WorldWideScience

Sample records for binary interaction classes

  1. Interacting binaries

    International Nuclear Information System (INIS)

    Eggleton, P.P.; Pringle, J.E.

    1985-01-01

    This volume contains 15 review articles in the field of binary stars. The subjects reviewed span considerably, from the shortest period of interacting binaries to the longest, symbiotic stars. Also included are articles on Algols, X-ray binaries and Wolf-Rayet stars (single and binary). Contents: Preface. List of Participants. Activity of Contact Binary Systems. Wolf-Rayet Stars and Binarity. Symbiotic Stars. Massive X-ray Binaries. Stars that go Hump in the Night: The SU UMa Stars. Interacting Binaries - Summing Up

  2. Interacting binaries

    CERN Document Server

    Shore, S N; van den Heuvel, EPJ

    1994-01-01

    This volume contains lecture notes presented at the 22nd Advanced Course of the Swiss Society for Astrophysics and Astronomy. The contributors deal with symbiotic stars, cataclysmic variables, massive binaries and X-ray binaries, in an attempt to provide a better understanding of stellar evolution.

  3. Interacting binary stars

    CERN Document Server

    Sahade, Jorge; Ter Haar, D

    1978-01-01

    Interacting Binary Stars deals with the development, ideas, and problems in the study of interacting binary stars. The book consolidates the information that is scattered over many publications and papers and gives an account of important discoveries with relevant historical background. Chapters are devoted to the presentation and discussion of the different facets of the field, such as historical account of the development in the field of study of binary stars; the Roche equipotential surfaces; methods and techniques in space astronomy; and enumeration of binary star systems that are studied

  4. Mass loss from interacting close binary systems

    Science.gov (United States)

    Plavec, M. J.

    1981-01-01

    The three well-defined classes of evolved binary systems that show evidence of present and/or past mass loss are the cataclysmic variables, the Algols, and Wolf-Rayet stars. It is thought that the transformation of supergiant binary systems into the very short-period cataclysmic variables must have been a complex process. The new evidence that has recently been obtained from the far ultraviolet spectra that a certain subclass of the Algols (the Serpentids) are undergoing fairly rapid evolution is discussed. It is thought probable that the remarkable mass outflow observed in them is connected with a strong wind powered by accretion. The origin of the circumbinary clouds or flat disks that probably surround many strongly interacting binaries is not clear. Attention is also given to binary systems with hot white dwarf or subdwarf components, such as the symbiotic objects and the BQ stars; it is noted that in them both components may be prone to an enhanced stellar wind.

  5. Instabilities in Interacting Binary Stars

    Science.gov (United States)

    Andronov, I. L.; Andrych, K. D.; Antoniuk, K. A.; Baklanov, A. V.; Beringer, P.; Breus, V. V.; Burwitz, V.; Chinarova, L. L.; Chochol, D.; Cook, L. M.; Cook, M.; Dubovský, P.; Godlowski, W.; Hegedüs, T.; Hoňková, K.; Hric, L.; Jeon, Y.-B.; Juryšek, J.; Kim, C.-H.; Kim, Y.; Kim, Y.-H.; Kolesnikov, S. V.; Kudashkina, L. S.; Kusakin, A. V.; Marsakova, V. I.; Mason, P. A.; Mašek, M.; Mishevskiy, N.; Nelson, R. H.; Oksanen, A.; Parimucha, S.; Park, J.-W.; Petrík, K.; Quiñones, C.; Reinsch, K.; Robertson, J. W.; Sergey, I. M.; Szpanko, M.; Tkachenko, M. G.; Tkachuk, L. G.; Traulsen, I.; Tremko, J.; Tsehmeystrenko, V. S.; Yoon, J.-N.; Zola, S.; Shakhovskoy, N. M.

    2017-07-01

    The types of instability in the interacting binary stars are briefly reviewed. The project “Inter-Longitude Astronomy” is a series of smaller projects on concrete stars or groups of stars. It has no special funds, and is supported from resources and grants of participating organizations, when informal working groups are created. This “ILA” project is in some kind similar and complementary to other projects like WET, CBA, UkrVO, VSOLJ, BRNO, MEDUZA, AstroStatistics, where many of us collaborate. Totally we studied 1900+ variable stars of different types, including newly discovered variables. The characteristic timescale is from seconds to decades and (extrapolating) even more. The monitoring of the first star of our sample AM Her was initiated by Prof. V.P. Tsesevich (1907-1983). Since more than 358 ADS papers were published. In this short review, we present some highlights of our photometric and photo-polarimetric monitoring and mathematical modeling of interacting binary stars of different types: classical (AM Her, QQ Vul, V808 Aur = CSS 081231:071126+440405, FL Cet), asynchronous (BY Cam, V1432 Aql), intermediate (V405 Aql, BG CMi, MU Cam, V1343 Her, FO Aqr, AO Psc, RXJ 2123, 2133, 0636, 0704) polars and magnetic dwarf novae (DO Dra) with 25 timescales corresponding to different physical mechanisms and their combinations (part “Polar”); negative and positive superhumpers in nova-like (TT Ari, MV Lyr, V603 Aql, V795 Her) and many dwarf novae stars (“Superhumper”); eclipsing “non-magnetic” cataclysmic variables(BH Lyn, DW UMa, EM Cyg; PX And); symbiotic systems (“Symbiosis”); super-soft sources (SSS, QR And); spotted (and not spotted) eclipsing variables with (and without) evidence for a current mass transfer (“Eclipser”) with a special emphasis on systems with a direct impact of the stream into the gainer star's atmosphere, which we propose to call “Impactor” (short from “Extreme Direct Impactor”), or V361 Lyr-type stars. Other

  6. Some thoughts on interacting binary systems

    International Nuclear Information System (INIS)

    Ulrich, R.K.

    1980-01-01

    The author presents some thoughts on the theory and observation of interacting binary systems. The complex physical processes possible in these systems make our present understanding inconclusive. New types of observation (X-ray, EUV, radio) present new challenges to the theoretician. The author discusses those problems which seem to hold the most promise for future progress. (Auth.)

  7. Binary Stochastic Representations for Large Multi-class Classification

    KAUST Repository

    Gerald, Thomas

    2017-10-23

    Classification with a large number of classes is a key problem in machine learning and corresponds to many real-world applications like tagging of images or textual documents in social networks. If one-vs-all methods usually reach top performance in this context, these approaches suffer of a high inference complexity, linear w.r.t. the number of categories. Different models based on the notion of binary codes have been proposed to overcome this limitation, achieving in a sublinear inference complexity. But they a priori need to decide which binary code to associate to which category before learning using more or less complex heuristics. We propose a new end-to-end model which aims at simultaneously learning to associate binary codes with categories, but also learning to map inputs to binary codes. This approach called Deep Stochastic Neural Codes (DSNC) keeps the sublinear inference complexity but do not need any a priori tuning. Experimental results on different datasets show the effectiveness of the approach w.r.t. baseline methods.

  8. TIDAL INTERACTIONS IN MERGING WHITE DWARF BINARIES

    International Nuclear Information System (INIS)

    Piro, Anthony L.

    2011-01-01

    The recently discovered system J0651 is the tightest known detached white dwarf (WD) binary. Since it has not yet initiated Roche-lobe overflow, it provides a relatively clean environment for testing our understanding of tidal interactions. I investigate the tidal heating of each WD, parameterized in terms of its tidal Q parameter. Assuming that the heating can be radiated efficiently, the current luminosities are consistent with Q 1 ∼ 7 x 10 10 and Q 2 ∼ 2 x 10 7 , for the He and C/O WDs, respectively. Conversely, if the observed luminosities are merely from the cooling of the WDs, these estimated values of Q represent the upper limits. A large Q 1 for the He WD means its spin velocity will be slower than that expected if it was tidally locked, which, since the binary is eclipsing, may be measurable via the Rossiter-McLaughlin effect. After one year, gravitational wave emission shifts the time of eclipses by 5.5 s, but tidal interactions cause the orbit to shrink more rapidly, changing the time by up to an additional 0.3 s after a year. Future eclipse timing measurements may therefore infer the degree of tidal locking.

  9. OGLE II Eclipsing Binaries In The LMC: Analysis With Class

    Science.gov (United States)

    Devinney, Edward J.; Prsa, A.; Guinan, E. F.; DeGeorge, M.

    2011-01-01

    The Eclipsing Binaries (EBs) via Artificial Intelligence (EBAI) Project is applying machine learning techniques to elucidate the nature of EBs. Previously, Prsa, et al. applied artificial neural networks (ANNs) trained on physically-realistic Wilson-Devinney models to solve the light curves of the 1882 detached EBs in the LMC discovered by the OGLE II Project (Wyrzykowski, et al.) fully automatically, bypassing the need for manually-derived starting solutions. A curious result is the non-monotonic distribution of the temperature ratio parameter T2/T1, featuring a subsidiary peak noted previously by Mazeh, et al. in an independent analysis using the EBOP EB solution code (Tamuz, et al.). To explore this and to gain a fuller understanding of the multivariate EBAI LMC observational plus solutions data, we have employed automatic clustering and advanced visualization (CAV) techniques. Clustering the OGLE II data aggregates objects that are similar with respect to many parameter dimensions. Measures of similarity for example, could include the multidimensional Euclidean Distance between data objects, although other measures may be appropriate. Applying clustering, we find good evidence that the T2/T1 subsidiary peak is due to evolved binaries, in support of Mazeh et al.'s speculation. Further, clustering suggests that the LMC detached EBs occupying the main sequence region belong to two distinct classes. Also identified as a separate cluster in the multivariate data are stars having a Period-I band relation. Derekas et al. had previously found a Period-K band relation for LMC EBs discovered by the MACHO Project (Alcock, et al.). We suggest such CAV techniques will prove increasingly useful for understanding the large, multivariate datasets increasingly being produced in astronomy. We are grateful for the support of this research from NSF/RUI Grant AST-05-75042 f.

  10. WIYN Open Cluster Study: Tidal Interactions in Solar type Binaries

    OpenAIRE

    Meibom, S.; Mathieu, R. D.

    2003-01-01

    We present an ongoing study on tidal interactions in late-type close binary stars. New results on tidal circularization are combined with existing data to test and constrain theoretical predictions of tidal circularization in the pre-main-sequence (PMS) phase and throughout the main-sequence phase of stellar evolution. Current data suggest that tidal circularization during the PMS phase sets the tidal cutoff period for binary populations younger than ~1 Gyr. Binary populations older than ~1 G...

  11. Tidal and magnetic interactions in close binary stars

    International Nuclear Information System (INIS)

    Campbell, C.G.

    1983-03-01

    The thesis investigates the nature of non-synchronous motions in members of close binary stars under the influence of gravitational and magnetic fields existing in these systems, and the evolution of such motions in different classes of binaries. Largely convective stars are considered and a solution is found for the fluid flow associated with the non-synchronous rotation of such a secondary in a close binary system, taking tidal and rotational forces into account. The tidal velocity field is calculated for a low mass white dwarf secondary star in a twin - degenerate binary. It is found that the synchronisation times can be comparable to the lifetime of the binary so that some asynchronism may remain present. (U.K.)

  12. PatternCoder: A Programming Support Tool for Learning Binary Class Associations and Design Patterns

    Science.gov (United States)

    Paterson, J. H.; Cheng, K. F.; Haddow, J.

    2009-01-01

    PatternCoder is a software tool to aid student understanding of class associations. It has a wizard-based interface which allows students to select an appropriate binary class association or design pattern for a given problem. Java code is then generated which allows students to explore the way in which the class associations are implemented in a…

  13. HD 161306: a radiatively interacting Be binary?

    Czech Academy of Sciences Publication Activity Database

    Koubský, Pavel; Kotková, Lenka; Kraus, Michaela; Yang, S.; Šlechta, Miroslav; Harmanec, P.; Wolf, M.; Votruba, Viktor; Kubát, Jiří; Kubátová, Brankica; Niemczura, E.; Škoda, Petr

    2014-01-01

    Roč. 567, July (2014), A57/1-A57/4 ISSN 0004-6361 R&D Projects: GA ČR(CZ) GA14-21373S; GA MŠk LG14026 Grant - others:ESA(XE) ESA- PECS project no. 98058; GA ČR(CZ) GAP209/10/0715 Program:GA Institutional support: RVO:67985815 Keywords : binaries: spectroscopic * stars: emission-line * Be: stars Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  14. Topology of black hole binary-single interactions

    Science.gov (United States)

    Samsing, Johan; Ilan, Teva

    2018-05-01

    We present a study on how the outcomes of binary-single interactions involving three black holes (BHs) distribute as a function of the initial conditions; a distribution we refer to as the topology. Using a N-body code that includes BH finite sizes and gravitational wave (GW) emission in the equation of motion (EOM), we perform more than a million binary-single interactions to explore the topology of both the Newtonian limit and the limit at which general relativistic (GR) effects start to become important. From these interactions, we are able to describe exactly under which conditions BH collisions and eccentric GW capture mergers form, as well as how GR in general modifies the Newtonian topology. This study is performed on both large- and microtopological scales. We further describe how the inclusion of GW emission in the EOM naturally leads to scenarios where the binary-single system undergoes two successive GW mergers.

  15. Evaluation of self-interaction parameters from binary phase diagrams

    International Nuclear Information System (INIS)

    Ellison, T.L.

    1977-10-01

    The feasibility of calculating Wagner self-interaction parameters from binary phase diagrams was examined. The self-interaction parameters of 22 non-ferrous liquid solutions were calculated utilizing an equation based on the equality of the chemical potentials of a component in two equilibrium phases. Utilization of the equation requires the evaluation of the first and second derivatives of various liquidus and solidus data at infinite dilution of the solute component. Several numerical methods for evaluating the derivatives of tabular data were examined. A method involving power series curve fitting and subsequent differentiation of the power series was found to be the most suitable for the interaction parameter calculations. Comparison of the calculated self-interaction parameters with values obtained from thermodynamic measurements indicates that the Wagner self-interaction parameter can be successfully calculated from binary phase diagrams

  16. Universality Classes of Interaction Structures for NK Fitness Landscapes

    Science.gov (United States)

    Hwang, Sungmin; Schmiegelt, Benjamin; Ferretti, Luca; Krug, Joachim

    2018-02-01

    Kauffman's NK-model is a paradigmatic example of a class of stochastic models of genotypic fitness landscapes that aim to capture generic features of epistatic interactions in multilocus systems. Genotypes are represented as sequences of L binary loci. The fitness assigned to a genotype is a sum of contributions, each of which is a random function defined on a subset of k ≤ L loci. These subsets or neighborhoods determine the genetic interactions of the model. Whereas earlier work on the NK model suggested that most of its properties are robust with regard to the choice of neighborhoods, recent work has revealed an important and sometimes counter-intuitive influence of the interaction structure on the properties of NK fitness landscapes. Here we review these developments and present new results concerning the number of local fitness maxima and the statistics of selectively accessible (that is, fitness-monotonic) mutational pathways. In particular, we develop a unified framework for computing the exponential growth rate of the expected number of local fitness maxima as a function of L, and identify two different universality classes of interaction structures that display different asymptotics of this quantity for large k. Moreover, we show that the probability that the fitness landscape can be traversed along an accessible path decreases exponentially in L for a large class of interaction structures that we characterize as locally bounded. Finally, we discuss the impact of the NK interaction structures on the dynamics of evolution using adaptive walk models.

  17. Binary Stochastic Representations for Large Multi-class Classification

    KAUST Repository

    Gerald, Thomas; Baskiotis, Nicolas; Denoyer, Ludovic

    2017-01-01

    Classification with a large number of classes is a key problem in machine learning and corresponds to many real-world applications like tagging of images or textual documents in social networks. If one-vs-all methods usually reach top performance

  18. SMA OBSERVATIONS OF CLASS 0 PROTOSTARS: A HIGH ANGULAR RESOLUTION SURVEY OF PROTOSTELLAR BINARY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xuepeng [Purple Mountain Observatory, Chinese Academy of Sciences, 2 West Beijing Road, Nanjing 210008 (China); Arce, Hector G.; Dunham, Michael M. [Department of Astronomy, Yale University, Box 208101, New Haven, CT 06520-8101 (United States); Zhang Qizhou; Bourke, Tyler L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Launhardt, Ralf; Henning, Thomas [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Jorgensen, Jes K. [Niels Bohr Institute and Centre for Star and Planet Formation, Copenhagen University, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Lee, Chin-Fei [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Foster, Jonathan B. [Institute for Astrophysical Research, Boston University, Boston, MA 02215 (United States); Pineda, Jaime E., E-mail: xpchen@pmo.ac.cn, E-mail: xuepeng.chen@yale.edu [ESO, Karl Schwarzschild Str. 2, D-85748 Garching bei Munchen (Germany)

    2013-05-10

    We present high angular resolution 1.3 mm and 850 {mu}m dust continuum data obtained with the Submillimeter Array toward 33 Class 0 protostars in nearby clouds (distance < 500 pc), which represents so far the largest survey toward protostellar binary/multiple systems. The median angular resolution in the survey is 2.''5, while the median linear resolution is approximately 600 AU. Compact dust continuum emission is observed from all sources in the sample. Twenty-one sources in the sample show signatures of binarity/multiplicity, with separations ranging from 50 AU to 5000 AU. The numbers of singles, binaries, triples, and quadruples in the sample are 12, 14, 5, and 2, respectively. The derived multiplicity frequency (MF) and companion star fraction (CSF) for Class 0 protostars are 0.64 {+-} 0.08 and 0.91 {+-} 0.05, respectively, with no correction for completeness. The derived MF and CSF in this survey are approximately two times higher than the values found in the binary surveys toward Class I young stellar objects, and approximately three (for MF) and four (for CSF) times larger than the values found among main-sequence stars, with a similar range of separations. Furthermore, the observed fraction of high-order multiple systems to binary systems in Class 0 protostars (0.50 {+-} 0.09) is also larger than the fractions found in Class I young stellar objects (0.31 {+-} 0.07) and main-sequence stars ({<=}0.2). These results suggest that binary properties evolve as protostars evolve, as predicted by numerical simulations. The distribution of separations for Class 0 protostellar binary/multiple systems shows a general trend in which CSF increases with decreasing companion separation. We find that 67% {+-} 8% of the protobinary systems have circumstellar mass ratios below 0.5, implying that unequal-mass systems are preferred in the process of binary star formation. We suggest an empirical sequential fragmentation picture for binary star formation, based on this

  19. Stellar binary black holes in the LISA band: a new class of standard sirens

    Science.gov (United States)

    Del Pozzo, Walter; Sesana, Alberto; Klein, Antoine

    2018-04-01

    The recent Advanced LIGO detections of coalescing black hole binaries (BHBs) imply a large population of such systems emitting at milli-Hz frequencies, accessible to the Laser Interferometer Space Antenna (LISA). We show that these systems provide a new class of cosmological standard sirens. Direct LISA luminosity distance - Dl - measurements, combined with the inhomogeneous redshift - z - distribution of possible host galaxies provide an effective way to populate the Dl-z diagram at z arm-length, respectively.

