WorldWideScience

Sample records for binary molybdenum alloys

  1. Alloy hardening and softening in binary molybdenum alloys as related to electron concentration

    Science.gov (United States)

    Stephens, J. R.; Witzke, W. R.

    1972-01-01

    An investigation was conducted to determine the effects of alloy additions of hafnium, tantalum, tungsten, rhenium, osmium, iridium, and platinum on hardness of molybdenum. Special emphasis was placed on alloy softening in these binary molybdenum alloys. Results showed that alloy softening was produced by those elements having an excess of s+d electrons compared to molybdenum, while those elements having an equal number or fewer s+d electrons that molybdenum failed to produce alloy softening. Alloy softening and alloy hardening can be correlated with the difference in number of s+d electrons of the solute element and molybdenum.

  2. Alloy hardening and softening in binary molybdenum alloys as related to electron concentration.

    Science.gov (United States)

    Stephens, J. R.; Witzke, W. R.

    1972-01-01

    Determination of the effects of alloy additions of Hf, Ta, W, Re, Os, Ir, and Pt on the hardness of Mo. Special emphasis was placed on alloy softening in these binary Mo alloys. A modified microhardness test unit permitted hardness determinations at homologous temperatures ranging from 0.02 to 0.15, where alloy softening normally occurs in bcc alloys. Results showed that alloy softening was produced by those elements having an excess of s + d electrons compared to Mo while those elements having an equal number or fewer s + d electrons than Mo failed to produce alloy softening. The magnitude of the softening and the amount of solute element at the hardness minimum diminished rapidly with increasing test temperature. At solute concentrations where alloy softening was observed, the temperature sensitivity of hardness was lowered. For solute elements having an excess of s + d electrons or fewer s + d electrons than Mo, alloy softening and alloy hardening can be correlated with the difference in number of s + d electrons of the solute element and Mo.

  3. Role of electron concentration in softening and hardening of ternary molybdenum alloys

    Science.gov (United States)

    Stephens, J. R.; Witzke, W. R.

    1975-01-01

    Effects of various combinations of hafnium, tantalum, rhenium, osmium, iridium, and platinum in ternary molybdenum alloys on alloy softening and hardening were determined. Hardness tests were conducted at four test temperatures over the temperature range 77 to 411 K. Results showed that hardness data for ternary molybdenum alloys could be correlated with anticipated results from binary data based upon expressions involving the number of s and d electrons contributed by the solute elements. The correlation indicated that electron concentration plays a dominant role in controlling the hardness of ternary molybdenum alloys.

  4. Standard Specification for Nickel-Chromium-Molybdenum-Columbium Alloy (UNS N06625), Nickel-Chromium-Molybdenum-Silicon Alloy (UNS N06219), and Nickel-Chromium-Molybdenum-Tungsten Alloy (UNS N06650) Rod and Bar

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2014-01-01

    Standard Specification for Nickel-Chromium-Molybdenum-Columbium Alloy (UNS N06625), Nickel-Chromium-Molybdenum-Silicon Alloy (UNS N06219), and Nickel-Chromium-Molybdenum-Tungsten Alloy (UNS N06650) Rod and Bar

  5. Hot rolling of thick uranium molybdenum alloys

    Science.gov (United States)

    DeMint, Amy L.; Gooch, Jack G.

    2015-11-17

    Disclosed herein are processes for hot rolling billets of uranium that have been alloyed with about ten weight percent molybdenum to produce cold-rollable sheets that are about one hundred mils thick. In certain embodiments, the billets have a thickness of about 7/8 inch or greater. Disclosed processes typically involve a rolling schedule that includes a light rolling pass and at least one medium rolling pass. Processes may also include reheating the rolling stock and using one or more heavy rolling passes, and may include an annealing step.

  6. Hardness behavior of binary and ternary niobium alloys at 77 and 300 K

    Science.gov (United States)

    Stephens, J. R.; Witzke, W. R.

    1974-01-01

    The effects of alloy additions of zirconium, hafnium, molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, and iridium on the hardness of niobium was determined. Both binary and ternary alloys were investigated by means of hardness tests at 77 K and 300 K. Results showed that atomic size misfit plays a dominant role in controlling hardness of binary niobium alloys. Alloy softening, which occurred at dilute solute additions, is most likely due to an extrinsic mechanism involving interaction between solute elements and interstitial impurities.

  7. The Densification of Molybdenum and Molybdenum Alloy Powders Using Hot Isostatic Pressing.

    Science.gov (United States)

    1985-08-01

    TECHNICAL REPORT ARLCB-TR-85025 00 THE DENSIFICATION OF MOLYBDENUM (n AND MOLYBDENUM ALLOY POWDERS USING HOT ISOSTATIC PRESSING J. BARRANCO I. AHMAD S...ISOSTATIC PRESSING Final 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(o) . CONTRACT OR GRANT NUMBER(e) J. Barranco , I. Ahmad, S. Isserow, and R. Warenchak

  8. Selective dissolution in binary alloys

    Science.gov (United States)

    McCall, Carol Rene

    Corrosion is an important issue in the design of engineering alloys. De-alloying is an aspect of alloy corrosion related to the selective dissolution of one or more of the components in an alloy. The work reported herein focuses on the topic of de-alloying specific to single-phase binary noble metal alloy systems. The alloy systems investigated were gold-silver and gold-copper. The onset of a bulk selective dissolution process is typically marked by a critical potential whereby the more reactive component in the alloy begins dissolving from the bulk, leading to the formation of a bi-continuous solid-void morphology. The critical potential was investigated for the entire composition range of gold-silver alloys. The results presented herein include the formulation of an expression for critical potential as a function of both alloy and electrolyte composition. Results of the first investigation of underpotential deposition (UPD) on alloys are also presented herein. These results were implemented as an analytical tool to provide quantitative measurements of the surface evolution of gold during de-alloying. The region below the critical potential was investigated in terms of the compositional evolution of the alloy surface. Below the critical potential, there is a competition between the dissolution of the more reactive alloying constituent (either silver or copper) and surface diffusion of gold that serves to cover dissolution sites and prevent bulk dissolution. By holding the potential at a prescribed value below the critical potential, a time-dependent gold enrichment occurs on the alloy surface leading to passivation. A theoretical model was developed to predict the surface enrichment of gold based on the assumption of layer-by-layer dissolution of the more reactive alloy constituent. The UPD measurements were used to measure the time-dependent surface gold concentration and the results agreed with the predictions of the theoretical model.

  9. Iron binary and ternary coatings with molybdenum and tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Yar-Mukhamedova, Gulmira, E-mail: gulmira-alma-ata@mail.ru [Institute Experimental and Theoretical Physics Al-Farabi Kazakh National University, 050038, Al-Farabi av., 71, Almaty (Kazakhstan); Ved, Maryna; Sakhnenko, Nikolay; Karakurkchi, Anna; Yermolenko, Iryna [National Technical University “Kharkov Polytechnic Institute”, Kharkov (Ukraine)

    2016-10-15

    Highlights: • High quality coatings of double Fe-Mo and ternary Fe-Mo-W electrolytic alloys can be produced both in a dc and a pulsed mode. • Application of unipolar pulsed current allows receiving an increased content of the alloying components and their more uniform distribution over the surface. • It is established that Fe-Mo and Fe-Mo-W coatings have an amorphous structure and exhibit improved corrosion resistance and microhardness as compared with the steel substrate due to the inclusion molybdenum and tungsten. - Abstract: Electrodeposition of Fe-Mo-W and Fe-Mo layers from a citrate solution containing iron(III) on steel and iron substrates is compared. The utilization of iron(III) compounds significantly improved the electrolyte stability eliminating side anodic redox reactions. The influence of concentration ratios and electrodeposition mode on quality, chemical composition, and functional properties of the alloys is determined. It has been found that alloys deposited in pulse mode have more uniform surface morphology and chemical composition and contain less impurities. Improvement in physical and mechanical properties as well as corrosion resistance of Fe-Mo and Fe-Mo-W deposits when compared with main alloy forming metals is driven by alloying components chemical passivity as well as by alloys amorphous structure. Indicated deposits can be considered promising materials in surface hardening technologies and repair of worn out items.

  10. Hardness behavior of binary and ternary niobium alloys at 77 and 300 K

    Science.gov (United States)

    Stephens, J. R.; Witzke, W. R.

    1975-01-01

    An investigation was conducted to determine the effects of alloy additions of zirconium, hafnium, molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, and iridium on the hardness of niobium. Both binary and ternary alloys were investigated by means of hardness tests at 77 and 300 K. Results showed that atomic size misfit plays a dominant role in controlling the hardness of binary niobium alloys. Alloy softening, which occurred at dilute solute additions, is most likely due to an extrinsic mechanism involving interaction between solute elements and interstitial impurities.

  11. Order-Disorder Phenomena in the Binary Alloys Platinum(x)titanium, Platinum(x)vanadium (3 Less than or Equal to X Less than or Equal to 8) and NICKEL(3)MOLYBDENUM Studied by High Resolution Electron Microscopy.

    Science.gov (United States)

    Schryvers, Dominique

    In this work the results of an experimental study on the order-disorder behaviour of three different binary alloy systems are presented. The investigations were performed mainly using electron diffraction and high resolution electron microscopy techniques. In the first chapter an introduction with respect to the general aspects of ordering in alloys is given. The second chapter describes the most important properties of the investigation techniques. Both chapters are written in function of the needs in following chapters. Chapter III comprehends the results obtained in the platinum rich part of the Pt-Ti alloy system, while those of Pt-V are described in chapter IV. The main results in these alloy systems concern the characterization of new ordered phases. The complex dynamical ordering mechanism existing in {rm Ni_3 Mo} is discussed in chapter V. In chapter VI a calculation of possible ground state structures of a binary system based on the face centered cubic lattice and including the fourth nearest neighbour pair interaction is presented. A comparison between the theoretical results and the experimental ones of chapters III and IV is given.

  12. Standard Specification for Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Chromium-Molybdenum-Copper, Low-Carbon Nickel-Chromium-Molybdenum-Tantalum, Low-Carbon Nickel-Chromium-Molybdenum-Tungsten, and Low-Carbon Nickel-Molybdenum-Chromium Alloy Plate, Sheet, and Strip

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2015-01-01

    Standard Specification for Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Chromium-Molybdenum-Copper, Low-Carbon Nickel-Chromium-Molybdenum-Tantalum, Low-Carbon Nickel-Chromium-Molybdenum-Tungsten, and Low-Carbon Nickel-Molybdenum-Chromium Alloy Plate, Sheet, and Strip

  13. Standard Specification for Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Molybdenum-Chromium, Low-Carbon Nickel-Molybdenum-Chromium-Tantalum, Low-Carbon Nickel-Chromium-Molybdenum-Copper, and Low-Carbon Nickel-Chromium-Molybdenum-Tungsten Alloy Rod

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2015-01-01

    Standard Specification for Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Molybdenum-Chromium, Low-Carbon Nickel-Molybdenum-Chromium-Tantalum, Low-Carbon Nickel-Chromium-Molybdenum-Copper, and Low-Carbon Nickel-Chromium-Molybdenum-Tungsten Alloy Rod

  14. Alloy softening in binary iron solid solutions

    Science.gov (United States)

    Stephens, J. R.; Witzke, W. R.

    1976-01-01

    An investigation was conducted to determine softening and hardening behavior in 19 binary iron-alloy systems. Microhardness tests were conducted at four temperatures in the range 77 to 411 K. Alloy softening was exhibited by 17 of the 19 alloy systems. Alloy softening observed in 15 of the alloy systems was attributed to an intrinsic mechanism, believed to be lowering of the Peierls (lattice friction) stress. Softening and hardening rates could be correlated with the atomic radius ratio of solute to iron. Softening observed in two other systems was attributed to an extrinsic mechanism, believed to be associated with scavenging of interstitial impurities.

  15. Simulation of nuclei morphologies for binary alloy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We study the critical nuclei morphologies of a binary alloy by the string method. The dynamic equation of the string, connecting the metastable phase (liquid) and stable phase (solid), is governed by Helmholtz free energy for the binary alloy system at a given temperature. The stationary string through the critical nucleus (saddle point) is obtained if the relaxation time of the string is su?ciently large. The critical nucleus radius and energy barrier to nucleation of a pure alloy with isotropic interface energy in two and three dimensions are calculated, which are consistent with the classical nucleation theory. The critical nuclei morphologies are sensitive to the anisotropy strength of interface energy and interface thickness of alloy in two and three dimensions. The critical nucleus and energy barrier to nucleation become smaller if the anisotropy strength of the interface energy is increased, which means that it is much easier to form a stable nucleus if the anisotropy of the interface energy is considered.

  16. Microstructures and Hardness/Wear Performance of High-Carbon Stellite Alloys Containing Molybdenum

    Science.gov (United States)

    Liu, Rong; Yao, J. H.; Zhang, Q. L.; Yao, M. X.; Collier, Rachel

    2015-12-01

    Conventional high-carbon Stellite alloys contain a certain amount of tungsten which mainly serves to provide strengthening to the solid solution matrix. These alloys are designed for combating severe wear. High-carbon molybdenum-containing Stellite alloys are newly developed 700 series of Stellite family, with molybdenum replacing tungsten, which are particularly employed in severe wear condition with corrosion also involved. Three high-carbon Stellite alloys, designated as Stellite 706, Stellite 712, and Stellite 720, with different carbon and molybdenum contents, are studied experimentally in this research, focusing on microstructure and phases, hardness, and wear resistance, using SEM/EDX/XRD techniques, a Rockwell hardness tester, and a pin-on-disk tribometer. It is found that both carbon and molybdenum contents influence the microstructures of these alloys significantly. The former determines the volume fraction of carbides in the alloys, and the latter governs the amount of molybdenum-rich carbides precipitated in the alloys. The hardness and wear resistance of these alloys are increased with the carbide volume fraction. However, with the same or similar carbon content, high-carbon CoCrMo Stellite alloys exhibit worse wear resistance than high-carbon CoCrW Stellite alloys.

  17. Acidic ammonothermal growth of gallium nitride in a liner-free molybdenum alloy autoclave

    Science.gov (United States)

    Malkowski, Thomas F.; Pimputkar, Siddha; Speck, James S.; DenBaars, Steven P.; Nakamura, Shuji

    2016-12-01

    This paper discusses promising materials for use as internal, non-load bearing components as well as molybdenum-based alloys for autoclave structural components for an ammonothermal autoclave. An autoclave was constructed from the commercial titanium-zirconium-molybdenum (TZM) alloy and was found to be chemically inert and mechanically stable under acidic ammonothermal conditions. Preliminary seeded growth of GaN was demonstrated with negligible incorporation of transition metals (including molybdenum) into the grown material (560 °C). The possibility of a 'universal', inexpensive, liner-free ammonothermal autoclave capable of exposure to basic and acidic chemistry is demonstrated.

  18. The in vitro toxicity of cobalt-chrome-molybdenum alloy and its constituent metals.

    Science.gov (United States)

    Evans, E J; Thomas, I T

    1986-01-01

    Cobalt-chrome-molybdenum alloys are widely used in orthopaedic implants. Although they are relatively well tolerated, complications (including loosening and tissue necrosis) still occur and sometimes appear to be due to incomplete biocompatibility of the alloy. To investigate the local effect of the alloy on cells derived from the musculo-skeletal system, primary lines of fibroblastic cells from newborn rats were exposed to powders of cobalt-chrome-molybdenum alloy and its main constituents cobalt, chromium nickel and molybdenum. The toxicity of the metals was determined by counts of total cell number and of abnormal cells at intervals from 2 to 12 d. The alloy was much less toxic than cobalt or nickel and the pattern of toxicity was different for each metal. The results emphasize the difficulty of devising a single tissue culture test of toxicity which will measure the toxicity of any potential implant material.

  19. Iron binary and ternary coatings with molybdenum and tungsten

    Science.gov (United States)

    Yar-Mukhamedova, Gulmira; Ved, Maryna; Sakhnenko, Nikolay; Karakurkchi, Anna; Yermolenko, Iryna

    2016-10-01

    Electrodeposition of Fe-Mo-W and Fe-Mo layers from a citrate solution containing iron(III) on steel and iron substrates is compared. The utilization of iron(III) compounds significantly improved the electrolyte stability eliminating side anodic redox reactions. The influence of concentration ratios and electrodeposition mode on quality, chemical composition, and functional properties of the alloys is determined. It has been found that alloys deposited in pulse mode have more uniform surface morphology and chemical composition and contain less impurities. Improvement in physical and mechanical properties as well as corrosion resistance of Fe-Mo and Fe-Mo-W deposits when compared with main alloy forming metals is driven by alloying components chemical passivity as well as by alloys amorphous structure. Indicated deposits can be considered promising materials in surface hardening technologies and repair of worn out items.

  20. Aqueous corrosion behavior of uranium-molybdenum alloys

    Science.gov (United States)

    Gardner, Levi D.

    Nuclear fuel characterization requires understanding of the various conditions to which materials are exposed in-reactor. One of these important conditions is corrosion, particularly that of fuel constituents. Therefore, corrosion behavior is of special interest and an essential part of nuclear materials characterization efforts. In support of the Office of Material Management and Minimization's Reactor Conversion Program, monolithic uranium-10 wt% molybdenum alloy (U-Mo) is being investigated as a low enriched uranium alternative to highly enriched uranium dispersion fuel currently used in domestic high performance research reactors. The aqueous corrosion behavior of U-Mo is being examined at Pacific Northwest National Laboratory (PNNL) as part of U-Mo fuel fabrication capability activity. No prior study adequately represents this behavior given the current state of alloy composition and thermomechanical processing methods, and research reactor water chemistry. Two main measurement techniques were employed to evaluate U-Mo corrosion behavior. Low-temperature corrosion rate values were determined by means of U-Mo immersion testing and subsequent mass-loss measurements. The electrochemical behavior of each processing condition was also qualitatively examined using the techniques of corrosion potential and anodic potentiodynamic polarization. Scanning electron microscopy (SEM) and optical metallography (OM) imagery and hardness measurements provided supplemental corrosion analysis in an effort to relate material corrosion behavior to processing. The processing effects investigated as part of this were those of homogenization heat treatment (employed to mitigate the effects of coring in castings) and sub-eutectoid heat treatment, meant to represent additional steps in fabrication (such as hot isostatic pressing) performed at similar temperatures. Immersion mass loss measurements and electrochemical results both showed very little appreciable difference between

  1. Standard Specification for Pressure Consolidated Powder Metallurgy Iron-Nickel-Chromium-Molybdenum (UNS N08367), Nickel-Chromium-Molybdenum-Columbium (Nb) (UNS N06625), Nickel-Chromium-Iron Alloys (UNS N06600 and N06690), and Nickel-Chromium-Iron-Columbium-Molybdenum (UNS N07718) Alloy Pipe Flanges, Fittings, Valves, and Parts

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2015-01-01

    Standard Specification for Pressure Consolidated Powder Metallurgy Iron-Nickel-Chromium-Molybdenum (UNS N08367), Nickel-Chromium-Molybdenum-Columbium (Nb) (UNS N06625), Nickel-Chromium-Iron Alloys (UNS N06600 and N06690), and Nickel-Chromium-Iron-Columbium-Molybdenum (UNS N07718) Alloy Pipe Flanges, Fittings, Valves, and Parts

  2. Oxidation Behavior of Binary Niobium Alloys

    Science.gov (United States)

    Barrett, Charles A.; Corey, James L.

    1960-01-01

    This investigation concludes a study to determine the effects of up to 25 atomic percent of 55 alloying additions on the oxidation characteristics of niobium. The alloys were evaluated by oxidizing in an air atmosphere for 4 hours at 1000 C and 2 hours at 1200 C. Titanium and chromium improved oxidation resistance at both evaluation conditions. Vanadium and aluminum improved oxidation resistance at 1000 C, even though the V scale tended to liquefy and the Al specimens became brittle and the scale powdery. Copper, cobalt, iron, and iridium improved oxidation resistance at 1200 C. Other investigations report tungsten and molybdenum are protective up to about 1000 C, and tantalum at 1100 C. The most important factor influencing the rate of oxidation was the ion size of the alloy additions. Ions slightly smaller than the Nb(5+) ion are soluble in the oxide lattice and tend to lower the compressive stresses in the bulk scale that lead to cracking. The solubility of the alloying addition also depends on the valence to some extent. All of the elements mentioned that improve the oxidation resistance of Nb fit this size criterion with the possible exception of Al, whose extremely small size in large concentrations would probably lead to the formation of a powdery scale. Maintenance of a crack-free bulk scale for as long as possible may contribute to the formation of a dark subscale that ultimately is rate- controlling in the oxidation process. The platinum-group metals, especially Ir, appear to protect by entrapment of the finely dispersed alloying element by the incoming Nb2O5 metal-oxide interface. This inert metallic Ir when alloyed in a sufficient amount with Yb appears to give a ductile phase dispersed in the brittle oxide. This scale would then flow more easily to relieve the large compressive stresses to delay cracking. Complex oxide formation (which both Ti and Zr tend to initiate) and valence effects, which probably change the vacancy concentration in the scale

  3. Simple spectrophotometric method for determination of zirconium or hafnium in selected molybdenum-base alloys.

    Science.gov (United States)

    Dupraw, W A

    1972-06-01

    A simple analytical procedure is described for determining zirconium or hafnium in molybdenum-base alloys by formation of the Arsenazo III complex of zirconium or hafnium in 9 M hydrochloric acid medium. The absorbance is measured at 670 nm. Molybdenum (10 mg), titanium (1 mg), and rhenium (10 mg) have no adverse effect. No prior separation is needed. The relative standard deviation is 1.3-2.7%.

  4. Binary Colloidal Alloy Test-5: Phase Separation

    Science.gov (United States)

    Lynch, Matthew; Weitz, David A.; Lu, Peter J.

    2008-01-01

    The Binary Colloidal Alloy Test - 5: Phase Separation (BCAT-5-PhaseSep) experiment will photograph initially randomized colloidal samples onboard the ISS to determine their resulting structure over time. This allows the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-PhaseSep studies collapse (phase separation rates that impact product shelf-life); in microgravity the physics of collapse is not masked by being reduced to a simple top and bottom phase as it is on Earth.

  5. REDUCTION AND CONSOLIDATION OF SUPERIOR QUALITY MOLYBDENUM ALLOYS

    Science.gov (United States)

    diameter bomb. Techniques were developed for the electron beam melting of hydrogen-reduced molybdenum powder. Although this material contains low... beam melting of the thermitically-reduced molybdenum presented difficulties; primarily because of the melting configuration. The use of a remote...interstitial elements, it exhibited severe grain boundary brittleness. Physical properties of these single crystals are being determined. The electron

  6. Materials corrosion of high temperature alloys immersed in 600C binary nitrate salt.

    Energy Technology Data Exchange (ETDEWEB)

    Kruizenga, Alan Michael; Gill, David Dennis; LaFord, Marianne Elizabeth

    2013-03-01

    Thirteen high temperature alloys were immersion tested in a 60/40 binary nitrate salt. Samples were interval tested up to 3000 hours at 600ÀC with air as the ullage gas. Chemical analysis of the molten salt indicated lower nitrite concentrations present in the salt, as predicted by the equilibrium equation. Corrosion rates were generally low for all alloys. Corrosion products were identified using x-ray diffraction and electron microprobe analysis. Fe-Cr based alloys tended to form mixtures of sodium and iron oxides, while Fe-Ni/Cr alloys had similar corrosion products plus oxides of nickel and chromium. Nickel based alloys primarily formed NiO, with chromium oxides near the oxide/base alloy interface. In625 exhibited similar corrosion performance in relation to previous tests, lending confidence in comparisons between past and present experiments. HA230 exhibited internal oxidation that consisted of a nickel/chromium oxide. Alloys with significant aluminum alloying tended to exhibit superior performance, due formation of a thin alumina layer. Soluble corrosion products of chromium, molybdenum, and tungsten were also formed and are thought to be a significant factor in alloy performance.

  7. Low-temperature irradiation behavior of uranium-molybdenum alloy dispersion fuel

    Science.gov (United States)

    Meyer, M. K.; Hofman, G. L.; Hayes, S. L.; Clark, C. R.; Wiencek, T. C.; Snelgrove, J. L.; Strain, R. V.; Kim, K.-H.

    2002-08-01

    Irradiation tests have been conducted to evaluate the performance of a series of high-density uranium-molybdenum (U-Mo) alloy, aluminum matrix dispersion fuels. Fuel plates incorporating alloys with molybdenum content in the range of 4-10 wt% were tested. Two irradiation test vehicles were used to irradiate low-enrichment fuels to approximately 40 and 70 at.% 235U burnup in the advanced test reactor at fuel temperatures of approximately 65 °C. The fuel particles used to fabricate dispersion specimens for most of the test were produced by generating filings from a cast rod. In general, fuels with molybdenum contents of 6 wt% or more showed stable in-reactor fission gas behavior, exhibiting a distribution of small, stable gas bubbles. Fuel particle swelling was moderate and decreased with increasing alloy content. Fuel particles with a molybdenum content of 4 wt% performed poorly, exhibiting extensive fuel-matrix interaction and the growth of relatively large fission gas bubbles. Fuel particles with 4 or 6 wt% molybdenum reacted more rapidly with the aluminum matrix than those with higher-alloy content. Fuel particles produced by an atomization process were also included in the test to determine the effect of fuel particle morphology and microstructure on fuel performance for the U-10Mo composition. Both of the U-10Mo fuel particle types exhibited good irradiation performance, but showed visible differences in fission gas bubble nucleation and growth behavior.

  8. Effect of solutes in binary columbium /Nb/ alloys on creep strength

    Science.gov (United States)

    Klein, M. J.; Metcalfe, A. G.

    1973-01-01

    The effect of seven different solutes in binary columbium (Nb) alloys on creep strength was determined from 1400 to 3400 F for solute concentrations to 20 at.%, using a new method of creep-strength measurement. The technique permits rapid determination of approximate creep strength over a large temperature span. All of the elements were found to increase the creep strength of columbium except tantalum. This element did not strengthen columbium until the concentration exceeded 10 at.%. Hafnium, zirconium, and vanadium strengthed columbium most at low temperatures and concentrations, whereas tungsten, molybdenum, and rhenium contributed more to creep strength at high temperatures and concentrations.

  9. Investigation of welding and brazing of molybdenum and TZM alloy tubes

    Science.gov (United States)

    Lundblad, Wayne E.

    1991-01-01

    This effort involved investigating the welding and brazing techniques of molybdenum tubes to be used as cartridges in the crystal growth cartridge. Information is given in the form of charts and photomicrographs. It was found that the recrystallization temperature of molybdenum can be increased by alloying it with 0.5 percent titanium and 0.1 percent zirconium. Recrystallization temperatures for this alloy, known as TZM, become significant around 2500 F. A series of microhardness tests were run on samples of virgin and heat soaked TZM. The test results are given in tabular form. It was concluded that powder metallurgy TZM may be an acceptable cartridge material.

  10. PURIFICATION OF URANIUM FROM URANIUM/MOLYBDENUM ALLOY

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, R; Ann Visser, A; James Laurinat, J

    2007-10-15

    The Savannah River Site will recycle a nuclear fuel comprised of 90% uranium-10% molybdenum by weight. The process flowsheet calls for dissolution of the material in nitric acid to a uranium concentration of 15-20 g/L without the formation of precipitates. The dissolution will be followed by separation of uranium from molybdenum using solvent extraction with 7.5% tributylphosphate in n-paraffin. Testing with the fuel validated dissolution and solubility data reported in the literature. Batch distribution coefficient measurements were performed for the extraction, strip and wash stages with particular focus on the distribution of molybdenum.

  11. Innovative Molybdenum Alloy for Extreme Operating Conditions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Molybdenum has been identified as a promising material for many high temperature NASA applications due to its high melting temperature, resistance to liquid metals,...

  12. Film induced intergranular cracking of binary noble alloys

    Energy Technology Data Exchange (ETDEWEB)

    Friedersdorf, F. [Bureau of Mines, Albany, OR (United States); Sieradzki, K. [Arizona State Univ., Tempe, AZ (United States)

    1995-10-01

    Dealloying of a binary noble alloy produces a porous layer rich in the more noble element. Application of a tensile load may initiate a brittle intergranular crack in the dealloyed layer that advances into the unattached material. The relationships between the dealloying potential, dealloyed layer thickness and alloy susceptibility to film induced intergranular cracking have been studied. Ag-Au alloys were studied.

  13. SOLVENT EXTRACTION FOR URANIUM MOLYBDENUM ALLOY DISSOLUTION FLOWSHEET

    Energy Technology Data Exchange (ETDEWEB)

    Visser, A; Robert Pierce, R

    2007-06-07

    H-Canyon Engineering requested the Savannah River National Laboratory (SRNL) to perform two solvent extraction experiments using dissolved Super Kukla (SK) material. The SK material is an uranium (U)-molybdenum (Mo) alloy material of 90% U/10% Mo by weight with 20% 235U enrichment. The first series of solvent extraction tests involved a series of batch distribution coefficient measurements with 7.5 vol % tributylphosphate (TBP)/n-paraffin for extraction from 4-5 M nitric acid (HNO{sub 3}), using 4 M HNO{sub 3}-0.02 M ferrous sulfamate (Fe(SO3NH2)2) scrub, 0.01 M HNO3 strip steps with particular emphasis on the distribution of U and Mo in each step. The second set of solvent extraction tests determined whether the 2.5 wt % sodium carbonate (Na2CO3) solvent wash change frequency would need to be modified for the processing of the SK material. The batch distribution coefficient measurements were performed using dissolved SK material diluted to 20 g/L (U + Mo) in 4 M HNO{sub 3} and 5 M HNO{sub 3}. In these experiments, U had a distribution coefficient greater than 2.5 while at least 99% of the nickel (Ni) and greater than 99.9% of the Mo remained in the aqueous phase. After extraction, scrub, and strip steps, the aqueous U product from the strip contains nominally 7.48 {micro}g Mo/g U, significantly less than the maximum allowable limit of 800 {micro}g Mo/g U. Solvent washing experiments were performed to expose a 2.5 wt % Na2CO3 solvent wash solution to the equivalent of 37 solvent wash cycles. The low Mo batch distribution coefficient in this solvent extraction system yields only 0.001-0.005 g/L Mo extracted to the organic. During the solvent washing experiments, the Mo appears to wash from the organic.

  14. Hafnium binary alloys from experiments and first principles

    OpenAIRE

    Levy, Ohad; Hart, Gus L. W.; Curtarolo, Stefano

    2009-01-01

    Despite the increasing importance of hafnium in numerous technological applications, experimental and computational data on its binary alloys is sparse. In particular, data is scant on those binary systems believed to be phase separating. We performed a comprehensive study of 44 hafnium binary systems with alkali metals, alkaline earths, transition metals and metals, using high-throughput first principles calculations. These computations predict novel unsuspected compounds in six binary syste...

  15. First-principles studies of chromium line-ordered alloys in a molybdenum disulfide monolayer

    Science.gov (United States)

    Andriambelaza, N. F.; Mapasha, R. E.; Chetty, N.

    2017-08-01

    Density functional theory calculations have been performed to study the thermodynamic stability, structural and electronic properties of various chromium (Cr) line-ordered alloy configurations in a molybdenum disulfide (MoS2) hexagonal monolayer for band gap engineering. Only the molybdenum (Mo) sites were substituted at each concentration in this study. For comparison purposes, different Cr line-ordered alloy and random alloy configurations were studied and the most thermodynamically stable ones at each concentration were identified. The configurations formed by the nearest neighbor pair of Cr atoms are energetically most favorable. The line-ordered alloys are constantly lower in formation energy than the random alloys at each concentration. An increase in Cr concentration reduces the lattice constant of the MoS2 system following the Vegard’s law. From density of states analysis, we found that the MoS2 band gap is tunable by both the Cr line-ordered alloys and random alloys with the same magnitudes. The reduction of the band gap is mainly due to the hybridization of the Cr 3d and Mo 4d orbitals at the vicinity of the band edges. The band gap engineering and magnitudes (1.65 eV to 0.86 eV) suggest that the Cr alloys in a MoS2 monolayer are good candidates for nanotechnology devices.

  16. Spectrographic analysis of uranium-molybdenum alloys; Analisis espectrografico de aleaciones uranio-molibdeno

    Energy Technology Data Exchange (ETDEWEB)

    Roca, M.

    1967-07-01

    A spectrographic method of analysis has been developed for uranium-molybdenum alloys containing up to 10 % Mo. The carrier distillation technique, with gallium oxide and graphite as carriers, is used for the semiquantitative determination of Al, Cr, Fe, Ni and Si, involving the conversion of the samples into oxides. As a consequence of the study of the influence of the molybdenum on the line intensities, it is useful to prepare only one set of standards with 0,6 % MoO{sub 3}. Total burning excitation is used for calcium, employing two sets of standards with 0,6 and 7.5 MoO{sub 3}. (Author) 5 refs.

  17. Nanostructures obtained from a mechanically alloyed and heat treated molybdenum carbide

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Barriga Arceo, L. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico) and ESIQIE-UPALM, IPN Apdo Postal 118-395, C.P. 07051 D.F. Mexico (Mexico)]. E-mail: luchell@yahoo.com; Orozco, E. [Instituto de Fisica UNAM, Apdo Postal 20-364, C.P. 01000 D.F. Mexico (Mexico)]. E-mail: eorozco@fisica.unam.mx; Mendoza-Leon, H. [ESIQIE-UPALM, IPN Apdo Postal 118-395, C.P. 07051 D.F. Mexico (Mexico)]. E-mail: luchell@yahoo.com; Palacios Gonzalez, E. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico)]. E-mail: epalacio@imp.mx; Leyte Guerrero, F. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico)]. E-mail: fleyte@imp.mx; Garibay Febles, V. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico)]. E-mail: vgaribay@imp.mx

    2007-05-31

    Mechanical alloying was used to prepare molybdenum carbide. Microstructural characterization of samples was performed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) methods. Molybdenum carbide was heated at 800 {sup o}C for 15 min in order to produce carbon nanotubes. Nanoparticles of about 50-140 nm in diameter and nanotubes with diameters of about 70-260 nm and 0.18-0.3 {mu}m in length were obtained after heating at 800 {sup o}C, by means of this process.

  18. A simple spectrophotometric method for determination of zirconium or hafnium in selected molybdenum-base alloys

    Science.gov (United States)

    Dupraw, W. A.

    1972-01-01

    A simple analytical procedure is described for accurately and precisely determining the zirconium or hafnium content of molybdenum-base alloys. The procedure is based on the reaction of the reagent Arsenazo III with zirconium or hafnium in strong hydrochloric acid solution. The colored complexes of zirconium or hafnium are formed in the presence of molybdenum. Titanium or rhenium in the alloy have no adverse effect on the zirconium or hafnium complex at the following levels in the selected aliquot: Mo, 10 mg; Re, 10 mg; Ti, 1 mg. The spectrophotometric measurement of the zirconium or hafnium complex is accomplished without prior separation with a relative standard deviation of 1.3 to 2.7 percent.

  19. Effects of heat treatments on the thermal diffusivity of Uranium-Molybdenum alloy

    Science.gov (United States)

    Camarano, D. M.; Mansur, F. A.; Santos, A. M. M.; Ferraz, W. B.; Pedrosa, T. A.

    2016-07-01

    U-Mo alloys are the most investigated nuclear fuel material to be used in research reactors. The addition of molybdenum stabilizes the gamma phase of uranium and increases its melting point. A research program under development at Nuclear Technology Development Center (CDTN) aims the obtaining of uranium-molybdenum alloys to enable the high enriched uranium (HEU) to low enriched uranium (LEU) conversions. U-Mo ingots with 10% by weight were induction melted and heat treated at 300 °C for 72 h, 120 h and 240 h. Thermal diffusivity was determined by the laser flash method and thermal quadrupole method, from room temperature to 300 oC and 400oC. It was observed that the thermal diffusivity tends to increase with increasing temperature.

  20. Microstructures and oxidation behavior of some Molybdenum based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Pratik Kumar [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    The advent of Ni based superalloys revolutionized the high temperature alloy industry. These materials are capable of operating in extremely harsh environments, comprising of temperatures around 1050 C, under oxidative conditions. Demands for increased fuel efficiency, however, has highlighted the need for materials that can be used under oxidative conditions at temperatures in excess of 1200 C. The Ni based superalloys are restricted to lower temperatures due to the presence of a number of low melting phases that melt in the 1250 - 1450 C, resulting in softening of the alloys above 1000 C. Therefore, recent research directions have been skewed towards exploring and developing newer alloy systems. This thesis comprises a part of such an effort. Techniques for rapid thermodynamic assessments were developed and applied to two different systems - Mo-Si alloys with transition metal substitutions (and this forms the first part of the thesis) and Ni-Al alloys with added components for providing high temperature strength and ductility. A hierarchical approach towards alloy design indicated the Mo-Ni-Al system as a prospective candidate for high temperature applications. Investigations on microstructures and oxidation behavior, under both isothermal and cyclic conditions, of these alloys constitute the second part of this thesis. It was seen that refractory metal systems show a marked microstructure dependence of oxidation.

  1. Plutonium microstructures. Part 2. Binary and ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, E.M.; Bergin, J.B.

    1983-12-01

    This report is the second of three parts that exhibit illustrations of inclusions in plutonium metal from inherent and tramp impurities, of intermetallic and nonmetallic constituents from alloy additions, and of the effects of thermal and mechanical treatments. This part includes illustrations of the microstructures in binary cast alloys and a few selected ternary alloys that result from measured additions of diluent elements, and of the microconstituents that are characteristic of phase fields in extended alloy systems. Microhardness data are given and the etchant used in the preparation of each sample is described.

  2. Influence of bath composition on the electrodeposition of cobalt-molybdenum amorphous alloy thin films

    Institute of Scientific and Technical Information of China (English)

    Qiaoying Zhou; Hongliang Ge; Guoying Wei; Qiong Wu

    2008-01-01

    Cobalt-molybdenum (Co-Mo) amorphous alloy thin films were deposited on copper substrates by the electrochemical method at pH 4.0. Among the experimental electrodeposition parameters, only the concentration ratio of molybdate to cobalt ions ([ MoO2-4 ]/[CO2+]) was varied to analyze its influence on the mechanism of induced cobalt-molybdenum codeposition. Voltammetry was one of the main techniques, which was used to examine the voltammetric response, revealing that cobalt-molybdenum codeposi-tion depended on the nature of the species in solution. To correlate the type of the film to the electrochemical response, various co-bait-molybdenum alloy thin films obtained from different [ MoO2-4]/[Co2+] solutions were tested. Crack-free homogeneous films could be easily obtained from the low molybdate concentrations ([ MoO2-4]/[Co2+]≈0.05) applying low deposition potentials.Moreover, the content of molybdenum up to 30wt% could be obtained from high molybdate concentration; in this case, the films showed cracks. The formation of these cracked films could be predicted from the observed distortions in the curves of electric cur-rent-time (j-t) deposition transients. The films with amorphous stmeture were obtained. The hysteresis loops suggested that the easily film were obtained when the deposition potential was -1025 mV, and [ MoO2-4]/[Co2+] was 0.05 in solution, which exhibited a nicer soft-magnetic response.

  3. Effect of molybdenum on structure, microstructure and mechanical properties of biomedical Ti-20Zr-Mo alloys.

    Science.gov (United States)

    Kuroda, Pedro Akira Bazaglia; Buzalaf, Marília Afonso Rabelo; Grandini, Carlos Roberto

    2016-10-01

    Titanium has an allotropic transformation around 883°C. Below this temperature, the crystalline structure is hexagonal close-packed (α phase), changing to body-centered cubic (β phase). Zirconium has the same allotropic transformation around 862°C. Molybdenum has body-centered cubic structure, being a strong β-stabilizer for the formation of titanium alloys. In this paper, the effect of substitutional molybdenum was analyzed on the structure, microstructure and selected mechanical properties of Ti-20Zr-Mo (wt%) alloys to be used in biomedical applications. The samples were prepared by arc-melting and characterized by x-ray diffraction with subsequent refinement by the Rietveld method, optical and scanning electron microscopy. The mechanical properties were analyzed by Vickers microhardness and dynamic elasticity modulus. X-ray measurements and Rietveld analysis revealed the presence of α' phase without molybdenum, α'+α″ phases with 2.5wt% of molybdenum, α″+β phases with 5 and 7.5wt% of molybdenum, and only β phase with 10wt% of molybdenum. These results were corroborated by microscopy results, with a microstructure composed of grains of β phase and lamellae and needles of α' and α″ phase in intra-grain the region. The hardness of the alloy was higher than the commercially pure titanium, due to the action of zirconium and molybdenum as hardening agents. The samples have a smaller elasticity modulus than the commercially pure titanium.

  4. Microstructure and properties of Mg-Al binary alloys

    Directory of Open Access Journals (Sweden)

    ZHENG Wei-chao

    2006-11-01

    Full Text Available The effects of different amounts of added Al, ranging from 1 % to 9 %, on the microstructure and properties of Mg-Al binary alloys were investigated. The results showed that when the amount of added Al is less than 5%, the grain size of the Mg-Al binary alloys decreases dramatically from 3 097 μm to 151 μm with increasing addition of Al. Further addition of Al up to 9% makes the grain size decrease slowly to 111 μm. The α-Mg dendrite arms are also refined. Increasing the amount of added Al decreases the hot cracking susceptibility of the Mg-Al binary alloys remarkably, and enhances the micro-hardness of the α-Mg matrix.

  5. Microstructure and properties of Mg-Al binary alloys

    Institute of Scientific and Technical Information of China (English)

    ZHENG Wei-chao; LI Shuang-shou; TANG Bin; ZENG Da-ben

    2006-01-01

    The effects of different amounts of added Al, ranging from 1% to 9%, on the microstructure and properties of Mg-Al binary alloys were investigated. The results showed that when the amount of added Al is less than 5%, the grain size of the Mg-Al binary alloys decreases dramatically from 3 097 μm to 151 μm with increasing addition of Al. Further addition of Al up to 9% makes the grain size decrease slowly to 111 μm. The α-Mg dendrite arms are also refined. Increasing the amount of added Al decreases the hot cracking susceptibility of the Mg-Al binary alloys remarkably, and enhances the micro-hardness of the α-Mg matrix.

  6. Diamond Deposition on WC/Co Alloy with a Molybdenum Intermediate Layer

    Science.gov (United States)

    Liu, Sha; Yu, Zhi-Ming; Yi, Dan-Qing

    It is known that in the condition of chemical vapor deposition (CVD) diamond process, molybdenum is capable of forming carbide known as the "glue" which promotes growth of the CVD diamond, and aids its adhesion by (partial) relief of stresses at the interface. Furthermore, the WC grains are reaction bonded to the Mo2C phase. Therefore, molybdenum is a good candidate material for the intermediate layer between WC-Co substrates and diamond coatings. A molybdenum intermediate layer of 1-3 μm thickness was magnetron sputter-deposited on WC/Co alloy prior to the deposition of diamond coatings. Diamond films were deposited by hot filament chemical vapor deposition (HFCVD). The chemical quality, morphology, and crystal structure of the molybdenum intermediate layer and the diamond coatings were characterized by means of SEM, EDX, XRD and Raman spectroscopy. It was found that the continuous Mo intermediate layer emerged in spherical shapes and had grain sizes of 0.5-1.5 μm after 30 min sputter deposition. The diamond grain growth rate was slightly slower as compared with that of uncoated Mo layer on the WC-Co substrate. The morphologies of the diamond films on the WC-Co substrate varied with the amount of Mo and Co on the substrate. The Mo intermediate layer was effective to act as a buffer layer for both Co diffusion and diamond growth.

  7. A chemical approach toward low temperature alloying of immiscible iron and molybdenum metals

    Energy Technology Data Exchange (ETDEWEB)

    Nazir, Rabia [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Applied Chemistry Research Centre, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Lahore 54600 (Pakistan); Ahmed, Sohail [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Mazhar, Muhammad, E-mail: mazhar42pk@yahoo.com [Department of Chemistry, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Akhtar, Muhammad Javed; Siddique, Muhammad [Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); Khan, Nawazish Ali [Material Science Laboratory, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Shah, Muhammad Raza [HEJ Research Institute of Chemistry, University of Karachi, Karachi 75270 (Pakistan); Nadeem, Muhammad [Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan)

    2013-11-15

    Graphical abstract: - Highlights: • Low temperature pyrolysis of [Fe(bipy){sub 3}]Cl{sub 2} and [Mo(bipy)Cl{sub 4}] homogeneous powder. • Easy low temperature alloying of immiscible metals like Fe and Mo. • Uniform sized Fe–Mo nanoalloy with particle size of 48–68 nm. • Characterization by EDXRF, AFM, XRPD, magnetometery, {sup 57}Fe Mössbauer and impedance. • Alloy behaves as almost superparamagnetic obeying simple –R(CPE)– circuit. - Abstract: The present research is based on a low temperature operated feasible method for the synthesis of immiscible iron and molybdenum metals’ nanoalloy for technological applications. The nanoalloy has been synthesized by pyrolysis of homogeneous powder precipitated, from a common solvent, of the two complexes, trisbipyridineiron(II)chloride, [Fe(bipy){sub 3}]Cl{sub 2}, and bipyridinemolybedenum(IV) chloride, [Mo(bipy)Cl{sub 4}], followed by heating at 500 °C in an inert atmosphere of flowing argon gas. The resulting nanoalloy has been characterized by using EDXRF, AFM, XRD, magnetometery, {sup 57}Fe Mössbauer and impedance spectroscopies. These results showed that under provided experimental conditions iron and molybdenum metals, with known miscibility barrier, alloy together to give (1:1) single phase material having particle size in the range of 48–66 nm. The magnetism of iron is considerably reduced after alloy formation and shows its trend toward superparamagnetism. The designed chemical synthetic procedure is equally feasible for the fabrication of other immiscible metals.

  8. Correlation between diffusion barriers and alloying energy in binary alloys

    DEFF Research Database (Denmark)

    Vej-Hansen, Ulrik Grønbjerg; Rossmeisl, Jan; Stephens, Ifan;

    2016-01-01

    In this paper, we explore the notion that a negative alloying energy may act as a descriptor for long term stability of Pt-alloys as cathode catalysts in low temperature fuel cells.......In this paper, we explore the notion that a negative alloying energy may act as a descriptor for long term stability of Pt-alloys as cathode catalysts in low temperature fuel cells....

  9. Hot spray technology of TA7 titanium alloy coated by molybdenum and its bonding strength

    Institute of Scientific and Technical Information of China (English)

    Li Xiaoquan; Du Zeyu; Yang Xuguang

    2006-01-01

    A kind of surface modification test was introduced, by which plasma spray in argon atmosphere with CNC4500 system was applied for TA7 titanium alloy to be coated with molybdenum, and technology to produce metallurgical bonding at interface of coating and base meal was tested by heating in vacuum condition for diffusion after hot spray.With the help of scan electron microscope analysis ( SEM) , the effect of argon inlet pressure and heating temperature on coating structure as well as product of diffusion layer were studied.The glued tensile test method was used to measure bonding strength of base metal to coating.The result has shown that both argon inlet pressure and heating temperature exert some effect on coating structure and the width of diffusion layer.A bonding strength of base metal to coating which is greater than molybdenum coating itself may be attained and can be controlled in more than 50 MPa level with tested hot spray technology.

  10. Effect of molybdenum on structure, microstructure and mechanical properties of biomedical Ti-20Zr-Mo alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Pedro Akira Bazaglia [UNESP - Univ Estadual Paulista, Laboratório de Anelasticidade e Biomateriais, 17.033-360, Bauru, SP (Brazil); IBTN/Br – Institute of Biomaterials, Tribocorrosion and Nanomedicine, Brazilian Branch, 17.033-360 Bauru, SP (Brazil); Buzalaf, Marília Afonso Rabelo [USP – Universidade de São Paulo, Departamento de Ciências Biológicas, 17.012-901, Bauru, SP (Brazil); Grandini, Carlos Roberto, E-mail: betog@fc.unesp.br [UNESP - Univ Estadual Paulista, Laboratório de Anelasticidade e Biomateriais, 17.033-360, Bauru, SP (Brazil); IBTN/Br – Institute of Biomaterials, Tribocorrosion and Nanomedicine, Brazilian Branch, 17.033-360 Bauru, SP (Brazil)

    2016-10-01

    Titanium has an allotropic transformation around 883 °C. Below this temperature, the crystalline structure is hexagonal close-packed (α phase), changing to body-centered cubic (β phase). Zirconium has the same allotropic transformation around 862 °C. Molybdenum has body-centered cubic structure, being a strong β-stabilizer for the formation of titanium alloys. In this paper, the effect of substitutional molybdenum was analyzed on the structure, microstructure and selected mechanical properties of Ti-20 Zr-Mo (wt%) alloys to be used in biomedical applications. The samples were prepared by arc-melting and characterized by x-ray diffraction with subsequent refinement by the Rietveld method, optical and scanning electron microscopy. The mechanical properties were analyzed by Vickers microhardness and dynamic elasticity modulus. X-ray measurements and Rietveld analysis revealed the presence of α′ phase without molybdenum, α′ + α″ phases with 2.5 wt% of molybdenum, α″ + β phases with 5 and 7.5 wt% of molybdenum, and only β phase with 10 wt% of molybdenum. These results were corroborated by microscopy results, with a microstructure composed of grains of β phase and lamellae and needles of α′ and α″ phase in intra-grain the region. The hardness of the alloy was higher than the commercially pure titanium, due to the action of zirconium and molybdenum as hardening agents. The samples have a smaller elasticity modulus than the commercially pure titanium. - Highlights: • Ti-20Zr-Mo system alloys were developed. • β-Stabilizer effect of Zr in the presence of another β-stabilizer element • Alloys with low elastic modulus.

  11. Creep Behaviour of Fe-Mn Binary Alloys

    Institute of Scientific and Technical Information of China (English)

    O. Sahin; N. Ucar

    2006-01-01

    @@ Tensile creep behaviour of fine-grained Fe-Mn binary alloys containing 0.42-1.21 wt. % Mn has been investigated in the temperature range from room temperature to 475K under 10-50 Mpa. Tensile tests are carried out with a constant cross-head speed under uniaxial load at a strain rate 10-4s-1. Stress exponent and activation energy are determined to clarify deformation mechanism. The obtained variation of steady state creep rate with respect to the applied stress for Fe-Mn binary alloys exhibits two distinct regimes at about 20 Mpa, indicating a possible change in creep mechanism. The average stress exponent is approximately 2.2, which is a characteristic of grain boundary sliding in the alloys. The activation energy for plastic flow varies from 135 to 92kJ/mol, depending on the Mn content.

  12. Molybdenum blues based conducting nanocomposites of polypyrrole, polyN-vinylcarbazole and of their binary combination

    Energy Technology Data Exchange (ETDEWEB)

    Ballav, Nirmalya [Department of Chemistry, Presidency College, 86/1 College Street, Kolkata 700073 (India)]. E-mail: tnb123@rediffmail.com

    2005-11-20

    Molybdenum blues (MB) based nanocomposites of polypyrrole (PPY), polyN-vinylcarbazole (PNVC) and their binary combination (PPY-PNVC) were prepared by in situ polymerization (without using external oxidant) of PY and NVC and also by using ammonium perdisulfate oxidant (PDS). Formation and incorporation of PPY and PNVC in the respective MB based composite was confirmed by FTIR spectral analyses. Scanning electron microscopic (SEM) analyses revealed the formation of PPY-MB, PNVC-MB and PPY-MB-PNVC composite particles with average diameter in the nanometer range. Thermogravimetric analyses (TGA) showed the following thermal stability trend: MB > PPY-MB > PNVC-MB > PPY-MB-PNVC > PPY {>=} PNVC. Differential thermal analysis (DTA) for the PPY-MB-PNVC composite revealed exothermic oxidative degradation process characteristics of PPY and PNVC backbones. DC conductivity values (S/cm) for PPY-MB, PNVC-MB and PPY-MB-PNVC were 1.5 x 10{sup -5} and 7 x 10{sup -2} (a value 10{sup 12}-fold improved compared to that of unmodified PNVC-10{sup -12} to 10{sup -16}), respectively.

  13. Magnetic properties of the binary Nickel/Bismuth alloy

    Science.gov (United States)

    Keskin, Mustafa; Şarlı, Numan

    2017-09-01

    Magnetic properties of the binary Nickel/Bismuth alloy (Ni/Bi) are investigated within the effective field theory. The Ni/Bi alloy has been modeled that the rhombohedral Bi lattice is surrounded by the hexagonal Ni lattice. According to lattice locations, Bi atoms have two different magnetic properties. Bi1 atoms are in the center of the hexagonal Ni atoms (Ni/Bi1 single layer) and Bi2 atoms are between two Ni/Bi1 bilayers. The Ni, Bi1, Bi2 and Ni/Bi undergo a second-order phase transition from the ferromagnetic phase to paramagnetic phase at Tc = 1.14. The magnetizations of the Ni/Bi alloy are observed as Bi1 > Bi2 > Ni/Bi > Ni at T < Tc; hence the magnetization of the Bi1 is dominant and Ni is at least dominant. However, the total magnetization of the Ni/Bi alloy is close to magnetization of the Ni at T < Tc. The corcivities of the Ni, Bi1, Bi2 and Ni/Bi alloy are the same with each others, but the remanence magnetizations are different. Our theoretical results of M(T) and M(H) of the Ni/Bi alloy are in quantitatively good agreement with the some experimental results of binary Nickel/Bismuth systems.

  14. Bond strength of binary titanium alloys to porcelain.

    Science.gov (United States)

    Yoda, M; Konno, T; Takada, Y; Iijima, K; Griggs, J; Okuno, O; Kimura, K; Okabe, T

    2001-06-01

    The purpose of this study was to investigate the bond strength between porcelain and experimental cast titanium alloys. Eleven binary titanium alloys were examined: Ti-Cr (15, 20, 25 wt%), Ti-Pd (15, 20, 25 wt%), Ti-Ag (10, 15, 20 wt%), and Ti-Cu (5, 10 wt%). As controls, the bond strengths for commercially pure titanium (KS-50, Kobelco, Japan) and a high noble gold alloy (KIK, Ishifuku, Japan) were also examined. Castings were made using a centrifugal casting unit (Ticast Super R, Selec Co., Japan). Commercial porcelain for titanium (TITAN, Noritake, Japan) was applied to cast specimens. The bond strengths were evaluated using a three-point bend test according to ISO 9693. Since the elastic modulus value is needed to evaluate the bond strength, the modulus was measured for each alloy using a three-point bend test. Results were analyzed using one-way ANOVA/S-N-K test (alpha = 0.05). Although the elastic moduli of the Ti-Pd alloys were significantly lower than those of other alloys (p = 0.0001), there was a significant difference in bond strength only between the Ti-25Pd and Ti-15Ag alloys (p = 0.009). The strengths determined for all the experimental alloys ranged from 29.4 to 37.2MPa, which are above the minimum value required by the ISO specification (25 MPa).

  15. Cost Estimate for Molybdenum and Tantalum Refractory Metal Alloy Flow Circuit Concepts

    Science.gov (United States)

    Hickman, Robert R.; Martin, James J.; Schmidt, George R.; Godfroy, Thomas J.; Bryhan, A.J.

    2010-01-01

    The Early Flight Fission-Test Facilities (EFF-TF) team at NASA Marshall Space Flight Center (MSFC) has been tasked by the Naval Reactors Prime Contract Team (NRPCT) to provide a cost and delivery rough order of magnitude estimate for a refractory metal-based lithium (Li) flow circuit. The design is based on the stainless steel Li flow circuit that is currently being assembled for an NRPCT task underway at the EFF-TF. While geometrically the flow circuit is not representative of a final flight prototype, knowledge has been gained to quantify (time and cost) the materials, manufacturing, fabrication, assembly, and operations to produce a testable configuration. This Technical Memorandum (TM) also identifies the following key issues that need to be addressed by the fabrication process: Alloy selection and forming, cost and availability, welding, bending, machining, assembly, and instrumentation. Several candidate materials were identified by NRPCT including molybdenum (Mo) alloy (Mo-47.5 %Re), tantalum (Ta) alloys (T-111, ASTAR-811C), and niobium (Nb) alloy (Nb-1 %Zr). This TM is focused only on the Mo and Ta alloys, since they are of higher concern to the ongoing effort. The initial estimate to complete a Mo-47%Re system ready for testing is =$9,000k over a period of 30 mo. The initial estimate to complete a T-111 or ASTAR-811C system ready for testing is =$12,000k over a period of 36 mo.

  16. Comparison of spring characteristics of titanium-molybdenum alloy and stainless steel.

    Science.gov (United States)

    Sheibaninia, Ahmad; Salehi, Anahita; Asatourian, Armen

    2017-01-01

    Titanium-molybdenum alloy (TMA) and stainless steel (SS) wires are commonly used in orthodontics as arch-wires for tooth movement. However, plastic deformation phenomenon in these arch-wires seems to be a major concern among orthodontists. This study aimed to compare the mechanical properties of TMA and SS wires with different dimensions. Seventy-two wire samples (36 TMA and 36 SS) of three different sizes (19×25, 17×25 and 16×22) were analyzed in vitro, with 12 samples in each group. Various mechanical properties of the wires, including spring-back, bending moment and stiffness were determined using a universal testing machine. Student's t-test showed statistically significant differences in the mean values of all the groups. In addition, metallographic comparison of SS and TMA wires was conducted under an optical microscope. The degree of stiffness of 16×22-sized SS and TMA springs was found to be 12±2 and 5±0.4, respectively, while the bending moment was estimated to be 1927±352 (gm-mm) and 932±16 (gm-mm), respectively; the spring-back index was determined to be 0.61±0.2 and 0.4±.09, respectively (pBending moment, optical microscope, spring-back, stainless steel, stiffness, titanium‒molybdenum alloy.

  17. Characterization of the uranium--2 weight percent molybdenum alloy. [Treatment to obtain 930 MPa yield strength (0. 2 percent)

    Energy Technology Data Exchange (ETDEWEB)

    Hemperly, V.C.

    1976-05-19

    The uranium-2 wt percent molybdenum alloy was prepared, processed, and age hardened to meet a minimum 930-MPa yield strength (0.2 percent) with a minimum of 10 percent elongation. These mechanical properties were obtained with a carbon level up to 300 ppM in the alloy. The tensile-test ductility is lowered by the humidity of the laboratory atmosphere. (auth)

  18. Binary Colloidal Alloy Test-3 and 4: Critical Point

    Science.gov (United States)

    Weitz, David A.; Lu, Peter J.

    2007-01-01

    Binary Colloidal Alloy Test - 3 and 4: Critical Point (BCAT-3-4-CP) will determine phase separation rates and add needed points to the phase diagram of a model critical fluid system. Crewmembers photograph samples of polymer and colloidal particles (tiny nanoscale spheres suspended in liquid) that model liquid/gas phase changes. Results will help scientists develop fundamental physics concepts previously cloaked by the effects of gravity.

  19. Tensile and stress-rupture behavior of hafnium carbide dispersed molybdenum and tungsten base alloy wires

    Science.gov (United States)

    Yun, Hee Mann; Titran, Robert H.

    1993-01-01

    The tensile strain rate sensitivity and the stress-rupture strength of Mo-base and W-base alloy wires, 380 microns in diameter, were determined over the temperature range from 1200 K to 1600 K. Three molybdenum alloy wires; Mo + 1.1w/o hafnium carbide (MoHfC), Mo + 25w/o W + 1.1w/o hafnium carbide (MoHfC+25W) and Mo + 45w/o W + 1.1w/o hafnium carbide (MoHfC+45W), and a W + 0.4w/o hafnium carbide (WHfC) tungsten alloy wire were evaluated. The tensile strength of all wires studied was found to have a positive strain rate sensitivity. The strain rate dependency increased with increasing temperature and is associated with grain broadening of the initial fibrous structures. The hafnium carbide dispersed W-base and Mo-base alloys have superior tensile and stress-rupture properties than those without HfC. On a density compensated basis the MoHfC wires exhibit superior tensile and stress-rupture strengths to the WHfC wires up to approximately 1400 K. Addition of tungsten in the Mo-alloy wires was found to increase the long-term stress rupture strength at temperatures above 1400 K. Theoretical calculations indicate that the strength and ductility advantage of the HfC dispersed alloy wires is due to the resistance to recrystallization imparted by the dispersoid.

  20. Wear behaviour of cobalt-chromium-molybdenum alloys used in metal-on-metal hip implants

    Science.gov (United States)

    Varano, Rocco

    The influence of carbon (C) content, microstructure, crystallography and mechanical properties on the wear behaviour of metal-on-metal (MM) hip implants made from commercially available cobalt-chromium-molybdenum (CoCrMo) alloys designated as American Society of Testing and Materials (ASTM) grade F1537, F75 and as-cast were studied in this work. The as-received bars of wrought CoCrMo alloys (ASTM F1537 of either about 0.05% or 0.26% C) were each subjected to various heat treatments to develop different microstructures. Pin and plate specimens were fabricated from each bar and were tested against each other using a linear reciprocating pin-on-plate apparatus in 25% by volume bovine serum solution. The applied normal load was 9.81 N and the reciprocating plate had a sinusoidal velocity with an average speed of 26 mm/s. The wear was measured gravimetrically and it was found to be most strongly affected by alloy C content, irrespective of grain size or carbide morphology. More precisely, the wear behaviour was directly correlated to the dissolved C content of the alloys. Increased C in solid-solution coincided with lower volumetric wear since C helps to stabilize the face-centred cubic (FCC) crystal structure thus limiting the amount of strain induced transformation (SIT) to the hexagonal close-packed crystal structure (HCP). Based on the observed surface twinning in and around the contact zone and the potentially detrimental effect of the HCP phase, it was postulated that the MM wear behaviour of CoCrMo alloys in the present study was controlled by a deformation mechanism, rather than corrosion or tribochemical reactions.

  1. A New Thermodynamic Calculation Method for Binary Alloys: Part I: Statistical Calculation of Excess Functions

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The improved form of calculation formula for the activities of the components in binary liquids and solid alloys has been derived based on the free volume theory considering excess entropy and Miedema's model for calculating the formation heat of binary alloys. A calculation method of excess thermodynamic functions for binary alloys, the formulas of integral molar excess properties and partial molar excess properties for solid ordered or disordered binary alloys have been developed. The calculated results are in good agreement with the experimental values.

  2. Comparison of spring characteristics of titanium-molybdenum alloy and stainless steel

    Science.gov (United States)

    Salehi, Anahita; Asatourian, Armen

    2017-01-01

    Background Titanium-molybdenum alloy (TMA) and stainless steel (SS) wires are commonly used in orthodontics as arch-wires for tooth movement. However, plastic deformation phenomenon in these arch-wires seems to be a major concern among orthodontists. This study aimed to compare the mechanical properties of TMA and SS wires with different dimensions. Material and Methods Seventy-two wire samples (36 TMA and 36 SS) of three different sizes (19×25, 17×25 and 16×22) were analyzed in vitro, with 12 samples in each group. Various mechanical properties of the wires, including spring-back, bending moment and stiffness were determined using a universal testing machine. Student’s t-test showed statistically significant differences in the mean values of all the groups. In addition, metallographic comparison of SS and TMA wires was conducted under an optical microscope. Results The degree of stiffness of 16×22-sized SS and TMA springs was found to be 12±2 and 5±0.4, respectively, while the bending moment was estimated to be 1927±352 (gm-mm) and 932±16 (gm-mm), respectively; the spring-back index was determined to be 0.61±0.2 and 0.4±.09, respectively (p<0.001). There were no statistically significant differences in spring-back index in larger dimensions of the wires. Conclusions Systematic analysis indicated that springs made of TMA were superior compared to those made of SS. Although both from economic and functionality viewpoints the use of TMA is suggested, further clinical investigations are recommended. Key words:Bending moment, optical microscope, spring-back, stainless steel, stiffness, titanium‒molybdenum alloy. PMID:28149469

  3. Essential Magnesium Alloys Binary Phase Diagrams and Their Thermochemical Data

    Directory of Open Access Journals (Sweden)

    Mohammad Mezbahul-Islam

    2014-01-01

    Full Text Available Magnesium-based alloys are becoming a major industrial material for structural applications because of their potential weight saving characteristics. All the commercial Mg alloys like AZ, AM, AE, EZ, ZK, and so forth series are multicomponent and hence it is important to understand the phase relations of the alloying elements with Mg. In this work, eleven essential Mg-based binary systems including Mg-Al/Zn/Mn/Ca/Sr/Y/Ni/Ce/Nd/Cu/Sn have been reviewed. Each of these systems has been discussed critically on the aspects of phase diagram and thermodynamic properties. All the available experimental data has been summarized and critically assessed to provide detailed understanding of the systems. The phase diagrams are calculated based on the most up-to-date optimized parameters. The thermodynamic model parameters for all the systems except Mg-Nd have been summarized in tables. The crystallographic information of the intermetallic compounds of different binary systems is provided. Also, the heat of formation of the intermetallic compounds obtained from experimental, first principle calculations and CALPHAD optimizations are provided. In addition, reoptimization of the Mg-Y system has been done in this work since new experimental data showed wider solubility of the intermetallic compounds.

  4. New decorative applications of alloys at base of aluminium-molybdenum; Nuevas aplicaciones decorativas de aleaciones a base de aluminio-molibdeno

    Energy Technology Data Exchange (ETDEWEB)

    Mesa L, V.H.; Hernandez P, C.D.; Alvarez P, M.A.; Guzman, J.; Garcia H, M.; Juarez I, J.A.; Gonzalez, C.; Alvarez F, O. [IIM-UNAM, A.P. 70-360, 04510 Mexico D.F. (Mexico)]. e-mail: oaf@servidor.unam.mx

    2005-07-01

    Decorative properties of aluminum-molybdenum alloys have been analyzed as a function of chemical composition and applied heat treatment. These decorative application are due exclusively for their nano structure nature. The alloys were prepared at room temperature by DC magnetron sputtering technique in argon atmosphere at different deposition time to obtain several thickness and chemical compositions in the range 3 to 30 % of molybdenum metal. (Author)

  5. Superconducting state parameters of indium-based binary alloys

    Indian Academy of Sciences (India)

    A M Vora; Minal H Patel; P N Gajjar; A R Jani

    2002-05-01

    Our well-recognized pseudopotential is used to investigate the superconducting state parameters viz; electron–phonon coupling strength , Coulomb pseudopotentialµ *, transition temperature c, isotope effective exponent and interaction strength 0 for the In1-Zn and In1-Sn binary alloys. We have incorporated six different types of local field correction functions, proposed by Hartree, Taylor, Vashistha–Singwi, Ichimaru–Utsumi, Farid et al and Sarkar et al to show the effect of exchange and correlation on the aforesaid properties. Very strong influence of the various exchange and correlation functions is concluded from the present study. The comparison with other such theoretical values is encouraging, which confirms the applicability of our model potential in explaining the superconducting state parameters of binary mixture.

