WorldWideScience

Sample records for binary message-passing decoders

  1. EXIT Chart Analysis of Binary Message-Passing Decoders

    DEFF Research Database (Denmark)

    Lechner, Gottfried; Pedersen, Troels; Kramer, Gerhard

    2007-01-01

    Binary message-passing decoders for LDPC codes are analyzed using EXIT charts. For the analysis, the variable node decoder performs all computations in the L-value domain. For the special case of a hard decision channel, this leads to the well know Gallager B algorithm, while the analysis can...... be extended to channels with larger output alphabets. By increasing the output alphabet from hard decisions to four symbols, a gain of more than 1.0 dB is achieved using optimized codes. For this code optimization, the mixing property of EXIT functions has to be modified to the case of binary message......-passing decoders....

  2. Analysis and Design of Binary Message-Passing Decoders

    DEFF Research Database (Denmark)

    Lechner, Gottfried; Pedersen, Troels; Kramer, Gerhard

    2012-01-01

    Binary message-passing decoders for low-density parity-check (LDPC) codes are studied by using extrinsic information transfer (EXIT) charts. The channel delivers hard or soft decisions and the variable node decoder performs all computations in the L-value domain. A hard decision channel results...... message-passing decoders. Finally, it is shown that errors on cycles consisting only of degree two and three variable nodes cannot be corrected and a necessary and sufficient condition for the existence of a cycle-free subgraph is derived....... in the well-know Gallager B algorithm, and increasing the output alphabet from hard decisions to two bits yields a gain of more than 1.0 dB in the required signal to noise ratio when using optimized codes. The code optimization requires adapting the mixing property of EXIT functions to the case of binary...

  3. The serial message-passing schedule for LDPC decoding algorithms

    Science.gov (United States)

    Liu, Mingshan; Liu, Shanshan; Zhou, Yuan; Jiang, Xue

    2015-12-01

    The conventional message-passing schedule for LDPC decoding algorithms is the so-called flooding schedule. It has the disadvantage that the updated messages cannot be used until next iteration, thus reducing the convergence speed . In this case, the Layered Decoding algorithm (LBP) based on serial message-passing schedule is proposed. In this paper the decoding principle of LBP algorithm is briefly introduced, and then proposed its two improved algorithms, the grouped serial decoding algorithm (Grouped LBP) and the semi-serial decoding algorithm .They can improve LBP algorithm's decoding speed while maintaining a good decoding performance.

  4. A real-time MPEG software decoder using a portable message-passing library

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, Man Kam; Tang, P.T. Peter; Lin, Biquan

    1995-12-31

    We present a real-time MPEG software decoder that uses message-passing libraries such as MPL, p4 and MPI. The parallel MPEG decoder currently runs on the IBM SP system but can be easil ported to other parallel machines. This paper discusses our parallel MPEG decoding algorithm as well as the parallel programming environment under which it uses. Several technical issues are discussed, including balancing of decoding speed, memory limitation, 1/0 capacities, and optimization of MPEG decoding components. This project shows that a real-time portable software MPEG decoder is feasible in a general-purpose parallel machine.

  5. Message passing for quantified Boolean formulas

    International Nuclear Information System (INIS)

    Zhang, Pan; Ramezanpour, Abolfazl; Zecchina, Riccardo; Zdeborová, Lenka

    2012-01-01

    We introduce two types of message passing algorithms for quantified Boolean formulas (QBF). The first type is a message passing based heuristics that can prove unsatisfiability of the QBF by assigning the universal variables in such a way that the remaining formula is unsatisfiable. In the second type, we use message passing to guide branching heuristics of a Davis–Putnam–Logemann–Loveland (DPLL) complete solver. Numerical experiments show that on random QBFs our branching heuristics give robust exponential efficiency gain with respect to state-of-the-art solvers. We also manage to solve some previously unsolved benchmarks from the QBFLIB library. Apart from this, our study sheds light on using message passing in small systems and as subroutines in complete solvers

  6. Message Passing Framework for Globally Interconnected Clusters

    International Nuclear Information System (INIS)

    Hafeez, M; Riaz, N; Asghar, S; Malik, U A; Rehman, A

    2011-01-01

    In prevailing technology trends it is apparent that the network requirements and technologies will advance in future. Therefore the need of High Performance Computing (HPC) based implementation for interconnecting clusters is comprehensible for scalability of clusters. Grid computing provides global infrastructure of interconnecting clusters consisting of dispersed computing resources over Internet. On the other hand the leading model for HPC programming is Message Passing Interface (MPI). As compared to Grid computing, MPI is better suited for solving most of the complex computational problems. MPI itself is restricted to a single cluster. It does not support message passing over the internet to use the computing resources of different clusters in an optimal way. We propose a model that provides message passing capabilities between parallel applications over the internet. The proposed model is based on Architecture for Java Universal Message Passing (A-JUMP) framework and Enterprise Service Bus (ESB) named as High Performance Computing Bus. The HPC Bus is built using ActiveMQ. HPC Bus is responsible for communication and message passing in an asynchronous manner. Asynchronous mode of communication offers an assurance for message delivery as well as a fault tolerance mechanism for message passing. The idea presented in this paper effectively utilizes wide-area intercluster networks. It also provides scheduling, dynamic resource discovery and allocation, and sub-clustering of resources for different jobs. Performance analysis and comparison study of the proposed framework with P2P-MPI are also presented in this paper.

  7. Message passing with parallel queue traversal

    Science.gov (United States)

    Underwood, Keith D [Albuquerque, NM; Brightwell, Ronald B [Albuquerque, NM; Hemmert, K Scott [Albuquerque, NM

    2012-05-01

    In message passing implementations, associative matching structures are used to permit list entries to be searched in parallel fashion, thereby avoiding the delay of linear list traversal. List management capabilities are provided to support list entry turnover semantics and priority ordering semantics.

  8. Binary Systematic Network Coding for Progressive Packet Decoding

    OpenAIRE

    Jones, Andrew L.; Chatzigeorgiou, Ioannis; Tassi, Andrea

    2015-01-01

    We consider binary systematic network codes and investigate their capability of decoding a source message either in full or in part. We carry out a probability analysis, derive closed-form expressions for the decoding probability and show that systematic network coding outperforms conventional net- work coding. We also develop an algorithm based on Gaussian elimination that allows progressive decoding of source packets. Simulation results show that the proposed decoding algorithm can achieve ...

  9. Blind sensor calibration using approximate message passing

    International Nuclear Information System (INIS)

    Schülke, Christophe; Caltagirone, Francesco; Zdeborová, Lenka

    2015-01-01

    The ubiquity of approximately sparse data has led a variety of communities to take great interest in compressed sensing algorithms. Although these are very successful and well understood for linear measurements with additive noise, applying them to real data can be problematic if imperfect sensing devices introduce deviations from this ideal signal acquisition process, caused by sensor decalibration or failure. We propose a message passing algorithm called calibration approximate message passing (Cal-AMP) that can treat a variety of such sensor-induced imperfections. In addition to deriving the general form of the algorithm, we numerically investigate two particular settings. In the first, a fraction of the sensors is faulty, giving readings unrelated to the signal. In the second, sensors are decalibrated and each one introduces a different multiplicative gain to the measurements. Cal-AMP shares the scalability of approximate message passing, allowing us to treat large sized instances of these problems, and experimentally exhibits a phase transition between domains of success and failure. (paper)

  10. Message-Passing Receivers for Single Carrier Systems with Frequency-Domain Equalization

    DEFF Research Database (Denmark)

    Zhang, Chuanzong; Manchón, Carles Navarro; Wang, Zhongyong

    2015-01-01

    In this letter, we design iterative receiver algorithms for joint frequency-domain equalization and decoding in a single carrier system assuming perfect channel state information. Based on an approximate inference framework that combines belief propagation (BP) and the mean field (MF) approximation......, we propose two receiver algorithms with, respectively, parallel and sequential message-passing schedules in the MF part. A recently proposed receiver based on generalized approximate message passing (GAMP) is used as a benchmarking reference. The simulation results show that the BP-MF receiver...

  11. SYMBOL LEVEL DECODING FOR DUO-BINARY TURBO CODES

    Directory of Open Access Journals (Sweden)

    Yogesh Beeharry

    2017-05-01

    Full Text Available This paper investigates the performance of three different symbol level decoding algorithms for Duo-Binary Turbo codes. Explicit details of the computations involved in the three decoding techniques, and a computational complexity analysis are given. Simulation results with different couple lengths, code-rates, and QPSK modulation reveal that the symbol level decoding with bit-level information outperforms the symbol level decoding by 0.1 dB on average in the error floor region. Moreover, a complexity analysis reveals that symbol level decoding with bit-level information reduces the decoding complexity by 19.6 % in terms of the total number of computations required for each half-iteration as compared to symbol level decoding.

  12. Min-Max decoding for non binary LDPC codes

    OpenAIRE

    Savin, Valentin

    2008-01-01

    Iterative decoding of non-binary LDPC codes is currently performed using either the Sum-Product or the Min-Sum algorithms or slightly different versions of them. In this paper, several low-complexity quasi-optimal iterative algorithms are proposed for decoding non-binary codes. The Min-Max algorithm is one of them and it has the benefit of two possible LLR domain implementations: a standard implementation, whose complexity scales as the square of the Galois field's cardinality and a reduced c...

  13. FPGA implementation of low complexity LDPC iterative decoder

    Science.gov (United States)

    Verma, Shivani; Sharma, Sanjay

    2016-07-01

    Low-density parity-check (LDPC) codes, proposed by Gallager, emerged as a class of codes which can yield very good performance on the additive white Gaussian noise channel as well as on the binary symmetric channel. LDPC codes have gained lots of importance due to their capacity achieving property and excellent performance in the noisy channel. Belief propagation (BP) algorithm and its approximations, most notably min-sum, are popular iterative decoding algorithms used for LDPC and turbo codes. The trade-off between the hardware complexity and the decoding throughput is a critical factor in the implementation of the practical decoder. This article presents introduction to LDPC codes and its various decoding algorithms followed by realisation of LDPC decoder by using simplified message passing algorithm and partially parallel decoder architecture. Simplified message passing algorithm has been proposed for trade-off between low decoding complexity and decoder performance. It greatly reduces the routing and check node complexity of the decoder. Partially parallel decoder architecture possesses high speed and reduced complexity. The improved design of the decoder possesses a maximum symbol throughput of 92.95 Mbps and a maximum of 18 decoding iterations. The article presents implementation of 9216 bits, rate-1/2, (3, 6) LDPC decoder on Xilinx XC3D3400A device from Spartan-3A DSP family.

  14. Future-based Static Analysis of Message Passing Programs

    Directory of Open Access Journals (Sweden)

    Wytse Oortwijn

    2016-06-01

    Full Text Available Message passing is widely used in industry to develop programs consisting of several distributed communicating components. Developing functionally correct message passing software is very challenging due to the concurrent nature of message exchanges. Nonetheless, many safety-critical applications rely on the message passing paradigm, including air traffic control systems and emergency services, which makes proving their correctness crucial. We focus on the modular verification of MPI programs by statically verifying concrete Java code. We use separation logic to reason about local correctness and define abstractions of the communication protocol in the process algebra used by mCRL2. We call these abstractions futures as they predict how components will interact during program execution. We establish a provable link between futures and program code and analyse the abstract futures via model checking to prove global correctness. Finally, we verify a leader election protocol to demonstrate our approach.

  15. Neighbourhood-consensus message passing and its potentials in image processing applications

    Science.gov (United States)

    Ružic, Tijana; Pižurica, Aleksandra; Philips, Wilfried

    2011-03-01

    In this paper, a novel algorithm for inference in Markov Random Fields (MRFs) is presented. Its goal is to find approximate maximum a posteriori estimates in a simple manner by combining neighbourhood influence of iterated conditional modes (ICM) and message passing of loopy belief propagation (LBP). We call the proposed method neighbourhood-consensus message passing because a single joint message is sent from the specified neighbourhood to the central node. The message, as a function of beliefs, represents the agreement of all nodes within the neighbourhood regarding the labels of the central node. This way we are able to overcome the disadvantages of reference algorithms, ICM and LBP. On one hand, more information is propagated in comparison with ICM, while on the other hand, the huge amount of pairwise interactions is avoided in comparison with LBP by working with neighbourhoods. The idea is related to the previously developed iterated conditional expectations algorithm. Here we revisit it and redefine it in a message passing framework in a more general form. The results on three different benchmarks demonstrate that the proposed technique can perform well both for binary and multi-label MRFs without any limitations on the model definition. Furthermore, it manifests improved performance over related techniques either in terms of quality and/or speed.

  16. Protocol-Based Verification of Message-Passing Parallel Programs

    DEFF Research Database (Denmark)

    López-Acosta, Hugo-Andrés; Eduardo R. B. Marques, Eduardo R. B.; Martins, Francisco

    2015-01-01

    We present ParTypes, a type-based methodology for the verification of Message Passing Interface (MPI) programs written in the C programming language. The aim is to statically verify programs against protocol specifications, enforcing properties such as fidelity and absence of deadlocks. We develo...

  17. Track-stitching using graphical models and message passing

    CSIR Research Space (South Africa)

    Van der Merwe, LJ

    2013-07-01

    Full Text Available In order to stitch tracks together, two tasks are required, namely tracking and track stitching. In this study track stitching is performed using a graphical model and message passing (belief propagation) approach. Tracks are modelled as nodes in a...

  18. A message passing algorithm for the evaluation of social influence

    NARCIS (Netherlands)

    Vassio, Luca; Fagnani, Fabio; Frasca, Paolo; Ozdaglar, Asuman

    2014-01-01

    In this paper, we define a new measure of node centrality in social networks, the Harmonic Influence Centrality, which emerges naturally in the study of social influence over networks. Next, we introduce a distributed message passing algorithm to compute the Harmonic Influence Centrality of each

  19. S-AMP: Approximate Message Passing for General Matrix Ensembles

    DEFF Research Database (Denmark)

    Cakmak, Burak; Winther, Ole; Fleury, Bernard H.

    2014-01-01

    the approximate message-passing (AMP) algorithm to general matrix ensembles with a well-defined large system size limit. The generalization is based on the S-transform (in free probability) of the spectrum of the measurement matrix. Furthermore, we show that the optimality of S-AMP follows directly from its......We propose a novel iterative estimation algorithm for linear observation models called S-AMP. The fixed points of S-AMP are the stationary points of the exact Gibbs free energy under a set of (first- and second-) moment consistency constraints in the large system limit. S-AMP extends...

  20. Fault-tolerant Agreement in Synchronous Message-passing Systems

    CERN Document Server

    Raynal, Michel

    2010-01-01

    The present book focuses on the way to cope with the uncertainty created by process failures (crash, omission failures and Byzantine behavior) in synchronous message-passing systems (i.e., systems whose progress is governed by the passage of time). To that end, the book considers fundamental problems that distributed synchronous processes have to solve. These fundamental problems concern agreement among processes (if processes are unable to agree in one way or another in presence of failures, no non-trivial problem can be solved). They are consensus, interactive consistency, k-set agreement an

  1. Parallelization of a hydrological model using the message passing interface

    Science.gov (United States)

    Wu, Yiping; Li, Tiejian; Sun, Liqun; Chen, Ji

    2013-01-01

    With the increasing knowledge about the natural processes, hydrological models such as the Soil and Water Assessment Tool (SWAT) are becoming larger and more complex with increasing computation time. Additionally, other procedures such as model calibration, which may require thousands of model iterations, can increase running time and thus further reduce rapid modeling and analysis. Using the widely-applied SWAT as an example, this study demonstrates how to parallelize a serial hydrological model in a Windows® environment using a parallel programing technology—Message Passing Interface (MPI). With a case study, we derived the optimal values for the two parameters (the number of processes and the corresponding percentage of work to be distributed to the master process) of the parallel SWAT (P-SWAT) on an ordinary personal computer and a work station. Our study indicates that model execution time can be reduced by 42%–70% (or a speedup of 1.74–3.36) using multiple processes (two to five) with a proper task-distribution scheme (between the master and slave processes). Although the computation time cost becomes lower with an increasing number of processes (from two to five), this enhancement becomes less due to the accompanied increase in demand for message passing procedures between the master and all slave processes. Our case study demonstrates that the P-SWAT with a five-process run may reach the maximum speedup, and the performance can be quite stable (fairly independent of a project size). Overall, the P-SWAT can help reduce the computation time substantially for an individual model run, manual and automatic calibration procedures, and optimization of best management practices. In particular, the parallelization method we used and the scheme for deriving the optimal parameters in this study can be valuable and easily applied to other hydrological or environmental models.

  2. Weighted community detection and data clustering using message passing

    Science.gov (United States)

    Shi, Cheng; Liu, Yanchen; Zhang, Pan

    2018-03-01

    Grouping objects into clusters based on the similarities or weights between them is one of the most important problems in science and engineering. In this work, by extending message-passing algorithms and spectral algorithms proposed for an unweighted community detection problem, we develop a non-parametric method based on statistical physics, by mapping the problem to the Potts model at the critical temperature of spin-glass transition and applying belief propagation to solve the marginals corresponding to the Boltzmann distribution. Our algorithm is robust to over-fitting and gives a principled way to determine whether there are significant clusters in the data and how many clusters there are. We apply our method to different clustering tasks. In the community detection problem in weighted and directed networks, we show that our algorithm significantly outperforms existing algorithms. In the clustering problem, where the data were generated by mixture models in the sparse regime, we show that our method works all the way down to the theoretical limit of detectability and gives accuracy very close to that of the optimal Bayesian inference. In the semi-supervised clustering problem, our method only needs several labels to work perfectly in classic datasets. Finally, we further develop Thouless-Anderson-Palmer equations which heavily reduce the computation complexity in dense networks but give almost the same performance as belief propagation.

  3. On Rational Interpolation-Based List-Decoding and List-Decoding Binary Goppa Codes

    DEFF Research Database (Denmark)

    Beelen, Peter; Høholdt, Tom; Nielsen, Johan Sebastian Rosenkilde

    2013-01-01

    We derive the Wu list-decoding algorithm for generalized Reed–Solomon (GRS) codes by using Gröbner bases over modules and the Euclidean algorithm as the initial algorithm instead of the Berlekamp–Massey algorithm. We present a novel method for constructing the interpolation polynomial fast. We gi...... and a duality in the choice of parameters needed for decoding, both in the case of GRS codes and in the case of Goppa codes....

  4. Non-binary Hybrid LDPC Codes: Structure, Decoding and Optimization

    OpenAIRE

    Sassatelli, Lucile; Declercq, David

    2007-01-01

    In this paper, we propose to study and optimize a very general class of LDPC codes whose variable nodes belong to finite sets with different orders. We named this class of codes Hybrid LDPC codes. Although efficient optimization techniques exist for binary LDPC codes and more recently for non-binary LDPC codes, they both exhibit drawbacks due to different reasons. Our goal is to capitalize on the advantages of both families by building codes with binary (or small finite set order) and non-bin...

  5. Theoretic derivation of directed acyclic subgraph algorithm and comparisons with message passing algorithm

    Science.gov (United States)

    Ha, Jeongmok; Jeong, Hong

    2016-07-01

    This study investigates the directed acyclic subgraph (DAS) algorithm, which is used to solve discrete labeling problems much more rapidly than other Markov-random-field-based inference methods but at a competitive accuracy. However, the mechanism by which the DAS algorithm simultaneously achieves competitive accuracy and fast execution speed, has not been elucidated by a theoretical derivation. We analyze the DAS algorithm by comparing it with a message passing algorithm. Graphical models, inference methods, and energy-minimization frameworks are compared between DAS and message passing algorithms. Moreover, the performances of DAS and other message passing methods [sum-product belief propagation (BP), max-product BP, and tree-reweighted message passing] are experimentally compared.

  6. Optimized Fast Walsh–Hadamard Transform on GPUs for non-binary LDPC decoding

    OpenAIRE

    Andrade, Joao; Falcao, Gabriel; Silva, Vitor

    2014-01-01

    The Fourier Transform Sum-Product Algorithm (FT-SPA) used in non-binary Low-Density Parity-Check (LDPC) decoding makes extensive use of the Walsh–Hadamard Transform (WHT). We have developed a massively parallel Fast Walsh–Hadamard Transform (FWHT) which exploits the Graphics Processing Unit (GPU) pipeline and memory hierarchy, thereby minimizing the level of memory bank conflicts and maximizing the number of returned instructions per clock cycle for different generations of graphics processor...

  7. Binary Linear-Time Erasure Decoding for Non-Binary LDPC codes

    OpenAIRE

    Savin, Valentin

    2009-01-01

    In this paper, we first introduce the extended binary representation of non-binary codes, which corresponds to a covering graph of the bipartite graph associated with the non-binary code. Then we show that non-binary codewords correspond to binary codewords of the extended representation that further satisfy some simplex-constraint: that is, bits lying over the same symbol-node of the non-binary graph must form a codeword of a simplex code. Applied to the binary erasure channel, this descript...

  8. High performance message passing for the ATLAS DAQ/EF-1 project

    CERN Document Server

    Mornacchi, Giuseppe

    1999-01-01

    Summary form only. A message passing library has been developed in the context of the ATLAS DAQ/EF-1 project. It is used for time critical applications within the front-end part of the DAQ system, mainly to exchange data control messages between I/O processors. Key objectives of the design were low message overheads, efficient use of the data transfer buses, provision of broadcast functionality and a hardware and operating system independent implementation of the application interface. The design and implementation of the message passing library are presented. As required by the project, the implementation is based on commercial components, namely VMEbus, PCI, the Lynx-OS real-time operating system and an additional inter- processor link, PVIC. The latter offers broadcast functionality identified as being important to the overall performance of the message passing. In addition, performance benchmarks for all implementing buses are presented for both simple test programs and the full DAQ applications. (0 refs)...

  9. McMPI – a managed-code message passing interface library for high performance communication in C#

    OpenAIRE

    Holmes, Daniel John

    2012-01-01

    This work endeavours to achieve technology transfer between established best-practice in academic high-performance computing and current techniques in commercial high-productivity computing. It shows that a credible high-performance message-passing communication library, with semantics and syntax following the Message-Passing Interface (MPI) Standard, can be built in pure C# (one of the .Net suite of computer languages). Message-passing has been the dominant paradigm in high-pe...

  10. Stampi: a message passing library for distributed parallel computing. User's guide

    International Nuclear Information System (INIS)

    Imamura, Toshiyuki; Koide, Hiroshi; Takemiya, Hiroshi

    1998-11-01

    A new message passing library, Stampi, has been developed to realize a computation with different kind of parallel computers arbitrarily and making MPI (Message Passing Interface) as an unique interface for communication. Stampi is based on MPI2 specification. It realizes dynamic process creation to different machines and communication between spawned one within the scope of MPI semantics. Vender implemented MPI as a closed system in one parallel machine and did not support both functions; process creation and communication to external machines. Stampi supports both functions and enables us distributed parallel computing. Currently Stampi has been implemented on COMPACS (COMplex PArallel Computer System) introduced in CCSE, five parallel computers and one graphic workstation, and any communication on them can be processed on. (author)

  11. An efficient communication scheme for solving Sn equations on message-passing multiprocessors

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1993-01-01

    Early models of Intel's hypercube multiprocessors, e.g., the iPSC/1 and iPSC/2, were characterized by the high latency of message passing. This relatively weak dependence of the communication penalty on the size of messages, in contrast to its strong dependence on the number of messages, justified using the Fan-in Fan-out algorithm (which implements a minimum spanning tree path) to perform global operations, such as global sums, etc. Recent models of message-passing computers, such as the iPSC/860 and the Paragon, have been found to possess much smaller latency, thus forcing a reexamination of the issue of performance optimization with respect to communication schemes. Essentially, the Fan-in Fan-out scheme minimizes the number of nonsimultaneous messages sent but not the volume of data traffic across the network. Furthermore, if a global operation is performed in conjunction with the message passing, a large fraction of the attached nodes remains idle as the number of utilized processors is halved in each step of the process. On the other hand, the Recursive Halving scheme offers the smallest communication cost for global operations but has some drawbacks

  12. The specification of Stampi, a message passing library for distributed parallel computing

    International Nuclear Information System (INIS)

    Imamura, Toshiyuki; Takemiya, Hiroshi; Koide, Hiroshi

    2000-03-01

    At CCSE, Center for Promotion of Computational Science and Engineering, a new message passing library for heterogeneous and distributed parallel computing has been developed, and it is called as Stampi. Stampi enables us to communicate between any combination of parallel computers as well as workstations. Currently, a Stampi system is constructed from Stampi library and Stampi/Java. It provides functions to connect a Stampi application with not only those on COMPACS, COMplex Parallel Computer System, but also applets which work on WWW browsers. This report summarizes the specifications of Stampi and details the development of its system. (author)

  13. Stampi: a message passing library for distributed parallel computing. User's guide, second edition

    International Nuclear Information System (INIS)

    Imamura, Toshiyuki; Koide, Hiroshi; Takemiya, Hiroshi

    2000-02-01

    A new message passing library, Stampi, has been developed to realize a computation with different kind of parallel computers arbitrarily and making MPI (Message Passing Interface) as an unique interface for communication. Stampi is based on the MPI2 specification, and it realizes dynamic process creation to different machines and communication between spawned one within the scope of MPI semantics. Main features of Stampi are summarized as follows: (i) an automatic switch function between external- and internal communications, (ii) a message routing/relaying with a routing module, (iii) a dynamic process creation, (iv) a support of two types of connection, Master/Slave and Client/Server, (v) a support of a communication with Java applets. Indeed vendors implemented MPI libraries as a closed system in one parallel machine or their systems, and did not support both functions; process creation and communication to external machines. Stampi supports both functions and enables us distributed parallel computing. Currently Stampi has been implemented on COMPACS (COMplex PArallel Computer System) introduced in CCSE, five parallel computers and one graphic workstation, moreover on eight kinds of parallel machines, totally fourteen systems. Stampi provides us MPI communication functionality on them. This report describes mainly the usage of Stampi. (author)

  14. A message-passing approach to random constraint satisfaction problems with growing domains

    International Nuclear Information System (INIS)

    Zhao, Chunyan; Zheng, Zhiming; Zhou, Haijun; Xu, Ke

    2011-01-01

    Message-passing algorithms based on belief propagation (BP) are implemented on a random constraint satisfaction problem (CSP) referred to as model RB, which is a prototype of hard random CSPs with growing domain size. In model RB, the number of candidate discrete values (the domain size) of each variable increases polynomially with the variable number N of the problem formula. Although the satisfiability threshold of model RB is exactly known, finding solutions for a single problem formula is quite challenging and attempts have been limited to cases of N ∼ 10 2 . In this paper, we propose two different kinds of message-passing algorithms guided by BP for this problem. Numerical simulations demonstrate that these algorithms allow us to find a solution for random formulas of model RB with constraint tightness slightly less than p cr , the threshold value for the satisfiability phase transition. To evaluate the performance of these algorithms, we also provide a local search algorithm (random walk) as a comparison. Besides this, the simulated time dependence of the problem size N and the entropy of the variables for growing domain size are discussed

  15. LDPC Codes--Structural Analysis and Decoding Techniques

    Science.gov (United States)

    Zhang, Xiaojie

    2012-01-01

    Low-density parity-check (LDPC) codes have been the focus of much research over the past decade thanks to their near Shannon limit performance and to their efficient message-passing (MP) decoding algorithms. However, the error floor phenomenon observed in MP decoding, which manifests itself as an abrupt change in the slope of the error-rate curve,…

  16. A Message-Passing Hardware/Software Cosimulation Environment for Reconfigurable Computing Systems

    Directory of Open Access Journals (Sweden)

    Manuel Saldaña

    2009-01-01

    Full Text Available High-performance reconfigurable computers (HPRCs provide a mix of standard processors and FPGAs to collectively accelerate applications. This introduces new design challenges, such as the need for portable programming models across HPRCs and system-level verification tools. To address the need for cosimulating a complete heterogeneous application using both software and hardware in an HPRC, we have created a tool called the Message-passing Simulation Framework (MSF. We have used it to simulate and develop an interface enabling an MPI-based approach to exchange data between X86 processors and hardware engines inside FPGAs. The MSF can also be used as an application development tool that enables multiple FPGAs in simulation to exchange messages amongst themselves and with X86 processors. As an example, we simulate a LINPACK benchmark hardware core using an Intel-FSB-Xilinx-FPGA platform to quickly prototype the hardware, to test the communications. and to verify the benchmark results.

  17. Partition function expansion on region graphs and message-passing equations

    International Nuclear Information System (INIS)

    Zhou, Haijun; Wang, Chuang; Xiao, Jing-Qing; Bi, Zedong

    2011-01-01

    Disordered and frustrated graphical systems are ubiquitous in physics, biology, and information science. For models on complete graphs or random graphs, deep understanding has been achieved through the mean-field replica and cavity methods. But finite-dimensional 'real' systems remain very challenging because of the abundance of short loops and strong local correlations. A statistical mechanics theory is constructed in this paper for finite-dimensional models based on the mathematical framework of the partition function expansion and the concept of region graphs. Rigorous expressions for the free energy and grand free energy are derived. Message-passing equations on the region graph, such as belief propagation and survey propagation, are also derived rigorously. (letter)

  18. Distributed primal–dual interior-point methods for solving tree-structured coupled convex problems using message-passing

    DEFF Research Database (Denmark)

    Khoshfetrat Pakazad, Sina; Hansson, Anders; Andersen, Martin S.

    2017-01-01

    In this paper, we propose a distributed algorithm for solving coupled problems with chordal sparsity or an inherent tree structure which relies on primal–dual interior-point methods. We achieve this by distributing the computations at each iteration, using message-passing. In comparison to existi...

  19. Parallelization of MCNP Monte Carlo neutron and photon transport code in parallel virtual machine and message passing interface

    International Nuclear Information System (INIS)

    Deng Li; Xie Zhongsheng

    1999-01-01

    The coupled neutron and photon transport Monte Carlo code MCNP (version 3B) has been parallelized in parallel virtual machine (PVM) and message passing interface (MPI) by modifying a previous serial code. The new code has been verified by solving sample problems. The speedup increases linearly with the number of processors and the average efficiency is up to 99% for 12-processor. (author)

  20. Design of a Message Passing Model for Use in a Heterogeneous CPU-NFP Framework for Network Analytics

    CSIR Research Space (South Africa)

    Pennefather, S

    2017-09-01

    Full Text Available of applications written in the Go programming language to be executed on a Network Flow Processor (NFP) for enhanced performance. This paper explores the need and feasibility of implementing a message passing model for data transmission between the NFP and CPU...

  1. Approximate message passing for nonconvex sparse regularization with stability and asymptotic analysis

    Science.gov (United States)

    Sakata, Ayaka; Xu, Yingying

    2018-03-01

    We analyse a linear regression problem with nonconvex regularization called smoothly clipped absolute deviation (SCAD) under an overcomplete Gaussian basis for Gaussian random data. We propose an approximate message passing (AMP) algorithm considering nonconvex regularization, namely SCAD-AMP, and analytically show that the stability condition corresponds to the de Almeida-Thouless condition in spin glass literature. Through asymptotic analysis, we show the correspondence between the density evolution of SCAD-AMP and the replica symmetric (RS) solution. Numerical experiments confirm that for a sufficiently large system size, SCAD-AMP achieves the optimal performance predicted by the replica method. Through replica analysis, a phase transition between replica symmetric and replica symmetry breaking (RSB) region is found in the parameter space of SCAD. The appearance of the RS region for a nonconvex penalty is a significant advantage that indicates the region of smooth landscape of the optimization problem. Furthermore, we analytically show that the statistical representation performance of the SCAD penalty is better than that of \

  2. Communication strategies for angular domain decomposition of transport calculations on message passing multiprocessors

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1997-01-01

    The effect of three communication schemes for solving Arbitrarily High Order Transport (AHOT) methods of the Nodal type on parallel performance is examined via direct measurements and performance models. The target architecture in this study is Oak Ridge National Laboratory's 128 node Paragon XP/S 5 computer and the parallelization is based on the Parallel Virtual Machine (PVM) library. However, the conclusions reached can be easily generalized to a large class of message passing platforms and communication software. The three schemes considered here are: (1) PVM's global operations (broadcast and reduce) which utilizes the Paragon's native corresponding operations based on a spanning tree routing; (2) the Bucket algorithm wherein the angular domain decomposition of the mesh sweep is complemented with a spatial domain decomposition of the accumulation process of the scalar flux from the angular flux and the convergence test; (3) a distributed memory version of the Bucket algorithm that pushes the spatial domain decomposition one step farther by actually distributing the fixed source and flux iterates over the memories of the participating processes. Their conclusion is that the Bucket algorithm is the most efficient of the three if all participating processes have sufficient memories to hold the entire problem arrays. Otherwise, the third scheme becomes necessary at an additional cost to speedup and parallel efficiency that is quantifiable via the parallel performance model

  3. Using Partial Reconfiguration and Message Passing to Enable FPGA-Based Generic Computing Platforms

    Directory of Open Access Journals (Sweden)

    Manuel Saldaña

    2012-01-01

    Full Text Available Partial reconfiguration (PR is an FPGA feature that allows the modification of certain parts of an FPGA while the rest of the system continues to operate without disruption. This distinctive characteristic of FPGAs has many potential benefits but also challenges. The lack of good CAD tools and the deep hardware knowledge requirement result in a hard-to-use feature. In this paper, the new partition-based Xilinx PR flow is used to incorporate PR within our MPI-based message-passing framework to allow hardware designers to create template bitstreams, which are predesigned, prerouted, generic bitstreams that can be reused for multiple applications. As an example of the generality of this approach, four different applications that use the same template bitstream are run consecutively, with a PR operation performed at the beginning of each application to instantiate the desired application engine. We demonstrate a simplified, reusable, high-level, and portable PR interface for X86-FPGA hybrid machines. PR issues such as local resets of reconfigurable modules and context saving and restoring are addressed in this paper followed by some examples and preliminary PR overhead measurements.

  4. Space Reclamation for Uncoordinated Checkpointing in Message-Passing Systems. Ph.D. Thesis

    Science.gov (United States)

    Wang, Yi-Min

    1993-01-01

    Checkpointing and rollback recovery are techniques that can provide efficient recovery from transient process failures. In a message-passing system, the rollback of a message sender may cause the rollback of the corresponding receiver, and the system needs to roll back to a consistent set of checkpoints called recovery line. If the processes are allowed to take uncoordinated checkpoints, the above rollback propagation may result in the domino effect which prevents recovery line progression. Traditionally, only obsolete checkpoints before the global recovery line can be discarded, and the necessary and sufficient condition for identifying all garbage checkpoints has remained an open problem. A necessary and sufficient condition for achieving optimal garbage collection is derived and it is proved that the number of useful checkpoints is bounded by N(N+1)/2, where N is the number of processes. The approach is based on the maximum-sized antichain model of consistent global checkpoints and the technique of recovery line transformation and decomposition. It is also shown that, for systems requiring message logging to record in-transit messages, the same approach can be used to achieve optimal message log reclamation. As a final topic, a unifying framework is described by considering checkpoint coordination and exploiting piecewise determinism as mechanisms for bounding rollback propagation, and the applicability of the optimal garbage collection algorithm to domino-free recovery protocols is demonstrated.

  5. Message passing vs. shared address space on a cluster of SMPs

    International Nuclear Information System (INIS)

    Shan, Hongzhang; Singh, Jaswinder Pal; Oliker, Leonid; Biswas, Rupak

    2001-01-01

    The emergence of scalable computer architectures using clusters of PCs or PC-SMPs with commodity networking has made them attractive platforms for high-end scientific computing. Currently, message passing (MP) and shared address space (SAS) are the two leading programming paradigms for these systems. MP has been standardized with MPI, and is the most common and mature parallel programming approach. However, MP code development can be extremely difficult, especially for irregularly structured computations. SAS offers substantial ease of programming, but may suffer from performance limitations due to poor spatial locality and high protocol overhead. In this paper, they compare the performance of and programming effort required for six applications under both programming models on a 32-CPU PC-SMP cluster. Our application suite consists of codes that typically do not exhibit scalable performance under shared-memory programming due to their high communication-to-computation ratios and complex communication patterns. Results indicate that SAS can achieve about half the parallel efficiency of MPI for most of the applications; however, on certain classes of problems, SAS performance is competitive with MPI

  6. A Scalable Architecture of a Structured LDPC Decoder

    Science.gov (United States)

    Lee, Jason Kwok-San; Lee, Benjamin; Thorpe, Jeremy; Andrews, Kenneth; Dolinar, Sam; Hamkins, Jon

    2004-01-01

    We present a scalable decoding architecture for a certain class of structured LDPC codes. The codes are designed using a small (n,r) protograph that is replicated Z times to produce a decoding graph for a (Z x n, Z x r) code. Using this architecture, we have implemented a decoder for a (4096,2048) LDPC code on a Xilinx Virtex-II 2000 FPGA, and achieved decoding speeds of 31 Mbps with 10 fixed iterations. The implemented message-passing algorithm uses an optimized 3-bit non-uniform quantizer that operates with 0.2dB implementation loss relative to a floating point decoder.

  7. Improved Iterative Hard- and Soft-Reliability Based Majority-Logic Decoding Algorithms for Non-Binary Low-Density Parity-Check Codes

    Science.gov (United States)

    Xiong, Chenrong; Yan, Zhiyuan

    2014-10-01

    Non-binary low-density parity-check (LDPC) codes have some advantages over their binary counterparts, but unfortunately their decoding complexity is a significant challenge. The iterative hard- and soft-reliability based majority-logic decoding algorithms are attractive for non-binary LDPC codes, since they involve only finite field additions and multiplications as well as integer operations and hence have significantly lower complexity than other algorithms. In this paper, we propose two improvements to the majority-logic decoding algorithms. Instead of the accumulation of reliability information in the existing majority-logic decoding algorithms, our first improvement is a new reliability information update. The new update not only results in better error performance and fewer iterations on average, but also further reduces computational complexity. Since existing majority-logic decoding algorithms tend to have a high error floor for codes whose parity check matrices have low column weights, our second improvement is a re-selection scheme, which leads to much lower error floors, at the expense of more finite field operations and integer operations, by identifying periodic points, re-selecting intermediate hard decisions, and changing reliability information.

  8. Message-Passing Receiver for OFDM Systems over Highly Delay-Dispersive Channels

    DEFF Research Database (Denmark)

    Barbu, Oana-Elena; Manchón, Carles Navarro; Rom, Christian

    2017-01-01

    Propagation channels with maximum excess delay exceeding the duration of the cyclic prefix (CP) in OFDM systems cause intercarrier and intersymbol interference which, unless accounted for, degrade the receiver performance. Using tools from Bayesian inference and sparse signal reconstruction, we...... derive an iterative algorithm that estimates an approximate representation of the channel impulse response and the noise variance, estimates and cancels the intrinsic interference and decodes the data over a block of symbols. Simulation results show that the receiver employing our algorithm outperforms...

  9. Comparison of rate one-half, equivalent constraint length 24, binary convolutional codes for use with sequential decoding on the deep-space channel

    Science.gov (United States)

    Massey, J. L.

    1976-01-01

    Virtually all previously-suggested rate 1/2 binary convolutional codes with KE = 24 are compared. Their distance properties are given; and their performance, both in computation and in error probability, with sequential decoding on the deep-space channel is determined by simulation. Recommendations are made both for the choice of a specific KE = 24 code as well as for codes to be included in future coding standards for the deep-space channel. A new result given in this report is a method for determining the statistical significance of error probability data when the error probability is so small that it is not feasible to perform enough decoding simulations to obtain more than a very small number of decoding errors.

  10. A Low-Complexity Joint Detection-Decoding Algorithm for Nonbinary LDPC-Coded Modulation Systems

    OpenAIRE

    Wang, Xuepeng; Bai, Baoming; Ma, Xiao

    2010-01-01

    In this paper, we present a low-complexity joint detection-decoding algorithm for nonbinary LDPC codedmodulation systems. The algorithm combines hard-decision decoding using the message-passing strategy with the signal detector in an iterative manner. It requires low computational complexity, offers good system performance and has a fast rate of decoding convergence. Compared to the q-ary sum-product algorithm (QSPA), it provides an attractive candidate for practical applications of q-ary LDP...

  11. Optimal and efficient decoding of concatenated quantum block codes

    International Nuclear Information System (INIS)

    Poulin, David

    2006-01-01

    We consider the problem of optimally decoding a quantum error correction code--that is, to find the optimal recovery procedure given the outcomes of partial ''check'' measurements on the system. In general, this problem is NP hard. However, we demonstrate that for concatenated block codes, the optimal decoding can be efficiently computed using a message-passing algorithm. We compare the performance of the message-passing algorithm to that of the widespread blockwise hard decoding technique. Our Monte Carlo results using the five-qubit and Steane's code on a depolarizing channel demonstrate significant advantages of the message-passing algorithms in two respects: (i) Optimal decoding increases by as much as 94% the error threshold below which the error correction procedure can be used to reliably send information over a noisy channel; and (ii) for noise levels below these thresholds, the probability of error after optimal decoding is suppressed at a significantly higher rate, leading to a substantial reduction of the error correction overhead

  12. The design of multi-core DSP parallel model based on message passing and multi-level pipeline

    Science.gov (United States)

    Niu, Jingyu; Hu, Jian; He, Wenjing; Meng, Fanrong; Li, Chuanrong

    2017-10-01

    Currently, the design of embedded signal processing system is often based on a specific application, but this idea is not conducive to the rapid development of signal processing technology. In this paper, a parallel processing model architecture based on multi-core DSP platform is designed, and it is mainly suitable for the complex algorithms which are composed of different modules. This model combines the ideas of multi-level pipeline parallelism and message passing, and summarizes the advantages of the mainstream model of multi-core DSP (the Master-Slave model and the Data Flow model), so that it has better performance. This paper uses three-dimensional image generation algorithm to validate the efficiency of the proposed model by comparing with the effectiveness of the Master-Slave and the Data Flow model.

  13. Statistical Physics, Optimization, Inference, and Message-Passing Algorithms : Lecture Notes of the Les Houches School of Physics : Special Issue, October 2013

    CERN Document Server

    Ricci-Tersenghi, Federico; Zdeborova, Lenka; Zecchina, Riccardo; Tramel, Eric W; Cugliandolo, Leticia F

    2015-01-01

    This book contains a collection of the presentations that were given in October 2013 at the Les Houches Autumn School on statistical physics, optimization, inference, and message-passing algorithms. In the last decade, there has been increasing convergence of interest and methods between theoretical physics and fields as diverse as probability, machine learning, optimization, and inference problems. In particular, much theoretical and applied work in statistical physics and computer science has relied on the use of message-passing algorithms and their connection to the statistical physics of glasses and spin glasses. For example, both the replica and cavity methods have led to recent advances in compressed sensing, sparse estimation, and random constraint satisfaction, to name a few. This book’s detailed pedagogical lectures on statistical inference, computational complexity, the replica and cavity methods, and belief propagation are aimed particularly at PhD students, post-docs, and young researchers desir...

  14. Can rare SAT formulae be easily recognized? On the efficiency of message-passing algorithms for K-SAT at large clause-to-variable ratios

    International Nuclear Information System (INIS)

    Altarelli, Fabrizio; Monasson, Remi; Zamponi, Francesco

    2007-01-01

    For large clause-to-variable ratios, typical K-SAT instances drawn from the uniform distribution have no solution. We argue, based on statistical mechanics calculations using the replica and cavity methods, that rare satisfiable instances from the uniform distribution are very similar to typical instances drawn from the so-called planted distribution, where instances are chosen uniformly between the ones that admit a given solution. It then follows, from a recent article by Feige, Mossel and Vilenchik (2006 Complete convergence of message passing algorithms for some satisfiability problems Proc. Random 2006 pp 339-50), that these rare instances can be easily recognized (in O(log N) time and with probability close to 1) by a simple message-passing algorithm

  15. Message-passing-interface-based parallel FDTD investigation on the EM scattering from a 1-D rough sea surface using uniaxial perfectly matched layer absorbing boundary.

    Science.gov (United States)

    Li, J; Guo, L-X; Zeng, H; Han, X-B

    2009-06-01

    A message-passing-interface (MPI)-based parallel finite-difference time-domain (FDTD) algorithm for the electromagnetic scattering from a 1-D randomly rough sea surface is presented. The uniaxial perfectly matched layer (UPML) medium is adopted for truncation of FDTD lattices, in which the finite-difference equations can be used for the total computation domain by properly choosing the uniaxial parameters. This makes the parallel FDTD algorithm easier to implement. The parallel performance with different processors is illustrated for one sea surface realization, and the computation time of the parallel FDTD algorithm is dramatically reduced compared to a single-process implementation. Finally, some numerical results are shown, including the backscattering characteristics of sea surface for different polarization and the bistatic scattering from a sea surface with large incident angle and large wind speed.

  16. List Decoding of Algebraic Codes

    DEFF Research Database (Denmark)

    Nielsen, Johan Sebastian Rosenkilde

    We investigate three paradigms for polynomial-time decoding of Reed–Solomon codes beyond half the minimum distance: the Guruswami–Sudan algorithm, Power decoding and the Wu algorithm. The main results concern shaping the computational core of all three methods to a problem solvable by module...... Hermitian codes using Guruswami–Sudan or Power decoding faster than previously known, and we show how to Wu list decode binary Goppa codes....... to solve such using module minimisation, or using our new Demand–Driven algorithm which is also based on module minimisation. The decoding paradigms are all derived and analysed in a self-contained manner, often in new ways or examined in greater depth than previously. Among a number of new results, we...

  17. Gallager error-correcting codes for binary asymmetric channels

    International Nuclear Information System (INIS)

    Neri, I; Skantzos, N S; Bollé, D

    2008-01-01

    We derive critical noise levels for Gallager codes on asymmetric channels as a function of the input bias and the temperature. Using a statistical mechanics approach we study the space of codewords and the entropy in the various decoding regimes. We further discuss the relation of the convergence of the message passing algorithm with the endogenous property and complexity, characterizing solutions of recursive equations of distributions for cavity fields

  18. An efficient CDMA decoder for correlated information sources

    International Nuclear Information System (INIS)

    Efraim, Hadar; Yacov, Nadav; Kanter, Ido; Shental, Ori

    2009-01-01

    We consider the detection of correlated information sources in the ubiquitous code-division multiple-access (CDMA) scheme. We propose a message-passing based scheme for detecting correlated sources directly, with no need for source coding. The detection is done simultaneously over a block of transmitted binary symbols (word). Simulation results are provided, demonstrating a substantial improvement in bit error rate in comparison with the unmodified detector and the alternative of source compression. The robustness of the error-performance improvement is shown under practical model settings, including wrong estimation of the generating Markov transition matrix and finite-length spreading codes

  19. Real-time minimal-bit-error probability decoding of convolutional codes

    Science.gov (United States)

    Lee, L.-N.

    1974-01-01

    A recursive procedure is derived for decoding of rate R = 1/n binary convolutional codes which minimizes the probability of the individual decoding decisions for each information bit, subject to the constraint that the decoding delay be limited to Delta branches. This new decoding algorithm is similar to, but somewhat more complex than, the Viterbi decoding algorithm. A real-time, i.e., fixed decoding delay, version of the Viterbi algorithm is also developed and used for comparison to the new algorithm on simulated channels. It is shown that the new algorithm offers advantages over Viterbi decoding in soft-decision applications, such as in the inner coding system for concatenated coding.

  20. Real-time minimal bit error probability decoding of convolutional codes

    Science.gov (United States)

    Lee, L. N.

    1973-01-01

    A recursive procedure is derived for decoding of rate R=1/n binary convolutional codes which minimizes the probability of the individual decoding decisions for each information bit subject to the constraint that the decoding delay be limited to Delta branches. This new decoding algorithm is similar to, but somewhat more complex than, the Viterbi decoding algorithm. A real-time, i.e. fixed decoding delay, version of the Viterbi algorithm is also developed and used for comparison to the new algorithm on simulated channels. It is shown that the new algorithm offers advantages over Viterbi decoding in soft-decision applications such as in the inner coding system for concatenated coding.

  1. Decoding Algorithms for Random Linear Network Codes

    DEFF Research Database (Denmark)

    Heide, Janus; Pedersen, Morten Videbæk; Fitzek, Frank

    2011-01-01

    We consider the problem of efficient decoding of a random linear code over a finite field. In particular we are interested in the case where the code is random, relatively sparse, and use the binary finite field as an example. The goal is to decode the data using fewer operations to potentially...... achieve a high coding throughput, and reduce energy consumption.We use an on-the-fly version of the Gauss-Jordan algorithm as a baseline, and provide several simple improvements to reduce the number of operations needed to perform decoding. Our tests show that the improvements can reduce the number...

  2. An Area-Efficient Reconfigurable LDPC Decoder with Conflict Resolution

    Science.gov (United States)

    Zhou, Changsheng; Huang, Yuebin; Huang, Shuangqu; Chen, Yun; Zeng, Xiaoyang

    Based on Turbo-Decoding Message-Passing (TDMP) and Normalized Min-Sum (NMS) algorithm, an area efficient LDPC decoder that supports both structured and unstructured LDPC codes is proposed in this paper. We introduce a solution to solve the memory access conflict problem caused by TDMP algorithm. We also arrange the main timing schedule carefully to handle the operations of our solution while avoiding much additional hardware consumption. To reduce the memory bits needed, the extrinsic message storing strategy is also optimized. Besides the extrinsic message recover and the accumulate operation are merged together. To verify our architecture, a LDPC decoder that supports both China Multimedia Mobile Broadcasting (CMMB) and Digital Terrestrial/ Television Multimedia Broadcasting (DTMB) standards is developed using SMIC 0.13µm standard CMOS process. The core area is 4.75mm2 and the maximum operating clock frequency is 200MHz. The estimated power consumption is 48.4mW at 25MHz for CMMB and 130.9mW at 50MHz for DTMB with 5 iterations and 1.2V supply.

  3. Iterative List Decoding

    DEFF Research Database (Denmark)

    Justesen, Jørn; Høholdt, Tom; Hjaltason, Johan

    2005-01-01

    We analyze the relation between iterative decoding and the extended parity check matrix. By considering a modified version of bit flipping, which produces a list of decoded words, we derive several relations between decodable error patterns and the parameters of the code. By developing a tree...... of codewords at minimal distance from the received vector, we also obtain new information about the code....

  4. Achievable Information Rates for Coded Modulation With Hard Decision Decoding for Coherent Fiber-Optic Systems

    Science.gov (United States)

    Sheikh, Alireza; Amat, Alexandre Graell i.; Liva, Gianluigi

    2017-12-01

    We analyze the achievable information rates (AIRs) for coded modulation schemes with QAM constellations with both bit-wise and symbol-wise decoders, corresponding to the case where a binary code is used in combination with a higher-order modulation using the bit-interleaved coded modulation (BICM) paradigm and to the case where a nonbinary code over a field matched to the constellation size is used, respectively. In particular, we consider hard decision decoding, which is the preferable option for fiber-optic communication systems where decoding complexity is a concern. Recently, Liga \\emph{et al.} analyzed the AIRs for bit-wise and symbol-wise decoders considering what the authors called \\emph{hard decision decoder} which, however, exploits \\emph{soft information} of the transition probabilities of discrete-input discrete-output channel resulting from the hard detection. As such, the complexity of the decoder is essentially the same as the complexity of a soft decision decoder. In this paper, we analyze instead the AIRs for the standard hard decision decoder, commonly used in practice, where the decoding is based on the Hamming distance metric. We show that if standard hard decision decoding is used, bit-wise decoders yield significantly higher AIRs than symbol-wise decoders. As a result, contrary to the conclusion by Liga \\emph{et al.}, binary decoders together with the BICM paradigm are preferable for spectrally-efficient fiber-optic systems. We also design binary and nonbinary staircase codes and show that, in agreement with the AIRs, binary codes yield better performance.