  20. Next-Generation Sequencing for Binary Protein-Protein Interactions

    Directory of Open Access Journals (Sweden)

    Bernhard eSuter

    2015-12-01

    Full Text Available The yeast two-hybrid (Y2H system exploits host cell genetics in order to display binary protein-protein interactions (PPIs via defined and selectable phenotypes. Numerous improvements have been made to this method, adapting the screening principle for diverse applications, including drug discovery and the scale-up for proteome wide interaction screens in human and other organisms. Here we discuss a systematic workflow and analysis scheme for screening data generated by Y2H and related assays that includes high-throughput selection procedures, readout of comprehensive results via next-generation sequencing (NGS, and the interpretation of interaction data via quantitative statistics. The novel assays and tools will serve the broader scientific community to harness the power of NGS technology to address PPI networks in health and disease. We discuss examples of how this next-generation platform can be applied to address specific questions in diverse fields of biology and medicine.

  1. A Novel Design of 4-Class BCI Using Two Binary Classifiers and Parallel Mental Tasks

    Directory of Open Access Journals (Sweden)

    Tao Geng

    2008-01-01

    Full Text Available A novel 4-class single-trial brain computer interface (BCI based on two (rather than four or more binary linear discriminant analysis (LDA classifiers is proposed, which is called a “parallel BCI.” Unlike other BCIs where mental tasks are executed and classified in a serial way one after another, the parallel BCI uses properly designed parallel mental tasks that are executed on both sides of the subject body simultaneously, which is the main novelty of the BCI paradigm used in our experiments. Each of the two binary classifiers only classifies the mental tasks executed on one side of the subject body, and the results of the two binary classifiers are combined to give the result of the 4-class BCI. Data was recorded in experiments with both real movement and motor imagery in 3 able-bodied subjects. Artifacts were not detected or removed. Offline analysis has shown that, in some subjects, the parallel BCI can generate a higher accuracy than a conventional 4-class BCI, although both of them have used the same feature selection and classification algorithms.

  2. The Interactive Class of SFL for seniors

    Directory of Open Access Journals (Sweden)

    Julia E. Pérez-Naranjo

    2017-06-01

    Full Text Available The intention of this article is to reflect on the potential of the interactive class for E/LE (Spanish as Foreign Language learning by older adults, inserted in the courses offered by the Universidad de Oriente. Older people request the service mainly as an instrumental need: to learn the language in order to cover basic communication needs in personal, educational and public areas. Teaching programs are designed from the guidelines of the Common European Framework of Reference for Language, the Curricular Plan of Cervantes Institute and the contributions of Cuban pedagogy. Interactive class is assumed for the prospects it offered to enhance learning, being a developer process through which cooperation and empathy is encouraged, participation is energized and the tension is reduced when errors take place. This purpose is achieved gradually and patiently, attending to the psychosocial characteristics of the person concerned and the psychopedagogical intervention.

  3. COMMUNICATION AND INTERACTION IN ART CLASSES

    Directory of Open Access Journals (Sweden)

    Maja Hrvanović

    2014-04-01

    Full Text Available Numerous indicators affect communication and interaction in art classes. For every teacher, as pedagogue, his successful educational activity is very important as some indicators influence the two-way exchange of information in art classes. Teaching art is very specific way of teaching process, because it is mostly based on exchange of visual information of artistic type which represents a special form of communication. The specificity of artistic information, way of acting on the viewer and intense emotional charge in the process of communication should be used as visual stimulus. The richness of imagery, stimulation of reality, abstraction and other cognitive processes in art classes experientially and visually improve students’ awareness and should be represented and diversified by origin and multiplied by quantity. The research paper aims to demonstrate the importance of connectivity between judgment of taste and ability to evaluate the quality of the work of art in art and non-art schools. Teaching and education in art classes is being realized precisely inside communicative relations and appropriate socio-emotional climate. In this research, visual communication in art classes is defined over the structure of the inventory that will examine the differences between abilities to evaluate the quality of artistic information and the judgment of taste.

  4. Constraining the disk masses of the class I binary protostar GV Tau

    Energy Technology Data Exchange (ETDEWEB)

    Sheehan, Patrick D.; Eisner, Josh A., E-mail: psheehan@email.arizona.edu [Steward Observatory, University of Arizona 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2014-08-10

    We present new spatially resolved 1.3 mm imaging with CARMA of the GV Tau system. GV Tau is a Class I binary protostar system in the Taurus Molecular Cloud, the components of which are separated by 1.''2. Each protostar is surrounded by a protoplanetary disk, and the pair may be surrounded by a circumbinary envelope. We analyze the data using detailed radiative transfer modeling of the system. We create synthetic protostar model spectra, images, and visibilities and compare them with CARMA 1.3 mm visibilities, a Hubble Space Telescope near-infrared scattered light image, and broadband spectral energy distributions from the literature to study the disk masses and geometries of the GV Tau disks. We show that the protoplanetary disks around GV Tau fall near the lower end of estimates of the Minimum Mass Solar Nebula, and may have just enough mass to form giant planets. When added to the sample of Class I protostars from Eisner, we confirm that Class I protostars are on average more massive than their Class II counterparts. This suggests that substantial dust grain processing occurs between the Class I and Class II stages, and may help to explain why the Class II protostars do not appear to have, on average, enough mass in their disks to form giant planets.

  5. Interpenetrated Binary Supramolecular Nanofibers for Sensitive Fluorescence Detection of Six Classes of Explosives.

    Science.gov (United States)

    Xiong, Wei; Zhu, Qijian; Gong, Yanjun; Wang, Chen; Che, Yanke; Zhao, Jincai

    2018-04-03

    In this work, we develop a sequential self-assembly approach to fabricate interpenetrated binary supramolecular nanofibers consisting of carbazole oligomer 1-cobalt(II) (1-Co 2+ ) coordination nanofibers and oligomer 2 nanofibers for the sensitive detection of six classes of explosives. When exposed to peroxide explosives (e.g., H 2 O 2 ), Co 2+ in 1-Co 2+ coordination nanofibers can be reduced to Co + that can transfer an electron to the excited 2 nanofibers and thereby quench their fluorescence. On the other hand, when exposed to the other five classes of explosives, the excited 2 nanofibers can transfer an electron to explosives to quench their fluorescence. On the basis of the distinct fluorescence quenching mechanisms, six classes of explosives can be sensitively detected. Herein, we provide a new strategy to design broad-band fluorescence sensors for a rich identification of threats.

  6. Tidal interaction and coalescence of close binary white dwarfs

    International Nuclear Information System (INIS)

    Webbink, R.F.; Iben, I. Jr.

    1987-01-01

    The physical processes which govern the interaction and final coalescence of close binary white dwarfs are examined. During the approach to mass transfer, the rate of accumulation of rotational energy by a white dwarf can exceed 10 to the 37th erg/s, raising the possibility that the initial phases of mass transfer are strongly influenced by tidal heating of the donor star. The potential energy released by accretion is incapable of removing more than a minor fraction of this material from the system, and numerical simulations show that the accreted envelope engulfs the donor star, leading to formation of common envelope binary before carbon can be ignited at the base of the accreted envelope. Unless shocks can lift the degeneracy of the donor core, a core mass exceeding the Chandrasekhar limit can be created, leading directly to core collapse and a supernova explosion, regardless of whether or not carbon is ignited in the nondegenerate envelope. It is plausible that most of the mass of the donor white dwarf is assimilated in a degenerate state by the accretor. 32 references

  7. A NEW CLASS OF NASCENT ECLIPSING BINARIES WITH EXTREME MASS RATIOS

    Energy Technology Data Exchange (ETDEWEB)

    Moe, Maxwell; Stefano, Rosanne Di, E-mail: mmoe@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-10, Cambridge, MA 02138 (United States)

    2015-03-10

    Early B-type main-sequence (MS) stars (M {sub 1} ≈ 5-16 M {sub ☉}) with closely orbiting low-mass stellar companions (q = M {sub 2}/M {sub 1} < 0.25) can evolve to produce Type Ia supernovae, low-mass X-ray binaries, and millisecond pulsars. However, the formation mechanism and intrinsic frequency of such close extreme mass-ratio binaries have been debated, especially considering none have hitherto been detected. Utilizing observations of the Large Magellanic Cloud galaxy conducted by the Optical Gravitational Lensing Experiment, we have discovered a new class of eclipsing binaries in which a luminous B-type MS star irradiates a closely orbiting low-mass pre-MS companion that has not yet fully formed. The primordial pre-MS companions have large radii and discernibly reflect much of the light they intercept from the B-type MS primaries (ΔI {sub refl} ≈ 0.02-0.14 mag). For the 18 definitive MS + pre-MS eclipsing binaries in our sample with good model fits to the observed light-curves, we measure short orbital periods P = 3.0-8.5 days, young ages τ ≈ 0.6-8 Myr, and small secondary masses M {sub 2} ≈ 0.8-2.4 M {sub ☉} (q ≈ 0.07-0.36). The majority of these nascent eclipsing binaries are still associated with stellar nurseries, e.g., the system with the deepest eclipse ΔI {sub 1} = 2.8 mag and youngest age τ = 0.6 ± 0.4 Myr is embedded in the bright H II region 30 Doradus. After correcting for selection effects, we find that (2.0 ± 0.6)% of B-type MS stars have companions with short orbital periods P = 3.0-8.5 days and extreme mass ratios q ≈ 0.06-0.25. This is ≈10 times greater than that observed for solar-type MS primaries. We discuss how these new eclipsing binaries provide invaluable insights, diagnostics, and challenges for the formation and evolution of stars, binaries, and H II regions.

  8. Interacting black holes on the brane: the seeding of binaries

    International Nuclear Information System (INIS)

    Majumdar, A.S.; Mehta, Anita; Luck, J.M.

    2005-01-01

    We consider the evolution of subhorizon-sized black holes which are formed during the high energy phase of the braneworld scenario. These black holes are long-lived due to modified evaporation and accretion of radiation during the radiation dominated era. We argue that an initial mass difference between any two neighbouring black holes is always amplified because of their exchange of energy with the surrounding radiation. We present a scheme of binary formation based on mass differences suggesting that such a scenario could lead to binaries with observable signatures

  9. A scalable pairwise class interaction framework for multidimensional classification

    DEFF Research Database (Denmark)

    Arias, Jacinto; Gámez, Jose A.; Nielsen, Thomas Dyhre

    2016-01-01

    We present a general framework for multidimensional classification that cap- tures the pairwise interactions between class variables. The pairwise class inter- actions are encoded using a collection of base classifiers (Phase 1), for which the class predictions are combined in a Markov random fie...

  10. Social affiliation in same-class and cross-class interactions.

    Science.gov (United States)

    Côté, Stéphane; Kraus, Michael W; Carpenter, Nichelle C; Piff, Paul K; Beermann, Ursula; Keltner, Dacher

    2017-02-01

    Historically high levels of economic inequality likely have important consequences for relationships between people of the same and different social class backgrounds. Here, we test the prediction that social affiliation among same-class partners is stronger at the extremes of the class spectrum, given that these groups are highly distinctive and most separated from others by institutional and economic forces. An internal meta-analysis of 4 studies (N = 723) provided support for this hypothesis. Participant and partner social class were interactively, rather than additively, associated with social affiliation, indexed by affiliative behaviors and emotions during structured laboratory interactions and in daily life. Further, response surface analyses revealed that paired upper or lower class partners generally affiliated more than average-class pairs. Analyses with separate class indices suggested that these patterns are driven more by parental income and subjective social class than by parental education. The findings illuminate the dynamics of same- and cross-class interactions, revealing that not all same-class interactions feature the same degree of affiliation. They also reveal the importance of studying social class from an intergroup perspective. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  11. Multi-class oscillating systems of interacting neurons

    DEFF Research Database (Denmark)

    Ditlevsen, Susanne; Löcherbach, Eva

    2017-01-01

    We consider multi-class systems of interacting nonlinear Hawkes processes modeling several large families of neurons and study their mean field limits. As the total number of neurons goes to infinity we prove that the evolution within each class can be described by a nonlinear limit differential...

  12. Emission-line diagnostics of nearby H II regions including interacting binary populations

    Science.gov (United States)

    Xiao, Lin; Stanway, Elizabeth R.; Eldridge, J. J.

    2018-06-01

    We present numerical models of the nebular emission from H II regions around young stellar populations over a range of compositions and ages. The synthetic stellar populations include both single stars and interacting binary stars. We compare these models to the observed emission lines of 254 H II regions of 13 nearby spiral galaxies and 21 dwarf galaxies drawn from archival data. The models are created using the combination of the BPASS (Binary Population and Spectral Synthesis) code with the photoionization code CLOUDY to study the differences caused by the inclusion of interacting binary stars in the stellar population. We obtain agreement with the observed emission line ratios from the nearby star-forming regions and discuss the effect of binary-star evolution pathways on the nebular ionization of H II regions. We find that at population ages above 10 Myr, single-star models rapidly decrease in flux and ionization strength, while binary-star models still produce strong flux and high [O III]/H β ratios. Our models can reproduce the metallicity of H II regions from spiral galaxies, but we find higher metallicities than previously estimated for the H II regions from dwarf galaxies. Comparing the equivalent width of H β emission between models and observations, we find that accounting for ionizing photon leakage can affect age estimates for H II regions. When it is included, the typical age derived for H II regions is 5 Myr from single-star models, and up to 10 Myr with binary-star models. This is due to the existence of binary-star evolution pathways, which produce more hot Wolf-Rayet and helium stars at older ages. For future reference, we calculate new BPASS binary maximal starburst lines as a function of metallicity, and for the total model population, and present these in Appendix A.

  13. Study of intermolecular interactions in binary mixtures of ethanol in methanol

    Science.gov (United States)

    Maharolkar, Aruna P.; Khirade, P. W.; Murugkar, A. G.

    2016-05-01

    Present paper deals with study of physicochemical properties like viscosity, density and refractive index for the binary mixtures of ethanol and methanol over the entire concentration range were measured at 298.15 K. The experimental data further used to determine the excess properties viz. excess molar volume, excess viscosity, excess molar refraction. The values of excess properties further fitted with Redlich-Kister (R-K Fit) equation to calculate the binary coefficients and standard deviation. The resulting excess parameters are used to indicate the presence of intermolecular interactions and strength of intermolecular interactions between the molecules in the binary mixtures. Excess parameters indicate structure making factor in the mixture predominates in the system.

  14. Effect of solute interaction on interfacial and grain boundary embrittlement in binary alloys

    Czech Academy of Sciences Publication Activity Database

    Lejček, Pavel

    2013-01-01

    Roč. 48, č. 6 (2013), 2574-2580 ISSN 0022-2461 R&D Projects: GA ČR GAP108/12/0144 Institutional research plan: CEZ:AV0Z10100520 Keywords : interfacial segregation * grain boundary embrittlement * binary interaction * modeling * thermodynamics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.305, year: 2013

  15. PREDICTION OF THE MIXING ENTHALPIES OF BINARY LIQUID ALLOYS BY MOLECULAR INTERACTION VOLUME MODEL

    Institute of Scientific and Technical Information of China (English)

    H.W.Yang; D.P.Tao; Z.H.Zhou

    2008-01-01

    The mixing enthalpies of 23 binary liquid alloys are calculated by molecular interaction volume model (MIVM), which is a two-parameter model with the partial molar infinite dilute mixing enthalpies. The predicted values are in agreement with the experimental data and then indicate that the model is reliable and convenient.

  16. Ultrasonic study of molecular interaction in binary liquid mixtures at ...

    Indian Academy of Sciences (India)

    The variation of these parameters with composition of the mixture helps us in understanding the nature and extent of interaction between unlike molecules in the mixtures. Further, theoretical values of ultrasonic speed were evaluated using theories and empirical relations. The relative merits of these theories and relations ...