  6. Boriding of Binary Ni-Ti Shape Memory Alloys

    Science.gov (United States)

    Ucar, Nazim; Dogan, Sule; Karakas, Mustafa Serdar; Calik, Adnan

    2016-11-01

    Boriding of binary Ni-Ti shape memory alloys was carried out in a solid medium at 1273 K for 2, 4, 6, and 8 h using the powder pack method with proprietary Ekabor-Ni powders. Characterization of the boride layer formed on the surface of alloys was done by optical microscopy and scanning electron microscopy. The presence of boride, silicide, and borosilicide phases in the boride layers was confirmed by X-ray diffraction analysis. The thickness and microhardness of the boride layers increased with increasing boriding time. Hardness profiles showed a rapid decrease in hardness moving from the boride layer to the main structure. The high hardness of the boride layer was attributed mainly to the formation of TiB2. A parabolic relationship was observed between layer thickness and boriding time, and the growth rate constant for the boriding treatment was calculated as 0.62×10-8 cm2 s-1.

  7. Critical adsorption on defects in ising magnets and binary alloys

    Science.gov (United States)

    Hanke

    2000-03-06

    Long-range correlations in a magnet close to its critical point or in a binary alloy close to a continuous order-disorder transition can substantially enhance the effect of local perturbations. It is demonstrated using a position-space renormalization procedure that quasi-one-dimensional defects which break the symmetry of the order parameter have pronounced effects: They cause long-range critical adsorption profiles and give rise to new universal critical exponents, which are identified and calculated using field-theoretical methods.

  8. Critical Adsorption on Defects in Ising Magnets and Binary Alloys

    Science.gov (United States)

    Hanke, Andreas

    2000-03-01

    Long-range correlations in a magnet close to its critical point or in a binary alloy close to a continuous order-disorder transition can substantially enhance the effect of local perturbations. It is demonstrated using a position-space renormalization procedure that quasi-one-dimensional defects which break the symmetry of the order parameter have pronounced effects: They cause long-range critical adsorption profiles and give rise to new universal critical exponents, which are identified and calculated using field-theoretical methods.

  9. Effect of molybdenum addition on the mechanical properties of sinter-forged Fe–Cu–C alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rathore, Sanjay S., E-mail: rathore.sanjaysingh@gmail.com; Salve, Milind M., E-mail: milindrowling@gmail.com; Dabhade, Vikram V., E-mail: vvdabfmt@iitr.ac.in

    2015-11-15

    Molybdenum provides solid solution strengthening, enhances hardenability and has thus been used to improve mechanical properties of ferrous alloys significantly. The present study reports the effect of molybdenum addition on the properties of sinter-forged Fe–Cu–C alloys prepared using elemental powders under various heat treatment conditions. The elemental powder mixtures were compacted at a pressure of 500 MPa followed by sintering at 1120 °C in N{sub 2}–20%H{sub 2} atmosphere. Further, the sintered compacts were immediately forged at the sintering temperature in a closed die. The sinter-forged compacts were further homogenized and then heat treated under different cooling rates. Enhancement of the mechanical properties (hardness and tensile strength) were observed with Mo addition and increase in severity of quench. Hardness of air cooled samples was slightly lower than that of the water quenched samples but comparable with oil quenched samples. However, no significant increase in hardness was observed beyond 1.5 wt% Mo addition for all cooling conditions. At higher molybdenum content ductility was retained due to stabilization of ferrite phase by molybdenum. The microstructural study showed mostly ferrite–pearlite structure in furnace cooled condition whereas a complex microstructure was observed in the faster cooling conditions. Grain refinement was also observed with molybdenum addition. - Highlights: • Mo (0.25–4.0 wt%) addition in sinter-forged Fe–2Cu–0.65C alloys was investigated. • Effect of heat treatment on mechanical properties and microstructure was discussed. • Hardness and strength increased with Mo addition at the expense of ductility. • Hardness in air cooled condition was comparable with oil/water cooled conditions.

  10. Dilatometric analysis on shrinkage behavior during non-isothermal sintering of nanocrystalline tungsten mechanically alloyed with molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Srivastav, Ajeet K., E-mail: ajeetshri@gmail.com [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Murty, B.S. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Alloying with Mo reduces the WC contamination during milling. Black-Right-Pointing-Pointer Kirkendall effect assisted enhanced diffusion influences the densification of W-Mo alloys Black-Right-Pointing-Pointer Densification kinetics improved with Mo alloying in nanocrystalline tungsten. Black-Right-Pointing-Pointer Densification starts with Mo diffusion and later W and Mo both diffuse along the grain boundaries. - Abstract: The paper attempts to study the shrinkage behavior of nanocrystalline tungsten mechanically alloyed with molybdenum (5, 10, 15 and 20 wt.%). The dilatometric analysis was performed by Setsys Evolution TMA (ambient to 1600 Degree-Sign C) using constant heating rate (CHR) method. The significant improvement in shrinkage with alloying of molybdenum is attributed to reduced grain size, lowered tungsten carbide contamination and enhanced diffusion kinetics. The initial stage sintering kinetics of W-20Mo alloy has been investigated. The densification starts with Mo diffusion (calculated activation energy = 128 kJ/mol) and proceeds with the diffusion of both along the grain boundaries (calculated activation energy = 307 {+-} 1 kJ/mol).

  11. Two-dimensional molybdenum tungsten diselenide alloys: photoluminescence, Raman scattering, and electrical transport.

    Science.gov (United States)

    Zhang, Mei; Wu, Juanxia; Zhu, Yiming; Dumcenco, Dumitru O; Hong, Jinhua; Mao, Nannan; Deng, Shibin; Chen, Yanfeng; Yang, Yanlian; Jin, Chuanhong; Chaki, Sunil H; Huang, Ying-Sheng; Zhang, Jin; Xie, Liming

    2014-07-22

    Two-dimensional transition-metal dichalcogenide alloys have attracted intense attention due to their tunable band gaps. In the present work, photoluminescence, Raman scattering, and electrical transport properties of monolayer and few-layer molybdenum tungsten diselenide alloys (Mo1-xWxSe2, 0 ≤ x ≤ 1) are systematically investigated. The strong photoluminescence emissions from Mo1-xWxSe2 monolayers indicate composition-tunable direct band gaps (from 1.56 to 1.65 eV), while weak and broad emissions from the bilayers indicate indirect band gaps. The first-order Raman modes are assigned by polarized Raman spectroscopy. Second-order Raman modes are assigned according to its frequencies. As composition changes in Mo1-xWxSe2 monolayers and few layers, the out-of-plane A1g mode showed one-mode behavior, while B2g(1) (only observed in few layers), in-plane E2g(1), and all observed second-order Raman modes showed two-mode behaviors. Electrical transport measurement revealed n-type semiconducting transport behavior with a high on/off ratio (>10(5)) for Mo1-xWxSe2 monolayers.

  12. Density of Liquid Ni-Mo Alloys Measured by a Modified Sessile Drop Method

    Institute of Scientific and Technical Information of China (English)

    Liang FANG; Zushu LI; ZaiNan TAO; Feng XIAO

    2004-01-01

    The density of liquid binary Ni-Mo alloys with molybdenum concentration from 0 to 20% (mass fraction) was measured by a modified sessile drop method. It has been found that the density of the liquid Ni-Mo alloys decreases with increasing temperature, but increases with the increase of molybdenum concentration in the alloys. The molar volume of liquid Ni-Mo binary alloys increases with the increase of temperature and molybdenum concentration. The partial molar volume of molybdenum in Ni-Mo binary alloy has been approximately calculated as [13.18 - 2.65 × 10-3T + (-47.94 + 3.10 × 10-2T) × 10-2XMo] × 10-6m3·mol-1. The molar volume of Ni-Mo alloy determined in the present work shows a negative deviation from the ideal linear mixing molar volume.

  13. Nitriding behavior of Ni and Ni-based binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fonovic, Matej

    2015-01-15

    precipitate-free microstructure known as expanded austenite or S-phase, which can enhance surface hardness, fatigue properties and corrosion properties.Nitriding of multicomponent Ni-based alloys is usually applied in the industry. Nevertheless, the understanding of nitriding is mostly based on phenomenological research and experience. Thereby there is still absence of complete understanding of nitriding of Ni-based alloys, which requires further detailed investigations. Since studying the nitrided multicomponent alloys is complicated, in this thesis fundamental investigations were performed on pure nickel and binary Ni-based model alloys.This thesis focuses on the nitriding behavior of pure nickel, which will result with an thermodynamic evaluation of the Ni-N system. Furthermore, deeper insights in the nitriding behavior of the binary Ni-based alloys is obtained upon nitriding Ni-4 wt.% Ti and Ni-2 wt.% Ti (Ni-5 at.% Ti and Ni-2.5 at.% Ti) alloys. Thereby, the development of large residual macrostresses parallel to the surface of the specimen is related with the N concentration gradient in the nitrided zone.

  14. Numerical modelling of the binary alloys solidification with solutal undercooling

    Directory of Open Access Journals (Sweden)

    T. Skrzypczak

    2008-03-01

    Full Text Available In thc papcr descrip~ion of mathcmn~icaI and numerical modcl of binay alloy sot idification is prcscntcd. Mctal alloy consisting of maincomponent and solulc is introduced. Moving, sharp solidification rmnt is assumcd. Conaitulional undcrcooling phcnomcnon is tnkcn intoconsidcralion. As a solidifica~ionf ront advances, solutc is rcdistributcd at thc intcrfacc. Commonly, solutc is rejccted into Itlc liquid. whcrcit accumuIatcs into solittc boundary laycr. Depending on thc tcmpcrature gradient, such tiquid may be undcrcoolcd hclow its mclting point,cvcn though it is hot~crth an liquid at thc Front. This phcnomcnon is orten callcd constitutional or soIr~talu ndcrcool ing, to cmphasizc that itariscs from variations in solutal distribution or I iquid. An important conscqucncc of this accurnulntion of saIutc is that it can cause thc frontto brcak down into cclls or dendri~csT. his occurs bccausc thcrc is a liquid ahcad of thc front with lowcr solutc contcnt, and hcncc a highcrme1 ting tcmpcraturcs than liquid at thc front. In rhc papcr locarion and shapc of wndcrcoolcd rcgion dcpcnding on solidification pararnctcrsis discussed. Nurncrical mcthod basing on Fini tc Elelncnt Mctbod (FEM allowi~lgp rcdiction of breakdown of inoving planar front duringsolidification or binary alloy is proposed.

  15. Point Defects in Binary Laves-Phase Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, P.K.; Liu, C.T.; Pike, L.M.; Zhu, J.H.

    1999-01-11

    Point defects in the binary C15 NbCrQ and NbCoz, and C 14 NbFe2 systems on both sides of stoichiometry were studied by both bulk density and X-ray Iattiee parameter measurements. It was found that the vacancy concentrations in these systems after quenching from 1000"C are essentially zero. The constitutional defects on both sides of stoichiometry for these systems were found to be of the anti-site type in comparison with the model predictions. Thermal vacancies exhibiting a maximum at the stoichiometric composition were obtained in NbCr2 Laves phase alloys after quenching from 1400"C. However, there are essentially no thermal vacancies in NbFe2 alloys after quenching from 1300oC. Anti-site hardening was found on both sides of stoichiometry for all the tie Laves phase systems studied, while the thermal vacancies in NbCr2 alloys quenched from 1400'C were found to soften the Laves phase. The anti-site hardening of the Laves phases is similar to that of the B2 compounds and the thermal vacancy softening is unique to the Laves phase. Neither the anti-site defects nor the thermal vacancies affect the fracture toughness of the Laves phases significantly.

  16. Electrochemical characterization of cast Ti-Hf binary alloys.

    Science.gov (United States)

    Cai, Z; Koike, M; Sato, H; Brezner, M; Guo, Q; Komatsu, M; Okuno, O; Okabe, T

    2005-05-01

    This study characterized the electrochemical behavior of Ti-Hf binary alloys in a simulated oral environment. Ti-Hf alloys (10, 20, 25, 30, 35 and 40 mass% Hf) were prepared by arc-melting titanium sponge and hafnium sponge. Specimens of each alloy (n = 4) were prepared using a dental titanium casting system with a MgO-based investment. Specimens were inspected with X-ray radiography to ensure minimal internal porosity. Castings (n = 4) made from pure titanium and commercially pure titanium were used as controls. The ground flat surface (10 mm x 10 mm) on each specimen where approximately 30 microm was removed was used for the characterization. Sixteen-hour open-circuit potential (OCP) measurement, linear polarization and potentiodynamic cathodic polarization were performed sequentially in aerated (air + 10% CO2) MTZ synthetic saliva at 37 degrees C. Potentiodynamic anodic polarization was conducted in the same medium but deaerated (N2 + 10% CO2) 2 h before and during testing. Polarization resistance (R(P)) and Tafel slopes were determined, as were corrosion current density (I(CORR)) and passive current density (I(PASS)). Results were subjected to nonparametric statistical analysis (alpha = 0.05). The OCP stabilized (mean values -229 mV to -470 mV vs. SCE) for all specimens after the 16-h immersion. Similar passivation was observed for all the metals on their anodic polarization diagrams. The Kruskal-Wallis test showed significant differences in OCP among the test groups (p = 0.006). No significant differences were found in R(P), I(CORR) or I(PASS) among all the metals (p>0.3). Results indicate that the electrochemical behavior of the Ti-Hf alloys examined resembles that of pure titanium.

  17. Simulation of shrinkage cavity formation during solidification of binary alloy

    Directory of Open Access Journals (Sweden)

    T. Skrzypczak

    2010-01-01

    Full Text Available Presented paper is focused on numerical modeling of binary alloy solidification process with connection to shrinkage cavity formation phenomenon. Appropriate matching of cooling parameters during solidification process of the cast with raiser is essential to obtain suitable properties of the manufactured part. Localization, structure and depth of the shrinkage cavity is connected to these parameters. The raiser is removed after process, so defect localization in the top part of the manufactured element is of great importance. Mathematical model of solidification process is presented in the paper. The main focus is put on the algorithm of shrinkage cavity creation process. On the basis of mathematical model the numerical approach using finite element method is proposed. On the base of mathematical and numerical model computer program is made. It is able to perform simulation of the shrinkage cavity formation in 2D region. Shape and localization of shrinkage cavity obtained from simulation is compared to defect which was created during experiment.

  18. Cobalt-chromium-molybdenum alloy causes metal accumulation and metallothionein up-regulation in rat liver and kidney

    DEFF Research Database (Denmark)

    Jakobsen, Stig Storgaard; Danscher, Gorm; Stoltenberg, Meredin;

    2007-01-01

    Cobalt-chromium-molybdenum (CoCrMo) metal-on-metal hip prosthesis has had a revival due to their excellent wear properties. However, particulate wear debris and metal ions liberated from the CoCrMo alloys might cause carcinogenicity, hypersensitivity, local and general tissue toxicity, genotoxicity...... and inflammation-generating qualities. Nine months after implanting small pieces of CoCrMo alloy intramuscularly and intraperitoneally in rats, we analysed the accumulation of metals with a multi-element analysis, and the levels of metallothionein I/II with real-time reverse transcriptase-polymerase chain reaction...... in liver and kidney. We found that metal ions are liberated from CoCrMo alloys and suggest that they are released by dissolucytosis, a process where macrophages causes the metallic surface to release metal ions. Animals with intramuscular implants accumulated metal in liver and kidney and metallohionein I...

  19. Boriding of binary Ni-Ti shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ucar, Nazim; Dogan, Sule [Suleyman Demirel Univ., Isparta (Turkey). Physics Dept.; Karakas, Mustafa Serdar [Cankaya Univ., Ankara (Turkey). Materials Science and Engineering Dept.; Calik, Adnan [Suleyman Demirel Univ., Isparta (Turkey). Manufacturing Engineering Dept.

    2016-07-01

    Boriding of binary Ni-Ti shape memory alloys was carried out in a solid medium at 1273 K for 2, 4, 6, and 8 h using the powder pack method with proprietary Ekabor-Ni powders. Characterization of the boride layer formed on the surface of alloys was done by optical microscopy and scanning electron microscopy. The presence of boride, silicide, and borosilicide phases in the boride layers was confirmed by X-ray diffraction analysis. The thickness and microhardness of the boride layers increased with increasing boriding time. Hardness profiles showed a rapid decrease in hardness moving from the boride layer to the main structure. The high hardness of the boride layer was attributed mainly to the formation of TiB{sub 2}. A parabolic relationship was observed between layer thickness and boriding time, and the growth rate constant for the boriding treatment was calculated as 0.62 x 10{sup -8} cm{sup 2}s{sup -1}.

  20. Point Defects in Binary Laves-Phase Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, P.K.; Liu, C.T.; Pike, L.M.; Zhu, J.H.

    1998-11-30

    Point defect mechanisms in the binary C15 NbCr{sub 2} and NbCo{sub 2}, and C14 NbFe{sub 2} systems on both sides of stoichiometry was studied and clarified by both bulk density and X-ray lattice parameter measurements. It was found that the vacancy concentrations in these systems after quenching from 1000 C are essentially zero. The constitutional defects on both sides of stoichiometry for these systems were found to be of the anti-site type in comparison with the model predictions. However, thermal vacancies exhibiting a maximum at the stoichiometric composition were obtained in NbCr{sub 2} laves phase alloys after quenching from 1400 C. These could be completely eliminated by annealing at 1000 C. Anti-site hardening was found on both sides of stoichiometry for all three Laves phase systems studied. Furthermore, the thermal vacancies in NbCr{sub 2} alloys after quenching from 1400 C were found to soften the Laves phase. The anti-site hardening of the Laves phases is similar to that of the B2 compounds, while the thermal vacancy softening is unique to the Laves phase. Both the anti-site defects and thermal vacancies do not significantly affect the fracture toughness of the Laves phases.

  1. The effect of molybdenum on niobium, titanium carbonitride precipitate evolution and grain refinement in high-temperature vacuum carburizing alloys

    Science.gov (United States)

    Enloe, Charles M.

    Existing commercial carburizing alloys can be processed at higher temperatures and shorter processing times utilizing vacuum carburizing due to the suppression of intergranular oxidation. To provide resistance to undesired grain coarsening at these elevated temperatures and associated reduction in fatigue performance, microalloyed steel variants have been developed which employ fine Ti- and Nb-carbonitrides to suppress grain growth. Grain coarsening resistance is believed to be limited by the coarsening resistance of the precipitates themselves at high temperature, so further alloy/processing developments to enhance microalloy precipitate coarsening resistance based on a greater mechanistic understanding of solute interaction with microalloy precipitates would be beneficial. Molybdenum is known to affect microalloy precipitate evolution during processing in ferrite and austenite, but a unified explanation of the role of Mo in precipitate evolution is still lacking. Accordingly, the effect of molybdenum on microalloy precipitate size and composition evolutions and the associated onset of abnormal grain growth in austenite was investigated in Mo-bearing and Mo-free, Nb,Ti-microalloyed SAE 4120 steels. Molybdenum additions of 0.30 wt pct to alloys containing Nb additions of 0.05 and 0.10 wt pct Nb delayed the onset of abnormal grain growth in hot-rolled alloys reheated and soaked at 1050 °C and 1100 °C. The coarsening rate of microalloy precipitates was also reduced in Mo-bearing alloys relative to Mo-free alloys during isothermal soaking at 1050 °C, 1100 °C, and 1150 °C. The observed microalloy precipitate coarsening rates exceeded those predicted by the Lifshitz-Slyozov-Wagner relation for volume-diffusion-controlled coarsening, which is attributed to an initial bimodal precipitate size distribution prior to reheating to elevated temperature. Heat-treatments of hot-rolled alloys (tempering and solutionizing) prior to reheating to elevated temperature in

  2. Development of Direct Alloying by Molybdenum Oxides%氧化钼直接合金化炼钢的发展

    Institute of Scientific and Technical Information of China (English)

    李正邦; 朱航宇; 杨海森

    2013-01-01

    Theoretical basis of direct alloying by use of molybdenum oxides and the better period for adding molybdenum oxides to EAF (electric arc furnace) was introduced, and resent research results of stabilizing molybdenum trioxide to inhibit its sublimation and difference of direct alloying by molybdenum oxides was both compared at home and abroad. The suggested conclusion is that the use of calcium oxide, calcium carbonate, magnesium oxide or iron oxide mixed with molybdenum trioxide adding to EAF can inhibit volatilization of molybdenum trioxide significantly, molybdenum yield can be improved accordingly.%介绍了氧化钼直接合金化炼钢的理论依据和电炉炼钢过程中的最佳加入时期,总结了抑制氧化钼挥发的研究成果并对比分析了国内外氧化钼炼钢工艺流程的差别.由此得出,采用氧化钙、碳酸钙、氧化镁或氧化铁和三氧化钼混加的方式能显著抑制三氧化钼的挥发,提高钼的收得率.

  3. Molybdenum carbide supported nickel-molybdenum alloys for synthesis gas production via partial oxidation of surrogate biodiesel

    Science.gov (United States)

    Shah, Shreya; Marin-Flores, Oscar G.; Norton, M. Grant; Ha, Su

    2015-10-01

    In this study, NiMo alloys supported on Mo2C are synthesized by wet impregnation for partial oxidation of methyl oleate, a surrogate biodiesel, to produce syngas. When compared to single phase Mo2C, the H2 yield increases from 70% up to >95% at the carbon conversion of ∼100% for NiMo alloy nanoparticles that are dispersed over the Mo2C surface. Supported NiMo alloy samples are prepared at two different calcination temperatures in order to determine its effect on particle dispersion, crystalline phase and catalytic properties. The reforming test data indicate that catalyst prepared at lower calcination temperature shows better nanoparticle dispersion over the Mo2C surface, which leads to higher initial performance when compared to catalysts synthesized at higher calcination temperature. Activity tests using the supported NiMo alloy on Mo2C that are calcined at the lower temperature of 400 °C shows 100% carbon conversion with 90% H2 yield without deactivation due to coking over 24 h time-on-stream.

  4. Development of a high density fuel based on uranium-molybdenum alloys with high compatibility in high temperatures; Desenvolvimento de um combustivel de alta densidade a base das ligas uranio-molibdenio com alta compatibilidade em altas temperaturas

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Fabio Branco Vaz de

    2008-07-01

    This work has as its objective the development of a high density and low enriched nuclear fuel based on the gamma-UMo alloys, for utilization where it is necessary satisfactory behavior in high temperatures, considering its utilization as dispersion. For its accomplishment, it was started from the analysis of the RERTR ('Reduced Enrichment for Research and Test Reactors') results and some theoretical works involving the fabrication of gamma-uranium metastable alloys. A ternary addition is proposed, supported by the properties of binary and ternary uranium alloys studied, having the objectives of the gamma stability enhancement and an ease to its powder fabrication. Alloys of uranium-molybdenum were prepared with 5 to 10% Mo addition, and 1 and 3% of ternary, over a gamma U7Mo binary base alloy. In all the steps of its preparation, the alloys were characterized with the traditional techniques, to the determination of its mechanical and structural properties. To provide a process for the alloys powder obtention, its behavior under hydrogen atmosphere were studied, in thermo analyser-thermo gravimeter equipment. Temperatures varied from the ambient up to 1000 deg C, and times from 15 minutes to 16 hours. The results validation were made in a semi-pilot scale, where 10 to 50 g of powders of some of the alloys studied were prepared, under static hydrogen atmosphere. Compatibility studies were conducted by the exposure of the alloys under oxygen and aluminum, to the verification of possible reactions by means of differential thermal analysis. The alloys were exposed to a constant heat up to 1000 deg C, and their performances were evaluated in terms of their reaction resistance. On the basis of the results, it was observed that ternary additions increases the temperatures of the reaction with aluminum and oxidation, in comparison with the gamma UMo binaries. A set of conditions to the hydration of the alloys were defined, more restrictive in terms of temperature

  5. Dry sliding friction and wear characteristics of Fe-C-Cu alloy containing molybdenum di sulphide

    Energy Technology Data Exchange (ETDEWEB)

    Dhanasekaran, S. [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Gnanamoorthy, R. [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India)]. E-mail: gmoorthy@iitm.ac.in

    2007-07-01

    Sintered steels find increasing application as bearings and gears due to economical and technical reasons. Materials used for making these machine elements need to have high strength, good wear resistance and low coefficient of friction. An attempt is made to develop molybdenum di sulphide added iron-copper-carbon sintered steels using simple single stage compaction and sintering elemental powders. Friction and wear characteristics of the developed materials were evaluated using cylindrical specimens in a pin-on-disc sliding apparatus. Addition of molybdenum di sulphide increases the compressibility and increases the part density. Strength and hardness of the molybdenum di sulphide added compositions are better than the base composition. Addition of the 3% molybdenum di sulphide is found to be beneficial in improving friction and wear characteristics. Higher amount of brittle phases in the 5% molybdenum di sulphide added sample contributes to the reduction in the wear resistance.

  6. Estimating the Eutectic Composition of Simple Binary Alloy System Using Linear Geometry

    Directory of Open Access Journals (Sweden)

    Muhammed Olawale Hakeem AMUDA

    2008-06-01

    Full Text Available A simple linear equation was developed and applied to a hypothetical binary equilibrium diagram to evaluate the eutectic composition of the binary alloy system. Solution of the equations revealed that the eutectic composition of the case study Pb – Sn, Bi – Cd and Al – Si alloys are 39.89% Pb, 60.11% Sn, 58.01% Bi, 41.99% Cd and 90.94% Al, 9.06% Si respectively. These values are very close to experimental values. The percent deviation of analytical values from experimental values ranged between 2.87 and 5% for the three binary systems considered, except for Si – Al alloy in which the percent deviation for the silicon element was 22%.It is concluded that equation of straight line could be used to predict the eutectic composition of simple binary alloys within tolerable experimental deviation range of 2.5%.

  7. Free energy change of off-eutectic binary alloys on solidification

    Science.gov (United States)

    Ohsaka, K.; Trinh, E. H.; Lin, J.-C.; Perepezko, J. H.

    1991-01-01

    A formula for the free energy difference between the undercooled liquid phase and the stable solid phase is derived for off-eutectic binary alloys in which the equilibrium solid/liquid transition takes place over a certain temperature range. The free energy change is then evaluated numerically for a Bi-25 at. pct Cd alloy modeled as a sub-subregular solution.

  8. Front tracking in the numerical simulation of binary alloy solidification

    Science.gov (United States)

    Simpson, James Edward

    2000-12-01

    A model for directional solidification in dilute binary alloys is presented. The energy equation is solved for the temperature field, while the species equation is solved for the solute distribution. Either the vorticity-vector potential formulation or the pressure-velocity formulation is used to solve the governing equations for the velocity field. The constitutive equations are solved using a fully transient scheme. A variety of fast numerical schemes for solving sparse systems are used in the solution procedure. A single domain approach is used for the solution scheme for the energy and concentration equations. The effects of phase-change (energy equation) and solute rejection at the advancing solid/liquid interface (concentration equation) are handled via the introduction of appropriate source terms. The numerical approach was validated by comparing numerical results to data from a series of experiments of the Bridgman growth of pure succinonitrile. These experiments were performed as part of this work and are explained in detail. The numerical results agree well with the experimental data in terms of interface shape, temperature and velocity data. The key contribution of this work is the investigation of the Bridgman crystal growth of bismuth-tin in support of NASA's MEPHISTO project. The simulations reported in this work are among the first fully transient simulations of the process; no simplifying steady state approximations were used. Results are obtained for Bi-Sn alloys at a variety of initial concentrations and gravity levels. For most of the work, the solid/liquid interface temperature is assumed to be constant. For the richer alloy (Bi-1.0 at.% Sn) the results indicate that a secondary convective cell, driven by solutal gradients, forms near the interface. The magnitude of the velocities in this cell increases with time, causing increasing solute segregation at the solid/liquid interface. At lower gravity levels, convection-induced segregation is

  9. Determination of Gibbs Energy of Formation of Molybdenum-Boron Binary System by Electromotive Force Measurement Using Solid Electrolyte

    Science.gov (United States)

    Yamamoto, Hiroaki; Morishita, Masao; Yamamoto, Takeo; Furukawa, Kazuma

    2011-02-01

    The standard Gibbs energies of formation of Mo2B, αMoB, Mo2B5, and MoB4 in the molybdenum-boron binary system were determined by measuring electromotive forces of galvanic cells using an Y2O3-stabilized ZrO2 solid oxide electrolyte. The results are as follows: begin{aligned} Updelta_{{f}} {{G}}^circ ( {{{Mo}}2 {{B}}} )/{{J}} {{mol}}^{ - 1} & = - 193100 + 44.10T ± 700( {1198{{ K to }}1323{{ K}}( {925^circ {{C to }}1050^circ {{C}}} )} ) \\ Updelta_{{f}} {{G}}^circ (α {{MoB}})/{{J}} {{mol}}^{ - 1} & = - 164000 + 26.45T ± 700( {1213{{ K to }}1328{{ K}}( {940^circ {{C to }}1055^circ {{C}}} )} ) \\ Updelta_{{f}} {{G}}^circ ( {{{Mo}}2 {{B}}5 } )/{{J}} {{mol}}^{ - 1} & = - 622500 + 117.0T ± 3000( {1205{{ K to }}1294{{ K}}( {932^circ {{C to }}1021^circ {{C}}} )} ) \\ Updelta_{{f}} {{G}}^circ ( {{{MoB}}4 } )/{{J}} {{mol}}^{ - 1} & = - 387300 + 93.53T ± 3000( {959{{ K to }}1153{{ K}}( {686^circ {{C to }}880^circ {{C}}} )} ) \\ where the standard pressure is 1 bar (100 kPa).

  10. The mechanism of corrosion of palladium-silver binary alloys in artificial saliva.

    Science.gov (United States)

    Joska, L; Marek, M; Leitner, J

    2005-05-01

    Palladium dental casting alloys are alternatives to gold alloys. The aim of this study was to determine the electrochemical behaviour and the corrosion mechanism of binary silver-palladium alloys. Seven binary silver-palladium alloys and pure palladium and silver were tested in a model saliva solution. Electrochemical tests included corrosion potential, polarization resistance, and potentiodynamic polarization measurements. The corrosion products, which may be theoretically formed, were determined by thermodynamic calculation. The behaviour of silver and silver-rich alloys was dominated by the preferential formation of a thiocyanate surface layer, which controlled the free corrosion potential. Palladium dissolved in the form of a thiocyanate complex, but the surface became passivated by either palladium oxide or solid palladium thiocyanate layer, the thermodynamic calculations indicating preference for the oxide. Palladium-rich alloys showed evidence of silver depletion of the surface, resulting in behaviour similar to palladium. Examination of binary silver-palladium alloys has made possible determination of the role of the components of the alloys and model saliva in the corrosion behaviour. The findings are applicable to the more complex commercial dental alloys containing silver and palladium as major components.

  11. Comparative analysis of high temperature strength of platinum and its binary alloys with low content of alloying element

    Directory of Open Access Journals (Sweden)

    Stanković Draško S.

    2012-01-01

    Full Text Available The comparative analysis of platinum and its binary alloys (containing alloying elements up to 10 mass% mechanical properties at high temperatures has been carried out. The goal of the analysis was to investigate new application possibilities for products based on platinum and platinum alloys, and to expand the existing database of platinum metals, originating from the RTB group, Serbia. Palladium, rhodium, ruthenium, iridium and gold were used as alloying elements. In order to examine the effect of alloying elements’ low concentrations on the high-temperature platinum durability, creep rate, rupture time, tensile strength and relative elongation at high temperatures, up to 1400 °C, were determined. In addition, changes in the structure of dislocations were tracked. The summary of investigation results led to conclusion that, of all the alloying elements used, the best influence on high-temperature platinum durability has rhodium.

  12. Friction stir surfacing of cast A356 aluminium–silicon alloy with boron carbide and molybdenum disulphide powders

    Directory of Open Access Journals (Sweden)

    R. Srinivasu

    2015-06-01

    Full Text Available Good castability and high strength properties of Al–Si alloys are useful in defence applications like torpedoes, manufacture of Missile bodies, and parts of automobile such as engine cylinders and pistons. Poor wear resistance of the alloys is major limitation for their use. Friction stir processing (FSP is a recognized surfacing technique as it overcomes the problems of fusion route surface modification methods. Keeping in view of the requirement of improving wear resistance of cast aluminium–silicon alloy, friction stir processing was attempted for surface modification with boron carbide (B4C and molybdenum disulfide (MoS2 powders. Metallography, micro compositional analysis, hardness and pin-on-disc wear testing were used for characterizing the surface composite coating. Microscopic study revealed breaking of coarse silicon needles and uniformly distributed carbides in the A356 alloy matrix after FSP. Improvement and uniformity in hardness was obtained in surface composite layer. Higher wear resistance was achieved in friction stir processed coating with carbide powders. Addition of solid lubricant MoS2 powder was found to improve wear resistance of the base metal significantly.

  13. Calculating formation range of binary amorphous alloys fabricated by electroless plating

    Science.gov (United States)

    Zhang, Bangwei; Liao, Shuzhi; Shu, Xiaolin; Xie, Haowen

    2016-06-01

    A lot of amorphous alloy deposits in the binary (Ni, Co, Cu)-(P, B) alloy systems fabricated by electroless plating (EP) have been reported up to date. But no one reported their theoretical modeling of the amorphous formation and calculated their concentration range of amorphous formation (RAF). Using Miedema model and subregular model scheme, the RAFs for the six EP (Ni, Co, Cu)-(P, B) alloys and three Ni-Cu, Ni-Co and Co-Cu alloys have been calculated systematically for the first time. The calculated results are in agreement with experimental observations. Experiments and calculations for the RAFs in the latter three alloy systems reveal that not any RAF formed except crystalline states. The huge difference between the six metal-metalloid alloys and three metal-metal alloys in RAF has been discussed in detail in the paper.

  14. Computer Simulation of Ordering and Atom Clustering in Aging Binary Al-Li Alloy

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-ling; CHEN Zheng; WANG Yong-xin; HU Ming-juan

    2004-01-01

    Ordering and atom clustering in aging binary Al-Li alloy has been investigated by computer simulation through calculating the long range order (lro.) parameter and composition deviation order parameter from single-site occupation probabilities of Li atom. The results show that when the alloy lies in metastable region in the phase diagram ordering and atom clustering occur simultaneously. As the composition of the alloy increases ordering occurs earlier than atom clustering gradually. When the alloy lies in instable region atom clustering takes place after the congruent ordering completes. It has also been found that the incubation period of the phase transformation is shortened as the composition increases.

  15. Computer Simulation of Ordering and Atom Clustering in Aging Binary AI-Li Alloy

    Institute of Scientific and Technical Information of China (English)

    LIXiao-ling; CHENZheng; WANGYong-xin; HUMing-juan

    2004-01-01

    Ordering and atom clustering in aging binary Al-Li alloy has been investigated by computer simulation through calculating the long range order (lro.) parameter and composition deviation order parameter from single-site occupation probabilities of Li atom. The results show that when the alloy lies in metastable region in the phase diagram ordering and atom clustering occur simultaneously. As the composition of the alloy increases ordering occurs earlier than atom clustering gradually. When the alloy lies in instable region atom clustering takes place after the congruent ordering completes. It has also been found that the incubation period of the phase transformation is shortened as the composition increases.

  16. Ab initio atomistic thermodynamics study on the oxidation mechanism of binary and ternary alloy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shi-Yu, E-mail: buaasyliu@gmail.com [College of Physics and Electronic Information Science, Tianjin Normal University, Tianjin 300387 (China); Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Liu, Shiyang [Institute of Information Optics, Zhejiang Normal University, Jinhua, Zhejiang 321004 (China); Li, De-Jun [College of Physics and Electronic Information Science, Tianjin Normal University, Tianjin 300387 (China); Wang, Sanwu, E-mail: sanwu-wang@utulsa.edu [Department of Physics and Engineering Physics, The University of Tulsa, Tulsa, Oklahoma 74104 (United States); Guo, Jing; Shen, Yaogen, E-mail: meshen@cityu.edu.hk [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong (China)

    2015-02-14

    Utilizing a combination of ab initio density-functional theory and thermodynamics formalism, we have established the microscopic mechanisms for oxidation of the binary and ternary alloy surfaces and provided a clear explanation for the experimental results of the oxidation. We construct three-dimensional surface phase diagrams (SPDs) for oxygen adsorption on three different Nb-X(110) (X = Ti, Al or Si) binary alloy surfaces. On the basis of the obtained SPDs, we conclude a general microscopic mechanism for the thermodynamic oxidation, that is, under O-rich conditions, a uniform single-phase SPD (type I) and a nonuniform double-phase SPD (type II) correspond to the sustained complete selective oxidation and the non-sustained partial selective oxidation by adding the X element, respectively. Furthermore, by revealing the framework of thermodynamics for the oxidation mechanism of ternary alloys through the comparison of the surface energies of two separated binary alloys, we provide an understanding for the selective oxidation behavior of the Nb ternary alloy surfaces. Using these general microscopic mechanisms, one could predict the oxidation behavior of any binary and multi-component alloy surfaces based on thermodynamics considerations.

  17. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nikel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) seamless pipe and tube

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nikel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) seamless pipe and tube

  18. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045 and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) plate, sheet and strip

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045 and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) plate, sheet and strip

  19. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) rod, bar, and wire

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) rod, bar, and wire

  20. Evaluation of mechanical properties in stainless alloy ferritic with 5 % molybdenum; Avaliacao das propriedades mecanicas em ligas inoxidaveis ferriticas com 5% de molibdenio

    Energy Technology Data Exchange (ETDEWEB)

    Lima Filho, V.X.; Gomes, F.H.F.; Guimaraes, R.F.; Saboia, F.H.C.; Abreu, H.F.G. de [Instituto Federal de Educacao, Ciencia e Tecnologia do Ceara (IFCE). Campus Maracanau, CE (Brazil)], e-mail: venceslau@ifce.edu.br

    2010-07-01

    The deterioration of equipment in the oil industry is caused by high aggressiveness in processing the same. One solution to this problem would increase the content of molybdenum (Mo) alloys, since this improves the corrosion resistance. As the increase of Mo content causes changes in mechanical properties, we sought to evaluate the mechanical properties of alloys with 5% Mo and different levels of chromium (Cr). Were performed metallography and hardness measurement of the alloys in the annealed condition. Subsequent tests were performed tensile and Charpy-V, both at room temperature. The results showed that 2% difference in the content of Cr did not significantly alter the mechanical properties of alloys. The alloys studied had higher values in measured properties when compared to commercial ferritic alloys with similar percentages of Cr. The high content of Mo resulted in a brittle at room temperature but ductile at temperatures above 70 degree C. (author)

  1. Electrical Resistivity of Na-K Binary Liquid Alloy Using Ab-Initio Pseudopotentials

    Institute of Scientific and Technical Information of China (English)

    Anil Thakur; P. K. Ahluwalia

    2005-01-01

    @@ The study of electrical resistivity of simple binary liquid alloy Na-K is presented as a function of concentration.Hard sphere diameters of sodium (Na) and potassium (K) are obtained through the inter ionic pair potentials evaluated using Troullier and Martins ab-initio pseudopotentials, which have been used to calculate partial structure factors S(q). The Ziman formula for calculating resistivity of binary liquid alloys has been used. Form factors are calculated using ab-initio pseudopotentials. The results suggest that the first principle approach for calculating pseudopotentials with in the frame work of Ziman formalism is quite successful in explaining the electrical resistivity data of compound forming binary liquid alloys.

  2. Mineral resource of the month: molybdenum

    Science.gov (United States)

    Polyak, Désire E.

    2011-01-01

    The article offers information about the mineral molybdenum. Sources includes byproduct or coproduct copper-molybdenum deposits in the Western Cordillera of North and South America. Among the uses of molybdenum are stainless steel applications, as an alloy material for manufacturing vessels and as lubricants, pigments or chemicals. Also noted is the role played by molybdenum in renewable energy technology.

  3. Experimental investigation of the behaviour of tungsten and molybdenum alloys at high strain-rate and temperature

    Directory of Open Access Journals (Sweden)

    Scapin Martina

    2015-01-01

    Full Text Available The introduction in recent years of new, extremely energetic particle accelerators such as the Large Hadron Collider (LHC gives impulse to the development and testing of refractory metals and alloys based on molybdenum and tungsten to be used as structural materials. In this perspective, in this work the experimental results of a tests campaign on Inermet®  IT180 and pure Molybdenum (sintered by two different producers are presented. The investigation of the mechanical behaviour was performed in tension varying the strain-rates, the temperatures and both of them. Overall six orders of magnitude in strain-rate (between 10−3 and 103 s−1 were covered, starting from quasi-static up to high dynamic loading conditions. The high strain-rate tests were performed using a direct Hopkinson Bar setup. Both in quasi-static and high strain-rate conditions, the heating of the specimens was obtained with an induction coil system, controlled in feedback loop, based on measurements from thermocouples directly welded on the specimen. The temperature range varied between 25 and 1000°C. The experimental data were, finally, used to extract the parameters of the Zerilli-Armstrong model used to reproduce the mechanical behaviour of the investigated materials.

  4. Experimental investigation of the behaviour of tungsten and molybdenum alloys at high strain-rate and temperature

    CERN Document Server

    Scapin, Martina; Carra, Federico; Peroni, Lorenzo

    2015-01-01

    The introduction in recent years of new, extremely energetic particle accelerators such as the Large Hadron Collider (LHC) gives impulse to the development and testing of refractory metals and alloys based on molybdenum and tungsten to be used as structural materials. In this perspective, in this work the experimental results of a tests campaign on Inermet® IT180 and pure Molybdenum (sintered by two different producers) are presented. The investigation of the mechanical behaviour was performed in tension varying the strain-rates, the temperatures and both of them. Overall six orders of magnitude in strain-rate (between 10−3 and 103 s−1) were covered, starting from quasi-static up to high dynamic loading conditions. The high strain-rate tests were performed using a direct Hopkinson Bar setup. Both in quasi-static and high strain-rate conditions, the heating of the specimens was obtained with an induction coil system, controlled in feedback loop, based on measurements from thermocouples directly welded on...

  5. Effect of electrodeposition current density on the microstructure and magnetic properties of nickel-cobalt-molybdenum alloy powders

    Directory of Open Access Journals (Sweden)

    Pešić O.

    2014-01-01

    Full Text Available Nanostructured nickel-cobalt-molybdenum alloy powders were electrodeposited from an ammonium sulfate bath. The powders mostly consist of an amorphous phase and a very small amount of nanocrystals with an mean size of less than 3 nm. An increase in deposition current density increases the amorphous phase percentage, the density of chaotically distributed dislocations and internal microstrains in the powders, while decreasing the mean nanocrystal size. The temperature range over which the structural relaxation of the powders deposited at higher current densities occurs is shifted towards lower temperatures. A change in relative magnetic permeability during structural relaxation is higher in powders deposited at higher current densities. Powder crystallization takes place at temperatures above 700ºC. The formation of the stable crystal structure causes a decrease in relative magnetic permeability. [Projekat Ministarstva nauke Republike Srbije, br. 172057

  6. Determination of aluminium in molybdenum and tungsten metals, iron, steel and ferrous and non-ferrous alloys with pyrocatechol violet.

    Science.gov (United States)

    Donaldson, E M

    1971-09-01

    A method for determining 0.001-0.10% of aluminium in molybdenum and tungsten metals is described. After sample dissolution, aluminium is separated from the matrix materials by chloroform extraction of its acetylacetone complex, at pH 6.5, from an ammonium acetate-hydrogen peroxide medium, then back-extracted into 12M hydrochloric add. Following separation of most co-extracted elements, except for beryllium and small amounts of chroinium(III) and copper(II), by a combined ammonium pyrrolidincdithiocarbamate-cupfen-on-chlorofonn extraction, aluminium is determined spectrophotometrically with Pyrocatechol Violet at 578 nm. Chromium interferes during colour development but beryllium, in amounts equivalent to the aluminium concentration, does not cause significant error in the results. Interference from copper(II) is eliminated by reduction with ascorbic acid. The proposed method is also applicable to iron, steel, ferrovanadium, and copper-base alloys after preliminary removal of the matrix elements by a mercury cathode separation.

  7. Electrochemical studies and growth of apatite on molybdenum doped DLC coatings on titanium alloy β-21S

    Science.gov (United States)

    Anandan, C.; Mohan, L.; Babu, P. Dilli

    2014-03-01

    Titanium alloy β-21S (Ti-15Mo-3Nb-3Al-0.2Si) was coated with molybdenum doped DLC by Plasma-enhanced chemical vapor deposition and sputtering. XRD, XPS and Raman spectroscopy show that Mo is present in the form of carbide in the coating. XPS of samples immersed in Hanks' solution shows presence of calcium, phosphorous and oxygen in hydroxide/phosphate form on the substrate and Mo-doped DLC. Potentiodynamic polarization studies show that the corrosion resistance and passivation behavior of Mo-doped DLC is better than that of substrate. Electrochemical impedance spectroscopy (EIS) studies show that Mo-doped DLC samples behave like an ideal capacitor in Hanks' solution.

  8. Achieving tailorable magneto-caloric effect in the Gd-Co binary amorphous alloys

    Directory of Open Access Journals (Sweden)

    C. Wu

    2016-03-01

    Full Text Available Tailorable magnetic properties and magneto-caloric effect were achieved in the Gd-Co binary amorphous alloys. It was found that the Curie temperature (Tc of the GdxCo100-x (x=50, 53, 56, 58, 60 metallic glasses can be tuned by changing the concentration of Gd as Tc =708.8-8.83x, and the mechanism involved was investigated. On the other hand, a linear correlation between the peak value of magnetic entropy change (-Δ Smpeak and Tc-2/3 is found in the amorphous alloys with a linear correlation coefficients of above 0.992. Therefore, the -ΔSmpeak of the Gd-Co binary amorphous alloys under different magnetic fields can be easily tailored by adjusting the composition of the alloy.

  9. Thermodynamic parameters of the first order in low-concentration binary alloys

    Science.gov (United States)

    Bol'shov, L. A.; Korneichuk, S. K.

    2015-12-01

    Thermodynamic parameters of the first order (Wagner interaction parameter ɛ 2 (2) , enthalpy, and entropy parameter σ 2 (2) ) in low-concentration liquid binary alloys are considered. The values of these parameters for 32 binary systems are estimated from experimental data. A system of classification is proposed for the obtained data. These data are compared to similar data for aqueous solutions of nonelectrolytes. A qualitative explanation of the obtained differences is given.

  10. Preparation of NiFe binary alloy nanocrystals for nonvolatile memory applications

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this work,an idea which applies binary alloy nanocrystal floating gate to nonvolatile memory application was introduced.The relationship between binary alloy’s work function and its composition was discussed theoretically.A nanocrystal floating gate structure with NiFe nanocrystals embedded in SiO2 dielectric layers was fabricated by magnetron sputtering.The micro-structure and composition deviation of the prepared NiFe nanocrystals were also investigated by TEM and EDS.

  11. Effects of combined silicon and molybdenum alloying on the size and evolution of microalloy precipitates in HSLA steels containing niobium and titanium

    Energy Technology Data Exchange (ETDEWEB)

    Pavlina, Erik J., E-mail: e.pavlina@deakin.edu.au [Deakin University, Institute for Frontier Materials, 75 Pigdons Road, Waurn Ponds, Victoria (Australia); Van Tyne, C.J.; Speer, J.G. [Colorado School of Mines, Advanced Steel Processing and Products Research Center, 1500 Illinois Street, Golden, CO (United States)

    2015-04-15

    The effects of combined silicon and molybdenum alloying additions on microalloy precipitate formation in austenite after single- and double-step deformations below the austenite no-recrystallization temperature were examined in high-strength low-alloy (HSLA) steels microalloyed with titanium and niobium. The precipitation sequence in austenite was evaluated following an interrupted thermomechanical processing simulation using transmission electron microscopy. Large (~ 105 nm), cuboidal titanium-rich nitride precipitates showed no evolution in size during reheating and simulated thermomechanical processing. The average size and size distribution of these precipitates were also not affected by the combined silicon and molybdenum additions or by deformation. Relatively fine (< 20 nm), irregular-shaped niobium-rich carbonitride precipitates formed in austenite during isothermal holding at 1173 K. Based upon analysis that incorporated precipitate growth and coarsening models, the combined silicon and molybdenum additions were considered to increase the diffusivity of niobium in austenite by over 30% and result in coarser precipitates at 1173 K compared to the lower alloyed steel. Deformation decreased the size of the niobium-rich carbonitride precipitates that formed in austenite. - Highlights: • We examine combined Si and Mo additions on microalloy precipitation in austenite. • Precipitate size tends to decrease with increasing deformation steps. • Combined Si and Mo alloying additions increase the diffusivity of Nb in austenite.

  12. Peculiarities of high-temperature. beta. -phase formation during rapid heating of titanium-molybdenum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gridnev, V.N.; Zhuravlev, A.F.; Zhuravlev, B.F.; Ivasishin, O.M.; Oshkaderov, S.P. (AN Ukrainskoj SSR, Kiev. Inst. Metallofiziki)

    1983-11-01

    In the framework of the diffusion mechanism of ..cap alpha..+..beta.. ..-->.. ..beta.. transformation the model for calculating interface location determining the degree of transformation and concentration of the formed ..beta..-phase during continuous heating under different rates in titanium alloys with ..beta..-isomorphous alloying elements is suggested. On the example of Ti-10% Mo alloy the comparison of calculation and experimental results of determining parameters of ..cap alpha..+..beta.. ..-->.. ..beta.. transformation is performed.

  13. Thermal conductivity of disordered two-dimensional binary alloys.

    Science.gov (United States)

    Zhou, Yang; Guo, Zhi-Xin; Cao, Hai-Yuan; Chen, Shi-You; Xiang, Hong-Jun; Gong, Xin-Gao

    2016-10-20

    Using non-equilibrium molecular dynamics simulations, we have studied the effect of disorder on the thermal conductivity of two-dimensional (2D) C1-xNx alloys. We find that the thermal conductivity not only depends on the substitution concentration of nitrogen, but also strongly depends on the disorder distribution. A general linear relationship is revealed between the thermal conductivity and the participation ratio of phonons in 2D alloys. Localization mode analysis further indicates that the thermal conductivity variation in the ordered alloys can be attributed to the number of inequivalent atoms. As for the disordered alloys, we find that the thermal conductivity variation can be described by a simple linear formula with the disorder degree and the substitution concentration. The present study suggests some general guidance for phonon manipulation and thermal engineering in low dimensional alloys.

  14. Numerical simulation on rapid melting and nonequilibrium solidification of pure metals and binary alloys

    Institute of Scientific and Technical Information of China (English)

    惠希东; 陈国良; 杨院生; 胡壮麒

    2002-01-01

    A heat and mass transfer modelling containing phase transformation dynamics is made for pure metals and binary alloys under pulsed laser processing. The nonequilibrium effects of processing parameters and physical properties are evaluated on the melting and solidification of pure metals (Al, Cu, Fe and Ni) and Al-Cu alloys. It is shown that the energy intensity of laser beam and physical properties of metals and the solute concentration of alloys have important effect on the interface temperature, melting and solidification velocity, melting depth and non-equilibrium partition coefficient. This situation is resulted from the interaction of heat transfer, redistribution of solute, solute trapping and growth kinetics.

  15. Screening on binary Ti alloy with excellent mechanical property and castability for dental prosthesis application

    Science.gov (United States)

    Li, H. F.; Qiu, K. J.; Yuan, W.; Zhou, F. Y.; Wang, B. L.; Li, L.; Zheng, Y. F.; Liu, Y. H.

    2016-11-01

    In the present study, the microstructure, mechanical property, castability, corrosion behavior and in vitro cytocompatibility of binary Ti-2X alloys with various alloying elements, including Ag, Bi, Ga, Ge, Hf, In, Mo, Nb, Sn and Zr, were systematically investigated, in order to assess their potential applications in dental field. The experimental results showed that all binary Ti‒2X alloys consisted entirely α-Ti phase. The tensile strength and microhardness of Ti were improved by adding alloying elements. The castability of Ti was significantly improved by separately adding 2 wt.% Bi, Ga, Hf, Mo, Nb, Sn and Zr. The corrosion resistance of Ti in both normal artificial saliva solution (AS) and extreme artificial saliva solution (ASFL, AS with 0.2 wt.% NaF and 0.3 wt.% lactic acid) has been improved by separately adding alloying elements. In addition, the extracts of studied Ti‒2X alloys produced no significant deleterious effect to both fibroblasts L929 cells and osteoblast-like MG63 cells, indicating a good in vitro cytocompatibility, at the same level as pure Ti. The combination of enhanced mechanical properties, castability, corrosion behavior, and in vitro cytocompatibility make the developed Ti‒2X alloys have great potential for future stomatological applications.

  16. Mechanical properties of 50Molybdenum-50Rhenium alloys and their assembly by spinal muscular atrophy

    Science.gov (United States)

    Xu, Jianhui

    This study is concerned with the deformation and fracture behaviors, especially strain-rate effect on plasticity in tensile tests, of two 50Mo-50Re alloys at strain rates ranging from 10-6 s-1 to 1 s-1 at room temperature in air. Metallographic observations of the 50Mo-50Re alloys before and after tensile deformation were conducted to understand the relationships among mechanical properties, microstructure and strain rate in these alloys. Understanding the strain-rate effect on mechanical properties of 50Mo-50Re alloys is important for optimizing forming operations, especially sheet forming, of these alloys, which are often used in cathode and aerospace applications. An anomalous strain-rate effect on ductility was observed in the 50Mo-50Re alloys. Ductility was significantly increased by increasing the strain rate from 10-6 s-1 to 1 s-1 in the fully-recrystallized and recovery heat-treated 50Mo-50Re alloys in tension at room temperature. At a low strain rate, fracture was predominantly brittle, while it was more ductile at higher stain rates. At a low strain rate, secondary cracks initiated at grain boundaries and triple junctions were observed in these alloys, which suggested that significant stress concentration was generated by tensile plastic deformation in the vicinity of grain boundaries, especially triple junctions. Electron backscatter diffraction experiments revealed that there was strain concentration at grain boundaries and their triple junctions during tensile deformation in these alloys. The decrease in ductility at low strain rates in the alloys was related to the possible interaction between dislocations and trace interstitial atoms (e.g., H, O, N and C) picked up during production of these alloys. This dissertation also reports the research efforts made to optimize small-scale resistance spot welding (SSRSW) of refractory alloy 50Mo-50Re thin sheet by adjusting seven important welding parameters, including hold time, electrode material, electrode

  17. Compositional effects on mechanical properties of hafnium-carbide-strengthened molybdenum alloys

    Science.gov (United States)

    Witzke, W. R.

    1975-01-01

    The mechanical properties of swaged rod thermomechanically processed from arc melted Mo-2Re-Hf-C alloys containing as much as 0.9-mol% HfC were evaluated. The low-temperature ductilities of these alloys were not influenced by the amount of HfC present but by the amount of Hf in excess of stoichiometry. Maximum ductility occurred at 0.2- to 0.3-at.% excess Hf. At 0.3- to 0.5-mol% HfC, alloy strength varied directly with the Mo content of extracted carbide particles, both decreasing as the amount of excess Hf increased. Additions of 2-at.% Re had little effect on strength or ductility. Tensile and creep strengths of Mo-2Re-0.7Hf-0.5C alloy equaled or exceeded those of other high strength Mo alloys.

  18. Microstructure and corrosion behavior of binary titanium alloys with beta-stabilizing elements.

    Science.gov (United States)

    Takada, Y; Nakajima, H; Okuno, O; Okabe, T

    2001-03-01

    Binary titanium alloys with the beta-stabilizing elements of Co, Cr, Cu, Fe, Mn and Pd (up to 30%) and Ag (up to 45%) were examined through metallographic observation and X-ray diffractometry to determine whether beta phases that are advantageous for dental use could be retained. Corrosion behavior was also investigated electrochemically and discussed thermodynamically. Some cast alloys with Co, Cr, Fe, Mn, and Pd retained the beta phase, whereas those with Ag and Cu had no beta phase. In some alloys, an intermetallic compound formed, based on information from the phase diagram. The corrosion resistance deteriorated in the TiAg alloys because Ti2Ag and/or TiAg intermetallic compounds preferentially dissolved in 0.9% NaCl solution. On the other hand, the remaining titanium alloys became easily passive and revealed good corrosion resistance similar to pure titanium since their matrices seemed to thermodynamically form titanium oxides as did pure titanium.

  19. PREDICTION OF THE MIXING ENTHALPIES OF BINARY LIQUID ALLOYS BY MOLECULAR INTERACTION VOLUME MODEL

    Institute of Scientific and Technical Information of China (English)

    H.W.Yang; D.P.Tao; Z.H.Zhou

    2008-01-01

    The mixing enthalpies of 23 binary liquid alloys are calculated by molecular interaction volume model (MIVM), which is a two-parameter model with the partial molar infinite dilute mixing enthalpies. The predicted values are in agreement with the experimental data and then indicate that the model is reliable and convenient.

  20. Electrochemical Behaviors of Binary Ti-Zr Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Oh, M. Y.; Kim, W. G.; Choe, H. C.; Ko, Y. M. [Chosun University, Gwnagju (Korea, Republic of)

    2009-04-15

    Pure Ti as well as Ti-6Al-4V alloy exhibit excellent properties for dental implant applications. However, for a better biocompatibility it seems important to avoid in the composition the presence of V due to the toxic effects of V ion release. Thus Al and V free and composed of non-toxic element such as Nb, Zr alloys as biomaterials have been developed. Especially, Zr contains to same family in periodic table as Ti. The addition of Zr to Ti alloy has an excellent mechanical properties, good corrosion resistance, and biocompatibility. In this study, the electrochemical characteristics of Ti-Zr alloys for biomaterials have been investigated using by electrochemical methods. Methods: Ti-Zr(10, 20, 30 and 40 wt%) alloys were prepared by are melting and homogenized for 24 hr at 1000 .deg. C in argon atmosphere. Phase constitutions and microstructure of the specimens were characterized by XRD, OM and SEM. The corrosion properties of the specimens were examined through potentiodynamic test (potential range of - 1500 {approx} 2000 mV), potentiostatic test (const, potential of 300 mV) in artificial saliva solution by potentiostat (EG and G Co, PARSTAT 2273. USA)

  1. Obtention of uranium-molybdenum alloy ingots technique to avoid carbon contamination

    Energy Technology Data Exchange (ETDEWEB)

    Pedrosa, Tercio A.; Paula, Joao Bosco de; Reis, Sergio C.; Brina, Jose Giovanni M.; Faeda, Kelly Cristina M.; Ferraz, Wilmar B., E-mail: tap@cdtn.b, E-mail: jbp@cdtn.b, E-mail: jgmb@cdtn.b, E-mail: ferrazw@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The replacement of high enriched uranium (U{sup 235} > 85 wt%) by low enriched uranium (U{sup 235} < 20wt%) nuclear fuels in research and test reactors is being implemented as an initiative of the Reduced Enrichment for Research and Test Reactors (RERTR) program, conceived in the USA since mid-70s, in order to avoid nuclear weapons proliferation. Such replacement implies in the use of compounds or alloys with higher uranium densities. Among the several uranium alloys investigated since then, U-Mo presents great application potential due to its physical properties and good behavior during irradiation, which makes it an important option as a nuclear fuel material for the Brazilian Multipurpose Reactor - RMB. The development of the plate-type nuclear fuel based on U-Mo alloy is being performed at the Nuclear Technology Development Centre (CDTN) and also at IPEN. The carbon contamination of the alloy is one of the great concerns during the melting process. It was observed that U-Mo alloy is more critical considering carbon contamination when using graphite crucibles. Alternative melting technique was implemented at CDTN in order to avoid carbon contamination from graphite crucible using Yttria stabilized ZrO{sub 2} crucibles. Ingots with low carbon content and good internal quality were obtained. (author)

  2. Phonon dispersion in alkali metals and their equiatomic sodium-based binary alloys

    Institute of Scientific and Technical Information of China (English)

    Aditya M. VORA

    2008-01-01

    In the present article, the theoretical calcula-tions of the phonon dispersion curves (PDCs) of five alkali metals viz. Li, Na, K, Rb, Cs and their four equia-tomic sodium-based binary alloys viz. Na0.5Li0.5,Na0.5K0.5, Na0.5Rb0.5 and Na0.5Cs0.5 to second order in a local model potential is discussed in terms of the real-space sum of the Born yon Karman central force con-stants. Instead of the concentration average of the force constants of pure alkali metals, the pseudo-alloy-atom (PAA) is adopted to directly compute the force constants of the four equiatomic sodium based binary alloys and was successfully applied. The exchange and correlation functions due to the Hartree (H) and Ichimaru-Utsumi (IU) are used to investigate the influence of the screening effects. The phonon frequencies of alkali metals and their four equiatomic sodium-based binary alloys in the longit-udinal branch are more sensitive to the exchange and cor-relation effects in comparison with the transverse branches. The PDCs of pure alkali metals are found in qualitative agreement with the available experimental data. The frequencies in the longitudinal branch are sup-pressed rather due to IU-screening function than those due to static H-screening function.

  3. Prediction of Hydrogen Flux Through Sulfur-Tolerant Binary Alloy Membranes

    Science.gov (United States)

    Kamakoti, Preeti; Morreale, Bryan D.; Ciocco, Michael V.; Howard, Bret H.; Killmeyer, Richard P.; Cugini, Anthony V.; Sholl, David S.

    2005-01-01

    Metal membranes play a vital role in hydrogen purification. Defect-free membranes can exhibit effectively infinite selectivity but must also provide high fluxes, resistance to poisoning, long operational lifetimes, and low cost. Alloying offers one route to improve on membranes based on pure metals such as palladium. We show how ab initio calculations and coarse-grained modeling can accurately predict hydrogen fluxes through binary alloy membranes as functions of alloy composition, temperature, and pressure. Our approach, which requires no experimental input apart from knowledge of bulk crystal structures, is demonstrated for palladium-copper alloys, which show nontrivial behavior due to the existence of face-centered cubic and body-centered cubic crystal structures and have the potential to resist sulfur poisoning. The accuracy of our approach is examined by a comparison with extensive experiments using thick foils at elevated temperatures. Our experiments also demonstrate the ability of these membranes to resist poisoning by hydrogen sulfide.

  4. Structure and properties of sintered titanium alloyed with aluminium, molybdenum and oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Anokhin, V.M.; Petrunko, A.N. [State Research and Design Titanium Institute, Zaporozhye (Ukraine); Ivasishin, O.M. [Institute for Metal Physics, National Academy of Sciences of Ukraine, 36 Vernadsky St, 142 Kiev (Ukraine)

    1998-03-15

    Titanium alloys of Ti-Al-Mo-O system were manufactured by blended elemental powder method using Ti, Al, Mo and TiO{sub 2} powders as starting materials. It was found that cold compaction pressure of 800 MPa followed by sintering at 1150-1200 C, for 4 h provided sufficient densification of titanium materials. Complete dissolution of alloying elements in the titanium matrix resulted in a good combination of mechanical properties. Examples of alloys chosen for possible application were Ti-(1.5-2.0)%Mo-0.7%TiO{sub 2} and Ti-2%Al-2%Mo. The latter has already been tried for manufacturing parts in automotive industry. (orig.) 3 refs.

  5. Survey of degradation modes of four nickel-chromium-molybdenum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gdowski, G.E. [KMI Energy Services, Livermore, CA (United States)

    1991-03-01

    This report examines the degradation modes of four Ni-Cr-Mo alloys under conditions relevant to the Yucca Mountain Site Characterization Project (YMP). The materials considered are Alloys C-276, C-4, C-22, and 625 because they have desirable characteristics for the conceptual design (CD) of the high-level radioactive-waste containers presented in the YMP Site Characterization Plan (SCP). The types of degradation covered in this report are general corrosion; localized corrosion, including pitting and crevice corrosion; stress corrosion cracking in chloride environments; hydrogen embrittlement (HE); and undesirable phase transformations due to a lack of phase stability. Topics not specifically addressed are welding concerns and microbiological corrosion. The four Ni-Cr-Mo alloys have excellent corrosion resistance in chloride environments such as seawater as well as in more aggressive environments. They have significantly better corrosion resistance than the six materials considered for the CD waste container in the YMP SCP. (Those six materials are Types 304L and 3161L stainless steels, Alloy 825, unalloyed copper, Cu(70)-Ni(30), and 7% aluminum bronze.) In seawater, the Ni-Cr-Mo alloys have negligible general corrosion rates and show little evidence of localized corrosion. The four base materials of these alloys are expected to have nearly indistinguishable corrosion resistance in the YMP environments. The strength requirements of the SCP-CD waste container are met by these materials in the annealed condition; in this condition, they are highly resistant to HE. Historically, HE has been noted when these materials have been strengthened (cold-worked) and used in sour gas (H{sub 2}S and CO{sub 2}) well service -- conditions that are not expected for the YMP. Metallurgical phase stability may be a concern under conditions favoring (1) the formation of intermetallics and carbides, and (2) microstructural ordering.

  6. Development and properties of Ti-In binary alloys as dental biomaterials.

    Science.gov (United States)

    Wang, Q Y; Wang, Y B; Lin, J P; Zheng, Y F

    2013-04-01

    The objective of this study is to investigate the effect of alloying element indium on the microstructure, mechanical properties, corrosion behavior and in vitro cytotoxicity of Ti-In binary alloys, with the addition of 1, 5, 10 and 15 at.% indium. The phase constitution was studied by optical microscopic observation and X-ray diffraction measurements. The mechanical properties were characterized by tension and microhardness tests. Potentiodynamic polarization measurements were employed to investigate the corrosion behavior in artificial saliva solutions with and without fluoride. In vitro cytotoxicity was conducted by using L929 and NIH 3T3 mouse fibroblast cell lines, with commercially pure Ti (CP-Ti, ASTM grade 2) as negative control. All of the binary Ti-In alloys investigated in this work were found to have higher strength and microhardness than CP-Ti. Electrochemical results showed that Ti-In alloys exhibited the same order of magnitude of passivation current densities with CP-Ti in artificial saliva solutions. With the presence of NaF, Ti-10In and Ti-15In showed transpassive behavior and lower current densities at high potentials. All experimental Ti-In alloys showed good cytocompatibility, at the same level as CP-Ti. The addition of indium to titanium was effective on increasing the strength and microhardness, without impairing its good corrosion resistance and cytocompatibility.

