way can be an explanation to the paucity of binary clusters observed in our Galaxy. Based on observations collected at the European Southern Observatory, La Silla, Chile}

  2. EMACSS: Evolve Me A Cluster of StarS

    Science.gov (United States)

    Alexander, Poul E. R.; Gieles, Mark

    2012-03-01

    The star cluster evolution code Evolve Me A Cluster of StarS (EMACSS) is a simple yet physically motivated computational model that describes the evolution of some fundamental properties of star clusters in static tidal fields. The prescription is based upon the flow of energy within the cluster, which is a constant fraction of the total energy per half-mass relaxation time. According to Henon's predictions, this flow is independent of the precise mechanisms for energy production within the core, and therefore does not require a complete description of the many-body interactions therein. Dynamical theory and analytic descriptions of escape mechanisms is used to construct a series of coupled differential equations expressing the time evolution of cluster mass and radius for a cluster of equal-mass stars. These equations are numerically solved using a fourth-order Runge-Kutta integration kernel; the results were benchmarked against a data base of direct N-body simulations. EMACSS is publicly available and reproduces the N-body results to within 10 per cent accuracy for the entire post-collapse evolution of star clusters.

  3. The complex lives of star clusters

    CERN Document Server

    Stevenson, David

    2015-01-01

    As with the author’s recent books Extreme Explosions and Under a Crimson Sun, the complex topic of star clusters is broken down and made accessible with clear links to other areas of astronomy in a language which the non-specialist can easily read and enjoy. The full range of a star cluster's lifespan is depicted, as both globular and open clusters are tracked from birth to eventual death. Why is it some are dense conglomerates of stars while others are looser associations? Are the young, brilliant clusters seen in neighboring galaxies such as the Large Magellanic Cloud, M33 or M82 analogous to the ancient globulars seen in the Milky Way? How will these clusters change as their stars wane and die? More interestingly, how does living in a dense star cluster affect the fates of the stars and any attendant planets that accompany them?   Star clusters form many of the most dazzling objects in the astronomers’ catalogs. Many amateur astronomers are interested in exploring how these objects are created and wh...

  4. Long GRBs from binary stars: runaway, Wolf-Rayet progenitors

    NARCIS (Netherlands)

    Cantiello, M.; Yoon, S.C.; Langer, N.; Livio, M.

    2007-01-01

    The collapsar model for long gamma-ray bursts requires a rapidly rotating Wolf-Rayet star as progenitor. We test the idea of producing rapidly rotating Wolf-Rayet stars in massive close binaries through mass accretion and consecutive quasi-chemically homogeneous evolution — the latter had previously

  5. Long GRBs from Binary Stars: Runaway, Wolf-Rayet Progenitors

    NARCIS (Netherlands)

    Cantiello, M.; Yoon, S.C.; Langer, N.; Livio, M.

    2007-01-01

    The collapsar model for long gamma-ray bursts requires a rapidly rotating Wolf-Rayet star as progenitor. We test the idea of producing rapidly rotating Wolf-Rayet stars in massive close binaries through mass accretion and consecutive quasi-chemically homogeneous evolution - the latter had previously

  6. The BANANA Survey: Spin-Orbit Alignment in Binary Stars

    Science.gov (United States)

    Albrecht, Simon; Winn, J. N.; Fabrycky, D. C.; Torres, G.; Setiawan, J.

    2012-04-01

    Binaries are not always neatly aligned. Previous observations of the DI Herculis system showed that the spin axes of both stars are highly inclined with respect to one another and the orbital axis. Here, we report on our ongoing survey to measure relative orientations of spin-axes in a number of eclipsing binary systems. These observations will hopefully lead to new insights into star and planet formation, as different formation scenarios predict different degrees of alignment and different dependencies on the system parameters. Measurements of spin-orbit angles in close binary systems will also create a basis for comparison for similar measurements involving close-in planets.

  7. Variable stars in the field of open cluster NGC 2126

    International Nuclear Information System (INIS)

    Liu Shunfang; Wu Zhenyu; Zhang Xiaobin; Wu Jianghua; Ma Jun; Jiang Zhaoji; Chen Jiansheng; Zhou Xu

    2009-01-01

    We report the results of a time-series CCD photometric survey of variable stars in the field of open cluster NGC 2126. In about a one square degree field covering the cluster, a total of 21 variable candidates are detected during this survey, of which 16 are newly found. The periods, classifications and spectral types of 14 newly discovered variables are discussed, which consist of six eclipsing binary systems, three pulsating variable stars, three long period variables, one RS CVn star, and one W UMa or δ Scuti star. In addition, there are two variable candidates, the properties of which cannot be determined. By a method based on fitting observed spectral energy distributions of stars with theoretical ones, the membership probabilities and the fundamental parameters of this cluster are determined. As a result, five variables are probably members of NGC 2126. The fundamental parameters of this cluster are determined as: metallicity to be 0.008 Z o-dot , age log(t) = 8.95, distance modulus (m - M) 0 = 10.34 and reddening value E (B - V) = 0.55 mag.

  8. The Open Cluster NGC 6811: An Eclipsing Binary, the Turnoff, and Age

    DEFF Research Database (Denmark)

    Sandquist, Eric L.; Jessen-Hansen, Jens; Shetrone, Matthew D.

    . The cluster's turnoff also falls completely within the instability strip, and the majority of the brightest main sequence stars have now been identified as δ Scuti pulsators. The eclipsing binary KIC 9777062/Sanders 195 is a cluster member slightly fainter than the turnoff, containing one star that falls...... stars to produce an improved age determination.We gratefully acknowledge support from the NSF to E.L.S. under grant AST-0908536 and for M.L. as part of the REU program at San Diego State University under grant AST-0850564, and from NASA under grants NNX12AC88G and NNX13AC19G....

  9. Radiation pressure in super star cluster formation

    Science.gov (United States)

    Tsang, Benny T.-H.; Milosavljević, Miloš

    2018-05-01

    The physics of star formation at its extreme, in the nuclei of the densest and the most massive star clusters in the universe—potential massive black hole nurseries—has for decades eluded scrutiny. Spectroscopy of these systems has been scarce, whereas theoretical arguments suggest that radiation pressure on dust grains somehow inhibits star formation. Here, we harness an accelerated Monte Carlo radiation transport scheme to report a radiation hydrodynamical simulation of super star cluster formation in turbulent clouds. We find that radiation pressure reduces the global star formation efficiency by 30-35%, and the star formation rate by 15-50%, both relative to a radiation-free control run. Overall, radiation pressure does not terminate the gas supply for star formation and the final stellar mass of the most massive cluster is ˜1.3 × 106 M⊙. The limited impact as compared to in idealized theoretical models is attributed to a radiation-matter anti-correlation in the supersonically turbulent, gravitationally collapsing medium. In isolated regions outside massive clusters, where the gas distribution is less disturbed, radiation pressure is more effective in limiting star formation. The resulting stellar density at the cluster core is ≥108 M⊙ pc-3, with stellar velocity dispersion ≳ 70 km s-1. We conclude that the super star cluster nucleus is propitious to the formation of very massive stars via dynamical core collapse and stellar merging. We speculate that the very massive star may avoid the claimed catastrophic mass loss by continuing to accrete dense gas condensing from a gravitationally-confined ionized phase.

  10. Short-Period Binary Stars: Observations, Analyses, and Results

    CERN Document Server

    Milone, Eugene F; Hobill, David W

    2008-01-01

    Short-period binaries run the gamut from widely separated stars to black-hole pairs; in between are systems that include neutron stars and white dwarfs, and partially evolved systems such as tidally distorted and over-contact systems. These objects represent stages of evolution of binary stars, and their degrees of separation provide critical clues to how their evolutionary paths differ from that of single stars. The widest and least distorted systems provide astronomers with the essential precise data needed to study all stars: mass and radius. The interactions of binary star components, on the other hand, provide a natural laboratory to observe how the matter in these stars behaves under different and often varying physical conditions. Thus, cataclysmic variables with and without overpoweringly strong magnetic fields, and stars with densities from that found in the Sun to the degenerate matter of white dwarfs and the ultra-compact states of neutron stars and black holes are all discussed. The extensive inde...

  11. Evolution of binaries with compact objects in globular clusters

    OpenAIRE

    Ivanova, Natalia

    2017-01-01

    Dynamical interactions that take place between objects in dense stellar systems lead to frequent formation of exotic stellar objects, unusual binaries, and systems of higher multiplicity. They are most important for the formation of binaries with neutron stars and black holes, which are usually observationally revealed in mass-transferring binaries. Here we review the current understanding of compact object's retention, of the metallicity dependence on the formation of low-mass X-ray binaries...

  12. A Massive Star Census of the Starburst Cluster R136

    Science.gov (United States)

    Crowther, Paul

    2012-10-01

    We propose to carry out a comprehensive census of the most massive stars in the central parsec {4"} of the starburst cluster, R136, which powers the Tarantula Nebula in the LMC. R136 is both sufficiently massive that the upper mass function is richly populated and young enough that its most massive stars have yet to explode as supernovae. The identification of very massive stars in R136, up to 300 solar masses, raises general questions of star formation, binarity and feedback in young massive clusters. The proposed STIS spectral survey of 36 stars more massive than 50 solar masses within R136 is ground-breaking, of legacy value, and is specifically tailored to a} yield physical properties; b} detect the majority of binaries by splitting observations between Cycles 19 and 20; c} measure rotational velocities, relevant for predictions of rotational mixing; d} quantify mass-loss properties for very massive stars; e} determine surface compositions; f} measure radial velocities, relevant for runaway stars and cluster dynamics; g} quantify radiative and mechanical feedback. This census will enable the mass function of very massive stars to be measured for the first time, as a result of incomplete and inadequate spectroscopy to date. It will also perfectly complement our Tarantula Survey, a ground-based VLT Large Programme, by including the most massive stars that are inaccessible to ground-based visual spectroscopy due to severe crowding. These surveys, together with existing integrated UV and optical studies will enable 30 Doradus to serve as a bona-fide template for unresolved extragalactic starburst regions.

  13. Effect of tidal fields on star clusters

    Science.gov (United States)

    Chernoff, David; Weinberg, Martin

    1991-01-01

    We follow the dynamical evolution of a star cluster in a galactic tidal field using a restricted N-body code. We find large asymmetric distortions in the outer profile of the cluster in the first 10 or so crossing times as material is lost. Prograde stars escape preferentially and establish a potentially observable retrograde rotation in the halo. We present the rate of particle loss and compare with the prescription proposed by Lee and Ostriker (1987).

  14. Star clusters in the Whirlpool Galaxy

    NARCIS (Netherlands)

    Scheepmaker, R.A.

    2009-01-01

    This thesis presents the results of observational studies of the star cluster population in the interacting spiral galaxy M51, also known as the Whirlpool galaxy. Observations taken by the Hubble Space Telescope in the optical and the near-UV are used to determine fundamental properties of the star

  15. A Photometric Study of Three Eclipsing Binary Stars (Poster abstract)

    Science.gov (United States)

    Ryan, A.

    2016-12-01

    (Abstract only) As part of a program to study eclipsing binary stars that exhibit the O'Connell Effect (OCE) we are observing a selection of binary stars in a long term study. The OCE is a difference in maximum light across the ligthcurve possibly cause by starspots. We observed for 7 nights at McDonald Observatory using the 30-inch telescope in July 2015, and used the same telescope remotely for a total of 20 additional nights in August, October, December, and January. We will present lightcurves for three stars from this study, characterize the OCE for these stars, and present our model results for the physical parameters of the star making up each of these systems.

  16. POPULATION PARAMETERS OF INTERMEDIATE-AGE STAR CLUSTERS IN THE LARGE MAGELLANIC CLOUD. II. NEW INSIGHTS FROM EXTENDED MAIN-SEQUENCE TURNOFFS IN SEVEN STAR CLUSTERS

    International Nuclear Information System (INIS)

    Goudfrooij, Paul; Kozhurina-Platais, Vera; Puzia, Thomas H.; Chandar, Rupali

    2011-01-01

    We discuss new photometry from high-resolution images of seven intermediate-age (1-2 Gyr) star clusters in the Large Magellanic Cloud taken with the Advanced Camera for Surveys on board the Hubble Space Telescope. We fit color-magnitude diagrams (CMDs) with several different sets of theoretical isochrones and determine systematic uncertainties for population parameters when derived using any one set of isochrones. The cluster CMDs show several interesting features, including extended main-sequence turnoff (MSTO) regions, narrow red giant branches, and clear sequences of unresolved binary stars. We show that the extended MSTOs are not caused by photometric uncertainties, contamination by field stars, or the presence of binary stars. Enhanced helium abundances in a fraction of cluster stars are also ruled out as the reason for the extended MSTOs. Quantitative comparisons with simulations indicate that the MSTO regions are better described by a spread in ages than by a bimodal age distribution, although we cannot formally rule out the latter for the three lowest-mass clusters in our sample (which have masses lower than ∼3 x 10 4 M sun ). This conclusion differs from that of some previous works which suggested that the age distribution in massive clusters in our sample is bimodal. This suggests that any secondary star formation occurred in an extended fashion rather than through short bursts. We discuss these results in the context of the nature of multiple stellar populations in star clusters.

  17. Star formation and substructure in galaxy clusters

    International Nuclear Information System (INIS)

    Cohen, Seth A.; Hickox, Ryan C.; Wegner, Gary A.; Einasto, Maret; Vennik, Jaan

    2014-01-01

    We investigate the relationship between star formation (SF) and substructure in a sample of 107 nearby galaxy clusters using data from the Sloan Digital Sky Survey. Several past studies of individual galaxy clusters have suggested that cluster mergers enhance cluster SF, while others find no such relationship. The SF fraction in multi-component clusters (0.228 ± 0.007) is higher than that in single-component clusters (0.175 ± 0.016) for galaxies with M r 0.1 <−20.5. In both single- and multi-component clusters, the fraction of star-forming galaxies increases with clustercentric distance and decreases with local galaxy number density, and multi-component clusters show a higher SF fraction than single-component clusters at almost all clustercentric distances and local densities. Comparing the SF fraction in individual clusters to several statistical measures of substructure, we find weak, but in most cases significant at greater than 2σ, correlations between substructure and SF fraction. These results could indicate that cluster mergers may cause weak but significant SF enhancement in clusters, or unrelaxed clusters exhibit slightly stronger SF due to their less evolved states relative to relaxed clusters.

  18. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. I. S-TYPE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Kaltenegger, Lisa [MPIA, Koenigstuhl 17, D-69117 Heidelberg (Germany); Haghighipour, Nader, E-mail: kaltenegger@mpia.de [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States)

    2013-11-10

    We have developed a comprehensive methodology for calculating the boundaries of the habitable zone (HZ) of planet-hosting S-type binary star systems. Our approach is general and takes into account the contribution of both stars to the location and extent of the binary HZ with different stellar spectral types. We have studied how the binary eccentricity and stellar energy distribution affect the extent of the HZ. Results indicate that in binaries where the combination of mass-ratio and orbital eccentricity allows planet formation around a star of the system to proceed successfully, the effect of a less luminous secondary on the location of the primary's HZ is generally negligible. However, when the secondary is more luminous, it can influence the extent of the HZ. We present the details of the derivations of our methodology and discuss its application to the binary HZ around the primary and secondary main-sequence stars of an FF, MM, and FM binary, as well as two known planet-hosting binaries α Cen AB and HD 196886.

  19. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. I. S-TYPE BINARIES

    International Nuclear Information System (INIS)

    Kaltenegger, Lisa; Haghighipour, Nader

    2013-01-01

    We have developed a comprehensive methodology for calculating the boundaries of the habitable zone (HZ) of planet-hosting S-type binary star systems. Our approach is general and takes into account the contribution of both stars to the location and extent of the binary HZ with different stellar spectral types. We have studied how the binary eccentricity and stellar energy distribution affect the extent of the HZ. Results indicate that in binaries where the combination of mass-ratio and orbital eccentricity allows planet formation around a star of the system to proceed successfully, the effect of a less luminous secondary on the location of the primary's HZ is generally negligible. However, when the secondary is more luminous, it can influence the extent of the HZ. We present the details of the derivations of our methodology and discuss its application to the binary HZ around the primary and secondary main-sequence stars of an FF, MM, and FM binary, as well as two known planet-hosting binaries α Cen AB and HD 196886

  20. Interstellar Extinction in 20 Open Star Clusters

    Science.gov (United States)

    Rangwal, Geeta; Yadav, R. K. S.; Durgapal, Alok K.; Bisht, D.

    2017-12-01

    The interstellar extinction law in 20 open star clusters namely, Berkeley 7, Collinder 69, Hogg 10, NGC 2362, Czernik 43, NGC 6530, NGC 6871, Bochum 10, Haffner 18, IC 4996, NGC 2384, NGC 6193, NGC 6618, NGC 7160, Collinder 232, Haffner 19, NGC 2401, NGC 6231, NGC 6823, and NGC 7380 have been studied in the optical and near-IR wavelength ranges. The difference between maximum and minimum values of E(B - V) indicates the presence of non-uniform extinction in all the clusters except Collinder 69, NGC 2362, and NGC 2384. The colour excess ratios are consistent with a normal extinction law for the clusters NGC 6823, Haffner 18, Haffner 19, NGC 7160, NGC 6193, NGC 2401, NGC 2384, NGC 6871, NGC 7380, Berkeley 7, Collinder 69, and IC 4996. We have found that the differential colour-excess ΔE(B - V), which may be due to the occurrence of dust and gas inside the clusters, decreases with the age of the clusters. A spatial variation of colour excess is found in NGC 6193 in the sense that it decreases from east to west in the cluster region. For the clusters Berkeley 7, NGC 7380, and NGC 6871, a dependence of colour excess E(B - V) with spectral class and luminosity is observed. Eight stars in Collinder 232, four stars in NGC 6530, and one star in NGC 6231 have excess flux in near-IR. This indicates that these stars may have circumstellar material around them.

  1. The Globular Cluster NGC 6402 (M14). II. Variable Stars

    Science.gov (United States)

    Contreras Peña, C.; Catelan, M.; Grundahl, F.; Stephens, A. W.; Smith, H. A.

    2018-03-01

    We present time-series BVI photometry for the Galactic globular cluster NGC 6402 (M14). The data consist of ∼137 images per filter, obtained using the 0.9 and 1.0 m SMARTS telescopes at the Cerro Tololo Inter-American Observatory. The images were obtained during two observing runs in 2006–2007. The image-subtraction package ISIS, along with DAOPHOT II/ALLFRAME, was used to perform crowded-field photometry and search for variable stars. We identified 130 variables, eight of which are new discoveries. The variable star population is comprised of 56 ab-type RR Lyrae stars, 54 c-type RR Lyrae, 6 type II Cepheids, 1 W UMa star, 1 detached eclipsing binary, and 12 long-period variables. We provide Fourier decomposition parameters for the RR Lyrae, and discuss the physical parameters and photometric metallicity derived therefrom. The M14 distance modulus is also discussed, based on different approaches for the calibration of the absolute magnitudes of RR Lyrae stars. The possible presence of second-overtone RR Lyrae in M14 is critically addressed, with our results arguing against this possibility. By considering all of the RR Lyrae stars as members of the cluster, we derive =0.589 {{d}}{{a}}{{y}}{{s}}. This, together with the position of the RR Lyrae stars of both Bailey types in the period–amplitude diagram, suggests an Oosterhoff-intermediate classification for the cluster. Such an intermediate Oosterhoff type is much more commonly found in nearby extragalactic systems, and we critically discuss several other possible indications that may point to an extragalactic origin for this cluster. Based on observations obtained with the 0.9 m and 1 m telescopes at the Cerro Tololo Inter-American Observatory, Chile, operated by the SMARTS consortium.

  2. Evolution of a massive binary in a star field

    International Nuclear Information System (INIS)

    Baranov, A.S.

    1984-01-01

    The orbital evolution of a massive binary system interacting with a background field of single stars whose phase density is homogeneous in configuration space is considered. The velocity distribution is assumed isotropic up to some limiting value, and a typical field star is regarded as having a velocity much higher than the orbital speed of the pair components. An expression is derived for the transfer of energy from the binary to the field stars. The time evolution of the orbit parameters a, e is established, and the evolution rate is estimated for Kardashev's (1983) model galactic nucleus containing a central black-hole binary. On the above assumptions the components should become twice as close together within only a few tens of millennia, although the picture may change fundamentally if the nucleus is rotating. 13 references

  3. On the Lack of Circumbinary Planets Orbiting Isolated Binary Stars

    Science.gov (United States)

    Fleming, David P.; Barnes, Rory; Graham, David E.; Luger, Rodrigo; Quinn, Thomas R.

    2018-05-01

    We outline a mechanism that explains the observed lack of circumbinary planets (CBPs) via coupled stellar–tidal evolution of isolated binary stars. Tidal forces between low-mass, short-period binary stars on the pre-main sequence slow the stellar rotations transferring rotational angular momentum to the orbit as the stars approach the tidally locked state. This transfer increases the binary orbital period, expanding the region of dynamical instability around the binary, and destabilizing CBPs that tend to preferentially orbit just beyond the initial dynamical stability limit. After the stars tidally lock, we find that angular momentum loss due to magnetic braking can significantly shrink the binary orbit, and hence the region of dynamical stability, over time, impacting where surviving CBPs are observed relative to the boundary. We perform simulations over a wide range of parameter space and find that the expansion of the instability region occurs for most plausible initial conditions and that, in some cases, the stability semimajor axis doubles from its initial value. We examine the dynamical and observable consequences of a CBP falling within the dynamical instability limit by running N-body simulations of circumbinary planetary systems and find that, typically, at least one planet is ejected from the system. We apply our theory to the shortest-period Kepler binary that possesses a CBP, Kepler-47, and find that its existence is consistent with our model. Under conservative assumptions, we find that coupled stellar–tidal evolution of pre-main sequence binary stars removes at least one close-in CBP in 87% of multi-planet circumbinary systems.

  4. Barium and Tc-poor S stars: Binary masqueraders among carbon stars

    OpenAIRE

    Jorissen, A.; Van Eck, S.

    1997-01-01

    The current understanding of the origin of barium and S stars is reviewed, based on new orbital elements and binary frequencies. The following questions are addressed: (i) Is binarity a necessary condition to produce a barium star? (ii) What is the mass transfer mode (wind accretion or RLOF?) responsible for their formation? (iii) Do barium stars form as dwarfs or as giants? (iv) Do barium stars evolve into Tc-poor S stars? (v) What is the relative frequency of Tc-rich and Tc-poor S stars?

  5. Young star clusters in nearby molecular clouds

    Science.gov (United States)

    Getman, K. V.; Kuhn, M. A.; Feigelson, E. D.; Broos, P. S.; Bate, M. R.; Garmire, G. P.

    2018-06-01

    The SFiNCs (Star Formation in Nearby Clouds) project is an X-ray/infrared study of the young stellar populations in 22 star-forming regions with distances ≲ 1 kpc designed to extend our earlier MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-ray) survey of more distant clusters. Our central goal is to give empirical constraints on cluster formation mechanisms. Using parametric mixture models applied homogeneously to the catalogue of SFiNCs young stars, we identify 52 SFiNCs clusters and 19 unclustered stellar structures. The procedure gives cluster properties including location, population, morphology, association with molecular clouds, absorption, age (AgeJX), and infrared spectral energy distribution (SED) slope. Absorption, SED slope, and AgeJX are age indicators. SFiNCs clusters are examined individually, and collectively with MYStIX clusters, to give the following results. (1) SFiNCs is dominated by smaller, younger, and more heavily obscured clusters than MYStIX. (2) SFiNCs cloud-associated clusters have the high ellipticities aligned with their host molecular filaments indicating morphology inherited from their parental clouds. (3) The effect of cluster expansion is evident from the radius-age, radius-absorption, and radius-SED correlations. Core radii increase dramatically from ˜0.08 to ˜0.9 pc over the age range 1-3.5 Myr. Inferred gas removal time-scales are longer than 1 Myr. (4) Rich, spatially distributed stellar populations are present in SFiNCs clouds representing early generations of star formation. An appendix compares the performance of the mixture models and non-parametric minimum spanning tree to identify clusters. This work is a foundation for future SFiNCs/MYStIX studies including disc longevity, age gradients, and dynamical modelling.

  6. A KINEMATIC AND PHOTOMETRIC STUDY OF THE GALACTIC YOUNG STAR CLUSTER NGC 7380

    International Nuclear Information System (INIS)

    Chen, W. P.; Chen, C. W.; Pandey, A. K.; Sharma, Saurabh; Chen Li; Sperauskas, J.; Ogura, K.; Chuang, R. J.; Boyle, R. P.

    2011-01-01

    We present proper motions, radial velocities, and a photometric study of the Galactic open cluster NGC 7380, which is associated with prominent emission nebulosity and dark molecular clouds. On the basis of the sample of highly probable member stars, the star cluster is found to be at a distance of 2.6 ± 0.4 kpc, has an age of around 4 Myr, and a physical size of ∼6 pc across with a tidal structure. The binary O-type star DH Cep is a member of the cluster in its late stage of clearing the surrounding material, and may have triggered the ongoing star formation in neighboring molecular clouds which harbor young stars that are coeval and comoving with, but not gravitationally bound by, the star cluster.

  7. A Binary System in the Hyades Cluster Hosting a Neptune-Sized Planet

    Science.gov (United States)

    Feinstein, Adina; Ciardi, David; Crossfield, Ian; Schlieder, Joshua; Petigura, Erik; David, Trevor J.; Bristow, Makennah; Patel, Rahul; Arnold, Lauren; Benneke, Björn; Christiansen, Jessie; Dressing, Courtney; Fulton, Benjamin; Howard, Andrew; Isaacson, Howard; Sinukoff, Evan; Thackeray, Beverly

    2018-01-01

    We report the discovery of a Neptune-size planet (Rp = 3.0Rearth) in the Hyades Cluster. The host star is in a binary system, comprising a K5V star and M7/8V star with a projected separation of 40 AU. The planet orbits the primary star with an orbital period of 17.3 days and a transit duration of 3 hours. The host star is bright (V = 11.2, J = 9.1) and so may be a good target for precise radial velocity measurements. The planet is the first Neptune-sized planet to be found orbiting in a binary system within an open cluster. The Hyades is the nearest star cluster to the Sun, has an age of 625-750 Myr, and forms one of the fundamental rungs in the distance ladder; understanding the planet population in such a well-studied cluster can help us understand and set contraints on the formation and evolution of planetary systems.

  8. Black Hole - Neutron Star Binary Mergers

    Data.gov (United States)

    National Aeronautics and Space Administration — Gravitational radiation waveforms for black hole-neutron star coalescence calculations. The physical input is Newtonian physics, an ideal gas equation of state with...

  9. Carrying a Torch for Dust in Binary Star Systems

    OpenAIRE

    Cotton, Daniel V.; Marshall, Jonathan P.; Bott, Kimberly; Kedziora-Chudczer, Lucyna; Bailey, Jeremy

    2016-01-01

    Young stars are frequently observed to host circumstellar disks, within which their attendant planetary systems are formed. Scattered light imaging of these proto-planetary disks reveals a rich variety of structures including spirals, gaps and clumps. Self-consistent modelling of both imaging and multi-wavelength photometry enables the best interpretation of the location and size distribution of disks' dust. Epsilon Sagittarii is an unusual star system. It is a binary system with a B9.5III pr...

  10. Formation of Black Hole X-Ray Binaries with Non-degenerate Donors in Globular Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, Natalia; Rocha, Cassio A. da; Van, Kenny X.; Nandez, Jose L. A., E-mail: nata.ivanova@ualberta.ca [Department of Physics, University of Alberta, Edmonton, AB T6G 2E7 (Canada)

    2017-07-10

    In this Letter, we propose a formation channel for low-mass X-ray binaries with black hole accretors and non-degenerate donors via grazing tidal encounters with subgiants. We estimate that in a typically dense globular cluster with a core density of 10{sup 5} stars pc{sup −3}, the formation rates are about one binary per Gyr per 50–100 retained black holes. The donors—stripped subgiants—will be strongly underluminous when compared to subgiant or giant branch stars of the same colors. The products of tidal stripping are underluminous by at least one magnitude for several hundred million years when compared to normal stars of the same color, and differ from underluminous red stars that could be produced by non-catastrophic mass transfer in an ordinary binary. The dynamically formed binaries become quiescent LMXBs, with lifetimes of about a Gyr. The expected number of X-ray binaries is one per 50–200 retained black holes, while the expected number of strongly underluminous subsubgiant is about half this. The presence of strongly underluminous stars in a GC may be indicative of the presence of black holes.

  11. Formation of Black Hole X-Ray Binaries with Non-degenerate Donors in Globular Clusters

    International Nuclear Information System (INIS)

    Ivanova, Natalia; Rocha, Cassio A. da; Van, Kenny X.; Nandez, Jose L. A.

    2017-01-01

    In this Letter, we propose a formation channel for low-mass X-ray binaries with black hole accretors and non-degenerate donors via grazing tidal encounters with subgiants. We estimate that in a typically dense globular cluster with a core density of 10 5 stars pc −3 , the formation rates are about one binary per Gyr per 50–100 retained black holes. The donors—stripped subgiants—will be strongly underluminous when compared to subgiant or giant branch stars of the same colors. The products of tidal stripping are underluminous by at least one magnitude for several hundred million years when compared to normal stars of the same color, and differ from underluminous red stars that could be produced by non-catastrophic mass transfer in an ordinary binary. The dynamically formed binaries become quiescent LMXBs, with lifetimes of about a Gyr. The expected number of X-ray binaries is one per 50–200 retained black holes, while the expected number of strongly underluminous subsubgiant is about half this. The presence of strongly underluminous stars in a GC may be indicative of the presence of black holes.

  12. A Binary Nature of the Marginal CP Star Sigma Sculptoris

    Science.gov (United States)

    Janík, Jan; Krtička, Jiří; Mikulášek, Zdeněk; Zverko, Juraj; Pintado, Olga; Paunzen, Ernst; Prvák, Milan; Skalický, Jan; Zejda, Miloslav; Adam, Christian

    2018-05-01

    The A2 V star σ Scl was suspected of being a low-amplitude rotating variable of the Ap-type star by several authors. Aiming to decide whether the star is a variable chemically peculiar (CP) star, we searched for the photometric and spectroscopic variability, and determined chemical abundances of σ Scl. The possible variability was tested using several types of periodograms applied to the photometry from Long-Term Photometry of Variables project (LTPV) and Hipparcos. Sixty spectrograms of high signal-to-noise (S/N) were obtained and used for chemical analysis of the stellar atmosphere and for looking for spectral variability that is symptomatic for the CP stars. We did not find any signs of the light variability or prominent chemical peculiarity, that is specific for the CP stars. The only exception is the abundance of scandium, which is significantly lower than the solar one and yttrium and barium, which are strongly overabundant. As a by-product of the analysis, and with the addition of 29 further spectra, we found that σ Scl is a single-lined spectroscopic binary with orbital period of 46.877(8) d. We argue that σ Scl is not an Ap star, but rather a marginal Am star in SB1 system. The spectral energy distribution of the binary reveals infrared excess due to circumstellar material.

  13. Absolute Dimensions of Contact Binary Stars in Baade Window

    Directory of Open Access Journals (Sweden)

    Young Woon Kang

    1999-12-01

    Full Text Available The light curves of the representative 6 contact binary stars observed by OGLE Project of searching for dark matter in our Galaxy have been analyzed by the method of the Wilson and Devinney Differential Correction to find photometric solutions. The orbital inclinations of these binaries are in the range of 52 deg - 69 deg which is lower than that of the solar neighborhood binaries. The Roche lobe filling factor of these binaries are distributed in large range of 0.12 - 0.90. Since absence of spectroscopic observations for these binaries we have found masses of the 6 binary systems based on the intersection between Kepler locus and locus derived from Vandenberg isochrones in the mass - luminosity plane. Then absolute dimensions and distances have been found by combining the masses and the photometric solutions. The distances of the 6 binary systems are distributed in the range of 1 kpc - 6 kpc. This distance range is the limiting range where the contact binaries which have period shorter than a day are visible. Most contact binaries discovered in the Baade window do not belong to the Galactic bulge.

  14. WIYN Open Cluster Study: Tidal Interactions in Solar type Binaries

    OpenAIRE

    Meibom, S.; Mathieu, R. D.

    2003-01-01

    We present an ongoing study on tidal interactions in late-type close binary stars. New results on tidal circularization are combined with existing data to test and constrain theoretical predictions of tidal circularization in the pre-main-sequence (PMS) phase and throughout the main-sequence phase of stellar evolution. Current data suggest that tidal circularization during the PMS phase sets the tidal cutoff period for binary populations younger than ~1 Gyr. Binary populations older than ~1 G...

  15. FORMATION OF BLACK HOLE X-RAY BINARIES IN GLOBULAR CLUSTERS

    International Nuclear Information System (INIS)

    Ivanova, N.; Heinke, C. O.; Woods, T. E.; Chaichenets, S.; Fregeau, J.; Lombardi, J. C.

    2010-01-01

    Inspired by the recent identification in extragalactic globular clusters of the first candidate black hole-white dwarf (BH-WD) X-ray binaries, where the compact accretors may be stellar-mass black holes (BHs), we explore how such binaries could be formed in a dynamical environment. We provide analyses of the formation rates via well-known formation channels like binary exchange and physical collisions and propose that the only possibility of forming BH-WD binaries is via coupling these usual formation channels with subsequent hardening and/or triple formation. In particular, we find that the most important mechanism for the creation of a BH-WD X-ray binary from an initially dynamically formed BH-WD binary is mass transfer induced in a triple system via the Kozai mechanism. Furthermore, we find that BH-WD binaries that evolve into X-ray sources can be formed by exchanges of a BH into a WD-WD binary or possibly by collisions of a BH and a giant star. If BHs undergo significant evaporation from the cluster or form a completely detached subcluster of BHs, then we cannot match the observationally inferred production rates even using the most optimistic estimates of formation rates. To explain the observations with stellar-mass BH-WD binaries, at least 1% of all formed BHs, or presumably 10% of the BHs present in the core now, must be involved in interactions with the rest of the core stellar population.

  16. Multi-messenger Observations of a Binary Neutron Star Merger

    NARCIS (Netherlands)

    Scholten, Olaf; van den Berg, Adriaan

    2017-01-01

    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A)

  17. Multi-messenger Observations of a Binary Neutron Star Merger

    DEFF Research Database (Denmark)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.

    2017-01-01

    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 17081...

  18. Eclipsing binary stars with a delta Scuti component

    Czech Academy of Sciences Publication Activity Database

    Alicavus, F.K.; Soydugan, E.; Smalley, B.; Kubát, Jiří

    2017-01-01

    Roč. 470, č. 1 (2017), s. 915-931 ISSN 0035-8711 R&D Projects: GA ČR(CZ) GA16-01116S Institutional support: RVO:67985815 Keywords : stars * eclipsing binaries * fundamental parameters Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 4.961, year: 2016

  19. Multi-messenger observations of a binary neutron star merger

    NARCIS (Netherlands)

    LIGO Scientific Collaboration and Virgo Collaboration; Fermi GBM; INTEGRAL; IceCube Collaboration; AstroSat Cadmium Zinc Telluride Imager Team; IPN Collaboration; The Insight-HXMT Collaboration; ANTARES Collaboration; The Swift Collaboration; AGILE Team; The 1M2H Team; The Dark Energy Camera GW-EM Collaboration and the DES Collaboration; The DLT40 Collaboration; GRAWITA: GRAvitational Wave Inaf TeAm; The Fermi Large Area Telescope Collaboration; ATCA: Australia Telescope Compact Array; ASKAP: Australian SKA Path finder; Las Cumbres Observatory Group; OzGrav; DWF (Deeper, Wider, Faster Program); AST3; CAASTRO Collaborations; The VINROUGE Collaboration; MASTER Collaboration; J-GEM; GROWTH; JAGWAR; Caltech- NRAO; TTU-NRAO; NuSTAR Collaborations; Pan-STARR; The MAXI Team; TZAC Consortium; KU Collaboration; Nordic Optical Telescope; ePESSTO; GROND; Texas Tech University; SALT Group; TOROS: Transient Robotic Observatory of the South Collaboration; The BOOTES Collaboration; MWA: Murchison Wide field Array; The CALET Collaboration; IKI-GW Follow-up Collaboration; H.E.S.S. Collaboration; LOFAR Collaboration; LWA: Long Wavelength Array; HAWC Collaboration; The Pierre Auger Collaboration; ALMA Collaboration; Euro VLBI Team; Pi of the Sky Collaboration; The Chandra Team at McGill University; DFN: Desert Fireball Network; ATLAS; High Time Resolution Universe Survey; RIMAS and RATIR; SKA South Africa / MeerKAT

    2017-01-01

    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A)

  20. COCOA: Simulating Observations of Star Cluster Simulations

    Science.gov (United States)

    Askar, Abbas; Giersz, Mirek; Pych, Wojciech; Dalessandro, Emanuele

    2017-03-01

    COCOA (Cluster simulatiOn Comparison with ObservAtions) creates idealized mock photometric observations using results from numerical simulations of star cluster evolution. COCOA is able to present the output of realistic numerical simulations of star clusters carried out using Monte Carlo or N-body codes in a way that is useful for direct comparison with photometric observations. The code can simulate optical observations from simulation snapshots in which positions and magnitudes of objects are known. The parameters for simulating the observations can be adjusted to mimic telescopes of various sizes. COCOA also has a photometry pipeline that can use standalone versions of DAOPHOT (ascl:1104.011) and ALLSTAR to produce photometric catalogs for all observed stars.

  1. Stellar mass black holes in star clusters: gravitational wave emission and detection rates

    OpenAIRE

    Banerjee, Sambaran

    2011-01-01

    We investigate the dynamics of stellar-mass black holes (BH) in star clusters focusing on the dynamical formation of BH-BH binaries, which are very important sources of gravitational waves (GW). We examine the properties of these BH-BH binaries through direct N-body computations of Plummer clusters, having initially N(0) = 5 X 10^4, typically a few of them dynamically harden to the extent that they can merge via GW emission within the cluster. Also, for each of such clusters, there are a few ...

  2. Formation of stars and star clusters in colliding galaxies

    International Nuclear Information System (INIS)

    Belles, Pierre-Emmanuel

    2012-01-01

    , to small scales, with possible modifications of the initial mass function. From a high-resolution numerical simulation of the major merger of two spiral galaxies, we analyse the effects of the galaxy interaction on the star forming properties of the ISM at the scale of star clusters. The increase of the gas turbulence is likely able to explain the formation of Super Star Clusters in the system. Our investigation of the SFR-HI relation in galaxy mergers will be complemented by high-resolution HI data for additional systems, and pushed to yet smaller spatial scales. (author) [fr

  3. RADIAL VELOCITY STUDIES OF CLOSE BINARY STARS. XIV

    International Nuclear Information System (INIS)

    Pribulla, Theodor; Rucinski, Slavek M.; DeBond, Heide; De Ridder, Archie; Karmo, Toomas; Thomson, J. R.; Croll, Bryce; Ogloza, Waldemar; Pilecki, Bogumil; Siwak, Michal

    2009-01-01

    Radial velocity (RV) measurements and sine curve fits to the orbital RV variations are presented for 10 close binary systems: TZ Boo, VW Boo, EL Boo, VZ CVn, GK Cep, RW Com, V2610 Oph, V1387 Ori, AU Ser, and FT UMa. Our spectroscopy revealed two quadruple systems, TZ Boo and V2610 Oph, while three stars showing small photometric amplitudes, EL Boo, V1387 Ori, and FT UMa, were found to be triple systems. GK Cep is a close binary with a faint third component. While most of the studied eclipsing systems are contact binaries, VZ CVn and GK Cep are detached or semidetached double-lined binaries, and EL Boo, V1387 Ori, and FT UMa are close binaries of uncertain binary type. The large fraction of triple and quadruple systems found in this sample supports the hypothesis of formation of close binaries in multiple stellar systems; it also demonstrates that low photometric amplitude binaries are a fertile ground for further discoveries of multiple systems.

  4. Relativistic calculations of coalescing binary neutron stars

    Indian Academy of Sciences (India)

    We have designed and tested a new relativistic Lagrangian hydrodynamics code, which treats gravity in the conformally flat approximation to general relativity. We have tested the resulting code extensively, finding that it performs well for calculations of equilibrium single-star models, collapsing relativistic dust clouds, and ...

  5. Gravitational-Wave Luminosity of Binary Neutron Stars Mergers

    Science.gov (United States)

    Zappa, Francesco; Bernuzzi, Sebastiano; Radice, David; Perego, Albino; Dietrich, Tim

    2018-03-01

    We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the binaries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have the largest peak luminosities. However, the largest amount of energy per unit mass is radiated by mergers that produce a hypermassive neutron star or a massive neutron star remnant. We quantify the gravitational-wave luminosity of binary neutron star merger events, and set upper limits on the radiated energy and the remnant angular momentum from these events. We find that there is an empirical universal relation connecting the total gravitational radiation and the angular momentum of the remnant. Our results constrain the final spin of the remnant black hole and also indicate that stable neutron star remnant forms with super-Keplerian angular momentum.

  6. Gravitational-Wave Luminosity of Binary Neutron Stars Mergers.

    Science.gov (United States)

    Zappa, Francesco; Bernuzzi, Sebastiano; Radice, David; Perego, Albino; Dietrich, Tim

    2018-03-16

    We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the binaries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have the largest peak luminosities. However, the largest amount of energy per unit mass is radiated by mergers that produce a hypermassive neutron star or a massive neutron star remnant. We quantify the gravitational-wave luminosity of binary neutron star merger events, and set upper limits on the radiated energy and the remnant angular momentum from these events. We find that there is an empirical universal relation connecting the total gravitational radiation and the angular momentum of the remnant. Our results constrain the final spin of the remnant black hole and also indicate that stable neutron star remnant forms with super-Keplerian angular momentum.

  7. A radio-pulsing white dwarf binary star.

    Science.gov (United States)

    Marsh, T R; Gänsicke, B T; Hümmerich, S; Hambsch, F-J; Bernhard, K; Lloyd, C; Breedt, E; Stanway, E R; Steeghs, D T; Parsons, S G; Toloza, O; Schreiber, M R; Jonker, P G; van Roestel, J; Kupfer, T; Pala, A F; Dhillon, V S; Hardy, L K; Littlefair, S P; Aungwerojwit, A; Arjyotha, S; Koester, D; Bochinski, J J; Haswell, C A; Frank, P; Wheatley, P J

    2016-09-15

    White dwarfs are compact stars, similar in size to Earth but approximately 200,000 times more massive. Isolated white dwarfs emit most of their power from ultraviolet to near-infrared wavelengths, but when in close orbits with less dense stars, white dwarfs can strip material from their companions and the resulting mass transfer can generate atomic line and X-ray emission, as well as near- and mid-infrared radiation if the white dwarf is magnetic. However, even in binaries, white dwarfs are rarely detected at far-infrared or radio frequencies. Here we report the discovery of a white dwarf/cool star binary that emits from X-ray to radio wavelengths. The star, AR Scorpii (henceforth AR Sco), was classified in the early 1970s as a δ-Scuti star, a common variety of periodic variable star. Our observations reveal instead a 3.56-hour period close binary, pulsing in brightness on a period of 1.97 minutes. The pulses are so intense that AR Sco's optical flux can increase by a factor of four within 30 seconds, and they are also detectable at radio frequencies. They reflect the spin of a magnetic white dwarf, which we find to be slowing down on a 10 7 -year timescale. The spin-down power is an order of magnitude larger than that seen in electromagnetic radiation, which, together with an absence of obvious signs of accretion, suggests that AR Sco is primarily spin-powered. Although the pulsations are driven by the white dwarf's spin, they mainly originate from the cool star. AR Sco's broadband spectrum is characteristic of synchrotron radiation, requiring relativistic electrons. These must either originate from near the white dwarf or be generated in situ at the M star through direct interaction with the white dwarf's magnetosphere.

  8. The STAR cluster-finder ASIC

    Energy Technology Data Exchange (ETDEWEB)

    Botlo, M.; LeVine, M.J.; Scheetz, R.A.; Schulz, M.W. [Brookhaven National Lab., Upton, NY (United States); Short, P.; Woods, J. [InnovASIC, Inc., Albuquerque, NM (United States); Crosetto, D. [Rice Univ., Houston, TX (United States). Bonner Nuclear Lab.

    1997-12-01

    STAR is a large TPC-based experiment at RHIC, the relativistic heavy ion collider at Brookhaven National Laboratory. The STAR experiment reads out a TPC and an SVT (silicon vertex tracker), both of which require in-line pedestal subtraction, compression of ADC values from 10-bit to 8-bit, and location of time sequences representing responses to charged-particle tracks. The STAR cluster finder ASIC responds to all of these needs. Pedestal subtraction and compression are performed using lookup tables in attached RAM. The authors describe its design and implementation, as well as testing methodology and results of tests performed on foundry prototypes.

  9. Detecting unresolved binary stars in Euclid VIS images

    Science.gov (United States)

    Kuntzer, T.; Courbin, F.

    2017-10-01

    Measuring a weak gravitational lensing signal to the level required by the next generation of space-based surveys demands exquisite reconstruction of the point-spread function (PSF). However, unresolved binary stars can significantly distort the PSF shape. In an effort to mitigate this bias, we aim at detecting unresolved binaries in realistic Euclid stellar populations. We tested methods in numerical experiments where (I) the PSF shape is known to Euclid requirements across the field of view; and (II) the PSF shape is unknown. We drew simulated catalogues of PSF shapes for this proof-of-concept paper. Following the Euclid survey plan, the objects were observed four times. We propose three methods to detect unresolved binary stars. The detection is based on the systematic and correlated biases between exposures of the same object. One method is a simple correlation analysis, while the two others use supervised machine-learning algorithms (random forest and artificial neural network). In both experiments, we demonstrate the ability of our methods to detect unresolved binary stars in simulated catalogues. The performance depends on the level of prior knowledge of the PSF shape and the shape measurement errors. Good detection performances are observed in both experiments. Full complexity, in terms of the images and the survey design, is not included, but key aspects of a more mature pipeline are discussed. Finding unresolved binaries in objects used for PSF reconstruction increases the quality of the PSF determination at arbitrary positions. We show, using different approaches, that we are able to detect at least binary stars that are most damaging for the PSF reconstruction process. The code corresponding to the algorithms used in this work and all scripts to reproduce the results are publicly available from a GitHub repository accessible via http://lastro.epfl.ch/software

  10. Introduction & Overview to Symposium 240: Binary Stars as Critical Tools and Tests in Contemporary Astrophysics

    Science.gov (United States)

    2006-01-01

    neutron stars and black holes properties of condensed matter Post CE Binaries V471 Tau (K2 V + wd) Symbiotic Binaries (M III + wd) X-ray Binaries CH...low-mass stars the respect they deserve, since these stars may be the dominant contributor to baryonic mass in the Universe. Ben Lane discussed recent

  11. DISCOVERY OF 14 NEW SLOWLY PULSATING B STARS IN THE OPEN CLUSTER NGC 7654

    International Nuclear Information System (INIS)

    Luo, Y. P.; Han, Z. W.; Zhang, X. B.; Deng, L. C.

    2012-01-01

    We carried out time-series BV CCD photometric observations of the open cluster NGC 7654 (Messier 52) to search for variable stars. Eighteen slowly pulsating B (SPB) stars have been detected, among which 14 candidates are newly discovered, three known ones are confirmed, and a previously found δ Scuti star is also identified as an SPB candidate. Twelve SPBs are probable cluster members based on membership analysis. This makes NGC 7654 the richest galactic open cluster in terms of SPB star content. It is also a new discovery that NGC 7654 hosts three γ Dor star candidates. We found that all these stars (18 SPB and 3 γ Dor stars) have periods longer than their corresponding fundamental radial mode. With such a big sample of g-mode pulsators in a single cluster, it is clear that multi-mode pulsation is more common in the upper part of the main sequence than in the lower part. All the stars span a narrow strip on the period-luminosity plane, which also includes the γ Dor stars at the low-luminosity extension. This result implies that there may be a single period-luminosity relation applicable to all g-mode main-sequence pulsators. As a by-product, three EA-type eclipsing binaries and an EW-type eclipsing binary are also discovered.

  12. Black holes and neutron stars: evolution of binary systems

    International Nuclear Information System (INIS)

    Kraft, R.P.

    1975-01-01

    Evidence for the existence of neutron stars and black holes in binary systems has been reviewed, and the following summarizes the current situation: (1) No statistically significant case has been made for the proposition that black holes and/or neutron stars contribute to the population of unseen companions of ordinary spectroscopic binaries; (2) Plausible evolutionary scenarios can be advanced that place compact X-ray sources into context as descendants of several common types of mass-exchange binaries. The collapse object may be a black hole, a neutron star, or a white dwarf, depending mostly on the mass of the original primary; (3) The rotating neutron star model for the pulsating X-ray sources Her X-1 and Cen X-3 is the simplest interpretation of these objects, but the idea that the pulsations result from the non-radial oscillations of a white dwarf cannot be altogether dismissed. The latter is particularly attractive in the case of Her X-1 because the total mass of the system is small; (4) The black hole picture for Cyg X-1 represents the simplest model that can presently be put forward to explain the observations. This does not insure its correctness, however. The picture depends on a long chain of inferences, some of which are by no means unassailable. (Auth.)

  13. DOUBLE-LINED SPECTROSCOPIC BINARY STARS IN THE RAVE SURVEY

    International Nuclear Information System (INIS)

    Matijevic, G.; Zwitter, T.; Munari, U.; Siviero, A.; Bienayme, O.; Siebert, A.; Binney, J.; Bland-Hawthorn, J.; Boeche, C.; Steinmetz, M.; Campbell, R.; Freeman, K. C.; Gibson, B.; Gilmore, G.; Grebel, E. K.; Helmi, A.; Navarro, J. F.; Parker, Q. A.; Seabroke, G. M.; Watson, F. G.

    2010-01-01

    We devise a new method for the detection of double-lined binary stars in a sample of the Radial Velocity Experiment (RAVE) survey spectra. The method is both tested against extensive simulations based on synthetic spectra and compared to direct visual inspection of all RAVE spectra. It is based on the properties and shape of the cross-correlation function, and is able to recover ∼80% of all binaries with an orbital period of order 1 day. Systems with periods up to 1 yr are still within the detection reach. We have applied the method to 25,850 spectra of the RAVE second data release and found 123 double-lined binary candidates, only eight of which are already marked as binaries in the SIMBAD database. Among the candidates, there are seven that show spectral features consistent with the RS CVn type (solar type with active chromosphere) and seven that might be of W UMa type (over-contact binaries). One star, HD 101167, seems to be a triple system composed of three nearly identical G-type dwarfs. The tested classification method could also be applicable to the data of the upcoming Gaia mission.

  14. Unification of binary star ephemeris solutions

    International Nuclear Information System (INIS)

    Wilson, R. E.; Van Hamme, W.

    2014-01-01

    Time-related binary system characteristics such as orbital period, its rate of change, apsidal motion, and variable light-time delay due to a third body, are measured in two ways that can be mutually complementary. The older way is via eclipse timings, while ephemerides by simultaneous whole light and velocity curve analysis have appeared recently. Each has its advantages, for example, eclipse timings typically cover relatively long time spans while whole curves often have densely packed data within specific intervals and allow access to systemic properties that carry additional timing information. Synthesis of the two information sources can be realized in a one step process that combines several data types, with automated weighting based on their standard deviations. Simultaneous light-velocity-timing solutions treat parameters of apsidal motion and the light-time effect coherently with those of period and period change, allow the phenomena to interact iteratively, and produce parameter standard errors based on the quantity and precision of the curves and timings. The logic and mathematics of the unification algorithm are given, including computation of theoretical conjunction times as needed for generation of eclipse timing residuals. Automated determination of eclipse type, recovery from inaccurate starting ephemerides, and automated data weighting are also covered. Computational examples are given for three timing-related cases—steady period change (XY Bootis), apsidal motion (V526 Sagittarii), and the light-time effect due to a binary's reflex motion in a triple system (AR Aurigae). Solutions for all combinations of radial velocity, light curve, and eclipse timing input show consistent results, with a few minor exceptions.

  15. Ages of young star clusters, massive blue stragglers, and the upper mass limit of stars: Analyzing age-dependent stellar mass functions

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, F. R. N.; Izzard, R. G.; Langer, N.; Stolte, A.; Hußmann, B. [Argelander-Institut für Astronomie der Universität Bonn, Auf dem Hügel 71, D-53121 Bonn (Germany); De Mink, S. E. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara St, Pasadena, CA 91101 (United States); De Koter, A.; Sana, H. [Astronomical Institute " Anton Pannekoek" , Amsterdam University, Science Park 904, 1098 XH, Amsterdam (Netherlands); Gvaramadze, V. V. [Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetskij Pr. 13, Moscow 119992 (Russian Federation); Liermann, A., E-mail: fschneid@astro.uni-bonn.de [Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2014-01-10

    Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters that can be used to infer their ages and to identify products of binary evolution. We model the observed present-day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. We find that the shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages as 3.5 ± 0.7 Myr and 4.8 ± 1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e., the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte Carlo simulations to probe stochastic sampling, which support the idea of the most massive stars being rejuvenated binary products. We find that the most massive star is expected to be a binary product after 1.0 ± 0.7 Myr in Arches and after 1.7 ± 1.0 Myr in Quintuplet. Today, the most massive 9 ± 3 stars in Arches and 8 ± 3 in Quintuplet are expected to be such objects. Our findings have strong implications for the stellar upper mass limit and solve the discrepancy between the claimed 150 M {sub ☉} limit and observations of four stars with initial masses of 165-320 M {sub ☉} in R136 and of supernova 2007bi, which is thought to be a pair-instability supernova from an initial 250 M {sub ☉} star. Using the stellar population of R136, we revise the upper mass limit to values in the range

  16. Ages of young star clusters, massive blue stragglers, and the upper mass limit of stars: Analyzing age-dependent stellar mass functions

    International Nuclear Information System (INIS)

    Schneider, F. R. N.; Izzard, R. G.; Langer, N.; Stolte, A.; Hußmann, B.; De Mink, S. E.; Anton Pannekoek, Amsterdam University, Science Park 904, 1098 XH, Amsterdam (Netherlands))" data-affiliation=" (Astronomical Institute Anton Pannekoek, Amsterdam University, Science Park 904, 1098 XH, Amsterdam (Netherlands))" >De Koter, A.; Anton Pannekoek, Amsterdam University, Science Park 904, 1098 XH, Amsterdam (Netherlands))" data-affiliation=" (Astronomical Institute Anton Pannekoek, Amsterdam University, Science Park 904, 1098 XH, Amsterdam (Netherlands))" >Sana, H.; Gvaramadze, V. V.; Liermann, A.