  5. Forced Sequence Sequential Decoding

    DEFF Research Database (Denmark)

    Jensen, Ole Riis

    In this thesis we describe a new concatenated decoding scheme based on iterations between an inner sequentially decoded convolutional code of rate R=1/4 and memory M=23, and block interleaved outer Reed-Solomon codes with non-uniform profile. With this scheme decoding with good performance...... is possible as low as Eb/No=0.6 dB, which is about 1.7 dB below the signal-to-noise ratio that marks the cut-off rate for the convolutional code. This is possible since the iteration process provides the sequential decoders with side information that allows a smaller average load and minimizes the probability...... of computational overflow. Analytical results for the probability that the first Reed-Solomon word is decoded after C computations are presented. This is supported by simulation results that are also extended to other parameters....

  6. Optimization of MPEG decoding

    DEFF Research Database (Denmark)

    Martins, Bo; Forchhammer, Søren

    1999-01-01

    MPEG-2 video decoding is examined. A unified approach to quality improvement, chrominance upsampling, de-interlacing and superresolution is presented. The information over several frames is combined as part of the processing....

  7. Forced Sequence Sequential Decoding

    DEFF Research Database (Denmark)

    Jensen, Ole Riis; Paaske, Erik

    1998-01-01

    We describe a new concatenated decoding scheme based on iterations between an inner sequentially decoded convolutional code of rate R=1/4 and memory M=23, and block interleaved outer Reed-Solomon (RS) codes with nonuniform profile. With this scheme decoding with good performance is possible as low...... as Eb/N0=0.6 dB, which is about 1.25 dB below the signal-to-noise ratio (SNR) that marks the cutoff rate for the full system. Accounting for about 0.45 dB due to the outer codes, sequential decoding takes place at about 1.7 dB below the SNR cutoff rate for the convolutional code. This is possible since...... the iteration process provides the sequential decoders with side information that allows a smaller average load and minimizes the probability of computational overflow. Analytical results for the probability that the first RS word is decoded after C computations are presented. These results are supported...

  8. Decoding communities in networks

    Science.gov (United States)

    Radicchi, Filippo

    2018-02-01

    According to a recent information-theoretical proposal, the problem of defining and identifying communities in networks can be interpreted as a classical communication task over a noisy channel: memberships of nodes are information bits erased by the channel, edges and nonedges in the network are parity bits introduced by the encoder but degraded through the channel, and a community identification algorithm is a decoder. The interpretation is perfectly equivalent to the one at the basis of well-known statistical inference algorithms for community detection. The only difference in the interpretation is that a noisy channel replaces a stochastic network model. However, the different perspective gives the opportunity to take advantage of the rich set of tools of coding theory to generate novel insights on the problem of community detection. In this paper, we illustrate two main applications of standard coding-theoretical methods to community detection. First, we leverage a state-of-the-art decoding technique to generate a family of quasioptimal community detection algorithms. Second and more important, we show that the Shannon's noisy-channel coding theorem can be invoked to establish a lower bound, here named as decodability bound, for the maximum amount of noise tolerable by an ideal decoder to achieve perfect detection of communities. When computed for well-established synthetic benchmarks, the decodability bound explains accurately the performance achieved by the best community detection algorithms existing on the market, telling us that only little room for their improvement is still potentially left.

  9. Decoding communities in networks.

    Science.gov (United States)

    Radicchi, Filippo

    2018-02-01

    According to a recent information-theoretical proposal, the problem of defining and identifying communities in networks can be interpreted as a classical communication task over a noisy channel: memberships of nodes are information bits erased by the channel, edges and nonedges in the network are parity bits introduced by the encoder but degraded through the channel, and a community identification algorithm is a decoder. The interpretation is perfectly equivalent to the one at the basis of well-known statistical inference algorithms for community detection. The only difference in the interpretation is that a noisy channel replaces a stochastic network model. However, the different perspective gives the opportunity to take advantage of the rich set of tools of coding theory to generate novel insights on the problem of community detection. In this paper, we illustrate two main applications of standard coding-theoretical methods to community detection. First, we leverage a state-of-the-art decoding technique to generate a family of quasioptimal community detection algorithms. Second and more important, we show that the Shannon's noisy-channel coding theorem can be invoked to establish a lower bound, here named as decodability bound, for the maximum amount of noise tolerable by an ideal decoder to achieve perfect detection of communities. When computed for well-established synthetic benchmarks, the decodability bound explains accurately the performance achieved by the best community detection algorithms existing on the market, telling us that only little room for their improvement is still potentially left.

  10. Adaptive decoding of convolutional codes

    Directory of Open Access Journals (Sweden)

    K. Hueske

    2007-06-01

    Full Text Available Convolutional codes, which are frequently used as error correction codes in digital transmission systems, are generally decoded using the Viterbi Decoder. On the one hand the Viterbi Decoder is an optimum maximum likelihood decoder, i.e. the most probable transmitted code sequence is obtained. On the other hand the mathematical complexity of the algorithm only depends on the used code, not on the number of transmission errors. To reduce the complexity of the decoding process for good transmission conditions, an alternative syndrome based decoder is presented. The reduction of complexity is realized by two different approaches, the syndrome zero sequence deactivation and the path metric equalization. The two approaches enable an easy adaptation of the decoding complexity for different transmission conditions, which results in a trade-off between decoding complexity and error correction performance.

  11. Adaptive decoding of convolutional codes

    Science.gov (United States)

    Hueske, K.; Geldmacher, J.; Götze, J.

    2007-06-01

    Convolutional codes, which are frequently used as error correction codes in digital transmission systems, are generally decoded using the Viterbi Decoder. On the one hand the Viterbi Decoder is an optimum maximum likelihood decoder, i.e. the most probable transmitted code sequence is obtained. On the other hand the mathematical complexity of the algorithm only depends on the used code, not on the number of transmission errors. To reduce the complexity of the decoding process for good transmission conditions, an alternative syndrome based decoder is presented. The reduction of complexity is realized by two different approaches, the syndrome zero sequence deactivation and the path metric equalization. The two approaches enable an easy adaptation of the decoding complexity for different transmission conditions, which results in a trade-off between decoding complexity and error correction performance.

  12. Decoding Xing-Ling codes

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Refslund

    2002-01-01

    This paper describes an efficient decoding method for a recent construction of good linear codes as well as an extension to the construction. Furthermore, asymptotic properties and list decoding of the codes are discussed.......This paper describes an efficient decoding method for a recent construction of good linear codes as well as an extension to the construction. Furthermore, asymptotic properties and list decoding of the codes are discussed....

  13. Photonic circuits for iterative decoding of a class of low-density parity-check codes

    International Nuclear Information System (INIS)

    Pavlichin, Dmitri S; Mabuchi, Hideo

    2014-01-01

    Photonic circuits in which stateful components are coupled via guided electromagnetic fields are natural candidates for resource-efficient implementation of iterative stochastic algorithms based on propagation of information around a graph. Conversely, such message=passing algorithms suggest novel circuit architectures for signal processing and computation that are well matched to nanophotonic device physics. Here, we construct and analyze a quantum optical model of a photonic circuit for iterative decoding of a class of low-density parity-check (LDPC) codes called expander codes. Our circuit can be understood as an open quantum system whose autonomous dynamics map straightforwardly onto the subroutines of an LDPC decoding scheme, with several attractive features: it can operate in the ultra-low power regime of photonics in which quantum fluctuations become significant, it is robust to noise and component imperfections, it achieves comparable performance to known iterative algorithms for this class of codes, and it provides an instructive example of how nanophotonic cavity quantum electrodynamic components can enable useful new information technology even if the solid-state qubits on which they are based are heavily dephased and cannot support large-scale entanglement. (paper)

  14. On the decoding process in ternary error-correcting output codes.

    Science.gov (United States)

    Escalera, Sergio; Pujol, Oriol; Radeva, Petia

    2010-01-01

    A common way to model multiclass classification problems is to design a set of binary classifiers and to combine them. Error-Correcting Output Codes (ECOC) represent a successful framework to deal with these type of problems. Recent works in the ECOC framework showed significant performance improvements by means of new problem-dependent designs based on the ternary ECOC framework. The ternary framework contains a larger set of binary problems because of the use of a "do not care" symbol that allows us to ignore some classes by a given classifier. However, there are no proper studies that analyze the effect of the new symbol at the decoding step. In this paper, we present a taxonomy that embeds all binary and ternary ECOC decoding strategies into four groups. We show that the zero symbol introduces two kinds of biases that require redefinition of the decoding design. A new type of decoding measure is proposed, and two novel decoding strategies are defined. We evaluate the state-of-the-art coding and decoding strategies over a set of UCI Machine Learning Repository data sets and into a real traffic sign categorization problem. The experimental results show that, following the new decoding strategies, the performance of the ECOC design is significantly improved.

  15. Decoding Codes on Graphs

    Indian Academy of Sciences (India)

    Shannon limit of the channel. Among the earliest discovered codes that approach the. Shannon limit were the low density parity check (LDPC) codes. The term low density arises from the property of the parity check matrix defining the code. We will now define this matrix and the role that it plays in decoding. 2. Linear Codes.

  16. On minimizing the maximum broadcast decoding delay for instantly decodable network coding

    KAUST Repository

    Douik, Ahmed S.; Sorour, Sameh; Alouini, Mohamed-Slim; Ai-Naffouri, Tareq Y.

    2014-01-01

    In this paper, we consider the problem of minimizing the maximum broadcast decoding delay experienced by all the receivers of generalized instantly decodable network coding (IDNC). Unlike the sum decoding delay, the maximum decoding delay as a

  17. Decoding the human genome

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit; Antonerakis, S E

    2002-01-01

    Decoding the Human genome is a very up-to-date topic, raising several questions besides purely scientific, in view of the two competing teams (public and private), the ethics of using the results, and the fact that the project went apparently faster and easier than expected. The lecture series will address the following chapters: Scientific basis and challenges. Ethical and social aspects of genomics.

  18. Decoding Facial Expressions: A New Test with Decoding Norms.

    Science.gov (United States)

    Leathers, Dale G.; Emigh, Ted H.

    1980-01-01

    Describes the development and testing of a new facial meaning sensitivity test designed to determine how specialized are the meanings that can be decoded from facial expressions. Demonstrates the use of the test to measure a receiver's current level of skill in decoding facial expressions. (JMF)

  19. Optimized Min-Sum Decoding Algorithm for Low Density Parity Check Codes

    OpenAIRE

    Mohammad Rakibul Islam; Dewan Siam Shafiullah; Muhammad Mostafa Amir Faisal; Imran Rahman

    2011-01-01

    Low Density Parity Check (LDPC) code approaches Shannon–limit performance for binary field and long code lengths. However, performance of binary LDPC code is degraded when the code word length is small. An optimized min-sum algorithm for LDPC code is proposed in this paper. In this algorithm unlike other decoding methods, an optimization factor has been introduced in both check node and bit node of the Min-sum algorithm. The optimization factor is obtained before decoding program, and the sam...

  20. Decoding suprathreshold stochastic resonance with optimal weights

    International Nuclear Information System (INIS)

    Xu, Liyan; Vladusich, Tony; Duan, Fabing; Gunn, Lachlan J.; Abbott, Derek; McDonnell, Mark D.

    2015-01-01

    We investigate an array of stochastic quantizers for converting an analog input signal into a discrete output in the context of suprathreshold stochastic resonance. A new optimal weighted decoding is considered for different threshold level distributions. We show that for particular noise levels and choices of the threshold levels optimally weighting the quantizer responses provides a reduced mean square error in comparison with the original unweighted array. However, there are also many parameter regions where the original array provides near optimal performance, and when this occurs, it offers a much simpler approach than optimally weighting each quantizer's response. - Highlights: • A weighted summing array of independently noisy binary comparators is investigated. • We present an optimal linearly weighted decoding scheme for combining the comparator responses. • We solve for the optimal weights by applying least squares regression to simulated data. • We find that the MSE distortion of weighting before summation is superior to unweighted summation of comparator responses. • For some parameter regions, the decrease in MSE distortion due to weighting is negligible

  1. Decoding Codes on Graphs

    Indian Academy of Sciences (India)

    having a probability Pi of being equal to a 1. Let us assume ... equal to a 0/1 has no bearing on the probability of the. It is often ... bits (call this set S) whose individual bits add up to zero ... In the context of binary error-correct~ng codes, specifi-.

  2. Decoding vigilance with NIRS.

    Science.gov (United States)

    Bogler, Carsten; Mehnert, Jan; Steinbrink, Jens; Haynes, John-Dylan

    2014-01-01

    Sustained, long-term cognitive workload is associated with variations and decrements in performance. Such fluctuations in vigilance can be a risk factor especially during dangerous attention demanding activities. Functional MRI studies have shown that attentional performance is correlated with BOLD-signals, especially in parietal and prefrontal cortical regions. An interesting question is whether these BOLD-signals could be measured in real-world scenarios, say to warn in a dangerous workplace whenever a subjects' vigilance is low. Because fMRI lacks the mobility needed for such applications, we tested whether the monitoring of vigilance might be possible using Near-Infrared Spectroscopy (NIRS). NIRS is a highly mobile technique that measures hemodynamics in the surface of the brain. We demonstrate that non-invasive NIRS signals correlate with vigilance. These signals carry enough information to decode subjects' reaction times at a single trial level.

  3. Decoding vigilance with NIRS.

    Directory of Open Access Journals (Sweden)

    Carsten Bogler

    Full Text Available Sustained, long-term cognitive workload is associated with variations and decrements in performance. Such fluctuations in vigilance can be a risk factor especially during dangerous attention demanding activities. Functional MRI studies have shown that attentional performance is correlated with BOLD-signals, especially in parietal and prefrontal cortical regions. An interesting question is whether these BOLD-signals could be measured in real-world scenarios, say to warn in a dangerous workplace whenever a subjects' vigilance is low. Because fMRI lacks the mobility needed for such applications, we tested whether the monitoring of vigilance might be possible using Near-Infrared Spectroscopy (NIRS. NIRS is a highly mobile technique that measures hemodynamics in the surface of the brain. We demonstrate that non-invasive NIRS signals correlate with vigilance. These signals carry enough information to decode subjects' reaction times at a single trial level.

  4. Astrophysics Decoding the cosmos

    CERN Document Server

    Irwin, Judith A

    2007-01-01

    Astrophysics: Decoding the Cosmos is an accessible introduction to the key principles and theories underlying astrophysics. This text takes a close look at the radiation and particles that we receive from astronomical objects, providing a thorough understanding of what this tells us, drawing the information together using examples to illustrate the process of astrophysics. Chapters dedicated to objects showing complex processes are written in an accessible manner and pull relevant background information together to put the subject firmly into context. The intention of the author is that the book will be a 'tool chest' for undergraduate astronomers wanting to know the how of astrophysics. Students will gain a thorough grasp of the key principles, ensuring that this often-difficult subject becomes more accessible.

  5. Interacting binaries

    International Nuclear Information System (INIS)

    Eggleton, P.P.; Pringle, J.E.

    1985-01-01

    This volume contains 15 review articles in the field of binary stars. The subjects reviewed span considerably, from the shortest period of interacting binaries to the longest, symbiotic stars. Also included are articles on Algols, X-ray binaries and Wolf-Rayet stars (single and binary). Contents: Preface. List of Participants. Activity of Contact Binary Systems. Wolf-Rayet Stars and Binarity. Symbiotic Stars. Massive X-ray Binaries. Stars that go Hump in the Night: The SU UMa Stars. Interacting Binaries - Summing Up

  6. Neural Decoder for Topological Codes

    Science.gov (United States)

    Torlai, Giacomo; Melko, Roger G.

    2017-07-01

    We present an algorithm for error correction in topological codes that exploits modern machine learning techniques. Our decoder is constructed from a stochastic neural network called a Boltzmann machine, of the type extensively used in deep learning. We provide a general prescription for the training of the network and a decoding strategy that is applicable to a wide variety of stabilizer codes with very little specialization. We demonstrate the neural decoder numerically on the well-known two-dimensional toric code with phase-flip errors.

  7. High-speed architecture for the decoding of trellis-coded modulation

    Science.gov (United States)

    Osborne, William P.

    1992-01-01

    Since 1971, when the Viterbi Algorithm was introduced as the optimal method of decoding convolutional codes, improvements in circuit technology, especially VLSI, have steadily increased its speed and practicality. Trellis-Coded Modulation (TCM) combines convolutional coding with higher level modulation (non-binary source alphabet) to provide forward error correction and spectral efficiency. For binary codes, the current stare-of-the-art is a 64-state Viterbi decoder on a single CMOS chip, operating at a data rate of 25 Mbps. Recently, there has been an interest in increasing the speed of the Viterbi Algorithm by improving the decoder architecture, or by reducing the algorithm itself. Designs employing new architectural techniques are now in existence, however these techniques are currently applied to simpler binary codes, not to TCM. The purpose of this report is to discuss TCM architectural considerations in general, and to present the design, at the logic gate level, or a specific TCM decoder which applies these considerations to achieve high-speed decoding.

  8. Fast decoding algorithms for geometric coded apertures

    International Nuclear Information System (INIS)

    Byard, Kevin

    2015-01-01

    Fast decoding algorithms are described for the class of coded aperture designs known as geometric coded apertures which were introduced by Gourlay and Stephen. When compared to the direct decoding method, the algorithms significantly reduce the number of calculations required when performing the decoding for these apertures and hence speed up the decoding process. Experimental tests confirm the efficacy of these fast algorithms, demonstrating a speed up of approximately two to three orders of magnitude over direct decoding.

  9. A Loader for Executing Multi-Binary Applications on the Thinking Machines CM-5: It's Not Just for SPMD Anymore

    Science.gov (United States)

    Becker, Jeffrey C.

    1995-01-01

    The Thinking Machines CM-5 platform was designed to run single program, multiple data (SPMD) applications, i.e., to run a single binary across all nodes of a partition, with each node possibly operating on different data. Certain classes of applications, such as multi-disciplinary computational fluid dynamics codes, are facilitated by the ability to have subsets of the partition nodes running different binaries. In order to extend the CM-5 system software to permit such applications, a multi-program loader was developed. This system is based on the dld loader which was originally developed for workstations. This paper provides a high level description of dld, and describes how it was ported to the CM-5 to provide support for multi-binary applications. Finally, it elaborates how the loader has been used to implement the CM-5 version of MPIRUN, a portable facility for running multi-disciplinary/multi-zonal MPI (Message-Passing Interface Standard) codes.

  10. Low Complexity List Decoding for Polar Codes with Multiple CRC Codes

    Directory of Open Access Journals (Sweden)

    Jong-Hwan Kim

    2017-04-01

    Full Text Available Polar codes are the first family of error correcting codes that provably achieve the capacity of symmetric binary-input discrete memoryless channels with low complexity. Since the development of polar codes, there have been many studies to improve their finite-length performance. As a result, polar codes are now adopted as a channel code for the control channel of 5G new radio of the 3rd generation partnership project. However, the decoder implementation is one of the big practical problems and low complexity decoding has been studied. This paper addresses a low complexity successive cancellation list decoding for polar codes utilizing multiple cyclic redundancy check (CRC codes. While some research uses multiple CRC codes to reduce memory and time complexity, we consider the operational complexity of decoding, and reduce it by optimizing CRC positions in combination with a modified decoding operation. Resultingly, the proposed scheme obtains not only complexity reduction from early stopping of decoding, but also additional reduction from the reduced number of decoding paths.

  11. Soft decoding a self-dual (48, 24; 12) code

    Science.gov (United States)

    Solomon, G.

    1993-01-01

    A self-dual (48,24;12) code comes from restricting a binary cyclic (63,18;36) code to a 6 x 7 matrix, adding an eighth all-zero column, and then adjoining six dimensions to this extended 6 x 8 matrix. These six dimensions are generated by linear combinations of row permutations of a 6 x 8 matrix of weight 12, whose sums of rows and columns add to one. A soft decoding using these properties and approximating maximum likelihood is presented here. This is preliminary to a possible soft decoding of the box (72,36;15) code that promises a 7.7-dB theoretical coding under maximum likelihood.

  12. Orientation decoding: Sense in spirals?

    Science.gov (United States)

    Clifford, Colin W G; Mannion, Damien J

    2015-04-15

    The orientation of a visual stimulus can be successfully decoded from the multivariate pattern of fMRI activity in human visual cortex. Whether this capacity requires coarse-scale orientation biases is controversial. We and others have advocated the use of spiral stimuli to eliminate a potential coarse-scale bias-the radial bias toward local orientations that are collinear with the centre of gaze-and hence narrow down the potential coarse-scale biases that could contribute to orientation decoding. The usefulness of this strategy is challenged by the computational simulations of Carlson (2014), who reported the ability to successfully decode spirals of opposite sense (opening clockwise or counter-clockwise) from the pooled output of purportedly unbiased orientation filters. Here, we elaborate the mathematical relationship between spirals of opposite sense to confirm that they cannot be discriminated on the basis of the pooled output of unbiased or radially biased orientation filters. We then demonstrate that Carlson's (2014) reported decoding ability is consistent with the presence of inadvertent biases in the set of orientation filters; biases introduced by their digital implementation and unrelated to the brain's processing of orientation. These analyses demonstrate that spirals must be processed with an orientation bias other than the radial bias for successful decoding of spiral sense. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Algorithms for parallel flow solvers on message passing architectures

    Science.gov (United States)

    Vanderwijngaart, Rob F.

    1995-01-01

    The purpose of this project has been to identify and test suitable technologies for implementation of fluid flow solvers -- possibly coupled with structures and heat equation solvers -- on MIMD parallel computers. In the course of this investigation much attention has been paid to efficient domain decomposition strategies for ADI-type algorithms. Multi-partitioning derives its efficiency from the assignment of several blocks of grid points to each processor in the parallel computer. A coarse-grain parallelism is obtained, and a near-perfect load balance results. In uni-partitioning every processor receives responsibility for exactly one block of grid points instead of several. This necessitates fine-grain pipelined program execution in order to obtain a reasonable load balance. Although fine-grain parallelism is less desirable on many systems, especially high-latency networks of workstations, uni-partition methods are still in wide use in production codes for flow problems. Consequently, it remains important to achieve good efficiency with this technique that has essentially been superseded by multi-partitioning for parallel ADI-type algorithms. Another reason for the concentration on improving the performance of pipeline methods is their applicability in other types of flow solver kernels with stronger implied data dependence. Analytical expressions can be derived for the size of the dynamic load imbalance incurred in traditional pipelines. From these it can be determined what is the optimal first-processor retardation that leads to the shortest total completion time for the pipeline process. Theoretical predictions of pipeline performance with and without optimization match experimental observations on the iPSC/860 very well. Analysis of pipeline performance also highlights the effect of uncareful grid partitioning in flow solvers that employ pipeline algorithms. If grid blocks at boundaries are not at least as large in the wall-normal direction as those immediately adjacent to them, then the first processor in the pipeline will receive a computational load that is less than that of subsequent processors, magnifying the pipeline slowdown effect. Extra compensation is needed for grid boundary effects, even if all grid blocks are equally sized.

  14. Optimizing spread dynamics on graphs by message passing

    International Nuclear Information System (INIS)

    Altarelli, F; Braunstein, A; Dall’Asta, L; Zecchina, R

    2013-01-01

    Cascade processes are responsible for many important phenomena in natural and social sciences. Simple models of irreversible dynamics on graphs, in which nodes activate depending on the state of their neighbors, have been successfully applied to describe cascades in a large variety of contexts. Over the past decades, much effort has been devoted to understanding the typical behavior of the cascades arising from initial conditions extracted at random from some given ensemble. However, the problem of optimizing the trajectory of the system, i.e. of identifying appropriate initial conditions to maximize (or minimize) the final number of active nodes, is still considered to be practically intractable, with the only exception being models that satisfy a sort of diminishing returns property called submodularity. Submodular models can be approximately solved by means of greedy strategies, but by definition they lack cooperative characteristics which are fundamental in many real systems. Here we introduce an efficient algorithm based on statistical physics for the optimization of trajectories in cascade processes on graphs. We show that for a wide class of irreversible dynamics, even in the absence of submodularity, the spread optimization problem can be solved efficiently on large networks. Analytic and algorithmic results on random graphs are complemented by the solution of the spread maximization problem on a real-world network (the Epinions consumer reviews network). (paper)

  15. Discrete geometric analysis of message passing algorithm on graphs

    Science.gov (United States)

    Watanabe, Yusuke

    2010-04-01

    We often encounter probability distributions given as unnormalized products of non-negative functions. The factorization structures are represented by hypergraphs called factor graphs. Such distributions appear in various fields, including statistics, artificial intelligence, statistical physics, error correcting codes, etc. Given such a distribution, computations of marginal distributions and the normalization constant are often required. However, they are computationally intractable because of their computational costs. One successful approximation method is Loopy Belief Propagation (LBP) algorithm. The focus of this thesis is an analysis of the LBP algorithm. If the factor graph is a tree, i.e. having no cycle, the algorithm gives the exact quantities. If the factor graph has cycles, however, the LBP algorithm does not give exact results and possibly exhibits oscillatory and non-convergent behaviors. The thematic question of this thesis is "How the behaviors of the LBP algorithm are affected by the discrete geometry of the factor graph?" The primary contribution of this thesis is the discovery of a formula that establishes the relation between the LBP, the Bethe free energy and the graph zeta function. This formula provides new techniques for analysis of the LBP algorithm, connecting properties of the graph and of the LBP and the Bethe free energy. We demonstrate applications of the techniques to several problems including (non) convexity of the Bethe free energy, the uniqueness and stability of the LBP fixed point. We also discuss the loop series initiated by Chertkov and Chernyak. The loop series is a subgraph expansion of the normalization constant, or partition function, and reflects the graph geometry. We investigate theoretical natures of the series. Moreover, we show a partial connection between the loop series and the graph zeta function.

  16. Optimizing spread dynamics on graphs by message passing

    Science.gov (United States)

    Altarelli, F.; Braunstein, A.; Dall'Asta, L.; Zecchina, R.

    2013-09-01

    Cascade processes are responsible for many important phenomena in natural and social sciences. Simple models of irreversible dynamics on graphs, in which nodes activate depending on the state of their neighbors, have been successfully applied to describe cascades in a large variety of contexts. Over the past decades, much effort has been devoted to understanding the typical behavior of the cascades arising from initial conditions extracted at random from some given ensemble. However, the problem of optimizing the trajectory of the system, i.e. of identifying appropriate initial conditions to maximize (or minimize) the final number of active nodes, is still considered to be practically intractable, with the only exception being models that satisfy a sort of diminishing returns property called submodularity. Submodular models can be approximately solved by means of greedy strategies, but by definition they lack cooperative characteristics which are fundamental in many real systems. Here we introduce an efficient algorithm based on statistical physics for the optimization of trajectories in cascade processes on graphs. We show that for a wide class of irreversible dynamics, even in the absence of submodularity, the spread optimization problem can be solved efficiently on large networks. Analytic and algorithmic results on random graphs are complemented by the solution of the spread maximization problem on a real-world network (the Epinions consumer reviews network).

  17. Improved decoding for a concatenated coding system

    DEFF Research Database (Denmark)

    Paaske, Erik

    1990-01-01

    The concatenated coding system recommended by CCSDS (Consultative Committee for Space Data Systems) uses an outer (255,233) Reed-Solomon (RS) code based on 8-b symbols, followed by the block interleaver and an inner rate 1/2 convolutional code with memory 6. Viterbi decoding is assumed. Two new...... decoding procedures based on repeated decoding trials and exchange of information between the two decoders and the deinterleaver are proposed. In the first one, where the improvement is 0.3-0.4 dB, only the RS decoder performs repeated trials. In the second one, where the improvement is 0.5-0.6 dB, both...... decoders perform repeated decoding trials and decoding information is exchanged between them...

  18. Soft-decision decoding of RS codes

    DEFF Research Database (Denmark)

    Justesen, Jørn

    2005-01-01

    By introducing a few simplifying assumptions we derive a simple condition for successful decoding using the Koetter-Vardy algorithm for soft-decision decoding of RS codes. We show that the algorithm has a significant advantage over hard decision decoding when the code rate is low, when two or more...

  19. Toric Codes, Multiplicative Structure and Decoding

    DEFF Research Database (Denmark)

    Hansen, Johan Peder

    2017-01-01

    Long linear codes constructed from toric varieties over finite fields, their multiplicative structure and decoding. The main theme is the inherent multiplicative structure on toric codes. The multiplicative structure allows for \\emph{decoding}, resembling the decoding of Reed-Solomon codes and al...

  20. FPGA Realization of Memory 10 Viterbi Decoder

    DEFF Research Database (Denmark)

    Paaske, Erik; Bach, Thomas Bo; Andersen, Jakob Dahl

    1997-01-01

    sequence mode when feedback from the Reed-Solomon decoder is available. The Viterbi decoder is realized using two Altera FLEX 10K50 FPGA's. The overall operating speed is 30 kbit/s, and since up to three iterations are performed for each frame and only one decoder is used, the operating speed...

  1. Decoding intention at sensorimotor timescales.

    Directory of Open Access Journals (Sweden)

    Mathew Salvaris

    Full Text Available The ability to decode an individual's intentions in real time has long been a 'holy grail' of research on human volition. For example, a reliable method could be used to improve scientific study of voluntary action by allowing external probe stimuli to be delivered at different moments during development of intention and action. Several Brain Computer Interface applications have used motor imagery of repetitive actions to achieve this goal. These systems are relatively successful, but only if the intention is sustained over a period of several seconds; much longer than the timescales identified in psychophysiological studies for normal preparation for voluntary action. We have used a combination of sensorimotor rhythms and motor imagery training to decode intentions in a single-trial cued-response paradigm similar to those used in human and non-human primate motor control research. Decoding accuracy of over 0.83 was achieved with twelve participants. With this approach, we could decode intentions to move the left or right hand at sub-second timescales, both for instructed choices instructed by an external stimulus and for free choices generated intentionally by the participant. The implications for volition are considered.

  2. Dynamics of intracellular information decoding

    International Nuclear Information System (INIS)

    Kobayashi, Tetsuya J; Kamimura, Atsushi

    2011-01-01

    A variety of cellular functions are robust even to substantial intrinsic and extrinsic noise in intracellular reactions and the environment that could be strong enough to impair or limit them. In particular, of substantial importance is cellular decision-making in which a cell chooses a fate or behavior on the basis of information conveyed in noisy external signals. For robust decoding, the crucial step is filtering out the noise inevitably added during information transmission. As a minimal and optimal implementation of such an information decoding process, the autocatalytic phosphorylation and autocatalytic dephosphorylation (aPadP) cycle was recently proposed. Here, we analyze the dynamical properties of the aPadP cycle in detail. We describe the dynamical roles of the stationary and short-term responses in determining the efficiency of information decoding and clarify the optimality of the threshold value of the stationary response and its information-theoretical meaning. Furthermore, we investigate the robustness of the aPadP cycle against the receptor inactivation time and intrinsic noise. Finally, we discuss the relationship among information decoding with information-dependent actions, bet-hedging and network modularity

  3. Dynamics of intracellular information decoding.

    Science.gov (United States)

    Kobayashi, Tetsuya J; Kamimura, Atsushi

    2011-10-01

    A variety of cellular functions are robust even to substantial intrinsic and extrinsic noise in intracellular reactions and the environment that could be strong enough to impair or limit them. In particular, of substantial importance is cellular decision-making in which a cell chooses a fate or behavior on the basis of information conveyed in noisy external signals. For robust decoding, the crucial step is filtering out the noise inevitably added during information transmission. As a minimal and optimal implementation of such an information decoding process, the autocatalytic phosphorylation and autocatalytic dephosphorylation (aPadP) cycle was recently proposed. Here, we analyze the dynamical properties of the aPadP cycle in detail. We describe the dynamical roles of the stationary and short-term responses in determining the efficiency of information decoding and clarify the optimality of the threshold value of the stationary response and its information-theoretical meaning. Furthermore, we investigate the robustness of the aPadP cycle against the receptor inactivation time and intrinsic noise. Finally, we discuss the relationship among information decoding with information-dependent actions, bet-hedging and network modularity.

  4. Human Genome Research: Decoding DNA

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Human Genome Research: Decoding DNA Resources with of the DNA double helix during April 2003. James D. Watson, Francis Crick, and Maurice Wilkins were company Celera announced the completion of a "working draft" reference DNA sequence of the human

  5. Fast Reed-Solomon Decoder

    Science.gov (United States)

    Liu, K. Y.

    1986-01-01

    High-speed decoder intended for use with Reed-Solomon (RS) codes of long code length and high error-correcting capability. Design based on algorithm that includes high-radix Fermat transform procedure, which is most efficient for high speeds. RS code in question has code-word length of 256 symbols, of which 224 are information symbols and 32 are redundant.

  6. On Decoding Interleaved Chinese Remainder Codes

    DEFF Research Database (Denmark)

    Li, Wenhui; Sidorenko, Vladimir; Nielsen, Johan Sebastian Rosenkilde

    2013-01-01

    We model the decoding of Interleaved Chinese Remainder codes as that of finding a short vector in a Z-lattice. Using the LLL algorithm, we obtain an efficient decoding algorithm, correcting errors beyond the unique decoding bound and having nearly linear complexity. The algorithm can fail...... with a probability dependent on the number of errors, and we give an upper bound for this. Simulation results indicate that the bound is close to the truth. We apply the proposed decoding algorithm for decoding a single CR code using the idea of “Power” decoding, suggested for Reed-Solomon codes. A combination...... of these two methods can be used to decode low-rate Interleaved Chinese Remainder codes....

  7. Interacting binaries

    CERN Document Server

    Shore, S N; van den Heuvel, EPJ

    1994-01-01

    This volume contains lecture notes presented at the 22nd Advanced Course of the Swiss Society for Astrophysics and Astronomy. The contributors deal with symbiotic stars, cataclysmic variables, massive binaries and X-ray binaries, in an attempt to provide a better understanding of stellar evolution.

  8. Non-tables look-up search algorithm for efficient H.264/AVC context-based adaptive variable length coding decoding

    Science.gov (United States)

    Han, Yishi; Luo, Zhixiao; Wang, Jianhua; Min, Zhixuan; Qin, Xinyu; Sun, Yunlong

    2014-09-01

    In general, context-based adaptive variable length coding (CAVLC) decoding in H.264/AVC standard requires frequent access to the unstructured variable length coding tables (VLCTs) and significant memory accesses are consumed. Heavy memory accesses will cause high power consumption and time delays, which are serious problems for applications in portable multimedia devices. We propose a method for high-efficiency CAVLC decoding by using a program instead of all the VLCTs. The decoded codeword from VLCTs can be obtained without any table look-up and memory access. The experimental results show that the proposed algorithm achieves 100% memory access saving and 40% decoding time saving without degrading video quality. Additionally, the proposed algorithm shows a better performance compared with conventional CAVLC decoding, such as table look-up by sequential search, table look-up by binary search, Moon's method, and Kim's method.

  9. LDPC Decoding on GPU for Mobile Device

    Directory of Open Access Journals (Sweden)

    Yiqin Lu

    2016-01-01

    Full Text Available A flexible software LDPC decoder that exploits data parallelism for simultaneous multicode words decoding on the mobile device is proposed in this paper, supported by multithreading on OpenCL based graphics processing units. By dividing the check matrix into several parts to make full use of both the local memory and private memory on GPU and properly modify the code capacity each time, our implementation on a mobile phone shows throughputs above 100 Mbps and delay is less than 1.6 millisecond in decoding, which make high-speed communication like video calling possible. To realize efficient software LDPC decoding on the mobile device, the LDPC decoding feature on communication baseband chip should be replaced to save the cost and make it easier to upgrade decoder to be compatible with a variety of channel access schemes.

  10. Trojan Binaries

    Science.gov (United States)

    Noll, K. S.

    2017-12-01

    The Jupiter Trojans, in the context of giant planet migration models, can be thought of as an extension of the small body populations found beyond Neptune in the Kuiper Belt. Binaries are a distinctive feature of small body populations in the Kuiper Belt with an especially high fraction apparent among the brightest Cold Classicals. The binary fraction, relative sizes, and separations in the dynamically excited populations (Scattered, Resonant) reflects processes that may have eroded a more abundant initial population. This trend continues in the Centaurs and Trojans where few binaries have been found. We review new evidence including a third resolved Trojan binary and lightcurve studies to understand how the Trojans are related to the small body populations that originated in the outer protoplanetary disk.

  11. A class of Sudan-decodable codes

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Refslund

    2000-01-01

    In this article, Sudan's algorithm is modified into an efficient method to list-decode a class of codes which can be seen as a generalization of Reed-Solomon codes. The algorithm is specialized into a very efficient method for unique decoding. The code construction can be generalized based...... on algebraic-geometry codes and the decoding algorithms are generalized accordingly. Comparisons with Reed-Solomon and Hermitian codes are made....

  12. Sum of the Magnitude for Hard Decision Decoding Algorithm Based on Loop Update Detection

    Science.gov (United States)

    Meng, Jiahui; Zhao, Danfeng; Tian, Hai; Zhang, Liang

    2018-01-01

    In order to improve the performance of non-binary low-density parity check codes (LDPC) hard decision decoding algorithm and to reduce the complexity of decoding, a sum of the magnitude for hard decision decoding algorithm based on loop update detection is proposed. This will also ensure the reliability, stability and high transmission rate of 5G mobile communication. The algorithm is based on the hard decision decoding algorithm (HDA) and uses the soft information from the channel to calculate the reliability, while the sum of the variable nodes’ (VN) magnitude is excluded for computing the reliability of the parity checks. At the same time, the reliability information of the variable node is considered and the loop update detection algorithm is introduced. The bit corresponding to the error code word is flipped multiple times, before this is searched in the order of most likely error probability to finally find the correct code word. Simulation results show that the performance of one of the improved schemes is better than the weighted symbol flipping (WSF) algorithm under different hexadecimal numbers by about 2.2 dB and 2.35 dB at the bit error rate (BER) of 10−5 over an additive white Gaussian noise (AWGN) channel, respectively. Furthermore, the average number of decoding iterations is significantly reduced. PMID:29342963

  13. Sum of the Magnitude for Hard Decision Decoding Algorithm Based on Loop Update Detection.

    Science.gov (United States)

    Meng, Jiahui; Zhao, Danfeng; Tian, Hai; Zhang, Liang

    2018-01-15

    In order to improve the performance of non-binary low-density parity check codes (LDPC) hard decision decoding algorithm and to reduce the complexity of decoding, a sum of the magnitude for hard decision decoding algorithm based on loop update detection is proposed. This will also ensure the reliability, stability and high transmission rate of 5G mobile communication. The algorithm is based on the hard decision decoding algorithm (HDA) and uses the soft information from the channel to calculate the reliability, while the sum of the variable nodes' (VN) magnitude is excluded for computing the reliability of the parity checks. At the same time, the reliability information of the variable node is considered and the loop update detection algorithm is introduced. The bit corresponding to the error code word is flipped multiple times, before this is searched in the order of most likely error probability to finally find the correct code word. Simulation results show that the performance of one of the improved schemes is better than the weighted symbol flipping (WSF) algorithm under different hexadecimal numbers by about 2.2 dB and 2.35 dB at the bit error rate (BER) of 10 -5 over an additive white Gaussian noise (AWGN) channel, respectively. Furthermore, the average number of decoding iterations is significantly reduced.

  14. Analysis of error floor of LDPC codes under LP decoding over the BSC

    Energy Technology Data Exchange (ETDEWEB)

    Chertkov, Michael [Los Alamos National Laboratory; Chilappagari, Shashi [UNIV OF AZ; Vasic, Bane [UNIV OF AZ; Stepanov, Mikhail [UNIV OF AZ

    2009-01-01

    We consider linear programming (LP) decoding of a fixed low-density parity-check (LDPC) code over the binary symmetric channel (BSC). The LP decoder fails when it outputs a pseudo-codeword which is not a codeword. We propose an efficient algorithm termed the instanton search algorithm (ISA) which, given a random input, generates a set of flips called the BSC-instanton and prove that: (a) the LP decoder fails for any set of flips with support vector including an instanton; (b) for any input, the algorithm outputs an instanton in the number of steps upper-bounded by twice the number of flips in the input. We obtain the number of unique instantons of different sizes by running the ISA sufficient number of times. We then use the instanton statistics to predict the performance of the LP decoding over the BSC in the error floor region. We also propose an efficient semi-analytical method to predict the performance of LP decoding over a large range of transition probabilities of the BSC.

  15. Sum of the Magnitude for Hard Decision Decoding Algorithm Based on Loop Update Detection

    Directory of Open Access Journals (Sweden)

    Jiahui Meng

    2018-01-01

    Full Text Available In order to improve the performance of non-binary low-density parity check codes (LDPC hard decision decoding algorithm and to reduce the complexity of decoding, a sum of the magnitude for hard decision decoding algorithm based on loop update detection is proposed. This will also ensure the reliability, stability and high transmission rate of 5G mobile communication. The algorithm is based on the hard decision decoding algorithm (HDA and uses the soft information from the channel to calculate the reliability, while the sum of the variable nodes’ (VN magnitude is excluded for computing the reliability of the parity checks. At the same time, the reliability information of the variable node is considered and the loop update detection algorithm is introduced. The bit corresponding to the error code word is flipped multiple times, before this is searched in the order of most likely error probability to finally find the correct code word. Simulation results show that the performance of one of the improved schemes is better than the weighted symbol flipping (WSF algorithm under different hexadecimal numbers by about 2.2 dB and 2.35 dB at the bit error rate (BER of 10−5 over an additive white Gaussian noise (AWGN channel, respectively. Furthermore, the average number of decoding iterations is significantly reduced.

  16. Interior point decoding for linear vector channels

    International Nuclear Information System (INIS)

    Wadayama, T

    2008-01-01

    In this paper, a novel decoding algorithm for low-density parity-check (LDPC) codes based on convex optimization is presented. The decoding algorithm, called interior point decoding, is designed for linear vector channels. The linear vector channels include many practically important channels such as inter-symbol interference channels and partial response channels. It is shown that the maximum likelihood decoding (MLD) rule for a linear vector channel can be relaxed to a convex optimization problem, which is called a relaxed MLD problem

  17. Interior point decoding for linear vector channels

    Energy Technology Data Exchange (ETDEWEB)

    Wadayama, T [Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Aichi, 466-8555 (Japan)], E-mail: wadayama@nitech.ac.jp

    2008-01-15

    In this paper, a novel decoding algorithm for low-density parity-check (LDPC) codes based on convex optimization is presented. The decoding algorithm, called interior point decoding, is designed for linear vector channels. The linear vector channels include many practically important channels such as inter-symbol interference channels and partial response channels. It is shown that the maximum likelihood decoding (MLD) rule for a linear vector channel can be relaxed to a convex optimization problem, which is called a relaxed MLD problem.

  18. Video encoder/decoder for encoding/decoding motion compensated images

    NARCIS (Netherlands)

    1996-01-01

    Video encoder and decoder, provided with a motion compensator for motion-compensated video coding or decoding in which a picture is coded or decoded in blocks in alternately horizontal and vertical steps. The motion compensator is provided with addressing means (160) and controlled multiplexers

  19. Evaluation framework for K-best sphere decoders

    KAUST Repository

    Shen, Chungan; Eltawil, Ahmed M.; Salama, Khaled N.

    2010-01-01

    or receive antennas. Tree-searching type decoder structures such as Sphere decoder and K-best decoder present an interesting trade-off between complexity and performance. Many algorithmic developments and VLSI implementations have been reported in literature

  20. Implementation of Layered Decoding Architecture for LDPC Code using Layered Min-Sum Algorithm

    OpenAIRE

    Sandeep Kakde; Atish Khobragade; Shrikant Ambatkar; Pranay Nandanwar

    2017-01-01

    For binary field and long code lengths, Low Density Parity Check (LDPC) code approaches Shannon limit performance. LDPC codes provide remarkable error correction performance and therefore enlarge the design space for communication systems.In this paper, we have compare different digital modulation techniques and found that BPSK modulation technique is better than other modulation techniques in terms of BER. It also gives error performance of LDPC decoder over AWGN channel using Min-Sum algori...

  1. Concatenated coding system with iterated sequential inner decoding

    DEFF Research Database (Denmark)

    Jensen, Ole Riis; Paaske, Erik

    1995-01-01

    We describe a concatenated coding system with iterated sequential inner decoding. The system uses convolutional codes of very long constraint length and operates on iterations between an inner Fano decoder and an outer Reed-Solomon decoder......We describe a concatenated coding system with iterated sequential inner decoding. The system uses convolutional codes of very long constraint length and operates on iterations between an inner Fano decoder and an outer Reed-Solomon decoder...

  2. Application of Beyond Bound Decoding for High Speed Optical Communications

    DEFF Research Database (Denmark)

    Li, Bomin; Larsen, Knud J.; Vegas Olmos, Juan José

    2013-01-01

    This paper studies the application of beyond bound decoding method for high speed optical communications. This hard-decision decoding method outperforms traditional minimum distance decoding method, with a total net coding gain of 10.36 dB.......This paper studies the application of beyond bound decoding method for high speed optical communications. This hard-decision decoding method outperforms traditional minimum distance decoding method, with a total net coding gain of 10.36 dB....

  3. Adaptable recursive binary entropy coding technique

    Science.gov (United States)

    Kiely, Aaron B.; Klimesh, Matthew A.

    2002-07-01

    We present a novel data compression technique, called recursive interleaved entropy coding, that is based on recursive interleaving of variable-to variable length binary source codes. A compression module implementing this technique has the same functionality as arithmetic coding and can be used as the engine in various data compression algorithms. The encoder compresses a bit sequence by recursively encoding groups of bits that have similar estimated statistics, ordering the output in a way that is suited to the decoder. As a result, the decoder has low complexity. The encoding process for our technique is adaptable in that each bit to be encoded has an associated probability-of-zero estimate that may depend on previously encoded bits; this adaptability allows more effective compression. Recursive interleaved entropy coding may have advantages over arithmetic coding, including most notably the admission of a simple and fast decoder. Much variation is possible in the choice of component codes and in the interleaving structure, yielding coder designs of varying complexity and compression efficiency; coder designs that achieve arbitrarily small redundancy can be produced. We discuss coder design and performance estimation methods. We present practical encoding and decoding algorithms, as well as measured performance results.

  4. On minimizing the maximum broadcast decoding delay for instantly decodable network coding

    KAUST Repository

    Douik, Ahmed S.

    2014-09-01

    In this paper, we consider the problem of minimizing the maximum broadcast decoding delay experienced by all the receivers of generalized instantly decodable network coding (IDNC). Unlike the sum decoding delay, the maximum decoding delay as a definition of delay for IDNC allows a more equitable distribution of the delays between the different receivers and thus a better Quality of Service (QoS). In order to solve this problem, we first derive the expressions for the probability distributions of maximum decoding delay increments. Given these expressions, we formulate the problem as a maximum weight clique problem in the IDNC graph. Although this problem is known to be NP-hard, we design a greedy algorithm to perform effective packet selection. Through extensive simulations, we compare the sum decoding delay and the max decoding delay experienced when applying the policies to minimize the sum decoding delay and our policy to reduce the max decoding delay. Simulations results show that our policy gives a good agreement among all the delay aspects in all situations and outperforms the sum decoding delay policy to effectively minimize the sum decoding delay when the channel conditions become harsher. They also show that our definition of delay significantly improve the number of served receivers when they are subject to strict delay constraints.

  5. Best linear decoding of random mask images

    International Nuclear Information System (INIS)

    Woods, J.W.; Ekstrom, M.P.; Palmieri, T.M.; Twogood, R.E.

    1975-01-01

    In 1968 Dicke proposed coded imaging of x and γ rays via random pinholes. Since then, many authors have agreed with him that this technique can offer significant image improvement. A best linear decoding of the coded image is presented, and its superiority over the conventional matched filter decoding is shown. Experimental results in the visible light region are presented. (U.S.)

  6. Oppositional Decoding as an Act of Resistance.

    Science.gov (United States)

    Steiner, Linda

    1988-01-01

    Argues that contributors to the "No Comment" feature of "Ms." magazine are engaging in oppositional decoding and speculates on why this is a satisfying group process. Also notes such decoding presents another challenge to the idea that mass media has the same effect on all audiences. (SD)

  7. High Speed Frame Synchronization and Viterbi Decoding

    DEFF Research Database (Denmark)

    Paaske, Erik; Justesen, Jørn; Larsen, Knud J.

    1996-01-01

    The purpose of Phase 1 of the study is to describe the system structure and algorithms in sufficient detail to allow drawing the high level architecture of units containing frame synchronization and Viterbi decoding. The systems we consider are high data rate space communication systems. Also...... components. Node synchronization performed within a Viterbi decoder is discussed, and algorithms for frame synchronization are described and analyzed. We present a list of system configurations that we find potentially useful. Further, the high level architecture of units that contain frame synchronization...... and various other functions needed in a complete system is presented. Two such units are described, one for placement before the Viterbi decoder and another for placement after the decoder. The high level architectures of three possible implementations of Viterbi decoders are described: The first...

  8. High Speed Frame Synchronization and Viterbi Decoding

    DEFF Research Database (Denmark)

    Paaske, Erik; Justesen, Jørn; Larsen, Knud J.

    1998-01-01

    The study has been divided into two phases. The purpose of Phase 1 of the study was to describe the system structure and algorithms in sufficient detail to allow drawing the high level architecture of units containing frame synchronization and Viterbi decoding. After selection of which specific...... potentially useful.Algorithms for frame synchronization are described and analyzed. Further, the high level architecture of units that contain frame synchronization and various other functions needed in a complete system is presented. Two such units are described, one for placement before the Viterbi decoder...... towards a realization in an FPGA.Node synchronization performed within a Viterbi decoder is discussed, and the high level architectures of three possible implementations of Viterbi decoders are described: The first implementation uses a number of commercially available decoders while the the two others...

  9. Exact performance analysis of decode-and-forward opportunistic relaying

    KAUST Repository

    Tourki, Kamel

    2010-06-01

    In this paper, we investigate a dual-hop decode-and-forward opportunistic relaying scheme where the source may or may not be able to communicate directly with the destination. In our study, we consider a regenerative relaying scheme in which the decision to cooperate takes into account the effect of the possible erroneously detected and transmitted data at the best relay. We derive an exact closed-form expression for the end-to-end bit-error rate (BER) of binary phase-shift keying (BPSK) modulation based on the exact statistics of each hop. Unlike existing works where the analysis focused on high signal-to-noise ratio (SNR) regime, such results are important to enable the designers to take decisions regarding practical systems that operate at low SNR regime. We show that performance simulation results coincide with our analytical results.

  10. Selection combining for noncoherent decode-and-forward relay networks

    Directory of Open Access Journals (Sweden)

    Nguyen Ha

    2011-01-01

    Full Text Available Abstract This paper studies a new decode-and-forward relaying scheme for a cooperative wireless network composed of one source, K relays, and one destination and with binary frequency-shift keying modulation. A single threshold is employed to select retransmitting relays as follows: a relay retransmits to the destination if its decision variable is larger than the threshold; otherwise, it remains silent. The destination then performs selection combining for the detection of transmitted information. The average end-to-end bit-error-rate (BER is analytically determined in a closed-form expression. Based on the derived BER, the problem of choosing an optimal threshold or jointly optimal threshold and power allocation to minimize the end-to-end BER is also investigated. Both analytical and simulation results reveal that the obtained optimal threshold scheme or jointly optimal threshold and power-allocation scheme can significantly improve the BER performance compared to a previously proposed scheme.