  7. Embedded binary eutectic alloy nanostructures: a new class of phase change materials.

    Science.gov (United States)

    Shin, S J; Guzman, J; Yuan, C-W; Liao, Christopher Y; Boswell-Koller, Cosima N; Stone, P R; Dubon, O D; Minor, A M; Watanabe, Masashi; Beeman, Jeffrey W; Yu, K M; Ager, J W; Chrzan, D C; Haller, E E

    2010-08-11

    Phase change materials are essential to a number of technologies ranging from optical data storage to energy storage and transport applications. This widespread interest has given rise to a substantial effort to develop bulk phase change materials well suited for desired applications. Here, we suggest a novel and complementary approach, the use of binary eutectic alloy nanoparticles embedded within a matrix. Using GeSn nanoparticles embedded in silica as an example, we establish that the presence of a nanoparticle/matrix interface enables one to stabilize both nanobicrystal and homogeneous alloy morphologies. Further, the kinetics of switching between the two morphologies can be tuned simply by altering the composition.

  8. Special quasirandom structures for binary/ternary group IV random alloys

    KAUST Repository

    Chroneos, Alexander I.

    2010-06-01

    Simulation of defect interactions in binary/ternary group IV semiconductor alloys at the density functional theory level is difficult due to the random distribution of the constituent atoms. The special quasirandom structures approach is a computationally efficient way to describe the random nature. We systematically study the efficacy of the methodology and generate a number of special quasirandom cells for future use. In order to demonstrate the applicability of the technique, the electronic structures of E centers in Si1-xGex and Si1-x -yGexSny alloys are discussed for a range of nearest neighbor environments. © 2010 Elsevier B.V. All rights reserved.

  9. Crossover scaling of wavelength selection in directional solidification of binary alloys.

    Science.gov (United States)

    Greenwood, Michael; Haataja, Mikko; Provatas, And Nikolas

    2004-12-10

    We simulate cellular and dendritic growth in directional solidification in dilute binary alloys using a phase-field model solved with adaptive-mesh refinement. The spacing of primary branches is examined for a wide range of thermal gradients and alloy compositions and is found to undergo a maximum as a function of pulling velocity, in agreement with experimental observations. We demonstrate that wavelength selection is unambiguously described by a nontrivial crossover scaling function from the emergence of cellular growth to the onset of dendritic fingers. This result is further validated using published experimental data, which obeys the same scaling function.

  10. Phase-field simulations of solidification of AI-Cu binary alloys

    Institute of Scientific and Technical Information of China (English)

    龙文元; 蔡启舟; 陈立亮; 魏伯康

    2004-01-01

    The dendrite growth process during the solidification of the Al-4.5 %Cu binary alloy was simulated using the phase-field model, proposed by Kim et al. Solute diffusion equation and heat transfer equation were solved simultaneously. The effects of the noise on the dendrite growth, solute and temperature profile in the undercooled alloy melt were investigated. The results indicate that the noise can trigger the growth of the secondary arms, and increase the highest temperature and solute concentration, but not influence the tip operating state. The solute and temperature gradients in the tip are the highest.

  11. Solid state amorphisation in binary systems prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, G., E-mail: gemagonz@ivic.v [Lab. Ciencia e Ing. de Materiales, Instituto Venezolano de Investigaciones Cientificas, IVIC, Caracas (Venezuela, Bolivarian Republic of); Sagarzazu, A. [Lab. Ciencia e Ing. de Materiales, Instituto Venezolano de Investigaciones Cientificas, IVIC, Caracas (Venezuela, Bolivarian Republic of); Bonyuet, D. [Instituto de Investigacion en Biomedicina y Ciencias Aplicadas, Universidad de Oriente, Cumana (Venezuela, Bolivarian Republic of); D' Angelo, L. [UNEXPO, Universidad Experimental Politecnica Luis Caballero Mejias, Dpto. Ing. Mecanica (Venezuela, Bolivarian Republic of); Villalba, R. [Lab. Ciencia e Ing. de Materiales, Instituto Venezolano de Investigaciones Cientificas, IVIC, Caracas (Venezuela, Bolivarian Republic of)

    2009-08-26

    In the present work a detailed study of amorphisation in different systems prepared by mechanical alloying under the same experimental conditions was carried out, milling up to 50 and 100 h in some cases. The systems studied were: AlTi, AlNi, AlFe, FeNi, FeCo, NiMo, NiW, NiCo, MoW, CoMo. These systems were chosen to study the effect of Al-transition metal, transition metal-transition metal and also systems with large and small negative heat of mixing, different and similar crystal structures, atomic sizes and diffusion coefficients. Calculations based on the Miedema model for alloy formation and amorphisation on all the alloys studied were performed. The experimental results from X-ray diffraction and transmission electron microscopy showed that the systems based on Fe (FeNi, FeCo and FeAl) did not amorphised, even after milling for 100 h, and formed a stable solid solution with a nanometric grain size of 7 nm. The systems NiMo, NiW, MoW and CoMo (systems with small negative heat of mixing), showed amorphisation after 50 h of milling. NiAl and TiAl form an intermediate amorphous phase after around 20 h of milling and with further milling they recrystallize into a fcc solid solution. Agreement between the theoretical calculations based on the Miedema model and the experimental results was found in most of the systems.

  12. Phase-field simulation of dendritic growth in a binary alloy with thermodynamics data

    Institute of Scientific and Technical Information of China (English)

    Long Wen-Yuan; Xia Chun; Xiong Bo-Wen; Fang Li-Gao

    2008-01-01

    This paper simulates the dendrite growth process during non-isothermal solidification in the A1-Cu binary alloy by using the phase-field model. The heat transfer equation is solved simultaneously. The thermodynamic and kinetic parameters are directly obtained from existing database by using the Calculation of Phase Diagram (CALPHAD)method. The effects of the latent heat and undercooling on the dendrite growth, solute and temperature profile during the solidification of binary alloy are investigated. The results indicate that the dendrite growing morphologies could be simulated realistically by linking the phase-field method to CALPHAD. The secondary arms of solidification dendritic are better developed with the increase of undercooling. Correspondingly, the tip speed and the solute segregation in solid-liquid interface increase, but the tip radius decreases.

  13. Correlation between liquid structure and glass forming ability in glassy Ag-based binary alloys

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The atomic structures of liquid Ag-based binary alloys have been investigated in the solidification process by means of X-ray diffraction. The results of liquid structure show that there is a break point in the mean nearest neighbor distance r1 and the coordination number Nmin for glass-forming liquid, while the correlation radius rc and the coordination number Nmin display a monotone variational trend above the break point. It means glass-forming liquids have a steady changing in structure above liquidus and more inhomogeneous state at liquidus. We conclude that there is a strong correlation between liquid structure and glass forming ability in Ag-based binary alloys.

  14. Development and properties of Ti–In binary alloys as dental biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q.Y. [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Wang, Y.B. [Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Lin, J.P. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Zheng, Y.F., E-mail: yfzheng@pku.edu.cn [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China)

    2013-04-01

    The objective of this study is to investigate the effect of alloying element indium on the microstructure, mechanical properties, corrosion behavior and in vitro cytotoxicity of Ti–In binary alloys, with the addition of 1, 5, 10 and 15 at.% indium. The phase constitution was studied by optical microscopic observation and X-ray diffraction measurements. The mechanical properties were characterized by tension and microhardness tests. Potentiodynamic polarization measurements were employed to investigate the corrosion behavior in artificial saliva solutions with and without fluoride. In vitro cytotoxicity was conducted by using L929 and NIH 3T3 mouse fibroblast cell lines, with commercially pure Ti (CP–Ti, ASTM grade 2) as negative control. All of the binary Ti–In alloys investigated in this work were found to have higher strength and microhardness than CP–Ti. Electrochemical results showed that Ti–In alloys exhibited the same order of magnitude of passivation current densities with CP–Ti in artificial saliva solutions. With the presence of NaF, Ti–10In and Ti–15In showed transpassive behavior and lower current densities at high potentials. All experimental Ti–In alloys showed good cytocompatibility, at the same level as CP–Ti. The addition of indium to titanium was effective on increasing the strength and microhardness, without impairing its good corrosion resistance and cytocompatibility. - Highlights: ► The addition of In into Ti can increase the mechanical property. ► Ti-In alloys exhibited similar passivation behavior with CP-Ti. ► Ti-In alloys had good cytocompatibility comparable with CP-Ti. ► Ti-10In and Ti-15In showed transpassive baheviour with the addition of NaF.

  15. Obtention of uranium-molybdenum alloy ingots microstructure and phase characterization

    Energy Technology Data Exchange (ETDEWEB)

    Pedrosa, Tercio A.; Braga, Daniel M.; Paula, Joao Bosco de; Brina, Jose Giovanni M.; Ferraz, Wilmar B., E-mail: tap@cdtn.b, E-mail: bragadm@cdtn.b, E-mail: jbp@cdtn.b, E-mail: jgmb@cdtn.b, E-mail: ferrazw@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The replacement of high enriched uranium (U-{sup 235} > 85 wt%) by low enriched uranium (U-{sup 235} < 20 wt%) nuclear fuels in research and test reactors is being implemented as an initiative of the Reduced Enrichment for Research and Test Reactors (RERTR) program, conceived in the USA since mid-70s, in order to avoid nuclear weapons proliferation. Such replacement implies in the use of compounds or alloys with higher uranium densities. Several uranium alloys that fill this requirement has been investigated since then. Among these alloys, U-Mo presents great application potential due to its physical properties and good behavior during irradiation, which makes it an important option as a nuclear fuel material for the Brazilian Multipurpose Reactor - RMB. The development of the plate-type nuclear fuel based on U-Mo alloys is being performed at the Nuclear Technology Development Centre (CDTN) and also at the Institute of Energetic and Nuclear Research - IPEN. U-{sup 10}Mo ingots were melted in an induction furnace with protective argon atmosphere. The microstructure of the ingots were characterized through optical and scanning electronic microscopy in the as cast and heat treated conditions. Energy Dispersive Spectrometry and X-Ray Diffraction were used as characterization techniques for elemental analysis and phases determination. It was confirmed the presence of metastable gamma-phase in the as cast condition, surrounded by hypereutectoid alpha-phase (uranium-rich phase), as well as a pearlite-like constituent, composed by alternated lamellas of U{sub 2}Mo compound and alpha-phase, in the heat treated condition. (author)

  16. Thermodynamic analysis of the change of solid solubility in a binary system processed by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, C. [Instituto de Materiales y Procesos Termomecanicos, Facultad de Ciencias de la Ingenieria, Universidad Austral de Chile, Av. General Lagos 2086, Valdivia (Chile)], E-mail: ceaguilar@uach.cl; Martinez, V. [TEKMETALL, Metallurgical Solutions S.L., Po de Manuel Lardizabal No17, 20018 Donostia-Gipuzkoa (Spain); Navea, L.; Pavez, O.; Santander, M. [Departamento de Metalurgia, Facultad de Ingenieria, Universidad de Atacama, Av. Copayapu 485, Copiapo (Chile)

    2009-03-05

    Using a non-equilibrium process, it is possible to extend the solid solubility range in metallic systems. Therefore, the main objective of this work was to apply a thermodynamic model to predict the change in the solubility limit of systems with positive enthalpy mixing (Cu-Cr and Fe-Cu) processed by mechanical alloying. It was found that increasing the density of crystalline defects alters the solubility limit in these binary systems.

  17. Three-dimensional simulations of phase separation in model binary alloy systems with elasticity

    Energy Technology Data Exchange (ETDEWEB)

    Orlikowski, D.; Roland, C. [North Carolina State Univ., Raleigh, NC (United States); Sagui, C. [McGill Univ., Montreal, Quebec (Canada). Dept. of Physics; Somoza, A.S. [Univ. de Murcia (Spain). Dept. de Fisica

    1998-12-31

    The authors report on large-scale three-dimensional simulations of phase separation in model binary alloy systems in the presence of elastic fields. The elastic field has several important effects on the morphology of the system: the ordered domains are subject to shape transformations, and spatial ordering. In contrast to two-dimensional system, no significant slowing down in the growth is observed. There is also no evidence of any reverse coarsening of the domains.

  18. Nonlinear equations on controlling interface patterns during solidification of a dilute binary alloy

    Institute of Scientific and Technical Information of China (English)

    王自东; 周永利; 常国威; 胡汉起

    1999-01-01

    In nonequilibrium nonlinear region, by assuming that there is local equilibrium at the solid/liquid interface, and considering that curvature, temperature and composition at the solid/liquid interface which are related to perturbation amplitude are nonlinear, nonlinear equations of the time dependence of the perturbation amplitude of the solid/liquid interface during solidification of a dilute binary alloy are established. Crystal growth from nonsteady state to steady state can be controlled by these nonlinear equations.

  19. Gallium suboxide vapor attack on chromium, cobalt, molybdenum, tungsten and their alloys at 1200 [degrees] C

    Energy Technology Data Exchange (ETDEWEB)

    Kolman, D. G. (David G.); Taylor, T. N. (Thomas N.); Park, Y. (Youngsoo); Stan, M. (Marius); Butt, D. P. (Darryl P.); Maggiore, C. J. (Carl J.); Tesmer, Joseph R.; Havrilla, G. J. (George J.)

    2004-01-01

    Our prior work elucidated the failure mechanism of furnace materi als (304 SS, 316 SS, and Hastelloy C-276) exposed to gallium suboxide (Ga{sub 2}O) and/or gallium oxide (Ga{sub 2}O{sub 3}) during plutonium - gallium compound processing. Failure was hypothesized to result from concurrent alloy oxidation/Ga compound reduction followed by Ga uptake. The aim of the current work is to screen candidate replacement materials. Alloys Haynes 25 (49 Co - 20 Cr - 15 W - 10 Ni - 3 Fe - 2 Mn - 0.4 Si, wt%), 52 Mo - 48 Re (wt%), 62 W - 38 Cu (wt%), and commercially pure Cr, Co, Mo, W, and alumina were examined. Preliminary assessments of commercially pure W and Mo - Re suggest that these materials may be suitable for furnace construction. Thermodynamics calculations indicating that materials containing Al, Cr, Mn, Si, and V would be susceptible to oxidation in the presence of Ga{sub 2}O were validated by experimental results. In contrast to that reported previously, an alternate reaction mechanism for Ga uptake, which does not require concurrent alloy oxidation, controls Ga uptake for certain materials. A correlation between Ga solubility and uptake was noted.

  20. Disjoining potential and grain boundary premelting in binary alloys

    Science.gov (United States)

    Hickman, J.; Mishin, Y.

    2016-06-01

    Many grain boundaries (GBs) in crystalline materials develop highly disordered, liquidlike structures at high temperatures. In alloys, this premelting effect can be fueled by solute segregation and can occur at lower temperatures than in single-component systems. A premelted GB can be modeled by a thin liquid layer located between two solid-liquid interfaces interacting by a disjoining potential. We propose a single analytical form of the disjoining potential describing repulsive, attractive, and intermediate interactions. The potential predicts a variety of premelting scenarios, including thin-to-thick phase transitions. The potential is verified by atomistic computer simulations of premelting in three different GBs in Cu-Ag alloys employing a Monte Carlo technique with an embedded atom potential. The disjoining potential has been extracted from the simulations by analyzing GB width fluctuations. The simulations confirm all shapes of the disjoining potential predicted by the analytical model. One of the GBs was found to switch back and forth between two (thin and thick) states, confirming the existence of thin-to-thick phase transformations in this system. The proposed disjoining potential also predicts the possibility of a cascade of thin-to-thick transitions caused by compositional oscillations (patterning) near solid-liquid interfaces.

  1. Short-range order and its effect on the electronic structure of binary alloys: CuZn - a case study

    Indian Academy of Sciences (India)

    Abhijit Mookerjee; Kartick Tarafder; Atisdipankar Chakrabarti; Kamal Krishna Saha

    2008-02-01

    We discuss an application of the generalized augmented space method introduced by one of us combined with the recursion method of Haydock et al (GASR) to the study of electronic structure and optical properties of random binary alloys. As an example, we have taken the 50-50 CuZn alloy, where neutron scattering indicates the existence of short-range order.

  2. Corrosion resistance of stainless steel, nickel-titanium, titanium molybdenum alloy, and ion-implanted titanium molybdenum alloy archwires in acidic fluoride-containing artificial saliva: An in vitro study

    Directory of Open Access Journals (Sweden)

    Venith Jojee Pulikkottil

    2016-01-01

    Full Text Available Objective: (1 To evaluate the corrosion resistance of four different orthodontic archwires and to determine the effect of 0.5% NaF (simulating high fluoride-containing toothpaste of about 2250 ppm on corrosion resistance of these archwires. (2 To assess whether surface roughness (Ra is the primary factor influencing the corrosion resistance of these archwires. Materials and Methods: Four different archwires (stainless steel [SS], nickel-titanium [NiTi], titanium molybdenum alloy [TMA], and ion-implanted TMA were considered for this study. Surface characteristics were analyzed using scanning electron microscopy, atomic force microscopy (AFM, and energy dispersive spectroscopy. Linear polarization test, a fast electrochemical technique, was used to evaluate the corrosion resistance, in terms of polarization resistance of four different archwires in artificial saliva with NaF concentrations of 0% and 0.5%. Statistical analysis was performed by one-way analysis of variance. Results: The potentiostatic study reveals that the corrosion resistance of low-friction TMA (L-TMA > TMA > NiTi > SS. AFM analysis showed the surface Ra of TMA > NiTi > L-TMA > SS. This indicates that the chemical composition of the wire is the primary influential factor to have high corrosion resistance and surface Ra is only secondary. The corrosion resistance of all wires had reduced significantly in 0.5% acidic fluoride-containing artificial saliva due to formation of fluoride complex compound. Conclusion: The presence of 0.5% NaF in artificial saliva was detrimental to the corrosion resistance of the orthodontic archwires. Therefore, complete removal of residual high-fluorinated toothpastes from the crevice between archwire and bracket during tooth brushing is mandatory.

  3. Corrosion resistance of stainless steel, nickel-titanium, titanium molybdenum alloy, and ion-implanted titanium molybdenum alloy archwires in acidic fluoride-containing artificial saliva: An in vitro study

    Science.gov (United States)

    Pulikkottil, Venith Jojee; Chidambaram, S.; Bejoy, P. U.; Femin, P. K.; Paul, Parson; Rishad, Mohamed

    2016-01-01

    Objective: (1) To evaluate the corrosion resistance of four different orthodontic archwires and to determine the effect of 0.5% NaF (simulating high fluoride-containing toothpaste of about 2250 ppm) on corrosion resistance of these archwires. (2) To assess whether surface roughness (Ra) is the primary factor influencing the corrosion resistance of these archwires. Materials and Methods: Four different archwires (stainless steel [SS], nickel-titanium [NiTi], titanium molybdenum alloy [TMA], and ion-implanted TMA) were considered for this study. Surface characteristics were analyzed using scanning electron microscopy, atomic force microscopy (AFM), and energy dispersive spectroscopy. Linear polarization test, a fast electrochemical technique, was used to evaluate the corrosion resistance, in terms of polarization resistance of four different archwires in artificial saliva with NaF concentrations of 0% and 0.5%. Statistical analysis was performed by one-way analysis of variance. Results: The potentiostatic study reveals that the corrosion resistance of low-friction TMA (L-TMA) > TMA > NiTi > SS. AFM analysis showed the surface Ra of TMA > NiTi > L-TMA > SS. This indicates that the chemical composition of the wire is the primary influential factor to have high corrosion resistance and surface Ra is only secondary. The corrosion resistance of all wires had reduced significantly in 0.5% acidic fluoride-containing artificial saliva due to formation of fluoride complex compound. Conclusion: The presence of 0.5% NaF in artificial saliva was detrimental to the corrosion resistance of the orthodontic archwires. Therefore, complete removal of residual high-fluorinated toothpastes from the crevice between archwire and bracket during tooth brushing is mandatory. PMID:27829756

  4. Microstructural evolution of a uranium-10 wt.% molybdenum alloy for nuclear reactor fuels

    Science.gov (United States)

    Clarke, A. J.; Clarke, K. D.; McCabe, R. J.; Necker, C. T.; Papin, P. A.; Field, R. D.; Kelly, A. M.; Tucker, T. J.; Forsyth, R. T.; Dickerson, P. O.; Foley, J. C.; Swenson, H.; Aikin, R. M.; Dombrowski, D. E.

    2015-10-01

    Low-enriched uranium-10 wt.% molybdenum (LEU-10wt.%Mo) is of interest for the fabrication of monolithic fuels to replace highly-enriched uranium (HEU) dispersion fuels in high performance research and test reactors around the world. In this work, depleted uranium-10 wt.%Mo (DU-10wt.%Mo) is used to simulate the solidification and microstructural evolution of LEU-10wt.%Mo. Electron backscatter diffraction (EBSD) and complementary electron probe microanalysis (EPMA) reveal significant microsegregation present in the metastable γ-phase after solidification. Homogenization is performed at 800 and 1000 °C for times ranging from 1 to 32 h to explore the time-temperature combinations that will reduce the extent of microsegregation, as regions of higher and lower Mo content may influence local mechanical properties and provide preferred regions for γ-phase decomposition. We show for the first time that EBSD can be used to qualitatively assess microstructural evolution in DU-10wt.%Mo after homogenization treatments. Complementary EPMA is used to quantitatively confirm this finding. Homogenization at 1000 °C for 2-4 h may the regions that contain 8 wt.% Mo or lower, whereas homogenization at 1000 °C for longer than 8 h effectively saturates Mo chemical homogeneity, but results in substantial grain growth. The appropriate homogenization time will depend upon additional microstructural considerations, such as grain growth and intended subsequent processing. Higher carbon LEU-10wt.%Mo generally contains more inclusions within the grains and at grain boundaries after solidification. The effect of these inclusions on microstructural evolution (e.g. grain growth) during homogenization and as potential γ-phase decomposition nucleation sites is unclear, but likely requires additional study.

  5. Identification of the heat transfer coefficient in the two-dimensional model of binary alloy solidification

    Science.gov (United States)

    Hetmaniok, Edyta; Hristov, Jordan; Słota, Damian; Zielonka, Adam

    2017-05-01

    The paper presents the procedure for solving the inverse problem for the binary alloy solidification in a two-dimensional space. This is a continuation of some previous works of the authors investigating a similar problem but in the one-dimensional domain. Goal of the problem consists in identification of the heat transfer coefficient on boundary of the region and in reconstruction of the temperature distribution inside the considered region in case when the temperature measurements in selected points of the alloy are known. Mathematical model of the problem is based on the heat conduction equation with the substitute thermal capacity and with the liquidus and solidus temperatures varying in dependance on the concentration of the alloy component. For describing this concentration the Scheil model is used. Investigated procedure involves also the parallelized Ant Colony Optimization algorithm applied for minimizing a functional expressing the error of approximate solution.

  6. Optimization method for the study of the properties of Al-Sn binary liquid alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, G.K. [University Department of Physics, T.M. Bhagalpur University, Bhagalpur (India); Pulchowk Campus, IOE, Tribhuvan University, Lalitpur (Nepal); Singh, B.K. [University Department of Physics, T.M. Bhagalpur University, Bhagalpur (India); Jha, I.S. [M.M.A.M. Campus, Tribhuvan University, Biratnagar (Nepal); Singh, B.P. [University Department of Physics, T.M. Bhagalpur University, Bhagalpur (India); Adhikari, D., E-mail: adksbdev@yahoo.com [M.M.A.M. Campus, Tribhuvan University, Biratnagar (Nepal)

    2017-06-01

    The best fit value of order energy parameter (W) has been estimated over the entire range of concentration in Al-Sn binary liquid alloy at a specified temperature to determine the thermodynamic properties and concentration fluctuations, obtained by a theoretical formalism in which the combined effect of size ratio, entropic and enthalpic effect is considered. The values of W at different temperatures have been determined by finding the temperature derivative of W which are then used for the optimization procedure in order to determine the corresponding values of excess free energy of mixing, partial excess free energy of mixing and activity of the components involved in the alloy. These parameters have been used to calculate the concentration fluctuations in long wavelength limit {S_c_c(0)} at different temperatures over the entire range of concentration which predict the stability of the alloy at different temperatures.

  7. Modelling of binary alloy solidification in the MEPHISTO experiment

    Science.gov (United States)

    Leonardi, Eddie; de Vahl Davis, Graham; Timchenko, Victoria; Chen, Peter; Abbaschian, Reza

    2004-05-01

    A modified enthalpy method was used to numerically model experiments on solidification of a bismuth-tin alloy which were performed during the 1997 flight of the MEPHISTO-4 experiment on the US Space Shuttle Columbia. This modified enthalpy method was incorporated into an in-house code SOLCON and a commercial CFD code CFX; Soret effect was taken into account by including an additional thermo-diffusion term into the solute transport equation and the effects of thermal and solutal convection in the microgravity environment and of concentration-dependent melting temperature on the phase change processes were also included. In this paper an overview of the results obtained as part of MEPHISTO project is presented. The numerical solutions are compared with actual microprobe results obtained from the MEPHISTO experiment. To cite this article: E. Leonardi et al., C. R. Mecanique 332 (2004).

  8. Phase equilibria of Fe-C binary alloys in a magnetic field

    Science.gov (United States)

    England, Roger Dale

    The deployment of high flux magnetic processing in industry requires the ability to model the expected results of a proposed processing, and the current assumptions in the literature did not reflect the actual outcome in measurements of ductile iron. Simple binary iron-carbon alloys of less than one weight percent carbon were thermo-magnetically processed and then compared with Gibbs free energy phase transformation predictions. The data was used to quantify the change in the Gibbs free energy associated with the addition of a static high flux magnetic field, which is complicated by the change in magnetic response as the iron carbon alloys pass through the Curie point. A current common practice is to modify Gibbs free energy by -12J per mole per Tesla applied, as has been reported in the literature. This current prediction practice was employed in initial experiments for this work and the experimental data did not agree with these predicted values. This work suggests two specific influences that affect the model, chemistry and magnetic dipole changes. First, that the influence of alloying elements in the original chemistry, as the samples in the literature were a manganese alloy with 0.45 weight percent carbon, as well as not being precisely controlled for tramp elements that commonly occur in recycled material, created a change that was not predicted and therefore the temperatures were incorrect. Also, the phase transformation in a high flux magnetic field was measured to have a different response under warming versus cooling than the normal hysteresis under ambient magnetism. The change in Gibbs free energy for the binary alloys was calculated as -3J per mole per Tesla in warming, and -8J per mole per tesla in cooling. The change from these values to the -12J per mole per Tesla previously reported is attributed to the change in chemistry. This work attributes the published increase in physical properties to the Hall-Petch relation as a result of the finer product

  9. Effects of Surface Structure and Chemical Composition of Binary Ti Alloys on Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Ok-Sung Han

    2016-07-01

    Full Text Available Binary Ti alloys containing Fe, Mo, V and Zr were micro-arc oxidized and hydrothermally treated to obtain micro- and nano-porous layers. This study aimed to investigate cell differentiation on micro and micro/nanoporous oxide layers of Ti alloys. The properties of the porous layer formed on Ti alloys were characterized by X-ray diffraction pattern, microstructural and elemental analyses and inductively coupled plasma mass spectrometry (ICP-MS method. The MTT assay, total protein production and alkaline phosphatase (ALPase activity were evaluated using human osteoblast-like cells (MG-63. Microporous structures of micro-arc oxidized Ti alloys were changed to micro/nanoporous surfaces after hydrothermal treatment. Micro/nanoporous surfaces consisted of acicular TiO2 nanoparticles and micron-sized hydroxyapatite particles. From ICP and MTT tests, the Mo and V ions released from porous oxide layers were positive for cell viability, while the released Fe ions were negative for cell viability. Although the micro/nanoporous surfaces led to a lower total protein content than the polished and microporous Ti surfaces after cell incubation for 7 days, they caused higher ALPase activities after 7 days and 14 days of incubation except for V-containing microporous surfaces. The micro/nanoporous surfaces of Ti alloys were more efficient in inducing MG-63 cell differentiation.

  10. Sn-Sb-Se based binary and ternary alloys for phase change memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kyung-Min

    2008-10-28

    In this work, the effect of replacing Ge by Sn and Te by Se was studied for a systematic understanding and prediction of new potential candidates for phase change random access memories applications. The temperature dependence of the electrical/structural properties and crystallization kinetics of the Sn-Se based binary and Sn-Sb-Se based ternary alloys were determined and compared with those of the GeTe and Ge-Sb-Te system. The temperature dependence of electrical and structural properties were investigated by van der Pauw measurements, X-ray diffraction, X-ray reflectometry. By varying the heating rate, the Kissinger analysis has been used to determine the combined activation barrier for crystallization. To screen the kinetics of crystallization, a static laser tester was employed. In case of binary alloys of the type Sn{sub x}Se{sub 1-x}, the most interesting candidate is SnSe{sub 2} since it crystallizes into a single crystalline phase and has high electrical contrast and reasonably high activation energy for crystallization. In addition, the SnSe{sub 2}-Sb{sub 2}Se{sub 3} pseudobinary alloy system also might be sufficient for data retention due to their higher transition temperature and activation energy for crystallization in comparison to GeTe-Sb{sub 2}Te{sub 3} system. Furthermore, SnSe{sub 2}-Sb{sub 2}Se{sub 3} pseudobinary alloys have a higher crystalline resistivity. The desired rapid crystallization speed can be obtained for Sn{sub 1}Sb{sub 2}Se{sub 5} and Sn{sub 2}Sb{sub 2}Se{sub 7} alloys. (orig.)

  11. Microstructure and mechanical behavior of metal injection molded Ti-Nb binary alloys as biomedical material.

    Science.gov (United States)

    Zhao, Dapeng; Chang, Keke; Ebel, Thomas; Qian, Ma; Willumeit, Regine; Yan, Ming; Pyczak, Florian

    2013-12-01

    The application of titanium (Ti) based biomedical materials which are widely used at present, such as commercially pure titanium (CP-Ti) and Ti-6Al-4V, are limited by the mismatch of Young's modulus between the implant and the bones, the high costs of products, and the difficulty of producing complex shapes of materials by conventional methods. Niobium (Nb) is a non-toxic element with strong β stabilizing effect in Ti alloys, which makes Ti-Nb based alloys attractive for implant application. Metal injection molding (MIM) is a cost-efficient near-net shape process. Thus, it attracts growing interest for the processing of Ti and Ti alloys as biomaterial. In this investigation, metal injection molding was applied to the fabrication of a series of Ti-Nb binary alloys with niobium content ranging from 10wt% to 22wt%, and CP-Ti for comparison. Specimens were characterized by melt extraction, optical microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). Titanium carbide formation was observed in all the as-sintered Ti-Nb binary alloys but not in the as-sintered CP-Ti. Selected area electron diffraction (SAED) patterns revealed that the carbides are Ti2C. It was found that with increasing niobium content from 0% to 22%, the porosity increased from about 1.6% to 5.8%, and the carbide area fraction increased from 0% to about 1.8% in the as-sintered samples. The effects of niobium content, porosity and titanium carbides on mechanical properties have been discussed. The as-sintered Ti-Nb specimens exhibited an excellent combination of high tensile strength and low Young's modulus, but relatively low ductility. © 2013 Elsevier Ltd. All rights reserved.

  12. Phase Stability, Kinetic Diagrams and Diffusion Path in High Temperature Oxidation of Binary Solid-Solution Alloys

    Institute of Scientific and Technical Information of China (English)

    Yan NIU; F. Gesmundo

    2003-01-01

    The phase diagrams of ternary systems involving two metal components and one oxidant are considered first, the limitations to their use is discussed in relation to the high temperature oxidation of binary alloys. Kinetic diagrams,which are useful to predict the conditions for the stability of the two mutually insoluble oxides as the external scale, are then calculated on the basis of thermodynamic and kinetic data concerning both the alloys and the oxides, assuming the validity of the parabolic rate law. A combination of the two types of diagrams provides a more detail information about the oxidation behavior of binary alloys. The calculation of the diffusion paths, which relate the oxidant pressure to the composition of the system in terms of the alloy components both in the alloy and in the scale during an initial stage of the reaction in the presence of the parabolic rate law, is finally developed.

  13. Corrosion and high temperature resistant coatings for molybdenum, made out of iron and nickel alloys and applied by explosive welding

    Energy Technology Data Exchange (ETDEWEB)

    Pruemmer, R.; Henne, R.

    1980-04-01

    The impact parameters of the explosive welding of molybdenum with Inconel 601 were determined. The combination Mo and Inconel 601 was considered as nonweldable. It can be applied in solar radiation concentrating devices, allowing a higher operating temperature and higher energy conversion efficiency. The usual velocities of the explosive welding process (collision velocities of 2200 m/sec) lead at best to samples affected by cracks, due to the insufficient workability of molybdenum. At higher velocities cracks no longer occur, molybdenum being a strain rate sensitive material. Layer composite materials can be manufactured in flat as well as in tube form. (ESA)

  14. Preparation of ferromagnetic binary alloy fine fibers byorganic gel-thermal reduction process

    Institute of Scientific and Technical Information of China (English)

    SHEN Xiang-qian; CAO Kai; ZHOU Jian-xin

    2006-01-01

    Ferromagnetic metal fibers with a high aspect ratio (length/diameter) are attractive for use as high performance electromagnetic interference shielding materials. Ferromagnetic binary alloy fine fibers of iron-nickel, iron-cobalt and cobalt-nickel were prepared by the organic gel-thermal reduction process from the raw materials of critic acid and metal salts. These alloy fibers synthesized were featured with a diameter of about 1 μm and a length as long as 1 m. The structure, thermal decomposition process and morphologies of the gel precursors and fibers derived from thermal reduction of the gel precursors were characterized by FTIR, XRD, TG/DSC and SEM. The gel spinnability largely depends on the molecular structure of metal- carboxylates formed during the gel formation. The gel consisting of linear-type structural molecules shows good spinnability.

  15. Counter electrodes from binary ruthenium selenide alloys for dye-sensitized solar cells

    Science.gov (United States)

    Li, Pinjiang; Cai, Hongyuan; Tang, Qunwei; He, Benlin; Lin, Lin

    2014-12-01

    Dye-sensitized solar cell (DSSC) is a promising solution to global energy and environmental problems because of its merits on clean, cost-effectiveness, relatively high efficiency, and easy fabrication. However, the reduction of fabrication cost without sacrifice of power conversion efficiencies of the DSSCs is a golden rule for their commercialization. Here we design a new binary ruthenium selenide (Ru-Se) alloy counter electrodes (CEs) by a low-temperature hydrothermal reduction method. The electrochemical behaviors are evaluated by cyclic voltammogram, electrochemical impedance, and Tafel measurements, giving an optimized Ru/Se molar ratio of 1:1. The DSSC device with RuSe alloy CE achieves a power conversion efficiency of 7.15%, which is higher than 5.79% from Pt-only CE based DSSC. The new concept, easy process along with promising results provide a new approach for reducing cost but enhancing photovoltaic performances of DSSCs.

  16. Magnetic dichroism effect of binary alloys using circularly-polarized x-ray

    Energy Technology Data Exchange (ETDEWEB)

    Wu, S. Z.; Schumann, F.O.; Willis, R.F.; Goodman, K.W.; Tobin, J.G.; Carr, R.

    1997-05-01

    We have studies the magnetic propertied of CoNi binary alloy films with various atomic compositions using soft x-ray magnetic circular dichroism (XMCD) technique. The alloy films were deposited on single Cu(100) crystals in situ using our well-established epitaxial growth technique to achieve a layer-by-layer growth and a metastable fcc structure, with all films exhibiting an in-plane magnetic anistrophy. Utilizing the element-specific ability and nanostructure magnetization sensitivity of this technique, we have been able to perform the absorption measurements at L2 and L3 edge of Co and Ni atoms and observed large dichroism signals. The extraction of spin moment and orbital moment for varying elemental stoichiometry using magneto- optical sum rules is discussed.

  17. Screening-Dependent Study of Superconductivity in 3d-Transition Metals Binary Alloys Superconductors

    Institute of Scientific and Technical Information of China (English)

    Aditya M. Vora

    2009-01-01

    In the present article, we report the screening-dependent study of the superconducting state parameters (SSPs), viz. electron-phonon coupling strength A, Coulomb pseudopotential μ*, transition temperature Tc, isotope effect exponent a, and effective interaction strength NoV of 3d-band transition metals binary alloys superconductors have been made extensively in the present work using a model potential formalism and employing the pseudo-alloy-atom (PAA) model for the first time. Five local field correction functions proposed by Hartree (H), Taylor (T), Ichimaxu-Utsumi (IU), Farid et al. (F) and Sarkar et al. (S) are used in the present investigation to study the screening influence on the aforesaid properties. The present results of the SSPs obtained from H-screening are found in qualitative agreement with the available experimental data wherever exist.

  18. Phase-field simulation of dendritic growth for binary alloys with complicate solution models

    Institute of Scientific and Technical Information of China (English)

    LI Xin-zhong; GUO Jing-jie; SU Yan-qing; WU Shi-ping; FU Heng-zhi

    2005-01-01

    A phase-field method for simulation of dendritic growth in binary alloys with complicate solution models was studied. The free energy densities of solid and liquid used to construct the free energy of a solidification system in the phase-field model were derived from the Calphad thermodynamic modeling of phase diagram. The dendritic growth of Ti-Al alloy with a quasi-sub regular solution model was simulated in both an isothermal and a nonisothermal regime. In the isothermal one, different initial solute compositions and melt temperatures were chosen.And in the non-isothermal one, release of latent heat during solidification was considered. Realistic growth patterns of dendrite are derived. Both the initial compositions and melt temperatures affect isothermal dendritic morphology and solute distributions much, especially the latter. Release of latent heat will cause a less developed structure of dendrite and a lower interfacial composition.

  19. MICROSTRUCTURE OF BINARY Mg-Al EUTECTIC ALLOY WIRES PRODUCED BY THE OHNO CONTINUOUS CASTING PROCESS

    Institute of Scientific and Technical Information of China (English)

    Z.M.Zhang; T.Lū; C.J.Xu; X.F.Guo

    2008-01-01

    Directionally solidified binary Mg-Al eutectic alloy wires of approximately 5 mm in diameter were produced by the Ohno continuous casting (OCC) process and the mi-crostructure was examined.It was found that the wires possess obvious unidirectional growth characteristic along its axial direction.The microstructure consists of parallel columnar grains that resulted from the competitive growth of equiaxed grains solidified on the head of dummy bar.Each columnar grain comprises regular eutectic α-Mg and β-Mg17 Al12 phases,which grew along the axial direction of the wires.The morphology of the eutectic is mainly lameUar,meanwhile rod eutectic exists.The formation of rod eutectic was attributed to the "bridging effect" caused by incidental elements in the alloy.

  20. Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion.

    Science.gov (United States)

    Ramirez, J C; Beckermann, C; Karma, A; Diepers, H-J

    2004-05-01

    A phase-field model is developed for simulating quantitatively microstructural pattern formation in solidification of dilute binary alloys with coupled heat and solute diffusion. The model reduces to the sharp-interface equations in a computationally tractable thin-interface limit where (i). the width of the diffuse interface is about one order of magnitude smaller than the radius of curvature of the interface but much larger than the real microscopic width of a solid-liquid interface, and (ii). kinetic effects are negligible. A recently derived antitrapping current [Phys. Rev. Lett. 87, 115701 (2001)

  1. Atomic transport properties of Ag xSn 1-x liquid binary alloys

    Science.gov (United States)

    Bhuiyan, E. H.; Ziauddin Ahmed, A. Z.; Bhuiyan, G. M.; Shahjahan, M.

    2008-05-01

    Atomic transport properties, in particular the shear viscosity and diffusion constants for Ag xSn 1-x less simple liquid binary alloys are theoretically studied from a statistical mechanical theory called the distribution function method. The essential ingredients of this theory are the interionic interaction and the pair distribution function for hard spheres. The interionic interaction are described from a local pseudopotential model and the effective hard sphere diameters are obtained from the thermodynamic perturbative method known as the linearized Weeks-Chandler-Andersen (LWCA). Results of calculations for shear viscosities agree well with the available experimental data.

  2. On the effect of concentrated solid solutions on properties of clusters in a model binary alloy

    Science.gov (United States)

    Lepinoux, J.; Sigli, C.

    2016-04-01

    In a series of papers aimed at better understanding precipitation in binary alloys, it was shown that Cluster Dynamics (CD) is a valuable tool to bridge the gap between microscopic and macroscopic scales, provided that cluster-free energies are carefully derived from Monte Carlo calculations. Indeed, in such conditions, CD predictions compare well with Atomistic Kinetic MC simulations. Nevertheless, in a recent work, the authors pointed out some limitations of this approach at high solute concentration. The present work aims at revisiting the notion of cluster-free energy in the context of concentrated solid solutions at thermal equilibrium.

  3. Energy of formation for AgIn liquid binary alloys along the line of phase separation

    CERN Document Server

    Bhuiyan, G M; Ziauddin-Ahmed, A Z

    2003-01-01

    We have investigated the energy of formation for AgIn liquid binary alloys along the solid-liquid phase separation line. A microscopic theory based on the first order perturbation has been applied. The interionic interaction and a reference liquid are the fundamental components of the theory. These are described by a local pseudopotential and the hard sphere liquids, respectively. The results of calculations reveal a characteristic feature that the energy of formation becomes minimum at the equiatomic composition, and thus indicates maximal mix-ability at this concentration. The energy of formation at a particular thermodynamic state that is at T 1173 K predicts the experimental trends fairly well.

  4. Domain of oscillatory growth in directional solidification of dilute binary alloys.

    Science.gov (United States)

    Babushkina, Evgenia; Bessonov, Nicholas M; Korzhenevskii, Alexander L; Bausch, Richard; Schmitz, Rudi

    2013-04-01

    The oscillatory growth of a dilute binary alloy has recently been described by a nonlinear oscillator equation that applies to small temperature gradients and large growth velocities in the setup of directional solidification. Based on a one-dimensional stability analysis of stationary solutions of this equation, we explore in the present paper the complete region where the solidification front propagates in an oscillatory way. The boundary of this region is calculated exactly, and the nature of the oscillations is evaluated numerically in several segments of the region.

  5. Faceted to non-faceted transition of solid-liquid interface in binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yumoto, H.; Hasiguti, R.R.; Kaneko, T.

    1987-03-01

    Jackson's theory on the interfacial roughening transition of pure materials is extended to that of AB binary alloys. In this model, the concept of quasi-dangling bonds is introduced. The bonds are produced by the difference between the number of the interfacial component of nearest neighbors of the A atom and that of the B atom. The roughening temperatures calculated from this model coincide with the faceted - non-faceted transition temperatures obtained experimentally by Miller and Chadwick and by the present authors.

  6. Phase field modeling of multiple dendrite growth of AI-Si binary alloy under isothermal solidification

    Institute of Scientific and Technical Information of China (English)

    Sun Qiang; Zhang Yutuo; Cui Haixia; Wang Chengzhi

    2008-01-01

    Phase field method offers the prospect of being able to perform realistic numerical experiments on dendrite growth in metallic systems. In this study, the growth process of multiple dendrites in Ai-2-mole-%-Si binary alloy under isothermal solidification was simulated using phase field model. The simulation results showed the impingement of arbitrarily oriented crystals and the competitive growth among the grains during solidification. With the increase of growing time, the grains begin to coalesce and impinge the adjacent grains. When the dendrites start to impinge, the dendrite growth is obviously inhibited.

  7. Morphological and crystallographic evolution of bainite transformation in Fe-0.15C binary alloy.

    Science.gov (United States)

    Zhang, Di; Terasaki, Hidenori; Komizo, Yuichi

    2010-01-01

    In this article, an in situ observation method, combining laser scanning confocal microscopy and electron backscattering diffraction, was used to investigate the morphological and crystallographic evolution of bainite transformation in a Fe-0.15C binary alloy. The nucleation at a grain boundary and inclusions, sympathetic nucleation, and impingement event of bainitic ferrite were directly shown in real time. The variant evolution during bainite transformation and misorientation between bainitic ferrites were clarified. Strong variant selection was observed during sympathetic nucleation. (c) 2009 Wiley-Liss, Inc.

  8. GPU phase-field lattice Boltzmann simulations of growth and motion of a binary alloy dendrite

    Science.gov (United States)

    Takaki, T.; Rojas, R.; Ohno, M.; Shimokawabe, T.; Aoki, T.

    2015-06-01

    A GPU code has been developed for a phase-field lattice Boltzmann (PFLB) method, which can simulate the dendritic growth with motion of solids in a dilute binary alloy melt. The GPU accelerated PFLB method has been implemented using CUDA C. The equiaxed dendritic growth in a shear flow and settling condition have been simulated by the developed GPU code. It has been confirmed that the PFLB simulations were efficiently accelerated by introducing the GPU computation. The characteristic dendrite morphologies which depend on the melt flow and the motion of the dendrite could also be confirmed by the simulations.

  9. Collective Modes and Elastic Constants of Liquid Al83Cu17 Binary Alloy

    Institute of Scientific and Technical Information of China (English)

    B.Y.Thakore; S.G.Khambholja; P.H.Suthar; N.K.Bhatt; A.R.Jani

    2010-01-01

    @@ The collective dynamics(longitudinal and transverse phonon modes)are studied for aluminum-copper(Al-Cu)binary alloy in terms of the eigen-frequencies of the localized collective excitations.The model pseudopotential formalism is employed using a self-consistent phonon scheme by involving multiple scattering and phonon eigenfrequencies.These frequencies are expressed in terms of many-body correlation functions of atoms as well as of interatomic potential.The important ingredients in the present study are the pair-potential and pair-correlation functions.

  10. The Chemically-Specific Structure of an Amorphous Molybdenum Germanium Alloy by Anomalous X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, H. A.

    2002-06-11

    through the experimental modifications to eliminate inelastic scattering. The coordination uncertainties are estimated at 5% for the Mo-Ge and Ge-Ge coordinations and 15% for the Mo-Mo coordination. These PPDFs from data collected at a second generation synchrotron source demonstrate the promise of the technique for routine PPDF extraction from binary alloys when applied in the future on dedicated beamlines at third generation synchrotron.

  11. Influence of cooling rate on microstructure formation during rapid solidification of binary TiAl alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kenel, C., E-mail: Christoph.Kenel@empa.ch; Leinenbach, C.

    2015-07-15

    Highlights: • Rapid solidification studies with varying cooling rates were realized for Ti–Al. • Experiments were combined with finite element simulations of heat transfer. • The resulting microstructure of Ti–Al alloys is strongly dependent on the Al content. • The microstructure and phase transformation behavior can be predicted. • The method allows alloy development for processes involving rapid solidification. - Abstract: Titanium aluminides as structural intermetallics are possible candidates for a potential weight reduction and increased performance of high temperature components. A method for the characterization of the microstructure formation in rapidly solidified alloys was developed and applied for binary Ti–(44–48)Al (at.%). The results show a strong dependency of the microstructure on the Al content at cooling rates between 6 ⋅ 10{sup 2} and 1.5 ⋅ 10{sup 4} K s{sup −1}. The formation of α → α{sub 2} ordering, lamellar α{sub 2} + γ colonies and interdendritic TiAl γ-phase were observed, depending on the Al amount. Based on thermodynamic calculations the observed microstructure can be explained using the CALPHAD approach taking into account the non-equilibrium conditions. The presented method provides a useful tool for alloy development for processing techniques involving rapid solidification with varying cooling rates.

  12. Gadolinium solubility and precipitate identification in Mg-Gd binary alloy

    Institute of Scientific and Technical Information of China (English)

    PENG Qiuming; MA Ning; LI Hui

    2012-01-01

    Gadolinium (Gd) solubility in magnesium (Mg) matrix and precipitate composition in Mg-Gd binary alloys were investigated.The alloys containing different Gd contents (10 wt.%-35 wt.%) were employed to identify Gd solubility after annealing at different temperatures.It was confirmed that the maximum Gd solubility was 22.8 wt.% at 550 ℃ based on the regression analysis method.Mg5+xGd (0<x<2) and Mg3Gd precipitates coexisted in all investigated alloys owing to the strong component segregation during solidification.The fiaction of Mg5+xGd (0<x<2) was decreased with the increment of annealing temperature and time.In contrast,Mg3Gd precipitate could not be eliminated even when being annealed at 550 ℃.This thermal stable precipitate played a significant role in mechanical properties.Therefore,it is very necessary to consider the effect of Mg3Gd precipitate on properties of Mg-Gd based alloys in future.

  13. Ingredient Losses during Melting Binary Ni-Ti Shape Memory Alloys

    Institute of Scientific and Technical Information of China (English)

    S.K. Sadrnezhaad; S. Badakhshan Raz

    2005-01-01

    Losses of the alloying elements during vacuum induction melting of the binary NiTi alloys were evaluated by visual observation and chemical analysis of the NiTi melted specimens and the scalp formed on the internal surface of the crucible. The results indicated that the major sources of the losses were (a) evaporation of the metals, (b) formation of the NiTi scalp and (c) the sprinkling drops splashed out of the melt due to the exothermic reactions occurring between Ni and Ti to form the NiTi parent phase. Quantitative evaluations were made for the metallic losses by holding the molten alloy for 0.5, 3, 5, 10 and 15 min at around 100℃ above the melting point inside the crucible.Chemical analysis showed that there existed an optimum holding time of 3 min during which the alloying elements were only dropped to a predictable limit. Microstructure, chemical composition, shape memory and mechanical properties of the cast metal ingots were determined to indicate the appropriate achievements with the specified 3 min optimum holding time.

  14. Numerical simulation of recalescence of 3-dimensional isothermal solidification for binary alloy using phase-field approach

    Institute of Scientific and Technical Information of China (English)

    ZHU Chang-sheng; XIAO Rong-zhen; WANG Zhi-ping; FENG Li

    2009-01-01

    A accelerated arithmetic algorithm of the dynamic computing regions was designed, and 3-dimensional numerical simulation of isothermal solidification for a binary alloy was implemented. The dendritic growth and the recalescence of Ni-Cu binary alloy during the solidification at different cooling rates were investigated. The effects of cooling rate on dendritic patterns and microsegregation patterns were studied. The computed results indicate that, with the increment of the cooling rate, the dendritic growth velocity increases, both the main branch and side-branches become slender, the secondary dendrite arm spacing becomes smaller, the inadequate solute diffusion in solid aggravates, and the severity of microsegregation ahead of interface aggravates. At a higher cooling rate, the binary alloy presents recalescence; while the cooling rate is small, no recalescence occurs.

  15. Nuclear fuel alloys or mixtures and method of making thereof

    Science.gov (United States)

    Mariani, Robert Dominick; Porter, Douglas Lloyd

    2016-04-05

    Nuclear fuel alloys or mixtures and methods of making nuclear fuel mixtures are provided. Pseudo-binary actinide-M fuel mixtures form alloys and exhibit: body-centered cubic solid phases at low temperatures; high solidus temperatures; and/or minimal or no reaction or inter-diffusion with steel and other cladding materials. Methods described herein through metallurgical and thermodynamics advancements guide the selection of amounts of fuel mixture components by use of phase diagrams. Weight percentages for components of a metallic additive to an actinide fuel are selected in a solid phase region of an isothermal phase diagram taken at a temperature below an upper temperature limit for the resulting fuel mixture in reactor use. Fuel mixtures include uranium-molybdenum-tungsten, uranium-molybdenum-tantalum, molybdenum-titanium-zirconium, and uranium-molybdenum-titanium systems.

  16. Non-contact method for the measurement of the enthalpy of fusion applied to binary Zr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wunderlich, R.K.; Fecht, H.-J. [Ulm Univ. (Germany). Abt. Werkstoffe der Elektrotechnik

    2000-07-01

    A new method for noncontact measurement of the heat of fusion of metallic alloys has been developed. It was applied to reactive binary Zr alloys in an electromagnetic containerless processing device under reduced gravity conditions. The method is based on the evaluation of the power balance between induction heating and radiative heat loss during the melting transition. Input power was obtained from measurement of the inductive coupling between the specimen and the currents in the oscillating circuits of a heating and positioning generator. Output power was obtained by evaluation of the total hemispherical emissivity from measurement of the external relaxation time, and of the heat capacity by noncontact ac-calorimetry. The enthalpy and entropy of fusion of several binary metallic glass-forming Zr alloys such obtained exhibit a pronounced correlation with the specific heat capacity at the liquidus temperature suggesting a reduced ideal glass transition temperature almost independent of composition for these alloys. (orig.)

  17. Uranium-molybdenum alloys containing 0,5 to 3 per cent by weight of molybdenum; Alliages uranium-molybdene de 0,5 a 3 pour cent en poids de molybdene

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-07-01

    The following properties have been determined in the new cast state of uranium alloys containing 0.5-1-1.8-2 and 3.5 per cent of molybdenum: micro-graphical aspect, crystalline structure, thermal expansion, the mechanical characteristics, behaviour when subjected to cyclic temperature variations, and heat treatment. The transformation curves have been established for continuous cooling at rates varying between 2.5 and 200 deg. C per minute, using a dilaon method for the alloys containing 1.0, 2.0 and 3.0 per cent Mo. T.T.T. curves have been traced for 0.5 and 1.0 per cent Mo alloys and the Ms points determined for alloys containing 2.0 and 3.0 par cent Mo. In this way it has been possible to show the different results of transformation, brought about either by nucleation and diffusion or by shear - the alloy containing 1 per cent Mo, give two martensites {alpha}' and {alpha}'' and the alloys containing 2 and 3 per cent Mo give one martensite with a band structure. (author) [French] Les differentes caracteristiques ont ete determinees sur les alliages 0,5-1-1,8-2 et 3,5 en poids de molybdene, a l'etat brut de coulee: aspect micrographique, structure cristalline, coefficients de dilatation, caracteristiques mecaniques, comportement au cyclage thermique et aux traitements thermiques. Les courbes de transformations au cours de refroidissements continus a des vitesses allant de 2,5 a environ 200 deg. C/mm ont ete etablies a l'aide d'une methode dilatometrique (alliages 1,2 et 3 %). Les courbes TTT ont ete tracees pour les alliages 0,5 et 1 % et les points Ms determines pour les alliages 2 et 3%. Ceci a permis de mettre en evidence differents resultats de transformation, s'operant soit par germination et diffusion, soit par cisaillement (deux martensites: {alpha}' et {alpha}'' pour l'alliage a 1 %, une martensite a structure de bandes pour les alliages 2 et 3%). (auteur)

  18. THERMODYNAMICS OF BINARY ALLOYS OF PHARMACEUTICAL ACTIVE IMIDAZOLE WITH O- PHENYLENEDIAMINE

    Directory of Open Access Journals (Sweden)

    Shekhar H.

    2012-04-01

    Full Text Available The present study describes the investigation of eutectic and non-eutectic alloys of imidazole (IM with o - Phenylenediamine (OPD. the solid-liquid equilibrium (SLE data determined by thaw melt method in the form of melting temperature with their corresponding composition construct the solid-liquid equilibrium phase diagram which suggests simple eutectic behaviour is followed by the binary system. The activity co-efficient model based on enthalpy of fusion was employed to calculate the excess partial and integral thermodynamic functions such as gE, hE and sE. These values help to predict the nature of molecular interaction, ordering and stability between the components. The spontaneity of mixing of eutectic and non eutectic alloys was discussed by the partial and integral mixing quantities ∆GM, ∆HM and ∆SM. Using Gibbs-Duhem equation the solution of partial molar heat of mixing, activity and activity coefficient of the component in the binary mix have been resolved.

  19. Plasma electrolytic oxidation coating of synthetic Al-Mg binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tarakci, Mehmet, E-mail: mtarakci@gyte.edu.tr

    2011-12-15

    The binary Al-Mg synthetic alloys were prepared in a vacuum/atmosphere controlled furnace with the addition of 0.5, 1, 2, 4, 7, and 15 wt.% pure Mg into pure aluminum as substrate material. The surfaces of the Al-Mg alloys and pure aluminum were coated for 120 min by plasma electrolytic oxidation in the same electrolyte of 12 g/L sodium silicate and 2 g/L KOH in distilled water. The coating was characterized by X-ray diffraction, scanning electron microscopy, profilometry and Vickers microhardness measurements. There regions of loose outer layer, dense inner layer with precipitate like particles of {alpha}-Al{sub 2}O{sub 3} and a thin transition layer were identified for the coated samples. The coating thickness increases from 85 to 150 {mu}m with Mg contents in the alloys. The surface morphology becomes more porous and consequently surface roughness tends to increase with plasma electrolytic oxidation treatment and further with Mg content. The increase in magnesium content reduces the formation of {alpha}-Al{sub 2}O{sub 3} and crystalline mullite phases in the coating and decreases microhardness of coating. The Mg concentration is constant throughout the other loose and dense regions of coating though it gradually decreases in the thin inner region. - Research Highlights: Black-Right-Pointing-Pointer The average thickness of PEO coating of Al-Mg alloys increases with Mg content. Black-Right-Pointing-Pointer The addition of Mg reduces and prevents the formation of {alpha}-Al{sub 2}O{sub 3} and mullite. Black-Right-Pointing-Pointer The surface roughness increases with Mg content in the Al-Mg alloys. Black-Right-Pointing-Pointer The hardness values of the coating decreases with the Mg amount in the substrate. Black-Right-Pointing-Pointer The Mg concentration is constant throughout the main regions of coating.

  20. Deformation of nanocrystalline binary aluminum alloys with segregation of Mg, Co and Ti at grain boundaries

    Science.gov (United States)

    Zinovev, A. V.; Bapanina, M. G.; Babicheva, R. I.; Enikeev, N. A.; Dmitriev, S. V.; Zhou, K.

    2017-01-01

    The influence of the temperature and sort of alloying element on the deformation of the nanocrystalline (NC) binary Al alloys with segregation of 10.2 at % Ti, Co, or Mg over grain boundaries has been studied using the molecular dynamics. The deformation behavior of the materials has been studied in detail by the simulation of the shear deformation of various Al bicrystals with the grain-boundary segregation of impurity atoms, namely, Ti, Co, or Mg. The deformation of bicrystals with different grain orientation has been studied. It has been found that Co introduction into grain boundaries of NC Al has a strengthening effect due to the deceleration of the grain-boundary migration (GBM) and difficulty in the grain-boundary sliding (GBS). The Mg segregation at the boundaries greatly impedes the GBM, but stimulates the development of the GBS. In the NC alloy of Al-Ti, the GBM occurs actively, and the flow-stress values are close to the values characteristic of pure Al.

  1. ThermoCalc Application for the Assessment of Binary Alloys Non-Equilibrium Solidification

    Directory of Open Access Journals (Sweden)

    Zyska A.

    2017-03-01

    Full Text Available The paper presents the possibility of application of the developed computer script which allows the assessment of non-equilibrium solidification of binary alloys in the ThermoCalc program. The script makes use of databases and calculation procedures of the POLY-3 module. A solidification model including diffusion in the solid state, developed by Wołczyński, is used to describe the non-equilibrium solidification. The model takes into account the influence of the degree of solute segregation on the solidification process by applying the so-called back-diffusion parameter. The core of the script is the iteration procedure with implemented model equation. The possibility of application of the presented calculation method is illustrated on the example of the Cr-30% Ni alloy. Computer simulations carried out with use of the developed script allow to determine the influence of the back-diffusion parameter on the course of solidification curves, solidus temperature, phase composition of the alloy and the fraction of each phase after the solidification completion, the profile of solute concentration in liquid during solidification process, the average solute concentration in solid phase at the eutectic temperature and many other quantities which are usually calculated in the ThermoCalc program.

  2. Observations of defect structure evolution in proton and Ni ion irradiated Ni-Cr binary alloys

    Science.gov (United States)

    Briggs, Samuel A.; Barr, Christopher M.; Pakarinen, Janne; Mamivand, Mahmood; Hattar, Khalid; Morgan, Dane D.; Taheri, Mitra; Sridharan, Kumar

    2016-10-01

    Two binary Ni-Cr model alloys with 5 wt% Cr and 18 wt% Cr were irradiated using 2 MeV protons at 400 and 500 °C and 20 MeV Ni4+ ions at 500 °C to investigate microstructural evolution as a function of composition, irradiation temperature, and irradiating ion species. Transmission electron microscopy (TEM) was applied to study irradiation-induced void and faulted Frank loops microstructures. Irradiations at 500 °C were shown to generate decreased densities of larger defects, likely due to increased barriers to defect nucleation as compared to 400 °C irradiations. Heavy ion irradiation resulted in a larger density of smaller voids when compared to proton irradiations, indicating in-cascade clustering of point defects. Cluster dynamics simulations were in good agreement with the experimental findings, suggesting that increases in Cr content lead to an increase in interstitial binding energy, leading to higher densities of smaller dislocation loops in the Ni-18Cr alloy as compared to the Ni-5Cr alloy.

  3. The Production of Nickel-Chromium-Molybdenum Alloy with Open Pore Structure as an Implant and the Investigation of Its Biocompatibility In Vivo

    Directory of Open Access Journals (Sweden)

    Yusuf Er

    2013-01-01

    Full Text Available A dental crown material, Nickel-Chrome-Molybdenum alloy, is manufactured using precision casting method from a polyurethane foam model in a regular and open-pore form, as a hard tissue implant for orthopedic applications. The samples produced have 10, 20, and 30 (±3 pores per inch of pore densities and 0.0008, 0.0017, and 0.0027 g/mm3 densities, respectively. Samples were implanted in six dogs and observed for a period of two, four, and six months for the histopathological examinations. The dogs were examined radiologically in 15-day intervals and clinically in certain intervals. The implants were taken out with surrounding tissue at the end of these periods. Implants and surrounding tissues were examined histopathologically in terms of biocompatibility. As a result, it is seen that new bone tissue was formed, in pores of the porous implant at the head of the tibia in dogs implanted. Any pathology, inflammation, and reaction in old and new tissues were not observed. It was concluded that a dental alloy (Ni-Cr-Mo alloy could also be used as a biocompatible hard tissue implant material for orthopedics.

  4. Surface morphological structures and electrochemical activity properties of iridium–niobium binary alloy electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Toru, E-mail: matsumoto.t@jemai.or.jp [Green Innovation Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba, Ibaraki 305-8501 (Japan); Sata, Naoaki [Green Innovation Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba, Ibaraki 305-8501 (Japan); Kobayashi, Kiyoshi [Advanced Ceramic Group, Advanced Materials Processing Unit, National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan); Yamabe-Mitarai, Yoko [High Temperature Materials Unit Functional Structure Materials Group, National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan)

    2013-10-01

    Highlights: • An Ir–23Nb alloy has the best oxidation capability among other Nb concentrations. • The reason is the Ir–23Nb has a large surface area which results from Ir + Ir{sub 3}Nb. • An Ir–23Nb glucose sensor detects glucose much better than an Ir glucose sensor. -- Abstract: The electrochemical activities of Ir–Nb binary alloys were investigated as functions of the alloy compositions, crystal structures, and surface morphologies for a hydrogen peroxide and ascorbic acid redox reaction. High activities for the redox reaction of hydrogen peroxide were observed when pure Ir and an alloy with a composition of 77 at% Ir–23 at% Nb (Ir–23Nb) were used. Tests on eight electrodes—Ir, Ir–13Nb, Ir–17Nb, Ir–23Nb, Ir–30Nb, Ir–43Nb, Ir–62Nb, and Nb—showed that at a constant potential difference of 0.7 V vs. Ag/AgCl, the Ir–23Nb electrode had the best hydrogen peroxide oxidation capability: 9.2 μA/mm{sup 2} for 2 mM hydrogen peroxide. Apart from Nb, Ir–23Nb gave the best performance in terms of preferential hydrogen peroxide oxidation against ascorbic acid. Subsequently, the Ir and Ir–23Nb electrodes were used for the fabrication of amperometric glucose sensors. We first coated the two electrodes with a γ-aminopropyltriethoxysilane membrane and then with a glucose oxidase membrane. Tests on the Ir and Ir–23Nb electrode glucose sensors showed that the latter had better glucose detection capability than the former: 0.226 μA/(mm{sup 2} mM) for the Ir–23Nb sensor with 1.67 mM glucose. We investigated the relationship between the electrode responses to both hydrogen peroxide and ascorbic acid and the electrode surface structures.

  5. Textured tape substrates from binary copper alloys with vanadium and yttrium for the epitaxial deposition of buffer and superconducting layers

    Science.gov (United States)

    Khlebnikova, Yu. V.; Rodionov, D. P.; Egorova, L. Yu.; Suaridze, T. R.

    2016-05-01

    The structure of tapes of binary Cu-0.6 wt % V and Cu-1 wt % Y alloys and texturing process of them in the course of cold deformation by rolling to 99% and subsequent recrystallizing annealing have been studied. The possibility of achieving the perfect cube texture in thin tapes made from binary copper-based alloys with vanadium and yttrium additions has in principle been shown. This opens the prospect of using them as substrates when manufacturing tapes of second-generation high-temperature superconductors. Optimum annealing conditions for the studied alloys have been determined, which have made it possible to produce the perfect biaxial texture with a content of cube {001} ± 10° grains on the surfaces of textured tapes of more than 95%.

  6. Enthalpies of Formation of Noble Metal Binary Alloys Bearing Rh or Ir

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The modified embedded atom method proposed by authors has been applied to calculating the enthalpies of formationof random alloys and the ordered intermetallic compounds for noble metal binary systems bearing Rh or lr. The presentresults are in good agreement with those of Miedema theory, available experiments and the first-principles quantummechanics calculations. The present results indicate that Cu-Rh, Cu-lr, Ag-Rh, Ag-lr, Au-Rh, Au-lr, Pd-Rh and Pd-lrsystems are repulsive, however, Ni-Rh, Ni-lr, Pt-lr, Pt-Rh and Rh-lr systems form solid solutions and Ni-Rh, Ni-lrand Pt-Rh show ordering tendency.

  7. Effects of G-Jitter on Directional Solidification of a Binary Alloy

    Science.gov (United States)

    Benjapiyaporn, C.; Timchenko, V.; deVahlDavis, G.; deGroh, H. C., III

    1999-01-01

    A study of directional solidification of a weak binary alloy (specifically, Bi - 1 at% Sn) based on the fixed grid single domain approach is being undertaken. The enthalpy method is used to solve for the temperature field over the computational domain including both the solid and liquid phases; latent heat evolution is treated with the aid of an effective specific heat coefficient. A source term accounting for the release of solute into the liquid during solidification has been incorporated into the solute transport equation. The vorticity-stream function formulation is used to describe thermo-solutal convection in the liquid region. In this paper we present a numerical simulation of g-jitter. A background gravity of 1 microgram has been assumed, and new results for the effects of periodic disturbances over a range of amplitudes and frequencies on solute field and segregation have been presented.

  8. Strontium As a Structure Modifier for Non-binary Al–Si Alloy

    Directory of Open Access Journals (Sweden)

    Barbora Bryksí Stunová

    2012-01-01

    Full Text Available This paper presents a study of the influence on the structure of AlSi10Mg alloy when 400 ppm of strontium is added. Not only changes in the morphology of eutectic silicon, but in particular changes in the morphology of the intermetallicphases are monitored, namely phases containing iron and magnesium. The effect of strontium on structural defects,namely cavities formation, is also observed. It was found, that in non-binary system Al–Si–Mg also intermetallic phases of magnesium are affected by addition of strontium: especially phase Mg2Si changes the morphology significantly fromunmodified to modified structure. Moreover, findings of other authors, that strontium has a negative effect on the levelof gas porosity and on the distribution of shrinkages, are also confirmed.