    2014-01-01

    Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters that can be used to infer their ages and to identify products of binary evolution. We model the observed present-day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. We find that the shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages as 3.5 ± 0.7 Myr and 4.8 ± 1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e., the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte Carlo simulations to probe stochastic sampling, which support the idea of the most massive stars being rejuvenated binary products. We find that the most massive star is expected to be a binary product after 1.0 ± 0.7 Myr in Arches and after 1.7 ± 1.0 Myr in Quintuplet. Today, the most massive 9 ± 3 stars in Arches and 8 ± 3 in Quintuplet are expected to be such objects. Our findings have strong implications for the stellar upper mass limit and solve the discrepancy between the claimed 150 M ☉ limit and observations of four stars with initial masses of 165-320 M ☉ in R136 and of supernova 2007bi, which is thought to be a pair-instability supernova from an initial 250 M ☉ star. Using the stellar population of R136, we revise the upper mass limit to values in the range 200-500 M ☉ .

  17. Ages of Young Star Clusters, Massive Blue Stragglers, and the Upper Mass Limit of Stars: Analyzing Age-dependent Stellar Mass Functions

    Science.gov (United States)

    Schneider, F. R. N.; Izzard, R. G.; de Mink, S. E.; Langer, N.; Stolte, A.; de Koter, A.; Gvaramadze, V. V.; Hußmann, B.; Liermann, A.; Sana, H.

    2014-01-01

    Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters that can be used to infer their ages and to identify products of binary evolution. We model the observed present-day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. We find that the shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages as 3.5 ± 0.7 Myr and 4.8 ± 1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e., the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte Carlo simulations to probe stochastic sampling, which support the idea of the most massive stars being rejuvenated binary products. We find that the most massive star is expected to be a binary product after 1.0 ± 0.7 Myr in Arches and after 1.7 ± 1.0 Myr in Quintuplet. Today, the most massive 9 ± 3 stars in Arches and 8 ± 3 in Quintuplet are expected to be such objects. Our findings have strong implications for the stellar upper mass limit and solve the discrepancy between the claimed 150 M ⊙ limit and observations of four stars with initial masses of 165-320 M ⊙ in R136 and of supernova 2007bi, which is thought to be a pair-instability supernova from an initial 250 M ⊙ star. Using the stellar population of R136, we revise the upper mass limit to values in the range 200-500 M ⊙.

  18. Weight Distribution for Non-binary Cluster LDPC Code Ensemble

    Science.gov (United States)

    Nozaki, Takayuki; Maehara, Masaki; Kasai, Kenta; Sakaniwa, Kohichi

    In this paper, we derive the average weight distributions for the irregular non-binary cluster low-density parity-check (LDPC) code ensembles. Moreover, we give the exponential growth rate of the average weight distribution in the limit of large code length. We show that there exist $(2,d_c)$-regular non-binary cluster LDPC code ensembles whose normalized typical minimum distances are strictly positive.

  19. The Destructive Birth of Massive Stars and Massive Star Clusters

    Science.gov (United States)

    Rosen, Anna; Krumholz, Mark; McKee, Christopher F.; Klein, Richard I.; Ramirez-Ruiz, Enrico

    2017-01-01

    Massive stars play an essential role in the Universe. They are rare, yet the energy and momentum they inject into the interstellar medium with their intense radiation fields dwarfs the contribution by their vastly more numerous low-mass cousins. Previous theoretical and observational studies have concluded that the feedback associated with massive stars' radiation fields is the dominant mechanism regulating massive star and massive star cluster (MSC) formation. Therefore detailed simulation of the formation of massive stars and MSCs, which host hundreds to thousands of massive stars, requires an accurate treatment of radiation. For this purpose, we have developed a new, highly accurate hybrid radiation algorithm that properly treats the absorption of the direct radiation field from stars and the re-emission and processing by interstellar dust. We use our new tool to perform a suite of three-dimensional radiation-hydrodynamic simulations of the formation of massive stars and MSCs. For individual massive stellar systems, we simulate the collapse of massive pre-stellar cores with laminar and turbulent initial conditions and properly resolve regions where we expect instabilities to grow. We find that mass is channeled to the massive stellar system via gravitational and Rayleigh-Taylor (RT) instabilities. For laminar initial conditions, proper treatment of the direct radiation field produces later onset of RT instability, but does not suppress it entirely provided the edges of the radiation-dominated bubbles are adequately resolved. RT instabilities arise immediately for turbulent pre-stellar cores because the initial turbulence seeds the instabilities. To model MSC formation, we simulate the collapse of a dense, turbulent, magnetized Mcl = 106 M⊙ molecular cloud. We find that the influence of the magnetic pressure and radiative feedback slows down star formation. Furthermore, we find that star formation is suppressed along dense filaments where the magnetic field is

  20. Four W Ursae Majoris contact binaries in the old galactic cluster NGC 188

    International Nuclear Information System (INIS)

    Baliunas, S.L.; Guinan, E.F.

    1984-01-01

    The authors calculated the cross-correlation coefficients between the spectra of the contact binaries and slowly-rotating template stars of approximately the same color in NGC 188 (stars I-32 and I-33). From the cross-correlation coefficients they measured the radial velocities of the W UMa stars near the expected phase of velocity crossing with respect to the two other cluster stars. The velocities of the W UMa systems are consistent with cluster membership. In three of the systems, the spectra were obtained at phases where individual stellar components were resolved. Two Gaussians were fit simultaneously to the most significant portion of the blended cross-correlation peaks. The mass ratios of these three systems were determined by assuming that the velocity of the center of mass is equal to the mean radial velocity of the two cluster reference stars. The mass ratios in these three systems suggest the binaries are similar to other short-period, field W UMa systems designated W-type

  1. On the formation of runaway stars BN and x in the Orion Nebula Cluster

    Science.gov (United States)

    Farias, J. P.; Tan, J. C.

    2018-05-01

    We explore scenarios for the dynamical ejection of stars BN and x from source I in the Kleinmann-Low nebula of the Orion Nebula Cluster (ONC), which is important because it is the closest region of massive star formation. This ejection would cause source I to become a close binary or a merger product of two stars. We thus consider binary-binary encounters as the mechanism to produce this event. By running a large suite of N-body simulations, we find that it is nearly impossible to match the observations when using the commonly adopted masses for the participants, especially a source I mass of 7 M⊙. The only way to recreate the event is if source I is more massive, that is, 20 M⊙. However, even in this case, the likelihood of reproducing the observed system is low. We discuss the implications of these results for understanding this important star-forming region.

  2. Spectroscopic confirmation of the first symbiotic star in a globular cluster

    Science.gov (United States)

    Zurek, David

    2013-10-01

    We have recently discovered an 18-minute period in the ultraviolet of a star in the globular cluster NGC 1851. In the redder optical bands, this star is red and bright, while it shows a clear UV excess relative to other stars at similar positions in the HR diagram. The system is most likely a symbiotic binary, composed of a cool evolved star and a white dwarf, with an 18 minute spin period, accreting the cool star's wind. The binary would be the first such object ever found in a globular cluster, and only the third in the Galaxy where the white dwarf spin period is measured. The only viable alternatives are that the two components are a chance superposition - something with a nontrivial chance of happening in a globular cluster core. In such a case, the 18 minute period would most likely be the spin period of a magnetic white dwarf in an intermediate polar cataclysmic variable {this would be the first confirmed magnetic CV in a globular cluster}, or the orbital period of a double-degenerate AM CVn binary. Each of these three possibilities show unique {and very different} emission line spectra in the blue wavelength range. Two orbits of HST with STIS/G430L will produce a spectrum of sufficient signal-to-noise to distinguish between these 3 scenarios. The result will be an important constraint on N-body models of globular clusters.

  3. Observer’s guide to star clusters

    CERN Document Server

    Inglis, Mike

    2013-01-01

    This book is for amateur astronomers of all expertise, from beginner to experienced. It is intended to be used at the telescope – small, medium, or large – or even by an observer using binoculars or the naked eye. It is organized by constellation and will enable practical observers to locate the approximate positions of important star clusters in the 88 constellations from literally anywhere on Earth.  In practice, GO-TO telescopes can usually locate clusters accurately enough, but this, of course, first requires that the observer knows what is visible in the sky at a given time and from a given location, so as to input a locatable object! This is where the book becomes an essential aid to finding star clusters to observe. Observers who do not have computer-controlled telescopes can of course use the traditional “star-hopping” method to find specific objects, starting from the given reference stars.  The constellation maps in this book are in black and white, so that they can be read by the light of...

  4. Study of the mass-luminosity in binary stars

    International Nuclear Information System (INIS)

    Gimenez, A.; Zamorano, J.

    1986-01-01

    The results of a study of the mass-luminosity relation for main-sequence stars are presented as obtained from the latest data provided by the analysis of eclipsing and visual binary systems. The derived numerical values are discussed in light of their practical use and possible parametrizations indicated by internal structure homologous models. Finally, the astrophysical significance of our results is evaluated and they are compared to available theoretical models. (author)

  5. Wolf-Rayet stars in open clusters and associations

    International Nuclear Information System (INIS)

    Lundstroem, I.; Stenholm, B.

    1982-01-01

    The authors have made a search for line-of-sight coincidences between WR stars and open clusters using the new catalogue of galactic WR stars (van der Hucht et al., 1981, called the HCLS catalogue) and the catalogue of open cluster data (Lyngaa and Lundstroem, 1980). As a measure of the separation they used the angular distance between the WR star and the cluster centre expressed with the cluster angular radius, r', as unit. By comparing the results found from the real angular distributions of WR stars and open clusters with those found if the WR stars were redistributed by changing signs in their latitudes, it is concluded that the majority of WR stars with separations less than 3r' are true cluster members. For larger separations only a few stars can be expected to be members. The authors have therefore limited their investigation to those WR stars that were found within 5r' from an open cluster. (Auth.)

  6. A Catalog of 1022 Bright Contact Binary Stars

    Science.gov (United States)

    Gettel, S. J.; Geske, M. T.; McKay, T. A.

    2006-01-01

    In this work we describe a large new sample of contact binary stars extracted in a uniform manner from sky patrol data taken by the ROTSE-I telescope. Extensive ROTSE-I light-curve data are combined with J-, H-, and K-band near-infrared data taken from the Two Micron All Sky Survey to add color information. Contact binary candidates are selected using the observed period-color relation. Candidates are confirmed by visual examination of the light curves. To enhance the utility of this catalog, we derive a new J-H period-color-luminosity relation and use this to estimate distances for the entire catalog. From these distance estimates we derive an estimated contact binary space density of (1.7+/-0.6)×10-5 pc-3.

  7. Coalescence of Black Hole-Neutron Star Binaries

    Directory of Open Access Journals (Sweden)

    Masaru Shibata

    2011-08-01

    Full Text Available We review the current status of general relativistic studies for the coalescence of black hole-neutron star (BH-NS binaries. First, procedures for a solution of BH-NS binaries in quasi-equilibrium circular orbits and the numerical results, such as quasi-equilibrium sequence and mass-shedding limit, of the high-precision computation, are summarized. Then, the current status of numerical-relativity simulations for the merger of BH-NS binaries is described. We summarize our understanding for the merger and/or tidal disruption processes, the criterion for tidal disruption, the properties of the remnant formed after the tidal disruption, gravitational waveform, and gravitational-wave spectrum.

  8. The fate of close encounters between binary stars and binary supermassive black holes

    Science.gov (United States)

    Wang, Yi-Han; Leigh, Nathan; Yuan, Ye-Fei; Perna, Rosalba

    2018-04-01

    The evolution of main-sequence binaries that reside in the Galactic Centre can be heavily influenced by the central supermassive black hole (SMBH). Due to these perturbative effects, the stellar binaries in dense environments are likely to experience mergers, collisions, or ejections through secular and/or non-secular interactions. More direct interactions with the central SMBH are thought to produce hypervelocity stars (HVSs) and tidal disruption events (TDEs). In this paper, we use N-body simulations to study the dynamics of stellar binaries orbiting a central SMBH primary with an outer SMBH secondary orbiting this inner triple. The effects of the secondary SMBH on the event rates of HVSs, TDEs, and stellar mergers are investigated, as a function of the SMBH-SMBH binary mass ratio. Our numerical experiments reveal that, relative to the isolated SMBH case, the TDE and HVS rates are enhanced for, respectively, the smallest and largest mass ratio SMBH-SMBH binaries. This suggests that the observed event rates of TDEs and HVSs have the potential to serve as a diagnostic of the mass ratio of a central SMBH-SMBH binary. The presence of a secondary SMBH also allows for the creation of hypervelocity binaries. Observations of these systems could thus constrain the presence of a secondary SMBH in the Galactic Centre.

  9. Gravitational waves from remnant massive neutron stars of binary neutron star merger: Viscous hydrodynamics effects

    Science.gov (United States)

    Shibata, Masaru; Kiuchi, Kenta

    2017-06-01

    Employing a simplified version of the Israel-Stewart formalism of general-relativistic shear-viscous hydrodynamics, we explore the evolution of a remnant massive neutron star of binary neutron star merger and pay special attention to the resulting gravitational waveforms. We find that for the plausible values of the so-called viscous alpha parameter of the order 10-2 the degree of the differential rotation in the remnant massive neutron star is significantly reduced in the viscous time scale, ≲5 ms . Associated with this, the degree of nonaxisymmetric deformation is also reduced quickly, and as a consequence, the amplitude of quasiperiodic gravitational waves emitted also decays in the viscous time scale. Our results indicate that for modeling the evolution of the merger remnants of binary neutron stars we would have to take into account magnetohydrodynamics effects, which in nature could provide the viscous effects.

  10. Binary pulsar PSR 1718-19 contains a stripped main-sequence turn-off star

    International Nuclear Information System (INIS)

    Zwitter, T.

    1993-05-01

    Lyne et al. (1993) have recently announced the discovery of a 1-second globular cluster pulsar, 1718-19, in a 6.2-hour binary system which is embedded in a cloud of material originating from the companion star. However the incident flux of the pulsar's radiation on the companion is too low to ablate it and a main sequence companion is too small to fill its Roche lobe. Here I argue that the companion is a stripped turn-off star of 0.2-0.4 solar masses (M sun ) and with approx. 0.1M sun helium core. It has approx. 1.8-times larger radius than a main sequence star of equal mass. Its position in the Hertzsprung-Russell diagram overlaps that of a ∼ 0.65M sun main-sequence star. The evolutionary state of the companion and the highly magnetized slowly rotating neutron star place the system on the verge of the low mass X-ray binary phase. (author). 19 refs, 2 figs

  11. PANCHROMATIC HUBBLE ANDROMEDA TREASURY. XVI. STAR CLUSTER FORMATION EFFICIENCY AND THE CLUSTERED FRACTION OF YOUNG STARS

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L. Clifton; Sandstrom, Karin [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); Seth, Anil C. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Dalcanton, Julianne J.; Beerman, Lori C.; Lewis, Alexia R.; Weisz, Daniel R.; Williams, Benjamin F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Fouesneau, Morgan [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Bell, Eric F. [Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Larsen, Søren S. [Department of Astrophysics, IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Skillman, Evan D., E-mail: lcj@ucsd.edu [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States)

    2016-08-10

    We use the Panchromatic Hubble Andromeda Treasury survey data set to perform spatially resolved measurements of star cluster formation efficiency (Γ), the fraction of stellar mass formed in long-lived star clusters. We use robust star formation history and cluster parameter constraints, obtained through color–magnitude diagram analysis of resolved stellar populations, to study Andromeda’s cluster and field populations over the last ∼300 Myr. We measure Γ of 4%–8% for young, 10–100 Myr-old populations in M31. We find that cluster formation efficiency varies systematically across the M31 disk, consistent with variations in mid-plane pressure. These Γ measurements expand the range of well-studied galactic environments, providing precise constraints in an H i-dominated, low-intensity star formation environment. Spatially resolved results from M31 are broadly consistent with previous trends observed on galaxy-integrated scales, where Γ increases with increasing star formation rate surface density (Σ{sub SFR}). However, we can explain observed scatter in the relation and attain better agreement between observations and theoretical models if we account for environmental variations in gas depletion time ( τ {sub dep}) when modeling Γ, accounting for the qualitative shift in star formation behavior when transitioning from a H{sub 2}-dominated to a H i-dominated interstellar medium. We also demonstrate that Γ measurements in high Σ{sub SFR} starburst systems are well-explained by τ {sub dep}-dependent fiducial Γ models.

  12. Extreme isolation of WN3/O3 stars and implications for their evolutionary origin as the elusive stripped binaries

    Science.gov (United States)

    Smith, Nathan; Götberg, Ylva; de Mink, Selma E.

    2018-03-01

    Recent surveys of the Magellanic Clouds have revealed a subtype of Wolf-Rayet (WR) star with peculiar properties. WN3/O3 spectra exhibit both WR-like emission and O3 V-like absorption - but at lower luminosity than O3 V or WN stars. We examine the projected spatial distribution of WN3/O3 stars in the Large Magellanic Cloud as compared to O-type stars. Surprisingly, WN3/O3 stars are among the most isolated of all classes of massive stars; they have a distribution similar to red supergiants dominated by initial masses of 10-15 M⊙, and are far more dispersed than classical WR stars or luminous blue variables. Their lack of association with clusters of O-type stars suggests strongly that WN3/O3 stars are not the descendants of single massive stars (30 M⊙ or above). Instead, they are likely products of interacting binaries at lower initial mass (10-18 M⊙). Comparison with binary models suggests a probable origin with primaries in this mass range that were stripped of their H envelopes through non-conservative mass transfer by a low-mass secondary. We show that model spectra and positions on the Hertzsprung-Russell diagram for binary-stripped stars are consistent with WN3/O3 stars. Monitoring radial velocities with high-resolution spectra can test for low-mass companions or runaway velocities. With lower initial mass and environments that avoid very massive stars, the WN3/O3 stars fit expectations for progenitors of Type Ib and possibly Type Ibn supernovae.

  13. Clustering Binary Data in the Presence of Masking Variables

    Science.gov (United States)

    Brusco, Michael J.

    2004-01-01

    A number of important applications require the clustering of binary data sets. Traditional nonhierarchical cluster analysis techniques, such as the popular K-means algorithm, can often be successfully applied to these data sets. However, the presence of masking variables in a data set can impede the ability of the K-means algorithm to recover the…

  14. A Search for Exoplanets in Short-Period Binary Star Systems

    Directory of Open Access Journals (Sweden)

    Ronald Kaitchuck

    2012-03-01

    Full Text Available This paper reports the progress of a search for exoplanets with S-type orbits in short-period binary star systems. The selected targets have stellar orbital periods of just a few days. These systems are eclipsing binaries so that exoplanet transits, if planets exist, will be highly likely. We report the results for seven binary star systems.

  15. Rotation, activity, and lithium abundance in cool binary stars

    Science.gov (United States)

    Strassmeier, K. G.; Weber, M.; Granzer, T.; Järvinen, S.

    2012-10-01

    We have used two robotic telescopes to obtain time-series high-resolution optical echelle spectroscopy and V I and/or by photometry for a sample of 60 active stars, mostly binaries. Orbital solutions are presented for 26 double-lined systems and for 19 single-lined systems, seven of them for the first time but all of them with unprecedented phase coverage and accuracy. Eighteen systems turned out to be single stars. The total of 6609 {R=55 000} échelle spectra are also used to systematically determine effective temperatures, gravities, metallicities, rotational velocities, lithium abundances and absolute Hα-core fluxes as a function of time. The photometry is used to infer unspotted brightness, {V-I} and/or b-y colors, spot-induced brightness amplitudes and precise rotation periods. An extra 22 radial-velocity standard stars were monitored throughout the science observations and yield a new barycentric zero point for our STELLA/SES robotic system. Our data are complemented by literature data and are used to determine rotation-temperature-activity relations for active binary components. We also relate lithium abundance to rotation and surface temperature. We find that 74 % of all known rapidly-rotating active binary stars are synchronized and in circular orbits but 26 % (61 systems) are rotating asynchronously of which half have {P_rot>P_orb} and {e>0}. Because rotational synchronization is predicted to occur before orbital circularization active binaries should undergo an extra spin-down besides tidal dissipation. We suspect this to be due to a magnetically channeled wind with its subsequent braking torque. We find a steep increase of rotation period with decreasing effective temperature for active stars, P_rot ∝ T_eff-7, for both single and binaries, main sequence and evolved. For inactive, single giants with {P_rot>100} d, the relation is much weaker, {P_rot ∝ T_eff-1.12}. Our data also indicate a period-activity relation for Hα of the form {R_Hα ∝ P

  16. Formation of stars and stellar clusters in galactic environment

    OpenAIRE

    Smilgys, Romas

    2018-01-01

    Star and stellar cluster formation in spiral galaxies is one of the biggest questions of astrophysics. In this thesis, I study how star formation, and the formation of stellar clusters, proceeds using SPH simulations. These simulations model a region of 400 pc and 10⁷ solar masses. Star formation is modelled through the use of sink particles which represent small groups of stars. Star formation occurs in high density regions, created by galactic spiral arm passage. The spiral shock compresses...

  17. Binary model for the coma cluster of galaxies

    International Nuclear Information System (INIS)

    Valtonen, M.J.; Byrd, G.G.

    1979-01-01

    We study the dynamics of galaxies in the Coma cluster and find that the cluster is probably dominated by a central binary of galaxies NGC 4874--NGC4889. We estimate their total mass to be about 3 x 10 14 M/sub sun/ by two independent methods (assuming in Hubble constant of 100 km s -1 Mpc -1 ). This binary is efficient in dynamically ejecting smaller galaxies, some of of which are seen in projection against the inner 3 0 radius of the cluster and which, if erroneously considered as bound members, cause a serious overestimate of the mass of the entire cluster. Taking account of the ejected galaxies, we estimate the total cluster mass to be 4--9 x 10 14 M/sub sun/, with a corresponding mass-to-light ratio for a typical galaxy in the range of 20--120 solar units. The origin of the secondary maximum observed in the radial surface density profile is studied. We consider it to be a remnant of a shell of galaxies which formed around the central binary. This shell expanded, then collapsed into the binary, and is now reexpanding. This is supported by the coincidence of the minimum in the cluster eccentricity and radical velocity dispersion at the same radial distance as the secondary maximum. Numerical simulations of a cluster model with a massive central binary and a spherical shell of test particles are performed, and they reproduce the observed shape, galaxy density, and radial velocity distributions in the Coma cluster fairly well. Consequences of extending the model to other clusters are discussed

  18. GLOBULAR CLUSTER FORMATION EFFICIENCIES FROM BLACK HOLE X-RAY BINARY FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Justham, Stephen [The Key Laboratory of Optical Astronomy, National Astronomical Observatories, The Chinese Academy of Sciences, Datun Road, Beijing 100012 (China); Peng, Eric W. [Department of Astronomy, Peking University, Beijing 100871 (China); Schawinski, Kevin, E-mail: sjustham@nao.cas.cn [Institute for Astronomy, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093 Zurich (Switzerland)

    2015-08-10

    We investigate a scenario in which feedback from black hole X-ray binaries (BHXBs) sometimes begins inside young star clusters before strong supernova (SN) feedback. Those BHXBs could reduce the gas fraction inside embedded young clusters while maintaining virial equilibrium, which may help globular clusters (GCs) to stay bound when SN-driven gas ejection subsequently occurs. Adopting a simple toy model with parameters guided by BHXB population models, we produce GC formation efficiencies consistent with empirically inferred values. The metallicity dependence of BHXB formation could naturally explain why GC formation efficiency is higher at lower metallicity. For reasonable assumptions about that metallicity dependence, our toy model can produce a GC metallicity bimodality in some galaxies without a bimodality in the field-star metallicity distribution.

  19. Supercritical accretion in the evolution of neutron star binaries and its implications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang-Hwan, E-mail: clee@pusan.ac.kr; Cho, Hee-Suk

    2014-08-15

    Recently ∼2M{sub ⊙} neutron stars PSR J1614-2230 and PSR J0348+0432 have been observed in neutron star-white dwarf binaries. These observations ruled out many neutron star equations of states with which the maximum neutron star mass becomes less than 2M{sub ⊙}. On the other hand, all well-measured neutron star masses in double neutron star binaries are still less than 1.5M{sub ⊙}. In this article we suggest that 2M{sub ⊙} neutron stars in neutron star-white dwarf binaries are the result of the supercritical accretion onto the first-born neutron star during the evolution of the binary progenitors.

  20. Is stellar multiplicity universal? Tight stellar binaries in the Orion Nebula Cluster

    Science.gov (United States)

    Duchêne, Gaspard; Lacour, S.; Moraux, E.; Goodwin, S.; Bouvier, J.

    2018-05-01

    We present a survey for the tightest visual binaries among 0.3-2 M⊙ members the Orion Nebula Cluster (ONC). Among 42 targets, we discovered 13 new 0{^''.}025-0{^''.}15 companions. Accounting for the Branch bias, we find a companion star fraction (CSF) in the 10-60 au range of 21^{+8}_{-5}%, consistent with that observed in other star-forming regions (SFRs) and twice as high as among field stars; this excess is found with a high level of confidence. Since our sample is dominated by disk-bearing targets, this indicates that disk disruption by close binaries is inefficient, or has not yet taken place, in the ONC. The resulting separation distribution in the ONC drops sharply outside 60 au. These findings are consistent with a scenario in which the initial multiplicity properties, set by the star formation process itself, are identical in the ONC and in other SFRs and subsequently altered by the cluster's dynamical evolution. This implies that the fragmentation process does not depend on the global properties of a molecular cloud, but on the local properties of prestellar cores, and that the latter are self-regulated to be nearly identical in a wide range of environments. These results, however, raise anew the question of the origin of field stars as the tight binaries we have discovered will not be destroyed as the ONC dissolves into the galactic field. It thus appears that most field stars formed in regions that differ from well-studied SFRs in the Solar neighborhood, possibly due to changes in core fragmentation on Gyr timescales.

  1. Formation and evolution of star clusters and their host galaxies

    NARCIS (Netherlands)

    Kruijssen, J.M.D.

    2011-01-01

    The vast majority of galaxies contains large populations of stellar clusters, which are bound groups of a few tens to millions of stars. A cluster is formed from a single giant molecular cloud and therefore its stars share the same age and chemical composition. The formation and evolution of star

  2. Numerical relativity simulations of precessing binary neutron star mergers

    Science.gov (United States)

    Dietrich, Tim; Bernuzzi, Sebastiano; Brügmann, Bernd; Ujevic, Maximiliano; Tichy, Wolfgang

    2018-03-01

    We present the first set of numerical relativity simulations of binary neutron mergers that include spin precession effects and are evolved with multiple resolutions. Our simulations employ consistent initial data in general relativity with different spin configurations and dimensionless spin magnitudes ˜0.1 . They start at a gravitational-wave frequency of ˜392 Hz and cover more than 1 precession period and about 15 orbits up to merger. We discuss the spin precession dynamics by analyzing coordinate trajectories, quasilocal spin measurements, and energetics, by comparing spin aligned, antialigned, and irrotational configurations. Gravitational waveforms from different spin configuration are compared by calculating the mismatch between pairs of waveforms in the late inspiral. We find that precession effects are not distinguishable from nonprecessing configurations with aligned spins for approximately face-on binaries, while the latter are distinguishable from nonspinning configurations. Spin precession effects are instead clearly visible for approximately edge-on binaries. For the parameters considered here, precession does not significantly affect the characteristic postmerger gravitational-wave frequencies nor the mass ejection. Our results pave the way for the modeling of spin precession effects in the gravitational waveform from binary neutron star events.

  3. The Possibility of Multiple Habitable Worlds Orbiting Binary Stars

    Science.gov (United States)

    Mason, P. A.

    2014-03-01

    Are there planetary systems for which there is life on multiple worlds? Where are these fruitful planetary systems and how do we detect them? In order to address these questions; conditions which enable life and those that prevent or destroy it must be considered. Many constraints are specific to planetary systems, independent of the number of worlds in habitable zones. For instance, life on rocky planets or moons likely requires the right abundance of volatiles and radiogenic elements for prolonged geologic activity. Catastrophic sterilization events such as nearby supernovae and gamma-ray bursts affect entire planetary systems not just specific worlds. Giant planets may either enhance or disrupt the development of complex life within a given system. It might be rare for planetary systems to possess qualities that promote life and lucky enough to avoid cataclysm. However, multiple habitable planets may provide enhanced chances for advanced life to develop. The best predictor of life on one habitable zone planet might be the presence of life on its neighbor as panspermia may occur in planetary systems with several habitable worlds. Circumbinary habitability may go hand in hand with habitability of multiple worlds. The circumstances in which the Binary Habitability Mechanism (BHM) operates are reviewed. In some cases, the early synchronization of the primary's rotation with the binary period results in a reduction of XUV flux and stellar winds. Main sequence binaries with periods in the 10-50 days provide excellent habitable environments, within which multiple worlds may thrive. Planets and moons in these habitable zones need less magnetic protection than their single star counterparts. Exomoons orbiting a Neptune-like planet, within a BHM protected habitable zone, are expected to be habitable over a wide range of semimajor axes due to a larger planetary Hill radius. A result confirmed by numerical orbital calculations. Binaries containing a solar type star with a

  4. VARIABLE STARS IN THE GLOBULAR CLUSTER NGC 2808

    International Nuclear Information System (INIS)

    Kunder, Andrea; Walker, Alistair R.; Stetson, Peter B.; Catelan, Márcio; Amigo, Pía

    2013-01-01

    The first calibrated broadband BVI time-series photometry is presented for the variable stars in NGC 2808, with observations spanning a range of 28 years. We have also redetermined the variability types and periods for the variable stars identified previously by Corwin et al., revising the number of probable fundamental-mode RR Lyrae variables (RR0) to 11 and the number of first-overtone variables (RR1) to five. Our observations were insufficient to discern the nature of the previously identified RR1 star, V24, and the tentatively identified RR1 star, V13. These two variables are ∼0.8 mag brighter than the RR Lyrae variables, appear to have somewhat erratic period and/or luminosity changes, and lie inside the RR Lyrae instability strip. Curiously, all but one of the RR Lyrae stars studied in this relatively metal-rich cluster exhibit the Blazhko phenomenon, an effect thought to occur with higher frequency in metal-poor environments. The mean periods of the RR0 and RR1 variables are (P) RR0 = 0.56 ± 0.01 d and RR1 = 0.30 ± 0.02 d, respectively, supporting an Oosterhoff I classification of the cluster. On the other hand, the number ratio of RR1-to-RR0-type variables is high, though not unprecedented, for an Oosterhoff I cluster. The RR Lyrae variables have no period shifts at a given amplitude compared to the M3 variables, making it unlikely that these variables are He enhanced. Using the recent recalibration of the RR Lyrae luminosity scale by Catelan and Cortés, a mean distance modulus of (m – M) V = 15.57 ± 0.13 mag for NGC 2808 is obtained, in good agreement with that determined here from its type II Cepheid and SX Phoenicis population. Our data have also allowed the discovery of two new candidate SX Phoenicis stars and an eclipsing binary in the blue straggler region of the NGC 2808 color-magnitude diagram.

  5. Stability criteria for wide binary stars harboring Oort Clouds

    Science.gov (United States)

    Calandra, M. F.; Correa-Otto, J. A.; Gil-Hutton, R. A.

    2018-03-01

    Context. In recent years, several numerical studies have been done in the field of the stability limit. Although, many of them included the analysis of asteroids or planets, is not possible to find in the literature any work on how the presence of a binary star could affect other possible configurations in a three-body problem. In order to develop this subject we consider other structures like Oort Clouds in wide binary systems. Regarding the existence of Oort Clouds in extrasolar systems there are recent works that do not reject its possible existence. Aim. The aim of this work is to obtain the stability limit for Oort Cloud objects considering different masses of the secondary star and zero and non-zero inclinations of the particles. We improve our numerical treatment getting a mathematical fit that allows us to find the limit and compare our results with other previous works in the field. Methods: We use a symplectic integrator to integrate binary systems where the primary star is m1 = 1 M⊙ and the secondary, m2, takes 0.25 M⊙ and 0.66 M⊙ in two sets of simulations S1 and S2. The orbital parameters of the secondary star were varied in order to study different scenarios. We also used two different integration times (one shorter than the other) and included the presence of 1000 to 10 000 massless particles in circular orbits to form the Oort Cloud. The particles were disposed in four different inclination planes to investigate how the presence of the binary companion could affect the stability limit. Results: Using the Maximum Eccentricity Method, emax, together with the critical semimajor axis acrit we found that the emax criteria could reduce the integration times to find the limit. For those cases where the particles were in inclined orbits we found that there are particle groups that survive the integration time with a high eccentricity. These particle groups are found for our two sets of simulations, meaning that they are independent of the secondary

  6. Visual Measurements of the Binary Star S 654

    Science.gov (United States)

    Frey, Thomas; Achildiyev, Irina; Alduenda, Chandra; Bridgeman, Reid; Chamberlain, Rebecca; Hendrix, Alex

    2011-01-01

    A member of the faculty and students from The Evergreen State College, Olympia, Washington, participated in the 2010 summer astronomy workshop at Pine Mountain Observatory. They learned the proper techniques and skills required for measuring the separation and position angle of binary star S 654. They learned how to calibrate an astrometric eyepiece, make appropriate measurements, do a statistical analysis, and analyze the data. The separation and position angle values obtained were 69.9 arc seconds and 237 degrees, respectively. The percent difference for each value was less than 0.5% from the literature value.

  7. Multi-messenger Observations of a Binary Neutron Star Merger

    DEFF Research Database (Denmark)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.

    2017-01-01

    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A...... Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution....../optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A...

  8. Helicity coherence in binary neutron star mergers and nonlinear feedback

    Science.gov (United States)

    Chatelain, Amélie; Volpe, Cristina

    2017-02-01

    Neutrino flavor conversion studies based on astrophysical environments usually implement neutrino mixings, neutrino interactions with matter, and neutrino self-interactions. In anisotropic media, the most general mean-field treatment includes neutrino mass contributions as well, which introduce a coupling between neutrinos and antineutrinos termed helicity or spin coherence. We discuss resonance conditions for helicity coherence for Dirac and Majorana neutrinos. We explore the role of these mean-field contributions on flavor evolution in the context of a binary neutron star merger remnant. We find that resonance conditions can be satisfied in neutron star merger scenarios while adiabaticity is not sufficient for efficient flavor conversion. We analyze our numerical findings by discussing general conditions to have multiple Mikheyev-Smirnov-Wolfenstein-like resonances, in the presence of nonlinear feedback, in astrophysical environments.

  9. Dynamical evolution of stars and gas of young embedded stellar sub-clusters

    Science.gov (United States)

    Sills, Alison; Rieder, Steven; Scora, Jennifer; McCloskey, Jessica; Jaffa, Sarah

    2018-03-01

    We present simulations of the dynamical evolution of young embedded star clusters. Our initial conditions are directly derived from X-ray, infrared, and radio observations of local systems, and our models evolve both gas and stars simultaneously. Our regions begin with both clustered and extended distributions of stars, and a gas distribution which can include a filamentary structure in addition to gas surrounding the stellar subclusters. We find that the regions become spherical, monolithic, and smooth quite quickly, and that the dynamical evolution is dominated by the gravitational interactions between the stars. In the absence of stellar feedback, the gas moves gently out of the centre of our regions but does not have a significant impact on the motions of the stars at the earliest stages of cluster formation. Our models at later times are consistent with observations of similar regions in the local neighbourhood. We conclude that the evolution of young proto-star clusters is relatively insensitive to reasonable choices of initial conditions. Models with more realism, such as an initial population of binary and multiple stars and ongoing star formation, are the next step needed to confirm these findings.

  10. Multiple Stellar Populations in Star Clusters

    Science.gov (United States)

    Piotto, G.

    2013-09-01

    For half a century it had been astronomical dogma that a globular cluster (GC) consists of stars born at the same time out of the same material, and this doctrine has borne rich fruits. In recent years, high resolution spectroscopy and high precision photometry (from space and ground-based observations) have shattered this paradigm, and the study of GC populations has acquired a new life that is now moving it in new directions. Evidence of multiple stellar populations have been identified in the color-magnitude diagrams of several Galactic and Magellanic Cloud GCs where they had never been imagined before.

  11. Gravitational waveforms for neutron star binaries from binary black hole simulations

    Science.gov (United States)

    Barkett, Kevin; Scheel, Mark; Haas, Roland; Ott, Christian; Bernuzzi, Sebastiano; Brown, Duncan; Szilagyi, Bela; Kaplan, Jeffrey; Lippuner, Jonas; Muhlberger, Curran; Foucart, Francois; Duez, Matthew

    2016-03-01

    Gravitational waves from binary neutron star (BNS) and black-hole/neutron star (BHNS) inspirals are primary sources for detection by the Advanced Laser Interferometer Gravitational-Wave Observatory. The tidal forces acting on the neutron stars induce changes in the phase evolution of the gravitational waveform, and these changes can be used to constrain the nuclear equation of state. Current methods of generating BNS and BHNS waveforms rely on either computationally challenging full 3D hydrodynamical simulations or approximate analytic solutions. We introduce a new method for computing inspiral waveforms for BNS/BHNS systems by adding the post-Newtonian (PN) tidal effects to full numerical simulations of binary black holes (BBHs), effectively replacing the non-tidal terms in the PN expansion with BBH results. Comparing a waveform generated with this method against a full hydrodynamical simulation of a BNS inspiral yields a phase difference of < 1 radian over ~ 15 orbits. The numerical phase accuracy required of BNS simulations to measure the accuracy of the method we present here is estimated as a function of the tidal deformability parameter λ.

  12. Physical Properties of the LMC Eclipsing Binary Stars

    Science.gov (United States)

    Prsa, Andrej; Devinney, E. J.; Guinan, E. F.; Engle, S. G.; DeGeorge, M.

    2009-01-01

    To date, three independent studies have devised an automatic procedure to analyse and extract the principal parameters of 2581 detached eclipsing binary stars from the OGLE photometric survey of the Large Magellanic Cloud (LMC): Devor (2005), Tamuz et al. (2006), and Prsa et al. (2008). For time efficiency, Devor used a simple model of two spherical, limb-darkened stars without tidal or reflection physics. Tamuz et al.'s approach employs a more realistic EBOP model, which is still limited in handling proximity physics. Our study used a back-propagating neural network that was trained on the light curves computed by a modern Wilson-Devinney code. The three approaches are confronted and correlations in the results are sought that indicate the degree of reliability of the obtained results. A database of solutions consistent across all three studies is presented. We assess the suitability of each method for other morphology types (i.e. semi-detached and overcontact binaries) and we overview the practical limitations of these methods for the upcoming survey data. This research is supported by NFS/RUI Grant No. AST-05-07542, which we gratefully acknowledge.

  13. Investigation of conspicuous infrared star cluster and star-forming region RCW 38 IR Cluster

    International Nuclear Information System (INIS)

    Gyulbudaghian, A.L.; May, J.

    2008-01-01

    An infrared star cluster RCW 38 IR Cluster, which is also a massive star-forming region, is investigated. The results of observations with SEST (Cerro is Silla, Chile) telescope on 2.6-mm 12 CO spectral line and with SIMBA on 1.2-mm continuum are given. The 12 CO observations revealed the existence of several molecular clouds, two of which (clouds I and 2) are connected with the object RCW 38 IR Cluster. Cloud 1 is a massive cloud, which has a depression in which the investigated object is embedded. It is not excluded that the depression was formed by the wind and/or emission from the young bright stars belonging to the star cluster. Rotation of cloud 2, around the axis having SE-NW direction, with an angular velocity ω 4.6 · 10 -14 s -1 is also found. A red-shifted outflow with velocity ∼+5.6 km/s, in the SE direction and perpendicular to the elongation of cloud 2 has been also found. The investigated cluster is associated with an IR point source IRAS 08573-4718, which has IR colours typical for a, non-evolved embedded (in the cloud) stellar object. The cluster is also connected with a water maser. The SIMBA image shoves the existence of a central bright condensation, coinciding with the cluster itself, and two extensions. One of these extensions (the one with SW-NE direction) coincides, both in place and shape, with cloud 2, so that it is not excluded the possibility that this extension might be also rotating like cloud 2. In the vicinity of these extensions there are condensations resembling HH objects

  14. Cluster and Double Star observations of dipolarization

    Directory of Open Access Journals (Sweden)

    R. Nakamura

    2005-11-01

    Full Text Available We studied two types of dipolarization events with different IMF conditions when Cluster and Double Star (TC-1 were located in the same local time sector: 7 August 2004, 18:00-24:00 UT, during a disturbed southward/northward IMF interval, and 14 August 2004, 21:00-24:00 UT, when the IMF was stably northward. Cluster observed dipolarization as well as fast flows during both intervals, but this was not the case for TC-1. For both events the satellites crossed near the conjugate location of the MIRACLE stations. By using multi-point analysis techniques, the direction/speed of the propagation is determined using Cluster and is then compared with the disturbances at TC-1 to discuss its spatial/temporal scale. The propagation direction of the BZ disturbance at Cluster was mainly dawnward with a tailward component for 7 August and with a significant Earthward component for 14 August associated with fast flows. We suggest that the role of the midtail fast flows can be quite different in the dissipation process depending on the condition of the IMF and resultant configuration of the tail.

  15. Close binary star type x-ray star and its mechanism of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hoshi, R [Rikkyo Univ., Tokyo (Japan). Dept. of Physics

    1975-09-01

    Recent progress of the study of an X-ray star is described. In 1970, the periodical emission of pulsed X-rays from Cen X-3 and Her X-1 was observed. An optically corresponding celestial object for the Cen X-3 was reported in 1973, and the mass of Cen X-3 was revised. The optical object was named after Krzeminsky. From the observed variation of luminosity, it is said that the Krzeminsky's star is deformed. This fact gave new data on the mass of the Cen X-3, and the mass is several times as large as the previously estimated value. The behavior of the Her X-1 shows four kinds of clear time variation, and indicates the characteristics of an X-ray star. The Her X-1 is an X-ray pulser the same as Cen X-3, and is a close binary star. The opposite star is known as HZ-Her, and shows weaker luminosity than the intensity of X-ray from the Her X-1. Thirty-five day period was seen in the intensity variation of X-ray. The mechanism of X-ray pulsing can be explained by material flow into a neutron star. The energy spectrum from Her X-1 is different from that from the Cen X-3. Another X-ray star, Cyg X-1, is considered to be a black hole from its X-ray spectrum.

  16. Investigation of eclipsing binary stars exhibiting calcium II emission

    International Nuclear Information System (INIS)

    Oliver, J.P.

    1974-01-01

    Three color photometry of some eclipsing binaries showing Calcium II emission is reported. A highly stable and accurate d.c. amplifier, and a new type digital averaging system are described. Past and current light curves of SS Boo, RS CVn, WY Cnc, WW Dra, UV Psc, Z Her, SS Cam, RW UMa, AR Lac, and RT Lac are discussed with particular emphasis on asymmetries in the heights of the maxima and variations in the depths of the minima. Both RS CVn and SS Boo show nearly sinusoidal variation outside eclipse. Spectra of SS Boo and RS CVn are discussed. The suggestion is made that many of these systems belong to a new category of variable eclipsing binary star. It is pointed out that most double line eclipsing binaries with late-type sub-giant secondary components fall into this group, and that many of the characteristics of this group are not easily explained on the basis of existing data and theory. Possible models are discussed and the need for future photometric and spectroscopic study is emphasized. (U.S.)

  17. The Dynamical Evolution of Stellar-Mass Black Holes in Dense Star Clusters

    Science.gov (United States)

    Morscher, Maggie

    Globular clusters are gravitationally bound systems containing up to millions of stars, and are found ubiquitously in massive galaxies, including the Milky Way. With densities as high as a million stars per cubic parsec, they are one of the few places in the Universe where stars interact with one another. They therefore provide us with a unique laboratory for studying how gravitational interactions can facilitate the formation of exotic systems, such as X-ray binaries containing black holes, and merging double black hole binaries, which are produced much less efficiently in isolation. While telescopes can provide us with a snapshot of what these dense clusters look like at present, we must rely on detailed numerical simulations to learn about their evolution. These simulations are quite challenging, however, since dense star clusters are described by a complicated set of physical processes occurring on many different length and time scales, including stellar and binary evolution, weak gravitational scattering encounters, strong resonant binary interactions, and tidal stripping by the host galaxy. Until very recently, it was not possible to model the evolution of systems with millions of stars, the actual number contained in the largest clusters, including all the relevant physics required describe these systems accurately. The Northwestern Group's Henon Monte Carlo code, CMC, which has been in development for over a decade, is a powerful tool that can be used to construct detailed evolutionary models of large star clusters. With its recent parallelization, CMC is now capable of addressing a particularly interesting unsolved problem in astrophysics: the dynamical evolution of stellar black holes in dense star clusters. Our current understanding of the stellar initial mass function and massive star evolution suggests that young globular clusters may have formed hundreds to thousands of stellar-mass black holes, the remnants of stars with initial masses from 20 - 100

  18. THE PREVALENCE AND IMPACT OF WOLF–RAYET STARS IN EMERGING MASSIVE STAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Sokal, Kimberly R.; Johnson, Kelsey E.; Indebetouw, Rémy [Department of Astronomy, University of Virginia, P.O. Box 3818, Charlottesville, VA 22903 (United States); Massey, Philip, E-mail: krs9tb@virginia.edu [Lowell Observatory, 1400 W Mars Hill Road, Flagstaff, AZ 86001 (United States)

    2016-08-01

    We investigate Wolf–Rayet (WR) stars as a source of feedback contributing to the removal of natal material in the early evolution of massive star clusters. Despite previous work suggesting that massive star clusters clear out their natal material before the massive stars evolve into the WR phase, WR stars have been detected in several emerging massive star clusters. These detections suggest that the timescale for clusters to emerge can be at least as long as the time required to produce WR stars (a few million years), and could also indicate that WR stars may be providing the tipping point in the combined feedback processes that drive a massive star cluster to emerge. We explore the potential overlap between the emerging phase and the WR phase with an observational survey to search for WR stars in emerging massive star clusters hosting WR stars. We select candidate emerging massive star clusters from known radio continuum sources with thermal emission and obtain optical spectra with the 4 m Mayall Telescope at Kitt Peak National Observatory and the 6.5 m MMT.{sup 4} We identify 21 sources with significantly detected WR signatures, which we term “emerging WR clusters.” WR features are detected in ∼50% of the radio-selected sample, and thus we find that WR stars are commonly present in currently emerging massive star clusters. The observed extinctions and ages suggest that clusters without WR detections remain embedded for longer periods of time, and may indicate that WR stars can aid, and therefore accelerate, the emergence process.

  19. Tidal formation of Hot Jupiters in binary star systems

    Science.gov (United States)

    Bataille, M.; Libert, A.-S.; Correia, A. C. M.

    2015-10-01

    More than 150 Hot Jupiters with orbital periods less than 10 days have been detected. Their in-situ formation is physically unlikely. We need therefore to understand the migration of these planets from high distance (several AUs). Three main models are currently extensively studied: disk-planet interactions (e.g. [3]), planet-planet scattering (e.g. [4]) and Kozai migration (e.g. [2]). Here we focus on this last mechanism, and aim to understand which dynamical effects are the most active in the accumulation of planetary companions with low orbital periods in binary star systems. To do so, we investigate the secular evolution of Hot Jupiters in binary star systems. Our goal is to study analytically the 3-day pile-up observed in their orbital period. Our framework is the hierarchical three-body problem, with the effects of tides, stellar oblateness, and general relativity. Both the orbital evolution and the spin evolution are considered. Using the averaged equations of motion in a vectorial formalism of [1], we have performed # 100000 numerical simulations of well diversified three-body systems, reproducing and generalizing the numerical results of [2]. Based on a thorough analysis of the initial and final configurations of the systems, we have identified different categories of secular evolutions present in the simulations, and proposed for each one a simplified set of equations reproducing the evolution. Statistics about spin-orbit misalignements and mutual inclinations between the orbital planes of the Hot Jupiter and the star companion are also provided. Finally, we show that the extent of the 3 day pile-up is very dependent on the initial parameters of the simulations.

  20. Star-planet systems as possible progenitors of cataclysmic binaries

    International Nuclear Information System (INIS)

    Livio, M.; Soker, N.

    1984-01-01

    The evolution of a star-planet system is studied, in the phase in which the star becomes a red giant, thus enabling the planet to accrete mass either from its envelope or from its wind. It is found that for planets which are embedded in the envelope, there exists a certain critical initial mass, under which the planets are totally evaporated while spiralling-in. Planets with an initial mass above this critical value are all transformed into low-mass stellar companions to the giant's core. The final masses of these secondaries are almost independent of their initial mass and their initial separation, as long as the latter is greater than a certain critical value. The final masses are essentially determined by the giant's envelope mass. The star-planet separation is found to increase for planets that accrete from the stellar wind, when tidal effects are neglected. Possible consequences of these results on the problem of formation of low-mass cataclysmic binaries are discussed. (author)

  1. Equilibrium states of nonsynchronous stars in detached binaries

    International Nuclear Information System (INIS)

    Lubow, S.H.

    1979-01-01

    The effects of nonsynchronous spin on equilibrium states for the radiative envelopes of detached members of close binaries are analyzed. With the adoption of the assumption that the nonsynchronous speeds, u, are much less than the relative orbital speed, Ωd, of the component stars, the full set of stellar structure equations, generalized to include the gas dynamical and heat transport effects of spin, are analyzed to linear order in u/Ωd. For these equilibria: (2) from this velocity field isobars and hence stellar shapes can be calculated for equilibrium states of slightly nonsynchronously rotating stars. On the orbit plane these surfaces coincide with the Roche equipotentials. (3) All sightly nonsynchronous equilibria are baroclinic. Isodensities and isotherms are inclined to isobars by an angle on the order of 0 0 .3 x (u/Ωd for a star in quasi-rigid rotation that nearly fills its Roche lobe). (4) The surface flux distribution departs from the usual gravity darkening law by an amount that scales with u/Ωd. Comparisons of this work are made with the results of previous investigations, and possibilities for future investigations are discussed

  2. Symbiotic stars - a binary model with super-critical accretion

    Energy Technology Data Exchange (ETDEWEB)

    Bath, G T [National Radio Astronomy Observatory, Charlottesville, Va. (USA)

    1977-01-01

    The structure of symbiotic variables is discussed in terms of a binary model. Disc accretion by a main sequence star or white dwarf at rates close to the Eddington limit produces an ultraviolet continuum source near the accreting star surface. This generates a variable, radiatively-driven, out-flowing wind. The wind is optically thick and the disc luminosity is absorbed and scattered and thus degraded into the optical region. Variations in the rate of mass loss in the wind lead to optical eruptions through shifts in the position of, and conditions in, the last scattering surface. The behaviour of Z And determined by Boyarchuk is shown to be in agreement with such a model. The conditions in the out-flowing wind are discussed. Limits on the mass loss rate are derived from conditions at the surface of the accreting star. It is suggested that variable out-flow in the wind is generated by fluctuations in disc luminosity produced by changes in the giant companions rate of mass transfer. The relation between symbiotic variables and classical and dwarf novae is discussed.

  3. Not-so-simple stellar populations in nearby, resolved massive star clusters

    Science.gov (United States)

    de Grijs, Richard; Li, Chengyuan

    2018-02-01

    Around the turn of the last century, star clusters of all kinds were considered ‘simple’ stellar populations. Over the past decade, this situation has changed dramatically. At the same time, star clusters are among the brightest stellar population components and, as such, they are visible out to much greater distances than individual stars, even the brightest, so that understanding the intricacies of star cluster composition and their evolution is imperative for understanding stellar populations and the evolution of galaxies as a whole. In this review of where the field has moved to in recent years, we place particular emphasis on the properties and importance of binary systems, the effects of rapid stellar rotation, and the presence of multiple populations in Magellanic Cloud star clusters across the full age range. Our most recent results imply a reverse paradigm shift, back to the old simple stellar population picture for at least some intermediate-age (˜1-3 Gyr old) star clusters, opening up exciting avenues for future research efforts.

  4. A dual-mask coronagraph for observing faint companions to binary stars

    NARCIS (Netherlands)

    Cady, E.; McElwain, M.; Kasdin, N.J.; Thalmann, C.

    2011-01-01

    Observations of binary stars for faint companions with conventional coronagraphic methods are challenging, as both targets will be bright enough to obscure any nearby faint companions if their scattered light is not suppressed. We propose coronagraphic examination of binary stars using an

  5. On the kinematics of visual binary and multiple stars of the FK4 cataloque

    International Nuclear Information System (INIS)

    Starikova, G.A.

    1981-01-01

    Kinematic features of single, binary and multiple stars are considered. To compare kinematics of such stars with the kinematics of single stars the data on positions and proper motions of those stars which are given in the basic catalogue FK4. Single as well as visual binary and multiple stars united because of their limited content in FK4 have been subdivided by spectra and classes of luminosity into groups with account for known kinematic peculiarities of various spectral groups. Kinematic features for the studied spectral groups are given. By the stars of the FK4 catalogue for various spectral classes the difference of kinematic features of single, visual binary and multiple stars is obtained. However the values of these differences need to be specified due to small number of stars included in five of six groups considered

  6. The Cluster AgeS Experiment (CASE). Variable Stars in the Field of the Globular Cluster M22

    Science.gov (United States)

    Rozyczka, M.; Thompson, I. B.; Pych, W.; Narloch, W.; Poleski, R.; Schwarzenberg-Czerny, A.