  11. Fast decoders for qudit topological codes

    International Nuclear Information System (INIS)

    Anwar, Hussain; Brown, Benjamin J; Campbell, Earl T; Browne, Dan E

    2014-01-01

    Qudit toric codes are a natural higher-dimensional generalization of the well-studied qubit toric code. However, standard methods for error correction of the qubit toric code are not applicable to them. Novel decoders are needed. In this paper we introduce two renormalization group decoders for qudit codes and analyse their error correction thresholds and efficiency. The first decoder is a generalization of a ‘hard-decisions’ decoder due to Bravyi and Haah (arXiv:1112.3252). We modify this decoder to overcome a percolation effect which limits its threshold performance for many-level quantum systems. The second decoder is a generalization of a ‘soft-decisions’ decoder due to Poulin and Duclos-Cianci (2010 Phys. Rev. Lett. 104 050504), with a small cell size to optimize the efficiency of implementation in the high dimensional case. In each case, we estimate thresholds for the uncorrelated bit-flip error model and provide a comparative analysis of the performance of both these approaches to error correction of qudit toric codes. (paper)

  12. Iterative Decoding of Concatenated Codes: A Tutorial

    Directory of Open Access Journals (Sweden)

    Phillip A. Regalia

    2005-05-01

    Full Text Available The turbo decoding algorithm of a decade ago constituted a milestone in error-correction coding for digital communications, and has inspired extensions to generalized receiver topologies, including turbo equalization, turbo synchronization, and turbo CDMA, among others. Despite an accrued understanding of iterative decoding over the years, the “turbo principle” remains elusive to master analytically, thereby inciting interest from researchers outside the communications domain. In this spirit, we develop a tutorial presentation of iterative decoding for parallel and serial concatenated codes, in terms hopefully accessible to a broader audience. We motivate iterative decoding as a computationally tractable attempt to approach maximum-likelihood decoding, and characterize fixed points in terms of a “consensus” property between constituent decoders. We review how the decoding algorithm for both parallel and serial concatenated codes coincides with an alternating projection algorithm, which allows one to identify conditions under which the algorithm indeed converges to a maximum-likelihood solution, in terms of particular likelihood functions factoring into the product of their marginals. The presentation emphasizes a common framework applicable to both parallel and serial concatenated codes.

  13. Binary effectivity rules

    DEFF Research Database (Denmark)

    Keiding, Hans; Peleg, Bezalel

    2006-01-01

    is binary if it is rationalized by an acyclic binary relation. The foregoing result motivates our definition of a binary effectivity rule as the effectivity rule of some binary SCR. A binary SCR is regular if it satisfies unanimity, monotonicity, and independence of infeasible alternatives. A binary...

  14. Decoding small surface codes with feedforward neural networks

    Science.gov (United States)

    Varsamopoulos, Savvas; Criger, Ben; Bertels, Koen

    2018-01-01

    Surface codes reach high error thresholds when decoded with known algorithms, but the decoding time will likely exceed the available time budget, especially for near-term implementations. To decrease the decoding time, we reduce the decoding problem to a classification problem that a feedforward neural network can solve. We investigate quantum error correction and fault tolerance at small code distances using neural network-based decoders, demonstrating that the neural network can generalize to inputs that were not provided during training and that they can reach similar or better decoding performance compared to previous algorithms. We conclude by discussing the time required by a feedforward neural network decoder in hardware.

  15. Fast decoding algorithms for coded aperture systems

    International Nuclear Information System (INIS)

    Byard, Kevin

    2014-01-01

    Fast decoding algorithms are described for a number of established coded aperture systems. The fast decoding algorithms for all these systems offer significant reductions in the number of calculations required when reconstructing images formed by a coded aperture system and hence require less computation time to produce the images. The algorithms may therefore be of use in applications that require fast image reconstruction, such as near real-time nuclear medicine and location of hazardous radioactive spillage. Experimental tests confirm the efficacy of the fast decoding techniques

  16. Three phase full wave dc motor decoder

    Science.gov (United States)

    Studer, P. A. (Inventor)

    1977-01-01

    A three phase decoder for dc motors is disclosed which employs an extremely simple six transistor circuit to derive six properly phased output signals for fullwave operation of dc motors. Six decoding transistors are coupled at their base-emitter junctions across a resistor network arranged in a delta configuration. Each point of the delta configuration is coupled to one of three position sensors which sense the rotational position of the motor. A second embodiment of the invention is disclosed in which photo-optical isolators are used in place of the decoding transistors.

  17. Improved Power Decoding of One-Point Hermitian Codes

    DEFF Research Database (Denmark)

    Puchinger, Sven; Bouw, Irene; Rosenkilde, Johan Sebastian Heesemann

    2017-01-01

    We propose a new partial decoding algorithm for one-point Hermitian codes that can decode up to the same number of errors as the Guruswami–Sudan decoder. Simulations suggest that it has a similar failure probability as the latter one. The algorithm is based on a recent generalization of the power...... decoding algorithm for Reed–Solomon codes and does not require an expensive root-finding step. In addition, it promises improvements for decoding interleaved Hermitian codes....

  18. Decoding of interleaved Reed-Solomon codes using improved power decoding

    DEFF Research Database (Denmark)

    Puchinger, Sven; Rosenkilde ne Nielsen, Johan

    2017-01-01

    We propose a new partial decoding algorithm for m-interleaved Reed-Solomon (IRS) codes that can decode, with high probability, a random error of relative weight 1 − Rm/m+1 at all code rates R, in time polynomial in the code length n. For m > 2, this is an asymptotic improvement over the previous...... state-of-the-art for all rates, and the first improvement for R > 1/3 in the last 20 years. The method combines collaborative decoding of IRS codes with power decoding up to the Johnson radius....

  19. Low-Power Bitstream-Residual Decoder for H.264/AVC Baseline Profile Decoding

    Directory of Open Access Journals (Sweden)

    Xu Ke

    2009-01-01

    Full Text Available Abstract We present the design and VLSI implementation of a novel low-power bitstream-residual decoder for H.264/AVC baseline profile. It comprises a syntax parser, a parameter decoder, and an Inverse Quantization Inverse Transform (IQIT decoder. The syntax parser detects and decodes each incoming codeword in the bitstream under the control of a hierarchical Finite State Machine (FSM; the IQIT decoder performs inverse transform and quantization with pipelining and parallelism. Various power reduction techniques, such as data-driven based on statistic results, nonuniform partition, precomputation, guarded evaluation, hierarchical FSM decomposition, TAG method, zero-block skipping, and clock gating , are adopted and integrated throughout the bitstream-residual decoder. With innovative architecture, the proposed design is able to decode QCIF video sequences of 30 fps at a clock rate as low as 1.5 MHz. A prototype H.264/AVC baseline decoding chip utilizing the proposed decoder is fabricated in UMC 0.18  m 1P6M CMOS technology. The proposed design is measured under 1 V 1.8 V supply with 0.1 V step. It dissipates 76  W at 1 V and 253  W at 1.8 V.

  20. All-optical conversion scheme: Binary to quaternary and quaternary to binary number

    Science.gov (United States)

    Chattopadhyay, Tanay; Roy, Jitendra Nath

    2009-04-01

    To achieve the inherent parallelism in optics a suitable number system and efficient encoding/decoding scheme for handling the data are very much essential. Binary number is accepted as the best representing number system in almost all types of existing electronic computers. But, binary number (0 and 1) is insufficient in respect to the demand of the coming generation. Multi-valued logic (with radix >2) can be viewed as an alternative approach to solve many problems in transmission, storage and processing of large amount of information in digital signal processing. Here, in this paper all-optical scheme for the conversion of binary to quaternary number and vice versa have been proposed and described. Simulation has also been done. In this all-optical scheme the numbers are represented by different discrete polarized state of light.

  1. Decoding Dyslexia, a Common Learning Disability

    Science.gov (United States)

    ... if they continue to struggle. Read More "Dyslexic" Articles In Their Own Words: Dealing with Dyslexia / Decoding Dyslexia, a Common Learning Disability / What is Dyslexia? / Special Education and Research ...

  2. Coding and decoding in a point-to-point communication using the polarization of the light beam.

    Science.gov (United States)

    Kavehvash, Z; Massoumian, F

    2008-05-10

    A new technique for coding and decoding of optical signals through the use of polarization is described. In this technique the concept of coding is translated to polarization. In other words, coding is done in such a way that each code represents a unique polarization. This is done by implementing a binary pattern on a spatial light modulator in such a way that the reflected light has the required polarization. Decoding is done by the detection of the received beam's polarization. By linking the concept of coding to polarization we can use each of these concepts in measuring the other one, attaining some gains. In this paper the construction of a simple point-to-point communication where coding and decoding is done through polarization will be discussed.

  3. Multiuser Random Coding Techniques for Mismatched Decoding

    OpenAIRE

    Scarlett, Jonathan; Martinez, Alfonso; Guillén i Fàbregas, Albert

    2016-01-01

    This paper studies multiuser random coding techniques for channel coding with a given (possibly suboptimal) decoding rule. For the mismatched discrete memoryless multiple-access channel, an error exponent is obtained that is tight with respect to the ensemble average, and positive within the interior of Lapidoth's achievable rate region. This exponent proves the ensemble tightness of the exponent of Liu and Hughes in the case of maximum-likelihood decoding. An equivalent dual form of Lapidoth...

  4. Optical three-step binary-logic-gate-based MSD arithmetic

    Science.gov (United States)

    Fyath, R. S.; Alsaffar, A. A. W.; Alam, M. S.

    2003-11-01

    A three-step modified signed-digit (MSD) adder is proposed which can be optically implmented using binary logic gates. The proposed scheme depends on encoding each MSD digits into a pair of binary digits using a two-state and multi-position based encoding scheme. The design algorithm depends on constructing the addition truth table of binary-coded MSD numbers and then using Karnaugh map to achieve output minimization. The functions associated with the optical binary logic gates are achieved by simply programming the decoding masks of an optical shadow-casting logic system.

  5. A novel parallel pipeline structure of VP9 decoder

    Science.gov (United States)

    Qin, Huabiao; Chen, Wu; Yi, Sijun; Tan, Yunfei; Yi, Huan

    2018-04-01

    To improve the efficiency of VP9 decoder, a novel parallel pipeline structure of VP9 decoder is presented in this paper. According to the decoding workflow, VP9 decoder can be divided into sub-modules which include entropy decoding, inverse quantization, inverse transform, intra prediction, inter prediction, deblocking and pixel adaptive compensation. By analyzing the computing time of each module, hotspot modules are located and the causes of low efficiency of VP9 decoder can be found. Then, a novel pipeline decoder structure is designed by using mixed parallel decoding methods of data division and function division. The experimental results show that this structure can greatly improve the decoding efficiency of VP9.

  6. A Simple Scheme for Belief Propagation Decoding of BCH and RS Codes in Multimedia Transmissions

    Directory of Open Access Journals (Sweden)

    Marco Baldi

    2008-01-01

    Full Text Available Classic linear block codes, like Bose-Chaudhuri-Hocquenghem (BCH and Reed-Solomon (RS codes, are widely used in multimedia transmissions, but their soft-decision decoding still represents an open issue. Among the several approaches proposed for this purpose, an important role is played by the iterative belief propagation principle, whose application to low-density parity-check (LDPC codes permits to approach the channel capacity. In this paper, we elaborate a new technique for decoding classic binary and nonbinary codes through the belief propagation algorithm. We focus on RS codes included in the recent CDMA2000 standard, and compare the proposed technique with the adaptive belief propagation approach, that is able to ensure very good performance but with higher complexity. Moreover, we consider the case of long BCH codes included in the DVB-S2 standard, for which we show that the usage of “pure” LDPC codes would provide better performance.

  7. Coding and decoding with dendrites.

    Science.gov (United States)

    Papoutsi, Athanasia; Kastellakis, George; Psarrou, Maria; Anastasakis, Stelios; Poirazi, Panayiota

    2014-02-01

    Since the discovery of complex, voltage dependent mechanisms in the dendrites of multiple neuron types, great effort has been devoted in search of a direct link between dendritic properties and specific neuronal functions. Over the last few years, new experimental techniques have allowed the visualization and probing of dendritic anatomy, plasticity and integrative schemes with unprecedented detail. This vast amount of information has caused a paradigm shift in the study of memory, one of the most important pursuits in Neuroscience, and calls for the development of novel theories and models that will unify the available data according to some basic principles. Traditional models of memory considered neural cells as the fundamental processing units in the brain. Recent studies however are proposing new theories in which memory is not only formed by modifying the synaptic connections between neurons, but also by modifications of intrinsic and anatomical dendritic properties as well as fine tuning of the wiring diagram. In this review paper we present previous studies along with recent findings from our group that support a key role of dendrites in information processing, including the encoding and decoding of new memories, both at the single cell and the network level. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Decoding of digital magnetic recording with longitudinal magnetization of a tape from a magneto-optical image of stray fields

    Science.gov (United States)

    Lisovskii, F. V.; Mansvetova, E. G.

    2017-05-01

    For digital magnetic recording of encoded information with longitudinal magnetization of the tape, the connection between the domain structure of a storage medium and magneto-optical image of its stray fields obtained using a magnetic film with a perpendicular anisotropy and a large Faraday rotation has been studied. For two-frequency binary code without returning to zero, an algorithm is developed, that allows uniquely decoding of the information recorded on the tape based on analysis of an image of stray fields.

  9. Performance breakdown in optimal stimulus decoding.

    Science.gov (United States)

    Lubomir Kostal; Lansky, Petr; Pilarski, Stevan

    2015-06-01

    One of the primary goals of neuroscience is to understand how neurons encode and process information about their environment. The problem is often approached indirectly by examining the degree to which the neuronal response reflects the stimulus feature of interest. In this context, the methods of signal estimation and detection theory provide the theoretical limits on the decoding accuracy with which the stimulus can be identified. The Cramér-Rao lower bound on the decoding precision is widely used, since it can be evaluated easily once the mathematical model of the stimulus-response relationship is determined. However, little is known about the behavior of different decoding schemes with respect to the bound if the neuronal population size is limited. We show that under broad conditions the optimal decoding displays a threshold-like shift in performance in dependence on the population size. The onset of the threshold determines a critical range where a small increment in size, signal-to-noise ratio or observation time yields a dramatic gain in the decoding precision. We demonstrate the existence of such threshold regions in early auditory and olfactory information coding. We discuss the origin of the threshold effect and its impact on the design of effective coding approaches in terms of relevant population size.

  10. Symbol synchronization for the TDRSS decoder

    Science.gov (United States)

    Costello, D. J., Jr.

    1983-01-01

    Each 8 bits out of the Viterbi decoder correspond to one symbol of the R/S code. Synchronization must be maintained here so that each 8-bit symbol delivered to the R/S decoder corresponds to an 8-bit symbol from the R/S encoder. Lack of synchronization, would cause an error in almost every R/S symbol since even a - 1-bit sync slip shifts every bit in each 8-bit symbol by one position, therby confusing the mapping betweeen 8-bit sequences and symbols. The error correcting capability of the R/S code would be exceeded. Possible ways to correcting this condition include: (1) designing the R/S decoder to recognize the overload and shifting the output sequence of the inner decoder to establish a different sync state; (2) using the characteristics of the inner decoder to establish symbol synchronization for the outer code, with or without a deinterleaver and an interleaver; and (3) modifying the encoder to alternate periodically between two sets of generators.

  11. Modified Decoding Algorithm of LLR-SPA

    Directory of Open Access Journals (Sweden)

    Zhongxun Wang

    2014-09-01

    Full Text Available In wireless sensor networks, the energy consumption is mainly occurred in the stage of information transmission. The Low Density Parity Check code can make full use of the channel information to save energy. Because of the widely used decoding algorithm of the Low Density Parity Check code, this paper proposes a new decoding algorithm which is based on the LLR-SPA (Sum-Product Algorithm in Log-Likelihood-domain to improve the accuracy of the decoding algorithm. In the modified algorithm, a piecewise linear function is used to approximate the complicated Jacobi correction term in LLR-SPA decoding algorithm. Construct the tangent by the tangency point to the function of Jacobi correction term, which is based on the first order Taylor Series. In this way, the proposed piecewise linear approximation offers almost a perfect match to the function of Jacobi correction term. Meanwhile, the proposed piecewise linear approximation could avoid the operation of logarithmic which is more suitable for practical application. The simulation results show that the proposed algorithm could improve the decoding accuracy greatly without noticeable variation of the computational complexity.

  12. The Holey Grail : a special score function for non-binary traitor tracing

    NARCIS (Netherlands)

    Skoric, B.; Oosterwijk, J.; Doumen, J.M.

    2013-01-01

    We study collusion-resistant traitor tracing in the simple decoder approach, i.e. assignment of scores for each user separately. We introduce a new score function for non-binary bias-based traitor tracing. It has three special properties that have long been sought after: (i) The expected score of an

  13. Completion time reduction in instantly decodable network coding through decoding delay control

    KAUST Repository

    Douik, Ahmed S.

    2014-12-01

    For several years, the completion time and the decoding delay problems in Instantly Decodable Network Coding (IDNC) were considered separately and were thought to completely act against each other. Recently, some works aimed to balance the effects of these two important IDNC metrics but none of them studied a further optimization of one by controlling the other. In this paper, we study the effect of controlling the decoding delay to reduce the completion time below its currently best known solution. We first derive the decoding-delay-dependent expressions of the users\\' and their overall completion times. Although using such expressions to find the optimal overall completion time is NP-hard, we use a heuristic that minimizes the probability of increasing the maximum of these decoding-delay-dependent completion time expressions after each transmission through a layered control of their decoding delays. Simulation results show that this new algorithm achieves both a lower mean completion time and mean decoding delay compared to the best known heuristic for completion time reduction. The gap in performance becomes significant for harsh erasure scenarios.

  14. Completion time reduction in instantly decodable network coding through decoding delay control

    KAUST Repository

    Douik, Ahmed S.; Sorour, Sameh; Alouini, Mohamed-Slim; Al-Naffouri, Tareq Y.

    2014-01-01

    For several years, the completion time and the decoding delay problems in Instantly Decodable Network Coding (IDNC) were considered separately and were thought to completely act against each other. Recently, some works aimed to balance the effects of these two important IDNC metrics but none of them studied a further optimization of one by controlling the other. In this paper, we study the effect of controlling the decoding delay to reduce the completion time below its currently best known solution. We first derive the decoding-delay-dependent expressions of the users' and their overall completion times. Although using such expressions to find the optimal overall completion time is NP-hard, we use a heuristic that minimizes the probability of increasing the maximum of these decoding-delay-dependent completion time expressions after each transmission through a layered control of their decoding delays. Simulation results show that this new algorithm achieves both a lower mean completion time and mean decoding delay compared to the best known heuristic for completion time reduction. The gap in performance becomes significant for harsh erasure scenarios.

  15. Joint Carrier-Phase Synchronization and LDPC Decoding

    Science.gov (United States)

    Simon, Marvin; Valles, Esteban

    2009-01-01

    A method has been proposed to increase the degree of synchronization of a radio receiver with the phase of a suppressed carrier signal modulated with a binary- phase-shift-keying (BPSK) or quaternary- phase-shift-keying (QPSK) signal representing a low-density parity-check (LDPC) code. This method is an extended version of the method described in Using LDPC Code Constraints to Aid Recovery of Symbol Timing (NPO-43112), NASA Tech Briefs, Vol. 32, No. 10 (October 2008), page 54. Both methods and the receiver architectures in which they would be implemented belong to a class of timing- recovery methods and corresponding receiver architectures characterized as pilotless in that they do not require transmission and reception of pilot signals. The proposed method calls for the use of what is known in the art as soft decision feedback to remove the modulation from a replica of the incoming signal prior to feeding this replica to a phase-locked loop (PLL) or other carrier-tracking stage in the receiver. Soft decision feedback refers to suitably processed versions of intermediate results of iterative computations involved in the LDPC decoding process. Unlike a related prior method in which hard decision feedback (the final sequence of decoded symbols) is used to remove the modulation, the proposed method does not require estimation of the decoder error probability. In a basic digital implementation of the proposed method, the incoming signal (having carrier phase theta theta (sub c) plus noise would first be converted to inphase (I) and quadrature (Q) baseband signals by mixing it with I and Q signals at the carrier frequency [wc/(2 pi)] generated by a local oscillator. The resulting demodulated signals would be processed through one-symbol-period integrate and- dump filters, the outputs of which would be sampled and held, then multiplied by a soft-decision version of the baseband modulated signal. The resulting I and Q products consist of terms proportional to the cosine

  16. NP-hardness of decoding quantum error-correction codes

    Science.gov (United States)

    Hsieh, Min-Hsiu; Le Gall, François

    2011-05-01

    Although the theory of quantum error correction is intimately related to classical coding theory and, in particular, one can construct quantum error-correction codes (QECCs) from classical codes with the dual-containing property, this does not necessarily imply that the computational complexity of decoding QECCs is the same as their classical counterparts. Instead, decoding QECCs can be very much different from decoding classical codes due to the degeneracy property. Intuitively, one expects degeneracy would simplify the decoding since two different errors might not and need not be distinguished in order to correct them. However, we show that general quantum decoding problem is NP-hard regardless of the quantum codes being degenerate or nondegenerate. This finding implies that no considerably fast decoding algorithm exists for the general quantum decoding problems and suggests the existence of a quantum cryptosystem based on the hardness of decoding QECCs.

  17. NP-hardness of decoding quantum error-correction codes

    International Nuclear Information System (INIS)

    Hsieh, Min-Hsiu; Le Gall, Francois

    2011-01-01

    Although the theory of quantum error correction is intimately related to classical coding theory and, in particular, one can construct quantum error-correction codes (QECCs) from classical codes with the dual-containing property, this does not necessarily imply that the computational complexity of decoding QECCs is the same as their classical counterparts. Instead, decoding QECCs can be very much different from decoding classical codes due to the degeneracy property. Intuitively, one expects degeneracy would simplify the decoding since two different errors might not and need not be distinguished in order to correct them. However, we show that general quantum decoding problem is NP-hard regardless of the quantum codes being degenerate or nondegenerate. This finding implies that no considerably fast decoding algorithm exists for the general quantum decoding problems and suggests the existence of a quantum cryptosystem based on the hardness of decoding QECCs.

  18. Generalized Sudan's List Decoding for Order Domain Codes

    DEFF Research Database (Denmark)

    Geil, Hans Olav; Matsumoto, Ryutaroh

    2007-01-01

    We generalize Sudan's list decoding algorithm without multiplicity to evaluation codes coming from arbitrary order domains. The number of correctable errors by the proposed method is larger than the original list decoding without multiplicity....

  19. Partially blind instantly decodable network codes for lossy feedback environment

    KAUST Repository

    Sorour, Sameh; Douik, Ahmed S.; Valaee, Shahrokh; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2014-01-01

    an expression for the expected decoding delay increment for any arbitrary transmission. This expression is then used to find the optimal policy that reduces the decoding delay in such lossy feedback environment. Results show that our proposed solutions both

  20. Performance Analysis of Faulty Gallager-B Decoding of QC-LDPC Codes with Applications

    Directory of Open Access Journals (Sweden)

    O. Al Rasheed

    2014-06-01

    Full Text Available In this paper we evaluate the performance of Gallager-B algorithm, used for decoding low-density parity-check (LDPC codes, under unreliable message computation. Our analysis is restricted to LDPC codes constructed from circular matrices (QC-LDPC codes. Using Monte Carlo simulation we investigate the effects of different code parameters on coding system performance, under a binary symmetric communication channel and independent transient faults model. One possible application of the presented analysis in designing memory architecture with unreliable components is considered.

  1. Neuroprosthetic Decoder Training as Imitation Learning.

    Science.gov (United States)

    Merel, Josh; Carlson, David; Paninski, Liam; Cunningham, John P

    2016-05-01

    Neuroprosthetic brain-computer interfaces function via an algorithm which decodes neural activity of the user into movements of an end effector, such as a cursor or robotic arm. In practice, the decoder is often learned by updating its parameters while the user performs a task. When the user's intention is not directly observable, recent methods have demonstrated value in training the decoder against a surrogate for the user's intended movement. Here we show that training a decoder in this way is a novel variant of an imitation learning problem, where an oracle or expert is employed for supervised training in lieu of direct observations, which are not available. Specifically, we describe how a generic imitation learning meta-algorithm, dataset aggregation (DAgger), can be adapted to train a generic brain-computer interface. By deriving existing learning algorithms for brain-computer interfaces in this framework, we provide a novel analysis of regret (an important metric of learning efficacy) for brain-computer interfaces. This analysis allows us to characterize the space of algorithmic variants and bounds on their regret rates. Existing approaches for decoder learning have been performed in the cursor control setting, but the available design principles for these decoders are such that it has been impossible to scale them to naturalistic settings. Leveraging our findings, we then offer an algorithm that combines imitation learning with optimal control, which should allow for training of arbitrary effectors for which optimal control can generate goal-oriented control. We demonstrate this novel and general BCI algorithm with simulated neuroprosthetic control of a 26 degree-of-freedom model of an arm, a sophisticated and realistic end effector.

  2. Neuroprosthetic Decoder Training as Imitation Learning.

    Directory of Open Access Journals (Sweden)

    Josh Merel

    2016-05-01

    Full Text Available Neuroprosthetic brain-computer interfaces function via an algorithm which decodes neural activity of the user into movements of an end effector, such as a cursor or robotic arm. In practice, the decoder is often learned by updating its parameters while the user performs a task. When the user's intention is not directly observable, recent methods have demonstrated value in training the decoder against a surrogate for the user's intended movement. Here we show that training a decoder in this way is a novel variant of an imitation learning problem, where an oracle or expert is employed for supervised training in lieu of direct observations, which are not available. Specifically, we describe how a generic imitation learning meta-algorithm, dataset aggregation (DAgger, can be adapted to train a generic brain-computer interface. By deriving existing learning algorithms for brain-computer interfaces in this framework, we provide a novel analysis of regret (an important metric of learning efficacy for brain-computer interfaces. This analysis allows us to characterize the space of algorithmic variants and bounds on their regret rates. Existing approaches for decoder learning have been performed in the cursor control setting, but the available design principles for these decoders are such that it has been impossible to scale them to naturalistic settings. Leveraging our findings, we then offer an algorithm that combines imitation learning with optimal control, which should allow for training of arbitrary effectors for which optimal control can generate goal-oriented control. We demonstrate this novel and general BCI algorithm with simulated neuroprosthetic control of a 26 degree-of-freedom model of an arm, a sophisticated and realistic end effector.

  3. Decoding of concatenated codes with interleaved outer codes

    DEFF Research Database (Denmark)

    Justesen, Jørn; Høholdt, Tom; Thommesen, Christian

    2004-01-01

    Recently Bleichenbacher et al. proposed a decoding algorithm for interleaved (N, K) Reed-Solomon codes, which allows close to N-K errors to be corrected in many cases. We discuss the application of this decoding algorithm to concatenated codes.......Recently Bleichenbacher et al. proposed a decoding algorithm for interleaved (N, K) Reed-Solomon codes, which allows close to N-K errors to be corrected in many cases. We discuss the application of this decoding algorithm to concatenated codes....

  4. Decoding Hermitian Codes with Sudan's Algorithm

    DEFF Research Database (Denmark)

    Høholdt, Tom; Nielsen, Rasmus Refslund

    1999-01-01

    We present an efficient implementation of Sudan's algorithm for list decoding Hermitian codes beyond half the minimum distance. The main ingredients are an explicit method to calculate so-called increasing zero bases, an efficient interpolation algorithm for finding the Q-polynomial, and a reduct......We present an efficient implementation of Sudan's algorithm for list decoding Hermitian codes beyond half the minimum distance. The main ingredients are an explicit method to calculate so-called increasing zero bases, an efficient interpolation algorithm for finding the Q...

  5. Decoding Interleaved Gabidulin Codes using Alekhnovich's Algorithm

    DEFF Research Database (Denmark)

    Puchinger, Sven; Müelich, Sven; Mödinger, David

    2017-01-01

    We prove that Alekhnovich's algorithm can be used for row reduction of skew polynomial matrices. This yields an O(ℓ3n(ω+1)/2log⁡(n)) decoding algorithm for ℓ-Interleaved Gabidulin codes of length n, where ω is the matrix multiplication exponent.......We prove that Alekhnovich's algorithm can be used for row reduction of skew polynomial matrices. This yields an O(ℓ3n(ω+1)/2log⁡(n)) decoding algorithm for ℓ-Interleaved Gabidulin codes of length n, where ω is the matrix multiplication exponent....

  6. Decoding LDPC Convolutional Codes on Markov Channels

    Directory of Open Access Journals (Sweden)

    Kashyap Manohar

    2008-01-01

    Full Text Available Abstract This paper describes a pipelined iterative technique for joint decoding and channel state estimation of LDPC convolutional codes over Markov channels. Example designs are presented for the Gilbert-Elliott discrete channel model. We also compare the performance and complexity of our algorithm against joint decoding and state estimation of conventional LDPC block codes. Complexity analysis reveals that our pipelined algorithm reduces the number of operations per time step compared to LDPC block codes, at the expense of increased memory and latency. This tradeoff is favorable for low-power applications.

  7. Decoding LDPC Convolutional Codes on Markov Channels

    Directory of Open Access Journals (Sweden)

    Chris Winstead

    2008-04-01

    Full Text Available This paper describes a pipelined iterative technique for joint decoding and channel state estimation of LDPC convolutional codes over Markov channels. Example designs are presented for the Gilbert-Elliott discrete channel model. We also compare the performance and complexity of our algorithm against joint decoding and state estimation of conventional LDPC block codes. Complexity analysis reveals that our pipelined algorithm reduces the number of operations per time step compared to LDPC block codes, at the expense of increased memory and latency. This tradeoff is favorable for low-power applications.

  8. Decoding algorithm for vortex communications receiver

    Science.gov (United States)

    Kupferman, Judy; Arnon, Shlomi

    2018-01-01

    Vortex light beams can provide a tremendous alphabet for encoding information. We derive a symbol decoding algorithm for a direct detection matrix detector vortex beam receiver using Laguerre Gauss (LG) modes, and develop a mathematical model of symbol error rate (SER) for this receiver. We compare SER as a function of signal to noise ratio (SNR) for our algorithm and for the Pearson correlation algorithm. To our knowledge, this is the first comprehensive treatment of a decoding algorithm of a matrix detector for an LG receiver.

  9. On Lattice Sequential Decoding for The Unconstrained AWGN Channel

    KAUST Repository

    Abediseid, Walid; Alouini, Mohamed-Slim

    2013-01-01

    channel has been studied only under the use of the minimum Euclidean distance decoder that is commonly referred to as the \\textit{lattice decoder}. Lattice decoders based on solutions to the NP-hard closest vector problem are very complex to implement

  10. Image transmission system using adaptive joint source and channel decoding

    Science.gov (United States)

    Liu, Weiliang; Daut, David G.

    2005-03-01

    In this paper, an adaptive joint source and channel decoding method is designed to accelerate the convergence of the iterative log-dimain sum-product decoding procedure of LDPC codes as well as to improve the reconstructed image quality. Error resilience modes are used in the JPEG2000 source codec, which makes it possible to provide useful source decoded information to the channel decoder. After each iteration, a tentative decoding is made and the channel decoded bits are then sent to the JPEG2000 decoder. Due to the error resilience modes, some bits are known to be either correct or in error. The positions of these bits are then fed back to the channel decoder. The log-likelihood ratios (LLR) of these bits are then modified by a weighting factor for the next iteration. By observing the statistics of the decoding procedure, the weighting factor is designed as a function of the channel condition. That is, for lower channel SNR, a larger factor is assigned, and vice versa. Results show that the proposed joint decoding methods can greatly reduce the number of iterations, and thereby reduce the decoding delay considerably. At the same time, this method always outperforms the non-source controlled decoding method up to 5dB in terms of PSNR for various reconstructed images.

  11. Decoding and Encoding Facial Expressions in Preschool-Age Children.

    Science.gov (United States)

    Zuckerman, Miron; Przewuzman, Sylvia J.

    1979-01-01

    Preschool-age children drew, decoded, and encoded facial expressions depicting five different emotions. Accuracy of drawing, decoding and encoding each of the five emotions was consistent across the three tasks; decoding ability was correlated with drawing ability among female subjects, but neither of these abilities was correlated with encoding…

  12. Bayesian population decoding of spiking neurons.

    Science.gov (United States)

    Gerwinn, Sebastian; Macke, Jakob; Bethge, Matthias

    2009-01-01

    The timing of action potentials in spiking neurons depends on the temporal dynamics of their inputs and contains information about temporal fluctuations in the stimulus. Leaky integrate-and-fire neurons constitute a popular class of encoding models, in which spike times depend directly on the temporal structure of the inputs. However, optimal decoding rules for these models have only been studied explicitly in the noiseless case. Here, we study decoding rules for probabilistic inference of a continuous stimulus from the spike times of a population of leaky integrate-and-fire neurons with threshold noise. We derive three algorithms for approximating the posterior distribution over stimuli as a function of the observed spike trains. In addition to a reconstruction of the stimulus we thus obtain an estimate of the uncertainty as well. Furthermore, we derive a 'spike-by-spike' online decoding scheme that recursively updates the posterior with the arrival of each new spike. We use these decoding rules to reconstruct time-varying stimuli represented by a Gaussian process from spike trains of single neurons as well as neural populations.

  13. Faster 2-regular information-set decoding

    NARCIS (Netherlands)

    Bernstein, D.J.; Lange, T.; Peters, C.P.; Schwabe, P.; Chee, Y.M.

    2011-01-01

    Fix positive integers B and w. Let C be a linear code over F 2 of length Bw. The 2-regular-decoding problem is to find a nonzero codeword consisting of w length-B blocks, each of which has Hamming weight 0 or 2. This problem appears in attacks on the FSB (fast syndrome-based) hash function and

  14. Bayesian population decoding of spiking neurons

    Directory of Open Access Journals (Sweden)

    Sebastian Gerwinn

    2009-10-01

    Full Text Available The timing of action potentials in spiking neurons depends on the temporal dynamics of their inputs and contains information about temporal fluctuations in the stimulus. Leaky integrate-and-fire neurons constitute a popular class of encoding models, in which spike times depend directly on the temporal structure of the inputs. However, optimal decoding rules for these models have only been studied explicitly in the noiseless case. Here, we study decoding rules for probabilistic inference of a continuous stimulus from the spike times of a population of leaky integrate-and-fire neurons with threshold noise. We derive three algorithms for approximating the posterior distribution over stimuli as a function of the observed spike trains. In addition to a reconstruction of the stimulus we thus obtain an estimate of the uncertainty as well. Furthermore, we derive a `spike-by-spike' online decoding scheme that recursively updates the posterior with the arrival of each new spike. We use these decoding rules to reconstruct time-varying stimuli represented by a Gaussian process from spike trains of single neurons as well as neural populations.

  15. Sequential decoders for large MIMO systems

    KAUST Repository

    Ali, Konpal S.; Abediseid, Walid; Alouini, Mohamed-Slim

    2014-01-01

    the Sequential Decoder using the Fano Algorithm for large MIMO systems. A parameter called the bias is varied to attain different performance-complexity trade-offs. Low values of the bias result in excellent performance but at the expense of high complexity

  16. 47 CFR 11.33 - EAS Decoder.

    Science.gov (United States)

    2010-10-01

    ..., satellite, public switched telephone network, or any other source that uses the EAS protocol. (2) Valid..., analog radio and television broadcast stations, analog cable systems and wireless cable systems may... program data must be retained even with power removed. (7) Outputs. Decoders shall have the following...

  17. Older Adults Have Difficulty in Decoding Sarcasm

    Science.gov (United States)

    Phillips, Louise H.; Allen, Roy; Bull, Rebecca; Hering, Alexandra; Kliegel, Matthias; Channon, Shelley

    2015-01-01

    Younger and older adults differ in performance on a range of social-cognitive skills, with older adults having difficulties in decoding nonverbal cues to emotion and intentions. Such skills are likely to be important when deciding whether someone is being sarcastic. In the current study we investigated in a life span sample whether there are…

  18. Implementation of Layered Decoding Architecture for LDPC Code using Layered Min-Sum Algorithm

    Directory of Open Access Journals (Sweden)

    Sandeep Kakde

    2017-12-01

    Full Text Available For binary field and long code lengths, Low Density Parity Check (LDPC code approaches Shannon limit performance. LDPC codes provide remarkable error correction performance and therefore enlarge the design space for communication systems.In this paper, we have compare different digital modulation techniques and found that BPSK modulation technique is better than other modulation techniques in terms of BER. It also gives error performance of LDPC decoder over AWGN channel using Min-Sum algorithm. VLSI Architecture is proposed which uses the value re-use property of min-sum algorithm and gives high throughput. The proposed work has been implemented and tested on Xilinx Virtex 5 FPGA. The MATLAB result of LDPC decoder for low bit error rate (BER gives bit error rate in the range of 10-1 to 10-3.5 at SNR=1 to 2 for 20 no of iterations. So it gives good bit error rate performance. The latency of the parallel design of LDPC decoder has also reduced. It has accomplished 141.22 MHz maximum frequency and throughput of 2.02 Gbps while consuming less area of the design.

  19. Bounded-Angle Iterative Decoding of LDPC Codes

    Science.gov (United States)

    Dolinar, Samuel; Andrews, Kenneth; Pollara, Fabrizio; Divsalar, Dariush

    2009-01-01

    Bounded-angle iterative decoding is a modified version of conventional iterative decoding, conceived as a means of reducing undetected-error rates for short low-density parity-check (LDPC) codes. For a given code, bounded-angle iterative decoding can be implemented by means of a simple modification of the decoder algorithm, without redesigning the code. Bounded-angle iterative decoding is based on a representation of received words and code words as vectors in an n-dimensional Euclidean space (where n is an integer).

  20. Decoding subjective mental states from fMRI activity patterns

    International Nuclear Information System (INIS)

    Tamaki, Masako; Kamitani, Yukiyasu

    2011-01-01

    In recent years, functional magnetic resonance imaging (fMRI) decoding has emerged as a powerful tool to read out detailed stimulus features from multi-voxel brain activity patterns. Moreover, the method has been extended to perform a primitive form of 'mind-reading,' by applying a decoder 'objectively' trained using stimulus features to more 'subjective' conditions. In this paper, we first introduce basic procedures for fMRI decoding based on machine learning techniques. Second, we discuss the source of information used for decoding, in particular, the possibility of extracting information from subvoxel neural structures. We next introduce two experimental designs for decoding subjective mental states: the 'objective-to-subjective design' and the 'subjective-to-subjective design.' Then, we illustrate recent studies on the decoding of a variety of mental states, such as, attention, awareness, decision making, memory, and mental imagery. Finally, we discuss the challenges and new directions of fMRI decoding. (author)

  1. Belief propagation decoding of quantum channels by passing quantum messages

    International Nuclear Information System (INIS)

    Renes, Joseph M

    2017-01-01

    The belief propagation (BP) algorithm is a powerful tool in a wide range of disciplines from statistical physics to machine learning to computational biology, and is ubiquitous in decoding classical error-correcting codes. The algorithm works by passing messages between nodes of the factor graph associated with the code and enables efficient decoding of the channel, in some cases even up to the Shannon capacity. Here we construct the first BP algorithm which passes quantum messages on the factor graph and is capable of decoding the classical–quantum channel with pure state outputs. This gives explicit decoding circuits whose number of gates is quadratic in the code length. We also show that this decoder can be modified to work with polar codes for the pure state channel and as part of a decoder for transmitting quantum information over the amplitude damping channel. These represent the first explicit capacity-achieving decoders for non-Pauli channels. (fast track communication)

  2. Belief propagation decoding of quantum channels by passing quantum messages

    Science.gov (United States)

    Renes, Joseph M.

    2017-07-01

    The belief propagation (BP) algorithm is a powerful tool in a wide range of disciplines from statistical physics to machine learning to computational biology, and is ubiquitous in decoding classical error-correcting codes. The algorithm works by passing messages between nodes of the factor graph associated with the code and enables efficient decoding of the channel, in some cases even up to the Shannon capacity. Here we construct the first BP algorithm which passes quantum messages on the factor graph and is capable of decoding the classical-quantum channel with pure state outputs. This gives explicit decoding circuits whose number of gates is quadratic in the code length. We also show that this decoder can be modified to work with polar codes for the pure state channel and as part of a decoder for transmitting quantum information over the amplitude damping channel. These represent the first explicit capacity-achieving decoders for non-Pauli channels.

  3. Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes. Part 3; The Map and Related Decoding Algirithms

    Science.gov (United States)

    Lin, Shu; Fossorier, Marc

    1998-01-01

    In a coded communication system with equiprobable signaling, MLD minimizes the word error probability and delivers the most likely codeword associated with the corresponding received sequence. This decoding has two drawbacks. First, minimization of the word error probability is not equivalent to minimization of the bit error probability. Therefore, MLD becomes suboptimum with respect to the bit error probability. Second, MLD delivers a hard-decision estimate of the received sequence, so that information is lost between the input and output of the ML decoder. This information is important in coded schemes where the decoded sequence is further processed, such as concatenated coding schemes, multi-stage and iterative decoding schemes. In this chapter, we first present a decoding algorithm which both minimizes bit error probability, and provides the corresponding soft information at the output of the decoder. This algorithm is referred to as the MAP (maximum aposteriori probability) decoding algorithm.

  4. The brain's silent messenger: using selective attention to decode human thought for brain-based communication.

    Science.gov (United States)

    Naci, Lorina; Cusack, Rhodri; Jia, Vivian Z; Owen, Adrian M

    2013-05-29

    The interpretation of human thought from brain activity, without recourse to speech or action, is one of the most provoking and challenging frontiers of modern neuroscience. In particular, patients who are fully conscious and awake, yet, due to brain damage, are unable to show any behavioral responsivity, expose the limits of the neuromuscular system and the necessity for alternate forms of communication. Although it is well established that selective attention can significantly enhance the neural representation of attended sounds, it remains, thus far, untested as a response modality for brain-based communication. We asked whether its effect could be reliably used to decode answers to binary (yes/no) questions. Fifteen healthy volunteers answered questions (e.g., "Do you have brothers or sisters?") in the fMRI scanner, by selectively attending to the appropriate word ("yes" or "no"). Ninety percent of the answers were decoded correctly based on activity changes within the attention network. The majority of volunteers conveyed their answers with less than 3 min of scanning, suggesting that this technique is suited for communication in a reasonable amount of time. Formal comparison with the current best-established fMRI technique for binary communication revealed improved individual success rates and scanning times required to detect responses. This novel fMRI technique is intuitive, easy to use in untrained participants, and reliably robust within brief scanning times. Possible applications include communication with behaviorally nonresponsive patients.

  5. Can Emotional and Behavioral Dysregulation in Youth Be Decoded from Functional Neuroimaging?

    Directory of Open Access Journals (Sweden)

    Liana C L Portugal

    Full Text Available High comorbidity among pediatric disorders characterized by behavioral and emotional dysregulation poses problems for diagnosis and treatment, and suggests that these disorders may be better conceptualized as dimensions of abnormal behaviors. Furthermore, identifying neuroimaging biomarkers related to dimensional measures of behavior may provide targets to guide individualized treatment. We aimed to use functional neuroimaging and pattern regression techniques to determine whether patterns of brain activity could accurately decode individual-level severity on a dimensional scale measuring behavioural and emotional dysregulation at two different time points.A sample of fifty-seven youth (mean age: 14.5 years; 32 males was selected from a multi-site study of youth with parent-reported behavioral and emotional dysregulation. Participants performed a block-design reward paradigm during functional Magnetic Resonance Imaging (fMRI. Pattern regression analyses consisted of Relevance Vector Regression (RVR and two cross-validation strategies implemented in the Pattern Recognition for Neuroimaging toolbox (PRoNTo. Medication was treated as a binary confounding variable. Decoded and actual clinical scores were compared using Pearson's correlation coefficient (r and mean squared error (MSE to evaluate the models. Permutation test was applied to estimate significance levels.Relevance Vector Regression identified patterns of neural activity associated with symptoms of behavioral and emotional dysregulation at the initial study screen and close to the fMRI scanning session. The correlation and the mean squared error between actual and decoded symptoms were significant at the initial study screen and close to the fMRI scanning session. However, after controlling for potential medication effects, results remained significant only for decoding symptoms at the initial study screen. Neural regions with the highest contribution to the pattern regression model

  6. FFT Algorithm for Binary Extension Finite Fields and Its Application to Reed–Solomon Codes

    KAUST Repository

    Lin, Sian Jheng

    2016-08-15

    Recently, a new polynomial basis over binary extension fields was proposed, such that the fast Fourier transform (FFT) over such fields can be computed in the complexity of order O(n lg(n)), where n is the number of points evaluated in FFT. In this paper, we reformulate this FFT algorithm, such that it can be easier understood and be extended to develop frequency-domain decoding algorithms for (n = 2(m), k) systematic Reed-Solomon (RS) codes over F-2m, m is an element of Z(+), with n-k a power of two. First, the basis of syndrome polynomials is reformulated in the decoding procedure so that the new transforms can be applied to the decoding procedure. A fast extended Euclidean algorithm is developed to determine the error locator polynomial. The computational complexity of the proposed decoding algorithm is O(n lg(n-k)+(n-k)lg(2)(n-k)), improving upon the best currently available decoding complexity O(n lg(2)(n) lg lg(n)), and reaching the best known complexity bound that was established by Justesen in 1976. However, Justesen\\'s approach is only for the codes over some specific fields, which can apply Cooley-Tukey FFTs. As revealed by the computer simulations, the proposed decoding algorithm is 50 times faster than the conventional one for the (2(16), 2(15)) RS code over F-216.

  7. On Lattice Sequential Decoding for The Unconstrained AWGN Channel

    KAUST Repository

    Abediseid, Walid

    2013-04-04

    In this paper, the performance limits and the computational complexity of the lattice sequential decoder are analyzed for the unconstrained additive white Gaussian noise channel. The performance analysis available in the literature for such a channel has been studied only under the use of the minimum Euclidean distance decoder that is commonly referred to as the \\\\textit{lattice decoder}. Lattice decoders based on solutions to the NP-hard closest vector problem are very complex to implement, and the search for low complexity receivers for the detection of lattice codes is considered a challenging problem. However, the low computational complexity advantage that sequential decoding promises, makes it an alternative solution to the lattice decoder. In this work, we characterize the performance and complexity tradeoff via the error exponent and the decoding complexity, respectively, of such a decoder as a function of the decoding parameter --- the bias term. For the above channel, we derive the cut-off volume-to-noise ratio that is required to achieve a good error performance with low decoding complexity.

  8. On Lattice Sequential Decoding for The Unconstrained AWGN Channel

    KAUST Repository

    Abediseid, Walid

    2012-10-01

    In this paper, the performance limits and the computational complexity of the lattice sequential decoder are analyzed for the unconstrained additive white Gaussian noise channel. The performance analysis available in the literature for such a channel has been studied only under the use of the minimum Euclidean distance decoder that is commonly referred to as the lattice decoder. Lattice decoders based on solutions to the NP-hard closest vector problem are very complex to implement, and the search for low complexity receivers for the detection of lattice codes is considered a challenging problem. However, the low computational complexity advantage that sequential decoding promises, makes it an alternative solution to the lattice decoder. In this work, we characterize the performance and complexity tradeoff via the error exponent and the decoding complexity, respectively, of such a decoder as a function of the decoding parameter --- the bias term. For the above channel, we derive the cut-off volume-to-noise ratio that is required to achieve a good error performance with low decoding complexity.

  9. Video coding for decoding power-constrained embedded devices

    Science.gov (United States)

    Lu, Ligang; Sheinin, Vadim

    2004-01-01

    Low power dissipation and fast processing time are crucial requirements for embedded multimedia devices. This paper presents a technique in video coding to decrease the power consumption at a standard video decoder. Coupled with a small dedicated video internal memory cache on a decoder, the technique can substantially decrease the amount of data traffic to the external memory at the decoder. A decrease in data traffic to the external memory at decoder will result in multiple benefits: faster real-time processing and power savings. The encoder, given prior knowledge of the decoder"s dedicated video internal memory cache management scheme, regulates its choice of motion compensated predictors to reduce the decoder"s external memory accesses. This technique can be used in any standard or proprietary encoder scheme to generate a compliant output bit stream decodable by standard CPU-based and dedicated hardware-based decoders for power savings with the best quality-power cost trade off. Our simulation results show that with a relatively small amount of dedicated video internal memory cache, the technique may decrease the traffic between CPU and external memory over 50%.

  10. On Lattice Sequential Decoding for The Unconstrained AWGN Channel

    KAUST Repository

    Abediseid, Walid; Alouini, Mohamed-Slim

    2012-01-01

    In this paper, the performance limits and the computational complexity of the lattice sequential decoder are analyzed for the unconstrained additive white Gaussian noise channel. The performance analysis available in the literature for such a channel has been studied only under the use of the minimum Euclidean distance decoder that is commonly referred to as the lattice decoder. Lattice decoders based on solutions to the NP-hard closest vector problem are very complex to implement, and the search for low complexity receivers for the detection of lattice codes is considered a challenging problem. However, the low computational complexity advantage that sequential decoding promises, makes it an alternative solution to the lattice decoder. In this work, we characterize the performance and complexity tradeoff via the error exponent and the decoding complexity, respectively, of such a decoder as a function of the decoding parameter --- the bias term. For the above channel, we derive the cut-off volume-to-noise ratio that is required to achieve a good error performance with low decoding complexity.

  11. Decoding spikes in a spiking neuronal network

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jianfeng [Department of Informatics, University of Sussex, Brighton BN1 9QH (United Kingdom); Ding, Mingzhou [Department of Mathematics, Florida Atlantic University, Boca Raton, FL 33431 (United States)

    2004-06-04

    We investigate how to reliably decode the input information from the output of a spiking neuronal network. A maximum likelihood estimator of the input signal, together with its Fisher information, is rigorously calculated. The advantage of the maximum likelihood estimation over the 'brute-force rate coding' estimate is clearly demonstrated. It is pointed out that the ergodic assumption in neuroscience, i.e. a temporal average is equivalent to an ensemble average, is in general not true. Averaging over an ensemble of neurons usually gives a biased estimate of the input information. A method on how to compensate for the bias is proposed. Reconstruction of dynamical input signals with a group of spiking neurons is extensively studied and our results show that less than a spike is sufficient to accurately decode dynamical inputs.

  12. Decoding spikes in a spiking neuronal network

    International Nuclear Information System (INIS)

    Feng Jianfeng; Ding, Mingzhou

    2004-01-01

    We investigate how to reliably decode the input information from the output of a spiking neuronal network. A maximum likelihood estimator of the input signal, together with its Fisher information, is rigorously calculated. The advantage of the maximum likelihood estimation over the 'brute-force rate coding' estimate is clearly demonstrated. It is pointed out that the ergodic assumption in neuroscience, i.e. a temporal average is equivalent to an ensemble average, is in general not true. Averaging over an ensemble of neurons usually gives a biased estimate of the input information. A method on how to compensate for the bias is proposed. Reconstruction of dynamical input signals with a group of spiking neurons is extensively studied and our results show that less than a spike is sufficient to accurately decode dynamical inputs

  13. Neural decoding of visual imagery during sleep.

    Science.gov (United States)

    Horikawa, T; Tamaki, M; Miyawaki, Y; Kamitani, Y

    2013-05-03

    Visual imagery during sleep has long been a topic of persistent speculation, but its private nature has hampered objective analysis. Here we present a neural decoding approach in which machine-learning models predict the contents of visual imagery during the sleep-onset period, given measured brain activity, by discovering links between human functional magnetic resonance imaging patterns and verbal reports with the assistance of lexical and image databases. Decoding models trained on stimulus-induced brain activity in visual cortical areas showed accurate classification, detection, and identification of contents. Our findings demonstrate that specific visual experience during sleep is represented by brain activity patterns shared by stimulus perception, providing a means to uncover subjective contents of dreaming using objective neural measurement.

  14. Power decoding Reed-Solomon codes up to the Johnson radius

    DEFF Research Database (Denmark)

    Rosenkilde, Johan Sebastian Heesemann

    2018-01-01

    Power decoding, or "decoding using virtual interleaving" is a technique for decoding Reed-Solomon codes up to the Sudan radius. Since the method's inception, it has been an open question if it is possible to use this approach to decode up to the Johnson radius - the decoding radius of the Guruswami...