  17. Micellar solubilization in strongly interacting binary surfactant systems. [Binary surfactant systems of: dodecyltrimethylammonium chloride + sodium dodecyl sulfate; benzyldimethyltetradecylammonium chloride + tetradecyltrimethylammonium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Treiner, C. (Universite Pierre et Marie Curie, Paris (France)); Nortz, M.; Vaution, C. (Faculte de Pharmacie de Paris-sud, Chatenay-Malabry (France))

    1990-07-01

    The apparent partition coefficient P of barbituric acids between micelles and water has been determined in mixed binary surfactant solutions from solubility measurements in the whole micellar composition range. The binary systems chosen ranged from the strongly interacting system dodecyltrimethylammonium chloride + sodium dodecyl sulfate to weakly interacting systems such as benzyldimethyltetradecylammonium chloride + tetradecyltrimethyammonium chloride. In all cases studied, mixed micelle formation is unfavorable to micellar solubilization. A correlation is found between the unlike surfactants interaction energy, as measured by the regular solution parameter {beta} and the solute partition coefficient change upon surfactant mixing. By use of literature data on micellar solubilization in binary surfactant solutions, it is shown that the change of P for solutes which are solubilized by surface adsorption is generally governed by the sign and amplitude of the interaction parameter {beta}.

  18. A globally accurate theory for a class of binary mixture models

    Science.gov (United States)

    Dickman, Adriana G.; Stell, G.

    The self-consistent Ornstein-Zernike approximation results for the 3D Ising model are used to obtain phase diagrams for binary mixtures described by decorated models, yielding the plait point, binodals, and closed-loop coexistence curves for the models proposed by Widom, Clark, Neece, and Wheeler. The results are in good agreement with series expansions and experiments.

  19. Ultrasonic Studies of Molecular Interactions in Organic Binary Liquid Mixtures

    Directory of Open Access Journals (Sweden)

    S. Thirumaran

    2010-01-01

    Full Text Available The ultrasonic velocity, density and viscosity have been measured for the mixtures of 1-alkanols such as 1-propanol and 1-butanol with N-N dimethylformamide (DMF at 303 K. The experimental data have been used to calculate the acoustical parameters namely adiabatic compressibility (β, free length (Lf, free volume (Vf and internal pressure (πi. The excess values of the above parameters are also evaluated and discussed in the light of molecular interaction existing in the mixtures. It is obvious that there is a formation of hydrogen bonding between DMF and 1-alkanols. Further, the addition of DMF causes dissociation of hydrogen bonded structure of 1-alkanols. The evaluated excess values confirm that the molecular association is more pronounced in system-II comparing to the system-I.

  20. CLASSROOM INTERACTION ANALYSIS IN INDONESIAN EFL SPEAKING CLASS

    OpenAIRE

    Sinta Hoerun Nisa

    2014-01-01

    This study entitles “Classroom Interaction Analysis in the EFL Speaking Class” aimed at analyzing the categories of teacher talk, student talk and classroom interaction types used during EFL speaking class. The research employed a qualitative design and applied a case study. Subjects of the research were an English teacher and 25 students at the second semester of English Education Department of the University of Kuningan. The data were gained through naturalistic observation and document ana...

  1. Interaction of Massive Black Hole Binaries with Their Stellar Environment. II. Loss Cone Depletion and Binary Orbital Decay

    Science.gov (United States)

    Sesana, Alberto; Haardt, Francesco; Madau, Piero

    2007-05-01

    We study the long-term evolution of massive black hole binaries (MBHBs) at the centers of galaxies using detailed scattering experiments to solve the full three-body problem. Ambient stars drawn from an isotropic Maxwellian distribution unbound to the binary are ejected by the gravitational slingshot. We construct a minimal, hybrid model for the depletion of the loss cone and the orbital decay of the binary and show that secondary slingshots-stars returning on small-impact parameter orbits to have a second superelastic scattering with the MBHB-may considerably help the shrinking of the pair in the case of large binary mass ratios. In the absence of loss cone refilling by two-body relaxation or other processes, the mass ejected before the stalling of a MBHB is half the binary reduced mass. About 50% of the ejected stars are expelled in a ``burst'' lasting ~104 yr M1/46, where M6 is the binary mass in units of 106 Msolar. The loss cone is completely emptied in a few bulge crossing timescales, ~107 yr M1/46. Even in the absence of two-body relaxation or gas dynamical processes, unequal mass and/or eccentric binaries with M6>~0.1 can shrink to the gravitational wave emission regime in less than a Hubble time and are therefore ``safe'' targets for the planned Laser Interferometer Space Antenna.

  2. General relativistic dynamics of an extreme mass-ratio binary interacting with an external body

    Science.gov (United States)

    Yang, Huan; Casals, Marc

    2017-10-01

    We study the dynamics of a hierarchical three-body system in the general relativistic regime: an extreme mass-ratio inner binary under the tidal influence of an external body. The inner binary consists of a central Schwarzschild black hole and a test body moving around it. We discuss three types of tidal effects on the orbit of the test body. First, the angular momentum of the inner binary precesses around the angular momentum of the outer binary. Second, the tidal field drives a "transient resonance" when the radial and azimuthal frequencies are commensurable. In contrast with resonances driven by the gravitational self-force, this tidal-driven resonance may boost the orbital angular momentum and eccentricity (a relativistic version of the Kozai-Lidov effect). Finally, for an orbit-dynamical effect during the nonresonant phase, we calculate the correction to the innermost stable circular (mean) orbit due to the tidal interaction. Hierarchical three-body systems are potential sources for future space-based gravitational wave missions, and the tidal effects that we find could contribute significantly to their waveform.

  3. MESA models of the evolutionary state of the interacting binary epsilon Aurigae

    Science.gov (United States)

    Gibson, Justus L.; Stencel, Robert E.

    2018-06-01

    Using MESA code (Modules for Experiments in Stellar Astrophysics, version 9575), an evaluation was made of the evolutionary state of the epsilon Aurigae binary system (HD 31964, F0Iap + disc). We sought to satisfy several observational constraints: (1) requiring evolutionary tracks to pass close to the current temperature and luminosity of the primary star; (2) obtaining a period near the observed value of 27.1 years; (3) matching a mass function of 3.0; (4) concurrent Roche lobe overflow and mass transfer; (5) an isotopic ratio 12C/13C = 5 and, (6) matching the interferometrically determined angular diameter. A MESA model starting with binary masses of 9.85 + 4.5 M⊙, with a 100 d initial period, produces a 1.2 + 10.6 M⊙ result having a 547 d period, and a single digit 12C/13C ratio. These values were reached near an age of 20 Myr, when the donor star comes close to the observed luminosity and temperature for epsilon Aurigae A, as a post-RGB/pre-AGB star. Contemporaneously, the accretor then appears as an upper main-sequence, early B-type star. This benchmark model can provide a basis for further exploration of this interacting binary, and other long-period binary stars.

  4. Class II HLA interactions modulate genetic risk for multiple sclerosis

    Science.gov (United States)

    Dilthey, Alexander T; Xifara, Dionysia K; Ban, Maria; Shah, Tejas S; Patsopoulos, Nikolaos A; Alfredsson, Lars; Anderson, Carl A; Attfield, Katherine E; Baranzini, Sergio E; Barrett, Jeffrey; Binder, Thomas M C; Booth, David; Buck, Dorothea; Celius, Elisabeth G; Cotsapas, Chris; D’Alfonso, Sandra; Dendrou, Calliope A; Donnelly, Peter; Dubois, Bénédicte; Fontaine, Bertrand; Fugger, Lars; Goris, An; Gourraud, Pierre-Antoine; Graetz, Christiane; Hemmer, Bernhard; Hillert, Jan; Kockum, Ingrid; Leslie, Stephen; Lill, Christina M; Martinelli-Boneschi, Filippo; Oksenberg, Jorge R; Olsson, Tomas; Oturai, Annette; Saarela, Janna; Søndergaard, Helle Bach; Spurkland, Anne; Taylor, Bruce; Winkelmann, Juliane; Zipp, Frauke; Haines, Jonathan L; Pericak-Vance, Margaret A; Spencer, Chris C A; Stewart, Graeme; Hafler, David A; Ivinson, Adrian J; Harbo, Hanne F; Hauser, Stephen L; De Jager, Philip L; Compston, Alastair; McCauley, Jacob L; Sawcer, Stephen; McVean, Gil

    2016-01-01

    Association studies have greatly refined the understanding of how variation within the human leukocyte antigen (HLA) genes influences risk of multiple sclerosis. However, the extent to which major effects are modulated by interactions is poorly characterized. We analyzed high-density SNP data on 17,465 cases and 30,385 controls from 11 cohorts of European ancestry, in combination with imputation of classical HLA alleles, to build a high-resolution map of HLA genetic risk and assess the evidence for interactions involving classical HLA alleles. Among new and previously identified class II risk alleles (HLA-DRB1*15:01, HLA-DRB1*13:03, HLA-DRB1*03:01, HLA-DRB1*08:01 and HLA-DQB1*03:02) and class I protective alleles (HLA-A*02:01, HLA-B*44:02, HLA-B*38:01 and HLA-B*55:01), we find evidence for two interactions involving pairs of class II alleles: HLA-DQA1*01:01–HLA-DRB1*15:01 and HLA-DQB1*03:01–HLA-DQB1*03:02. We find no evidence for interactions between classical HLA alleles and non-HLA risk-associated variants and estimate a minimal effect of polygenic epistasis in modulating major risk alleles. PMID:26343388

  5. THREE-DIMENSIONAL DOPPLER TOMOGRAPHY OF THE RS VULPECULAE INTERACTING BINARY

    International Nuclear Information System (INIS)

    Richards, Mercedes T.; Sharova, Olga I.; Agafonov, Michail I.

    2010-01-01

    Three-dimensional Doppler tomography has been used to study the Hα emission sources in the RS Vulpeculae (RS Vul) interacting binary. The two-dimensional tomogram of this binary suggested that most of the emission arises from the cool mass losing star with additional evidence of a gas stream flowing close to its predicted trajectory. However, the three-dimensional tomogram revealed surprising evidence that the gas stream has an average velocity of -85 km s -1 relative to the central velocity plane at V z = 0 km s -1 , unlike U CrB in which the stream was prominent along this central plane. These unexpected V z motions may result from the interaction between magnetic activity on the cool star and the gravitationally induced Roche lobe overflow from that star. Evidence of a loop prominence on the cool star close to the L1 point has been found in the three-dimensional tomogram of RS Vul; hence, the magnetic field lines may have deflected the gas stream relative to the central plane. This result is consistent with earlier detections of RS Vul as both an X-ray and a radio source, and represents the first detection of a loop prominence in an interacting binary based on tomography. Moreover, recent radio images of β Per, the prototype of the Algols, show that the magnetic field of the mass losing star is asymmetric and extends well beyond the orbital plane of the binary, so it is now plausible that the gas flow between the stars in RS Vul could be deflected in an asymmetric way by the magnetic field.

  6. AN APPARENT PRECESSING HELICAL OUTFLOW FROM A MASSIVE EVOLVED STAR: EVIDENCE FOR BINARY INTERACTION

    Energy Technology Data Exchange (ETDEWEB)

    Lau, R. M.; Hankins, M. J.; Herter, T. L. [Astronomy Department, Cornell University, Ithaca, NY 14853-6801 (United States); Morris, M. R. [Department of Physics and Astronomy, University of California, Los Angeles, 430 Portola Plaza, Los Angeles, CA 90095 (United States); Mills, E. A. C. [National Radio Astronomy Observatory, P.O. Box O 1009, Lopezville Drive, Socorro, NM 87801 (United States); Ressler, M. E. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2016-02-20

    Massive, evolved stars play a crucial role in the metal enrichment, dust budget, and energetics of the interstellar medium; however, the details of their evolution are uncertain because of their rarity and short lifetimes before exploding as supernovae. Discrepancies between theoretical predictions from single-star evolutionary models and observations of massive stars have evoked a shifting paradigm that implicates the importance of binary interaction. We present mid- to far-infrared observations from the Stratospheric Observatory for Infrared Astronomy of a conical “helix” of warm dust (∼180 K) that appears to extend from the Wolf–Rayet star WR102c. Our interpretation of the helix is a precessing, collimated outflow that emerged from WR102c during a previous evolutionary phase as a rapidly rotating luminous blue variable. We attribute the precession of WR102c to gravitational interactions with an unseen compact binary companion whose orbital period can be constrained to 800 days < P < 1400 days from the inferred precession period, τ{sub p} ∼ 1.4 × 10{sup 4} yr, and limits imposed on the stellar and orbital parameters of the system. Our results concur with the range of orbital periods (P ≲ 1500 days) where spin-up via mass exchange is expected to occur for massive binary systems.

  7. Thermo-acoustical molecular interaction study in binary mixtures of glycerol and ethylene glycol

    Science.gov (United States)

    Kaur, Kirandeep; Juglan, K. C.; Kumar, Harsh

    2017-07-01

    Ultrasonic velocity, density and viscosity are measured over the entire composition range for binary liquid mixtures of glycerol (CH2OH-CHOH-CH2OH) and ethylene glycol (HOCH2CH2OH) at different temperatures and constant frequency of 2MHz using ultrasonic interferometer, specific gravity bottle and viscometer respectively. Measured experimental values are used to obtained various acoustical parameters such as adiabatic compressibility, acoustic impedance, intermolecular free length, relaxation time, ultrasonic attenuation, effective molar weight, free volume, available volume, molar volume, Wada's constant, Rao's constant, Vander Waal's constant, internal pressure, Gibb's free energy and enthalpy. The variation in acoustical parameters are interpreted in terms of molecular interactions between the components of molecules of binary liquid mixtures.

  8. Study of Molecular Interactions in Binary Liquid Mixtures by Acoustical Method at 303K

    Directory of Open Access Journals (Sweden)

    P. Paul Divakar

    2012-01-01

    Full Text Available Ultrasonic velocity and density measurements were made in two binary liquid mixtures Isopropyl acetate (IPA and Isobutyl acetate (IBA with cyclohexanone (CY as a common component at 303K, at fixed frequency of 2MHz using single crystal variable path interferometer and specific gravity bottle respectively. The experimental data have been used to calculate the acoustic impedance, adiabatic compressibility, inter molecular free length and molar volume. The excess thermodynamic parameters have been evaluated and discussed in the light of molecular interactions.

  9. A Conditional Curie-Weiss Model for Stylized Multi-group Binary Choice with Social Interaction

    Science.gov (United States)

    Opoku, Alex Akwasi; Edusei, Kwame Owusu; Ansah, Richard Kwame

    2018-04-01

    This paper proposes a conditional Curie-Weiss model as a model for decision making in a stylized society made up of binary decision makers that face a particular dichotomous choice between two options. Following Brock and Durlauf (Discrete choice with social interaction I: theory, 1955), we set-up both socio-economic and statistical mechanical models for the choice problem. We point out when both the socio-economic and statistical mechanical models give rise to the same self-consistent equilibrium mean choice level(s). Phase diagram of the associated statistical mechanical model and its socio-economic implications are discussed.

  10. THE REFLECTION EFFECT IN INTERACTING BINARIES OR IN PLANET-STAR SYSTEMS

    International Nuclear Information System (INIS)

    Budaj, J.

    2011-01-01

    There are many similarities between interacting binary stars and stars with a close-in giant extrasolar planet. The reflection effect is a well-known example. Although the generally accepted treatment of this effect in interacting binaries is successful in fitting light curves of eclipsing binaries, it is not very suitable for studying cold objects irradiated by hot objects or extrasolar planets. The aim of this paper is to develop a model of the reflection effect which could be easily incorporated into the present codes for modeling of interacting binaries so that these can be used to study the aforementioned objects. Our model of the reflection effect takes into account the reflection (scattering), heating, and heat redistribution over the surface of the irradiated object. The shape of the object is described by the non-spherical Roche potential expected for close objects. Limb and gravity darkening are included in the calculations of the light output from the system. The model also accounts for the orbital revolution and rotation of the exoplanet with appropriate Doppler shifts for the scattered and thermal radiation. Subsequently, light curves and/or spectra of several exoplanets have been modeled and the effects of the heat redistribution, limb darkening/brightening, (non-)gray albedo, and non-spherical shape have been studied. Recent observations of planet-to-star flux ratio of HD189733b, WASP12b, and WASP-19b at various phases were reproduced with very good accuracy. It was found that HD189733b has a low Bond albedo and intense heat redistribution, while WASP-19b has a low Bond albedo and low heat redistribution. The exact Roche geometries and temperature distributions over the surface of all 78 transiting extrasolar planets have been determined. Departures from the spherical shape may vary considerably but departures of about 1% in the radius are common within the sample. In some cases, these departures can reach 8%, 12%, or 14%, for WASP-33b, WASP-19b, and

  11. Formation of Tidal Captures and Gravitational Wave Inspirals in Binary-single Interactions

    International Nuclear Information System (INIS)

    Samsing, Johan; MacLeod, Morgan; Ramirez-Ruiz, Enrico

    2017-01-01

    We perform the first systematic study of how dynamical stellar tides and general relativistic (GR) effects affect the dynamics and outcomes of binary-single interactions. For this, we have constructed an N -body code that includes tides in the affine approximation, where stars are modeled as self-similar ellipsoidal polytropes, and GR corrections using the commonly used post-Newtonian formalism. Using this numerical formalism, we are able resolve the leading effect from tides and GR across several orders of magnitude in both stellar radius and initial target binary separation. We find that the main effect from tides is the formation of two-body tidal captures that form during the chaotic and resonant evolution of the triple system. The two stars undergoing the capture spiral in and merge. The inclusion of tides can thus lead to an increase in the stellar coalescence rate. We also develop an analytical framework for calculating the cross section of tidal inspirals between any pair of objects with similar mass. From our analytical and numerical estimates, we find that the rate of tidal inspirals relative to collisions increases as the initial semimajor axis of the target binary increases and the radius of the interacting tidal objects decreases. The largest effect is therefore found for triple systems hosting white dwarfs and neutron stars (NSs). In this case, we find the rate of highly eccentric white dwarf—NS mergers to likely be dominated by tidal inspirals. While tidal inspirals occur rarely, we note that they can give rise to a plethora of thermonuclear transients, such as Ca-rich transients.