    2017-09-01

    The field of the globular cluster M22 (NGC 6656) was monitored between 2000 and 2008 in a search for variable stars. BV light curves were obtained for 359 periodic, likely periodic, and long-term variables, 238 of which are new detections. 39 newly detected variables, and 63 previously known ones are members or likely members of the cluster, including 20 SX Phe, 10 RRab and 16 RRc type pulsators, one BL Her type pulsator, 21 contact binaries, and 9 detached or semi-detached eclipsing binaries. The most interesting among the identified objects are V112 - a bright multimode SX Phe pulsator, V125 - a β Lyr type binary on the blue horizontal branch, V129 - a blue/yellow straggler with a W UMa-like light curve, located halfway between the extreme horizontal branch and red giant branch, and V134 - an extreme horizontal branch object with P=2.33 d and a nearly sinusoidal light curve. All four of them are proper motion members of the cluster. Among nonmembers, a P=2.83 d detached eclipsing binary hosting a δ Sct type pulsator was found, and a peculiar P=0.93 d binary with ellipsoidal modulation and narrow minimum in the middle of one of the descending shoulders of the sinusoid. We also collected substantial new data for previously known variables. In particular we revise the statistics of the occurrence of the Blazhko effect in RR Lyr type variables of M22.

  7. On the Origin of Sub-subgiant Stars. II. Binary Mass Transfer, Envelope Stripping, and Magnetic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Leiner, Emily; Mathieu, Robert D. [Department of Astronomy, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI 53706 (United States); Geller, Aaron M., E-mail: leiner@astro.wisc.edu [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States)

    2017-05-10

    Sub-subgiant stars (SSGs) lie to the red of the main sequence and fainter than the red giant branch in cluster color–magnitude diagrams (CMDs), a region not easily populated by standard stellar evolution pathways. While there has been speculation on what mechanisms may create these unusual stars, no well-developed theory exists to explain their origins. Here we discuss three hypotheses of SSG formation: (1) mass transfer in a binary system, (2) stripping of a subgiant’s envelope, perhaps during a dynamical encounter, and (3) reduced luminosity due to magnetic fields that lower convective efficiency and produce large starspots. Using the stellar evolution code MESA, we develop evolutionary tracks for each of these hypotheses, and compare the expected stellar and orbital properties of these models with six known SSGs in the two open clusters M67 and NGC 6791. All three of these mechanisms can create stars or binary systems in the SSG CMD domain. We also calculate the frequency with which each of these mechanisms may create SSG systems, and find that the magnetic field hypothesis is expected to create SSGs with the highest frequency in open clusters. Mass transfer and envelope stripping have lower expected formation frequencies, but may nevertheless create occasional SSGs in open clusters. They may also be important mechanisms to create SSGs in higher mass globular clusters.

  8. Formation and Evolution of Neutron Star Binaries: Masses of Neutron Stars

    Directory of Open Access Journals (Sweden)

    Lee Chang-Hwan

    2012-02-01

    Full Text Available Neutron star (NS is one of the most interesting astrophysical compact objects for hardronic physics. It is believed that the central density of NS can reach several times the normal nuclear matter density (ρ0. Hence, the inner part of NS is the ultimate testing place for the physics of dense matter. Recently, the mass of NS in a NS-white dwarf (WD binary PSR J1614-2230 has been estimated to be 1.97 ± 0.04M๏ [1]. Since this estimate is based on the observed Shapiro delay, it can give the lower limit of the maximum NS mass and rules out many soft equations of state. On the other hand, all the well-measured NS masses in NS-NS binaries are smaller than 1.5M๏. In this work, by introducing the supercritical accretion during the binary evolution, we propose a possibility of forming higher mass NS in NS-WD binaries. In this scenario, the lifetimes of NS and WD progenitors are significantly different, and NS in NS-WD binary can accrete > 0.5M๏ after NS formation during the giant phase of the progenitor of WD. On the other hand, for the binary system with NS and heavier (> 8M๏ giants, the first-born NS will accrete more from the companion and can collapse into black hole. The only way to avoid the supercritical accretion is that the initial masses of progenitors of NS binary should be very close so that they evolve almost at the same time and don’t have time to accrete after NS formation.

  9. Gas expulsion in highly substructured embedded star clusters

    Science.gov (United States)

    Farias, J. P.; Fellhauer, M.; Smith, R.; Domínguez, R.; Dabringhausen, J.

    2018-06-01

    We investigate the response of initially substructured, young, embedded star clusters to instantaneous gas expulsion of their natal gas. We introduce primordial substructure to the stars and the gas by simplistically modelling the star formation process so as to obtain a variety of substructure distributed within our modelled star-forming regions. We show that, by measuring the virial ratio of the stars alone (disregarding the gas completely), we can estimate how much mass a star cluster will retain after gas expulsion to within 10 per cent accuracy, no matter how complex the background structure of the gas is, and we present a simple analytical recipe describing this behaviour. We show that the evolution of the star cluster while still embedded in the natal gas, and the behaviour of the gas before being expelled, is crucial process that affect the time-scale on which the cluster can evolve into a virialized spherical system. Embedded star clusters that have high levels of substructure are subvirial for longer times, enabling them to survive gas expulsion better than a virialized and spherical system. By using a more realistic treatment for the background gas than our previous studies, we find it very difficult to destroy the young clusters with instantaneous gas expulsion. We conclude that gas removal may not be the main culprit for the dissolution of young star clusters.

  10. Binary neutron star mergers: a review of Einstein's richest laboratory.

    Science.gov (United States)

    Baiotti, Luca; Rezzolla, Luciano

    2017-09-01

    In a single process, the merger of binary neutron star systems combines extreme gravity, the copious emission of gravitational waves, complex microphysics and electromagnetic processes, which can lead to astrophysical signatures observable at the largest redshifts. We review here the recent progress in understanding what could be considered Einstein's richest laboratory, highlighting in particular the numerous significant advances of the last decade. Although special attention is paid to the status of models, techniques and results for fully general-relativistic dynamical simulations, a review is also offered on the initial data and advanced simulations with approximate treatments of gravity. Finally, we review the considerable amount of work carried out on the post-merger phase, including black-hole formation, torus accretion onto the merged compact object, the connection with gamma-ray burst engines, ejected material, and its nucleosynthesis.

  11. ROTATION PERIODS OF OPEN-CLUSTER STARS .3.

    NARCIS (Netherlands)

    PROSSER, CF; SHETRONE, MD; DASGUPTA, A; BACKMAN, DE; LAAKSONEN, BD; BAKER, SW; MARSCHALL, LA; WHITNEY, BA; KUIJKEN, K; STAUFFER, [No Value

    We present the results from a photometric monitoring program of 15 open cluster stars and one weak-lined T Tauri star during late 1993/early 1994. Several slow rotators which are members of the Alpha Persei, Pleiades, and Hyades open clusters have been monitored and period estimates derived. Using

  12. Stellar Wind Retention and Expulsion in Massive Star Clusters

    Science.gov (United States)

    Naiman, J. P.; Ramirez-Ruiz, E.; Lin, D. N. C.

    2018-05-01

    Mass and energy injection throughout the lifetime of a star cluster contributes to the gas reservoir available for subsequent episodes of star formation and the feedback energy budget responsible for ejecting material from the cluster. In addition, mass processed in stellar interiors and ejected as winds has the potential to augment the abundance ratios of currently forming stars, or stars which form at a later time from a retained gas reservoir. Here we present hydrodynamical simulations that explore a wide range of cluster masses, compactnesses, metallicities and stellar population age combinations in order to determine the range of parameter space conducive to stellar wind retention or wind powered gas expulsion in star clusters. We discuss the effects of the stellar wind prescription on retention and expulsion effectiveness, using MESA stellar evolutionary models as a test bed for exploring how the amounts of wind retention/expulsion depend upon the amount of mixing between the winds from stars of different masses and ages. We conclude by summarizing some implications for gas retention and expulsion in a variety of compact (σv ≳ 20 kms-1) star clusters including young massive star clusters (105 ≲ M/M⊙ ≲ 107, age ≲ 500 Myrs), intermediate age clusters (105 ≲ M/M⊙ ≲ 107, age ≈ 1 - 4 Gyrs), and globular clusters (105 ≲ M/M⊙ ≲ 107, age ≳ 10 Gyrs).

  13. Clustered star formation and the origin of stellar masses.

    Science.gov (United States)

    Pudritz, Ralph E

    2002-01-04

    Star clusters are ubiquitous in galaxies of all types and at all stages of their evolution. We also observe them to be forming in a wide variety of environments, ranging from nearby giant molecular clouds to the supergiant molecular clouds found in starburst and merging galaxies. The typical star in our galaxy and probably in others formed as a member of a star cluster, so star formation is an intrinsically clustered and not an isolated phenomenon. The greatest challenge regarding clustered star formation is to understand why stars have a mass spectrum that appears to be universal. This review examines the observations and models that have been proposed to explain these fundamental issues in stellar formation.

  14. Low-mass X-ray binaries from black hole retaining globular clusters

    Science.gov (United States)

    Giesler, Matthew; Clausen, Drew; Ott, Christian D.

    2018-06-01

    Recent studies suggest that globular clusters (GCs) may retain a substantial population of stellar-mass black holes (BHs), in contrast to the long-held belief of a few to zero BHs. We model the population of BH low-mass X-ray binaries (BH-LMXBs), an ideal observable proxy for elusive single BHs, produced from a representative group of Milky Way GCs with variable BH populations. We simulate the formation of BH binaries in GCs through exchange interactions between binary and single stars in the company of tens to hundreds of BHs. Additionally, we consider the impact of the BH population on the rate of compact binaries undergoing gravitational wave driven mergers. The characteristics of the BH-LMXB population and binary properties are sensitive to the GCs structural parameters as well as its unobservable BH population. We find that GCs retaining ˜1000 BHs produce a galactic population of ˜150 ejected BH-LMXBs, whereas GCs retaining only ˜20 BHs produce zero ejected BH-LMXBs. Moreover, we explore the possibility that some of the presently known BH-LMXBs might have originated in GCs and identify five candidate systems.

  15. Low-mass X-ray binaries from black-hole retaining globular clusters

    Science.gov (United States)

    Giesler, Matthew; Clausen, Drew; Ott, Christian D.

    2018-03-01

    Recent studies suggest that globular clusters (GCs) may retain a substantial population of stellar-mass black holes (BHs), in contrast to the long-held belief of a few to zero BHs. We model the population of BH low-mass X-ray binaries (BH-LMXBs), an ideal observable proxy for elusive single BHs, produced from a representative group of Milky Way GCs with variable BH populations. We simulate the formation of BH-binaries in GCs through exchange interactions between binary and single stars in the company of tens to hundreds of BHs. Additionally, we consider the impact of the BH population on the rate of compact binaries undergoing gravitational wave driven mergers. The characteristics of the BH-LMXB population and binary properties are sensitive to the GCs structural parameters as well as its unobservable BH population. We find that GCs retaining ˜1000 BHs produce a galactic population of ˜150 ejected BH-LMXBs whereas GCs retaining only ˜20 BHs produce zero ejected BH-LMXBs. Moreover, we explore the possibility that some of the presently known BH-LMXBs might have originated in GCs and identify five candidate systems.

  16. SELF-REGULATED SHOCKS IN MASSIVE STAR BINARY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Parkin, E. R.; Sim, S. A., E-mail: parkin@mso.anu.edu.au, E-mail: s.sim@qub.ac.uk [Research School of Astronomy and Astrophysics, Australian National University, ACT 2611 (Australia)

    2013-04-20

    In an early-type, massive star binary system, X-ray bright shocks result from the powerful collision of stellar winds driven by radiation pressure on spectral line transitions. We examine the influence of the X-rays from the wind-wind collision shocks on the radiative driving of the stellar winds using steady-state models that include a parameterized line force with X-ray ionization dependence. Our primary result is that X-ray radiation from the shocks inhibits wind acceleration and can lead to a lower pre-shock velocity, and a correspondingly lower shocked plasma temperature, yet the intrinsic X-ray luminosity of the shocks, L{sub X}, remains largely unaltered, with the exception of a modest increase at small binary separations. Due to the feedback loop between the ionizing X-rays from the shocks and the wind driving, we term this scenario as self-regulated shocks. This effect is found to greatly increase the range of binary separations at which a wind-photosphere collision is likely to occur in systems where the momenta of the two winds are significantly different. Furthermore, the excessive levels of X-ray ionization close to the shocks completely suppress the line force, and we suggest that this may render radiative braking less effective. Comparisons of model results against observations reveal reasonable agreement in terms of log (L{sub X}/L{sub bol}). The inclusion of self-regulated shocks improves the match for kT values in roughly equal wind momenta systems, but there is a systematic offset for systems with unequal wind momenta (if considered to be a wind-photosphere collision).

  17. SELF-REGULATED SHOCKS IN MASSIVE STAR BINARY SYSTEMS

    International Nuclear Information System (INIS)

    Parkin, E. R.; Sim, S. A.

    2013-01-01

    In an early-type, massive star binary system, X-ray bright shocks result from the powerful collision of stellar winds driven by radiation pressure on spectral line transitions. We examine the influence of the X-rays from the wind-wind collision shocks on the radiative driving of the stellar winds using steady-state models that include a parameterized line force with X-ray ionization dependence. Our primary result is that X-ray radiation from the shocks inhibits wind acceleration and can lead to a lower pre-shock velocity, and a correspondingly lower shocked plasma temperature, yet the intrinsic X-ray luminosity of the shocks, L X , remains largely unaltered, with the exception of a modest increase at small binary separations. Due to the feedback loop between the ionizing X-rays from the shocks and the wind driving, we term this scenario as self-regulated shocks. This effect is found to greatly increase the range of binary separations at which a wind-photosphere collision is likely to occur in systems where the momenta of the two winds are significantly different. Furthermore, the excessive levels of X-ray ionization close to the shocks completely suppress the line force, and we suggest that this may render radiative braking less effective. Comparisons of model results against observations reveal reasonable agreement in terms of log (L X /L bol ). The inclusion of self-regulated shocks improves the match for kT values in roughly equal wind momenta systems, but there is a systematic offset for systems with unequal wind momenta (if considered to be a wind-photosphere collision).

  18. Neutron-Star Radius from a Population of Binary Neutron Star Mergers.

    Science.gov (United States)

    Bose, Sukanta; Chakravarti, Kabir; Rezzolla, Luciano; Sathyaprakash, B S; Takami, Kentaro

    2018-01-19

    We show how gravitational-wave observations with advanced detectors of tens to several tens of neutron-star binaries can measure the neutron-star radius with an accuracy of several to a few percent, for mass and spatial distributions that are realistic, and with none of the sources located within 100 Mpc. We achieve such an accuracy by combining measurements of the total mass from the inspiral phase with those of the compactness from the postmerger oscillation frequencies. For estimating the measurement errors of these frequencies, we utilize analytical fits to postmerger numerical relativity waveforms in the time domain, obtained here for the first time, for four nuclear-physics equations of state and a couple of values for the mass. We further exploit quasiuniversal relations to derive errors in compactness from those frequencies. Measuring the average radius to well within 10% is possible for a sample of 100 binaries distributed uniformly in volume between 100 and 300 Mpc, so long as the equation of state is not too soft or the binaries are not too heavy. We also give error estimates for the Einstein Telescope.

  19. Cannibal Stars Cause Giant Explosions in Fornax Cluster Galaxy

    Science.gov (United States)

    2000-07-01

    The VLT Observes Most Remote Novae Ever Seen About 70 million years ago, when dinosaurs were still walking on the Earth, a series of violent thermo-nuclear explosions took place in a distant galaxy. After a very long travel across vast reaches of virtually empty space (70 million light-years, or ~ 7 x 10 20 km), dim light carrying the message about these events has finally reached us. It was recorded by the ESO Very Large Telescope (VLT) at the Paranal Observatory (Chile) during an observing programme by a group of Italian astronomers [1]. The subsequent analysis has shown that the observers witnessed the most distant nova outbursts ever seen . They were caused by "stellar cannibalism" in binary systems in which one relatively cool star loses matter to its smaller and hotter companion. An instability results that leads to the ignition of a "hydrogen bomb" on the surface of the receiving star. The "Stella Nova" Phenomenon A stellar outburst of the type now observed with the VLT is referred to as a "Stella Nova" ("new star" in Latin), or just "Nova" . Novae caused by explosions in binary stars in our home galaxy, the Milky Way system, are relatively frequent and about every second or third year one of them is bright enough to be easily visible with the naked eye. For our ancestors, who had no means to see the faint binary star before the explosion, it looked as if a new star had been born in the sky, hence the name. The most common nova explosion occurs in a binary stellar system in which a white dwarf (a very dense and hot, compact star with a mass comparable to that of the Sun and a size like the Earth) accretes hydrogen from a cooler and larger red dwarf star [2]. As the hydrogen collects on the surface of the white dwarf star, it becomes progressively hotter until a thermonuclear explosion is ignited at the bottom of the collected gas. A huge amount of energy is released and causes a million-fold increase in the brightness of the binary system within a few hours

  20. arXiv Gravitational Wave Signatures of Highly Compact Boson Star Binaries

    CERN Document Server

    Palenzuela, Carlos; Bezares, Miguel; Cardoso, Vitor; Lehner, Luis; Liebling, Steven

    2017-11-30

    Solitonic boson stars are stable objects made of a complex scalar field with a compactness that can reach values comparable to that of neutron stars. A recent study of the collision of identical boson stars produced only nonrotating boson stars or black holes, suggesting that rotating boson stars may not form from binary mergers. Here we extend this study to include an analysis of the gravitational waves radiated during the coalescence of such a binary, which is crucial to distinguish these events from other binaries with LIGO and Virgo observations. Our studies reveal that the remnant’s gravitational wave signature is mainly governed by its fundamental frequency as it settles down to a nonrotating boson star, emitting significant gravitational radiation during this post-merger state. We calculate how the waveforms and their post-merger frequencies depend on the compactness of the initial boson stars and estimate analytically the amount of energy radiated after the merger.

  1. WIYN Open Cluster Study: Binary Orbits and Tidal Circularization in NGC 6819

    Science.gov (United States)

    Morscher, Meagan B.; Mathieu, R. D.; Kaeppler, S.; Hole, K. T.; Meibom, S.

    2006-12-01

    We are conducting a comprehensive stellar radial-velocity survey in NGC 6819, a rich, intermediate age ( 2.4 Gyr) open cluster with [Fe/H] -0.05. As of October 2006, we have obtained 7065 radial-velocity measurements of 1409 stars using the WIYN Hydra Multi-Object Spectrograph, with typical velocity measurement precisions of 0.4 km/s. Using an E/I criterion of 3, we have identified 282 velocity variables. In the past year we have expanded the number of final orbital solutions by 45 to a total of more than 80 solutions. In coeval stellar populations, circular binaries tend to have the shortest orbital periods, while longer period binaries show a distribution of non-zero eccentricities. The circularization of the shortest period orbits is the result of an exchange of stellar and orbital angular momentum due to tidal interactions. We defined a population’s tidal circularization period as the longest orbital period at which a binary of typical initial eccentricity has become circularized (e.g., has evolved to an eccentricity e = 0.01) over the lifetime of the cluster (Meibom & Mathieu, 2005, ApJ, 620, 970). We are studying the trend of increasing tidal circularization periods with population age. Preliminary results in NGC 6819 indicate a tidal circularization period of 7.5 days, which is consistent with this overall trend. We will recalculate the tidal circularization period in order to include the latest sample of orbital solutions. This comprehensive survey also allows us to investigate the relative spatial distributions of spectroscopic binaries and other constant-velocity cluster members of similar mass. We find the spectroscopic binaries to be more centrally concentrated at a statistically significant level, which we attribute to energy equipartition processes. MM was supported by REU NSF grant AST-0453442. RDM, SK, KTH, and SM were supported by NSF grant AST-0406615.

  2. A Young Star Cluster in the Leo a Galaxy

    Directory of Open Access Journals (Sweden)

    Stonkutė R.

    2015-09-01

    Full Text Available We report a serendipitous discovery of a star cluster in the dwarf irregular galaxy Leo A. Young age (~28 Myr and low mass (~510 M⊙ estimates are based on the isochrone fit assuming a metallicity derived for HII regions (Z = 0.0007. The color-magnitude diagrams of the stars, located in and around the cluster area, and the results of aperture photometry of the cluster itself are presented.

  3. Observations of CO and OI in stars in globular clusters

    International Nuclear Information System (INIS)

    Wallerstein, G.; Pilachowski, C.

    1978-01-01

    Since studies at classification dispersion and early analyses of high dispersion spectra have yielded little quantitative data on the abundances of C, N, and O in globular clusters the authors have been endeavoring to establish their abundances in stars in several clusters. The problem has been approached in two ways, by observing the 2.3 micron CO bands and the 6300 A [OI] line in individual stars in globular clusters. (Auth.)

  4. COCOA Code for Creating Mock Observations of Star Cluster Models

    OpenAIRE

    Askar, Abbas; Giersz, Mirek; Pych, Wojciech; Dalessandro, Emanuele

    2017-01-01

    We introduce and present results from the COCOA (Cluster simulatiOn Comparison with ObservAtions) code that has been developed to create idealized mock photometric observations using results from numerical simulations of star cluster evolution. COCOA is able to present the output of realistic numerical simulations of star clusters carried out using Monte Carlo or \\textit{N}-body codes in a way that is useful for direct comparison with photometric observations. In this paper, we describe the C...

  5. Binary star formation: gravitational fragmentation followed by capture

    Science.gov (United States)

    Turner, J. A.; Chapman, S. J.; Bhattal, A. S.; Disney, M. J.; Pongracic, H.; Whitworth, A. P.

    1995-11-01

    We describe in detail one of a sequence of numerical simulations which realize the mechanism of binary star formation proposed by Pringle. In these simulations, collisions between stable molecular cloud clumps produce dense shocked layers, which cool radiatively and fragment gravitationally. The resulting fragments then condense to form protostellar discs, which at the same time fall together and, as a result of tidal and viscous interactions, capture one another to form binary systems. We refer to this mechanism as shock-induced gravitational fragmentation followed by capture, or SGF+C. When the initial clumps are sufficiently massive and/or the Mach number of the collision is sufficiently high, a large number (>~10) of protostellar discs is produced; under these circumstances, the layer fragments first into filaments, and then into beads along the filaments. The marriage of two protostellar discs in this way is `arranged' in the sense that the protostellar discs involved do not form independently. First, they both condense out of the same layer, and probably also out of the same filament within this layer; this significantly increases the likelihood of them interacting dynamically. Secondly, there tends to be alignment between the orbital and spin angular momenta of the interacting protostellar discs, reflecting the fact that these angular momenta derive mainly from the systematic global angular momentum of the off-axis collision which produced the layer; this alignment of the various angular momenta pre-disposes the discs to very dissipative interactions, thereby increasing the probability of producing a strongly bound, long-lasting union. It is a marriage because the binary orbit stabilizes itself rather quickly. Any subsequent orbit evolution, as the protostellar discs `mop up' the surrounding residual gas and interact tidally, tends to harden the orbit. Therefore, as long as a third body does not intervene, the union is binding. Even if a third body does

  6. SEARCH FOR RED DWARF STARS IN GLOBULAR CLUSTER NGC 6397

    Science.gov (United States)

    2002-01-01

    Left A NASA Hubble Space Telescope image of a small region (1.4 light-years across) in the globular star cluster NGC 6397. Simulated stars (diamonds) have been added to this view of the same region of the cluster to illustrate what astronomers would have expected to see if faint red dwarf stars were abundant in the Milky Way Galaxy. The field would then contain 500 stars, according to theoretical calculations. Right The unmodified HST image shows far fewer stars than would be expected, according to popular theories of star formation. HST resolves about 200 stars. The stellar density is so low that HST can literally see right through the cluster and resolve far more distant background galaxies. From this observation, scientists have identified the surprising cutoff point below which nature apparently doesn't make many stars smaller that 1/5 the mass of our Sun. These HST findings provide new insights into star formation in our Galaxy. Technical detail:The globular cluster NGC 6397, one of the nearest and densest agglomerations of stars, is located 7,200 light-years away in the southern constellation Ara. This visible-light picture was taken on March 3, 1994 with the Wide Field Planetary Camera 2, as part the HST parallel observing program. Credit: F. Paresce, ST ScI and ESA and NASA

  7. Blue stragglers in open clusters - a test of the binary hypothesis

    International Nuclear Information System (INIS)

    Manteiga, M.; Martinez, R.C.; Beckman, J.E.; Pickles, A.J.

    1987-01-01

    A search for binaries among 17 blue stragglers in five galactic clusters, NGC 7789, 6633, 6819, 6939, and M 67, has been performed using measurements of radial velocity variations. The spectra were obtained with the Intermediate Dispersion Spectrograph attached to the f/15 Cassegrain focus of the 2.5 m Isaac Newton Telescope at the Spanish Observatory of the Roque de los Muchachos. The wavelength coverage was 200 A, centered at 8510 A with a scale of 12.4 km/sec per pixel. All radial velocity determinations were made using cross-correlation techniques. A velocity resolution of about 3 km/sec/pixel was obtained for the standard radial velocity stars and the brighter program stars. For three of the blue stragglers variations in radial velocity greater than 30 km/sec are reported. 10 references

  8. Radial-velocity measures and the existence of astrophysical binaries in late-type dwarf stars

    Science.gov (United States)

    Bopp, B. W.; Meredith, R.

    1986-01-01

    Radial velocities with errors of 1-2 km/s are presented based on CCD scans obtained with the Kitt Peak National Observatory coude feed telescope between 1982 and 1985 of 48 dK-M stars that lack Balmer emission. Comparison with Gliese's (1969) values shows only two stars to be spectroscopic binary candidates with small velocity amplitudes. No evidence for any short period (less than 10 days) binaries is found, supporting the conclusions of Young et al. (1986) that there are no astrophysical binaries among these chromosherically inactive dM stars.

  9. Neutron star natal kicks and the long-term survival of star clusters

    Science.gov (United States)

    Contenta, Filippo; Varri, Anna Lisa; Heggie, Douglas C.

    2015-04-01

    We investigate the dynamical evolution of a star cluster in an external tidal field by using N-body simulations, with focus on the effects of the presence or absence of neutron star natal velocity kicks. We show that, even if neutron stars typically represent less than 2 per cent of the total bound mass of a star cluster, their primordial kinematic properties may affect the lifetime of the system by up to almost a factor of 4. We interpret this result in the light of two known modes of star cluster dissolution, dominated by either early stellar evolution mass-loss or two-body relaxation. The competition between these effects shapes the mass-loss profile of star clusters, which may either dissolve abruptly (`jumping'), in the pre-core-collapse phase, or gradually (`skiing'), after having reached core collapse.

  10. Extreme magnification of an individual star at redshift 1.5 by a galaxy-cluster lens

    Science.gov (United States)

    Kelly, Patrick L.; Diego, Jose M.; Rodney, Steven; Kaiser, Nick; Broadhurst, Tom; Zitrin, Adi; Treu, Tommaso; Pérez-González, Pablo G.; Morishita, Takahiro; Jauzac, Mathilde; Selsing, Jonatan; Oguri, Masamune; Pueyo, Laurent; Ross, Timothy W.; Filippenko, Alexei V.; Smith, Nathan; Hjorth, Jens; Cenko, S. Bradley; Wang, Xin; Howell, D. Andrew; Richard, Johan; Frye, Brenda L.; Jha, Saurabh W.; Foley, Ryan J.; Norman, Colin; Bradac, Marusa; Zheng, Weikang; Brammer, Gabriel; Benito, Alberto Molino; Cava, Antonio; Christensen, Lise; de Mink, Selma E.; Graur, Or; Grillo, Claudio; Kawamata, Ryota; Kneib, Jean-Paul; Matheson, Thomas; McCully, Curtis; Nonino, Mario; Pérez-Fournon, Ismael; Riess, Adam G.; Rosati, Piero; Schmidt, Kasper Borello; Sharon, Keren; Weiner, Benjamin J.

    2018-04-01

    Galaxy-cluster gravitational lenses can magnify background galaxies by a total factor of up to 50. Here we report an image of an individual star at redshift z = 1.49 (dubbed MACS J1149 Lensed Star 1) magnified by more than ×2,000. A separate image, detected briefly 0.26″ from Lensed Star 1, is probably a counterimage of the first star demagnified for multiple years by an object of ≳3 solar masses in the cluster. For reasonable assumptions about the lensing system, microlensing fluctuations in the stars' light curves can yield evidence about the mass function of intracluster stars and compact objects, including binary fractions and specific stellar evolution and supernova models. Dark-matter subhaloes or massive compact objects may help to account for the two images' long-term brightness ratio.

  11. Kepler Eclipsing Binary Stars. I. Catalog and Principal Characterization of 1879 Eclipsing Binaries in the First Data Release

    Science.gov (United States)

    Prša, Andrej; Batalha, Natalie; Slawson, Robert W.; Doyle, Laurance R.; Welsh, William F.; Orosz, Jerome A.; Seager, Sara; Rucker, Michael; Mjaseth, Kimberly; Engle, Scott G.; Conroy, Kyle; Jenkins, Jon; Caldwell, Douglas; Koch, David; Borucki, William

    2011-03-01

    The Kepler space mission is devoted to finding Earth-size planets orbiting other stars in their habitable zones. Its large, 105 deg2 field of view features over 156,000 stars that are observed continuously to detect and characterize planet transits. Yet, this high-precision instrument holds great promise for other types of objects as well. Here we present a comprehensive catalog of eclipsing binary stars observed by Kepler in the first 44 days of operation, the data being publicly available through MAST as of 2010 June 15. The catalog contains 1879 unique objects. For each object, we provide its Kepler ID (KID), ephemeris (BJD0, P 0), morphology type, physical parameters (T eff, log g, E(B - V)), the estimate of third light contamination (crowding), and principal parameters (T 2/T 1, q, fillout factor, and sin i for overcontacts, and T 2/T 1, (R 1 + R 2)/a, esin ω, ecos ω, and sin i for detached binaries). We present statistics based on the determined periods and measure the average occurrence rate of eclipsing binaries to be ~1.2% across the Kepler field. We further discuss the distribution of binaries as a function of galactic latitude and thoroughly explain the application of artificial intelligence to obtain principal parameters in a matter of seconds for the whole sample. The catalog was envisioned to serve as a bridge between the now public Kepler data and the scientific community interested in eclipsing binary stars.

  12. KEPLER ECLIPSING BINARY STARS. I. CATALOG AND PRINCIPAL CHARACTERIZATION OF 1879 ECLIPSING BINARIES IN THE FIRST DATA RELEASE

    International Nuclear Information System (INIS)

    Prsa, Andrej; Engle, Scott G.; Conroy, Kyle; Batalha, Natalie; Rucker, Michael; Mjaseth, Kimberly; Slawson, Robert W.; Doyle, Laurance R.; Welsh, William F.; Orosz, Jerome A.; Seager, Sara; Jenkins, Jon; Caldwell, Douglas; Koch, David; Borucki, William

    2011-01-01

    The Kepler space mission is devoted to finding Earth-size planets orbiting other stars in their habitable zones. Its large, 105 deg 2 field of view features over 156,000 stars that are observed continuously to detect and characterize planet transits. Yet, this high-precision instrument holds great promise for other types of objects as well. Here we present a comprehensive catalog of eclipsing binary stars observed by Kepler in the first 44 days of operation, the data being publicly available through MAST as of 2010 June 15. The catalog contains 1879 unique objects. For each object, we provide its Kepler ID (KID), ephemeris (BJD 0 , P 0 ), morphology type, physical parameters (T eff , log g, E(B - V)), the estimate of third light contamination (crowding), and principal parameters (T 2 /T 1 , q, fillout factor, and sin i for overcontacts, and T 2 /T 1 , (R 1 + R 2 )/a, esin ω, ecos ω, and sin i for detached binaries). We present statistics based on the determined periods and measure the average occurrence rate of eclipsing binaries to be ∼1.2% across the Kepler field. We further discuss the distribution of binaries as a function of galactic latitude and thoroughly explain the application of artificial intelligence to obtain principal parameters in a matter of seconds for the whole sample. The catalog was envisioned to serve as a bridge between the now public Kepler data and the scientific community interested in eclipsing binary stars.

  13. Demonstrating the Likely Neutron Star Nature of Five M31 Globular Cluster Sources with Swift-NuSTAR Spectroscopy

    Science.gov (United States)

    Maccarone, Thomas J.; Yukita, Mihoko; Hornschemeier, Ann; Lehmer, Bret D.; Antoniou, Vallia; Ptak, Andrew; Wik, Daniel R.; Zezas, Andreas; Boyd, Padi; Kennea, Jamie; hide

    2016-01-01

    We present the results of a joint Swift-NuSTAR spectroscopy campaign on M31. We focus on the five brightest globular cluster X-ray sources in our fields. Two of these had previously been argued to be black hole candidates on the basis of apparent hard-state spectra at luminosities above those for which neutron stars are in hard states. We show that these two sources are likely to be Z-sources (i.e. low magnetic field neutron stars accreting near their Eddington limits), or perhaps bright atoll sources (low magnetic field neutron stars which are just a bit fainter than this level) on the basis of simultaneous Swift and NuSTAR spectra which cover a broader range of energies. These new observations reveal spectral curvature above 6-8 keV that would be hard to detect without the broader energy coverage the NuSTAR data provide relative to Chandra and XMM-Newton. We show that the other three sources are also likely to be bright neutron star X-ray binaries, rather than black hole X-ray binaries. We discuss why it should already have been realized that it was unlikely that these objects were black holes on the basis of their being persistent sources, and we re-examine past work which suggested that tidal capture products would be persistently bright X-ray emitters. We discuss how this problem is likely due to neglecting disc winds in older work that predict which systems will be persistent and which will be transient.

  14. Numerical simulation of binary black hole and neutron star mergers

    Energy Technology Data Exchange (ETDEWEB)

    Kastaun, W.; Rezzolla, L. [Albert Einstein Institut, Potsdam-Golm (Germany)

    2016-11-01

    One of the last predictions of general relativity that still awaits direct observational confirmation is the existence of gravitational waves. Those fluctuations of the geometry of space and time are expected to travel with the speed of light and are emitted by any accelerating mass. Only the most violent events in the universe, such as mergers of two black holes or neutron stars, produce gravitational waves strong enough to be measured. Even those waves are extremely weak when arriving at Earth, and their detection is a formidable technological challenge. In recent years sufficiently sensitive detectors became operational, such as GEO600, Virgo, and LIGO. They are expected to observe around 40 events per year. To interpret the observational data, theoretical modeling of the sources is a necessity, and requires numerical simulations of the equations of general relativity and relativistic hydrodynamics. Such computations can only be carried out on large scale supercomputers, given that many scenarios need to be simulated, each of which typically occupies hundreds of CPU cores for a week. Our main goal is to predict the gravitational wave signal from the merger of two compact objects. Comparison with future observations will provide important insights into the fundamental forces of nature in regimes that are impossible to recreate in laboratory experiments. The waveforms from binary black hole mergers would allow one to test the correctness of general relativity in previously inaccessible regimes. The signal from binary neutron star mergers will provide input for nuclear physics, because the signal depends strongly on the unknown properties of matter at the ultra high densities inside neutron stars, which cannot be observed in any other astrophysical scenario. Besides mergers, we also want to improve the theoretical models of close encounters between black holes. A gravitational wave detector with even higher sensitivity, the Einstein Telescope, is already in the

  15. Evolution of massive close binaries and formation of neutron stars and black holes

    International Nuclear Information System (INIS)

    Massevitch, A.G.; Tutukov, A.V.; Yungelson, L.R.

    1976-01-01

    Main results of computations of evolution for massive close binaries (10 M(Sun)+9.4 M(Sun), 16 M(Sun)+15 M(Sun), 32 M(Sun)+30 M(Sun), 64 M(Sun)+60 M(Sun)) up to oxygen exhaustion in the core are described. Mass exchange starting in core hydrogen, shell hydrogen and core helium burning stages was studied. Computations were performed assuming both the Ledoux and Schwarzschild stability criteria for semiconvection. The influence of UFI-neutrino emission on evolution of close binaries was investigated. The results obtained allow to outline the following evolutionary chain: two detached Main-Sequence stars - mass exchange - Wolf-Rayet star or blue supergiant plus main sequence star - explosion of the initially more massive star appearing as a supernova event - collapsed or neutron star plus Main-Sequence star, that may be observed as a 'runaway star' - mass exchange leading to X-rays emission - collapsed or neutron star plus WR-star or blue supergiant - second explosion of supernova that preferentially disrupts the system and gives birth to two single high spatial velocity pulsars. Numerical estimates concerning the number and properties of WR-stars, pulsars and X-ray sources are presented. The results are in favour of the existence of UFI-neutrino and of the Ledoux criterion for describing semiconvection. Properties of several well-known X-ray sources and the binary pulsar are discussed on base of evolutionary chain of close binaries. (Auth.)

  16. Simulating the Birth of Massive Star Clusters: Is Destruction Inevitable?

    Science.gov (United States)

    Rosen, Anna

    2013-10-01

    Very early in its operation, the Hubble Space Telescope {HST} opened an entirely new frontier: study of the demographics and properties of star clusters far beyond the Milky Way. However, interpretation of HST's observations has proven difficult, and has led to the development of two conflicting models. One view is that most massive star clusters are disrupted during their infancy by feedback from newly formed stars {i.e., "infant mortality"}, independent of cluster mass or environment. The other model is that most star clusters survive their infancy and are disrupted later by mass-dependent dynamical processes. Since observations at present have failed to discriminate between these views, we propose a theoretical investigation to provide new insight. We will perform radiation-hydrodynamic simulations of the formation of massive star clusters, including for the first time a realistic treatment of the most important stellar feedback processes. These simulations will elucidate the physics of stellar feedback, and allow us to determine whether cluster disruption is mass-dependent or -independent. We will also use our simulations to search for observational diagnostics that can distinguish bound from unbound clusters, and to predict how cluster disruption affects the cluster luminosity function in a variety of galactic environments.

  17. Induced star formation and colors of binary and interacting galaxies

    International Nuclear Information System (INIS)

    Smirnov, M.A.; Komberg, B.V.; Moskovskij Gosudarstvennyj Univ.

    1980-01-01

    The colours of 208 galaxies in pairs and groups are compared (on colour-colour diagram) with those of single galaxies of the same morphological type. Different colours of galaxies in pairs and groups can be explained if one assumes that in some of them the star formation is slowed down, while in others it is speeded up. The latter is the most conspicuous in E, SO, and Ir2 galaxies when they are accompanied by brighter spirals. The relation of abundance rate to the rate of star formation in galaxies and to the activity level of their nuclei is discussed. This relation is particularly conspicuous in the galaxies of early morphological types (E, SO, Sa) and in systems of the type Ir2 where the relative abundance of gas is significantly above the normal. It is noted that such galaxies as well as galaxies with UV excess, Seyfertlike objects, emission-line galaxies and quasars - avoid regions occupied with rich clusters and frequently occur in pairs and small groups

  18. Multi-messenger Observations of a Binary Neutron Star Merger

    International Nuclear Information System (INIS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.

    2017-01-01

    Here, on 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∼1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg 2 at a luminosity distance of 40 −8 +8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 M ⊙ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∼40 Mpc) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∼9 and ∼16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.

  19. Gravitational Waves from Binary Black Hole Mergers inside Stars.

    Science.gov (United States)

    Fedrow, Joseph M; Ott, Christian D; Sperhake, Ulrich; Blackman, Jonathan; Haas, Roland; Reisswig, Christian; De Felice, Antonio

    2017-10-27

    We present results from a controlled numerical experiment investigating the effect of stellar density gas on the coalescence of binary black holes (BBHs) and the resulting gravitational waves (GWs). This investigation is motivated by the proposed stellar core fragmentation scenario for BBH formation and the associated possibility of an electromagnetic counterpart to a BBH GW event. We employ full numerical relativity coupled with general-relativistic hydrodynamics and set up a 30+30  M_{⊙} BBH (motivated by GW150914) inside gas with realistic stellar densities. Our results show that at densities ρ≳10^{6}-10^{7}  g cm^{-3} dynamical friction between the BHs and gas changes the coalescence dynamics and the GW signal in an unmistakable way. We show that for GW150914, LIGO observations appear to rule out BBH coalescence inside stellar gas of ρ≳10^{7}  g cm^{-3}. Typical densities in the collapsing cores of massive stars are in excess of this density. This excludes the fragmentation scenario for the formation of GW150914.

  20. Spectrophotometric study of the AN And eclipsing binary star

    International Nuclear Information System (INIS)

    Rachkovskaya, T.M.

    1979-01-01

    The spectrum of eclipsing binary AN And has been studied using spectrograms with dispersion of 6-15 A/mm. The experiments have been carried out in 1967 and 1976 in the Crimea astrophysical laboratory. The equivalent widths of hydrogen and metallic lines were found to be 1.3-1.5 times stronger on the spectrograms in 1976 in comparison with those in 1967. The calcium spectral type Sp(KCa2)=A9, F0 was found to be earlier than the metallic one Sp(M)=F2-F5. The rotation velocity supposes the synchronism of axial and orbital rotation. Enchancement of titanium, strontiUm, conium and a deficit of magnesium and chromium is observed in the atmosphere of the star as compared with the Sun. The turbulence velocity is equal to 9.4 km/s. The velocity of the system centre-of-mass is equal to (-5.6 km/s) and the half of the amplitude of the main component beam velocity is equal to 72 km/s

  1. Speckle Imaging of Binary Stars with Large-Format CCDs

    Science.gov (United States)

    Horch, E.; Ninkov, Z.; Slawson, R. W.; van Altena, W. F.; Meyer, R. D.; Girard, T. M.

    1997-12-01

    In the past, bare (unintensified) CCDs have not been widely used in speckle imaging for two main reasons: 1) the readout rate of most scientific-grade CCDs is too slow to be able to observe at the high frame rates necessary to capture speckle patterns efficiently, and 2) the read noise of CCDs limits the detectability of fainter objects where it becomes difficult to distinguish between speckles and noise peaks in the image. These facts have led to the current supremacy of intensified imaging systems (such as intensified-CCDs) in this field, which can typically be read out at video rates or faster. We have developed a new approach that uses a large format CCD not only to detect the incident photons but also to record many speckle patterns before the chip is read out. This approach effectively uses the large area of the CCD as a physical ``memory cache'' of previous speckle data frames. The method is described, and binary star observations from the University of Toronto Southern Observatory 60-cm telescope and the Wisconsin-Indiana-Yale-NOAO (WIYN) 3.5-m telescope are presented. Plans for future observing and instrumentation improvements are also outlined.

  2. A PHOTOMETRIC ANALYSIS OF SEVENTEEN BINARY STARS USING SPECKLE IMAGING

    International Nuclear Information System (INIS)

    Davidson, James W.; Baptista, Brian J.; Horch, Elliott P.; Franz, Otto; Van Altena, William F.

    2009-01-01

    Magnitude differences obtained from speckle imaging are used in combination with other data in the literature to place the components of binary star systems on the H-R diagram. Isochrones are compared with the positions obtained, and a best-fit isochrone is determined for each system, yielding both masses of the components as well as an age range consistent with the system parameters. Seventeen systems are studied, 12 of which were observed with the 0.6 m Lowell-Tololo Telescope at Cerro Tololo Inter-American Observatory and six of which were observed with the WIYN 3.5 m Telescope (The WIYN Observatory is a joint facility of the University of Wisconsin-Madison, Indiana University, Yale University, and the National Optical Astronomy Observatories) at Kitt Peak. One system was observed from both sites. In comparing photometric masses to mass information from orbit determinations, we find that the photometric masses agree very well with the dynamical masses, and are generally more precise. For three systems, no dynamical masses exist at present, and therefore the photometrically determined values are the first mass estimates derived for these components.

  3. Accuracy and efficiency in the binary star reflection effect

    International Nuclear Information System (INIS)

    Wilson, R.E.

    1990-01-01

    The geometric and irradiation heating problems for the binary star reflection effect theory are developed in terms of equipotential level surfaces and are sufficiently general so as to include eccentric orbits and nonsynchronous (even centrifugally limited) rotation and to treat multiple reflection. The requisite physics, mathematics, and logic are then presented and the computations are organized so that a given quantity is computed only as often as necessary, emphasizing the distinction between local surface quantities and aspect-related quantities. The local geometric, bolometric, and wavelength-specific quantities are grouped for storage according to how often they need to be recomputed. Some tests of a computer program based on this reflection model are given in the form of graphs in which program results are compared to a special exact case, and with results from an earlier program. The new program gives intuitively reasonable output for all tests, and the tests give an idea of how accurate the old program is, adopting the detailed reflection computations of the new program as a standard for comparison. A table is given which shows the convergence of the multiple reflection computations to a constant distribution of surface effective temperature. 11 refs

  4. Discovery of a Highly Relativistic Double Neutron Star Binary

    Science.gov (United States)

    Chatterjee, Shami; Stovall, Kevin; PALFA Collaboration, Paul Demorest, Nihan Pol

    2018-01-01

    We report the discovery of a double neutron star (DNS) binary system, PSR J1946+2052, in Arecibo L-Band Feed Array Pulsar Survey (PALFA) observations. PSR J1946+2052 is a 17-ms pulsar in a 1.88-hour, eccentric (e = 0.06) orbit with a 1.2 solar mass companion. We have localized the pulsar to a precision of 0.09 arcseconds using a new phase binning mode at the Jansky Very Large Array. The improved position has enabled a measurement of the pulsar spin period derivative of 9E-19 s/s; the low inferred magnetic field strength at the surface of 4E+9 Gauss indicates that the pulsar has been recycled. Among all known DNS systems, PSR J1946+2052 has the shortest orbital period, and currently radiates ~13% of a solar luminosity in gravitational wave power. Its estimated time to merger is only 45.5 MYr, the shortest known, and at that time it will display the largest spin effects of any such system discovered to date. We have also measured the advance of periastron passage for this system, 25.6 +/- 0.3 degrees per year, resulting in a total system mass measurement of 2.50 +/- 0.04 solar masses.

  5. Cyanogen strengths of globular cluster post-main-sequence stars

    International Nuclear Information System (INIS)

    Hesser, J.E.; Hartwick, F.D.A.; McClure, R.D.

    1976-01-01

    CN strengths in the peculiar clusters ω Cen and M22 and the metal-rich clusters 47 Tuc, M71, and NGC 6352 are found to vary markedly from star to star. The strong variations in CN strength found earlier for ω Cen by Norris and Bessell and by Dickens and Bell are shown to extend to fainter stars, although expected correlations of CN strength with position in the color-magnitude (C-M) diagram are less evident in our sample. Several CN and metal-strong stars were also observed in M22. We conclude that CN, once it appears in globular clusters, can vary much more than it does in equivalent Population I samples, a result we briefly examine in light of current understanding regarding physical processes in the stars themselves and of models of galactic chemical evolution

  6. Star formation properties of galaxy cluster A1767

    International Nuclear Information System (INIS)

    Yan, Peng-Fei; Li, Feng; Yuan, Qi-Rong

    2015-01-01

    Abell 1767 is a dynamically relaxed, cD cluster of galaxies with a redshift of 0.0703. Among 250 spectroscopically confirmed member galaxies within a projected radius of 2.5r 200 , 243 galaxies (∼ 97%) are spectroscopically covered by the Sloan Digital Sky Survey. Based on this homogeneous spectral sample, the stellar evolutionary synthesis code STARLIGHT is applied to investigate the stellar populations and star formation histories of galaxies in this cluster. The star formation properties of galaxies, such as mean stellar ages, metallicities, stellar masses, and star formation rates, are presented as functions of local galaxy density. A strong environmental effect is found such that massive galaxies in the high-density core region of the cluster tend to have higher metallicities, older mean stellar ages, and lower specific star formation rates (SSFRs), and their recent star formation activities have been remarkably suppressed. In addition, the correlations of the metallicity and SSFR with stellar mass are confirmed. (paper)

  7. Are superluminous supernovae and long GRBs the products of dynamical processes in young dense star clusters?

    Energy Technology Data Exchange (ETDEWEB)

    Van den Heuvel, E. P. J. [Astronomical Institute Anton Pannekoek, University of Amsterdam, P.O. Box 94249, 1090 GE Amsterdam (Netherlands); Portegies Zwart, S. F. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)

    2013-12-20

    Superluminous supernovae (SLSNe) occur almost exclusively in small galaxies (Small/Large Magellanic Cloud (SMC/LMC)-like or smaller), and the few SLSNe observed in larger star-forming galaxies always occur close to the nuclei of their hosts. Another type of peculiar and highly energetic supernovae are the broad-line Type Ic SNe (SN Ic-BL) that are associated with long-duration gamma-ray bursts (LGRBs). Also these have a strong preference for occurring in small (SMC/LMC-like or smaller) star-forming galaxies, and in these galaxies LGRBs always occur in the brightest spots. Studies of nearby star-forming galaxies that are similar to the hosts of LGRBs show that these brightest spots are giant H II regions produced by massive dense young star clusters with many hundreds of O- and Wolf-Rayet-type stars. Such dense young clusters are also found in abundance within a few hundred parsecs from the nucleus of larger galaxies like our own. We argue that the SLSNe and the SNe Ic-BL/LGRBs are exclusive products of two types of dynamical interactions in dense young star clusters. In our model the high angular momentum of the collapsing stellar cores required for the engines of an SN Ic-BL results from the post-main-sequence mergers of dynamically produced cluster binaries with almost equal-mass components. The merger produces a critically rotating single helium star with sufficient angular momentum to produce an LGRB; the observed 'metal aversion' of LGRBs is a natural consequence of the model. We argue that, on the other hand, SLSNe could be the products of runaway multiple collisions in dense clusters, and we present (and quantize) plausible scenarios of how the different types of SLSNe can be produced.

  8. RR Lyrae stars in and around NGC 6441: signatures of dissolving cluster stars

    Science.gov (United States)

    Kunder, Andrea

    2018-06-01

    Detailed elemental abundance patterns of metal-poor ([Fe/H]~ -1 dex) stars in the Galactic bulge indicate that a number of them are consistent with globular cluster (GC) stars and may be former members of dissolved GCs. This would indicate that a few per cent of the Galactic bulge was built up from destruction and/or evaporation of globular clusters. Here an attempt is made to identify such presumptive destroyed stars originating from the massive, inner Galaxy globular cluster NGC~6441 using its rich RR Lyrae variable star (RRL) population. We present radial velocities of forty RRLs centered on the globular cluster NGC~6441. All of the 13 RRLs observed within the cluster tidal radius have velocities consistent with cluster membership, with an average radial velocity of 24 +- 5~km/s and a star-to-star scatter of 11~km/s. This includes two new RRLs that were previously not associated with the cluster. Eight RRLs with radial velocities consistent with cluster membership but up to three time the distance from the tidal radius are also reported. These potential extra-tidal RRLs also have exceptionally long periods, which is a curious characteristic of the NGC~6441 RRL population that hosts RRLs with periods longer than seen anywhere else in the Milky Way. As expected of stripped cluster stars, most are inline with the cluster's orbit. Therefore, either the tidal radius of NGC~6441 is underestimated and/or we are seeing dissolving cluster stars stemming from NGC~6441 that are building up the old spheroidal bulge. Both the mean velocity of the cluster as well as the underlying field population is consistent with belonging to an old spheroidal bulge with low rotation and high velocity dispersion that formed before the bar.

  9. International conference entitled Zdeněk Kopal’s Binary Star Legacy

    CERN Document Server

    Drechsel, Horst; ZDENEK KOPAL’S BINARY STAR LEGACY

    2005-01-01

    An international conference entitled "Zdenek Kopal's Binary Star Legacy" was held on the occasion of the late Professor Kopal's 90th birthday in his home town of Litomyšl/Czech Republic and dedicated to the memory of one of the leading astronomers of the 20th century. Professor Kopal, who devoted 60 years of his scientific life to the exploration of close binary systems, initiated a breakthrough in this field with his description of binary components as non-spherical stars deformed by gravity, with surfaces following Roche equipotentials. Such knowledge triggered the development of new branches of astrophysics dealing with the structure and evolution of close binaries and the interaction effects displayed by exciting objects such as cataclysmic variables, symbiotic stars or X-ray binaries. Contributions to this conference included praise of the achievements of a great astronomer and personal reminiscences brought forward by Kopal's former students and colleagues, and reflected the state of the art of the dyn...

  10. In what sense a neutron star-black hole binary is the holy grail for testing gravity?

    International Nuclear Information System (INIS)

    Bagchi, Manjari; Torres, Diego F.

    2014-01-01

    Pulsars in binary systems have been very successful to test the validity of general relativity in the strong field regime [1-4]. So far, such binaries include neutron star-white dwarf (NS-WD) and neutron star-neutron star (NS-NS) systems. It is commonly believed that a neutron star-black hole (NS-BH) binary will be much superior for this purpose. But in what sense is this true? Does it apply to all possible deviations?

  11. Parameters of oscillation generation regions in open star cluster models

    Science.gov (United States)

    Danilov, V. M.; Putkov, S. I.

    2017-07-01

    We determine the masses and radii of central regions of open star cluster (OCL) models with small or zero entropy production and estimate the masses of oscillation generation regions in clustermodels based on the data of the phase-space coordinates of stars. The radii of such regions are close to the core radii of the OCL models. We develop a new method for estimating the total OCL masses based on the cluster core mass, the cluster and cluster core radii, and radial distribution of stars. This method yields estimates of dynamical masses of Pleiades, Praesepe, and M67, which agree well with the estimates of the total masses of the corresponding clusters based on proper motions and spectroscopic data for cluster stars.We construct the spectra and dispersion curves of the oscillations of the field of azimuthal velocities v φ in OCL models. Weak, low-amplitude unstable oscillations of v φ develop in cluster models near the cluster core boundary, and weak damped oscillations of v φ often develop at frequencies close to the frequencies of more powerful oscillations, which may reduce the non-stationarity degree in OCL models. We determine the number and parameters of such oscillations near the cores boundaries of cluster models. Such oscillations points to the possible role that gradient instability near the core of cluster models plays in the decrease of the mass of the oscillation generation regions and production of entropy in the cores of OCL models with massive extended cores.

  12. Old star clusters: Bench tests of low mass stellar models

    Directory of Open Access Journals (Sweden)

    Salaris M.