  15. Resource Efficient LDPC Decoders for Multimedia Communication

    OpenAIRE

    Chandrasetty, Vikram Arkalgud; Aziz, Syed Mahfuzul

    2013-01-01

    Achieving high image quality is an important aspect in an increasing number of wireless multimedia applications. These applications require resource efficient error correction hardware to detect and correct errors introduced by the communication channel. This paper presents an innovative flexible architecture for error correction using Low-Density Parity-Check (LDPC) codes. The proposed partially-parallel decoder architecture utilizes a novel code construction technique based on multi-level H...

  16. Decoding divergent series in nonparaxial optics.

    Science.gov (United States)

    Borghi, Riccardo; Gori, Franco; Guattari, Giorgio; Santarsiero, Massimo

    2011-03-15

    A theoretical analysis aimed at investigating the divergent character of perturbative series involved in the study of free-space nonparaxial propagation of vectorial optical beams is proposed. Our analysis predicts a factorial divergence for such series and provides a theoretical framework within which the results of recently published numerical experiments concerning nonparaxial propagation of vectorial Gaussian beams find a meaningful interpretation in terms of the decoding operated on such series by the Weniger transformation.

  17. Sequential decoders for large MIMO systems

    KAUST Repository

    Ali, Konpal S.

    2014-05-01

    Due to their ability to provide high data rates, multiple-input multiple-output (MIMO) systems have become increasingly popular. Decoding of these systems with acceptable error performance is computationally very demanding. In this paper, we employ the Sequential Decoder using the Fano Algorithm for large MIMO systems. A parameter called the bias is varied to attain different performance-complexity trade-offs. Low values of the bias result in excellent performance but at the expense of high complexity and vice versa for higher bias values. Numerical results are done that show moderate bias values result in a decent performance-complexity trade-off. We also attempt to bound the error by bounding the bias, using the minimum distance of a lattice. The variations in complexity with SNR have an interesting trend that shows room for considerable improvement. Our work is compared against linear decoders (LDs) aided with Element-based Lattice Reduction (ELR) and Complex Lenstra-Lenstra-Lovasz (CLLL) reduction. © 2014 IFIP.

  18. Markov source model for printed music decoding

    Science.gov (United States)

    Kopec, Gary E.; Chou, Philip A.; Maltz, David A.

    1995-03-01

    This paper describes a Markov source model for a simple subset of printed music notation. The model is based on the Adobe Sonata music symbol set and a message language of our own design. Chord imaging is the most complex part of the model. Much of the complexity follows from a rule of music typography that requires the noteheads for adjacent pitches to be placed on opposite sides of the chord stem. This rule leads to a proliferation of cases for other typographic details such as dot placement. We describe the language of message strings accepted by the model and discuss some of the imaging issues associated with various aspects of the message language. We also point out some aspects of music notation that appear problematic for a finite-state representation. Development of the model was greatly facilitated by the duality between image synthesis and image decoding. Although our ultimate objective was a music image model for use in decoding, most of the development proceeded by using the evolving model for image synthesis, since it is computationally far less costly to image a message than to decode an image.

  19. Kernel Temporal Differences for Neural Decoding

    Science.gov (United States)

    Bae, Jihye; Sanchez Giraldo, Luis G.; Pohlmeyer, Eric A.; Francis, Joseph T.; Sanchez, Justin C.; Príncipe, José C.

    2015-01-01

    We study the feasibility and capability of the kernel temporal difference (KTD)(λ) algorithm for neural decoding. KTD(λ) is an online, kernel-based learning algorithm, which has been introduced to estimate value functions in reinforcement learning. This algorithm combines kernel-based representations with the temporal difference approach to learning. One of our key observations is that by using strictly positive definite kernels, algorithm's convergence can be guaranteed for policy evaluation. The algorithm's nonlinear functional approximation capabilities are shown in both simulations of policy evaluation and neural decoding problems (policy improvement). KTD can handle high-dimensional neural states containing spatial-temporal information at a reasonable computational complexity allowing real-time applications. When the algorithm seeks a proper mapping between a monkey's neural states and desired positions of a computer cursor or a robot arm, in both open-loop and closed-loop experiments, it can effectively learn the neural state to action mapping. Finally, a visualization of the coadaptation process between the decoder and the subject shows the algorithm's capabilities in reinforcement learning brain machine interfaces. PMID:25866504

  20. Solving a binary puzzle

    NARCIS (Netherlands)

    Utomo, P.H.; Makarim, R.H.

    2017-01-01

    A Binary puzzle is a Sudoku-like puzzle with values in each cell taken from the set {0,1} {0,1}. Let n≥4 be an even integer, a solved binary puzzle is an n×n binary array that satisfies the following conditions: (1) no three consecutive ones and no three consecutive zeros in each row and each

  1. Eclipsing binaries in open clusters

    DEFF Research Database (Denmark)

    Southworth, John; Clausen, J.V.

    2006-01-01

    Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August......Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August...

  2. Deep Learning Methods for Improved Decoding of Linear Codes

    Science.gov (United States)

    Nachmani, Eliya; Marciano, Elad; Lugosch, Loren; Gross, Warren J.; Burshtein, David; Be'ery, Yair

    2018-02-01

    The problem of low complexity, close to optimal, channel decoding of linear codes with short to moderate block length is considered. It is shown that deep learning methods can be used to improve a standard belief propagation decoder, despite the large example space. Similar improvements are obtained for the min-sum algorithm. It is also shown that tying the parameters of the decoders across iterations, so as to form a recurrent neural network architecture, can be implemented with comparable results. The advantage is that significantly less parameters are required. We also introduce a recurrent neural decoder architecture based on the method of successive relaxation. Improvements over standard belief propagation are also observed on sparser Tanner graph representations of the codes. Furthermore, we demonstrate that the neural belief propagation decoder can be used to improve the performance, or alternatively reduce the computational complexity, of a close to optimal decoder of short BCH codes.

  3. Decoding Delay Controlled Completion Time Reduction in Instantly Decodable Network Coding

    KAUST Repository

    Douik, Ahmed

    2016-06-27

    For several years, the completion time and the decoding delay problems in Instantly Decodable Network Coding (IDNC) were considered separately and were thought to act completely against each other. Recently, some works aimed to balance the effects of these two important IDNC metrics but none of them studied a further optimization of one by controlling the other. This paper investigates the effect of controlling the decoding delay to reduce the completion time below its currently best-known solution in both perfect and imperfect feedback with persistent erasure channels. To solve the problem, the decodingdelay- dependent expressions of the users’ and overall completion times are derived in the complete feedback scenario. Although using such expressions to find the optimal overall completion time is NP-hard, the paper proposes two novel heuristics that minimizes the probability of increasing the maximum of these decoding-delay-dependent completion time expressions after each transmission through a layered control of their decoding delays. Afterward, the paper extends the study to the imperfect feedback scenario in which uncertainties at the sender affects its ability to anticipate accurately the decoding delay increase at each user. The paper formulates the problem in such environment and derives the expression of the minimum increase in the completion time. Simulation results show the performance of the proposed solutions and suggest that both heuristics achieves a lower mean completion time as compared to the best-known heuristics for the completion time reduction in perfect and imperfect feedback. The gap in performance becomes more significant as the erasure of the channel increases.

  4. Decoding Delay Controlled Completion Time Reduction in Instantly Decodable Network Coding

    KAUST Repository

    Douik, Ahmed S.; Sorour, Sameh; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2016-01-01

    For several years, the completion time and the decoding delay problems in Instantly Decodable Network Coding (IDNC) were considered separately and were thought to act completely against each other. Recently, some works aimed to balance the effects of these two important IDNC metrics but none of them studied a further optimization of one by controlling the other. This paper investigates the effect of controlling the decoding delay to reduce the completion time below its currently best-known solution in both perfect and imperfect feedback with persistent erasure channels. To solve the problem, the decodingdelay- dependent expressions of the users’ and overall completion times are derived in the complete feedback scenario. Although using such expressions to find the optimal overall completion time is NP-hard, the paper proposes two novel heuristics that minimizes the probability of increasing the maximum of these decoding-delay-dependent completion time expressions after each transmission through a layered control of their decoding delays. Afterward, the paper extends the study to the imperfect feedback scenario in which uncertainties at the sender affects its ability to anticipate accurately the decoding delay increase at each user. The paper formulates the problem in such environment and derives the expression of the minimum increase in the completion time. Simulation results show the performance of the proposed solutions and suggest that both heuristics achieves a lower mean completion time as compared to the best-known heuristics for the completion time reduction in perfect and imperfect feedback. The gap in performance becomes more significant as the erasure of the channel increases.

  5. Observations on Polar Coding with CRC-Aided List Decoding

    Science.gov (United States)

    2016-09-01

    TECHNICAL REPORT 3041 September 2016 Observations on Polar Coding with CRC-Aided List Decoding David Wasserman Approved for public release. SSC...described in [2, 3]. In FY15 and FY16 we used cyclic redundancy check (CRC)-aided polar list decoding [4]. Section 2 describes the basics of polar coding ...and gives details of the encoders and decoders we used. In the course of our research, we performed simulations of polar codes in hundreds of cases

  6. Polar Coding with CRC-Aided List Decoding

    Science.gov (United States)

    2015-08-01

    TECHNICAL REPORT 2087 August 2015 Polar Coding with CRC-Aided List Decoding David Wasserman Approved...list decoding . RESULTS Our simulation results show that polar coding can produce results very similar to the FEC used in the Digital Video...standard. RECOMMENDATIONS In any application for which the DVB-S2 FEC is considered, polar coding with CRC-aided list decod - ing with N = 65536

  7. A quantum algorithm for Viterbi decoding of classical convolutional codes

    OpenAIRE

    Grice, Jon R.; Meyer, David A.

    2014-01-01

    We present a quantum Viterbi algorithm (QVA) with better than classical performance under certain conditions. In this paper the proposed algorithm is applied to decoding classical convolutional codes, for instance; large constraint length $Q$ and short decode frames $N$. Other applications of the classical Viterbi algorithm where $Q$ is large (e.g. speech processing) could experience significant speedup with the QVA. The QVA exploits the fact that the decoding trellis is similar to the butter...

  8. Design of a VLSI Decoder for Partially Structured LDPC Codes

    Directory of Open Access Journals (Sweden)

    Fabrizio Vacca

    2008-01-01

    of their parity matrix can be partitioned into two disjoint sets, namely, the structured and the random ones. For the proposed class of codes a constructive design method is provided. To assess the value of this method the constructed codes performance are presented. From these results, a novel decoding method called split decoding is introduced. Finally, to prove the effectiveness of the proposed approach a whole VLSI decoder is designed and characterized.

  9. Interpolation decoding method with variable parameters for fractal image compression

    International Nuclear Information System (INIS)

    He Chuanjiang; Li Gaoping; Shen Xiaona

    2007-01-01

    The interpolation fractal decoding method, which is introduced by [He C, Yang SX, Huang X. Progressive decoding method for fractal image compression. IEE Proc Vis Image Signal Process 2004;3:207-13], involves generating progressively the decoded image by means of an interpolation iterative procedure with a constant parameter. It is well-known that the majority of image details are added at the first steps of iterations in the conventional fractal decoding; hence the constant parameter for the interpolation decoding method must be set as a smaller value in order to achieve a better progressive decoding. However, it needs to take an extremely large number of iterations to converge. It is thus reasonable for some applications to slow down the iterative process at the first stages of decoding and then to accelerate it afterwards (e.g., at some iteration as we need). To achieve the goal, this paper proposed an interpolation decoding scheme with variable (iteration-dependent) parameters and proved the convergence of the decoding process mathematically. Experimental results demonstrate that the proposed scheme has really achieved the above-mentioned goal

  10. Joint Decoding of Concatenated VLEC and STTC System

    Directory of Open Access Journals (Sweden)

    Chen Huijun

    2008-01-01

    Full Text Available Abstract We consider the decoding of wireless communication systems with both source coding in the application layer and channel coding in the physical layer for high-performance transmission over fading channels. Variable length error correcting codes (VLECs and space time trellis codes (STTCs are used to provide bandwidth efficient data compression as well as coding and diversity gains. At the receiver, an iterative joint source and space time decoding scheme are developed to utilize redundancy in both STTC and VLEC to improve overall decoding performance. Issues such as the inseparable systematic information in the symbol level, the asymmetric trellis structure of VLEC, and information exchange between bit and symbol domains have been considered in the maximum a posteriori probability (MAP decoding algorithm. Simulation results indicate that the developed joint decoding scheme achieves a significant decoding gain over the separate decoding in fading channels, whether or not the channel information is perfectly known at the receiver. Furthermore, how rate allocation between STTC and VLEC affects the performance of the joint source and space-time decoder is investigated. Different systems with a fixed overall information rate are studied. It is shown that for a system with more redundancy dedicated to the source code and a higher order modulation of STTC, the joint decoding yields better performance, though with increased complexity.

  11. Joint Decoding of Concatenated VLEC and STTC System

    Directory of Open Access Journals (Sweden)

    Huijun Chen

    2008-07-01

    Full Text Available We consider the decoding of wireless communication systems with both source coding in the application layer and channel coding in the physical layer for high-performance transmission over fading channels. Variable length error correcting codes (VLECs and space time trellis codes (STTCs are used to provide bandwidth efficient data compression as well as coding and diversity gains. At the receiver, an iterative joint source and space time decoding scheme are developed to utilize redundancy in both STTC and VLEC to improve overall decoding performance. Issues such as the inseparable systematic information in the symbol level, the asymmetric trellis structure of VLEC, and information exchange between bit and symbol domains have been considered in the maximum a posteriori probability (MAP decoding algorithm. Simulation results indicate that the developed joint decoding scheme achieves a significant decoding gain over the separate decoding in fading channels, whether or not the channel information is perfectly known at the receiver. Furthermore, how rate allocation between STTC and VLEC affects the performance of the joint source and space-time decoder is investigated. Different systems with a fixed overall information rate are studied. It is shown that for a system with more redundancy dedicated to the source code and a higher order modulation of STTC, the joint decoding yields better performance, though with increased complexity.

  12. Grasp movement decoding from premotor and parietal cortex.

    Science.gov (United States)

    Townsend, Benjamin R; Subasi, Erk; Scherberger, Hansjörg

    2011-10-05

    Despite recent advances in harnessing cortical motor-related activity to control computer cursors and robotic devices, the ability to decode and execute different grasping patterns remains a major obstacle. Here we demonstrate a simple Bayesian decoder for real-time classification of grip type and wrist orientation in macaque monkeys that uses higher-order planning signals from anterior intraparietal cortex (AIP) and ventral premotor cortex (area F5). Real-time decoding was based on multiunit signals, which had similar tuning properties to cells in previous single-unit recording studies. Maximum decoding accuracy for two grasp types (power and precision grip) and five wrist orientations was 63% (chance level, 10%). Analysis of decoder performance showed that grip type decoding was highly accurate (90.6%), with most errors occurring during orientation classification. In a subsequent off-line analysis, we found small but significant performance improvements (mean, 6.25 percentage points) when using an optimized spike-sorting method (superparamagnetic clustering). Furthermore, we observed significant differences in the contributions of F5 and AIP for grasp decoding, with F5 being better suited for classification of the grip type and AIP contributing more toward decoding of object orientation. However, optimum decoding performance was maximal when using neural activity simultaneously from both areas. Overall, these results highlight quantitative differences in the functional representation of grasp movements in AIP and F5 and represent a first step toward using these signals for developing functional neural interfaces for hand grasping.

  13. Sub-quadratic decoding of one-point hermitian codes

    DEFF Research Database (Denmark)

    Nielsen, Johan Sebastian Rosenkilde; Beelen, Peter

    2015-01-01

    We present the first two sub-quadratic complexity decoding algorithms for one-point Hermitian codes. The first is based on a fast realization of the Guruswami-Sudan algorithm using state-of-the-art algorithms from computer algebra for polynomial-ring matrix minimization. The second is a power...... decoding algorithm: an extension of classical key equation decoding which gives a probabilistic decoding algorithm up to the Sudan radius. We show how the resulting key equations can be solved by the matrix minimization algorithms from computer algebra, yielding similar asymptotic complexities....

  14. Performance comparison of binary modulation schemes for visible light communication

    KAUST Repository

    Park, Kihong

    2015-09-11

    In this paper, we investigate the power spectral density of several binary modulation schemes including variable on-off keying, variable pulse position modulation, and pulse dual slope modulation which were previously proposed for visible light communication with dimming control. We also propose a novel slope-based modulation called differential chip slope modulation (DCSM) and develop a chip-based hard-decision receiver to demodulate the resulting signal, detect the chip sequence, and decode the input bit sequence. We show that the DCSM scheme can exploit spectrum density more efficiently than the reference schemes while providing an error rate performance comparable to them. © 2015 IEEE.

  15. Sudan-decoding generalized geometric Goppa codes

    DEFF Research Database (Denmark)

    Heydtmann, Agnes Eileen

    2003-01-01

    Generalized geometric Goppa codes are vector spaces of n-tuples with entries from different extension fields of a ground field. They are derived from evaluating functions similar to conventional geometric Goppa codes, but allowing evaluation in places of arbitrary degree. A decoding scheme...... for these codes based on Sudan's improved algorithm is presented and its error-correcting capacity is analyzed. For the implementation of the algorithm it is necessary that the so-called increasing zero bases of certain spaces of functions are available. A method to obtain such bases is developed....

  16. Memory-efficient decoding of LDPC codes

    Science.gov (United States)

    Kwok-San Lee, Jason; Thorpe, Jeremy; Hawkins, Jon

    2005-01-01

    We present a low-complexity quantization scheme for the implementation of regular (3,6) LDPC codes. The quantization parameters are optimized to maximize the mutual information between the source and the quantized messages. Using this non-uniform quantized belief propagation algorithm, we have simulated that an optimized 3-bit quantizer operates with 0.2dB implementation loss relative to a floating point decoder, and an optimized 4-bit quantizer operates less than 0.1dB quantization loss.

  17. [Modulation of Metacognition with Decoded Neurofeedback].

    Science.gov (United States)

    Koizumi, Ai; Cortese, Aurelio; Amano, Kaoru; Kawato, Mitsuo; Lau, Hakwan

    2017-12-01

    Humans often assess their confidence in their own perception, e.g., feeling "confident" or "certain" of having seen a friend, or feeling "uncertain" about whether the phone rang. The neural mechanism underlying the metacognitive function that reflects subjective perception still remains under debate. We have previously used decoded neurofeedback (DecNef) to demonstrate that manipulating the multivoxel activation patterns in the frontoparietal network modulates perceptual confidence without affecting perceptual performance. The results provided clear evidence for a dissociation between perceptual confidence and performance and suggested a distinct role of the frontoparietal network in metacognition.

  18. Maximum a posteriori decoder for digital communications

    Science.gov (United States)

    Altes, Richard A. (Inventor)

    1997-01-01

    A system and method for decoding by identification of the most likely phase coded signal corresponding to received data. The present invention has particular application to communication with signals that experience spurious random phase perturbations. The generalized estimator-correlator uses a maximum a posteriori (MAP) estimator to generate phase estimates for correlation with incoming data samples and for correlation with mean phases indicative of unique hypothesized signals. The result is a MAP likelihood statistic for each hypothesized transmission, wherein the highest value statistic identifies the transmitted signal.

  19. Vectorization of Reed Solomon decoding and mapping on the EVP

    NARCIS (Netherlands)

    Kumar, A.; Berkel, van C.H.

    2008-01-01

    Reed Solomon (RS) codes are used in a variety of (wireless) communication systems. Although commonly implemented in dedicated hardware, this paper explores the mapping of high-throughput RS decoding on vector DSPs. The four modules of such a decoder, viz. Syndrome Computation, Key Equation Solver,

  20. IQ Predicts Word Decoding Skills in Populations with Intellectual Disabilities

    Science.gov (United States)

    Levy, Yonata

    2011-01-01

    This is a study of word decoding in adolescents with Down syndrome and in adolescents with Intellectual Deficits of unknown etiology. It was designed as a replication of studies of word decoding in English speaking and in Hebrew speaking adolescents with Williams syndrome ([0230] and [0235]). Participants' IQ was matched to IQ in the groups with…

  1. Word Processing in Dyslexics: An Automatic Decoding Deficit?

    Science.gov (United States)

    Yap, Regina; Van Der Leu, Aryan

    1993-01-01

    Compares dyslexic children with normal readers on measures of phonological decoding and automatic word processing. Finds that dyslexics have a deficit in automatic phonological decoding skills. Discusses results within the framework of the phonological deficit and the automatization deficit hypotheses. (RS)

  2. Role of Gender and Linguistic Diversity in Word Decoding Development

    Science.gov (United States)

    Verhoeven, Ludo; van Leeuwe, Jan

    2011-01-01

    The purpose of the present study was to investigate the role of gender and linguistic diversity in the growth of Dutch word decoding skills throughout elementary school for a representative sample of children living in the Netherlands. Following a longitudinal design, the children's decoding abilities for (1) regular CVC words, (2) complex…

  3. Decoding bipedal locomotion from the rat sensorimotor cortex

    NARCIS (Netherlands)

    Rigosa, J.; Panarese, A.; Dominici, N.; Friedli, L.; van den Brand, R.; Carpaneto, J.; DiGiovanna, J.; Courtine, G.; Micera, S.

    2015-01-01

    Objective. Decoding forelimb movements from the firing activity of cortical neurons has been interfaced with robotic and prosthetic systems to replace lost upper limb functions in humans. Despite the potential of this approach to improve locomotion and facilitate gait rehabilitation, decoding lower

  4. Multi-stage decoding of multi-level modulation codes

    Science.gov (United States)

    Lin, Shu; Kasami, Tadao; Costello, Daniel J., Jr.

    1991-01-01

    Various types of multi-stage decoding for multi-level modulation codes are investigated. It is shown that if the component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. Particularly, it is shown that the difference in performance between the suboptimum multi-stage soft-decision maximum likelihood decoding of a modulation code and the single-stage optimum soft-decision decoding of the code is very small, only a fraction of dB loss in signal to noise ratio at a bit error rate (BER) of 10(exp -6).

  5. Iterative List Decoding of Concatenated Source-Channel Codes

    Directory of Open Access Journals (Sweden)

    Hedayat Ahmadreza

    2005-01-01

    Full Text Available Whenever variable-length entropy codes are used in the presence of a noisy channel, any channel errors will propagate and cause significant harm. Despite using channel codes, some residual errors always remain, whose effect will get magnified by error propagation. Mitigating this undesirable effect is of great practical interest. One approach is to use the residual redundancy of variable length codes for joint source-channel decoding. In this paper, we improve the performance of residual redundancy source-channel decoding via an iterative list decoder made possible by a nonbinary outer CRC code. We show that the list decoding of VLC's is beneficial for entropy codes that contain redundancy. Such codes are used in state-of-the-art video coders, for example. The proposed list decoder improves the overall performance significantly in AWGN and fully interleaved Rayleigh fading channels.

  6. Binary Masking & Speech Intelligibility

    DEFF Research Database (Denmark)

    Boldt, Jesper

    The purpose of this thesis is to examine how binary masking can be used to increase intelligibility in situations where hearing impaired listeners have difficulties understanding what is being said. The major part of the experiments carried out in this thesis can be categorized as either experime......The purpose of this thesis is to examine how binary masking can be used to increase intelligibility in situations where hearing impaired listeners have difficulties understanding what is being said. The major part of the experiments carried out in this thesis can be categorized as either...... experiments under ideal conditions or as experiments under more realistic conditions useful for real-life applications such as hearing aids. In the experiments under ideal conditions, the previously defined ideal binary mask is evaluated using hearing impaired listeners, and a novel binary mask -- the target...... binary mask -- is introduced. The target binary mask shows the same substantial increase in intelligibility as the ideal binary mask and is proposed as a new reference for binary masking. In the category of real-life applications, two new methods are proposed: a method for estimation of the ideal binary...

  7. Interacting binary stars

    CERN Document Server

    Sahade, Jorge; Ter Haar, D

    1978-01-01

    Interacting Binary Stars deals with the development, ideas, and problems in the study of interacting binary stars. The book consolidates the information that is scattered over many publications and papers and gives an account of important discoveries with relevant historical background. Chapters are devoted to the presentation and discussion of the different facets of the field, such as historical account of the development in the field of study of binary stars; the Roche equipotential surfaces; methods and techniques in space astronomy; and enumeration of binary star systems that are studied

  8. Decoding magnetoencephalographic rhythmic activity using spectrospatial information.

    Science.gov (United States)

    Kauppi, Jukka-Pekka; Parkkonen, Lauri; Hari, Riitta; Hyvärinen, Aapo

    2013-12-01

    We propose a new data-driven decoding method called Spectral Linear Discriminant Analysis (Spectral LDA) for the analysis of magnetoencephalography (MEG). The method allows investigation of changes in rhythmic neural activity as a result of different stimuli and tasks. The introduced classification model only assumes that each "brain state" can be characterized as a combination of neural sources, each of which shows rhythmic activity at one or several frequency bands. Furthermore, the model allows the oscillation frequencies to be different for each such state. We present decoding results from 9 subjects in a four-category classification problem defined by an experiment involving randomly alternating epochs of auditory, visual and tactile stimuli interspersed with rest periods. The performance of Spectral LDA was very competitive compared with four alternative classifiers based on different assumptions concerning the organization of rhythmic brain activity. In addition, the spectral and spatial patterns extracted automatically on the basis of trained classifiers showed that Spectral LDA offers a novel and interesting way of analyzing spectrospatial oscillatory neural activity across the brain. All the presented classification methods and visualization tools are freely available as a Matlab toolbox. © 2013.

  9. Unsupervised learning of facial emotion decoding skills

    Directory of Open Access Journals (Sweden)

    Jan Oliver Huelle

    2014-02-01

    Full Text Available Research on the mechanisms underlying human facial emotion recognition has long focussed on genetically determined neural algorithms and often neglected the question of how these algorithms might be tuned by social learning. Here we show that facial emotion decoding skills can be significantly and sustainably improved by practise without an external teaching signal. Participants saw video clips of dynamic facial expressions of five different women and were asked to decide which of four possible emotions (anger, disgust, fear and sadness was shown in each clip. Although no external information about the correctness of the participant’s response or the sender’s true affective state was provided, participants showed a significant increase of facial emotion recognition accuracy both within and across two training sessions two days to several weeks apart. We discuss several similarities and differences between the unsupervised improvement of facial decoding skills observed in the current study, unsupervised perceptual learning of simple stimuli described in previous studies and practise effects often observed in cognitive tasks.

  10. Unsupervised learning of facial emotion decoding skills.

    Science.gov (United States)

    Huelle, Jan O; Sack, Benjamin; Broer, Katja; Komlewa, Irina; Anders, Silke

    2014-01-01

    Research on the mechanisms underlying human facial emotion recognition has long focussed on genetically determined neural algorithms and often neglected the question of how these algorithms might be tuned by social learning. Here we show that facial emotion decoding skills can be significantly and sustainably improved by practice without an external teaching signal. Participants saw video clips of dynamic facial expressions of five different women and were asked to decide which of four possible emotions (anger, disgust, fear, and sadness) was shown in each clip. Although no external information about the correctness of the participant's response or the sender's true affective state was provided, participants showed a significant increase of facial emotion recognition accuracy both within and across two training sessions two days to several weeks apart. We discuss several similarities and differences between the unsupervised improvement of facial decoding skills observed in the current study, unsupervised perceptual learning of simple stimuli described in previous studies and practice effects often observed in cognitive tasks.

  11. Bayer image parallel decoding based on GPU

    Science.gov (United States)

    Hu, Rihui; Xu, Zhiyong; Wei, Yuxing; Sun, Shaohua

    2012-11-01

    In the photoelectrical tracking system, Bayer image is decompressed in traditional method, which is CPU-based. However, it is too slow when the images become large, for example, 2K×2K×16bit. In order to accelerate the Bayer image decoding, this paper introduces a parallel speedup method for NVIDA's Graphics Processor Unit (GPU) which supports CUDA architecture. The decoding procedure can be divided into three parts: the first is serial part, the second is task-parallelism part, and the last is data-parallelism part including inverse quantization, inverse discrete wavelet transform (IDWT) as well as image post-processing part. For reducing the execution time, the task-parallelism part is optimized by OpenMP techniques. The data-parallelism part could advance its efficiency through executing on the GPU as CUDA parallel program. The optimization techniques include instruction optimization, shared memory access optimization, the access memory coalesced optimization and texture memory optimization. In particular, it can significantly speed up the IDWT by rewriting the 2D (Tow-dimensional) serial IDWT into 1D parallel IDWT. Through experimenting with 1K×1K×16bit Bayer image, data-parallelism part is 10 more times faster than CPU-based implementation. Finally, a CPU+GPU heterogeneous decompression system was designed. The experimental result shows that it could achieve 3 to 5 times speed increase compared to the CPU serial method.

  12. Decoding Humor Experiences from Brain Activity of People Viewing Comedy Movies

    Science.gov (United States)

    Sawahata, Yasuhito; Komine, Kazuteru; Morita, Toshiya; Hiruma, Nobuyuki

    2013-01-01

    Humans naturally have a sense of humor. Experiencing humor not only encourages social interactions, but also produces positive physiological effects on the human body, such as lowering blood pressure. Recent neuro-imaging studies have shown evidence for distinct mental state changes at work in people experiencing humor. However, the temporal characteristics of these changes remain elusive. In this paper, we objectively measured humor-related mental states from single-trial functional magnetic resonance imaging (fMRI) data obtained while subjects viewed comedy TV programs. Measured fMRI data were labeled on the basis of the lag before or after the viewer’s perception of humor (humor onset) determined by the viewer-reported humor experiences during the fMRI scans. We trained multiple binary classifiers, or decoders, to distinguish between fMRI data obtained at each lag from ones obtained during a neutral state in which subjects were not experiencing humor. As a result, in the right dorsolateral prefrontal cortex and the right temporal area, the decoders showed significant classification accuracies even at two seconds ahead of the humor onsets. Furthermore, given a time series of fMRI data obtained during movie viewing, we found that the decoders with significant performance were also able to predict the upcoming humor events on a volume-by-volume basis. Taking into account the hemodynamic delay, our results suggest that the upcoming humor events are encoded in specific brain areas up to about five seconds before the awareness of experiencing humor. Our results provide evidence that there exists a mental state lasting for a few seconds before actual humor perception, as if a viewer is expecting the future humorous events. PMID:24324656

  13. The Differential Contributions of Auditory-Verbal and Visuospatial Working Memory on Decoding Skills in Children Who Are Poor Decoders

    Science.gov (United States)

    Squires, Katie Ellen

    2013-01-01

    This study investigated the differential contribution of auditory-verbal and visuospatial working memory (WM) on decoding skills in second- and fifth-grade children identified with poor decoding. Thirty-two second-grade students and 22 fifth-grade students completed measures that assessed simple and complex auditory-verbal and visuospatial memory,…

  14. An upper bound for codes for the noisy two-access binary adder channel

    NARCIS (Netherlands)

    Tilborg, van H.C.A.

    1986-01-01

    Using earlier methods a combinatorial upper bound is derived for|C|. cdot |D|, where(C,D)is adelta-decodable code pair for the noisy two-access binary adder channel. Asymptotically, this bound reduces toR_{1}=R_{2} leq frac{3}{2} + elog_{2} e - (frac{1}{2} + e) log_{2} (1 + 2e)= frac{1}{2} - e +

  15. Efficient processing of MPEG-21 metadata in the binary domain

    Science.gov (United States)

    Timmerer, Christian; Frank, Thomas; Hellwagner, Hermann; Heuer, Jörg; Hutter, Andreas

    2005-10-01

    XML-based metadata is widely adopted across the different communities and plenty of commercial and open source tools for processing and transforming are available on the market. However, all of these tools have one thing in common: they operate on plain text encoded metadata which may become a burden in constrained and streaming environments, i.e., when metadata needs to be processed together with multimedia content on the fly. In this paper we present an efficient approach for transforming such kind of metadata which are encoded using MPEG's Binary Format for Metadata (BiM) without additional en-/decoding overheads, i.e., within the binary domain. Therefore, we have developed an event-based push parser for BiM encoded metadata which transforms the metadata by a limited set of processing instructions - based on traditional XML transformation techniques - operating on bit patterns instead of cost-intensive string comparisons.

  16. Code-modulated visual evoked potentials using fast stimulus presentation and spatiotemporal beamformer decoding.

    Science.gov (United States)

    Wittevrongel, Benjamin; Van Wolputte, Elia; Van Hulle, Marc M

    2017-11-08

    When encoding visual targets using various lagged versions of a pseudorandom binary sequence of luminance changes, the EEG signal recorded over the viewer's occipital pole exhibits so-called code-modulated visual evoked potentials (cVEPs), the phase lags of which can be tied to these targets. The cVEP paradigm has enjoyed interest in the brain-computer interfacing (BCI) community for the reported high information transfer rates (ITR, in bits/min). In this study, we introduce a novel decoding algorithm based on spatiotemporal beamforming, and show that this algorithm is able to accurately identify the gazed target. Especially for a small number of repetitions of the coding sequence, our beamforming approach significantly outperforms an optimised support vector machine (SVM)-based classifier, which is considered state-of-the-art in cVEP-based BCI. In addition to the traditional 60 Hz stimulus presentation rate for the coding sequence, we also explore the 120 Hz rate, and show that the latter enables faster communication, with a maximal median ITR of 172.87 bits/min. Finally, we also report on a transition effect in the EEG signal following the onset of the stimulus sequence, and recommend to exclude the first 150 ms of the trials from decoding when relying on a single presentation of the stimulus sequence.

  17. Visual image reconstruction from human brain activity: A modular decoding approach

    International Nuclear Information System (INIS)

    Miyawaki, Yoichi; Uchida, Hajime; Yamashita, Okito; Sato, Masa-aki; Kamitani, Yukiyasu; Morito, Yusuke; Tanabe, Hiroki C; Sadato, Norihiro

    2009-01-01

    Brain activity represents our perceptual experience. But the potential for reading out perceptual contents from human brain activity has not been fully explored. In this study, we demonstrate constraint-free reconstruction of visual images perceived by a subject, from the brain activity pattern. We reconstructed visual images by combining local image bases with multiple scales, whose contrasts were independently decoded from fMRI activity by automatically selecting relevant voxels and exploiting their correlated patterns. Binary-contrast, 10 x 10-patch images (2 100 possible states), were accurately reconstructed without any image prior by measuring brain activity only for several hundred random images. The results suggest that our approach provides an effective means to read out complex perceptual states from brain activity while discovering information representation in multi-voxel patterns.

  18. Optical LDPC decoders for beyond 100 Gbits/s optical transmission.

    Science.gov (United States)

    Djordjevic, Ivan B; Xu, Lei; Wang, Ting

    2009-05-01

    We present an optical low-density parity-check (LDPC) decoder suitable for implementation above 100 Gbits/s, which provides large coding gains when based on large-girth LDPC codes. We show that a basic building block, the probabilities multiplier circuit, can be implemented using a Mach-Zehnder interferometer, and we propose corresponding probabilistic-domain sum-product algorithm (SPA). We perform simulations of a fully parallel implementation employing girth-10 LDPC codes and proposed SPA. The girth-10 LDPC(24015,19212) code of the rate of 0.8 outperforms the BCH(128,113)xBCH(256,239) turbo-product code of the rate of 0.82 by 0.91 dB (for binary phase-shift keying at 100 Gbits/s and a bit error rate of 10(-9)), and provides a net effective coding gain of 10.09 dB.

  19. Mining frequent binary expressions

    NARCIS (Netherlands)

    Calders, T.; Paredaens, J.; Kambayashi, Y.; Mohania, M.K.; Tjoa, A.M.

    2000-01-01

    In data mining, searching for frequent patterns is a common basic operation. It forms the basis of many interesting decision support processes. In this paper we present a new type of patterns, binary expressions. Based on the properties of a specified binary test, such as reflexivity, transitivity

  20. O2-GIDNC: Beyond instantly decodable network coding

    KAUST Repository

    Aboutorab, Neda

    2013-06-01

    In this paper, we are concerned with extending the graph representation of generalized instantly decodable network coding (GIDNC) to a more general opportunistic network coding (ONC) scenario, referred to as order-2 GIDNC (O2-GIDNC). In the O2-GIDNC scheme, receivers can store non-instantly decodable packets (NIDPs) comprising two of their missing packets, and use them in a systematic way for later decodings. Once this graph representation is found, it can be used to extend the GIDNC graph-based analyses to the proposed O2-GIDNC scheme with a limited increase in complexity. In the proposed O2-GIDNC scheme, the information of the stored NIDPs at the receivers and the decoding opportunities they create can be exploited to improve the broadcast completion time and decoding delay compared to traditional GIDNC scheme. The completion time and decoding delay minimizing algorithms that can operate on the new O2-GIDNC graph are further described. The simulation results show that our proposed O2-GIDNC improves the completion time and decoding delay performance of the traditional GIDNC. © 2013 IEEE.

  1. On decoding of multi-level MPSK modulation codes

    Science.gov (United States)

    Lin, Shu; Gupta, Alok Kumar

    1990-01-01

    The decoding problem of multi-level block modulation codes is investigated. The hardware design of soft-decision Viterbi decoder for some short length 8-PSK block modulation codes is presented. An effective way to reduce the hardware complexity of the decoder by reducing the branch metric and path metric, using a non-uniform floating-point to integer mapping scheme, is proposed and discussed. The simulation results of the design are presented. The multi-stage decoding (MSD) of multi-level modulation codes is also investigated. The cases of soft-decision and hard-decision MSD are considered and their performance are evaluated for several codes of different lengths and different minimum squared Euclidean distances. It is shown that the soft-decision MSD reduces the decoding complexity drastically and it is suboptimum. The hard-decision MSD further simplifies the decoding while still maintaining a reasonable coding gain over the uncoded system, if the component codes are chosen properly. Finally, some basic 3-level 8-PSK modulation codes using BCH codes as component codes are constructed and their coding gains are found for hard decision multistage decoding.

  2. Encoder-decoder optimization for brain-computer interfaces.

    Science.gov (United States)

    Merel, Josh; Pianto, Donald M; Cunningham, John P; Paninski, Liam

    2015-06-01

    Neuroprosthetic brain-computer interfaces are systems that decode neural activity into useful control signals for effectors, such as a cursor on a computer screen. It has long been recognized that both the user and decoding system can adapt to increase the accuracy of the end effector. Co-adaptation is the process whereby a user learns to control the system in conjunction with the decoder adapting to learn the user's neural patterns. We provide a mathematical framework for co-adaptation and relate co-adaptation to the joint optimization of the user's control scheme ("encoding model") and the decoding algorithm's parameters. When the assumptions of that framework are respected, co-adaptation cannot yield better performance than that obtainable by an optimal initial choice of fixed decoder, coupled with optimal user learning. For a specific case, we provide numerical methods to obtain such an optimized decoder. We demonstrate our approach in a model brain-computer interface system using an online prosthesis simulator, a simple human-in-the-loop pyschophysics setup which provides a non-invasive simulation of the BCI setting. These experiments support two claims: that users can learn encoders matched to fixed, optimal decoders and that, once learned, our approach yields expected performance advantages.

  3. Encoder-decoder optimization for brain-computer interfaces.

    Directory of Open Access Journals (Sweden)

    Josh Merel

    2015-06-01

    Full Text Available Neuroprosthetic brain-computer interfaces are systems that decode neural activity into useful control signals for effectors, such as a cursor on a computer screen. It has long been recognized that both the user and decoding system can adapt to increase the accuracy of the end effector. Co-adaptation is the process whereby a user learns to control the system in conjunction with the decoder adapting to learn the user's neural patterns. We provide a mathematical framework for co-adaptation and relate co-adaptation to the joint optimization of the user's control scheme ("encoding model" and the decoding algorithm's parameters. When the assumptions of that framework are respected, co-adaptation cannot yield better performance than that obtainable by an optimal initial choice of fixed decoder, coupled with optimal user learning. For a specific case, we provide numerical methods to obtain such an optimized decoder. We demonstrate our approach in a model brain-computer interface system using an online prosthesis simulator, a simple human-in-the-loop pyschophysics setup which provides a non-invasive simulation of the BCI setting. These experiments support two claims: that users can learn encoders matched to fixed, optimal decoders and that, once learned, our approach yields expected performance advantages.

  4. Hard decoding algorithm for optimizing thresholds under general Markovian noise

    Science.gov (United States)

    Chamberland, Christopher; Wallman, Joel; Beale, Stefanie; Laflamme, Raymond

    2017-04-01

    Quantum error correction is instrumental in protecting quantum systems from noise in quantum computing and communication settings. Pauli channels can be efficiently simulated and threshold values for Pauli error rates under a variety of error-correcting codes have been obtained. However, realistic quantum systems can undergo noise processes that differ significantly from Pauli noise. In this paper, we present an efficient hard decoding algorithm for optimizing thresholds and lowering failure rates of an error-correcting code under general completely positive and trace-preserving (i.e., Markovian) noise. We use our hard decoding algorithm to study the performance of several error-correcting codes under various non-Pauli noise models by computing threshold values and failure rates for these codes. We compare the performance of our hard decoding algorithm to decoders optimized for depolarizing noise and show improvements in thresholds and reductions in failure rates by several orders of magnitude. Our hard decoding algorithm can also be adapted to take advantage of a code's non-Pauli transversal gates to further suppress noise. For example, we show that using the transversal gates of the 5-qubit code allows arbitrary rotations around certain axes to be perfectly corrected. Furthermore, we show that Pauli twirling can increase or decrease the threshold depending upon the code properties. Lastly, we show that even if the physical noise model differs slightly from the hypothesized noise model used to determine an optimized decoder, failure rates can still be reduced by applying our hard decoding algorithm.

  5. Decoding emotional valence from electroencephalographic rhythmic activity.

    Science.gov (United States)

    Celikkanat, Hande; Moriya, Hiroki; Ogawa, Takeshi; Kauppi, Jukka-Pekka; Kawanabe, Motoaki; Hyvarinen, Aapo

    2017-07-01

    We attempt to decode emotional valence from electroencephalographic rhythmic activity in a naturalistic setting. We employ a data-driven method developed in a previous study, Spectral Linear Discriminant Analysis, to discover the relationships between the classification task and independent neuronal sources, optimally utilizing multiple frequency bands. A detailed investigation of the classifier provides insight into the neuronal sources related with emotional valence, and the individual differences of the subjects in processing emotions. Our findings show: (1) sources whose locations are similar across subjects are consistently involved in emotional responses, with the involvement of parietal sources being especially significant, and (2) even though the locations of the involved neuronal sources are consistent, subjects can display highly varying degrees of valence-related EEG activity in the sources.

  6. Decoding the mechanisms of Antikythera astronomical device

    CERN Document Server

    Lin, Jian-Liang

    2016-01-01

    This book presents a systematic design methodology for decoding the interior structure of the Antikythera mechanism, an astronomical device from ancient Greece. The historical background, surviving evidence and reconstructions of the mechanism are introduced, and the historical development of astronomical achievements and various astronomical instruments are investigated. Pursuing an approach based on the conceptual design of modern mechanisms and bearing in mind the standards of science and technology at the time, all feasible designs of the six lost/incomplete/unclear subsystems are synthesized as illustrated examples, and 48 feasible designs of the complete interior structure are presented. This approach provides not only a logical tool for applying modern mechanical engineering knowledge to the reconstruction of the Antikythera mechanism, but also an innovative research direction for identifying the original structures of the mechanism in the future. In short, the book offers valuable new insights for all...

  7. Academic Training - Bioinformatics: Decoding the Genome

    CERN Multimedia

    Chris Jones

    2006-01-01

    ACADEMIC TRAINING LECTURE SERIES 27, 28 February 1, 2, 3 March 2006 from 11:00 to 12:00 - Auditorium, bldg. 500 Decoding the Genome A special series of 5 lectures on: Recent extraordinary advances in the life sciences arising through new detection technologies and bioinformatics The past five years have seen an extraordinary change in the information and tools available in the life sciences. The sequencing of the human genome, the discovery that we possess far fewer genes than foreseen, the measurement of the tiny changes in the genomes that differentiate us, the sequencing of the genomes of many pathogens that lead to diseases such as malaria are all examples of completely new information that is now available in the quest for improved healthcare. New tools have allowed similar strides in the discovery of the associated protein structures, providing invaluable information for those searching for new drugs. New DNA microarray chips permit simultaneous measurement of the state of expression of tens...

  8. Multiple LDPC decoding for distributed source coding and video coding

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Luong, Huynh Van; Huang, Xin

    2011-01-01

    Distributed source coding (DSC) is a coding paradigm for systems which fully or partly exploit the source statistics at the decoder to reduce the computational burden at the encoder. Distributed video coding (DVC) is one example. This paper considers the use of Low Density Parity Check Accumulate...... (LDPCA) codes in a DSC scheme with feed-back. To improve the LDPC coding performance in the context of DSC and DVC, while retaining short encoder blocks, this paper proposes multiple parallel LDPC decoding. The proposed scheme passes soft information between decoders to enhance performance. Experimental...

  9. Locally decodable codes and private information retrieval schemes

    CERN Document Server

    Yekhanin, Sergey

    2010-01-01

    Locally decodable codes (LDCs) are codes that simultaneously provide efficient random access retrieval and high noise resilience by allowing reliable reconstruction of an arbitrary bit of a message by looking at only a small number of randomly chosen codeword bits. Local decodability comes with a certain loss in terms of efficiency - specifically, locally decodable codes require longer codeword lengths than their classical counterparts. Private information retrieval (PIR) schemes are cryptographic protocols designed to safeguard the privacy of database users. They allow clients to retrieve rec

  10. Neural network decoder for quantum error correcting codes

    Science.gov (United States)

    Krastanov, Stefan; Jiang, Liang

    Artificial neural networks form a family of extremely powerful - albeit still poorly understood - tools used in anything from image and sound recognition through text generation to, in our case, decoding. We present a straightforward Recurrent Neural Network architecture capable of deducing the correcting procedure for a quantum error-correcting code from a set of repeated stabilizer measurements. We discuss the fault-tolerance of our scheme and the cost of training the neural network for a system of a realistic size. Such decoders are especially interesting when applied to codes, like the quantum LDPC codes, that lack known efficient decoding schemes.

  11. Turbo decoder architecture for beyond-4G applications

    CERN Document Server

    Wong, Cheng-Chi

    2013-01-01

    This book describes the most recent techniques for turbo decoder implementation, especially for 4G and beyond 4G applications. The authors reveal techniques for the design of high-throughput decoders for future telecommunication systems, enabling designers to reduce hardware cost and shorten processing time. Coverage includes an explanation of VLSI implementation of the turbo decoder, from basic functional units to advanced parallel architecture. The authors discuss both hardware architecture techniques and experimental results, showing the variations in area/throughput/performance with respec

  12. Encoding and Decoding Models in Cognitive Electrophysiology

    Directory of Open Access Journals (Sweden)

    Christopher R. Holdgraf

    2017-09-01

    Full Text Available Cognitive neuroscience has seen rapid growth in the size and complexity of data recorded from the human brain as well as in the computational tools available to analyze this data. This data explosion has resulted in an increased use of multivariate, model-based methods for asking neuroscience questions, allowing scientists to investigate multiple hypotheses with a single dataset, to use complex, time-varying stimuli, and to study the human brain under more naturalistic conditions. These tools come in the form of “Encoding” models, in which stimulus features are used to model brain activity, and “Decoding” models, in which neural features are used to generated a stimulus output. Here we review the current state of encoding and decoding models in cognitive electrophysiology and provide a practical guide toward conducting experiments and analyses in this emerging field. Our examples focus on using linear models in the study of human language and audition. We show how to calculate auditory receptive fields from natural sounds as well as how to decode neural recordings to predict speech. The paper aims to be a useful tutorial to these approaches, and a practical introduction to using machine learning and applied statistics to build models of neural activity. The data analytic approaches we discuss may also be applied to other sensory modalities, motor systems, and cognitive systems, and we cover some examples in these areas. In addition, a collection of Jupyter notebooks is publicly available as a complement to the material covered in this paper, providing code examples and tutorials for predictive modeling in python. The aim is to provide a practical understanding of predictive modeling of human brain data and to propose best-practices in conducting these analyses.

  13. Study of bifurcation behavior of two-dimensional turbo product code decoders

    International Nuclear Information System (INIS)

    He Yejun; Lau, Francis C.M.; Tse, Chi K.

    2008-01-01

    Turbo codes, low-density parity-check (LDPC) codes and turbo product codes (TPCs) are high performance error-correction codes which employ iterative algorithms for decoding. Under different conditions, the behaviors of the decoders are different. While the nonlinear dynamical behaviors of turbo code decoders and LDPC decoders have been reported in the literature, the dynamical behavior of TPC decoders is relatively unexplored. In this paper, we investigate the behavior of the iterative algorithm of a two-dimensional TPC decoder when the input signal-to-noise ratio (SNR) varies. The quantity to be measured is the mean square value of the posterior probabilities of the information bits. Unlike turbo decoders or LDPC decoders, TPC decoders do not produce a clear 'waterfall region'. This is mainly because the TPC decoding algorithm does not converge to 'indecisive' fixed points even at very low SNR values

  14. Study of bifurcation behavior of two-dimensional turbo product code decoders

    Energy Technology Data Exchange (ETDEWEB)

    He Yejun [Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hunghom, Hong Kong (China); Lau, Francis C.M. [Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hunghom, Hong Kong (China)], E-mail: encmlau@polyu.edu.hk; Tse, Chi K. [Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hunghom, Hong Kong (China)

    2008-04-15

    Turbo codes, low-density parity-check (LDPC) codes and turbo product codes (TPCs) are high performance error-correction codes which employ iterative algorithms for decoding. Under different conditions, the behaviors of the decoders are different. While the nonlinear dynamical behaviors of turbo code decoders and LDPC decoders have been reported in the literature, the dynamical behavior of TPC decoders is relatively unexplored. In this paper, we investigate the behavior of the iterative algorithm of a two-dimensional TPC decoder when the input signal-to-noise ratio (SNR) varies. The quantity to be measured is the mean square value of the posterior probabilities of the information bits. Unlike turbo decoders or LDPC decoders, TPC decoders do not produce a clear 'waterfall region'. This is mainly because the TPC decoding algorithm does not converge to 'indecisive' fixed points even at very low SNR values.

  15. Architecture for time or transform domain decoding of reed-solomon codes

    Science.gov (United States)

    Shao, Howard M. (Inventor); Truong, Trieu-Kie (Inventor); Hsu, In-Shek (Inventor); Deutsch, Leslie J. (Inventor)

    1989-01-01

    Two pipeline (255,233) RS decoders, one a time domain decoder and the other a transform domain decoder, use the same first part to develop an errata locator polynomial .tau.(x), and an errata evaluator polynominal A(x). Both the time domain decoder and transform domain decoder have a modified GCD that uses an input multiplexer and an output demultiplexer to reduce the number of GCD cells required. The time domain decoder uses a Chien search and polynomial evaluator on the GCD outputs .tau.(x) and A(x), for the final decoding steps, while the transform domain decoder uses a transform error pattern algorithm operating on .tau.(x) and the initial syndrome computation S(x), followed by an inverse transform algorithm in sequence for the final decoding steps prior to adding the received RS coded message to produce a decoded output message.