  12. Formation of Tidal Captures and Gravitational Wave Inspirals in Binary-single Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Samsing, Johan [Department of Astrophysical Sciences, Princeton University, Peyton Hall, 4 Ivy Lane, Princeton, NJ 08544 (United States); MacLeod, Morgan [School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540 (United States); Ramirez-Ruiz, Enrico [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2017-09-01

    We perform the first systematic study of how dynamical stellar tides and general relativistic (GR) effects affect the dynamics and outcomes of binary-single interactions. For this, we have constructed an N -body code that includes tides in the affine approximation, where stars are modeled as self-similar ellipsoidal polytropes, and GR corrections using the commonly used post-Newtonian formalism. Using this numerical formalism, we are able resolve the leading effect from tides and GR across several orders of magnitude in both stellar radius and initial target binary separation. We find that the main effect from tides is the formation of two-body tidal captures that form during the chaotic and resonant evolution of the triple system. The two stars undergoing the capture spiral in and merge. The inclusion of tides can thus lead to an increase in the stellar coalescence rate. We also develop an analytical framework for calculating the cross section of tidal inspirals between any pair of objects with similar mass. From our analytical and numerical estimates, we find that the rate of tidal inspirals relative to collisions increases as the initial semimajor axis of the target binary increases and the radius of the interacting tidal objects decreases. The largest effect is therefore found for triple systems hosting white dwarfs and neutron stars (NSs). In this case, we find the rate of highly eccentric white dwarf—NS mergers to likely be dominated by tidal inspirals. While tidal inspirals occur rarely, we note that they can give rise to a plethora of thermonuclear transients, such as Ca-rich transients.

  13. Delay-time distribution of core-collapse supernovae with late events resulting from binary interaction

    Science.gov (United States)

    Zapartas, E.; de Mink, S. E.; Izzard, R. G.; Yoon, S.-C.; Badenes, C.; Götberg, Y.; de Koter, A.; Neijssel, C. J.; Renzo, M.; Schootemeijer, A.; Shrotriya, T. S.

    2017-05-01

    Most massive stars, the progenitors of core-collapse supernovae, are in close binary systems and may interact with their companion through mass transfer or merging. We undertake a population synthesis study to compute the delay-time distribution of core-collapse supernovae, that is, the supernova rate versus time following a starburst, taking into account binary interactions. We test the systematic robustness of our results by running various simulations to account for the uncertainties in our standard assumptions. We find that a significant fraction, %, of core-collapse supernovae are "late", that is, they occur 50-200 Myr after birth, when all massive single stars have already exploded. These late events originate predominantly from binary systems with at least one, or, in most cases, with both stars initially being of intermediate mass (4-8 M⊙). The main evolutionary channels that contribute often involve either the merging of the initially more massive primary star with its companion or the engulfment of the remaining core of the primary by the expanding secondary that has accreted mass at an earlier evolutionary stage. Also, the total number of core-collapse supernovae increases by % because of binarity for the same initial stellar mass. The high rate implies that we should have already observed such late core-collapse supernovae, but have not recognized them as such. We argue that φ Persei is a likely progenitor and that eccentric neutron star - white dwarf systems are likely descendants. Late events can help explain the discrepancy in the delay-time distributions derived from supernova remnants in the Magellanic Clouds and extragalactic type Ia events, lowering the contribution of prompt Ia events. We discuss ways to test these predictions and speculate on the implications for supernova feedback in simulations of galaxy evolution.

  14. Phase behavior of binary polybutadiene copolymer mixtures as an example of weakly interacting polymers

    CERN Document Server

    Schwahn, D

    2002-01-01

    Binary blends of statistical polybutadiene copolymers of different vinyl content and molar volume were explored by small-angle neutron scattering. These samples represent the most simple class of statistical copolymer mixtures. In spite of this simplicity, changes in vinyl content, molar volume, and deuterium and hydrogen content of the chains give rise to strong effects; phase separation occurs from minus 230 C to more than plus 200 C and can even reverse from an enthalpically driven one at low temperatures to an entropically driven one at high temperatures. The entropic and enthalpic terms of the Flory-Huggins parameter as determined from the experiment are in excellent agreement with lattice cluster theory calculations. (orig.)

  15. A new approach to study interaction parameters in cyanobiphenyl liquid crystal binary systems

    International Nuclear Information System (INIS)

    Javadian, Soheila; Dalir, Nima; Gilani, Ali Ghanadzadeh; Kakemam, Jamal; Yousefi, Ali

    2015-01-01

    Highlights: • The phase transition of 7CB and 5CB liquid crystals studied using the DSC. • This work includes the determination of the eutectic in the 7CB/5CB mixture. • The excess functions and interaction parameters calculated in the 7CB/5CB mixtures. • The P ∗ randomicity parameter used to describe the phase transitions of C–N and N–I. • A small amount of P ∗ showed a non-random identity of the C–N phase transition. - Abstract: The phase transition of heptylcyanobiphenyl 7CB and pentylcyanobiphenyl 5CB liquid crystals was investigated using the differential scanning calorimetry DSC technique. Then, the phase transition of different compositions of 7CB/5CB binary mixture was studied to determine the eutectic point. The phase diagram of mentioned binary system in 7CB mole fraction of 0.45 at T = 273.45 K is in good agreement with that of predicted from Schroder–van Laar equation. The thermodynamic excess functions and interaction parameters were calculated to describe the phase transition physically using the non-random mixing for the first time. The P ∗ randomicity parameter was used to describe the phase transitions of C–N and N–I in which a small amount of P ∗ shows a non-random identity of C–N phase transition. Contrarily, the P ∗ is greater in N–I phase transition showing a random mixing process

  16. The effects of whole-class interactive instruction with single display groupware for triangles

    NARCIS (Netherlands)

    Caballero, D.; van Riesen, Siswa; Alvarez, S.; Nussbaum, M.; de Jong, Anthonius J.M.; Alario-Hoyos, C.

    2013-01-01

    Whole-class interactive instruction is an instructional approach in which all of the students in a class create knowledge together in an interactive way, mediated by the teacher. The current mixed-method study compared the effects of a specific implementation of whole-class interactive instruction,

  17. Near optimal discrimination of binary coherent signals via atom–light interaction

    Science.gov (United States)

    Han, Rui; Bergou, János A.; Leuchs, Gerd

    2018-04-01

    We study the discrimination of weak coherent states of light with significant overlaps by nondestructive measurements on the light states through measuring atomic states that are entangled to the coherent states via dipole coupling. In this way, the problem of measuring and discriminating coherent light states is shifted to finding the appropriate atom–light interaction and atomic measurements. We show that this scheme allows us to attain a probability of error extremely close to the Helstrom bound, the ultimate quantum limit for discriminating binary quantum states, through the simple Jaynes–Cummings interaction between the field and ancilla with optimized light–atom coupling and projective measurements on the atomic states. Moreover, since the measurement is nondestructive on the light state, information that is not detected by one measurement can be extracted from the post-measurement light states through subsequent measurements.

  18. Antiproton cross-field diffusion in antihydrogen production experiments due to anisotropic binary interactions

    International Nuclear Information System (INIS)

    Ordonez, C.A.; Correa, J.R.

    2007-01-01

    Collisional processes in electrostatic ion storage rings and reflecting-beam-type electrostatic ion traps can be associated with anisotropic binary interactions, because shielding of the Coulomb interactions may not take place in one or more dimensions. Collisional scattering theory has recently been developed for describing the velocity-space scattering processes in such systems [J.R. Correa, Y. Chang, C.A. Ordonez, Phys. Plasmas 12 (2005) 084505]. The theory is extended to enable the effect of a magnetic field to be included. The theory is intended to be applicable, for example, to antiproton scattering within nested Penning traps that are used to produce antihydrogen [M. Amoretti et al., Nature 419 (2002) 456; G. Gabrielse et al., Phys. Rev. Lett. 89 (2002) 213401]. The theory is applied for considering the cross-magnetic-field diffusion of the antiprotons

  19. Leadership Class Configuration Interaction Code - Status and Opportunities

    Science.gov (United States)

    Vary, James

    2011-10-01

    With support from SciDAC-UNEDF (www.unedf.org) nuclear theorists have developed and are continuously improving a Leadership Class Configuration Interaction Code (LCCI) for forefront nuclear structure calculations. The aim of this project is to make state-of-the-art nuclear structure tools available to the entire community of researchers including graduate students. The project includes codes such as NuShellX, MFDn and BIGSTICK that run a range of computers from laptops to leadership class supercomputers. Codes, scripts, test cases and documentation have been assembled, are under continuous development and are scheduled for release to the entire research community in November 2011. A covering script that accesses the appropriate code and supporting files is under development. In addition, a Data Base Management System (DBMS) that records key information from large production runs and archived results of those runs has been developed (http://nuclear.physics.iastate.edu/info/) and will be released. Following an outline of the project, the code structure, capabilities, the DBMS and current efforts, I will suggest a path forward that would benefit greatly from a significant partnership between researchers who use the codes, code developers and the National Nuclear Data efforts. This research is supported in part by DOE under grant DE-FG02-87ER40371 and grant DE-FC02-09ER41582 (SciDAC-UNEDF).

  20. An odor interaction model of binary odorant mixtures by a partial differential equation method.

    Science.gov (United States)

    Yan, Luchun; Liu, Jiemin; Wang, Guihua; Wu, Chuandong

    2014-07-09

    A novel odor interaction model was proposed for binary mixtures of benzene and substituted benzenes by a partial differential equation (PDE) method. Based on the measurement method (tangent-intercept method) of partial molar volume, original parameters of corresponding formulas were reasonably displaced by perceptual measures. By these substitutions, it was possible to relate a mixture's odor intensity to the individual odorant's relative odor activity value (OAV). Several binary mixtures of benzene and substituted benzenes were respectively tested to establish the PDE models. The obtained results showed that the PDE model provided an easily interpretable method relating individual components to their joint odor intensity. Besides, both predictive performance and feasibility of the PDE model were proved well through a series of odor intensity matching tests. If combining the PDE model with portable gas detectors or on-line monitoring systems, olfactory evaluation of odor intensity will be achieved by instruments instead of odor assessors. Many disadvantages (e.g., expense on a fixed number of odor assessors) also will be successfully avoided. Thus, the PDE model is predicted to be helpful to the monitoring and management of odor pollutions.

  1. An Odor Interaction Model of Binary Odorant Mixtures by a Partial Differential Equation Method

    Directory of Open Access Journals (Sweden)

    Luchun Yan

    2014-07-01

    Full Text Available A novel odor interaction model was proposed for binary mixtures of benzene and substituted benzenes by a partial differential equation (PDE method. Based on the measurement method (tangent-intercept method of partial molar volume, original parameters of corresponding formulas were reasonably displaced by perceptual measures. By these substitutions, it was possible to relate a mixture’s odor intensity to the individual odorant’s relative odor activity value (OAV. Several binary mixtures of benzene and substituted benzenes were respectively tested to establish the PDE models. The obtained results showed that the PDE model provided an easily interpretable method relating individual components to their joint odor intensity. Besides, both predictive performance and feasibility of the PDE model were proved well through a series of odor intensity matching tests. If combining the PDE model with portable gas detectors or on-line monitoring systems, olfactory evaluation of odor intensity will be achieved by instruments instead of odor assessors. Many disadvantages (e.g., expense on a fixed number of odor assessors also will be successfully avoided. Thus, the PDE model is predicted to be helpful to the monitoring and management of odor pollutions.

  2. Pharmacokinetic and pharmacodynamic interaction for a binary mixture of chlorpyrifos and diazinon in the rat

    International Nuclear Information System (INIS)

    Timchalk, C.; Poet, T.S.; Hinman, M.N.; Busby, A.L.; Kousba, A.A.

    2005-01-01

    Chlorpyrifos (CPF) and diazinon (DZN) are two commonly used organophosphorus (OP) insecticides and a potential exists for concurrent exposures. The primary neurotoxic effects from OP pesticide exposures result from the inhibition of acetylcholinesterase (AChE). The pharmacokinetic and pharmacodynamic impact of acute binary exposures of rats to CPF and DZN was evaluated in this study. Rats were orally administered CPF, DZN, or a CPF/DZN mixture (0, 15, 30, or 60 mg/kg) and blood (plasma and RBC), and brain were collected at 0, 3, 6, 12, and 24 h postdosing, urine was also collected at 24 h. Chlorpyrifos, DZN, and their respective metabolites, 3,5,6-trichloro-2-pyridinol (TCP) and 2-isopropyl-4-methyl-6-hydroxypyrimidine (IMHP), were quantified in blood and/or urine and cholinesterase (ChE) inhibition was measured in brain, RBC, and plasma. Coexposure to CPF/DZN at the low dose of 15/15 mg/kg did not alter the pharmacokinetics of CPF, DZN, or their metabolites in blood. A high binary dose of 60/60 mg/kg increased the C max and AUC and decreased the clearance for both parent compounds, likely due to competition between CPF and DZN for CYP450 metabolism. At lower doses, most likely to be encountered in occupational or environmental exposures, the pharmacokinetics were linear. A dose-dependent inhibition of ChE was noted in tissues for both the single and coexposures, and the extent of inhibition was plasma > RBC ≥ brain. The overall relative potency for ChE inhibition was CPF/DZN > CPF > DZN. A comparison of the ChE response at the low binary dose (15/15 mg/kg), where there were no apparent pharmacokinetic interactions, suggested that the overall ChE response was additive. These experiments represent important data concerning the potential pharmacokinetic and pharmacodynamic interactions for pesticide mixtures and will provide needed insight for assessing the potential cumulative risk associated with occupational or environmental exposures to these insecticides

  3. Investigation of the Interaction Between Human Serum Albumin and Two Drugs as Binary and Ternary Systems.

    Science.gov (United States)

    Abdollahpour, Nooshin; Soheili, Vahid; Saberi, Mohammad Reza; Chamani, Jamshidkhan

    2016-12-01

    Human serum albumin (HSA) is the most frequent protein in blood plasma. Albumin transports various compounds, preserves osmotic pressure, and buffers pH. A unique feature of albumin is its ability to bind drugs and other bioactive molecules. However, it is important to consider binary and ternary systems of two pharmaceuticals to estimate the effect of the first drug on the second one and physicochemical properties. Different techniques including time-resolved, second-derivative and anisotropy fluorescence spectroscopy, resonance light scattering (RLS), critical induced aggregation concentration (C CIAC ), particle size, zeta potential and stability analysis were employed in this assessment to elucidate the binding behavior of Amlodipine and Aspirin to HSA. Moreover, isothermal titration calorimetric techniques were performed and the QSAR properties were applied to analyze the hydration energy and log P. Multiple sequence alignments were also used to predict the structure and biological characteristics of the HSA binding site. Time-resolved fluorescence spectroscopy showed interaction of both drugs to HSA based on a static quenching mechanism. Subsequently, second-derivative fluorescence spectroscopy presented different values of parameter H in binary and ternary systems, which were suggested that tryptophan was in a more polar environment in the ternary system than in a binary system. Moreover, the polydispersity index and results from mean number measurements revealed that the presence of the second drug caused a decrease in the stability of systems and increased the heterogeneity of complex. It is also, observed that the gradual addition of HSA has led to a marked increase in fluorescence anisotropy (r) of Amlodipine and Aspirin which can be suggested that the drugs were located in a restricted environment of the protein as confirmed by Red Edge Excitation Shift (REES) studies. The isothermal titration calorimetric technique demonstrated that the interaction of

  4. Impact of kinase activating and inactivating patient mutations on binary PKA interactions.

    Science.gov (United States)

    Röck, Ruth; Mayrhofer, Johanna E; Bachmann, Verena; Stefan, Eduard

    2015-01-01

    The second messenger molecule cAMP links extracellular signals to intracellular responses. The main cellular cAMP effector is the compartmentalized protein kinase A (PKA). Upon receptor initiated cAMP-mobilization, PKA regulatory subunits (R) bind cAMP thereby triggering dissociation and activation of bound PKA catalytic subunits (PKAc). Mutations in PKAc or RIa subunits manipulate PKA dynamics and activities which contribute to specific disease patterns. Mutations activating cAMP/PKA signaling contribute to carcinogenesis or hormone excess, while inactivating mutations cause hormone deficiency or resistance. Here we extended the application spectrum of a Protein-fragment Complementation Assay based on the Renilla Luciferase to determine binary protein:protein interactions (PPIs) of the PKA network. We compared time- and dose-dependent influences of cAMP-elevation on mutually exclusive PPIs of PKAc with the phosphotransferase inhibiting RIIb and RIa subunits and the protein kinase inhibitor peptide (PKI). We analyzed PKA dynamics following integration of patient mutations into PKAc and RIa. We observed that oncogenic modifications of PKAc(L206R) and RIa(Δ184-236) as well as rare disease mutations in RIa(R368X) affect complex formation of PKA and its responsiveness to cAMP elevation. With the cell-based PKA PPI reporter platform we precisely quantified the mechanistic details how inhibitory PKA interactions and defined patient mutations contribute to PKA functions.

  5. Symmetry breaking in a localized interacting binary Bose-Einstein condensate in a bichromatic optical lattice

    International Nuclear Information System (INIS)

    Cheng Yongshan; Adhikari, S. K.