    2013-03-01

    Full Text Available Old star clusters in the Milky Way and external galaxies have been (and still are traditionally used to constrain the age of the universe and the timescales of galaxy formation. A parallel avenue of old star cluster research considers these objects as bench tests of low-mass stellar models. This short review will highlight some recent tests of stellar evolution models that make use of photometric and spectroscopic observations of resolved old star clusters. In some cases these tests have pointed to additional physical processes efficient in low-mass stars, that are not routinely included in model computations. Moreover, recent results from the Kepler mission about the old open cluster NGC6791 are adding new tight constraints to the models.

  13. Test computations on the dynamical evolution of star clusters

    International Nuclear Information System (INIS)

    Angeletti, L.; Giannone, P.

    1977-01-01

    Test calculations have been carried out on the evolution of star clusters using the fluid-dynamical method devised by Larson (1970). Large systems of stars have been considered with specific concern with globular clusters. With reference to the analogous 'standard' model by Larson, the influence of varying in turn the various free parameters (cluster mass, star mass, tidal radius, mass concentration of the initial model) has been studied for the results. Furthermore, the partial release of some simplifying assumptions with regard to the relaxation time and distribution of the 'target' stars has been considered. The change of the structural properties is discussed, and the variation of the evolutionary time scale is outlined. An indicative agreement of the results obtained here with structural properties of globular clusters as deduced from previous theoretical models is pointed out. (Auth.)

  14. GAMMA RAYS FROM STAR FORMATION IN CLUSTERS OF GALAXIES

    International Nuclear Information System (INIS)

    Storm, Emma M.; Jeltema, Tesla E.; Profumo, Stefano

    2012-01-01

    Star formation in galaxies is observed to be associated with gamma-ray emission, presumably from non-thermal processes connected to the acceleration of cosmic-ray nuclei and electrons. The detection of gamma rays from starburst galaxies by the Fermi Large Area Telescope (LAT) has allowed the determination of a functional relationship between star formation rate and gamma-ray luminosity. Since star formation is known to scale with total infrared (8-1000 μm) and radio (1.4 GHz) luminosity, the observed infrared and radio emission from a star-forming galaxy can be used to quantitatively infer the galaxy's gamma-ray luminosity. Similarly, star-forming galaxies within galaxy clusters allow us to derive lower limits on the gamma-ray emission from clusters, which have not yet been conclusively detected in gamma rays. In this study, we apply the functional relationships between gamma-ray luminosity and radio and IR luminosities of galaxies derived by the Fermi Collaboration to a sample of the best candidate galaxy clusters for detection in gamma rays in order to place lower limits on the gamma-ray emission associated with star formation in galaxy clusters. We find that several clusters have predicted gamma-ray emission from star formation that are within an order of magnitude of the upper limits derived in Ackermann et al. based on non-detection by Fermi-LAT. Given the current gamma-ray limits, star formation likely plays a significant role in the gamma-ray emission in some clusters, especially those with cool cores. We predict that both Fermi-LAT over the course of its lifetime and the future Cerenkov Telescope Array will be able to detect gamma-ray emission from star-forming galaxies in clusters.

  15. The binary fraction of stars in dwarf galaxies: the case of Leo II

    OpenAIRE

    Spencer, Meghin; Mateo, Mario; Walker, Matthew; Olszewski, Edward; McConnachie, Alan; Kirby, Evan; Koch, Andreas

    2017-01-01

    We combine precision radial velocity data from four different published works of the stars in the Leo II dwarf spheroidal galaxy. This yields a data set that spans 19 years, has 14 different epochs of observation, and contains 372 unique red giant branch stars, 196 of which have repeat observations. Using this multi-epoch data set, we constrain the binary fraction for Leo II. We generate a suite of Monte Carlo simulations that test different binary fractions using Bayesian analysis and determ...

  16. Icosahedral binary clusters of glass-forming Lennard-Jones binary alloy

    International Nuclear Information System (INIS)

    Iwamatsu, Masao

    2007-01-01

    It is widely believed that the local icosahedral structure is related to the formation of bulk metallic glasses (BMGs). Specifically the existence of 13-atom icosahedral cluster in undercooled liquid is imagined to play a key role to initiate the glass formation as the seed of amorphous structure or to block the nucleation of regular crystal as the impurity. The existence of 13-atom icosahedral clusters in one-component liquids was predicted more than half a century ago by Frank from his total energy calculation for isolated clusters. In BMG alloys, however, the situation is less clear. In this report, we present the lowest-energy structures of 13-atom Lennard-Jones binary cluster calculated from the modified space-fixed genetic algorithm. We study, in particular, the artificial Lennard-Jones potential designed by Kob and Andersen [W. Kob, H.C. Andersen, Phys. Rev. E 51 (1995) 4626] that is known to form BMG. Curiously, the lowest-energy structures of 13-atom cluster are non-icosahedral for almost all compositions. Our result suggests that the existence of the icosahedral cluster is not a necessary condition but only a sufficient condition for glass formation

  17. The Globular Cluster NGC 6402 (M14). II. Variable Stars

    DEFF Research Database (Denmark)

    Contreras Peña, C.; Catelan, M.; Grundahl, F.

    2018-01-01

    approaches for the calibration of the absolute magnitudes of RR Lyrae stars. The possible presence of second-overtone RR Lyrae in M14 is critically addressed, with our results arguing against this possibility. By considering all of the RR Lyrae stars as members of the cluster, we derive =0.589 {{d...

  18. Collaborative Research of Open Star Clusters Alisher S. Hojaev

    Indian Academy of Sciences (India)

    Some spectra of the young star candidates with dispersion 50 and 200 Å/mm were .... Color-magnitude diagram for o band and o band minus i band for stars in the region of NGC ... Statistical analysis for open cluster parameters investigation.

  19. Dynamical evolution of star clusters with a changing gravitational constant

    International Nuclear Information System (INIS)

    Angeletti, L.; Giannone, P.

    1978-01-01

    The dynamical evolution of massive star clusters was studied, taking into account variations with time of the gravitional constant. The rates of change of G were adopted according to theoretical and observational indications. Various conditions concerning the number of star groups, star masses, mass loss from stars, and initial star concentration were tested for the clusters. The comparison with analogous evolutionary sequences computed with a constant value of G showed that the effects of changes of G may be conspicuous. The analytical dependence of basic structural functions on the law of variation of G with time was determined from the numerical results. They allow an estimate of the consequences of G in a large range of cases. The effects of a decrease of G tended to prevent the formation of dense cores, which is a specific feature of the evolution of 'standard' models of star clusters. The expansion of the whole cluster structure was noteworthy. However, there was not a significant increase of escape of stars from cluster compared with the cases computed with constant G. Although detailed comparison with observations was beyond our present aims, it appears that a varaition of G according to the Brans-Dicke theory is not in conflict with observational data, as is the case for an exponential decrease of G consistent with Van Flandern's result. (orig.) [de

  20. STAR-TO-STAR IRON ABUNDANCE VARIATIONS IN RED GIANT BRANCH STARS IN THE GALACTIC GLOBULAR CLUSTER NGC 3201

    International Nuclear Information System (INIS)

    Simmerer, Jennifer; Ivans, Inese I.; Filler, Dan; Francois, Patrick; Charbonnel, Corinne; Monier, Richard; James, Gaël

    2013-01-01

    We present the metallicity as traced by the abundance of iron in the retrograde globular cluster NGC 3201, measured from high-resolution, high signal-to-noise spectra of 24 red giant branch stars. A spectroscopic analysis reveals a spread in [Fe/H] in the cluster stars at least as large as 0.4 dex. Star-to-star metallicity variations are supported both through photometry and through a detailed examination of spectra. We find no correlation between iron abundance and distance from the cluster core, as might be inferred from recent photometric studies. NGC 3201 is the lowest mass halo cluster to date to contain stars with significantly different [Fe/H] values.

  1. Star-to-star Iron Abundance Variations in Red Giant Branch Stars in the Galactic Globular Cluster NGC 3201

    Science.gov (United States)

    Simmerer, Jennifer; Ivans, Inese I.; Filler, Dan; Francois, Patrick; Charbonnel, Corinne; Monier, Richard; James, Gaël

    2013-02-01

    We present the metallicity as traced by the abundance of iron in the retrograde globular cluster NGC 3201, measured from high-resolution, high signal-to-noise spectra of 24 red giant branch stars. A spectroscopic analysis reveals a spread in [Fe/H] in the cluster stars at least as large as 0.4 dex. Star-to-star metallicity variations are supported both through photometry and through a detailed examination of spectra. We find no correlation between iron abundance and distance from the cluster core, as might be inferred from recent photometric studies. NGC 3201 is the lowest mass halo cluster to date to contain stars with significantly different [Fe/H] values.

  2. Sizing the star cluster population of the Large Magellanic Cloud

    Science.gov (United States)

    Piatti, Andrés E.

    2018-04-01

    The number of star clusters that populate the Large Magellanic Cloud (LMC) at deprojected distances knowledge of the LMC cluster formation and dissolution histories, we closely revisited such a compilation of objects and found that only ˜35 per cent of the previously known catalogued clusters have been included. The remaining entries are likely related to stellar overdensities of the LMC composite star field, because there is a remarkable enhancement of objects with assigned ages older than log(t yr-1) ˜ 9.4, which contrasts with the existence of the LMC cluster age gap; the assumption of a cluster formation rate similar to that of the LMC star field does not help to conciliate so large amount of clusters either; and nearly 50 per cent of them come from cluster search procedures known to produce more than 90 per cent of false detections. The lack of further analyses to confirm the physical reality as genuine star clusters of the identified overdensities also glooms those results. We support that the actual size of the LMC main body cluster population is close to that previously known.

  3. star formation rates of z > 1 galaxy clusters in the IRAC shallow cluster survey

    International Nuclear Information System (INIS)

    Zeimann, Gregory R.; Stanford, S. A.; Brodwin, Mark; Gonzalez, Anthony H.; Mancone, Conor; Snyder, Gregory F.; Stern, Daniel; Eisenhardt, Peter; Dey, Arjun; Moustakas, John

    2013-01-01

    We present Hubble Space Telescope near-IR spectroscopy for 18 galaxy clusters at 1.0 Cluster Survey. We use Wide Field Camera 3 grism data to spectroscopically identify Hα emitters in both the cores of galaxy clusters as well as in field galaxies. We find a large cluster-to-cluster scatter in the star formation rates within a projected radius of 500 kpc, and many of our clusters (∼60%) have significant levels of star formation within a projected radius of 200 kpc. A stacking analysis reveals that dust reddening in these star-forming galaxies is positively correlated with stellar mass and may be higher in the field than the cluster at a fixed stellar mass. This may indicate a lower amount of gas in star-forming cluster galaxies than in the field population. Also, Hα equivalent widths of star-forming galaxies in the cluster environment are still suppressed below the level of the field. This suppression is most significant for lower mass galaxies (log M * < 10.0 M ☉ ). We therefore conclude that environmental effects are still important at 1.0 star-forming galaxies in galaxy clusters with log M * ≲ 10.0 M ☉ .

  4. Searching for Be stars in the open cluster NGC 663

    Energy Technology Data Exchange (ETDEWEB)

    Yu, P. C.; Lin, C. C.; Chen, W. P.; Lee, C. D.; Ip, W. H.; Ngeow, C. C. [Graduate Institute of Astronomy, National Central University, 300 Jhongda Road, Jhongli 32001, Taiwan (China); Laher, Russ; Surace, Jason [Spitzer Science Center, California Institute of Technology, M/S 314-6, Pasadena, CA 91125 (United States); Kulkarni, Shrinivas R. [Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-02-01

    We present Be star candidates in the open cluster NGC 663, identified by Hα imaging photometry with the Palomar Transient Factory Survey, as a pilot program to investigate how the Be star phenomena, the emission spectra, extended circumstellar envelopes, and fast rotation, correlate with massive stellar evolution. Stellar membership of the candidates was verified by 2MASS magnitudes and colors and by proper motions (PMs). We discover four new Be stars and exclude one known Be star from being a member due to its inconsistent PMs. The fraction of Be stars to member stars [N(Be)/N(members)] in NGC 663 is 3.5%. The spectral type of the 34 Be stars in NGC 663 shows bimodal peaks at B0–B2 and B5–B7, which is consistent with the statistics in most star clusters. Additionally, we also discover 23 emission-line stars of different types, including non-member Be stars, dwarfs, and giants.

  5. A NEW CENSUS OF THE VARIABLE STAR POPULATION IN THE GLOBULAR CLUSTER NGC 2419

    International Nuclear Information System (INIS)

    Di Criscienzo, M.; Greco, C.; Ripepi, V.; Dall' Ora, M.; Marconi, M.; Musella, I.; Clementini, G.; Federici, L.; Di Fabrizio, L.

    2011-01-01

    We present B, V, and I CCD light curves for 101 variable stars belonging to the globular cluster NGC 2419, 60 of which are new discoveries, based on data sets obtained at the Telescopio Nazionale Galileo, the Subaru telescope, and the Hubble Space Telescope. The sample includes 75 RR Lyrae stars (38 RRab, 36 RRc, and one RRd), one Population II Cepheid, 12 SX Phoenicis variables, two δ Scuti stars, three binary systems, five long-period variables, and three variables of uncertain classification. The pulsation properties of the RR Lyrae variables are close to those of Oosterhoff type II clusters, consistent with the low metal abundance and the cluster horizontal branch morphology, disfavoring (but not totally ruling out) an extragalactic hypothesis for the origin of NGC 2419. The observed properties of RR Lyrae and SX Phoenicis stars are used to estimate the cluster reddening and distance, using a number of different methods. Our final value is μ 0 (NGC 2419) = 19.71 ± 0.08 mag (D = 87.5 ± 3.3 kpc), with E(B - V) = 0.08 ± 0.01 mag, [Fe/H] = -2.1 dex on the Zinn and West metallicity scale, and a value of M V that sets μ 0 (LMC) = 18.52 mag. This value is in good agreement with the most recent literature estimates of the distance to NGC 2419.

  6. Massive open star clusters using the VVV survey. II. Discovery of six clusters with Wolf-Rayet stars

    Science.gov (United States)

    Chené, A.-N.; Borissova, J.; Bonatto, C.; Majaess, D. J.; Baume, G.; Clarke, J. R. A.; Kurtev, R.; Schnurr, O.; Bouret, J.-C.; Catelan, M.; Emerson, J. P.; Feinstein, C.; Geisler, D.; de Grijs, R.; Hervé, A.; Ivanov, V. D.; Kumar, M. S. N.; Lucas, P.; Mahy, L.; Martins, F.; Mauro, F.; Minniti, D.; Moni Bidin, C.

    2013-01-01

    Context. The ESO Public Survey "VISTA Variables in the Vía Láctea" (VVV) provides deep multi-epoch infrared observations for an unprecedented 562 sq. degrees of the Galactic bulge, and adjacent regions of the disk. Nearly 150 new open clusters and cluster candidates have been discovered in this survey. Aims: This is the second in a series of papers about young, massive open clusters observed using the VVV survey. We present the first study of six recently discovered clusters. These clusters contain at least one newly discovered Wolf-Rayet (WR) star. Methods: Following the methodology presented in the first paper of the series, wide-field, deep JHKs VVV observations, combined with new infrared spectroscopy, are employed to constrain fundamental parameters for a subset of clusters. Results: We find that the six studied stellar groups are real young (2-7 Myr) and massive (between 0.8 and 2.2 × 103 M⊙) clusters. They are highly obscured (AV ~ 5-24 mag) and compact (1-2 pc). In addition to WR stars, two of the six clusters also contain at least one red supergiant star, and one of these two clusters also contains a blue supergiant. We claim the discovery of 8 new WR stars, and 3 stars showing WR-like emission lines which could be classified WR or OIf. Preliminary analysis provides initial masses of ~30-50 M⊙ for the WR stars. Finally, we discuss the spiral structure of the Galaxy using the six new clusters as tracers, together with the previously studied VVV clusters. Based on observations with ISAAC, VLT, ESO (programme 087.D-0341A), New Technology Telescope at ESO's La Silla Observatory (programme 087.D-0490A) and with the Clay telescope at the Las Campanas Observatory (programme CN2011A-086). Also based on data from the VVV survey (programme 172.B-2002).

  7. Discovery of a new Wolf-Rayet star and a candidate star cluster in the Large Magellanic Cloud with Spitzer

    Science.gov (United States)

    Gvaramadze, V. V.; Chené, A.-N.; Kniazev, A. Y.; Schnurr, O.; Shenar, T.; Sander, A.; Hainich, R.; Langer, N.; Hamann, W.-R.; Chu, Y.-H.; Gruendl, R. A.

    2014-08-01

    We report the first-ever discovery of a Wolf-Rayet (WR) star in the Large Magellanic Cloud via detection of a circular shell with the Spitzer Space Telescope. Follow-up observations with Gemini-South resolved the central star of the shell into two components separated from each other by ≈2 arcsec (or ≈0.5 pc in projection). One of these components turns out to be a WN3 star with H and He lines both in emission and absorption (we named it BAT99 3a using the numbering system based on extending the Breysacher et al. catalogue). Spectroscopy of the second component showed that it is a B0 V star. Subsequent spectroscopic observations of BAT99 3a with the du Pont 2.5-m telescope and the Southern African Large Telescope revealed that it is a close, eccentric binary system, and that the absorption lines are associated with an O companion star. We analysed the spectrum of the binary system using the non-LTE Potsdam WR (POWR) code, confirming that the WR component is a very hot (≈90 kK) WN star. For this star, we derived a luminosity of log L/ L⊙ = 5.45 and a mass-loss rate of 10- 5.8 M⊙ yr- 1, and found that the stellar wind composition is dominated by helium with 20 per cent of hydrogen. Spectroscopy of the shell revealed an He III region centred on BAT99 3a and having the same angular radius (≈15 arcsec) as the shell. We thereby add a new example to a rare class of high-excitation nebulae photoionized by WR stars. Analysis of the nebular spectrum showed that the shell is composed of unprocessed material, implying that the shell was swept-up from the local interstellar medium. We discuss the physical relationship between the newly identified massive stars and their possible membership of a previously unrecognized star cluster.

  8. Evolution of Mass Functions of Coeval Stars through Wind Mass Loss and Binary Interactions

    NARCIS (Netherlands)

    Schneider, F.R.N.; Izzard, R.G.; Langer, N.; de Mink, S.E.

    2015-01-01

    Accurate determinations of stellar mass functions and ages of stellar populations are crucial to much of astrophysics. We analyze the evolution of stellar mass functions of coeval main-sequence stars, including all relevant aspects of single and binary star evolution. We show that the slope of the

  9. Roto-translation motion of the stars in close binary systems

    International Nuclear Information System (INIS)

    Medvedeva, A A

    2013-01-01

    This article has to show that the model of p-h which is used to determine the change of the semi major axis of the relative orbit stars is incorrect and leads to large errors in the determination of semi-major axis. The new model, suitable for the elliptical orbits of the stars. To determine relative motion of stars in a close binary system in this paper uses a numerical integration of the equations of motion with the reactive forces, including the rotational component of attraction between the stars and the stream flows into the substance. The calculations of elliptical orbits of close binary stars show that the effect of the reactive force on the evolution of the orbits of stars may be different. The results can be refined by introducing other disturbing factors and making new assumptions based on observations

  10. Integrated photometry of globular star clusters in the Vilnius system

    International Nuclear Information System (INIS)

    Zdanavichyus, K.V.

    1983-01-01

    Integrated colour indices in the Vilnius photometric system and newly determined colour excesses Esub(B-V) for 39 globular clusters are presented. It is shown that the coincidence of integrated spectral types are not a sufficient criterion for the identity of intrinsic colour indices of globular clusters. Relation of integrated colour indices with the slope of the giant branch S and with the horizontal branch morphological type D is investigated. Integrated colour indices of clusters with a blue horizontal branch show no correlation with either D or S. The increase of colour indices of the clusters of types D >= 4 correlates with the distribution of stars along the horizontal branch. Integrated photometry of globular star clusters in the Vilnius multicoloured photometric system permits to determine their colour excesses from some Q diagrams and normal colour index. Integral normal colour indexes and Q parameters for I globular star clusters of the Mironov group display small changes as compared to clusters of group 2. Colour indexes among star clusters having only red horizontal branches (D=7) change most considerably

  11. General relativistic magnetohydrodynamic simulations of binary neutron star mergers forming a long-lived neutron star

    Science.gov (United States)

    Ciolfi, Riccardo; Kastaun, Wolfgang; Giacomazzo, Bruno; Endrizzi, Andrea; Siegel, Daniel M.; Perna, Rosalba

    2017-03-01

    Merging binary neutron stars (BNSs) represent the ultimate targets for multimessenger astronomy, being among the most promising sources of gravitational waves (GWs), and, at the same time, likely accompanied by a variety of electromagnetic counterparts across the entire spectrum, possibly including short gamma-ray bursts (SGRBs) and kilonova/macronova transients. Numerical relativity simulations play a central role in the study of these events. In particular, given the importance of magnetic fields, various aspects of this investigation require general relativistic magnetohydrodynamics (GRMHD). So far, most GRMHD simulations focused the attention on BNS mergers leading to the formation of a hypermassive neutron star (NS), which, in turn, collapses within few tens of ms into a black hole surrounded by an accretion disk. However, recent observations suggest that a significant fraction of these systems could form a long-lived NS remnant, which will either collapse on much longer time scales or remain indefinitely stable. Despite the profound implications for the evolution and the emission properties of the system, a detailed investigation of this alternative evolution channel is still missing. Here, we follow this direction and present a first detailed GRMHD study of BNS mergers forming a long-lived NS. We consider magnetized binaries with different mass ratios and equations of state and analyze the structure of the NS remnants, the rotation profiles, the accretion disks, the evolution and amplification of magnetic fields, and the ejection of matter. Moreover, we discuss the connection with the central engine of SGRBs and provide order-of-magnitude estimates for the kilonova/macronova signal. Finally, we study the GW emission, with particular attention to the post-merger phase.

  12. BVI photometry of star clusters in M33

    International Nuclear Information System (INIS)

    Christian, C.A.; Schommer, R.A.

    1988-01-01

    CCD images of candidate star clusters in M33 were obtained for 13 fields in the B, V, and I bandpasses. The integrated visual colors and magnitudes are used to study the clusters, and evidence for extended giant branches and possibly carbon stars in several of the intermediate-aged clusters is presented. The colors, magnitudes, and positions are used to analyze stellar population of M33 and confirm the existence of massive star clusters with a 0.1-10-Gyr age range. That is, the cluster system of M33 shares some similarities to that of the Magellanic Clouds in that relatively massive clusters are found at all ages. In addition, more than 20 true (i.e., old, massive) globulars are identified. A substantial population of intermediate-color clusters are found, and it is argued that the cluster-formation rate for clusters less than 10 Gyr old may be more continuous in M33 than in the Magellanic Clouds. The chemical evolution of M33 as traced by the clusters suggests that an abundance gradient existed at all ages, in that the outer regions of the disk (i.e., R greater than 10 arcmin or 2 kpc) follow a slow enhancement history similar to the SMC, while the inner regions were enriched more dramatically. 59 references

  13. Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO.

    Science.gov (United States)

    Rodriguez, Carl L; Morscher, Meagan; Pattabiraman, Bharath; Chatterjee, Sourav; Haster, Carl-Johan; Rasio, Frederic A

    2015-07-31

    The predicted rate of binary black hole mergers from galactic fields can vary over several orders of magnitude and is extremely sensitive to the assumptions of stellar evolution. But in dense stellar environments such as globular clusters, binary black holes form by well-understood gravitational interactions. In this Letter, we study the formation of black hole binaries in an extensive collection of realistic globular cluster models. By comparing these models to observed Milky Way and extragalactic globular clusters, we find that the mergers of dynamically formed binaries could be detected at a rate of ∼100 per year, potentially dominating the binary black hole merger rate. We also find that a majority of cluster-formed binaries are more massive than their field-formed counterparts, suggesting that Advanced LIGO could identify certain binaries as originating from dense stellar environments.

  14. STAR CLUSTERS IN A NUCLEAR STAR FORMING RING: THE DISAPPEARING STRING OF PEARLS

    Energy Technology Data Exchange (ETDEWEB)

    Väisänen, Petri; Barway, Sudhanshu; Randriamanakoto, Zara, E-mail: petri@saao.ac.za [South African Astronomical Observatory, P.O. Box 9 Observatory, Cape Town (South Africa)

    2014-12-20

    An analysis of the star cluster population in a low-luminosity early-type galaxy, NGC 2328, is presented. The clusters are found in a tight star forming nuclear spiral/ring pattern and we also identify a bar from structural two-dimensional decomposition. These massive clusters are forming very efficiently in the circumnuclear environment and they are young, possibly all less than 30 Myr of age. The clusters indicate an azimuthal age gradient, consistent with a ''pearls-on-a-string'' formation scenario, suggesting bar-driven gas inflow. The cluster mass function has a robust down turn at low masses at all age bins. Assuming clusters are born with a power-law distribution, this indicates extremely rapid disruption at timescales of just several million years. If found to be typical, it means that clusters born in dense circumnuclear rings do not survive to become old globular clusters in non-interacting systems.

  15. STAR CLUSTERS IN A NUCLEAR STAR FORMING RING: THE DISAPPEARING STRING OF PEARLS

    International Nuclear Information System (INIS)

    Väisänen, Petri; Barway, Sudhanshu; Randriamanakoto, Zara

    2014-01-01

    An analysis of the star cluster population in a low-luminosity early-type galaxy, NGC 2328, is presented. The clusters are found in a tight star forming nuclear spiral/ring pattern and we also identify a bar from structural two-dimensional decomposition. These massive clusters are forming very efficiently in the circumnuclear environment and they are young, possibly all less than 30 Myr of age. The clusters indicate an azimuthal age gradient, consistent with a ''pearls-on-a-string'' formation scenario, suggesting bar-driven gas inflow. The cluster mass function has a robust down turn at low masses at all age bins. Assuming clusters are born with a power-law distribution, this indicates extremely rapid disruption at timescales of just several million years. If found to be typical, it means that clusters born in dense circumnuclear rings do not survive to become old globular clusters in non-interacting systems

  16. No time for dead time: timing analysis of bright black hole binaries with NuSTAR

    DEFF Research Database (Denmark)

    Bachetti, Matteo; Harrison, Fiona A.; Cook, Rick

    2015-01-01

    Timing of high-count-rate sources with the NuSTAR Small Explorer Mission requires specialized analysis techniques. NuSTAR was primarily designed for spectroscopic observations of sources with relatively low count rates rather than for timing analysis of bright objects. The instrumental dead time ...... techniques. We apply this technique to NuSTAR observations of the black hole binaries GX 339-4, Cyg X-1, and GRS 1915+105....

  17. PROGRESSIVE STAR FORMATION IN THE YOUNG GALACTIC SUPER STAR CLUSTER NGC 3603

    International Nuclear Information System (INIS)

    Beccari, Giacomo; Spezzi, Loredana; De Marchi, Guido; Andersen, Morten; Paresce, Francesco; Young, Erick; Panagia, Nino; Bond, Howard; Balick, Bruce; Calzetti, Daniela; Carollo, C. Marcella; Disney, Michael J.; Dopita, Michael A.; Frogel, Jay A.; Hall, Donald N. B.; Holtzman, Jon A.; Kimble, Randy A.; McCarthy, Patrick J.; O'Connell, Robert W.; Saha, Abhijit

    2010-01-01

    Early Release Science observations of the cluster NGC 3603 with the WFC3 on the refurbished Hubble Space Telescope allow us to study its recent star formation history. Our analysis focuses on stars with Hα excess emission, a robust indicator of their pre-main sequence (PMS) accreting status. The comparison with theoretical PMS isochrones shows that 2/3 of the objects with Hα excess emission have ages from 1 to 10 Myr, with a median value of 3 Myr, while a surprising 1/3 of them are older than 10 Myr. The study of the spatial distribution of these PMS stars allows us to confirm their cluster membership and to statistically separate them from field stars. This result establishes unambiguously for the first time that star formation in and around the cluster has been ongoing for at least 10-20 Myr, at an apparently increasing rate.

  18. Astrophysical parameters of ten poorly studied open star clusters

    International Nuclear Information System (INIS)

    Tadross, Ashraf Latif; El-Bendary, Reda; Osman, Anas; Ismail, Nader; Bakry, Abdel Aziz

    2012-01-01

    We present the fundamental parameters of ten open star clusters, nominated from Kronberger et al. who presented some newly discovered stellar groups on the basis of the Two Micron All Sky Survey photometry and Digitized Sky Survey visual images. Star counts and photometric parameters (radius, membership, distance, color excess, age, luminosity function, mass function, total mass, and dynamical relaxation time) have been determined for these ten clusters for the first time. In order to calibrate our procedures, the main parameters (distance, age, and color excess) have been re-estimated for another five clusters, which are also studied by Kronberger et al. (research papers)

  19. The occurrence of peculiar stars in open clusters

    International Nuclear Information System (INIS)

    Abt, H.A.; Levato, H.

    1978-01-01

    The authors have classified on the MK system a total of 455 stars in 12 open clusters and associations. The classification is based on wide (1.2 mm) spectra of two reciprocal dispersions (39, 128 A mm -1 ) obtained with the Kitt Peak 2.1 m and 90 cm reflectors respectively. The higher dispersion is necessary to show the subtle peculiarities found in some stars. The clusters are the Orion Nebula cluster, Orion OB1 association, Lacerta OB1 association, IC 2602, IC 4665, Pleiades, M39, M34, NGC 2516, NGC 6633, NGC 6475, and Coma. (Auth.)

  20. Constraining the mass and radius of neutron stars in globular clusters

    Science.gov (United States)

    Steiner, A. W.; Heinke, C. O.; Bogdanov, S.; Li, C. K.; Ho, W. C. G.; Bahramian, A.; Han, S.

    2018-05-01

    We analyse observations of eight quiescent low-mass X-ray binaries in globular clusters and combine them to determine the neutron star mass-radius curve and the equation of state of dense matter. We determine the effect that several uncertainties may have on our results, including uncertainties in the distance, the atmosphere composition, the neutron star maximum mass, the neutron star mass distribution, the possible presence of a hotspot on the neutron star surface, and the prior choice for the equation of state of dense matter. The distance uncertainty is implemented in a new Gaussian blurring method that can be directly applied to the probability distribution over mass and radius. We find that the radius of a 1.4 solar mass neutron star is most likely from 10 to 14 km and that tighter constraints are only possible with stronger assumptions about the nature of the neutron stars, the systematics of the observations, or the nature of dense matter. Strong phase transitions in the equation of state are preferred, and in this case, the radius is likely smaller than 12 km. However, radii larger than 12 km are preferred if the neutron stars have uneven temperature distributions.

  1. EXTENDED STAR FORMATION IN THE INTERMEDIATE-AGE LARGE MAGELLANIC CLOUD STAR CLUSTER NGC 2209

    International Nuclear Information System (INIS)

    Keller, Stefan C.; Mackey, A. Dougal; Da Costa, Gary S.

    2012-01-01

    We present observations of the 1 Gyr old star cluster NGC 2209 in the Large Magellanic Cloud made with the GMOS imager on the Gemini South Telescope. These observations show that the cluster exhibits a main-sequence turnoff that spans a broader range in luminosity than can be explained by a single-aged stellar population. This places NGC 2209 amongst a growing list of intermediate-age (1-3 Gyr) clusters that show evidence for extended or multiple epochs of star formation of between 50 and 460 Myr in extent. The extended main-sequence turnoff observed in NGC 2209 is a confirmation of the prediction in Keller et al. made on the basis of the cluster's large core radius. We propose that secondary star formation is a defining feature of the evolution of massive star clusters. Dissolution of lower mass clusters through evaporation results in only clusters that have experienced secondary star formation surviving for a Hubble time, thus providing a natural connection between the extended main-sequence turnoff phenomenon and the ubiquitous light-element abundance ranges seen in the ancient Galactic globular clusters.

  2. Binary pulsars as probes of neutron star birth

    NARCIS (Netherlands)

    Wijers, R.A.M.J.; van Paradijs, J.; van den Heuvel, E.P.J.

    1992-01-01

    We discuss two issues in the physics of neutron stars and their progenitors. The first is whether a neutron star receives a velocity kick when it is formed in the supernova-explosion of a massive star, and if it does, what is the characteristic magnitude, v(0), thereof? The second concerns the fate

  3. Are neutron stars crushed? Gravitomagnetic tidal fields as a mechanism for binary-induced collapse

    International Nuclear Information System (INIS)

    Favata, Marc

    2006-01-01

    Numerical simulations of binary neutron stars by Wilson, Mathews, and Marronetti indicated that neutron stars that are stable in isolation can be made to collapse to black holes when placed in a binary. This claim was surprising as it ran counter to the Newtonian expectation that a neutron star in a binary should be more stable, not less. After correcting an error found by Flanagan, Wilson and Mathews found that the compression of the neutron stars was significantly reduced but not eliminated. This has motivated us to ask the following general question: Under what circumstances can general-relativistic tidal interactions cause an otherwise stable neutron star to be compressed? We have found that if a nonrotating neutron star possesses a current-quadrupole moment, interactions with a gravitomagnetic tidal field can lead to a compressive force on the star. If this current quadrupole is induced by the gravitomagnetic tidal field, it is related to the tidal field by an equation-of-state-dependent constant called the gravitomagnetic Love number. This is analogous to the Newtonian Love number that relates the strength of a Newtonian tidal field to the induced mass quadrupole moment of a star. The compressive force is almost never larger than the Newtonian tidal interaction that stabilizes the neutron star against collapse. In the case in which a current quadrupole is already present in the star (perhaps as an artifact of a numerical simulation), the compressive force can exceed the stabilizing one, leading to a net increase in the central density of the star. This increase is small (< or approx. 1%) but could, in principle, cause gravitational collapse in a star that is close to its maximum mass. This paper also reviews the history of the Wilson-Mathews-Marronetti controversy and, in an appendix, extends the discussion of tidally induced changes in the central density to rotating stars

  4. BINARY CENTRAL STARS OF PLANETARY NEBULAE DISCOVERED THROUGH PHOTOMETRIC VARIABILITY. IV. THE CENTRAL STARS OF HaTr 4 AND Hf 2-2

    Energy Technology Data Exchange (ETDEWEB)

    Hillwig, Todd C.; Schaub, S. C. [Department of Physics and Astronomy, Valparaiso University, Valparaiso, IN 46383 (United States); Bond, Howard E. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Frew, David J. [Department of Physics, The University of Hong Kong, Pokfulam Road (Hong Kong); Bodman, Eva H. L., E-mail: todd.hillwig@valpo.edu [Southeastern Association for Research in Astronomy (SARA) (United States)

    2016-08-01

    We explore the photometrically variable central stars of the planetary nebulae HaTr 4 and Hf 2-2. Both have been classified as close binary star systems previously based on their light curves alone. Here, we present additional arguments and data confirming the identification of both as close binaries with an irradiated cool companion to the hot central star. We include updated light curves, orbital periods, and preliminary binary modeling for both systems. We also identify for the first time the central star of HaTr 4 as an eclipsing binary. Neither system has been well studied in the past, but we utilize the small amount of existing data to limit possible binary parameters, including system inclination. These parameters are then compared to nebular parameters to further our knowledge of the relationship between binary central stars of planetary nebulae and nebular shaping and ejection.

  5. THE PHASES DIFFERENTIAL ASTROMETRY DATA ARCHIVE. II. UPDATED BINARY STAR ORBITS AND A LONG PERIOD ECLIPSING BINARY

    International Nuclear Information System (INIS)

    Muterspaugh, Matthew W.; O'Connell, J.; Hartkopf, William I.; Lane, Benjamin F.; Williamson, M.; Kulkarni, S. R.; Konacki, Maciej; Burke, Bernard F.; Colavita, M. M.; Shao, M.; Wiktorowicz, Sloane J.

    2010-01-01

    Differential astrometry measurements from the Palomar High-precision Astrometric Search for Exoplanet Systems have been combined with lower precision single-aperture measurements covering a much longer timespan (from eyepiece measurements, speckle interferometry, and adaptive optics) to determine improved visual orbits for 20 binary stars. In some cases, radial velocity observations exist to constrain the full three-dimensional orbit and determine component masses. The visual orbit of one of these binaries-α Com (HD 114378)-shows that the system is likely to have eclipses, despite its very long period of 26 years. The next eclipse is predicted to be within a week of 2015 January 24.

  6. CHEMICAL COMPOSITION OF INTERMEDIATE-MASS STAR MEMBERS OF THE M6 (NGC 6405) OPEN CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Kılıçoğlu, T.; Albayrak, B. [Ankara University, Faculty of Science, Department of Astronomy and Space Sciences, 06100, Tandoğan, Ankara (Turkey); Monier, R. [LESIA, UMR 8109, Observatoire de Paris Meudon, Place J. Janssen, Meudon (France); Richer, J. [Département de physique, Université de Montréal, 2900, Boulevard Edouard-Montpetit, Montréal QC, H3C 3J7 (Canada); Fossati, L., E-mail: tkilicoglu@ankara.edu.tr, E-mail: balbayrak@ankara.edu.tr, E-mail: Richard.Monier@obspm.fr, E-mail: Jacques.Richer@umontreal.ca, E-mail: lfossati@astro.uni-bonn.de [Argelander-Institut für Astronomie der Universität Bonn, Auf dem Hügel 71, D-53121, Bonn (Germany)

    2016-03-15

    We present here the first abundance analysis of 44 late B-, A-, and F-type members of the young open cluster M6 (NGC 6405, age about 75 Myr). Low- and medium-resolution spectra, covering the 4500–5840 Å wavelength range, were obtained using the FLAMES/GIRAFFE spectrograph attached to the ESO Very Large Telescopes. We determined the atmospheric parameters using calibrations of the Geneva photometry and by adjusting the H{sub β} profiles to synthetic ones. The abundances of up to 20 chemical elements, from helium to mercury, were derived for 19 late B, 16 A, and 9 F stars by iteratively adjusting synthetic spectra to the observations. We also derived a mean cluster metallicity of [Fe/H] = 0.07 ± 0.03 dex from the iron abundances of the F-type stars. We find that for most chemical elements, the normal late B- and A-type stars exhibit larger star-to-star abundance variations than the F-type stars probably because of the faster rotation of the B and A stars. The abundances of C, O, Mg, Si, and Sc appear to be anticorrelated with that of Fe, while the opposite holds for the abundances of Ca, Ti, Cr, Mn, Ni, Y, and Ba as expected if radiative diffusion is efficient in the envelopes of these stars. In the course of this analysis, we discovered five new peculiar stars: one mild Am, one Am, and one Fm star (HD 318091, CD-32 13109, GSC 07380-01211, CP1), one HgMn star (HD 318126, CP3), and one He-weak P-rich (HD 318101, CP4) star. We also discovered a new spectroscopic binary, most likely a SB2. We performed a detailed modeling of HD 318101, the new He-weak P-rich CP star, using the Montréal stellar evolution code XEVOL which self-consistently treats all particle transport processes. Although the overall abundance pattern of this star is properly reproduced, we find that detailed abundances (in particular the high P excess) resisted modeling attempts even when a range of turbulence profiles and mass-loss rates were considered. Solutions are proposed which are

  7. VARIABLE STARS IN LARGE MAGELLANIC CLOUD GLOBULAR CLUSTERS. II. NGC 1786

    International Nuclear Information System (INIS)

    Kuehn, Charles A.; Smith, Horace A.; De Lee, Nathan; Catelan, Márcio; Pritzl, Barton J.; Borissova, Jura

    2012-01-01

    This is the second in a series of papers studying the variable stars in Large Magellanic Cloud globular clusters. The primary goal of this series is to study how RR Lyrae stars in Oosterhoff-intermediate systems compare to their counterparts in Oosterhoff I/II systems. In this paper, we present the results of our new time-series B–V photometric study of the globular cluster NGC 1786. A total of 65 variable stars were identified in our field of view. These variables include 53 RR Lyraes (27 RRab, 18 RRc, and 8 RRd), 3 classical Cepheids, 1 Type II Cepheid, 1 Anomalous Cepheid, 2 eclipsing binaries, 3 Delta Scuti/SX Phoenicis variables, and 2 variables of undetermined type. Photometric parameters for these variables are presented. We present physical properties for some of the RR Lyrae stars, derived from Fourier analysis of their light curves. We discuss several different indicators of Oosterhoff type which indicate that the Oosterhoff classification of NGC 1786 is not as clear cut as what is seen in most globular clusters.

  8. New variable stars discovered in the fields of three Galactic open clusters using the VVV survey

    Science.gov (United States)

    Palma, T.; Minniti, D.; Dékány, I.; Clariá, J. J.; Alonso-García, J.; Gramajo, L. V.; Ramírez Alegría, S.; Bonatto, C.

    2016-11-01

    This project is a massive near-infrared (NIR) search for variable stars in highly reddened and obscured open cluster (OC) fields projected on regions of the Galactic bulge and disk. The search is performed using photometric NIR data in the J-, H- and Ks- bands obtained from the Vista Variables in the Vía Láctea (VVV) Survey. We performed in each cluster field a variability search using Stetson's variability statistics to select the variable candidates. Later, those candidates were subjected to a frequency analysis using the Generalized Lomb-Scargle and the Phase Dispersion Minimization algorithms. The number of independent observations range between 63 and 73. The newly discovered variables in this study, 157 in total in three different known OCs, are classified based on their light curve shapes, periods, amplitudes and their location in the corresponding color-magnitude (J -Ks ,Ks) and color-color (H -Ks , J - H) diagrams. We found 5 possible Cepheid stars which, based on the period-luminosity relation, are very likely type II Cepheids located behind the bulge. Among the newly discovered variables, there are eclipsing binaries, δ Scuti, as well as background RR Lyrae stars. Using the new version of the Wilson & Devinney code as well as the "Physics Of Eclipsing Binaries" (PHOEBE) code, we analyzed some of the best eclipsing binaries we discovered. Our results show that these studied systems turn out to be ranging from detached to double-contact binaries, with low eccentricities and high inclinations of approximately 80°. Their surface temperatures range between 3500 K and 8000 K.

  9. Evolution of massive stars in very young clusters and associations

    International Nuclear Information System (INIS)

    Stothers, R.B.

    1985-01-01

    The stellar content of very young galactic clusters and associations with well-determined ages has been analyzed statistically to derive information about stellar evolution at high masses. The adopted approach is semiempirical and uses natural spectroscopic groups of stars on the H-R diagram, together with the stars' apparent magnitudes. Cluster distance moduli are not used. Only the most basic elements of stellar evolution theory are required as input. For stellar aggregates with main-sequence turnups at spectral types between O9 and B2, the following conclusions have emerged: (1) O-type main-sequence stars evolve to a spectral type of B1 during core hydrogen burning; (2) most of the O-type blue stragglers are newly formed massive stars, burning core hydrogen; (3) supergiants lying redward of the turnup, as well as most, or all, of the Wolf-Rayet stars, are burning core helium; (4) Wolf-Rayet stars originally had masses greater than 30--40 M/sub sun/, while known M-type supergiants evolved from star less massive than approx.30 M/sub sun/; (5) phases of evolution following core helium burning are unobservably rapid, presumably on account of copious neutrino emission; and (6) formation of stars of high mass continues vigorously in most young clusters and association for approx.8 x 10 6 yr. The important result concerning the evolutionary status of the supergiants depends only on the total number of these stars and not on how they are distributed between blue and red types; the result, however, may be sensitive to the assumed amount of convective core overshooting. Conclusions in the present work refer chiefly to luminous stars in the mass range 10--40 M/sub sun/, belonging to aggregates in the age range (6--25) x 10 6 yr

  10. Hierarchical Star Formation in Turbulent Media: Evidence from Young Star Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Grasha, K.; Calzetti, D. [Astronomy Department, University of Massachusetts, Amherst, MA 01003 (United States); Elmegreen, B. G. [IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY (United States); Adamo, A.; Messa, M. [Department of Astronomy, The Oskar Klein Centre, Stockholm University, Stockholm (Sweden); Aloisi, A.; Bright, S. N.; Lee, J. C.; Ryon, J. E.; Ubeda, L. [Space Telescope Science Institute, Baltimore, MD (United States); Cook, D. O. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA (United States); Dale, D. A. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY (United States); Fumagalli, M. [Institute for Computational Cosmology and Centre for Extragalactic Astronomy, Department of Physics, Durham University, Durham (United Kingdom); Gallagher III, J. S. [Department of Astronomy, University of Wisconsin–Madison, Madison, WI (United States); Gouliermis, D. A. [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Grebel, E. K. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120, Heidelberg (Germany); Kahre, L. [Department of Astronomy, New Mexico State University, Las Cruces, NM (United States); Kim, H. [Gemini Observatory, La Serena (Chile); Krumholz, M. R., E-mail: kgrasha@astro.umass.edu [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia)

    2017-06-10

    We present an analysis of the positions and ages of young star clusters in eight local galaxies to investigate the connection between the age difference and separation of cluster pairs. We find that star clusters do not form uniformly but instead are distributed so that the age difference increases with the cluster pair separation to the 0.25–0.6 power, and that the maximum size over which star formation is physically correlated ranges from ∼200 pc to ∼1 kpc. The observed trends between age difference and separation suggest that cluster formation is hierarchical both in space and time: clusters that are close to each other are more similar in age than clusters born further apart. The temporal correlations between stellar aggregates have slopes that are consistent with predictions of turbulence acting as the primary driver of star formation. The velocity associated with the maximum size is proportional to the galaxy’s shear, suggesting that the galactic environment influences the maximum size of the star-forming structures.

  11. Towards a Unified View of Inhomogeneous Stellar Winds in Isolated Supergiant Stars and Supergiant High Mass X-Ray Binaries

    Science.gov (United States)

    Martínez-Núñez, Silvia; Kretschmar, Peter; Bozzo, Enrico; Oskinova, Lidia M.; Puls, Joachim; Sidoli, Lara; Sundqvist, Jon Olof; Blay, Pere; Falanga, Maurizio; Fürst, Felix; Gímenez-García, Angel; Kreykenbohm, Ingo; Kühnel, Matthias; Sander, Andreas; Torrejón, José Miguel; Wilms, Jörn

    2017-10-01

    Massive stars, at least ˜10 times more massive than the Sun, have two key properties that make them the main drivers of evolution of star clusters, galaxies, and the Universe as a whole. On the one hand, the outer layers of massive stars are so hot that they produce most of the ionizing ultraviolet radiation of galaxies; in fact, the first massive stars helped to re-ionize the Universe after its Dark Ages. Another important property of massive stars are the strong stellar winds and outflows they produce. This mass loss, and finally the explosion of a massive star as a supernova or a gamma-ray burst, provide a significant input of mechanical and radiative energy into the interstellar space. These two properties together make massive stars one of the most important cosmic engines: they trigger the star formation and enrich the interstellar medium with heavy elements, that ultimately leads to formation of Earth-like rocky planets and the development of complex life. The study of massive star winds is thus a truly multidisciplinary field and has a wide impact on different areas of astronomy. In recent years observational and theoretical evidences have been growing that these winds are not smooth and homogeneous as previously assumed, but rather populated by dense "clumps". The presence of these structures dramatically affects the mass loss rates derived from the study of stellar winds. Clump properties in isolated stars are nowadays inferred mostly through indirect methods (i.e., spectroscopic observations of line profiles in various wavelength regimes, and their analysis based on tailored, inhomogeneous wind models). The limited characterization of the clump physical properties (mass, size) obtained so far have led to large uncertainties in the mass loss rates from massive stars. Such uncertainties limit our understanding of the role of massive star winds in galactic and cosmic evolution. Supergiant high mass X-ray binaries (SgXBs) are among the brightest X

  12. A BINARY ORBIT FOR THE MASSIVE, EVOLVED STAR HDE 326823, A WR+O SYSTEM PROGENITOR

    International Nuclear Information System (INIS)

    Richardson, N. D.; Gies, D. R.; Williams, S. J.

    2011-01-01

    The hot star HDE 326823 is a candidate transition-phase object that is evolving into a nitrogen-enriched Wolf-Rayet star. It is also a known low-amplitude, photometric variable with a 6.123 day period. We present new, high- and moderate-resolution spectroscopy of HDE 326823, and we show that the absorption lines show coherent Doppler shifts with this period while the emission lines display little or no velocity variation. We interpret the absorption line shifts as the orbital motion of the apparently brighter star in a close, interacting binary. We argue that this star is losing mass to a mass gainer star hidden in a thick accretion torus and to a circumbinary disk that is the source of the emission lines. HDE 326823 probably belongs to a class of objects that produce short-period WR+O binaries.

  13. COCOA code for creating mock observations of star cluster models

    Science.gov (United States)

    Askar, Abbas; Giersz, Mirek; Pych, Wojciech; Dalessandro, Emanuele

    2018-04-01

    We introduce and present results from the COCOA (Cluster simulatiOn Comparison with ObservAtions) code that has been developed to create idealized mock photometric observations using results from numerical simulations of star cluster evolution. COCOA is able to present the output of realistic numerical simulations of star clusters carried out using Monte Carlo or N-body codes in a way that is useful for direct comparison with photometric observations. In this paper, we describe the COCOA code and demonstrate its different applications by utilizing globular cluster (GC) models simulated with the MOCCA (MOnte Carlo Cluster simulAtor) code. COCOA is used to synthetically observe these different GC models with optical telescopes, perform point spread function photometry, and subsequently produce observed colour-magnitude diagrams. We also use COCOA to compare the results from synthetic observations of a cluster model that has the same age and metallicity as the Galactic GC NGC 2808 with observations of the same cluster carried out with a 2.2 m optical telescope. We find that COCOA can effectively simulate realistic observations and recover photometric data. COCOA has numerous scientific applications that maybe be helpful for both theoreticians and observers that work on star clusters. Plans for further improving and developing the code are also discussed in this paper.

  14. A Near-Infrared Surface Compositional Analysis of Blue Straggler Stars in Open Cluster M67

    Science.gov (United States)

    Seifert, Richard; Gosnell, Natalie M.; Sneden, Chris

    2017-06-01

    Blue straggler stars (BSSs) are stars whose evolutions have been directly impacted by binary system interactions. By obtaining additional mass from a companion, BSSs are able to live prolonged lives on the main sequence. BSSs bring confusions to studies that rely on a standard stellar evolutionary track when modeling stellar populations, since the presence of BSSs can make a population appear younger than it actually is. It is important to have a better understanding of the mechanisms that drive BSS formation so that BSSs may be correctly accounted for in future studies.Blue stagglers in clusters primarily form in one of two ways; either from a close binary system in which one star accretes mass from its companion star or from a hierarchical trinary system in which a close inner binary merges as a result of perturbations from a farther-orbiting third star. In order to investigate the nature of this mass transfer, We obtained IGRINS H-band high resolution spectra of 6 BSSs and 12 red giant stars in open cluster M67. Using a grid of synthetic spectra obtained from the line analysis code MOOG, we identified and fit abundances for absorption lines of iron, silicon, and carbon. Depending on the evolutionary stage of the donor star, the abundance of carbon in the resulting BSS can be affected by mixing during the mass transfer. By analyzing the abundance of carbon in our targets, we find that [Fe/H] ~= 0 and [C/H] ~= 0. We see no evidence of depletion of carbon from RGB-phase mass transfer or enhancement of carbon from AGB-phase mass transfer, implying that the mass transfer occured earlier in the donar star's evolution.Funding for this research comes from the John W. Cox endowment for the Advanced Studies in Astronomy. For support of this work we acknowledge NSF grants AST-1211585 and AST-1616040 to CS. The successful development of the IGRINS spectrograph has resulted from the combined efforts of teams at the University of Texas at Austin and the Korea Astronomy and

  15. Fluorine Abundances of AGB Stars in Stellar Clusters

    Science.gov (United States)

    Hren, A.; Lebzelter, T.; Aringer, B.; Hinkle, K. H.; Nowotny, W.

    2015-08-01

    We have measured the abundance of fluorine, [F/Fe], in a number of AGB stars in stellar clusters have correlated the results with their C/O ratios. This allows us to investigate the change in the fluorine abundance along the evolution on the giant branch. The target list includes primarily O-rich stars in three LMC globular clusters - NGC 1806, NGC 1846 and NGC 1978 - as well as Rup 106 and 47 Tuc in our Galaxy. The observational data were obtained with the PHOENIX spectrograph, and the COMA code was used for modelling the synthetic spectra. Within individual clusters, we find consistent [F/Fe] values at similar C/O for most of our target stars.

  16. Low-mass stars in globular clusters. III. The mass function of 47 Tucanae.

    Science.gov (United States)

    de Marchi, G.; Paresce, F.

    1995-12-01

    We have used the WFPC2 on board HST to investigate the stellar population in a field located 4'6 E of the center of the globular cluster 47 Tuc (NGC 104), close to the half-mass radius, through wide band imaging at 606 and 812nm. A total of ~3000 stars are accurately classified by two-color photometry to form a color-magnitude diagram extending down to a limiting magnitude m_814_=~m_I_=~24. A rich cluster main sequence is detected spanning the range from m_814_=~18 through m_814_=~23, where it spreads considerably due to the increasing photometric uncertainty and galaxy contamination. A secondary sequence of objects is also detected, parallel to the main sequence, as expected for a population of binary stars. The measured binary fraction in the range 195%. The main sequence luminosity function obtained from the observed CMD increases with decreasing luminosity following a power-law trend with index α=~0.15 in the range 5crowding. On the basis of the available mass-luminosity relation for this metallicity, the resultant mass function shows a power-law increase in numbers for decreasing masses in the range 0.8-0.3Msun_ with a slope α=~1.5, but then flattens out in the 0.3-0.15Msun_ range. The comparison of the mass function of 47 Tuc with that of NGC 6397 (Paper I) and of M 15 (Paper II), previously investigated with the same instrumentation, suggests that the stellar population near the half-mass radius of these clusters should not be very sensitive to either internal or externally-driven dynamical processes. The difference between their mass functions could then be attributed to metallicity, reflecting an intrinsic difference in their initial mass functions, unless mass-segregation is stronger in 47 Tuc than in the other two clusters. This latter circumstance could be due, for instance, to the large number of binaries discovered in 47 Tuc. In all cases, however, the mass function is found to flatten below 0.3Msun_ and the flattening is most likely an intrinsic

  17. Search for OB stars running away from young star clusters. I. NGC 6611

    Science.gov (United States)

    Gvaramadze, V. V.; Bomans, D. J.