  16. A Survey of Rollback-Recovery Protocols in Message-Passing Systems

    Science.gov (United States)

    1999-06-01

    and M.A. Castillo. "Checkpointing through garbage collection." Technical report. Departamento de Ciencia de la Computation, Escuela de Ingenieria ...between consecutive checkpoints. It can be implemented by using the dirty-bit of the memory protection hardware or by emulating a dirty-bit in software [4...compare the program’s state with the previous checkpoint in software , and writing the difference in a new checkpoint [46]. The required storage and

  17. Scalable High Performance Message Passing over InfiniBand for Open MPI

    Energy Technology Data Exchange (ETDEWEB)

    Friedley, A; Hoefler, T; Leininger, M L; Lumsdaine, A

    2007-10-24

    InfiniBand (IB) is a popular network technology for modern high-performance computing systems. MPI implementations traditionally support IB using a reliable, connection-oriented (RC) transport. However, per-process resource usage that grows linearly with the number of processes, makes this approach prohibitive for large-scale systems. IB provides an alternative in the form of a connectionless unreliable datagram transport (UD), which allows for near-constant resource usage and initialization overhead as the process count increases. This paper describes a UD-based implementation for IB in Open MPI as a scalable alternative to existing RC-based schemes. We use the software reliability capabilities of Open MPI to provide the guaranteed delivery semantics required by MPI. Results show that UD not only requires fewer resources at scale, but also allows for shorter MPI startup times. A connectionless model also improves performance for applications that tend to send small messages to many different processes.

  18. A model based message passing approach for flexible and scalable home automation controllers

    Energy Technology Data Exchange (ETDEWEB)

    Bienhaus, D. [INNIAS GmbH und Co. KG, Frankenberg (Germany); David, K.; Klein, N.; Kroll, D. [ComTec Kassel Univ., SE Kassel Univ. (Germany); Heerdegen, F.; Jubeh, R.; Zuendorf, A. [Kassel Univ. (Germany). FG Software Engineering; Hofmann, J. [BSC Computer GmbH, Allendorf (Germany)

    2012-07-01

    There is a large variety of home automation systems that are largely proprietary systems from different vendors. In addition, the configuration and administration of home automation systems is frequently a very complex task especially, if more complex functionality shall be achieved. Therefore, an open model for home automation was developed that is especially designed for easy integration of various home automation systems. This solution also provides a simple modeling approach that is inspired by typical home automation components like switches, timers, etc. In addition, a model based technology to achieve rich functionality and usability was implemented. (orig.)

  19. Shared memory and message passing revisited in the many-core era

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    In the 70s, Edsgar Dijkstra, Per Brinch Hansen and C.A.R Hoare introduced the fundamental concepts for concurrent computing. It was clear that concrete communication mechanisms were required in order to achieve effective concurrency. Whether you're developing a multithreaded program running on a single node, or a distributed system spanning over hundreds of thousands cores, the choice of the communication mechanism for your system must be done intelligently because of the implicit programmability, performance and scalability trade-offs. With the emergence of many-core computing architectures many assumptions may not be true anymore. In this talk we will try to provide insight on the characteristics of these communication models by providing basic theoretical background and then focus on concrete practical examples based on indicative use case scenarios. The case studies of this presentation cover popular programming models, operating systems and concurrency frameworks in the context of many-core processors.

  20. On the adequacy of message-passing parallel supercomputers for solving neutron transport problems

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1990-01-01

    A coarse-grained, static-scheduling parallelization of the standard iterative scheme used for solving the discrete-ordinates approximation of the neutron transport equation is described. The parallel algorithm is based on a decomposition of the angular domain along the discrete ordinates, thus naturally producing a set of completely uncoupled systems of equations in each iteration. Implementation of the parallel code on Intcl's iPSC/2 hypercube, and solutions to test problems are presented as evidence of the high speedup and efficiency of the parallel code. The performance of the parallel code on the iPSC/2 is analyzed, and a model for the CPU time as a function of the problem size (order of angular quadrature) and the number of participating processors is developed and validated against measured CPU times. The performance model is used to speculate on the potential of massively parallel computers for significantly speeding up real-life transport calculations at acceptable efficiencies. We conclude that parallel computers with a few hundred processors are capable of producing large speedups at very high efficiencies in very large three-dimensional problems. 10 refs., 8 figs

  1. Parallel multigrid methods: implementation on message-passing computers and applications to fluid dynamics. A draft

    International Nuclear Information System (INIS)

    Solchenbach, K.; Thole, C.A.; Trottenberg, U.

    1987-01-01

    For a wide class of problems in scientific computing, in particular for partial differential equations, the multigrid principle has proved to yield highly efficient numerical methods. However, the principle has to be applied carefully: if the multigrid components are not chosen adequately with respect to the given problem, the efficiency may be much smaller than possible. This has been demonstrated for many practical problems. Unfortunately, the general theories on multigrid convergence do not give much help in constructing really efficient multigrid algorithms. Although some progress has been made in bridging the gap between theory and practice during the last few years, there are still several theoretical approaches which are misleading rather than helpful with respect to the objective of real efficiency. The research in finding highly efficient algorithms for non-model applications therefore is still a sophisticated mixture of theoretical considerations, a transfer of experiences from model to real life problems and systematical experimental work. The emphasis of the practical research activity today lies - among others - in the following fields: - finding efficient multigrid components for really complex problems, - combining the multigrid approach with advanced discretizative techniques: - constructing highly parallel multigrid algorithms. In this paper, we want to deal mainly with the last topic

  2. Construction and decoding of a class of algebraic geometry codes

    DEFF Research Database (Denmark)

    Justesen, Jørn; Larsen, Knud J.; Jensen, Helge Elbrønd

    1989-01-01

    A class of codes derived from algebraic plane curves is constructed. The concepts and results from algebraic geometry that were used are explained in detail; no further knowledge of algebraic geometry is needed. Parameters, generator and parity-check matrices are given. The main result is a decod...... is a decoding algorithm which turns out to be a generalization of the Peterson algorithm for decoding BCH decoder codes......A class of codes derived from algebraic plane curves is constructed. The concepts and results from algebraic geometry that were used are explained in detail; no further knowledge of algebraic geometry is needed. Parameters, generator and parity-check matrices are given. The main result...

  3. Toward a universal decoder of linguistic meaning from brain activation.

    Science.gov (United States)

    Pereira, Francisco; Lou, Bin; Pritchett, Brianna; Ritter, Samuel; Gershman, Samuel J; Kanwisher, Nancy; Botvinick, Matthew; Fedorenko, Evelina

    2018-03-06

    Prior work decoding linguistic meaning from imaging data has been largely limited to concrete nouns, using similar stimuli for training and testing, from a relatively small number of semantic categories. Here we present a new approach for building a brain decoding system in which words and sentences are represented as vectors in a semantic space constructed from massive text corpora. By efficiently sampling this space to select training stimuli shown to subjects, we maximize the ability to generalize to new meanings from limited imaging data. To validate this approach, we train the system on imaging data of individual concepts, and show it can decode semantic vector representations from imaging data of sentences about a wide variety of both concrete and abstract topics from two separate datasets. These decoded representations are sufficiently detailed to distinguish even semantically similar sentences, and to capture the similarity structure of meaning relationships between sentences.

  4. Illustrative examples in a bilingual decoding dictionary: An (un ...

    African Journals Online (AJOL)

    Keywords: Illustrative Examples, Bilingual Decoding Dictionary, Semantic Differences Between Source Language (Sl) And Target Language (Tl), Grammatical Differences Between Sl And Tl, Translation Of Examples, Transposition, Context-Dependent Translation, One-Word Equivalent, Zero Equivalent, Idiomatic ...

  5. Decoding Reed-Solomon Codes beyond half the minimum distance

    DEFF Research Database (Denmark)

    Høholdt, Tom; Nielsen, Rasmus Refslund

    1999-01-01

    We describe an efficient implementation of M.Sudan"s algorithm for decoding Reed-Solomon codes beyond half the minimum distance. Furthermore we calculate an upper bound of the probabilty of getting more than one codeword as output...

  6. Close binary stars

    International Nuclear Information System (INIS)

    Larsson-Leander, G.

    1979-01-01

    Studies of close binary stars are being persued more vigorously than ever, with about 3000 research papers and notes pertaining to the field being published during the triennium 1976-1978. Many major advances and spectacular discoveries were made, mostly due to increased observational efficiency and precision, especially in the X-ray, radio, and ultraviolet domains. Progress reports are presented in the following areas: observational techniques, methods of analyzing light curves, observational data, physical data, structure and models of close binaries, statistical investigations, and origin and evolution of close binaries. Reports from the Coordinates Programs Committee, the Committee for Extra-Terrestrial Observations and the Working Group on RS CVn binaries are included. (Auth./C.F.)

  7. An overview of turbo decoding on fading channels

    OpenAIRE

    ATILGAN, Doğan

    2009-01-01

    A review of turbo coding and decoding has been presented in the literature [1]. In that paper, turbo coding and decoding on AWGN (Additive White Gaussian Noise) channels has been elaborated. In wireless communications, a phenomennon called multipath fading is frequently encountered. Therefore, investigation of efficient techniques to tackle with the destructive effects of fading is essential. Turbo coding has been proven as an efficient channel coding technique for AWGN channels. Some of the ...

  8. Performance Analysis of a Decoding Algorithm for Algebraic Geometry Codes

    DEFF Research Database (Denmark)

    Jensen, Helge Elbrønd; Nielsen, Rasmus Refslund; Høholdt, Tom

    1998-01-01

    We analyse the known decoding algorithms for algebraic geometry codes in the case where the number of errors is greater than or equal to [(dFR-1)/2]+1, where dFR is the Feng-Rao distance......We analyse the known decoding algorithms for algebraic geometry codes in the case where the number of errors is greater than or equal to [(dFR-1)/2]+1, where dFR is the Feng-Rao distance...

  9. Recent results in the decoding of Algebraic geometry codes

    DEFF Research Database (Denmark)

    Høholdt, Tom; Jensen, Helge Elbrønd; Nielsen, Rasmus Refslund

    1998-01-01

    We analyse the known decoding algorithms for algebraic geometry codes in the case where the number of errors is [(dFR-1)/2]+1, where dFR is the Feng-Rao distance......We analyse the known decoding algorithms for algebraic geometry codes in the case where the number of errors is [(dFR-1)/2]+1, where dFR is the Feng-Rao distance...

  10. Effect of video decoder errors on video interpretability

    Science.gov (United States)

    Young, Darrell L.

    2014-06-01

    The advancement in video compression technology can result in more sensitivity to bit errors. Bit errors can propagate causing sustained loss of interpretability. In the worst case, the decoder "freezes" until it can re-synchronize with the stream. Detection of artifacts enables downstream processes to avoid corrupted frames. A simple template approach to detect block stripes and a more advanced cascade approach to detect compression artifacts was shown to correlate to the presence of artifacts and decoder messages.

  11. Binary and ternary systems

    International Nuclear Information System (INIS)

    Petrov, D.A.

    1986-01-01

    Conditions for thermodynamical equilibrium in binary and ternary systems are considered. Main types of binary and ternary system phase diagrams are sequently constructed on the basis of general regularities on the character of transition from one equilibria to others. New statements on equilibrium line direction in the diagram triple points and their isothermal cross sections are developed. New represenations on equilibria in case of monovariant curve minimum and maximum on three-phase equilibrium formation in ternary system are introduced

  12. Planet formation in Binaries

    OpenAIRE

    Thebault, Ph.; Haghighipour, N.

    2014-01-01

    Spurred by the discovery of numerous exoplanets in multiple systems, binaries have become in recent years one of the main topics in planet formation research. Numerous studies have investigated to what extent the presence of a stellar companion can affect the planet formation process. Such studies have implications that can reach beyond the sole context of binaries, as they allow to test certain aspects of the planet formation scenario by submitting them to extreme environments. We review her...

  13. Electrophysiological difference between mental state decoding and mental state reasoning.

    Science.gov (United States)

    Cao, Bihua; Li, Yiyuan; Li, Fuhong; Li, Hong

    2012-06-29

    Previous studies have explored the neural mechanism of Theory of Mind (ToM), but the neural correlates of its two components, mental state decoding and mental state reasoning, remain unclear. In the present study, participants were presented with various photographs, showing an actor looking at 1 of 2 objects, either with a happy or an unhappy expression. They were asked to either decode the emotion of the actor (mental state decoding task), predict which object would be chosen by the actor (mental state reasoning task), or judge at which object the actor was gazing (physical task), while scalp potentials were recorded. Results showed that (1) the reasoning task elicited an earlier N2 peak than the decoding task did over the prefrontal scalp sites; and (2) during the late positive component (240-440 ms), the reasoning task elicited a more positive deflection than the other two tasks did at the prefrontal scalp sites. In addition, neither the decoding task nor the reasoning task has no left/right hemisphere difference. These findings imply that mental state reasoning differs from mental state decoding early (210 ms) after stimulus onset, and that the prefrontal lobe is the neural basis of mental state reasoning. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Evaluation framework for K-best sphere decoders

    KAUST Repository

    Shen, Chungan

    2010-08-01

    While Maximum-Likelihood (ML) is the optimum decoding scheme for most communication scenarios, practical implementation difficulties limit its use, especially for Multiple Input Multiple Output (MIMO) systems with a large number of transmit or receive antennas. Tree-searching type decoder structures such as Sphere decoder and K-best decoder present an interesting trade-off between complexity and performance. Many algorithmic developments and VLSI implementations have been reported in literature with widely varying performance to area and power metrics. In this semi-tutorial paper we present a holistic view of different Sphere decoding techniques and K-best decoding techniques, identifying the key algorithmic and implementation trade-offs. We establish a consistent benchmark framework to investigate and compare the delay cost, power cost, and power-delay-product cost incurred by each method. Finally, using the framework, we propose and analyze a novel architecture and compare that to other published approaches. Our goal is to explicitly elucidate the overall advantages and disadvantages of each proposed algorithms in one coherent framework. © 2010 World Scientific Publishing Company.

  15. Partially blind instantly decodable network codes for lossy feedback environment

    KAUST Repository

    Sorour, Sameh

    2014-09-01

    In this paper, we study the multicast completion and decoding delay minimization problems for instantly decodable network coding (IDNC) in the case of lossy feedback. When feedback loss events occur, the sender falls into uncertainties about packet reception at the different receivers, which forces it to perform partially blind selections of packet combinations in subsequent transmissions. To determine efficient selection policies that reduce the completion and decoding delays of IDNC in such an environment, we first extend the perfect feedback formulation in our previous works to the lossy feedback environment, by incorporating the uncertainties resulting from unheard feedback events in these formulations. For the completion delay problem, we use this formulation to identify the maximum likelihood state of the network in events of unheard feedback and employ it to design a partially blind graph update extension to the multicast IDNC algorithm in our earlier work. For the decoding delay problem, we derive an expression for the expected decoding delay increment for any arbitrary transmission. This expression is then used to find the optimal policy that reduces the decoding delay in such lossy feedback environment. Results show that our proposed solutions both outperform previously proposed approaches and achieve tolerable degradation even at relatively high feedback loss rates.

  16. Direct migration motion estimation and mode decision to decoder for a low-complexity decoder Wyner-Ziv video coding

    Science.gov (United States)

    Lei, Ted Chih-Wei; Tseng, Fan-Shuo

    2017-07-01

    This paper addresses the problem of high-computational complexity decoding in traditional Wyner-Ziv video coding (WZVC). The key focus is the migration of two traditionally high-computationally complex encoder algorithms, namely motion estimation and mode decision. In order to reduce the computational burden in this process, the proposed architecture adopts the partial boundary matching algorithm and four flexible types of block mode decision at the decoder. This approach does away with the need for motion estimation and mode decision at the encoder. The experimental results show that the proposed padding block-based WZVC not only decreases decoder complexity to approximately one hundredth that of the state-of-the-art DISCOVER decoding but also outperforms DISCOVER codec by up to 3 to 4 dB.

  17. Singer product apertures—A coded aperture system with a fast decoding algorithm

    International Nuclear Information System (INIS)

    Byard, Kevin; Shutler, Paul M.E.

    2017-01-01

    A new type of coded aperture configuration that enables fast decoding of the coded aperture shadowgram data is presented. Based on the products of incidence vectors generated from the Singer difference sets, we call these Singer product apertures. For a range of aperture dimensions, we compare experimentally the performance of three decoding methods: standard decoding, induction decoding and direct vector decoding. In all cases the induction and direct vector methods are several orders of magnitude faster than the standard method, with direct vector decoding being significantly faster than induction decoding. For apertures of the same dimensions the increase in speed offered by direct vector decoding over induction decoding is better for lower throughput apertures.

  18. An FPGA Implementation of (3,6-Regular Low-Density Parity-Check Code Decoder

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    2003-05-01

    Full Text Available Because of their excellent error-correcting performance, low-density parity-check (LDPC codes have recently attracted a lot of attention. In this paper, we are interested in the practical LDPC code decoder hardware implementations. The direct fully parallel decoder implementation usually incurs too high hardware complexity for many real applications, thus partly parallel decoder design approaches that can achieve appropriate trade-offs between hardware complexity and decoding throughput are highly desirable. Applying a joint code and decoder design methodology, we develop a high-speed (3,k-regular LDPC code partly parallel decoder architecture based on which we implement a 9216-bit, rate-1/2(3,6-regular LDPC code decoder on Xilinx FPGA device. This partly parallel decoder supports a maximum symbol throughput of 54 Mbps and achieves BER 10−6 at 2 dB over AWGN channel while performing maximum 18 decoding iterations.

  19. Singer product apertures—A coded aperture system with a fast decoding algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Byard, Kevin, E-mail: kevin.byard@aut.ac.nz [School of Economics, Faculty of Business, Economics and Law, Auckland University of Technology, Auckland 1142 (New Zealand); Shutler, Paul M.E. [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore)

    2017-06-01

    A new type of coded aperture configuration that enables fast decoding of the coded aperture shadowgram data is presented. Based on the products of incidence vectors generated from the Singer difference sets, we call these Singer product apertures. For a range of aperture dimensions, we compare experimentally the performance of three decoding methods: standard decoding, induction decoding and direct vector decoding. In all cases the induction and direct vector methods are several orders of magnitude faster than the standard method, with direct vector decoding being significantly faster than induction decoding. For apertures of the same dimensions the increase in speed offered by direct vector decoding over induction decoding is better for lower throughput apertures.

  20. Decoding reality the universe as quantum information

    CERN Document Server

    Vedral, Vlatko

    2010-01-01

    In Decoding Reality, Vlatko Vedral offers a mind-stretching look at the deepest questions about the universe--where everything comes from, why things are as they are, what everything is. The most fundamental definition of reality is not matter or energy, he writes, but information--and it is the processing of information that lies at the root of all physical, biological, economic, and social phenomena. This view allows Vedral to address a host of seemingly unrelated questions: Why does DNA bind like it does? What is the ideal diet for longevity? How do you make your first million dollars? We can unify all through the understanding that everything consists of bits of information, he writes, though that raises the question of where these bits come from. To find the answer, he takes us on a guided tour through the bizarre realm of quantum physics. At this sub-sub-subatomic level, we find such things as the interaction of separated quantum particles--what Einstein called "spooky action at a distance." In fact, V...

  1. Statistical coding and decoding of heartbeat intervals.

    Science.gov (United States)

    Lucena, Fausto; Barros, Allan Kardec; Príncipe, José C; Ohnishi, Noboru

    2011-01-01

    The heart integrates neuroregulatory messages into specific bands of frequency, such that the overall amplitude spectrum of the cardiac output reflects the variations of the autonomic nervous system. This modulatory mechanism seems to be well adjusted to the unpredictability of the cardiac demand, maintaining a proper cardiac regulation. A longstanding theory holds that biological organisms facing an ever-changing environment are likely to evolve adaptive mechanisms to extract essential features in order to adjust their behavior. The key question, however, has been to understand how the neural circuitry self-organizes these feature detectors to select behaviorally relevant information. Previous studies in computational perception suggest that a neural population enhances information that is important for survival by minimizing the statistical redundancy of the stimuli. Herein we investigate whether the cardiac system makes use of a redundancy reduction strategy to regulate the cardiac rhythm. Based on a network of neural filters optimized to code heartbeat intervals, we learn a population code that maximizes the information across the neural ensemble. The emerging population code displays filter tuning proprieties whose characteristics explain diverse aspects of the autonomic cardiac regulation, such as the compromise between fast and slow cardiac responses. We show that the filters yield responses that are quantitatively similar to observed heart rate responses during direct sympathetic or parasympathetic nerve stimulation. Our findings suggest that the heart decodes autonomic stimuli according to information theory principles analogous to how perceptual cues are encoded by sensory systems.

  2. Rate Aware Instantly Decodable Network Codes

    KAUST Repository

    Douik, Ahmed

    2016-02-26

    This paper addresses the problem of reducing the delivery time of data messages to cellular users using instantly decodable network coding (IDNC) with physical-layer rate awareness. While most of the existing literature on IDNC does not consider any physical layer complications, this paper proposes a cross-layer scheme that incorporates the different channel rates of the various users in the decision process of both the transmitted message combinations and the rates with which they are transmitted. The completion time minimization problem in such scenario is first shown to be intractable. The problem is, thus, approximated by reducing, at each transmission, the increase of an anticipated version of the completion time. The paper solves the problem by formulating it as a maximum weight clique problem over a newly designed rate aware IDNC (RA-IDNC) graph. Further, the paper provides a multi-layer solution to improve the completion time approximation. Simulation results suggest that the cross-layer design largely outperforms the uncoded transmissions strategies and the classical IDNC scheme. © 2015 IEEE.

  3. Encoding and decoding messages with chaotic lasers

    International Nuclear Information System (INIS)

    Alsing, P.M.; Gavrielides, A.; Kovanis, V.; Roy, R.; Thornburg, K.S. Jr.

    1997-01-01

    We investigate the structure of the strange attractor of a chaotic loss-modulated solid-state laser utilizing return maps based on a combination of intensity maxima and interspike intervals, as opposed to those utilizing Poincare sections defined by the intensity maxima of the laser (I=0,Ie<0) alone. We find both experimentally and numerically that a simple, intrinsic relationship exists between an intensity maximum and the pair of preceding and succeeding interspike intervals. In addition, we numerically investigate encoding messages on the output of a chaotic transmitter laser and its subsequent decoding by a similar receiver laser. By exploiting the relationship between the intensity maxima and the interspike intervals, we demonstrate that the method utilized to encode the message is vital to the system close-quote s ability to hide the signal from unwanted deciphering. In this work alternative methods are studied in order to encode messages by modulating the magnitude of pumping of the transmitter laser and also by driving its loss modulation with more than one frequency. copyright 1997 The American Physical Society

  4. Fast mental states decoding in mixed reality.

    Directory of Open Access Journals (Sweden)

    Daniele eDe Massari

    2014-11-01

    Full Text Available The combination of Brain-Computer Interface technology, allowing online monitoring and decoding of brain activity, with virtual and mixed reality systems may help to shape and guide implicit and explicit learning using ecological scenarios. Real-time information of ongoing brain states acquired through BCI might be exploited for controlling data presentation in virtual environments. In this context, assessing to what extent brain states can be discriminated during mixed reality experience is critical for adapting specific data features to contingent brain activity. In this study we recorded EEG data while participants experienced a mixed reality scenario implemented through the eXperience Induction Machine (XIM. The XIM is a novel framework modeling the integration of a sensing system that evaluates and measures physiological and psychological states with a number of actuators and effectors that coherently reacts to the user's actions. We then assessed continuous EEG-based discrimination of spatial navigation, reading and calculation performed in mixed reality, using LDA and SVM classifiers. Dynamic single trial classification showed high accuracy of LDA and SVM classifiers in detecting multiple brain states as well as in differentiating between high and low mental workload, using a 5 s time-window shifting every 200 ms. Our results indicate overall better performance of LDA with respect to SVM and suggest applicability of our approach in a BCI-controlled mixed reality scenario. Ultimately, successful prediction of brain states might be used to drive adaptation of data representation in order to boost information processing in mixed reality.

  5. Decoding P4-ATPase substrate interactions.

    Science.gov (United States)

    Roland, Bartholomew P; Graham, Todd R

    Cellular membranes display a diversity of functions that are conferred by the unique composition and organization of their proteins and lipids. One important aspect of lipid organization is the asymmetric distribution of phospholipids (PLs) across the plasma membrane. The unequal distribution of key PLs between the cytofacial and exofacial leaflets of the bilayer creates physical surface tension that can be used to bend the membrane; and like Ca 2+ , a chemical gradient that can be used to transduce biochemical signals. PL flippases in the type IV P-type ATPase (P4-ATPase) family are the principle transporters used to set and repair this PL gradient and the asymmetric organization of these membranes are encoded by the substrate specificity of these enzymes. Thus, understanding the mechanisms of P4-ATPase substrate specificity will help reveal their role in membrane organization and cell biology. Further, decoding the structural determinants of substrate specificity provides investigators the opportunity to mutationally tune this specificity to explore the role of particular PL substrates in P4-ATPase cellular functions. This work reviews the role of P4-ATPases in membrane biology, presents our current understanding of P4-ATPase substrate specificity, and discusses how these fundamental aspects of P4-ATPase enzymology may be used to enhance our knowledge of cellular membrane biology.

  6. Fast mental states decoding in mixed reality.

    Science.gov (United States)

    De Massari, Daniele; Pacheco, Daniel; Malekshahi, Rahim; Betella, Alberto; Verschure, Paul F M J; Birbaumer, Niels; Caria, Andrea

    2014-01-01

    The combination of Brain-Computer Interface (BCI) technology, allowing online monitoring and decoding of brain activity, with virtual and mixed reality (MR) systems may help to shape and guide implicit and explicit learning using ecological scenarios. Real-time information of ongoing brain states acquired through BCI might be exploited for controlling data presentation in virtual environments. Brain states discrimination during mixed reality experience is thus critical for adapting specific data features to contingent brain activity. In this study we recorded electroencephalographic (EEG) data while participants experienced MR scenarios implemented through the eXperience Induction Machine (XIM). The XIM is a novel framework modeling the integration of a sensing system that evaluates and measures physiological and psychological states with a number of actuators and effectors that coherently reacts to the user's actions. We then assessed continuous EEG-based discrimination of spatial navigation, reading and calculation performed in MR, using linear discriminant analysis (LDA) and support vector machine (SVM) classifiers. Dynamic single trial classification showed high accuracy of LDA and SVM classifiers in detecting multiple brain states as well as in differentiating between high and low mental workload, using a 5 s time-window shifting every 200 ms. Our results indicate overall better performance of LDA with respect to SVM and suggest applicability of our approach in a BCI-controlled MR scenario. Ultimately, successful prediction of brain states might be used to drive adaptation of data representation in order to boost information processing in MR.

  7. Observing human movements helps decoding environmental forces.

    Science.gov (United States)

    Zago, Myrka; La Scaleia, Barbara; Miller, William L; Lacquaniti, Francesco

    2011-11-01

    Vision of human actions can affect several features of visual motion processing, as well as the motor responses of the observer. Here, we tested the hypothesis that action observation helps decoding environmental forces during the interception of a decelerating target within a brief time window, a task intrinsically very difficult. We employed a factorial design to evaluate the effects of scene orientation (normal or inverted) and target gravity (normal or inverted). Button-press triggered the motion of a bullet, a piston, or a human arm. We found that the timing errors were smaller for upright scenes irrespective of gravity direction in the Bullet group, while the errors were smaller for the standard condition of normal scene and gravity in the Piston group. In the Arm group, instead, performance was better when the directions of scene and target gravity were concordant, irrespective of whether both were upright or inverted. These results suggest that the default viewer-centered reference frame is used with inanimate scenes, such as those of the Bullet and Piston protocols. Instead, the presence of biological movements in animate scenes (as in the Arm protocol) may help processing target kinematics under the ecological conditions of coherence between scene and target gravity directions.

  8. Rate Aware Instantly Decodable Network Codes

    KAUST Repository

    Douik, Ahmed; Sorour, Sameh; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2016-01-01

    This paper addresses the problem of reducing the delivery time of data messages to cellular users using instantly decodable network coding (IDNC) with physical-layer rate awareness. While most of the existing literature on IDNC does not consider any physical layer complications, this paper proposes a cross-layer scheme that incorporates the different channel rates of the various users in the decision process of both the transmitted message combinations and the rates with which they are transmitted. The completion time minimization problem in such scenario is first shown to be intractable. The problem is, thus, approximated by reducing, at each transmission, the increase of an anticipated version of the completion time. The paper solves the problem by formulating it as a maximum weight clique problem over a newly designed rate aware IDNC (RA-IDNC) graph. Further, the paper provides a multi-layer solution to improve the completion time approximation. Simulation results suggest that the cross-layer design largely outperforms the uncoded transmissions strategies and the classical IDNC scheme. © 2015 IEEE.

  9. Statistical coding and decoding of heartbeat intervals.

    Directory of Open Access Journals (Sweden)

    Fausto Lucena

    Full Text Available The heart integrates neuroregulatory messages into specific bands of frequency, such that the overall amplitude spectrum of the cardiac output reflects the variations of the autonomic nervous system. This modulatory mechanism seems to be well adjusted to the unpredictability of the cardiac demand, maintaining a proper cardiac regulation. A longstanding theory holds that biological organisms facing an ever-changing environment are likely to evolve adaptive mechanisms to extract essential features in order to adjust their behavior. The key question, however, has been to understand how the neural circuitry self-organizes these feature detectors to select behaviorally relevant information. Previous studies in computational perception suggest that a neural population enhances information that is important for survival by minimizing the statistical redundancy of the stimuli. Herein we investigate whether the cardiac system makes use of a redundancy reduction strategy to regulate the cardiac rhythm. Based on a network of neural filters optimized to code heartbeat intervals, we learn a population code that maximizes the information across the neural ensemble. The emerging population code displays filter tuning proprieties whose characteristics explain diverse aspects of the autonomic cardiac regulation, such as the compromise between fast and slow cardiac responses. We show that the filters yield responses that are quantitatively similar to observed heart rate responses during direct sympathetic or parasympathetic nerve stimulation. Our findings suggest that the heart decodes autonomic stimuli according to information theory principles analogous to how perceptual cues are encoded by sensory systems.

  10. Efficient universal computing architectures for decoding neural activity.

    Directory of Open Access Journals (Sweden)

    Benjamin I Rapoport

    Full Text Available The ability to decode neural activity into meaningful control signals for prosthetic devices is critical to the development of clinically useful brain- machine interfaces (BMIs. Such systems require input from tens to hundreds of brain-implanted recording electrodes in order to deliver robust and accurate performance; in serving that primary function they should also minimize power dissipation in order to avoid damaging neural tissue; and they should transmit data wirelessly in order to minimize the risk of infection associated with chronic, transcutaneous implants. Electronic architectures for brain- machine interfaces must therefore minimize size and power consumption, while maximizing the ability to compress data to be transmitted over limited-bandwidth wireless channels. Here we present a system of extremely low computational complexity, designed for real-time decoding of neural signals, and suited for highly scalable implantable systems. Our programmable architecture is an explicit implementation of a universal computing machine emulating the dynamics of a network of integrate-and-fire neurons; it requires no arithmetic operations except for counting, and decodes neural signals using only computationally inexpensive logic operations. The simplicity of this architecture does not compromise its ability to compress raw neural data by factors greater than [Formula: see text]. We describe a set of decoding algorithms based on this computational architecture, one designed to operate within an implanted system, minimizing its power consumption and data transmission bandwidth; and a complementary set of algorithms for learning, programming the decoder, and postprocessing the decoded output, designed to operate in an external, nonimplanted unit. The implementation of the implantable portion is estimated to require fewer than 5000 operations per second. A proof-of-concept, 32-channel field-programmable gate array (FPGA implementation of this portion

  11. Skewed Binary Search Trees

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Moruz, Gabriel

    2006-01-01

    It is well-known that to minimize the number of comparisons a binary search tree should be perfectly balanced. Previous work has shown that a dominating factor over the running time for a search is the number of cache faults performed, and that an appropriate memory layout of a binary search tree...... can reduce the number of cache faults by several hundred percent. Motivated by the fact that during a search branching to the left or right at a node does not necessarily have the same cost, e.g. because of branch prediction schemes, we in this paper study the class of skewed binary search trees....... For all nodes in a skewed binary search tree the ratio between the size of the left subtree and the size of the tree is a fixed constant (a ratio of 1/2 gives perfect balanced trees). In this paper we present an experimental study of various memory layouts of static skewed binary search trees, where each...

  12. Modelling binary data

    CERN Document Server

    Collett, David

    2002-01-01

    INTRODUCTION Some Examples The Scope of this Book Use of Statistical Software STATISTICAL INFERENCE FOR BINARY DATA The Binomial Distribution Inference about the Success Probability Comparison of Two Proportions Comparison of Two or More Proportions MODELS FOR BINARY AND BINOMIAL DATA Statistical Modelling Linear Models Methods of Estimation Fitting Linear Models to Binomial Data Models for Binomial Response Data The Linear Logistic Model Fitting the Linear Logistic Model to Binomial Data Goodness of Fit of a Linear Logistic Model Comparing Linear Logistic Models Linear Trend in Proportions Comparing Stimulus-Response Relationships Non-Convergence and Overfitting Some other Goodness of Fit Statistics Strategy for Model Selection Predicting a Binary Response Probability BIOASSAY AND SOME OTHER APPLICATIONS The Tolerance Distribution Estimating an Effective Dose Relative Potency Natural Response Non-Linear Logistic Regression Models Applications of the Complementary Log-Log Model MODEL CHECKING Definition of Re...

  13. Evolution of dwarf binaries

    International Nuclear Information System (INIS)

    Tutukov, A.V.; Fedorova, A.V.; Yungel'son, L.R.

    1982-01-01

    The conditions of mass exchange in close binary systems with masses of components less or equal to one solar mass have been analysed for the case, when the system radiates gravitational waves. It has been shown that the mass exchange rate depends in a certain way on the mass ratio of components and on the mass of component that fills its inner critical lobe. The comparison of observed periods, masses of contact components, and mass exchange rates of observed cataclysmic binaries have led to the conclusion that the evolution of close binaries WZ Sge, OY Car, Z Cha, TT Ari, 2A 0311-227, and G 61-29 may be driven by the emission of gravitational waves [ru

  14. Binary catalogue of exoplanets

    Science.gov (United States)

    Schwarz, Richard; Bazso, Akos; Zechner, Renate; Funk, Barbara

    2016-02-01

    Since 1995 there is a database which list most of the known exoplanets (The Extrasolar Planets Encyclopaedia at http://exoplanet.eu/). With the growing number of detected exoplanets in binary and multiple star systems it became more important to mark and to separate them into a new database, which is not available in the Extrasolar Planets Encyclopaedia. Therefore we established an online database (which can be found at: http://www.univie.ac.at/adg/schwarz/multiple.html) for all known exoplanets in binary star systems and in addition for multiple star systems, which will be updated regularly and linked to the Extrasolar Planets Encyclopaedia. The binary catalogue of exoplanets is available online as data file and can be used for statistical purposes. Our database is divided into two parts: the data of the stars and the planets, given in a separate list. We describe also the different parameters of the exoplanetary systems and present some applications.

  15. Binary and Millisecond Pulsars.

    Science.gov (United States)

    Lorimer, Duncan R

    2008-01-01

    We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5 M ⊙ , a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric ( e = 0.44) orbit around an unevolved companion. Supplementary material is available for this article at 10.12942/lrr-2008-8.

  16. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2008-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5M_⊙, a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric (e = 0.44 orbit around an unevolved companion.

  17. Fractional Gaussian noise-enhanced information capacity of a nonlinear neuron model with binary signal input

    Science.gov (United States)

    Gao, Feng-Yin; Kang, Yan-Mei; Chen, Xi; Chen, Guanrong

    2018-05-01

    This paper reveals the effect of fractional Gaussian noise with Hurst exponent H ∈(1 /2 ,1 ) on the information capacity of a general nonlinear neuron model with binary signal input. The fGn and its corresponding fractional Brownian motion exhibit long-range, strong-dependent increments. It extends standard Brownian motion to many types of fractional processes found in nature, such as the synaptic noise. In the paper, for the subthreshold binary signal, sufficient conditions are given based on the "forbidden interval" theorem to guarantee the occurrence of stochastic resonance, while for the suprathreshold binary signal, the simulated results show that additive fGn with Hurst exponent H ∈(1 /2 ,1 ) could increase the mutual information or bits count. The investigation indicated that the synaptic noise with the characters of long-range dependence and self-similarity might be the driving factor for the efficient encoding and decoding of the nervous system.

  18. Dissipative binary collisions

    International Nuclear Information System (INIS)

    Aboufirassi, M; Angelique, J.C.; Bizard, G.; Bougault, R.; Brou, R.; Buta, A.; Colin, J.; Cussol, D.; Durand, D.; Genoux-Lubain, A.; Horn, D.; Kerambrun, A.; Laville, J.L.; Le Brun, C.; Lecolley, J.F.; Lefebvres, F.; Lopez, O.; Louvel, M.; Meslin, C.; Metivier, V.; Nakagawa, T.; Peter, J.; Popescu, R.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Wieloch, A.; Yuasa-Nakagawa, K.

    1998-01-01

    The binary character of the heavy ion collisions at intermediate energies in the exit channel has been observed under 30 MeV/n in medium and heavy systems. Measurements in light systems at energies approaching ∼ 100 MeV/nucleon as well as in very heavy systems have allowed to extend considerably the investigations of this binary process. Thus, the study of the Pb + Au system showed that the complete charge events indicated two distinct sources: the quasi-projectile and the quasi-target. The characteristics of these two sources are rather well reproduced by a trajectory computation which takes into account the Coulomb and nuclear forces and the friction appearing from the projectile-target interaction. The Wilczynski diagram is used to probe the correlation between the kinetic energy quenching and the deflecting angle. In case of the system Pb + Au at 29 MeV/nucleon the diagram indicate dissipative binary collisions typical for low energies. This binary aspect was also detected in the systems Xe + Ag at 44 MeV/nucleon, 36 Ar + 27 Al and 64 Zn + nat Ti. Thus, it was possible to reconstruct the quasi-projectile and to study its mass and excitation energy evolution as a function of the impact parameter. The dissipative binary collisions represent for the systems and energies under considerations the main contribution to the cross section. This does not implies that there are not other processes; particularly, the more or less complete fusion is also observed but with a low cross section which decreases with the increase of bombardment energy. More exclusive measurements with the INDRA detector on quasi-symmetric systems as Ar + KCl and Xe + Sn seem to confirm the importance of the binary collisions. The two source reconstruction of the Xe + Sn data at 50 MeV/nucleon reproduces the same behaviour as that observed in the system Pb + Au at 29 MeV/nucleon

  19. Mapping visual stimuli to perceptual decisions via sparse decoding of mesoscopic neural activity.

    Science.gov (United States)

    Sajda, Paul

    2010-01-01

    In this talk I will describe our work investigating sparse decoding of neural activity, given a realistic mapping of the visual scene to neuronal spike trains generated by a model of primary visual cortex (V1). We use a linear decoder which imposes sparsity via an L1 norm. The decoder can be viewed as a decoding neuron (linear summation followed by a sigmoidal nonlinearity) in which there are relatively few non-zero synaptic weights. We find: (1) the best decoding performance is for a representation that is sparse in both space and time, (2) decoding of a temporal code results in better performance than a rate code and is also a better fit to the psychophysical data, (3) the number of neurons required for decoding increases monotonically as signal-to-noise in the stimulus decreases, with as little as 1% of the neurons required for decoding at the highest signal-to-noise levels, and (4) sparse decoding results in a more accurate decoding of the stimulus and is a better fit to psychophysical performance than a distributed decoding, for example one imposed by an L2 norm. We conclude that sparse coding is well-justified from a decoding perspective in that it results in a minimum number of neurons and maximum accuracy when sparse representations can be decoded from the neural dynamics.

  20. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2005-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1700. There are now 80 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 103 pulsars in 24 of the Galactic globular clusters. Recent highlights have been the discovery of the first ever double pulsar system and a recent flurry of discoveries in globular clusters, in particular Terzan 5.

  1. Robust pattern decoding in shape-coded structured light

    Science.gov (United States)

    Tang, Suming; Zhang, Xu; Song, Zhan; Song, Lifang; Zeng, Hai

    2017-09-01

    Decoding is a challenging and complex problem in a coded structured light system. In this paper, a robust pattern decoding method is proposed for the shape-coded structured light in which the pattern is designed as grid shape with embedded geometrical shapes. In our decoding method, advancements are made at three steps. First, a multi-template feature detection algorithm is introduced to detect the feature point which is the intersection of each two orthogonal grid-lines. Second, pattern element identification is modelled as a supervised classification problem and the deep neural network technique is applied for the accurate classification of pattern elements. Before that, a training dataset is established, which contains a mass of pattern elements with various blurring and distortions. Third, an error correction mechanism based on epipolar constraint, coplanarity constraint and topological constraint is presented to reduce the false matches. In the experiments, several complex objects including human hand are chosen to test the accuracy and robustness of the proposed method. The experimental results show that our decoding method not only has high decoding accuracy, but also owns strong robustness to surface color and complex textures.

  2. Distributed coding/decoding complexity in video sensor networks.

    Science.gov (United States)

    Cordeiro, Paulo J; Assunção, Pedro

    2012-01-01

    Video Sensor Networks (VSNs) are recent communication infrastructures used to capture and transmit dense visual information from an application context. In such large scale environments which include video coding, transmission and display/storage, there are several open problems to overcome in practical implementations. This paper addresses the most relevant challenges posed by VSNs, namely stringent bandwidth usage and processing time/power constraints. In particular, the paper proposes a novel VSN architecture where large sets of visual sensors with embedded processors are used for compression and transmission of coded streams to gateways, which in turn transrate the incoming streams and adapt them to the variable complexity requirements of both the sensor encoders and end-user decoder terminals. Such gateways provide real-time transcoding functionalities for bandwidth adaptation and coding/decoding complexity distribution by transferring the most complex video encoding/decoding tasks to the transcoding gateway at the expense of a limited increase in bit rate. Then, a method to reduce the decoding complexity, suitable for system-on-chip implementation, is proposed to operate at the transcoding gateway whenever decoders with constrained resources are targeted. The results show that the proposed method achieves good performance and its inclusion into the VSN infrastructure provides an additional level of complexity control functionality.

  3. Mutual information against correlations in binary communication channels.

    Science.gov (United States)

    Pregowska, Agnieszka; Szczepanski, Janusz; Wajnryb, Eligiusz

    2015-05-19

    Explaining how the brain processing is so fast remains an open problem (van Hemmen JL, Sejnowski T., 2004). Thus, the analysis of neural transmission (Shannon CE, Weaver W., 1963) processes basically focuses on searching for effective encoding and decoding schemes. According to the Shannon fundamental theorem, mutual information plays a crucial role in characterizing the efficiency of communication channels. It is well known that this efficiency is determined by the channel capacity that is already the maximal mutual information between input and output signals. On the other hand, intuitively speaking, when input and output signals are more correlated, the transmission should be more efficient. A natural question arises about the relation between mutual information and correlation. We analyze the relation between these quantities using the binary representation of signals, which is the most common approach taken in studying neuronal processes of the brain. We present binary communication channels for which mutual information and correlation coefficients behave differently both quantitatively and qualitatively. Despite this difference in behavior, we show that the noncorrelation of binary signals implies their independence, in contrast to the case for general types of signals. Our research shows that the mutual information cannot be replaced by sheer correlations. Our results indicate that neuronal encoding has more complicated nature which cannot be captured by straightforward correlations between input and output signals once the mutual information takes into account the structure and patterns of the signals.

  4. Equational binary decision diagrams

    NARCIS (Netherlands)

    J.F. Groote (Jan Friso); J.C. van de Pol (Jaco)

    2000-01-01

    textabstractWe incorporate equations in binary decision diagrams (BDD). The resulting objects are called EQ-BDDs. A straightforward notion of ordered EQ-BDDs (EQ-OBDD) is defined, and it is proved that each EQ-BDD is logically equivalent to an EQ-OBDD. Moreover, on EQ-OBDDs satisfiability and

  5. Binary tense and modality

    NARCIS (Netherlands)

    Broekhuis, H.; Verkuyl, H.J

    2014-01-01

    The present paper adopts as its point of departure the claim by Te Winkel (1866) and Verkuyl (2008) that mental temporal representations are built on the basis of three binary oppositions: Present/Past, Synchronous/Posterior and Imperfect/Perfect. Te Winkel took the second opposition in terms of the

  6. Lexical decoder for continuous speech recognition: sequential neural network approach

    International Nuclear Information System (INIS)

    Iooss, Christine

    1991-01-01

    The work presented in this dissertation concerns the study of a connectionist architecture to treat sequential inputs. In this context, the model proposed by J.L. Elman, a recurrent multilayers network, is used. Its abilities and its limits are evaluated. Modifications are done in order to treat erroneous or noisy sequential inputs and to classify patterns. The application context of this study concerns the realisation of a lexical decoder for analytical multi-speakers continuous speech recognition. Lexical decoding is completed from lattices of phonemes which are obtained after an acoustic-phonetic decoding stage relying on a K Nearest Neighbors search technique. Test are done on sentences formed from a lexicon of 20 words. The results are obtained show the ability of the proposed connectionist model to take into account the sequentiality at the input level, to memorize the context and to treat noisy or erroneous inputs. (author) [fr

  7. Systolic array processing of the sequential decoding algorithm

    Science.gov (United States)

    Chang, C. Y.; Yao, K.

    1989-01-01

    A systolic array processing technique is applied to implementing the stack algorithm form of the sequential decoding algorithm. It is shown that sorting, a key function in the stack algorithm, can be efficiently realized by a special type of systolic arrays known as systolic priority queues. Compared to the stack-bucket algorithm, this approach is shown to have the advantages that the decoding always moves along the optimal path, that it has a fast and constant decoding speed and that its simple and regular hardware architecture is suitable for VLSI implementation. Three types of systolic priority queues are discussed: random access scheme, shift register scheme and ripple register scheme. The property of the entries stored in the systolic priority queue is also investigated. The results are applicable to many other basic sorting type problems.

  8. Analysis of Minimal LDPC Decoder System on a Chip Implementation

    Directory of Open Access Journals (Sweden)

    T. Palenik

    2015-09-01

    Full Text Available This paper presents a practical method of potential replacement of several different Quasi-Cyclic Low-Density Parity-Check (QC-LDPC codes with one, with the intention of saving as much memory as required to implement the LDPC encoder and decoder in a memory-constrained System on a Chip (SoC. The presented method requires only a very small modification of the existing encoder and decoder, making it suitable for utilization in a Software Defined Radio (SDR platform. Besides the analysis of the effects of necessary variable-node value fixation during the Belief Propagation (BP decoding algorithm, practical standard-defined code parameters are scrutinized in order to evaluate the feasibility of the proposed LDPC setup simplification. Finally, the error performance of the modified system structure is evaluated and compared with the original system structure by means of simulation.

  9. N-Bit Binary Resistor

    Science.gov (United States)

    Tcheng, Ping

    1989-01-01

    Binary resistors in series tailored to precise value of resistance. Desired value of resistance obtained by cutting appropriate traces across resistors. Multibit, binary-based, adjustable resistor with high resolution used in many applications where precise resistance required.

  10. Error-correction coding and decoding bounds, codes, decoders, analysis and applications

    CERN Document Server

    Tomlinson, Martin; Ambroze, Marcel A; Ahmed, Mohammed; Jibril, Mubarak

    2017-01-01

    This book discusses both the theory and practical applications of self-correcting data, commonly known as error-correcting codes. The applications included demonstrate the importance of these codes in a wide range of everyday technologies, from smartphones to secure communications and transactions. Written in a readily understandable style, the book presents the authors’ twenty-five years of research organized into five parts: Part I is concerned with the theoretical performance attainable by using error correcting codes to achieve communications efficiency in digital communications systems. Part II explores the construction of error-correcting codes and explains the different families of codes and how they are designed. Techniques are described for producing the very best codes. Part III addresses the analysis of low-density parity-check (LDPC) codes, primarily to calculate their stopping sets and low-weight codeword spectrum which determines the performance of these codes. Part IV deals with decoders desi...

  11. The fast decoding of Reed-Solomon codes using Fermat theoretic transforms and continued fractions

    Science.gov (United States)

    Reed, I. S.; Scholtz, R. A.; Welch, L. R.; Truong, T. K.

    1978-01-01

    It is shown that Reed-Solomon (RS) codes can be decoded by using a fast Fourier transform (FFT) algorithm over finite fields GF(F sub n), where F sub n is a Fermat prime, and continued fractions. This new transform decoding method is simpler than the standard method for RS codes. The computing time of this new decoding algorithm in software can be faster than the standard decoding method for RS codes.

  12. The True Ultracool Binary Fraction Using Spectral Binaries

    Science.gov (United States)

    Bardalez Gagliuffi, Daniella; Burgasser, Adam J.; Schmidt, Sarah J.; Gagné, Jonathan; Faherty, Jacqueline K.; Cruz, Kelle; Gelino, Chris

    2018-01-01

    Brown dwarfs bridge the gap between stars and giant planets. While the essential mechanisms governing their formation are not well constrained, binary statistics are a direct outcome of the formation process, and thus provide a means to test formation theories. Observational constraints on the brown dwarf binary fraction place it at 10 ‑ 20%, dominated by imaging studies (85% of systems) with the most common separation at 4 AU. This coincides with the resolution limit of state-of-the-art imaging techniques, suggesting that the binary fraction is underestimated. We have developed a separation-independent method to identify and characterize tightly-separated (dwarfs as spectral binaries by identifying traces of methane in the spectra of late-M and early-L dwarfs. Imaging follow-up of 17 spectral binaries yielded 3 (18%) resolved systems, corroborating the observed binary fraction, but 5 (29%) known binaries were missed, reinforcing the hypothesis that the short-separation systems are undercounted. In order to find the true binary fraction of brown dwarfs, we have compiled a volume-limited, spectroscopic sample of M7-L5 dwarfs and searched for T dwarf companions. In the 25 pc volume, 4 candidates were found, three of which are already confirmed, leading to a spectral binary fraction of 0.95 ± 0.50%, albeit for a specific combination of spectral types. To extract the true binary fraction and determine the biases of the spectral binary method, we have produced a binary population simulation based on different assumptions of the mass function, age distribution, evolutionary models and mass ratio distribution. Applying the correction fraction resulting from this method to the observed spectral binary fraction yields a true binary fraction of 27 ± 4%, which is roughly within 1σ of the binary fraction obtained from high resolution imaging studies, radial velocity and astrometric monitoring. This method can be extended to identify giant planet companions to young brown

  13. Joint Estimation and Decoding of Space-Time Trellis Codes

    Directory of Open Access Journals (Sweden)

    Zhang Jianqiu

    2002-01-01

    Full Text Available We explore the possibility of using an emerging tool in statistical signal processing, sequential importance sampling (SIS, for joint estimation and decoding of space-time trellis codes (STTC. First, we provide background on SIS, and then we discuss its application to space-time trellis code (STTC systems. It is shown through simulations that SIS is suitable for joint estimation and decoding of STTC with time-varying flat-fading channels when phase ambiguity is avoided. We used a design criterion for STTCs and temporally correlated channels that combats phase ambiguity without pilot signaling. We have shown by simulations that the design is valid.

  14. Efficient decoding of random errors for quantum expander codes

    OpenAIRE

    Fawzi , Omar; Grospellier , Antoine; Leverrier , Anthony

    2017-01-01

    We show that quantum expander codes, a constant-rate family of quantum LDPC codes, with the quasi-linear time decoding algorithm of Leverrier, Tillich and Z\\'emor can correct a constant fraction of random errors with very high probability. This is the first construction of a constant-rate quantum LDPC code with an efficient decoding algorithm that can correct a linear number of random errors with a negligible failure probability. Finding codes with these properties is also motivated by Gottes...

  15. Decoding ensemble activity from neurophysiological recordings in the temporal cortex.

    Science.gov (United States)

    Kreiman, Gabriel

    2011-01-01

    We study subjects with pharmacologically intractable epilepsy who undergo semi-chronic implantation of electrodes for clinical purposes. We record physiological activity from tens to more than one hundred electrodes implanted in different parts of neocortex. These recordings provide higher spatial and temporal resolution than non-invasive measures of human brain activity. Here we discuss our efforts to develop hardware and algorithms to interact with the human brain by decoding ensemble activity in single trials. We focus our discussion on decoding visual information during a variety of visual object recognition tasks but the same technologies and algorithms can also be directly applied to other cognitive phenomena.