    2010-01-01

    By direct numerical simulation of the time-dependent Gross-Pitaevskii equation using the split-step Fourier spectral method, we study different aspects of the localization of a cigar-shaped interacting binary (two-component) Bose-Einstein condensate (BEC) in a one-dimensional bichromatic quasiperiodic optical-lattice potential, as used in a recent experiment on the localization of a BEC [Roati et al., Nature 453, 895 (2008)]. We consider two types of localized states: (i) when both localized components have a maximum of density at the origin x=0, and (ii) when the first component has a maximum of density and the second a minimum of density at x=0. In the noninteracting case, the density profiles are symmetric around x=0. We numerically study the breakdown of this symmetry due to interspecies and intraspecies interactions acting on the two components. Where possible, we have compared the numerical results with a time-dependent variational analysis. We also demonstrate the stability of the localized symmetry-broken BEC states under small perturbation.

  6. Solubility of Methane, Ethane, and Propane in Pure Water Using New Binary Interaction Parameters

    Directory of Open Access Journals (Sweden)

    Masoud Behrouz

    2015-07-01

    Full Text Available Solubility of hydrocarbons in water is important due to ecological concerns and new restrictions on the existence of organic pollutants in water streams. Also, the creation of a thermodynamic model has required an advanced study of the phase equilibrium between water (as a basis for the widest spread muds and amines and gas hydrocarbon phases in wide temperature and pressure ranges. Therefore, it is of great interest to develop semi-empirical correlations, charts, or thermodynamic models for estimating the solubility of hydrocarbons in liquid water. In this work, a thermodynamic model based on Mathias modification of Sova-Redlich-Kwong (SRK equation of state is suggested using classical mixing rules with new binary interaction parameters which were used for two-component systems of hydrocarbons and water. Finally, the model results and their deviations in comparison with the experimental data are presented; these deviations were equal to 5.27, 6.06, and 4.1% for methane, ethane, and propane respectively.

  7. THE ROTATION RATES OF MASSIVE STARS: THE ROLE OF BINARY INTERACTION THROUGH TIDES, MASS TRANSFER, AND MERGERS

    Energy Technology Data Exchange (ETDEWEB)

    De Mink, S. E. [Space Telescope Science Institute, Baltimore, MD (United States); Langer, N.; Izzard, R. G. [Argelander-Institut fuer Astronomie der Universitaet Bonn, D-53121 Bonn (Germany); Sana, H.; De Koter, A. [Astronomical Institute Anton Pannekoek, University of Amsterdam, 1098 XH Amsterdam (Netherlands)

    2013-02-20

    Rotation is thought to be a major factor in the evolution of massive stars-especially at low metallicity-with consequences for their chemical yields, ionizing flux, and final fate. Deriving the birth spin distribution is of high priority given its importance as a constraint on theories of massive star formation and as input for models of stellar populations in the local universe and at high redshift. Recently, it has become clear that the majority of massive stars interact with a binary companion before they die. We investigate how this affects the distribution of rotation rates, through stellar winds, expansion, tides, mass transfer, and mergers. For this purpose, we simulate a massive binary-star population typical for our Galaxy assuming continuous star formation. We find that, because of binary interaction, 20{sup +5} {sub -10}% of all massive main-sequence stars have projected rotational velocities in excess of 200 km s{sup -1}. We evaluate the effect of uncertain input distributions and physical processes and conclude that the main uncertainties are the mass transfer efficiency and the possible effect of magnetic braking, especially if magnetic fields are generated or amplified during mass accretion and stellar mergers. The fraction of rapid rotators we derive is similar to that observed. If indeed mass transfer and mergers are the main cause for rapid rotation in massive stars, little room remains for rapidly rotating stars that are born single. This implies that spin-down during star formation is even more efficient than previously thought. In addition, this raises questions about the interpretation of the surface abundances of rapidly rotating stars as evidence for rotational mixing. Furthermore, our results allow for the possibility that all early-type Be stars result from binary interactions and suggest that evidence for rotation in explosions, such as long gamma-ray bursts, points to a binary origin.

  8. Effects of Class Size and Attendance Policy on University Classroom Interaction in Taiwan

    Science.gov (United States)

    Bai, Yin; Chang, Te-Sheng

    2016-01-01

    Classroom interaction experience is one of the main parts of students' learning lives. However, surprisingly little research has investigated students' perceptions of classroom interaction with different attendance policies across different class sizes in the higher education system. To elucidate the effects of class size and attendance policy on…

  9. Particle interaction of lubricated or unlubricated binary mixtures according to their particle size and densification mechanism.

    Science.gov (United States)

    Di Martino, Piera; Joiris, Etienne; Martelli, Sante

    2004-09-01

    The aim of this study is to assess an experimental approach for technological development of a direct compression formulation. A simple formula was considered composed by an active ingredient, a diluent and a lubricant. The active ingredient and diluent were selected as an example according to their typical densification mechanism: the nitrofurantoine, a fragmenting material, and the cellulose microcrystalline (Vivapur), which is a typical visco-elastic material, equally displaying good bind and disintegrant properties. For each ingredient, samples of different particle size distribution were selected. Initially, tabletability of pure materials was studied by a rotary press without magnesium stearate. Vivapur tabletability decreases with increase in particle size. The addition of magnesium stearate as lubricant decreases tabletability of Vivapur of greater particle size, while it kept unmodified that of Vivapur of lower particle size. Differences in tabletability can be related to differences in particle-particle interactions; for Vivapur of higher particle size (Vivapur 200, 102 and 101), the lower surface area develops lower surface available for bonds, while for Vivapur of lower particle size (99 and 105) the greater surface area allows high particle proximity favouring particle cohesivity. Nitrofurantoine shows great differences in compression behaviour according to its particle size distribution. Large crystals show poorer tabletability than fine crystals, further decreased by lubricant addition. The large crystals poor tabletability is due to their poor compactibility, in spite of high compressibility and plastic intrinsic deformability; in fact, in spite of the high densification tendency, the nature of the involved bonds is very weak. Nitrofurantoine samples were then mixed with Vivapurs in different proportions. Compression behaviour of binary mixes (tabletability and compressibility) was then evaluated according to diluents proportion in the mixes. The

  10. Characterizing interactive engagement activities in a flipped introductory physics class

    Directory of Open Access Journals (Sweden)

    Anna K. Wood

    2016-06-01

    Full Text Available Interactive engagement activities are increasingly common in undergraduate physics teaching. As research efforts move beyond simply showing that interactive engagement pedagogies work towards developing an understanding of how they lead to improved learning outcomes, a detailed analysis of the way in which these activities are used in practice is needed. Our aim in this paper is to present a characterization of the type and duration of interactions, as experienced by students, that took place during two introductory physics courses (1A and 1B at a university in the United Kingdom. Through this work, a simple framework for analyzing lectures—the framework for interactive learning in lectures (FILL, which focuses on student interactions (with the lecturer, with each other, and with the material is proposed. The pedagogical approach is based on Peer Instruction (PI and both courses are taught by the same lecturer. We find lecture activities can be categorized into three types: interactive (25%, vicarious interactive (20% (involving questions to and from the lecturer, and noninteractive (55%. As expected, the majority of both interactive and vicarious interactive activities took place during PI. However, the way that interactive activities were used during non-PI sections of the lecture varied significantly between the two courses. Differences were also found in the average time spent on lecturer-student interactions (28% for 1A and 12% for 1B, although not on student-student interactions (12% and 12% or on individual learning (10% and 7%. These results are explored in detail and the implications for future research are discussed.

  11. Drug-target interaction prediction via class imbalance-aware ensemble learning.

    Science.gov (United States)

    Ezzat, Ali; Wu, Min; Li, Xiao-Li; Kwoh, Chee-Keong

    2016-12-22

    Multiple computational methods for predicting drug-target interactions have been developed to facilitate the drug discovery process. These methods use available data on known drug-target interactions to train classifiers with the purpose of predicting new undiscovered interactions. However, a key challenge regarding this data that has not yet been addressed by these methods, namely class imbalance, is potentially degrading the prediction performance. Class imbalance can be divided into two sub-problems. Firstly, the number of known interacting drug-target pairs is much smaller than that of non-interacting drug-target pairs. This imbalance ratio between interacting and non-interacting drug-target pairs is referred to as the between-class imbalance. Between-class imbalance degrades prediction performance due to the bias in prediction results towards the majority class (i.e. the non-interacting pairs), leading to more prediction errors in the minority class (i.e. the interacting pairs). Secondly, there are multiple types of drug-target interactions in the data with some types having relatively fewer members (or are less represented) than others. This variation in representation of the different interaction types leads to another kind of imbalance referred to as the within-class imbalance. In within-class imbalance, prediction results are biased towards the better represented interaction types, leading to more prediction errors in the less represented interaction types. We propose an ensemble learning method that incorporates techniques to address the issues of between-class imbalance and within-class imbalance. Experiments show that the proposed method improves results over 4 state-of-the-art methods. In addition, we simulated cases for new drugs and targets to see how our method would perform in predicting their interactions. New drugs and targets are those for which no prior interactions are known. Our method displayed satisfactory prediction performance and was

  12. Characterizing Interactive Engagement Activities in a Flipped Introductory Physics Class

    Science.gov (United States)

    Wood, Anna K.; Galloway, Ross K.; Donnelly, Robyn; Hardy, Judy

    2016-01-01

    Interactive engagement activities are increasingly common in undergraduate physics teaching. As research efforts move beyond simply showing that interactive engagement pedagogies work towards developing an understanding of "how" they lead to improved learning outcomes, a detailed analysis of the way in which these activities are used in…

  13. JavaScript: Convenient Interactivity for the Class Web Page.

    Science.gov (United States)

    Gray, Patricia

    This paper shows how JavaScript can be used within HTML pages to add interactive review sessions and quizzes incorporating graphics and sound files. JavaScript has the advantage of providing basic interactive functions without the use of separate software applications and players. Because it can be part of a standard HTML page, it is…

  14. Gravitational interactions of stars with supermassive black hole binaries. I. Tidal disruption events

    Science.gov (United States)

    Darbha, Siva; Coughlin, Eric R.; Kasen, Daniel; Quataert, Eliot

    2018-04-01

    Stars approaching supermassive black holes (SMBHs) in the centers of galaxies can be torn apart by strong tidal forces. We study the physics of tidal disruption by a circular, binary SMBH as a function of the binary mass ratio q = M2/M1 and separation a, exploring a large set of points in the parameter range q ∈ [0.01, 1] and a/rt1 ∈ [10, 1000]. We simulate encounters in which field stars approach the binary from the loss cone on parabolic, low angular momentum orbits. We present the rate of disruption and the orbital properties of the disrupted stars, and examine the fallback dynamics of the post-disruption debris in the "frozen-in" approximation. We conclude by calculating the time-dependent disruption rate over the lifetime of the binary. Throughout, we use a primary mass M1 = 106M⊙ as our central example. We find that the tidal disruption rate is a factor of ˜2 - 7 times larger than the rate for an isolated BH, and is independent of q for q ≳ 0.2. In the "frozen-in" model, disruptions from close, nearly equal mass binaries can produce intense tidal fallbacks: for binaries with q ≳ 0.2 and a/rt1 ˜ 100, roughly ˜18 - 40% of disruptions will have short rise times (trise ˜ 1 - 10 d) and highly super-Eddington peak return rates (\\dot{M}_{peak} / \\dot{M}_{Edd} ˜ 2 × 10^2 - 3 × 10^3).

  15. Class II HLA interactions modulate genetic risk for multiple sclerosis

    DEFF Research Database (Denmark)

    Moutsianas, Loukas; Jostins, Luke; Beecham, Ashley H

    2015-01-01

    Association studies have greatly refined the understanding of how variation within the human leukocyte antigen (HLA) genes influences risk of multiple sclerosis. However, the extent to which major effects are modulated by interactions is poorly characterized. We analyzed high-density SNP data on 17...

  16. Evolution of Mass Functions of Coeval Stars through Wind Mass Loss and Binary Interactions

    NARCIS (Netherlands)

    Schneider, F.R.N.; Izzard, R.G.; Langer, N.; de Mink, S.E.

    2015-01-01

    Accurate determinations of stellar mass functions and ages of stellar populations are crucial to much of astrophysics. We analyze the evolution of stellar mass functions of coeval main-sequence stars, including all relevant aspects of single and binary star evolution. We show that the slope of the

  17. Microstructure, Interaction Mechanisms, and Stability of Binary Systems Containing Goethite and Kaolinite

    NARCIS (Netherlands)

    Wei, S.Y.; Tan, W.F.; Zhao, W.; Yu, Y.T.; Liu, F.; Koopal, L.K.

    2012-01-01

    Goethite and kaolinite are ubiquitous in natural environments. In soils they are often cemented together as a binary association, which has a significant influence on the structure and properties of soils. In this study, the mineralogy (using X-ray diffraction [XRD], thermal analyses, and infrared

  18. Relativistic (3+1) dimensional hydrodynamic simulations of compact interacting binary systems

    International Nuclear Information System (INIS)

    Mathews, G.J.; Evans, C.R.; Wilson, J.R.

    1986-09-01

    We discuss the development of a relativistic hydrodynamic code for describing the evolution of astrophysical systems in three spatial dimensions. The application of this code to several test problems is presented. Preliminary results from the simulation of the dynamics of accreting binary white dwarf and neutron star systems are discussed. 14 refs., 4 figs

  19. Phase behaviour, interactions, and structural studies of (amines+ionic liquids) binary mixtures.

    Science.gov (United States)

    Jacquemin, Johan; Bendová, Magdalena; Sedláková, Zuzana; Blesic, Marijana; Holbrey, John D; Mullan, Claire L; Youngs, Tristan G A; Pison, Laure; Wagner, Zdeněk; Aim, Karel; Costa Gomes, Margarida F; Hardacre, Christopher

    2012-05-14

    We present a study on the phase equilibrium behaviour of binary mixtures containing two 1-alkyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide-based ionic liquids, [C(n)mim] [NTf(2)] (n=2 and 4), mixed with diethylamine or triethylamine as a function of temperature and composition using different experimental techniques. Based on this work, two systems showing an LCST and one system with a possible hourglass shape are measured. Their phase behaviours are then correlated and predicted by using Flory-Huggins equations and the UNIQUAC method implemented in Aspen. The potential of the COSMO-RS methodology to predict the phase equilibria was also tested for the binary systems studied. However, this methodology is unable to predict the trends obtained experimentally, limiting its use for systems involving amines in ionic liquids. The liquid-state structure of the binary mixture ([C(2)mim] [NTf(2)]+diethylamine) is also investigated by molecular dynamics simulation and neutron diffraction. Finally, the absorption of gaseous ethane by the ([C(2)mim][NTf(2)]+diethylamine) binary mixture is determined and compared with that observed in the pure solvents. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Interactive Lecture Experiments in Large Introductory Physics Classes

    Science.gov (United States)

    Milner-Bolotin, Marina M.; Kotlicki, A.; Rieger, G.; Bates, F.; Moll, R.; McPhee, K.; Nashon, S.

    2006-12-01

    We describe Interactive Lecture Experiments (ILE), which build on Interactive Lecture Demonstrations proposed by Sokoloff and Thornton (2004) and extends it by providing students with the opportunity to analyze experiments demonstrated in the lecture outside of the classroom. Real time experimental data is collected, using Logger Pro combined with the digital video technology. This data is uploaded to the Internet and made available to the students for further analysis. Student learning is assessed in the following lecture using conceptual questions (clickers). The goal of this project is to use ILE to make large lectures more interactive and promote student interest in science, critical thinking and data analysis skills. We report on the systematic study conducted using the Colorado Learning Attitudes about Science Survey, Force Concept Inventory, open-ended physics problems and focus group interviews to determine the impact of ILE on student academic achievement, motivation and attitudes towards physics. Three sections of students (750 students) experienced four ILE experiments. The surveys were administered twice and academic results for students who experienced the ILE for a particular topic were compared to the students, from a different section, who did not complete the ILE for that topic. Additional qualitative data on students’ attitudes was collected using open ended survey questions and interviews. We will present preliminary conclusions about the role of ILEs as an effective pedagogy in large introductory physics courses. Sokoloff, D.R. and R.K. Thornton (2004). Interactive Lecture Demonstrations: Active Learning in Introductory Physics, J.Wiley & Sons, INC. Interactive Lecture Experiments: http://www.physics.ubc.ca/ year1lab/p100/LectureLabs/lectureLabs.html

  1. The Role of Interactive Whiteboard on Motivating Learners in Mathematics Classes: A Case Study

    Directory of Open Access Journals (Sweden)

    Diana Mtchedlishvili

    2015-09-01

    Full Text Available The enhancement of motivation and enthusiasm by the use of interactive whiteboard has improved self- esteem, encouragement and success of many learners who have found mathematics difficult. This study aims to investigate whether the use of interactive whiteboard in mathematics classes promotes motivation of learners which facilitates learning process. 40 lecturers and 40 students were surveyed in the study and the results have been compared and it has been found that interactive whiteboard enhances interactivity, motivates learners and facilitates learning in mathematics classes.

  2. Maritime Safety in Terms of the Availability for the AIS class B Binary Data Transmission, Based on Static Measurements, Performed on the VTS Zatoka Gdańska

    Directory of Open Access Journals (Sweden)

    Jaskólski Krzysztof

    2015-12-01

    Full Text Available The problem of the safety navigation considered only in terms of position error measurement, seems to be solved on a global scale. Thus, the operational characteristics of radio navigation systems such as availability are equally important. The integrated navigation system operate in a multi-sensor environment and it is important to determinate a temporal validity of data to make it usable in data fusion process. In the age of digital data processing, the requirements for continuity, availability, reliability and integrity information are already grown. This article analyses the problem of time stamp discrepancies of dynamic AIS class B position reports. For this purpose, the statistical summary of Latency Position Reports, derived from class B units has been presented. The navigation data recordings were conducted during 82 days of August, September and November 2014 from 20 vessels located in area of VTS ‘Zatoka Gdańska’. On the base of Latency Position Reports class B it is possible to designate the availability of AIS information system. For this purpose, the model of availability of AIS binary data transmission and research outcomes have been presented.