  9. Non-equilibrium phase transition properties of disordered binary ferromagnetic alloy

    Science.gov (United States)

    Vatansever, Erol; Akinci, Umit; Polat, Hamza

    2015-09-01

    Non-equilibrium dynamic phase transition features of a disordered binary ferromagnetic alloy consisting of spin- 1 / 2 and spin-1 components under the presence of a time dependent oscillating magnetic field have been analyzed for a two dimensional square lattice. With the help of Glauber-type stochastic process, the kinetic equations of time dependent magnetizations have been derived based on the effective-field theory with single-site correlations. A systematic analysis for the whole range of the concentrations of randomly distributed components as well as other system parameters has been carried out. According to our numerical investigations, the considered system presents unusual thermal and magnetic field behaviors such as the existence of dynamic multi-critical behavior and also boundaries of the coexistence region, where both dynamically ordered and disordered phases overlap, sensitively depends on the studied parameter space.

  10. Numerical simulation of dendrite growth and microsegregation formation of binary alloys during solidification process

    Institute of Scientific and Technical Information of China (English)

    Li Qiang; Guo Qiao-Yi; Li Rong-De

    2006-01-01

    The dendrite growth and solute microsegregation of Fe-C binary alloy are simulated during solidification process by using cellular automaton method.In the model the solid fraction is deduced from the relationship among the temperature,solute concentration and curvature of the solid/liquid interface unit,which can be expressed as a quadric equation,instead of assuming the interface position and calculating the solid fraction from the interface velocity.Then by using this model a dendrite with O and 45 degree of preferential growth direction are simulated respectively.Furthermore,a solidification microstructure and solute microsegregation are simulated by this method. Finally,different GibbsThomson coefficient and liquid solute diffusing coefficient are adopted to investigate their influences on the morphology of dendrite.

  11. Nonlinear dynamics theory on the steady state interface pattern during solidification of a dilute binary alloy

    Institute of Scientific and Technical Information of China (English)

    王自东; 胡汉起

    1997-01-01

    The nonlinear dynamics equations of the time dependence of the perturbation amplitude of the solid/ liquid interface during unidirectional solidification of a dilute binary alloy are established. The solutions to these equations are obtained, and the condition of the initial steady state growth of the cellular and dendritic structure after the planar solid/liquid interface bifurcates (mGc> G) with the increase of the growth rate is given. The condition of the steady state growth of fine cellular and dendritic structure in the beginning after the coarse dendrites bifurcate ( mGc<Γw2 + G) under the rapid solidification is obtained. The relationship of the steady state cell and dendrite tip radius, the perturbation amplitude and wavelength at the solid/liquid interface is presented.

  12. Phase field simulation of the columnar dendritic growth and microsegregation in a binary alloy

    Institute of Scientific and Technical Information of China (English)

    Li Jun-Jie; Wang Jin-Cheng; Yang Gen-Cang

    2008-01-01

    This paper applies a phase field model for polycrystalline solidification in binary alloys to simulate the formation and growth of the columnar dendritic array under the isothermal and constant cooling conditions.The solidification process and microsegregation in the mushy zone are analysed in detail.It is shown that under the isothermal condition solidification will stop after the formation of the mushy zone,but dendritic coarsening will progress continuously,which results in the decrease of the total interface area.Under the constant cooling condition the mushy zone will solidify and coarsen simultaneously. For the constant cooling solidification,microsegregation predicted by a modified Brody Flemings model is compared with the simulation results.It is found that the Fourier number which characterizes microsegregation is different for regions with different microstructures.Dendritic coarsening and the larger area of interface should account for the enhanced Fourier number in the region with well developed second dendritic arms.

  13. A study on the austenite-to-ferrite phase transformation in binary substitutional iron alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wits, J.J.; Kop, T.A.; Leeuwen, Y. van; Seitsma, J.; Zwaag, S. van der [Delft Univ. of Technol. (Netherlands). Lab. of Mater. Sci.

    2000-05-15

    The massive transformation from austenite to ferrite ({gamma}{yields}{alpha}) in binary substitutional Fe-X alloys, where X represents successively about 1 or 2 at.% of Co, Cu, Mn, Cr or Al, is experimentally investigated by means of dilatometry. The resulting transformation curves have been modelled by an interface-controlled growth model, taking the characteristics of the austenitic microstructure into account. The assumption of an Arrhenian temperature dependence of the interface mobility, defined as the ratio between the interface velocity and the driving force, is found to give a consistent picture of the observations with an activation energy for atoms crossing the interface of 140 kJ mol{sup -1}. The spurious presence of interstitial nitrogen is shown to have a significant effect on the mobility, as large as a factor 8 at concentration levels on the order of 10{sup -4}. (orig.)

  14. Enthalpies of mixing in binary liquid alloys of lutetium with 3d metals

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Michael; Berezutski, Vadim [National Academy of Sciences, Kyiv (Ukraine). I. Frantsevich Institute for Problems of Materials Science; Usenko, Natalia; Kotova, Natalia [Taras Shevchenko National Univ., Kyiv (Ukraine). Dept. of Chemistry

    2017-01-15

    The enthalpies of mixing in binary liquid alloys of lutetium with chromium, cobalt, nickel and copper were determined at 1 773 - 1 947 K by isoperibolic calorimetry. The enthalpies of mixing in the Lu-Cr melts (measured up to 40 at.% Cr) demonstrate endothermic effects (ΔH = 6.88 ± 0.66 kJ . mol{sup -1} at x{sub Lu} = 0.60), whereas significant exothermic enthalpies of mixing have been established within a wide composition region for the Co-Lu, Ni-Lu and Cu-Lu liquid alloys. Minimum values of the integral enthalpy of mixing are as follows: ΔH{sub min} = -23.57 ± 1.41 kJ . mol{sup -1} at x{sub Lu} = 0.38 for the Co-Lu system; ΔH{sub min} = -48.65 ± 2.83 kJ . mol{sup -1} at x{sub Lu} = 0.40 for the Ni-Lu system; ΔH{sub min} = -24.63 ± 1.52 kJ . mol{sup -1} at x{sub Lu} = 0.37 for the Cu-Lu system.

  15. Determination of thermodynamic properties of aluminum based binary and ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Altıntas, Yemliha [Abdullah Gül University, Faculty of Engineering, Department of Materials Science and Nanotechnology, 38039, Kayseri (Turkey); Aksöz, Sezen [Nevşehir Hacı Bektaş Veli University, Faculty of Arts and Science, Department of Physics, 50300, Nevşehir (Turkey); Keşlioğlu, Kâzım, E-mail: kesli@erciyes.edu.tr [Erciyes University, Faculty of Science, Department of Physics, 38039, Kayseri (Turkey); Maraşlı, Necmettin [Yıldız Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Metallurgical and Materials Engineering, 34210, Davutpaşa, İstanbul (Turkey)

    2015-11-15

    In the present work, the Gibbs–Thomson coefficient, solid–liquid and solid–solid interfacial energies and grain boundary energy of a solid Al solution in the Al–Cu–Si eutectic system were determined from the observed grain boundary groove shapes by measuring the thermal conductivity of the solid and liquid phases and temperature gradient. Some thermodynamic properties such as the enthalpy of fusion, entropy of fusion, the change of specific heat from liquid to solid and the electrical conductivity of solid phases at their melting temperature were also evaluated by using the measured values of relevant data for Al–Cu, Al–Si, Al–Mg, Al–Ni, Al–Ti, Al–Cu–Ag, Al–Cu–Si binary and ternary alloys. - Highlights: • The microstructure of the Al–Cu–Si eutectic alloy was observed through SEM. • The three eutectic phases (α-Al, Si, CuAl{sub 2}) have been determined by EDX analysis. • Solid–liquid and solid–solid interfacial energies of α-Al solution were determined. • ΔS{sub f},ΔH{sub M}, ΔC{sub P}, electrical conductivity of solid phases for solid Al solutions were determined. • G–T coefficient and grain boundary energy of solid Al solution were determined.

  16. Annealing response of binary Al–7Mg alloy deformed by equal channel angular pressing

    Energy Technology Data Exchange (ETDEWEB)

    Zha, Min, E-mail: min.zha@material.ntnu.no [Department of Materials Science and Engineering, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Li, Yanjun [SINTEF Materials and Chemistry, 7465 Trondheim (Norway); Mathiesen, Ragnvald H.; Bjørge, Ruben [Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Roven, Hans J. [Department of Materials Science and Engineering, Norwegian University of Science and Technology, 7491 Trondheim (Norway)

    2013-12-01

    The annealing response in a binary Al–7Mg alloy processed at room temperature by equal channel angular pressing (ECAP) has been investigated via X-ray diffraction (XRD), electron-probe micro analysis (EPMA) and electron backscattering diffraction (EBSD). After ECAP and subsequent annealing, Mg remains mainly homogeneously distributed in solid solution. A bimodal structure with ultrafine grains accompanied by micrometer-sized crystallites was developed after 3 passes. Upon annealing at ∼275 °C for 96 h, extensive recovery was observed in the as-deformed material, leading to a relatively uniform microstructure; at ∼300 °C a discontinuous recrystallization initiated in less than 30 s with subsequent grain growth clearly evident. Such remarkable thermal stability, i.e., slower recovery and recrystallization kinetics, of the present material, in contrast to other severely deformed commercial pure Al and Al–Mg alloys, is due mainly to the presence of high Mg solid solution contents, the formation of the bimodal structure consisting of both coarse crystallites and ultrafine grains. In addition, the possible Mg-containing precipitates during annealing might also retard the recrystallization kinetics.

  17. Interaction behavior between binary xCe-yNd alloy and HT9

    Science.gov (United States)

    Kim, Jun Hwan; Cheon, Jin Sik; Lee, Byoung Oon; Kim, June Hyung

    2016-10-01

    Studies were carried out to investigate the role of Ce and Nd, contained inside metal fuel during reactor operation, and their effect on the Fuel-Cladding Chemical Interaction (FCCI) phenomenon, which limits fuel performance in the Sodium-cooled Fast Reactor (SFR). Binary model alloys of xCe-yNd were manufactured, and then diffusion couple tests with HT9 (12Cr-1MoWV) ferritic-martensitic cladding material were carried out at a temperature of 660 °C for up to 25 h. The results showed that both Ce and Nd reacted with Fe in the cladding material to form an interaction layer. Analysis of the microstructure and reaction kinetics revealed that Fe in the cladding material rapidly migrates into Ce to form eutectic reaction, leaving a Fe depleted zone, in which Ce substitutes. In the case of Nd element, a typical solid-solid diffusion process governed to form a Fe17Nd2 type intermetallic compound. Synergism between Ce and Nd occurred so that the reaction thickness was increased, reaching the maximum reaction thickness in the case of the xCe-yNd alloy, whose composition was nearly 1:1.

  18. In vitro and in vivo comparison of binary Mg alloys and pure Mg.

    Science.gov (United States)

    Myrissa, Anastasia; Agha, Nezha Ahmad; Lu, Yiyi; Martinelli, Elisabeth; Eichler, Johannes; Szakács, Gábor; Kleinhans, Claudia; Willumeit-Römer, Regine; Schäfer, Ute; Weinberg, Annelie-Martina

    2016-04-01

    Biodegradable materials are under investigation due to their promising properties for biomedical applications as implant material. In the present study, two binary magnesium (Mg) alloys (Mg2Ag and Mg10Gd) and pure Mg (99.99%) were used in order to compare the degradation performance of the materials in in vitro to in vivo conditions. In vitro analysis of cell distribution and viability was performed on discs of pure Mg, Mg2Ag and Mg10Gd. The results verified viable pre-osteoblast cells on all three alloys and no obvious toxic effect within the first two weeks. The degradation rates in in vitro and in vivo conditions (Sprague-Dawley® rats) showed that the degradation rates differ especially in the 1st week of the experiments. While in vitro Mg2Ag displayed the fastest degradation rate, in vivo, Mg10Gd revealed the highest degradation rate. After four weeks of in vitro immersion tests, the degradation rate of Mg2Ag was significantly reduced and approached the values of pure Mg and Mg10Gd. Interestingly, after 4 weeks the estimated in vitro degradation rates approximate in vivo values. Our systematic experiment indicates that a correlation between in vitro and in vivo observations still has some limitations that have to be considered in order to perform representative in vitro experiments that display the in vivo situation.

  19. MD simulation of atomic displacement cascades in Fe-10 at.%Cr binary alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tikhonchev, M., E-mail: tikhonchev@sv.ulsu.r [Ulyanovsk State University, Leo Tolstoy Str., 42, Ulyanovsk 432970 (Russian Federation); Joint Stock Company, ' State Scientific Center Research Institute of Atomic Reactors' , 433510 Dimitrovgrad-10 (Russian Federation); Svetukhin, V.; Kadochkin, A. [Ulyanovsk State University, Leo Tolstoy Str., 42, Ulyanovsk 432970 (Russian Federation); Gaganidze, E. [Forschungszentrum Karlsruhe, IMF II, 3640, D-76021 Karlsruhe (Germany)

    2009-12-15

    Molecular dynamics simulation of atomic displacement cascades up to 20 keV has been performed in Fe-10 at.%Cr binary alloy at a temperature of 600 K. The N-body interatomic potentials of Finnis-Sinclair type were used. According to the obtained results the dependence of 'surviving' defects amount is well approximated by power function that coincides with other researchers' results. Obtained cascade efficiency for damage energy in the range from 10 to 20 keV is approx0.2 NRT that is slightly higher than for pure alpha-Fe. In post-cascade area Cr fraction in interstitials is in range 2-5% that is essentially lower than Cr content in the base alloy. The results on size and amount of vacancy and interstitial clusters generated in displacement cascades are obtained. For energies of 2 keV and higher the defect cluster average size increases and it is well approximated by a linear dependence on cascade energy both for interstitials and vacancies.

  20. Kinetics and Equilibrium of Age-Induced Precipitation in Cu-4 At. Pct Ti Binary Alloy

    Science.gov (United States)

    Semboshi, Satoshi; Amano, Shintaro; Fu, Jie; Iwase, Akihiro; Takasugi, Takayuki

    2017-03-01

    Transformation kinetics and phase equilibrium of metastable and stable precipitates in age-hardenable Cu-4 at. pct Ti binary alloy have been investigated by monitoring the microstructural evolution during isothermal aging at temperatures between 693 K (420 °C) and 973 K (700 °C). The microstructure of the supersaturated solid solution evolves in four stages: compositional modulation due to spinodal decomposition, continuous precipitation of the needle-shaped metastable β'-Cu4Ti with a tetragonal structure, discontinuous precipitation of cellular components containing stable β-Cu4Ti lamellae with an orthorhombic structure, and eventually precipitation saturation at equilibrium. In specimens aged below 923 K (650 °C), the stable β-Cu4Ti phase is produced only due to the cellular reaction, whereas it can be also directly obtained from the intergranular needle-shaped β'-Cu4Ti precipitates in specimens aged at 973 K (700 °C). The precipitation kinetics and phase equilibrium observed for the specimens aged between 693 K (420 °C) and 973 K (700 °C) were characterized in accordance with a time-temperature-transformation (TTT) diagram and a Cu-Ti partial phase diagram, which were utilized to determine the alloy microstructure, strength, and electrical conductivity.

  1. FORMATION REGULARITIES OF PHASE COMPOSITION, STRUCTURE AND PROPERTIES DURING MECHANICAL ALLOYING OF BINARY ALUMINUM COMPOSITES

    Directory of Open Access Journals (Sweden)

    F. G. Lovshenko

    2015-01-01

    Full Text Available The paper presents investigation results pertaining to  ascertainment of formation regularities of phase composition and structure during mechanical alloying of binary aluminium composites/substances. The invetigations have been executed while applying a wide range of methods, devices and equipment used in modern material science. The obtained data complement each other. It has been established that presence of oxide and hydro-oxide films on aluminium powder  and introduction of surface-active substance in the composite have significant effect on mechanically and thermally activated phase transformations and properties of semi-finished products.  Higher fatty acids have been used as a surface active substance.The mechanism of mechanically activated solid solution formation has been identified. Its essence is  a formation of  specific quasi-solutions at the initial stage of processing. Mechanical and chemical interaction between components during formation of other phases has taken place along with dissolution  in aluminium while processing powder composites. Granule basis is formed according to the dynamic recrystallization mechanism and possess submicrocrystal structural type with the granule dimension basis less than 100 nm and the grains are divided in block size of not more than 20 nm with oxide inclusions of 10–20 nm size.All the compounds  with the addition of  surface-active substances including aluminium powder without alloying elements obtained by processing in mechanic reactor are disperse hardened. In some cases disperse hardening is accompanied by dispersive and solid solution hardnening process. Complex hardening predetermines a high temperature of recrystallization in mechanically alloyed compounds,  its value exceeds 400 °C.

  2. Crystallographic information of intermediate phases in binary Mg–X (X=Sn, Y, Sc, Ag alloys

    Directory of Open Access Journals (Sweden)

    Dongyan Liu

    2015-09-01

    Full Text Available The compositions and structures of thermodynamically stable or metastable precipitations in binary Mg-X (X=Sn, Y, Sc, Ag alloys are predicted using ab-initio evolutionary algorithm. The geometry optimizations of the predicted intermetallic compounds are carried out in the framework of density functional theory (DFT [1]. A complete list of the optimized crystallographic information (in cif format of the predicted intermetallic phases is presented here. The data is related to “Predictions on the compositions, structures, and mechanical properties of intermediate phases in binary Mg–X (X=Sn, Y, Sc, Ag alloys” by Liu et al. [2].

  3. Simulation of the decomposition of binary alloys on the basis of the free energy density functional method

    Science.gov (United States)

    L'vov, P. E.; Svetukhin, V. V.

    2017-02-01

    The simulation of the decomposition of a three-dimensional fragment of a solid solution satisfying the regular solution approximation has been carried out based on the Cahn-Hilliard equation taking into account the Gaussian fluctuations of the initial state of the alloy. The simulation has been performed for several temperatures and revealed the existence of four stages (nucleation, growth, coagulation, and coalescence) of the process. The influence of the temperature on the distribution of phases during the decomposition of binary alloys has been established, and the specific features in the change of stages of the decomposition process have been revealed.

  4. NUMERICAL ANALYSES FOR TREATING DIFFUSION IN SINGLE-, TWO-, AND THREE-PHASE BINARY ALLOY SYSTEMS

    Science.gov (United States)

    Tenney, D. R.

    1994-01-01

    This package consists of a series of three computer programs for treating one-dimensional transient diffusion problems in single and multiple phase binary alloy systems. An accurate understanding of the diffusion process is important in the development and production of binary alloys. Previous solutions of the diffusion equations were highly restricted in their scope and application. The finite-difference solutions developed for this package are applicable for planar, cylindrical, and spherical geometries with any diffusion-zone size and any continuous variation of the diffusion coefficient with concentration. Special techniques were included to account for differences in modal volumes, initiation and growth of an intermediate phase, disappearance of a phase, and the presence of an initial composition profile in the specimen. In each analysis, an effort was made to achieve good accuracy while minimizing computation time. The solutions to the diffusion equations for single-, two-, and threephase binary alloy systems are numerically calculated by the three programs NAD1, NAD2, and NAD3. NAD1 treats the diffusion between pure metals which belong to a single-phase system. Diffusion in this system is described by a one-dimensional Fick's second law and will result in a continuous composition variation. For computational purposes, Fick's second law is expressed as an explicit second-order finite difference equation. Finite difference calculations are made by choosing the grid spacing small enough to give convergent solutions of acceptable accuracy. NAD2 treats diffusion between pure metals which form a two-phase system. Diffusion in the twophase system is described by two partial differential equations (a Fick's second law for each phase) and an interface-flux-balance equation which describes the location of the interface. Actual interface motion is obtained by a mass conservation procedure. To account for changes in the thicknesses of the two phases as diffusion

  5. A relationship to estimate the excess entropy of mixing: Application in silicate solid solutions and binary alloys.

    Science.gov (United States)

    Benisek, Artur; Dachs, Edgar

    2012-06-25

    The paper presents new calorimetric data on the excess heat capacity and vibrational entropy of mixing of Pt-Rh and Ag-Pd alloys. The results of the latter alloy are compared to those obtained by calculations using the density functional theory. The extent of the excess vibrational entropy of mixing of these binaries and of some already investigated binary mixtures is related to the differences of the end-member volumes and the end-member bulk moduli. These quantities are used to roughly represent the changes of the bond length and stiffness in the substituted and substituent polyhedra due to compositional changes, which are assumed to be the important factors for the non-ideal vibrational behaviour in solid solutions.

  6. The steady-state solution of dendritic growth from the undercooled binary alloy melt with the far field flow

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The steady-state dendritic growth from the undercooled binary alloy melt with the far field flow is considered. By neglecting the interface energy, interface kinetics and buoyancy effects in the system, we obtaine the steady-state solution for the case of the large Schmidt number, in terms of the multiple variable expansion method. The changes of the temperature and concentration fields, the morphology of the interface, the normalization parameter and the Peclet number of the system induced by uniform external flow are derived. The results show that, compared with the system of dendritic growth from undercooled pure melt, the convective flow in the system of growth from undercooled binary alloy has stronger effects on the morphology of the interface. Nevertheless, the shape of the interface still remains nearly a paraboloid.

  7. The steady-state solution of dendritic growth from the undercooled binary alloy melt with the far field flow

    Institute of Scientific and Technical Information of China (English)

    CHEN MingWen; WANG ZiDong; XU JianJun

    2009-01-01

    The steady-state dendritic growth from the undercooled binary alloy melt with the far field flow is considered.By neglecting the interface energy,interface kinetics and buoyancy effects in the system,we obtaine the steady-state solution for the case of the large Schmidt number,in terms of the multiple variable expansion method.The changes of thtemperature and concentration fields,the morphology of the interface,the normalization parameter and the Peclet number of the system induced by uniform external flow are derived.The results show that,compared with the system of dendritic growth from undercooled pure melt,the convective flow in the system of growth from undercooled binary alloy has stronger effects on the morphology of the interface.Nevertheless,the shape of the interface still remains nearly a paraboloid.

  8. Friction stir surfacing of cast A356 aluminium–silicon alloy with boron carbide and molybdenum disulphide powders

    OpenAIRE

    R. Srinivasu; A.Sambasiva Rao; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2015-01-01

    Good castability and high strength properties of Al–Si alloys are useful in defence applications like torpedoes, manufacture of Missile bodies, and parts of automobile such as engine cylinders and pistons. Poor wear resistance of the alloys is major limitation for their use. Friction stir processing (FSP) is a recognized surfacing technique as it overcomes the problems of fusion route surface modification methods. Keeping in view of the requirement of improving wear resistance of cast alumini...

  9. Numerical study of the influence of an applied electrical potential on the solidification of a binary metal alloy

    OpenAIRE

    Nikrityuk, P. A.; Eckert, K.; Grundmann, R

    2007-01-01

    In this work we study numerically the influence of a homogeneous electrical field on the fluid and heat transfer phenomena at macroscale and mesoscale during unidirectional solidification of a binary metal alloy. The numerical results showed that a pulse electric discharging applied perpendicularly to the solidification front leads to a much stronger Joule heating of the liquid phase in comparison to the solid phase. It was found that on the mesoscopic scale the electric current density is no...

  10. 微合金钢中钛钼复合析出的第一性原理研究%Study on First Principle of Complex Precipitation of Titanium and Molybdenum in Micro-alloyed Steel

    Institute of Scientific and Technical Information of China (English)

    赵冬伟; 曹建春; 周晓龙; 彭谦之

    2012-01-01

    The formation energy of complex carbonitrides of titanium and molybdenum, which may precipitate in low alloyed steel, was computed using materials studiq-CASTEP module. The calculated results indicate that the effect of molybdenum on the formation energy of (Ti1-xMox)C presents a parasol trend. The formation energy of (Ti1-x Mox)C first decreases and then increases with increasing molybdenum content, and the maximum appears when Ti/Mo is 1. The formation energy of titanium carbide is lower than that of molybdenum carbide. Molybdenum can reduce the formation energy of (Ti1-x Mox)(CyN1-y) and the impact becomes sluggish as molybdenum content increasing. The formation energy of nitrogen-rich carbonitrides is lower than that of carbon-rich carbonitrides.%利用Materials Studio中CASTEP模块对钢中出现的钛钼复合析出相的形成能进行计算.结果表明,Mo含量对碳化钛钼形成能的影响趋势呈抛物线状,以Ti/Mo值等于1为界,随着Mo含量的增加,碳化钛钼的形成能先降低后升高;TiC的形成能比MoC的低,Mo会降低碳氮化钛钼的形成能,且降低幅度随钼含量增加逐渐减小;富氮的碳氮化钛钼比富碳的碳氮化钛钼具有更低的形成能.

  11. Structure, elastic and bonding properties of hcp ZrxTi1-x binary alloy from first-principles calculations

    CERN Document Server

    Songjun, Hou; Sunchao, Huang; Zhi, Zeng

    2015-01-01

    First principles calculations were performed to study the structural, elastic, and bonding properties of hcp ZrxTi1-x binary alloy. The special quasi- random structure (SQS) method is employed to mimic the random hcp ZrxTi1-x alloy. It is found that Bulk modulus, B, Young's modulus, E, and shear modulus, G, exhibit decreasing trends as increasing the amount of Zr. A ductile behavior ZrxTi1-x is predicted in the whole composition range. In terms of Mulliken charge analisis, we found that the element Ti behaves much more electronegative than Zr in hcp ZrxTi1-x alloy, and the charge transfer of an atom is approximately linear to the amount of other element atom surrounding it.

  12. The solubility of hydrogen in liquid binary Al-Li alloys

    Science.gov (United States)

    Anyalebechi, P. N.; Talbot, D. E. J.; Granger, D. A.

    1988-04-01

    The solubility of hydrogen in liquid binary aluminum alloys with 1, 2, and 3 wt pct lithium has been determined for the temperature range of 913 to 1073 K and pressure 5.3 × 104 to 10.7 × 104 Pa, using an appropriate version of Sieverts’ method. The results fit the Van’t Hoff isobar and Sieverts’ isotherm and the solubility, S, is given by: Al-1 pct Li: log( S/S°) - 1/2 log( P/P°) = -2113/T/k + 2.568 Al-1 pct Li: log( S/S°) - 1/2 log( P/P°) = -2797/T/k + 3.329 Al-1 pct Li: log( S/S°) - 1/2 log( P/P°) = -2889/T/k + 3.508 where S° is a standard value of solubility equal to 1 cm3 of diatomic hydrogen measured at 273 K and 101,325 Pa per 100 g of metal, and P° is a standard pressure equal to 101,325 Pa. Added lithium progressively increases the solubility of hydrogen in liquid aluminum, due more to its effect on the entropy of solution of hydrogen, through its influence on the liquid metal structure than to an increase in the solute hydrogen atom binding enthalpy.

  13. Numerical simulation of boundary heat flow effects on directional solidification microstructure of a binary alloy

    Directory of Open Access Journals (Sweden)

    Xue Xiang

    2010-08-01

    Full Text Available The boundary heat flow has important significance for the microstructures of directional solidified binary alloy. Interface evolution of the directional solidified microstructure with different boundary heat flow was discussed. In this study, only one interface was allowed to have heat flow, and Neumann boundary conditions were imposed at the other three interfaces. From the calculated results, it was found that different boundary heat flows will result in different microstructures. When the boundary heat flow equals to 20 W·cm-2, the growth of longitudinal side branches is accelerated and the growth of transverse side branches is restrained, and meanwhile, there is dendritic remelting in the calculation domain. When the boundary heat flow equals to 40 W·cm-2, the growths of the transverse and longitudinal side branches compete with each other, and when the boundary heat flow equals to 100-200 W·cm-2, the growth of transverse side branches dominates absolutely. The temperature field of dendritic growth was analyzed and the relation between boundary heat flow and temperature field was also investigated.

  14. Directional Solidification of a Binary Alloy into a Cellular Convective Flow: Localized Morphologies

    Science.gov (United States)

    Chen, Y.- J.; Davis, S. H.

    1999-01-01

    A steady, two dimensional cellular convection modifies the morphological instability of a binary alloy that undergoes directional solidification. When the convection wavelength is far longer than that of the morphological cells, the behavior of the moving front is described by a slow, spatial-temporal dynamics obtained through a multiple-scale analysis. The resulting system has a "parametric-excitation" structure in space, with complex parameters characterizing the interactions between flow, solute diffusion, and rejection. The convection stabilizes two dimensional disturbances oriented with the flow, but destabilizes three dimensional disturbances in general. When the flow is weak, the morphological instability behaves incommensurably to the flow wavelength, but becomes quantized and forced to fit into the flow-box as the flow gets stronger. At large flow magnitudes the instability is localized, confined in narrow envelopes with cells traveling with the flow. In this case the solutions are discrete eigenstates in an unbounded space. Their stability boundary and asymptotics are obtained by the WKB analysis.

  15. Effect of g-jitter on Directional Solidification of a Binary Alloy

    Science.gov (United States)

    Santiviriyapanich, P.; Benjapiyaporn, C.; Timchenko, V.; deVahlDavis, G.; Leonardi, E.; deGroh, H. C., III

    2000-01-01

    A study of directional solidification of a weak binary alloy (specifically, Bi - 1 at% Sn) based on the fixed grid single domain approach is being undertaken. The enthalpy method is used to solve for the temperature field over the computational domain including both the solid and liquid phases; latent heat evolution is treated with the aid of an effective specific heat coefficient. A source term accounting for the release of solute into the liquid during solidification has been incorporated into the solute transport equation. The vorticity-stream function formulation is used to describe thermosolutal convection in the liquid region. In this paper we present a numerical simulation of g-jitter: the small, rapid fluctuations in gravitational acceleration which may be experienced in an orbiting space vehicle. A background gravity of 1 micro-g has been assumed, and new results for the effects of orientation angle of the periodic disturbances over a range of amplitudes and frequencies on solute field and segregation have been presented.

  16. Numerical simulation of boundary heat flow effects on directional solidification microstructure of a binary alloy

    Institute of Scientific and Technical Information of China (English)

    Xue Xiang; Tang Jinjun

    2010-01-01

    The boundary heat flow has important significance for the microstructures of directional solidified binary alloy. Interface evolution of the directional solidified microstructure with different boundary heat flow was discussed. In this study, only one interface was allowed to have heat flow, and Neumann boundary conditions were imposed at the other three interfaces. From the calculated results, it was found that different boundary heat flows will result in different microstructures. When the boundary heat flow equals to 20 W-cm-2, the growth of longitudinal side branches is accelerated and the growth of transverse side branches is restrained, and meanwhile, there is dendritic remelting in the calculation domain. When the boundary heat flow equals to 40 W-cm-2, the growths of the transverse and longitudinal side branches compete with each other, and when the boundary heat flow equals to 100-200 W-cm-2, the growth of transverse side branches dominates absolutely. The temperature field of dendritic growth was analyzed and the relation between boundary heat flow and temperature field was also investigated.

  17. Electronic Origin of the Orthorhombic Cmca Structure in Compressed Elements and Binary Alloys

    Directory of Open Access Journals (Sweden)

    Valentina F. Degtyareva

    2013-07-01

    Full Text Available Formation of the complex structure with 16 atoms in the orthorhombic cell, space group Cmca (Pearson symbol oC16, was experimentally found under high pressure in the alkali elements (K, Rb, Cs and polyvalent elements of groups IV (Si, Ge and V (Bi. Intermetallic phases with this structure form under pressure in binary Bi-based alloys (Bi-Sn, Bi-In, Bi-Pb. Stability of the Cmca-oC16 structure is analyzed within the nearly free-electron model in the frame of Fermi sphere-Brillouin zone interaction. A Brillouin-Jones zone formed by a group of strong diffraction reflections close to the Fermi sphere is the reason for the reduction of crystal energy and stabilization of the structure. This zone corresponds well to the four valence electrons in Si and Ge, and leads to assume an spd-hybridization for Bi. To explain the stabilization of this structure within the same model in alkali metals, that are monovalents at ambient conditions, a possibility of an overlap of the core, and valence band electrons at strong compression, is considered. The assumption of the increase in the number of valence electrons helps to understand sequences of complex structures in compressed alkali elements and unusual changes in their physical properties, such as electrical resistance and superconductivity.

  18. Experimental studies of an In/Pb binary surface alloy on Ge(111)

    Science.gov (United States)

    Sohail, Hafiz M.; Uhrberg, R. I. G.

    2016-07-01

    In this study, we present a binary In/Pb surface alloy on Ge(111) formed by evaporating In on the Pb/Ge(111)√{ 3} ×√{ 3} β phase. A well-defined 3 × 3 periodicity is formed after annealing, as verified by both low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). Overview STM images show a clear 3 × 3 periodicity. Detailed STM images reveal protrusions corresponding to atomic sized features with a local hexagonal arrangement. Each 3 × 3 unit cell contains nine such features indicating a structure with 9 atoms per 3 × 3 cell in the topmost layer. Based on angle resolved photoelectron spectroscopy (ARPES) data, we have identified five surface bands within the bulk band gap. Four of them cross the Fermi level leading to a metallic character of the surface. The dispersions of these bands have been mapped in detail along two high symmetry directions of the surface Brillouin zone. Constant energy contours, mapped in two dimensional k-space, show interesting features. In particular, the occurrence of two differently rotated hexagon-like contours is presented.

  19. Preparation of low-platinum-content platinum-nickel, platinum-cobalt binary alloy and platinum-nickel-cobalt ternary alloy catalysts for oxygen reduction reaction in polymer electrolyte fuel cells

    Science.gov (United States)

    Li, Mu; Lei, Yanhua; Sheng, Nan; Ohtsuka, Toshiaki

    2015-10-01

    A series of low-platinum-content platinum-nickel (Pt-Ni), platinum-cobalt (Pt-Co) binary alloys and platinum-nickel-cobalt (Pt-Ni-Co) ternary alloys electrocatalysts were successfully prepared by a three-step process based on electrodeposition technique and studied as electrocatalysts for oxygen reduction reaction (ORR) in polymer-electrolyte fuel cells. Kinetics of ORR was studied in 0.5 M H2SO4 solution on the Pt-Ni, Pt-Co and Pt-Ni-Co alloys catalysts using rotating disk electrode technique. Both the series of Pt-Ni, Pt-Co binary alloys and the Pt-Ni-Co ternary alloys catalysts exhibited an obvious enhancement of ORR activity in comparison with pure Pt. The significant promotion of ORR activities of Pt-Ni and Pt-Co binary alloys was attributed to the enhancement of the first electron-transfer step, whereas, Pt-Ni-Co ternary alloys presented a more complicated mechanism during the electrocatalysis process but a much more efficient ORR activities than the binary alloys.

  20. The Role of Si and Cu Alloying Elements on the Dendritic Growth and Microhardness in Horizontally Solidified Binary and Multicomponent Aluminum-Based Alloys

    Science.gov (United States)

    Araújo, Eugênio C.; Barros, André S.; Kikuchi, Rafael H.; Silva, Adrina P.; Gonçalves, Fernando A.; Moreira, Antonio L.; Rocha, Otávio L.

    2017-03-01

    Horizontal directional solidification (HDS) experiments were carried out with Al-3wtpctCu, Al-3wtpctSi, and Al- 3wtpctCu-5.5wtpctSi alloys in order to analyze the interrelation between the secondary dendrite arm spacing ( λ 2) and microhardness (HV). A water-cooled horizontal directional solidification device was applied. Microstructural characterization has been carried out using traditional techniques of metallography, optical, and SEM microscopy. The ThermoCalc software was used to generate the phase equilibrium diagrams as a function of Cu and Si for the analyzed alloys. The effects of Si and Cu elements on the λ 2 and HV evolution of the hypoeutectic binary Al-Cu and Al-Si alloys have been analyzed as well as the addition of Si in the formation of ternary Al-Cu-Si alloy. The secondary dendrite arm spacing was correlated with local solidification thermal parameters such as growth rate ( V L), cooling rate ( T R), and local solidification time ( t SL). This has allowed to observe that power experimental functions given by λ 2 = Constant ( V L)-2/3, λ 2 = Constant ( T R)-1/3 and λ 2 = Constant ( t SL)1/3 may represent growth laws of λ 2 with corresponding thermal parameters for investigated alloys. Hall-Petch equations have also been used to characterize the dependence of HV with λ 2. A comparative analysis is performed between λ 2 experimental values obtained in this study for Al-3wtpctCu-5.5wtpctSi alloy and the only theoretical model from the literature that has been proposed to predict the λ 2 growth in multicomponent alloys. Comparisons with literature results for upward directional solidification were also performed.

  1. Influência do teor de Mo na microestrutura de ligas Fe-9Cr-xMo Effect of the content of molybdenum in the microstructure of Fe-9Cr-xMo alloy

    Directory of Open Access Journals (Sweden)

    Rodrigo Freitas Guimarães

    2010-12-01

    Full Text Available Aços Cr-Mo são usados na indústria do petróleo em aplicações com óleos crus ricos em compostos sulfurosos. Aços comerciais como 2.5Cr1Mo ou 9Cr1Mo têm se mostrado ineficientes em consequência de altos índices de corrosão naftênica. Uma estratégia para resolver este problema é o aumento do teor de molibdênio destes aços. Neste trabalho foi estudado o efeito do aumento do teor de molibdênio na microestrutura de ligas Fe-9Cr-xMo, solubilizadas e soldadas. Foram levantados os diagramas de fases com auxílio de um programa comercial para verificar as possíveis fases a serem formadas e identificar os problemas de soldagem. A microestrutura das ligas solubilizadas foi analisada por microscopia óptica e EBSD, além da medição da dureza. Foram realizadas soldagens autógenas para verificar o efeito do aporte térmico na microestrutura e na dureza das ligas. O aumento do teor de molibdênio resultou no aumento da dureza das ligas. A análise microestrutural das ligas soldadas apresentou uma particularidade para a liga com menor teor de molibdênio, a presença de martensita. Já as ligas com maior teor de molibdênio apresentaram uma microestrutura completamente ferrítica. A formação de martensita pode ser um problema na solda da liga com menor teor de molibdênio, uma vez que a mesma pode causar perdas nas propriedades mecânicas comprometendo sua aplicação.Cr-Mo steels are used in the petroleum industry in applications with crude oils rich in sulfur compounds. 2.5Cr1Mo or 9Cr1Mo do not resist to operating conditions when in contact with crude oils. The increasing of molybdenum content can improve the corrosion resistance of these alloys. This paper studied the effect of increased concentration of molybdenum in the microstructure of Fe-9Cr-xMo alloys, annealed and welded. Phase diagrams were built with the aid of commercial program to check the possible phases to be formed and to identify the problems of welding. Analyses were

  2. Quantum chemical analysis of binary and ternary ferromagnetic alloys; Quantenchemische Untersuchungen binaerer und ternaerer ferromagnetischer Legierungen

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Yasemin Erika Charlotte

    2007-02-23

    In this work the electronic structures, densities of states, chemical bonding, magnetic exchange Parameters and Curie temperatures of binary and ternary ferromagnetic alloys are analyzed. The electronic structure of ferromagnetic MnAl has been calculated using density-functional techniques (TB-LMTO-ASA, FPLAPW) and quantum chemically analyzed by means of the crystal orbital Hamilton population analysis. The crystal structure of the ferromagnetic tetragonal MnAl may be understood to originate from the structure of nonmagnetic cubic MnAl with a CsCl motif through a two-step process. While the nonmagnetic cubic structure is stable against a structural deformation, antibonding Mn-Mn interactions at the Fermi level lead to spin polarization and the onset of magnetism, i.e., a symmetry reduction taking place solely in the electronic degrees of freedom, by that emptying antibonding Mn-Mn states. Residual antibonding Al--Al states can only be removed by a subsequent, energetically smaller structural deformation towards the tetragonal system. As a final result, homonuclear bonding is strengthened and heteronuclear bonding is weakened. Corresponding DFT calculations of the electronic structure as well as the calculation of the chemical bonding and the magnetic exchange interactions have been performed on the basis of LDA and GGA for a series of ferromagnetic full Heusler alloys of general formula Co2MnZ (Z=Ga,Si,Ge,Sn), Rh2MnZ (Z=Ge,Sn,Pb), Ni2MnZ (Z=Ga,In,Sn), Pd2MnZ (Z=Sn,Sb) and Cu2MnZ (Z=Al,In,Sn). The connection between the electronic spectra and the magnetic interactions have been studied. Correlations between the chemical bondings in Heusler alloys derived from COHP analysis and magnetic phenomena are obvious, and different mechanisms leading to spin polarization and ferromagnetism are derived. The band dependence of the exchange parameters, their dependence on volume and valence electron concentration have been thoroughly analyzed within the Green function technique

  3. Platinum-free binary Co-Ni alloy counter electrodes for efficient dye-sensitized solar cells.

    Science.gov (United States)

    Chen, Xiaoxu; Tang, Qunwei; He, Benlin; Lin, Lin; Yu, Liangmin

    2014-09-26

    Dye-sensitized solar cells (DSSCs) have attracted growing interest because of their application in renewable energy technologies in developing modern low-carbon economies. However, the commercial application of DSSCs has been hindered by the high expenses of platinum (Pt) counter electrodes (CEs). Here we use Pt-free binary Co-Ni alloys synthesized by a mild hydrothermal strategy as CE materials in efficient DSSCs. As a result of the rapid charge transfer, good electrical conduction, and reasonable electrocatalysis, the power conversion efficiencies of Co-Ni-based DSSCs are higher than those of Pt-only CEs, and the fabrication expense is markedly reduced. The DSSCs based on a CoNi0.25 alloy CE displays an impressive power conversion efficiency of 8.39%, fast start-up, multiple start/stop cycling, and good stability under extended irradiation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Anomalous Halo Formation in an Arc-Melted ScNi-Sc2Ni Off-Eutectic Binary Alloy

    Directory of Open Access Journals (Sweden)

    Kai Wang

    2016-07-01

    Full Text Available Diverse non-equilibrium eutectic structures have attracted numerous experimental and theoretical studies. One special type is the formation of a halo of one phase around a primary dendrite of another phase. In our experiments, it was occasionally observed that ScNi halos grow as dendritic morphology around the primary Sc 2 Ni dendrites in an arc-melted ScNi-Sc 2 Ni off-eutectic binary alloy. The formation of this anomalous halo structure was then well reproduced by employing quantitative phase-field simulations. Based on the phase-field simulation, It was found that (i the large undercooling and growth velocity of the ScNi phase during solidification causes the formation of halos; and (ii the released latent heat induces the recalescence phenomenon, and changes the solidification sequence largely, resulting in the anomalous halo structure in the Sc-34 at % Ni alloy.

  5. Numerical Simulation and Experimental Characterization of a Binary Aluminum Alloy Spray - Application to the Spray Rolling Process

    Energy Technology Data Exchange (ETDEWEB)

    S. B. Johnson; J.-P. Delplanque; Y. Lin; Y. Zhou; E. J. Lavernia; K. M. McHugh

    2005-02-01

    A stochastic, droplet-resolved model has been developed to describe the behavior of a binary aluminum alloy spray during the spray-rolling process. In this process, a molten aluminum alloy is atomized and the resulting spray is depostied on the rolls of a twin-roll caster to produce aluminum strip. The one-way coupled spray model allows the prediction of spray characteristics such as enthalph and solid fraction, and their distribution between the nozzle and the depostion surface. This paper outlines the model development and compares the predicted spray dynamics to PDI measurements performed in a controlled configuration. Predicted and measured droplet velocity and size distributions are presented for two points along the spray centerline along with predicted spray averaged specific enthalph and solid fraction curves.

  6. Phase field simulation of the interface morphology evolution and its stability during directional solidification of binary alloys

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The influences of pulling speed V and temperature gradient G on morphology evolution, concentration distribution, solute trapping and interface stability during directional solidification of binary alloys have been studied with the B-S phase field model. Simulated results reproduced the morphology transitions of deep cell to shallow cell and shallow cell to plane front. The primary cellular spacing, depth of groove and effective solute redistribution coefficient for different V and G are compared. The absolute stability under high pulling speed and high temperature gradient has also been predicted, which is in agreement with the Mullins-Sekerka (M-S) stability theory.

  7. Phase field modeling of multiple dendrite growth of Al-Si binary alloy under isothermal solidifi cation

    Directory of Open Access Journals (Sweden)

    Sun Qiang

    2008-11-01

    Full Text Available Phase field method offers the prospect of being able to perform realistic numerical experiments on dendrite growth in metallic systems. In this study, the growth process of multiple dendrites in Al-2-mole-%-Si binary alloy under isothermal solidifi cation was simulated using phase fi eld model. The simulation results showed the impingement of arbitrarily oriented crystals and the competitive growth among the grains during solidifi cation. With the increase of growing time, the grains begin to coalesce and impinge the adjacent grains. When the dendrites start to impinge, the dendrite growth is obviously inhibited.

  8. Trace Carbon in Biomedical Beta-Titanium Alloys: Recent Progress

    Science.gov (United States)

    Zhao, D.; Ebel, T.; Yan, M.; Qian, M.

    2015-08-01

    Owing to their relatively low Young's modulus, high strength, good resistance to corrosion, and excellent biocompatibility, β-titanium (Ti) alloys have shown great potential for biomedical applications. In β-Ti alloys, carbon can exist in the form of titanium carbide (TiC x ) as well as interstitial atoms. The Ti-C binary phase diagram predicts a carbon solubility value of 0.08 wt.% in β-Ti, which has been used as the carbon limit for a variety of β-Ti alloys. However, noticeable grain boundary TiC x particles have been observed in β-Ti alloys containing impurity levels of carbon well below the predicted 0.08 wt.%. This review focuses its attention on trace carbon (≤0.08 wt.%) in biomedical β-Ti alloys containing niobium (Nb) and molybdenum (Mo), and it discusses the nature and precipitation mechanism of the TiC x particles in these alloys.

  9. Texture and mechanical properties of tape substrates from binary and ternary copper alloys for second-generation high-temperature superconductors

    Science.gov (United States)

    Khlebnikova, Yu. V.; Rodionov, D. P.; Gervas'eva, I. V.; Suaridze, T. R.; Egorova, L. Yu.; Akshentsev, Yu. N.; Kazantsev, V. A.

    2015-01-01

    The process of texture formation in tapes made of a number of binary and ternary copper alloys upon cold rolling to degrees of deformation of 98.6-99% and subsequent recrystallization annealing has been studied. The possibility of designing multicomponent alloys based on the binary Cu-30% Ni alloy additionally alloyed with elements that strengthen the fcc matrix, such as iron or chromium, has been shown. The opportunity of obtaining a perfect cube texture in a thin tape made of binary and ternary copper alloys opens prospects for their use as substrates in the technology of second-generation HTSC cables. Optimum regimes of annealing have been determined, which make it possible to obtain in the Cu- M and Cu-(30-40)Ni- M ( M = Fe, Cr, Mn) alloys a perfect biaxial texture with the fraction of cube grains {001} on the surface of the tape more than 94%. The estimation of the mechanical properties of the textured tapes of the investigated alloys demonstrates a yield strength that is 2.5-4.5 times greater than that in the textured tape of pure copper.

  10. Ultrasmall PdmMn1-mOx binary alloyed nanoparticles on graphene catalysts for ethanol oxidation in alkaline media

    Science.gov (United States)

    Ahmed, Mohammad Shamsuddin; Park, Dongchul; Jeon, Seungwon

    2016-03-01

    A rare combination of graphene (G)-supported palladium and manganese in mixed-oxides binary alloyed catalysts (BACs) have been synthesized with the addition of Pd and Mn metals in various ratios (G/PdmMn1-mOx) through a facile wet-chemical method and employed as an efficient anode catalyst for ethanol oxidation reaction (EOR) in alkaline fuel cells. The as prepared G/PdmMn1-mOx BACs have been characterized by several instrumental techniques; the transmission electron microscopy images show that the ultrafine alloyed nanoparticles (NPs) are excellently monodispersed onto the G. The Pd and Mn in G/PdmMn1-mOx BACs have been alloyed homogeneously, and Mn presents in mixed-oxidized form that resulted by X-ray diffraction. The electrochemical performances, kinetics and stability of these catalysts toward EOR have been evaluated using cyclic voltammetry in 1 M KOH electrolyte. Among all G/PdmMn1-mOx BACs, the G/Pd0.5Mn0.5Ox catalyst has shown much superior mass activity and incredible stability than that of pure Pd catalysts (G/Pd1Mn0Ox, Pd/C and Pt/C). The well dispersion, ultrafine size of NPs and higher degree of alloying are the key factor for enhanced and stable EOR electrocatalysis on G/Pd0.5Mn0.5Ox.

  11. Study on preparation and properties of molybdenum alloys reinforced by nano-sized ZrO{sub 2} particles

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Chaopeng; Gao, Yimin; Zhou, Yucheng [Xi' an Jiaotong University, State Key Laboratory for Mechanical Behavior of Materials, Xi' an, Shaanxi Province (China); Wei, Shizhong [Henan University of Science and Technology, School of Materials Science and Engineering, Luoyang (China); Henan University of Science and Technology, Engineering Research Center of Tribology and Materials Protection, Ministry of Education, Luoyang (China); Zhang, Guoshang; Zhu, Xiangwei; Guo, Songliang [Henan University of Science and Technology, School of Materials Science and Engineering, Luoyang (China)

    2016-03-15

    The nano-sized ZrO{sub 2}-reinforced Mo alloy was prepared by a hydrothermal method and a subsequent powder metallurgy process. During the hydrothermal process, the nano-sized ZrO{sub 2} particles were added into the Mo powder via the hydrothermal synthesis. The grain size of Mo powder decreases obviously with the addition of ZrO{sub 2} particles, and the fine-grain sintered structure is obtained correspondingly due to hereditation. In addition to a few of nano-sized ZrO{sub 2} particles in grain boundaries or sub-boundaries, most are dispersed in grains. The tensile strength and yield strength have been increased by 32.33 and 53.76 %. (orig.)

  12. Magnetostriction of heavily deformed Fe–Co binary alloys prepared by forging and cold rolling

    Energy Technology Data Exchange (ETDEWEB)

    Yamaura, Shin-ichi, E-mail: yamaura@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577 (Japan); Nakajima, Takashi [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577 (Japan); Satoh, Takenobu; Ebata, Takashi [Tohoku Steel, Co., Ltd., 23 Nishigaoka, Murata, Murata-machi, Shibata 989-1393 (Japan); Furuya, Yasubumi [North Japan Research Institute for Sustainable Energy, Hirosaki University, 2-1-3 Matsubara, Aomori 030-0813 (Japan)

    2015-03-15

    Highlights: • The as-forged Fe{sub 25}Co{sub 75} alloy shows the magnetostriction of 108 ppm. • The as-cold rolled Fe{sub 25}Co{sub 75} alloy shows the magnetostriction of 140 ppm. • Magnetostriction of Fe–Co alloy reached the maximum in a single bcc state. • Fcc phase is harmful to the increase in magnetostriction of Fe–Co alloy. • Fcc phase precipitation in Fe–Co alloy can be suppressed by cold rolling. - Abstract: Magnetostriction of Fe{sub 1−x}Co{sub x} (x = 50–90 at%) alloys prepared by forging and subsequent cold-rolling was studied as functions of alloy compositions and thermomechanical treatments. Magnetostriction of the as-forged Fe{sub 25}Co{sub 75} alloy was 108 ppm and that of the as-cold rolled Fe{sub 25}Co{sub 75} alloy measured parallel to the rolling direction (RD) was 128 ppm. The cold-rolled Fe{sub 25}Co{sub 75} alloy possessed a nearly {1 0 0}<0 1 1> texture, leading to the maximum magnetostriction of 140 ppm when measured at an angle of 45° to RD. Moreover, the fully annealed Fe{sub 25}Co{sub 75} and Fe{sub 20}Co{sub 80} alloys were gradually cold rolled and magnetostriction were measured. Results showed that the magnetostriction of those cold-rolled alloys drastically increased with increasing reduction rate. According to the XRD and TEM observations, intensity of the fcc peak gradually decreased with increasing reduction rate and that the alloys became to be in a bcc single state at a reduction rate higher than 90%, leading to a drastic increase in magnetostriction.

  13. The friction and wear of metals and binary alloys in contact with an abrasive grit of single-crystal silicon carbide

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with various metals and iron-base binary alloys (alloying elements Ti, Cr, Mn, Ni, Rh, and W) in contact with single-crystal silicon carbide riders. Results indicate that the coefficient of friction and groove height (corresponding to the wear volume) decrease linearly as the shear strength of the bulk metal increases. The coefficient of friction and groove height generally decrease with an increase in solute content of binary alloys. A separate correlation exists between the solute to iron atomic radius ratio and the decreasing rates of change of coefficient of friction and groove height with increasing solute content. These rates of change are minimum at a solute to iron radius ratio of unity. They increase as the atomic ratio increases or decreases linearly from unity. The correlations indicate that atomic size is an important parameter in controlling friction and wear of alloys.

  14. A general scheme for the estimation of oxygen binding energies on binary transition metal surface alloys

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Nørskov, Jens Kehlet

    2005-01-01

    A simple scheme for the estimation of oxygen binding energies on transition metal surface alloys is presented. It is shown that a d-band center model of the alloy surfaces is a convenient and appropriate basis for this scheme; variations in chemical composition, strain effects, and ligand effects...... for the estimation of oxygen binding energies on a wide variety of transition metal alloys. (c) 2005 Elsevier B.V. All rights reserved....

  15. Mechanical, thermal, and chemical analyses of the binary system Au-Ti in the development of a dental alloy.

    Science.gov (United States)

    Fischer, J

    2000-12-15

    Investigations in the binary system gold-titanium (Au-Ti) were performed in regard to the development of a universal dental alloy suited for inlays, for the conventional crown and bridge technique, as well as for the ceramic-fused-to-metal technique. With nine alloys with increasing Ti content from 0-10 atom %, microstructure, mechanical properties, thermal properties, and corrosion were determined in the as-cast state and after simulation of ceramic firing. The microstructure shows an increasing formation of a second phase with increasing Ti content, crystallizing dendritically, which, according to the binary phase diagram must be the intermetallic phase TiAu(4). The results of the measurements reveal that with increasing Ti content, hardness, Young's modulus, proof stress, and tensile strength strongly increase in the range of 2-6 atom % Ti and with higher Ti content remain constant. Elongation after fracture decreases with a Ti content above 2 atom %. The coefficient of thermal expansion decreases linearly with increasing Ti content. Thermal distortion decreases exponentially with increasing Ti content. The corrosion test showed an increasing release of Ti with increasing Ti content. Lowest corrosion was observed in the simulated state with intact oxide layer. Appropriate properties for dental application were found in the range of 6.5 at% Ti. Copyright 2000 John Wiley & Sons, Inc.

  16. Relationship between the types of binary alloy phase diagrams of VIII and IB group elements and the Mendeleev numbers

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The relationship between the types of binary alloy phase diagrams of Vlll and IB group elements and the Men deleev numbers was discussed for the first time using the Vlll and IB group elements as solvent metals (A) and the other elements as solute metals (B), basesd on their alloy phase diagram types. The Mendeleev numbers of the solvent metals and the solute metals were expressed as Ma and MB, respectively. A two-dimension map of MdMB was drawn. It is indicated that there is an oblique line in the map, which divides the binary alloy phase diagram types of solvent metals into two symmetry parts, the phase diagram types of the other elements with solvent metals located at the above or down of the line respectively, while on the line, AM= 0. The phase diagrams between the solvent metals basically are simple systems, mainly belong to the types of continues solid solution and the peritectic (about 40% for each type). The solvent metals can be divided into three groups: Co, Ir, Rh, Ni, Pt, and Pd as the first group; Ag, Au, and Cu as the second group;and Fe, Os, and Ru as the third group. The characteristics of the phase diagrams formed between the elements in each group were discussed. About 80% phase diagrams belong to complex systems and less than 20% belong to the simple systems. The regular variation of the chemical scale, the metallic radii of the atoms, the number of valence electrons, and the first ionization energy with the Mendeleev numbers and the crystal structure were introduced as well.

  17. Modeling of Disordered Binary Alloys Under Thermal Forcing: Effect of Nanocrystallite Dissociation on Thermal Expansion of AuCu3

    Science.gov (United States)

    Kim, Y. W.; Cress, R. P.

    2016-11-01

    Disordered binary alloys are modeled as a randomly close-packed assembly of nanocrystallites intermixed with randomly positioned atoms, i.e., glassy-state matter. The nanocrystallite size distribution is measured in a simulated macroscopic medium in two dimensions. We have also defined, and measured, the degree of crystallinity as the probability of a particle being a member of nanocrystallites. Both the distribution function and the degree of crystallinity are found to be determined by alloy composition. When heated, the nanocrystallites become smaller in size due to increasing thermal fluctuation. We have modeled this phenomenon as a case of thermal dissociation by means of the law of mass action. The crystallite size distribution function is computed for AuCu3 as a function of temperature by solving some 12 000 coupled algebraic equations for the alloy. The results show that linear thermal expansion of the specimen has contributions from the temperature dependence of the degree of crystallinity, in addition to respective thermal expansions of the nanocrystallites and glassy-state matter.

  18. Growth of normally-immiscible materials (NIMs), binary alloys, and metallic fibers by hyperbaric laser chemical vapor deposition

    Science.gov (United States)

    Maxwell, J. L.; Black, M. R.; Chavez, C. A.; Maskaly, K. R.; Espinoza, M.; Boman, M.; Landstrom, L.

    2008-06-01

    This work demonstrates that two or more elements of negligible solubility (and no known phase diagram) can be co-deposited in fiber form by hyperbaric-pressure laser chemical vapor deposition (HP-LCVD). For the first time, Hg-W alloys were grown as fibers from mixtures of tungsten hexafluoride, mercury vapor, and hydrogen. This new class of materials is termed normally-immiscible materials (NIMs), and includes not only immiscible materials, but also those elemental combinations that have liquid states at exclusive temperatures. This work also demonstrates that a wide variety of other binary and ternary alloys, intermetallics, and mixtures can be grown as fibers, e.g. silicon-tungsten, aluminum-silicon, boron-carbon-silicon, and titanium-carbon-nitride. In addition, pure metallic fibers of aluminum, titanium, and tungsten were deposited, demonstrating that materials of high thermal conductivity can indeed be grown in three-dimensions, provided sufficient vapor pressures are employed. A wide variety of fiber properties and microstructures resulted depending on process conditions; for example, single crystals, fine-grained alloys, and glassy metals could be deposited.

  19. Growth of normally-immiscible materials (NIMs), binary alloys, and metallic fibers by hyperbaric laser chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, J.L.; Black, M.R.; Chavez, C.A.; Maskaly, K.R.; Espinoza, M. [Los Alamos National Laboratory, NEMISIS Team, IAT-2, Los Alamos, NM (United States); Boman, M.; Landstrom, L. [Uppsala University, Inorganic Chemistry, Angstrom Laboratory, Uppsala (Sweden)

    2008-06-15

    This work demonstrates that two or more elements of negligible solubility (and no known phase diagram) can be co-deposited in fiber form by hyperbaric-pressure laser chemical vapor deposition (HP-LCVD). For the first time, Hg-W alloys were grown as fibers from mixtures of tungsten hexafluoride, mercury vapor, and hydrogen. This new class of materials is termed normally-immiscible materials (NIMs), and includes not only immiscible materials, but also those elemental combinations that have liquid states at exclusive temperatures. This work also demonstrates that a wide variety of other binary and ternary alloys, intermetallics, and mixtures can be grown as fibers, e.g. silicon-tungsten, aluminum-silicon, boron-carbon-silicon, and titanium-carbon-nitride. In addition, pure metallic fibers of aluminum, titanium, and tungsten were deposited, demonstrating that materials of high thermal conductivity can indeed be grown in three-dimensions, provided sufficient vapor pressures are employed. A wide variety of fiber properties and microstructures resulted depending on process conditions; for example, single crystals, fine-grained alloys, and glassy metals could be deposited. (orig.)

  20. MICRO-DESCRIPTION OF THE SOLUTE-FIELD AND THE PHASE-FIELD MODEL FOR ISOTHERMAL PHASE TRANSITION IN BINARY ALLOYS

    Institute of Scientific and Technical Information of China (English)

    H.M. Ding; L.L. Chen; R.X. Liu

    2004-01-01

    A new phase field method for two-dimensional simulations of binary alloy solidification was studied. A model basing on solute conservative in every unit was developed for solving the solute diffusion equation during solidification. Two-dimensional computations were performed for ideal solutions and Ni-Cu dendritic growth into an isothermal and highly supersaturated liquid phase.

  1. Effect of the carbide phase on the tribological properties of high-manganese antiferromagnetic austenitic steels alloyed with vanadium and molybdenum

    Science.gov (United States)

    Korshunov, L. G.; Kositsina, I. I.; Sagaradze, V. V.; Chernenko, N. L.

    2011-07-01

    Effect of special carbides (VC, M 6C, Mo2C) on the wear resistance and friction coefficient of austenitic stable ( M s below -196°C) antiferromagnetic ( T N = 40-60°C) steels 80G20F2, 80G20M2, and 80G20F2M2 has been studied. The structure and the effective strength (microhardness H surf, shear resistance τ) of the surface layer of these steels have been studied using optical and electron microscopy. It has been shown that the presence of coarse particles of primary special carbides in the steels 80G20F2, 80G20M2, and 80G20F2M2 quenched from 1150°C decreases the effective strength and the resistance to adhesive and abrasive wear of these materials. This is caused by the negative effect of carbide particles on the toughness of steels and by a decrease in the carbon content in austenite due to a partial binding of carbon into the above-mentioned carbides. The aging of quenched steels under conditions providing the maximum hardness (650°C for 10 h) exerts a substantial positive effect on the parameters of the effective strength ( H surf, τ) of the surface layer and, correspondingly, on the resistance of steels to various types of wear (abrasive, adhesive, and caused by the boundary friction). The maximum positive effect of aging on the wear resistance is observed upon adhesive wear of the steels under consideration. Upon friction with enhanced sliding velocities (to 4 m/s) under conditions of intense (to 500-600°C) friction-induced heating, the 80G20F2, 80G20M2, and, especially, 80G20F2M2 steels subjected to quenching and aging substantially exceed the 110G13 (Hadfield) steel in their tribological properties. This is due to the presence in these steels of a favorable combination of high effective strength and friction heat resistance of the surface layer, which result from the presence of a large amount of special carbides in these steels and from a high degree of alloying of the matrix of these steels by vanadium and molybdenum. In the process of friction

  2. Thermal Stability Comparison of Nanocrystalline Fe-Based Binary Alloy Pairs

    Science.gov (United States)

    Clark, B. G.; Hattar, K.; Marshall, M. T.; Chookajorn, T.; Boyce, B. L.; Schuh, C. A.

    2016-06-01

    The widely recognized property improvements of nanocrystalline (NC) materials have generated significant interest; yet, they have been difficult to realize in engineering applications due to the propensity for grain growth in these interface-dominated systems. Although traditional pathways to thermal stabilization can slow the mobility of grain boundaries, recent theories suggest that solute segregation in NC alloys can reduce the grain boundary energy such that thermodynamic stabilization is achieved. Following the predictions of Murdoch et al., here we compare for the first time the thermal stability of a predicted NC stable alloy (Fe-10 at.% Mg) with a predicted non-NC stable alloy (Fe-10 at.% Cu) using the same processing and characterization methodologies. Results show improved thermal stability of the Fe-Mg alloy in comparison with the Fe-Cu, and thermally-evolved microstructures that are consistent with those predicted by Monte Carlo simulations.

  3. Binary platinum alloy electrodes for hydrogen and oxygen evolutions by seawater splitting

    Science.gov (United States)

    Zheng, Jingjing

    2017-08-01

    Hydrogen and oxygen evolutions by seawater splitting are persistent objectives for green energy production. We present here the experimental realization of Ti foil supported PtM (M = Fe, Co, Ni, Pd) alloy electrodes by a cycle voltammetry method for seawater splitting. The preliminary results demonstrate that the resultant Ti supported PtM alloy electrodes are robust in realizing high-efficiency hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), arising from enhanced current density, reduced potential, and good durability. By tuning M species, the Ti supported PtPd alloy electrode displays a maximal efficiency, yielding an onset potential of -52 mV and 690 mV (vs RHE) in HER and OER, respectively. The current densities of Ti supported PtPd electrode are as high as 270 mA cm-2 at 1.32 V (vs RHE) and 590 mA cm-2 at 3.99 V (vs RHE). Moreover, the long-term stability has also been increased by alloying Pt with M. Although the work presented here is far from optimized, the concept of alloying transition metals with Pt can guide us to design highly efficient alloy electrodes for hydrogen and oxygen evolutions from seawater splitting.

  4. Effects of as-cast and wrought Cobalt-Chrome-Molybdenum and Titanium-Aluminium-Vanadium alloys on cytokine gene expression and protein secretion in J774A.1 macrophages

    DEFF Research Database (Denmark)

    Jakobsen, Stig Storgaard; Larsen, Agnete; Stoltenberg, Meredin

    2007-01-01

    to the metal implant and wear-products. The aim of the present study was to compare surfaces of as-cast and wrought Cobalt-Chrome-Molybdenum (CoCrMo) alloys and Titanium-Aluminium-Vanadium (TiAlV) alloy when incubated with mouse macrophage J774A.1 cell cultures. Changes in pro- and anti-inflammatory cytokines...... the cell viability. Surface properties of the discs were characterised with a profilometer and with energy dispersive X-ray spectroscopy. We here report, for the first time, that the prosthetic material surface (non-phagocytable) of as-cast high carbon CoCrMo reduces the pro-inflammatory cytokine IL-6...... transcription, the chemokine MCP-1 secretion, and M-CSF secretion by 77%, 36%, and 62%, respectively. Furthermore, we found that reducing surface roughness did not affect this reduction. The results suggest that as-cast CoCrMo alloy is more inert than wrought CoCrMo and wrought TiAlV alloys and could prove...

  5. Molybdenum: Industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Bulla, W.; Fairhurst, W.; King, P.

    1982-12-01

    Molybdenum availability and molybdenum consumption are reviewed. About 9% of the total amount of molybdenum consumed is used in the production of nonferrous metals. The authors list applications for which molybdenum materials, owing to their physical and high-temperature characteristics, are particularly well suited.