  16. Linear-time general decoding algorithm for the surface code

    Science.gov (United States)

    Darmawan, Andrew S.; Poulin, David

    2018-05-01

    A quantum error correcting protocol can be substantially improved by taking into account features of the physical noise process. We present an efficient decoder for the surface code which can account for general noise features, including coherences and correlations. We demonstrate that the decoder significantly outperforms the conventional matching algorithm on a variety of noise models, including non-Pauli noise and spatially correlated noise. The algorithm is based on an approximate calculation of the logical channel using a tensor-network description of the noisy state.

  17. Black holes in binary stars

    NARCIS (Netherlands)

    Wijers, R.A.M.J.

    1996-01-01

    Introduction Distinguishing neutron stars and black holes Optical companions and dynamical masses X-ray signatures of the nature of a compact object Structure and evolution of black-hole binaries High-mass black-hole binaries Low-mass black-hole binaries Low-mass black holes Formation of black holes

  18. Progressive Image Transmission Based on Joint Source-Channel Decoding Using Adaptive Sum-Product Algorithm

    Directory of Open Access Journals (Sweden)

    David G. Daut

    2007-03-01

    Full Text Available A joint source-channel decoding method is designed to accelerate the iterative log-domain sum-product decoding procedure of LDPC codes as well as to improve the reconstructed image quality. Error resilience modes are used in the JPEG2000 source codec making it possible to provide useful source decoded information to the channel decoder. After each iteration, a tentative decoding is made and the channel decoded bits are then sent to the JPEG2000 decoder. The positions of bits belonging to error-free coding passes are then fed back to the channel decoder. The log-likelihood ratios (LLRs of these bits are then modified by a weighting factor for the next iteration. By observing the statistics of the decoding procedure, the weighting factor is designed as a function of the channel condition. Results show that the proposed joint decoding methods can greatly reduce the number of iterations, and thereby reduce the decoding delay considerably. At the same time, this method always outperforms the nonsource controlled decoding method by up to 3 dB in terms of PSNR.

  19. Progressive Image Transmission Based on Joint Source-Channel Decoding Using Adaptive Sum-Product Algorithm

    Directory of Open Access Journals (Sweden)

    Liu Weiliang

    2007-01-01

    Full Text Available A joint source-channel decoding method is designed to accelerate the iterative log-domain sum-product decoding procedure of LDPC codes as well as to improve the reconstructed image quality. Error resilience modes are used in the JPEG2000 source codec making it possible to provide useful source decoded information to the channel decoder. After each iteration, a tentative decoding is made and the channel decoded bits are then sent to the JPEG2000 decoder. The positions of bits belonging to error-free coding passes are then fed back to the channel decoder. The log-likelihood ratios (LLRs of these bits are then modified by a weighting factor for the next iteration. By observing the statistics of the decoding procedure, the weighting factor is designed as a function of the channel condition. Results show that the proposed joint decoding methods can greatly reduce the number of iterations, and thereby reduce the decoding delay considerably. At the same time, this method always outperforms the nonsource controlled decoding method by up to 3 dB in terms of PSNR.

  20. Performance-complexity tradeoff in sequential decoding for the unconstrained AWGN channel

    KAUST Repository

    Abediseid, Walid; Alouini, Mohamed-Slim

    2013-01-01

    channel has been studied only under the use of the minimum Euclidean distance decoder that is commonly referred to as the lattice decoder. Lattice decoders based on solutions to the NP-hard closest vector problem are very complex to implement

  1. Construction and decoding of matrix-product codes from nested codes

    DEFF Research Database (Denmark)

    Hernando, Fernando; Lally, Kristine; Ruano, Diego

    2009-01-01

    We consider matrix-product codes [C1 ... Cs] · A, where C1, ..., Cs  are nested linear codes and matrix A has full rank. We compute their minimum distance and provide a decoding algorithm when A is a non-singular by columns matrix. The decoding algorithm decodes up to half of the minimum distance....

  2. Adaptive decoding of MPEG-4 sprites for memory-constrained embedded systems

    NARCIS (Netherlands)

    Pastrnak, M.; Farin, D.S.; With, de P.H.N.; Cardinal, J.; Cerf, N.; Delgrnage, O.

    2005-01-01

    Background sprite decoding is an essential part of object-based video coding.The composition and rendering of a final scene involves the placing of individual video objects in a predefined way superimposed on the decoded background image. The MPEG-4 standard includes the decoding algorithm for

  3. Learning to assign binary weights to binary descriptor

    Science.gov (United States)

    Huang, Zhoudi; Wei, Zhenzhong; Zhang, Guangjun

    2016-10-01

    Constructing robust binary local feature descriptors are receiving increasing interest due to their binary nature, which can enable fast processing while requiring significantly less memory than their floating-point competitors. To bridge the performance gap between the binary and floating-point descriptors without increasing the computational cost of computing and matching, optimal binary weights are learning to assign to binary descriptor for considering each bit might contribute differently to the distinctiveness and robustness. Technically, a large-scale regularized optimization method is applied to learn float weights for each bit of the binary descriptor. Furthermore, binary approximation for the float weights is performed by utilizing an efficient alternatively greedy strategy, which can significantly improve the discriminative power while preserve fast matching advantage. Extensive experimental results on two challenging datasets (Brown dataset and Oxford dataset) demonstrate the effectiveness and efficiency of the proposed method.

  4. Capacity Bounds and Mapping Design for Binary Symmetric Relay Channels

    Directory of Open Access Journals (Sweden)

    Majid Nasiri Khormuji

    2012-12-01

    Full Text Available Capacity bounds for a three-node binary symmetric relay channel with orthogonal components at the destination are studied. The cut-set upper bound and the rates achievable using decode-and-forward (DF, partial DF and compress-and-forward (CF relaying are first evaluated. Then relaying strategies with finite memory-length are considered. An efficient algorithm for optimizing the relay functions is presented. The Boolean Fourier transform is then employed to unveil the structure of the optimized mappings. Interestingly, the optimized relay functions exhibit a simple structure. Numerical results illustrate that the rates achieved using the optimized low-dimensional functions are either comparable to those achieved by CF or superior to those achieved by DF relaying. In particular, the optimized low-dimensional relaying scheme can improve on DF relaying when the quality of the source-relay link is worse than or comparable to that of other links.

  5. Code Optimization, Frozen Glassy Phase and Improved Decoding Algorithms for Low-Density Parity-Check Codes

    International Nuclear Information System (INIS)

    Huang Hai-Ping

    2015-01-01

    The statistical physics properties of low-density parity-check codes for the binary symmetric channel are investigated as a spin glass problem with multi-spin interactions and quenched random fields by the cavity method. By evaluating the entropy function at the Nishimori temperature, we find that irregular constructions with heterogeneous degree distribution of check (bit) nodes have higher decoding thresholds compared to regular counterparts with homogeneous degree distribution. We also show that the instability of the mean-field calculation takes place only after the entropy crisis, suggesting the presence of a frozen glassy phase at low temperatures. When no prior knowledge of channel noise is assumed (searching for the ground state), we find that a reinforced strategy on normal belief propagation will boost the decoding threshold to a higher value than the normal belief propagation. This value is close to the dynamical transition where all local search heuristics fail to identify the true message (codeword or the ferromagnetic state). After the dynamical transition, the number of metastable states with larger energy density (than the ferromagnetic state) becomes exponentially numerous. When the noise level of the transmission channel approaches the static transition point, there starts to exist exponentially numerous codewords sharing the identical ferromagnetic energy. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  6. An iterative detection method of MIMO over spatial correlated frequency selective channel: using list sphere decoding for simplification

    Science.gov (United States)

    Shi, Zhiping; Yan, Bing

    2010-08-01

    In multiple-input multiple-output(MIMO) wireless systems, combining good channel codes(e.g., Non-binary Repeat Accumulate codes) with adaptive turbo equalization is a good option to get better performance and lower complexity under Spatial Correlated Frequency Selective(SCFS) Channel. The key of this method is after joint antennas MMSE detection (JAD/MMSE) based on interruption cancelling using soft information, considering the detection result as an output of a Gaussian equivalent flat fading channel, and performing maximum likelihood detection(ML) to get more correct estimated result. But the using of ML brings great complexity increase, which is not allowed. In this paper, a low complexity method called list sphere decoding is introduced and applied to replace the ML in order to simplify the adaptive iterative turbo equalization system.

  7. Processing Of Binary Images

    Science.gov (United States)

    Hou, H. S.

    1985-07-01

    An overview of the recent progress in the area of digital processing of binary images in the context of document processing is presented here. The topics covered include input scan, adaptive thresholding, halftoning, scaling and resolution conversion, data compression, character recognition, electronic mail, digital typography, and output scan. Emphasis has been placed on illustrating the basic principles rather than descriptions of a particular system. Recent technology advances and research in this field are also mentioned.

  8. Decoding sound level in the marmoset primary auditory cortex.

    Science.gov (United States)

    Sun, Wensheng; Marongelli, Ellisha N; Watkins, Paul V; Barbour, Dennis L

    2017-10-01

    Neurons that respond favorably to a particular sound level have been observed throughout the central auditory system, becoming steadily more common at higher processing areas. One theory about the role of these level-tuned or nonmonotonic neurons is the level-invariant encoding of sounds. To investigate this theory, we simulated various subpopulations of neurons by drawing from real primary auditory cortex (A1) neuron responses and surveyed their performance in forming different sound level representations. Pure nonmonotonic subpopulations did not provide the best level-invariant decoding; instead, mixtures of monotonic and nonmonotonic neurons provided the most accurate decoding. For level-fidelity decoding, the inclusion of nonmonotonic neurons slightly improved or did not change decoding accuracy until they constituted a high proportion. These results indicate that nonmonotonic neurons fill an encoding role complementary to, rather than alternate to, monotonic neurons. NEW & NOTEWORTHY Neurons with nonmonotonic rate-level functions are unique to the central auditory system. These level-tuned neurons have been proposed to account for invariant sound perception across sound levels. Through systematic simulations based on real neuron responses, this study shows that neuron populations perform sound encoding optimally when containing both monotonic and nonmonotonic neurons. The results indicate that instead of working independently, nonmonotonic neurons complement the function of monotonic neurons in different sound-encoding contexts. Copyright © 2017 the American Physiological Society.

  9. Complete ML Decoding orf the (73,45) PG Code

    DEFF Research Database (Denmark)

    Justesen, Jørn; Høholdt, Tom; Hjaltason, Johan

    2005-01-01

    Our recent proof of the completeness of decoding by list bit flipping is reviewed. The proof is based on an enumeration of all cosets of low weight in terms of their minimum weight and syndrome weight. By using a geometric description of the error patterns we characterize all remaining cosets....

  10. Decoding Representations: How Children with Autism Understand Drawings

    Science.gov (United States)

    Allen, Melissa L.

    2009-01-01

    Young typically developing children can reason about abstract depictions if they know the intention of the artist. Children with autism spectrum disorder (ASD), who are notably impaired in social, "intention monitoring" domains, may have great difficulty in decoding vague representations. In Experiment 1, children with ASD are unable to use…

  11. A quantum algorithm for Viterbi decoding of classical convolutional codes

    Science.gov (United States)

    Grice, Jon R.; Meyer, David A.

    2015-07-01

    We present a quantum Viterbi algorithm (QVA) with better than classical performance under certain conditions. In this paper, the proposed algorithm is applied to decoding classical convolutional codes, for instance, large constraint length and short decode frames . Other applications of the classical Viterbi algorithm where is large (e.g., speech processing) could experience significant speedup with the QVA. The QVA exploits the fact that the decoding trellis is similar to the butterfly diagram of the fast Fourier transform, with its corresponding fast quantum algorithm. The tensor-product structure of the butterfly diagram corresponds to a quantum superposition that we show can be efficiently prepared. The quantum speedup is possible because the performance of the QVA depends on the fanout (number of possible transitions from any given state in the hidden Markov model) which is in general much less than . The QVA constructs a superposition of states which correspond to all legal paths through the decoding lattice, with phase as a function of the probability of the path being taken given received data. A specialized amplitude amplification procedure is applied one or more times to recover a superposition where the most probable path has a high probability of being measured.

  12. The Fluid Reading Primer: Animated Decoding Support for Emergent Readers.

    Science.gov (United States)

    Zellweger, Polle T.; Mackinlay, Jock D.

    A prototype application called the Fluid Reading Primer was developed to help emergent readers with the process of decoding written words into their spoken forms. The Fluid Reading Primer is part of a larger research project called Fluid Documents, which is exploring the use of interactive animation of typography to show additional information in…

  13. Adaptive Combined Source and Channel Decoding with Modulation ...

    African Journals Online (AJOL)

    In this paper, an adaptive system employing combined source and channel decoding with modulation is proposed for slow Rayleigh fading channels. Huffman code is used as the source code and Convolutional code is used for error control. The adaptive scheme employs a family of Convolutional codes of different rates ...

  14. Tracking Perceptual and Memory Decisions by Decoding Brain Activity

    NARCIS (Netherlands)

    van Vugt, Marieke; Brandt, Armin; Schulze-Bonhage, Andreas

    2017-01-01

    Decision making is thought to involve a process of evidence accumulation, modelled as a drifting diffusion process. This modeling framework suggests that all single-stage decisions involve a similar evidence accumulation process. In this paper we use decoding by machine learning classifiers on

  15. Peeling Decoding of LDPC Codes with Applications in Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Weijun Zeng

    2016-01-01

    Full Text Available We present a new approach for the analysis of iterative peeling decoding recovery algorithms in the context of Low-Density Parity-Check (LDPC codes and compressed sensing. The iterative recovery algorithm is particularly interesting for its low measurement cost and low computational complexity. The asymptotic analysis can track the evolution of the fraction of unrecovered signal elements in each iteration, which is similar to the well-known density evolution analysis in the context of LDPC decoding algorithm. Our analysis shows that there exists a threshold on the density factor; if under this threshold, the recovery algorithm is successful; otherwise it will fail. Simulation results are also provided for verifying the agreement between the proposed asymptotic analysis and recovery algorithm. Compared with existing works of peeling decoding algorithm, focusing on the failure probability of the recovery algorithm, our proposed approach gives accurate evolution of performance with different parameters of measurement matrices and is easy to implement. We also show that the peeling decoding algorithm performs better than other schemes based on LDPC codes.

  16. High-throughput GPU-based LDPC decoding

    Science.gov (United States)

    Chang, Yang-Lang; Chang, Cheng-Chun; Huang, Min-Yu; Huang, Bormin

    2010-08-01

    Low-density parity-check (LDPC) code is a linear block code known to approach the Shannon limit via the iterative sum-product algorithm. LDPC codes have been adopted in most current communication systems such as DVB-S2, WiMAX, WI-FI and 10GBASE-T. LDPC for the needs of reliable and flexible communication links for a wide variety of communication standards and configurations have inspired the demand for high-performance and flexibility computing. Accordingly, finding a fast and reconfigurable developing platform for designing the high-throughput LDPC decoder has become important especially for rapidly changing communication standards and configurations. In this paper, a new graphic-processing-unit (GPU) LDPC decoding platform with the asynchronous data transfer is proposed to realize this practical implementation. Experimental results showed that the proposed GPU-based decoder achieved 271x speedup compared to its CPU-based counterpart. It can serve as a high-throughput LDPC decoder.

  17. Real Time Decoding of Color Symbol for Optical Positioning System

    Directory of Open Access Journals (Sweden)

    Abdul Waheed Malik

    2015-01-01

    Full Text Available This paper presents the design and real-time decoding of a color symbol that can be used as a reference marker for optical navigation. The designed symbol has a circular shape and is printed on paper using two distinct colors. This pair of colors is selected based on the highest achievable signal to noise ratio. The symbol is designed to carry eight bit information. Real time decoding of this symbol is performed using a heterogeneous combination of Field Programmable Gate Array (FPGA and a microcontroller. An image sensor having a resolution of 1600 by 1200 pixels is used to capture images of symbols in complex backgrounds. Dynamic image segmentation, component labeling and feature extraction was performed on the FPGA. The region of interest was further computed from the extracted features. Feature data belonging to the symbol was sent from the FPGA to the microcontroller. Image processing tasks are partitioned between the FPGA and microcontroller based on data intensity. Experiments were performed to verify the rotational independence of the symbols. The maximum distance between camera and symbol allowing for correct detection and decoding was analyzed. Experiments were also performed to analyze the number of generated image components and sub-pixel precision versus different light sources and intensities. The proposed hardware architecture can process up to 55 frames per second for accurate detection and decoding of symbols at two Megapixels resolution. The power consumption of the complete system is 342mw.

  18. Fast decoding of codes from algebraic plane curves

    DEFF Research Database (Denmark)

    Justesen, Jørn; Larsen, Knud J.; Jensen, Helge Elbrønd

    1992-01-01

    Improvement to an earlier decoding algorithm for codes from algebraic geometry is presented. For codes from an arbitrary regular plane curve the authors correct up to d*/2-m2 /8+m/4-9/8 errors, where d* is the designed distance of the code and m is the degree of the curve. The complexity of finding...

  19. Name that tune: decoding music from the listening brain.

    NARCIS (Netherlands)

    Schaefer, R.S.; Farquhar, J.D.R.; Blokland, Y.M.; Sadakata, M.; Desain, P.W.M.

    2011-01-01

    In the current study we use electroencephalography (EEG) to detect heard music from the brain signal, hypothesizing that the time structure in music makes it especially suitable for decoding perception from EEG signals. While excluding music with vocals, we classified the perception of seven

  20. Name that tune: Decoding music from the listening brain

    NARCIS (Netherlands)

    Schaefer, R.S.; Farquhar, J.D.R.; Blokland, Y.M.; Sadakata, M.; Desain, P.W.M.

    2011-01-01

    In the current study we use electroencephalography (EEG) to detect heard music from the brain signal, hypothesizing that the time structure in music makes it especially suitable for decoding perception from EEG signals. While excluding music with vocals, we classified the perception of seven

  1. Decoding English Alphabet Letters Using EEG Phase Information

    Directory of Open Access Journals (Sweden)

    YiYan Wang

    2018-02-01

    Full Text Available Increasing evidence indicates that the phase pattern and power of the low frequency oscillations of brain electroencephalograms (EEG contain significant information during the human cognition of sensory signals such as auditory and visual stimuli. Here, we investigate whether and how the letters of the alphabet can be directly decoded from EEG phase and power data. In addition, we investigate how different band oscillations contribute to the classification and determine the critical time periods. An English letter recognition task was assigned, and statistical analyses were conducted to decode the EEG signal corresponding to each letter visualized on a computer screen. We applied support vector machine (SVM with gradient descent method to learn the potential features for classification. It was observed that the EEG phase signals have a higher decoding accuracy than the oscillation power information. Low-frequency theta and alpha oscillations have phase information with higher accuracy than do other bands. The decoding performance was best when the analysis period began from 180 to 380 ms after stimulus presentation, especially in the lateral occipital and posterior temporal scalp regions (PO7 and PO8. These results may provide a new approach for brain-computer interface techniques (BCI and may deepen our understanding of EEG oscillations in cognition.

  2. O2-GIDNC: Beyond instantly decodable network coding

    KAUST Repository

    Aboutorab, Neda; Sorour, Sameh; Sadeghi, Parastoo

    2013-01-01

    In this paper, we are concerned with extending the graph representation of generalized instantly decodable network coding (GIDNC) to a more general opportunistic network coding (ONC) scenario, referred to as order-2 GIDNC (O2-GIDNC). In the O2-GIDNC

  3. EEG source imaging assists decoding in a face recognition task

    DEFF Research Database (Denmark)

    Andersen, Rasmus S.; Eliasen, Anders U.; Pedersen, Nicolai

    2017-01-01

    of face recognition. This task concerns the differentiation of brain responses to images of faces and scrambled faces and poses a rather difficult decoding problem at the single trial level. We implement the pipeline using spatially focused features and show that this approach is challenged and source...

  4. LDPC-based iterative joint source-channel decoding for JPEG2000.

    Science.gov (United States)

    Pu, Lingling; Wu, Zhenyu; Bilgin, Ali; Marcellin, Michael W; Vasic, Bane

    2007-02-01

    A framework is proposed for iterative joint source-channel decoding of JPEG2000 codestreams. At the encoder, JPEG2000 is used to perform source coding with certain error-resilience (ER) modes, and LDPC codes are used to perform channel coding. During decoding, the source decoder uses the ER modes to identify corrupt sections of the codestream and provides this information to the channel decoder. Decoding is carried out jointly in an iterative fashion. Experimental results indicate that the proposed method requires fewer iterations and improves overall system performance.

  5. On Lattice Sequential Decoding for Large MIMO Systems

    KAUST Repository

    Ali, Konpal S.

    2014-04-01

    Due to their ability to provide high data rates, Multiple-Input Multiple-Output (MIMO) wireless communication systems have become increasingly popular. Decoding of these systems with acceptable error performance is computationally very demanding. In the case of large overdetermined MIMO systems, we employ the Sequential Decoder using the Fano Algorithm. A parameter called the bias is varied to attain different performance-complexity trade-offs. Low values of the bias result in excellent performance but at the expense of high complexity and vice versa for higher bias values. We attempt to bound the error by bounding the bias, using the minimum distance of a lattice. Also, a particular trend is observed with increasing SNR: a region of low complexity and high error, followed by a region of high complexity and error falling, and finally a region of low complexity and low error. For lower bias values, the stages of the trend are incurred at lower SNR than for higher bias values. This has the important implication that a low enough bias value, at low to moderate SNR, can result in low error and low complexity even for large MIMO systems. Our work is compared against Lattice Reduction (LR) aided Linear Decoders (LDs). Another impressive observation for low bias values that satisfy the error bound is that the Sequential Decoder\\'s error is seen to fall with increasing system size, while it grows for the LR-aided LDs. For the case of large underdetermined MIMO systems, Sequential Decoding with two preprocessing schemes is proposed – 1) Minimum Mean Square Error Generalized Decision Feedback Equalization (MMSE-GDFE) preprocessing 2) MMSE-GDFE preprocessing, followed by Lattice Reduction and Greedy Ordering. Our work is compared against previous work which employs Sphere Decoding preprocessed using MMSE-GDFE, Lattice Reduction and Greedy Ordering. For the case of large systems, this results in high complexity and difficulty in choosing the sphere radius. Our schemes

  6. Multi-stage decoding for multi-level block modulation codes

    Science.gov (United States)

    Lin, Shu

    1991-01-01

    In this paper, we investigate various types of multi-stage decoding for multi-level block modulation codes, in which the decoding of a component code at each stage can be either soft-decision or hard-decision, maximum likelihood or bounded-distance. Error performance of codes is analyzed for a memoryless additive channel based on various types of multi-stage decoding, and upper bounds on the probability of an incorrect decoding are derived. Based on our study and computation results, we find that, if component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. In particular, we find that the difference in performance between the suboptimum multi-stage soft-decision maximum likelihood decoding of a modulation code and the single-stage optimum decoding of the overall code is very small: only a fraction of dB loss in SNR at the probability of an incorrect decoding for a block of 10(exp -6). Multi-stage decoding of multi-level modulation codes really offers a way to achieve the best of three worlds, bandwidth efficiency, coding gain, and decoding complexity.

  7. Real-time SHVC software decoding with multi-threaded parallel processing

    Science.gov (United States)

    Gudumasu, Srinivas; He, Yuwen; Ye, Yan; He, Yong; Ryu, Eun-Seok; Dong, Jie; Xiu, Xiaoyu

    2014-09-01

    This paper proposes a parallel decoding framework for scalable HEVC (SHVC). Various optimization technologies are implemented on the basis of SHVC reference software SHM-2.0 to achieve real-time decoding speed for the two layer spatial scalability configuration. SHVC decoder complexity is analyzed with profiling information. The decoding process at each layer and the up-sampling process are designed in parallel and scheduled by a high level application task manager. Within each layer, multi-threaded decoding is applied to accelerate the layer decoding speed. Entropy decoding, reconstruction, and in-loop processing are pipeline designed with multiple threads based on groups of coding tree units (CTU). A group of CTUs is treated as a processing unit in each pipeline stage to achieve a better trade-off between parallelism and synchronization. Motion compensation, inverse quantization, and inverse transform modules are further optimized with SSE4 SIMD instructions. Simulations on a desktop with an Intel i7 processor 2600 running at 3.4 GHz show that the parallel SHVC software decoder is able to decode 1080p spatial 2x at up to 60 fps (frames per second) and 1080p spatial 1.5x at up to 50 fps for those bitstreams generated with SHVC common test conditions in the JCT-VC standardization group. The decoding performance at various bitrates with different optimization technologies and different numbers of threads are compared in terms of decoding speed and resource usage, including processor and memory.

  8. Decoding bipedal locomotion from the rat sensorimotor cortex

    Science.gov (United States)

    Rigosa, J.; Panarese, A.; Dominici, N.; Friedli, L.; van den Brand, R.; Carpaneto, J.; DiGiovanna, J.; Courtine, G.; Micera, S.

    2015-10-01

    Objective. Decoding forelimb movements from the firing activity of cortical neurons has been interfaced with robotic and prosthetic systems to replace lost upper limb functions in humans. Despite the potential of this approach to improve locomotion and facilitate gait rehabilitation, decoding lower limb movement from the motor cortex has received comparatively little attention. Here, we performed experiments to identify the type and amount of information that can be decoded from neuronal ensemble activity in the hindlimb area of the rat motor cortex during bipedal locomotor tasks. Approach. Rats were trained to stand, step on a treadmill, walk overground and climb staircases in a bipedal posture. To impose this gait, the rats were secured in a robotic interface that provided support against the direction of gravity and in the mediolateral direction, but behaved transparently in the forward direction. After completion of training, rats were chronically implanted with a micro-wire array spanning the left hindlimb motor cortex to record single and multi-unit activity, and bipolar electrodes into 10 muscles of the right hindlimb to monitor electromyographic signals. Whole-body kinematics, muscle activity, and neural signals were simultaneously recorded during execution of the trained tasks over multiple days of testing. Hindlimb kinematics, muscle activity, gait phases, and locomotor tasks were decoded using offline classification algorithms. Main results. We found that the stance and swing phases of gait and the locomotor tasks were detected with accuracies as robust as 90% in all rats. Decoded hindlimb kinematics and muscle activity exhibited a larger variability across rats and tasks. Significance. Our study shows that the rodent motor cortex contains useful information for lower limb neuroprosthetic development. However, brain-machine interfaces estimating gait phases or locomotor behaviors, instead of continuous variables such as limb joint positions or speeds

  9. Low Complexity Approach for High Throughput Belief-Propagation based Decoding of LDPC Codes

    Directory of Open Access Journals (Sweden)

    BOT, A.

    2013-11-01

    Full Text Available The paper proposes a low complexity belief propagation (BP based decoding algorithm for LDPC codes. In spite of the iterative nature of the decoding process, the proposed algorithm provides both reduced complexity and increased BER performances as compared with the classic min-sum (MS algorithm, generally used for hardware implementations. Linear approximations of check-nodes update function are used in order to reduce the complexity of the BP algorithm. Considering this decoding approach, an FPGA based hardware architecture is proposed for implementing the decoding algorithm, aiming to increase the decoder throughput. FPGA technology was chosen for the LDPC decoder implementation, due to its parallel computation and reconfiguration capabilities. The obtained results show improvements regarding decoding throughput and BER performances compared with state-of-the-art approaches.

  10. Low Power LDPC Code Decoder Architecture Based on Intermediate Message Compression Technique

    Science.gov (United States)

    Shimizu, Kazunori; Togawa, Nozomu; Ikenaga, Takeshi; Goto, Satoshi

    Reducing the power dissipation for LDPC code decoder is a major challenging task to apply it to the practical digital communication systems. In this paper, we propose a low power LDPC code decoder architecture based on an intermediate message-compression technique which features as follows: (i) An intermediate message compression technique enables the decoder to reduce the required memory capacity and write power dissipation. (ii) A clock gated shift register based intermediate message memory architecture enables the decoder to decompress the compressed messages in a single clock cycle while reducing the read power dissipation. The combination of the above two techniques enables the decoder to reduce the power dissipation while keeping the decoding throughput. The simulation results show that the proposed architecture improves the power efficiency up to 52% and 18% compared to that of the decoder based on the overlapped schedule and the rapid convergence schedule without the proposed techniques respectively.

  11. Design of FBG En/decoders in Coherent 2-D Time-polarization OCDMA Systems

    Science.gov (United States)

    Hou, Fen-fei; Yang, Ming

    2012-12-01

    A novel fiber Bragg grating (FBG)-based en/decoder for the two-dimensional (2-D) time-spreading and polarization multiplexer optical coding is proposed. Compared with other 2-D en/decoders, the proposed en/decoding for an optical code-division multiple-access (OCDMA) system uses a single phase-encoded FBG and coherent en/decoding. Furthermore, combined with reconstruction-equivalent-chirp technology, such en/decoders can be realized with a conventional simple fabrication setup. Experimental results of such en/decoders and the corresponding system test at a data rate of 5 Gbit/s demonstrate that this kind of 2-D FBG-based en/decoders could improve the performances of OCDMA systems.

  12. Massive Black Hole Binary Evolution

    Directory of Open Access Journals (Sweden)

    Merritt David

    2005-11-01

    Full Text Available Coalescence of binary supermassive black holes (SBHs would constitute the strongest sources of gravitational waves to be observed by LISA. While the formation of binary SBHs during galaxy mergers is almost inevitable, coalescence requires that the separation between binary components first drop by a few orders of magnitude, due presumably to interaction of the binary with stars and gas in a galactic nucleus. This article reviews the observational evidence for binary SBHs and discusses how they would evolve. No completely convincing case of a bound, binary SBH has yet been found, although a handful of systems (e.g. interacting galaxies; remnants of galaxy mergers are now believed to contain two SBHs at projected separations of <~ 1kpc. N-body studies of binary evolution in gas-free galaxies have reached large enough particle numbers to reproduce the slow, “diffusive” refilling of the binary’s loss cone that is believed to characterize binary evolution in real galactic nuclei. While some of the results of these simulations - e.g. the binary hardening rate and eccentricity evolution - are strongly N-dependent, others - e.g. the “damage” inflicted by the binary on the nucleus - are not. Luminous early-type galaxies often exhibit depleted cores with masses of ~ 1-2 times the mass of their nuclear SBHs, consistent with the predictions of the binary model. Studies of the interaction of massive binaries with gas are still in their infancy, although much progress is expected in the near future. Binary coalescence has a large influence on the spins of SBHs, even for mass ratios as extreme as 10:1, and evidence of spin-flips may have been observed.

  13. Decoding the genome with an integrative analysis tool: combinatorial CRM Decoder.

    Science.gov (United States)

    Kang, Keunsoo; Kim, Joomyeong; Chung, Jae Hoon; Lee, Daeyoup

    2011-09-01

    The identification of genome-wide cis-regulatory modules (CRMs) and characterization of their associated epigenetic features are fundamental steps toward the understanding of gene regulatory networks. Although integrative analysis of available genome-wide information can provide new biological insights, the lack of novel methodologies has become a major bottleneck. Here, we present a comprehensive analysis tool called combinatorial CRM decoder (CCD), which utilizes the publicly available information to identify and characterize genome-wide CRMs in a species of interest. CCD first defines a set of the epigenetic features which is significantly associated with a set of known CRMs as a code called 'trace code', and subsequently uses the trace code to pinpoint putative CRMs throughout the genome. Using 61 genome-wide data sets obtained from 17 independent mouse studies, CCD successfully catalogued ∼12 600 CRMs (five distinct classes) including polycomb repressive complex 2 target sites as well as imprinting control regions. Interestingly, we discovered that ∼4% of the identified CRMs belong to at least two different classes named 'multi-functional CRM', suggesting their functional importance for regulating spatiotemporal gene expression. From these examples, we show that CCD can be applied to any potential genome-wide datasets and therefore will shed light on unveiling genome-wide CRMs in various species.

  14. Feedback power control strategies in wireless sensor networks with joint channel decoding.

    Science.gov (United States)

    Abrardo, Andrea; Ferrari, Gianluigi; Martalò, Marco; Perna, Fabio

    2009-01-01

    In this paper, we derive feedback power control strategies for block-faded multiple access schemes with correlated sources and joint channel decoding (JCD). In particular, upon the derivation of the feasible signal-to-noise ratio (SNR) region for the considered multiple access schemes, i.e., the multidimensional SNR region where error-free communications are, in principle, possible, two feedback power control strategies are proposed: (i) a classical feedback power control strategy, which aims at equalizing all link SNRs at the access point (AP), and (ii) an innovative optimized feedback power control strategy, which tries to make the network operational point fall in the feasible SNR region at the lowest overall transmit energy consumption. These strategies will be referred to as "balanced SNR" and "unbalanced SNR," respectively. While they require, in principle, an unlimited power control range at the sources, we also propose practical versions with a limited power control range. We preliminary consider a scenario with orthogonal links and ideal feedback. Then, we analyze the robustness of the proposed power control strategies to possible non-idealities, in terms of residual multiple access interference and noisy feedback channels. Finally, we successfully apply the proposed feedback power control strategies to a limiting case of the class of considered multiple access schemes, namely a central estimating officer (CEO) scenario, where the sensors observe noisy versions of a common binary information sequence and the AP's goal is to estimate this sequence by properly fusing the soft-output information output by the JCD algorithm.

  15. Use of NTRIP for Optimizing the Decoding Algorithm for Real-Time Data Streams

    Directory of Open Access Journals (Sweden)

    Zhanke He

    2014-10-01

    Full Text Available As a network transmission protocol, Networked Transport of RTCM via Internet Protocol (NTRIP is widely used in GPS and Global Orbiting Navigational Satellite System (GLONASS Augmentation systems, such as Continuous Operational Reference System (CORS, Wide Area Augmentation System (WAAS and Satellite Based Augmentation Systems (SBAS. With the deployment of BeiDou Navigation Satellite system(BDS to serve the Asia-Pacific region, there are increasing needs for ground monitoring of the BeiDou Navigation Satellite system and the development of the high-precision real-time BeiDou products. This paper aims to optimize the decoding algorithm of NTRIP Client data streams and the user authentication strategies of the NTRIP Caster based on NTRIP. The proposed method greatly enhances the handling efficiency and significantly reduces the data transmission delay compared with the Federal Agency for Cartography and Geodesy (BKG NTRIP. Meanwhile, a transcoding method is proposed to facilitate the data transformation from the BINary EXchange (BINEX format to the RTCM format. The transformation scheme thus solves the problem of handing real-time data streams from Trimble receivers in the BeiDou Navigation Satellite System indigenously developed by China.

  16. Use of NTRIP for optimizing the decoding algorithm for real-time data streams.

    Science.gov (United States)

    He, Zhanke; Tang, Wenda; Yang, Xuhai; Wang, Liming; Liu, Jihua

    2014-10-10

    As a network transmission protocol, Networked Transport of RTCM via Internet Protocol (NTRIP) is widely used in GPS and Global Orbiting Navigational Satellite System (GLONASS) Augmentation systems, such as Continuous Operational Reference System (CORS), Wide Area Augmentation System (WAAS) and Satellite Based Augmentation Systems (SBAS). With the deployment of BeiDou Navigation Satellite system(BDS) to serve the Asia-Pacific region, there are increasing needs for ground monitoring of the BeiDou Navigation Satellite system and the development of the high-precision real-time BeiDou products. This paper aims to optimize the decoding algorithm of NTRIP Client data streams and the user authentication strategies of the NTRIP Caster based on NTRIP. The proposed method greatly enhances the handling efficiency and significantly reduces the data transmission delay compared with the Federal Agency for Cartography and Geodesy (BKG) NTRIP. Meanwhile, a transcoding method is proposed to facilitate the data transformation from the BINary EXchange (BINEX) format to the RTCM format. The transformation scheme thus solves the problem of handing real-time data streams from Trimble receivers in the BeiDou Navigation Satellite System indigenously developed by China.

  17. Binary optics: Trends and limitations

    Science.gov (United States)

    Farn, Michael W.; Veldkamp, Wilfrid B.

    1993-01-01

    We describe the current state of binary optics, addressing both the technology and the industry (i.e., marketplace). With respect to the technology, the two dominant aspects are optical design methods and fabrication capabilities, with the optical design problem being limited by human innovation in the search for new applications and the fabrication issue being limited by the availability of resources required to improve fabrication capabilities. With respect to the industry, the current marketplace does not favor binary optics as a separate product line and so we expect that companies whose primary purpose is the production of binary optics will not represent the bulk of binary optics production. Rather, binary optics' more natural role is as an enabling technology - a technology which will directly result in a competitive advantage in a company's other business areas - and so we expect that the majority of binary optics will be produced for internal use.

  18. Particle acceleration in binaries

    Directory of Open Access Journals (Sweden)

    Sinitsyna V.G.

    2017-01-01

    Full Text Available Cygnus X-3 massive binary system is one of the powerful sources of radio and X-ray emission consisting of an accreting compact object, probably a black hole, with a Wolf-Rayet star companion. Based on the detections of ultra high energy gamma-rays by Kiel and Havera Park, Cygnus X-3 has been proposed to be one of the most powerful sources of charged cosmic ray particles in the Galaxy. The results of long-term observations of the Cyg X-3 binary at energies 800 GeV–85 TeV detected by SHALON in 1995 are presented with images, integral spectra and spectral energy distribution. The identification of source with Cygnus X-3 detected by SHALON was secured by the detection of its 4.8 hour orbital period in TeV gamma-rays. During the whole observation period of Cyg X-3 with SHALON significant flux increases were detected at energies above 0.8 TeV. These TeV flux increases are correlated with flaring activity at a lower energy range of X-ray and/or at observations of Fermi LAT as well as with radio emission from the relativistic jets of Cygnus X-3. The variability of very high-energy gamma-radiation and correlation of radiation activity in the wide energy range can provide essential information on particle mechanism production up to very high energies. Whereas, modulation of very high energy emission connected to the orbital motion of the binary system, provides an understanding of the emission processes, nature and location of particle acceleration.

  19. Performance-complexity tradeoff in sequential decoding for the unconstrained AWGN channel

    KAUST Repository

    Abediseid, Walid

    2013-06-01

    In this paper, the performance limits and the computational complexity of the lattice sequential decoder are analyzed for the unconstrained additive white Gaussian noise channel. The performance analysis available in the literature for such a channel has been studied only under the use of the minimum Euclidean distance decoder that is commonly referred to as the lattice decoder. Lattice decoders based on solutions to the NP-hard closest vector problem are very complex to implement, and the search for low complexity receivers for the detection of lattice codes is considered a challenging problem. However, the low computational complexity advantage that sequential decoding promises, makes it an alternative solution to the lattice decoder. In this work, we characterize the performance and complexity tradeoff via the error exponent and the decoding complexity, respectively, of such a decoder as a function of the decoding parameter - the bias term. For the above channel, we derive the cut-off volume-to-noise ratio that is required to achieve a good error performance with low decoding complexity. © 2013 IEEE.

  20. Magnetic binary nanofillers

    International Nuclear Information System (INIS)

    Morales Mendoza, N.; Goyanes, S.; Chiliotte, C.; Bekeris, V.; Rubiolo, G.; Candal, R.

    2012-01-01

    Magnetic binary nanofillers containing multiwall carbon nanotubes (MWCNT) and hercynite were synthesized by Chemical Vapor Deposition (CVD) on Fe/AlOOH prepared by the sol-gel method. The catalyst precursor was fired at 450 °C, ground and sifted through different meshes. Two powders were obtained with different particle sizes: sample A (50-75 μm) and sample B (smaller than 50 μm). These powders are composed of iron oxide particles widely dispersed in the non-crystalline matrix of aluminum oxide and they are not ferromagnetic. After reduction process the powders are composed of α-Fe nanoparticles inside hercynite matrix. These nanofillers are composed of hercynite containing α-Fe nanoparticles and MWCNT. The binary magnetic nanofillers were slightly ferromagnetic. The saturation magnetization of the nanofillers depended on the powder particle size. The nanofiller obtained from powder particles in the range 50-75 μm showed a saturation magnetization 36% higher than the one formed from powder particles smaller than 50 μm. The phenomenon is explained in terms of changes in the magnetic environment of the particles as consequence of the presence of MWCNT.

  1. Magnetic binary nanofillers

    Energy Technology Data Exchange (ETDEWEB)

    Morales Mendoza, N. [INQUIMAE, CONICET-UBA, Ciudad Universitaria, Pab2, (C1428EHA) Bs As (Argentina); LPyMC, Dep. De Fisica, FCEN-UBA and IFIBA -CONICET, Ciudad Universitaria, Cap. Fed. (Argentina); Goyanes, S. [LPyMC, Dep. De Fisica, FCEN-UBA and IFIBA -CONICET, Ciudad Universitaria, Cap. Fed. (Argentina); Chiliotte, C.; Bekeris, V. [LBT, Dep. De Fisica, FCEN-UBA. Ciudad Universitaria, Pab1, C1428EGA CABA (Argentina); Rubiolo, G. [LPyMC, Dep. De Fisica, FCEN-UBA and IFIBA -CONICET, Ciudad Universitaria, Cap. Fed. (Argentina); Unidad de Actividad Materiales, CNEA, Av Gral. Paz 1499, San Martin (1650), Prov. de Bs As (Argentina); Candal, R., E-mail: candal@qi.fcen.uba.ar [INQUIMAE, CONICET-UBA, Ciudad Universitaria, Pab2, (C1428EHA) Bs As (Argentina); Escuela de Ciencia y Tecnologia, 3iA, Universidad de Gral. San Martin, San Martin, Prov. Bs As (Argentina)

    2012-08-15

    Magnetic binary nanofillers containing multiwall carbon nanotubes (MWCNT) and hercynite were synthesized by Chemical Vapor Deposition (CVD) on Fe/AlOOH prepared by the sol-gel method. The catalyst precursor was fired at 450 Degree-Sign C, ground and sifted through different meshes. Two powders were obtained with different particle sizes: sample A (50-75 {mu}m) and sample B (smaller than 50 {mu}m). These powders are composed of iron oxide particles widely dispersed in the non-crystalline matrix of aluminum oxide and they are not ferromagnetic. After reduction process the powders are composed of {alpha}-Fe nanoparticles inside hercynite matrix. These nanofillers are composed of hercynite containing {alpha}-Fe nanoparticles and MWCNT. The binary magnetic nanofillers were slightly ferromagnetic. The saturation magnetization of the nanofillers depended on the powder particle size. The nanofiller obtained from powder particles in the range 50-75 {mu}m showed a saturation magnetization 36% higher than the one formed from powder particles smaller than 50 {mu}m. The phenomenon is explained in terms of changes in the magnetic environment of the particles as consequence of the presence of MWCNT.

  2. STACK DECODING OF LINEAR BLOCK CODES FOR DISCRETE MEMORYLESS CHANNEL USING TREE DIAGRAM

    Directory of Open Access Journals (Sweden)

    H. Prashantha Kumar

    2012-03-01

    Full Text Available The boundaries between block and convolutional codes have become diffused after recent advances in the understanding of the trellis structure of block codes and the tail-biting structure of some convolutional codes. Therefore, decoding algorithms traditionally proposed for decoding convolutional codes have been applied for decoding certain classes of block codes. This paper presents the decoding of block codes using tree structure. Many good block codes are presently known. Several of them have been used in applications ranging from deep space communication to error control in storage systems. But the primary difficulty with applying Viterbi or BCJR algorithms to decode of block codes is that, even though they are optimum decoding methods, the promised bit error rates are not achieved in practice at data rates close to capacity. This is because the decoding effort is fixed and grows with block length, and thus only short block length codes can be used. Therefore, an important practical question is whether a suboptimal realizable soft decision decoding method can be found for block codes. A noteworthy result which provides a partial answer to this question is described in the following sections. This result of near optimum decoding will be used as motivation for the investigation of different soft decision decoding methods for linear block codes which can lead to the development of efficient decoding algorithms. The code tree can be treated as an expanded version of the trellis, where every path is totally distinct from every other path. We have derived the tree structure for (8, 4 and (16, 11 extended Hamming codes and have succeeded in implementing the soft decision stack algorithm to decode them. For the discrete memoryless channel, gains in excess of 1.5dB at a bit error rate of 10-5 with respect to conventional hard decision decoding are demonstrated for these codes.

  3. Statistical Analysis of Compression Methods for Storing Binary Image for Low-Memory Systems

    Directory of Open Access Journals (Sweden)

    Roman Slaby

    2013-01-01

    Full Text Available The paper is focused on the statistical comparison of the selected compression methods which are used for compression of the binary images. The aim is to asses, which of presented compression method for low-memory system requires less number of bytes of memory. For assessment of the success rates of the input image to binary image the correlation functions are used. Correlation function is one of the methods of OCR algorithm used for the digitization of printed symbols. Using of compression methods is necessary for systems based on low-power micro-controllers. The data stream saving is very important for such systems with limited memory as well as the time required for decoding the compressed data. The success rate of the selected compression algorithms is evaluated using the basic characteristics of the exploratory analysis. The searched samples represent the amount of bytes needed to compress the test images, representing alphanumeric characters.

  4. Decoding thalamic afferent input using microcircuit spiking activity.

    Science.gov (United States)

    Sederberg, Audrey J; Palmer, Stephanie E; MacLean, Jason N

    2015-04-01

    A behavioral response appropriate to a sensory stimulus depends on the collective activity of thousands of interconnected neurons. The majority of cortical connections arise from neighboring neurons, and thus understanding the cortical code requires characterizing information representation at the scale of the cortical microcircuit. Using two-photon calcium imaging, we densely sampled the thalamically evoked response of hundreds of neurons spanning multiple layers and columns in thalamocortical slices of mouse somatosensory cortex. We then used a biologically plausible decoder to characterize the representation of two distinct thalamic inputs, at the level of the microcircuit, to reveal those aspects of the activity pattern that are likely relevant to downstream neurons. Our data suggest a sparse code, distributed across lamina, in which a small population of cells carries stimulus-relevant information. Furthermore, we find that, within this subset of neurons, decoder performance improves when noise correlations are taken into account. Copyright © 2015 the American Physiological Society.

  5. Codes on the Klein quartic, ideals, and decoding

    DEFF Research Database (Denmark)

    Hansen, Johan P.

    1987-01-01

    descriptions as left ideals in the group-algebra GF(2^{3})[G]. This description allows for easy decoding. For instance, in the case of the single error correcting code of length21and dimension16with minimal distance3. decoding is obtained by multiplication with an idempotent in the group algebra.......A sequence of codes with particular symmetries and with large rates compared to their minimal distances is constructed over the field GF(2^{3}). In the sequence there is, for instance, a code of length 21 and dimension10with minimal distance9, and a code of length21and dimension16with minimal...... distance3. The codes are constructed from algebraic geometry using the dictionary between coding theory and algebraic curves over finite fields established by Goppa. The curve used in the present work is the Klein quartic. This curve has the maximal number of rational points over GF(2^{3})allowed by Serre...

  6. DECODING OF ACADEMIC CONTENT BY THE 1st GRADE STUDENTS

    Directory of Open Access Journals (Sweden)

    Kamil Błaszczyński

    2017-07-01

    Full Text Available In the paper a comparative study conducted on the 1st grade students of sociology and pedagogy is discussed. The study was focused on the language skills of students. The most important skills tested were the abilities to decode academic content. The study shows that the students have very poor language skills in decoding the academic content on every level of its complexity. They also have noticeable problems with the definition of basic academic terms. The significance of the obtained results are high because of the innovative topic and character of the study, which was the first such study conducted on students of a Polish university. Results are also valuable for academic teachers who are interested in such problems as effective communication with students.

  7. Decoding Signal Processing at the Single-Cell Level

    Energy Technology Data Exchange (ETDEWEB)

    Wiley, H. Steven

    2017-12-01

    The ability of cells to detect and decode information about their extracellular environment is critical to generating an appropriate response. In multicellular organisms, cells must decode dozens of signals from their neighbors and extracellular matrix to maintain tissue homeostasis while still responding to environmental stressors. How cells detect and process information from their surroundings through a surprisingly limited number of signal transduction pathways is one of the most important question in biology. Despite many decades of research, many of the fundamental principles that underlie cell signal processing remain obscure. However, in this issue of Cell Systems, Gillies et al present compelling evidence that the early response gene circuit can act as a linear signal integrator, thus providing significant insight into how cells handle fluctuating signals and noise in their environment.

  8. Reaction Decoder Tool (RDT): extracting features from chemical reactions.

    Science.gov (United States)

    Rahman, Syed Asad; Torrance, Gilliean; Baldacci, Lorenzo; Martínez Cuesta, Sergio; Fenninger, Franz; Gopal, Nimish; Choudhary, Saket; May, John W; Holliday, Gemma L; Steinbeck, Christoph; Thornton, Janet M

    2016-07-01

    Extracting chemical features like Atom-Atom Mapping (AAM), Bond Changes (BCs) and Reaction Centres from biochemical reactions helps us understand the chemical composition of enzymatic reactions. Reaction Decoder is a robust command line tool, which performs this task with high accuracy. It supports standard chemical input/output exchange formats i.e. RXN/SMILES, computes AAM, highlights BCs and creates images of the mapped reaction. This aids in the analysis of metabolic pathways and the ability to perform comparative studies of chemical reactions based on these features. This software is implemented in Java, supported on Windows, Linux and Mac OSX, and freely available at https://github.com/asad/ReactionDecoder : asad@ebi.ac.uk or s9asad@gmail.com. © The Author 2016. Published by Oxford University Press.

  9. Fast decoder for local quantum codes using Groebner basis

    Science.gov (United States)

    Haah, Jeongwan

    2013-03-01

    Based on arXiv:1204.1063. A local translation-invariant quantum code has a description in terms of Laurent polynomials. As an application of this observation, we present a fast decoding algorithm for translation-invariant local quantum codes in any spatial dimensions using the straightforward division algorithm for multivariate polynomials. The running time is O (n log n) on average, or O (n2 log n) on worst cases, where n is the number of physical qubits. The algorithm improves a subroutine of the renormalization-group decoder by Bravyi and Haah (arXiv:1112.3252) in the translation-invariant case. This work is supported in part by the Insitute for Quantum Information and Matter, an NSF Physics Frontier Center, and the Korea Foundation for Advanced Studies.

  10. [Efficacy of decoding training for children with difficulty reading hiragana].

    Science.gov (United States)

    Uchiyama, Hitoshi; Tanaka, Daisuke; Seki, Ayumi; Wakamiya, Eiji; Hirasawa, Noriko; Iketani, Naotake; Kato, Ken; Koeda, Tatsuya

    2013-05-01

    The present study aimed to clarify the efficacy of decoding training focusing on the correspondence between written symbols and their readings for children with difficulty reading hiragana (Japanese syllabary). Thirty-five children with difficulty reading hiragana were selected from among 367 first-grade elementary school students using a reading aloud test and were then divided into intervention (n=15) and control (n=20) groups. The intervention comprised 5 minutes of decoding training each day for a period of 3 weeks using an original program on a personal computer. Reading time and number of reading errors in the reading aloud test were compared between the groups. The intervention group showed a significant shortening of reading time (F(1,33)=5.40, phiragana.

  11. Iterative demodulation and decoding of coded non-square QAM

    Science.gov (United States)

    Li, L.; Divsalar, D.; Dolinar, S.

    2003-01-01

    Simulation results show that, with iterative demodulation and decoding, coded NS-8QAM performs 0.5 dB better than standard 8QAM and 0.7 dB better than 8PSK at BER= 10(sup -5), when the FEC code is the (15, 11) Hamming code concatenated with a rate-1 accumulator code, while coded NS-32QAM performs 0.25 dB better than standard 32QAM.

  12. Design and Implementation of Viterbi Decoder Using VHDL

    Science.gov (United States)

    Thakur, Akash; Chattopadhyay, Manju K.