  3. Molecular interactions in ethyl acetate-chlorobenzene binary solution: Dielectric, spectroscopic studies and quantum chemical calculations

    Science.gov (United States)

    Karthick, N. K.; Kumbharkhane, A. C.; Joshi, Y. S.; Mahendraprabu, A.; Shanmugam, R.; Elangovan, A.; Arivazhagan, G.

    2017-05-01

    Dielectric studies using Time Domain Reflectometry method has been carried out on the binary solution of Ethyl acetate (EA) with Chlorobenzene (CBZ) over the entire composition range. Spectroscopic (FTIR and 13C NMR) signatures of neat EA, CBZ and their equimolar binary solution have also been recorded. The results of the spectroscopic studies favour the presence of (CBZ) Csbnd H ⋯ Odbnd C (EA), (EA) methylene Csbnd H ⋯ π electrons (CBZ) and (EA) methyl Csbnd H ⋯ Cl (CBZ) contacts which have been validated using quantum chemical calculations. Dimerization of CBZ has been identified. Presence of β-clusters has been identified in all the solutions. Although EA and CBZ molecules have nearly equal molar volumes, CBZ molecules experience larger hindrance for the rotation than EA molecules. Very small excess dielectric constant (εE) values may be correlated with weak heteromolecular forces and/or closed heteromolecular association.

  4. Collisional scattering for binary Coulomb interactions that are cut off at a distance different than the Debye length

    International Nuclear Information System (INIS)

    Correa, J.R.; Chang Yongbin; Ordonez, C.A.

    2005-01-01

    Collisional scattering is considered within a system of charged particles experiencing binary Coulomb interactions when the scale length for the range of each interaction is not isotropic and is not necessarily equal to the Debye length. For example, one or more dimensions of the system could be smaller than the Debye length. The effect is assessed by evaluating integrals over the impact cross section. Cutoffs on both the impact parameter and the Coulomb interaction potential are employed, and no assumption is made regarding the value of the Coulomb logarithm. Two expressions are found that have a dependence on the cutoff lengths, with one of the expressions being associated with the Coulomb logarithm. Collisional scattering within an electrostatic ion trap is considered by way of example

  5. A novel one-class SVM based negative data sampling method for reconstructing proteome-wide HTLV-human protein interaction networks.

    Science.gov (United States)

    Mei, Suyu; Zhu, Hao

    2015-01-26

    Protein-protein interaction (PPI) prediction is generally treated as a problem of binary classification wherein negative data sampling is still an open problem to be addressed. The commonly used random sampling is prone to yield less representative negative data with considerable false negatives. Meanwhile rational constraints are seldom exerted on model selection to reduce the risk of false positive predictions for most of the existing computational methods. In this work, we propose a novel negative data sampling method based on one-class SVM (support vector machine, SVM) to predict proteome-wide protein interactions between HTLV retrovirus and Homo sapiens, wherein one-class SVM is used to choose reliable and representative negative data, and two-class SVM is used to yield proteome-wide outcomes as predictive feedback for rational model selection. Computational results suggest that one-class SVM is more suited to be used as negative data sampling method than two-class PPI predictor, and the predictive feedback constrained model selection helps to yield a rational predictive model that reduces the risk of false positive predictions. Some predictions have been validated by the recent literature. Lastly, gene ontology based clustering of the predicted PPI networks is conducted to provide valuable cues for the pathogenesis of HTLV retrovirus.

  6. Images of gravitational and magnetic phenomena derived from two-dimensional back-projection Doppler tomography of interacting binary stars

    International Nuclear Information System (INIS)

    Richards, Mercedes T.; Cocking, Alexander S.; Fisher, John G.; Conover, Marshall J.

    2014-01-01

    We have used two-dimensional back-projection Doppler tomography as a tool to examine the influence of gravitational and magnetic phenomena in interacting binaries that undergo mass transfer from a magnetically active star onto a non-magnetic main-sequence star. This multitiered study of over 1300 time-resolved spectra of 13 Algol binaries involved calculations of the predicted dynamical behavior of the gravitational flow and the dynamics at the impact site, analysis of the velocity images constructed from tomography, and the influence on the tomograms of orbital inclination, systemic velocity, orbital coverage, and shadowing. The Hα tomograms revealed eight sources: chromospheric emission, a gas stream along the gravitational trajectory, a star-stream impact region, a bulge of absorption or emission around the mass-gaining star, a Keplerian accretion disk, an absorption zone associated with hotter gas, a disk-stream impact region, and a hot spot where the stream strikes the edge of a disk. We described several methods used to extract the physical properties of the emission sources directly from the velocity images, including S-wave analysis, the creation of simulated velocity tomograms from hydrodynamic simulations, and the use of synthetic spectra with tomography to sequentially extract the separate sources of emission from the velocity image. In summary, the tomography images have revealed results that cannot be explained solely by gravitational effects: chromospheric emission moving with the mass-losing star, a gas stream deflected from the gravitational trajectory, and alternating behavior between stream state and disk state. Our results demonstrate that magnetic effects cannot be ignored in these interacting binaries.

  7. Study of intermolecular interactions in binary mixtures of 2-(dimethylamino)ethanol with methanol and ethanol at various temperatures

    International Nuclear Information System (INIS)

    Pandey, Puneet Kumar; Pandey, Vrijesh Kumar; Awasthi, Anjali; Nain, Anil Kumar; Awasthi, Aashees

    2014-01-01

    Graphical abstract: The densities and ultrasonic speeds of the binary mixtures over the entire composition range were measured at various temperatures at atmospheric pressure. The excess molar volumes, isentropic compressibilities, and molar isentropic compressions have been calculated. The variations of these parameters with composition and temperature are discussed. The IR spectra were recorded they further supported the conclusion drawn from excess parameters, which indicates the presence of intermolecular hydrogen bonding between the oxygen atom of DMAE molecules and hydrogen atom of methanol and ethanol molecules in these mixtures.. - Highlights: • The study reports density and ultrasonic velocity data of 2-(dimethylamino)ethanol + methanol/ethanol mixtures. • To elucidate the interactions in 2-(dimethylamino)ethanol + methanol/ethanol binary mixtures. • Provides information on nature and relative strength of interactions in these mixtures. • Correlates physicochemical properties with interactions in these mixtures. - Abstract: The densities, ρ and ultrasonic speeds, u of the binary mixtures of 2-(dimethylamino)ethanol (DMAE) with methanol/ethanol, including those of pure liquids, over the entire composition range were measured at 298.15, 308.15 and 318.15 K. From the experimental data, the excess molar volumes, V m E and excess isentropic compressibilities, κ s E have been calculated. The excess partial molar volumes, V ¯ m,1 E and V ¯ m,2 E and excess partial molar isentropic compressions, K ¯ s,m,1 E and K ¯ s,m,2 E over the whole composition range; and partial molar volumes, V ¯ m,1 ° and V ¯ m,2 ° , partial molar isentropic compressions, K ¯ s,m,1 ° and K ¯ s,m,2 ° , excess partial molar volumes, V ¯ m,1 °E and V ¯ m,2 °E , and excess partial molar isentropic compressions, K ¯ s,m,1 °E and K ¯ s,m,2 °E at infinite dilution have also been calculated. The variations of these parameters with composition and temperature are

  8. Assessment of odor activity value coefficient and odor contribution based on binary interaction effects in waste disposal plant

    Science.gov (United States)

    Wu, Chuandong; Liu, Jiemin; Yan, Luchun; Chen, Haiying; Shao, Huiqi; Meng, Tian

    2015-02-01

    Odor activity value (OAV) has been widely used for the assessment of odor pollution from various sources. However, little attention has been paid to the extreme OAV variation and potential inaccuracies of odor contribution assessment caused by odor interaction effects. The objective of this study is to assess the odor interaction effect for precise assessment of odor contribution. In this paper, samples were collected from a food waste disposal plant, and analyzed by instrumental and olfactory method to conclude odorants' occurrence and OAV. Then odor activity value coefficient (γ) was first proposed to evaluate the type and the level of binary interaction effects based on determination of OAV variation. By multiplying OAV and γ, odor activity factor (OAF) was used to reflect the real OAV. Correlation between the sum of OAF and odor concentration reached 80.0 ± 5.7%, which was 10 times higher than the sum of OAV used before. Results showed that hydrogen sulfide contributed most (annual average 66.4 ± 15.8%) to odor pollution in the waste disposal plant. However, as odor intensity of samples in summer rising, odor contribution of trimethylamine increased to 48.3 ± 3.7% by the strong synergistic interaction effect, while odor contribution of phenol decreased to 0.1 ± 0.02% for the increasing antagonistic interaction effect.

  9. THE CONTRIBUTIONS OF INTERACTIVE BINARY STARS TO DOUBLE MAIN-SEQUENCE TURNOFFS AND DUAL RED CLUMP OF INTERMEDIATE-AGE STAR CLUSTERS

    International Nuclear Information System (INIS)

    Yang Wuming; Bi Shaolan; Tian Zhijia; Li Tanda; Liu Kang; Meng Xiangcun

    2011-01-01

    Double or extended main-sequence turnoffs (DMSTOs) and dual red clump (RC) were observed in intermediate-age clusters, such as in NGC 1846 and 419. The DMSTOs are interpreted as that the cluster has two distinct stellar populations with differences in age of about 200-300 Myr but with the same metallicity. The dual RC is interpreted as a result of a prolonged star formation. Using a stellar population-synthesis method, we calculated the evolution of a binary-star stellar population. We found that binary interactions and merging can reproduce the dual RC in the color-magnitude diagrams of an intermediate-age cluster, whereas in actuality only a single population exists. Moreover, the binary interactions can lead to an extended main-sequence turnoff (MSTO) rather than DMSTOs. However, the rest of the main sequence, subgiant branch, and first giant branch are hardly spread by the binary interactions. Part of the observed dual RC and extended MSTO may be the results of binary interactions and mergers.

  10. A new study of the interacting binary star V356 Sgr

    Science.gov (United States)

    Polidan, R. S.

    1988-01-01

    Results on V356 Sgr from IUE and Voyager ultraviolet (500 to 3200 A) observations obtained in 1986 and 1987, primarily during 2 total eclipses are presented. The eclipse of Aug. 15, 1986 was fully covered with IUE low dispersion images and 9 hr of Voyager UVS data. The eclipse of Mar. 25, 1987 was covered with IUE low dispersion images and 1 high dispersion SWP image. During both eclipses the total strength of the emission lines is found to be invariant. An uneclipsed UV continuum is detected at wavelengths shorter than 1500 A. The high dispersion SWP spectrum reveals that the emission lines are extremely broad, almost symmetrical emissions with weak, slightly blue shifted absorption components. No evidence of carbon, C I, C II, C III, or C IV, is seen in the emission or absorption spectrum of V356 Sgr in eclipse. Models for this binary system are presented.

  11. A multiplexable TALE-based binary expression system for in vivo cellular interaction studies.

    Science.gov (United States)

    Toegel, Markus; Azzam, Ghows; Lee, Eunice Y; Knapp, David J H F; Tan, Ying; Fa, Ming; Fulga, Tudor A

    2017-11-21

    Binary expression systems have revolutionised genetic research by enabling delivery of loss-of-function and gain-of-function transgenes with precise spatial-temporal resolution in vivo. However, at present, each existing platform relies on a defined exogenous transcription activator capable of binding a unique recognition sequence. Consequently, none of these technologies alone can be used to simultaneously target different tissues or cell types in the same organism. Here, we report a modular system based on programmable transcription activator-like effector (TALE) proteins, which enables parallel expression of multiple transgenes in spatially distinct tissues in vivo. Using endogenous enhancers coupled to TALE drivers, we demonstrate multiplexed orthogonal activation of several transgenes carrying cognate variable activating sequences (VAS) in distinct neighbouring cell types of the Drosophila central nervous system. Since the number of combinatorial TALE-VAS pairs is virtually unlimited, this platform provides an experimental framework for highly complex genetic manipulation studies in vivo.

  12. A PIONIER and Incisive Look at the Interacting Binary SS Lep

    Science.gov (United States)

    Blind, N.; Boffin, H. M. J.; Berger, J.-P.; Lebouquin, J.-B.; Mérand, A.

    2011-09-01

    Symbiotic stars are excellent laboratories to study a broad range of poorly understood physical processes, such as mass loss of red giants, accretion onto compact objects, and evolution of nova-like outbursts. As their evolution is strongly influenced by the mass transfer episodes, understanding the history of these systems requires foremost to determine which process is at play: Roche lobe overflow, stellar wind accretion, or some more complex mixture of both. We report here an interferometric study of the symbiotic system SS Leporis, performed with the unique PIONIER instrument. By determining the binary orbit and revisiting the parameters of the two stars, we show that the giant does not fill its Roche lobe, and that the mass transfer most likely occurs via the accretion of an important part of the giant's wind.

  13. Spectroscopic and photometric study of the eclipsing interacting binary V495 Centauri

    Science.gov (United States)

    Rosales Guzmán, J. A.; Mennickent, R. E.; Djurašević, G.; Araya, I.; Curé, M.

    2018-05-01

    Double Periodic Variables (DPV) are among the new enigmas of semidetached eclipsing binaries. These are intermediate-mass binaries characterized by a long photometric period lasting on average 33 times the orbital period. We present a spectroscopic and photometric study of the DPV V495 Cen based on new high-resolution spectra and the ASAS V-band light curve. We have determined an improved orbital period of 33.492 ± 0.002 d and a long period of 1283 d. We find a cool evolved star of M2=0.91± 0.2 M_{⊙}, T2 = 6000 ± 250 K and R2=19.3 ± 0.5 R_{⊙} and a hot companion of M1= 5.76± 0.3 M_{⊙}, T1 = 16960 ± 400 K and R=4.5± 0.2 R_{⊙}. The mid-type B dwarf is surrounded by a concave and geometrically thick disc, of radial extension Rd= 40.2± 1.3 R_{⊙} contributing ˜11 per cent to the total luminosity of the system at the V band. The system is seen under inclination 84.8° ± 0.6° and it is at a distance d = 2092 ± 104.6 pc. The light-curve analysis suggests that the mass transfer stream impacts the external edge of the disc forming a hot region 11 per cent hotter than the surrounding disc material. The persistent V < R asymmetry of the Hα emission suggests the presence of a wind and the detection of a secondary absorption component in He I lines indicates a possible wind origin in the hotspot region.

  14. Design of Experiments Relevant to Accreting Stream-Disk Impact in Interacting Binaries

    Science.gov (United States)

    Krauland, Christine; Drake, R. P.; Kuranz, C. C.; Grosskopf, M. J.; Young, R.; Plewa, T.

    2010-05-01

    In many Cataclysmic Binary systems, mass transfer via Roche lobe overflow onto an accretion disk occurs. This produces a hot spot from the heating created by the supersonic impact of the infalling flow with the rotating accretion disk, which can produce a radiative reverse shock in the infalling flow. This collision region has many ambiguities as a radiation hydrodynamic system. Depending upon conditions, it has been argued (Armitgae & Livio, ApJ 493, 898) that the shocked region may be optically thin, thick, or intermediate, which has the potential to significantly alter its structure and emissions. Laboratory experiments have yet to produce colliding flows that create a radiative reverse shock or to produce obliquely incident colliding flows, both of which are aspects of these Binary systems. We have undertaken the design of such an experiment, aimed at the Omega-60 laser facility. The design elements include the production of postshock flows within a dense material layer or ejecta flows by release of material from a shocked layer. Obtaining a radiative reverse shock in the laboratory requires producing a sufficiently fast flow (> 100 km/s) within a material whose opacity is large enough to produce energetically significant emission from experimentally achievable layers. In this poster we will discuss the astrophysical context, the experimental design work we have done, and the challenges of implementing and diagnosing an actual experiment. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, by the National Laser User Facility Program in NNSA-DS and by the Predictive Sciences Academic Alliances Program in NNSA-ASC. The corresponding grant numbers are DE-FG52-09NA29548, DE-FG52-09NA29034, and DE-FC52-08NA28616.

  15. Numerical simulation of coupled binary gas-solid interaction during carbon dioxide sequestration in a coal bed

    International Nuclear Information System (INIS)

    Feng Qiyan; Zhou Lai; Chen Zhongwei; Liu Jishan

    2008-01-01

    Complicated coupled binary gas-solid interaction arises during carbon dioxide sequestration in a coal seam, which combines effects of CO 2 -CH 4 counter adsorption, CO 2 -CH 4 counter diffusion, binary gas flow and coal bed deformation. Through solving a set of coupled field governing equations, a novel full coupled Finite Element (FE) model was established by COMSOL Multiphysics. The new FE model was applied to the quantification of coal porous pressure, coal permeability, gas composition fraction and coal displacement when CO 2 was injected in a CH 4 saturated coal bed. Numerical results demonstrate that CH 4 is swept by the injected CO 2 accompanied by coal volumetric deformation. Compared to the single CH 4 in situ, CH 4 -CO 2 counter-diffusion induced coal swelling can make more compensation for coal shrinkage due to effective stress. Competing influences between the effective stress and the CH 4 -CO 2 counter-diffusion induced volume change governs the evolution of porous pressure and permeability, which is controlled by the porous pressure correspondingly. This achievement extends our ability to understand the coupled multi-physics of the CO 2 geological sequestration and CO 2 enhanced coal bed methane recovery under field conditions. (authors)

  16. Interaction of the chaperone calreticulin with proteins and peptides of different structural classes

    DEFF Research Database (Denmark)

    Duus, K; Sandhu, N; Jørgensen, C S

    2009-01-01

    The interaction of calreticulin with native and denatured forms and polypeptides in proteolytic digests of proteins representing structural classes of all-alpha-helix (hemoglobin, serum albumin), all-beta-sheet (IgG) and alpha-helix + beta-sheets (lysozyme, ovalbumin) was investigated. The binding...... of calreticulin to denatured proteins was found to depend on conformation and structural class of the protein. No interaction was observed with the native proteins, whereas binding was seen for the denatured proteins, the order of interaction being lysozyme = IgG > ovalbumin >> hemoglobin = serum albumin....... Moreover, the interaction between calreticulin and the heat-denatured proteins depended on the temperature and time used for denaturation and the degree of proteolytic fragmentation. Calreticulin bound well to peptides in proteolytic digests from protease K or chymotrypsin treatment of lysozyme, Ig...