    2008-11-01

    N-body simulations have shown that the dynamical decay of the young (~1 Myr) Orion Nebula cluster could be responsible for the loss of at least half of its initial content of OB stars. This result suggests that other young stellar systems could also lose a significant fraction of their massive stars at the very beginning of their evolution. To confirm this expectation, we used the Mid-Infrared Galactic Plane Survey (completed by the Midcourse Space Experiment satellite) to search for bow shocks around a number of young (⪉several Myr) clusters and OB associations. We discovered dozens of bow shocks generated by OB stars running away from these stellar systems, supporting the idea of significant dynamical loss of OB stars. In this paper, we report the discovery of three bow shocks produced by O-type stars ejected from the open cluster NGC 6611 (M16). One of the bow shocks is associated with the O9.5Iab star HD165319, which was suggested to be one of “the best examples for isolated Galactic high-mass star formation” (de Wit et al. 2005, A&A, 437, 247). Possible implications of our results for the origin of field OB stars are discussed.

  18. Variable stars in metal-rich globular clusters. IV. Long-period variables in NGC 6496

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Mohamad A. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany); Layden, Andrew C.; Guldenschuh, Katherine A. [Physics and Astronomy Department, Bowling Green State University, Bowling Green, OH 43403 (United States); Reichart, D. E.; Ivarsen, K. M.; Haislip, J. B.; Nysewander, M. C.; LaCluyze, A. P. [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599 (United States); Welch, Douglas L., E-mail: mabbas@ari.uni-heidelberg.de, E-mail: laydena@bgsu.edu [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8 S 4M1 (Canada)

    2015-02-01

    We present VI-band photometry for stars in the metal-rich globular cluster NGC 6496. Our time-series data were cadenced to search for long-period variables (LPVs) over a span of nearly two years, and our variability search yielded the discovery of 13 new variable stars, of which 6 are LPVs, 2 are suspected LPVs, and 5 are short-period eclipsing binaries. An additional star was found in the ASAS database, and we clarify its type and period. We argue that all of the eclipsing binaries are field stars, while five to six of the LPVs are members of NGC 6496. We compare the period–luminosity distribution of these LPVs with those of LPVs in the Large Magellanic Cloud and 47 Tucanae, and with theoretical pulsation models. We also present a VI color–magnitude diagram, display the evolutionary states of the variables, and match isochrones to determine a reddening of E(B−V)= 0.21±0.02 mag and apparent distance modulus of 15.60±0.15 mag.

  19. Variable Stars in Large Magellanic Cloud Globular Clusters. III. Reticulum

    Science.gov (United States)

    Kuehn, Charles A.; Dame, Kyra; Smith, Horace A.; Catelan, Márcio; Jeon, Young-Beom; Nemec, James M.; Walker, Alistair R.; Kunder, Andrea; Pritzl, Barton J.; De Lee, Nathan; Borissova, Jura

    2013-06-01

    This is the third in a series of papers studying the variable stars in old globular clusters in the Large Magellanic Cloud. The primary goal of this series is to look at how the characteristics and behavior of RR Lyrae stars in Oosterhoff-intermediate systems compare to those of their counterparts in Oosterhoff-I/II systems. In this paper we present the results of our new time-series BVI photometric study of the globular cluster Reticulum. We found a total of 32 variables stars (22 RRab, 4 RRc, and 6 RRd stars) in our field of view. We present photometric parameters and light curves for these stars. We also present physical properties, derived from Fourier analysis of light curves, for some of the RR Lyrae stars. We discuss the Oosterhoff classification of Reticulum and use our results to re-derive the distance modulus and age of the cluster. Based on observations taken with the SMARTS 1.3 m telescope operated by the SMARTS Consortium and observations taken at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  20. SIGNATURES OF DARK MATTER BURNING IN NUCLEAR STAR CLUSTERS

    International Nuclear Information System (INIS)

    Casanellas, Jordi; Lopes, IlIdio

    2011-01-01

    In order to characterize how dark matter (DM) annihilation inside stars changes the aspect of a stellar cluster, we computed the evolution until the ignition of the He burning of stars from 0.7 M sun to 3.5 M sun within halos of DM with different characteristics. We found that, when a cluster is surrounded by a dense DM halo, the positions of the cluster' stars in the H-R diagram have a brighter and hotter turnoff point than in the classical scenario without DM, therefore giving the cluster a younger appearance. The high DM densities required to produce these effects are expected only in very specific locations, such as near the center of our Galaxy. In particular, if DM is formed by the 8 GeV weakly interacting massive particles recently invoked to reconcile the results from direct detection experiments, then this signature is predicted for halos of DM with a density ρ χ = 3 x 10 5 GeV cm -3 . A DM density gradient inside the stellar cluster would result in a broader main sequence, turnoff, and red giant branch regions. Moreover, we found that for very high DM halo densities the bottom of the isochrones in the H-R diagram rises to higher luminosities, leading to a characteristic signature on the stellar cluster. We argue that this signature could be used to indirectly probe the presence of DM particles in the location of a cluster.

  1. The Frequency Of Binary Star Interlopers Amongst Transitional Discs

    OpenAIRE

    Ruíz-Rodríguez, D.; Ireland, M.; Cieza, L.; Kraus, A.

    2016-01-01

    Using Non-Redundant Mask interferometry (NRM), we searched for binary companions to objects previously classified as Transitional Disks (TD). These objects are thought to be an evolutionary stage between an optically thick disk and optically thin disk. We investigate the presence of a stellar companion as a possible mechanism of material depletion in the inner region of these disks, which would rule out an ongoing planetary formation process in distances comparable to the binary separation. F...

  2. STABLE CONIC-HELICAL ORBITS OF PLANETS AROUND BINARY STARS: ANALYTICAL RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Oks, E. [Physics Department, 206 Allison Lab., Auburn University, Auburn, AL 36849 (United States)

    2015-05-10

    Studies of planets in binary star systems are especially important because it was estimated that about half of binary stars are capable of supporting habitable terrestrial planets within stable orbital ranges. One-planet binary star systems (OBSS) have a limited analogy to objects studied in atomic/molecular physics: one-electron Rydberg quasimolecules (ORQ). Specifically, ORQ, consisting of two fully stripped ions of the nuclear charges Z and Z′ plus one highly excited electron, are encountered in various plasmas containing more than one kind of ion. Classical analytical studies of ORQ resulted in the discovery of classical stable electronic orbits with the shape of a helix on the surface of a cone. In the present paper we show that despite several important distinctions between OBSS and ORQ, it is possible for OBSS to have stable planetary orbits in the shape of a helix on a conical surface, whose axis of symmetry coincides with the interstellar axis; the stability is not affected by the rotation of the stars. Further, we demonstrate that the eccentricity of the stars’ orbits does not affect the stability of the helical planetary motion if the center of symmetry of the helix is relatively close to the star of the larger mass. We also show that if the center of symmetry of the conic-helical planetary orbit is relatively close to the star of the smaller mass, a sufficiently large eccentricity of stars’ orbits can switch the planetary motion to the unstable mode and the planet would escape the system. We demonstrate that such planets are transitable for the overwhelming majority of inclinations of plane of the stars’ orbits (i.e., the projections of the planet and the adjacent start on the plane of the sky coincide once in a while). This means that conic-helical planetary orbits at binary stars can be detected photometrically. We consider, as an example, Kepler-16 binary stars to provide illustrative numerical data on the possible parameters and the

  3. THE STRUCTURE OF THE STAR-FORMING CLUSTER RCW 38

    Energy Technology Data Exchange (ETDEWEB)

    Winston, E. [ESA-ESTEC (SRE-SA), Keplerlaan 1, 2201 AZ Noordwijk ZH (Netherlands); Wolk, S. J.; Bourke, T. L.; Spitzbart, B. [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Megeath, S. T. [Ritter Observatory, Department of Physics and Astronomy, University of Toledo, 2801 West Bancroft Avenue, Toledo, OH 43606 (United States); Gutermuth, R., E-mail: ewinston@rssd.esa.int [Five Colleges Astronomy Department, Smith College, Northampton, MA 01027 (United States)

    2011-12-20

    We present a study of the structure of the high-mass star-forming region RCW 38 and the spatial distribution of its young stellar population. Spitzer Infrared Array Camera (IRAC) photometry (3-8 {mu}m) is combined with Two Micron All Sky Survey near-IR data to identify young stellar objects (YSOs) by IR-excess emission from their circumstellar material. Chandra X-ray data are used to identify class III pre-main-sequence stars lacking circumstellar material. We identify 624 YSOs: 23 class 0/I and 90 flat spectrum protostars, 437 class II stars, and 74 class III stars. We also identify 29 (27 new) O star candidates over the IRAC field. Seventy-two stars exhibit IR-variability, including 7 class 0/I and 12 flat spectrum YSOs. A further 177 tentative candidates are identified by their location in the IRAC [3.6] versus [3.6]-[5.8] color-magnitude diagram. We find strong evidence of subclustering in the region. Three subclusters were identified surrounding the central cluster, with massive and variable stars in each subcluster. The central region shows evidence of distinct spatial distributions of the protostars and pre-main-sequence stars. A previously detected IR cluster, DB2001{sub O}bj36, has been established as a subcluster of RCW 38. This suggests that star formation in RCW 38 occurs over a more extended area than previously thought. The gas-to-dust ratio is examined using the X-ray derived hydrogen column density, N{sub H} and the K-band extinction, and found to be consistent with the diffuse interstellar medium, in contrast with Serpens and NGC 1333. We posit that the high photoionizing flux of massive stars in RCW 38 affects the agglomeration of the dust grains.

  4. BSDB: A New Consistent Designation Scheme for Identifying Objects in Binary and Multiple Stars

    Directory of Open Access Journals (Sweden)

    Kovaleva D. A.

    2015-06-01

    Full Text Available The new consistent scheme for designation of objects in binary and multiple systems, BSDB, is described. It was developed in the frame of the Binary star DataBase, BDB (http://www.inasan.ru, due to necessity of a unified and consistent system for designation of objects in the database, and the name of the designation scheme was derived from that of the database. The BSDB scheme covers all types of observational data. Three classes of objects introduced within the BSDB nomenclature provide correct links between objects and data, what is especially important for complex multiple stellar systems. The final stage of establishing the BSDB scheme is compilation of the Identification List of Binaries, ILB, where all known objects in binary and multiple stars are presented with their BSDB identifiers along with identifiers according to major catalogues and lists.

  5. Formation of Neutral Disk-Like Zone Around the Active Hot Stars in Symbiotic Binaries

    Directory of Open Access Journals (Sweden)

    Cariková Z.

    2012-06-01

    Full Text Available In this contribution we present the ionization structure in the enhanced wind from the hot star in symbiotic binaries during active phases. Rotation of the hot star leads to the compression of the outflowing material towards its equatorial plane. As a result, a neutral disk-like zone around the active hot star near the orbital plane is created. We modeled the compression of the wind and calculated the neutral disk-like zone in the enhanced wind from the hot star using the equation of the photoionization equilibrium. the presence of such neutral disk-like zones was also suggested on the basis of the modeling the spectral energy distribution of symbiotic binaries. We confront the calculated ionization structures in the enhanced wind from the hot star with the observations. the calculated column density of the neutral hydrogen atoms in the neutral disk-like zone and the emission measure of the ionized part of the wind from the hot star are in a good agreement with the quantities derived from observations during active phases. the presence of such neutral disk-like zones is transient, being connected with the active phases of symbiotic binaries. During quiescent phases, such neutral disk-like zones cannot be created because of insufficient mass-loss rate from the hot star.

  6. Photometric investigation of possible binary occurrence in the central stars of seventeen planetary nebulae

    International Nuclear Information System (INIS)

    Drummond, J.D. III.

    1980-01-01

    A comprehensive literature search was conducted for all possible bihary central stars in planetary nebulae. The results, which include all known and suspected visual, spectroscopic, and spectrum binaries, as well as all reported variable central stars, are presented in a series of tables. A photoelectric study was conducted in order to determine the status of short period (on the order of hours) variability of the central regions of seventeen planetary nebulae. Only the stellar appearing planetary nebula M1-2 (PK 133-8 0 1) was found to be variable. Its short (4.0002 hours) period suggests that it may be only the second eclipsing binary found among central stars to date. A method of concentric apertures was developed to determine the amount of light contributed by the central star vis-a-vis the nebula through a given aperture and filter. The procedure enabled UBV magnitudes and colors (and the errors) of central stars to be measured, including some in the sample of seventeen for which no previous values have been published. Mean nebular UBV magnitudes, surface brightnesses, and color indices were also found with the technique, and represent the first such published measurements. Various UBV two-parameter were constructed, revealing possible nebular/stellar sequences; a star-plus-nebula two-color diagram identifies three spectral classes of central stars, and two suspected binaries in the seventeen studied

  7. STAR FORMATION AND RELAXATION IN 379 NEARBY GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Cohen, Seth A.; Hickox, Ryan C.; Wegner, Gary A.

    2015-01-01

    We investigate the relationship between star formation (SF) and level of relaxation in a sample of 379 galaxy clusters at z < 0.2. We use data from the Sloan Digital Sky Survey to measure cluster membership and level of relaxation, and to select star-forming galaxies based on mid-infrared emission detected with the Wide-Field Infrared Survey Explorer. For galaxies with absolute magnitudes M r < −19.5, we find an inverse correlation between SF fraction and cluster relaxation: as a cluster becomes less relaxed, its SF fraction increases. Furthermore, in general, the subtracted SF fraction in all unrelaxed clusters (0.117 ± 0.003) is higher than that in all relaxed clusters (0.097 ± 0.005). We verify the validity of our SF calculation methods and membership criteria through analysis of previous work. Our results agree with previous findings that a weak correlation exists between cluster SF and dynamical state, possibly because unrelaxed clusters are less evolved relative to relaxed clusters

  8. Electronographic photometry of star clusters in the Magellanic Clouds

    International Nuclear Information System (INIS)

    Walker, M.F.

    1979-01-01

    Electronographic magnitudes and colours of 78 stars in the cluster Hodge 11 in the Large Magellanic Cloud have been measured to V = 21.5 on electrographs taken with a Spectracon image-converter attached to the focus of the 1.5-m (60-inch) Cerro Tololo reflector. The zero point of the electronographic photometry was provided by photoelectric observations of four stars in the cluster field using the same telescope. The colour-magnitude diagram of the cluster consists of an evolved main sequence, whose termination point corresponds to an age of about 6 x 10 8 yr, but with a giant branch which is displaced blueward by about Δ(B-V) 0 = 0.4 from the positions of the giant branches of open clusters of similar age in our Galaxy. (author)

  9. The Formation and Early Evolution of Embedded Massive Star Clusters

    Science.gov (United States)

    Barnes, Peter

    We propose to combine Spitzer, WISE, Herschel, and other archival spacecraft data with an existing ground- and space-based mm-wave to near-IR survey of molecular clouds over a large portion of the Milky Way, in order to systematically study the formation and early evolution of massive stars and star clusters, and provide new observational calibrations for a theoretical paradigm of this key astrophysical problem. Central Objectives: The Galactic Census of High- and Medium-mass Protostars (CHaMP) is a large, unbiased, uniform, and panchromatic survey of massive star and cluster formation and early evolution, covering 20°x6° of the Galactic Plane. Its uniqueness lies in the comprehensive molecular spectroscopy of 303 massive dense clumps, which have also been included in several archival spacecraft surveys. Our objective is a systematic demographic analysis of massive star and cluster formation, one which has not been possible without knowledge of our CHaMP cloud sample, including all clouds with embedded clusters as well as those that have not yet formed massive stars. For proto-clusters deeply embedded within dense molecular clouds, analysis of these space-based data will: 1. Yield a complete census of Young Stellar Objects in each cluster. 2. Allow systematic measurements of embedded cluster properties: spectral energy distributions, luminosity functions, protostellar and disk fractions, and how these vary with cluster mass, age, and density. Combined with other, similarly complete and unbiased infrared and mm data, CHaMP's goals include: 3. A detailed comparison of the embedded stellar populations with their natal dense gas to derive extinction maps, star formation efficiencies and feedback effects, and the kinematics, physics, and chemistry of the gas in and around the clusters. 4. Tying the demographics, age spreads, and timescales of the clusters, based on pre-Main Sequence evolution, to that of the dense gas clumps and Giant Molecular Clouds. 5. A

  10. Globular Cluster Formation at High Density: A Model for Elemental Enrichment with Fast Recycling of Massive-star Debris

    Energy Technology Data Exchange (ETDEWEB)

    Elmegreen, Bruce G., E-mail: bge@us.ibm.com [IBM Research Division, T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States)

    2017-02-10

    The self-enrichment of massive star clusters by p -processed elements is shown to increase significantly with increasing gas density as a result of enhanced star formation rates and stellar scatterings compared to the lifetime of a massive star. Considering the type of cloud core where a globular cluster (GC) might have formed, we follow the evolution and enrichment of the gas and the time dependence of stellar mass. A key assumption is that interactions between massive stars are important at high density, including interactions between massive stars and massive-star binaries that can shred stellar envelopes. Massive-star interactions should also scatter low-mass stars out of the cluster. Reasonable agreement with the observations is obtained for a cloud-core mass of ∼4 × 10{sup 6} M {sub ⊙} and a density of ∼2 × 10{sup 6} cm{sup −3}. The results depend primarily on a few dimensionless parameters, including, most importantly, the ratio of the gas consumption time to the lifetime of a massive star, which has to be low, ∼10%, and the efficiency of scattering low-mass stars per unit dynamical time, which has to be relatively large, such as a few percent. Also for these conditions, the velocity dispersions of embedded GCs should be comparable to the high gas dispersions of galaxies at that time, so that stellar ejection by multistar interactions could cause low-mass stars to leave a dwarf galaxy host altogether. This could solve the problem of missing first-generation stars in the halos of Fornax and WLM.

  11. Joint LIGO and TAMA300 search for gravitational waves from inspiralling neutron star binaries

    International Nuclear Information System (INIS)

    Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Anderson, S.B.; Araya, M.; Armandula, H.; Asiri, F.; Barish, B.C.; Barnes, M.; Barton, M.A.; Bhawal, B.; Billingsley, G.; Black, E.; Blackburn, K.; Bork, R.; Brown, D.A.; Busby, D.; Cardenas, L.; Chandler, A.

    2006-01-01

    We search for coincident gravitational wave signals from inspiralling neutron star binaries using LIGO and TAMA300 data taken during early 2003. Using a simple trigger exchange method, we perform an intercollaboration coincidence search during times when TAMA300 and only one of the LIGO sites were operational. We find no evidence of any gravitational wave signals. We place an observational upper limit on the rate of binary neutron star coalescence with component masses between 1 and 3M · of 49 per year per Milky Way equivalent galaxy at a 90% confidence level. The methods developed during this search will find application in future network inspiral analyses

  12. Evolution of rotating star clusters at the inelastic-collision stage. II. Dynamics of a disk of gas and stars

    International Nuclear Information System (INIS)

    Romanova, M.M.

    1985-01-01

    The dynamics of a gas--star disk embedded in a dense, mildly oblate (flattening epsilon-c or approx. =0.2--0.3 the stable disk will survive for at least half the cluster evolution time. The possibility of a thin disk of stars existing inside a dense star cluster is considered. For small epsilon-c and for disk member stars having > or approx. =0.04 the mass of the cluster members, collisions between cluster and disk stars will have no effect on the disk evolution prior to instability

  13. STAR CLUSTER DISRUPTION IN THE STARBURST GALAXY MESSIER 82

    International Nuclear Information System (INIS)

    Li, Shuo; Li, Chengyuan; De Grijs, Richard; Anders, Peter

    2015-01-01

    Using high-resolution, multiple-passband Hubble Space Telescope images spanning the entire optical/near-infrared wavelength range, we obtained a statistically complete U-band-selected sample of 846 extended star clusters across the disk of the nearby starburst galaxy M82. Based on a careful analysis of the clusters' spectral energy distributions, we determined their galaxy-wide age and mass distributions. The M82 clusters exhibit three clear peaks in their age distribution, thus defining relatively young, log (t yr –1 ) ≤ 7.5, intermediate-age, log (t yr –1 ) in [7.5, 8.5], and old samples, log (t yr –1 ) ≥ 8.5. Comparison of the completeness-corrected mass distributions offers a firm handle on the galaxy's star cluster disruption history. The most massive star clusters in the young and old samples are (almost) all concentrated in the most densely populated central region, while the intermediate-age sample's most massive clusters are more spatially dispersed, which may reflect the distribution of the highest-density gas throughout the galaxy's evolutionary history, combined with the solid-body nature of the galaxy's central region

  14. Dwarf carbon stars are likely metal-poor binaries and unlikely hosts to carbon planets

    Science.gov (United States)

    Whitehouse, Lewis J.; Farihi, J.; Green, P. J.; Wilson, T. G.; Subasavage, J. P.

    2018-06-01

    Dwarf carbon stars make up the largest fraction of carbon stars in the Galaxy with ≈1200 candidates known to date primarily from the Sloan Digital Sky Survey. They either possess primordial carbon-enhancements, or are polluted by mass transfer from an evolved companion such that C/O is enhanced beyond unity. To directly test the binary hypothesis, a radial velocity monitoring survey has been carried out on 28 dwarf carbon stars, resulting in the detection of variations in 21 targets. Using Monte Carlo simulations,this detection fraction is found to be consistent with a 100% binary population and orbital periods on the order of hundreds of days. This result supports the post-mass transfer nature of dwarf carbon stars, and implies they are not likely hosts to carbon planets.

  15. Long-term captures of low-mass intruders by binary stars

    International Nuclear Information System (INIS)

    Hills, J.G.

    1983-01-01

    Intensive computer simulations were made of three families of encounters between a binary star and a low-mass intruder which previous work indicated have a high probability of producing long-lived triple-star systems. For comparison, a fourth family which produces few long-lived trinaries was also studied. In the first two families, the binary components are equally massive and the closest approach of the intruder to the center of mass of the binary is about two times its semimajor axis, a 0 . In Family 1, the orbit of the original binary is circular, e = 0, while in Family 2, e 0 = 0.95. In Family 3 one binary component is 100 times as massive as the other, the orbit is circular, and the low-mass intruder enters the binary at nearly zero impact parameter. The probability that the intruder is trapped for at least one revolution around the binary is 0.24, 0.46, and 0.51, respectively, for these three families of encounters. The fraction of the intruders surviving successive revolutions drops rapidly. However, one encounter in Family 1 and two in Family 3 resulted in the intruder making more than 300 revolutions around the inner binary before escaping. Some intruders remained bound for more than 20 000 revolutions of the inner binary. The longest duration captures occur when the intruder is thrown into an orbit with a very large semimajor axis. About 20% of the encounters in the three families result in the intruder being thrown into an orbit with a semimajor axis a>100 a 0 , while about 2% result in the intruder going into an orbit with a>1000 a 0 . Intruders thrown into these large semimajor axis orbits have the best chance of having their orbits stabilized by passing stars

  16. A New Catalog of Contact Binary Stars from ROTSE-I Sky Patrols

    Science.gov (United States)

    Gettel, S. J.; McKay, T. A.; Geske, M. T.

    2005-05-01

    Over 65,000 variable stars have been detected in the data from the ROTSE-I Sky Patrols. Using period-color and light curve selection techniques, about 5000 objects have been identified as contact binaries. This selection is tested for completeness against EW objects in the GCVS. By utilizing infrared color data from 2MASS, we fit a period-color-luminosity relation to these stars and estimate their distances.

  17. Are post-Newtonian templates faithful and effectual in detecting gravitational signals from neutron star binaries?

    International Nuclear Information System (INIS)

    Berti, E.; Pons, J. A.; Miniutti, G.; Gualtieri, L.; Ferrari, V.

    2002-01-01

    We compute the overlap function between post-Newtonian (PN) templates and gravitational signals emitted by binary systems composed of one neutron star and one point mass, obtained by a perturbative approach. The calculations are performed for different stellar models and for different detectors, to estimate how effectual and faithful the PN templates are, and to establish whether effects related to the internal structure of neutron stars may possibly be extracted by the matched filtering technique

  18. High-mass stars in Milky Way clusters

    Science.gov (United States)

    Negueruela, Ignacio

    2017-11-01

    Young open clusters are our laboratories for studying high-mass star formation and evolution. Unfortunately, the information that they provide is difficult to interpret, and sometimes contradictory. In this contribution, I present a few examples of the uncertainties that we face when confronting observations with theoretical models and our own assumptions.

  19. Star cluster evolution in dark matter dominated galaxies

    NARCIS (Netherlands)

    Praagman, Anneke; Hurley, Jarrod; Power, Chris

    We investigate the influence of the external tidal field of a dark matter halo on the dynamical evolution of star clusters using direct N-body simulations, where we assume that the halo is described by a Navarro, Frenk and White mass profile which has an inner density cusp. We assess how varying the

  20. Merger of white dwarf-neutron star binaries: Prelude to hydrodynamic simulations in general relativity

    International Nuclear Information System (INIS)

    Paschalidis, Vasileios; MacLeod, Morgan; Baumgarte, Thomas W.; Shapiro, Stuart L.

    2009-01-01

    White dwarf-neutron star binaries generate detectable gravitational radiation. We construct Newtonian equilibrium models of corotational white dwarf-neutron star (WDNS) binaries in circular orbit and find that these models terminate at the Roche limit. At this point the binary will undergo either stable mass transfer (SMT) and evolve on a secular time scale, or unstable mass transfer (UMT), which results in the tidal disruption of the WD. The path a given binary will follow depends primarily on its mass ratio. We analyze the fate of known WDNS binaries and use population synthesis results to estimate the number of LISA-resolved galactic binaries that will undergo either SMT or UMT. We model the quasistationary SMT epoch by solving a set of simple ordinary differential equations and compute the corresponding gravitational waveforms. Finally, we discuss in general terms the possible fate of binaries that undergo UMT and construct approximate Newtonian equilibrium configurations of merged WDNS remnants. We use these configurations to assess plausible outcomes of our future, fully relativistic simulations of these systems. If sufficient WD debris lands on the NS, the remnant may collapse, whereby the gravitational waves from the inspiral, merger, and collapse phases will sweep from LISA through LIGO frequency bands. If the debris forms a disk about the NS, it may fragment and form planets.

  1. Interacting binaries

    International Nuclear Information System (INIS)

    Eggleton, P.P.; Pringle, J.E.

    1985-01-01

    This volume contains 15 review articles in the field of binary stars. The subjects reviewed span considerably, from the shortest period of interacting binaries to the longest, symbiotic stars. Also included are articles on Algols, X-ray binaries and Wolf-Rayet stars (single and binary). Contents: Preface. List of Participants. Activity of Contact Binary Systems. Wolf-Rayet Stars and Binarity. Symbiotic Stars. Massive X-ray Binaries. Stars that go Hump in the Night: The SU UMa Stars. Interacting Binaries - Summing Up

  2. The age distributions of clusters and field stars in the Small Magellanic Cloud — implications for star formation histories

    NARCIS (Netherlands)

    Kruijssen, J.M.D.|info:eu-repo/dai/nl/325799911; Lamers, H.J.G.L.M.|info:eu-repo/dai/nl/072834870

    2008-01-01

    Differences between the inferred star formation histories (SFHs) of star clusters and field stars seem to suggest distinct star formation processes for the two. The Small Magellanic Cloud (SMC) is an example of a galaxy where such a discrepancy is observed. We model the observed age distributions of

  3. A VLT/FLAMES STUDY OF THE PECULIAR INTERMEDIATE-AGE LARGE MAGELLANIC CLOUD STAR CLUSTER NGC 1846. I. KINEMATICS

    International Nuclear Information System (INIS)

    Mackey, A. D.; Da Costa, G. S.; Yong, D.; Ferguson, A. M. N.

    2013-01-01

    In this paper we present high-resolution VLT/FLAMES observations of red giant stars in the massive intermediate-age Large Magellanic Cloud star cluster NGC 1846, which, on the basis of its extended main-sequence turnoff (EMSTO), possesses an internal age spread of ≈300 Myr. We describe in detail our target selection and data reduction procedures, and construct a sample of 21 stars possessing radial velocities indicating their membership of NGC 1846 at high confidence. We consider high-resolution spectra of the planetary nebula Mo-17, and conclude that this object is also a member of the cluster. Our measured radial velocities allow us to conduct a detailed investigation of the internal kinematics of NGC 1846, the first time this has been done for an EMSTO system. The key result of this work is that the cluster exhibits a significant degree of systemic rotation, of a magnitude comparable to the mean velocity dispersion. Using an extensive suite of Monte Carlo models we demonstrate that, despite our relatively small sample size and the substantial fraction of unresolved binary stars in the cluster, the rotation signal we detect is very likely to be genuine. Our observations are in qualitative agreement with the predictions of simulations modeling the formation of multiple populations of stars in globular clusters, where a dynamically cold, rapidly rotating second generation is a common feature. NGC 1846 is less than one relaxation time old, so any dynamical signatures encoded during its formation ought to remain present.

  4. Dynamic Tides and the Evolution of Stars in Close Binaries

    OpenAIRE

    Willems, B.; Claret, A.

    2004-01-01

    In this talk, we review some recent advances in the theory of dynamic tides in close binaries. We particularly focus on the effects of resonances of dynamic tides with free oscillation modes and on the role of dynamic tides in the comparison of theoretically predicted and observationally inferred apsidal-motion rates.

  5. Velocity Curve Analysis of the Spectroscopic Binary Stars PV Pup ...

    Indian Academy of Sciences (India)

    are in good agreement with those obtained using the method of Lehmann-. Filhés. Key words. ... use their method to obtain the orbital elements of the four double-lined spectroscopic binary systems PV Pup, HD ... Observation shows that the photometric phase, φ, which is measured from the pho- tometric reference point ...

  6. New Galactic star clusters discovered in the VVV survey

    Science.gov (United States)

    Borissova, J.; Bonatto, C.; Kurtev, R.; Clarke, J. R. A.; Peñaloza, F.; Sale, S. E.; Minniti, D.; Alonso-García, J.; Artigau, E.; Barbá, R.; Bica, E.; Baume, G. L.; Catelan, M.; Chenè, A. N.; Dias, B.; Folkes, S. L.; Froebrich, D.; Geisler, D.; de Grijs, R.; Hanson, M. M.; Hempel, M.; Ivanov, V. D.; Kumar, M. S. N.; Lucas, P.; Mauro, F.; Moni Bidin, C.; Rejkuba, M.; Saito, R. K.; Tamura, M.; Toledo, I.

    2011-08-01

    Context. VISTA Variables in the Vía Láctea (VVV) is one of the six ESO Public Surveys operating on the new 4-m Visible and Infrared Survey Telescope for Astronomy (VISTA). VVV is scanning the Milky Way bulge and an adjacent section of the disk, where star formation activity is high. One of the principal goals of the VVV Survey is to find new star clusters of differentages. Aims: In order to trace the early epochs of star cluster formation we concentrated our search in the directions to those of known star formation regions, masers, radio, and infrared sources. Methods: The disk area covered by VVV was visually inspected using the pipeline processed and calibrated KS-band tile images for stellar overdensities. Subsequently, we examined the composite JHKS and ZJKS color images of each candidate. PSF photometry of 15 × 15 arcmin fields centered on the candidates was then performed on the Cambridge Astronomy Survey Unit reduced images. After statistical field-star decontamination, color-magnitude and color-color diagrams were constructed and analyzed. Results: We report the discovery of 96 new infrared open clusters and stellar groups. Most of the new cluster candidates are faint and compact (with small angular sizes), highly reddened, and younger than 5 Myr. For relatively well populated cluster candidates we derived their fundamental parameters such as reddening, distance, and age by fitting the solar-metallicity Padova isochrones to the color-magnitude diagrams. Based on observations gathered with VIRCAM, VISTA of the ESO as part of observing programs 172.B-2002Appendix A is available in electronic form at http://www.aanda.orgTable 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/532/A131

  7. THE STRUCTURAL EVOLUTION OF FORMING AND EARLY STAGE STAR CLUSTERS

    International Nuclear Information System (INIS)

    Jaehnig, Karl O.; Da Rio, Nicola; Tan, Jonathan C.

    2015-01-01

    We study the degree of angular substructure in the stellar position distribution of young members of Galactic star-forming regions, looking for correlations with distance from cluster center, surface number density of stars, and local dynamical age. To this end we adopt the catalog of members in 18 young (∼1-3 Myr) clusters from the Massive Young Star-Forming Complex Study in Infrared and X-ray Survey and the statistical analysis of the angular dispersion parameter, δ ADP, N . We find statistically significant correlation between δ ADP, N and physical projected distance from the center of the clusters, with the centers appearing smoother than the outskirts, consistent with more rapid dynamical processing on local dynamical, free-fall or orbital timescales. Similarly, smoother distributions are seen in regions of higher surface density, or older dynamical ages. These results indicate that dynamical processing that erases substructure is already well-advanced in young, sometimes still-forming, clusters. Such observations of the dissipation of substructure have the potential to constrain theoretical models of the dynamical evolution of young and forming clusters

  8. EVOLUTION OF SUPER STAR CLUSTER WINDS WITH STRONG COOLING

    International Nuclear Information System (INIS)

    Wuensch, Richard; Palous, Jan; Silich, Sergiy; Tenorio-Tagle, Guillermo; Munoz-Tunon, Casiana

    2011-01-01

    We study the evolution of super star cluster winds driven by stellar winds and supernova explosions. Time-dependent rates at which mass and energy are deposited into the cluster volume, as well as the time-dependent chemical composition of the re-inserted gas, are obtained from the population synthesis code Starburst99. These results are used as input for a semi-analytic code which determines the hydrodynamic properties of the cluster wind as a function of cluster age. Two types of winds are detected in the calculations. For the quasi-adiabatic solution, all of the inserted gas leaves the cluster in the form of a stationary wind. For the bimodal solution, some of the inserted gas becomes thermally unstable and forms dense warm clumps which accumulate inside the cluster. We calculate the evolution of the wind velocity and energy flux and integrate the amount of accumulated mass for clusters of different mass, radius, and initial metallicity. We also consider conditions with low heating efficiency of the re-inserted gas or mass loading of the hot thermalized plasma with the gas left over from star formation. We find that the bimodal regime and the related mass accumulation occur if at least one of the two conditions above is fulfilled.

  9. Characterization of the Praesepe star cluster by photometry and proper motions with 2MASS, PPMXL, and Pan-STARRS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, P. F.; Chen, W. P. [Department of Physics, National Central University, 300 Jhongda Road, Jhongli 32001, Taiwan (China); Lin, C. C.; Huang, C. K.; Panwar, N.; Lee, C. H. [Graduate Institute of Astronomy, National Central University, 300 Jhongda Road, Jhongli 32001, Taiwan (China); Pandey, A. K. [Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital 263129 (India); Tsai, M. F.; Tang, C.-H. [Department of Computer Science and Information Engineering, National Central University, 300 Jhongda Road, Jhongli 32001, Taiwan (China); Goldman, B. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Burgett, W. S.; Chambers, K. C.; Flewelling, H.; Heasley, J. N.; Hodapp, K. W.; Huber, M. E.; Jedicke, R.; Kaiser, N. [Institute for Astronomy, University of Hawai' i, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Draper, P. W. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Grav, T. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); and others

    2014-03-20

    Membership identification is the first step in determining the properties of a star cluster. Low-mass members in particular could be used to trace the dynamical history, such as mass segregation, stellar evaporation, or tidal stripping, of a star cluster in its Galactic environment. We identified member candidates of the intermediate-age Praesepe cluster (M44) with stellar masses ∼0.11-2.4 M {sub ☉}, using Panoramic Survey Telescope And Rapid Response System and Two Micron All Sky Survey photometry, and PPMXL proper motions. Within a sky area of 3° radius, 1040 candidates are identified, of which 96 are new inclusions. Using the same set of selection criteria on field stars, an estimated false positive rate of 16% was determined, suggesting that 872 of the candidates are true members. This most complete and reliable membership list allows us to favor the BT-Settl model over other stellar models. The cluster shows a distinct binary track above the main sequence, with a binary frequency of 20%-40%, and a high occurrence rate of similar mass pairs. The mass function is consistent with that of the disk population but shows a deficit of members below 0.3 solar masses. A clear mass segregation is evidenced, with the lowest-mass members in our sample being evaporated from this disintegrating cluster.

  10. How well can gravitational wave observations of coalescing binaries involving neutron stars constrain the neutron star equation of state?

    International Nuclear Information System (INIS)

    Bose, Sukanta

    2015-01-01

    The Advanced LIGO detectors began observation runs a few weeks ago. This has afforded relativists and astronomers the opportunity to use gravitational waves to improve our understanding of a variety of astronomical objects and phenomena. In this talk I will examine how well gravitational wave observations of coalescing binaries involving neutron stars might constrain the neutron star (NS) equation of state. These astrophysical constraints can improve our understanding of nuclear interactions in ways that complement the knowledge acquired from terrestrial labs. I will study the effects of different NS equations of states in both NS-NS and NS-Black Hole systems, with and without spin, on these constraint. (author)

  11. THE BRIGHTEST YOUNG STAR CLUSTERS IN NGC 5253

    Energy Technology Data Exchange (ETDEWEB)

    Calzetti, D. [Department of Astronomy, University of Massachusetts—Amherst, Amherst, MA 01003 (United States); Johnson, K. E. [Department of Astronomy, University of Virginia, Charlottesville, VA (United States); Adamo, A. [Department of Astronomy, The Oskar Klein Centre, Stockholm University, Stockholm (Sweden); Gallagher III, J. S.; Ryon, J. E. [Department of Astronomy, University of Wisconsin–Madison, Madison, WI (United States); Andrews, J. E. [Department of Astronomy, University of Arizona, Tucson, AZ (United States); Smith, L. J. [European Space Agency/Space Telescope Science Institute, Baltimore, MD (United States); Clayton, G. C. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA (United States); Lee, J. C.; Sabbi, E.; Ubeda, L.; Bright, S. N.; Whitmore, B. C.; Aloisi, A. [Space Telescope Science Institute, Baltimore, MD (United States); Kim, H. [Department of Astronomy, The University of Texas at Austin, Austin, TX (United States); Thilker, D. [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD (United States); Zackrisson, E. [Department of Physics and Astronomy, Uppsala University, Uppsala (Sweden); Kennicutt, R. C. [Institute of Astronomy, University of Cambridge, Cambridge (United Kingdom); Mink, S. E. de [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Amsterdam (Netherlands); Chandar, R., E-mail: calzetti@astro.umass.edu [Department of Physics and Astronomy, University of Toledo, Toledo, OH (United States); and others

    2015-10-01

    The nearby dwarf starburst galaxy NGC 5253 hosts a number of young, massive star clusters, the two youngest of which are centrally concentrated and surrounded by thermal radio emission (the “radio nebula”). To investigate the role of these clusters in the starburst energetics, we combine new and archival Hubble Space Telescope images of NGC 5253 with wavelength coverage from 1500 Å to 1.9 μm in 13 filters. These include Hα, Pβ, and Pα, and the imaging from the Hubble Treasury Program LEGUS (Legacy Extragalactic UV Survey). The extraordinarily well-sampled spectral energy distributions enable modeling with unprecedented accuracy the ages, masses, and extinctions of the nine optically brightest clusters (M{sub V} < −8.8) and the two young radio nebula clusters. The clusters have ages ∼1–15 Myr and masses ∼1 × 10{sup 4}–2.5 × 10{sup 5} M{sub ⊙}. The clusters’ spatial location and ages indicate that star formation has become more concentrated toward the radio nebula over the last ∼15 Myr. The most massive cluster is in the radio nebula; with a mass ∼2.5 × 10{sup 5} M{sub ⊙} and an age ∼1 Myr, it is 2–4 times less massive and younger than previously estimated. It is within a dust cloud with A{sub V} ∼ 50 mag, and shows a clear near-IR excess, likely from hot dust. The second radio nebula cluster is also ∼1 Myr old, confirming the extreme youth of the starburst region. These two clusters account for about half of the ionizing photon rate in the radio nebula, and will eventually supply about 2/3 of the mechanical energy in present-day shocks. Additional sources are required to supply the remaining ionizing radiation, and may include very massive stars.

  12. Formation of Compact Ellipticals in the merging star cluster scenario

    Science.gov (United States)

    Urrutia Zapata, Fernanda Cecilia; Theory and star formation group

    2018-01-01

    In the last years, extended old stellar clusters have been observed. They are like globular clusters (GCs) but with larger sizes(a limit of Re=10 pc is currently seen as reasonable). These extended objects (EOs) cover a huge range of mass. Objects at the low mass end with masses comparable to normal globular clusters are called extended clusters or faint fuzzies Larsen & Brodie (2000) and objects at the high-mass end are called ultra compact dwarf galaxies (UCDs). Ultra compact dwarf galaxies are compact object with luminositys above the brigtest known GCs. UCDs are more compact than typical dwarf galaxies but with comparable luminosities. Usually, a lower mass limit of 2 × 10^6 Solar masses is applied.Fellhauer & Kroupa (2002a,b) demostrated that object like ECs, FFs and UCDs can be the remnants of the merger of star clusters complexes, this scenario is called the Merging Star Cluster Scenario. Amore concise study was performed by Bruens et al. (2009, 2011).Our work tries to explain the formation of compact elliptical(cE). These objects are a comparatively rare class of spheroidal galaxies, possessing very small Re and high central surface brightnesses (Faber 1973). cEs have the same parameters as extended objects but they are slightly larger than 100 pc and the luminosities are in the range of -11 to -12 Mag.The standard formation sceanrio of these systems proposes a galaxy origin. CEs are the result of tidal stripping and truncation of nucleated larger systems. Or they could be a natural extension of the class of elliptical galaxies to lower luminosities and smaller sizes.We want to propose a completely new formation scenario for cEs. In our project we try to model cEs in a similar way that UCDs using the merging star cluster scenario extended to much higher masses and sizes. We think that in the early Universe we might have produced sufficiently strong star bursts to form cluster complexes which merge into cEs. So far it is observationally unknown if cEs are

  13. Chemical abundances of primary stars in the Sirius-like binary systems

    Science.gov (United States)

    Kong, X. M.; Zhao, G.; Zhao, J. K.; Shi, J. R.; Kumar, Y. Bharat; Wang, L.; Zhang, J. B.; Wang, Y.; Zhou, Y. T.

    2018-05-01

    Study of primary stars lying in Sirius-like systems with various masses of white dwarf (WD) companions and orbital separations is one of the key aspects to understand the origin and nature of barium (Ba) stars. In this paper, based on high-resolution and high-S/N spectra, we present systematic analysis of photospheric abundances for 18 FGK primary stars of Sirius-like systems including six giants and 12 dwarfs. Atmospheric parameters, stellar masses, and abundances of 24 elements (C, Na, Mg, Al, Si, S, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Sr, Y, Zr, Ba, La, Ce, and Nd) are determined homogeneously. The abundance patterns in these sample stars show that most of the elements in our sample follow the behaviour of field stars with similar metallicity. As expected, s-process elements in four known Ba giants show overabundance. A weak correlation was found between anomalies of s-process elemental abundance and orbital separation, suggesting that the orbital separation of the binaries could not be the main constraint to differentiate strong Ba stars from mild Ba stars. Our study shows that the large mass (>0.51 M⊙) of a WD companion in a binary system is not a sufficient condition to form a Ba star, even if the separation between the two components is small. Although not sufficient, it seems to be a necessary condition since Ba stars with lower mass WDs in the observed sample were not found. Our results support that [s/Fe] and [hs/ls] ratios of Ba stars are anti-correlated with the metallicity. However, the different levels of s-process overabundance among Ba stars may not be dominated mainly by the metallicity.

  14. Star clusters containing massive, central black holes: evolution calculations

    International Nuclear Information System (INIS)

    Marchant, A.B.

    1980-01-01

    This dissertation presents a detailed, two-dimensional simulations of star cluster evolution. A Monte-Carlo method is adapted to simulate the development with time of isolated star clusters. Clusters which evolve on relaxation timescales with and without central black holes are treated. The method is flexible and rugged, rather than highly accurate. It treats the boundary conditions of stellar evaporation and tidal disruption by a central black hole in a precise, stochastic fashion. Dynamical cloning and renormalization and the use of a time-step adjustment algorithm enhance the feasibility of the method which simulates systems with wide ranges of intrinsic length and time scales. First, the method is applied to follow the development and core collapse of an initial Plummer-model cluster without a central black hole. Agreement of these results for early times with the results of previous authors serves as a verification of this method. Three calculations of cluster re-expansion, each beginning with the insertion of a black hole at the center of a highly collapsed cluster core is presented. Each case is characterized by a different value of initial black hole mass or black hole accretion efficiency for the consumption of debris from disrupted stars. It is found that for the special cases examined here substantial, but not catastrophic, growth of the central black hole may accompany core re-expansion. Also, the observability of the evolutionary phases associated with core collapse and re-expansion, constraints on x-ray sources which could be associated with growing black holes, and the observable signature of the cusp of stars surrounding a central black hole are discussed

  15. THE VERY MASSIVE STAR CONTENT OF THE NUCLEAR STAR CLUSTERS IN NGC 5253

    Energy Technology Data Exchange (ETDEWEB)

    Smith, L. J. [Space Telescope Science Institute and European Space Agency, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Crowther, P. A. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Calzetti, D. [Department of Astronomy, University of Massachusetts—Amherst, Amherst, MA 01003 (United States); Sidoli, F., E-mail: lsmith@stsci.edu [London Centre for Nanotechnology, University College London, London WC1E 6BT (United Kingdom)

    2016-05-20

    The blue compact dwarf galaxy NGC 5253 hosts a very young starburst containing twin nuclear star clusters, separated by a projected distance of 5 pc. One cluster (#5) coincides with the peak of the H α emission and the other (#11) with a massive ultracompact H ii region. A recent analysis of these clusters shows that they have a photometric age of 1 ± 1 Myr, in apparent contradiction with the age of 3–5 Myr inferred from the presence of Wolf-Rayet features in the cluster #5 spectrum. We examine Hubble Space Telescope ultraviolet and Very Large Telescope optical spectroscopy of #5 and show that the stellar features arise from very massive stars (VMSs), with masses greater than 100 M {sub ⊙}, at an age of 1–2 Myr. We further show that the very high ionizing flux from the nuclear clusters can only be explained if VMSs are present. We investigate the origin of the observed nitrogen enrichment in the circumcluster ionized gas and find that the excess N can be produced by massive rotating stars within the first 1 Myr. We find similarities between the NGC 5253 cluster spectrum and those of metal-poor, high-redshift galaxies. We discuss the presence of VMSs in young, star-forming galaxies at high redshift; these should be detected in rest-frame UV spectra to be obtained with the James Webb Space Telescope . We emphasize that population synthesis models with upper mass cutoffs greater than 100 M {sub ⊙} are crucial for future studies of young massive star clusters at all redshifts.

  16. Roche-lobe overflow systems powered by black holes in young star clusters: the importance of dynamical exchanges

    Energy Technology Data Exchange (ETDEWEB)

    Mapelli, Michela; Zampieri, Luca, E-mail: michela.mapelli@oapd.inaf.it [INAF-Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122, Padova (Italy)

    2014-10-10

    We have run 600 N-body simulations of intermediate-mass (∼3500 M {sub ☉}) young star clusters (SCs; with three different metallicities (Z = 0.01, 0.1, and 1 Z {sub ☉}). The simulations include the dependence of stellar properties and stellar winds on metallicity. Massive stellar black holes (MSBHs) with mass >25 M {sub ☉} are allowed to form through direct collapse of very massive metal-poor stars (Z < 0.3 Z {sub ☉}). We focus on the demographics of black hole (BH) binaries that undergo mass transfer via Roche lobe overflow (RLO). We find that 44% of all binaries that undergo an RLO phase (RLO binaries) formed through dynamical exchange. RLO binaries that formed via exchange (RLO-EBs) are powered by more massive BHs than RLO primordial binaries (RLO-PBs). Furthermore, the RLO-EBs tend to start the RLO phase later than the RLO-PBs. In metal-poor SCs (0.01-0.1 Z {sub ☉}), >20% of all RLO binaries are powered by MSBHs. The vast majority of RLO binaries powered by MSBHs are RLO-EBs. We have produced optical color-magnitude diagrams of the simulated RLO binaries, accounting for the emission of both the donor star and the irradiated accretion disk. We find that RLO-PBs are generally associated with bluer counterparts than RLO-EBs. We compare the simulated counterparts with the observed counterparts of nine ultraluminous X-ray sources. We discuss the possibility that IC 342 X-1, Ho IX X-1, NGC 1313 X-2, and NGC 5204 X-1 are powered by an MSBH.

  17. A STRANGE STAR SCENARIO FOR THE FORMATION OF ECCENTRIC MILLISECOND PULSAR/HELIUM WHITE DWARF BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Long; Li, Xiang-Dong [Department of Astronomy, Nanjing University, Nanjing 210046 (China); Dey, Jishnu; Dey, Mira, E-mail: lixd@nju.edu.cn [Department of Physics, Presidency University, 86/1, College Street, Kolkata 700 073 (India)

    2015-07-01

    According to the recycling scenario, millisecond pulsars (MSPs) have evolved from low-mass X-ray binaries (LMXBs). Their orbits are expected to be circular due to tidal interactions during binary evolution, as observed in most binary MSPs. There are some peculiar systems that do not fit this picture. Three recent examples are the PSRs J2234+06, J1946+3417, and J1950+2414, all of which are MSPs in eccentric orbits but with mass functions compatible with expected He white dwarf (WD) companions. It has been suggested these MSPs may have formed from delayed accretion-induced collapse of massive WDs, or the eccentricity may be induced by dynamical interaction between the binary and a circumbinary disk. Assuming that the core density of accreting neutron stars (NSs) in LMXBs may reach the density of quark deconfinement, which can lead to phase transition from NSs to strange quark stars, we show that the resultant MSPs are likely to have an eccentric orbit, due to the sudden loss of the gravitational mass of the NS during the transition. The eccentricities can be reproduced with a reasonable estimate of the mass loss. This scenario might also account for the formation of the youngest known X-ray binary Cir X–1, which also possesses a low-field compact star in an eccentric orbit.

  18. The Binary Dwarf Carbon Star SDSS J125017.90+252427.6

    Science.gov (United States)

    Margon, Bruce; Kupfer, Thomas; Burdge, Kevin; Prince, Thomas A.; Kulkarni, Shrinivas R.; Shupe, David L.

    2018-03-01

    Although dwarf carbon (dC) stars are universally thought to be binaries in order to explain the presence of C 2 in their spectra while still near main-sequence luminosity, direct observational evidence for their binarity is remarkably scarce. Here, we report the detection of a 2.92 day periodicity in both the photometry and radial velocity of SDSS J125017.90+252427.6, an r = 16.4 dC star. This is the first photometric binary dC, and only the second dC spectroscopic binary. The relative phase of the photometric period to the spectroscopic observations suggests that the photometric variations are a reflection effect due to heating from an unseen companion. The observed radial velocity amplitude of the dC component (K = 98.8 ± 10.7 km s‑1) is consistent with a white dwarf companion, presumably the evolved star that earlier donated the carbon to the dC, although substantial orbital evolution must have occurred. Large synoptic photometric surveys such as the Palomar Transient Factory, which was used for this work, may prove useful for identifying binaries among the shorter-period dC stars.

  19. The binary fraction of planetary nebula central stars - III. the promise of VPHAS+

    Science.gov (United States)

    Barker, Helen; Zijlstra, Albert; De Marco, Orsola; Frew, David J.; Drew, Janet E.; Corradi, Romano L. M.; Eislöffel, Jochen; Parker, Quentin A.

    2018-04-01

    The majority of planetary nebulae (PNe) are not spherical, and current single-star models cannot adequately explain all the morphologies we observe. This has led to the Binary Hypothesis, which states that PNe are preferentially formed by binary systems. This hypothesis can be corroborated or disproved by comparing the estimated binary fraction of all PNe central stars (CS) to that of the supposed progenitor population. One way to quantify the rate of CS binarity is to detect near infrared excess indicative of a low-mass main-sequence companion. In this paper, a sample of known PNe within data release 2 of the ongoing VPHAS+ is investigated. We give details of the method used to calibrate VPHAS+ photometry, and present the expected colours of CS and main-sequence stars within the survey. Objects were scrutinized to remove PN mimics from our sample and identify true CS. Within our final sample of seven CS, six had previously either not been identified or confirmed. We detected an i-band excess indicative of a low-mass companion star in three CS, including one known binary, leading us to conclude that VPHAS+ provides the precise photometry required for the IR excess method presented here, and will likely improve as the survey completes and the calibration process finalized. Given the promising results from this trial sample, the entire VPHAS+ catalogue should be used to study PNe and extend the IR excess-tested CS sample.

  20. SPITZER survey of dust grain processing in stable discs around binary post-AGB stars

    NARCIS (Netherlands)

    Gielen, C.; van Winckel, H.; Min, M.; Waters, L.B.F.M.; Lloyd Evans, T.

    2008-01-01

    Aims. We investigate the mineralogy and dust processing in the circumbinary discs of binary post-AGB stars using high-resolution TIMMI2 and SPITZER infrared spectra. Methods: We perform a full spectral fitting to the infrared spectra using the most recent opacities of amorphous and crystalline dust

  1. Constraining the equation of state of neutron stars from binary mergers.

    Science.gov (United States)

    Takami, Kentaro; Rezzolla, Luciano; Baiotti, Luca

    2014-08-29

    Determining the equation of state of matter at nuclear density and hence the structure of neutron stars has been a riddle for decades. We show how the imminent detection of gravitational waves from merging neutron star binaries can be used to solve this riddle. Using a large number of accurate numerical-relativity simulations of binaries with nuclear equations of state, we find that the postmerger emission is characterized by two distinct and robust spectral features. While the high-frequency peak has already been associated with the oscillations of the hypermassive neutron star produced by the merger and depends on the equation of state, a new correlation emerges between the low-frequency peak, related to the merger process, and the total compactness of the stars in the binary. More importantly, such a correlation is essentially universal, thus providing a powerful tool to set tight constraints on the equation of state. If the mass of the binary is known from the inspiral signal, the combined use of the two frequency peaks sets four simultaneous constraints to be satisfied. Ideally, even a single detection would be sufficient to select one equation of state over the others. We test our approach with simulated data and verify it works well for all the equations of state considered.