  6. Investigations of binary and ternary phase change alloys for future memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Rausch, Pascal

    2012-09-13

    The understanding of phase change materials is of great importance because it enables us to predict properties and tailor alloys which might be even better suitable to tackle challenges of future memory applications. Within this thesis two topics have been approached: on the one hand the understanding of the alloy In{sub 3}Sb{sub 1}Te{sub 2} and on the other hand the so called resistivity drift of amorphous Ge-Sn-Te phase change materials. The main topic covers an in depth discussion of the ternary alloy In{sub 3}Sb{sub 1}Te{sub 2}. At first glance, this alloy does not fit into the established concepts of phase alloys: e.g. the existence of resonant bonding in the crystalline phase is not obvious and the number of p-electrons is very low compared to other phase change alloys. Furthermore amorphous phase change alloys with high indium content are usually not discussed in literature, an exception being the recent work by Spreafico et al. on InGeTe{sub 2}. For the first time a complete description of In{sub 3}Sb{sub 1}Te{sub 2} alloy is given in this work for the crystalline phase, amorphous phase and crystallization process. In addition comparisons are drawn to typical phase change materials like Ge{sub 2}Sb{sub 2}Te{sub 5}/GeTe or prototype systems like AgInTe{sub 2} and InTe. The second topic of this thesis deals with the issue of resistivity drift, i.e. the increase of resistivity of amorphous phase change alloys with aging. This drift effect greatly hampers the introduction of multilevel phase change memory devices into the market. Recently a systematic decrease of drift coefficient with stoichiometry has been observed in our group going from GeTe over Ge{sub 3}Sn{sub 1}Te{sub 4} to Ge{sub 2}Sn{sub 2}Te{sub 4}. These alloys are investigated with respect to constraint theory.

  7. A fully implicit, fully adaptive time and space discretisation method for phase-field simulation of binary alloy solidification

    Science.gov (United States)

    Rosam, J.; Jimack, P. K.; Mullis, A.

    2007-08-01

    A fully implicit numerical method based upon adaptively refined meshes for the simulation of binary alloy solidification in 2D is presented. In addition we combine a second-order fully implicit time discretisation scheme with variable step size control to obtain an adaptive time and space discretisation method. The superiority of this method, compared to widely used fully explicit methods, with respect to CPU time and accuracy, is shown. Due to the high nonlinearity of the governing equations a robust and fast solver for systems of nonlinear algebraic equations is needed to solve the intermediate approximations per time step. We use a nonlinear multigrid solver which shows almost h-independent convergence behaviour.

  8. A systematic study of segregation for Zn{sub x}Bi{sub 1−x} liquid binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kasem, Md. Riad; Maruf, Md. Helal Uddin [Department of Physics, University of Dhaka, Dhaka (Bangladesh); Bhuiyan, G. M., E-mail: gbhuiyan@du.ac.bd [Department of Theoretical Physics, University of Dhaka, Dhaka (Bangladesh)

    2015-07-21

    We have investigated the segregating properties of Zn{sub x}Bi{sub 1−x} liquid binary alloys through the thermodynamic route that involves both energy of mixing and entropy of mixing. The perturbation approach is used for effective numerical calculations. Results of our calculations agree well with corresponding experimental data for energy and entropy of mixing in the mixed state. The final prediction of segregating properties such as critical concentration and critical temperature also matches reasonably well with experimental data. Most importantly, both energy of mixing and entropy of mixing have produced almost same values for critical concentration and critical temperature of segregation and thus confirm the reliability of the present approach.

  9. Two-dimensional phase-field study of competitive grain growth during directional solidification of polycrystalline binary alloy

    Science.gov (United States)

    Takaki, Tomohiro; Ohno, Munekazu; Shibuta, Yasushi; Sakane, Shinji; Shimokawabe, Takashi; Aoki, Takayuki

    2016-05-01

    Selections of growing crystals during directional solidification of a polycrystalline binary alloy were numerically investigated using two-dimensional phase-field simulations. To accelerate the simulations, parallel graphics processing unit (GPU) simulations were performed using the GPU-rich supercomputer TSUBAME2.5 at the Tokyo Institute of Technology. Twenty simulations with a combination of five sets of different seed orientation distributions and four different temperature gradients covering dendritic and cellular growth regions were performed. The unusual grain selection phenomenon, in which the unfavorably oriented grains preferentially grow instead of the favorably oriented grains, was observed frequently. The unusual selection was more remarkable in the cellular structure than in the dendritic structure.

  10. Effects of temperature boundary conditions on equiaxed dendritic growth in phase-field simulations of binary alloy

    Institute of Scientific and Technical Information of China (English)

    于艳梅; 杨根仓; 赵达文; 吕衣礼

    2002-01-01

    By the phase-field approach, the dendritic growth in binary alloy melt was simulated respectively using two types of temperature boundary conditions, i.e., the constant temperature boundary by which the boundary temperature was fixed at the initial temperature, and Zero-Neumann temperature boundary. The influences of the temperature boundary conditions on numerical results are investigated. How to choose appropriate temperature boundary conditions is proposed. The results show that: 1) when the computation region is limited to a changeless size, the Zero-Neumann and constant temperature boundary conditions lead to the different dendritic growth behaviors, and the Zero-Neumann condition is preferable to the constant temperature condition; 2) when the computation region is enlarged continually with the computational time according to the increasing thermal diffusion scale, the two types of temperature boundary conditions achieve the consistent tip velocities and tip radii, and they both are appropriate choices.

  11. Microstructural and mechanical properties of binary Ni–Si eutectic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gogebakan, Musa, E-mail: gogebakan@ksu.edu.tr [Department of Physics, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras 46100 (Turkey); Kursun, Celal [Department of Physics, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras 46100 (Turkey); Gunduz, Kerem Ozgur; Tarakci, Mehmet; Gencer, Yucel [Department of Materials Science and Engineering, Gebze Institute of Technology, Gebze, 41400 Kocaeli (Turkey)

    2015-09-15

    Highlights: • Ni{sub 80}Si{sub 20}, Ni{sub 70}Si{sub 30}, Ni{sub 55}Si{sub 45} and Ni{sub 45}Si{sub 55} were prepared by arc melting method. • The maximum microhardness value of 1126 HV obtained for Ni{sub 70}Si{sub 30} alloy. • The microhardness values decreases with increase of Si/Ni ratio. • Ni{sub 80}Si{sub 20} and Ni{sub 55}Si{sub 45} are soft ferromagnetic, Ni{sub 70}Si{sub 30} and Ni{sub 45}Si{sub 55} are paramagnetic. - Abstract: In the present work, Ni–Si eutectic alloys with nominal compositions of Ni{sub 80}Si{sub 20}, Ni{sub 70}Si{sub 30}, Ni{sub 55}Si{sub 45} and Ni{sub 45}Si{sub 55} (Ni and Si with the purity of 99.99%) were prepared by arc melting method under vacuum/argon atmosphere. The effects of Si/Ni ratio on the microstructural properties, thermal transformation behavior, micro-hardness and magnetic properties of the Ni–Si eutectic alloys were investigated. These alloys were characterized by X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), differential thermal analysis (DTA), Vickers microhardness measurement and Vibrating Sample Magnetometer (VSM). The phases expected according to Ni–Si phase diagram for conventional solidified eutectic Ni–Si alloys are considerably consistent with phase detected by XRD in this study. The quantitative results confirm that the chemical composition of the alloys very close to eutectic compositions and the microstructures are in typical lamellar eutectic morphology. The maximum microhardness value of 1126 HV obtained for Ni{sub 70}Si{sub 30} alloy which has highest melting temperature amongst Ni–Si eutectics. The microhardness values decreases with increase of Si/Ni ratio. Ni{sub 80}Si{sub 20} and Ni{sub 55}Si{sub 45} alloys are soft ferromagnetic, Ni{sub 70}Si{sub 30} and Ni{sub 45}Si{sub 55} alloys are paramagnetic with no magnetic saturation.

  12. Non-equilibrium crystalline superconductors in Zr-Si binary alloys rapidly quenched from melts

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, A.; Takahashi, Y.; Toyota, N.; Fukase, T.; Masumoto, T. (Tohoku Univ., Sendai (Japan). Research Inst. for Iron, Steel and Other Metals)

    1982-08-01

    The new non-equilibrium superconductor with a bcc structure has been found in rapidly quenched Zr-Si alloys. The silicon content in the bcc alloys was limited to the narrow range between 8 and 11 at%. The bcc alloys showed a superconducting transition whose temperature increased from 3.20 to 3.84 K with decreasing silicon content. The upper critical magnetic field and the critical current density for Zr/sub 92/Si/sub 8/ alloy were of the order of 3.58 x 10/sup 6/ Am/sup -1/ at 2.0 K and 3.3 x 10/sup 6/ Am/sup -2/ at 2.42 K in the absence of an applied field. The upper critical field gradient at the transition temperature and the electrical resistivity at 4.2 K were about -1.82 x 10/sup 6/ Am/sup -1/ K/sup -1/ and about 150 ..mu cap omega.. cm. The Ginzburg-Landau parameter and coherence length were estimated to be about 65 and 6.3 nm, respectively, from these experimental values by using the Ginzburg-Landau-Abrikosov-Gorkov theory and hence it is concluded that the present bcc alloys are extremely 'soft' type-II superconductors with a high degree of dirtiness.

  13. Analysis of stability of a planar solid-liquid interface in a dilute binary alloy

    Science.gov (United States)

    Laxmanan, V.

    1990-01-01

    This paper reconsiders the question of stability of a planar solid-liquid interface in an undercooled alloy melt without making the restrictive assumption of no heat flow in the solid (i.e., Gs = 0). The results of this analysis indicate that, provided the thermal gradient on the solid side of the interface, Gs, is positive, stability can be achieved in an undercooled alloy melt for growth rates R greater than Ra (where Ra is the absolute stability limit of Mullins and Sekerka, 1964). Thus, the absolute stability criterion for steady-state planar growth in an undercooled alloy melt is the same as derived earlier by Mullins and Sekerka for directional solidification. Relaxing the restrictive assumption of Gs = 0 also reveals that there is a regime of stability for low growth rates and low supercoolings.

  14. Numerical analysis of phase decomposition in A-B binary alloys using Cahn-Hilliard equations

    Directory of Open Access Journals (Sweden)

    Susana Lezama-Alvarez

    2013-01-01

    Full Text Available The analysis of phase decomposition was carried out using the nonlinear and linear Cahn-Hilliard equations in a hypothetical A-B alloy system with a miscibility gap. These equations were solved by the explicit finite difference method assuming a regular solution model. The supersaturated solid solution and decomposed phases were considered to have an fcc structure. Different aging temperatures and thermodynamic interaction parameters ΩA-B were used to simulate different alloy systems. The numerical simulation results showed that the growth kinetics of phase decomposition in the alloy with 30at.% A was slower than that of 50 at.% A. Additionally, the start time and modulation wavelength of phase decomposition are strongly affected by the thermodynamic interaction parameter ΩA-B value. The numerical simulation results showed that the growth kinetics of phase decomposition with the linear equation is slower than that with the nonlinear one.

  15. Microstructure formation in binary Al-TM alloys under non-equilibrium solidification

    Energy Technology Data Exchange (ETDEWEB)

    Beresina, A L; Kurdyumov, G V [Institute for Metal Physics, 36, Vernadsky Blvd, Kyiv-142 (Ukraine); Segida, E A, E-mail: slena54@yahoo.co

    2009-01-01

    The structure formation in hypereutectic Al-Sc and hyperperitectic Al-Zr, Al-Hf alloys with concentration of alloying element up to 1.3 at.% have been studied under conditions far from thermodynamical equilibrium depending on cooling rate and quenching temperature. The co-operative growth structures are solidified with cooling rate of 10{sup 2}-10{sup 3} K/s regardless of overheating and under cooling rate of 10{sup 5}-10{sup 6} K/s at small overheating. The phase compound of these structures is alpha-solid solutions and phase with L1{sub 2}-ordered structure or two solid solutions with different concentrations of alloying element. The large overheating leads to formation of alpha-solid solution anomalously supersaturated under cooling rate of 10{sup 5}-10{sup 6} K/s.

  16. Cytocompatibility of pure metals and experimental binary titanium alloys for implant materials.

    Science.gov (United States)

    Park, Yeong-Joon; Song, Yo-Han; An, Ji-Hae; Song, Ho-Jun; Anusavice, Kenneth J

    2013-12-01

    This study was performed to evaluate the biocompatibility of nine types of pure metal ingots (Ag, Al, Cr, Cu, Mn, Mo, Nb, V, Zr) and 36 experimental titanium (Ti) alloys containing 5, 10, 15, and 20 wt% of each alloying element. The cell viabilities for each test group were compared with that of CP-Ti using the WST-1 test and agar overlay test. The ranking of pure metal cytotoxicity from most potent to least potent was as follows: Cu>Al>Ag>V>Mn>Cr>Zr>Nb>Mo>CP-Ti. The mean cell viabilities for pure Cu, Al, Ag, V, and Mn were 21.6%, 25.3%, 31.7%, 31.7%, and 32.7%, respectively, which were significantly lower than that for the control group (p<0.05). The mean cell viabilities for pure Zr and Cr were 74.1% and 60.6%, respectively (p<0.05). Pure Mo and Nb demonstrated good biocompatibility with mean cell viabilities of 93.3% and 93.0%, respectively. The mean cell viabilities for all the Ti-based alloy groups were higher than 80% except for Ti-20 Nb (79.6%) and Ti-10 V (66.9%). The Ti-10 Nb alloy exhibited the highest cell viability (124.8%), which was higher than that of CP-Ti. Based on agar overlay test, pure Ag, Cr, Cu, Mn, and V were ranked as 'moderately cytotoxic', whereas the rest of the tested pure metals and all Ti alloys, except Ti-10 V (mild cytotoxicity), were ranked as 'noncytotoxic'. The results obtained in this study can serve as a guide for the development of new Ti-based alloy implant systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Extended solid solubility for Al-W binary system by mechanical alloying

    Institute of Scientific and Technical Information of China (English)

    欧阳义芳; 钟夏平; 吴伟明

    2000-01-01

    Al1-xWX( x = 0.1, 0.2, 0.5, 0.9) powders have been prepared by mechanical alloying of the elements in a planetary ball mill. The structure and morphology of the milled powders were investigated using X-ray diffraction and electron microscopy. The solubility of Al in W is greatly extended, even more than 50% . The results are analyzed using embedded atom method (EAM) according to the scheme of mechanical alloying extending solid solubility. The theoretical results are in good agreement with the experimental.

  18. Extended solid solubility for Al-W binary system by mechanical alloying

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Al1-xWx (x=0.1, 0.2, 0.5, 0.9) powders have been prepared by mechanical alloying of the elements in a planetary ball mill. The structure and morphology of the milled powders were investigated using X-ray diffraction and electron microscopy. The solubility of Al in W is greatly extended, even more than 50%. The results are analyzed using embedded atom method (EAM) according to the scheme of mechanical alloying extending solid solubility. The theoretical results are in good agreement with the experimental.

  19. Modeling of surface melting and resolidification for pure metals and binary alloys: Effect of non-equilibrium kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.X.; Matthys, E.F. [Univ. of California, Santa Barbara, CA (United States). Dept. of Mechanical and Environmental Engineering

    1995-12-31

    A one-dimensional model including non-equilibrium phenomena was developed for surface melting and resolidification of both pure metals and binary alloys substrates. Non-equilibrium kinetics from crystal growth theory are introduced in the model to treat both non-equilibrium melting and resolidification. The modelled problem involves a moving boundary with both heat and solute diffusions and is solved by an implicit control volume integral method with solid/liquid interface immobilization by coordinate transformation. For illustration of the model applicability, the authors have analyzed laser surface melting of pure metals (Al, Cu, Ni, Ti) and dilute Al-Cu alloys, and some typical results are presented. The computation results show large solid overheating and melt undercooling which result from the high heat flux and the slow kinetics. The melt undercooling is maintained during most of the resolidification process and so is the high solidification rate. Complex interface velocity variations during the earlier stages of resolidification were obtained and result from interactions between various physical mechanisms. A strong effect of the solute on the interface velocity was also predicted.

  20. Primary radiation damage of Zr-0.5%Nb binary alloy: atomistic simulation by molecular dynamics method

    Science.gov (United States)

    Tikhonchev, M.; Svetukhin, V.; Kapustin, P.

    2017-09-01

    Ab initio calculations predict high positive binding energy (˜1 eV) between niobium atoms and self-interstitial configurations in hcp zirconium. It allows the expectation of increased niobium fraction in self-interstitials formed under neutron irradiation in atomic displacement cascades. In this paper, we report the results of molecular dynamics simulation of atomic displacement cascades in Zr-0.5%Nb binary alloy and pure Zr at the temperature of 300 K. Two sets of n-body interatomic potentials have been used for the Zr-Nb system. We consider a cascade energy range of 2-20 keV. Calculations show close estimations of the average number of produced Frenkel pairs in the alloy and pure Zr. A high fraction of Nb is observed in the self-interstitial configurations. Nb is mainly detected in single self-interstitial configurations, where its fraction reaches tens of percent, i.e. more than its tenfold concentration in the matrix. The basic mechanism of this phenomenon is the trapping of mobile self-interstitial configurations by niobium. The diffusion of pure zirconium and mixed zirconium-niobium self-interstitial configurations in the zirconium matrix at 300 K has been simulated. We observe a strong dependence of the estimated diffusion coefficients and fractions of Nb in self-interstitials produced in displacement cascades on the potential.

  1. Nanoassembly of Polydisperse Photonic Crystals based on Binary and Ternary Polymer Opal Alloys

    CERN Document Server

    Zhao, Qibin; Schafer, Christian; Spahn, Peter; Gallei, Markus; Herrmann, Lars; Petukhov, Andrei; Baumberg, Jeremy J

    2016-01-01

    Ordered binary and ternary photonic crystals, composed of different sized polymer-composite spheres with diameter ratios up to 120%, are generated using bending induced oscillatory shearing (BIOS). This viscoelastic system creates polydisperse equilibrium structures, producing mixed opaline colored films with greatly reduced requirements for particle monodispersity, and very different sphere size ratios, compared to other methods of nano-assembly.

  2. Silver-hafnium braze alloy

    Science.gov (United States)

    Stephens, Jr., John J.; Hosking, F. Michael; Yost, Frederick G.

    2003-12-16

    A binary allow braze composition has been prepared and used in a bonded article of ceramic-ceramic and ceramic-metal materials. The braze composition comprises greater than approximately 95 wt % silver, greater than approximately 2 wt % hafnium and less than approximately 4.1 wt % hafnium, and less than approximately 0.2 wt % trace elements. The binary braze alloy is used to join a ceramic material to another ceramic material or a ceramic material, such as alumina, quartz, aluminum nitride, silicon nitride, silicon carbide, and mullite, to a metal material, such as iron-based metals, cobalt-based metals, nickel-based metals, molybdenum-based metals, tungsten-based metals, niobium-based metals, and tantalum-based metals. A hermetic bonded article is obtained with a strength greater than 10,000 psi.

  3. PROCESS FOR DISSOLVING BINARY URANIUM-ZIRCONIUM OR ZIRCONIUM-BASE ALLOYS

    Science.gov (United States)

    Jonke, A.A.; Barghusen, J.J.; Levitz, N.M.

    1962-08-14

    A process of dissolving uranium-- zirconium and zircaloy alloys, e.g. jackets of fuel elements, with an anhydrous hydrogen fluoride containing from 10 to 32% by weight of hydrogen chloride at between 400 and 450 deg C., preferably while in contact with a fluidized inert powder, such as calcium fluoride is described. (AEC)

  4. PHASE ANALYSIS AND CRYSTAL STRUCTURE STUDIES ON BINARY ALLOYS OF ALUMINUM WITH TRANSITION METALS.

    Science.gov (United States)

    In order to provide the necessary background for detailed crystal-chemistry studies in the field of binary aluminum - transition metal systems, extensive investigations have been carried out on the phase relations of a large number of such systems. The results of these studies are briefly summarized, as are also the results of crystal structure determinations of a few alumi num - transition metal phases. (Author)

  5. Microstructures and properties of titanium alloys Ti-Mo for dental use

    Institute of Scientific and Technical Information of China (English)

    CHEN Yu-yong; XU Li-juan; LIU Zhi-guang; KONG Fan-tao; CHEN Zi-yong

    2006-01-01

    The microstructures and properties of a series of binary Ti-Mo alloys with molybdenum contents ranging from 5% to 20%(mass fraction) were investigated. The experimental results indicate that the crystal structure and morphology of the cast alloys are sensitive to their molybdenum contents. When the Mo content is 5%,the equiaxed α crystal grain is observed. When the Mo content is 10%,the equiaxed α crystal grain and fine needles β phase are observed. When the Mo contents are 15% and 20%,only the equiaxed β crystal grain is observed. When the Mo content is 10%,the synthetical properties of the Ti-Mo alloy are the best. The data of hardness (HV451),compression strength (1636 MPa),compression ratio (22.5%) and elastic modulus (29.8 GPa) were collected. The increase of molybdenum contents is propitious to crystal refinement and improvement of plasticity of Ti-Mo alloys. The dry wear resistance of Ti-Mo alloys against Gr15 ball was investigated on CJS111A ball-disk wear instrument. The results show that the dry wear resistance of Ti-Mo alloys is correlative with hardness and mechanical properties. With the ductility increasing,the dry wear resistance reduces. The friction coefficient of 10%Mo alloy is the lowest,the dry wear resistance is the best. The wear particles,wear scar depth and width of the 10%Mo alloy are smaller than that of other Ti-Mo alloys. Considering all kinds of properties of Ti-Mo alloys,10%Mo alloy is prospective dental prostheses material.

  6. Exploring the pathways for enhancing the hard magnetic properties of binary Al-55at.%Mn Heusler alloy through mechanical alloying

    Science.gov (United States)

    Palanisamy, Dhanalakshmi; Madras, Giridhar; Chattopadhyay, Kamanio

    2017-10-01

    This work reports enhancing the hard magnetic properties of a binary ferromagnetic Heusler alloy based on Mn-Al system through mechanical milling. We report the processing induced evolution of magnetic properties for two sets of alloys, both having the same stoichiometric composition of Al-55at.%Mn with one of them containing high temperature ε phase while the other consisting of only metastable ferromagnetic τ phase. No effect of milling on the magnetic properties of ε phase could be detected due to its nonmagnetic nature. However, subsequent annealing at 350 °C for 30 min after milling results in structural change and exhibits magnetic response. The phase transitions were found to depend on prior milling history. The highest saturation magnetization and coercivity were obtained for 4 h milled sample that is annealed at 350 °C for 30 min with values of 23 emu/g and 5.2 KOe, respectively. In the case of samples with initial microstructure consisting of grains of only metastable τ phase, no decomposition could be observed when milled for a period up to 9 h. Additionally, it was observed that after 3 h of milling, the saturation magnetization value reduces to 24 emu/g and coercivity increases to 5.2 KOe from an initial values of 116 emu/g and 0.98KOe respectively. Further milling causes a decrease in both the values. Annealing of the 3 h milled powder at 350 °C for 30 min, resulted in a slight decrease in coercivity (Hc = 4.9 KOe) while a significant increase in saturation magnetization (34 emu/g) value could be observed. Experimental results suggest that magnetization reversal is domain nucleation controlled and that the nonmagnetic phases (β + γ2) present can act as the pinning sites.

  7. Electrical conductivity and phase diagram of binary alloys. 21: The system palladium-chromium

    Science.gov (United States)

    Grube, G.; Knabe, R.

    1985-01-01

    Pd-Cr alloys were investigated by thermal analysis, hardness measurements, X-ray analysis, microscopic examination of etched pieces, and temperature-resistance curves of the solid alloys. Only one compound, Pd2Cr3, m, 1389 deg, is formed. It possesses a cubic face centered lattice and forms with excess Pd a series of solid solutions with a minimum m.p. at 45 atoms% Pd. Hardness maximum appears at the Pd2Cr3 point. Pd2Cr3 forms no solid solutions with Cr but eutectic point appears at 25 atoms% Pd, m. 1320 deg. The sp. resistance of pure Cr in an atom of H, indicates no allotropic forms. Cr2O3 is solid in molten Cr. Pure Cr melts at 1890 plus or minus 10 deg but Cr contg. Cr2O3 starts to melt at 1770 to 1790 deg.

  8. Microstructure evaluation of long-term aged binary Ag-Cu alloy

    OpenAIRE

    K. Labisz; Z. Rdzawski; M. Pawlyta

    2011-01-01

    Purpose: In this work there are presented microstructure investigation results of the long aged Ag-Cu alloy used for monetary production. The purpose of this work was to determine the microstructural phase changes after 30 year ageing time, with appliance of transmission electron microscopy. Mainly the possibility of spinodal decomposition process occurrence was investigated.Design/methodology/approach: The investigations were performed using optical microscopy for the microstructure determin...

  9. Relation between emission properties and the surface composition of binary and ternary iridium base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gnuchev, N.M.; Gell, A.P.

    1982-12-01

    Changes in the surface composition and emission properties of iridium alloys with 1.8 and 2.7 at. % of cerium as well as Ir - 8% Ce - 5% Mo and Ir - 8% Ce - 15% Re in the process of thermal treatment in the temperature range of 1400-2000 K were studied. Thermoelectron work function and specimen Auger spectra were detected. The investigations were carried on by experimental instruments equipped with three-grid quasi-spherical analyzers of approximately 0.5% resolution. The investigations have shown that heating at 900-2000 K results in marked improvement of emission properties of both two-and three-component alloys. The surface is cleaned from contaminants and its elementary composition and structure reach optimal ones. At the same time intensive cerium evaporation occurs and emission capability of alloys of low cerium content drops at such high temperatures. So, heating of Ir - 1% Ce specimen during several hours at 2000 K resulted in reduction of cerium Auger peak amplitude and increase in work function by 0.3 eV.

  10. Influence of silicon concentration on linear contraction process of Al-Si binary alloy

    Directory of Open Access Journals (Sweden)

    J. Mutwil

    2008-12-01

    Full Text Available Investigations of shrinkage phenomena during solidification and cooling of aluminium and aluminium-silicon alloys (AlSi5, AlSi7, AlSi9, AlSi11, AlSi12.5, AlSi18, AlSi21 have been conducted. A vertical shrinkage rod casting with circular cross-section (constant or fixed: tapered has been used as a test sample. By constant cross-section a test channel mould was parted and allowed a constrained contraction to examine. No parted test channel mould was tapered and allowed an unconstrained contraction to investigate. In the experiments the dimensions changes of solidifying test bar and the test mould have been registered, what has allowed to explain a mechanism of pre-shrinkage extension of solidifying metals and alloys. Registered time dependence of the test bar and the test mould dimension changes have shown, that so-called pre-shrinkage extension has been by mould thermal extension caused. The investigation results have also shown that time- and temperature dependences of shrinkage of Al-Si alloys have been on silicon concentration depended.

  11. 稀土氧化物粒子对钼合金粉末冶金过程及力学性能的影响%EFFECTS OF RARE-EARTH PARTICLES ON MOLYBDENUM ALLOY POWDER METALLURGY PROCESSING AND MECHANICAL PROPERTIES

    Institute of Scientific and Technical Information of China (English)

    赵虎; 杨秦莉; 冯鹏发; 刘仁智; 付静波

    2013-01-01

    试验研究了掺杂LaO3、Y2 O3、CeO2稀土氧化物颗粒对钼合金的粉末物性、烧结进程、制品的烧结致密度及压力加工丝材的室温力学性能的影响规律.试验结果表明,掺杂稀土氧化物粒子细化了钼粉的粒度,降低了松装密度和粒度分布范围,同时导致粉末团聚现象增多;稀土氧化物粒子延迟了钼合金的烧结进程,降低了烧结制品的致密度,同时细化了烧结体晶粒尺寸.稀土氧化物粒子以弥散强化和细晶强化的形式,提高了钼合金丝的室温强度.CeO2显著提高了钼合金丝的室温韧性,La203、Y2O3则降低了钼合金丝的室温韧性.%The effects on the molybdenum alloy powder properties,sintering proceeding and sintering products density and mechanical properties of molybdenum alloy as-worked wire which was doped with rare-earth oxides particles such as La2O3 、Y2O3 、CeO2 were studied.The results showed that the particles size of the molybdenum alloy powder were refined,loose density and particle size distribution were reduced by doping rare-earth oxides particles,though at the same time molybdenum alloy powder aggregation were increased.Sintering proceeding was delayed,sintering products density was reduced and the grain size was refined by the rare-earth oxides particles during sintering process.The room temperature strength of the molybdenum alloy wire as-worked was increased by the grain refinement strengthening and dispersion strengthening of the doped rare-earth oxides particles.Room temperature toughness of molybdenum alloy wire as-worked was greatly improved as doped CeO2 particles but reduced as doped La2O3 and Y2O3 particles.

  12. Application of the Positron Annihilation Spectroscopy for Chromium Effect Investigation in Binary Fe-Cr Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sojak, S.; Krsjak, V.; Slugen, V.; Stancek, S.; Petriska, M.; Vitazek, K.; Stacho, M. [Department of Nuclear Physics and Technology, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia)

    2008-07-01

    Positron annihilation spectroscopy (PAS) is one of the non-destructive techniques applied with advantage for evaluation of the radiation treated materials microstructure. In this work, the PAS was used for study of different Fe-Cr alloys implanted by ions of helium. Investigation was focused on the chromium effect and the radiation defects resistance. In particular, the vacancy type defects (mono-vacancies, vacancy clusters) have been studied. The results show that the specific content of chromium has important influence on the size and distribution of induced defects. (authors)

  13. Effects of AS-cast and wrought cobalt-chrome-molybdenum and titanium-aluminium-vanadium alloys on cytokine gene expression and protein secretion in J774A.1 macrophages

    Directory of Open Access Journals (Sweden)

    S S Jakobsen

    2007-09-01

    Full Text Available Insertion of metal implants is associated with a possible change in the delicate balance between pro- and anti-inflammatory proteins, probably leading to an unfavourable predominantly pro-inflammatory milieu. The most likely cause is an inappropriate activation of macrophages in close relation to the metal implant and wear-products. The aim of the present study was to compare surfaces of as-cast and wrought Cobalt-Chrome-Molybdenum (CoCrMo alloys and Titanium-Aluminium-Vanadium (TiAlV alloy when incubated with mouse macrophage J774A.1 cell cultures. Changes in pro- and anti-inflammatory cytokines [TNF-alpha, IL-6, IL-alpha, IL-1beta, IL-10] and proteins known to induce proliferation [M-CSF], chemotaxis [MCP-1] and osteogenesis [TGF-beta, OPG] were determined by ELISA and Real Time reverse transcriptase - PCR (Real Time rt-PCR. Lactate dehydrogenase (LDH was measured in the medium to asses the cell viability. Surface properties of the discs were characterised with a profilometer and with energy dispersive X-ray spectroscopy. We here report, for the first time, that the prosthetic material surface (non-phagocytable of as-cast high carbon CoCrMo reduces the pro-inflammatory cytokine IL-6 transcription, the chemokine MCP-1 secretion, and M-CSF secretion by 77 %, 36 %, and 62 %, respectively. Furthermore, we found that reducing surface roughness did not affect this reduction. The results suggest that as-cast CoCrMo alloy is more inert than wrought CoCrMo and wrought TiAlV alloys and could prove to be a superior implant material generating less inflammation which might result in less osteolysis.

  14. A Modified Cellular Automaton Method for the Modeling of the Dendritic Morphology of Binary Alloys

    Institute of Scientific and Technical Information of China (English)

    LIU Ying; XU Qingyan; LIU Baicheng

    2006-01-01

    A cellular automaton (CA)-based model for the precise two-dimensional simulation of the dendritic morphology of cast aluminum alloys was developed. Compared with previous CA models, the new model considers the solidification process in more detail, solving the solute and heat conservation equations in the modeling domain, including calculation of the solid fraction, the tip velocity, and the solute diffusion process, all of which have significant influence on the dendrite evolution. The rotating grids technique was used in the simulation to avoid anisotropy introduced by the square grid. Dendritic grain profiles for different crystallographic orientations show the existence of a great number of regular and parallel secondary and tertiary arms. The simulation results for the secondary arm spacing and grain size were compared with experimental data and with results reported in the literature. A good agreement was found between the simulated results and the experimental data. It can be concluded that the model can be used to predict the dendritic microstructure of aluminum alloy in a quantitative manner.

  15. Simulating the Effect of Space Vehicle Environments on Directional Solidification of a Binary Alloy

    Science.gov (United States)

    Westra, D. G.; Heinrich, J. C.; Poirier, D. R.

    2003-01-01

    Space microgravity missions are designed to provide a microgravity environment for scientific experiments, but these missions cannot provide a perfect environment, due to vibrations caused by crew activity, on-board experiments, support systems (pumps, fans, etc.), periodic orbital maneuvers, and water dumps. Therefore, it is necessary to predict the impact of these vibrations on space experiments, prior to performing them. Simulations were conducted to study the effect of the vibrations on the directional solidification of a dendritic alloy. Finite element ca!cu!attie?ls were dme with a simd2titcr based on a continuum model of dendritic solidification, using the Fractional Step Method (FSM). The FSM splits the solution of the momentum equation into two steps: the viscous intermediate step, which does not enforce continuity; and the inviscid projection step, which calculates the pressure and enforces continuity. The FSM provides significant computational benefits for predicting flows in a directionally solidified alloy, compared to other methods presently employed, because of the efficiency gains in the uncoupled solution of velocity and pressure. finite differences, arises when the interdendritic liquid reaches the eutectic temperature and concentration. When a node reaches eutectic temperature, it is assumed that the solidification of the eutectic liquid continues at constant temperature until all the eutectic is solidified. With this approach, solidification is not achieved continuously across an element; rather, the element is not considered solidified until the eutectic isotherm overtakes the top nodes. For microgravity simulations, where the convection is driven by shrinkage, it introduces large variations in the fluid velocity. When the eutectic isotherm reaches a node, all the eutectic must be solidified in a short period, causing an abrupt increase in velocity. To overcome this difficulty, we employed a scheme to numerically predict a more accurate value

  16. Interconnection between microstructure and microhardness of directionally solidified binary Al-6wt.%Cu and multicomponent Al-6wt.%Cu-8wt.%Si alloys

    Directory of Open Access Journals (Sweden)

    ANGELA J. VASCONCELOS

    2016-06-01

    Full Text Available An experimental study has been carried out to evaluate the microstructural and microhardness evolution on the directionally solidified binary Al-Cu and multicomponent Al-Cu-Si alloys and the influence of Si alloying. For this purpose specimens of Al-6wt.%Cu and Al-6wt.%Cu-8wt.%Si alloys were prepared and directionally solidified under transient conditions of heat extraction. A water-cooled horizontal directional solidification device was applied. A comprehensive characterization is performed including experimental dendrite tip growth rates (VL and cooling rates (TR by measuring Vickers microhardness (HV, optical microscopy and scanning electron microscopy with microanalysis performed by energy dispersive spectrometry (SEM-EDS. The results show, for both studied alloys, the increasing of TR and VL reduced the primary dendrite arm spacing (l1 increasing the microhardness. Furthermore, the incorporation of Si in Al-6wt.%Cu alloy to form the Al-6wt.%Cu-8wt.%Si alloy influenced significantly the microstructure and consequently the microhardness but did not affect the primary dendritic growth law. An analysis on the formation of the columnar to equiaxed transition (CET is also performed and the results show that the occurrence of CET is not sharp, i.e., the CET in both cases occurs in a zone rather than in a parallel plane to the chill wall, where both columnar and equiaxed grains are be able to exist.

  17. Interconnection between microstructure and microhardness of directionally solidified binary Al-6wt.%Cu and multicomponent Al-6wt.%Cu-8wt.%Si alloys.

    Science.gov (United States)

    Vasconcelos, Angela J; Kikuchi, Rafael H; Barros, André S; Costa, Thiago A; Dias, Marcelino; Moreira, Antonio L; Silva, Adrina P; Rocha, Otávio L

    2016-05-31

    An experimental study has been carried out to evaluate the microstructural and microhardness evolution on the directionally solidified binary Al-Cu and multicomponent Al-Cu-Si alloys and the influence of Si alloying. For this purpose specimens of Al-6wt.%Cu and Al-6wt.%Cu-8wt.%Si alloys were prepared and directionally solidified under transient conditions of heat extraction. A water-cooled horizontal directional solidification device was applied. A comprehensive characterization is performed including experimental dendrite tip growth rates (VL) and cooling rates (TR) by measuring Vickers microhardness (HV), optical microscopy and scanning electron microscopy with microanalysis performed by energy dispersive spectrometry (SEM-EDS). The results show, for both studied alloys, the increasing of TR and VL reduced the primary dendrite arm spacing (l1) increasing the microhardness. Furthermore, the incorporation of Si in Al-6wt.%Cu alloy to form the Al-6wt.%Cu-8wt.%Si alloy influenced significantly the microstructure and consequently the microhardness but did not affect the primary dendritic growth law. An analysis on the formation of the columnar to equiaxed transition (CET) is also performed and the results show that the occurrence of CET is not sharp, i.e., the CET in both cases occurs in a zone rather than in a parallel plane to the chill wall, where both columnar and equiaxed grains are be able to exist.

  18. Lattice Thermal Conductivity of the Binary and Ternary Group-IV Alloys Si-Sn, Ge-Sn, and Si-Ge-Sn

    Science.gov (United States)

    Khatami, S. N.; Aksamija, Z.

    2016-07-01

    Efficient thermoelectric (TE) energy conversion requires materials with low thermal conductivity and good electronic properties. Si-Ge alloys, and their nanostructures such as thin films and nanowires, have been extensively studied for TE applications; other group-IV alloys, including those containing Sn, have not been given as much attention as TEs, despite their increasing applications in other areas including optoelectronics. We study the lattice thermal conductivity of binary (Si-Sn and Ge-Sn) and ternary (Si-Ge-Sn) alloys and their thin films in the Boltzmann transport formalisms, including a full phonon dispersion and momentum-dependent boundary-roughness scattering. We show that Si-Sn alloys have the lowest conductivity (3 W /mK ) of all the bulk alloys, more than 2 times lower than Si-Ge, attributed to the larger difference in mass between the two constituents. In addition, we demonstrate that thin films offer an additional reduction in thermal conductivity, reaching around 1 W /mK in 20-nm-thick Si-Sn, Ge-Sn, and ternary Si-Ge-Sn films, which is near the conductivity of amorphous SiO2 . We conclude that group-IV alloys containing Sn have the potential for high-efficiency TE energy conversion.

  19. A numerical analysis on the freeze coating of a non-isothermal flat plate with a binary alloy

    Energy Technology Data Exchange (ETDEWEB)

    Nam, J.H. [Seoul National University Graduate School, Seoul (Korea); Kim, C.J. [Seoul National University, Seoul (Korea)

    2000-11-01

    A numerical analysis on the freeze coating process of a non-isothermal finite dimensional plate with a binary alloy is performed to investigate the growth and decay behavior of the solid and the mushy layer of the freeze coat and a complete procedure to calculate the process is obtained in this study. The continuously varying solid and mushy layers are immobilized by a coordinate transform and the resulting governing differential equations are solved by a finite difference technique. To account for the latent heat release and property change during solidification, proper phase change models are adopted. And the convection in the liquid melt is modeled as an appropriate heat transfer boundary condition at the liquid/mushy interface. The present results are compared with analytic solutions derived for the freeze coating of infinite dimensional plates and the discrepancy is found to be less than 0.5 percent in relative magnitude for all simulation cases. In addition the conservation of thermal energy is checked. The results show that the freeze coat grows proportional to the 1/2 square of axial position as predicted by analytic solutions at first. But after the short period of initial growth, the growth rate of the freeze coat gradually decreases and finally the freeze coat are also investigated. (author). 11 refs., 10 figs., 1 tab.

  20. Convection and segregation in directional solidification of dilute and non-dilute binary alloys: effects of ampoule and furnace design

    Energy Technology Data Exchange (ETDEWEB)

    Adornato, P.M.; Brown, R.A.

    1987-01-01

    The effect of furnace configuration and ampoule design on the temperature field, the convection in the melt, the shape of the melt-solid interface, and the segregation of solute in the crystal are analyzed for the directional solidification of several dilute and non-dilute binary semiconductor alloys. The analysis is based on numerical calculations using a Petrov-Galerkin/finite-element method for solving the free-boundary problem that describes axisymmetric convection in the melt, the interface shape, and heat transfer in melt, crystal, and ampoule in a quasi-steady state model of the vertically stabilized Bridgman-Stockbarger system and for a furnace with a uniform temperature gradient imposed over a long section of ampoule. The flow in molten germanium grown in the Bridgman-Stockbarger system has two vertically-stacked toroidal cells. The top cell moves melt upward along the ampoule wall and is driven by the radial temperature gradients caused by the junction of the adiabatic and hot zones of the furnace.

  1. Obtaining Mixed-Basis Ising-Like Expansions of Binary Alloys from First Principles

    Science.gov (United States)

    Hart, Gus L. W.; Sanati, Mahdi; Wang, Ligen; Zunger, Alex

    2002-03-01

    Many electronic and structural properties of A_1-xBx alloys can be predicted theoretically if one can find (and quickly compute) the ``configurational energy function''--that is, the energy for any given configuration of A and B atoms on the crystal lattice. Cluster expansion methods provide one such approach. We describe our mixed-basis cluster expansion (MBCE) based on first-principles total energy calculations for only a few ordered A_mBn compounds. Our MBCE can robustly predict a variety of material properties including ground states, phase diagrams, precipitate formation, etc. Specifically, we illustrate how systematic choice of interaction parameters, numerical parameters, and choice of input structures can significantly increase the accuracy and the predictive capability of the expansion. We illustrate how the fit of LDA data can be done essentially automatically. Examples include Cu-Au, Ni-Pt, and Sc_1-xBox_xS.

  2. Thermal oxidation of the surface of binary aluminum alloys with rare-earth metals

    Science.gov (United States)

    Akashev, L. A.; Popov, N. A.; Kuznetsov, M. V.; Shevchenko, V. G.

    2015-05-01

    The kinetics of oxidation of the surface of Al alloys with 1-2.5 at % rare-earth metals (REMs) at 400-500°C in air was studied by ellipsometry and X-ray photoelectron spectroscopy (XPS). The addition (1-2.5 at % REM) of all rare-earth metals to aluminum was shown to increase the thickness of the oxide layer. The addition of surfactant and chemically active REMs (Yb, Sm, La, and Ce) increased the rate of oxidation of solid aluminum most effectively. The oxidation can be accelerated by the polymorphic transformations of the individual REM oxides in the film. The surface activity of Sm with respect to solid Al was confirmed by XRS.

  3. Analysis on the non-equilibrium dendritic solidification of a binary alloy with back diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Chung, J.D. [Seoul National University Graduate School, Seoul (Korea, Republic of); Yoo, H.S. [Soong Sil University, Seoul (Korea, Republic of); Lee, J.S. [Seoul National University, Seoul (Korea, Republic of)

    1996-10-01

    Micro-Macro approach is conducted for the mixture solidification to handle the closely linked phenomena of microscopic solute redistribution and macroscopic solidification behavior. For this purpose, present work combines the efficiency of mixture theory for macro part and the capability of microscopic analysis of two-phase model for micro part. The micro part of present study is verified by comparison with experiment of Al-4.9 mass% Cu alloy. The effect of back diffusion on the macroscopic variables such as temperature and liquid concentration, is appreciable. The effect, however, is considerable on the mixture concentration and eutectic fraction which are indices of macro and micro segregation, respectively. According to the diffusion time, the behavior near the cooling wall where relatively rapid solidification permits short solutal diffusion time, approaches Scheil equation limit and inner part approaches lever rule limit. (author). 23 refs., 13 figs., 1 tab.

  4. Amorphous and nanocrystalline phase formation in highly-driven Al-based binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kalay, Yunus Eren [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Remarkable advances have been made since rapid solidification was first introduced to the field of materials science and technology. New types of materials such as amorphous alloys and nanostructure materials have been developed as a result of rapid solidification techniques. While these advances are, in many respects, ground breaking, much remains to be discerned concerning the fundamental relationships that exist between a liquid and a rapidly solidified solid. The scope of the current dissertation involves an extensive set of experimental, analytical, and computational studies designed to increase the overall understanding of morphological selection, phase competition, and structural hierarchy that occurs under far-from equilibrium conditions. High pressure gas atomization and Cu-block melt-spinning are the two different rapid solidification techniques applied in this study. The research is mainly focused on Al-Si and Al-Sm alloy systems. Silicon and samarium produce different, yet favorable, systems for exploration when alloyed with aluminum under far-from equilibrium conditions. One of the main differences comes from the positions of their respective T0 curves, which makes Al-Si a good candidate for solubility extension while the plunging T0 line in Al-Sm promotes glass formation. The rapidly solidified gas-atomized Al-Si powders within a composition range of 15 to 50 wt% Si are examined using scanning and transmission electron microscopy. The non-equilibrium partitioning and morphological selection observed by examining powders at different size classes are described via a microstructure map. The interface velocities and the amount of undercooling present in the powders are estimated from measured eutectic spacings based on Jackson-Hunt (JH) and Trivedi-Magnin-Kurz (TMK) models, which permit a direct comparison of theoretical predictions. For an average particle size of 10 {micro}m with a Peclet number of ~0.2, JH and TMK deviate from

  5. In situ determination of binary alloy melt compositions in the LHDAC by X- Radiography

    Science.gov (United States)

    Lord, O. T.; Walter, M. J.; Walker, D.; Clark, S. M.

    2008-12-01

    Constraining the light element in Earth's molten outer core requires an understanding of the melting phase relations in iron-light element binary systems. For example, it is critical to determine the composition of liquids at binary eutectics. Typically such measurements are carried out after the sample has been quenched in temperature and pressure. Such 'cook and look' methods possibly suffer from systematic errors introduced by exsolution of the light element from the melt on quench and error in the reintegration of the liquid composition [1]. Here, we present a novel method for the determination of melt compositions in iron-light element binary systems in situ in the LHDAC at simultaneous high-pressure, high-temperature conditions. Samples consist of a light element bearing compound, such as FeO, surrounded by a pure iron ring, forming a donut ~100 μm in diameter and ~15 μm thick. The donuts are loaded into stainless steel gaskets in the DAC, sandwiched between discs fabricated from sol-gel deposited nanocrystalline Al2O3 with similar dimensions to the donut. Pressure is monitored by ruby fluorescence during compression. The sample is heated at the boundary between the iron and light element compound using two 100 W IR lasers in a double-sided configuration at beamline 12.2.2 at the Advanced Light Source. Temperature is measured by spectroradiometry. Before, during and after melting, X-radiographic images of the sample are taken by shining a defocused beam of synchrotron X-rays through the sample and onto a CdWO4 phosphor. The visible light from the phosphor is then focused onto a high resolution CCD, where absorption contrast images are recorded. The absorption of the molten region is then determined, and it's composition calculated by linear interpolation between the absorption of the two solid end members. As a test of the reliability of the method we measured the Fe-FeS eutectic to 20 GPa and our results are in good agreement with previous studies that are

  6. Molybdenum, molybdenum oxides, and their electrochemistry.

    Science.gov (United States)

    Saji, Viswanathan S; Lee, Chi-Woo

    2012-07-01

    The electrochemical behaviors of molybdenum and its oxides, both in bulk and thin film dimensions, are critical because of their widespread applications in steels, electrocatalysts, electrochromic materials, batteries, sensors, and solar cells. An important area of current interest is electrodeposited CIGS-based solar cells where a molybdenum/glass electrode forms the back contact. Surprisingly, the basic electrochemistry of molybdenum and its oxides has not been reviewed with due attention. In this Review, we assess the scattered information. The potential and pH dependent active, passive, and transpassive behaviors of molybdenum in aqueous media are explained. The major surface oxide species observed, reversible redox transitions of the surface oxides, pseudocapacitance and catalytic reduction are discussed along with carefully conducted experimental results on a typical molybdenum glass back contact employed in CIGS-based solar cells. The applications of molybdenum oxides and the electrodeposition of molybdenum are briefly reviewed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Investigations of linear contraction and shrinkage stresses development in hypereutectic al-si binary alloys

    Directory of Open Access Journals (Sweden)

    J. Mutwil

    2009-07-01

    Full Text Available Shrinkage phenomena during solidification and cooling of hypereutectic aluminium-silicon alloys (AlSi18, AlSi21 have been examined. A vertical shrinkage rod casting with circular cross-section (constant or fixed: tapered has been used as a test sample. Two type of experiments have been conducted: 1 on development of the test sample linear dimension changes (linear expansion/contraction, 2 on development of shrinkage stresses in the test sample. By the linear contraction experiments the linear dimension changes of the test sample and the metal test mould as well a temperature in six points of the test sample have been registered. By shrinkage stresses examination a shrinkage tension force and linear dimension changes of the test sample as well a temperature in three points of the test sample have been registered. Registered time dependences of the test bar and the test mould linear dimension changes have shown, that so-called pre-shrinkage extension has been mainly by mould thermal extension caused. The investigation results have shown that both: the linear contraction as well as the shrinkage stresses development are evident dependent on metal temperature in a warmest region the sample (thermal centre.

  8. The effect of peptone on the structure of electrodeposited Sn-Fe binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lak, G. B. [Glasgow Caledonian University (United Kingdom); Sziráki, L.; Kuzmann, E., E-mail: Kuzmann@caesar.elte.hu; Stichleutner, S. [Eötvös Loránd University, Institute of Chemistry, Pázmány Péter sétány 1/A (Hungary); Chisholm, C. U.; El-Sharif, M. [Glasgow Caledonian University (United Kingdom); Varga, G.; Havancsák, K. [Eötvös Loránd University, Institute of Physics, Pázmány Péter sétány 1/A (Hungary); Homonnay, Z. [Eötvös Loránd University, Institute of Chemistry, Pázmány Péter sétány 1/A (Hungary)

    2016-12-15

    Sn-Fe thin films were electrodeposited by constant current deposition on copper substrates using an aqueous gluconate based electrolyte with varying concentrations of the organic additive peptone. Good quality metallic deposits were obtained with surface morphologies which varied with the concentration of peptone present in the electrolyte. The effect of peptone concentration on the deposition process was studied using electrochemical polarization curves and EDX analysis. The effect of peptone concentration on deposit structure and surface morphology was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and {sup 57}Fe and {sup 119}Sn conversion electron Mössbauer spectroscopy (CEMS). It was concluded that the addition of small amounts of peptone to the electrolyte slightly increased the bath stability and led to changes in the alloy composition of the electrodeposits. It was found that increases in the peptone content increased the amount of the crystalline structure in the deposits with corresponding reductions in the amounts of amorphous structure present in the deposits.

  9. The effect of peptone on the structure of electrodeposited Sn-Fe binary alloys

    Science.gov (United States)

    Lak, G. B.; Sziráki, L.; Kuzmann, E.; Stichleutner, S.; Chisholm, C. U.; El-Sharif, M.; Varga, G.; Havancsák, K.; Homonnay, Z.

    2016-12-01

    Sn-Fe thin films were electrodeposited by constant current deposition on copper substrates using an aqueous gluconate based electrolyte with varying concentrations of the organic additive peptone. Good quality metallic deposits were obtained with surface morphologies which varied with the concentration of peptone present in the electrolyte. The effect of peptone concentration on the deposition process was studied using electrochemical polarization curves and EDX analysis. The effect of peptone concentration on deposit structure and surface morphology was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and 57Fe and 119Sn conversion electron Mössbauer spectroscopy (CEMS). It was concluded that the addition of small amounts of peptone to the electrolyte slightly increased the bath stability and led to changes in the alloy composition of the electrodeposits. It was found that increases in the peptone content increased the amount of the crystalline structure in the deposits with corresponding reductions in the amounts of amorphous structure present in the deposits.

  10. Short-range order types in binary alloys: A reflection of coherent phase stability

    Energy Technology Data Exchange (ETDEWEB)

    W. Wolverton; V. Ozolins; Alex Zunger

    1999-11-23

    The short-range order (SRO) present in disordered solid solutions is classified according to three characteristic system-dependent energies: (1) formation enthalpies of ordered compounds, (2) enthalpies of mixing of disordered alloys, and (3) the energy of coherent phase separation, (the composition-weighted energy of the constituents each constrained to maintain a common lattice constant along an A/B interface). These energies are all compared against a common reference, the energy of incoherent phase separation (the composition-weighted energy of the constituents each at their own equilibrium volumes). Unlike long-range order (LRO), short-range order is determined by energetic competition between phases at a fixed composition, and hence only coherent phase-separated states are of relevance for SRO. The authors find five distinct SRO types, and show examples of each of these five types, including Cu-Au, Al-Mg, GaP-InP, Ni-Au, and Cu-Ag. The SRO is calculated from first-principles using the mixed-space cluster expansion approach combined with Monte Carlo simulations. Additionally, they examine the effect of inclusion of coherency strain in the calculation of SRO, and specifically examine the appropriate functional form for accurate SRO calculations.

  11. Inorganic polarography in organic solvents-II: polarographic examination of the molybdenum(V) thiocyanate complex in diethyl ether.

    Science.gov (United States)

    Afghan, B K; Dagnall, R M

    1967-02-01

    A procedure involving the solvent extraction of molybdenum(V) thiocyanate into diethyl ether followed by a direct polarographic examination of the organic phase offers a selective method for the determination of molybdenum down to 0.5 ppm. Only molybdenum, amongst 21 elements examined, is observed to give a reduction wave under the recommended conditions. The method is evaluated with respect to various experimental factors and is applied to the determination of molybdenum in mild and alloy steels.

  12. A study of phase transformations processes in 0,5 to 4% mo uranium-molybdenum alloys; Etude des processus des transformations dans les alliages uranium-molybdene de teneur 0,5 a 4% en poids de molybdene

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-06-15

    Isothermal and continuous cooling transformations process have been established on uranium-molybdenum alloys containing 0,5 to 4 w% Mo. Transformations process of the {beta} and {gamma} solid solutions are described. These processes depend upon molybdenum concentration. Out of the {beta} solid solution phase appears an eutectoid decomposition of {beta} to ({alpha} + {gamma}) or the formation of a martensitic phase {alpha}''. The {gamma} solid solution shows a decomposition of {gamma} to ({alpha} + {gamma}) or ({alpha} + {gamma}'), or a formation of martensitic phases a' or a'{sub b}. The U-Mo equilibrium diagram is discussed, particularly in low concentrations zones. Limits between domains ({alpha} + {gamma}) and ({beta} + {gamma}), ({beta} + {gamma}) and {gamma}, ({beta} + {gamma}) and {beta}, have been determined. (author) [French] Les processus des transformations isothermes, et au cours de refroidissements continus ont ete etablis sur les alliages uranium-molybdene de 0,5 a 4 % en poids de Mo. Ceci a permis de mettre en evidence les processus des transformations de solutions solides {beta} et {gamma}, differents suivant la teneur en molybdene de l'alliage. Dans le premier cas il y a decomposition eutectoide de {beta} en ({alpha} + {gamma}) ou formations d'une phase martensitique {alpha}''. Dans le second cas il y a decomposition de {gamma} soit en ({alpha} + {gamma}) soit en ({alpha} + {gamma}') suivant la temperature, ou bien formation des phases martensitiques {alpha}' ou {alpha}'{sub b}. Le diagramme d'equilibre, uranium-molybdene est sujet a de nombreuses controverses, en particulier dans la zone des faibles concentrations. Les limites entre les domaines ({alpha} + {gamma}) et ({beta} + {gamma}), ({beta} + {gamma}) et {gamma}, ({beta} + {gamma}) et {beta}, ont ete determinees. (auteur)

  13. Improvement of Measurement of Silicon Content in Zinc and Zinc Alloy by Molybdenum Blue Spectrophotometric Method%钼蓝分光光度法测锌及锌合金中硅量方法改进

    Institute of Scientific and Technical Information of China (English)

    刘梦影

    2015-01-01

    The paper analyzes molybdenum blue spectrophotometric method that is used to measure silicon content in zinc and zinc alloy, meanwhile, researches some shortcomings and gives some supplements and advices. The new method uses matrix matching to correct standard curve and the blank by eliminating the matrix interference. Color range pH5.6 ~ 7.6 is used on nitrophenol to adjust pH. Experiments show that silicon and ammonium molybdate react to generate silicon molybdenum heteropoly acid in sulfuric acid medium by using ascorbic acid as reducing agent. The concentration of silicon standard solution within 0 ~ 1.0 μg/mL conforms to beer's law, standard recovery is 98% ~ 101%, which is better than the national standard method and broaden the scope of determination of silicon content.%对国标中用于测定锌及锌合金中硅含量的钼蓝光度法进行了分析,研究了其中的不足,并作出了几点补充和建议.新方法采用基体匹配方式校正标准曲线及空白,消除基体干扰;使用变色范围pH5.6~7.6的对硝基苯酚调pH.实验表明:在硫酸介质中,硅与钼酸铵生成硅钼杂多酸,用抗坏血酸作还原剂,硅标准溶液浓度在0~1.0 μg/mL范围内符合比尔定律,标准回收率为98%~101%,较国标方法更理想,拓宽了硅量测定范围.

  14. In-situ high-energy X-ray diffraction investigation on stress-induced martensitic transformation in Ti-Nb binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chang, L. L.; Wang, Y. D.; Ren, Y.

    2016-01-10

    Microstructure evolution, mechanical behaviors of cold rolled Ti-Nb alloys with different Nb contents subjected to different heat treatments were investigated. Optical microstructure and phase compositions of Ti-Nb alloys were characterized using optical microscopy and X-ray diffractometre, while mechanical behaviors of Ti-Nb alloys were examined by using tension tests. Stress-induced martensitic transformation in a Ti-30. at%Nb binary alloy was in-situ explored by synchrotron-based high-energy X-ray diffraction (HE-XRD). The results obtained suggested that mechanical behavior of Ti-Nb alloys, especially Young's modulus was directly dependent on chemical compositions and heat treatment process. According to the results of HE-XRD, α"-V1 martensite generated prior to the formation of α"-V2 during loading and a partial reversible transformation from α"-V1 to β phase was detected while α"-V2 tranformed to β completely during unloading.

  15. Simulation of self-assembled nanopatterns in binary alloys on the fcc(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Sebastian

    2008-07-01

    results of growth simulations are presented. At first, we introduce a model in order to realize off-lattice Kinetic Monte Carlo simulations. Since the costs in simulation time are enormous, some simplifications in the calculation of diffusion barriers are necessary and therefore the previous model is supplemented with some elements from the so-called ball and spring model. The next point is devoted to the calculation of energy barriers followed by the presentation of the growth simulations. Binary systems with only one sort of adsorbate are investigated as well as ternary systems with two different adsorbates. Finally, a comparison to the equilibrium simulations is drawn. Chapter 6 contains some concluding remarks and gives an outlook to possible further investigations. (orig.)

  16. Unusual response of the binary V-2Si alloy to neutron irradiation in FFTF at 430-600{degrees}C

    Energy Technology Data Exchange (ETDEWEB)

    Ohnuki, S.; Konoshita, H.; Takahaski, H. [Hokkaido Univ., Sapparo (Japan); Garner, F.A. [Pacific Northwest National Laboratory, Richland, WA (United States)

    1996-04-01

    When V-2Si was irradiated in FFTF at 430, 500 and 600C to doses as high as 80 dpa, a very unusual swelling response was observed in which the swelling appeared to saturate rather quickly at {approx}35% at 430 and 540C, but approached this swelling same level much more slowly at 600C. The possible causes of this phenomenon are discussed as well as the implications of these findings on the swelling behavior of other high swelling vanadium binary alloys.

  17. Cooling curve analysis in binary Al-Cu alloys: Part I- Effect of cooling rate and copper content on the eutectic formation

    Directory of Open Access Journals (Sweden)

    M. Dehnavi

    2015-09-01

    Full Text Available There are many techniques available for investigating the solidification of metals and alloys. In recent years computer-aided cooling curve analysis (CA-CCA has been used to determine thermo-physical properties of alloys, latent heat and solid fraction. In this study, the effect of cooling rate and copper addition was taken into consideration in non- equilibrium eutectic transformation of binary Al- Cu melt via cooling curve analysis. For this purpose, melts with different copper weight percent of 2.2, 3.7 and 4.8 were prepared and cooled in controlled rates of 0.04 and 0.42 °C/s. Results show that, latent heat of alloy highly depends upon the post- solidification cooling rate and composition. As copper content of alloy and cooling rate increase, achieved nonequilibrium eutectic phase increases that leads to release of high amount of latent heat and appearing of second deviation in cooling curve. This deviation can be seen in first time derivative curve in the form of a definite peak.

  18. RECYCLING TECHNOLOGY INTO INDUSTRIAL TURNOVER OF BISMUTH AND MOLYBDENUM FROM DEAD CATALYST

    Directory of Open Access Journals (Sweden)

    O. S. Komarov

    2013-01-01

    Full Text Available The technology of separate extraction of bismuth and molybdenum from spent catalyst was presented and information on the effectiveness of its use in a composition of comprehensive modifier in the iron-carbon alloy was given.

  19. Copper-based alloys, crystallographic and crystallochemical parameters of alloys in binary systems Cu-Me (Me=Co, Rh, Ir, Cu, Ag, Au, Ni, Pd, Pt)

    Energy Technology Data Exchange (ETDEWEB)

    Porobova, Svetlana, E-mail: porobova.sveta@yandex.ru; Loskutov, Oleg, E-mail: lom58@mail.ru [Tomsk State University of Architecture and Building, Russia, Tomsk, 2 Solyanaya sq, Tomsk, 634003 (Russian Federation); Markova, Tat’jana, E-mail: patriot-rf@mail.ru [Siberian State Industrial University. 42 Kirov St., Novokuznetsk, 654007 (Russian Federation); Klopotov, Vladimir, E-mail: vdklopotov@mail.ru [Research Tomsk Polytechnic University, 30 Lenin Ave., Tomsk, 634050 (Russian Federation); Klopotov, Anatoliy, E-mail: klopotovaa@tsuab.ru [Tomsk State University of Architecture and Building, Russia, Tomsk, 2 Solyanaya sq, Tomsk, 634003 (Russian Federation); National Research Tomsk State University, 36, Lenin Ave., Tomsk, 634050 (Russian Federation); Vlasov, Viktor, E-mail: vik@tsuab.ru [Tomsk State University of Architecture and Building, Russia, Tomsk, 2 Solyanaya sq, Tomsk, 634003 (Russian Federation); Research Tomsk Polytechnic University, 30 Lenin Ave., Tomsk, 634050 (Russian Federation)

    2016-01-15

    The article presents the results of the analysis of phase equilibrium of ordered phases in binary systems based on copper Cu- Me (where Me - Co, Rh, Ir, Ag, Au, Ni, Pd, Pt) to find correlations of crystallochemical and crystallographic factors. It is established that the packing index in disordered solid solutions in binary systems based on copper is close to the value of 0.74 against the background of an insignificant deviation of atomic volumes from the Zen’s law.

  20. Analysis of niobium alloys.

    Science.gov (United States)

    Ferraro, T A

    1968-09-01

    An ion-exchange method was applied to the analysis of synthetic mixtures representing various niobium-base alloys. The alloying elements which were separated and determined include vanadium, zirconium, hafnium, titanium, molybdenum, tungsten and tantalum. Mixtures containing zirconium or hafnium, tungsten, tantalum and niobium were separated by means of a single short column. Coupled columns were employed for the resolution of mixtures containing vanadium, zirconium or titanium, molybdenum, tungsten and niobium. The separation procedures and the methods employed for the determination of the alloying elements in their separate fractions are described.

  1. Composition-dependent electrocatalytic activity of palladium-iridium binary alloy nanoparticles supported on the multiwalled carbon nanotubes for the electro-oxidation of formic acid.

    Science.gov (United States)

    Bao, Jianming; Dou, Meiling; Liu, Haijing; Wang, Feng; Liu, Jingjun; Li, Zhilin; Ji, Jing

    2015-07-22

    Surface-functionalized multiwalled carbon nanotubes (MWCNTs) supported Pd100-xIrx binary alloy nanoparticles (Pd100-xIrx/MWCNT) with tunable Pd/Ir atomic ratios were synthesized by a thermolytic process at varied ratios of bis(acetylacetonate) palladium(II) and iridium(III) 2,4-pentanedionate precursors and then applied as the electrocatalyst for the formic acid electro-oxidation. The X-ray diffraction pattern (XRD) and transmission electron microscope (TEM) analysis showed that the Pd100-xIrx alloy nanoparticles with the average size of 6.2 nm were uniformly dispersed on the MWCNTs and exhibited a single solid solution phase with a face-centered cubic structure. The electrocatalytic properties were evaluated through the cyclic voltammetry and chronoamperometry tests, and the results indicated that both the activity and stability of Pd100-xIrx/MWCNT were strongly dependent on the Pd/Ir atomic ratios: the best electrocatalytic performance in terms of onset potential, current density, and stability against CO poisoning was obtained for the Pd79Ir21/MWCNT. Moreover, compared with pure Pd nanoparticles supported on MWCNTs (Pd/MWCNT), the Pd79Ir21/MWCNT exhibited enhanced steady-state current density and higher stability, as well as maintained excellent electrocatalytic activity in high concentrated formic acid solution, which was attributed to the bifunctional effect through alloying Pd with transition metal.

  2. Artefacts in multimodal imaging of titanium, zirconium and binary titanium-zirconium alloy dental implants: an in vitro study.

    Science.gov (United States)

    Smeets, Ralf; Schöllchen, Maximilian; Gauer, Tobias; Aarabi, Ghazal; Assaf, Alexandre T; Rendenbach, Carsten; Beck-Broichsitter, Benedicta; Semmusch, Jan; Sedlacik, Jan; Heiland, Max; Fiehler, Jens; Siemonsen, Susanne

    2017-02-01

    To analyze and evaluate imaging artefacts induced by zirconium, titanium and titanium-zirconium alloy dental implants. Zirconium, titanium and titanium-zirconium alloy implants were embedded in gelatin and MRI, CT and CBCT were performed. Standard protocols were used for each modality. For MRI, line-distance profiles were plotted to quantify the accuracy of size determination. For CT and CBCT, six shells surrounding the implant were defined every 0.5 cm from the implant surface and histogram parameters were determined for each shell. While titanium and titanium-zirconium alloy induced extensive signal voids in MRI owing to strong susceptibility, zirconium implants were clearly definable with only minor distortion artefacts. For titanium and titanium-zirconium alloy, the MR signal was attenuated up to 14.1 mm from the implant. In CT, titanium and titanium-zirconium alloy resulted in less streak artefacts in comparison with zirconium. In CBCT, titanium-zirconium alloy induced more severe artefacts than zirconium and titanium. MRI allows for an excellent image contrast and limited artefacts in patients with zirconium implants. CT and CBCT examinations are less affected by artefacts from titanium and titanium-zirconium alloy implants compared with MRI. The knowledge about differences of artefacts through different implant materials and image modalities might help support clinical decisions for the choice of implant material or imaging device in the clinical setting.