  17. Activities Contributing a Great Deal to the Students' Interactive Skills in Foreign Language Classes

    Science.gov (United States)

    Asatryan, Susanna

    2016-01-01

    While teaching speaking it is desired to provide a rich environment in class for meaningful communication to take place. With this aim, various speaking activities can contribute a great deal to students in developing their interactive skills necessary for life. These activities make students active in the learning process and at the same time…

  18. Edge plasmas and plasma/wall interactions in an ignition-class reversed field pinch

    International Nuclear Information System (INIS)

    Werley, K.A.; Bathke, C.G.; Krakowski, R.A.

    1987-01-01

    A range of limiter, armor, and divertor options are examined as a means to minimize plasma/wall interactions for a high-power-density, ignition-class reversed field pinch. An open, toroidal-field divertor can operate at maximum powers, while isolating the core plasma from impurities and protecting the wall. 16 refs

  19. An efficient hydrophilic interaction liquid chromatography separation of 7 phospholipid classes based on a diol column

    NARCIS (Netherlands)

    Zhu, C.; Dane, A.; Spijksma, G.; Wang, M.; Greef, J. van der; Luo, G.; Hankemeier, T.; Vreeken, R.J.

    2012-01-01

    A hydrophilic interaction liquid chromatography (HILIC) - ion trap mass spectrometry method was developed for separation of a wide range of phospholipids. A diol column which is often used with normal phase chromatography was adapted to separate different phospholipid classes in HILIC mode using a

  20. Covering #SAE: A Mobile Reporting Class's Changing Patterns of Interaction on Twitter over Time

    Science.gov (United States)

    Jones, Julie

    2015-01-01

    This study examined the social network that emerged on Twitter surrounding a mobile reporting class as they covered a national breaking news event. The work introduces pedagogical strategies that enhance students' learning opportunities. Through NodeXL and social network cluster analysis, six groups emerged from the Twitter interactions tied to…

  1. Mapping jet-ISM interactions in X-ray binaries with ALMA: a GRS 1915+105 case study

    Science.gov (United States)

    Tetarenko, A. J.; Freeman, P.; Rosolowsky, E. W.; Miller-Jones, J. C. A.; Sivakoff, G. R.

    2018-03-01

    We present Atacama Large Millimetre/Sub-Millimetre Array (ALMA) observations of IRAS 19132+1035, a candidate jet-interstellar medium (ISM) interaction zone near the black hole X-ray binary (BHXB) GRS 1915+105. With these ALMA observations (combining data from the 12 m array and the Atacama Compact Array), we map the molecular line emission across the IRAS 19132+1035 region. We detect emission from the 12CO [J = 2 - 1], 13CO [ν = 0, J = 2 - 1], C18O [J = 2 - 1], H2CO [J = 30, 3 - 20, 2], H2CO [J = 32, 2 - 22, 1], H2CO [J = 32, 1 - 22, 0], SiO [ν = 0, J = 5 - 4], CH3OH [J = 42, 2 - 31, 2], and CS [ν = 0, J = 5 - 4] transitions. Given the morphological, spectral, and kinematic properties of this molecular emission, we present several lines of evidence that support the presence of a jet-ISM interaction at this site, including a jet-blown cavity in the molecular gas. This compelling new evidence identifies this site as a jet-ISM interaction zone, making GRS 1915+105, the third Galactic BHXB with at least one conclusive jet-ISM interaction zone. However, we find that this interaction occurs on much smaller scales than was postulated by previous work, where the BHXB jet does not appear to be dominantly powering the entire IRAS 19132+1035 region. Using estimates of the ISM conditions in the region, we utilize the detected cavity as a calorimeter to estimate the time-averaged power carried in the GRS 1915+105 jets of (8.4^{+7.7}_{-8.1})× 10^{32} erg s^{-1}. Overall, our analysis demonstrates that molecular lines are excellent diagnostic tools to identify and probe jet-ISM interaction zones near Galactic BHXBs.

  2. Configurational energies and effective cluster interactions in substitutionally disordered binary alloys

    International Nuclear Information System (INIS)

    Gonis, A.; Zhang, X.h.; Freeman, A.J.; Turchi, P.; Stocks, G.M.; Nicholson, D.M.

    1987-01-01

    The determination of configurational energies in terms of effective cluster interactions in substitutionally disordered alloys from a knowledge of the alloy electronic structure is examined within the methods of concentration waves (CW) and the generalized perturbation method (GPM), and for the first time within the embedded-cluster method (ECM). It is shown that the ECM provides the exact summation to all orders of the effective cluster interaction expansions obtained in the partially renormalized GPM. The connection between the various methods (CW, GPM, and ECM) is discussed and illustrated by means of numerical calculations for model one-dimensional tight-binding (TB) systems and for TB Hamiltonians chosen to describe Pd-V alloys. These calculations, and the formal considerations presented in the body of the paper, show the complete equivalence of converged GPM summations within specific clusters and the ECM. In addition, it is shown that an exact expansion of the configurational energy can be obtained in terms of fully renormalized effective cluster interactions. In principle, these effective cluster interactions can be used in conjunction with statistical models to determine stable ordered structures at low temperatures and alloy phase diagrams

  3. A combined experimental and theoretical approach to the study of hydrogen bond interaction in the binary mixture of N-methylimidazole with water

    International Nuclear Information System (INIS)

    Huang, Rongyi; Du, Rongbin; Liu, Guangxiang; Zhao, Xiuqin; Ye, Shiyong; Wu, Genhua

    2012-01-01

    Highlights: ► Densities of N-methylimidazole with water binary mixture were measured. ► Excess molar volumes were fitted to Redlich–Kister polynomial equation. ► Excess molar volumes are negative in the whole mole fraction range. ► 1:1 Hydrogen complex formation between the unlike components was observed. ► Formation of hydrogen bonds in the binary mixture was confirmed by DFT//B3LYP. - Abstract: The intermolecular hydrogen bond interactions in the N-methylimidazole (MeIm) with water binary mixture have been studied by a combined experimental and theoretical approach. The densities of the binary mixture have been measured at T = (288.15 to 323.15) K and at atmospheric pressure. From the experimental data, excess molar volumes were determined as a function of composition at each temperature. The results reveal the formation of 1:1 hydrogen bond complex between MeIm with water at the maximal excess molar volume. Meanwhile, the formation of hydrogen bonds in the binary mixture was further confirmed by high level theoretical calculation. The structures, interactional energies and bond characteristics of the hydrogen bond complexes were calculated in the gas phase using density functional theory (DFT) at the B3LYP/6-311++G(d, p) theory levels. The changes of thermodynamic properties from the monomers to hydrogen bond complexes with the temperature ranging from (288.15 to 323.15) K were obtained using the statistical thermodynamic method. Thermodynamic analyses have been interpreted in terms of intermolecular interactions and excess molar volume changes in the binary mixture. It was also found that the formation reaction of the hydrogen bond complex of MeIm with water was an exothermic, entropy reduced and spontaneous thermodynamic process at all the temperature studied.

  4. The ALMA Protostellar Interferometric Line Survey (PILS). First results from an unbiased submillimeter wavelength line survey of the Class 0 protostellar binary IRAS 16293-2422 with ALMA

    Science.gov (United States)

    Jørgensen, J. K.; van der Wiel, M. H. D.; Coutens, A.; Lykke, J. M.; Müller, H. S. P.; van Dishoeck, E. F.; Calcutt, H.; Bjerkeli, P.; Bourke, T. L.; Drozdovskaya, M. N.; Favre, C.; Fayolle, E. C.; Garrod, R. T.; Jacobsen, S. K.; Öberg, K. I.; Persson, M. V.; Wampfler, S. F.

    2016-11-01

    Context. The inner regions of the envelopes surrounding young protostars are characterized by a complex chemistry, with prebiotic molecules present on the scales where protoplanetary disks eventually may form. The Atacama Large Millimeter/submillimeter Array (ALMA) provides an unprecedented view of these regions zooming in on solar system scales of nearby protostars and mapping the emission from rare species. Aims: The goal is to introduce a systematic survey, the Protostellar Interferometric Line Survey (PILS), of the chemical complexity of one of the nearby astrochemical templates, the Class 0 protostellar binary IRAS 16293-2422, using ALMA in order to understand the origin of the complex molecules formed in its vicinity. In addition to presenting the overall survey, the analysis in this paper focuses on new results for the prebiotic molecule glycolaldehyde, its isomers, and rarer isotopologues and other related molecules. Methods: An unbiased spectral survey of IRAS 16293-2422 covering the full frequency range from 329 to 363 GHz (0.8 mm) has been obtained with ALMA, in addition to a few targeted observations at 3.0 and 1.3 mm. The data consist of full maps of the protostellar binary system with an angular resolution of 0.5'' (60 AU diameter), a spectral resolution of 0.2 km s-1, and a sensitivity of 4-5 mJy beam-1 km s-1, which is approximately two orders of magnitude better than any previous studies. Results: More than 10 000 features are detected toward one component in the protostellar binary, corresponding to an average line density of approximately one line per 3 km s-1. Glycolaldehyde; its isomers, methyl formate and acetic acid; and its reduced alcohol, ethylene glycol, are clearly detected and their emission well-modeled with an excitation temperature of 300 K. For ethylene glycol both lowest state conformers, aGg' and gGg', are detected, the latter for the first time in the interstellar medium (ISM). The abundance of glycolaldehyde is comparable to or

  5. Spectral properties of binary asteroids

    Science.gov (United States)

    Pajuelo, Myriam; Birlan, Mirel; Carry, Benoît; DeMeo, Francesca E.; Binzel, Richard P.; Berthier, Jérôme

    2018-04-01

    We present the first attempt to characterize the distribution of taxonomic class among the population of binary asteroids (15% of all small asteroids). For that, an analysis of 0.8-2.5{μ m} near-infrared spectra obtained with the SpeX instrument on the NASA/IRTF is presented. Taxonomic class and meteorite analog is determined for each target, increasing the sample of binary asteroids with known taxonomy by 21%. Most binary systems are bound in the S-, X-, and C- classes, followed by Q and V-types. The rate of binary systems in each taxonomic class agrees within uncertainty with the background population of small near-Earth objects and inner main belt asteroids, but for the C-types which are under-represented among binaries.

  6. A caspase-2-RFXANK interaction and its implication for MHC class II expression.

    Science.gov (United States)

    Forsberg, Jeremy; Li, Xinge; Akpinar, Birce; Salvatori, Roger; Ott, Martin; Zhivotovsky, Boris; Olsson, Magnus

    2018-01-23

    Despite recent achievements implicating caspase-2 in tumor suppression, the enzyme stands out from the apoptotic caspase family as a factor whose function requires further clarification. To specify enzyme characteristics through the definition of interacting proteins in apoptotic or non-apoptotic settings, a yeast 2-hybrid (Y2H) screen was performed using the full-length protein as bait. The current report describes the analysis of a captured prey and putative novel caspase-2 interacting factor, the regulatory factor X-associated ankyrin-containing protein (RFXANK), previously associated with CIITA, the transactivator regulating cell-type specificity and inducibility of MHC class II gene expression. The interaction between caspase-2 and RFXANK was verified by co-immunoprecipitations using both exogenous and endogenous proteins, where the latter approach suggested that binding of the components occurs in the cytoplasm. Cellular co-localization was confirmed by transfection of fluorescently conjugated proteins. Enhanced caspase-2 processing in RFXANK-overexpressing HEK293T cells treated with chemotherapeutic agents further supported Y2H data. Yet, no distinct differences with respect to MHC class II expression were observed in plasma membranes of antigen-presenting cells derived from wild type and caspase-2 -/- mice. In contrast, increased levels of the total MHC class II protein was evident in protein lysates from caspase-2 RNAi-silenced leukemia cell lines and B-cells isolated from gene-targeted mice. Together, these data identify a novel caspase-2-interacting factor, RFXANK, and indicate a potential non-apoptotic role for the enzyme in the control of MHC class II gene regulation.

  7. Establishment of a quantitative ELISA capable of determining peptide - MHC class I interaction

    DEFF Research Database (Denmark)

    Sylvester-Hvid, C; Kristensen, N; Blicher, T

    2002-01-01

    dependent manner. Here, we exploit the availability of these molecules to generate a quantitative ELISA-based assay capable of measuring the affinity of the interaction between peptide and MHC-I. This assay is simple and sensitive, and one can easily envisage that the necessary reagents, standards......Many different assays for measuring peptide-MHC interactions have been suggested over the years. Yet, there is no generally accepted standard method available. We have recently generated preoxidized recombinant MHC class I molecules (MHC-I) which can be purified to homogeneity under denaturing...

  8. Islamic Educational Transformation through Inmate Social Interaction at Palu Correctional Facility Class II A, Central Sulawesi

    Directory of Open Access Journals (Sweden)

    Yusra

    2017-06-01

    Full Text Available Rehabilitation system adopted by correctional facility is based on Pancasila. All incarcerated men are rehabilitated there with the goal to make them repent, be law-abiding citizens, and uphold moral values. Correctional facility comes as a rehabilitation place to improve social interaction so that inmates can be received by their social environment once they are released from prison. At this point, the researcher focuses on Islamic educational transformation through inmate social interaction training program at Palu correctional facility class II A. This research uses descriptive quantitative design with social legal approach to observe patterns of inmate social interaction. The result of research points out that Islamic educational transformation which is packed into rehabilitation programs and correctional educational activities is remarkably emphasized in inmate social interaction. In this case, Islamic educational transformation applied in Palu correctional facility class II A is defined as ultimum remidium, correctional activities emphasizing on process-based approach. Rehabilitation process given to inmates is able to improve insight and awareness of ethical and moral values in their social interaction. Therefore, when returning to society they can be accepted by social environtment as good responsible people.

  9. Human HOX Proteins Use Diverse and Context-Dependent Motifs to Interact with TALE Class Cofactors.

    Science.gov (United States)

    Dard, Amélie; Reboulet, Jonathan; Jia, Yunlong; Bleicher, Françoise; Duffraisse, Marilyne; Vanaker, Jean-Marc; Forcet, Christelle; Merabet, Samir

    2018-03-13

    HOX proteins achieve numerous functions by interacting with the TALE class PBX and MEIS cofactors. In contrast to this established partnership in development and disease, how HOX proteins could interact with PBX and MEIS remains unclear. Here, we present a systematic analysis of HOX/PBX/MEIS interaction properties, scanning all paralog groups with human and mouse HOX proteins in vitro and in live cells. We demonstrate that a previously characterized HOX protein motif known to be critical for HOX-PBX interactions becomes dispensable in the presence of MEIS in all except the two most anterior paralog groups. We further identify paralog-specific TALE-binding sites that are used in a highly context-dependent manner. One of these binding sites is involved in the proliferative activity of HOXA7 in breast cancer cells. Together these findings reveal an extraordinary level of interaction flexibility between HOX proteins and their major class of developmental cofactors. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Phase Behaviour, Interactions, and Structural Studies of (Amines+Ionic Liquids) Binary Mixtures

    Czech Academy of Sciences Publication Activity Database

    Jacquemin, J.; Bendová, Magdalena; Sedláková, Zuzana; Holbrey, J.D.; Mullan, C.L.; Youngs, T.G.A.; Pison, L.; Wagner, Zdeněk; Aim, Karel; Costa Gomes, M.F.; Hardacre, Ch.

    2012-01-01

    Roč. 13, č. 7 (2012), s. 1825-1835 ISSN 1439-4235 R&D Projects: GA ČR GP203/09/P141; GA ČR GA104/07/0444; GA AV ČR IAA400720710; GA ČR GP104/06/P066 Grant - others:QUILL(GB) EP/D029538 Institutional research plan: CEZ:AV0Z40720504 Keywords : amines * interactions * ionic liquids Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.349, year: 2012

  11. The structural and thermodynamical properties of binary ellipsoidal fluid mixture Gay-Berne interaction

    Directory of Open Access Journals (Sweden)

    M. Moradi

    2007-06-01

    Full Text Available  In this paper, a uniform classical fluid mixture comprising ellipsoidal molecules is studied. This mixture is composed of two types of ellipsoidal molecules interacting through the Gay-Berne potential with different sizes at temperature T. For this system, the Ornstein-Zernike equation using the Percus-Yevick closure relation is solved. Then the direct correlation function, pair correlation function and the pressure of the fluid at temperature T are calculated. The obtained results are in agreement with the previous theories and the results of molecular dynamic computer simulation.