    2018-03-01

    A digital design conversion of Viterbi decoder for ½ rate convolutional encoder with constraint length k = 3 is presented in this paper. The design is coded with the help of VHDL, simulated and synthesized using XILINX ISE 14.7. Synthesis results show a maximum frequency of operation for the design is 100.725 MHz. The requirement of memory is less as compared to conventional method.

  13. Maximum likelihood convolutional decoding (MCD) performance due to system losses

    Science.gov (United States)

    Webster, L.

    1976-01-01

    A model for predicting the computational performance of a maximum likelihood convolutional decoder (MCD) operating in a noisy carrier reference environment is described. This model is used to develop a subroutine that will be utilized by the Telemetry Analysis Program to compute the MCD bit error rate. When this computational model is averaged over noisy reference phase errors using a high-rate interpolation scheme, the results are found to agree quite favorably with experimental measurements.

  14. Decoding Gimmicks of Financial Shenanigans in Telecom Sector in India

    OpenAIRE

    Sandeep GOEL

    2013-01-01

    Major corporate financial shenanigans get away in the name of creative accounting. But, they need to be studied for lessons learned and strategies to avoid or reduce the incidence of such frauds in the future. It is essential for shareholders, particularly the common man who does not have any access to the company except reported financial numbers. This paper aims to decode the level of financial shenanigans practices in corporate enterprises in telecom sector in India. The reason being is th...

  15. Fast Transform Decoding Of Nonsystematic Reed-Solomon Codes

    Science.gov (United States)

    Truong, Trieu-Kie; Cheung, Kar-Ming; Shiozaki, A.; Reed, Irving S.

    1992-01-01

    Fast, efficient Fermat number transform used to compute F'(x) analogous to computation of syndrome in conventional decoding scheme. Eliminates polynomial multiplications and reduces number of multiplications in reconstruction of F'(x) to n log (n). Euclidean algorithm used to evaluate F(x) directly, without going through intermediate steps of solving error-locator and error-evaluator polynomials. Algorithm suitable for implementation in very-large-scale integrated circuits.

  16. Efficient algorithms for maximum likelihood decoding in the surface code

    Science.gov (United States)

    Bravyi, Sergey; Suchara, Martin; Vargo, Alexander

    2014-09-01

    We describe two implementations of the optimal error correction algorithm known as the maximum likelihood decoder (MLD) for the two-dimensional surface code with a noiseless syndrome extraction. First, we show how to implement MLD exactly in time O (n2), where n is the number of code qubits. Our implementation uses a reduction from MLD to simulation of matchgate quantum circuits. This reduction however requires a special noise model with independent bit-flip and phase-flip errors. Secondly, we show how to implement MLD approximately for more general noise models using matrix product states (MPS). Our implementation has running time O (nχ3), where χ is a parameter that controls the approximation precision. The key step of our algorithm, borrowed from the density matrix renormalization-group method, is a subroutine for contracting a tensor network on the two-dimensional grid. The subroutine uses MPS with a bond dimension χ to approximate the sequence of tensors arising in the course of contraction. We benchmark the MPS-based decoder against the standard minimum weight matching decoder observing a significant reduction of the logical error probability for χ ≥4.

  17. Biological 2-Input Decoder Circuit in Human Cells

    Science.gov (United States)

    2015-01-01

    Decoders are combinational circuits that convert information from n inputs to a maximum of 2n outputs. This operation is of major importance in computing systems yet it is vastly underexplored in synthetic biology. Here, we present a synthetic gene network architecture that operates as a biological decoder in human cells, converting 2 inputs to 4 outputs. As a proof-of-principle, we use small molecules to emulate the two inputs and fluorescent reporters as the corresponding four outputs. The experiments are performed using transient transfections in human kidney embryonic cells and the characterization by fluorescence microscopy and flow cytometry. We show a clear separation between the ON and OFF mean fluorescent intensity states. Additionally, we adopt the integrated mean fluorescence intensity for the characterization of the circuit and show that this metric is more robust to transfection conditions when compared to the mean fluorescent intensity. To conclude, we present the first implementation of a genetic decoder. This combinational system can be valuable toward engineering higher-order circuits as well as accommodate a multiplexed interface with endogenous cellular functions. PMID:24694115

  18. Biological 2-input decoder circuit in human cells.

    Science.gov (United States)

    Guinn, Michael; Bleris, Leonidas

    2014-08-15

    Decoders are combinational circuits that convert information from n inputs to a maximum of 2(n) outputs. This operation is of major importance in computing systems yet it is vastly underexplored in synthetic biology. Here, we present a synthetic gene network architecture that operates as a biological decoder in human cells, converting 2 inputs to 4 outputs. As a proof-of-principle, we use small molecules to emulate the two inputs and fluorescent reporters as the corresponding four outputs. The experiments are performed using transient transfections in human kidney embryonic cells and the characterization by fluorescence microscopy and flow cytometry. We show a clear separation between the ON and OFF mean fluorescent intensity states. Additionally, we adopt the integrated mean fluorescence intensity for the characterization of the circuit and show that this metric is more robust to transfection conditions when compared to the mean fluorescent intensity. To conclude, we present the first implementation of a genetic decoder. This combinational system can be valuable toward engineering higher-order circuits as well as accommodate a multiplexed interface with endogenous cellular functions.

  19. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Matthew J. Benacquista

    2013-03-01

    Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  20. The basis of orientation decoding in human primary visual cortex: fine- or coarse-scale biases?

    Science.gov (United States)

    Maloney, Ryan T

    2015-01-01

    Orientation signals in human primary visual cortex (V1) can be reliably decoded from the multivariate pattern of activity as measured with functional magnetic resonance imaging (fMRI). The precise underlying source of these decoded signals (whether by orientation biases at a fine or coarse scale in cortex) remains a matter of some controversy, however. Freeman and colleagues (J Neurosci 33: 19695-19703, 2013) recently showed that the accuracy of decoding of spiral patterns in V1 can be predicted by a voxel's preferred spatial position (the population receptive field) and its coarse orientation preference, suggesting that coarse-scale biases are sufficient for orientation decoding. Whether they are also necessary for decoding remains an open question, and one with implications for the broader interpretation of multivariate decoding results in fMRI studies. Copyright © 2015 the American Physiological Society.

  1. Emotion Decoding and Incidental Processing Fluency as Antecedents of Attitude Certainty.

    Science.gov (United States)

    Petrocelli, John V; Whitmire, Melanie B

    2017-07-01

    Previous research demonstrates that attitude certainty influences the degree to which an attitude changes in response to persuasive appeals. In the current research, decoding emotions from facial expressions and incidental processing fluency, during attitude formation, are examined as antecedents of both attitude certainty and attitude change. In Experiment 1, participants who decoded anger or happiness during attitude formation expressed their greater attitude certainty, and showed more resistance to persuasion than participants who decoded sadness. By manipulating the emotion decoded, the diagnosticity of processing fluency experienced during emotion decoding, and the gaze direction of the social targets, Experiment 2 suggests that the link between emotion decoding and attitude certainty results from incidental processing fluency. Experiment 3 demonstrated that fluency in processing irrelevant stimuli influences attitude certainty, which in turn influences resistance to persuasion. Implications for appraisal-based accounts of attitude formation and attitude change are discussed.

  2. Spectral properties of binary asteroids

    Science.gov (United States)

    Pajuelo, Myriam; Birlan, Mirel; Carry, Benoît; DeMeo, Francesca E.; Binzel, Richard P.; Berthier, Jérôme

    2018-04-01

    We present the first attempt to characterize the distribution of taxonomic class among the population of binary asteroids (15% of all small asteroids). For that, an analysis of 0.8-2.5{μ m} near-infrared spectra obtained with the SpeX instrument on the NASA/IRTF is presented. Taxonomic class and meteorite analog is determined for each target, increasing the sample of binary asteroids with known taxonomy by 21%. Most binary systems are bound in the S-, X-, and C- classes, followed by Q and V-types. The rate of binary systems in each taxonomic class agrees within uncertainty with the background population of small near-Earth objects and inner main belt asteroids, but for the C-types which are under-represented among binaries.

  3. Planets in Binary Star Systems

    CERN Document Server

    Haghighipour, Nader

    2010-01-01

    The discovery of extrasolar planets over the past decade has had major impacts on our understanding of the formation and dynamical evolution of planetary systems. There are features and characteristics unseen in our solar system and unexplainable by the current theories of planet formation and dynamics. Among these new surprises is the discovery of planets in binary and multiple-star systems. The discovery of such "binary-planetary" systems has confronted astrodynamicists with many new challenges, and has led them to re-examine the theories of planet formation and dynamics. Among these challenges are: How are planets formed in binary star systems? What would be the notion of habitability in such systems? Under what conditions can binary star systems have habitable planets? How will volatiles necessary for life appear on such planets? This volume seeks to gather the current research in the area of planets in binary and multistar systems and to familiarize readers with its associated theoretical and observation...

  4. RS CVn binary systems

    International Nuclear Information System (INIS)

    Linsky, J.L.

    1984-01-01

    The author attempts to place in context the vast amount of data obtained in the last few years as a result of X-ray, ultraviolet, optical, and microwave observations of RS CVn and similar spectroscopic binary systems. He concentrates on the RS CVn systems and their long-period analogs, and restricts the scope by attempting to answer on the basis of the recent data and theory following questions: (1) Are the original defining characteristics still valid and still adequate? (2) What is the evidence for discrete active regions? (3) Have we derived any meaningful physical properties for the atmospheres of RS CVn systems? (4) What are the flare observations telling us about magnetic fields in the RS CVn systems? (5) Is there evidence for systematic trends in RS CVn systems with spectral type?

  5. Coding/decoding two-dimensional images with orbital angular momentum of light.

    Science.gov (United States)

    Chu, Jiaqi; Li, Xuefeng; Smithwick, Quinn; Chu, Daping

    2016-04-01

    We investigate encoding and decoding of two-dimensional information using the orbital angular momentum (OAM) of light. Spiral phase plates and phase-only spatial light modulators are used in encoding and decoding of OAM states, respectively. We show that off-axis points and spatial variables encoded with a given OAM state can be recovered through decoding with the corresponding complimentary OAM state.

  6. Decoding using back-project algorithm from coded image in ICF

    International Nuclear Information System (INIS)

    Jiang shaoen; Liu Zhongli; Zheng Zhijian; Tang Daoyuan

    1999-01-01

    The principle of the coded imaging and its decoding in inertial confinement fusion is described simply. The authors take ring aperture microscope for example and use back-project (BP) algorithm to decode the coded image. The decoding program has been performed for numerical simulation. Simulations of two models are made, and the results show that the accuracy of BP algorithm is high and effect of reconstruction is good. Thus, it indicates that BP algorithm is applicable to decoding for coded image in ICF experiments

  7. Analysis of Iterated Hard Decision Decoding of Product Codes with Reed-Solomon Component Codes

    DEFF Research Database (Denmark)

    Justesen, Jørn; Høholdt, Tom

    2007-01-01

    Products of Reed-Solomon codes are important in applications because they offer a combination of large blocks, low decoding complexity, and good performance. A recent result on random graphs can be used to show that with high probability a large number of errors can be corrected by iterating...... minimum distance decoding. We present an analysis related to density evolution which gives the exact asymptotic value of the decoding threshold and also provides a closed form approximation to the distribution of errors in each step of the decoding of finite length codes....

  8. VLSI Architectures for Sliding-Window-Based Space-Time Turbo Trellis Code Decoders

    Directory of Open Access Journals (Sweden)

    Georgios Passas

    2012-01-01

    Full Text Available The VLSI implementation of SISO-MAP decoders used for traditional iterative turbo coding has been investigated in the literature. In this paper, a complete architectural model of a space-time turbo code receiver that includes elementary decoders is presented. These architectures are based on newly proposed building blocks such as a recursive add-compare-select-offset (ACSO unit, A-, B-, Γ-, and LLR output calculation modules. Measurements of complexity and decoding delay of several sliding-window-technique-based MAP decoder architectures and a proposed parameter set lead to defining equations and comparison between those architectures.

  9. A new LDPC decoding scheme for PDM-8QAM BICM coherent optical communication system

    Science.gov (United States)

    Liu, Yi; Zhang, Wen-bo; Xi, Li-xia; Tang, Xian-feng; Zhang, Xiao-guang

    2015-11-01

    A new log-likelihood ratio (LLR) message estimation method is proposed for polarization-division multiplexing eight quadrature amplitude modulation (PDM-8QAM) bit-interleaved coded modulation (BICM) optical communication system. The formulation of the posterior probability is theoretically analyzed, and the way to reduce the pre-decoding bit error rate ( BER) of the low density parity check (LDPC) decoder for PDM-8QAM constellations is presented. Simulation results show that it outperforms the traditional scheme, i.e., the new post-decoding BER is decreased down to 50% of that of the traditional post-decoding algorithm.

  10. Multiple-Symbol Noncoherent Decoding of Uncoded and Convolutionally Codes Continous Phase Modulation

    Science.gov (United States)

    Divsalar, D.; Raphaeli, D.

    2000-01-01

    Recently, a method for combined noncoherent detection and decoding of trellis-codes (noncoherent coded modulation) has been proposed, which can practically approach the performance of coherent detection.

  11. Firing rate estimation using infinite mixture models and its application to neural decoding.

    Science.gov (United States)

    Shibue, Ryohei; Komaki, Fumiyasu

    2017-11-01

    Neural decoding is a framework for reconstructing external stimuli from spike trains recorded by various neural recordings. Kloosterman et al. proposed a new decoding method using marked point processes (Kloosterman F, Layton SP, Chen Z, Wilson MA. J Neurophysiol 111: 217-227, 2014). This method does not require spike sorting and thereby improves decoding accuracy dramatically. In this method, they used kernel density estimation to estimate intensity functions of marked point processes. However, the use of kernel density estimation causes problems such as low decoding accuracy and high computational costs. To overcome these problems, we propose a new decoding method using infinite mixture models to estimate intensity. The proposed method improves decoding performance in terms of accuracy and computational speed. We apply the proposed method to simulation and experimental data to verify its performance. NEW & NOTEWORTHY We propose a new neural decoding method using infinite mixture models and nonparametric Bayesian statistics. The proposed method improves decoding performance in terms of accuracy and computation speed. We have successfully applied the proposed method to position decoding from spike trains recorded in a rat hippocampus. Copyright © 2017 the American Physiological Society.

  12. Parallel iterative decoding of transform domain Wyner-Ziv video using cross bitplane correlation

    DEFF Research Database (Denmark)

    Luong, Huynh Van; Huang, Xin; Forchhammer, Søren

    2011-01-01

    decoding scheme is proposed to improve the coding efficiency of TDWZ video codecs. The proposed parallel iterative LDPC decoding scheme is able to utilize cross bitplane correlation during decoding, by iteratively refining the soft-input, updating a modeled noise distribution and thereafter enhancing......In recent years, Transform Domain Wyner-Ziv (TDWZ) video coding has been proposed as an efficient Distributed Video Coding (DVC) solution, which fully or partly exploits the source statistics at the decoder to reduce the computational burden at the encoder. In this paper, a parallel iterative LDPC...

  13. Visual perception as retrospective Bayesian decoding from high- to low-level features.

    Science.gov (United States)

    Ding, Stephanie; Cueva, Christopher J; Tsodyks, Misha; Qian, Ning

    2017-10-24

    When a stimulus is presented, its encoding is known to progress from low- to high-level features. How these features are decoded to produce perception is less clear, and most models assume that decoding follows the same low- to high-level hierarchy of encoding. There are also theories arguing for global precedence, reversed hierarchy, or bidirectional processing, but they are descriptive without quantitative comparison with human perception. Moreover, observers often inspect different parts of a scene sequentially to form overall perception, suggesting that perceptual decoding requires working memory, yet few models consider how working-memory properties may affect decoding hierarchy. We probed decoding hierarchy by comparing absolute judgments of single orientations and relative/ordinal judgments between two sequentially presented orientations. We found that lower-level, absolute judgments failed to account for higher-level, relative/ordinal judgments. However, when ordinal judgment was used to retrospectively decode memory representations of absolute orientations, striking aspects of absolute judgments, including the correlation and forward/backward aftereffects between two reported orientations in a trial, were explained. We propose that the brain prioritizes decoding of higher-level features because they are more behaviorally relevant, and more invariant and categorical, and thus easier to specify and maintain in noisy working memory, and that more reliable higher-level decoding constrains less reliable lower-level decoding. Published under the PNAS license.

  14. Optimally cloned binary coherent states

    Science.gov (United States)

    Müller, C. R.; Leuchs, G.; Marquardt, Ch.; Andersen, U. L.

    2017-10-01

    Binary coherent state alphabets can be represented in a two-dimensional Hilbert space. We capitalize this formal connection between the otherwise distinct domains of qubits and continuous variable states to map binary phase-shift keyed coherent states onto the Bloch sphere and to derive their quantum-optimal clones. We analyze the Wigner function and the cumulants of the clones, and we conclude that optimal cloning of binary coherent states requires a nonlinearity above second order. We propose several practical and near-optimal cloning schemes and compare their cloning fidelity to the optimal cloner.

  15. An Improved Unscented Kalman Filter Based Decoder for Cortical Brain-Machine Interfaces.

    Science.gov (United States)

    Li, Simin; Li, Jie; Li, Zheng

    2016-01-01

    Brain-machine interfaces (BMIs) seek to connect brains with machines or computers directly, for application in areas such as prosthesis control. For this application, the accuracy of the decoding of movement intentions is crucial. We aim to improve accuracy by designing a better encoding model of primary motor cortical activity during hand movements and combining this with decoder engineering refinements, resulting in a new unscented Kalman filter based decoder, UKF2, which improves upon our previous unscented Kalman filter decoder, UKF1. The new encoding model includes novel acceleration magnitude, position-velocity interaction, and target-cursor-distance features (the decoder does not require target position as input, it is decoded). We add a novel probabilistic velocity threshold to better determine the user's intent to move. We combine these improvements with several other refinements suggested by others in the field. Data from two Rhesus monkeys indicate that the UKF2 generates offline reconstructions of hand movements (mean CC 0.851) significantly more accurately than the UKF1 (0.833) and the popular position-velocity Kalman filter (0.812). The encoding model of the UKF2 could predict the instantaneous firing rate of neurons (mean CC 0.210), given kinematic variables and past spiking, better than the encoding models of these two decoders (UKF1: 0.138, p-v Kalman: 0.098). In closed-loop experiments where each monkey controlled a computer cursor with each decoder in turn, the UKF2 facilitated faster task completion (mean 1.56 s vs. 2.05 s) and higher Fitts's Law bit rate (mean 0.738 bit/s vs. 0.584 bit/s) than the UKF1. These results suggest that the modeling and decoder engineering refinements of the UKF2 improve decoding performance. We believe they can be used to enhance other decoders as well.

  16. Separation in 5 Msun Binaries

    Science.gov (United States)

    Evans, Nancy R.; Bond, H. E.; Schaefer, G.; Mason, B. D.; Karovska, M.; Tingle, E.

    2013-01-01

    Cepheids (5 Msun stars) provide an excellent sample for determining the binary properties of fairly massive stars. International Ultraviolet Explorer (IUE) observations of Cepheids brighter than 8th magnitude resulted in a list of ALL companions more massive than 2.0 Msun uniformly sensitive to all separations. Hubble Space Telescope Wide Field Camera 3 (WFC3) has resolved three of these binaries (Eta Aql, S Nor, and V659 Cen). Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations for a sample of 18 Cepheids, and also a distribution of mass ratios. The distribution of orbital periods shows that the 5 Msun binaries prefer shorter periods than 1 Msun stars, reflecting differences in star formation processes.

  17. Mesoscopic model for binary fluids

    Science.gov (United States)

    Echeverria, C.; Tucci, K.; Alvarez-Llamoza, O.; Orozco-Guillén, E. E.; Morales, M.; Cosenza, M. G.

    2017-10-01

    We propose a model for studying binary fluids based on the mesoscopic molecular simulation technique known as multiparticle collision, where the space and state variables are continuous, and time is discrete. We include a repulsion rule to simulate segregation processes that does not require calculation of the interaction forces between particles, so binary fluids can be described on a mesoscopic scale. The model is conceptually simple and computationally efficient; it maintains Galilean invariance and conserves the mass and energy in the system at the micro- and macro-scale, whereas momentum is conserved globally. For a wide range of temperatures and densities, the model yields results in good agreement with the known properties of binary fluids, such as the density profile, interface width, phase separation, and phase growth. We also apply the model to the study of binary fluids in crowded environments with consistent results.

  18. Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes

    Science.gov (United States)

    Lin, Shu

    1998-01-01

    A code trellis is a graphical representation of a code, block or convolutional, in which every path represents a codeword (or a code sequence for a convolutional code). This representation makes it possible to implement Maximum Likelihood Decoding (MLD) of a code with reduced decoding complexity. The most well known trellis-based MLD algorithm is the Viterbi algorithm. The trellis representation was first introduced and used for convolutional codes [23]. This representation, together with the Viterbi decoding algorithm, has resulted in a wide range of applications of convolutional codes for error control in digital communications over the last two decades. There are two major reasons for this inactive period of research in this area. First, most coding theorists at that time believed that block codes did not have simple trellis structure like convolutional codes and maximum likelihood decoding of linear block codes using the Viterbi algorithm was practically impossible, except for very short block codes. Second, since almost all of the linear block codes are constructed algebraically or based on finite geometries, it was the belief of many coding theorists that algebraic decoding was the only way to decode these codes. These two reasons seriously hindered the development of efficient soft-decision decoding methods for linear block codes and their applications to error control in digital communications. This led to a general belief that block codes are inferior to convolutional codes and hence, that they were not useful. Chapter 2 gives a brief review of linear block codes. The goal is to provide the essential background material for the development of trellis structure and trellis-based decoding algorithms for linear block codes in the later chapters. Chapters 3 through 6 present the fundamental concepts, finite-state machine model, state space formulation, basic structural properties, state labeling, construction procedures, complexity, minimality, and

  19. Research on coding and decoding method for digital levels

    Energy Technology Data Exchange (ETDEWEB)

    Tu Lifen; Zhong Sidong

    2011-01-20

    A new coding and decoding method for digital levels is proposed. It is based on an area-array CCD sensor and adopts mixed coding technology. By taking advantage of redundant information in a digital image signal, the contradiction that the field of view and image resolution restrict each other in a digital level measurement is overcome, and the geodetic leveling becomes easier. The experimental results demonstrate that the uncertainty of measurement is 1mm when the measuring range is between 2m and 100m, which can meet practical needs.

  20. Research on coding and decoding method for digital levels.

    Science.gov (United States)

    Tu, Li-fen; Zhong, Si-dong

    2011-01-20

    A new coding and decoding method for digital levels is proposed. It is based on an area-array CCD sensor and adopts mixed coding technology. By taking advantage of redundant information in a digital image signal, the contradiction that the field of view and image resolution restrict each other in a digital level measurement is overcome, and the geodetic leveling becomes easier. The experimental results demonstrate that the uncertainty of measurement is 1 mm when the measuring range is between 2 m and 100 m, which can meet practical needs.

  1. Central Decoding for Multiple Description Codes based on Domain Partitioning

    Directory of Open Access Journals (Sweden)

    M. Spiertz

    2006-01-01

    Full Text Available Multiple Description Codes (MDC can be used to trade redundancy against packet loss resistance for transmitting data over lossy diversity networks. In this work we focus on MD transform coding based on domain partitioning. Compared to Vaishampayan’s quantizer based MDC, domain based MD coding is a simple approach for generating different descriptions, by using different quantizers for each description. Commonly, only the highest rate quantizer is used for reconstruction. In this paper we investigate the benefit of using the lower rate quantizers to enhance the reconstruction quality at decoder side. The comparison is done on artificial source data and on image data. 

  2. An LDPC decoder architecture for wireless sensor network applications.

    Science.gov (United States)

    Biroli, Andrea Dario Giancarlo; Martina, Maurizio; Masera, Guido

    2012-01-01

    The pervasive use of wireless sensors in a growing spectrum of human activities reinforces the need for devices with low energy dissipation. In this work, coded communication between a couple of wireless sensor devices is considered as a method to reduce the dissipated energy per transmitted bit with respect to uncoded communication. Different Low Density Parity Check (LDPC) codes are considered to this purpose and post layout results are shown for a low-area low-energy decoder, which offers percentage energy savings with respect to the uncoded solution in the range of 40%-80%, depending on considered environment, distance and bit error rate.

  3. Optimized iterative decoding method for TPC coded CPM

    Science.gov (United States)

    Ma, Yanmin; Lai, Penghui; Wang, Shilian; Xie, Shunqin; Zhang, Wei

    2018-05-01

    Turbo Product Code (TPC) coded Continuous Phase Modulation (CPM) system (TPC-CPM) has been widely used in aeronautical telemetry and satellite communication. This paper mainly investigates the improvement and optimization on the TPC-CPM system. We first add the interleaver and deinterleaver to the TPC-CPM system, and then establish an iterative system to iteratively decode. However, the improved system has a poor convergence ability. To overcome this issue, we use the Extrinsic Information Transfer (EXIT) analysis to find the optimal factors for the system. The experiments show our method is efficient to improve the convergence performance.

  4. Synthesizer for decoding a coded short wave length irradiation

    International Nuclear Information System (INIS)

    1976-01-01

    The system uses point irradiation source, typically an X-ray emitter, which illuminates a three dimensional object consisting of a set of parallel planes, each of which acts as a source of coded information. The secondary source images are superimposed on a common flat screen. The decoding system comprises an imput light-screen detector, a picture screen amplifier, a beam deflector, on output picture screen, an optical focussing unit including three lenses, a masking unit, an output light screen detector and a video signal reproduction unit of cathode ray tube from, or similar, to create a three dimensional image of the object. (G.C.)

  5. New decoding methods of interleaved burst error-correcting codes

    Science.gov (United States)

    Nakano, Y.; Kasahara, M.; Namekawa, T.

    1983-04-01

    A probabilistic method of single burst error correction, using the syndrome correlation of subcodes which constitute the interleaved code, is presented. This method makes it possible to realize a high capability of burst error correction with less decoding delay. By generalizing this method it is possible to obtain probabilistic method of multiple (m-fold) burst error correction. After estimating the burst error positions using syndrome correlation of subcodes which are interleaved m-fold burst error detecting codes, this second method corrects erasure errors in each subcode and m-fold burst errors. The performance of these two methods is analyzed via computer simulation, and their effectiveness is demonstrated.

  6. An LDPC Decoder Architecture for Wireless Sensor Network Applications

    Science.gov (United States)

    Giancarlo Biroli, Andrea Dario; Martina, Maurizio; Masera, Guido

    2012-01-01

    The pervasive use of wireless sensors in a growing spectrum of human activities reinforces the need for devices with low energy dissipation. In this work, coded communication between a couple of wireless sensor devices is considered as a method to reduce the dissipated energy per transmitted bit with respect to uncoded communication. Different Low Density Parity Check (LDPC) codes are considered to this purpose and post layout results are shown for a low-area low-energy decoder, which offers percentage energy savings with respect to the uncoded solution in the range of 40%–80%, depending on considered environment, distance and bit error rate. PMID:22438724

  7. Video semaphore decoding for free-space optical communication

    Science.gov (United States)

    Last, Matthew; Fisher, Brian; Ezekwe, Chinwuba; Hubert, Sean M.; Patel, Sheetal; Hollar, Seth; Leibowitz, Brian S.; Pister, Kristofer S. J.

    2001-04-01

    Using teal-time image processing we have demonstrated a low bit-rate free-space optical communication system at a range of more than 20km with an average optical transmission power of less than 2mW. The transmitter is an autonomous one cubic inch microprocessor-controlled sensor node with a laser diode output. The receiver is a standard CCD camera with a 1-inch aperture lens, and both hardware and software implementations of the video semaphore decoding algorithm. With this system sensor data can be reliably transmitted 21 km form San Francisco to Berkeley.

  8. Simulation of the color vision: decoding quantum-electric transduction

    Directory of Open Access Journals (Sweden)

    Élgion Lúcio da Silva Loreto

    2008-08-01

    Full Text Available We propose an experimental simulation, using accessible and low cost materials, on the biophysical mechanism of the color vision in accordance with the Young-Helmholtz s Trichromatic Theory, approaching mainly the coding and decoding process of electric signs that arrive to the cerebral cortex. The stimulus that unchains this process is given through transformation of the quantized energy of a light photon that takes place in the photocells of the retina of the human eye. The construction of a simple system of collection and analysis of data, using a multimeter, filters, LDR and LEDs allows us to establish connections between the visual system and the simulation model.

  9. A Novel Modified Algorithm with Reduced Complexity LDPC Code Decoder

    Directory of Open Access Journals (Sweden)

    Song Yang

    2014-10-01

    Full Text Available A novel efficient decoding algorithm reduced the sum-product algorithm (SPA Complexity with LPDC code is proposed. Base on the hyperbolic tangent rule, modified the Check node update with two horizontal process, which have similar calculation, Motivated by the finding that sun- min (MS algorithm reduce the complexity reducing the approximation error in the horizontal process, simplify the information weight small part. Compared with the exiting approximations, the proposed method is less computational complexity than SPA algorithm. Simulation results show that the author algorithm can achieve performance very close SPA.

  10. On the average complexity of sphere decoding in lattice space-time coded multiple-input multiple-output channel

    KAUST Repository

    Abediseid, Walid

    2012-01-01

    complexity of sphere decoding for the quasi- static, lattice space-time (LAST) coded MIMO channel. Specifically, we drive an upper bound of the tail distribution of the decoder's computational complexity. We show that when the computational complexity exceeds

  11. Some properties of spectral binary stars

    International Nuclear Information System (INIS)

    Krajcheva, Z.T.; Popova, E.I.; Tutukov, A.V.; Yungel'son, L.R.; AN SSSR, Moscow. Astronomicheskij Sovet)

    1978-01-01

    Statistical investigations of spectra binary stars are carried out. Binary systems consisting of main sequence stars are considered. For 826 binary stars masses of components, ratios of component masses, semiaxes of orbits and orbital angular momenta are calculated. The distributions of these parameters and their correlations are analyzed. The dependences of statistical properties of spectral binary stars on their origin and evolution are discussed

  12. Feedback Power Control Strategies inWireless Sensor Networks with Joint Channel Decoding

    Directory of Open Access Journals (Sweden)

    Fabio Perna

    2009-11-01

    Full Text Available In this paper, we derive feedback power control strategies for block-faded multiple access schemes with correlated sources and joint channel decoding (JCD. In particular, upon the derivation of the feasible signal-to-noise ratio (SNR region for the considered multiple access schemes, i.e., the multidimensional SNR region where error-free communications are, in principle, possible, two feedback power control strategies are proposed: (i a classical feedback power control strategy, which aims at equalizing all link SNRs at the access point (AP, and (ii an innovative optimized feedback power control strategy, which tries to make the network operational point fall in the feasible SNR region at the lowest overall transmit energy consumption. These strategies will be referred to as “balanced SNR” and “unbalanced SNR,” respectively. While they require, in principle, an unlimited power control range at the sources, we also propose practical versions with a limited power control range. We preliminary consider a scenario with orthogonal links and ideal feedback. Then, we analyze the robustness of the proposed power control strategies to possible non-idealities, in terms of residual multiple access interference and noisy feedback channels. Finally, we successfully apply the proposed feedback power control strategies to a limiting case of the class of considered multiple access schemes, namely a central estimating officer (CEO scenario, where the sensors observe noisy versions of a common binary information sequence and the AP’s goal is to estimate this sequence by properly fusing the soft-output information output by the JCD algorithm.

  13. Decoding and finding the minimum distance with Gröbner bases : history and new insights

    NARCIS (Netherlands)

    Bulygin, S.; Pellikaan, G.R.; Woungang, I.; Misra, S.; Misra, S.C.

    2010-01-01

    In this chapter, we discuss decoding techniques and finding the minimum distance of linear codes with the use of Grobner bases. First, we give a historical overview of decoding cyclic codes via solving systems polynominal equations over finite fields. In particular, we mention papers of Cooper,.

  14. Video coding and decoding devices and methods preserving ppg relevant information

    NARCIS (Netherlands)

    2013-01-01

    The present invention relates to a video encoding device (10) for encoding video data and a corresponding video decoding device, wherein during decoding PPG relevant information shall be preserved. For this purpose the video coding device (10) comprises a first encoder (20) for encoding input video

  15. A Fully Parallel VLSI-implementation of the Viterbi Decoding Algorithm

    DEFF Research Database (Denmark)

    Sparsø, Jens; Jørgensen, Henrik Nordtorp; Paaske, Erik

    1989-01-01

    In this paper we describe the implementation of a K = 7, R = 1/2 single-chip Viterbi decoder intended to operate at 10-20 Mbit/sec. We propose a general, regular and area efficient floor-plan that is also suitable for implementation of decoders for codes with different generator polynomials...

  16. Multi-Trial Guruswami–Sudan Decoding for Generalised Reed–Solomon Codes

    DEFF Research Database (Denmark)

    Nielsen, Johan Sebastian Rosenkilde; Zeh, Alexander

    2013-01-01

    An iterated refinement procedure for the Guruswami–Sudan list decoding algorithm for Generalised Reed–Solomon codes based on Alekhnovich’s module minimisation is proposed. The method is parametrisable and allows variants of the usual list decoding approach. In particular, finding the list...

  17. The Three Stages of Coding and Decoding in Listening Courses of College Japanese Specialty

    Science.gov (United States)

    Yang, Fang

    2008-01-01

    The main focus of research papers on listening teaching published in recent years is the theoretical meanings of decoding on the training of listening comprehension ability. Although in many research papers the bottom-up approach and top-down approach, information processing mode theory, are applied to illustrate decoding and to emphasize the…

  18. A Parallel Decoding Algorithm for Short Polar Codes Based on Error Checking and Correcting

    Science.gov (United States)

    Pan, Xiaofei; Pan, Kegang; Ye, Zhan; Gong, Chao

    2014-01-01

    We propose a parallel decoding algorithm based on error checking and correcting to improve the performance of the short polar codes. In order to enhance the error-correcting capacity of the decoding algorithm, we first derive the error-checking equations generated on the basis of the frozen nodes, and then we introduce the method to check the errors in the input nodes of the decoder by the solutions of these equations. In order to further correct those checked errors, we adopt the method of modifying the probability messages of the error nodes with constant values according to the maximization principle. Due to the existence of multiple solutions of the error-checking equations, we formulate a CRC-aided optimization problem of finding the optimal solution with three different target functions, so as to improve the accuracy of error checking. Besides, in order to increase the throughput of decoding, we use a parallel method based on the decoding tree to calculate probability messages of all the nodes in the decoder. Numerical results show that the proposed decoding algorithm achieves better performance than that of some existing decoding algorithms with the same code length. PMID:25540813

  19. Iterative channel decoding of FEC-based multiple-description codes.

    Science.gov (United States)

    Chang, Seok-Ho; Cosman, Pamela C; Milstein, Laurence B

    2012-03-01

    Multiple description coding has been receiving attention as a robust transmission framework for multimedia services. This paper studies the iterative decoding of FEC-based multiple description codes. The proposed decoding algorithms take advantage of the error detection capability of Reed-Solomon (RS) erasure codes. The information of correctly decoded RS codewords is exploited to enhance the error correction capability of the Viterbi algorithm at the next iteration of decoding. In the proposed algorithm, an intradescription interleaver is synergistically combined with the iterative decoder. The interleaver does not affect the performance of noniterative decoding but greatly enhances the performance when the system is iteratively decoded. We also address the optimal allocation of RS parity symbols for unequal error protection. For the optimal allocation in iterative decoding, we derive mathematical equations from which the probability distributions of description erasures can be generated in a simple way. The performance of the algorithm is evaluated over an orthogonal frequency-division multiplexing system. The results show that the performance of the multiple description codes is significantly enhanced.

  20. Application of source biasing technique for energy efficient DECODER circuit design: memory array application

    Science.gov (United States)

    Gupta, Neha; Parihar, Priyanka; Neema, Vaibhav

    2018-04-01

    Researchers have proposed many circuit techniques to reduce leakage power dissipation in memory cells. If we want to reduce the overall power in the memory system, we have to work on the input circuitry of memory architecture i.e. row and column decoder. In this research work, low leakage power with a high speed row and column decoder for memory array application is designed and four new techniques are proposed. In this work, the comparison of cluster DECODER, body bias DECODER, source bias DECODER, and source coupling DECODER are designed and analyzed for memory array application. Simulation is performed for the comparative analysis of different DECODER design parameters at 180 nm GPDK technology file using the CADENCE tool. Simulation results show that the proposed source bias DECODER circuit technique decreases the leakage current by 99.92% and static energy by 99.92% at a supply voltage of 1.2 V. The proposed circuit also improves dynamic power dissipation by 5.69%, dynamic PDP/EDP 65.03% and delay 57.25% at 1.2 V supply voltage.

  1. The Contribution of Attentional Control and Working Memory to Reading Comprehension and Decoding

    Science.gov (United States)

    Arrington, C. Nikki; Kulesz, Paulina A.; Francis, David J.; Fletcher, Jack M.; Barnes, Marcia A.

    2014-01-01

    Little is known about how specific components of working memory, namely, attentional processes including response inhibition, sustained attention, and cognitive inhibition, are related to reading decoding and comprehension. The current study evaluated the relations of reading comprehension, decoding, working memory, and attentional control in…

  2. Fast N-Gram Language Model Look-Ahead for Decoders With Static Pronunciation Prefix Trees

    NARCIS (Netherlands)

    Huijbregts, M.A.H.; Ordelman, Roeland J.F.; de Jong, Franciska M.G.

    2008-01-01

    Decoders that make use of token-passing restrict their search space by various types of token pruning. With use of the Language Model Look-Ahead (LMLA) technique it is possible to increase the number of tokens that can be pruned without loss of decoding precision. Unfortunately, for token passing

  3. Scaffolding Students’ Independent Decoding of Unfamiliar Text with a Prototype of an eBook-Feature

    DEFF Research Database (Denmark)

    Gissel, Stig Toke

    2015-01-01

    the relevant spelling patterns and in generalizing, in order to strengthen their decoding skills. The prototype was evaluated with Danish students in the second grade to see how and under what circumstances students can use the feature in ways that strengthen their decoding skills and support them in reading...

  4. Word-Decoding Skill Interacts with Working Memory Capacity to Influence Inference Generation during Reading

    Science.gov (United States)

    Hamilton, Stephen; Freed, Erin; Long, Debra L.

    2016-01-01

    The aim of this study was to examine predictions derived from a proposal about the relation between word-decoding skill and working memory capacity, called verbal efficiency theory. The theory states that poor word representations and slow decoding processes consume resources in working memory that would otherwise be used to execute high-level…

  5. Hierarchical Neural Representation of Dreamed Objects Revealed by Brain Decoding with Deep Neural Network Features.

    Science.gov (United States)

    Horikawa, Tomoyasu; Kamitani, Yukiyasu

    2017-01-01

    Dreaming is generally thought to be generated by spontaneous brain activity during sleep with patterns common to waking experience. This view is supported by a recent study demonstrating that dreamed objects can be predicted from brain activity during sleep using statistical decoders trained with stimulus-induced brain activity. However, it remains unclear whether and how visual image features associated with dreamed objects are represented in the brain. In this study, we used a deep neural network (DNN) model for object recognition as a proxy for hierarchical visual feature representation, and DNN features for dreamed objects were analyzed with brain decoding of fMRI data collected during dreaming. The decoders were first trained with stimulus-induced brain activity labeled with the feature values of the stimulus image from multiple DNN layers. The decoders were then used to decode DNN features from the dream fMRI data, and the decoded features were compared with the averaged features of each object category calculated from a large-scale image database. We found that the feature values decoded from the dream fMRI data positively correlated with those associated with dreamed object categories at mid- to high-level DNN layers. Using the decoded features, the dreamed object category could be identified at above-chance levels by matching them to the averaged features for candidate categories. The results suggest that dreaming recruits hierarchical visual feature representations associated with objects, which may support phenomenal aspects of dream experience.

  6. Decoding error-correcting codes with Gröbner bases

    NARCIS (Netherlands)

    Bulygin, S.; Pellikaan, G.R.; Veldhuis, R.; Cronie, H.; Hoeksema, H.

    2007-01-01

    The decoding of arbitrary linear block codes is accomplished by solving a system of quadratic equations by means of Buchberger’s algorithm for finding a Gröbner basis. This generalizes the algorithm of Berlekamp-Massey for decoding Reed Solomon, Goppa and cyclic codes up to half the true minimum

  7. Bounded distance decoding of linear error-correcting codes with Gröbner bases

    NARCIS (Netherlands)

    Bulygin, S.; Pellikaan, G.R.

    2009-01-01

    The problem of bounded distance decoding of arbitrary linear codes using Gröbner bases is addressed. A new method is proposed, which is based on reducing an initial decoding problem to solving a certain system of polynomial equations over a finite field. The peculiarity of this system is that, when

  8. A lossy graph model for delay reduction in generalized instantly decodable network coding

    KAUST Repository

    Douik, Ahmed S.; Sorour, Sameh; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2014-01-01

    , arising from lossy feedback events, when the expected decoding delay of XORing them among themselves or with other certain packets is lower than that expected when sending these packets separately. We compare the decoding delay performance of LG-IDNC and G

  9. Error Recovery Properties and Soft Decoding of Quasi-Arithmetic Codes

    Directory of Open Access Journals (Sweden)

    Christine Guillemot

    2007-08-01

    Full Text Available This paper first introduces a new set of aggregated state models for soft-input decoding of quasi arithmetic (QA codes with a termination constraint. The decoding complexity with these models is linear with the sequence length. The aggregation parameter controls the tradeoff between decoding performance and complexity. It is shown that close-to-optimal decoding performance can be obtained with low values of the aggregation parameter, that is, with a complexity which is significantly reduced with respect to optimal QA bit/symbol models. The choice of the aggregation parameter depends on the synchronization recovery properties of the QA codes. This paper thus describes a method to estimate the probability mass function (PMF of the gain/loss of symbols following a single bit error (i.e., of the difference between the number of encoded and decoded symbols. The entropy of the gain/loss turns out to be the average amount of information conveyed by a length constraint on both the optimal and aggregated state models. This quantity allows us to choose the value of the aggregation parameter that will lead to close-to-optimal decoding performance. It is shown that the optimum position for the length constraint is not the last time instant of the decoding process. This observation leads to the introduction of a new technique for robust decoding of QA codes with redundancy which turns out to outperform techniques based on the concept of forbidden symbol.

  10. Using convolutional decoding to improve time delay and phase estimation in digital communications

    Science.gov (United States)

    Ormesher, Richard C [Albuquerque, NM; Mason, John J [Albuquerque, NM

    2010-01-26

    The time delay and/or phase of a communication signal received by a digital communication receiver can be estimated based on a convolutional decoding operation that the communication receiver performs on the received communication signal. If the original transmitted communication signal has been spread according to a spreading operation, a corresponding despreading operation can be integrated into the convolutional decoding operation.

  11. The Relationship between Reading Comprehension, Decoding, and Fluency in Greek: A Cross-Sectional Study

    Science.gov (United States)

    Padeliadu, Susana; Antoniou, Faye

    2014-01-01

    Experts widely consider decoding and fluency as the basis of reading comprehension, while at the same time consistently documenting problems in these areas as major characteristics of students with learning disabilities. However, scholars have developed most of the relevant research within phonologically deep languages, wherein decoding problems…

  12. Applying the Decoding the Disciplines Process to Teaching Structural Mechanics: An Autoethnographic Case Study

    Science.gov (United States)

    Tingerthal, John Steven

    2013-01-01

    Using case study methodology and autoethnographic methods, this study examines a process of curricular development known as "Decoding the Disciplines" (Decoding) by documenting the experience of its application in a construction engineering mechanics course. Motivated by the call to integrate what is known about teaching and learning…

  13. A modified non-binary LDPC scheme based on watermark symbols in high speed optical transmission systems

    Science.gov (United States)

    Wang, Liming; Qiao, Yaojun; Yu, Qian; Zhang, Wenbo

    2016-04-01

    We introduce a watermark non-binary low-density parity check code (NB-LDPC) scheme, which can estimate the time-varying noise variance by using prior information of watermark symbols, to improve the performance of NB-LDPC codes. And compared with the prior-art counterpart, the watermark scheme can bring about 0.25 dB improvement in net coding gain (NCG) at bit error rate (BER) of 1e-6 and 36.8-81% reduction of the iteration numbers. Obviously, the proposed scheme shows great potential in terms of error correction performance and decoding efficiency.

  14. An Optimized Three-Level Design of Decoder Based on Nanoscale Quantum-Dot Cellular Automata

    Science.gov (United States)

    Seyedi, Saeid; Navimipour, Nima Jafari

    2018-03-01

    Quantum-dot Cellular Automata (QCA) has been potentially considered as a supersede to Complementary Metal-Oxide-Semiconductor (CMOS) because of its inherent advantages. Many QCA-based logic circuits with smaller feature size, improved operating frequency, and lower power consumption than CMOS have been offered. This technology works based on electron relations inside quantum-dots. Due to the importance of designing an optimized decoder in any digital circuit, in this paper, we design, implement and simulate a new 2-to-4 decoder based on QCA with low delay, area, and complexity. The logic functionality of the 2-to-4 decoder is verified using the QCADesigner tool. The results have shown that the proposed QCA-based decoder has high performance in terms of a number of cells, covered area, and time delay. Due to the lower clock pulse frequency, the proposed 2-to-4 decoder is helpful for building QCA-based sequential digital circuits with high performance.

  15. Row Reduction Applied to Decoding of Rank Metric and Subspace Codes

    DEFF Research Database (Denmark)

    Puchinger, Sven; Nielsen, Johan Sebastian Rosenkilde; Li, Wenhui

    2017-01-01

    We show that decoding of ℓ-Interleaved Gabidulin codes, as well as list-ℓ decoding of Mahdavifar–Vardy (MV) codes can be performed by row reducing skew polynomial matrices. Inspired by row reduction of F[x] matrices, we develop a general and flexible approach of transforming matrices over skew...... polynomial rings into a certain reduced form. We apply this to solve generalised shift register problems over skew polynomial rings which occur in decoding ℓ-Interleaved Gabidulin codes. We obtain an algorithm with complexity O(ℓμ2) where μ measures the size of the input problem and is proportional...... to the code length n in the case of decoding. Further, we show how to perform the interpolation step of list-ℓ-decoding MV codes in complexity O(ℓn2), where n is the number of interpolation constraints....

  16. Locating and decoding barcodes in fuzzy images captured by smart phones

    Science.gov (United States)

    Deng, Wupeng; Hu, Jiwei; Liu, Quan; Lou, Ping

    2017-07-01

    With the development of barcodes for commercial use, people's requirements for detecting barcodes by smart phone become increasingly pressing. The low quality of barcode image captured by mobile phone always affects the decoding and recognition rates. This paper focuses on locating and decoding EAN-13 barcodes in fuzzy images. We present a more accurate locating algorithm based on segment length and high fault-tolerant rate algorithm for decoding barcodes. Unlike existing approaches, location algorithm is based on the edge segment length of EAN -13 barcodes, while our decoding algorithm allows the appearance of fuzzy region in barcode image. Experimental results are performed on damaged, contaminated and scratched digital images, and provide a quite promising result for EAN -13 barcode location and decoding.

  17. Efficient Dual Domain Decoding of Linear Block Codes Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Ahmed Azouaoui

    2012-01-01

    Full Text Available A computationally efficient algorithm for decoding block codes is developed using a genetic algorithm (GA. The proposed algorithm uses the dual code in contrast to the existing genetic decoders in the literature that use the code itself. Hence, this new approach reduces the complexity of decoding the codes of high rates. We simulated our algorithm in various transmission channels. The performance of this algorithm is investigated and compared with competitor decoding algorithms including Maini and Shakeel ones. The results show that the proposed algorithm gives large gains over the Chase-2 decoding algorithm and reach the performance of the OSD-3 for some quadratic residue (QR codes. Further, we define a new crossover operator that exploits the domain specific information and compare it with uniform and two point crossover. The complexity of this algorithm is also discussed and compared to other algorithms.

  18. Binary Systems and the Initial Mass Function

    Science.gov (United States)

    Malkov, O. Yu.

    2017-07-01

    In the present paper we discuss advantages and disadvantages of binary stars, which are important for star formation history determination. We show that to make definite conclusions of the initial mass function shape, it is necessary to study binary population well enough to correct the luminosity function for unresolved binaries; to construct the mass-luminosity relation based on wide binaries data, and to separate observational mass functions of primaries, of secondaries, and of unresolved binaries.

  19. Iterative Decoding for an Optical CDMA based Laser communication System

    International Nuclear Information System (INIS)

    Kim, Jin Young; Kim, Eun Cheol; Cha, Jae Sang

    2008-01-01

    An optical CDMA(code division multiple access)based Laser communication system has attracted much attention since it requires minimal optical Laser signal processing and it is virtually delay free, while from the theoretical point of view, its performance depends on the auto and cross correlation properties of employed sequences. Various kinds of channel coding schemes for optical CDMA based Laser communication systems have been proposed and analyzed to compensate nonideal channel and receiver conditions in impaired photon channels. In this paper, we propose and analyze an iterative decoding of optical CDMA based Laser communication signals for both shot noise limited and thermal noise limited systems. It is assumed that optical channel is an intensity modulated (IM)channel and direct detection scheme is employed to detect the received optical signal. The performance is evaluated in terms of bit error probability and throughput. It is demonstrated that the BER and throughput performance is substantially improved with interleaver length for a fixed code rate and with alphabet size of PPM (pulse position modulation). Also, the BER and throughput performance is significantly enhanced with the number of iterations for decoding process. The results in this paper can be applied to the optical CDMA based Laser communication network with multiple access applications

  20. Neural signatures of attention: insights from decoding population activity patterns.

    Science.gov (United States)

    Sapountzis, Panagiotis; Gregoriou, Georgia G

    2018-01-01

    Understanding brain function and the computations that individual neurons and neuronal ensembles carry out during cognitive functions is one of the biggest challenges in neuroscientific research. To this end, invasive electrophysiological studies have provided important insights by recording the activity of single neurons in behaving animals. To average out noise, responses are typically averaged across repetitions and across neurons that are usually recorded on different days. However, the brain makes decisions on short time scales based on limited exposure to sensory stimulation by interpreting responses of populations of neurons on a moment to moment basis. Recent studies have employed machine-learning algorithms in attention and other cognitive tasks to decode the information content of distributed activity patterns across neuronal ensembles on a single trial basis. Here, we review results from studies that have used pattern-classification decoding approaches to explore the population representation of cognitive functions. These studies have offered significant insights into population coding mechanisms. Moreover, we discuss how such advances can aid the development of cognitive brain-computer interfaces.

  1. Iterative Decoding for an Optical CDMA based Laser communication System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Young; Kim, Eun Cheol [Kwangwoon Univ., Seoul (Korea, Republic of); Cha, Jae Sang [Seoul National Univ. of Technology, Seoul (Korea, Republic of)

    2008-11-15

    An optical CDMA(code division multiple access)based Laser communication system has attracted much attention since it requires minimal optical Laser signal processing and it is virtually delay free, while from the theoretical point of view, its performance depends on the auto and cross correlation properties of employed sequences. Various kinds of channel coding schemes for optical CDMA based Laser communication systems have been proposed and analyzed to compensate nonideal channel and receiver conditions in impaired photon channels. In this paper, we propose and analyze an iterative decoding of optical CDMA based Laser communication signals for both shot noise limited and thermal noise limited systems. It is assumed that optical channel is an intensity modulated (IM)channel and direct detection scheme is employed to detect the received optical signal. The performance is evaluated in terms of bit error probability and throughput. It is demonstrated that the BER and throughput performance is substantially improved with interleaver length for a fixed code rate and with alphabet size of PPM (pulse position modulation). Also, the BER and throughput performance is significantly enhanced with the number of iterations for decoding process. The results in this paper can be applied to the optical CDMA based Laser communication network with multiple access applications.