  3. The estimation of corrosion behaviour of ZrTi binary alloys for dental applications using electrochemical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mareci, Daniel [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, Iasi (Romania); Bolat, Georgiana, E-mail: georgiana20022@yahoo.com [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, Iasi (Romania); Chelariu, Romeu [“Gheorghe Asachi” Technical University of Iasi, Faculty of Materials Science and Engineering, Iasi (Romania); Sutiman, Daniel [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, Iasi (Romania); Munteanu, Corneliu [“Gheorghe Asachi” Technical University of Iasi, Faculty of Mechanical, Iasi (Romania)

    2013-08-15

    Titanium and zirconium are in the same group in the periodic table of elements and are known to have similar physical and chemical properties. Both Ti and Zr usually have their surfaces covered by a thin oxide film spontaneously formed in air. However, the cytotoxicity of ZrO{sub 2} is lower than that of TiO{sub 2} rutile. Treatments with fluoride are known as the main methods to prevent plaque formation and dental caries. The corrosion behaviour of ZrTi alloys with Ti contents of 5, 25 and 45 wt.% and cp-Ti was investigated for dental applications. All samples were tested by linear potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) performed in artificial saliva with different pH levels (5.6 and 3.4) and different fluoride (1000 ppm F{sup −}) and albumin protein (0.6%) contents. In addition, scanning electron microscopy (SEM) was employed to observe the surface morphology of the test materials after linear potentiodynamic polarisation. The corrosion current densities for the ZrTi alloys increased with the titanium content. The Zr5Ti and Zr25Ti alloys were susceptible to localised corrosion. The role that Ti plays as an alloying element is that of increasing the resistance of ZrTi alloy to localised corrosion. The presence of 0.6% albumin protein in fluoridated acidified artificial saliva with 1000 ppm F{sup −} could protect the cp-Ti and ZrTi alloys from attack by fluoride ions. - Highlights: • Electrochemical and corrosion behaviour of the new ZrTi alloys were investigated. • The passive behaviour for all the ZrTi alloys is observed. • Addition of Ti to Zr improves the corrosion resistance in some fluoridated saliva. • The presence of albumin could prevent the ZrTi alloys from attack by fluoride ions.

  4. Organometallic Chemistry of Molybdenum.

    Science.gov (United States)

    Lucas, C. Robert; Walsh, Kelly A.

    1987-01-01

    Suggests ways to avoid some of the problems students have learning the principles of organometallic chemistry. Provides a description of an experiment used in a third-year college chemistry laboratory on molybdenum. (TW)

  5. Numerical Simulation for Temperature Field of Laser Gas Alloying on Molybdenum Surface%脉冲激光钼表面氮化处理温度场的数值模拟

    Institute of Scientific and Technical Information of China (English)

    高昕; 苏增立

    2001-01-01

    本文用有限差分法对金属钼表面脉冲激光生成氮化钼薄膜过程的温度场进行了三维数值模拟计算。计算模型在能量平衡方程的基础上,将入射的脉冲激光在时间与空间上的分布以Gauss分布考虑,同时考虑工件尺寸、工件材料热物理性质及对流辐射造成的表面热损失等对温度场的影响。此外还从理论上计算了激光脉冲在脉冲宽度加宽后的温度场变化,分析了利用长脉冲激光进行材料表面相变硬化和激光重熔的可行性。%In this paper, numerical simulation for temperature field of Mo2N films generated on molybdenum surface using laser gas alloying(LGA) method is performed by finite-difference method. The numerical model used takes into account of Gauss distribution ‘ in space and time' of laser spot, the finite size of sample, the temperature dependence of themophysical properties, and the surface heat losses due to convection and radiation. The changes of temperature field are calculated accordingly. The feasibility of using pulse laser for laser surface transformation hardening and laser surface remelting is also analyzed.

  6. Characterization of Nanoprecipitation Mechanisms During Isochronal Aging of a Pseudo-binary Al-8.7 at. pct Li Alloy

    Science.gov (United States)

    Spowage, A. C.; Bray, S.

    2011-01-01

    The addition of lithium to aluminium alloys is known to afford the dual advantages of increasing mechanical performance while lowering density. These characteristics make Al-Li alloys particularly desirable for aerospace applications. However, the complex precipitation pathways and extensive nanometer-sized decomposition products, termed "nanoprecipitates," make characterization difficult and thus limits optimization of the property sets of commercial alloys. This investigation uses thermal analysis and electrical resistivity methods to further understanding of the evolution of the various nanoprecipitates during isochronal aging of an Al-8.7 at. pct Li alloy. The results indicate decomposition via the following pathway: Spinodal-Ordering → Congruent Ordering + Spinodal Decomposition + Dissolution of Small Spinodally ordered regions → Growth of δ' → Dissolution of δ' → Nucleation and Growth followed by Dissolution of the δ phase.

  7. Calculated Method of the Excess Thermodynamics Functions for Solid Binary Alloy Systems%固态二元合金超额热力学函数的计算方法

    Institute of Scientific and Technical Information of China (English)

    陈星秋; P.Rogl; 等

    2001-01-01

    基于Miedema二元合金生成热模型,结合自由体积理论,充分考虑超额熵,针对实际固态二元合金熔体,提出全浓度范围内的超额热力学函数的计算方法,分别推导出对有序、无序固态二元合金的全摩尔超额函数、偏摩尔超额函数、组元活度计算式.分别计算了固态无序合金Ag-Au、有序合金Co-Pt在800K、1273K温度下的各种超额热力学函数值,计算结果与实验值吻合良好.%Based on Miedema's model for calculating the formation heat of binary alloys by combining the free volume theory and considering excess entropy, the calculation method of excess thermodynamics functions for solid binary alloy systems was developed. The formulas of excess integral mole quantities, the partial mole quantities and the activity of component were derived in the article for solid ordered or unordered binary alloy systems. The excess thermodynamics functions for solid unordered Ag-Au alloy at 800K and solid Co-Pt alloy at 1273K were calculated.

  8. Influence of the substitutional solute on the mechanical properties of Ti-Nb binary alloys for biomedical use

    Directory of Open Access Journals (Sweden)

    Luciano Monteiro da Silva

    2012-06-01

    Full Text Available Titanium alloys are widely used in the manufacture of biomedical implants because they possess an excellent combination of physical properties and outstanding biocompatibility. Today, the most widely used alloy is Ti-6Al-4V, but some studies have reported adverse effects with the long-term presence of Al and V in the body, without mentioning that the elasticity modulus value of this alloy is far superior to the bone. Thus, there is a need to develop new Ti-based alloys without Al and V that have a lower modulus, greater biocompatibility, and similar mechanical strength. In this paper, we investigated the effect of Nb as a substitutional solute on the mechanical properties of Ti-Nb alloys, prepared in an arc-melting furnace and characterized by density, X-ray diffraction, optical microscopy, hardness and elasticity modulus measurements. The X-ray and microscopy measurements show a predominance of the α phase. The microhardness values showed a tendency to increase with the concentration of niobium in the alloy. Regarding the elasticity modulus, it was observed a nonlinear behavior with respect to the concentration of niobium. This behavior is associated with the presence of the α phase.

  9. Alloy

    Science.gov (United States)

    Cabeza, Sandra; Garcés, Gerardo; Pérez, Pablo; Adeva, Paloma

    2014-07-01

    The Mg98.5Gd1Zn0.5 alloy produced by a powder metallurgy route was studied and compared with the same alloy produced by extrusion of ingots. Atomized powders were cold compacted and extruded at 623 K and 673 K (350 °C and 400 °C). The microstructure of extruded materials was characterized by α-Mg grains, and Mg3Gd and 14H-LPSO particles located at grain boundaries. Grain size decreased from 6.8 μm in the extruded ingot, down to 1.6 μm for powders extruded at 623 K (350 °C). Grain refinement resulted in an increase in mechanical properties at room and high temperatures. Moreover, at high temperatures the PM alloy showed superplasticity at high strain rates, with elongations to failure up to 700 pct.

  10. Study of the Mg-Nd alloy obtained by electrolysis in molten oxifluoride media

    Directory of Open Access Journals (Sweden)

    Soare V.

    2003-01-01

    Full Text Available Mg-Nd alloys have been produced by electrolysis of the molten mixture LiF-NdF3-MgF2 using Nd2(CO33 and MgF2 as raw materials. An electrolysis cell was designed having the anode made of super dense graphite and the cathode made of molybdenum metal. The quasi-binary system (NdF3-LiFeutectic-MgF2 was investigated and the liquidus line was determined using thermo-differential analysis. The solubility of Nd2(CO33 in the LiF-NdF3-MgF2 system was investigated by the carbothermal technique.

  11. Effect of erbium modification on the microstructure, mechanical and corrosion characteristics of binary Mg–Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Seetharaman, Sankaranarayanan, E-mail: seetharaman.s@nus.edu.sg [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, 117576 (Singapore); Blawert, Carsten [Helmholtz-Zentrum Geesthacht, Magnesium Innovation Centre, Max-Planck-Straße 1, D-21502, Geesthacht (Germany); Ng, Baoshu Milton [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, 117576 (Singapore); Wong, Wai Leong Eugene [School of Mechanical and Systems Engineering, New Castle University International Singapore, 180 Ang Mo Kio Avenue 8, 569830 (Singapore); Goh, Chwee Sim [ITE Technology Development Centre, ITE College Central, 2 Ang Mo Kio Drive, 567720 (Singapore); Hort, Norbert [Helmholtz-Zentrum Geesthacht, Magnesium Innovation Centre, Max-Planck-Straße 1, D-21502, Geesthacht (Germany); Gupta, Manoj, E-mail: mpegm@nus.edu.sg [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, 117576 (Singapore)

    2015-11-05

    In this study, new erbium modified Mg–Al alloys were developed by integrating trace erbium (in the form of Al{sub 94.67}Er{sub 5.33} master alloy) into pure Mg using disintegrated melt deposition technique. The developed Er- modified Mg–Al alloys were investigated for their microstructural, mechanical and corrosion characteristics in comparison with their unmodified counterparts. Microstructural investigation revealed (i) improved purity, (ii) (marginal) grain refinement, (iii) more uniform second phase distribution and (iv) Al{sub 3}Er phase formation due to Er modification. Mechanical property measurements revealed an overall enhancement under indentation, tension and compression loads. A remarkable improvement in tensile ductility (without adverse effects on strength) by +19%, +29%, and +58% was obtained in Mg–3Al–0.1Er, Mg–6Al–0.3Er and Mg–9Al–0.5Er when compared to Mg–3Al, Mg–6Al and Mg–9Al respectively. While the Mg–6Al–0.3Er alloy exhibited best ductility, the Mg–9Al–0.5Er has the best strength under both tension and compression loads. Corrosion characteristics evaluated by hydrogen evolution, salt spray and electrochemical impedance experiments revealed improved corrosion resistance of Er modified Mg–Al alloys by the enhanced purity levels and the formation of Al–Er phases. - Highlights: • New erbium modified Mg–Al alloys successfully synthesized using DMD method. • Erbium modification promoted Al{sub 3}Er formation and improved the purity. • Remarkable improvement in tensile ductility obtained after erbium modification. • The developed erbium modified Mg–Al alloys exhibit improved corrosion resistance.

  12. A structural study of the pseudo-binary mercury chalcogenide alloy HgSe sub 0 sub . sub 7 S sub 0 sub . sub 3 at high pressure

    CERN Document Server

    Kozlenko, D P; Hull, S; Knorr, K; Savenko, B N; Shchennikov, V V; Voronin, V I

    2002-01-01

    The structure of the pseudo-binary mercury chalcogenide alloy HgSe sub 0 sub . sub 7 S sub 0 sub . sub 3 has been studied by means of X-ray and neutron powder diffraction at pressure up to 8.5 GPa. A phase transition from the cubic zinc blende structure to the hexagonal cinnabar structure was observed at P approx 1 GPa. The obtained structural parameters were used for the analysis of the geometrical relationship between the zinc blende and the cinnabar phases. The zinc blende-cinnabar phase transition is discussed in the framework of the Landau theory of phase transitions. It was found that the possible order parameter for the structural transformation is the spontaneous strain e sub 4. This assignment agrees with previously observed high pressure behaviour of the elastic constants of other mercury chalcogenides

  13. A Structural Study of the Pseudo-Binary Mercury Chalcogenide Alloy HgSe_{0.7}S_{0.3} at High Pressure

    CERN Document Server

    Kozlenko, D P; Ehm, L; Knorr, K; Hull, S; Shchennikov, V V; Voronin, V I

    2002-01-01

    The structure of the pseudo-binary mercury chalcogenide alloy HgSe_{0.7}S_{0.3} has been studied by means of X-ray and neutron powder diffraction at pressure up to 8.5 GPa. A phase transition from the cubic zinc blende structure to the hexagonal cinnabar structure was observed at P{\\sim}1 GPa. The obtained structural parameters were used for the analysis of the geometrical relationship between the zinc blende and the cinnabar phases. The zinc blende-cinnabar phase transition is discussed in the framework of Landau theory of the phase transitions. It was found that the possible order parameter for the structural transformation is the spontaneous strain e_{4}. This assignment agrees with previously observed high pressure behaviour of the elastic constants of other mercury chalcogenides.

  14. Asphericity in the Fermi Surface and Fermi Energy of Na-K, Na-Rb and Na-Cs Binary Alloys

    Institute of Scientific and Technical Information of China (English)

    Minal H. Patel; A.M. Vora; P.N. Gajjar; A.R. Jani

    2002-01-01

    Detailed theoretical investigations into asphericity in the Fermi surface (FS) and Fermi energy (FE) ofNa1_xKx, Na1_xRbx, and Na1_xCsx binary solid solutions are carried out for the first time. The alloying behavior ofthe K, Rb, and Cs with the Na generates the Fermi surface distortion (FSD) of bce simple metals. The FS of Na-K,Na-Rb, and Na-Cs solid solution is a distorted sphere with the largest deviation along [110]. We have found that theimpact of local-field correction function on FSD is maximun at [100] point and minimum at [111] point. The exchangeand correlation effect is found to suppress the value of FE.

  15. Sintering behavior and mechanical properties of a metal injection molded Ti–Nb binary alloy as biomaterial

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dapeng, E-mail: dpzhao@hotmail.com [College of Biology, Hunan University, 410082 Changsha (China); Helmholtz-Zentrum Geesthacht, Institute of Materials Research, D-21502 Geesthacht (Germany); Chang, Keke [RWTH Aachen University, Materials Chemistry, D-52056 Aachen (Germany); Ebel, Thomas [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, D-21502 Geesthacht (Germany); Nie, Hemin [College of Biology, Hunan University, 410082 Changsha (China); Willumeit, Regine; Pyczak, Florian [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, D-21502 Geesthacht (Germany)

    2015-08-15

    Highlights: • The sintering of the MIM Ti–Nb alloy consists of three steps. • The Nb particles act as diffusion barriers during sintering. • The TiC{sub x} only precipitate in the cooling step during sintering. • The TiC{sub x} hardly influence the sintering process of MIM Ti–Nb alloy. • The MIM Ti–Nb alloy exhibits high strength, low Young’s modulus but poor ductility. - Abstract: Sintering behavior, microstructure and mechanical properties of a Ti–16Nb alloy processed by metal injection molding (MIM) technology using elemental powders were investigated in this work by optical microscopy, X-ray diffraction (XRD), dilatometer, scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). It was found that from 700 °C to 1500 °C the homogenization and densification process of MIM Ti–16Nb alloy consisted of three steps, i.e., Ti-diffusion-controlled step, Ti–Nb-diffusion step and matrix-diffusion step. Titanium carbide formation was observed in the samples sintered at 1300 °C and 1500 °C, but not in the ones sintered at 900 °C and 1100 °C. The MIM Ti–16Nb specimens sintered at 1500 °C exhibited a good combination of high tensile strength and low Young’s modulus. However, the titanium carbide particles led to poor ductility.

  16. Formation process of micro arc oxidation coatings obtained in a sodium phytate containing solution with and without CaCO3 on binary Mg-1.0Ca alloy

    Science.gov (United States)

    Zhang, R. F.; Zhang, Y. Q.; Zhang, S. F.; B. Qu; Guo, S. B.; Xiang, J. H.

    2015-01-01

    Micro arc oxidation (MAO) is an effective method to improve the corrosion resistance of magnesium alloys. In order to reveal the influence of alloying element Ca and CaCO3 electrolyte on the formation process and chemical compositions of MAO coatings on binary Mg-1.0Ca alloy, anodic coatings after different anodizing times were prepared on binary Mg-1.0Ca alloy in a base solution containing 3 g/L sodium hydroxide and 15 g/L sodium phytate with and without addition of CaCO3. The coating formation was studied by using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results show that Mg-1.0Ca alloy is composed of two phases, the Mg phase and Mg2Ca phase. After treating for 5 s, the coating began to develop and was preferentially formed on the area nearby Mg2Ca phase, which may be resulted from the intrinsic electronegative potential of the Mg phase than that of Mg2Ca phase. Anodic coatings unevenly covered the total surface after 20 s. After 80 s, the coatings were uniformly developed on Mg-1.0Ca alloy with micro pores. During MAO process, some sodium phytate molecules are hydrolyzed into inorganic phosphate. CaCO3 has minor influence on the calcium content of the obtained MAO coatings.

  17. PHASE EQUILIBRIA INVESTIGATION OF BINARY, TERNARY, AND HIGHER ORDER SYSTEMS. PART IV. THE EFFECT OF MOLYBDENUM AND TUNGSTEN ON THE SUBCARBIDE SOLUTIONS IN THE VANADIUM-TANTALUM-CARBON AND NIOBIUM-TANTALUM-CARBON SYSTEMS.

    Science.gov (United States)

    The phase equilibria investigations described in this report are in direct support of Air Force sponsored cutting tool research programs. The...the high temperature phase equilibria of possible alloy combinations is, therefore, a prerequisite for the fabrication of even test alloys. (Author)

  18. Effect of atomic size on undercoolability of binary solid solution alloy liquids with Zr, Ti, and Hf using electrostatic levitation.

    Science.gov (United States)

    Jeon, S; Kang, D-H; Lee, Y H; Lee, S; Lee, G W

    2016-11-07

    We investigate the relationship between the excess volume and undercoolability of Zr-Ti and Zr-Hf alloy liquids by using electrostatic levitation. Unlike in the case of Zr-Hf alloy liquids in which sizes of the constituent atoms are matched, a remarkable increase of undercoolability and negative excess volumes are observed in Zr-Ti alloy liquids as a function of their compositional ratios. In this work, size mismatch entropies for the liquids were obtained by calculating their hard sphere diameters, number densities, and packing fractions. We also show that the size mismatch entropy, which arises from the differences in atomic sizes of the constituent elements, plays an important role in determining the stabilities of metallic liquids.

  19. Molybdenum protective coatings adhesion to steel substrate

    Science.gov (United States)

    Blesman, A. I.; Postnikov, D. V.; Polonyankin, D. A.; Teplouhov, A. A.; Tyukin, A. V.; Tkachenko, E. A.

    2017-06-01

    Protection of the critical parts, components and assemblies from corrosion is an urgent engineering problem and many other industries. Protective coatings’ forming on surface of metal products is a promising way of corrosionprevention. The adhesion force is one of the main characteristics of coatings’ durability. The paper presents theoretical and experimental adhesion force assessment for coatings formed by molybdenum magnetron sputtering ontoa steel substrate. Validity and reliability of results obtained by simulation and sclerometry method allow applying the developed model for adhesion force evaluation in binary «steel-coating» systems.

  20. Effect of calcium content on the microstructure, hardness and in-vitro corrosion behavior of biodegradable Mg-Ca binary alloy

    Directory of Open Access Journals (Sweden)

    Shervin Eslami Harandi

    2013-02-01

    Full Text Available Effect of calcium addition on microstructure, hardness value and corrosion behavior of five different Mg-xCa binary alloys (x = 0.7, 1, 2, 3, 4 wt. (% was investigated. Notable refinement in microstructure of the alloy occurred with increasing calcium content. In addition, more uniform distribution of Mg2Ca phase was observed in a-Mg matrix resulted in an increase in hardness value. The in-vitro corrosion examination using Kokubo simulated body fluid showed that the addition of calcium shifted the fluid pH value to a higher level similar to those found in pure commercial Mg. The high pH value amplified the formation and growth of bone-like apatite. Higher percentage of Ca resulted in needle-shaped growth of the apatite. Electrochemical measurements in the same solution revealed that increasing Ca content led to higher corrosion rates due to the formation of more cathodic Mg2Ca precipitate in the microstructure. The results therefore suggested that Mg-0.7Ca with the minimum amount of Mg2Ca is a good candidate for bio-implant applications.

  1. Effect of calcium content on the microstructure, hardness and in-vitro corrosion behavior of biodegradable Mg-Ca binary alloy

    Directory of Open Access Journals (Sweden)

    Shervin Eslami Harandi

    2012-01-01

    Full Text Available Effect of calcium addition on microstructure, hardness value and corrosion behavior of five different Mg-xCa binary alloys (x = 0.7, 1, 2, 3, 4 wt. (% was investigated. Notable refinement in microstructure of the alloy occurred with increasing calcium content. In addition, more uniform distribution of Mg2Ca phase was observed in a-Mg matrix resulted in an increase in hardness value. The in-vitro corrosion examination using Kokubo simulated body fluid showed that the addition of calcium shifted the fluid pH value to a higher level similar to those found in pure commercial Mg. The high pH value amplified the formation and growth of bone-like apatite. Higher percentage of Ca resulted in needle-shaped growth of the apatite. Electrochemical measurements in the same solution revealed that increasing Ca content led to higher corrosion rates due to the formation of more cathodic Mg2Ca precipitate in the microstructure. The results therefore suggested that Mg-0.7Ca with the minimum amount of Mg2Ca is a good candidate for bio-implant applications.

  2. Molybdenum oxide nanowires: synthesis & properties

    Directory of Open Access Journals (Sweden)

    Liqiang Mai

    2011-07-01

    Full Text Available Molybdenum oxide nanowires have been found to show promise in a diverse range of applications, ranging from electronics to energy storage and micromechanics. This review focuses on recent research on molybdenum oxide nanowires: from synthesis and device assembly to fundamental properties. The synthesis of molybdenum oxide nanowires will be reviewed, followed by a discussion of recent progress on molybdenum oxide nanowire based devices and an examination of their properties. Finally, we conclude by considering future developments.

  3. Determination of the Silicon, Vanadium, Iron, Aluminum, Nickel, Molybdenum and Chromium in Titanium Alloy by ICP-AES%ICP-AES测定钛合金中硅钒铁铝镍钼铬

    Institute of Scientific and Technical Information of China (English)

    成勇

    2012-01-01

    This paper has built an analysis method of inductively coupled plasma atomic emission spectrometry (ICP-AES) for direct and simultaneous determination of alloying elements or trace impurities of silicon, vanadium, iron, aluminum, nickel, molybdenum and chromium in the titanium alloy. The titanium alloy samples were digested completely by hydrofluoric acid and nitric acid mixed reagents and the heating conditions of the digestion reaction were controlled at room temperature or 70 ℃ water bath to avoid the volatilization loss of the element and ensure that the hydrolysis reaction of high-concentration titanium in the low acidity medium did not occur. The effect of titanium matrix and coexisting elements on the determination of the spectral interference was tested. The internal standard correction method using the yttrium as internal standard element was employed, and elemental analysis of spectral lines, internal calibration spectrum, the synchronous background correction positions and ICP spectrometer working conditions were selected preferably to effectively eliminate the physical interference resulting from titanium substrate and improve the detection precision and detection limit level. The test results of the practical application show that the detection limit is 10~27 μg/L, the background equivalent density is 5~38 μg/L, the correlation coefficient r≥0.9992, the recovery rate is 95.0%~105.0% and the RSD≤2.27%.%建立了电感耦合等离子体原子发射光谱法(ICP-AES)直接同时测定钛合金中合金元素或微量杂质硅钒铁铝镍钼铬的分析方法.采用氢氟酸和硝酸混合试剂并且在室温或70℃水浴控制加热条件下消解样品,从而避免了待测元素的挥发损失以及确保了高浓度钛基体在低酸度介质中也不会发生水解反应.试验了钛基体和共存元素对测定的光谱干扰影响,采取以钇作为内标元素的内标校正法,并且优选了待测元素分析谱线、内标校正谱

  4. Microstructure and tensile properties of hot-rolled Zr{sub 50}–Ti{sub 50} binary alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.K. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Liang, S.X. [College of Equipment Manufacture, Hebei University of Engineering, Handan 056038 (China); Jing, R. [College of Material Science and Engineering, Shaanxi University of Technology, Hanzhong 723001 (China); Jiang, X.J.; Ma, M.Z.; Tan, C.L. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Liu, R.P., E-mail: riping@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2015-01-05

    A series of Zr{sub 50}–Ti{sub 50} (at%) alloy specimens with different treatments was prepared. Tensile test, X-ray diffraction (XRD), optical microstructure, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses were performed to investigate alloy tensile properties and microstructure. Hot-rolling process was found to have a remarkable strengthening effect. The tensile strength of hot-rolled specimens had an increase of 37% compared with solution-treated specimen (undeformed). All specimens exhibited α′-Zr structures and similar microstructures. However, a significant plasticity difference was observed in the Zr{sub 50}–Ti{sub 50} hot-rolled specimens with different cooling rates. Detailed TEM microstructural analysis showed that the morphology of twins in the hot-rolled specimens was different. Most of the twins were nano-twins. It was found that the twins had effective on Zr{sub 50}–Ti{sub 50} alloy plasticity, in the meantime significant effects on tensile properties due to the complicated interactions between twin boundaries and dislocations. All these findings in this work may provide a new strengthening mechanism for Zirconium-based alloys.

  5. The Knight Shift in Liquid Binary Alloys : An Application of Quantum Chemistry in Liquid- and Solid-state Physics

    NARCIS (Netherlands)

    De Hosson, J. Th. M.; Van Der Lugt, W.

    1979-01-01

    We outline a model for calculating the Knight shifts of Na-23 and Li-7 nuclei in liquid sodium-lithium alloys. The model used for the calculations is based on the "multiple-scattering" model (self-consistent scattered wave). Bearing in mind that there exists an uncertainty of about 5-10% in the valu

  6. Density of Liquid Binary Ni-W Alloys Measured by Modified Sessile Drop Method%用改良静滴法测量液态Ni-W二元合金的密度

    Institute of Scientific and Technical Information of China (English)

    方亮; 肖锋; 陶再南

    2004-01-01

    In order ot provide a scientific base for studying the shrinkage, transport phenomena and macrosegregation during the solidification of an alloy, the density of liquid binary Ni-W alloys with tungsten concentration from 0 to 15 mass% was measured by a modified sessile drop method. It has been found that the density of the liquid Ni-W alloys decreases with increasing temperature, but increases with the increase of tungsten concentration in the alloys. The molar volume of liquid Ni-W binary alloys increases with the increase of temperature and tungsten concentration. The partial molar volume of tungsten in Ni-W binary alloy has been evaluated approximately as (10.80-1.35× 10-3T) × 10-6 m3·mol-1.%为了给研究合金在凝固过程中发生收缩、迁移现象和偏析提供科学依据,我们用改良静滴法对钨浓度为0到15%的液态Ni-W二元合金的密度进行了测量.结果表明:Ni-W二元合金的液态密度随温度的增加而减少,但随合金中钨浓度的增加而增加;液态Ni-W二元合金的摩尔体积随温度和合金中钨浓度的增加而增加.金属钨在Ni-W二元合金中的偏摩尔体积约为(10.80-1.35×10-3T)×10-6m3·mol-1.

  7. NICKEL-BASE ALLOY

    Science.gov (United States)

    Inouye, H.; Manly, W.D.; Roche, T.K.

    1960-01-19

    A nickel-base alloy was developed which is particularly useful for the containment of molten fluoride salts in reactors. The alloy is resistant to both salt corrosion and oxidation and may be used at temperatures as high as 1800 deg F. Basically, the alloy consists of 15 to 22 wt.% molybdenum, a small amount of carbon, and 6 to 8 wt.% chromium, the balance being nickel. Up to 4 wt.% of tungsten, tantalum, vanadium, or niobium may be added to strengthen the alloy.

  8. PLUTONIUM-THORIUM ALLOYS

    Science.gov (United States)

    Schonfeld, F.W.

    1959-09-15

    New plutonium-base binary alloys useful as liquid reactor fuel are described. The alloys consist of 50 to 98 at.% thorium with the remainder plutonium. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are easy fabrication, phase stability, and the accompanying advantuge of providing a means for converting Th/sup 232/ into U/sup 233/.

  9. Auger electron spectroscopy study of surface segregation in the binary alloys copper-1 atomic percent indium, copper-2 atomic percent tin, and iron-6.55 atomic percent silicon

    Science.gov (United States)

    Ferrante, J.

    1973-01-01

    Auger electron spectroscopy was used to examine surface segregation in the binary alloys copper-1 at. % indium, copper-2 at. % tin and iron-6.55 at. % silicon. The copper-tin and copper-indium alloys were single crystals oriented with the /111/ direction normal to the surface. An iron-6.5 at. % silicon alloy was studied (a single crystal oriented in the /100/ direction for study of a (100) surface). It was found that surface segregation occurred following sputtering in all cases. Only the iron-silicon single crystal alloy exhibited equilibrium segregation (i.e., reversibility of surface concentration with temperature) for which at present we have no explanation. McLean's analysis for equilibrium segregation at grain boundaries did not apply to the present results, despite the successful application to dilute copper-aluminum alloys. The relation of solute atomic size and solubility to surface segregation is discussed. Estimates of the depth of segregation in the copper-tin alloy indicate that it is of the order of a monolayer surface film.

  10. 时效处理对Al-Li二元合金力学性能的影响%Influence of aging treatment on mechanical properties of Al-Li binary alloys

    Institute of Scientific and Technical Information of China (English)

    梁宇; 王赫男; 刘春忠

    2015-01-01

    Al-1Li,Al-2Li and Al-3Li binary alloys were prepared by using vacuum induction melting fur-nace. The as-cast microstructure was observed with an optical microscopy and the phase transition tempera-tures of the three alloys were determined by differential scanning calorimetry( DSC). After solution and ag-ing treatment,the hardness of the three alloy samples were measured by using Vickers hardness tester. The Al-Li alloy samples were selected with different aging time and tensile test was conducted. The fracture mor-phologies of the samples were observed by scanning electron microscope( SEM ). The results indicate that both Al-2 Li alloy and Al-3 Li alloy have aging hardening and strengthening effects but Al-1 Li alloy does not. The maximum tensile strength of Al-1Li,Al-2Li and Al-3Li binary alloys are 63MPa,162MPa and 298MPa respectively. The tensile strength is increased and the toughness of Al-Li alloys is decreased with the growth of Li element. The fracture mechanism of alloys is changed to the brittle fracture from the ductile fracture due to Li addition.%采用真空感应熔炼炉制备Al-1Li、Al-2Li和Al-3Li二元合金,用金相显微镜观察其铸态组织,并用DSC确定其相转变温度。对3种合金进行固溶和时效处理,用维氏硬度计测量试样的硬度。选择具有不同时效时间的Al-Li合金进行拉伸实验,并用SEM观察断口形貌。结果表明:除Al-1Li合金外,Al-2Li和Al-3Li合金具有明显时效硬化和强化效应;Al-1Li、Al-2Li和Al-3Li合金的最大抗拉强度分别为63 MPa、162 MPa和298 MPa;合金元素Li在提高Al-Li合金强度的同时,导致其韧性降低,断裂由韧性向脆性转变。

  11. Asphericity in the Fermi Surface and Fermi Energy of Na-K,Na-Rb and Na-Cs Binary Alloys

    Institute of Scientific and Technical Information of China (English)

    MinalH.Patel; A.M.Vora; 等

    2002-01-01

    Detailed theoretical investigations into asphericity in the Fermi surface(FS) and Fermi energy(FE) of Na1-xKx,Na1-xRbx,and Na1-xCsx binary solid solutions are carried out for the first time,The allying behavior of the K,Rb,and Cs with the Na generates the Fermi surface distortion(FSD) of bcc simple metals,The FS of Na-K,Na-Rb,and Na-Cs solid solution is a distorted sphere with the largest deviation along[110],We have found that the impact of local-field correction function on FSD is maximum at [100] point and minimum at [111] point.The exchange and correlation effect is found to suppress the value of FE.

  12. Mechanical properties of Pt-Ir and Ni-Ir binary alloys for glass-molding dies coating.

    Science.gov (United States)

    Tseng, Shih-Feng; Lee, Chao-Te; Huang, Kuo-Cheng; Chiang, Donyau; Huang, Chien-Yao; Chou, Chang-Pin

    2011-10-01

    In this study, the different compositions of Pt-Ir and Ni-Ir alloys were deposited by utilizing ion source assisted magnetron sputtering system (ISAMSS). The surface roughness and crystallite size of the Pt-Ir and Ni-Ir coatings were analyzed by atomic force microscopy (AFM) and X-ray diffraction (XRD), respectively. In addition, coatings were soaked at 700 degrees and maintained 10 min under N2 atmosphere using a glass-molding machine. The annealed coatings for oxidation test were examined by energy dispersive X-ray spectrometry (EDS) and for microhardness and reduced modulus test were evaluated by nanoindentation instrucment. The cross-sectional structures between the Pt-Ir and Ni-Ir coating layer and substrates were also examined by field emission scanning electron microscope (FESEM). The results show that surface roughness Ra from 1.25 nm to 3.426 nm was observed with increasing the Ni elements. However, the Ra is less than 2 nm measured in Ir-based coatings doped with Pt concentrations under this study. With increasing Pt and Ni doping, the microhardness of both coatings decreased significantly and the values of reduced modulus of Pt-Ir alloys are larger than that of Ni-Ir alloys. After oxidation process, the oxygen concentration of Pt-Ir coatings is less than that of Ni-Ir coatings and the Pt-Ir coatings exhibit superior properties including oxidation resistance, low surface roughness and high reduced modulus over Ni-Ir coatings, especially for the high Pt concentration coatings such as Pt-Ir 2 (55.25 at.% Pt) and Pt-Ir 3 (79.42 at.% Pt) coatings. The surface roughnesses of all specimens annealed at 700 degrees C were slightly larger than as-deposited coatings. Moreover, due to the serious oxidation occurred in Ni-Ir 3 (73.45 at.% Ni) coatings, the value of reduced modulus of this specimen coating is the lowest and the corrsponding Ra value is the largest compared with the rest of Ir-based coatings in the oxidation testing.

  13. A phase-field-lattice Boltzmann method for modeling motion and growth of a dendrite for binary alloy solidification in the presence of melt convection

    Science.gov (United States)

    Rojas, Roberto; Takaki, Tomohiro; Ohno, Munekazu

    2015-10-01

    In this study, a combination of the lattice Boltzmann method (LBM) and the phase-field method (PFM) is used for modeling simultaneous growth and motion of a dendrite during solidification. PFM is used as a numerical tool to simulate the morphological changes of the solid phase, and the fluid flow of the liquid phase is described by using LBM. The no-slip boundary condition at the liquid-solid interface is satisfied by adding a diffusive-forcing term in the LBM formulation. The equations of motion are solved for tracking the translational and rotational motion of the solid phase. The proposed method is easily implemented on a single Cartesian grid and is suitable for parallel computation. Two-dimensional benchmark computations show that the no-slip boundary condition and the shape preservation condition are satisfied in this method. Then, the present method is applied to the calculation of dendritic growth of a binary alloy under melt convection. Initially, the solid is stationary, and then, the solid moves freely due to the influence of fluid flow. Simultaneous growth and motion are effectively simulated. As a result, it is found that motion and melt convection enhance dendritic growth along the flow direction.

  14. Predicting Pathways for Synthesis of Ferromagnetic τ Phase in Binary Heusler Alloy Al-55 pct Mn Through Understanding of the Kinetics of ɛ-τ Transformation

    Science.gov (United States)

    Palanisamy, Dhanalakshmi; Singh, Shailesh; Srivastava, Chandan; Madras, Giridhar; Chattopadhyay, Kamanio

    2016-09-01

    This paper outlines the detailed procedure for the synthesis of pure ferromagnetic τ phase in binary Heusler Al-55 pct Mn alloy in bulk form through casting route without any addition of stabilizers. To obtain the processing domain for the formation of the τ phase from high-temperature ɛ phase, isothermal transformation experiments were carried out. The structure and microstructure were characterized by X-ray diffraction and electron microscopy studies. The τ phase start times were obtained through magnetic measurements. In order to tune the casting conditions for the formation of this phase, thermal modeling was carried out to predict the heat extraction rates for copper molds of different diameters (2 to 12 mm) containing hot solids during casting process. This enabled us to estimate the diameter of the mold to be used for obtaining τ phase directly during casting. It was concluded through experimental verification that 10-mm-diameter casting in copper mold is suitable to obtain complete τ phase. A saturation magnetization of 116 emu/g at 10 K was measured for such samples. The Curie point for the τ phase was found to be 668 K (395 °C). Additionally, the cast rod exhibits a compressive strength of 1170 MPa which is higher than those of both ferrites and AlNiCo magnets.

  15. Formation process of micro arc oxidation coatings obtained in a sodium phytate containing solution with and without CaCO{sub 3} on binary Mg-1.0Ca alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R.F. [School of Material and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); Zhang, Y.Q. [Zhejiang DunAn Light Alloy Technology CO,.LTD, Zhuji 311835 (China); Hunan University of Science and Technology, Xiangtan 411201 (China); Zhang, S.F.; Qu, B. [School of Material and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); Guo, S.B. [Hunan University of Science and Technology, Xiangtan 411201 (China); Xiang, J.H., E-mail: xiangjunhuai@163.com [School of Material and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330013 (China)

    2015-01-15

    Highlights: • Compared to the Mg phase, the area of Mg{sub 2}Ca phase is much smaller. • The coatings are preferentially developed on the area adjacent to Mg{sub 2}Ca phase. • During MAO process, some sodium phytate molecules are hydrolyzed. • Anodic coatings are developed from uneven to uniform. - Abstract: Micro arc oxidation (MAO) is an effective method to improve the corrosion resistance of magnesium alloys. In order to reveal the influence of alloying element Ca and CaCO{sub 3} electrolyte on the formation process and chemical compositions of MAO coatings on binary Mg-1.0Ca alloy, anodic coatings after different anodizing times were prepared on binary Mg-1.0Ca alloy in a base solution containing 3 g/L sodium hydroxide and 15 g/L sodium phytate with and without addition of CaCO{sub 3}. The coating formation was studied by using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results show that Mg-1.0Ca alloy is composed of two phases, the Mg phase and Mg{sub 2}Ca phase. After treating for 5 s, the coating began to develop and was preferentially formed on the area nearby Mg{sub 2}Ca phase, which may be resulted from the intrinsic electronegative potential of the Mg phase than that of Mg{sub 2}Ca phase. Anodic coatings unevenly covered the total surface after 20 s. After 80 s, the coatings were uniformly developed on Mg-1.0Ca alloy with micro pores. During MAO process, some sodium phytate molecules are hydrolyzed into inorganic phosphate. CaCO{sub 3} has minor influence on the calcium content of the obtained MAO coatings.

  16. Elaboration, physical and electrochemical characterizations of CO tolerant PEMFC anode materials. Study of platinum-molybdenum and platinum-tungsten alloys and composites; Elaborations et caracterisations electrochimiques et physiques de materiaux d'anode de PEMFC peu sensibles a l'empoisonnement par CO: etude d'alliages et de composites a base de platine-molybdene et de platine-tungstene

    Energy Technology Data Exchange (ETDEWEB)

    Peyrelade, E.

    2005-06-15

    PEMFC development is hindered by the CO poisoning ability of the anode platinum catalyst. It has been previously shown that the oxidation potential of carbon monoxide adsorbed on the platinum atoms can be lowered using specific Pt based catalysts, either metallic alloys or composites. The objective is then to realize a catalyst for which the CO oxidation is compatible with the working potential of a PEMFC anode. In our approach, to enhance the CO tolerance of platinum based catalyst supported on carbon, we studied platinum-tungsten and platinum-molybdenum alloys and platinum-metal oxide materials (Pt-WO{sub x} and Pt-MoO{sub x}). The platinum based alloys demonstrate a small effect of the second metal towards the oxidation of carbon monoxide. The platinum composites show a better tolerance to carbon monoxide. Electrochemical studies on both Pt-MoO{sub x} and Pt-WO{sub x} demonstrate the ability of the metal-oxides to promote the ability of Pt to oxidize CO at low potentials. However, chrono-amperometric tests reveal a bigger influence of the tungsten oxide. Complex chemistry reactions on the molybdenum oxide surface make it more difficult to observe. (author)

  17. Bioaccessibility of micron-sized powder particles of molybdenum metal, iron metal, molybdenum oxides and ferromolybdenum--Importance of surface oxides.

    Science.gov (United States)

    Mörsdorf, Alexander; Odnevall Wallinder, Inger; Hedberg, Yolanda

    2015-08-01

    The European chemical framework REACH requires that hazards and risks posed by chemicals, including alloys and metals, that are manufactured, imported or used in different products (substances or articles) are identified and proven safe for humans and the environment. Metals and alloys need hence to be investigated on their extent of released metals (bioaccessibility) in biologically relevant environments. Read-across from available studies may be used for similar materials. This study investigates the release of molybdenum and iron from powder particles of molybdenum metal (Mo), a ferromolybdenum alloy (FeMo), an iron metal powder (Fe), MoO2, and MoO3 in different synthetic body fluids of pH ranging from 1.5 to 7.4 and of different composition. Spectroscopic tools and cyclic voltammetry have been employed to characterize surface oxides, microscopy, light scattering and nitrogen absorption for particle characterization, and atomic absorption spectroscopy to quantify released amounts of metals. The release of molybdenum from the Mo powder generally increased with pH and was influenced by the fluid composition. The mixed iron and molybdenum surface oxide of the FeMo powder acted as a barrier both at acidic and weakly alkaline conditions. These findings underline the importance of the surface oxide characteristics for the bioaccessibility of metal alloys.

  18. Boron - Molybdenum - Tungsten

    Science.gov (United States)

    Bulanova, Marina; Heulens, Jeroen

    This document is part of Volume 11 `Ternary Alloy Systems: Phase Diagrams, Crystallographic and Thermodynamic Data', Subvolume E `Refractory Metal Systems', of Landolt-Börnstein - Group IV `Physical Chemistry'.

  19. An Undergraduate Experiment Using Differential Scanning Calorimetry: A Study of the Thermal Properties of a Binary Eutectic Alloy of Tin and Lead

    Science.gov (United States)

    D'Amelia, Ronald P.; Clark, Daniel; Nirode, William

    2012-01-01

    An alloy is an intimate association of two or more metals, with or without a definite composition, which has metallic properties. Heterogeneous alloys, such as tin-lead (Sn/Pb) solders, consist of a mixture of crystalline phases with different compositions. A homogeneous alloy with a unique composition having the lowest possible melting point is…

  20. An Undergraduate Experiment Using Differential Scanning Calorimetry: A Study of the Thermal Properties of a Binary Eutectic Alloy of Tin and Lead

    Science.gov (United States)

    D'Amelia, Ronald P.; Clark, Daniel; Nirode, William

    2012-01-01

    An alloy is an intimate association of two or more metals, with or without a definite composition, which has metallic properties. Heterogeneous alloys, such as tin-lead (Sn/Pb) solders, consist of a mixture of crystalline phases with different compositions. A homogeneous alloy with a unique composition having the lowest possible melting point is…

  1. PERSPECTIVES OF MOLIBDENUM CONTAINING MATERIALS APPLICATION FOR ALLOYING OF IRONCARBON ALLOYS DURING MANUFACTURING OF CRITICAL CASTINGS

    Directory of Open Access Journals (Sweden)

    A. G. Slutsky

    2015-01-01

    Full Text Available Motor is one of most important part of automobile determine its economical effectiveness of usage. On the other hand, sleeves, pistons and rings are crucible parts as they determine the service life of a motor. These parts are producing in big scale – dozens of millions pieces. Increase of cylinder sleeves physical-mechanical properties results in prolongation of motor service life and improvement of motor’s characteristics. Nowadays low alloyed cast irons with perlite structure are used to manufacture motor’s sleeves. For alloying purposes such traditional elements as Cr, Ni, Cu, and V are applied. But it is interesting to use molybdenum for cast iron alloying. It is known that alloying of alloys allows considerable increasing of consumption properties of castings. But in spite of advantages of alloys alloying the increase of molybdenum containing iron-carbon alloys production is restricted by economical reasons – high cost of alloying additions. Expenditures on alloying additions can be reduced by the application cheap secondary alloys in the charge. So, the present paper is devoted to investigation of alloying peculiarities during the treatment of ferrous alloys with molybdenum applying different initial materials.

  2. Multiple Coordination of CO on Molybdenum Nanoparticles: Evidence for Intermediate Mox(CO)y Species by XPS and UPS.

    Science.gov (United States)

    Jiang, Zhiquan; Huang, Weixin; Zhang, Zhen; Zhao, Hong; Tan, Dali; Bao, Xinhe

    2006-12-28

    CO chemisorption on the metallic molybdenum nanoparticles supported on the thin alumina film was investigated by X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). A binary compound of molybdenum and CO is found to be formed on the surface upon CO dose, accompanied with a positive binding energy shift of the Mo 3d doublet and a localized Mo 4d valence band. A loose packing of the metallic molybdenum favors the formation of this intermediate Mox(CO)y species. The formation of the Mox(CO)y species implies that the property of the metallic molybdenum nanoparticles on the thin alumina film is much different from that of the bulk molybdenum, indicating a significant nanometer size effect.

  3. Molybdenum Tube Characterization report

    Energy Technology Data Exchange (ETDEWEB)

    Beaux II, Miles Frank [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Usov, Igor Olegovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-07

    Chemical vapor deposition (CVD) techniques have been utilized to produce free-standing molybdenum tubes with the end goal of nuclear fuel clad applications. In order to produce tubes with properties desirable for this application, deposition rates were lowered requiring long deposition durations on the order of 50 hours. Standard CVD methods as well as fluidized-bed CVD (FBCVD) methods were applied towards these objectives. Characterization of the tubes produced in this manner revealed material suitable for fuel clad applications, but lacking necessary uniformity across the length of the tubes. The production of freestanding Mo tubes that possess the desired properties across their entire length represents an engineering challenge that can be overcome in a next iteration of the deposition system.

  4. 二元镁合金在细胞培养基中的耐腐蚀能力及其生物相容性%Corrosion resistance and biocompatibility of binary magnesium alloys in cell culture medium

    Institute of Scientific and Technical Information of China (English)

    杨春喜; 郑玉峰; 顾雪楠; 袁广银; 张佳; 戴尅戎

    2011-01-01

    BACKGROUND: Degrading magnesium and magnesium alloys are a new class of implant materials suitable for orthopedic surgery due to its bone conductibility and degradability, so further research on the evaluation of magnesium is very necessary.OBJECTIVE: To determine the degradability of magnesium and binary magnesium alloys in cell culture medium and their influence on the viability of adult human bone marrow mesenchymal stem cells.METHODS: Eight alloying elements Al, Ca, Mn, Si, Sn, Y, Zn and Zr were added into magnesium individually to fabricate binary Mg-1X (wt.%) alloys. Pure magnesium and eight binary magnesium alloys were immersed in α-MEM (containing 10% fetal bovine serum) to prepare extracts. The pH values of the extraction media were measured. Magnesium and alloy element ions in the extraction medium were analyzed using inductively coupled plasma-atomic emission spectrometry. Adult human bone marrow mesenchymal stem cells were cultured in extracts of 100%, 50% , 25% magnesium and eight binary magnesium alloys for 1, 3, 5,7 days. The indirect effects of magnesium alloys on viability of adult human bone marrow mesenchymal stem cells were detected using Alamar Blue(R) cell viability reagent.RESULTS AND CONCLUSION: Mg-Ca and Mg-Y alloys showed poor corrosion resistance. The Mg2+ concentration in liquid was (408.0±37.9) mg/L and (351±15.3) mg/L, respectively, while pH value was 8.87±0.19 and 8.84±0.15. Next is Mg-Zr alloy; other binary alloys were equal to pure Mg regarding corrosion resistance. The magnesium and eight binary magnesium alloys extracts at 100% concentration significantly inhibited the viability of ad ult human bone marrow mesenchymal stem cells. But the extracts did not inhibit the cell viability while Mg2+ concentration was ≤ 110 mg/L and pH value of 7.35-7.65.%背景:尽管已经有很多研究报道镁及其合金具有一定的骨传导性和可降解性,可以做为承重骨科内植物材料,但是还需要做更多的

  5. Castable nickel aluminide alloys for structural applications

    Science.gov (United States)

    Liu, Chain T.

    1992-01-01

    The specification discloses nickel aluminide alloys which include as a component from about 0.5 to about 4 at. % of one or more of the elements selected from the group consisting of molybdenum or niobium to substantially improve the mechanical properties of the alloys in the cast condition.

  6. Biocompatibility of dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Braemer, W. [Heraeus Kulzer GmbH and Co. KG, Hanau (Germany)

    2001-10-01

    Modern dental alloys have been used for 50 years to produce prosthetic dental restorations. Generally, the crowns and frames of a prosthesis are prepared in dental alloys, and then veneered by feldspar ceramics or composites. In use, the alloys are exposed to the corrosive influence of saliva and bacteria. Metallic dental materials can be classified as precious and non-precious alloys. Precious alloys consist of gold, platinum, and small amounts of non-precious components such as copper, tin, or zinc. The non-precious alloys are based on either nickel or cobalt, alloyed with chrome, molybdenum, manganese, etc. Titanium is used as Grade 2 quality for dental purposes. As well as the dental casting alloys, high purity electroplated gold (99.8 wt.-%) is used in dental technology. This review discusses the corrosion behavior of metallic dental materials with saliva in ''in vitro'' tests and the influence of alloy components on bacteria (Lactobacillus casei and Streptococcus mutans). The test results show that alloys with high gold content, cobalt-based alloys, titanium, and electroplated gold are suitable for use as dental materials. (orig.)

  7. Binary Cu-Zr Bulk Metallic Glasses

    Institute of Scientific and Technical Information of China (English)

    TANG Mei-Bo; ZHAO De-Qian; PAN Ming-Xiang; WANG Wei-Hua

    2004-01-01

    @@ We report that bulk metallic glasses (BMGs) can be produced up to 2 mm by a copper mould casting in Cux Zr1-x binary alloy with a wide glass forming composition range (45 < x < 60 at.%). We find that the formation mechanism for the binary Cu-Zr binary BMG-forming alloy is obviously different from that of the intensively studied multicomponent BMGs. Our results demonstrate that the criteria for the multicomponent alloys with composition near deep eutectic and strong liquid behaviour are no longer the major concern for designing BMGs.

  8. Filler metal alloy for welding cast nickel aluminide alloys

    Science.gov (United States)

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  9. Filler metal alloy for welding cast nickel aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    Santella, Michael L. (Knoxville, TN); Sikka, Vinod K. (Oak Ridge, TN)

    1998-01-01

    A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

  10. The Structure and Stability of Molybdenum Ditelluride Thin Films

    Directory of Open Access Journals (Sweden)

    Zhouling Wang

    2014-01-01

    Full Text Available Molybdenum-tellurium alloy thin films were fabricated by electron beam evaporation and the films were annealed in different conditions in N2 ambient. The hexagonal molybdenum ditelluride thin films with well crystallization annealed at 470°C or higher were obtained by solid state reactions. Thermal stability measurements indicate the formation of MoTe2 took place at about 350°C, and a subtle weight-loss was in the range between 30°C and 500°C. The evolution of the chemistry for Mo-Te thin films was performed to investigate the growth of the MoTe2 thin films free of any secondary phase. And the effect of other postdeposition treatments on the film characteristics was also investigated.

  11. Duct and cladding alloy

    Science.gov (United States)

    Korenko, Michael K.

    1983-01-01

    An austenitic alloy having good thermal stability and resistance to sodium corrosion at 700.degree. C. consists essentially of 35-45% nickel 7.5-14% chromium 0.8-3.2% molybdenum 0.3-1.0% silicon 0.2-1.0% manganese 0-0.1% zirconium 2.0-3.5% titanium 1.0-2.0% aluminum 0.02-0.1% carbon 0-0.01% boron and the balance iron.

  12. Determination of the surface composition of binary alloys by Auger electron spectroscopy: the gold--silver and gold--tin systems

    Energy Technology Data Exchange (ETDEWEB)

    Overbury, S.H.

    1976-11-01

    Auger electron spectroscopy was exploited as a means of determining the surface phase diagram of Au--Ag and Au--Sn alloys. Polycrystalline Au--Ag alloy foils of a wide range of composition (atom fractions of 0.15 to 0.97) were cleaned. The intensities of the Auger emission from transitions at several energies were measured and normalized to those of pure Au and Ag. The surface monolayer compositions of the alloys were determined. The Auger data was consistent with enrichment of Ag in the surface monolayer. Ingots of Au--Sn with bulk composition between 50 and 99 at % Au were prepared. The bulk structure and composition of these complex alloys were characterized by electron microprobe, x-ray diffraction, x-ray fluorescence and optical microscopy. The samples were cleaned and equilibrated in ultra high vacuum and the intensities of the Auger emission from transitions at several energies were measured and normalized to those of pure Au and pure Sn. Using the intensity model, the normalized Auger intensity ratios were used to determine the surface monolayer composition. Enrichment of Sn was found in the surface monolayer for disordered zeta and ..cap alpha.. phase alloys. The highly ordered delta (50.0 at % Au) phase alloy was found to exhibit no surface segregation. The surfaces of two phase alloys (delta and zeta) were found to be describable by the lever rule. The results were interpreted in terms of the bulk structures, ordering properties, and driving force for segregation of the alloys. The effects of ion sputtering upon the surface of Au--Ag and Au--Sn alloys were also investigated.

  13. Molybdenum sulfide/carbide catalysts

    Science.gov (United States)

    Alonso, Gabriel; Chianelli, Russell R.; Fuentes, Sergio; Torres, Brenda

    2007-05-29

    The present invention provides methods of synthesizing molybdenum disulfide (MoS.sub.2) and carbon-containing molybdenum disulfide (MoS.sub.2-xC.sub.x) catalysts that exhibit improved catalytic activity for hydrotreating reactions involving hydrodesulfurization, hydrodenitrogenation, and hydrogenation. The present invention also concerns the resulting catalysts. Furthermore, the invention concerns the promotion of these catalysts with Co, Ni, Fe, and/or Ru sulfides to create catalysts with greater activity, for hydrotreating reactions, than conventional catalysts such as cobalt molybdate on alumina support.

  14. In situ synthesis of binary cobalt-ruthenium nanofiber alloy counter electrode for electrolyte-free cadmium sulfide quantum dot solar cells

    Science.gov (United States)

    Du, Nan; Ren, Lei; Sun, Weifu; Jin, Xiao; Zhao, Qing; Cheng, Yuanyuan; Wei, Taihuei; Li, Qinghua

    2015-06-01

    A facile, low-cost and low-temperature fabrication approach of counter electrode is essential for pursuing robust photovoltaic devices. Herein, we develop a hydrothermal in situ growth of Cobalt-Ruthenium (Co-Ru) alloy nanofiber electrode for quantum dot solar cell (QDSC) applications. Colloidal CdS QDs with tunable absorption band edge are synthesized and used as light absorber. After optimizing the QDs with the highest photoluminescence quantum yield accompanied by considerable solar light absorption ability, QDSC based on Co-Ru alloy electrode delivers a much higher power conversion efficiency than its counterparts, i.e., either pure Co or Ru metal electrodes. In detail, Co-Ru alloy electrode exhibits high specific area, excellent electrical behavior, intimate interface contact, and good stability, thus leading to notable improved device performances. The impressive robust function of Co-Ru alloy with simple manufacturing procedure highlights its potential applications in robust QDSCs.

  15. Gel Fabrication of Molybdenum “Beads”

    Energy Technology Data Exchange (ETDEWEB)

    Lowden, Richard Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Armstrong, Beth L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Cooley, Kevin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division

    2016-11-01

    Spherical molybdenum particles or “beads” of various diameters are of interest as feedstock materials for the additive manufacture of targets and assemblies used in the production of 99Mo medical isotopes using accelerator technology. Small metallic beads or ball bearings are typically fabricated from wire; however, small molybdenum spheres cannot readily be produced in this manner. Sol-gel processes are often employed to produce small dense microspheres of metal oxides across a broad diameter range that in the case of molybdenum could be reduced and sintered to produce metallic spheres. These Sol-gel type processes were examined for forming molybdenum oxide beads; however, the molybdenum trioxide was chemically incompatible with commonly used gelation materials. As an alternative, an aqueous alginate process being assessed for the fabrication of oxide spheres for catalyst applications was employed to form molybdenum trioxide beads that were successfully reduced and sintered to produce small molybdenum spheres.

  16. HYDROGEN VACANCY INTERACTION IN MOLYBDENUM

    NARCIS (Netherlands)

    Abd El Keriem, M.S.; van der Werf, D.P.; Pleiter, F

    1993-01-01

    Vacancy-hydrogen interaction in molybdenum was investigated by means of the perturbed angular correlation technique, using the isotope In-111 as a probe. The complex InV2 turned out to trap up to two hydrogen atoms: trapping of a single hydrogen atom gives rise to a decrease of the quadrupole

  17. The pseudo-binary mercury chalcogenide alloy HgSe sub 0 sub . sub 7 S sub 0 sub . sub 3 at high pressure: a mechanism for the zinc blende to cinnabar reconstructive phase transition

    CERN Document Server

    Kozlenko, D P; Ehm, L; Hull, S; Savenko, B N; Shchennikov, V V; Voronin, V I

    2003-01-01

    The structure of the pseudo-binary mercury chalcogenide alloy HgSe sub 0 sub . sub 7 S sub 0 sub . sub 3 has been studied by x-ray and neutron powder diffraction at pressures up to 8.5 GPa. A phase transition from the cubic zinc blende structure to the hexagonal cinnabar structure was observed at P approx 1 GPa. A phenomenological model of this reconstructive phase transition based on a displacement mechanism is proposed. Analysis of the geometrical relationship between the zinc blende and the cinnabar phases has shown that the possible order parameter for the zinc blende-cinnabar structural transformation is the spontaneous strain e sub 4. This assignment agrees with the previously observed high pressure behaviour of the elastic constants of some mercury chalcogenides.

  18. The Regularities of Phase and Structural Transformation in Binary Titanium Alloys with Metals of IV—VIII Groups of the Periodic Table

    National Research Council Canada - National Science Library

    Dobromyslov, A V

    2008-01-01

    Martensitic β→α′(α″) and β→ω transformation in a series of Ti-base alloys with transition metals of groups IV-VIII have been investigated using the techniques of X-ray diffraction, optical and transmission electron microscopy...

  19. The involvement of molybdenum in life.

    Science.gov (United States)

    Williams, R J P; Fraústo da Silva, J J R

    2002-03-29

    Quite extraordinarily molybdenum is an essential element in life for the uptake of nitrogen from both nitrogen gas and nitrate, yet it is a relatively rare heavy trace element. It also functions in a few extremely important oxygen-atom transfer reactions at low redox potential. This review poses the question "Why does life depend upon molybdenum?" The answer has to be based upon the availability of the element and on chemical superiority in carrying out the essential tasks. We illustrate here the peculiarities of molybdenum chemistry and how they have become part of certain enzymes. The uptake and incorporation of molybdenum are dependent on its availability, selective pumps, and carriers (chaperones), but 4.5 x 10(9) years ago molybdenum was not available when both tungsten and vanadium or even iron were possibly used in its place. While these possibilities are explored, they leave many unanswered questions concerning the selection today of molybdenum. (c)2002 Elsevier Science (USA).

  20. [Molybdenum as an air pollutant].

    Science.gov (United States)

    Lindner, R; Junker, E; Hoheiser, H

    1990-07-01

    Investigations into the reasons for the retarded growth and discolouration of a small area of a field of rape situated on the outskirts of Vienna revealed higher than normal levels of molybdenum in the soil (up to 430 micrograms/l) and in the water (up to 9.7 mg/l). The source of the pollution was traced to a neighbouring industrial plant that was emitting the metal via the chimney stack. A review of the literature on the toxic effects of molybdenum in general and as an air pollutant in particular is provided. This shows that, in contrast to animals, this effect is relatively small in humans and plants. Nevertheless, the occupation-related inhalation of the metal has been shown to be associated with pneumoconiosis and gout-like symptoms.

  1. Zirconia-molybdenum disilicide composites

    Science.gov (United States)

    Petrovic, John J.; Honnell, Richard E.

    1991-01-01

    Compositions of matter comprised of molybdenum disilicide and zirconium oxide in one of three forms: pure, partially stabilized, or fully stabilized and methods of making the compositions. The stabilized zirconia is crystallographically stabilized by mixing it with yttrium oxide, calcium oxide, cerium oxide, or magnesium oxide and it may be partially stabilized or fully stabilized depending on the amount of stabilizing agent in the mixture.

  2. Effect of molybdenum addition on microstructure and mechanical properties of plain carbon steel weld

    Directory of Open Access Journals (Sweden)

    Jyoti Menghani

    2016-12-01

    Full Text Available The present investigation has two main objectives; first is optimization of welding process parameters of submerged arc welding (SAW using Taguchi philosophy and second is to improve the mechanical properties such as strength and microhardness of weld joint by alloying with varying amounts of molybdenum. For optimization of welding process, parameters Taguchi philosophy have been applied on a mild steel plate (AISI C- 1020 of 10 mm thickness with 60o groove angle with arc voltage and welding speed as variables and bead width as output variables. A mathematical relationship between bead width, arc voltage and welding speed has also been found using multiple regression analysis for the present base metal plate geometry. After optimizing welding parameters, molybdenum has been added individually to the welding area in varying percentages. The properties of alloyed and unalloyed weld metal bead are compared. The mechanical characterization of weld has been done in terms of microhardness, tensile strength, whereas microstructural characterization has been performed using optical microscopy, XRD and EDS. The presence of molybdenum resulted in bainite structure in weld bead having a refined grain structure, enhancement in tensile strength and microhardness. The XRD results showed the formation of molybdenum carbides justifying the increase in microhardness value.

  3. Austenite Grain Growth and Precipitate Evolution in a Carburizing Steel with Combined Niobium and Molybdenum Additions

    Science.gov (United States)

    Enloe, Charles M.; Findley, Kip O.; Speer, John G.

    2015-11-01

    Austenite grain growth and microalloy precipitate size and composition evolution during thermal processing were investigated in a carburizing steel containing various additions of niobium and molybdenum. Molybdenum delayed the onset of abnormal austenite grain growth and reduced the coarsening of niobium-rich precipitates during isothermal soaking at 1323 K, 1373 K, and 1423 K (1050 °C, 1100 °C, and 1150 °C). Possible mechanisms for the retardation of niobium-rich precipitate coarsening in austenite due to molybdenum are considered. The amount of Nb in solution and in precipitates at 1373 K (1100 °C) did not vary over the holding times evaluated. In contrast, the amount of molybdenum in (Nb,Mo)C precipitates decreased with time, due to rejection of Mo into austenite and/or dissolution of fine Mo-rich precipitates. In hot-rolled alloys, soaking in the austenite regime resulted in coarsening of the niobium-rich precipitates at a rate that exceeded that predicted by the Lifshitz-Slyozov-Wagner relation for volume-diffusion-controlled coarsening. This behavior is attributed to an initial bimodal precipitate size distribution in hot-rolled alloys that results in accelerated coarsening rates during soaking. Modification of the initial precipitate size distribution by thermal processing significantly lowered precipitate coarsening rates during soaking and delayed the associated onset of abnormal austenite grain growth.

  4. Reduction of molybdenum oxide from steelmaking slags by pure liquid iron

    Directory of Open Access Journals (Sweden)

    Gao Y.M.

    2012-01-01

    Full Text Available The effects of reaction temperature, slag basicity and FeO concentration on the reduction of molybdenum oxide from steelmaking slags by pure liquid iron were investigated experimently. The reduction kinetics of molybdenum oxide by liquid iron was analysed. The reaction models were developed based on the condition that diffusion of [Mo] in liquid iron and CaMoO4 in slag is the control steps, respectively. These reaction models were tested using data from a series of experiments. The results indicate that under the present experimental conditions, the temperature and the FeO content, other than slag basicity, have some effects on the reduction of molybdenum oxide from steelmaking slags by pure liquid iron. Both the molybdenum oxide reduction rate and final reduction ratio increase with an increase of temperature and a decrease of FeO content. The diffusion of CaMoO4 in slag which dominated overall reduction process is the only one ratecontrolling step with its apparent activation energy 294 kJ/mol. The reduction of molybdenum oxide used directly as alloy additive can be further enhanced by strong stirring in the converter practice.

  5. Interacting binaries

    CERN Document Server

    Shore, S N; van den Heuvel, EPJ

    1994-01-01

    This volume contains lecture notes presented at the 22nd Advanced Course of the Swiss Society for Astrophysics and Astronomy. The contributors deal with symbiotic stars, cataclysmic variables, massive binaries and X-ray binaries, in an attempt to provide a better understanding of stellar evolution.

  6. Environmentally Assisted Cracking of Nickel Alloys - A Review

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R

    2004-07-12

    Nickel can dissolve a large amount of alloying elements while still maintaining its austenitic structure. That is, nickel based alloys can be tailored for specific applications. The family of nickel alloys is large, from high temperature alloys (HTA) to corrosion resistant alloys (CRA). In general, CRA are less susceptible to environmentally assisted cracking (EAC) than stainless steels. The environments where nickel alloys suffer EAC are limited and generally avoidable by design. These environments include wet hydrofluoric acid and hot concentrated alkalis. Not all nickel alloys are equally susceptible to cracking in these environments. For example, commercially pure nickel is less susceptible to EAC in hot concentrated alkalis than nickel alloyed with chromium (Cr) and molybdenum (Mo). The susceptibility of nickel alloys to EAC is discussed by family of alloys.