  2. Astronomy in Denver: Spectropolarimetric Observations of 5 Wolf-Rayet Binary Stars with SALT/RSS

    Science.gov (United States)

    Fullard, Andrew; Ansary, Zyed; Azancot Luchtan, Daniel; Gallegos, Hunter; Luepker, Martin; Hoffman, Jennifer L.; Nordsieck, Kenneth H.; SALT observation team

    2018-06-01

    Mass loss from massive stars is an important yet poorly understood factor in shaping their evolution. Wolf-Rayet (WR) stars are of particular interest due to their stellar winds, which create large regions of circumstellar material (CSM). They are also supernova and possible gamma-ray burst (GRB) progenitors. Like other massive stars, WR stars often occur in binaries, where interaction can affect their mass loss rates and provide the rapid rotation thought to be required for GRB production. The diagnostic tool of spectropolarimetry, along with the potentially eclipsing nature of a binary system, helps us to better characterize the CSM created by the stars’ colliding winds. Thus, we can determine mass loss rates and infer rapid rotation. We present spectropolarimetric results for five WR+O eclipsing binary systems, obtained with the Robert Stobie Spectrograph at the South African Large Telescope, between April 2017 and April 2018. The data allow us to map both continuum and emission line polarization variations with phase, which constrains where different CSM components scatter light in the systems. We discuss our initial findings and interpretations of the polarimetric variability in each binary system, and compare the systems.

  3. Determination of the mass-ratio distribution, I: single-lined spectroscopic binary stars

    NARCIS (Netherlands)

    Hogeveen, S.J.

    1992-01-01

    For single-lined spectroscopic binary stars (sbi), the mass ratio q = Msec=Mprim is calculated from the mass function f(m), which is determined from observations. For statistical investigations of the mass-ratio distribution, the term sin^3 i, that remains in the cubic equation from which q is

  4. Unveiling the equation of state of nuclear matter with binary neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Galeazzi, F.; Rezzolla, L. [Frankfurt Univ., Frankfurt am Main (Germany). Inst. for Theoretical Physics

    2016-11-01

    2015 marked the hundred anniversary of Albert Einstein's lecture at the Prussian Academy of Science in which he introduced, for the first time, the famous field equations which became the core of his theory of general relativity. This masterpiece of 20th century science has proven extremely solid in all its predictions from the precession of the perihelion of Mercury to the observation of gravitational lensing in distant galaxies, to the more mundane time-delay corrections required by the global positioning system. One last piece of the puzzle is although still missing and comprise the direct measurement of the gravitational wave (GW) radiation emitted by any accelerating mass. These ripples in the spacetime fabric are extremely weak even when produced in the most extreme of the conditions as the ones present during the mergers of two black holes or neutron stars. For this reason they have eluded experimental scientists for almost four decades. But things are about to change, last year a new array of advanced gravitational wave detectors, namely advanced LIGO and Virgo came online in late September and they are expected to observe up to 40 events per year involving the mergers of two compact objects. Despite the high sensitivity of this generation of ground base interferometers, it is still necessary to use accurate gravitational waveforms models to extract all the information from the signal produced by the detector. In this project we focus on the merger of two neutron stars which orbit together in a binary system. The nonlinear nature of the Einstein equations coupled with the complex microphysics behind neutron star matter requires the use of sophisticated codes which uses advanced numerical techniques to produce accurate results. By using the GW signals calculated in our numerical simulations we will be able to strongly link the properties of neutron star matter to a precise set of observable frequencies from the detector. This information, together with

  5. Evolving ONe WD+He star systems to intermediate-mass binary pulsars

    Science.gov (United States)

    Liu, D.; Wang, B.; Chen, W.; Zuo, Z.; Han, Z.

    2018-06-01

    It has been suggested that accretion-induced collapse (AIC) is a non-negligible path for the formation of the observed neutron stars (NSs). An ONe white dwarf (WD) that accretes material from a He star may experience AIC process and eventually produce intermediate-mass binary pulsars (IMBPs), named as the ONe WD+He star scenario. Note that previous studies can only account for part of the observed IMBPs with short orbital periods. In this work, we investigate the evolution of about 900 ONe WD+He star binaries to explore the distribution of IMBPs. We found that the ONe WD+He star scenario could form IMBPs including pulsars with 5-340 ms spin periods and 0.75-1.38 M_{⊙} WD companions, in which the orbital periods range from 0.04 to 900 d. Compared with the 20 observed IMBPs, this scenario can cover the parameters of 13 sources in the final orbital period-WD mass plane and the Corbet diagram, most of which have short orbital periods. We found that the ONe WD+He star scenario can explain almost all the observed IMBPs with short orbital periods. This work can well match the observed parameters of PSR J1802-2124 (one of the two precisely observed IMBPs), providing a possible evolutional path for its formation. We also speculate that the compact companion of HD 49798 (a hydrogen depleted sdO6 star) may be not a NS based on this work.

  6. Gravitational Waves from Stellar Black Hole Binaries and the Impact on Nearby Sun-like Stars

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Ilídio [Centro Multidisciplinar de Astrofísica, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Silk, Joseph, E-mail: ilidio.lopes@tecnico.ulisboa.pt, E-mail: silk@astro.ox.ac.uk [Institut d’Astrophysique de Paris, UMR 7095 CNRS, Université Pierre et Marie Curie, 98 bis Boulevard Arago, Paris F-75014 (France)

    2017-07-20

    We investigate the impact of resonant gravitational waves on quadrupole acoustic modes of Sun-like stars located nearby stellar black hole binary systems (such as GW150914 and GW151226). We find that the stimulation of the low-overtone modes by gravitational radiation can lead to sizeable photometric amplitude variations, much larger than the predictions for amplitudes driven by turbulent convection, which in turn are consistent with the photometric amplitudes observed in most Sun-like stars. For accurate stellar evolution models, using up-to-date stellar physics, we predict photometric amplitude variations of 1–10{sup 3} ppm for a solar mass star located at a distance between 1 au and 10 au from the black hole binary and belonging to the same multi-star system. The observation of such a phenomenon will be within the reach of the Plato mission because the telescope will observe several portions of the Milky Way, many of which are regions of high stellar density with a substantial mixed population of Sun-like stars and black hole binaries.

  7. TWO BARIUM STARS IN THE OPEN CLUSTER NGC 5822

    Energy Technology Data Exchange (ETDEWEB)

    Katime Santrich, O. J.; Pereira, C. B.; De Castro, D. B., E-mail: osantrich@on.br, E-mail: claudio@on.br, E-mail: denise@on.br [Observatorio Nacional/MCT, Rua Gen. Jose Cristino, 77, 20921-400 Rio de Janeiro (Brazil)

    2013-08-01

    Open clusters are very useful examples to explain the constraint of the nucleosynthesis process with the luminosities of stars because the distances of the clusters are better known than those of field stars. We carried out a detailed spectroscopic analysis to derive the chemical composition of two red giants in the young open cluster NGC 5822, NGC 5822-2, and NGC 5822-201. We obtained abundances of C, N, O, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, and Nd. The atmospheric parameters of the studied stars and their chemical abundances were determined using high-resolution optical spectroscopy. We employed the local thermodynamic equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. The abundances of the light elements were derived using the spectral synthesis technique. We found that NGC 5822-2 and -201 have, respectively, a mean overabundance of the elements created by the s-process, ''s'', with the notation [s/Fe] of 0.77 {+-} 0.12 and 0.83 {+-} 0.05. These values are higher than those for field giants of similar metallicity. We also found that NGC 5822-2 and -201 have, respectively, luminosities of 140 L{sub Sun} and 76 L{sub Sun }, which are much lower than the luminosity of an asymptotic giant branch star. We conclude that NGC 5822-2 and NGC 5822-201 are two new barium stars first identified in the open cluster NGC 5822. The mass transfer hypothesis is the best scenario to explain the observed overabundances.

  8. Gemini spectroscopy of the outer disk star cluster BH176

    Science.gov (United States)

    Sharina, M. E.; Donzelli, C. J.; Davoust, E.; Shimansky, V. V.; Charbonnel, C.

    2014-10-01

    Context. BH176 is an old metal-rich star cluster. It is spatially and kinematically consistent with belonging to the Monoceros Ring. It is larger in size and more distant from the Galactic plane than typical open clusters, and it does not belong to the Galactic bulge. Aims: Our aim is to determine the origin of this unique object by accurately determining its distance, metallicity, and age. The best way to reach this goal is to combine spectroscopic and photometric methods. Methods: We present medium-resolution observations of red clump and red giant branch stars in BH176 obtained with the Gemini South Multi-Object Spectrograph. We derive radial velocities, metallicities, effective temperatures, and surface gravities of the observed stars and use these parameters to distinguish member stars from field objects. Results: We determine the following parameters for BH176: Vh = 0 ± 15 km s-1, [Fe/H] = -0.1 ± 0.1, age 7 ± 0.5 Gyr, E(V - I) = 0.79 ± 0.03, distance 15.2 ± 0.2 kpc, α-element abundance [α/Fe] ~ 0.25 dex (the mean of [Mg/Fe], and [Ca/Fe]). Conclusions: BH176 is a member of old Galactic open clusters that presumably belong to the thick disk. It may have originated as a massive star cluster after the encounter of the forming thin disk with a high-velocity gas cloud or as a satellite dwarf galaxy. Appendix A is available in electronic form at http://www.aanda.org

  9. Evolution of the Black Hole Mass Function in Star Clusters from Multiple Mergers

    Science.gov (United States)

    Christian, Pierre; Mocz, Philip; Loeb, Abraham

    2018-05-01

    We investigate the effects of black hole (BH) mergers in star clusters on the black hole mass function (BHMF). As BHs are not produced in pair-instability supernovae, it is suggested that there is a dearth of high-mass stellar BHs. This dearth generates a gap in the upper end of the BHMF. Meanwhile, parameter fitting of X-ray binaries suggests the existence of a gap in the mass function under 5 solar masses. We show, through evolving a coagulation equation, that BH mergers can appreciably fill the upper mass gap, and that the lower mass gap generates potentially observable features at larger mass scales. We also explore the importance of ejections in such systems and whether dynamical clusters can be formation sites of intermediate-mass BH seeds.

  10. Globular cluster neutron stars and the determination of the dense matter equation of state

    Science.gov (United States)

    Guillot, Sebastien

    2016-09-01

    Combining measurements of the mass and radius of multiple neutron stars (NSs) represents the most promising way to determine the equation of state of dense NS matter. NSs in quiescent low-mass x-ray binaries (qLMXB) located in globular clusters have placed useful constraints on the equation of state. The statistical approaches combining measurements from multiple NSs can be further improved by the addition of more NS observations. We propose here to obtain a high signal to noise spectrum of the qLMXB in M30, the only low-absorption globular cluster qLMXBs that does not have deep X-ray observations, and which requires Chandra unmatched angular resolution. The 300 ks proposed observation will permit measurement of the NS radius with 12-15% uncertainties.

  11. On the Possibility of Habitable Trojan Planets in Binary Star Systems.

    Science.gov (United States)

    Schwarz, Richard; Funk, Barbara; Bazsó, Ákos

    2015-12-01

    Approximately 60% of all stars in the solar neighbourhood (up to 80% in our Milky Way) are members of binary or multiple star systems. This fact led to the speculations that many more planets may exist in binary systems than are currently known. To estimate the habitability of exoplanetary systems, we have to define the so-called habitable zone (HZ). The HZ is defined as a region around a star where a planet would receive enough radiation to maintain liquid water on its surface and to be able to build a stable atmosphere. We search for new dynamical configurations-where planets may stay in stable orbits-to increase the probability to find a planet like the Earth.

  12. Modeling jet and outflow feedback during star cluster formation

    Energy Technology Data Exchange (ETDEWEB)

    Federrath, Christoph [Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, VIC 3800 (Australia); Schrön, Martin [Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, D-04318 Leipzig (Germany); Banerjee, Robi [Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany); Klessen, Ralf S., E-mail: christoph.federrath@monash.edu [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany)

    2014-08-01

    Powerful jets and outflows are launched from the protostellar disks around newborn stars. These outflows carry enough mass and momentum to transform the structure of their parent molecular cloud and to potentially control star formation itself. Despite their importance, we have not been able to fully quantify the impact of jets and outflows during the formation of a star cluster. The main problem lies in limited computing power. We would have to resolve the magnetic jet-launching mechanism close to the protostar and at the same time follow the evolution of a parsec-size cloud for a million years. Current computer power and codes fall orders of magnitude short of achieving this. In order to overcome this problem, we implement a subgrid-scale (SGS) model for launching jets and outflows, which demonstrably converges and reproduces the mass, linear and angular momentum transfer, and the speed of real jets, with ∼1000 times lower resolution than would be required without the SGS model. We apply the new SGS model to turbulent, magnetized star cluster formation and show that jets and outflows (1) eject about one-fourth of their parent molecular clump in high-speed jets, quickly reaching distances of more than a parsec, (2) reduce the star formation rate by about a factor of two, and (3) lead to the formation of ∼1.5 times as many stars compared to the no-outflow case. Most importantly, we find that jets and outflows reduce the average star mass by a factor of ∼ three and may thus be essential for understanding the characteristic mass of the stellar initial mass function.

  13. Structural Parameters of Star Clusters: Signal to Noise Effects

    Directory of Open Access Journals (Sweden)

    Narbutis D.

    2015-09-01

    Full Text Available We study the impact of photometric signal to noise on the accuracy of derived structural parameters of unresolved star clusters using MCMC model fitting techniques. Star cluster images were simulated as a smooth surface brightness distribution following a King profile convolved with a point spread function. The simulation grid was constructed by varying the levels of sky background and adjusting the cluster’s flux to a specified signal to noise. Poisson noise was introduced to a set of cluster images with the same input parameters at each node of the grid. Model fitting was performed using “emcee” algorithm. The presented posterior distributions of the parameters illustrate their uncertainty and degeneracies as a function of signal to noise. By defining the photometric aperture containing 80% of the cluster’s flux, we find that in all realistic sky background level conditions a signal to noise ratio of ~50 is necessary to constrain the cluster’s half-light radius to an accuracy better than ~20%. The presented technique can be applied to synthetic images simulating various observations of extragalactic star clusters.

  14. Star-formation history of very young clusters

    International Nuclear Information System (INIS)

    Stahler, S.W.

    1985-01-01

    The popular idea that star formation has proceeded sequentially from lowest to highest mass members in open clusters is examined critically. For extremely young clusters, such as NGC 2264 and NGC 6530, this sequential hypothesis is a consequence of the assignment of pre-main-sequence contraction ages to all member stars. However, such ages yield a formation history which is implausible from a physical point of view, since the critical time for the onset of formation at any stellar mass is equal to the pre-main-sequence contraction time for that mass. Moreover, these ages are in conflict with the strong observational evidence that a substantial fraction of cluster members have already reached the main sequence. After reconsideration of the probable main-sequence members, the stellar ages in NGC 2264 and NGC 6530 are consistent with a variety of formation histories, and, in particular, with the view that all stellar masses form in approximately the same interval of time within a given cluster, i.e., that there is no mass-age correlation. A notion closely related to the sequential hypothesis, that the total star-formation rate increases exponentially with time, is subject to the same criticism

  15. Global survey of star clusters in the Milky Way. VI. Age distribution and cluster formation history

    Science.gov (United States)

    Piskunov, A. E.; Just, A.; Kharchenko, N. V.; Berczik, P.; Scholz, R.-D.; Reffert, S.; Yen, S. X.

    2018-06-01

    Context. The all-sky Milky Way Star Clusters (MWSC) survey provides uniform and precise ages, along with other relevant parameters, for a wide variety of clusters in the extended solar neighbourhood. Aims: In this study we aim to construct the cluster age distribution, investigate its spatial variations, and discuss constraints on cluster formation scenarios of the Galactic disk during the last 5 Gyrs. Methods: Due to the spatial extent of the MWSC, we have considered spatial variations of the age distribution along galactocentric radius RG, and along Z-axis. For the analysis of the age distribution we used 2242 clusters, which all lie within roughly 2.5 kpc of the Sun. To connect the observed age distribution to the cluster formation history we built an analytical model based on simple assumptions on the cluster initial mass function and on the cluster mass-lifetime relation, fit it to the observations, and determined the parameters of the cluster formation law. Results: Comparison with the literature shows that earlier results strongly underestimated the number of evolved clusters with ages t ≳ 100 Myr. Recent studies based on all-sky catalogues agree better with our data, but still lack the oldest clusters with ages t ≳ 1 Gyr. We do not observe a strong variation in the age distribution along RG, though we find an enhanced fraction of older clusters (t > 1 Gyr) in the inner disk. In contrast, the distribution strongly varies along Z. The high altitude distribution practically does not contain clusters with t < 1 Gyr. With simple assumptions on the cluster formation history, the cluster initial mass function and the cluster lifetime we can reproduce the observations. The cluster formation rate and the cluster lifetime are strongly degenerate, which does not allow us to disentangle different formation scenarios. In all cases the cluster formation rate is strongly declining with time, and the cluster initial mass function is very shallow at the high mass end.

  16. Clustering for Binary Data Sets by Using Genetic Algorithm-Incremental K-means

    Science.gov (United States)

    Saharan, S.; Baragona, R.; Nor, M. E.; Salleh, R. M.; Asrah, N. M.

    2018-04-01

    This research was initially driven by the lack of clustering algorithms that specifically focus in binary data. To overcome this gap in knowledge, a promising technique for analysing this type of data became the main subject in this research, namely Genetic Algorithms (GA). For the purpose of this research, GA was combined with the Incremental K-means (IKM) algorithm to cluster the binary data streams. In GAIKM, the objective function was based on a few sufficient statistics that may be easily and quickly calculated on binary numbers. The implementation of IKM will give an advantage in terms of fast convergence. The results show that GAIKM is an efficient and effective new clustering algorithm compared to the clustering algorithms and to the IKM itself. In conclusion, the GAIKM outperformed other clustering algorithms such as GCUK, IKM, Scalable K-means (SKM) and K-means clustering and paves the way for future research involving missing data and outliers.

  17. STAR FORMATION EFFICIENCY IN THE COOL CORES OF GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    McDonald, Michael; Veilleux, Sylvain; Mushotzky, Richard; Reynolds, Christopher; Rupke, David S. N.

    2011-01-01

    We have assembled a sample of high spatial resolution far-UV (Hubble Space Telescope Advanced Camera for Surveys/Solar Blind Channel) and Hα (Maryland-Magellan Tunable Filter) imaging for 15 cool core galaxy clusters. These data provide a detailed view of the thin, extended filaments in the cores of these clusters. Based on the ratio of the far-UV to Hα luminosity, the UV spectral energy distribution, and the far-UV and Hα morphology, we conclude that the warm, ionized gas in the cluster cores is photoionized by massive, young stars in all but a few (A1991, A2052, A2580) systems. We show that the extended filaments, when considered separately, appear to be star forming in the majority of cases, while the nuclei tend to have slightly lower far-UV luminosity for a given Hα luminosity, suggesting a harder ionization source or higher extinction. We observe a slight offset in the UV/Hα ratio from the expected value for continuous star formation which can be modeled by assuming intrinsic extinction by modest amounts of dust (E(B - V) ∼ 0.2) or a top-heavy initial mass function in the extended filaments. The measured star formation rates vary from ∼0.05 M sun yr -1 in the nuclei of non-cooling systems, consistent with passive, red ellipticals, to ∼5 M sun yr -1 in systems with complex, extended, optical filaments. Comparing the estimates of the star formation rate based on UV, Hα, and infrared luminosities to the spectroscopically determined X-ray cooling rate suggests a star formation efficiency of 14 +18 -8 %. This value represents the time-averaged fraction, by mass, of gas cooling out of the intracluster medium, which turns into stars and agrees well with the global fraction of baryons in stars required by simulations to reproduce the stellar mass function for galaxies. This result provides a new constraint on the efficiency of star formation in accreting systems.

  18. Near-infrared variability study of the central 2.3 × 2.3 arcmin2 of the Galactic Centre - II. Identification of RR Lyrae stars in the Milky Way nuclear star cluster

    Science.gov (United States)

    Dong, Hui; Schödel, Rainer; Williams, Benjamin F.; Nogueras-Lara, Francisco; Gallego-Cano, Eulalia; Gallego-Calvente, Teresa; Wang, Q. Daniel; Rich, R. Michael; Morris, Mark R.; Do, Tuan; Ghez, Andrea

    2017-11-01

    Because of strong and spatially highly variable interstellar extinction and extreme source crowding, the faint (K ≥ 15) stellar population in the Milky Way's nuclear star cluster is still poorly studied. RR Lyrae stars provide us with a tool to estimate the mass of the oldest, relative dim stellar population. Recently, we analysed HST/WFC3/IR observations of the central 2.3 × 2.3 arcmin2 of the Milky Way and found 21 variable stars with periods between 0.2 and 1 d. Here, we present a further comprehensive analysis of these stars. The period-luminosity relationship of RR Lyrae is used to derive their extinctions and distances. Using multiple approaches, we classify our sample as 4 RRc stars, 4 RRab stars, 3 RRab candidates and 10 binaries. Especially, the four RRab stars show sawtooth light curves and fall exactly on to the Oosterhoff I division in the Bailey diagram. Compared to the RRab stars reported by Minniti et al., our new RRab stars have higher extinction (AK > 1.8) and should be closer to the Galactic Centre. The extinction and distance of one RRab stars match those for the Milky Way's nuclear star cluster given in previous works. We perform simulations and find that after correcting for incompleteness, there could be not more than 40 RRab stars within the Milky Way's nuclear star cluster and in our field of view. Through comparing with the known globular clusters of the Milky Way, we estimate that if there exists an old, metal-poor (-1.5 < [Fe/H] < -1) stellar population in the Milky Way nuclear star cluster on a scale of 5 × 5 pc, then it contributes at most 4.7 × 105 M⊙, I.e. ˜18 per cent of the stellar mass.

  19. HD 66051: the first eclipsing binary hosting an early-type magnetic star

    Science.gov (United States)

    Kochukhov, O.; Johnston, C.; Alecian, E.; Wade, G. A.

    2018-05-01

    Early-type magnetic stars are rarely found in close binary systems. No such objects were known in eclipsing binaries prior to this study. Here we investigated the eclipsing, spectroscopic double-lined binary HD 66051, which exhibits out-of-eclipse photometric variations suggestive of surface brightness inhomogeneities typical of early-type magnetic stars. Using a new set of high-resolution spectropolarimetric observations, we discovered a weak magnetic field on the primary and found intrinsic, element-dependent variability in its spectral lines. The magnetic field structure of the primary is dominated by a nearly axisymmetric dipolar component with a polar field strength Bd ≈ 600 G and an inclination with respect to the rotation axis of βd = 13°. A weaker quadrupolar component is also likely to be present. We combined the radial velocity measurements derived from our spectra with archival optical photometry to determine fundamental masses (3.16 and 1.75 M⊙) and radii (2.78 and 1.39 R⊙) with a 1-3% precision. We also obtained a refined estimate of the effective temperatures (13000 and 9000 K) and studied chemical abundances for both components with the help of disentangled spectra. We demonstrate that the primary component of HD 66051 is a typical late-B magnetic chemically peculiar star with a non-uniform surface chemical abundance distribution. It is not an HgMn-type star as suggested by recent studies. The secondary is a metallic-line star showing neither a strong, global magnetic field nor intrinsic spectral variability. Fundamental parameters provided by our work for this interesting system open unique possibilities for probing interior structure, studying atomic diffusion, and constraining binary star evolution.

  20. Properties of general relativistic irrotational binary neutron stars at the innermost orbit

    International Nuclear Information System (INIS)

    Uryu, K.; Shibata, M.

    2001-01-01

    We investigate properties of binary neutron stars around innermost orbits, assuming that the binary is equal mass and in quasiequilibrium. The quasiequilibrium configurations are numerically computed assuming the existence of a helicoidal Killing vector, conformal flatness for spatial components of the metric, and irrotational velocity field for the neutron stars. The computation is performed for the polytropic equation of state with a wide range of the polytropic index n (= 0.5, 0.66667, 0.8, 1, 1.25), and compactness of neutron stars (M/R) ∞ (= 0.03-0.3). Quasiequilibrium sequences of constant rest mass are appropriate models for the final evolution phase of binary neutron stars. It is found that these sequences are always terminated at the innermost orbit where a cusp (inner Lagrange point) appears at the inner edges of the stellar surface. We apply a turning point method to determine the stability of the innermost orbits and found that the innermost stable circular orbit (ISCO) exists for stiff equations of state (n = 0.5 with any (M/R) ∞ and n = 0.66667 with (M/R) ∞ > or ∼ 0.17). The ISCO for n = 0.5 is carefully analyzed. It is clarified that the ISCO are mainly determined by a hydrodynamic instability for realistic compactness of the neutron stars as 0.14 ∞ < or ∼ 0.2. These configurations at the innermost orbits can be used as initial conditions for fully general relativistic simulation for the binary neutron star merger. (author)

  1. Robo-AO Discovery and Basic Characterization of Wide Multiple Star Systems in the Pleiades, Praesepe, and NGC 2264 Clusters

    Science.gov (United States)

    Hillenbrand, Lynne A.; Zhang, Celia; Riddle, Reed L.; Baranec, Christoph; Ziegler, Carl; Law, Nicholas M.; Stauffer, John

    2018-02-01

    We identify and roughly characterize 66 candidate binary star systems in the Pleiades, Praesepe, and NGC 2264 star clusters, based on robotic adaptive optics imaging data obtained using Robo-AO at the Palomar 60″ telescope. Only ∼10% of our imaged pairs were previously known. We detect companions at red optical wavelengths, with physical separations ranging from a few tens to a few thousands of au. A three-sigma contrast curve generated for each final image provides upper limits to the brightness ratios for any undetected putative companions. The observations are sensitive to companions with a maximum contrast of ∼6m at larger separations. At smaller separations, the mean (best) raw contrast at 2″ is 3.ͫ8 (6m), at 1″ is 3.ͫ0 (4.ͫ5), and at 0.″5 is 1.ͫ9 (3m). Point-spread function subtraction can recover nearly the full contrast in the closer separations. For detected candidate binary pairs, we report separations, position angles, and relative magnitudes. Theoretical isochrones appropriate to the Pleiades and Praesepe clusters are then used to determine the corresponding binary mass ratios, which range from 0.2 to 0.9 in q={m}2/{m}1. For our sample of roughly solar-mass (FGK type) stars in NGC 2264 and sub-solar-mass (K and early M-type) primaries in the Pleiades and Praesepe, the overall binary frequency is measured at ∼15.5% ± 2%. However, this value should be considered a lower limit to the true binary fraction within the specified separation and mass ratio ranges in these clusters, given that complex and uncertain corrections for sensitivity and completeness have not been applied.

  2. Atypical Mg-poor Milky Way Field Stars with Globular Cluster Second-generation-like Chemical Patterns

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Trincado, J. G.; Geisler, D.; Tang, B.; Villanova, S.; Mennickent, R. E. [Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Zamora, O.; García-Hernández, D. A.; Dell’Agli, F.; Prieto, Carlos Allende [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Souto, Diogo; Cunha, Katia [Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ—20921-400 (Brazil); Schiavon, R. P. [Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Hasselquist, Sten [New Mexico State University, Las Cruces, NM 88003 (United States); Shetrone, M. [University of Texas at Austin, McDonald Observatory, Fort Davis, TX 79734 (United States); Vieira, K. [Centro de Investigaciones de Astronomía, AP 264, Mérida 5101-A (Venezuela, Bolivarian Republic of); Zasowski, G. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Sobeck, J.; Hayes, C. R.; Majewski, S. R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22903 (United States); Placco, V. M., E-mail: jfernandezt@astro-udec.cl, E-mail: jfernandezt87@gmail.com [Department of Physics and JINA Center for the Evolution of the Elements, University of Notre Dame, Notre Dame, IN 46556 (United States); and others

    2017-09-01

    We report the peculiar chemical abundance patterns of 11 atypical Milky Way (MW) field red giant stars observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). These atypical giants exhibit strong Al and N enhancements accompanied by C and Mg depletions, strikingly similar to those observed in the so-called second-generation (SG) stars of globular clusters (GCs). Remarkably, we find low Mg abundances ([Mg/Fe] < 0.0) together with strong Al and N overabundances in the majority (5/7) of the metal-rich ([Fe/H] ≳ −1.0) sample stars, which is at odds with actual observations of SG stars in Galactic GCs of similar metallicities. This chemical pattern is unique and unprecedented among MW stars, posing urgent questions about its origin. These atypical stars could be former SG stars of dissolved GCs formed with intrinsically lower abundances of Mg and enriched Al (subsequently self-polluted by massive AGB stars) or the result of exotic binary systems. We speculate that the stars Mg-deficiency as well as the orbital properties suggest that they could have an extragalactic origin. This discovery should guide future dedicated spectroscopic searches of atypical stellar chemical patterns in our Galaxy, a fundamental step forward to understanding the Galactic formation and evolution.

  3. TIDAL BREAKUP OF BINARY STARS AT THE GALACTIC CENTER. II. HYDRODYNAMIC SIMULATIONS

    International Nuclear Information System (INIS)

    Antonini, Fabio; Merritt, David; Lombardi, James C. Jr

    2011-01-01

    In Paper I, we followed the evolution of binary stars as they orbited near the supermassive black hole (SMBH) at the Galactic center, noting the cases in which the two stars would come close enough together to collide. In this paper, we replace the point-mass stars by fluid realizations, and use a smoothed-particle hydrodynamics code to follow the close interactions. We model the binary components as main-sequence stars with initial masses of 1, 3, and 6 solar masses, and with chemical composition profiles taken from stellar evolution codes. Outcomes of the close interactions include mergers, collisions that leave both stars intact, and ejection of one star at high velocity accompanied by capture of the other star into a tight orbit around the SMBH. For the first time, we follow the evolution of the collision products for many (∼> 100) orbits around the SMBH. Stars that are initially too small to be tidally disrupted by the SMBH can be puffed up by close encounters or collisions, with the result that tidal stripping occurs in subsequent periapse passages. In these cases, mass loss occurs episodically, sometimes for hundreds of orbits before the star is completely disrupted. Repeated tidal flares, of either increasing or decreasing intensity, are a predicted consequence. In collisions involving a low-mass and a high-mass star, the merger product acquires a high core hydrogen abundance from the smaller star, effectively resetting the nuclear evolution 'clock' to a younger age. Elements like Li, Be, and B that can exist only in the outermost envelope of a star are severely depleted due to envelope ejection during collisions and due to tidal forces from the SMBH. Tidal spin-up can occur due to either a collision or tidal torque by the SMBH at periapsis. However, in the absence of collisions, tidal spin-up of stars is only important in a narrow range of periapse distances, r t /2 ∼ per ∼ t , with r t the tidal disruption radius. We discuss the implications of

  4. New constraints on the star formation history of the star cluster NGC 1856

    NARCIS (Netherlands)

    Correnti, M.; Goudfrooij, P.; Puzia, T.H.; de Mink, S.E.

    2015-01-01

    We use the Wide Field Camera 3 onboard the Hubble Space Telescope to obtain deep, high-resolution photometry of the young (age ∼ 300 Myr) star cluster NGC 1856 in the Large Magellanic Cloud. We compare the observed colour-magnitude diagram (CMD), after having applied a correction for differential

  5. ELECTROMAGNETIC EXTRACTION OF ENERGY FROM BLACK-HOLE–NEUTRON-STAR BINARIES

    International Nuclear Information System (INIS)

    McWilliams, Sean T.; Levin, Janna

    2011-01-01

    The coalescence of black-hole-neutron-star binaries is expected to be a principal source of gravitational waves for the next generation of detectors, Advanced LIGO and Advanced Virgo. For black hole masses not much larger than the neutron star mass, the tidal disruption of the neutron star by the black hole provides one avenue for generating an electromagnetic counterpart. However, in this work, we demonstrate that, for all black-hole-neutron-star binaries observable by Advanced LIGO/Virgo, the interaction of the black hole with the magnetic field of the neutron star will generate copious luminosity, comparable to supernovae and active galactic nuclei. This novel effect may have already been observed as a new class of very short gamma-ray bursts by the Swift Gamma-Ray Burst Telescope. These events may be observable to cosmological distances, so that any black-hole-neutron-star coalescence detectable with gravitational waves by Advanced LIGO/Virgo could also be detectable electromagnetically.

  6. Giants of eclipse the ζ [Zeta] Aurigae stars and other binary systems

    CERN Document Server

    Griffin, Elizabeth

    2015-01-01

    The zeta Aurigae stars are the rare but illustrious sub-group of binary stars that undergo the dramatic phenomenon of "chromospheric eclipse". This book provides detailed descriptions of the ten known systems, illustrates them richly with examples of new spectra, and places them in the context of stellar structure and evolution. Comprised of a large cool giant plus a small hot dwarf, these key eclipsing binaries reveal fascinating changes in their spectra very close to total eclipse, when the hot star shines through differing heights of the "chromosphere", or outer atmosphere, of the giant star. The phenomenon provides astrophysics with the means of analyzing the outer atmosphere of a giant star and how that material is shed into space. The physics of these critical events can be explained qualitatively, but it is more challenging to extract hard facts from the observations, and tough to model the chromosphere in any detail. The book offers current thinking on mechanisms for heating a star's chromosphere an...

  7. SINGLE-LINED SPECTROSCOPIC BINARY STAR CANDIDATES IN THE RAVE SURVEY

    International Nuclear Information System (INIS)

    Matijevic, G.; Zwitter, T.; Bienayme, O.; Siebert, A.; Watson, F. G.; Bland-Hawthorn, J.; Parker, Q. A.; Freeman, K. C.; Gilmore, G.; Grebel, E. K.; Helmi, A.; Munari, U.; Siviero, A.; Navarro, J. F.; Reid, W.; Seabroke, G. M.; Steinmetz, M.; Williams, M.; Wyse, R. F. G.

    2011-01-01

    Repeated spectroscopic observations of stars in the RAdial Velocity Experiment (RAVE) database are used to identify and examine single-lined binary (SB1) candidates. The RAVE latest internal database (VDR3) includes radial velocities, atmospheric parameters, and other parameters for approximately a quarter of a million different stars with slightly less than 300,000 observations. In the sample of ∼20,000 stars observed more than once, 1333 stars with variable radial velocities were identified. Most of them are believed to be SB1 candidates. The fraction of SB1 candidates among stars with several observations is between 10% and 15% which is the lower limit for binarity among RAVE stars. Due to the distribution of time spans between the re-observation that is biased toward relatively short timescales (days to weeks), the periods of the identified SB1 candidates are most likely in the same range. Because of the RAVE's narrow magnitude range most of the dwarf candidates belong to the thin Galactic disk while the giants are part of the thick disk with distances extending to up to a few kpc. The comparison of the list of SB1 candidates to the VSX catalog of variable stars yielded several pulsating variables among the giant population with radial velocity variations of up to few tens of km s -1 . There are 26 matches between the catalog of spectroscopic binary orbits (S B 9 ) and the whole RAVE sample for which the given periastron time and the time of RAVE observation were close enough to yield a reliable comparison. RAVE measurements of radial velocities of known spectroscopic binaries are consistent with their published radial velocity curves.

  8. DISRUPTION OF STAR CLUSTERS IN THE INTERACTING ANTENNAE GALAXIES

    International Nuclear Information System (INIS)

    Karl, Simon J.; Naab, Thorsten; Fall, S. Michael

    2011-01-01

    We re-examine the age distribution of star clusters in the Antennae in the context of N-body+hydrodynamical simulations of these interacting galaxies. All of the simulations that account for the observed morphology and other properties of the Antennae have star formation rates that vary relatively slowly with time, by factors of only 1.3-2.5 in the past 10 8 yr. In contrast, the observed age distribution of the clusters declines approximately as a power law, dN/dτ∝τ γ with γ = -1.0, for ages 10 6 yr ∼ 9 yr. These two facts can only be reconciled if the clusters are disrupted progressively for at least ∼10 8 yr and possibly ∼10 9 yr. When we combine the simulated formation rates with a power-law model, f surv ∝τ δ , for the fraction of clusters that survive to each age τ, we match the observed age distribution with exponents in the range -0.9 ∼< δ ∼< -0.6 (with a slightly different δ for each simulation). The similarity between δ and γ indicates that dN/dτ is shaped mainly by the disruption of clusters rather than variations in their formation rate. Thus, the situation in the interacting Antennae resembles that in relatively quiescent galaxies such as the Milky Way and the Magellanic Clouds.

  9. Are Nuclear Star Clusters the Precursors of Massive Black Holes?

    Directory of Open Access Journals (Sweden)

    Nadine Neumayer

    2012-01-01

    Full Text Available We present new upper limits for black hole masses in extremely late type spiral galaxies. We confirm that this class of galaxies has black holes with masses less than 106M⊙, if any. We also derive new upper limits for nuclear star cluster masses in massive galaxies with previously determined black hole masses. We use the newly derived upper limits and a literature compilation to study the low mass end of the global-to-nucleus relations. We find the following. (1 The MBH-σ relation cannot flatten at low masses, but may steepen. (2 The MBH-Mbulge relation may well flatten in contrast. (3 The MBH-Sersic n relation is able to account for the large scatter in black hole masses in low-mass disk galaxies. Outliers in the MBH-Sersic n relation seem to be dwarf elliptical galaxies. When plotting MBH versus MNC we find three different regimes: (a nuclear cluster dominated nuclei, (b a transition region, and (c black hole-dominated nuclei. This is consistent with the picture, in which black holes form inside nuclear clusters with a very low-mass fraction. They subsequently grow much faster than the nuclear cluster, destroying it when the ratio MBH/MNC grows above 100. Nuclear star clusters may thus be the precursors of massive black holes in galaxy nuclei.

  10. Blue straggler stars in the globular cluster NGC 5053

    International Nuclear Information System (INIS)

    Nemec, J.M.; Cohen, J.G.

    1989-01-01

    A study of the low central concentration globular cluster NGC 5053 based on photometry to 23 mag is reported. Deep C-M diagrams are presented, a mean metal abundance for the cluster is derived from the color of the RGB at the level of the horizontal branch, and theoretical isochrones are used to derive a distance modulus of (m - M0) = 16.05 + or - 0.14 mag and an age of 18 + or - 3 Gyr. A luminosity function based on subgiant and upper main-sequence stars is also constructed. A total of 24 blue stragglers in NGC 5053 are identified and their properties are studied. 65 references

  11. Membership, binarity, and rotation of F-G-K stars in the open cluster Blanco 1

    Science.gov (United States)

    Mermilliod, J.-C.; Platais, I.; James, D. J.; Grenon, M.; Cargile, P. A.

    2008-07-01

    Context: The nearby open cluster Blanco 1 is of considerable astrophysical interest for formation and evolution studies of open clusters because it is the third highest Galactic latitude cluster known. It has been observed often, but so far no definitive and comprehensive membership determination is readily available. Aims: An observing programme was carried out to study the stellar population of Blanco 1, and especially the membership and binary frequency of the F5-K0 dwarfs. Methods: We obtained radial-velocities with the CORAVEL spectrograph in the field of Blanco 1 for a sample of 148 F-G-K candidate stars in the magnitude range 10 rate reaches 40% (27/68) if one includes the photometric binaries. The cluster mean heliocentric radial velocity is +5.53 ± 0.11 km s-1 based on the most reliable 49 members. The V sin i distribution is similar to that of the Pleiades, confirming the age similarities between the two clusters. Conclusions: This study clearly demonstrates that, in spite of the cluster's high Galactic latitude, three membership criteria - radial velocity, proper motion, and photometry - are necessary for performing a reliable membership selection. Furthermore, even with accurate and extensive data, ambiguous cases still remain. Based on observations collected with the Danish 1.54-m and the Swiss telescopes at the European Southern Observatory, La Silla, Chile, and with the old YALO 1-m telescope at the Cerro Tololo InterAmerican Observatory, Chile. Table [see full textsee full textsee full textsee full textsee full textsee full text] is also available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/485/95

  12. Fast optimization of binary clusters using a novel dynamic lattice searching method

    International Nuclear Information System (INIS)

    Wu, Xia; Cheng, Wen

    2014-01-01

    Global optimization of binary clusters has been a difficult task despite of much effort and many efficient methods. Directing toward two types of elements (i.e., homotop problem) in binary clusters, two classes of virtual dynamic lattices are constructed and a modified dynamic lattice searching (DLS) method, i.e., binary DLS (BDLS) method, is developed. However, it was found that the BDLS can only be utilized for the optimization of binary clusters with small sizes because homotop problem is hard to be solved without atomic exchange operation. Therefore, the iterated local search (ILS) method is adopted to solve homotop problem and an efficient method based on the BDLS method and ILS, named as BDLS-ILS, is presented for global optimization of binary clusters. In order to assess the efficiency of the proposed method, binary Lennard-Jones clusters with up to 100 atoms are investigated. Results show that the method is proved to be efficient. Furthermore, the BDLS-ILS method is also adopted to study the geometrical structures of (AuPd) 79 clusters with DFT-fit parameters of Gupta potential

  13. MONTE CARLO SIMULATIONS OF GLOBULAR CLUSTER EVOLUTION. V. BINARY STELLAR EVOLUTION

    International Nuclear Information System (INIS)

    Chatterjee, Sourav; Umbreit, Stefan; Rasio, Frederic A.; Fregeau, John M.

    2010-01-01

    We study the dynamical evolution of globular clusters containing primordial binaries, including full single and binary stellar evolution using our Monte Carlo cluster evolution code updated with an adaptation of the single and binary stellar evolution codes SSE and BSE from Hurley et al. We describe the modifications that we have made to the code. We present several test calculations and comparisons with existing studies to illustrate the validity of the code. We show that our code finds very good agreement with direct N-body simulations including primordial binaries and stellar evolution. We find significant differences in the evolution of the global properties of the simulated clusters using stellar evolution compared with simulations without any stellar evolution. In particular, we find that the mass loss from the stellar evolution acts as a significant energy production channel simply by reducing the total gravitational binding energy and can significantly prolong the initial core contraction phase before reaching the binary-burning quasi-steady state of the cluster evolution. We simulate a large grid of models varying the initial cluster mass, binary fraction, and concentration parameter, and we compare properties of the simulated clusters with those of the observed Galactic globular clusters (GGCs). We find that simply including stellar evolution in our simulations and assuming the typical initial cluster half-mass radius is approximately a few pc independent of mass, our simulated cluster properties agree well with the observed GGC properties such as the core radius and the ratio of the core radius to the half-mass radius. We explore in some detail qualitatively different clusters in different phases of their evolution and construct synthetic Hertzsprung-Russell diagrams for these clusters.

  14. EXPLANATION OF A SPECIAL COLOR–MAGNITUDE DIAGRAM OF STAR CLUSTER NGC 1651 FROM DIFFERENT MODELS

    International Nuclear Information System (INIS)

    Li, Zhongmu; Mao, Caiyan; Chen, Li

    2015-01-01

    The color–magnitude diagram (CMD) of globular cluster NGC 1651 has special structures including a broad main sequence, an extended main sequence turn-off, and an extended red giant clump. The reason for such a special CMD remains unclear. In order to test the difference among the results from various stellar population assumptions, we study a high-quality CMD of NGC 1651 from the Hubble Space Telescope archive using eight kinds of models. Distance modulus, extinction, age ranges, star formation mode, fraction of binaries, and fraction of rotational stars are determined and then compared. The results show that stellar populations both with and without age spread can reproduce the special structure of the observed CMD. A composite population with extended star formation from 1.8 Gyrs ago to 1.4 Gyrs ago, which contains 50% binaries and 70% rotational stars, fits the observed CMD best. Meanwhile, a 1.5 Gyr-old simple population that consists of rotational stars can also fit the observed CMD well. The results of CMD fitting are shown to depend strongly on stellar population type (simple or composite), and fraction of rotators. If the member stars of NGC 1651 formed in a single star burst, the effect of stellar rotation should be very important for explaining the observed CMDs. Otherwise, the effect may be small. It is also possible that the special observed CMD is a result of the combined effects of stellar binarity, rotation, and age spread. Therefore, further work on stellar population type and fraction of rotational stars of intermediate-age clusters are necessary to understand their observed CMDs

  15. The critical binary star separation for a planetary system origin of white dwarf pollution

    Science.gov (United States)

    Veras, Dimitri; Xu, Siyi; Rebassa-Mansergas, Alberto

    2018-01-01

    The atmospheres of between one quarter and one half of observed single white dwarfs in the Milky Way contain heavy element pollution from planetary debris. The pollution observed in white dwarfs in binary star systems is, however, less clear, because companion star winds can generate a stream of matter which is accreted by the white dwarf. Here, we (i) discuss the necessity or lack thereof of a major planet in order to pollute a white dwarf with orbiting minor planets in both single and binary systems, and (ii) determine the critical binary separation beyond which the accretion source is from a planetary system. We hence obtain user-friendly functions relating this distance to the masses and radii of both stars, the companion wind, and the accretion rate on to the white dwarf, for a wide variety of published accretion prescriptions. We find that for the majority of white dwarfs in known binaries, if pollution is detected, then that pollution should originate from planetary material.

  16. Prospects for joint observations of gravitational waves and gamma rays from merging neutron star binaries

    Energy Technology Data Exchange (ETDEWEB)

    Patricelli, B.; Razzano, M.; Fidecaro, F. [Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo, 3, 56127 Pisa (Italy); Cella, G. [INFN—Sezione di Pisa, Largo B. Pontecorvo, 3, 56127 Pisa (Italy); Pian, E.; Stamerra, A. [Scuola Normale Superiore, Piazza dei Cavalieri, 7, 56126 Pisa (Italy); Branchesi, M., E-mail: barbara.patricelli@pi.infn.it, E-mail: massimiliano.razzano@unipi.it, E-mail: giancarlo.cella@pi.infn.it, E-mail: francesco.fidecaro@unipi.it, E-mail: elena.pian@sns.it, E-mail: marica.branchesi@uniurb.it, E-mail: stamerra@oato.inaf.it [Universit\\a di Urbino, Via Aurelio Saffi, 2, 61029 Urbino (Italy)

    2016-11-01

    The detection of the events GW150914 and GW151226, both consistent with the merger of a binary black hole system (BBH), opened the era of gravitational wave (GW) astronomy. Besides BBHs, the most promising GW sources are the coalescences of binary systems formed by two neutron stars or a neutron star and a black hole. These mergers are thought to be connected with short Gamma Ray Bursts (GRBs), therefore combined observations of GW and electromagnetic (EM) signals could definitively probe this association. We present a detailed study on the expectations for joint GW and high-energy EM observations of coalescences of binary systems of neutron stars with Advanced Virgo and LIGO and with the Fermi gamma-ray telescope. To this scope, we designed a dedicated Montecarlo simulation pipeline for the multimessenger emission and detection by GW and gamma-ray instruments, considering the evolution of the GW detector sensitivities. We show that the expected rate of joint detection is low during the Advanced Virgo and Advanced LIGO 2016–2017 run; however, as the interferometers approach their final design sensitivities, the rate will increase by ∼ a factor of ten. Future joint observations will help to constrain the association between short GRBs and binary systems and to solve the puzzle of the progenitors of GWs. Comparison of the joint detection rate with the ones predicted in this paper will help to constrain the geometry of the GRB jet.

  17. The radius of the quiescent neutron star in the globular cluster M13

    Science.gov (United States)

    Shaw, A. W.; Heinke, C. O.; Steiner, A. W.; Campana, S.; Cohn, H. N.; Ho, W. C. G.; Lugger, P. M.; Servillat, M.

    2018-06-01

    X-ray spectra of quiescent low-mass X-ray binaries containing neutron stars can be fit with atmosphere models to constrain the mass and the radius. Mass-radius constraints can be used to place limits on the equation of state of dense matter. We perform fits to the X-ray spectrum of a quiescent neutron star in the globular cluster M13, utilizing data from ROSAT, Chandra, and XMM-Newton, and constrain the mass-radius relation. Assuming an atmosphere composed of hydrogen and a 1.4 M⊙ neutron star, we find the radius to be R_NS=12.2^{+1.5}_{-1.1} km, a significant improvement in precision over previous measurements. Incorporating an uncertainty on the distance to M13 relaxes the radius constraints slightly and we find R_NS=12.3^{+1.9}_{-1.7} km (for a 1.4M⊙ neutron star with a hydrogen atmosphere), which is still an improvement in precision over previous measurements, some of which do not consider distance uncertainty. We also discuss how the composition of the atmosphere affects the derived radius, finding that a helium atmosphere implies a significantly larger radius.

  18. Variable Stars in Large Magellanic Cloud Globular Clusters. II. NGC 1786

    Science.gov (United States)

    Kuehn, Charles A.; Smith, Horace A.; Catelan, Márcio; Pritzl, Barton J.; De Lee, Nathan; Borissova, Jura

    2012-12-01

    This is the second in a series of papers studying the variable stars in Large Magellanic Cloud globular clusters. The primary goal of this series is to study how RR Lyrae stars in Oosterhoff-intermediate systems compare to their counterparts in Oosterhoff I/II systems. In this paper, we present the results of our new time-series B-V photometric study of the globular cluster NGC 1786. A total of 65 variable stars were identified in our field of view. These variables include 53 RR Lyraes (27 RRab, 18 RRc, and 8 RRd), 3 classical Cepheids, 1 Type II Cepheid, 1 Anomalous Cepheid, 2 eclipsing binaries, 3 Delta Scuti/SX Phoenicis variables, and 2 variables of undetermined type. Photometric parameters for these variables are presented. We present physical properties for some of the RR Lyrae stars, derived from Fourier analysis of their light curves. We discuss several different indicators of Oosterhoff type which indicate that the Oosterhoff classification of NGC 1786 is not as clear cut as what is seen in most globular clusters. Based on observations taken with the SMARTS 1.3 m telescope operated by the SMARTS Consortium and observations taken at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  19. Simulating star clusters with the AMUSE software framework. I. Dependence of cluster lifetimes on model assumptions and cluster dissolution modes

    International Nuclear Information System (INIS)

    Whitehead, Alfred J.; McMillan, Stephen L. W.; Vesperini, Enrico; Portegies Zwart, Simon

    2013-01-01

    We perform a series of simulations of evolving star clusters using the Astrophysical Multipurpose Software Environment (AMUSE), a new community-based multi-physics simulation package, and compare our results to existing work. These simulations model a star cluster beginning with a King model distribution and a selection of power-law initial mass functions and contain a tidal cutoff. They are evolved using collisional stellar dynamics and include mass loss due to stellar evolution. After studying and understanding that the differences between AMUSE results and results from previous studies are understood, we explored the variation in cluster lifetimes due to the random realization noise introduced by transforming a King model to specific initial conditions. This random realization noise can affect the lifetime of a simulated star cluster by up to 30%. Two modes of star cluster dissolution were identified: a mass evolution curve that contains a runaway cluster dissolution with a sudden loss of mass, and a dissolution mode that does not contain this feature. We refer to these dissolution modes as 'dynamical' and 'relaxation' dominated, respectively. For Salpeter-like initial mass functions, we determined the boundary between these two modes in terms of the dynamical and relaxation timescales.

  20. AN APPARENT PRECESSING HELICAL OUTFLOW FROM A MASSIVE EVOLVED STAR: EVIDENCE FOR BINARY INTERACTION

    Energy Technology Data Exchange (ETDEWEB)

    Lau, R. M.; Hankins, M. J.; Herter, T. L. [Astronomy Department, Cornell University, Ithaca, NY 14853-6801 (United States); Morris, M. R. [Department of Physics and Astronomy, University of California, Los Angeles, 430 Portola Plaza, Los Angeles, CA 90095 (United States); Mills, E. A. C. [National Radio Astronomy Observatory, P.O. Box O 1009, Lopezville Drive, Socorro, NM 87801 (United States); Ressler, M. E. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2016-02-20

    Massive, evolved stars play a crucial role in the metal enrichment, dust budget, and energetics of the interstellar medium; however, the details of their evolution are uncertain because of their rarity and short lifetimes before exploding as supernovae. Discrepancies between theoretical predictions from single-star evolutionary models and observations of massive stars have evoked a shifting paradigm that implicates the importance of binary interaction. We present mid- to far-infrared observations from the Stratospheric Observatory for Infrared Astronomy of a conical “helix” of warm dust (∼180 K) that appears to extend from the Wolf–Rayet star WR102c. Our interpretation of the helix is a precessing, collimated outflow that emerged from WR102c during a previous evolutionary phase as a rapidly rotating luminous blue variable. We attribute the precession of WR102c to gravitational interactions with an unseen compact binary companion whose orbital period can be constrained to 800 days < P < 1400 days from the inferred precession period, τ{sub p} ∼ 1.4 × 10{sup 4} yr, and limits imposed on the stellar and orbital parameters of the system. Our results concur with the range of orbital periods (P ≲ 1500 days) where spin-up via mass exchange is expected to occur for massive binary systems.

  1. Veiling and Accretion Around the Young Binary Stars S and VV Corona Australis

    Science.gov (United States)

    Sullivan, Kendall; Prato, Lisa; Avilez, Ian

    2018-01-01

    S CrA and VV CrA are two young binary star systems with separations of 170 AU and 250 AU, respectively, in the southern star-forming region Corona Australis. The spectral types of the four stars in these two systems are similar, approximately K7 to M1, hence the stellar masses are also similar. The study of young stars just emerging from their natal cloud cores at the very limits of observability allows us to probe the extreme environments in which planet formation begins to occur. Stars in this early evolutionary stage can have circumstellar or circumbinary disks, and sometimes remnants of the envelopes which surrounded them during the protostellar stage. Envelopes accrete onto disks and disks in turn accrete onto the central stars, triggering elevated continuum emission, line emission, outflows, and stellar winds. This violent stage marks the onset of the epoch of planet formation. Using high-resolution near-infrared, H-band spectroscopy from the Keck II telescope using the NIRSPEC instrument over 4-6 epochs, we are probing the chaotic environment surrounding the four stars in these systems. We determine the spectral types for VV CrA A and B for the first time, and examine the variable veiling and emission occurring around each of these stars. This research was supported in part by NSF grants AST-1461200 and AST-1313399.