  2. Discrete decoding based ultrafast multidimensional nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Wei, Zhiliang; Lin, Liangjie; Ye, Qimiao; Li, Jing; Cai, Shuhui; Chen, Zhong

    2015-01-01

    The three-dimensional (3D) nuclear magnetic resonance (NMR) spectroscopy constitutes an important and powerful tool in analyzing chemical and biological systems. However, the abundant 3D information arrives at the expense of long acquisition times lasting hours or even days. Therefore, there has been a continuous interest in developing techniques to accelerate recordings of 3D NMR spectra, among which the ultrafast spatiotemporal encoding technique supplies impressive acquisition speed by compressing a multidimensional spectrum in a single scan. However, it tends to suffer from tradeoffs among spectral widths in different dimensions, which deteriorates in cases of NMR spectroscopy with more dimensions. In this study, the discrete decoding is proposed to liberate the ultrafast technique from tradeoffs among spectral widths in different dimensions by focusing decoding on signal-bearing sites. For verifying its feasibility and effectiveness, we utilized the method to generate two different types of 3D spectra. The proposed method is also applicable to cases with more than three dimensions, which, based on the experimental results, may widen applications of the ultrafast technique

  3. Discrete decoding based ultrafast multidimensional nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Wei, Zhiliang; Lin, Liangjie; Ye, Qimiao; Li, Jing; Cai, Shuhui; Chen, Zhong

    2015-07-01

    The three-dimensional (3D) nuclear magnetic resonance (NMR) spectroscopy constitutes an important and powerful tool in analyzing chemical and biological systems. However, the abundant 3D information arrives at the expense of long acquisition times lasting hours or even days. Therefore, there has been a continuous interest in developing techniques to accelerate recordings of 3D NMR spectra, among which the ultrafast spatiotemporal encoding technique supplies impressive acquisition speed by compressing a multidimensional spectrum in a single scan. However, it tends to suffer from tradeoffs among spectral widths in different dimensions, which deteriorates in cases of NMR spectroscopy with more dimensions. In this study, the discrete decoding is proposed to liberate the ultrafast technique from tradeoffs among spectral widths in different dimensions by focusing decoding on signal-bearing sites. For verifying its feasibility and effectiveness, we utilized the method to generate two different types of 3D spectra. The proposed method is also applicable to cases with more than three dimensions, which, based on the experimental results, may widen applications of the ultrafast technique.

  4. Artificial spatiotemporal touch inputs reveal complementary decoding in neocortical neurons.

    Science.gov (United States)

    Oddo, Calogero M; Mazzoni, Alberto; Spanne, Anton; Enander, Jonas M D; Mogensen, Hannes; Bengtsson, Fredrik; Camboni, Domenico; Micera, Silvestro; Jörntell, Henrik

    2017-04-04

    Investigations of the mechanisms of touch perception and decoding has been hampered by difficulties in achieving invariant patterns of skin sensor activation. To obtain reproducible spatiotemporal patterns of activation of sensory afferents, we used an artificial fingertip equipped with an array of neuromorphic sensors. The artificial fingertip was used to transduce real-world haptic stimuli into spatiotemporal patterns of spikes. These spike patterns were delivered to the skin afferents of the second digit of rats via an array of stimulation electrodes. Combined with low-noise intra- and extracellular recordings from neocortical neurons in vivo, this approach provided a previously inaccessible high resolution analysis of the representation of tactile information in the neocortical neuronal circuitry. The results indicate high information content in individual neurons and reveal multiple novel neuronal tactile coding features such as heterogeneous and complementary spatiotemporal input selectivity also between neighboring neurons. Such neuronal heterogeneity and complementariness can potentially support a very high decoding capacity in a limited population of neurons. Our results also indicate a potential neuroprosthetic approach to communicate with the brain at a very high resolution and provide a potential novel solution for evaluating the degree or state of neurological disease in animal models.

  5. Decoding Problem Gamblers' Signals: A Decision Model for Casino Enterprises.

    Science.gov (United States)

    Ifrim, Sandra

    2015-12-01

    The aim of the present study is to offer a validated decision model for casino enterprises. The model enables those users to perform early detection of problem gamblers and fulfill their ethical duty of social cost minimization. To this end, the interpretation of casino customers' nonverbal communication is understood as a signal-processing problem. Indicators of problem gambling recommended by Delfabbro et al. (Identifying problem gamblers in gambling venues: final report, 2007) are combined with Viterbi algorithm into an interdisciplinary model that helps decoding signals emitted by casino customers. Model output consists of a historical path of mental states and cumulated social costs associated with a particular client. Groups of problem and non-problem gamblers were simulated to investigate the model's diagnostic capability and its cost minimization ability. Each group consisted of 26 subjects and was subsequently enlarged to 100 subjects. In approximately 95% of the cases, mental states were correctly decoded for problem gamblers. Statistical analysis using planned contrasts revealed that the model is relatively robust to the suppression of signals performed by casino clientele facing gambling problems as well as to misjudgments made by staff regarding the clients' mental states. Only if the last mentioned source of error occurs in a very pronounced manner, i.e. judgment is extremely faulty, cumulated social costs might be distorted.

  6. Hardwarearchitektur für einen universellen LDPC Decoder

    Directory of Open Access Journals (Sweden)

    C. Beuschel

    2009-05-01

    Full Text Available Im vorliegenden Beitrag wird eine universelle Decoderarchitektur für einen Low-Density Parity-Check (LDPC Code Decoder vorgestellt. Anders als bei den in der Literatur häufig beschriebenen Architekturen für strukturierte Codes ist die hier vorgestellte Architektur frei programmierbar, so dass jeder beliebige LDPC Code durch eine Änderung der Initialisierung des Speichers für die Prüfmatrix mit derselben Hardware decodiert werden kann. Die größte Herausforderung beim Entwurf von teilparallelen LDPC Decoder Architekturen liegt im konfliktfreien Datenaustausch zwischen mehreren parallelen Speichern und Berechnungseinheiten, wozu ein Mapping und Scheduling Algorithmus benötigt wird. Der hier vorgestellte Algorithmus stützt sich auf Graphentheorie und findet für jeden beliebigen LDPC Code eine für die Architektur optimale Lösung. Damit sind keine Wartezyklen notwendig und die Parallelität der Architektur wird zu jedem Zeitpunkt voll ausgenutzt.

  7. Frame Decoder for Consultative Committee for Space Data Systems (CCSDS)

    Science.gov (United States)

    Reyes, Miguel A. De Jesus

    2014-01-01

    GNU Radio is a free and open source development toolkit that provides signal processing to implement software radios. It can be used with low-cost external RF hardware to create software defined radios, or without hardware in a simulation-like environment. GNU Radio applications are primarily written in Python and C++. The Universal Software Radio Peripheral (USRP) is a computer-hosted software radio designed by Ettus Research. The USRP connects to a host computer via high-speed Gigabit Ethernet. Using the open source Universal Hardware Driver (UHD), we can run GNU Radio applications using the USRP. An SDR is a "radio in which some or all physical layer functions are software defined"(IEEE Definition). A radio is any kind of device that wirelessly transmits or receives radio frequency (RF) signals in the radio frequency. An SDR is a radio communication system where components that have been typically implemented in hardware are implemented in software. GNU Radio has a generic packet decoder block that is not optimized for CCSDS frames. Using this generic packet decoder will add bytes to the CCSDS frames and will not permit for bit error correction using Reed-Solomon. The CCSDS frames consist of 256 bytes, including a 32-bit sync marker (0x1ACFFC1D). This frames are generated by the Space Data Processor and GNU Radio will perform the modulation and framing operations, including frame synchronization.

  8. Mapping of MPEG-4 decoding on a flexible architecture platform

    Science.gov (United States)

    van der Tol, Erik B.; Jaspers, Egbert G.

    2001-12-01

    In the field of consumer electronics, the advent of new features such as Internet, games, video conferencing, and mobile communication has triggered the convergence of television and computers technologies. This requires a generic media-processing platform that enables simultaneous execution of very diverse tasks such as high-throughput stream-oriented data processing and highly data-dependent irregular processing with complex control flows. As a representative application, this paper presents the mapping of a Main Visual profile MPEG-4 for High-Definition (HD) video onto a flexible architecture platform. A stepwise approach is taken, going from the decoder application toward an implementation proposal. First, the application is decomposed into separate tasks with self-contained functionality, clear interfaces, and distinct characteristics. Next, a hardware-software partitioning is derived by analyzing the characteristics of each task such as the amount of inherent parallelism, the throughput requirements, the complexity of control processing, and the reuse potential over different applications and different systems. Finally, a feasible implementation is proposed that includes amongst others a very-long-instruction-word (VLIW) media processor, one or more RISC processors, and some dedicated processors. The mapping study of the MPEG-4 decoder proves the flexibility and extensibility of the media-processing platform. This platform enables an effective HW/SW co-design yielding a high performance density.

  9. A method for decoding the neurophysiological spike-response transform.

    Science.gov (United States)

    Stern, Estee; García-Crescioni, Keyla; Miller, Mark W; Peskin, Charles S; Brezina, Vladimir

    2009-11-15

    Many physiological responses elicited by neuronal spikes-intracellular calcium transients, synaptic potentials, muscle contractions-are built up of discrete, elementary responses to each spike. However, the spikes occur in trains of arbitrary temporal complexity, and each elementary response not only sums with previous ones, but can itself be modified by the previous history of the activity. A basic goal in system identification is to characterize the spike-response transform in terms of a small number of functions-the elementary response kernel and additional kernels or functions that describe the dependence on previous history-that will predict the response to any arbitrary spike train. Here we do this by developing further and generalizing the "synaptic decoding" approach of Sen et al. (1996). Given the spike times in a train and the observed overall response, we use least-squares minimization to construct the best estimated response and at the same time best estimates of the elementary response kernel and the other functions that characterize the spike-response transform. We avoid the need for any specific initial assumptions about these functions by using techniques of mathematical analysis and linear algebra that allow us to solve simultaneously for all of the numerical function values treated as independent parameters. The functions are such that they may be interpreted mechanistically. We examine the performance of the method as applied to synthetic data. We then use the method to decode real synaptic and muscle contraction transforms.

  10. Decoding rule search domain in the left inferior frontal gyrus

    Science.gov (United States)

    Babcock, Laura; Vallesi, Antonino

    2018-01-01

    Traditionally, the left hemisphere has been thought to extract mainly verbal patterns of information, but recent evidence has shown that the left Inferior Frontal Gyrus (IFG) is active during inductive reasoning in both the verbal and spatial domains. We aimed to understand whether the left IFG supports inductive reasoning in a domain-specific or domain-general fashion. To do this we used Multi-Voxel Pattern Analysis to decode the representation of domain during a rule search task. Thirteen participants were asked to extract the rule underlying streams of letters presented in different spatial locations. Each rule was either verbal (letters forming words) or spatial (positions forming geometric figures). Our results show that domain was decodable in the left prefrontal cortex, suggesting that this region represents domain-specific information, rather than processes common to the two domains. A replication study with the same participants tested two years later confirmed these findings, though the individual representations changed, providing evidence for the flexible nature of representations. This study extends our knowledge on the neural basis of goal-directed behaviors and on how information relevant for rule extraction is flexibly mapped in the prefrontal cortex. PMID:29547623

  11. Successful decoding of famous faces in the fusiform face area.

    Directory of Open Access Journals (Sweden)

    Vadim Axelrod

    Full Text Available What are the neural mechanisms of face recognition? It is believed that the network of face-selective areas, which spans the occipital, temporal, and frontal cortices, is important in face recognition. A number of previous studies indeed reported that face identity could be discriminated based on patterns of multivoxel activity in the fusiform face area and the anterior temporal lobe. However, given the difficulty in localizing the face-selective area in the anterior temporal lobe, its role in face recognition is still unknown. Furthermore, previous studies limited their analysis to occipito-temporal regions without testing identity decoding in more anterior face-selective regions, such as the amygdala and prefrontal cortex. In the current high-resolution functional Magnetic Resonance Imaging study, we systematically examined the decoding of the identity of famous faces in the temporo-frontal network of face-selective and adjacent non-face-selective regions. A special focus has been put on the face-area in the anterior temporal lobe, which was reliably localized using an optimized scanning protocol. We found that face-identity could be discriminated above chance level only in the fusiform face area. Our results corroborate the role of the fusiform face area in face recognition. Future studies are needed to further explore the role of the more recently discovered anterior face-selective areas in face recognition.

  12. Hidden slow pulsars in binaries

    Science.gov (United States)

    Tavani, Marco; Brookshaw, Leigh

    1993-01-01

    The recent discovery of the binary containing the slow pulsar PSR 1718-19 orbiting around a low-mass companion star adds new light on the characteristics of binary pulsars. The properties of the radio eclipses of PSR 1718-19 are the most striking observational characteristics of this system. The surface of the companion star produces a mass outflow which leaves only a small 'window' in orbital phase for the detection of PSR 1718-19 around 400 MHz. At this observing frequency, PSR 1718-19 is clearly observable only for about 1 hr out of the total 6.2 hr orbital period. The aim of this Letter is twofold: (1) to model the hydrodynamical behavior of the eclipsing material from the companion star of PSR 1718-19 and (2) to argue that a population of binary slow pulsars might have escaped detection in pulsar surveys carried out at 400 MHz. The possible existence of a population of partially or totally hidden slow pulsars in binaries will have a strong impact on current theories of binary evolution of neutron stars.

  13. The Young Visual Binary Survey

    Science.gov (United States)

    Prato, Lisa; Avilez, Ian; Lindstrom, Kyle; Graham, Sean; Sullivan, Kendall; Biddle, Lauren; Skiff, Brian; Nofi, Larissa; Schaefer, Gail; Simon, Michal

    2018-01-01

    Differences in the stellar and circumstellar properties of the components of young binaries provide key information about star and disk formation and evolution processes. Because objects with separations of a few to a few hundred astronomical units share a common environment and composition, multiple systems allow us to control for some of the factors which play into star formation. We are completing analysis of a rich sample of about 100 pre-main sequence binaries and higher order multiples, primarily located in the Taurus and Ophiuchus star forming regions. This poster will highlight some of out recent, exciting results. All reduced spectra and the results of our analysis will be publicly available to the community at http://jumar.lowell.edu/BinaryStars/. Support for this research was provided in part by NSF award AST-1313399 and by NASA Keck KPDA funding.

  14. Cellular automaton decoders of topological quantum memories in the fault tolerant setting

    International Nuclear Information System (INIS)

    Herold, Michael; Eisert, Jens; Kastoryano, Michael J; Campbell, Earl T

    2017-01-01

    Active error decoding and correction of topological quantum codes—in particular the toric code—remains one of the most viable routes to large scale quantum information processing. In contrast, passive error correction relies on the natural physical dynamics of a system to protect encoded quantum information. However, the search is ongoing for a completely satisfactory passive scheme applicable to locally interacting two-dimensional systems. Here, we investigate dynamical decoders that provide passive error correction by embedding the decoding process into local dynamics. We propose a specific discrete time cellular-automaton decoder in the fault tolerant setting and provide numerical evidence showing that the logical qubit has a survival time extended by several orders of magnitude over that of a bare unencoded qubit. We stress that (asynchronous) dynamical decoding gives rise to a Markovian dissipative process. We hence equate cellular-automaton decoding to a fully dissipative topological quantum memory, which removes errors continuously. In this sense, uncontrolled and unwanted local noise can be corrected for by a controlled local dissipative process. We analyze the required resources, commenting on additional polylogarithmic factors beyond those incurred by an ideal constant resource dynamical decoder. (paper)

  15. Fast and Flexible Successive-Cancellation List Decoders for Polar Codes

    Science.gov (United States)

    Hashemi, Seyyed Ali; Condo, Carlo; Gross, Warren J.

    2017-11-01

    Polar codes have gained significant amount of attention during the past few years and have been selected as a coding scheme for the next generation of mobile broadband standard. Among decoding schemes, successive-cancellation list (SCL) decoding provides a reasonable trade-off between the error-correction performance and hardware implementation complexity when used to decode polar codes, at the cost of limited throughput. The simplified SCL (SSCL) and its extension SSCL-SPC increase the speed of decoding by removing redundant calculations when encountering particular information and frozen bit patterns (rate one and single parity check codes), while keeping the error-correction performance unaltered. In this paper, we improve SSCL and SSCL-SPC by proving that the list size imposes a specific number of bit estimations required to decode rate one and single parity check codes. Thus, the number of estimations can be limited while guaranteeing exactly the same error-correction performance as if all bits of the code were estimated. We call the new decoding algorithms Fast-SSCL and Fast-SSCL-SPC. Moreover, we show that the number of bit estimations in a practical application can be tuned to achieve desirable speed, while keeping the error-correction performance almost unchanged. Hardware architectures implementing both algorithms are then described and implemented: it is shown that our design can achieve 1.86 Gb/s throughput, higher than the best state-of-the-art decoders.

  16. ESVD: An Integrated Energy Scalable Framework for Low-Power Video Decoding Systems

    Directory of Open Access Journals (Sweden)

    Wen Ji

    2010-01-01

    Full Text Available Video applications using mobile wireless devices are a challenging task due to the limited capacity of batteries. The higher complex functionality of video decoding needs high resource requirements. Thus, power efficient control has become more critical design with devices integrating complex video processing techniques. Previous works on power efficient control in video decoding systems often aim at the low complexity design and not explicitly consider the scalable impact of subfunctions in decoding process, and seldom consider the relationship with the features of compressed video date. This paper is dedicated to developing an energy-scalable video decoding (ESVD strategy for energy-limited mobile terminals. First, ESVE can dynamically adapt the variable energy resources due to the device aware technique. Second, ESVD combines the decoder control with decoded data, through classifying the data into different partition profiles according to its characteristics. Third, it introduces utility theoretical analysis during the resource allocation process, so as to maximize the resource utilization. Finally, it adapts the energy resource as different energy budget and generates the scalable video decoding output under energy-limited systems. Experimental results demonstrate the efficiency of the proposed approach.

  17. Prior Knowledge Improves Decoding of Finger Flexion from Electrocorticographic (ECoG Signals

    Directory of Open Access Journals (Sweden)

    Zuoguan eWang

    2011-11-01

    Full Text Available Brain-computer interfaces (BCIs use brain signals to convey a user's intent. Some BCI approaches begin by decoding kinematic parameters of movements from brain signals, and then proceed to using these signals, in absence of movements, to allow a user to control an output. Recent results have shown that electrocorticographic (ECoG recordings from the surface of the brain in humans can give information about kinematic parameters (eg{} hand velocity or finger flexion. The decoding approaches in these studies usually employed classical classification/regression algorithms that derive a linear mapping between brain signals and outputs. However, they typically only incorporate little prior information about the target movement parameter. In this paper, we incorporate prior knowledge using a Bayesian decoding method, and use it to decode finger flexion from ECoG signals. Specifically, we exploit the anatomic constraints and dynamic constraints that govern finger flexion and incorporate these constraints in the construction, structure, and the probabilistic functions of the prior model of a switched non-parametric dynamic system (SNDS. Given a measurement model resulting from a traditional linear regression method, we decoded finger flexion using posterior estimation that combined the prior and measurement models. Our results show that the application of the Bayesian decoding model, which incorporates prior knowledge, improves decoding performance compared to the application of a linear regression model, which does not incorporate prior knowledge. Thus, the results presented in this paper may ultimately lead to neurally controlled hand prostheses with full fine-grained finger articulation.

  18. Evolution in close binary systems

    International Nuclear Information System (INIS)

    Yungel'son, L.R.; Masevich, A.G.

    1983-01-01

    Duality is the property most typical of stars. If one investigates how prevalent double stars are, making due allowance for selection effects, one finds that as many as 90 percent of all stars are paired. Contrary to tradition it is single stars that are out of the ordinary, and as will be shown presently even some of these may have been formed by coalescence of the members of binary systems. This review deals with the evolution of close binaries, defined as double-star systems whose evolution entails exchange of material between the two components

  19. Clusterless Decoding of Position From Multiunit Activity Using A Marked Point Process Filter

    Science.gov (United States)

    Deng, Xinyi; Liu, Daniel F.; Kay, Kenneth; Frank, Loren M.; Eden, Uri T.

    2016-01-01

    Point process filters have been applied successfully to decode neural signals and track neural dynamics. Traditionally, these methods assume that multiunit spiking activity has already been correctly spike-sorted. As a result, these methods are not appropriate for situations where sorting cannot be performed with high precision such as real-time decoding for brain-computer interfaces. As the unsupervised spike-sorting problem remains unsolved, we took an alternative approach that takes advantage of recent insights about clusterless decoding. Here we present a new point process decoding algorithm that does not require multiunit signals to be sorted into individual units. We use the theory of marked point processes to construct a function that characterizes the relationship between a covariate of interest (in this case, the location of a rat on a track) and features of the spike waveforms. In our example, we use tetrode recordings, and the marks represent a four-dimensional vector of the maximum amplitudes of the spike waveform on each of the four electrodes. In general, the marks may represent any features of the spike waveform. We then use Bayes’ rule to estimate spatial location from hippocampal neural activity. We validate our approach with a simulation study and with experimental data recorded in the hippocampus of a rat moving through a linear environment. Our decoding algorithm accurately reconstructs the rat’s position from unsorted multiunit spiking activity. We then compare the quality of our decoding algorithm to that of a traditional spike-sorting and decoding algorithm. Our analyses show that the proposed decoding algorithm performs equivalently or better than algorithms based on sorted single-unit activity. These results provide a path toward accurate real-time decoding of spiking patterns that could be used to carry out content-specific manipulations of population activity in hippocampus or elsewhere in the brain. PMID:25973549

  20. Exact performance analysis of decode-and-forward opportunistic relaying

    KAUST Repository

    Tourki, Kamel; Alouini, Mohamed-Slim; Yang, Hongchuan

    2010-01-01

    the decision to cooperate takes into account the effect of the possible erroneously detected and transmitted data at the best relay. We derive an exact closed-form expression for the end-to-end bit-error rate (BER) of binary phase-shift keying (BPSK) modulation

  1. Decoding the Nature of Emotion in the Brain.

    Science.gov (United States)

    Kragel, Philip A; LaBar, Kevin S

    2016-06-01

    A central, unresolved problem in affective neuroscience is understanding how emotions are represented in nervous system activity. After prior localization approaches largely failed, researchers began applying multivariate statistical tools to reconceptualize how emotion constructs might be embedded in large-scale brain networks. Findings from pattern analyses of neuroimaging data show that affective dimensions and emotion categories are uniquely represented in the activity of distributed neural systems that span cortical and subcortical regions. Results from multiple-category decoding studies are incompatible with theories postulating that specific emotions emerge from the neural coding of valence and arousal. This 'new look' into emotion representation promises to improve and reformulate neurobiological models of affect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Probabilistic Amplitude Shaping With Hard Decision Decoding and Staircase Codes

    Science.gov (United States)

    Sheikh, Alireza; Amat, Alexandre Graell i.; Liva, Gianluigi; Steiner, Fabian

    2018-05-01

    We consider probabilistic amplitude shaping (PAS) as a means of increasing the spectral efficiency of fiber-optic communication systems. In contrast to previous works in the literature, we consider probabilistic shaping with hard decision decoding (HDD). In particular, we apply the PAS recently introduced by B\\"ocherer \\emph{et al.} to a coded modulation (CM) scheme with bit-wise HDD that uses a staircase code as the forward error correction code. We show that the CM scheme with PAS and staircase codes yields significant gains in spectral efficiency with respect to the baseline scheme using a staircase code and a standard constellation with uniformly distributed signal points. Using a single staircase code, the proposed scheme achieves performance within $0.57$--$1.44$ dB of the corresponding achievable information rate for a wide range of spectral efficiencies.

  3. Coding and decoding for code division multiple user communication systems

    Science.gov (United States)

    Healy, T. J.

    1985-01-01

    A new algorithm is introduced which decodes code division multiple user communication signals. The algorithm makes use of the distinctive form or pattern of each signal to separate it from the composite signal created by the multiple users. Although the algorithm is presented in terms of frequency-hopped signals, the actual transmitter modulator can use any of the existing digital modulation techniques. The algorithm is applicable to error-free codes or to codes where controlled interference is permitted. It can be used when block synchronization is assumed, and in some cases when it is not. The paper also discusses briefly some of the codes which can be used in connection with the algorithm, and relates the algorithm to past studies which use other approaches to the same problem.

  4. Efficiency turns the table on neural encoding, decoding and noise.

    Science.gov (United States)

    Deneve, Sophie; Chalk, Matthew

    2016-04-01

    Sensory neurons are usually described with an encoding model, for example, a function that predicts their response from the sensory stimulus using a receptive field (RF) or a tuning curve. However, central to theories of sensory processing is the notion of 'efficient coding'. We argue here that efficient coding implies a completely different neural coding strategy. Instead of a fixed encoding model, neural populations would be described by a fixed decoding model (i.e. a model reconstructing the stimulus from the neural responses). Because the population solves a global optimization problem, individual neurons are variable, but not noisy, and have no truly invariant tuning curve or receptive field. We review recent experimental evidence and implications for neural noise correlations, robustness and adaptation. Copyright © 2016. Published by Elsevier Ltd.

  5. Brief report: decoding representations: how children with autism understand drawings.

    Science.gov (United States)

    Allen, Melissa L

    2009-03-01

    Young typically developing children can reason about abstract depictions if they know the intention of the artist. Children with autism spectrum disorder (ASD), who are notably impaired in social, 'intention monitoring' domains, may have great difficulty in decoding vague representations. In Experiment 1, children with ASD are unable to use another person's eye gaze as a cue for figuring out what an abstract picture represents. In contrast, when the participants themselves are the artists (Experiment 2), children with ASD are equally proficient as controls at identifying their own perceptually identical pictures (e.g. lollipop and balloon) after a delay, based upon what they intended them to be. Results are discussed in terms of intention and understanding of visual representation in autism.

  6. Decoding Computer Games: Studying “Special Operation 85”

    Directory of Open Access Journals (Sweden)

    Bahareh Jalalzadeh

    2009-11-01

    Full Text Available As other media, computer games convey messages which have tow features: explicit and implicit. Semiologically studying computer games and comparing them with narrative structures, the present study attempts to discover the messages they convey. Therefore we have studied and decoded “Special operation 85” as a semiological text. Results show that the game’s features, as naming, interests and motivations of the engaged people, and the events narrated, all lead the producers to their goals of introducing and publicizing Iranian-Islamic cultural values. Although this feature makes “Special Opreation 85” a unique game, it fails in its attempt to produce a mythical personage in Iranian-Islamic cultural context.

  7. Decoding a combined amplitude modulated and frequency modulated signal

    DEFF Research Database (Denmark)

    2015-01-01

    The present disclosure relates to a method for decoding a combined AM/FM encoded signal, comprising the steps of: combining said encoded optical signal with light from a local oscillator configured with a local oscillator frequency; converting the combined local oscillator and encoded optical...... signal into one or more electrical signals by means of at least one opto-electrical converter having a predefined frequency bandwidth, thereby providing an amplified and encoded electrical signal having one or more encoded signal current(s), where one type of states have a higher oscillation frequency...... than other type of states; rectifying the encoded signal current(s), thereby obtaining an encoded power spectrum, wherein said power spectrum has different states, such as "0"-states and "1"-states, with different power levels such that they can be discriminated, said local oscillator frequency...

  8. Motor-commands decoding using peripheral nerve signals: a review

    Science.gov (United States)

    Hong, Keum-Shik; Aziz, Nida; Ghafoor, Usman

    2018-06-01

    During the last few decades, substantial scientific and technological efforts have been focused on the development of neuroprostheses. The major emphasis has been on techniques for connecting the human nervous system with a robotic prosthesis via natural-feeling interfaces. The peripheral nerves provide access to highly processed and segregated neural command signals from the brain that can in principle be used to determine user intent and control muscles. If these signals could be used, they might allow near-natural and intuitive control of prosthetic limbs with multiple degrees of freedom. This review summarizes the history of neuroprosthetic interfaces and their ability to record from and stimulate peripheral nerves. We also discuss the types of interfaces available and their applications, the kinds of peripheral nerve signals that are used, and the algorithms used to decode them. Finally, we explore the prospects for future development in this area.

  9. Outage analysis of opportunistic decode-and-forward relaying

    KAUST Repository

    Tourki, Kamel

    2010-09-01

    In this paper, we investigate a dual-hop opportunistic decode-and-forward relaying scheme where the source may or not be able to communicate directly with the destination. We first derive statistics based on exact probability density function (PDF) of each hop. Then, the PDFs are used to determine closed-form outage probability expression for a transmission rate R. Furthermore, we evaluate the asymptotic outage performance and the diversity order is deduced. Unlike existing works where the analysis focused on high signal-to-noise ratio (SNR) regime, such results are important to enable the designers to take decisions regarding practical systems that operate at low SNR regime. We show that performance simulation results coincide with our analytical results under practical assumption of unbalanced hops. © 2010 IEEE.

  10. Remote Control and Testing of the Interactive TV-Decoder

    Directory of Open Access Journals (Sweden)

    K. Vlcek

    1995-12-01

    Full Text Available The article deals with assembling and application of a complex sequential circuit VHDL (VHSIC (Very High-Speed Integrated Circuit Hardware Description Language model. The circuit model is a core of a cryptographic device for the signal encoding and decoding of discreet transmissions by TV-cable net. The cryptographic algorithm is changable according to the user's wishes. The principles of creation and example implementations are presented in the article. The behavioural model is used to minimize mistakes in the ASICs (Application Specific Integrated Circuits. The circuit implementation uses the FPGA (Field Programmable Gate Array technology. The diagnostics of the circuit is based on remote testing by the IEEE Std 1149.1-1990. The VHDL model of diagnostic subsystem is created as an orthogonal model in relation to the cryptographic circuit VHDL model.

  11. Generalized instantly decodable network coding for relay-assisted networks

    KAUST Repository

    Elmahdy, Adel M.

    2013-09-01

    In this paper, we investigate the problem of minimizing the frame completion delay for Instantly Decodable Network Coding (IDNC) in relay-assisted wireless multicast networks. We first propose a packet recovery algorithm in the single relay topology which employs generalized IDNC instead of strict IDNC previously proposed in the literature for the same relay-assisted topology. This use of generalized IDNC is supported by showing that it is a super-set of the strict IDNC scheme, and thus can generate coding combinations that are at least as efficient as strict IDNC in reducing the average completion delay. We then extend our study to the multiple relay topology and propose a joint generalized IDNC and relay selection algorithm. This proposed algorithm benefits from the reception diversity of the multiple relays to further reduce the average completion delay in the network. Simulation results show that our proposed solutions achieve much better performance compared to previous solutions in the literature. © 2013 IEEE.

  12. Using Social Scientific Criteria to Evaluate Cultural Theories: Encoding/Decoding Evaluated

    Directory of Open Access Journals (Sweden)

    Evan L. Kropp

    2015-12-01

    Full Text Available This article transcends the issue of conflicting theoretical schools of thought to formulate a method of social scientific style theory evaluation for cultural studies. It is suggested that positivist social scientific models of theory critique can be used to assess cultural models of communication to determine if they should be classified as theories. A set of evaluation criteria is formulated as a guide and applied to Stuart Hall’s Encoding/Decoding to determine if it is a theory. Conclusions find the sharing of criteria between schools of thought is judicious, Encoding/Decoding fits the established criteria, and Encoding/Decoding should be referred to as a theory.

  13. Mutiple LDPC Decoding using Bitplane Correlation for Transform Domain Wyner-Ziv Video Coding

    DEFF Research Database (Denmark)

    Luong, Huynh Van; Huang, Xin; Forchhammer, Søren

    2011-01-01

    Distributed video coding (DVC) is an emerging video coding paradigm for systems which fully or partly exploit the source statistics at the decoder to reduce the computational burden at the encoder. This paper considers a Low Density Parity Check (LDPC) based Transform Domain Wyner-Ziv (TDWZ) video...... codec. To improve the LDPC coding performance in the context of TDWZ, this paper proposes a Wyner-Ziv video codec using bitplane correlation through multiple parallel LDPC decoding. The proposed scheme utilizes inter bitplane correlation to enhance the bitplane decoding performance. Experimental results...

  14. Performance Analysis of Iterative Decoding Algorithms for PEG LDPC Codes in Nakagami Fading Channels

    Directory of Open Access Journals (Sweden)

    O. Al Rasheed

    2013-11-01

    Full Text Available In this paper we give a comparative analysis of decoding algorithms of Low Density Parity Check (LDPC codes in a channel with the Nakagami distribution of the fading envelope. We consider the Progressive Edge-Growth (PEG method and Improved PEG method for the parity check matrix construction, which can be used to avoid short girths, small trapping sets and a high level of error floor. A comparative analysis of several classes of LDPC codes in various propagation conditions and decoded using different decoding algorithms is also presented.

  15. Mapping of H.264 decoding on a multiprocessor architecture

    Science.gov (United States)

    van der Tol, Erik B.; Jaspers, Egbert G.; Gelderblom, Rob H.

    2003-05-01

    Due to the increasing significance of development costs in the competitive domain of high-volume consumer electronics, generic solutions are required to enable reuse of the design effort and to increase the potential market volume. As a result from this, Systems-on-Chip (SoCs) contain a growing amount of fully programmable media processing devices as opposed to application-specific systems, which offered the most attractive solutions due to a high performance density. The following motivates this trend. First, SoCs are increasingly dominated by their communication infrastructure and embedded memory, thereby making the cost of the functional units less significant. Moreover, the continuously growing design costs require generic solutions that can be applied over a broad product range. Hence, powerful programmable SoCs are becoming increasingly attractive. However, to enable power-efficient designs, that are also scalable over the advancing VLSI technology, parallelism should be fully exploited. Both task-level and instruction-level parallelism can be provided by means of e.g. a VLIW multiprocessor architecture. To provide the above-mentioned scalability, we propose to partition the data over the processors, instead of traditional functional partitioning. An advantage of this approach is the inherent locality of data, which is extremely important for communication-efficient software implementations. Consequently, a software implementation is discussed, enabling e.g. SD resolution H.264 decoding with a two-processor architecture, whereas High-Definition (HD) decoding can be achieved with an eight-processor system, executing the same software. Experimental results show that the data communication considerably reduces up to 65% directly improving the overall performance. Apart from considerable improvement in memory bandwidth, this novel concept of partitioning offers a natural approach for optimally balancing the load of all processors, thereby further improving the

  16. Modeling task-specific neuronal ensembles improves decoding of grasp

    Science.gov (United States)

    Smith, Ryan J.; Soares, Alcimar B.; Rouse, Adam G.; Schieber, Marc H.; Thakor, Nitish V.

    2018-06-01

    Objective. Dexterous movement involves the activation and coordination of networks of neuronal populations across multiple cortical regions. Attempts to model firing of individual neurons commonly treat the firing rate as directly modulating with motor behavior. However, motor behavior may additionally be associated with modulations in the activity and functional connectivity of neurons in a broader ensemble. Accounting for variations in neural ensemble connectivity may provide additional information about the behavior being performed. Approach. In this study, we examined neural ensemble activity in primary motor cortex (M1) and premotor cortex (PM) of two male rhesus monkeys during performance of a center-out reach, grasp and manipulate task. We constructed point process encoding models of neuronal firing that incorporated task-specific variations in the baseline firing rate as well as variations in functional connectivity with the neural ensemble. Models were evaluated both in terms of their encoding capabilities and their ability to properly classify the grasp being performed. Main results. Task-specific ensemble models correctly predicted the performed grasp with over 95% accuracy and were shown to outperform models of neuronal activity that assume only a variable baseline firing rate. Task-specific ensemble models exhibited superior decoding performance in 82% of units in both monkeys (p  <  0.01). Inclusion of ensemble activity also broadly improved the ability of models to describe observed spiking. Encoding performance of task-specific ensemble models, measured by spike timing predictability, improved upon baseline models in 62% of units. Significance. These results suggest that additional discriminative information about motor behavior found in the variations in functional connectivity of neuronal ensembles located in motor-related cortical regions is relevant to decode complex tasks such as grasping objects, and may serve the basis for more

  17. The Binary Ties that Bind

    Science.gov (United States)

    Rose, Mike

    2008-01-01

    As any reader of "About Campus" knows, binary oppositions contribute to the definitions of institutional types--the trade school versus the liberal arts college, for example. They help define disciplines and subdisciplines and the status differentials among them: consider the difference in intellectual cachet as one moves from linguistics to…

  18. Optimally cloned binary coherent states

    DEFF Research Database (Denmark)

    Mueller, C. R.; Leuchs, G.; Marquardt, Ch

    2017-01-01

    their quantum-optimal clones. We analyze the Wigner function and the cumulants of the clones, and we conclude that optimal cloning of binary coherent states requires a nonlinearity above second order. We propose several practical and near-optimal cloning schemes and compare their cloning fidelity to the optimal...

  19. Subluminous X-ray binaries

    NARCIS (Netherlands)

    Armas Padilla, M.

    2013-01-01

    The discovery of the first X-ray binary, Scorpius X-1, by Giacconi et al. (1962), marked the birth of X-ray astronomy. Following that discovery, many additional X-ray sources where found with the first generation of X-ray rockets and observatories (e.g., UHURU and Einstein). The short-timescale

  20. Misclassification in binary choice models

    Czech Academy of Sciences Publication Activity Database

    Meyer, B. D.; Mittag, Nikolas

    2017-01-01

    Roč. 200, č. 2 (2017), s. 295-311 ISSN 0304-4076 R&D Projects: GA ČR(CZ) GJ16-07603Y Institutional support: Progres-Q24 Keywords : measurement error * binary choice models * program take-up Subject RIV: AH - Economics OBOR OECD: Economic Theory Impact factor: 1.633, year: 2016

  1. Misclassification in binary choice models

    Czech Academy of Sciences Publication Activity Database

    Meyer, B. D.; Mittag, Nikolas

    2017-01-01

    Roč. 200, č. 2 (2017), s. 295-311 ISSN 0304-4076 Institutional support: RVO:67985998 Keywords : measurement error * binary choice models * program take-up Subject RIV: AH - Economics OBOR OECD: Economic Theory Impact factor: 1.633, year: 2016

  2. Binary logic is rich enough

    International Nuclear Information System (INIS)

    Zapatrin, R.R.

    1992-01-01

    Given a finite ortholattice L, the *-semigroup is explicitly built whose annihilator ortholattice is isomorphic to L. Thus, it is shown that any finite quantum logic is the additive part of a binary logic. Some areas of possible applications are outlined. 7 refs

  3. Astronomy of binary and multiple stars

    International Nuclear Information System (INIS)

    Tokovinin, A.A.

    1984-01-01

    Various types of binary stars and methods for their observation are described in a popular form. Some models of formation and evolution of binary and multiple star systems are presented. It is concluded that formation of binary and multiple stars is a regular stage in the process of star production

  4. Coevolution of Binaries and Circumbinary Gaseous Disks

    Science.gov (United States)

    Fleming, David; Quinn, Thomas R.

    2018-04-01

    The recent discoveries of circumbinary planets by Kepler raise questions for contemporary planet formation models. Understanding how these planets form requires characterizing their formation environment, the circumbinary protoplanetary disk, and how the disk and binary interact. The central binary excites resonances in the surrounding protoplanetary disk that drive evolution in both the binary orbital elements and in the disk. To probe how these interactions impact both binary eccentricity and disk structure evolution, we ran N-body smooth particle hydrodynamics (SPH) simulations of gaseous protoplanetary disks surrounding binaries based on Kepler 38 for 10^4 binary orbital periods for several initial binary eccentricities. We find that nearly circular binaries weakly couple to the disk via a parametric instability and excite disk eccentricity growth. Eccentric binaries strongly couple to the disk causing eccentricity growth for both the disk and binary. Disks around sufficiently eccentric binaries strongly couple to the disk and develop an m = 1 spiral wave launched from the 1:3 eccentric outer Lindblad resonance (EOLR). This wave corresponds to an alignment of gas particle longitude of periastrons. We find that in all simulations, the binary semi-major axis decays due to dissipation from the viscous disk.

  5. Formation and evolution of compact binaries

    NARCIS (Netherlands)

    Sluijs, Marcel Vincent van der

    2006-01-01

    In this thesis we investigate the formation and evolution of compact binaries. Chapters 2 through 4 deal with the formation of luminous, ultra-compact X-ray binaries in globular clusters. We show that the proposed scenario of magnetic capture produces too few ultra-compact X-ray binaries to explain

  6. Multiple-Symbol Decision-Feedback Space-Time Differential Decoding in Fading Channels

    Directory of Open Access Journals (Sweden)

    Wang Xiaodong

    2002-01-01

    Full Text Available Space-time differential coding (STDC is an effective technique for exploiting transmitter diversity while it does not require the channel state information at the receiver. However, like conventional differential modulation schemes, it exhibits an error floor in fading channels. In this paper, we develop an STDC decoding technique based on multiple-symbol detection and decision-feedback, which makes use of the second-order statistic of the fading processes and has a very low computational complexity. This decoding method can significantly lower the error floor of the conventional STDC decoding algorithm, especially in fast fading channels. The application of the proposed multiple-symbol decision-feedback STDC decoding technique in orthogonal frequency-division multiplexing (OFDM system is also discussed.

  7. Contribution of correlated noise and selective decoding to choice probability measurements in extrastriate visual cortex.

    Science.gov (United States)

    Gu, Yong; Angelaki, Dora E; DeAngelis, Gregory C

    2014-07-01

    Trial by trial covariations between neural activity and perceptual decisions (quantified by choice Probability, CP) have been used to probe the contribution of sensory neurons to perceptual decisions. CPs are thought to be determined by both selective decoding of neural activity and by the structure of correlated noise among neurons, but the respective roles of these factors in creating CPs have been controversial. We used biologically-constrained simulations to explore this issue, taking advantage of a peculiar pattern of CPs exhibited by multisensory neurons in area MSTd that represent self-motion. Although models that relied on correlated noise or selective decoding could both account for the peculiar pattern of CPs, predictions of the selective decoding model were substantially more consistent with various features of the neural and behavioral data. While correlated noise is essential to observe CPs, our findings suggest that selective decoding of neuronal signals also plays important roles.

  8. A reduced complexity highly power/bandwidth efficient coded FQPSK system with iterative decoding

    Science.gov (United States)

    Simon, M. K.; Divsalar, D.

    2001-01-01

    Based on a representation of FQPSK as a trellis-coded modulation, this paper investigates the potential improvement in power efficiency obtained from the application of simple outer codes to form a concatenated coding arrangement with iterative decoding.

  9. Feature reconstruction of LFP signals based on PLSR in the neural information decoding study.

    Science.gov (United States)

    Yonghui Dong; Zhigang Shang; Mengmeng Li; Xinyu Liu; Hong Wan

    2017-07-01

    To solve the problems of Signal-to-Noise Ratio (SNR) and multicollinearity when the Local Field Potential (LFP) signals is used for the decoding of animal motion intention, a feature reconstruction of LFP signals based on partial least squares regression (PLSR) in the neural information decoding study is proposed in this paper. Firstly, the feature information of LFP coding band is extracted based on wavelet transform. Then the PLSR model is constructed by the extracted LFP coding features. According to the multicollinearity characteristics among the coding features, several latent variables which contribute greatly to the steering behavior are obtained, and the new LFP coding features are reconstructed. Finally, the K-Nearest Neighbor (KNN) method is used to classify the reconstructed coding features to verify the decoding performance. The results show that the proposed method can achieve the highest accuracy compared to the other three methods and the decoding effect of the proposed method is robust.

  10. The Treeterbi and Parallel Treeterbi algorithms: efficient, optimal decoding for ordinary, generalized and pair HMMs

    DEFF Research Database (Denmark)

    Keibler, Evan; Arumugam, Manimozhiyan; Brent, Michael R

    2007-01-01

    MOTIVATION: Hidden Markov models (HMMs) and generalized HMMs been successfully applied to many problems, but the standard Viterbi algorithm for computing the most probable interpretation of an input sequence (known as decoding) requires memory proportional to the length of the sequence, which can...... be prohibitive. Existing approaches to reducing memory usage either sacrifice optimality or trade increased running time for reduced memory. RESULTS: We developed two novel decoding algorithms, Treeterbi and Parallel Treeterbi, and implemented them in the TWINSCAN/N-SCAN gene-prediction system. The worst case...... asymptotic space and time are the same as for standard Viterbi, but in practice, Treeterbi optimally decodes arbitrarily long sequences with generalized HMMs in bounded memory without increasing running time. Parallel Treeterbi uses the same ideas to split optimal decoding across processors, dividing latency...

  11. Encoding and decoding of digital spiral imaging based on bidirectional transformation of light's spatial eigenmodes.

    Science.gov (United States)

    Zhang, Wuhong; Chen, Lixiang

    2016-06-15

    Digital spiral imaging has been demonstrated as an effective optical tool to encode optical information and retrieve topographic information of an object. Here we develop a conceptually new and concise scheme for optical image encoding and decoding toward free-space digital spiral imaging. We experimentally demonstrate that the optical lattices with ℓ=±50 orbital angular momentum superpositions and a clover image with nearly 200 Laguerre-Gaussian (LG) modes can be well encoded and successfully decoded. It is found that an image encoded/decoded with a two-index LG spectrum (considering both azimuthal and radial indices, ℓ and p) possesses much higher fidelity than that with a one-index LG spectrum (only considering the ℓ index). Our work provides an alternative tool for the image encoding/decoding scheme toward free-space optical communications.

  12. Application of MTR soft-decision decoding in multiple-head ...

    Indian Academy of Sciences (India)

    basic MTR logic circuits, and to develop, a new one, the soft-decision MTR decoder, based on such ... of integrated circuits provides their quite simple realization. ..... recording channels, PSU-UNS International Conference on Engineering and ...

  13. Optimal coding-decoding for systems controlled via a communication channel

    Science.gov (United States)

    Yi-wei, Feng; Guo, Ge

    2013-12-01

    In this article, we study the problem of controlling plants over a signal-to-noise ratio (SNR) constrained communication channel. Different from previous research, this article emphasises the importance of the actual channel model and coder/decoder in the study of network performance. Our major objectives include coder/decoder design for an additive white Gaussian noise (AWGN) channel with both standard network configuration and Youla parameter network architecture. We find that the optimal coder and decoder can be realised for different network configuration. The results are useful in determining the minimum channel capacity needed in order to stabilise plants over communication channels. The coder/decoder obtained can be used to analyse the effect of uncertainty on the channel capacity. An illustrative example is provided to show the effectiveness of the results.

  14. Multiformat decoder for a DSP-based IP set-top box

    Science.gov (United States)

    Pescador, F.; Garrido, M. J.; Sanz, C.; Juárez, E.; Samper, D.; Antoniello, R.

    2007-05-01

    Internet Protocol Set-Top Boxes (IP STBs) based on single-processor architectures have been recently introduced in the market. In this paper, the implementation of an MPEG-4 SP/ASP video decoder for a multi-format IP STB based on a TMS320DM641 DSP is presented. An initial decoder for PC platform was fully tested and ported to the DSP. Using this code an optimization process was started achieving a 90% speedup. This process allows real-time MPEG-4 SP/ASP decoding. The MPEG-4 decoder has been integrated in an IP STB and tested in a real environment using DVD movies and TV channels with excellent results.

  15. DS-OCDMA Encoder/Decoder Performance Analysis Using Optical Low-Coherence Reflectometry

    Science.gov (United States)

    Fsaifes, Ihsan; Lepers, Catherine; Obaton, Anne-Francoise; Gallion, Philippe

    2006-08-01

    Direct-sequence optical code-division multiple-access (DS-OCDMA) encoder/decoder based on sampled fiber Bragg gratings (S-FBGs) is characterized using phase-sensitive optical low-coherence reflectometry (OLCR). The OLCR technique allows localized measurements of FBG wavelength and physical length inside one S-FBG. This paper shows how the discrepancies between specifications and measurements of the different FBGs have some impact on spectral and temporal pulse responses of the OCDMA encoder/decoder. The FBG physical lengths lower than the specified ones are shown to affect the mean optical power reflected by the OCDMA encoder/decoder. The FBG wavelengths that are detuned from each other induce some modulations of S-FBG reflectivity resulting in encoder/decoder sensitivity to laser wavelength drift of the OCDMA system. Finally, highlighted by this OLCR study, some solutions to overcome limitations in performance with the S-FBG technology are suggested.

  16. Identifying musical pieces from fMRI data using encoding and decoding models.

    Science.gov (United States)

    Hoefle, Sebastian; Engel, Annerose; Basilio, Rodrigo; Alluri, Vinoo; Toiviainen, Petri; Cagy, Maurício; Moll, Jorge

    2018-02-02

    Encoding models can reveal and decode neural representations in the visual and semantic domains. However, a thorough understanding of how distributed information in auditory cortices and temporal evolution of music contribute to model performance is still lacking in the musical domain. We measured fMRI responses during naturalistic music listening and constructed a two-stage approach that first mapped musical features in auditory cortices and then decoded novel musical pieces. We then probed the influence of stimuli duration (number of time points) and spatial extent (number of voxels) on decoding accuracy. Our approach revealed a linear increase in accuracy with duration and a point of optimal model performance for the spatial extent. We further showed that Shannon entropy is a driving factor, boosting accuracy up to 95% for music with highest information content. These findings provide key insights for future decoding and reconstruction algorithms and open new venues for possible clinical applications.

  17. SWIPT in Multiuser MIMO Decode-and-Forward Relay Broadcasting Channel with Energy Harvesting Relays

    KAUST Repository

    Benkhelifa, Fatma; Salem, Ahmed Sultan; Alouini, Mohamed-Slim

    2017-01-01

    In this paper, we consider a multiuser multiple- input multiple-output (MIMO) decode-and-forward (DF) relay broadcasting channel (BC) with single source, multiple energy harvesting relays and multiple destinations. Since the end-to-end sum rate

  18. Simultaneous Wireless Information and Power Transfer for Decode-and-Forward MIMO Relay Communication Systems

    KAUST Repository

    Benkhelifa, Fatma; Salem, Ahmed Sultan; Alouini, Mohamed-Slim

    2015-01-01

    scenario where both the energy harvesting (EH) receiver and information decoding (ID) receiver at the relay have access to the whole received signal and its energy. The relay harvests the energy while receiving the signal from the source and uses

  19. Hadamard upper bound on optimum joint decoding capacity of Wyner Gaussian cellular MAC

    KAUST Repository

    Shakir, Muhammad; Durrani, Tariq S; Alouini, Mohamed-Slim

    2011-01-01

    demonstrates that the analytical HUB based on the proposed approximation approach converges to the theoretical upper bound results in the medium to high signal to noise ratio regime and shows a reasonably tighter bound on optimum joint decoding capacity

  20. Nonlinear detection for a high rate extended binary phase shift keying system.

    Science.gov (United States)

    Chen, Xian-Qing; Wu, Le-Nan

    2013-03-28

    The algorithm and the results of a nonlinear detector using a machine learning technique called support vector machine (SVM) on an efficient modulation system with high data rate and low energy consumption is presented in this paper. Simulation results showed that the performance achieved by the SVM detector is comparable to that of a conventional threshold decision (TD) detector. The two detectors detect the received signals together with the special impacting filter (SIF) that can improve the energy utilization efficiency. However, unlike the TD detector, the SVM detector concentrates not only on reducing the BER of the detector, but also on providing accurate posterior probability estimates (PPEs), which can be used as soft-inputs of the LDPC decoder. The complexity of this detector is considered in this paper by using four features and simplifying the decision function. In addition, a bandwidth efficient transmission is analyzed with both SVM and TD detector. The SVM detector is more robust to sampling rate than TD detector. We find that the SVM is suitable for extended binary phase shift keying (EBPSK) signal detection and can provide accurate posterior probability for LDPC decoding.