  7. In situ elaboration of a binary Ti–26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, M. [Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux LEM3 (UMR CNRS 7239), Université de Lorraine, Ile de Saulcy, F-57045 Metz (France); Joguet, D. [Laboratoire d' Etudes et de Recherches sur les Matériaux, les Procédés et les Surfaces LERMPS, Université de Technologie de Belfort Montbéliard, Sevenans, 90010 Belfort (France); Robin, G. [Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux LEM3 (UMR CNRS 7239), Université de Lorraine, Ile de Saulcy, F-57045 Metz (France); Peltier, L. [Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux LEM3 (UMR CNRS 7239), Ecole Nationale Supérieure d' Arts et Métiers, F-57078 Metz (France); Laheurte, P. [Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux LEM3 (UMR CNRS 7239), Université de Lorraine, Ile de Saulcy, F-57045 Metz (France)

    2016-05-01

    Ti–Nb alloys are excellent candidates for biomedical applications such as implantology and joint replacement because of their very low elastic modulus, their excellent biocompatibility and their high strength. A low elastic modulus, close to that of the cortical bone minimizes the stress shielding effect that appears subsequent to the insertion of an implant. The objective of this study is to investigate the microstructural and mechanical properties of a Ti–Nb alloy elaborated by selective laser melting on powder bed of a mixture of Ti and Nb elemental powders (26 at.%). The influence of operating parameters on porosity of manufactured samples and on efficacy of dissolving Nb particles in Ti was studied. The results obtained by optical microscopy, SEM analysis and X-ray microtomography show that the laser energy has a significant effect on the compactness and homogeneity of the manufactured parts. Homogeneous and compact samples were obtained for high energy levels. Microstructure of these samples has been further characterized. Their mechanical properties were assessed by ultrasonic measures and the Young's modulus found is close to that of classically elaborated Ti–26Nb ingot. - Highlights: • Biomimetic implants can be provided from additive manufacturing with Ti–Nb. • We made parts in a Ti–Nb alloy elaborated in situ from a mixture of elemental powders. • Process parameters have a significant impact on homogeneity and compactness. • Non-columnar elongated beta-grains are stacked with an orientation {001}<100 >. • Low Young's modulus is achieved by this texture.

  8. Alloying effects on mechanical and metallurgical properties of NiAl

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Horton, J.A.; Lee, E.H.; George, E.P.

    1993-06-01

    Alloying effects were investigated in near-stoichiometric NiAl for improving its mechanical and metallurgical properties. Ternary additions of 19 elements at levels up to 10 at. % were added to NiAl; among them, molybdenum is found to be most effective in improving the room-temperature ductility and high-temperature strength. Alloying with 1.0 {plus_minus} 0.6% molybdenum almost doubles the room-temperature tensile ductility of NiAl and triples its yield strength at 1000C. The creep properties of molybdenum-modified NiAl alloys can be dramatically improved by alloying with up to 1% of niobium or tantalum. Because of the low solubilities of molybdenum and niobium in NiAl, the beneficial effects mainly come from precipitation hardening. Fine and coarse precipitates are revealed by both transmission electron microscopy (TEM) and electron microprobe analyses. Molybdenum-containing alloys possess excellent oxidation resistance and can be fabricated into rod stock by hot extrusion at 900 to 1050C. This study of alloying effects provides a critical input for the alloy design of ductile and strong NiAl aluminide alloys for high-temperature structural applications.

  9. Molybdenum Disilicide Oxidation Kinetics in High Temperature Steam

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Elizabeth Sooby [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parker, Stephen Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nelson, Andrew Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-07

    The Fuel Cycle Research and Development program’s Advanced Fuels Campaign is currently supporting a range of experimental efforts aimed at the development and qualification of ‘accident tolerant’ nuclear fuel forms. One route to enhance the accident tolerance of nuclear fuel is to replace the zirconium alloy cladding, which is prone to rapid oxidation in steam at elevated temperatures, with a more oxidation resistant cladding. Several cladding replacement solutions have been envisaged. The cladding can be completely replaced with a more oxidation resistant alloy, a layered approach can be used to optimize the strength, creep resistance, and oxidation tolerance of various materials, or the existing zirconium alloy cladding can be coated with a more oxidation resistant material. Molybdenum is one candidate cladding material favored due to its high temperature creep resistance. However, it performs poorly under autoclave testing and suffers degradation under high temperature steam oxidation exposure. Development of composite cladding architectures consisting of a molybdenum core shielded by a molybdenum disilicide (MoSi2) coating is hypothesized to improve the performance of a Mo-based cladding system. MoSi2 was identified based on its high temperature oxidation resistance in O2 atmospheres (e.g. air and “wet air”). However, its behavior in H2O is less known. This report presents thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and x-ray diffraction (XRD) results for MoSi2 exposed to 670-1498 K water vapor. Synthetic air (80-20%, Ar-O2) exposures were also performed and those results are presented here for a comparative analysis. It was determined that MoSi2 displays drastically different oxidation behavior in water vapor than in dry air. In the 670-1498 K temperature range, four distinct behaviors are observed. Parabolic oxidation is exhibited in only 670-773 K

  10. Molybdenum Disilicide Oxidation Kinetics in High Temperature Steam

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Elizabeth Sooby [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parker, Stephen Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nelson, Andrew Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-07

    The Fuel Cycle Research and Development program’s Advanced Fuels Campaign is currently supporting a range of experimental efforts aimed at the development and qualification of ‘accident tolerant’ nuclear fuel forms. One route to enhance the accident tolerance of nuclear fuel is to replace the zirconium alloy cladding, which is prone to rapid oxidation in steam at elevated temperatures, with a more oxidation-resistant cladding. Several cladding replacement solutions have been envisaged. The cladding can be completely replaced with a more oxidation resistant alloy, a layered approach can be used to optimize the strength, creep resistance, and oxidation tolerance of various materials, or the existing zirconium alloy cladding can be coated with a more oxidation-resistant material. Molybdenum is one candidate cladding material favored due to its high temperature creep resistance. However, it performs poorly under autoclave testing and suffers degradation under high temperature steam oxidation exposure. Development of composite cladding architectures consisting of a molybdenum core shielded by a molybdenum disilicide (MoSi2) coating is hypothesized to improve the performance of a Mo-based cladding system. MoSi2 was identified based on its high temperature oxidation resistance in O2 atmospheres (e.g. air and “wet air”). However, its behavior in H2O is less known. This report presents thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and x-ray diffraction (XRD) results for MoSi2 exposed to 670-1498 K water vapor. Synthetic air (80-20%, Ar-O2) exposures were also performed, and those results are presented here for a comparative analysis. It was determined that MoSi2 displays drastically different oxidation behavior in water vapor than in dry air. In the 670-1498 K temperature range, four distinct behaviors are observed. Parabolic oxidation is exhibited in only 670

  11. In situ elaboration of a binary Ti-26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders.

    Science.gov (United States)

    Fischer, M; Joguet, D; Robin, G; Peltier, L; Laheurte, P

    2016-05-01

    Ti-Nb alloys are excellent candidates for biomedical applications such as implantology and joint replacement because of their very low elastic modulus, their excellent biocompatibility and their high strength. A low elastic modulus, close to that of the cortical bone minimizes the stress shielding effect that appears subsequent to the insertion of an implant. The objective of this study is to investigate the microstructural and mechanical properties of a Ti-Nb alloy elaborated by selective laser melting on powder bed of a mixture of Ti and Nb elemental powders (26 at.%). The influence of operating parameters on porosity of manufactured samples and on efficacy of dissolving Nb particles in Ti was studied. The results obtained by optical microscopy, SEM analysis and X-ray microtomography show that the laser energy has a significant effect on the compactness and homogeneity of the manufactured parts. Homogeneous and compact samples were obtained for high energy levels. Microstructure of these samples has been further characterized. Their mechanical properties were assessed by ultrasonic measures and the Young's modulus found is close to that of classically elaborated Ti-26 Nbingot.

  12. Study of macro- and micro-segregation of iridium in molybdenum single crystals after electron beam zone melting

    Energy Technology Data Exchange (ETDEWEB)

    Drapala, Jaromir; Skotnicova, Katerina [VSB-Technical University of Ostrava (Czech Republic). Dept. of Non-ferrous Metals, Refining and Recycling

    2013-01-15

    The aim of the work was to study the creation of micro- and macro-segregation of iridium in low-alloyed molybdenum single crystals after electron beam zone melting (floating zone technique) depending on various conditions of crystallization. In order to evaluate relations between the chemical inhomogeneity and structural defects and their influence on properties of single crystals, the dependence of concentration and character of distribution of admixtures under various crystallization conditions on the origin of concentration undercooling and dislocation substructure of molybdenum single crystals prepared by electron beam floating zone melting was experimentally investigated.

  13. Identification of a new pseudo-binary hydroxide during calendar corrosion of (La, Mg)2Ni7-type hydrogen storage alloys for Nickel-Metal Hydride batteries

    Science.gov (United States)

    Monnier, J.; Chen, H.; Joiret, S.; Bourgon, J.; Latroche, M.

    2014-11-01

    To improve the performances of Nickel-Metal Hydride batteries, an important step is the understanding of the corrosion processes that take place in the electrode material. In particular, the present study focuses for the first time on the model (La, Mg)2Ni7 system. The calendar corrosion in 8.7 M KOH medium was investigated from 6 h to 16 weeks immersion. By a unique combination of structural and elemental characterisations, the corrosion products are evidenced in those systems. In particular, we demonstrate that Ni and Mg combine in a pseudo-binary hydroxide Mg1-xNix(OH)2 whereas La corrodes into nanoporous La(OH)3 needles with inner hollow nanochannels.

  14. Price Hike in Molybdenum Industrial Chain Picked Up Speed

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    Affected by industry-wide joint production restriction,prices of molybdenum concentrate,molybdenum oxide and ferromolybdenum surged across the board.Following the average rising margin up to 1%to 2%on May 23,on May 24,prices of molybdenum concentrate and molybdenum oxide again were adjusted upward by 50 yuan per tonne,rising by 5%,which

  15. Structural and electronic properties of binary amorphous aluminum alloys with transition metals and rare earth metals; Strukturelle und elektronische Eigenschaften binaerer amorpher Aluminiumlegierungen mit Uebergangsmetallen und Metallen der Seltenen Erden

    Energy Technology Data Exchange (ETDEWEB)

    Stiehler, Martin

    2012-02-03

    The influence of the d-states of the transition metals on the structure formation in amorphous alloys has so far only been inadequately understood. The present work aims to elaborate additional contributions to the understanding of binary amorphous aluminum alloys with transition metals. Special emphasis was placed on alloys with a subgroup of the transition metals, the rare earth metals. Within the scope of the present work, layers of Al-Ce in the region of 15at% Ce-80at% Ce were produced by sequential flash evaporation at 4.2K in the high vacuum, and characterized electronically by electrical resistance and Hall effect measurements as well as structurally by transmission electron diffraction. In addition, studies of plasma resonance were carried out by means of electron energy loss spectroscopy. In the range of 25at% Ce-60at% Ce, homogeneous amorphous samples were obtained. Especially the structural investigations were made difficult by oxidation of the material. The influence of the Ce-4f electrons manifests itself mainly in the low-temperature and magnetoresistance, both of which are dominated by the Kondo effect. The Hall effect in Al-Ce is dominated by anomalous components over the entire temperature range (2K-320K), which are attributed to skew-scattering effects, also due to Ce-4f electrons. Down to 2K there was no macroscopic magnetic order. In the region 2K-20K, the existence of clusters of ordered magnetic moments is concluded. For T> 20K, paramagnetic behavior occurs. With regard to the structural and electronic properties, a-Al-Ce can be classified as a group with a-Al- (Sc, Y, La). In the sense of plasma resonance, a-Al-Ce is excellently arranged in a system known from other Al transition metal alloys. Furthermore, by increasing the results of binary amorphous Al transition metal alloys from the literature, it has been found that the structure formation in these systems is closely linked to a known but still unexplained structure-forming effect that

  16. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    Science.gov (United States)

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  17. MOLYBDENUM

    African Journals Online (AJOL)

    electron donor), have been found to have 3:4 square pyramidal structures with the cyclopentadienyl .... The relative ratios of the cis to trans ring proton resonances gives the proportion of cis to .... relationship is not obvious by our analysis.

  18. Recovery of molybdenum using alumina microspheres and precipitation with selective organic reagents

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Fatima Maria Sequeira de; Abrao, Alcidio [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Dept. de Engenharia Quimica e Ambiental]. E-mail: fatimamc@net.ipen.br; aabrao@net.ipen.br

    1998-07-01

    In this paper is presented a study for the optimization of dissolution of the UAL{sub x} plates used for irradiation and production of radiomolybdenum. The alloy is dissolved in nitric acid with mercury as catalyst. The separation and concentration of the molybdenum was achieved using a chromatographic grade alumina microspheres column. the purified eluted molybdenum is finally precipitated using one of the selective reagents: alizarine blue, {alpha},{alpha}'- bipyridine and 1,10-phenanthroline. Any one of the obtained precipitate can be fired to the molybdenum trioxide. The interference of the following elements was studied: Re(VII), U(VI), Cr(VI), W(VI), V(V), Te(IV), Ti(IV), Zr(IV), Th(IV), Fe(III), Au(III), Ru(III), Al(III), Bi(III), Sb(III), Ce(IV), Pr(III), Sc(III), Y(III), Sm(III), Ba(II), Sr(II), Ni(II), Co(II), Cs(I). The molybdenum precipitates were characterized by gravimetric, CHN, TG, DTG, IR and X-ray diffraction analyses. (author)

  19. Spectrophotometric determination of molybdenum after separation by the adsorption of its trifluoroethylxanthate on naphthalene

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, M.F.; Katyal, Mohan; Puri, B.K.; Satake, Masatada

    1986-10-01

    Molybdenum reacts with potassium trifluoroethylxanthate to form a water-insoluble complex in the acid concentration range 0.1-3 M, pH 1.0-3.5. This complex is easily adsorbed on to microcrystalline naphthalene from an acetone solution and absorbs in the range 360-370 nm. Beer's law is obeyed over the concentration range 5.0-75.0 ..mu..g of molybdenum in 10 ml of chloroform solution. The molar absorptivity and Sandell sensitivity are 1.041 x 10/sup 4/ l mol/sup -1/ cm-/sup 11/ and 0.0092 ..mu..g cm/sup -2/, respectively. Ten replicate analyses of a sample solution containing 30 ..mu..g of molybdenum gave a mean absorbance of 0.325 with a relative standard deviation of 0.60%. The interferences of various ions were studied and conditions were developed for the determination of molybdenum in some alloy samples.

  20. Mechanical properties and constitutive relations for molybdenum under high-rate deformation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.R.; Maudlin, P.J.; Gray, G.T. III

    1998-01-01

    Molybdenum and its alloys have received increased interest in recent years for ballistic applications. The stress-strain behavior of several molybdenums possessing various compositions, manufacturing sources, and the degree of pre-straining, were investigated as a function of temperature from 77 to 1,273 K, and strain rate from 10{sup {minus}3} s{sup {minus}1} to 8,000 s{sup {minus}1}. The yield stress was found to be sensitive to the test temperature and strain rate, however, the strain hardening remained rate-insensitive. The constitutive response of a powder-metallurgy molybdenum was also investigated; similar mechanical properties compared to conventionally wrought processed molybdenums were achieved. Constitutive relations based upon the Johnson-Cook, the Zerilli-Armstrong and the Mechanical Threshold Stress (MTS) models were evaluated and fit for the various Mo-based materials. The capabilities and limitations of each model for large-strain applications were examined. The differences between the three models are demonstrated using model comparisons to Taylor cylinder validation experiments.

  1. Rare earth effect of yttrium on formation and property of Cr2O3 oxide film formed on Co-Cr binary alloy

    Institute of Scientific and Technical Information of China (English)

    JIN Huiming; FELIX A. Congrado; AROYAVE M. Hayara

    2006-01-01

    The isothermal oxidizing kinetics of Co-40Cr alloy and its yttrium ion-implanted samples were studied at 1000℃ in air by thermal-gravity analysis (TGA). Scanning electronic microscopy (SEM) was used to examine the Cr2O3 oxide film's morphology after oxidation. Secondary ion mass spectrum (SIMS) method was used to examine the binding energy change of chromium caused by Y-doping and its influence on formation of Cr2O3 film. Acoustic emission (AE) method was used in situ to monitor the cracking and spalling of oxide films formed on both samples during oxidizing and subsequent air-cooling stages. Theoretical model simulating the film fracture process was proposed to analyze the acoustic emission spectrum both on time domain and on AE-event number domain. It is found that yttrium ionimplantation can remarkably reduce the isothermal oxidizing rate of Co-40Cr and improve the anti-cracking and anti-spalling properties of Cr2O3 oxide film. Reasons for the improvement are mainly that the implanted yttrium can reduce the grain size of Cr2O3 oxide, increase the high temperature plasticity of oxide film, and remarkably reduce the number and size of Cr2O3/Co-40Cr interfacial defects.

  2. New alloys to conserve critical elements

    Science.gov (United States)

    Stephens, J. R.

    1978-01-01

    Based on availability of domestic reserves, chromium is one of the most critical elements within the U.S. metal industry. New alloys having reduced chromium contents which offer potential as substitutes for higher chromium containing alloys currently in use are being investigated. This paper focuses primarily on modified Type 304 stainless steels having one-third less chromium, but maintaining comparable oxidation and corrosion properties to that of type 304 stainless steel, the largest single use of chromium. Substitutes for chromium in these modified Type 304 stainless steel alloys include silicon and aluminum plus molybdenum.

  3. Handbook of International alloy Compositions and Designations. Volume II. Superalloys

    Science.gov (United States)

    1978-12-01

    Melted Alloys. Type VMA15: Nickel base-10% cobalt 10% tungsten 9% chromium b.5% aluminium 2.5% tantalum 1.5% hafnium 1.5% titanium vacuum melted... Aluminium Nb — Niobium C - Chromium S - Silicon D — Molybdenum T — Titanium Fe- Iron Ta - Tantalum G — Magnesium U — Copper H - Thorium V...chromium- aluminium -tungsten- molybdenum-nlobium alloy castings (Cr 11.0, AI6.0, W3.5,Mo3.0, Nb2.0) M Gr 1 (ISBN: 0 580 07218 5) 0&73

  4. Process for Functionalizing Biomass using Molybdenum Catalysts

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention concerns a process for converting biomass into useful organic building blocks for the chemical industry. The process involves the use of molybdenum catalysts of the formula Aa+a(MovXxR1yR2zR3e)a*3-, which may be readily prepared from industrial molybdenum compounds.......The present invention concerns a process for converting biomass into useful organic building blocks for the chemical industry. The process involves the use of molybdenum catalysts of the formula Aa+a(MovXxR1yR2zR3e)a*3-, which may be readily prepared from industrial molybdenum compounds....

  5. Investigation of hydrogen evolution activity for the nickel, nickel-molybdenum nickel-graphite composite and nickel-reduced graphene oxide composite coatings

    Science.gov (United States)

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang

    2016-03-01

    The nickel, nickel-molybdenum alloy, nickel-graphite and nickel-reduced graphene oxide composite coatings were obtained by the electrodeposition technique from a nickel sulfate bath. Nanocrystalline molybdenum, graphite and reduced graphene oxide in nickel coatings promoted hydrogen evolution reaction in 0.5 M H2SO4 solution at room temperature. However, the nickel-reduced graphene oxide composite coating exhibited the highest electrocatalytic activity for the hydrogen evolution reaction in 0.5 M H2SO4 solution at room temperature. A large number of gaps between 'cauliflower' like grains could decrease effective area for hydrogen evolution reaction in slight amorphous nickel-molybdenum alloy. The synergistic effect between nickel and reduced graphene oxide promoted hydrogen evolution, moreover, refined grain in nickel-reduced graphene oxide composite coating and large specific surface of reduced graphene oxide also facilitated hydrogen evolution reaction.

  6. Measurement and Analysis of Liquid Density of NiCoAlMo Quarternary Alloys%四元合金NiCoAlMo液态密度的测量与分析

    Institute of Scientific and Technical Information of China (English)

    唐先智; 方亮; 肖锋; 陶再南

    2011-01-01

    用改良静滴法对钼浓度在0%到10%(质量分数)的NiCoAlMo四元合金的液态密度进行了测量,NiCoA1Mo合金的Ni:Co:A1摩尔比与商用镍基超合金TMS75、INCO713、CM247LC和CMSX-4的Ni:Co:Al摩尔比接近(χNi:χCo:χAl=73:12:15).结果表明:液态密度随温度的增加而减小,随合金中钼浓度的增加而增加;液态NiCoAlMo四元合金的摩尔体积随温度和合金中钼浓度的增加而增加,与理想混合相比,呈负偏差.由镍基二元合金中镍、钻、铝、钼4个元素的偏摩尔体积计算获得的NiCoAlMo四元合金的液态密度与实验测量密度吻合良好,表明在误差范围内,多元镍基合金的液态密度可以通过二元镍基合金中相应元素的偏摩尔体积进行预测估计.%The density of liquid NiCoAlMo quaternary alloy with a fixed molar ratio of Ni:Co:Al (χNi:χCo:χAl≈73:12:15) which is close to the average value of the commercial Ni-based superalloys TMS75, INCO713, CM247LC and CMSX-4, and molybdenum concentration change from 0% to 10% (mass fraction) was measured by a modified sessile drop method. It is found that the density of the liquid NiCoA1Mo quaternary alloy decreases with increasing of temperature, but increases with the increase of molybdenum concentration in the alloys. The molar volume of liquid NiCoAIMo quaternary alloy increases with the increase of temperature and molybdenum concentration, and shows a negative deviation from the ideal linear mixing. The liquid density of NiCoA1Mo quaternary alloy calculated from the partial molar volumes of nickel, cobalt, aluminum and molybdenum in the corresponding Ni-bases binary alloy are in good agreement with the experimental results; it means that within the error tolerance range the density of liquid Ni-based multi-component alloys can be predicted from the partial volumes of elements in Ni-based binary alloys in liquid state.

  7. The influence of molybdenum on stress corrosion in Ultra Low Carbon Steels with copper addition

    Directory of Open Access Journals (Sweden)

    M. Mazur

    2010-07-01

    Full Text Available The influence of molybdenum content on the process of stress corrosion of ultra-low carbon structural steels with the addition of copper HSLA (High Strength Low Alloy was analyzed. The study was conducted for steels after heat treatment consisting of quenching andfollowing tempering at 600°C and it was obtained microstructure of the tempered martensite laths with copper precipitates and the phaseLaves Fe2Mo type. It was found strong influence of Laves phase precipitate on the grain boundaries of retained austenite on rate anddevelopment of stress corrosion processes. The lowest corrosion resistance was obtained for W3 steel characterized by high contents ofmolybdenum (2.94% Mo which should be connected with the intensity precipitate processes of Fe2Mo phase. For steels W1 and W2which contents molybdenum equals 1.02% and 1.88%, respectively were obtained similar courses of corrosive cracking.

  8. Nitrogen diffusion in near-surface range of ion doped molybdenum

    CERN Document Server

    Zamalin, E Y

    2001-01-01

    The dynamics of change in nitrogen near-the-surface concentration in the Mo ion-alloyed monocrystalline foil is studied through the Auger-electron spectroscopy and the secondary ion mass spectrometry. The implantation dose constituted 5 x 10 sup 1 sup 7 ion/cm sup 2 and the implantation energy equaled 50 and 100 keV. The samples diffusion annealing was performed at the temperature of 800-900 deg C. The evaluation of the nitrogen diffusion coefficient indicates the values by 3-5 orders lesser than the diffusion coefficient in the nitrogen solid-state solution in the molybdenum. At the same time the molybdenum self-diffusion coefficient value is by 3-5 orders lesser as compared to the obtained value. The supposition is made, the the surplus nitrogen relative to the solubility limit is deposited on the radiation defects and in the process of the diffusion annealing it nitrates together with them

  9. Crystallization of Low-alloyed Construction Cast Steel Modified with V and Ti

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2013-07-01

    Full Text Available In this paper crystallization studies of low-alloyed construction cast steel were presented for different additions of chromium, nickel and molybdenum modified with vanadium and titanium. Studies were conducted using developed TDA stand, which additionally enabled evaluation of cooling rate influence on crystallization process of investigated alloys.

  10. Double Glow Plasma Surface Alloyed Burn-resistant Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping-ze; XU Zhong; HE Zhi-yong; ZHANG Gao-hui

    2004-01-01

    Conventional titanium alloy may be ignited and burnt under high temperature, high pressure and high gas flow velocity condition. In order to avoid this problem, we have developed a new kind of burn-resistant titanium alloy-double glow plasma surface alloying burn-resistant titanium alloy. Alloying element Cr, Mo, Cu are induced into the Ti-6Al-4V and Ti-6.5Al-0.3Mo-l.5Zr-0.25Si substrates according to double glow discharge phenomenon, Ti-Cr ,Ti-Mo, Ti-Cu binary burn-resistant alloy layers are formed on the surface of Ti-6Al-4V and Ti-6.5Al-0.3Mo-l.5Zr-0.25Si alloys. The depth of the surface burn-resistant alloy layer can reach to above 200 microns and alloying element concentration can reach 90%.Burn-resistant property experiments reveal that if Cr concentration reach to 14%, Cu concentration reach to 12%, Mo concentration reach to 10% in the alloying layers, ignition and burn of titanium alloy can be effectively avoided.

  11. Double Glow Plasma Surface Alloyed Burn-resistant Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANGPing-ze; XUZhong; HEZhi-yong; ZHANGGao-hui

    2004-01-01

    Conventional titanium alloy may be ignited and burnt under high temperature, high pressure and high gas flow velocity condition. In order to avoid this problem, we have developed a new kind of burn-resistant titanium alloy-double glow plasma surface alloying burn-resistant titanium alloy. Alloying element Cr, Mo, Cu are induced into the Ti-6A1-4V and Ti-6.5Al-0.3Mo-1.5Zr-0.25Si substrates according to double glow discharge phenomenon, Ti-Cr ,Ti-Mo, Ti-Cu binary burn-resistant alloy layers are formed on the surface of Ti-6A1-4V and Ti-6.5Al-0.3Mo-1.5Zr-0.25Si alloys. The depth of the surface burn-resistant alloy layer can reach to above 200 microns and alloying element concentration can reach 90%. Burn-resistant property experiments reveal that if Cr concentration reach to 14%, Cu concentration reach to 12%, Mo concentration reach to 10% in the alloying layers, ignition and burn of titanium alloy can be effectively avoided.

  12. Superconducting state parameters of AgxZn1-x and AgxAl1-x binary alloys superconductors%AgxZn1-x和AgxAl1-x双相合金超导体的超导态参数

    Institute of Scientific and Technical Information of China (English)

    VORA Aditya Mahabhai

    2008-01-01

    A well-known pseudopotential is used to investigate the superconducting state parameters (SSP), viz., electron-phonon coupling strength, Coulomb pseudopotential, transition temperature, isotope effect exponent and effective interaction strength for AgxZn1-x and AgxAl1-x binary alloys theoretically for the first time. We have incorporated here five different types of the local field correction functions to show the effect of exchange and correlation on the aforesaid properties. Very strong influence of various exchange and correlation functions is concluded from the present study. Comparison with others such experimental values is encouraging, which confirms applicability of the model potential in explaining the superconducting state parameters of binary mixture.

  13. Screening on binary Zr-1X (X = Ti, Nb, Mo, Cu, Au, Pd, Ag, Ru, Hf and Bi) alloys with good in vitro cytocompatibility and magnetic resonance imaging compatibility.

    Science.gov (United States)

    Zhou, F Y; Qiu, K J; Li, H F; Huang, T; Wang, B L; Li, L; Zheng, Y F

    2013-12-01

    In this study, the microstructures, mechanical properties, corrosion behaviors, in vitro cytocompatibility and magnetic susceptibility of Zr-1X alloys with various alloying elements, including Ti, Nb, Mo, Cu, Au, Pd, Ag, Ru, Hf and Bi, were systematically investigated to explore their potential use in biomedical applications. The experimental results indicated that annealed Zr-1X alloys consisted entirely or primarily of α phase. The alloying elements significantly increased the strength and hardness of pure Zr and had a relatively slight influence on elastic modulus. Ru was the most effective enhancing element and Zr-1Ru alloy had the largest elongation. The results of electrochemical corrosion indicated that adding various elements to Zr improved its corrosion resistance, as indicated by the reduced corrosion current density. The extracts of the studied Zr-1X alloys produced no significant deleterious effects on osteoblast-like cells (MG 63), indicating good in vitro cytocompatibility. All except for Zr-1Ag alloy showed decreased magnetic susceptibility compared to pure Zr, and Zr-1Ru alloy had the lowest magnetic susceptibility value, being comparable to that of α' phase Zr-Mo alloy and Zr-Nb alloy and far lower than that of Co-Cr alloy and Ti-6Al-4V alloy. Among the experimental Zr-1X alloys, Zr-1Ru alloy possessing high strength coupled with good ductility, good in vitro cytocompatibility and low magnetic susceptibility may be a good candidate alloy for medical devices within a magnetic resonance imaging environment. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. The Influence of Casting Conditions on the Microstructure of As-Cast U-10Mo Alloys: Characterization of the Casting Process Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Nyberg, Eric A.; Joshi, Vineet V.; Lavender, Curt A.; Paxton, Dean M.; Burkes, Douglas

    2013-12-13

    Sections of eight plate castings of uranium alloyed with 10 wt% molybdenum (U-10Mo) were sent from Y-12 to the Pacific Northwest National Laboratory (PNNL) for microstructural characterization. This report summarizes the results from this study.

  15. The Influence of Casting Conditions on the Microstructure of As-Cast U-10Mo Alloys: Characterization of the Casting Process Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Nyberg, Eric A.; Joshi, Vineet V.; Lavender, Curt A.; Paxton, Dean M.; Burkes, Douglas

    2013-12-13

    Sections of eight plate castings of uranium alloyed with 10 wt% molybdenum (U-10Mo) were sent from Y-12 to the Pacific Northwest National Laboratory (PNNL) for microstructural characterization. This report summarizes the results from this study.

  16. Molybdenum Metallopharmaceuticals Candidate Compounds - The "Renaissance" of Molybdenum Metallodrugs?

    Science.gov (United States)

    Jurowska, Anna; Jurowski, Kamil; Szklarzewicz, Janusz; Buszewski, Boguslaw; Kalenik, Tatiana; Piekoszewski, Wojciech

    2016-01-01

    Metal-based drugs, also called "metallopharmaceuticals" or "metallodrugs", are examples of sophisticated compounds that have been used in inorganic medicinal chemistry as therapeutic agents for a long time. Few of them have shown substantially promising results and many of them have been used in different phases of clinical trials. The Mo-based metallodrugs were successfully applied in the past for treating conditions such as anemia or Wilson's disease. Moreover, Mo complexes are supposed to exert their effect by intercalation/ cleavage of DNA/RNA, arrest of the cell cycle, and alteration of cell membrane functions. However, in the current literature, there are no reliable and in-depth reviews about the hypothetical therapeutic applications of all of the known molybdenum complexes as metallopharmaceuticals/ metallodrugs. The main emphasis was on the in-depth review of the potential applications of Mo-based complexes in medicinal chemistry as metallopharmaceuticals in treating diseases such as cancer and tumors, Wilson's disease, diabetes mellitus, Huntington's disease, atherosclerosis, and anemia. It must be emphasized that today the development of innovative and new Mo-based metalo-pharmaceuticals is not rapid, and hence the aim of this paper was also to inspire colleagues working in the field of Mo compounds who are trying to find "signpost" for research. The authors hope that this article will increase interest and initiate the Renaissance of Mo-compounds among medicinal inorganic chemists. This paper is the first review article in the literature that refers to and emphasizes many different and complex aspects of possible applications and capabilities of Mo-based metallodrugs.

  17. Preparation of selective molybdenum concentrate from collective coppermolybdenum concentrate

    Directory of Open Access Journals (Sweden)

    N. Tusupbaev

    2016-06-01

    Full Text Available The paper considers possibilities of selective separation of the concentrate of copper and molybdenum from a collective copper-molybdenum concentrate of Aktogay deposit using regrinding and conventional flotation reagents. In the case of conventional flotoreagents, the content of molybdenum in a molybdenum concentrate was 8.0% at extraction effectiveness 83.12%. At 27.96% extraction degree of copper, it’s content in the concentrate equaled to 21.3%. After regrinding, molybdenum content in the concentrate was 24.0% at the extraction effectiveness 59.63%, and copper content in the concentrate was 21.9% at the recovery of 61.23%. Thus, the regrinding of a collective copper-molybdenum concentrate resulted in an increase in the content of molybdenum in molybdenum concentrate by 16%, and the copper concentration increased by 0.6%.

  18. Zunyi Molybdenum & Nickel Mining Enterprises Are Still in Suspension Status

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    According to the 2015 mid-year report of Tiancheng Holding,because Guizhou Province is still enforcing policy regulation&environmental; protection policy for molybdenum&nickel; mining industry,currently all molybdenum and nickel mining

  19. Nanostructured Platinum Alloys for Use as Catalyst Materials

    Science.gov (United States)

    Hays, Charles C. (Inventor); Narayan, Sri R. (Inventor)

    2015-01-01

    A series of binary and ternary Pt-alloys, that promote the important reactions for catalysis at an alloy surface; oxygen reduction, hydrogen oxidation, and hydrogen and oxygen evolution. The first two of these reactions are essential when applying the alloy for use in a PEMFC.

  20. FRACTURE TOUGHNESS OF 6.4 MM (0.25 INCH) ARC-CAST MOLOBDENUM AND MOLYBDENUM-TZM PLATE AT ROOM TEMPERATURE AND 300 DEGREES C

    Energy Technology Data Exchange (ETDEWEB)

    J. A. SHIELDS, JR.; P. LIPETZKY; A. J. MUELLER

    2001-04-11

    THE FRACTURE TOUGHNESS OF 6.4 mm (0.25 INCH) LOW CARBON ARC-CAST (LCAC) MOLYBDENUM AND ARC-CAST MOLYBDENUM-TZM ALLOY PLATE WERE MEASURED AT ROOM TEMPERATURE AND 300 DEGREES C USING COMPACT TNESION SPECIMENTS. THE EFFECT OF CRACK PLANE ORIENTATION (LONGITUDINAL VS. TRANSVERSE) AND ANNEALING PRACTICE (STRESS-RELIEVED VS. RECRYSTALLIZED) WERE EVALUATED. DEPENDING UPON THE TEST TEMPERATURE EITHER A STANDARD K[SUB]IC OR A J-INTEGRAL ANALYSIS WAS USED TO OBTAIN THE TOUGHNESS VALUE. AT ROOM TEMPERATURE, REGARDLESS OF ALLOY, ORIENTATION, OR MICROSTURECTURE, FRACTURE TOUGHNESS VALUES BETWEEN 15 AND 22 MPa m{sup 1/2} (14 AND 20 KSI IN{sup 1/2}) WERE MEASURED. THESE K[SUB]IC VALUES WERE CONSISTENT WITH MEASUREMENTS BY THE AUTHORS. INCREASING TEMPERATURE IMPROVES THE TOUGHNESS, DUE TO THE FACT THAT ONE TAKES ADVANTAGE OF THE DUCTIVE-BRITTLE TRANSITION BEHAVIOR OF MOLYBDENUM. AT 300 DEGREES C, THE FRACTURE TOUGHNESS OF RECRYSTALLIZED LCAC AND ARC-CAST TZM MOLYBDENUM WERE ALSO SIMILAR AT APPROXI MATELY 64 MPa m{sup 1/2} (58 KSI IN{sup 1/2}). IN THE STRESS-RELIEVED CONDITION, HOWEVER, THE TOUGHNESS OF ARC-CAST TZM (91 MPa m{sup 1/2}/83 KSI IN{sup 1/2}) WAS HIGHER THAN THAT OF THE LCAC MOLYBDENUM (74 MPa m{sup 1/2}/67 KSI IN{sup 1/2}).

  1. Reduction property of rare earth oxide doped molybdenum oxide

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Rare earth oxide doped molybdenum powders were prepared by the reduction of rare earth nitrites doped MoO3. The effect of rare earth oxide on the reduction behavior of molybdenum oxide had been studied by means of Temperature Programmed Reduction (TPR), thermal analysis, X-ray diffraction. Doping rare earth oxide in the powder could lower the reduction temperature of molybdenum oxide and decrease the particle size of molybdenum. The mechanism for the effects had been discussed in this paper.

  2. The Nature of Surface Oxides on Corrosion-Resistant Nickel Alloy Covered by Alkaline Water

    Directory of Open Access Journals (Sweden)

    Gervasio DF

    2010-01-01

    Full Text Available Abstract A nickel alloy with high chrome and molybdenum content was found to form a highly resistive and passive oxide layer. The donor density and mobility of ions in the oxide layer has been determined as a function of the electrical potential when alkaline water layers are on the alloy surface in order to account for the relative inertness of the nickel alloy in corrosive environments.

  3. Boron-dependency of molybdenum boride electrocatalysts for the hydrogen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyounmyung; Encinas, Andrew; Fokwa, Boniface P.T. [Department of Chemistry, University of California, Riverside, CA (United States); Department of Chemical and Environmental Engineering, University of California, Riverside, CA (United States); Scheifers, Jan P.; Zhang, Yuemei [Department of Chemistry, University of California, Riverside, CA (United States)

    2017-05-08

    Molybdenum-based materials have been considered as alternative catalysts to noble metals, such as platinum, for the hydrogen evolution reaction (HER). We have synthesized four binary bulk molybdenum borides Mo{sub 2}B, α-MoB, β-MoB, and MoB{sub 2} by arc-melting. All four phases were tested for their electrocatalytic activity (linear sweep voltammetry) and stability (cyclic voltammetry) with respect to the HER in acidic conditions. Three of these phases were studied for their HER activity and by X-ray photoelectron spectroscopy (XPS) for the first time; MoB{sub 2} and β-MoB show excellent activity in the same range as the recently reported α-MoB and β-Mo{sub 2}C phases, while the molybdenum richest phase Mo{sub 2}B show significantly lower HER activity, indicating a strong boron-dependency of these borides for the HER. In addition, MoB{sub 2} and β-MoB show long-term cycle stability in acidic solution. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Effect of La203 nanoparticles on properties of molybdenum powder

    Institute of Scientific and Technical Information of China (English)

    王金淑; 周美玲; 左铁镛; 聂祚仁; 张久兴; 刘娟

    2001-01-01

    The properties of La2O3-doped molybdenum powder were studied. The La2O3 nanoparticles on the surface of molybdenum powder which is produced by the reduction of La(NO3)3-doped MoO2 in hydrogen decrease the intensity of feature energy loss peak of molybdenum substrate; but increase that of peak of Mo 3d. The surface of molybdenum powder exposed to the atmosphere can be reduced because the surface is mainly covered with La2O3 nanoparticles. As a result, the capability of anti-oxidation of molybdenum is improved.

  5. ANALYSIS ON THE INFLUENCING FACTORS OF MOLYBDENUM ANVIL SERVICE LIFE%影响钼合金顶头使用寿命因素浅析

    Institute of Scientific and Technical Information of China (English)

    史振琦; 黄晓玲; 易永鹏

    2014-01-01

    通过对粉末粒度、元素配比以及烧结三方面因素的讨论,浅析了其对钼合金顶头使用寿命的影响原因。结果表明:控制钼粉的粒度以及添加试剂的粉末状态,可有效提高钼合金的密度并细化晶粒;稀土元素添加总量控制在1.0%左右,可减少氧化物在钼基体中的富集,杜绝裂纹源的形成,提高钼顶头的寿命;采用氢气烧结的方式可得到质量稳定的钼顶头。%The factors that influence molybdenum anvil service life such as powder particle size,element mixture ra-tio and alloy sintering processing were analyzed in this paper. The results show that the alloy density can be effec-tively improved and the alloy grain size can be refined by controlling the particle size of molybdenum powder and the phase of addition reagent powder. The oxides eliguation in the molybdenum alloy was reduced,crack source was eliminated and service life of the molybdenum anvil can be improved when the tatal rare earth addition was con-trolled less than 1%. Molybdenum anvil quality was steady when sintering in hydrogen atmosphere.

  6. Binary effectivity rules

    DEFF Research Database (Denmark)

    Keiding, Hans; Peleg, Bezalel

    2006-01-01

    is binary if it is rationalized by an acyclic binary relation. The foregoing result motivates our definition of a binary effectivity rule as the effectivity rule of some binary SCR. A binary SCR is regular if it satisfies unanimity, monotonicity, and independence of infeasible alternatives. A binary...... effectivity rule is regular if it is the effectivity rule of some regular binary SCR. We characterize completely the family of regular binary effectivity rules. Quite surprisingly, intrinsically defined von Neumann-Morgenstern solutions play an important role in this characterization...

  7. Deformation-induced structural transition in body-centred cubic molybdenum.

    Science.gov (United States)

    Wang, S J; Wang, H; Du, K; Zhang, W; Sui, M L; Mao, S X

    2014-03-07

    Molybdenum is a refractory metal that is stable in a body-centred cubic structure at all temperatures before melting. Plastic deformation via structural transitions has never been reported for pure molybdenum, while transformation coupled with plasticity is well known for many alloys and ceramics. Here we demonstrate a structural transformation accompanied by shear deformation from an original -oriented body-centred cubic structure to a -oriented face-centred cubic lattice, captured at crack tips during the straining of molybdenum inside a transmission electron microscope at room temperature. The face-centred cubic domains then revert into -oriented body-centred cubic domains, equivalent to a lattice rotation of 54.7°, and ~15.4% tensile strain is reached. The face-centred cubic structure appears to be a well-defined metastable state, as evidenced by scanning transmission electron microscopy and nanodiffraction, the Nishiyama-Wassermann and Kurdjumov-Sachs relationships between the face-centred cubic and body-centred cubic structures and molecular dynamics simulations. Our findings reveal a deformation mechanism for elemental metals under high-stress deformation conditions.

  8. Deformation-induced structural transition in body-centred cubic molybdenum

    Science.gov (United States)

    Wang, S. J.; Wang, H.; Du, K.; Zhang, W.; Sui, M. L.; Mao, S. X.

    2014-03-01

    Molybdenum is a refractory metal that is stable in a body-centred cubic structure at all temperatures before melting. Plastic deformation via structural transitions has never been reported for pure molybdenum, while transformation coupled with plasticity is well known for many alloys and ceramics. Here we demonstrate a structural transformation accompanied by shear deformation from an original -oriented body-centred cubic structure to a -oriented face-centred cubic lattice, captured at crack tips during the straining of molybdenum inside a transmission electron microscope at room temperature. The face-centred cubic domains then revert into -oriented body-centred cubic domains, equivalent to a lattice rotation of 54.7°, and ~15.4% tensile strain is reached. The face-centred cubic structure appears to be a well-defined metastable state, as evidenced by scanning transmission electron microscopy and nanodiffraction, the Nishiyama-Wassermann and Kurdjumov-Sachs relationships between the face-centred cubic and body-centred cubic structures and molecular dynamics simulations. Our findings reveal a deformation mechanism for elemental metals under high-stress deformation conditions.

  9. Enhanced photochromism in nanostructured molybdenum trioxide films

    Science.gov (United States)

    Beydaghyan, Gisia; Doiron, Serge; Haché, Alain; Ashrit, P. V.

    2009-08-01

    We present evidence of enhancement of photochromism in nanostructured thin films of molybdenum oxide fabricated by glancing angle deposition. The strong correlation of coloration response with the internal surface area of the films provides evidence of the importance of nanostructuring on the photochromic effect and the vital role played by the availability of water in the photochromic mechanism.

  10. Exploring atomic defects in molybdenum disulphide monolayers

    KAUST Repository

    Hong, Jinhua

    2015-02-19

    Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10 13 cm \\'2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.

  11. Quenching and partitioning response of carbon-manganese-silicon sheet steels containing nickel, molybdenum, aluminum and copper additions

    Science.gov (United States)

    Kahkonen, Joonas

    In order to produce passenger vehicles with improved fuel economy and increased passenger safety, car manufacturers are in need of steels with enhanced strength levels and good formability. Recently, promising combinations of strength and ductility have been reported for several, so-called third generation advanced high-strength steels (AHSS) and quenching and partitioning (Q&P) steels are increasingly being recognized as a promising third generation AHSS candidate. Early Q research used conventional TRIP steel chemistries and richer alloying strategies have been explored in more recent studies. However, systematic investigations of the effects of alloying elements on tensile properties and retained austenite fractions of Q&P steels are sparse. The objective of the present research was to investigate the alloying effects of carbon, manganese, molybdenum, aluminum, copper and nickel on tensile properties and microstructural evolution of Q&P heat treated sheet steels. Seven alloys were investigated with 0.3C-1.5Mn-1.5Si (wt pct) and 0.4C-1.5Mn-1.5Si alloys used to study carbon effects, a 0.3C-5Mn-1.6Si alloy to study manganese effects, 0.3C-3Mn-1.5Si-0.25Mo and 0.3C-3Mn-1.5Si-0.25Mo-0.85Al alloys to study molybdenum and aluminum effects and 0.2C-1.5Mn-1.3Si-1.5Cu and 0.2C-1.5Mn-1.3Si-1.5Cu-1.5Ni alloys to study copper and nickel effects. Increasing alloy carbon content was observed to mainly increase the ultimate tensile strength (UTS) up to 1865 MPa without significantly affecting total elongation (TE) levels. Increasing alloy carbon content also increased the resulting retained austenite (RA) fractions up to 22 vol pct. Measured maximum RA fractions were significantly lower than the predicted maximum RA levels in the 0.3C-1.5Mn-1.5Si and 0.4C-1.5Mn-1.5Si alloys, likely resulting from transition carbide formation. Increasing alloy manganese content increased UTS, TE and RA levels, and decreased yield strength (YS) and austenite carbon content (Cgamma) levels

  12. Mathematical Modeling of Binary Alloy Solidification

    Directory of Open Access Journals (Sweden)

    R. Černý

    2000-01-01

    Full Text Available Te is simulated. Moving boundary conditions for temperatures are taken into account, which makes it possible to simulate the Bridgman method of crystal growth for instance. The computational experiments reveal a qualitative agreement of the numerically simulated and experimentally measured concentration fields. The influence of principal parameters of Bridgman growth and of the accuracy of material parameters is studied as well. Concerning the material parameters, the liquid/solid thermal conductivity ratio at the melting temperature is found to be the most important because it can affect the shape of the phase interface significantly, and therefore the temperature and concentration fields as well.

  13. Effect of molybdenum on the microstructure and wear resistance of Fe-based hardfacing coatings

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.H. [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China)], E-mail: xinhongwang@sdu.edu.cn; Han, F. [Department of Mechanical and Electrical Engineering, College of Weifang, Weifang 261021 (China); Liu, X.M.; Qu, S.Y.; Zou, Z.D. [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China)

    2008-08-20

    Fe-based hardfacing alloys containing molybdenum compound have been deposited on AISI 1020 steel substrates by shield manual arc welding (SMAW) process. The effect of Mo on the microstructure and wear resistance of the Fe-based hardfacing alloys were investigated by means of X-ray diffraction, optical microscopy, scanning electron microscopy (SEM) and electron probe microanalysis, as well as wear test. The results indicated that cuboidal and rod-type complex carbides were synthesized in the lath martensite matrix. The fraction of carbides in hardfacing layer increased with an increasing of Mo content. The hardfacing layer with good cracking resistance and wear resistance could be obtained when the amounts of Fe-Mo was controlled within a range of 3-4 wt.%. The improvement of hardness and wear resistance of the hardfacing layers attributed to the formation of Mo{sub 2}C carbide and the solution strengthening of Mo.

  14. Analysis of laser alloyed surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, D.C.; Augustyniak, W.M.; Buene, L.; Draper, C.W.; Poate, J.M.

    1981-04-01

    Surface alloys of precious metals have many advantages over bulk alloys, the most obvious of which is cost reduction due to the reduced consumption of precious metal. There are several techniques for producing surface alloys. In this paper the laser irradiation technique is presented. The following lasers: CW CO/sub 2/, Q-switched Nd-YAG, frequency double Q-switched Nd-YAG, and pulsed ruby were used to irradiate and melt thin solid films of precious metals on metal substrates. This causes the surfaces to melt to a depth of approximately 10,000A. Alloying then takes place in the liquid phase where most metals are miscible. The high quench rates obtainable by this method of melting can result in the forming of metastable alloys. This melting and regrowth process is well understood and has been discussed in the literature over the last few years. This paper deals with two binary alloy systems, Au-Ni and Pd-Ti. Surface alloys of Au-Ni with a wide range of concentrations have been produced by laser irradiation of thin Au films on Ni. These films have been analyzed using Rutherford backscattering (RBS) and channeling. Many thin film metals other than Au have also been successfully alloyed using these methods. An example of a potential application is the laser surface alloying of Pd to Ti for corrosion passivation.

  15. Mechanical alloying of Al-3 at. % Mo powders

    Energy Technology Data Exchange (ETDEWEB)

    Zdujic, M. (Srpska Akademija Nauka i Umetnosti, Belgrade (Yugoslavia). Dept. of Technical Science); Kobayashi, K.F. (Osaka Univ., Suita (Japan). Dept. of Welding and Production Engineering); Shingu, P.H. (Kyoto Univ. (Japan). Dept. of Metal Science and Technology)

    1990-05-01

    Mechanical alloying of elemental powders of aluminum and molybdenum (Al-3 at.% Mo) has been carried out in a conventional horizontal ball mill up to 1000 h of milling time. Mechanically alloyed powders were investigated by scanning electron microscopy, X-ray diffraction analysis and differential scanning calorimetry. After prolonged milling time molybdenum was finely dispersed in aluminum matrix. The dispersoid sizes were less than about 100 nm, with average size considerably smaller. By the heat treatment of the mechanically alloyed powders, the intermetallic compound Al{sub 12}Mo was formed. The reaction temperature for the formation of Al{sub 12}Mo decreased with increasing milling time. The Johnson-Mehl-Avrami exponent of n=2.8{plus minus}0.3 for the formation of Al{sub 12}Mo was obtained with the apparent activation energy of 165{plus minus}12 kJ/mol (1.7{plus minus}0.1 eV). (orig.).

  16. New aluminium alloys with high lithium content

    Energy Technology Data Exchange (ETDEWEB)

    Schemme, K.; Velten, B.

    1989-06-01

    Since the early 80's there have been made great efforts to replace the high strength aluminium alloys for the aircraft and space industry by a new generation of aluminium-lithium alloys. The attractivity of this kind of alloys could be increased by a further reduction of their density, caused by an increasing lithium content (/ge/ 5 wt.% Li). Therefore binary high-lithium containing alloys with low density are produced and metallografically investigated. A survey of their strength and wear behavior is given by using tensile tests and pin abrasing tests. (orig.).

  17. Molybdenum-catalyzed deoxydehydration of vicinal diols

    DEFF Research Database (Denmark)

    Dethlefsen, Johannes Rytter; Lupp, Daniel; Oh, Byung Chang

    2014-01-01

    The commercially available (NH4)6Mo7O24 and other molybdenum compounds are shown to be viable substitutes for the typically employed rhenium compounds in the catalytic deoxydehydration of aliphatic diols into the corresponding alkenes. The transformation, which represents a model system for the v......The commercially available (NH4)6Mo7O24 and other molybdenum compounds are shown to be viable substitutes for the typically employed rhenium compounds in the catalytic deoxydehydration of aliphatic diols into the corresponding alkenes. The transformation, which represents a model system...... for the various hydroxyl groups found in biomass-derived carbohydrates, can be conducted in an inert solvent (dodecane), under solvent-free conditions, and in a solvent capable of dissolving biomass-derived polyols (1,5-pentanediol). The reaction is driven by the simultaneous oxidative deformylation of the diol...

  18. Synthesis by reactive grinding of molybdenum iron bimetallic nitride; Sintesis por molienda reactiva del nitruro bimetalico Mo-Fe: Mo{sub 3}Fe{sub 3}N

    Energy Technology Data Exchange (ETDEWEB)

    Roldan, M. A.; Ortega, A.; Palencia, I.; Real, C.

    2008-07-01

    The transition metal nitride ternary show similar properties to the binary nitride and some times this behaviour are improved. In the present work, the molybdenum-iron nitride has been prepared by reactive grinding form the two metals under nitrogen atmosphere at a pressure of 11 bar. The characterization of the compounds is presented and it is also shown a study of the stability of the nitride under several atmospheres. (Author) 42 refs.

  19. Deformation localization and cyclic strength in polycrystalline molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Sidorov, O.T.; Rakshin, A.F.; Fenyuk, M.I.

    1983-06-01

    Conditions of deformation localization and its interrelation with cyclic strength in polycrystalline molybdenum were investigated. A fatigue failure of polycrystalline molybdenum after rolling and in an embrittled state reached by recrystallization annealing under cyclic bending at room temperature takes place under nonuniform distribution of microplastic strain resulting in a temperature rise in separate sections of more than 314 K. More intensive structural changes take place in molybdenum after rolling than in recrystallized state.

  20. Gigantic Copper-Molybdenum Mining Project Contract Signed in Guangdong

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>With the reserves of nearly 1,000,000 tons of copper and approximately 250,000 tons of molybdenum and a total investment of RMB 5 billion, Guangdong Fengkai Yuanzhushan copper-molybdenum mining project contract was inked on October 13, 2011. It is reported that this is China’s second largest open-cast copper molybdenum mine next only to Dexing Copper Mine.

  1. Selection of molybdenum sheet for deep drawing applications

    Energy Technology Data Exchange (ETDEWEB)

    Salt, P.J. (Marconi Elliott Avionic Systems Ltd., Borehamwood (UK))

    1982-06-01

    Finished tubes are considered to be an extreme example of the art of deep drawing thin molybdenum sheet. This paper describes an investigation into the manufacture of unalloyed molybdenum tube from sheet material 0.5 mm thick. Metallographic examination of different starting materials revealed the most suitable molybdenum sheet materials for this application and so avoid the conditions that bring about undesirable structures or properties.

  2. Scientific Opinion on Dietary Reference Values for molybdenum

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA

    2013-08-01

    Full Text Available Following a request from the European Commission, the Panel on Dietetic Products, Nutrition and Allergies (NDA derived Dietary Reference Values (DRVs for molybdenum. Molybdenum is efficiently and rapidly absorbed at a wide range of intakes, and the body is able to maintain homeostasis through the regulation of excretion via the urine. Molybdenum deficiency in otherwise healthy humans has not been observed and there are no biomarkers of molybdenum status. Various metabolic balance studies have been performed to establish molybdenum requirements. However, only one balance study, which was performed with a constant diet and under controlled conditions in adult men, was considered to be of sufficient duration. In this small study, balance was reported to be near zero when molybdenum intakes were 22 µg/day. Biochemical changes or symptoms suggestive of molybdenum deficiency were not observed, and it is possible that humans may be able to achieve molybdenum balance at even lower intakes. Data on molybdenum intakes and health outcomes were unavailable for the setting of DRVs for molybdenum. As the evidence required to derive an Average Requirement and a Population Reference Intake was considered insufficient, an Adequate Intake (AI is proposed. Observed molybdenum intakes from mixed diets in Europe were taken into consideration in setting this value. An AI of 65 µg/day is proposed for adults; a figure that is based on molybdenum intakes at the lower end of the wide range of observed intakes. It is suggested that the adult AI also applies to pregnant and lactating women. An AI is also proposed for infants from seven months and for children based on extrapolation from the adult AI using isometric scaling and the reference body weights of the respective age groups.

  3. Biomass as biosorbent for molybdenum ions

    Energy Technology Data Exchange (ETDEWEB)

    Yamaura, Mitiko; Santos, Jacinete L. dos; Damasceno, Marcos O.; Egute, Nayara dos S.; Moraes, Adeniane A.N.; Santos, Bruno Z., E-mail: myamaura@ipen.br, E-mail: jlsantos@ipen.br, E-mail: molidam@ipen.br, E-mail: nayara.egute@usp.br, E-mail: adenianemrs@ig.com.br, E-mail: bzsantos@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Biosorbents have been focused as renewable materials of low cost, and have been used for metal removal from the wastewater by adsorption phenomenon. Biosorbents are prepared of biomass, whose reactive sites in its chemical structure have affinity to bind to metal ions. In this work, performance of corn husk, sugarcane bagasse, coir, banana peel, fish scale, chitin and chitosan as biosorbents of molybdenum (VI) ions in aqueous medium was evaluated. The adsorption experiments were investigated in a batch system varying the pH solution from 0.5 to 12 and the contact time between the phases from 2 min to 70 min. {sup 99}Mo radioisotope was used as radioactive tracer for analysis of molybdenum ions by gamma spectroscopy using a HPGe detector. Results revealed that acidity of the solution favored the adsorption of Mo (VI) ions on the all biosorbents. Adsorption values higher than 85% were found on sugarcane bagasse, coir, corn husk, chitin and chitosan at pH 2.0. Only the chitosan was dissolved at pH 0.5 and a gel was formed. The models of pseudo-second order and external film diffusion described the kinetics of adsorption of Mo ions on the coir. This work showed that the studied biomass has high potential to be used as biosorbent of molybdenum ions from acidic wastewater, and the kinetics of Mo adsorption on the coir suggested high-affinity adsorption governed by chemisorption. (author)

  4. A solvent extraction study of molybdenum chloride and molybdenum thiocyanate complexes

    Science.gov (United States)

    Greenland, L.P.; Lillie, E.G.

    1974-01-01

    The effect of reducing agents on molybdenum(VI) solutions in hydrochloric acid was studied by a solvent extraction technique to elucidate the composition of the colored molybdenum thiocyanate complex. Neither copper(I) chloride nor ascorbic acid have any effect on the extraction of MoO2Cl2; it is inferred that tin(II) chloride reduces Mo(VI) stepwise to a polynuclear Mo(V)??Mo(VI) complex and then to Mo(V). The colored thiocyanate complex produced by copper(I) and by ascorbic acid differs only slightly in extraction characteristics from the uncolored Mo(VI) complex. It is suggested that the color may be produced by an isomerization reaction of MoO2(SCN)2, and thus that the colored species may be a hexavalent rather than pentavalent molybdenum complex. ?? 1974.

  5. Conversion of Molybdenum-99 production process to low enriched uranium: Neutronic and thermal hydraulic analyses of HEU and LEU target plates for irradiation in Pakistan Research Reactor-1

    Science.gov (United States)

    Mushtaq, Ahmad; Iqbal, Masood; Bokhari, Ishtiaq Hussain; Mahmood, Tayyab; Muhammad, Atta

    2012-09-01

    Technetium-99m, the daughter product of Molybdenum-99 is the most widely needed radionuclide for diagnostic studies in Pakistan. Molybdenum-99 Production Facility has been established at PINSTECH. Highly enriched uranium (93% 235U) U/Al alloy targets have been irradiated in Pakistan Research Reactor-1 (PARR-1) for the generation of fission Mo-99, while basic dissolution technique is used for separation of Mo-99 from target matrix activity. In line with the international objective of minimizing and eventually eliminating the use of HEU in civil commerce, national and international efforts have been underway to shift the production of medical isotopes from HEU to LEU (LEU; uranium is needed. LEU aluminum uranium dispersion target has been developed, which may replace existing HEU aluminum/uranium alloy targets for production of 99Mo using basic dissolution technique. Neutronic and thermal hydraulic calculations were performed for safe irradiation of targets in the core of PARR-1.

  6. The effect of σ-phase precipitation at 800°C on the corrosion resistance in sea-water of a high alloyed duplex stainless steel

    NARCIS (Netherlands)

    Wilms, M.E.; Gadgil, V.J.; Krougman, J.M.; Ijsseling, F.P.

    1994-01-01

    Super-duplex stainless steels are recently developed high alloyed stainless steels that combine good mechanical properties with excellent corrosion resistance. Because of a high content of chromium and molybdenum, these alloys are susceptible to σ-phase precipitation during short exposure to

  7. Eclipsing binaries in open clusters

    DEFF Research Database (Denmark)

    Southworth, John; Clausen, J.V.

    2006-01-01

    Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August......Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August...

  8. Theory of Random Anisotropic Magnetic Alloys

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1976-01-01

    A mean-field-crystal-field theory is developed for random, multicomponent, anisotropic magnetic alloys. It is specially applicable to rare-earth alloys. A discussion is given of multicritical points and phase transitions between various states characterized by order parameters with different...... spatial directions or different ordering wave vectors. Theoretical predictions based on known parameters for the phase diagrams and magnetic moments for the binary rare-earth alloys of Tb, Dy, Ho, and Er, Tb-Tm, Nd-Pr, and pure double-hcp Nd agree qualitatively with the experimental observations....... Quantitative agreement can be obtained by increasing the interaction between different alloy elements, in particular for alloys with very different axial anisotropy, e.g., Tb-Tm. A model system consisting of a singlet-singlet and singlet-doublet alloy is discussed in detail. A simple procedure to include...

  9. Laser synthesis, structure and chemical properties of colloidal nickel-molybdenum nanoparticles for the substitution of noble metals in heterogeneous catalysis.

    Science.gov (United States)

    Marzun, Galina; Levish, Alexander; Mackert, Viktor; Kallio, Tanja; Barcikowski, Stephan; Wagener, Philipp

    2017-03-01

    Platinum and iridium are rare and expensive noble metals that are used as catalysts for different sectors including in heterogeneous chemical automotive emission catalysis and electrochemical energy conversion. Nickel and its alloys are promising materials to substitute noble metals. Nickel based materials are cost-effective with good availability and show comparable catalytic performances. The nickel-molybdenum system is a very interesting alternative to platinum in water electrolysis. We produced ligand-free nickel-molybdenum nanoparticles by laser ablation in water and acetone. Our results show that segregated particles were formed in water due to the oxidation of the metals. X-ray diffraction shows a significant change in the lattice parameter due to a diffusion of molybdenum atoms into the nickel lattice with increasing activity in the electrochemical oxygen evolution reaction. Even though the solubility of molecular oxygen in acetone is higher than in water, there were no oxides and a more homogeneous metal distribution in the particles in acetone as seen by TEM-EDX. This showed that dissolved molecular oxygen does not control oxide formation. Overall, the laser ablation of pressed micro particulate mixtures in liquids offers a combinational synthesis approach that allows the screening of alloy nanoparticles for catalytic testing and can convert micro-mixtures into nano-alloys.

  10. Extraction and determination of molybdenum with tributyl phosphate Application to analysis of copper-molybdenum ores.

    Science.gov (United States)

    Caiozzi, M; Zunino, H; Sepúlveda, L

    1969-12-01

    A differential spectrophotometric method is described for the determination of molybdenum by means of solvent extraction with tributylphosphate of the peroxymolybdate complex formed with H(2)O(2) in 3.5N H(2)SO(4). The extraction parameters are studied, and the behaviour of some other ions is reported. The method is used for ore analysis.

  11. Refractory alloy technology for space nuclear power applications

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.H. Jr.; Hoffman, E.E. (eds.)

    1984-01-01

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys. (DLC)

  12. Molybdenum enhanced low-temperature deposition of crystalline silicon nitride

    Science.gov (United States)

    Lowden, Richard A.

    1994-01-01

    A process for chemical vapor deposition of crystalline silicon nitride which comprises the steps of: introducing a mixture of a silicon source, a molybdenum source, a nitrogen source, and a hydrogen source into a vessel containing a suitable substrate; and thermally decomposing the mixture to deposit onto the substrate a coating comprising crystalline silicon nitride containing a dispersion of molybdenum silicide.

  13. Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils

    Science.gov (United States)

    Barron, Alexander R.; Wurzburger, Nina; Bellenger, Jean Phillipe; Wright, S. Joseph; Kraepiel, Anne M. L.; Hedin, Lars O.

    2009-01-01

    Nitrogen fixation, the biological conversion of di-nitrogen to plant-available ammonium, is the primary natural input of nitrogen to ecosystems, and influences plant growth and carbon exchange at local to global scales. The role of this process in tropical forests is of particular concern, as these ecosystems harbour abundant nitrogen-fixing organisms and represent one third of terrestrial primary production. Here we show that the micronutrient molybdenum, a cofactor in the nitrogen-fixing enzyme nitrogenase, limits nitrogen fixation by free-living heterotrophic bacteria in soils of lowland Panamanian forests. We measured the fixation response to long-term nutrient manipulations in intact forests, and to short-term manipulations in soil microcosms. Nitrogen fixation increased sharply in treatments of molybdenum alone, in micronutrient treatments that included molybdenum by design and in treatments with commercial phosphorus fertilizer, in which molybdenum was a `hidden' contaminant. Fixation did not respond to additions of phosphorus that were not contaminated by molybdenum. Our findings show that molybdenum alone can limit asymbiotic nitrogen fixation in tropical forests and raise new questions about the role of molybdenum and phosphorus in the tropical nitrogen cycle. We suggest that molybdenum limitation may be common in highly weathered acidic soils, and may constrain the ability of some forests to acquire new nitrogen in response to CO2 fertilization.

  14. Structural state of native molybdenum in the lunar regolith

    Science.gov (United States)

    Mokhov, A. V.; Gornostaeva, T. A.; Kartashov, P. M.; Bogatikov, O. A.; Sakharov, O. A.; Trubkin, N. V.

    2016-11-01

    The structural state was determined for zero-valence molybdenum in the lunar regolith. The body- and face-centered molybdenum forms (BCC and FCC, respectively) were identified. Disruption of the structure down to complete amorphization was noted. This might be caused by the long-term influence of the solar wind.

  15. Density of Ni-Al Alloys in Liquid and Solid-Liquid Coexistence State Measured by a Modified Pycnometric Method

    Institute of Scientific and Technical Information of China (English)

    Liang FANG; Feng XIAO; Zushu LI; Zainan TAO

    2004-01-01

    The density of Ni-Al alloys in both liquid state and solid-liquid coexistence state was measured with a modified pycnometric method. It was found that the density of NI-Al alloys decreases with increasing temperature and Al concentration in the alloys. The molar volume of liquid Ni-Al binary alloys increases with the increase of temperature and Al concentration. The partial molar volume of Al in NI-Al binary alloy was calculated approximately. The molar volume of liquid NI-Al alloy determined in the present work shows a negative deviation from the ideal linear molar volume.

  16. Measurement and Analysis of Density of Molten Ni-W Alloys

    Institute of Scientific and Technical Information of China (English)

    FANG Liang; XIAO Feng; TAO Zainan; MuKai Kusuhiro

    2005-01-01

    The density of molten Ni-W alloys was measured with a modified pycnometric method. It is found that the density of the molten Ni- W alloys decreases with temperature rising, but increases with the increase of tungsten concentration in the alloys. The molar volume of molten Ni- W binary alloys increases with the increase of temperature and tungsten concentration. The partial molar volume of tungsten in liquid Ni- W binary alloy has been calculated approximately as ( - 1.59+ 5.64 × 10-3 T) × 10-6m3 ·mol-1.

  17. Electrochemical behaviour of erbium and preparation of Mg-Li-Er alloys by codeposition

    Institute of Scientific and Technical Information of China (English)

    CAO Peng; ZHANG Milin; HAN Wei; YAN Yongde; WEI Shuquan; ZHENG Tao

    2011-01-01

    The electrodeposition of erbium on molybdenum electrodes and the formation of Mg-Li-Er alloys were investigated in LiCI-KCI molten salts.At a molybdenum electrode,the electroreduction of Er (Ⅲ) proceeded in a one-step process involving three electrons.The diffusion coefficient of erbium ions in the melts was determined by cyclic voltammetry,chronopotentiometry and chronoamperometry respectively.Cyclic voltammograms (CVs) showed that the underpotential deposition (UPD) of lithium on pre-deposited Mg-Er alloy led to the formation of a Mg-Li-Er alloy.X-ray diffraction (XRD) indicated that Er5Mg24 phase was formed via potentiostatic electrolysis.Scanning electron microscopy (SEM) showed that Er atoms mainly concentrated at the grain boundaries while Mg element evenly located in the alloy.