  2. Gravitational interactions of stars with supermassive black hole binaries. I. Tidal disruption events

    Science.gov (United States)

    Darbha, Siva; Coughlin, Eric R.; Kasen, Daniel; Quataert, Eliot

    2018-04-01

    Stars approaching supermassive black holes (SMBHs) in the centers of galaxies can be torn apart by strong tidal forces. We study the physics of tidal disruption by a circular, binary SMBH as a function of the binary mass ratio q = M2/M1 and separation a, exploring a large set of points in the parameter range q ∈ [0.01, 1] and a/rt1 ∈ [10, 1000]. We simulate encounters in which field stars approach the binary from the loss cone on parabolic, low angular momentum orbits. We present the rate of disruption and the orbital properties of the disrupted stars, and examine the fallback dynamics of the post-disruption debris in the "frozen-in" approximation. We conclude by calculating the time-dependent disruption rate over the lifetime of the binary. Throughout, we use a primary mass M1 = 106M⊙ as our central example. We find that the tidal disruption rate is a factor of ˜2 - 7 times larger than the rate for an isolated BH, and is independent of q for q ≳ 0.2. In the "frozen-in" model, disruptions from close, nearly equal mass binaries can produce intense tidal fallbacks: for binaries with q ≳ 0.2 and a/rt1 ˜ 100, roughly ˜18 - 40% of disruptions will have short rise times (trise ˜ 1 - 10 d) and highly super-Eddington peak return rates (\\dot{M}_{peak} / \\dot{M}_{Edd} ˜ 2 × 10^2 - 3 × 10^3).

  3. VizieR Online Data Catalog: Adiabatic mass loss in binary stars. II. (Ge+, 2015)

    Science.gov (United States)

    Ge, H.; Webbink, R. F.; Chen, X.; Han, Z.

    2016-02-01

    In the limit of extremely rapid mass transfer, the response of a donor star in an interacting binary becomes asymptotically one of adiabatic expansion. We survey here adiabatic mass loss from Population I stars (Z=0.02) of mass 0.10M⊙-100M⊙ from the zero-age main sequence to the base of the giant branch, or to central hydrogen exhaustion for lower main sequence stars. The logarithmic derivatives of radius with respect to mass along adiabatic mass-loss sequences translate into critical mass ratios for runaway (dynamical timescale) mass transfer, evaluated here under the assumption of conservative mass transfer. For intermediate- and high-mass stars, dynamical mass transfer is preceded by an extended phase of thermal timescale mass transfer as the star is stripped of most of its envelope mass. The critical mass ratio qad (throughout this paper, we follow the convention of defining the binary mass ratio as q{equiv}Mdonor/Maccretor) above which this delayed dynamical instability occurs increases with advancing evolutionary age of the donor star, by ever-increasing factors for more massive donors. Most intermediate- or high-mass binaries with nondegenerate accretors probably evolve into contact before manifesting this instability. As they approach the base of the giant branch, however, and begin developing a convective envelope, qad plummets dramatically among intermediate-mass stars, to values of order unity, and a prompt dynamical instability occurs. Among low-mass stars, the prompt instability prevails throughout main sequence evolution, with qad declining with decreasing mass, and asymptotically approaching qad=2/3, appropriate to a classical isentropic n=3/2 polytrope. Our calculated qad values agree well with the behavior of time-dependent models by Chen & Han (2003MNRAS.341..662C) of intermediate-mass stars initiating mass transfer in the Hertzsprung gap. Application of our results to cataclysmic variables, as systems that must be stable against rapid mass

  4. Binary neutron star mergers: Dependence on the nuclear equation of state

    International Nuclear Information System (INIS)

    Hotokezaka, Kenta; Kyutoku, Koutarou; Okawa, Hirotada; Shibata, Masaru; Kiuchi, Kenta

    2011-01-01

    We perform a numerical-relativity simulation for the merger of binary neutron stars with 6 nuclear-theory-based equations of states (EOSs) described by piecewise polytropes. Our purpose is to explore the dependence of the dynamical behavior of the binary neutron star merger and resulting gravitational waveforms on the EOS of the supernuclear-density matter. The numerical results show that the merger process and the first outcome are classified into three types: (i) a black hole is promptly formed, (ii) a short-lived hypermassive neutron star (HMNS) is formed, (iii) a long-lived HMNS is formed. The type of the merger depends strongly on the EOS and on the total mass of the binaries. For the EOS with which the maximum mass is larger than 2M · , the lifetime of the HMNS is longer than 10 ms for a total mass m 0 =2.7M · . A recent radio observation suggests that the maximum mass of spherical neutron stars is M max ≥1.97±0.04M · in one σ level. This fact and our results support the possible existence of a HMNS soon after the onset of the merger for a typical binary neutron star with m 0 =2.7M · . We also show that the torus mass surrounding the remnant black hole is correlated with the type of the merger process; the torus mass could be large, ≥0.1M · , in the case that a long-lived HMNS is formed. We also show that gravitational waves carry information of the merger process, the remnant, and the torus mass surrounding a black hole.

  5. The globular cluster system of NGC 1316. IV. Nature of the star cluster complex SH2

    Science.gov (United States)

    Richtler, T.; Husemann, B.; Hilker, M.; Puzia, T. H.; Bresolin, F.; Gómez, M.

    2017-05-01

    Context. The light of the merger remnant NGC 1316 (Fornax A) is dominated by old and intermediate-age stars. The only sign of current star formation in this big galaxy is the Hii region SH2, an isolated star cluster complex with a ring-like morphology and an estimated age of 0.1 Gyr at a galactocentric distance of about 35 kpc. A nearby intermediate-age globular cluster, surrounded by weak line emission and a few more young star clusters, is kinematically associated. The origin of this complex is enigmatic. Aims: We want to investigate the nature of this star cluster complex. The nebular emission lines permit a metallicity determination which can discriminate between a dwarf galaxy or other possible precursors. Methods: We used the Integral Field Unit (IFU) of the VIMOS instrument at the Very Large Telescope of the European Southern Observatory in high dispersion mode to study the morphology, kinematics, and metallicity employing line maps, velocity maps, and line diagnostics of a few characteristic spectra. Results: The line ratios of different spectra vary, indicating highly structured Hii regions, but define a locus of uniform metallicity. The strong-line diagnostic diagrams and empirical calibrations point to a nearly solar or even super-solar oxygen abundance. The velocity dispersion of the gas is highest in the region offset from the bright clusters. Star formation may be active on a low level. There is evidence for a large-scale disk-like structure in the region of SH2, which would make the similar radial velocity of the nearby globular cluster easier to understand. Conclusions: The high metallicity does not fit to a dwarf galaxy as progenitor. We favour the scenario of a free-floating gaseous complex having its origin in the merger 2 Gyr ago. Over a long period the densities increased secularly until finally the threshold for star formation was reached. SH2 illustrates how massive star clusters can form outside starbursts and without a considerable field

  6. POST T-Tauri Stars in Galactic Clusters

    Science.gov (United States)

    Haro, G.

    1983-08-01

    spectral type and luminosity: the earlier the spectral type, the shorter the vanishing effect. Therefore, if we look for weakened T Tauri features in stellar aggregates of various ages from which the typical and extreme T Tauri stars have already disappeared, we find that the older the aggregate, the later the spectral type in which the last prominent features are detectable. Everything seems to suggest that it is within these possible evolved T Tauri objects that we can find the so-called post-T Tauri stars, and that a good number of flare stars detected in galactic clusters are among them. These clusters are: the Orion stellar aggregate, NOC 2264, the Pleiades, and possibly the flare stars in stellar aggregates of ages equal or superior to 108 years. As I have in the past, I would like to place special emphasis on the genetic relationship between certain flare stars and their T Tauri ancestors, based not only on the very rapid outbursts of the former but also, and primarily, on the fact that these flare stars show spectroscopic characteristics reminiscent of the T Tauri original stars. In other words, the simple fact that a star presents the "flare" phenomenon does not constitute necessary and sufficient proof that it should be regarded as an evolutionary product of a T Tauri star: in addition to the flare-up the spectral types of the investigated objects must present -during maximum and minimum light- clear and reminiscent spectroscopic evidences of the original T Tauri objects; that is, spectral types as late or later than G and some emission lines, at least in H and Call. There are some flare stars in Orion and NGC 2264 which, even during minimum light, can be classified spectroscopically as typical T Tauri stars. In the case of the Pleiades, where undoubtedly there are no T Tauri stars, many of the flare stars show spectral emission lines (H and Call) of great intensity during maximum and of detectable intensity in slit spectrograms of not high dispersion, during

  7. Ages of Young Star Clusters, Massive Blue Stragglers, and the Upper Mass Limit of Stars: Analyzing Age-dependent Stellar Mass Functions

    NARCIS (Netherlands)

    Schneider, F.R.N.; Izzard, R.G.; de Mink, S.E.; Langer, N.; Stolte, A.; de Koter, A.; Gvaramadze, V.V.; Huβman, B.; Liermann, A.; Sana, H.

    2014-01-01

    Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass

  8. STAR FORMATION AND SUPERCLUSTER ENVIRONMENT OF 107 NEARBY GALAXY CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Seth A.; Hickox, Ryan C.; Wegner, Gary A. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Einasto, Maret; Vennik, Jaan [Tartu Observatory, 61602 Tõravere (Estonia)

    2017-01-20

    We analyze the relationship between star formation (SF), substructure, and supercluster environment in a sample of 107 nearby galaxy clusters using data from the Sloan Digital Sky Survey. Previous works have investigated the relationships between SF and cluster substructure, and cluster substructure and supercluster environment, but definitive conclusions relating all three of these variables has remained elusive. We find an inverse relationship between cluster SF fraction ( f {sub SF}) and supercluster environment density, calculated using the Galaxy luminosity density field at a smoothing length of 8 h {sup −1} Mpc (D8). The slope of f {sub SF} versus D8 is −0.008 ± 0.002. The f {sub SF} of clusters located in low-density large-scale environments, 0.244 ± 0.011, is higher than for clusters located in high-density supercluster cores, 0.202 ± 0.014. We also divide superclusters, according to their morphology, into filament- and spider-type systems. The inverse relationship between cluster f {sub SF} and large-scale density is dominated by filament- rather than spider-type superclusters. In high-density cores of superclusters, we find a higher f {sub SF} in spider-type superclusters, 0.229 ± 0.016, than in filament-type superclusters, 0.166 ± 0.019. Using principal component analysis, we confirm these results and the direct correlation between cluster substructure and SF. These results indicate that cluster SF is affected by both the dynamical age of the cluster (younger systems exhibit higher amounts of SF); the large-scale density of the supercluster environment (high-density core regions exhibit lower amounts of SF); and supercluster morphology (spider-type superclusters exhibit higher amounts of SF at high densities).

  9. STAR FORMATION AND SUPERCLUSTER ENVIRONMENT OF 107 NEARBY GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Cohen, Seth A.; Hickox, Ryan C.; Wegner, Gary A.; Einasto, Maret; Vennik, Jaan

    2017-01-01

    We analyze the relationship between star formation (SF), substructure, and supercluster environment in a sample of 107 nearby galaxy clusters using data from the Sloan Digital Sky Survey. Previous works have investigated the relationships between SF and cluster substructure, and cluster substructure and supercluster environment, but definitive conclusions relating all three of these variables has remained elusive. We find an inverse relationship between cluster SF fraction ( f SF ) and supercluster environment density, calculated using the Galaxy luminosity density field at a smoothing length of 8 h −1 Mpc (D8). The slope of f SF versus D8 is −0.008 ± 0.002. The f SF of clusters located in low-density large-scale environments, 0.244 ± 0.011, is higher than for clusters located in high-density supercluster cores, 0.202 ± 0.014. We also divide superclusters, according to their morphology, into filament- and spider-type systems. The inverse relationship between cluster f SF and large-scale density is dominated by filament- rather than spider-type superclusters. In high-density cores of superclusters, we find a higher f SF in spider-type superclusters, 0.229 ± 0.016, than in filament-type superclusters, 0.166 ± 0.019. Using principal component analysis, we confirm these results and the direct correlation between cluster substructure and SF. These results indicate that cluster SF is affected by both the dynamical age of the cluster (younger systems exhibit higher amounts of SF); the large-scale density of the supercluster environment (high-density core regions exhibit lower amounts of SF); and supercluster morphology (spider-type superclusters exhibit higher amounts of SF at high densities).

  10. Environmental effects on star formation in dwarf galaxies and star clusters

    Science.gov (United States)

    Pasetto, Stefano; Cropper, Mark; fujita, Yutaka; Chiosi, Cesare; Grebel, Eva K.

    2015-08-01

    We investigate the competitive role of the different dissipative phenomena acting on the onset of star formation history of gravitationally bound system in an external environment.Ram pressure, Kelvin-Helmholtz instability, Rayleigh-Taylor, and tidal forces are accounted separately in an analytical framework and compared in their role in influencing the star forming regions. The two-fluids instability at the interface between a stellar system and its surrounding hotter and less dense environment is related to the star formation processes through a set of differential equations. We present an analytical criterion to elucidate the dependence of star formation in a spherical stellar system on its surrounding environment useful in theoretical interpretations of numerical results as well as observational applications. We show how spherical coordinates naturally enlighten the interpretation of the two-fluids instability in a geometry that directly applies to astrophysical case. Finally, we consider the different signatures of these phenomena in synthetically realized colour-magnitude diagrams of the orbiting system thus investigating the detectability limits of these different effects for future observational projects and their relevance.The theoretical framework developed has direct applications to the cases of dwarf galaxies in galaxy clusters and dwarf galaxies orbiting our Milky Way system, as well as any primordial gas-rich cluster of stars orbiting within its host galaxy.

  11. Testing the Formation Scenarios of Binary Neutron Star Systems with Measurements of the Neutron Star Moment of Inertia

    Science.gov (United States)

    Newton, William G.; Steiner, Andrew W.; Yagi, Kent

    2018-03-01

    Two low-mass (M slope of the nuclear symmetry energy L. We find that, if either J0737-3039B or the J1756-2251 companion were formed in a US-SN, no more than 0.06 M ⊙ could have been lost from the progenitor core. Furthermore, a measurement of the moment of inertia of J0737-3039A to within 10% accuracy can discriminate between formation scenarios and, given current constraints on the predicted core mass loss, potentially rule them out. Advanced LIGO can potentially measure the neutron star tidal polarizability to equivalent accuracy which, using the I-Love-Q relations, would obtain similar constraints on the formation scenarios. Such information would help constrain important aspects of binary evolution used for population synthesis predictions of the rate of binary neutron star mergers and resulting electromagnetic and gravitational wave signals. Further progress needs to be made in modeling the core-collapse process that leads to low-mass neutron stars, particularly in making robust predictions for the mass loss from the progenitor core.

  12. The incidence of chemically peculiar stars in open clusters

    Energy Technology Data Exchange (ETDEWEB)

    Netopil, M.

    2013-07-01

    The formation and evolution of chemically peculiar (CP) stars is still a matter of debate, although the first representatives were detected already more than 110 years ago. From the astrophysical point of view, these objects are of particular interest, since they combine a wide variety of specific properties. This work deals with a subgroup of CP stars, showing beside overabundances of some iron-peak (e.g. Chromium) and rare earth elements like Europium, also strong ordered magnetic fields as well as a slow rotation. Based on a selection of well investigated close field stars, the possible connections of these properties were examined. However, the main research focus was the analysis of a relationship between the number of CP stars and their age. For this purpose, the results of the extensive Delta-a survey in open clusters were used. This photometric filter system allows an efficient and economic detection of magnetic CP stars due to a characteristic flux depression at 520 nm. Compared to field stars, open clusters offer the big advantage that for example the age and the distance can be determined more accurately on a statistical basis, since all member stars of an open cluster originate more or less at the same time from a single molecular cloud. After the membership analysis of all in Delta a investigated objects and the determination of the cluster parameters, it was shown that the occurrence of CP stars depend on age, but can be explained by the general evolution of stars. This entails amongst others that CP stars show their typical characteristics already as soon as they have arrived the main-sequence, or even before. Furthermore, we were able to detect at least one representative, probably still in its pre-main-sequence phase. (author) [German] Die Entstehung und Entwicklung von chemisch pekuliaren (CP) Sternen ist nach wie vor nicht restlos geklärt, und das obwohl die ersten Vertreter dieser Sterngruppe bereits vor mehr als 110 Jahren entdeckt wurden. Aus

  13. Multi-messenger observations of a binary neutron star merger

    Czech Academy of Sciences Publication Activity Database

    Abbott, P.B.; Abbott, R.; Abbott, T.D.; Blažek, Jiří; Boháčová, Martina; Caballero-García, María Dolores; Chudoba, Jiří; Ebr, Jan; Jelínek, Martin; Juryšek, Jakub; Kubánek, Petr; Mandát, Dušan; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Martins dos Santos, Eva M.; Schovánek, Petr; Trávníček, Petr; Vícha, Jakub; Yushkov, Alexey

    2017-01-01

    Roč. 848, č. 2 (2017), s. 1-59, č. článku L12. ISSN 2041-8205 R&D Projects: GA MŠk LM2015038; GA MŠk LG15014; GA MŠk EF16_013/0001402 Grant - others:OP VVV - AUGER-CZ(XE) CZ.02.1.01/0.0/0.0/16_013/0001402 Institutional support: RVO:68378271 ; RVO:67985815 Keywords : gravitational waves * stars: neutron Subject RIV: BF - Elementary Particles and High Energy Physics; BN - Astronomy, Celestial Mechanics, Astrophysics (ASU-R) OBOR OECD: Particles and field physics; Astronomy (including astrophysics,space science) (ASU-R) Impact factor: 5.522, year: 2016

  14. Adaptive Optics Observations of Exoplanets, Brown Dwarfs, and Binary Stars

    Science.gov (United States)

    Hinkley, Sasha

    2012-04-01

    The current direct observations of brown dwarfs and exoplanets have been obtained using instruments not specifically designed for overcoming the large contrast ratio between the host star and any wide-separation faint companions. However, we are about to witness the birth of several new dedicated observing platforms specifically geared towards high contrast imaging of these objects. The Gemini Planet Imager, VLT-SPHERE, Subaru HiCIAO, and Project 1640 at the Palomar 5m telescope will return images of numerous exoplanets and brown dwarfs over hundreds of observing nights in the next five years. Along with diffraction-limited coronagraphs and high-order adaptive optics, these instruments also will return spectral and polarimetric information on any discovered targets, giving clues to their atmospheric compositions and characteristics. Such spectral characterization will be key to forming a detailed theory of comparative exoplanetary science which will be widely applicable to both exoplanets and brown dwarfs. Further, the prevalence of aperture masking interferometry in the field of high contrast imaging is also allowing observers to sense massive, young planets at solar system scales (~3-30 AU)- separations out of reach to conventional direct imaging techniques. Such observations can provide snapshots at the earliest phases of planet formation-information essential for constraining formation mechanisms as well as evolutionary models of planetary mass companions. As a demonstration of the power of this technique, I briefly review recent aperture masking observations of the HR 8799 system. Moreover, all of the aforementioned techniques are already extremely adept at detecting low-mass stellar companions to their target stars, and I present some recent highlights.

  15. K2 Campaign 5 observations of pulsating subdwarf B stars: binaries and super-Nyquist frequencies

    Science.gov (United States)

    Reed, M. D.; Armbrecht, E. L.; Telting, J. H.; Baran, A. S.; Østensen, R. H.; Blay, Pere; Kvammen, A.; Kuutma, Teet; Pursimo, T.; Ketzer, L.; Jeffery, C. S.

    2018-03-01

    We report the discovery of three pulsating subdwarf B stars in binary systems observed with the Kepler space telescope during Campaign 5 of K2. EPIC 211696659 (SDSS J083603.98+155216.4) is a g-mode pulsator with a white dwarf companion and a binary period of 3.16 d. EPICs 211823779 (SDSS J082003.35+173914.2) and 211938328 (LB 378) are both p-mode pulsators with main-sequence F companions. The orbit of EPIC 211938328 is long (635 ± 146 d) while we cannot constrain that of EPIC 211823779. The p modes are near the Nyquist frequency and so we investigate ways to discriminate super- from sub-Nyquist frequencies. We search for rotationally induced frequency multiplets and all three stars appear to be slow rotators with EPIC 211696659 subsynchronous to its orbit.

  16. Determining the Separation and Position Angles of Orbiting Binary Stars: Comparison of Three Methods

    Science.gov (United States)

    Walsh, Ryan; Boule, Cory; Andrews, Katelyn; Penfield, Andrew; Ross, Ian; Lucas, Gaylon; Braught, Trisha; Harfenist, Steven; Goodale, Keith

    2015-07-01

    To initiate a long term binary star research program, undergraduate students compared the accuracy and ease of measuring the separations and position angles of three long period binary pairs using three different measurement techniques. It was found that digital image capture using BackyardEOS software and subsequent analysis in Adobe Photoshop was the most accurate and easiest to use of our three methods. The systems WDS J17419+7209 (STF 2241AB), WDS 19418+5032 (STFA 46AB), and WDS 16362+5255 (STF 2087AB) were found to have separations and position angles of: 30", 16°; 39.7", 133°; and 3.1", 104°, respectively. This method produced separation values within 1.3" and position angle values within 1.3° of the most recently observed values found in the Washington Double Star Catalog.

  17. Search for gravitational waves from galactic and extra-galactic binary neutron stars

    International Nuclear Information System (INIS)

    Abbott, B.; Anderson, S.B.; Araya, M.; Armandula, H.; Asiri, F.; Barish, B.C.; Barnes, M.; Barton, M.A.; Bhawal, B.; Billingsley, G.; Black, E.; Blackburn, K.; Bogue, L.; Bork, R.; Brown, D.A.; Busby, D.; Cardenas, L.; Chandler, A.; Chapsky, J.; Charlton, P.

    2005-01-01

    We use 373 hours (≅15 days) of data from the second science run of the LIGO gravitational-wave detectors to search for signals from binary neutron star coalescences within a maximum distance of about 1.5 Mpc, a volume of space which includes the Andromeda Galaxy and other galaxies of the Local Group of galaxies. This analysis requires a signal to be found in data from detectors at the two LIGO sites, according to a set of coincidence criteria. The background (accidental coincidence rate) is determined from the data and is used to judge the significance of event candidates. No inspiral gravitational-wave events were identified in our search. Using a population model which includes the Local Group, we establish an upper limit of less than 47 inspiral events per year per Milky Way equivalent galaxy with 90% confidence for nonspinning binary neutron star systems with component masses between 1 and 3M ·

  18. Binary star statistics: the mass ratio distribution for very wide systems

    International Nuclear Information System (INIS)

    Trimble, V.

    1987-01-01

    The distribution of mass ratios for a sample of common proper motion (CPM) binaries is determined and compared with that of 798 visual binaries (VB's) studied earlier, in hopes of answering the question: Can the member stars of these systems have been drawn at random from the normal initial mass function for single stars? The observed distributions peak strongly toward q = 1.0 for both kinds of systems, but less strongly for the CPM's than for the VB's. Due allowance having been made for assorted observational selection effects, it seems quite probable that the CPM's represent the observed part of a population drawn at random from the normal IMF, while the VB's are much more difficult to interpret that way and could, perhaps, result from a formation mechanism that somewhat favors sytems with roughly equal components. (author)

  19. Binary stars observed with adaptive optics at the starfire optical range

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, Jack D. [Air Force Research Laboratory, Directed Energy Directorate, RDSAM, 3550 Aberdeen Avenue SE, Kirtland AFB, NM 87117-5776 (United States)

    2014-03-01

    In reviewing observations taken of binary stars used as calibration objects for non-astronomical purposes with adaptive optics on the 3.5 m Starfire Optical Range telescope over the past 2 years, one-fifth of them were found to be off-orbit. In order to understand such a high number of discrepant position angles and separations, all previous observations in the Washington Double Star Catalog for these rogue binaries were obtained from the Naval Observatory. Adding our observations to these yields new orbits for all, resolving the discrepancies. We have detected both components of γ Gem for the first time, and we have shown that 7 Cam is an optical pair, not physically bound.

  20. Properties and origin of the old, metal rich, star cluster, NGC 6791

    OpenAIRE

    Carraro, Giovanni

    2013-01-01

    In this contribution I summarize the unique properties of the old, metal rich, star cluster NGC 6791, with particular emphasis on its population of extreme blue horizontal branch stars. I then conclude providing my personal view on the origin of this fascinating star cluster.

  1. THE RELATION BETWEEN COOL CLUSTER CORES AND HERSCHEL-DETECTED STAR FORMATION IN BRIGHTEST CLUSTER GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Rawle, T. D.; Egami, E.; Rex, M.; Fiedler, A.; Haines, C. P.; Pereira, M. J.; Portouw, J.; Walth, G. [Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Edge, A. C. [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom); Smith, G. P. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Altieri, B.; Valtchanov, I. [Herschel Science Centre, ESAC, ESA, P.O. Box 78, Villanueva de la Canada, 28691 Madrid (Spain); Perez-Gonzalez, P. G. [Departamento de Astrofisica, Facultad de CC. Fisicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Van der Werf, P. P. [Sterrewacht Leiden, Leiden University, P.O. Box 9513, 2300 RA, Leiden (Netherlands); Zemcov, M., E-mail: trawle@as.arizona.edu [Department of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States)

    2012-03-01

    We present far-infrared (FIR) analysis of 68 brightest cluster galaxies (BCGs) at 0.08 < z < 1.0. Deriving total infrared luminosities directly from Spitzer and Herschel photometry spanning the peak of the dust component (24-500 {mu}m), we calculate the obscured star formation rate (SFR). 22{sup +6.2}{sub -5.3}% of the BCGs are detected in the far-infrared, with SFR = 1-150 M{sub Sun} yr{sup -1}. The infrared luminosity is highly correlated with cluster X-ray gas cooling times for cool-core clusters (gas cooling time <1 Gyr), strongly suggesting that the star formation in these BCGs is influenced by the cluster-scale cooling process. The occurrence of the molecular gas tracing H{alpha} emission is also correlated with obscured star formation. For all but the most luminous BCGs (L{sub TIR} > 2 Multiplication-Sign 10{sup 11} L{sub Sun }), only a small ({approx}<0.4 mag) reddening correction is required for SFR(H{alpha}) to agree with SFR{sub FIR}. The relatively low H{alpha} extinction (dust obscuration), compared to values reported for the general star-forming population, lends further weight to an alternate (external) origin for the cold gas. Finally, we use a stacking analysis of non-cool-core clusters to show that the majority of the fuel for star formation in the FIR-bright BCGs is unlikely to originate from normal stellar mass loss.

  2. HD 193793, a radio-emitting Wolf-Rayet binary star

    International Nuclear Information System (INIS)

    Florkowski, D.R.; Gottesman, S.T.

    1977-01-01

    The Wolf-Rayet binary HD 193793 has been observed as a weak, unresolved radio source. The observed flux densities do not agree with the predictions of the constant-mass-flow model of Wright and Barlow and Panagia and Felli. A variable-mass-flow model is suggested and an observational test is proposed. A comparison with γ 2 Vel is made, and the parameters affecting radio emission from Wolf-Rayet stars are briefly discussed. (author)

  3. Dynamics of quadruple systems composed of two binaries: stars, white dwarfs, and implications for Ia supernovae

    Science.gov (United States)

    Fang, Xiao; Thompson, Todd A.; Hirata, Christopher M.

    2018-05-01

    We investigate the long-term secular dynamics and Lidov-Kozai (LK) eccentricity oscillations of quadruple systems composed of two binaries at quadrupole and octupole orders in the perturbing Hamiltonian. We show that the fraction of systems reaching high eccentricities is enhanced relative to triple systems, over a broader range of parameter space. We show that this fraction grows with time, unlike triple systems evolved at quadrupole order. This is fundamentally because with their additional degrees of freedom, quadruple systems do not have a maximal set of commuting constants of the motion, even in secular theory at quadrupole order. We discuss these results in the context of star-star and white dwarf-white dwarf (WD) binaries, with emphasis on WD-WD mergers and collisions relevant to the Type Ia supernova problem. For star-star systems, we find that more than 30 per cent of systems reach high eccentricity within a Hubble time, potentially forming triple systems via stellar mergers or close binaries. For WD-WD systems, taking into account general relativistic and tidal precession and dissipation, we show that the merger rate is enhanced in quadruple systems relative to triple systems by a factor of 3.5-10, and that the long-term evolution of quadruple systems leads to a delay-time distribution ˜1/t for mergers and collisions. In gravitational wave-driven mergers of compact objects, we classify the mergers by their evolutionary patterns in phase space and identify a regime in about 8 per cent of orbital shrinking mergers, where eccentricity oscillations occur on the general relativistic precession time-scale, rather than the much longer LK time-scale. Finally, we generalize previous treatments of oscillations in the inner binary eccentricity (evection) to eccentric mutual orbits. We assess the merger rate in quadruple and triple systems and the implications for their viability as progenitors of stellar mergers and Type Ia supernovae.

  4. Hidden-sector Spectroscopy with Gravitational Waves from Binary Neutron Stars

    Science.gov (United States)

    Croon, Djuna; Nelson, Ann E.; Sun, Chen; Walker, Devin G. E.; Xianyu, Zhong-Zhi

    2018-05-01

    We show that neutron star (NS) binaries can be ideal laboratories to probe hidden sectors with a long-range force. In particular, it is possible for gravitational wave (GW) detectors such as LIGO and Virgo to resolve the correction of waveforms from ultralight dark gauge bosons coupled to NSs. We observe that the interaction of the hidden sector affects both the GW frequency and amplitude in a way that cannot be fitted by pure gravity.

  5. The swift UVOT stars survey. I. Methods and test clusters

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, Michael H.; Porterfield, Blair L.; Linevsky, Jacquelyn S.; Bond, Howard E.; Hoversten, Erik A.; Berrier, Joshua L.; Gronwall, Caryl A. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Holland, Stephen T. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Breeveld, Alice A. [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom); Brown, Peter J., E-mail: siegel@astro.psu.edu, E-mail: blp14@psu.edu, E-mail: heb11@psu.edu, E-mail: caryl@astro.psu.edu, E-mail: sholland@stsci.edu, E-mail: aab@mssl.ucl.ac.uk, E-mail: grbpeter@yahoo.com [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A. and M. University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843 (United States)

    2014-12-01

    We describe the motivations and background of a large survey of nearby stellar populations using the Ultraviolet Optical Telescope (UVOT) on board the Swift Gamma-Ray Burst Mission. UVOT, with its wide field, near-UV sensitivity, and 2.″3 spatial resolution, is uniquely suited to studying nearby stellar populations and providing insight into the near-UV properties of hot stars and the contribution of those stars to the integrated light of more distant stellar populations. We review the state of UV stellar photometry, outline the survey, and address problems specific to wide- and crowded-field UVOT photometry. We present color–magnitude diagrams of the nearby open clusters M67, NGC 188, and NGC 2539, and the globular cluster M79. We demonstrate that UVOT can easily discern the young- and intermediate-age main sequences, blue stragglers, and hot white dwarfs, producing results consistent with previous studies. We also find that it characterizes the blue horizontal branch of M79 and easily identifies a known post-asymptotic giant branch star.

  6. The swift UVOT stars survey. I. Methods and test clusters

    International Nuclear Information System (INIS)

    Siegel, Michael H.; Porterfield, Blair L.; Linevsky, Jacquelyn S.; Bond, Howard E.; Hoversten, Erik A.; Berrier, Joshua L.; Gronwall, Caryl A.; Holland, Stephen T.; Breeveld, Alice A.; Brown, Peter J.

    2014-01-01

    We describe the motivations and background of a large survey of nearby stellar populations using the Ultraviolet Optical Telescope (UVOT) on board the Swift Gamma-Ray Burst Mission. UVOT, with its wide field, near-UV sensitivity, and 2.″3 spatial resolution, is uniquely suited to studying nearby stellar populations and providing insight into the near-UV properties of hot stars and the contribution of those stars to the integrated light of more distant stellar populations. We review the state of UV stellar photometry, outline the survey, and address problems specific to wide- and crowded-field UVOT photometry. We present color–magnitude diagrams of the nearby open clusters M67, NGC 188, and NGC 2539, and the globular cluster M79. We demonstrate that UVOT can easily discern the young- and intermediate-age main sequences, blue stragglers, and hot white dwarfs, producing results consistent with previous studies. We also find that it characterizes the blue horizontal branch of M79 and easily identifies a known post-asymptotic giant branch star.

  7. Rotation of the Mass Donors in High-mass X-ray Binaries and Symbiotic Stars

    Directory of Open Access Journals (Sweden)

    K. Stoyanov

    2015-02-01

    Full Text Available Our aim is to investigate the tidal interaction in High-mass X-ray Binaries and Symbiotic stars in order to determine in which objects the rotation of the mass donors is synchronized or pseudosynchronized with the orbital motion of the compact companion. We find that the Be/X-ray binaries are not synchronized and the orbital periods of the systems are greater than the rotational periods of the mass donors. The giant and supergiant High-mass X-ray binaries and symbiotic stars are close to synchronization. We compare the rotation of mass donors in symbiotics with the projected rotational velocities of field giants and find that the M giants in S-type symbiotics rotate on average 1.5 times faster than the field M giants. We find that the projected rotational velocity of the red giant in symbiotic star MWC 560 is v sin i= 8.2±1.5 km.s−1, and estimate its rotational period to be Prot<>/sub = 144 - 306 days. Using the theoretical predictions of tidal interaction and pseudosynchronization, we estimate the orbital eccentricity e = 0.68 − 0.82.

  8. UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR-BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, E.; Ackley, K.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.T.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, R.D.; Barone, E.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, M.J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, A.L.S.; Bock, O.; Boer, M.; Bogaert, J.G.; Bogan, C.; Bohe, A.; Bond, T.C; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, A.D.; Brown, D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderon Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, D. S.; Chen, Y; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Qian; Chua, S. E.; Chung, E.S.; Ciani, G.; Clara, E.; Clark, J. A.; Cleva, E.; Coccia, E.; Cohadon, P. -E; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, A.C.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, A.L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; Debra, D.; Debreczeni, G.; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.A.; Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Giovanni, M.G.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, T. M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.M.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garunfi, E.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.P.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; Gonzalez, R.G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.M.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Buffoni-Hall, R.; Hall, E. D.; Hammond, G.L.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, P.J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.A.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, D.H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jimenez-Forteza, E.; Johnson, W.; Jones, I.D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.H.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kefelian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.E.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan., S.; Khan, Z.; Khazanov, E. A.; Kusunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, Namjun; Kim, W.; Kim, Y.M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krolak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzar, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.H.; Lee, K.H.; Lee, M.H.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Luck, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Zertuche, L. Magana; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, E.; Marion, F.; Marka, S.; Marka, Z.; Markosyan, A. S.; Maros, E.; Martelli, E.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A. L.; Miller, B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moore, J.C.; Moraru, D.; Gutierrez Moreno, M.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, S.D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P.G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Gutierrez-Neri, M.; Neunzert, A.; Newton-Howes, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Deill, J.; Oelker, E.; Ogin, G. H.; Oh, J.; Oh, S. H.; Ohme, F.; Oliver, M. B.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, E.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.S; Pascucci, D.; Pasqualetti, A.; Passahieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Proxhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Purrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, E. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, D.M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosinska, D.; Rowan, S.; Rudiger, A.; Ruggi, P.; Ryan, K.A.; Sachdev, P.S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J; Schmidt, P.; Schnabel, R.B.; Schofield, R. M. S.; Schonbecx, A.; Schreiber, K.E.C.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, M.S.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shaltevi, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, António Dias da; Singer, A; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, R. J. E.; Smith, N.D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, J.R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.D.; Talukder, D.; Tanner, D. B.; Tapai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, W.R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Toxmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Toyra, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.G.; van den Brand, J. E. J.; Van Den Broeck, C.F.F.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heuningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasuth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.J.; Venkateswara, K.; Verkindt, D.; Vetrano, E.; Vicere, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, MT; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, D.R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J.L.; Wu, D.S.; Wu, G.; Yablong, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrozny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.

    2016-01-01

    We report here the non-detection of gravitational waves from the merger of binary-neutron star systems and neutron star-black hole systems during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO). In particular, we searched for gravitational-wave

  9. Star Formation Activity in CLASH Brightest Cluster Galaxies

    Science.gov (United States)

    Fogarty, Kevin; Postman, Marc; Connor, Thomas; Donahue, Megan; Moustakas, John

    2015-11-01

    The CLASH X-ray selected sample of 20 galaxy clusters contains 10 brightest cluster galaxies (BCGs) that exhibit significant (>5σ) extinction-corrected star formation rates (SFRs). Star formation activity is inferred from photometric estimates of UV and Hα+[N ii] emission in knots and filaments detected in CLASH Hubble Space Telescope ACS and WFC3 observations. UV-derived SFRs in these BCGs span two orders of magnitude, including two with a SFR ≳ 100 M⊙ yr-1. These measurements are supplemented with [O ii], [O iii], and Hβ fluxes measured from spectra obtained with the SOAR telescope. We confirm that photoionization from ongoing star formation powers the line emission nebulae in these BCGs, although in many BCGs there is also evidence of a LINER-like contribution to the line emission. Coupling these data with Chandra X-ray measurements, we infer that the star formation occurs exclusively in low-entropy cluster cores and exhibits a correlation with gas properties related to cooling. We also perform an in-depth study of the starburst history of the BCG in the cluster RXJ1532.9+3021, and create 2D maps of stellar properties on scales down to ˜350 pc. These maps reveal evidence for an ongoing burst occurring in elongated filaments, generally on ˜0.5-1.0 Gyr timescales, although some filaments are consistent with much younger (≲100 Myr) burst timescales and may be correlated with recent activity from the active galactic nucleus. The relationship between BCG SFRs and the surrounding intracluster medium gas properties provide new support for the process of feedback-regulated cooling in galaxy clusters and is consistent with recent theoretical predictions. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel

  10. Localization of binary neutron star mergers with second and third generation gravitational-wave detectors

    Science.gov (United States)

    Mills, Cameron; Tiwari, Vaibhav; Fairhurst, Stephen

    2018-05-01

    The observation of gravitational wave signals from binary black hole and binary neutron star mergers has established the field of gravitational wave astronomy. It is expected that future networks of gravitational wave detectors will possess great potential in probing various aspects of astronomy. An important consideration for successive improvement of current detectors or establishment on new sites is knowledge of the minimum number of detectors required to perform precision astronomy. We attempt to answer this question by assessing the ability of future detector networks to detect and localize binary neutron stars mergers on the sky. Good localization ability is crucial for many of the scientific goals of gravitational wave astronomy, such as electromagnetic follow-up, measuring the properties of compact binaries throughout cosmic history, and cosmology. We find that although two detectors at improved sensitivity are sufficient to get a substantial increase in the number of observed signals, at least three detectors of comparable sensitivity are required to localize majority of the signals, typically to within around 10 deg2 —adequate for follow-up with most wide field of view optical telescopes.

  11. The evolution of the lithium abundances of solar-type stars. I. The Hyades and Coma Berenices clusters

    International Nuclear Information System (INIS)

    Sonderblom, D.R.; Oey, M.S.; Johnson, D.R.H.; Stone, R.P.S.

    1990-01-01

    High-resolution, high signal-to-noise spectra of the lithium region at 6708 A in 28 solar-type stars of the Hyades and Coma Berenices clusters are reported. Given an observational uncertainty of less than about 5 mA in W-lambda (Li), no significant scatter about the mean relation was seen for most stars. However, there are several stars that have anomalous abundances. Two of them fall well below the mean relation, and appear to have no distinctive qualities that might account for their low Li. Two others are close binaries and have significantly greater than average Li. A means by which close binaries might preserve Li is suggested, and Li depletion timescales for stars near the zero-age main sequence (ZAMS) are estimated by comparing the Hyades to the Pleiades. This comparison indicates that Li depletion for stars near 1 solar mass starts on the ZAMS, not before, and that depletion occurs at a much slower rate after the age of the Hyades than before. 87 refs

  12. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral.

    Science.gov (United States)

    Abbott, B P; Abbott, R; Abbott, T D; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Afrough, M; Agarwal, B; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allen, G; Allocca, A; Altin, P A; Amato, A; Ananyeva, A; Anderson, S B; Anderson, W G; Angelova, S V; Antier, S; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Atallah, D V; Aufmuth, P; Aulbert, C; AultONeal, K; Austin, C; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Bae, S; Bailes, M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Banagiri, S; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barkett, K; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Barthelmy, S D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bawaj, M; Bayley, J C; Bazzan, M; Bécsy, B; Beer, C; Bejger, M; Belahcene, I; Bell, A S; Berger, B K; Bergmann, G; Bernuzzi, S; Bero, J J; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Biscoveanu, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bode, N; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonilla, E; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bossie, K; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T A; Calloni, E; Camp, J B; Canepa, M; Canizares, P; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Carney, M F; Carullo, G; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerdá-Durán, P; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chase, E; Chassande-Mottin, E; Chatterjee, D; Chatziioannou, K; Cheeseboro, B D; Chen, H Y; Chen, X; Chen, Y; Cheng, H-P; Chia, H; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, A K W; Chung, S; Ciani, G; Ciolfi, R; Cirelli, C E; Cirone, A; Clara, F; Clark, J A; Clearwater, P; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Cohen, D; Colla, A; Collette, C G; Cominsky, L R; Constancio, M; Conti, L; Cooper, S J; Corban, P; Corbitt, T R; Cordero-Carrión, I; Corley, K R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Dálya, G; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davis, D; Daw, E J; Day, B; De, S; DeBra, D; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Demos, N; Denker, T; Dent, T; De Pietri, R; Dergachev, V; De Rosa, R; DeRosa, R T; De Rossi, C; DeSalvo, R; de Varona, O; Devenson, J; Dhurandhar, S; Díaz, M C; Dietrich, T; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Renzo, F; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Dreissigacker, C; Driggers, J C; Du, Z; Ducrot, M; Dudi, R; Dupej, P; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Eisenstein, R A; Essick, R C; Estevez, D; Etienne, Z B; Etzel, T; Evans, M; Evans, T M; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fee, C; Fehrmann, H; Feicht, J; Fejer, M M; Fernandez-Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finstad, D; Fiori, I; Fiorucci, D; Fishbach, M; Fisher, R P; Fitz-Axen, M; Flaminio, R; Fletcher, M; Fong, H; Font, J A; Forsyth, P W F; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Ganija, M R; Gaonkar, S G; Garcia-Quiros, C; Garufi, F; Gateley, B; Gaudio, S; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, D; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glover, L; Goetz, E; Goetz, R; Gomes, S; Goncharov, B; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Gretarsson, E M; Groot, P; Grote, H; Grunewald, S; Gruning, P; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Halim, O; Hall, B R; Hall, E D; Hamilton, E Z; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hannuksela, O A; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hinderer, T; Ho, W C G; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Horst, C; Hough, J; Houston, E A; Howell, E J; Hreibi, A; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Inta, R; Intini, G; Isa, H N; Isac, J-M; Isi, M; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kalaghatgi, C V; Kalogera, V; Kamai, B; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Kastaun, W; Katolik, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kawabe, K; Kéfélian, F; Keitel, D; Kemball, A J; Kennedy, R; Kent, C; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J C; Kim, K; Kim, W; Kim, W S; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kinley-Hanlon, M; Kirchhoff, R; Kissel, J S; Kleybolte, L; Klimenko, S; Knowles, T D; Koch, P; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, P; Kumar, R; Kumar, S; Kuo, L; Kutynia, A; Kwang, S; Lackey, B D; Lai, K H; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Larson, S L; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lee, C H; Lee, H K; Lee, H M; Lee, H W; Lee, K; Lehmann, J; Lenon, A; Leon, E; Leonardi, M; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Linker, S D; Littenberg, T B; Liu, J; Liu, X; Lo, R K L; Lockerbie, N A; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lumaca, D; Lundgren, A P; Lynch, R; Ma, Y; Macas, R; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña Hernandez, I; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markakis, C; Markosyan, A S; Markowitz, A; Maros, E; Marquina, A; Marsh, P; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Massera, E; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matas, A; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McCuller, L; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McNeill, L; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Mejuto-Villa, E; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, B B; Miller, J; Millhouse, M; Milovich-Goff, M C; Minazzoli, O; Minenkov, Y; Ming, J; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moffa, D; Moggi, A; Mogushi, K; Mohan, M; Mohapatra, S R P; Molina, I; Montani, M; Moore, C J; Moraru, D; Moreno, G; Morisaki, S; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muñiz, E A; Muratore, M; Murray, P G; Nagar, A; Napier, K; Nardecchia, I; Naticchioni, L; Nayak, R K; Neilson, J; Nelemans, G; Nelson, T J N; Nery, M; Neunzert, A; Nevin, L; Newport, J M; Newton, G; Ng, K K Y; Nguyen, P; Nguyen, T T; Nichols, D; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; North, C; Nuttall, L K; Oberling, J; O'Dea, G D; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Okada, M A; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; Ormiston, R; Ortega, L F; O'Shaughnessy, R; Ossokine, S; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Page, M A; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, Howard; Pan, Huang-Wei; Pang, B; Pang, P T H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Parida, A; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patil, M; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pirello, M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Porter, E K; Post, A; Powell, J; Prasad, J; Pratt, J W W; Pratten, G; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rajbhandari, B; Rakhmanov, M; Ramirez, K E; Ramos-Buades, A; Rapagnani, P; Raymond, V; Razzano, M; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Ren, W; Reyes, S D; Ricci, F; Ricker, P M; Rieger, S; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romel, C L; Romie, J H; Rosińska, D; Ross, M P; Rowan, S; Rüdiger, A; Ruggi, P; Rutins, G; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sanchez, L E; Sanchis-Gual, N; Sandberg, V; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheel, M; Scheuer, J; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schulte, B W; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Seidel, E; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D A; Shaffer, T J; Shah, A A; Shahriar, M S; Shaner, M B; Shao, L; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, L P; Singh, A; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Somala, S; Son, E J; Sonnenberg, J A; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staats, K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stevenson, S P; Stone, R; Stops, D J; Strain, K A; Stratta, G; Strigin, S E; Strunk, A; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Suresh, J; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Tait, S C; Talbot, C; Talukder, D; Tanner, D B; Tápai, M; Taracchini, A; Tasson, J D; Taylor, J A; Taylor, R; Tewari, S V; Theeg, T; Thies, F; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tonelli, M; Tornasi, Z; Torres-Forné, A; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trinastic, J; Tringali, M C; Trozzo, L; Tsang, K W; Tse, M; Tso, R; Tsukada, L; Tsuna, D; Tuyenbayev, D; Ueno, K; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walet, R; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, J Z; Wang, W H; Wang, Y F; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessel, E K; Weßels, P; Westerweck, J; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; Whiting, B F; Whittle, C; Wilken, D; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Wofford, J; Wong, K W K; Worden, J; Wright, J L; Wu, D S; Wysocki, D M; Xiao, S; Yamamoto, H; Yancey, C C; Yang, L; Yap, M J; Yazback, M; Yu, Hang; Yu, Haocun; Yvert, M; Zadrożny, A; Zanolin, M; Zelenova, T; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y-H; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zimmerman, A B; Zucker, M E; Zweizig, J

    2017-10-20

    On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×10^{4}  years. We infer the component masses of the binary to be between 0.86 and 2.26  M_{⊙}, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60  M_{⊙}, with the total mass of the system 2.74_{-0.01}^{+0.04}M_{⊙}. The source was localized within a sky region of 28  deg^{2} (90% probability) and had a luminosity distance of 40_{-14}^{+8}  Mpc, the closest and most precisely localized gravitational-wave signal yet. The association with the γ-ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation, and cosmology.

  13. Red Clump stars in Kepler open cluster NGC 6819

    Directory of Open Access Journals (Sweden)

    Abedigamba O.P.

    2015-01-01

    Full Text Available We measure the large frequency separation, Δν, and the frequency of maximum amplitude, νmax, for 10 Red Clump (RC single member (SM stars in the Kepler open cluster NGC 6819. We derive luminosities and masses for each individual RC star. A comparison of the observations with an isochrone of Age = 2.5 Gyr, Z = 0.017 with no mass loss using a statistical techniques is made. A fractional mass loss of 5 ± 3 percent is obtained if we assume that no correction to Δν between RC and red-giant branch (RGB is necessary. However, models suggest that an effective correction of about 1.9 percent in Δν is required to obtain the correct mass of RC stars owing to the different internal structures of stars in the two evolutionary stages. In this case we find that the mass loss in the red giant branch is not significantly different from zero. This finding confirms that of [6]. It is clear that the mass estimate obtained by asteroseismology is not sufficient to deduce the mass loss on the red giant branch. However, it is clearly only a few percent at most.

  14. Be STARS IN THE OPEN CLUSTER NGC 6830

    International Nuclear Information System (INIS)

    Yu, Po-Chieh; Lin, Chien-Cheng; Lin, Hsing-Wen; Lee, Chien-De; Ngeow, Chow-Choong; Ip, Wing-Huen; Chen, Wen-Ping; Chang, Chan-Kao; Huang, Li-Ching; Cheng, Yu-Chi; Ritter, Andreas; Konidaris, Nick; Chen, Hui-Chen; Malkan, Matthew A.; Laher, Russ; Surace, Jason; Edelson, Rick; Quimby, Robert; Ben-Ami, Sagi; Ofek, Eran O.

    2016-01-01

    We report the discovery of two new Be stars, and re-identify one known Be star in the open cluster NGC 6830. Eleven H α emitters were discovered using the H α imaging photometry of the Palomar Transient Factory Survey. Stellar membership of the candidates was verified with photometric and kinematic information using 2MASS data and proper motions. The spectroscopic confirmation was carried out by using the Shane 3 m telescope at the Lick observatory. Based on their spectral types, three H α emitters were confirmed as Be stars with H α equivalent widths greater than −10 Å. Two objects were also observed by the new spectrograph spectral energy distribution-machine (SED-machine) on the Palomar 60-inch Telescope. The SED-machine results show strong H α emission lines, which are consistent with the results of the Lick observations. The high efficiency of the SED-machine can provide rapid observations for Be stars in a comprehensive survey in the future.

  15. Be STARS IN THE OPEN CLUSTER NGC 6830

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Po-Chieh; Lin, Chien-Cheng; Lin, Hsing-Wen; Lee, Chien-De; Ngeow, Chow-Choong; Ip, Wing-Huen; Chen, Wen-Ping; Chang, Chan-Kao; Huang, Li-Ching; Cheng, Yu-Chi; Ritter, Andreas [Graduate Institute of Astronomy, National Central University, 300 Jhongda Road, Jhongli 32001, Taiwan (China); Konidaris, Nick [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Chen, Hui-Chen [Department of Natural Sciences and Sustainable Development, Ministry of Science and Technology, 106, Sec. 2, Heping E. Road, Taipei 10622, Taiwan (China); Malkan, Matthew A. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90024 (United States); Laher, Russ; Surace, Jason [Spitzer Science Center, California Institute of Technology, M/S 314-6, Pasadena, CA 91125 (United States); Edelson, Rick [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Quimby, Robert [Kavli-Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa-shi, Chiba (Japan); Ben-Ami, Sagi; Ofek, Eran O. [Department of Particle Physics and Astrophysics, The Weizmann Institute of Science, Rehovot 76100 (Israel); and others

    2016-05-01

    We report the discovery of two new Be stars, and re-identify one known Be star in the open cluster NGC 6830. Eleven H α emitters were discovered using the H α imaging photometry of the Palomar Transient Factory Survey. Stellar membership of the candidates was verified with photometric and kinematic information using 2MASS data and proper motions. The spectroscopic confirmation was carried out by using the Shane 3 m telescope at the Lick observatory. Based on their spectral types, three H α emitters were confirmed as Be stars with H α equivalent widths greater than −10 Å. Two objects were also observed by the new spectrograph spectral energy distribution-machine (SED-machine) on the Palomar 60-inch Telescope. The SED-machine results show strong H α emission lines, which are consistent with the results of the Lick observations. The high efficiency of the SED-machine can provide rapid observations for Be stars in a comprehensive survey in the future.

  16. The MAVERIC Survey: A Red Straggler Binary with an Invisible Companion in the Galactic Globular Cluster M10

    Science.gov (United States)

    Shishkovsky, Laura; Strader, Jay; Chomiuk, Laura; Bahramian, Arash; Tremou, Evangelia; Li, Kwan-Lok; Salinas, Ricardo; Tudor, Vlad; Miller-Jones, James C. A.; Maccarone, Thomas J.; Heinke, Craig O.; Sivakoff, Gregory R.

    2018-03-01

    We present the discovery and characterization of a radio-bright binary in the Galactic globular cluster M10. First identified in deep radio continuum data from the Karl G. Jansky Very Large Array, M10-VLA1 has a flux density of 27 ± 4 μJy at 7.4 GHz and a flat-to-inverted radio spectrum. Chandra imaging shows an X-ray source with L X ≈ 1031 erg s‑1 matching the location of the radio source. This places M10-VLA1 within the scatter of the radio-X-ray luminosity correlation for quiescent stellar-mass black holes, and a black hole X-ray binary is a viable explanation for this system. The radio and X-ray properties of the source disfavor, but do not rule out, identification as an accreting neutron star or white dwarf system. Optical imaging from the Hubble Space Telescope and spectroscopy from the SOAR telescope show that the system has an orbital period of 3.339 days and an unusual “red straggler” component: an evolved star found redward of the M10 red giant branch. These data also show UV/optical variability and double-peaked Hα emission characteristic of an accretion disk. However, SOAR spectroscopic monitoring reveals that the velocity semi-amplitude of the red straggler is low. We conclude that M10-VLA1 is most likely either a quiescent black hole X-ray binary with a rather face-on (i orientation or an unusual flaring RS Canum Venaticorum variable-type active binary, and discuss future observations that could distinguish between these possibilities.