  18. PROCESS OF DISSOLVING ZIRCONIUM ALLOYS

    Science.gov (United States)

    Shor, R.S.; Vogler, S.

    1958-01-21

    A process is described for dissolving binary zirconium-uranium alloys where the uranium content is about 2%. In prior dissolution procedures for these alloys, an oxidizing agent was added to prevent the precipitation of uranium tetrafluoride. In the present method complete dissolution is accomplished without the use of the oxidizing agent by using only the stoichiometric amount or slight excess of HF required by the zirconium. The concentration of the acid may range from 2M to 10M and the dissolution is advatageously carried out at a temperature of 80 deg C.

  19. Kinetics of Molybdenum Reduction to Molybdenum Blue by Bacillus sp. Strain A.rzi

    Directory of Open Access Journals (Sweden)

    A. R. Othman

    2013-01-01

    Full Text Available Molybdenum is very toxic to agricultural animals. Mo-reducing bacterium can be used to immobilize soluble molybdenum to insoluble forms, reducing its toxicity in the process. In this work the isolation of a novel molybdate-reducing Gram positive bacterium tentatively identified as Bacillus sp. strain A.rzi from a metal-contaminated soil is reported. The cellular reduction of molybdate to molybdenum blue occurred optimally at 4 mM phosphate, using 1% (w/v glucose, 50 mM molybdate, between 28 and 30°C and at pH 7.3. The spectrum of the Mo-blue product showed a maximum peak at 865 nm and a shoulder at 700 nm. Inhibitors of bacterial electron transport system (ETS such as rotenone, sodium azide, antimycin A, and potassium cyanide could not inhibit the molybdenum-reducing activity. At 0.1 mM, mercury, copper, cadmium, arsenic, lead, chromium, cobalt, and zinc showed strong inhibition on molybdate reduction by crude enzyme. The best model that fitted the experimental data well was Luong followed by Haldane and Monod. The calculated value for Luong’s constants pmax, Ks, Sm, and n was 5.88 μmole Mo-blue hr−1, 70.36 mM, 108.22 mM, and 0.74, respectively. The characteristics of this bacterium make it an ideal tool for bioremediation of molybdenum pollution.

  20. Selective laser sintering mechanism of polymer-coated molybdenum powder

    Institute of Scientific and Technical Information of China (English)

    BAI Pei-kang; WANG Wen-feng

    2007-01-01

    A type of polymer-coated molybdenum powder used in selective laser sintering technology was prepared by coating polymer on molybdenum particles and frozen grinding techniques, with the maximum particle diameter of 71 μm. The laser sintering experiments of polymer-coated molybdenum powder were conducted by using the self-developed selective laser sintering machine (HLRP-350I). The method of microscopic analysis was used to investigate the dynamic laser sintering process of polymer-coated molybdenum powder. Based on the study, the laser sintering mechanisms of polymer-coated molybdenum powder were presented. It is found that the mechanism is viscous flow when the laser sintering temperature is between 100 ℃ and 160 ℃, which can be described by a two-sphere model; and the mechanism is melting /solidification when the temperature is above 160 ℃.

  1. Behaviour of helium after implantation in molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Viaud, C. [Commissariat a l' Energie Atomique (CEA), Cadarache (France)], E-mail: viaud@dircad.cea.fr; Maillard, S.; Carlot, G.; Valot, C. [Commissariat a l' Energie Atomique (CEA), Cadarache (France); Gilabert, E. [Chimie Nucleaire Analytique and Bio-environnementale (CNAB), Gradignan (France); Sauvage, T. [CEMHTI-CNRS, Orleans (France); Peaucelle, C.; Moncoffre, N. [Institut de Physique Nucleaire de Lyon (IPNL), Lyon (France)

    2009-03-31

    This study deals with the behaviour of helium in a molybdenum liner dedicated to the retention of fission products. More precisely this work contributes to evaluate the release of implanted helium when the gas has precipitated into nanometric bubbles close to the free surface. A simple model dedicated to calculate the helium release in such a condition is presented. The specificity of this model lays on the assumption that the gas is in equilibrium with a simple distribution of growing bubbles. This effort is encouraging since the calculated helium release fits an experimental dataset with a set of parameters in good agreement with the literature.

  2. Molybdenum oxide nanocubes: Synthesis and characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Muthamizh, S.; Suresh, R.; Giribabu, K.; Manigandan, R.; Kumar, S. Praveen; Munusamy, S.; Narayanan, V., E-mail: vnnara@yahoo.co.in [Department of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai -600025 (India); Stephen, A. [Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai-600025 (India)

    2015-06-24

    Molybdenum oxide nanoparticles were prepared by Solid state synthesis. The MoO{sub 3} nanoparticles were synthesized by using commercially available ammonium heptamolybdate. The XRD pattern reveals that the synthesized MoO{sub 3} has orthorhombic structure. In addition, lattice parameter values were also calculated using XRD data. The Raman analysis confirm the presence of Mo-O in MoO{sub 3} nanoparticles. DRS-UV analysis shows that MoO{sub 3} has a band gap of 2.89 eV. FE-SEM analysis confirms the material morphology in cubes with nano scale.

  3. Electrochemical ammonia production on molybdenum nitride nanoclusters

    DEFF Research Database (Denmark)

    Howalt, Jakob Geelmuyden; Vegge, Tejs

    2013-01-01

    Theoretical investigations of electrochemical production of ammonia at ambient temperature and pressure on nitrogen covered molybdenum nanoparticles are presented. Density functional theory calculations are used in combination with the computational hydrogen electrode approach to calculate the free...... energy profile for electrochemical protonation of N2 and N adatoms on cuboctahedral Mo13 nanoparticles. Pathways for electrochemical ammonia production via direct protonation of N adatoms and N2 admolecules with an onset potential as low as -0.5 V and generally lower than -0.8 V on both a nitrogen...

  4. Molybdenum oxide nanocubes: Synthesis and characterizations

    Science.gov (United States)

    Muthamizh, S.; Suresh, R.; Giribabu, K.; Manigandan, R.; Kumar, S. Praveen; Munusamy, S.; Stephen, A.; Narayanan, V.

    2015-06-01

    Molybdenum oxide nanoparticles were prepared by Solid state synthesis. The MoO3 nanoparticles were synthesized by using commercially available ammonium heptamolybdate. The XRD pattern reveals that the synthesized MoO3 has orthorhombic structure. In addition, lattice parameter values were also calculated using XRD data. The Raman analysis confirm the presence of Mo-O in MoO3 nanoparticles. DRS-UV analysis shows that MoO3 has a band gap of 2.89 eV. FE-SEM analysis confirms the material morphology in cubes with nano scale.

  5. Ductility Enhancement of Molybdenum Phase by Nano-sized Oxide Dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Bruce

    2008-07-18

    The objective of this research is to understand and to remedy the impurity effects for room-temperature ductility enhancement of molybdenum (Mo) based alloys by the inclusion of nano-sized metal oxide dispersions. This research combines theoretical, computational, and experimental efforts. The results will help to formulate systematic strategies in searching for better composed Mo-based alloys with optimal mechanical properties. For this project, majority of the research effort was directed to atomistic modeling to identify the mechanisms responsible for the oxygen embrittling and ductility enhancement based on fundamental electronic structure analysis. Through first principles molecular dynamics simulations, it was found that the embrittling impurity species were attracted to the metal oxide interface, consistent with previous experiments. Further investigation on the electronic structures reveals that the presence of embrittling species degrades the quality of the metallic chemical bonds in the hosting matrix in a number of ways, the latter providing the source of ductility. For example, the spatial flexibility of the bonds is reduced, and localization of the impurity states occurs to pin the dislocation flow. Rice’s criterion has been invoked to explain the connections of electronic structure and mechanical properties. It was also found that when impurity species become attracted to the metal oxide interface, some of the detrimental effects are alleviated, thus explaining the observed ductility enhancement effects. These understandings help to develop predictive capabilities to facilitate the design and optimization of Mo and other high temperature alloys (e.g. ODS alloys) for fossil energy materials applications. Based on the theoretical and computational studies, the experimental work includes the preparation of Mo powders mixed with candidate nano-sized metal oxides, which were then vacuum hot-pressed to make the Mo alloys. Several powder mixing methods

  6. Binary mask programmable hologram.

    Science.gov (United States)

    Tsang, P W M; Poon, T-C; Zhou, Changhe; Cheung, K W K

    2012-11-19

    We report, for the first time, the concept and generation of a novel Fresnel hologram called the digital binary mask programmable hologram (BMPH). A BMPH is comprised of a static, high resolution binary grating that is overlaid with a lower resolution binary mask. The reconstructed image of the BMPH can be programmed to approximate a target image (including both intensity and depth information) by configuring the pattern of the binary mask with a simple genetic algorithm (SGA). As the low resolution binary mask can be realized with less stringent display technology, our method enables the development of simple and economical holographic video display.

  7. Anisotropy of the U-Mo alloy: Molecular-dynamics study

    Science.gov (United States)

    Kolotova, L. N.; Starikov, S. V.

    2016-05-01

    Metastable structures of homogeneous U-Mo phases formed in the course of alloy solidification have been studied by the method of atomistic simulation. It has been shown that, at low molybdenum concentrations, a phase with a tetragonal lattice is more stable. This structure can be considered as close to a body-centered cubic structure with the central atom slightly displaced from the center of the unit cell. The calculation results are in agreement with the experimental data and confirm the anisotropy of the alloy structure. With increasing molybdenum concentration, a gradual transition to a cubic structure occurs. However, this transition occurs due to the accumulation of centers of the stabilization of the cubic structure represented by molybdenum atoms, rather than via changes in the uranium-atom positions.

  8. PHASE EQUILIBRIA INVESTIGATIONS OF BINARY, TERNARY, AND HIGHER ORDER SYSTEMS. PART 2. EFFECT OF RHENIUM AND ALUMINUM ADDITIONS ON THE METAL-RICH EQUILIBRIA IN THE TITANIUM-MOLYBDENIUM-CARBON AND TITANIUM-NIOBIUM-CARBON SYSTEMS

    Science.gov (United States)

    The solid state phase equilibria of the metal-rich regions of the Titanium-Molybdenum-Carbon and Titanium-Niobium-Carbon systems with up to 12 At...Rhenium and 10 At.% Aluminum additions, respectively, have been determined on hot pressed, heat treated, and in part arc melted alloys. The phase ... equilibria in the metal-rich regions, with these additions, is practically unchanged over that of the ternary Titanium-Molybdenum-Carbon and Titanium

  9. Studing Tungsten-containing Electroerosion Powders and Alloys Synthesized from Them

    Directory of Open Access Journals (Sweden)

    E.V. Ageev

    2014-07-01

    Full Text Available The results of the X-ray spectral microanalysis of the powder obtained using electroerosion dispersion of tungsten-containing wastes in distilled water, and the alloy powder synthesized from this powder are presented in the article. It is shown that the basic elements both in the powder obtained using electroerosion dispersion of tungsten-containing wastes in distilled water and in the synthesized alloy are tungsten, molybdenum, iron, oxygen and carbon.

  10. Climax-Type Porphyry Molybdenum Deposits

    Science.gov (United States)

    Ludington, Steve; Plumlee, Geoffrey S.

    2009-01-01

    Climax-type porphyry molybdenum deposits, as defined here, are extremely rare; thirteen deposits are known, all in western North America and ranging in age from Late Cretaceous to mainly Tertiary. They are consistently found in a postsubduction, extensional tectonic setting and are invariably associated with A-type granites that formed after peak activity of a magmatic cycle. The deposits consist of ore shells of quartz-molybdenite stockwork veins that lie above and surrounding the apices of cupola-like, highly evolved, calc-alkaline granite and subvolcanic rhyolite-porphyry bodies. These plutons are invariably enriched in fluorine (commonly >1 percent), rubidium (commonly >500 parts per million), and niobium-tantalum (Nb commonly >50 parts per million). The deposits are relatively high grade (typically 0.1-0.3 percent Mo) and may be very large (typically 100-1,000 million tons). Molybdenum, as MoS2, is the primary commodity in all known deposits. The effect on surface-water quality owing to natural influx of water or sediment from a Climax-type mineralized area can extend many kilometers downstream from the mineralized area. Waste piles composed of quartz-silica-pyrite altered rocks will likely produce acidic drainage waters. The potential exists for concentrations of fluorine or rare metals in surface water and groundwater to exceed recommended limits for human consumption near both mined and unmined Climax-type deposits.

  11. Effect of reduction of strategic columbium additions in Inconel 718 alloy on the structure and properties

    Science.gov (United States)

    Ziegler, K.; Wallace, J. F.

    1982-01-01

    The amount of columbium which can be removed from Inconel alloy 718 without degrading its high temperature properties was determined. The elements that are substituted are: vanadium and tungsten together and separately; increasing the molybdenum level from 3.0% to 5.8% and increasing the boron to 0.04%.

  12. The Microstructure of Rolled Plates from Cast Billets of U-10Mo Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Nyberg, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-01

    This report covers the examination of 13 samples of rolled plates from three separate castings of uranium, alloyed with 10 wt% molybdenum (U-10Mo) which were sent from the Y-12 National Security Complex (Y12) to the Pacific Northwest National Laboratory (PNNL).

  13. Influence of the Environment on the General Corrosion Rate of Alloy 22 (N06022)

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R B; Crook, P

    2004-04-19

    Nickel (Ni) can dissolve a large amount of alloying elements while still maintaining its desirable austenitic microstructure. The resulting alloys are generally divided in families depending on the type of alloying elements they contain. Each one of these families is aimed to specific applications. Corrosive environments in industrial applications are generally divided for example in reducing acids, oxidizing acids, contaminated acids, caustic environments, oxidizing salts, etc. Depending on the application and the environment (electrolyte composition and temperature) several or single alloys may be recommended to fabricate components. The Nichromium-molybdenum (Ni-Cr-Mo) series contains a balanced selection of beneficial alloying elements so it can handle a variety of aggressive environments. By design, Alloy 22 or N06022 is one of the most versatile corrosion resistant nickel alloys since it has an outstanding corrosion resistance both in reducing and oxidizing conditions.

  14. Corrosion Behavior of Alloy 22 in Chloride Solutions Containing Organic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Carranza, R M; Giordano, C M; Rodr?guez, M A; Rebak, R B

    2005-11-04

    Alloy 22 (N06022) is a nickel based alloy containing alloying elements such as chromium, molybdenum and tungsten. It is highly corrosion resistant both under reducing and under oxidizing conditions. Electrochemical studies such as electrochemical impedance spectroscopy (EIS) were performed to determine the corrosion behavior of Alloy 22 in 1M NaCl solutions at various pH values from acidic to neutral at 90 C. Tests were also carried out in NaCl solutions containing oxalic acid or acetic acid. It is shown that the corrosion rate of Alloy 22 was higher in a solution containing oxalic acid than in a solution of the same pH acidified with HCl. Acetic acid was not corrosive to Alloy 22. The corrosivity of oxalic acid was attributed to its capacity to form stable complex species with metallic cations from Alloy 22.

  15. Activities of binary baths with 1% solute as standard states

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The relationships of activities with 1% solute as standard state and mass fraction of solute, and hot-dip temperature, were given on the base of Miedema's model, Tanaka expression, some basic thermodynamic relationships; and discussion was carried out on Zn-Mn and Zn-Ti binary alloys by calculation, in which varied colors can be achieved on the hot-dip steel sheets. The results indicate that the activity of solute shows positive deviation relative to Henry's law for both Zn-Mn and Zn-Ti binary dilute solution. The degree of deviation increases with increasing solute and decreases with increasing bath temperature. As the solution is very dilute solution (w(Mn)≤40% for Zn-Mn alloy,w(Ti)≤8% for Zn-Ti alloy), the two binary baths can all be treated as ideal dilute solutions.

  16. Size effects in band gap bowing in nitride semiconducting alloys

    DEFF Research Database (Denmark)

    Gorczyca, I.; Suski, T.; Christensen, Niels Egede

    2011-01-01

    Chemical and size contributions to the band gap bowing of nitride semiconducting alloys (InxGa1-xN, InxAl1-xN, and AlxGa1-xN) are analyzed. It is shown that the band gap deformation potentials of the binary constituents determine the gap bowing in the ternary alloys. The particularly large gap bo...... bowing in In-containing nitride alloys can be explained by specific properties of InN, which do not follow trends observed in several other binaries....

  17. Compositional changes of lithium coatings on TZM molybdenum during plasma bombardment

    Science.gov (United States)

    Abrams, T.; Jaworski, M. A.; Kaita, R.; de Temmerman, G.; Gleeson, M. A.; Lof, A. R.; Scholten, J.; van den Berg, M. A.; van der Meiden, H. J.; Raman, P.; Ruzic, D. N.

    2012-10-01

    The Titanium-Zirconium-Molybdenum alloy TZM has previously been used as a metallic plasma-facing component in Alcator C-Mod is being considered for use in NSTX-Upgrade. The time evolution of lithium (Li) coatings on TZM are studied in Magnum-PSI, a linear plasma device capable of ion fluxes up to 10^25 m-2s-1 at electron temperatures mean free path (MFP) of Li was calculated and validations against the ADAS collisional-radiative model (CRM) will be reported. Separate measurements with a 100-1000 eV D^+ ion beam incident on Li-coated TZM were also obtained and compared with theoretical predictions of physical sputtering rates.

  18. Characterization of Brazed Joints of C-C Composite to Cu-clad-Molybdenum

    Science.gov (United States)

    Singh, M.; Asthana, R.

    2008-01-01

    Carbon-carbon composites with either pitch+CVI matrix or resin-derived matrix were joined to copper-clad molybdenum using two active braze alloys, Cusil-ABA (1.75% Ti) and Ticusil (4.5% Ti). The brazed joints revealed good interfacial bonding, preferential precipitation of Ti at the composite/braze interface, and a tendency toward de-lamination in resin-derived C-C composite due to its low inter-laminar shear strength. Extensive braze penetration of the inter-fiber channels in the pitch+CVI C-C composites was observed. The relatively low brazing temperatures (Cu-clad-Mo/braze interface and higher hardness in Ticusil (approx.85-250 HK) than in Cusil-ABA (approx.50-150 HK). These C-C/Cu-clad-Mo joints with relatively low thermal resistance may be promising for thermal management applications.

  19. Thermodynamics and Structure of Plutonium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Allen, P G; Turchi, P A; Gallegos, G F

    2004-01-30

    The goal of this project was to investigate the chemical and structural effects of gallium and impurity elements, iron and nickel, on the phase behavior and crystallography of Pu-Ga alloys. This was done utilizing a theoretical chemical approach to predict binary and ternary alloy energetics, phase stability, and transformations. The modeling results were validated with experimental data derived from the synthesis of selected alloys and advanced characterization tools. The ultimate goal of this work was to develop a robust predictive capability for studying the thermodynamics and the structure-properties relationships in complex materials of high relevance to the Laboratory and DOE mission.

  20. Single-step thermal carburization synthesis of supported molybdenum carbides from molybdenum-containing methyl-silica

    Institute of Scientific and Technical Information of China (English)

    Juan Zou; Minglin Xiang; Bo Hou; Dong Wu; Yuhan Sun

    2011-01-01

    A novel synthesis route to obtain highly dispersed molybdenum carbides in porous silica is described. The synthesis was carried out by a single-step heat treatment of molybdenum-containing and methyl-modified silica (Mo-M-SiO2) in argon atmosphere at 973 K. Mo-M-SiO2 precursor was facilely obtained via a one-pot synthesis route, using (NH4)6Mo7O24·4H2O (AHM) as molybdenum sources and polymethylhydrosiloxane (PMHS) as silica sources at the initial synthetic step. The optimal C/Mo molar ratio in reaction system for complete carburization of molybdenum species was 7. The carburization process of molybdenum species followed a nontopotactic route involving a MoO2 intermediate phase, which was evidenced by XRD, N2 adsorption-desorption and in situ XPS. Formation mechanism of Mo-M-SiO2 precursor was also proposed by observation of the reaction between AHM and PMHS with TEM. Furthermore, by adding TEOS into silica sources and adjusting TEOS/PMHS mass ratio, crystal phase of molybdenum carbides transferred fromβ-Mo2C to α-MoC1-x, and SiO2 structure changed from microporous to micro/mesoporous. Catalytic performances of samples were tested using CO hydrogenation as a probe reaction. The supported molybdenum carbides exhibited high selectivity for higher alcohol synthesis compared with bulkβ-Mo2C and α-MoC1-x.

  1. Interacting binary stars

    CERN Document Server

    Sahade, Jorge; Ter Haar, D

    1978-01-01

    Interacting Binary Stars deals with the development, ideas, and problems in the study of interacting binary stars. The book consolidates the information that is scattered over many publications and papers and gives an account of important discoveries with relevant historical background. Chapters are devoted to the presentation and discussion of the different facets of the field, such as historical account of the development in the field of study of binary stars; the Roche equipotential surfaces; methods and techniques in space astronomy; and enumeration of binary star systems that are studied

  2. Thermal ripples in model molybdenum disulfide monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Remsing, Richard C.; Klein, Michael L. [Institute for Computational Molecular Science, Center for the Computational, Design of Functional Layered Materials, and Department of Chemistry, Temple University, 1925 N. 12th St., 19122, Philadelphia, PA (United States); Waghmare, Umesh V. [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, 560 064, Jakkur, Bangalore (India)

    2017-01-15

    Molybdenum disulfide (MoS{sub 2}) monolayers have the potential to revolutionize nanotechnology. To reach this potential, it will be necessary to understand the behavior of this two-dimensional (2D) material on large length scales and under thermal conditions. Herein, we use molecular dynamics (MD) simulations to investigate the nature of the rippling induced by thermal fluctuations in monolayers of the 2H and 1T phases of MoS{sub 2}. The 1T phase is found to be more rigid than the 2H phase. Both monolayer phases are predicted to follow long wavelength scaling behavior typical of systems with anharmonic coupling between vibrational modes as predicted by classic theories of membrane-like systems. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Microplastic relaxations of single and polycrystalline molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Pichl, W.; Weiss, B. [Wien Univ. (Austria). Inst. fuer Materialphysik; Chen, D.L.

    1998-05-01

    The microplasticity of high-purity molybdenum single crystals and of Mo polycrystals of technical purity has been investigated by relaxation step tests in uniaxial compression. A new model for the evaluation of relaxation tests in the microplastic range of b.c.c metals is presented which takes into account the decrease of the mobile dislocation density due to exhaustion of non-screw dislocations. The model allows an independent determination of the activation volume and of the microstructure parameters controlling dislocation exhaustion. The results indicate that in the high-purity single crystals the deformation rate is controlled by interactions of non-screw dislocations with the grown-in network. In the polycrystals additional interactions with impurity atoms seem to occur. In the single crystals the activity and subsequent exhaustion of two different glide systems was observed, followed by a gradual onset of screw dislocation motion. (orig.) 26 refs.

  4. Radio Frequencv Induction Plasma Spraying of Molybdenum

    Institute of Scientific and Technical Information of China (English)

    Jiang Xianliang(蒋显亮); Maher Boulos

    2003-01-01

    Radio frequency (RF) induction plasma was used to make free-standing depositionof molybdenum (Mo). The phenomena of particle melting, flattening, and stacking were inves-tigated. The effect of process parameters such as plasma power, chamber pressure, and spraydistance on the phenomena mentioned above was studied. Scanning electron microscopy (SEM)was used to analyze the plasma-processed powder, splats formed, and deposits obtained. Exper-imental results show that less Mo particles are spheroidized when compared to the number ofspheroidized tungsten (W) particles at the same powder feed rate under the same plasma spraycondition. Molten Mo particles can be sufficiently flattened on substrate. The influence of theprocess parameters on the flattening behavior is not significant. Mo deposit is not as dense as Wdeposit, due to the splash and low impact of molten Mo particles. Oxidation of the Mo powderwith a large particle size is not evident under the low pressure plasma spray.

  5. Density Measurement of Liquid Ni-Ta Alloys by a Modified Sessile Drop Method

    Institute of Scientific and Technical Information of China (English)

    FANG Liang; XIAO Feng; TAO Zainan; Kusuhiro Mukai

    2005-01-01

    The density of liquid Ni-Ta alloys was measured by using a modified sessile drop method. It is found that the density of the liquid Ni-Ta alloys decreases with the increasing temperature, but increases with the increase of tantalum concentration in the alloys. The molar volume of liquid Ni-Ta binary alloys increases with the increase of temperature and tantalum concentration.

  6. Electrical conductivity optimization of the Na3AlF6-Al2O3-Sm2O3 molten salts system for Al-Sm intermediate binary alloy production

    Science.gov (United States)

    Liao, Chun-fa; Jiao, Yun-fen; Wang, Xu; Cai, Bo-qing; Sun, Qiang-chao; Tang, Hao

    2017-09-01

    Metal Sm has been widely used in making Al-Sm magnet alloy materials. Conventional distillation technology to produce Sm has the disadvantages of low productivity, high costs, and pollution generation. The objective of this study was to develop a molten salt electrolyte system to produce Al-Sm alloy directly, with focus on the electrical conductivity and optimal operating conditions to minimize the energy consumption. The continuously varying cell constant (CVCC) technique was used to measure the conductivity for the Na3AlF6-AlF3-LiF-MgF2-Al2O3-Sm2O3 electrolysis medium in the temperature range from 905 to 1055°C. The temperature ( t) and the addition of Al2O3 ( W(Al2O3)), Sm2O3 ( W(Sm2O3)), and a combination of Al2O3 and Sm2O3 into the basic fluoride system were examined with respect to their effects on the conductivity ( κ) and activation energy. The experimental results showed that the molten electrolyte conductivity increases with increasing temperature ( t) and decreases with the addition of Al2O3 or Sm2O3 or both. We concluded that the optimal operation conditions for Al-Sm intermediate alloy production in the Na3AlF6-AlF3-LiF-MgF2-Al2O3-Sm2O3 system are W(Al2O3) + W(Sm2O3) = 3wt%, W(Al2O3): W(Sm2O3) = 7:3, and a temperature of 965 to 995°C, which results in satisfactory conductivity, low fluoride evaporation losses, and low energy consumption.

  7. Kinetics of induced electrodeposition of alloys containing Mo from citrate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Beltowska-Lehman, E. [Polish Academy of Sciences, Institute of Metallurgy and Materials Science, Cracow (Poland)

    2008-07-01

    The kinetics of Ni-Mo alloy electrodeposition from complex citrate-sulphate baths has been investigated by means of steady-state polarization measurements in a system with a rotating disk electrode (RDE). The partial current densities for deposition of Ni and Mo as a function of the solution composition, the cathode potentials and the rate of mass transport were determined. Strong interaction between the discharging metal ions occur: nickel induces molybdenum deposition, but its discharge is markedly inhibited by molybdenum. This effect, related to the formation of intermediate molybdenum oxides, becomes less pronounced when the rotation speed was increased. Hydrogen evolution is associated with molybdenum deposition. An increase of the molybdate ions concentration in the bath, as well as an increase in the rate of mass transport lead to an increase in Mo content in deposits and to the reduction of current efficiency. The surface morphology as a function of the content of molybdenum in the alloy were also investigated. Crack-free, compact, semi-bright Ni-Mo coatings, containing up to about 40 wt% of Mo, characterized by good adhesion to steel substrate were obtained. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Investigation of hydrogen evolution activity for the nickel, nickel-molybdenum nickel-graphite composite and nickel-reduced graphene oxide composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Jinlong, Lv, E-mail: ljlbuaa@126.com [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Tongxiang, Liang; Chen, Wang [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China)

    2016-03-15

    Graphical abstract: - Highlights: • Improved HER efficiency of Ni-Mo coatings was attributed to ‘cauliflower’ like microstructure. • RGO in nickel-RGO composite coating promoted refined grain and facilitated HER. • Synergistic effect between nickel and RGO facilitated HER due to large specific surface of RGO. - Abstract: The nickel, nickel-molybdenum alloy, nickel-graphite and nickel-reduced graphene oxide composite coatings were obtained by the electrodeposition technique from a nickel sulfate bath. Nanocrystalline molybdenum, graphite and reduced graphene oxide in nickel coatings promoted hydrogen evolution reaction in 0.5 M H{sub 2}SO{sub 4} solution at room temperature. However, the nickel-reduced graphene oxide composite coating exhibited the highest electrocatalytic activity for the hydrogen evolution reaction in 0.5 M H{sub 2}SO{sub 4} solution at room temperature. A large number of gaps between ‘cauliflower’ like grains could decrease effective area for hydrogen evolution reaction in slight amorphous nickel-molybdenum alloy. The synergistic effect between nickel and reduced graphene oxide promoted hydrogen evolution, moreover, refined grain in nickel-reduced graphene oxide composite coating and large specific surface of reduced graphene oxide also facilitated hydrogen evolution reaction.

  9. Electroanalytical determination of tungsten and molybdenum in proteins.

    Science.gov (United States)

    Hagedoorn, P L; van't Slot, P; van Leeuwen, H P; Hagen, W R

    2001-10-01

    Recent crystal structure determinations accelerated the progress in the biochemistry of tungsten-containing enzymes. In order to characterize these enzymes, a sensitive determination of this metal in protein-containing samples is necessary. An electroanalytical tungsten determination has successfully been adapted to determine the tungsten and molybdenum content in enzymes. The tungsten and molybdenum content can be measured simultaneously from 1 to 10 microg of purified protein with little or no sample handling. More crude protein samples require precipitation of interfering surface active material with 10% perchloric acid. This method affords the isolation of novel molybdenum- and tungsten-containing proteins via molybdenum and tungsten monitoring of column fractions, without using radioactive isotopes. A screening of soluble proteins from Pyrococcus furiosus for tungsten, using anion-exchange column chromatography to separate the proteins, has been performed. The three known tungsten-containing enzymes from P. furiosus were recovered with this screening.

  10. Chemistry related to the procurement of vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H.M.; Chung H.M.; Tsai, H.C. [Argonne National Lab., IL (United States)

    1997-08-01

    Evaluation of trace element concentrations in vanadium alloys is important to characterize the low-activation characteristics and possible effects of trace elements on the properties. Detailed chemical analysis of several vanadium and vanadium alloy heats procured for the Argonne vanadium alloy development program were analyzed by Johnson-Matthey (UK) as part of a joint activity to evaluate trace element effects on the performance characteristics. These heats were produced by normal production practices for high grade vanadium. The analyses include approximately 60 elements analyzed in most cases by glow-discharge mass spectrometry. Values for molybdenum and niobium, which are critical for low-activation alloys, ranged from 0.4 to 60 wppm for the nine heats.

  11. Theoretical Model for Volume Fraction of UC, 235U Enrichment, and Effective Density of Final U 10Mo Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Devaraj, Arun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Prabhakaran, Ramprashad [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Hu, Shenyang Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); McGarrah, Eric J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)

    2016-04-12

    The purpose of this document is to provide a theoretical framework for (1) estimating uranium carbide (UC) volume fraction in a final alloy of uranium with 10 weight percent molybdenum (U 10Mo) as a function of final alloy carbon concentration, and (2) estimating effective 235U enrichment in the U 10Mo matrix after accounting for loss of 235U in forming UC. This report will also serve as a theoretical baseline for effective density of as-cast low-enriched U 10Mo alloy. Therefore, this report will serve as the baseline for quality control of final alloy carbon content

  12. Effect of Lanthanum Oxide Content on Microstructure and Properties of Molybdenum Plates%氧化镧含量对钼板组织与性能的影响

    Institute of Scientific and Technical Information of China (English)

    魏世忠; 周玉成; 段素红; 张国赏

    2013-01-01

    The molybdenum alloys doped with La2O3 were prepared by sol-gel and powder metallurgy methods. The effect of La2O3 on metallographic structure and micro-hardness of sintering billets was studied. After the sintering billets were rolled into a thickness of 1. 0 mm plates, the tensile strength of molybdenum plate annealed at different temperatures was tested at room temperature. And the high temperature deformation behaviors of Mo-La2O3 plates were tested from 900 ℃ to 1 200℃. The results show that La ultimately exists in molybdenum alloys in the form of lanthanum oxide,which can refine grain and make grain size be uniform. With the increase in amount of lanthanum oxide,the hardness becomes higher gradually. The tensile strengths under room temperature and high temperature of molybdenum plate doped with lanthanum oxide are improved compared to pure molybdenum plate and increased with the content of lanthanum oxide. The elongation of molybdenum plate is higher than pure molybdenum under room temperature. The elongation of molybdenum plate doped with 1. 0% lanthanum oxide is the best among three kinds of doping molybdenum plates.%采用溶胶凝胶、粉末冶金等工艺制备了氧化镧掺杂钼合金.研究了氧化镧对烧结坯的金相组织和显微硬度的影响.将烧结坯轧制成厚度为1.0 mm的板材,经不同温度退火后进行室温拉伸试验,并利用热-力学物理模拟试验机对其高温拉伸性能进行了测试.研究结果表明:镧以氧化镧的形式存在于钼合金中,并使其晶粒细化而大小均匀,随着氧化镧掺杂量的增多,显微硬度逐渐增加.氧化镧掺杂钼板的室温强度和高温强度比纯钼板有较大提高,并随着氧化镧掺杂量增加而增加.掺杂钼板的室温延伸率较纯钼板高.掺杂钼板的延伸率在掺杂量为1.0%时最好.

  13. X-ray Diffraction Study of Molybdenum to 900 GPa

    Science.gov (United States)

    Wang, J.; Coppari, F.; Smith, R.; Eggert, J.; Boehly, T.; Collins, G. W.; Duffy, T. S.

    2013-12-01

    Molybdenum (Mo) is a transition metal that is important as a high-pressure standard. Its equation of state, structure, and melting behavior have been explored extensively in both experimental and theoretical studies. Melting data up to the Mbar pressure region from static compression experiments in the diamond anvil cell [Errandonea et al. 2004] are inconsistent with shock wave sound velocity measurements [Hixson et al., 1989]. There are also conflicting reports as to whether body-centered cubic (BCC) Mo transforms to a face-centered cubic (FCC), hexagonal close packed (HCP) or double hexagonal close packed (DHCP) structure at either high pressure or high pressure and temperature conditions [Belonoshko et al. 2008, Mikhaylushkin et al., 2008 and Cazorla et al., 2008]. Recently, a phase transition from BCC to the DHCP phase at 660 GPa and 0 K was predicted using the particle swam optimization (PSO) method (Wang et al, 2013). Here we report an x-ray diffraction study of dynamically compressed molybdenum. Experiments were conducted using the Omega laser at the Laboratory for Laser Energetics at the University of Rochester. Mo targets were either ramp or shock compressed using a laser drive. In ramp loading, the sample is compressed sufficiently slowly that a shock wave does not form. This results in lower temperatures, keeping the sample in the solid state to higher pressures. X-ray diffraction measurements were performed using quasi-monochromatic x-rays from a highly ionized He-α Cu source and image plate detectors. Upon ramp compression, we found no evidence of phase transition in solid Mo up to 900 GPa. The observed peaks can be assigned to the (110) and (200) or (220) reflections of BCC Mo up to the highest pressure, indicating that Mo does not melt under ramp loading to maximum pressure reached. Under shock loading, we did not observe any evidence for the solid-solid phase transformation around 210 GPa as reported in previous work (Hixson et al, 1989). The BCC

  14. Isotopically Modified Molybdenum: Production for Application in Nuclear Energy

    Science.gov (United States)

    Smirnov, A. Yu.; Bonarev, A. K.; Sulaberidze, G. A.; Borisevich, V. D.; Kulikov, G. G.; Shmelev, A. N.

    The possibility to use the isotopically modified molybdenum as a constructive material for the fuel rods of light water and fast reactors is discussed. The calculations demonstrate that the isotopically modified molybdenum with an average neutron absorption cross-section comparable to that of zirconium can be obtained with the reasonable for practice cost by a cascade of gas centrifuges, specially designed for separation of non-uranium isotopes.

  15. Binary colloidal crystals

    NARCIS (Netherlands)

    Christova-Zdravkova, C.G.

    2005-01-01

    Binary crystals are crystals composed of two types of particles having different properties like size, mass density, charge etc. In this thesis several new approaches to make binary crystals of colloidal particles that differ in size, material and charge are reported We found a variety of crystal st

  16. Approximate Design of Alloy Composition of Cathode Target

    Institute of Scientific and Technical Information of China (English)

    Jun ZHANG; Yu ZHANG; Li LI; Guoqiang LIN; Chuang DONG

    2006-01-01

    An empirical formula for composition demixing analysis in cathodic arc ion plating using alloy target is established based on the concepts of average charged state and relative demixing parameter. The level of composition demixing effect is presented by demixing degree of one element. For binary constituent alloy target, the composition change trend in coating is discussed and the limit of demixing degree for each element is determined. The content of one element with higher average charged state gets larger in coating than in alloy target, at meantime, the content of one element with lower average charged state gets less. For each one of the two constituents, the less the atom percent in alloy target, the larger the difference of its contents between the coating and the target. For triple constituent alloy target, the content change of one element with moderate average charged state is discussed in detail. Its content in coating getting larger or less is determined by the combination result of the contents of the other two elements in alloy target. For a given content of the element with moderate average charged state in triple alloy target, the content deviation level of that element from coating to alloy target will be not larger than that using binary alloy target containing only that element and one of the two others. According to the wanted coating composition, the composition design of alloy target is easily deduced from the formula.

  17. Risk of overestimation of urinary cadmium concentrations: interference from molybdenum

    Directory of Open Access Journals (Sweden)

    Cañas A.I.

    2013-04-01

    Full Text Available We show here that the selection of analytical method is critical when measuring low levels of cadmium in human urine. Cadmium is today usually analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS, which has a higher sensitivity than Atomic Absorption Spectroscopy (AAS. ICP-MS cadmium measurements show interference from tin (114Sn and molybdenum oxides, which can result in an overestimation of cadmium levels. The 114Sn interference is stable and can be mathematically corrected. Molybdenum concentrations in urine are variable and different from individual to individual. We have estimated the degree of error which molybdenum interference introduces in the measurement of cadmium in urine by conventional ICP-MS. 268 urine samples from mothers and their children were measured. Removal of the molybdenum oxide interference (DRC-ICP-MS method reduced urinary cadmium concentrations significantly (47.8%. The urinary molybdenum concentration in children was higher than in their mothers, resulting in greater overestimation. Our results clearly show that the DRC method is essential for reliable measurements of urinary cadmium concentrations, particularly in children. Furthermore, care should be taken when comparing Human Biomonitoring data for cadmium in urine and attention should be paid to which analytical method has been used (e.g. AAS and ICP-Ms, and especially if the measurements have been corrected for molybdenum interference.

  18. Solvent extraction, ion chromatography, and mass spectrometry of molybdenum isotopes.

    Science.gov (United States)

    Dauphas, N; Reisberg, L; Marty, B

    2001-06-01

    A procedure was developed that allows precise determination of molybdenum isotope abundances in natural samples. Purification of molybdenum was first achieved by solvent extraction using di(2-ethylhexyl) phosphate. Further separation of molybdenum from isobar nuclides was obtained by ion chromatography using AG1-X8 strongly basic anion exchanger. Finally, molybdenum isotopic composition was measured using a multiple collector inductively coupled plasma hexapole mass spectrometer. The abundances of molybdenum isotopes 92, 94, 95, 96, 97, 98, and 100 are 14.8428(510), 9.2498(157), 15.9303(133), 16.6787(37), 9.5534(83), 24.1346(394), and 9.6104(312) respectively, resulting in an atomic mass of 95.9304(45). After internal normalization for mass fractionation, no variation of the molybdenum isotopic composition is observed among terrestrial samples within a relative precision on the order of 0.00001-0.0001. This demonstrates the reliability of the method, which can be applied to searching for possible isotopic anomalies and mass fractionation.

  19. Magnetocaloric effect and the influence of pressure on magnetic properties of La-excess pseudo-binary alloys La1+δ(Fe0.85Si0.15)13

    Science.gov (United States)

    Vuong, Van Hiep; Do Thi, Kim Anh; Thuan Nguyen, Khac; Le, Van Hong; Nhat Hoang, Nam

    2016-10-01

    The La-excess alloys La1+δ(Fe0.85Si0.15)13 (δ = 0.06 and 0.09) exhibit large magnetocaloric effect which has been attributed to the occurrence of itinerant-electron metamagnetic transition near the Curie temperature TC. The maximum entropy change -ΔSm was shown to be from 4.5 to 11.5 J/kg K for the applied field variation ΔH from 20 to 70 kOe, respectively. The estimated relative cooling power for ΔH = 70 kOe was 418 J/kg. The alloys show a typical NaZn13-type cubic structure, featuring a doping-induced magnetovolume effect with the increase in TC. Under the applied pressure up to 2 GPa, the TC as deduced from resistance measurements decreased linearly, ΔTC = 113 (for δ = 0.06) and 111 K (for δ = 0.09), together with a corresponding decrease of resistivity, Δρ = 6.1 μΩ m at room temperature for both samples. At a low pressure, the effect of spontaneous magnetostriction on TC caused by applying the pressure appeared to have a similar magnitude to that of the negative magnetovolume effect caused by La-excess doping. In comparison with other stoichiometric La(Fe1-xSix)13 compounds, the pressure in our case was shown to have a smaller influence on TC.

  20. 氟化处理对植入材料Mg-Ca二元合金腐蚀行为的影响%Effect of fluoride treatment on corrosion behavior of Mg-Ca binary alloy for implant application

    Institute of Scientific and Technical Information of China (English)

    Hamid Reza Bakhsheshi-Rad; Mohd Hasbullah Idris; Mohammed Rafiq Abdul Kadir; Mohammadreza Daroonparvar

    2013-01-01

    在室温下,将Mg-0.5Ca合金在不同浓度的氢氧化钠和HF溶液浸渍不同的时间,研究HF处理对合金腐蚀行为的影响.采用原子力显微镜、X射线衍射、场发射扫描电子显微镜表征样品的微观组织变化.通过动电位极化和Kokubo溶液浸泡试验测试样品的耐腐蚀性.结果表明,与35% HF处理的样品相比,经40% HF溶液处理的Mg-0.5Ca合金具有更均匀、更致密、更薄的涂层(12.6 μm).电化学测试表明,在Kokubo溶液中,经氟化物处理的Mg-0.5Ca合金样品的耐腐蚀性比未处理样品的高35倍;前者的体外降解速率远远低于后者的.在40%HF溶液处理过的样品表面只出现了一些腐蚀点,而未经处理的样品完全被腐蚀产物覆盖且出现了分层现象.40%HF处理的Mg-0.5Ca合金,具有低的降解速率和良好的生物相容性,是一种有潜力的植入材料.%The influence of hydrofluoric acid (HF) treatment on the corrosion behavior of the Mg-0.5Ca alloys was investigated by immersion specimen in sodium hydroxide and HF solutions with various concentrations and durations at room temperature.Microstructural evolutions of the specimens were characterized by atomic force microscopy,X-ray diffraction,field-emission scanning electron microscopy.The corrosion resistance was examined through potentiodynamic polarization and immersion test in Kokubo solution.The results revealed that the fluoride treated Mg-0.5Ca alloys produced by immersion in 40% HF provided more uniform,dense and thicker coating layer (12.6 μm) compared with the 35% HF treated specimen.The electrochemical test showed that the corrosion resistance of fluoride treated specimen was 35 times higher compared with the untreated Mg-0.5Ca alloy specimen in Kokubo solution.In vitro degradation rate of the fluoride treated specimens was much lower than untreated Mg-0.5Ca alloy in Kokubo solution.After immersion test the surface of 40% HF treated sample showed a few corrosion

  1. Iron-aluminum alloys having high room-temperature and method for making same

    Science.gov (United States)

    Sikka, V.K.; McKamey, C.G.

    1993-08-24

    A wrought and annealed iron-aluminum alloy is described consisting essentially of 8 to 9.5% aluminum, an effective amount of chromium sufficient to promote resistance to aqueous corrosion of the alloy, and an alloying constituent selected from the group of elements consisting of an effective amount of molybdenum sufficient to promote solution hardening of the alloy and resistance of the alloy to pitting when exposed to solutions containing chloride, up to about 0.05% carbon with up to about 0.5% of a carbide former which combines with the carbon to form carbides for controlling grain growth at elevated temperatures, and mixtures thereof, and the balance iron, wherein said alloy has a single disordered [alpha] phase crystal structure, is substantially non-susceptible to hydrogen embrittlement, and has a room-temperature ductility of greater than 20%.

  2. Combinatorial Density Functional Theory-Based Screening of Surface Alloys for the Oxygen Reduction Reaction

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Nørskov, Jens Kehlet

    2009-01-01

    A density functional theory (DFT)-based, combinatorial search for improved oxygen reduction reaction (ORR) catalysts is presented. A descriptor-based approach to estimate the ORR activity of binary surface alloys, wherein alloying occurs only in the surface layer, is described, and rigorous......, potential-dependent computational tests of the stability of these alloys in aqueous, acidic environments are presented. These activity and stability criteria are applied to a database of DFT calculations on nearly 750 binary transition metal surface alloys; of these, many are predicted to be active...

  3. The open-circuit ennoblement of alloy C-22 and other Ni-Cr-Mo alloys

    Science.gov (United States)

    Lloydis, A. C.; Noël, J. J.; Shoesmith, D. W.; McIntyre, N. S.

    2005-01-01

    The open-circuit corrosion and anodic oxidation behavior of the C-series of Ni-Cr-Mo alloys (C-4, C-276, C-2000, and C-22) and alloy 625 have been studied at 25°C and 75°C in 1.0 mol·L-1 NaCl+1.0 mol·L-1 H2SO4. A combination of open-circuit potential, potentiostatic polarization, and electrochemical impedance spectroscopy were employed in the study. The composition of the films formed was determined by x-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. Passive oxide film resistances increase and defect oxide film concentrations decrease as films thicken and chromium and molybdenum segregate to the alloy/oxide and oxide/solution interfaces, respectively. The high-chromium alloys exhibit higher film resistances and lower film defect concentrations consistent with the more positive potentials observed on these alloys. The results show that the observed ennoblement in corrosion potentials with time is coupled to the Cr/Mo segregation process and the suppression of defect injection at the alloy/oxide interface. By all measures, C-22 exhibited the best passive properties.

  4. Chemiluminescence Determination of Molybdenum by on-Line Reduction with a Flow Injection System

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The chemiluminescence (CL) reaction between lucigenin (Lu) and molybdenum (Ⅲ) produced by a Jones reductor was investigated using a flow injection system. On the basis of this, a novel method for the determination of trace amount of molybdenum has been established. The emission intensity was linear with molybdenum concentration in the range of 0.1-1000 ng/mL; the detection limit was 0.02 ng/mL molybdenum; the relative standard deviation was less than 2% for the determination of 0.1 ng/mL molybdenum (n=11). The method has been applied successfully to the analysis of trace molybdenum in water and steel samples.

  5. Electron accelerator-based production of molybdenum-99: Bremsstrahlung and photoneutron generation from molybdenum vs. tungsten

    Science.gov (United States)

    Tsechanski, A.; Bielajew, A. F.; Archambault, J. P.; Mainegra-Hing, E.

    2016-01-01

    A new "one-stage" approach for production of 99Mo and other radioisotopes by means of an electron linear accelerator is described. It is based on using a molybdenum target both as a bremsstrahlung converter and as a radioisotope producing target for the production of 99Mo via the photoneutron reaction 100Mo(γ,n)99Mo. Bremsstrahlung characteristics, such as bremsstrahlung efficiency, angular distribution, and energy deposition for molybdenum targets were obtained by means of the EGSnrc Monte Carlo simulation code system. As a result of our simulations, it is concluded that a 60 MeV electron beam incident on a thick Mo target will have greater bremsstrahlung efficiency than the same thickness (in units of r0) W target, for target thickness z > 1.84r0, where r0 is the electron range. A 50 MeV electron beam incident on a Mo target will result in greater bremsstrahlung efficiency than the same thickness W target (in units of r0) for target thickness case: z ⩾ 2.0r0. It is shown for the one-stage approach with thicknesses of (1.84-2.0)r0, that the 99Mo-production bremsstrahlung efficiency of a molybdenum target is greater by ∼100% at 30 MeV and by ∼70% at 60 MeV compared to the values for tungsten of the same thickness (in units of the appropriate r0) in the traditional two-stage approach (W converter and separate 99Mo producing target). This advantage of the one-stage approach arises from the fact that the bremsstrahlung produced is attenuated only once from attenuation in the molybdenum converter/target. In the traditional, two-stage approach, the bremsstrahlung generated in the W-converter/target is attenuated both in the converter in the 99Mo-producing molybdenum target. The photoneutron production yield of molybdenum and tantalum (as a substitute for tungsten) target was calculated by means of the MCNP5 transport code. On the basis of these data, the specific activity for the one-stage approach of three enriched 100Mo-targets of a 2 cm diameter and

  6. Electron accelerator-based production of molybdenum-99: Bremsstrahlung and photoneutron generation from molybdenum vs. tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Tsechanski, A. [Ben-Gurion University of the Negev, Department of Nuclear Engineering, P.O. Box 653, Beer-Sheva 84105 (Israel); Bielajew, A.F. [Department of Nuclear Engineering and Radiological Sciences, The University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Archambault, J.P.; Mainegra-Hing, E. [National Research Council of Canada, Ionizing Radiation Standards Laboratory, Ottawa, ON K1A 0R6 (Canada)

    2016-01-01

    A new “one-stage” approach for production of {sup 99}Mo and other radioisotopes by means of an electron linear accelerator is described. It is based on using a molybdenum target both as a bremsstrahlung converter and as a radioisotope producing target for the production of {sup 99}Mo via the photoneutron reaction {sup 100}Mo(γ,n){sup 99}Mo. Bremsstrahlung characteristics, such as bremsstrahlung efficiency, angular distribution, and energy deposition for molybdenum targets were obtained by means of the EGSnrc Monte Carlo simulation code system. As a result of our simulations, it is concluded that a 60 MeV electron beam incident on a thick Mo target will have greater bremsstrahlung efficiency than the same thickness (in units of r{sub 0}) W target, for target thickness z > 1.84r{sub 0}, where r{sub 0} is the electron range. A 50 MeV electron beam incident on a Mo target will result in greater bremsstrahlung efficiency than the same thickness W target (in units of r{sub 0}) for target thickness case: z ⩾ 2.0r{sub 0}. It is shown for the one-stage approach with thicknesses of (1.84–2.0)r{sub 0}, that the {sup 99}Mo-production bremsstrahlung efficiency of a molybdenum target is greater by ∼100% at 30 MeV and by ∼70% at 60 MeV compared to the values for tungsten of the same thickness (in units of the appropriate r{sub 0}) in the traditional two-stage approach (W converter and separate {sup 99}Mo producing target). This advantage of the one-stage approach arises from the fact that the bremsstrahlung produced is attenuated only once from attenuation in the molybdenum converter/target. In the traditional, two-stage approach, the bremsstrahlung generated in the W-converter/target is attenuated both in the converter in the {sup 99}Mo-producing molybdenum target. The photoneutron production yield of molybdenum and tantalum (as a substitute for tungsten) target was calculated by means of the MCNP5 transport code. On the basis of these data, the specific activity

  7. Method for estimating the lattice thermal conductivity of metallic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yarbrough, D.W.; Williams, R.K.

    1978-08-01

    A method is described for calculating the lattice thermal conductivity of alloys as a function of temperature and composition for temperatures above theta/sub D//2 using readily available information about the atomic species present in the alloy. The calculation takes into account phonon interactions with point defects, electrons and other phonons. Comparisons between experimental thermal conductivities (resistivities) and calculated values are discussed for binary alloys of semiconductors, alkali halides and metals. A discussion of the theoretical background is followed by sufficient numerical work to facilitate the calculation of lattice thermal conductivity of an alloy for which no conductivity data exist.

  8. Effect of scandium addition on the microstructure, mechanical and wear properties of the spray formed hypereutectic aluminum–silicon alloys

    Energy Technology Data Exchange (ETDEWEB)

    Raghukiran, Nadimpalli; Kumar, Ravi, E-mail: nvrk@iitm.ac.in

    2015-08-12

    Hypereutectic Al–x%Si–0.8Sc alloys (x=13, 16, 19 and 22 wt%) were produced by spray forming. The microstructures of all the alloys exhibited very fine silicon phase with average size of about 5–10 µm irrespective of the silicon content of the alloy. Transmission electron microscopy revealed the presence of a nano-scale scandium rich phase, identified as AlSi{sub 2}Sc{sub 2} (V-phase) uniformly distributed in the alloy. The presence of V-phase resulted in higher matrix hardness (1.34 GPa) in contrast to 1.04 GPa observed in the case of binary Al–Si alloys by nanoindentation. Isothermal heat treatment at 375 °C revealed insignificant coarsening of silicon phase in both binary and ternary alloys. The Al–x%Si–0.8Sc alloys exhibited higher flow stress and tensile strength in contrast to their binary alloy counterparts which was attributed to the bi-modal size distribution of the strengthening phases in the form of nano-scale V-phase and sub-micron to 10 µm size silicon particles. The pin-on-disk wear tests exhibited appreciable improvement in the wear performance of the relatively low-silicon content ternary alloys over their binary counterparts while the high-silicon content binary and ternary alloys exhibited no much difference in the wear performance.

  9. Pressure-induced instability of magnetic order in Kondo-lattice system. Neutron diffraction study of the pseudo-binary alloy system Ce(Ru sub 0 sub . sub 9 sub 0 Rh sub 0 sub . sub 1 sub 0) sub 2 (Si sub 1 sub - sub y Ge sub y) sub 2

    CERN Document Server

    Watanabe, K; Kanadani, C; Taniguchi, T; Kawarazaki, S; Uwatoko, Y; Kadowaki, H

    2003-01-01

    Neutron diffraction experiments have been carried out to study the nature of the magnetic order of the pseudo-binary alloy system Ce(Ru sub 0 sub . sub 9 sub 0 Rh sub 0 sub . sub 1 sub 0) sub 2 (Si sub 1 sub - sub y Ge sub y) sub 2. Response of the ordered atomic magnetic moment, mu, the transition temperature, T sub N , and the magnitude of the magnetic modulation vector, q, to the chemical pressure and also to the applied hydrostatic pressure, P, were examined at low temperatures. When y changes, all of mu, T sub N and q show a sudden alteration of the manner of the y-dependence at around y - 0.08. The P-dependence of q shows quite different features for different y's of 0.0, 0.2 and 0.25. On the basis of these observations the possibility of a pressure-induced alternation of the magnetic regime of the order is discussed. (author)

  10. Impact toughness of high strength low alloy TMT reinforcement ribbed bar

    Indian Academy of Sciences (India)

    Bimal Kumar Panigrahi; Surendra Kumar Jain

    2002-08-01

    Charpy V-notch impact toughness of 600 MPa yield stress TMT rebars alloyed with copper, phosphorus, chromium and molybdenum has been evaluated. Subsize Charpy specimens were machined from the rebar keeping the tempered martensite rim intact. The copper–phosphorus rebar showed toughness of 35 J at room temperature. The toughness of copper–molybdenum and copper–chromium rebars was 52 J. The lower toughness of phosphorus steel is attributed to solid solution strengthening and segregation of phosphorus to grain boundaries. Due to superior corrosion resistance, copper–phosphorus TMT rebar is a candidate material in the construction sector.

  11. Low-aluminum content iron-aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J. [and others

    1995-06-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10 and iron = 83.71. The ignots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot-worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  12. La doping effect on TZM alloy oxidation behavior

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fan [School of Metallurgy Engineering, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Wang, Kuai-She, E-mail: wangkuaishe888@126.com [School of Metallurgy Engineering, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Hu, Ping; He, Huan-Cheng; Kang, Xuan-Qi [School of Metallurgy Engineering, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Wang, Hua [Xi’an Electric Furnace Institute Co., Ltd., Xi’an 710061 (China); Liu, Ren-Zhi [School of Metallurgy Engineering, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Jinduicheng Molybdenum Co., Ltd., Xi’an 710068 (China); Volinsky, Alex A. [Department of Mechanical Engineering, University of South Florida, Tampa FL 33620 (United States)

    2014-04-01

    Highlights: • The oxidation can be resisted by doping La into TZM alloy. • La doped TZM alloy has more compact organization. • It can rise the starting temperature of severe oxidation reaction by more than 50 °C. • Effectively slow down the oxidation rate. • Provide guidance for experiments of improving high-temperature oxidation resistance. - Abstract: Powder metallurgy methods were utilized to prepare lanthanum-doped (La-TZM) and traditional TZM alloy plates. High temperature oxidation experiments along with the differential thermal analysis were employed to study the oxidation behavior of the two kinds of TZM alloys. An extremely volatile oxide layer was generated on the surface of traditional TZM alloy plates when the oxidation started. Molybdenum oxide volatilization exposed the alloy matrix, which was gradually corroded by oxygen, losing its quality with serious surface degradation. The La-TZM alloy has a more compact structure due to the lanthanum doping. The minute lanthanum oxide particles are pinned at the grain boundaries and refine the grains. Oxide layer generated on the matrix surface can form a compact coating, which effectively blocks the surface from being corroded by oxidation. The oxidation resistance of La-TZM alloys has been enhanced, expanding its application range.

  13. Molybdenum oxide and molybdenum oxide-nitride back contacts for CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Drayton, Jennifer A., E-mail: drjadrayton@yahoo.com; Geisthardt, Russell M., E-mail: Russell.Geisthardt@gmail.com; Sites, James R., E-mail: james.sites@colostate.edu [Department of Physics, Colorado State University, Fort Collins, Colorado 80523 (United States); Williams, Desiree D., E-mail: daisyw@rams.colostate.edu; Cramer, Corson L., E-mail: clcramer@rams.colostate.edu; Williams, John D., E-mail: john.d.williams@colostate.edu [Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States)

    2015-07-15

    Molybdenum oxide (MoO{sub x}) and molybdenum oxynitride (MoON) thin film back contacts were formed by a unique ion-beam sputtering and ion-beam-assisted deposition process onto CdTe solar cells and compared to back contacts made using carbon–nickel (C/Ni) paint. Glancing-incidence x-ray diffraction and x-ray photoelectron spectroscopy measurements show that partially crystalline MoO{sub x} films are created with a mixture of Mo, MoO{sub 2}, and MoO{sub 3} components. Lower crystallinity content is observed in the MoON films, with an additional component of molybdenum nitride present. Three different film thicknesses of MoO{sub x} and MoON were investigated that were capped in situ in Ni. Small area devices were delineated and characterized using current–voltage (J-V), capacitance–frequency, capacitance–voltage, electroluminescence, and light beam-induced current techniques. In addition, J-V data measured as a function of temperature (JVT) were used to estimate back barrier heights for each thickness of MoO{sub x} and MoON and for the C/Ni paint. Characterization prior to stressing indicated the devices were similar in performance. Characterization after stress testing indicated little change to cells with 120 and 180-nm thick MoO{sub x} and MoON films. However, moderate-to-large cell degradation was observed for 60-nm thick MoO{sub x} and MoON films and for C/Ni painted back contacts.

  14. Surface energy of metal alloy nanoparticles

    Science.gov (United States)

    Takrori, Fahed M.; Ayyad, Ahmed

    2017-04-01

    The measurement of surface energy of alloy nanoparticles experimentally is still a challenge therefore theoretical work is necessary to estimate its value. In continuation of our previous work on the calculation of the surface energy of pure metallic nanoparticles we have extended our work to calculate the surface energy of different alloy systems, namely, Co-Ni, Au-Cu, Cu-Al, Cu-Mg and Mo-Cs binary alloys. It is shown that the surface energy of metallic binary alloy decreases with decreasing particle size approaching relatively small values at small sizes. When both metals in the alloy obey the Hume-Rothery rules, the difference in the surface energy is small at the macroscopic as well as in the nano-scale. However when the alloy deviated from these rules the difference in surface energy is large in the macroscopic and in the nano scales. Interestingly when solid solution formation is not possible at the macroscopic scale according to the Hume-Rothery rules, it is shown it may form at the nano-scale. To our knowledge these findings here are presented for the first time and is challenging from fundamental as well as technological point of views.

  15. Experimental Investigation and Analytical Modeling of Solid-Particle Erosion Behavior of Stellite Alloys

    Science.gov (United States)

    Nsoesie, Sydney

    Stellite alloys are a range of cobalt-chromium alloys, also containing tungsten or molybdenum and a small amount (corrosion, wear and erosion environments. In this research a group of Stellite alloys that are commonly employed or potentially materials for erosion resistance application are studied under solid-particle erosion test. Two particle impact velocities (84 m/s and 98 m/s) and two impingement angles (30 degree and 90 degree) are used in the test. It is demonstrated that Stellite alloys are more resistant to erosion at 90 degree impingement angle than at 30 degree impingement angle and the erosion damage of Stellite alloys increases with the particle impact velocity. The erosion resistance of Stellite alloys is controlled mainly by their carbon content, but the tungsten and molybdenum contents also play an important role, because these elements determine the volume fractions of carbides and intermetallics in Stellite alloys. The eroded surfaces are analyzed using SEM to further understand the erosion test results. An erosion model, originally developed by Sheldon and Kanhere (1972), known as S-K model, has been modified for use on Stellite alloys, with the support of experimental data. The significant contribution of this modification is that the effect of particle impingement angle has been included. With this modified S-K model, for a Stellite alloy that has a similar chemical composition to one of the alloys studied in this research, the erosion rate for a set particle impact, velocity at an impingement angle between 30 degree and 90 degree can, be estimated. This modified S-K model can be used for erosion characterization of existing Stellite alloys and in the designing of new Stellite alloys for erosion resistance application.

  16. Structure, activity and kinetics of supported molybdenum oxide and mixed molybdenum-vanadium oxide catalysts prepared by flame spray pyrolysis for propane OHD

    DEFF Research Database (Denmark)

    Høj, Martin; Kessler, Thomas; Beato, Pablo

    2013-01-01

    reflectance UV-vis spectroscopy and evaluated as catalysts for the oxidative dehydrogenation (ODH) of propane. The results show that samples with high specific surface areas between 122 and 182 m2/g were obtained, resulting in apparent MoOx and VOx surface densities from 0.7 to 7.7 nm -2 and 1.5 to 1.9 nm-2......, respectively. Raman spectroscopy, UV-vis spectroscopy and XRD confirmed the high dispersion of molybdenum and vanadia species on γ-Al2O3 as the main crystalline phase. Only at the highest loading of 15 wt% Mo, with theoretically more than monolayer coverage, some crystalline molybdenum oxide was observed....... For the mixed molybdenum-vanadium oxide catalysts the surface species were separate molybdenum oxide and vanadium oxide monomers at low loadings of molybdenum, but with increasing molybdenum loading interactions between surface molybdenum and vanadium oxide species were observed with Raman spectroscopy...

  17. Enhancing Binary Images of Non-Binary LDPC Codes

    CERN Document Server

    Bhatia, Aman; Siegel, Paul H

    2011-01-01

    We investigate the reasons behind the superior performance of belief propagation decoding of non-binary LDPC codes over their binary images when the transmission occurs over the binary erasure channel. We show that although decoding over the binary image has lower complexity, it has worse performance owing to its larger number of stopping sets relative to the original non-binary code. We propose a method to find redundant parity-checks of the binary image that eliminate these additional stopping sets, so that we achieve performance comparable to that of the original non-binary LDPC code with lower decoding complexity.

  18. DEVELOPMENT OF THE COMPLEX-ALLOYED STEEL OF INCREASED HARDENABILITY, VISCOSITY AND HEAT-RESISTANCE FOR CUTTING PARTS OF HIGH-SPEED INSTRUMENT, OPERATING IN CONDITIONS OF HEATING UP AND DYNAMIC LOADS

    Directory of Open Access Journals (Sweden)

    V. N. Fedulov

    2006-01-01

    Full Text Available The theoretical aspects of development of the complex-alloyed steel compounds for cutting parts of high-speed instrument, particularly influence of alloying elements on its structure and characteristics are considered. It is shown that combined alloying of steel by carbon, chrome, silicon, manganese, vanadium and molybdenum in a certain proportion allows to reach the intended aim, achieving at the same time increase of solidity, impact elasticity and heat stability.

  19. Amorphous molybdenum silicon superconducting thin films

    Directory of Open Access Journals (Sweden)

    D. Bosworth

    2015-08-01

    Full Text Available Amorphous superconductors have become attractive candidate materials for superconducting nanowire single-photon detectors due to their ease of growth, homogeneity and competitive superconducting properties. To date the majority of devices have been fabricated using WxSi1−x, though other amorphous superconductors such as molybdenum silicide (MoxSi1−x offer increased transition temperature. This study focuses on the properties of MoSi thin films grown by magnetron sputtering. We examine how the composition and growth conditions affect film properties. For 100 nm film thickness, we report that the superconducting transition temperature (Tc reaches a maximum of 7.6 K at a composition of Mo83Si17. The transition temperature and amorphous character can be improved by cooling of the substrate during growth which inhibits formation of a crystalline phase. X-ray diffraction and transmission electron microscopy studies confirm the absence of long range order. We observe that for a range of 6 common substrates (silicon, thermally oxidized silicon, R- and C-plane sapphire, x-plane lithium niobate and quartz, there is no variation in superconducting transition temperature, making MoSi an excellent candidate material for SNSPDs.

  20. Vertically aligned biaxially textured molybdenum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Rahul [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Riley, Michael [Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Lee, Sabrina [US Army Armament Research, Development and Engineering Center, Benet Labs, Watervliet, New York 12189 (United States); Lu, Toh-Ming [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2011-09-15

    Vertically aligned, biaxially textured molybdenum nanorods were deposited using dc magnetron sputtering with glancing flux incidence (alpha = 85 degrees with respect to the substrate normal) and a two-step substrate-rotation mode. These nanorods were identified with a body-centered cubic crystal structure. The formation of a vertically aligned biaxial texture with a [110] out-of-plane orientation was combined with a [-110] in-plane orientation. The kinetics of the growth process was found to be highly sensitive to an optimum rest time of 35 seconds for the two-step substrate rotation mode. At all other rest times, the nanorods possessed two separate biaxial textures each tilted toward one flux direction. While the in-plane texture for the vertical nanorods maintains maximum flux capture area, inclined Mo nanorods deposited at alpha = 85 degrees without substrate rotation display a [-1-1-4] in-plane texture that does not comply with the maximum flux capture area argument. Finally, an in situ capping film was deposited with normal flux incidence over the biaxially textured vertical nanorods resulting in a thin film over the porous nanorods. This capping film possessed the same biaxial texture as the nanorods and could serve as an effective substrate for the epitaxial growth of other functional materials.