  17. Young Cluster Berkeley 59: Properties, Evolution, and Star Formation

    Science.gov (United States)

    Panwar, Neelam; Pandey, A. K.; Samal, Manash R.; Battinelli, Paolo; Ogura, K.; Ojha, D. K.; Chen, W. P.; Singh, H. P.

    2018-01-01

    Berkeley 59 is a nearby (∼1 kpc) young cluster associated with the Sh2-171 H II region. We present deep optical observations of the central ∼2.5 × 2.5 pc2 area of the cluster, obtained with the 3.58 m Telescopio Nazionale Galileo. The V/(V–I) color–magnitude diagram manifests a clear pre-main-sequence (PMS) population down to ∼0.2 M ⊙. Using the near-infrared and optical colors of the low-mass PMS members, we derive a global extinction of A V = 4 mag and a mean age of ∼1.8 Myr, respectively, for the cluster. We constructed the initial mass function and found that its global slopes in the mass ranges of 0.2–28 M ⊙ and 0.2–1.5 M ⊙ are ‑1.33 and ‑1.23, respectively, in good agreement with the Salpeter value in the solar neighborhood. We looked for the radial variation of the mass function and found that the slope is flatter in the inner region than in the outer region, indicating mass segregation. The dynamical status of the cluster suggests that the mass segregation is likely primordial. The age distribution of the PMS sources reveals that the younger sources appear to concentrate close to the inner region compared to the outer region of the cluster, a phenomenon possibly linked to the time evolution of star-forming clouds. Within the observed area, we derive a total mass of ∼103 M ⊙ for the cluster. Comparing the properties of Berkeley 59 with other young clusters, we suggest it resembles more closely the Trapezium cluster.

  18. γ DORADUS PULSATIONS IN THE ECLIPSING BINARY STAR KIC 6048106

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Woo, E-mail: jwlee@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejeon 34113 (Korea, Republic of)

    2016-12-20

    We present the Kepler photometry of KIC 6048106, which is exhibiting the O’Connell effect and multiperiodic pulsations. Including a starspot on either of the components, light-curve synthesis indicates that this system is a semi-detached Algol with a mass ratio of 0.211, an orbital inclination of 73.°9, and a large temperature difference of 2534 K. To examine in detail both the spot variations and pulsations, we separately analyzed the Kepler time-series data at the interval of an orbital period in an iterative way. The results reveal that the variable asymmetries of the light maxima can be interpreted as the changes with time of a magnetic cool spot on the secondary component. Multiple frequency analyses were performed in the outside-eclipse light residuals after removal of the binarity effects from the observed Kepler data. We detected 30 frequencies with signal to noise amplitude ratios larger than 4.0, of which six ( f {sub 2}– f {sub 6} and f {sub 10}) can be identified as high-order (17 ≤  n  ≤ 25) low-degree ( ℓ  = 2) gravity-mode pulsations that were stable during the observing run of 200 days. In contrast, the other frequencies may be harmonic and combination terms. For the six frequencies, the pulsation periods and pulsation constants are in the ranges of 0.352–0.506 days and 0.232–0.333 days, respectively. These values and the position on the Hertzsprung–Russell diagram demonstrate that the primary star is a γ Dor variable. The evolutionary status and the pulsation nature of KIC 6048106 are discussed.

  19. PALFA Discovery of a Highly Relativistic Double Neutron Star Binary

    Science.gov (United States)

    Stovall, K.; Freire, P. C. C.; Chatterjee, S.; Demorest, P. B.; Lorimer, D. R.; McLaughlin, M. A.; Pol, N.; van Leeuwen, J.; Wharton, R. S.; Allen, B.; Boyce, M.; Brazier, A.; Caballero, K.; Camilo, F.; Camuccio, R.; Cordes, J. M.; Crawford, F.; Deneva, J. S.; Ferdman, R. D.; Hessels, J. W. T.; Jenet, F. A.; Kaspi, V. M.; Knispel, B.; Lazarus, P.; Lynch, R.; Parent, E.; Patel, C.; Pleunis, Z.; Ransom, S. M.; Scholz, P.; Seymour, A.; Siemens, X.; Stairs, I. H.; Swiggum, J.; Zhu, W. W.

    2018-02-01

    We report the discovery and initial follow-up of a double neutron star (DNS) system, PSR J1946+2052, with the Arecibo L-Band Feed Array pulsar (PALFA) survey. PSR J1946+2052 is a 17 ms pulsar in a 1.88 hr, eccentric (e = 0.06) orbit with a ≳1.2 M ⊙ companion. We have used the Jansky Very Large Array to localize PSR J1946+2052 to a precision of 0.″09 using a new phase binning mode. We have searched multiwavelength catalogs for coincident sources but did not find any counterparts. The improved position enabled a measurement of the spin period derivative of the pulsar (\\dot{P}=9+/- 2× {10}-19); the small inferred magnetic field strength at the surface (B S = 4 × 109 G) indicates that this pulsar has been recycled. This and the orbital eccentricity lead to the conclusion that PSR J1946+2052 is in a DNS system. Among all known radio pulsars in DNS systems, PSR J1946+2052 has the shortest orbital period and the shortest estimated merger timescale, 46 Myr; at that time it will display the largest spin effects on gravitational-wave waveforms of any such system discovered to date. We have measured the advance of periastron passage for this system, \\dot{ω }=25.6+/- 0.3 \\deg {yr}}-1, implying a total system mass of only 2.50 ± 0.04 M ⊙, so it is among the lowest-mass DNS systems. This total mass measurement combined with the minimum companion mass constrains the pulsar mass to ≲1.3 M ⊙.

  20. Asteroseismology of Red-Giant Stars: Mixed Modes, Differential Rotation, and Eccentric Binaries

    Science.gov (United States)

    Beck, Paul G.

    2013-12-01

    Astronomers are aware of rotation in stars since Galileo Galilei attributed the movement of sunspots to rotation of the Sun in 1613. In contrast to the Sun, whose surface can be resolved by small telescopes or even the (protected) eye, we detect stars as point sources with no spatial information. Numerous techniques have been developed to derive information about stellar rotation. Unfortunately, most observational data allow only for the surface rotational rate to be inferred. The internal rotational profile, which has a great effect on the stellar structure and evolution, remains hidden below the top layers of the star - the essential is hidden to the eyes. Asteroseismology allows us to "sense" indirectly deep below the stellar surface. Oscillations that propagate through the star provide information about the deep stellar interiors while they also distort the stellar surface in characteristic patterns leading to detectable brightness or velocity variations. Also, certain oscillation modes are sensitive to internal rotation and carry information on how the star is spinning deep inside. Thanks to the unprecedented quality of NASA's space telescope Kepler, numerous detailed observations of stars in various evolutionary stages are available. Such high quality data allow that for many stars, rotation can not only be constrained from surface rotation, but also investigated through seismic studies. The work presented in this thesis focuses on the oscillations and internal rotational gradient of evolved single and binary stars. It is shown that the seismic analysis can reach the cores of oscillating red-giant stars and that these cores are rapidly rotating, while nested in a slowly rotating convective envelope.

  1. Detectable radio flares following gravitational waves from mergers of binary neutron stars.

    Science.gov (United States)

    Nakar, Ehud; Piran, Tsvi

    2011-09-28

    Mergers of neutron-star/neutron-star binaries are strong sources of gravitational waves. They can also launch subrelativistic and mildly relativistic outflows and are often assumed to be the sources of short γ-ray bursts. An electromagnetic signature that persisted for weeks to months after the event would strengthen any future claim of a detection of gravitational waves. Here we present results of calculations showing that the interaction of mildly relativistic outflows with the surrounding medium produces radio flares with peak emission at 1.4 gigahertz that persist at detectable (submillijansky) levels for weeks, out to a redshift of 0.1. Slower subrelativistic outflows produce flares detectable for years at 150 megahertz, as well as at 1.4 gigahertz, from slightly shorter distances. The radio transient RT 19870422 (ref. 11) has the properties predicted by our model, and its most probable origin is the merger of a compact neutron-star/neutron-star binary. The lack of radio detections usually associated with short γ-ray bursts does not constrain the radio transients that we discuss here (from mildly relativistic and subrelativistic outflows) because short γ-ray burst redshifts are typically >0.1 and the appropriate timescales (longer than weeks) have not been sampled.

  2. MOCCA Code for Star Cluster Simulation: Comparison with Optical Observations using COCOA

    OpenAIRE

    Askar, Abbas; Giersz, Mirek; Pych, Wojciech; Olech, Arkadiusz; Hypki, Arkadiusz

    2014-01-01

    We introduce and present preliminary results from COCOA (Cluster simulatiOn Comparison with ObservAtions) code for a star cluster after 12 Gyrs of evolution simulated using the MOCCA code. The COCOA code is being developed to quickly compare results of numerical simulations of star clusters with observational data. We use COCOA to obtain parameters of the projected cluster model. For comparison, a FITS file of the projected cluster was provided to observers so that they could use their observ...

  3. Blue straggler stars beyond the Milky Way: a non-segregated population in the Large Magellanic Cloud cluster NGC 2213

    Science.gov (United States)

    Li, Chengyuan; Hong, Jongsuk

    2018-06-01

    Using the high-resolution observations obtained by the Hubble Space Telescope, we analysed the blue straggler stars (BSSs) in the Large Magellanic Cloud cluster NGC 2213. We found that the radial distribution of BSSs is consistent with that of the normal giant stars in NGC 2213, showing no evidence of mass segregation. However, an analytic calculation carried out for these BSSs shows that they are already dynamically old, because the estimated half-mass relaxation time for these BSSs is significantly shorter than the isochronal age of the cluster. We also performed direct N-body simulations for an NGC 2213-like cluster to understand the dynamical processes that lead to this non-segregated radial distribution of BSSs. Our numerical simulation shows that the presence of black hole subsystems inside the cluster centre can significantly affect the dynamical evolution of BSSs. The combined effects of the delayed segregation, binary disruption, and exchange interactions of BSS progenitor binaries may result in this non-segregated radial distribution of BSSs in NGC 2213.

  4. Massive Star Clusters in Ongoing Galaxy Interactions: Clues to Cluster Formation

    Science.gov (United States)

    Keel, William C.; Borne, Kirk D.

    2003-09-01

    We present HST WFPC2 observations, supplemented by ground-based Hα data, of the star-cluster populations in two pairs of interacting galaxies selected for being in very different kinds of encounters seen at different stages. Dynamical information and n-body simulations provide the details of encounter geometry, mass ratio, and timing. In NGC 5752/4 we are seeing a weak encounter, well past closest approach, after about 2.5×108 yr. The large spiral NGC 5754 has a normal population of disk clusters, while the fainter companion NGC 5752 exhibits a rich population of luminous clusters with a flatter luminosity function. The strong, ongoing encounter in NGC 6621/2, seen about 1.0×108 yr past closest approach between roughly equal-mass galaxies, has produced an extensive population of luminous clusters, particularly young and luminous in a small region between the two nuclei. This region is dynamically interesting, with such a strong perturbation in the velocity field that the rotation curve reverses sign. From these results, in comparison with other strongly interacting systems discussed in the literature, cluster formation requires a threshold level of perturbation, with stage of the interaction a less important factor. The location of the most active star formation in NGC 6621/2 draws attention to a possible role for the Toomre stability threshold in shaping star formation in interacting galaxies. The rich cluster populations in NGC 5752 and NGC 6621 show that direct contact between gas-rich galaxy disks is not a requirement to form luminous clusters and that they can be triggered by processes happening within a single galaxy disk (albeit triggered by external perturbations). Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  5. Gravitational wave spectroscopy of binary neutron star merger remnants with mode stacking

    Science.gov (United States)

    Yang, Huan; Paschalidis, Vasileios; Yagi, Kent; Lehner, Luis; Pretorius, Frans; Yunes, Nicolás

    2018-01-01

    A binary neutron star coalescence event has recently been observed for the first time in gravitational waves, and many more detections are expected once current ground-based detectors begin operating at design sensitivity. As in the case of binary black holes, gravitational waves generated by binary neutron stars consist of inspiral, merger, and postmerger components. Detecting the latter is important because it encodes information about the nuclear equation of state in a regime that cannot be probed prior to merger. The postmerger signal, however, can only be expected to be measurable by current detectors for events closer than roughly ten megaparsecs, which given merger rate estimates implies a low probability of observation within the expected lifetime of these detectors. We carry out Monte Carlo simulations showing that the dominant postmerger signal (the ℓ=m =2 mode) from individual binary neutron star mergers may not have a good chance of observation even with the most sensitive future ground-based gravitational wave detectors proposed so far (the Einstein Telescope and Cosmic Explorer, for certain equations of state, assuming a full year of operation, the latest merger rates, and a detection threshold corresponding to a signal-to-noise ratio of 5). For this reason, we propose two methods that stack the postmerger signal from multiple binary neutron star observations to boost the postmerger detection probability. The first method follows a commonly used practice of multiplying the Bayes factors of individual events. The second method relies on an assumption that the mode phase can be determined from the inspiral waveform, so that coherent mode stacking of the data from different events becomes possible. We find that both methods significantly improve the chances of detecting the dominant postmerger signal, making a detection very likely after a year of observation with Cosmic Explorer for certain equations of state. We also show that in terms of detection

  6. A mysterious dust clump in a disk around an evolved binary star system.

    Science.gov (United States)

    Jura, M; Turner, J

    1998-09-10

    The discovery of planets in orbit around the pulsar PSR1257+12 shows that planets may form around post-main-sequence stars. Other evolved stars, such as HD44179 (an evolved star which is part of the binary system that has expelled the gas and dust that make the Red Rectangle nebula), possess gravitationally bound orbiting dust disks. It is possible that planets might form from gravitational collapse in such disks. Here we report high-angular-resolution observations at millimetre and submillimetre wavelengths of the dusk disk associated with the Red Rectangle. We find a dust clump with an estimated mass near that of Jupiter in the outer region of the disk. The clump is larger than our Solar System, and far beyond where planet formation would normally be expected, so its nature is at present unclear.

  7. Investigation of the binary fraction among candidate A-F type hybrid stars detected by Kepler

    Directory of Open Access Journals (Sweden)

    Lampens P.

    2015-01-01

    Full Text Available We are currently monitoring up to 40 Kepler candidate δ Scuti-γ Doradus (resp. γ Doradus-δ Scuti hybrid stars in radial velocity in order to identify the physical cause behind the low frequencies observed in the periodograms based on the ultra-high accuracy Kepler space photometry. The presence of low frequency variability in unevolved or slightly evolved oscillating A/F-type stars can generally be explained in three ways: either 1 the star is an (undetected binary or multiple system, or 2 the star is a g-mode pulsator (i.e. a genuine hybrid, or 3 the star’s atmosphere displays an asymmetric intensity distribution (caused by spots, i.e. chemical anomalies, or by (very high rotation, which is detected through rotational modulation. Our targets were selected from the globally characterized variable A/F-type stars of the Kepler mission [7]. We observe each star at least 4 times unevenly spread over a time lapse up to 2 months with the HERMES spectrograph [6]. In the case of composite, multiple-lined spectra, these observations also provide the atmospheric properties of each component. Our principal goal is to estimate the fraction of short-period, spectroscopic systems in the sample.

  8. EXPECTED LARGE SYNOPTIC SURVEY TELESCOPE (LSST) YIELD OF ECLIPSING BINARY STARS

    International Nuclear Information System (INIS)

    Prsa, Andrej; Pepper, Joshua; Stassun, Keivan G.

    2011-01-01

    In this paper, we estimate the Large Synoptic Survey Telescope (LSST) yield of eclipsing binary stars, which will survey ∼20,000 deg 2 of the southern sky during a period of 10 years in six photometric passbands to r ∼ 24.5. We generate a set of 10,000 eclipsing binary light curves sampled to the LSST time cadence across the whole sky, with added noise as a function of apparent magnitude. This set is passed to the analysis-of-variance period finder to assess the recoverability rate for the periods, and the successfully phased light curves are passed to the artificial-intelligence-based pipeline ebai to assess the recoverability rate in terms of the eclipsing binaries' physical and geometric parameters. We find that, out of ∼24 million eclipsing binaries observed by LSST with a signal-to-noise ratio >10 in mission lifetime, ∼28% or 6.7 million can be fully characterized by the pipeline. Of those, ∼25% or 1.7 million will be double-lined binaries, a true treasure trove for stellar astrophysics.

  9. MASSIVE STARS IN THE Cl 1813-178 CLUSTER: AN EPISODE OF MASSIVE STAR FORMATION IN THE W33 COMPLEX

    International Nuclear Information System (INIS)

    Messineo, Maria; Davies, Ben; Figer, Donald F.; Trombley, Christine; Kudritzki, R. P.; Valenti, Elena; Najarro, F.; Michael Rich, R.

    2011-01-01

    Young massive (M > 10 4 M sun ) stellar clusters are a good laboratory to study the evolution of massive stars. Only a dozen of such clusters are known in the Galaxy. Here, we report about a new young massive stellar cluster in the Milky Way. Near-infrared medium-resolution spectroscopy with UIST on the UKIRT telescope and NIRSPEC on the Keck telescope, and X-ray observations with the Chandra and XMM satellites, of the Cl 1813-178 cluster confirm a large number of massive stars. We detected 1 red supergiant, 2 Wolf-Rayet stars, 1 candidate luminous blue variable, 2 OIf, and 19 OB stars. Among the latter, twelve are likely supergiants, four giants, and the faintest three dwarf stars. We detected post-main-sequence stars with masses between 25 and 100 M sun . A population with age of 4-4.5 Myr and a mass of ∼10, 000 M sun can reproduce such a mixture of massive evolved stars. This massive stellar cluster is the first detection of a cluster in the W33 complex. Six supernova remnants and several other candidate clusters are found in the direction of the same complex.

  10. Further Wolf-Rayet stars in the starburst cluster Westerlund 1

    OpenAIRE

    Negueruela, I.; Clark, J. S.

    2005-01-01

    We present new low and intermediate-resolution spectroscopic observations of the Wolf Rayet (WR) star population in the massive starburst cluster Westerlund 1. Finding charts are presented for five new WRs - four WNL and one WCL - raising the current total of known WRs in the cluster to 19. We also present new spectra and correct identifications for the majority of the 14 WR stars previously known, notably confirming the presence of two WNVL stars. Finally we briefly discuss the massive star ...

  11. THE ROTATION RATES OF MASSIVE STARS: THE ROLE OF BINARY INTERACTION THROUGH TIDES, MASS TRANSFER, AND MERGERS

    Energy Technology Data Exchange (ETDEWEB)

    De Mink, S. E. [Space Telescope Science Institute, Baltimore, MD (United States); Langer, N.; Izzard, R. G. [Argelander-Institut fuer Astronomie der Universitaet Bonn, D-53121 Bonn (Germany); Sana, H.; De Koter, A. [Astronomical Institute Anton Pannekoek, University of Amsterdam, 1098 XH Amsterdam (Netherlands)

    2013-02-20

    Rotation is thought to be a major factor in the evolution of massive stars-especially at low metallicity-with consequences for their chemical yields, ionizing flux, and final fate. Deriving the birth spin distribution is of high priority given its importance as a constraint on theories of massive star formation and as input for models of stellar populations in the local universe and at high redshift. Recently, it has become clear that the majority of massive stars interact with a binary companion before they die. We investigate how this affects the distribution of rotation rates, through stellar winds, expansion, tides, mass transfer, and mergers. For this purpose, we simulate a massive binary-star population typical for our Galaxy assuming continuous star formation. We find that, because of binary interaction, 20{sup +5} {sub -10}% of all massive main-sequence stars have projected rotational velocities in excess of 200 km s{sup -1}. We evaluate the effect of uncertain input distributions and physical processes and conclude that the main uncertainties are the mass transfer efficiency and the possible effect of magnetic braking, especially if magnetic fields are generated or amplified during mass accretion and stellar mergers. The fraction of rapid rotators we derive is similar to that observed. If indeed mass transfer and mergers are the main cause for rapid rotation in massive stars, little room remains for rapidly rotating stars that are born single. This implies that spin-down during star formation is even more efficient than previously thought. In addition, this raises questions about the interpretation of the surface abundances of rapidly rotating stars as evidence for rotational mixing. Furthermore, our results allow for the possibility that all early-type Be stars result from binary interactions and suggest that evidence for rotation in explosions, such as long gamma-ray bursts, points to a binary origin.

  12. Chemical Compositions of Stars in the Globular Cluster NGC 3201: Tracers of Multi-Epoch Star Formation

    Science.gov (United States)

    Simmerer, Jennifer A.; Ivans, I. I.; Filler, D.

    2012-01-01

    The retrograde halo globular cluster NGC 3201 contains stars of substantially different iron abundance ([Fe/H]), a property that puts it at odds with the vast majority of the Galactic cluster system. Though its unusual orbit prompted speculation that NGC 3201 was the remnant of a captured object, much like the multi-metallicity globular cluster Omega Centauri, NGC 3201 is much less massive than Omega Centauri and all of the other halo globular clusters that have internal metallicity variations. We present the abundances of 21 elements in 24 red giant branch stars in NGC 3201 based on high-resolution (R 40,000), high signal-to-noise (S/N 70) spectra. We find that the detailed abundance pattern of NGC 3201 is unique amongst multi-metallicity halo clusters. Unlike M22, Omega Centauri, and NGC 1851, neither metal-poor nor metal-rich stars show any evidence of s-process enrichment (a product of the advanced evolution of low- and intermediate-mass stars). We find that while Na, O, and Al vary from star to star as is typical in globular clusters, there is no systematic difference between the abundance pattern in the metal-poor cluster stars and that of the metal-rich cluster stars. Furthermore, we find that the metallicity variations in NGC 3201 are independent of the well-known Na-O anticorrelation, which separates it from every other multi-metallicity cluster. In the context of a multi-episode star formation model, this implies that NGC 3201 began life with the [Fe/H] variations we measure now.

  13. Confirming the least massive members of the Pleiades star cluster

    Science.gov (United States)

    Zapatero Osorio, M. R.; Béjar, V. J. S.; Lodieu, N.; Manjavacas, E.

    2018-03-01

    We present optical photometry (i and Z band) and low-resolution spectroscopy (640-1015 nm) of very faint candidate members (J = 20.2-21.2 mag) of the Pleiades star cluster (120 Myr). The main goal is to address their cluster membership via photometric, astrometric, and spectroscopic studies, and to determine the properties of the least massive population of the cluster through the comparison of the data with younger and older spectral counterparts and state-of-the art model atmospheres. We confirm three bona fide Pleiades members that have extremely red optical and infrared colours, effective temperatures of ≈1150 and ≈1350 K, and masses in the interval 11-20 MJup, and one additional likely member that shares the same motion as the cluster but does not appear to be as red as the other members with similar brightness. This latter object requires further near-infrared spectroscopy to fully address its membership in the Pleiades. The optical spectra of two bona fide members were classified as L6-L7 and show features of K I, a tentative detection of Cs I, hydrides, and water vapour with an intensity similar to high-gravity dwarfs of related classification despite their young age. The properties of the Pleiades L6-L7 members clearly indicate that very red colours of L dwarfs are not a direct evidence of ages younger than ≈100 Myr. We also report on the determination of the bolometric corrections for the coolest Pleiades members. These data can be used to interpret the observations of the atmospheres of exoplanets orbiting stars.

  14. KEPLER ECLIPSING BINARY STARS. III. CLASSIFICATION OF KEPLER ECLIPSING BINARY LIGHT CURVES WITH LOCALLY LINEAR EMBEDDING

    International Nuclear Information System (INIS)

    Matijevič, Gal; Prša, Andrej; Orosz, Jerome A.; Welsh, William F.; Bloemen, Steven; Barclay, Thomas

    2012-01-01

    We present an automated classification of 2165 Kepler eclipsing binary (EB) light curves that accompanied the second Kepler data release. The light curves are classified using locally linear embedding, a general nonlinear dimensionality reduction tool, into morphology types (detached, semi-detached, overcontact, ellipsoidal). The method, related to a more widely used principal component analysis, produces a lower-dimensional representation of the input data while preserving local geometry and, consequently, the similarity between neighboring data points. We use this property to reduce the dimensionality in a series of steps to a one-dimensional manifold and classify light curves with a single parameter that is a measure of 'detachedness' of the system. This fully automated classification correlates well with the manual determination of morphology from the data release, and also efficiently highlights any misclassified objects. Once a lower-dimensional projection space is defined, the classification of additional light curves runs in a negligible time and the method can therefore be used as a fully automated classifier in pipeline structures. The classifier forms a tier of the Kepler EB pipeline that pre-processes light curves for the artificial intelligence based parameter estimator.

  15. Near-infrared photometric study of open star cluster IC 1805

    International Nuclear Information System (INIS)

    Sagar, R.; Yu, Q.Z.

    1990-01-01

    The JHK magnitudes of 29 stars in the region of open star cluster IC 1805 were measured. These, and the existing infrared and optical observations, indicate a normal interstellar extinction law in the direction of the cluster. Further, most of the early-type stars have near-infrared fluxes as expected from their spectral types. Patchy distribution of ionized gas and dust appears to be the cause of nonuniform extinction across the cluster face. 36 refs

  16. New method for reconstruction of star spatial distribution in globular clusters and its application to flare stars in Pleiades

    International Nuclear Information System (INIS)

    Kosarev, E.L.

    1980-01-01

    A new method to reconstruct spatial star distribution in globular clusters is presented. The method gives both the estimation of unknown spatial distribution and the probable reconstruction error. This error has statistical origin and depends only on the number of stars in a cluster. The method is applied to reconstruct the spatial density of 441 flare stars in Pleiades. The spatial density has a maximum in the centre of the cluster of about 1.6-2.5 pc -3 and with increasing distance from the center smoothly falls down to zero approximately with the Gaussian law with a scale parameter of 3.5 pc

  17. The Most Massive Star Clusters: Supermassive Globular Clusters or Dwarf Galaxy Nuclei?

    Science.gov (United States)

    Harris, William

    2004-07-01

    Evidence is mounting that the most massive globular clusters, such as Omega Centauri and M31-G1, may be related to the recently discovered "Ultra-Compact Dwarfs" and the dense nuclei of dE, N galaxies. However, no systematic imaging investigation of these supermassive globular clusters - at the level of Omega Cen and beyond - has been done, and we do not know what fraction of them might bear the signatures {such as large effective radii or tidal tails} of having originated as dE nuclei. We propose to use the ACS/WFC to obtain deep images of 18 such clusters in NGC 5128 and M31, the two nearest rich globular cluster systems. These globulars are the richest star clusters that can be found in nature, the biggest of them reaching 10^7 Solar masses, and they are likely to represent the results of star formation under the densest and most extreme conditions known. Using the profiles of the clusters including their faint outer envelopes, we will carry out state-of-the-art dynamical modelling of their structures, and look for any clear evidence which would indicate that they are associated with stripped satellites. This study will build on our previous work with STIS and WFPC2 imaging designed to study the 'Fundamental Plane' of globular clusters. When our new work is combined with Archival WFPC2, STIS, and ACS material, we will also be able to construct the definitive mapping of the Fundamental Plane of globular clusters at its uppermost mass range, and confirm whether or not the UCD and dE, N objects occupy a different structural parameter space.

  18. Slingshot mechanism for clusters: Gas density regulates star density in the Orion Nebula Cluster (M42)

    Science.gov (United States)

    Stutz, Amelia M.

    2018-02-01

    We characterize the stellar and gas volume density, potential, and gravitational field profiles in the central ∼0.5 pc of the Orion Nebula Cluster (ONC), the nearest embedded star cluster (or rather, protocluster) hosting massive star formation available for detailed observational scrutiny. We find that the stellar volume density is well characterized by a Plummer profile ρstars(r) = 5755 M⊙ pc- 3 (1 + (r/a)2)- 5/2, where a = 0.36 pc. The gas density follows a cylindrical power law ρgas(R) = 25.9 M⊙ pc- 3 (R/pc)- 1.775. The stellar density profile dominates over the gas density profile inside r ∼ 1 pc. The gravitational field is gas-dominated at all radii, but the contribution to the total field by the stars is nearly equal to that of the gas at r ∼ a. This fact alone demonstrates that the protocluster cannot be considered a gas-free system or a virialized system dominated by its own gravity. The stellar protocluster core is dynamically young, with an age of ∼2-3 Myr, a 1D velocity dispersion of σobs = 2.6 km s-1, and a crossing time of ∼0.55 Myr. This time-scale is almost identical to the gas filament oscillation time-scale estimated recently by Stutz & Gould. This provides strong evidence that the protocluster structure is regulated by the gas filament. The protocluster structure may be set by tidal forces due to the oscillating filamentary gas potential. Such forces could naturally suppress low density stellar structures on scales ≳ a. The analysis presented here leads to a new suggestion that clusters form by an analogue of the 'slingshot mechanism' previously proposed for stars.

  19. The close binary frequency of Wolf-Rayet stars as a function of metallicity in M31 and M33

    Energy Technology Data Exchange (ETDEWEB)

    Neugent, Kathryn F.; Massey, Philip, E-mail: kneugent@lowell.edu, E-mail: phil.massey@lowell.edu [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States)

    2014-07-01

    Massive star evolutionary models generally predict the correct ratio of WC-type and WN-type Wolf-Rayet stars at low metallicities, but underestimate the ratio at higher (solar and above) metallicities. One possible explanation for this failure is perhaps single-star models are not sufficient and Roche-lobe overflow in close binaries is necessary to produce the 'extra' WC stars at higher metallicities. However, this would require the frequency of close massive binaries to be metallicity dependent. Here we test this hypothesis by searching for close Wolf-Rayet binaries in the high metallicity environments of M31 and the center of M33 as well as in the lower metallicity environments of the middle and outer regions of M33. After identifying ∼100 Wolf-Rayet binaries based on radial velocity variations, we conclude that the close binary frequency of Wolf-Rayets is not metallicity dependent and thus other factors must be responsible for the overabundance of WC stars at high metallicities. However, our initial identifications and observations of these close binaries have already been put to good use as we are currently observing additional epochs for eventual orbit and mass determinations.

  20. Relative Age Dating of Young Star Clusters from YSOVAR

    Science.gov (United States)

    Johnson, Chelen H.; Gibbs, John C.; Linahan, Marcella; Rebull, Luisa; Bernstein, Alexandra E.; Child, Sierra; Eakins, Emma; Elert, Julia T.; Frey, Grace; Gong, Nathaniel; Hedlund, Audrey R.; Karos, Alexandra D.; Medeiros, Emma M.; Moradi, Madeline; Myers, Keenan; Packer, Benjamin M.; Reader, Livia K.; Sorenson, Benjamin; Stefo, James S.; Strid, Grace; Sumner, Joy; Sundeen, Kiera A.; Taylor, Meghan; Ujjainwala, Zakir L.

    2018-01-01

    The YSOVAR (Young Stellar Object VARiability; Rebull et al. 2014) Spitzer Space Telescope observing program monitored a dozen star forming cores in the mid-infrared (3.6 and 4.5 microns). Rebull et al. (2014) placed these cores in relative age order based on numbers of YSO candidates in SED class bins (I, flat, II, III), which is based on the slope of the SED between 2 and 25 microns. PanSTARRS data have recently been released (Chambers et al. 2016); deep optical data are now available over all the YSOVAR clusters. We worked with eight of the YSOVAR targets (IC1396-N, AFGL 490, NGC 1333, Mon R2, GGD 12-15, L 1688, IRAS 20050+2720, and Ceph C) and the YSO candidates identified therein as part of YSOVAR (through their infrared colors or X-ray detections plus a star-like SED; see Rebull et al. 2014). We created and examined optical and NIR color-magnitude diagrams and color-color diagrams of these YSO candidates to determine if the addition of optical data contradicted or reinforced the relative age dating of the clusters obtained with SED class ratios.This project is a collaborative effort of high school students and teachers from three states. We analyzed data individually and later collaborated online to compare results. This project is the result of many years of work with the NASA/IPAC Teacher Archive Research Program (NITARP).

  1. Binary eutectic clusters and glass formation in ideal glass-forming liquids

    International Nuclear Information System (INIS)

    Lu, Z. P.; Shen, J.; Xing, D. W.; Sun, J. F.; Liu, C. T.

    2006-01-01

    In this letter, a physical concept of binary eutectic clusters in 'ideal' glass-forming liquids is proposed based on the characteristics of most well-known bulk metallic glasses (BMGs). The authors approach also includes the treatment of binary eutectic clusters as basic units, which leads to the development of a simple but reliable method for designing BMGs more efficiently and effectively in these unique glass-forming liquids. As an example, bulk glass formers with superior glass-forming ability in the Zr-Ni-Cu-Al and Zr-Fe-Cu-Al systems were identified with the use of the strategy

  2. THE CLUSTERED NATURE OF STAR FORMATION. PRE-MAIN-SEQUENCE CLUSTERS IN THE STAR-FORMING REGION NGC 602/N90 IN THE SMALL MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Gouliermis, Dimitrios A.; Gennaro, Mario; Schmeja, Stefan; Dolphin, Andrew E.; Tognelli, Emanuele; Prada Moroni, Pier Giorgio

    2012-01-01

    Located at the tip of the wing of the Small Magellanic Cloud (SMC), the star-forming region NGC 602/N90 is characterized by the H II nebular ring N90 and the young cluster of pre-main-sequence (PMS) and early-type main-sequence stars NGC 602, located in the central area of the ring. We present a thorough cluster analysis of the stellar sample identified with Hubble Space Telescope/Advanced Camera for Surveys in the region. We show that apart from the central cluster low-mass PMS stars are congregated in 13 additional small, compact sub-clusters at the periphery of NGC 602, identified in terms of their higher stellar density with respect to the average background density derived from star counts. We find that the spatial distribution of the PMS stars is bimodal, with an unusually large fraction (∼60%) of the total population being clustered, while the remaining is diffusely distributed in the intercluster area, covering the whole central part of the region. From the corresponding color-magnitude diagrams we disentangle an age difference of ∼2.5 Myr between NGC 602 and the compact sub-clusters, which appear younger, on the basis of comparison of the brighter PMS stars with evolutionary models, which we accurately calculated for the metal abundance of the SMC. The diffuse PMS population appears to host stars as old as those in NGC 602. Almost all detected PMS sub-clusters appear to be centrally concentrated. When the complete PMS stellar sample, including both clustered and diffused stars, is considered in our cluster analysis, it appears as a single centrally concentrated stellar agglomeration, covering the whole central area of the region. Considering also the hot massive stars of the system, we find evidence that this agglomeration is hierarchically structured. Based on our findings, we propose a scenario according to which the region NGC 602/N90 experiences an active clustered star formation for the last ∼5 Myr. The central cluster NGC 602 was formed first

  3. Strange Quark Stars in Binaries: Formation Rates, Mergers, and Explosive Phenomena

    International Nuclear Information System (INIS)

    Wiktorowicz, G.; Drago, A.; Pagliara, G.; Popov, S. B.

    2017-01-01

    Recently, the possible coexistence of a first family composed of “normal” neutron stars (NSs) with a second family of strange quark stars (QSs) has been proposed as a solution of problems related to the maximum mass and to the minimal radius of these compact stellar objects. In this paper, we study the mass distribution of compact objects formed in binary systems and the relative fractions of quark and NSs in different subpopulations. We incorporate the strange QS formation model provided by the two-families scenario, and we perform a large-scale population synthesis study in order to obtain the population characteristics. According to our results, the main channel for strange QS formation in binary systems is accretion from a secondary companion on an NS. Therefore, a rather large number of strange QSs form by accretion in low-mass X-ray binaries and this opens the possibility of having explosive GRB-like phenomena not related to supernovae and not due to the merger of two NSs. The number of double strange QS systems is rather small, with only a tiny fraction that merge within a Hubble time. This drastically limits the flux of strangelets produced by the merger, which turns out to be compatible with all limits stemming from Earth and lunar experiments. Moreover, this value of the flux rules out at least one relevant channel for the transformation of all NSs into strange QSs by strangelets’ absorption.

  4. Strange Quark Stars in Binaries: Formation Rates, Mergers, and Explosive Phenomena

    Science.gov (United States)

    Wiktorowicz, G.; Drago, A.; Pagliara, G.; Popov, S. B.

    2017-09-01

    Recently, the possible coexistence of a first family composed of “normal” neutron stars (NSs) with a second family of strange quark stars (QSs) has been proposed as a solution of problems related to the maximum mass and to the minimal radius of these compact stellar objects. In this paper, we study the mass distribution of compact objects formed in binary systems and the relative fractions of quark and NSs in different subpopulations. We incorporate the strange QS formation model provided by the two-families scenario, and we perform a large-scale population synthesis study in order to obtain the population characteristics. According to our results, the main channel for strange QS formation in binary systems is accretion from a secondary companion on an NS. Therefore, a rather large number of strange QSs form by accretion in low-mass X-ray binaries and this opens the possibility of having explosive GRB-like phenomena not related to supernovae and not due to the merger of two NSs. The number of double strange QS systems is rather small, with only a tiny fraction that merge within a Hubble time. This drastically limits the flux of strangelets produced by the merger, which turns out to be compatible with all limits stemming from Earth and lunar experiments. Moreover, this value of the flux rules out at least one relevant channel for the transformation of all NSs into strange QSs by strangelets’ absorption.

  5. Strange Quark Stars in Binaries: Formation Rates, Mergers, and Explosive Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Wiktorowicz, G. [Astronomical Observatory, University of Warsaw, Al. Ujazdowskie 4, 00-478 Warsaw (Poland); Drago, A.; Pagliara, G. [Dipartimento di Fisica e Scienze della Terra dell’Università di Ferrara and INFN Sezione di Ferrara, Via Saragat 1, I-44100 Ferrara (Italy); Popov, S. B., E-mail: gwiktoro@astrouw.edu.pl [Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetsky prospekt 13, 119234, Moscow (Russian Federation)

    2017-09-10

    Recently, the possible coexistence of a first family composed of “normal” neutron stars (NSs) with a second family of strange quark stars (QSs) has been proposed as a solution of problems related to the maximum mass and to the minimal radius of these compact stellar objects. In this paper, we study the mass distribution of compact objects formed in binary systems and the relative fractions of quark and NSs in different subpopulations. We incorporate the strange QS formation model provided by the two-families scenario, and we perform a large-scale population synthesis study in order to obtain the population characteristics. According to our results, the main channel for strange QS formation in binary systems is accretion from a secondary companion on an NS. Therefore, a rather large number of strange QSs form by accretion in low-mass X-ray binaries and this opens the possibility of having explosive GRB-like phenomena not related to supernovae and not due to the merger of two NSs. The number of double strange QS systems is rather small, with only a tiny fraction that merge within a Hubble time. This drastically limits the flux of strangelets produced by the merger, which turns out to be compatible with all limits stemming from Earth and lunar experiments. Moreover, this value of the flux rules out at least one relevant channel for the transformation of all NSs into strange QSs by strangelets’ absorption.

  6. The impact of galaxy geometry and mass evolution on the survival of star clusters

    International Nuclear Information System (INIS)

    Madrid, Juan P.; Hurley, Jarrod R.; Martig, Marie

    2014-01-01

    Direct N-body simulations of globular clusters in a realistic Milky-Way-like potential are carried out using the code NBODY6 to determine the impact of the host galaxy disk mass and geometry on the survival of star clusters. A relation between disk mass and star-cluster dissolution timescale is derived. These N-body models show that doubling the mass of the disk from 5 × 10 10 M ☉ to 10 × 10 10 M ☉ halves the dissolution time of a satellite star cluster orbiting the host galaxy at 6 kpc from the galactic center. Different geometries in a disk of identical mass can determine either the survival or dissolution of a star cluster orbiting within the inner 6 kpc of the galactic center. Furthermore, disk geometry has measurable effects on the mass loss of star clusters up to 15 kpc from the galactic center. N-body simulations performed with a fine output time step show that at each disk crossing the outer layers of star clusters experiences an increase in velocity dispersion of ∼5% of the average velocity dispersion in the outer section of star clusters. This leads to an enhancement of mass loss—a clearly discernable effect of disk shocking. By running models with different inclinations, we determine that star clusters with an orbit that is perpendicular to the Galactic plane have larger mass loss rates than do clusters that evolve in the Galactic plane or in an inclined orbit.

  7. Nucleation of Small Silicon Carbide Dust Clusters in AGB Stars

    Energy Technology Data Exchange (ETDEWEB)

    Gobrecht, David; Cristallo, Sergio; Piersanti, Luciano [Osservatorio Astronomico di Teramo, INAF, I-64100 Teramo (Italy); Bromley, Stefan T. [Departament de Cincia de Materials i Química Fisica and Institut de Química Terica i Computacional (IQTCUB),Universitat de Barcelona, E-08028 Barcelona (Spain)

    2017-05-10

    Silicon carbide (SiC) grains are a major dust component in carbon-rich asymptotic giant branch stars. However, the formation pathways of these grains are not fully understood. We calculate ground states and energetically low-lying structures of (SiC){sub n}, n = 1, 16 clusters by means of simulated annealing and Monte Carlo simulations of seed structures and subsequent quantum-mechanical calculations on the density functional level of theory. We derive the infrared (IR) spectra of these clusters and compare the IR signatures to observational and laboratory data. According to energetic considerations, we evaluate the viability of SiC cluster growth at several densities and temperatures, characterizing various locations and evolutionary states in circumstellar envelopes. We discover new, energetically low-lying structures for Si{sub 4}C{sub 4}, Si{sub 5}C{sub 5}, Si{sub 15}C{sub 15}, and Si{sub 16}C{sub 16} and new ground states for Si{sub 10}C{sub 10} and Si{sub 15}C{sub 15}. The clusters with carbon-segregated substructures tend to be more stable by 4–9 eV than their bulk-like isomers with alternating Si–C bonds. However, we find ground states with cage geometries resembling buckminsterfullerens (“bucky-like”) for Si{sub 12}C{sub 12} and Si{sub 16}C{sub 16} and low-lying stable cage structures for n ≥ 12. The latter findings thus indicate a regime of cluster sizes that differ from small clusters as well as from large-scale crystals. Thus—and owing to their stability and geometry—the latter clusters may mark a transition from a quantum-confined cluster regime to a crystalline, solid bulk-material. The calculated vibrational IR spectra of the ground-state SiC clusters show significant emission. They include the 10–13 μ m wavelength range and the 11.3 μm feature inferred from laboratory measurements and observations, respectively, although the overall intensities are rather low.

  8. ABSOLUTE PROPERTIES OF THE PRE-MAIN-SEQUENCE ECLIPSING BINARY STAR NP PERSEI

    Energy Technology Data Exchange (ETDEWEB)

    Lacy, Claud H. Sandberg [Physics Department, University of Arkansas, Fayetteville, AR 72701 (United States); Fekel, Francis C.; Muterspaugh, Matthew W. [Center of Excellence in Information Systems, Tennessee State University, Nashville, TN 37209 (United States); Pavlovski, Krešimir [Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb (Croatia); Torres, Guillermo, E-mail: clacy@uark.edu, E-mail: fekel@evans.tsuniv.edu, E-mail: pavlovski@phy.hr, E-mail: gtorres@cfa.harvard.edu, E-mail: matthew1@coe.tsuniv.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-07-01

    NP Per is a well-detached, 2.2 day eclipsing binary whose components are both pre-main-sequence stars that are still contracting toward the main-sequence phase of evolution. We report extensive photometric and spectroscopic observations with which we have determined their properties accurately. Their surface temperatures are quite different: 6420 ± 90 K for the larger F5 primary star and 4540 ± 160 K for the smaller K5e star. Their masses and radii are 1.3207 ± 0.0087 solar masses and 1.372 ± 0.013 solar radii for the primary, and 1.0456 ± 0.0046 solar masses and 1.229 ± 0.013 solar radii for the secondary. The orbital period is variable over long periods of time. A comparison of the observations with current stellar evolution models from MESA indicates that the stars cannot be fit at a single age: the secondary appears significantly younger than the primary. If the stars are assumed to be coeval and to have the age of the primary (17 Myr), then the secondary is larger and cooler than predicted by current models. The H α spectral line of the secondary component is completely filled by, presumably, chromospheric emission due to a magnetic activity cycle.

  9. Tidal heating and mass loss in neutron star binaries - Implications for gamma-ray burst models

    Science.gov (United States)

    Meszaros, P.; Rees, M. J.

    1992-01-01

    A neutron star in a close binary orbit around another neutron star (or stellar-mass black hole) spirals inward owing to gravitational radiation. We discuss the effects of tidal dissipation during this process. Tidal energy dissipated in the neutron star's core escapes mainly as neutrinos, but heating of the crust, and outward diffusion of photons, blows off the outer layers of the star. This photon-driven mass loss precedes the final coalescence. The presence of this eject material impedes the escape of gamma-rays created via neutrino interactions. If an e(+) - e(-) fireball, created in the late stages of coalescence, were loaded with (or surrounded by) material with the mean column density of the ejecta, it could not be an efficient source of gamma-rays. Models for cosmologically distant gamma-rays burst that involve neutron stars must therefore be anisotropic, so that the fireball expands preferentially in directions where the column density of previously blown-off material is far below the spherically averaged value which we have calculated. Some possible 'scenarios' along these lines are briefly discussed.

  10. Evidence for Dynamically Driven Formation of the GW170817 Neutron Star Binary in NGC 4993

    Energy Technology Data Exchange (ETDEWEB)

    Palmese, A.; et al.

    2017-11-09

    We present a study of NGC 4993, the host galaxy of the GW170817 gravitational wave event, the GRB170817A short gamma-ray burst (sGRB) and the AT2017gfo kilonova. We use Dark Energy Camera imaging, AAT spectra and publicly available data, relating our findings to binary neutron star (BNS) formation scenarios and merger delay timescales. NGC4993 is a nearby (40 Mpc) early-type galaxy, with $i$-band S\\'ersic index $n=4.0$ and low asymmetry ($A=0.04\\pm 0.01$). These properties are unusual for sGRB hosts. However, NGC4993 presents shell-like structures and dust lanes indicative of a recent galaxy merger, with the optical transient located close to a shell. We constrain the star formation history (SFH) of the galaxy assuming that the galaxy merger produced a star formation burst, but find little to no on-going star formation in either spatially-resolved broadband SED or spectral fitting. We use the best-fit SFH to estimate the BNS merger rate in this type of galaxy, as $R_{NSM}^{gal}= 5.7^{+0.57}_{-3.3} \\times 10^{-6} {\\rm yr}^{-1}$. If star formation is the only considered BNS formation scenario, the expected number of BNS mergers from early-type galaxies detectable with LIGO during its first two observing seasons is $0.038^{+0.004}_{-0.022}$, as opposed to $\\sim 0.5$ from all galaxy types. Hypothesizing that the binary system formed due to dynamical interactions during the galaxy merger, the subsequent time elapsed can constrain the delay time of the BNS coalescence. By using velocity dispersion estimates and the position of the shells, we find that the galaxy merger occurred $t_{\\rm mer}\\lesssim 200~{\\rm Myr}$ prior to the BNS coalescence.

  11. Evidence for Dynamically Driven Formation of the GW170817 Neutron Star Binary in NGC 4993

    Science.gov (United States)

    Palmese, A.; Hartley, W.; Tarsitano, F.; Conselice, C.; Lahav, O.; Allam, S.; Annis, J.; Lin, H.; Soares-Santos, M.; Tucker, D.; Brout, D.; Banerji, M.; Bechtol, K.; Diehl, H. T.; Fruchter, A.; García-Bellido, J.; Herner, K.; Levan, A. J.; Li, T. S.; Lidman, C.; Misra, K.; Sako, M.; Scolnic, D.; Smith, M.; Abbott, T. M. C.; Abdalla, F. B.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Davis, C.; DePoy, D. L.; Desai, S.; Dietrich, J. P.; Doel, P.; Drlica-Wagner, A.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; Jain, B.; James, D. J.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Krause, E.; Kron, R.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; McMahon, R. G.; Menanteau, F.; Miller, C. J.; Miquel, R.; Neilsen, E.; Ogando, R. L. C.; Plazas, A. A.; Reil, K.; Romer, A. K.; Sanchez, E.; Schindler, R.; Smith, R. C.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Thomas, R. C.; Walker, A. R.; Weller, J.; Zhang, Y.; Zuntz, J.

    2017-11-01

    We present a study of NGC 4993, the host galaxy of the GW170817 gravitational-wave event, the GRB 170817A short gamma-ray burst (sGRB), and the AT 2017gfo kilonova. We use Dark Energy Camera imaging, AAT spectra, and publicly available data, relating our findings to binary neutron star (BNS) formation scenarios and merger delay timescales. NGC 4993 is a nearby early-type galaxy, with an I-band Sérsic index n = 4.0 and low asymmetry (A = 0.04 ± 0.01). These properties are unusual for sGRB hosts. However, NGC 4993 presents shell-like structures and dust lanes indicative of a recent galaxy merger, with the optical transient located close to a shell. We constrain the star formation history (SFH) of the galaxy assuming that the galaxy merger produced a star formation burst, but find little to no ongoing star formation in either spatially resolved broadband SED or spectral fitting. We use the best-fit SFH to estimate the BNS merger rate in this type of galaxy, as {R}{NSM}{gal}={5.7}-3.3+0.57× {10}-6{{yr}}-1. If star formation is the only considered BNS formation scenario, the expected number of BNS mergers from early-type galaxies detectable with LIGO during its first two observing seasons is {0.038}-0.022+0.004, as opposed to ˜0.5 from all galaxy types. Hypothesizing that the binary formed due to dynamical interactions during the galaxy merger, the subsequent time elapsed can constrain the delay time of the BNS coalescence. By using velocity dispersion estimates and the position of the shells, we find that the galaxy merger occurred t mer ≲ 200 Myr prior to the BNS coalescence.

  12. 1I/‘Oumuamua as a Tidal Disruption Fragment from a Binary Star System

    Science.gov (United States)

    Ćuk, Matija

    2018-01-01

    1I/‘Oumuamua is the first known interstellar small body, probably being only about 100 m in size. Against expectations based on comets, ‘Oumuamua does not show any activity and has a very elongated figure, and it also exhibits undamped rotational tumbling. In contrast, ‘Oumuamua’s trajectory indicates that it was moving with the local stars, as expected from a low-velocity ejection from a relatively nearby system. Here, I assume that ‘Oumuamua is typical of 100 m interstellar objects and speculate on its origins. I find that giant planets are relatively inefficient at ejecting small bodies from inner solar systems of main-sequence stars, and that binary systems offer a much better opportunity for ejections of non-volatile bodies. I also conclude that ‘Oumuamua is not a member of a collisional population, which could explain its dramatic difference from small asteroids. I observe that 100 m small bodies are expected to carry little mass in realistic collisional populations and that occasional events, when whole planets are disrupted in catastrophic encounters, may dominate the interstellar population of 100 m fragments. Unlike the Sun or Jupiter, red dwarf stars are very dense and are capable of thoroughly tidally disrupting terrestrial planets. I conclude that ‘Oumuamua may have originated as a fragment from a planet that was tidally disrupted and then ejected by a dense member of a binary system, which could explain its peculiarities.

  13. New limb-darkening coefficients for modeling binary star light curves

    Science.gov (United States)

    Van Hamme, W.

    1993-01-01

    We present monochromatic, passband-specific, and bolometric limb-darkening coefficients for a linear as well as nonlinear logarithmic and square root limb-darkening laws. These coefficients, including the bolometric ones, are needed when modeling binary star light curves with the latest version of the Wilson-Devinney light curve progam. We base our calculations on the most recent ATLAS stellar atmosphere models for solar chemical composition stars with a wide range of effective temperatures and surface gravitites. We examine how well various limb-darkening approximations represent the variation of the emerging specific intensity across a stellar surface as computed according to the model. For binary star light curve modeling purposes, we propose the use of a logarithmic or a square root law. We design our tables in such a manner that the relative quality of either law with respect to another can be easily compared. Since the computation of bolometric limb-darkening coefficients first requires monochromatic coefficients, we also offer tables of these coefficients (at 1221 wavelength values between 9.09 nm and 160 micrometer) and tables of passband-specific coefficients for commonly used photometric filters.

  14. INFRARED SPECTROSCOPY OF SYMBIOTIC STARS. VII. BINARY ORBIT AND LONG SECONDARY PERIOD VARIABILITY OF CH CYGNI

    International Nuclear Information System (INIS)

    Hinkle, Kenneth H.; Joyce, Richard R.; Fekel, Francis C.

    2009-01-01

    High-dispersion spectroscopic observations are used to refine orbital elements for the symbiotic binary CH Cyg. The current radial velocities, added to a previously published 13 year time series of infrared velocities for the M giant in the CH Cyg symbiotic system, more than double the length of the time series to 29 years. The two previously identified velocity periods are confirmed. The long period, revised to 15.6 ± 0.1 yr, is shown to result from a binary orbit with a 0.7 M sun white dwarf and 2 M sun M giant. Mass transfer to the white dwarf is responsible for the symbiotic classification. CH Cyg is the longest period S-type symbiotic known. Similarities with the longer period D-type systems are noted. The 2.1 year period is shown to be on Wood's sequence D, which contains stars identified as having long secondary periods (LSP). The cause of the LSP variation in CH Cyg and other stars is unknown. From our review of possible causes, we identify g-mode nonradial pulsation as the leading mechanism for LSP variation in CH Cyg. If g-mode pulsation is the cause of the LSPs, a radiative region is required near the photosphere of pulsating asymptotic giant branch stars.

  15. Star cluster formation in a turbulent molecular cloud self-regulated by photoionization feedback

    Science.gov (United States)

    Gavagnin, Elena; Bleuler, Andreas; Rosdahl, Joakim; Teyssier, Romain

    2017-12-01

    Most stars in the Galaxy are believed to be formed within star clusters from collapsing molecular clouds. However, the complete process of star formation, from the parent cloud to a gas-free star cluster, is still poorly understood. We perform radiation-hydrodynamical simulations of the collapse of a turbulent molecular cloud using the RAMSES-RT code. Stars are modelled using sink particles, from which we self-consistently follow the propagation of the ionizing radiation. We study how different feedback models affect the gas expulsion from the cloud and how they shape the final properties of the emerging star cluster. We find that the star formation efficiency is lower for stronger feedback models. Feedback also changes the high-mass end of the stellar mass function. Stronger feedback also allows the establishment of a lower density star cluster, which can maintain a virial or sub-virial state. I