  12. Interactional Strategies Used by Low Level Learners in Public Speaking Class

    Directory of Open Access Journals (Sweden)

    Yuli Astutik

    2017-10-01

    Full Text Available This research article described the interactional strategies used by low learners in public speaking class. A qualitative study on whether or not low learners used the aspects of interactional strategies was the main focus. This paper also aimed to know what aspects mostly used and the factors that cause this problem. Observing and interviewing to six subjects regarding on the use of interactional strategies: exemplification, confirmation checks, comprehension checks, repetition, clarification requests, repetition requests, exemplification requests, and assistance appeal were carried out. Finding indicated that from six low learners, only two who did not apply interactional strategies in all situations. Four students have applied 3 – 4 interactional strategies in the case they were as the speaker. In another side, when they were the listeners, they did not apply the interactional strategies. The result showed that repetition was the interactional strategy mostly used by low learners. Nevertheless, the reason of using it was not proper reason. The further finding indicated some factors cause low learners did not use four interactional strategies such as fluency, grammar, lack of vocabulary and pronunciation in addition to the English practice merely in the formal situation.

  13. Ultrasonic study on molecular interactions in binary mixtures of formamide with 1-propanol or 2-propanol

    Institute of Scientific and Technical Information of China (English)

    Manju Rani; Suman Gahlyan; Ankur Gaur; Sanjeev Maken

    2015-01-01

    Ultrasonic speeds have been measured at 298.15 K and 308.15 K for mixtures of formamide+1-propanol or 2-propanol. For an equimolar mixture, excess molar compressibility follows the sequence of 1-propanol N 2-propanol. The ultrasonic speed data are correlated by various correlations such as Nomoto's relation, van Dael's mixing relation and impedance dependence relation, and analyzed in terms of Jacobson's free length theory and Schaaff's collision factor theory. Excess isentropic compressibility is calculated from ex-perimental ultrasonic speed data and previously reported excess volume data. The excess molar ultrasonic speed and isentropic compressibility values are fitted to Redlich–Kister polynomial equation. Other proper-ties such as molecular association, avallable volume, free volume, and intermolecular free length are also calculated. The excess isentropic compressibility data are also interpreted in terms of graph theoretical ap-proach. The calculated isentropic compressibility values are well consistent with the experimental data. It is found that the interaction between formamide and propanol increases when hydroxyl group attached to a carbon atom has more–CH3 groups.

  14. Assessing interactions of binary mixtures of Penicillium mycotoxins (PMs) by using a bovine macrophage cell line (BoMacs)

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Se-Young, E-mail: ohs@uoguelph.ca [Department of Animal Biosciences, Ontario Agriculture College (OAC), University of Guelph, Guelph, ON N1G 2W1 (Canada); Cedergreen, Nina [Department of Life Sciences, University of Copenhagen, Frederiksberg (Denmark); Yiannikouris, Alexandros [Alltech Inc., Nicholasville, KY (United States); Swamy, H.V.L.N. [Trouw Nutrition Pvt. Ltd. India, Karnataka State 560065 (India); Karrow, Niel A., E-mail: nkarrow@uoguelph.ca [Department of Animal Biosciences, Ontario Agriculture College (OAC), University of Guelph, Guelph, ON N1G 2W1 (Canada)

    2017-03-01

    Penicillium mycotoxins (PMs) are toxic contaminants commonly found as mixtures in animal feed. Therefore, it is important to investigate potential joint toxicity of PM mixtures. In the present study, we assessed the joint effect of binary combinations of the following PMs: citrinin (CIT), ochratoxin A (OTA), patulin (PAT), mycophenolic acid (MPA) and penicillic acid (PA) using independent action (IA) and concentration addition (CA) concepts. Previously published toxicity data (i.e. IC25; PM concentration that inhibited bovine macrophage (BoMacs) proliferation by 25%) were initially analyzed, and both concepts agreed that OTA + PA demonstrated synergism (p < 0.05), while PAT + PA showed antagonism (p < 0.05). When a follow-up dilution study was carried out using binary combinations of PMs at three different dilution levels (i.e. IC25, 0.5 ∗ IC25, 0.25 ∗ IC25), only the mixture of CIT + OTA at 0.5 ∗ IC25 was determined to have synergism by both IA and CA concepts with Model Deviation Ratios (MDRs; the ratio of predicted versus observed effect concentrations) of 1.4 and 1.7, respectively. The joint effect of OTA + MPA, OTA + PA and CIT + PAT complied with the IA concept, while CIT + PA, PAT + MPA and PAT + PA were better predicted with the CA over the IA concept. The present study suggests to test both IA and CA concepts using multiple doses when assessing risk of mycotoxin mixtures if the mode of action is unknown. In addition, the study showed that the tested PMs could be predicted by IA or CA within an approximate two-fold certainty, raising the possibility for a joint risk assessment of mycotoxins in food and feed. - Highlights: • We investigated the potential joint toxicity of Penicillium mycotoxin (PM) mixtures. • Independent action (IA) and concentration addition (CA) concepts were used. • 7 out of 10 mixtures followed joint toxicity described by IA or CA concepts. • Both concepts agreed that CIT + OTA mixture had synergistic interaction.

  15. Assessing interactions of binary mixtures of Penicillium mycotoxins (PMs) by using a bovine macrophage cell line (BoMacs)

    International Nuclear Information System (INIS)

    Oh, Se-Young; Cedergreen, Nina; Yiannikouris, Alexandros; Swamy, H.V.L.N.; Karrow, Niel A.

    2017-01-01

    Penicillium mycotoxins (PMs) are toxic contaminants commonly found as mixtures in animal feed. Therefore, it is important to investigate potential joint toxicity of PM mixtures. In the present study, we assessed the joint effect of binary combinations of the following PMs: citrinin (CIT), ochratoxin A (OTA), patulin (PAT), mycophenolic acid (MPA) and penicillic acid (PA) using independent action (IA) and concentration addition (CA) concepts. Previously published toxicity data (i.e. IC25; PM concentration that inhibited bovine macrophage (BoMacs) proliferation by 25%) were initially analyzed, and both concepts agreed that OTA + PA demonstrated synergism (p < 0.05), while PAT + PA showed antagonism (p < 0.05). When a follow-up dilution study was carried out using binary combinations of PMs at three different dilution levels (i.e. IC25, 0.5 ∗ IC25, 0.25 ∗ IC25), only the mixture of CIT + OTA at 0.5 ∗ IC25 was determined to have synergism by both IA and CA concepts with Model Deviation Ratios (MDRs; the ratio of predicted versus observed effect concentrations) of 1.4 and 1.7, respectively. The joint effect of OTA + MPA, OTA + PA and CIT + PAT complied with the IA concept, while CIT + PA, PAT + MPA and PAT + PA were better predicted with the CA over the IA concept. The present study suggests to test both IA and CA concepts using multiple doses when assessing risk of mycotoxin mixtures if the mode of action is unknown. In addition, the study showed that the tested PMs could be predicted by IA or CA within an approximate two-fold certainty, raising the possibility for a joint risk assessment of mycotoxins in food and feed. - Highlights: • We investigated the potential joint toxicity of Penicillium mycotoxin (PM) mixtures. • Independent action (IA) and concentration addition (CA) concepts were used. • 7 out of 10 mixtures followed joint toxicity described by IA or CA concepts. • Both concepts agreed that CIT + OTA mixture had synergistic interaction.

  16. PERCEPTION OF INTERN TEACHERS’ USE OF INTERACTIVE STRATEGIES IN TEACHING LARGE CLASSES IN ONLINE ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Carol Adaku Obiefuna

    2015-07-01

    Full Text Available Higher education institutions experience large classes despite the National Universities’ Commission’s (NUC and other supervisory agencies emphasis on carrying capacity of the institutions in Nigeria. The overpopulation affects effective teaching and learning and quality assurance. This study focused on perception of intern teachers of the use of interactive strategies in teaching Curriculum Studies in an online environment in a College of Education. 200 computer science students (intern teachers in a Curriculum Studies class formed the study sample. Three research questions guided the study. A structured and validated questionnaire with reliability index of 0.79, made up of 25 items constructed on a four-point Likert-type scale was administered on the students for data collection. The data were analysed using simple mean and the results showed that the intern teachers supported the use of the teaching strategies in an online class as a complement to the face to face method of teaching. They are also recommended as alternative strategies to reduce the problems associated with large classes. However, the research subjects were sceptical about the implementation of online teaching as a result of power supply and access to internet facilities. The findings have a far reaching implication for the 21st Century teaching and learning. Suggestions towards effective online teaching and learning were made especially with theGovernment’s reiteration of the need for Information and Communication Technology (ICT in the schools in Nigeria.

  17. Social and psychological characteristics of the class teacher interaction with students

    Directory of Open Access Journals (Sweden)

    E.B. Petrushikhina

    2013-07-01

    Full Text Available We summarize the results of socio-psychological studies of classroom management, performed on the basis of a theoretical model of value exchange, developed by R.L.Krichevsky. Classroom management is understood as a kind of management activity of a teacher, aimed at organizing group of students. Factor analysis revealed two major factors of the effectiveness of classroom management: the nature of the relationship between the students and their relations to the class teacher. As teacher’s activity characteristics, we considered manifestations of his attitudes toward students, leadership style, characteristics of individual interaction with students. It is shown that the activity of the class teacher, aimed at meeting the critical social needs of students, has two major dimensions: taking care about students and development of their motivation. We analyze the impact of social and perceptual characteristics of the teacher on the effectiveness of his interaction with students. We reveal the features of self-assessment and reflective evaluation of personality and activity of a class teacher, the specifics of causal attributions of success and failure of students in different areas of school life.

  18. A redefinition of the energy ansata, leading to a fundamentally new class of nuclear interactions

    International Nuclear Information System (INIS)

    Bearden, T.E.

    1992-01-01

    Utilizing fundamental new definitions for energy, potential, and scalar potential, the mass of the atomic nucleus may be considered a powerful electrostatic scalar potential, referred to as the mass potential. The Whittaker EM biwave structure of the scalar potential then becomes a new and universal internal EM structure for mass, including the atomic nucleus. This structure can be directly manipulated electromagnetically, which allows direct EM alteration of the mass potential , and the nucleus itself. This totally new class of nuclear interactions is briefly explored in this paper, and several hypothesized mechanisms advanced for neutralizing or processing nuclear wastes. Additional applications are hypothesized for experimental falsification or verification

  19. Interaction between O-GlcNAc modification and tyrosine phosphorylation of prohibitin: implication for a novel binary switch.

    Directory of Open Access Journals (Sweden)

    Sudharsana R Ande

    Full Text Available Prohibitin (PHB or PHB1 is an evolutionarily conserved, multifunctional protein which is present in various cellular compartments including the plasma membrane. However, mechanisms involved in various functions of PHB are not fully explored yet. Here we report for the first time that PHB interacts with O-linked beta-N-acetylglucosamine transferase (O-GlcNAc transferase, OGT and is O-GlcNAc modified; and also undergoes tyrosine phosphorylation in response to insulin. Tyrosine 114 (Tyr114 and tyrosine 259 (Tyr259 in PHB are in the close proximity of potential O-GlcNAc sites serine 121 (Ser121 and threonine 258 (Thr258 respectively. Substitution of Tyr114 and Tyr259 residues in PHB with phenylalanine by site-directed mutagenesis results in reduced tyrosine phosphorylation as well as reduced O-GlcNAc modification of PHB. Surprisingly, this also resulted in enhanced tyrosine phosphorylation and activity of OGT. This is attributed to the presence of similar tyrosine motifs in PHB and OGT. Substitution of Ser121 and Thr258 with alanine and isoleucine respectively resulted in attenuation of O-GlcNAc modification and increased tyrosine phosphorylation of PHB suggesting an association between these two dynamic modifications. Sequence analysis of O-GlcNAc modified proteins having known O-GlcNAc modification site(s or known tyrosine phosphorylation site(s revealed a strong potential association between these two posttranslational modifications in various proteins. We speculate that O-GlcNAc modification and tyrosine phosphorylation of PHB play an important role in tyrosine kinase signaling pathways including insulin, growth factors and immune receptors signaling. In addition, we propose that O-GlcNAc modification and tyrosine phosphorylation is a novel previously unidentified binary switch which may provide new mechanistic insights into cell signaling pathways and is open for direct experimental examination.

  20. The Impact of Social Class on Parent-Professional Interaction in School Exclusion Processes: Deficit or Disadvantage?

    Science.gov (United States)

    Gazeley, Louise

    2012-01-01

    Although a great deal of previous literature has explored the ways in which social class affects parental engagement in educational processes, there has been surprisingly little discussion of the way in which social class shapes the parent-professional interaction that occurs in school exclusion processes specifically. School exclusion processes…

  1. Case Studies of Interactive Whole-Class Teaching in Primary Science: Communicative approach and pedagogic purposes

    Science.gov (United States)

    McMahon, Kendra

    2012-07-01

    By developing two case studies of expert teaching in action, this study aimed to develop knowledge of talk in whole-class teaching in UK primary science lessons and understand this in relation to both the teachers' interpretations and sociocultural theoretical frameworks. Lessons were observed and video-recorded and the teachers engaged in video-stimulated-reflective dialogue to capture participants' reflections upon their own pedagogic purposes and interactions in the classroom. The analytic framework was developed at three levels: sequence of lessons, lesson, and episode. For each episode, the 'communicative approach' and teaching purposes were recorded. Transcripts were developed for fine grain analysis of selected episodes and a quantitative analysis was undertaken of the use of communicative approaches. Findings exemplify how different communicative approaches were used by the case-study teachers for different pedagogical purposes at different points in the sequence of lessons, contributing to primary teachers' repertoire for planning and practice. The initial elicitation of children's ideas can be understood as pooling them to enhance multivoicedness and develop a shared resource for future dialogues. Whole-class talk can support univocality by rehearsing procedural knowledge and exploring the meanings of scientific terminology. Identifying salient features of phenomena in the context of the whole-class marks them as significant as shared knowledge but valuing other observations extends the multivoicedness of the discourse.

  2. SUPPORTTING REGULAR AND ON-LINE BIOCHEMISTRY CLASSES USING INTERACTIVE LEARNING

    Directory of Open Access Journals (Sweden)

    F.C. Dórea

    2004-05-01

    Full Text Available Interactive learning on the Web may be a way to partially supplement the classroom learning ex-perience by providing an interactive environment similar to the classroom but with more attentionto individual student needs. New computational resources are available every day, and these newtechnologies that help the understanding process can be popularized by free full access web sites, asBiochemical View. This site, available at http://www.unb.br/cbsp/bioq, was developed at Universityof Braslia (UnB to support Biochemistry classes of this and any other Universities, since its alsoavailable in an English version. The contents - that include the usual metabolic pathways referentto the metabolism of carbohydrates, amino acids, lipids and nucleic acids - are presented in bi andthree-dimensional formats, easily accessible and assimilable, complemented with objective texts anddescription of regulation points. Protocols for experimental classes, reference materials, and specicinformation about each molecule of all pathways are also available, including metabolic participationschemes of them. An evaluation form of the site is available on-line, developed using PHP. Besidesthe positives results, the suggestions collected in these evaluations since 2001 have been guiding theactualizations. So, the site is the result of students opinions and needs.

  3. Orientation-dependent interaction between Drosophila insulators is a property of this class of regulatory elements.

    Science.gov (United States)

    Kyrchanova, Olga; Chetverina, Darya; Maksimenko, Oksana; Kullyev, Andrey; Georgiev, Pavel

    2008-12-01

    Insulators are defined as a class of regulatory elements that delimit independent transcriptional domains within eukaryotic genomes. According to previous data, an interaction (pairing) between some Drosophila insulators can support distant activation of a promoter by an enhancer. Here, we have demonstrated that pairs of well-studied insulators such as scs-scs, scs'-scs', 1A2-1A2 and Wari-Wari support distant activation of the white promoter by the yeast GAL4 activator in an orientation-dependent manner. The same is true for the efficiency of the enhancer that stimulates white expression in the eyes. In all insulator pairs tested, stimulation of the white gene was stronger when insulators were inserted between the eye enhancer or GAL4 and the white promoter in opposite orientations relative to each other. As shown previously, Zw5, Su(Hw) and dCTCF proteins are required for the functioning of different insulators that do not interact with each other. Here, strong functional interactions have been revealed between DNA fragments containing binding sites for either Zw5 or Su(Hw) or dCTCF protein but not between heterologous binding sites [Zw5-Su(Hw), dCTCF-Su(Hw), or dCTCF-Zw5]. These results suggest that insulator proteins can support selective interactions between distant regulatory elements.

  4. Interaction between ropinirole hydrochloride and aspirin with human serum albumin as binary and ternary systems by multi-spectroscopic, molecular modeling and zeta potential

    International Nuclear Information System (INIS)

    Mahaki, Hanie; Memarpoor-Yazdi, Mina; Chamani, Jamshidkhan; Reza Saberi, Mohammad

    2013-01-01

    The aim of the present study was to describe the competition of ropinirole hydrochloride (RP) and aspirin (ASA) in binding to human serum albumin (HSA) in physiological buffer (pH=7.4) using multi-spectroscopic, molecular modeling and zeta-potential measurements. Fluorescence analysis was used to define the binding and quenching properties of drug-HSA complexes in binary and ternary systems. Fluorescence spectroscopy showed that in the presence of RP, the binding constant of HSA–ASA was increased. Static quenching was confirmed to result in the fluorescence quenching and FRET. The effect of drugs on the conformation of HSA was analyzed using synchronous fluorescence spectroscopy, three-dimensional fluorescence spectra and circular dichroism (CD). The RLS method determined the critical aggregation concentration of drugs on HSA in binary and ternary systems that confirmed the zeta potential results. Structural modeling showed that the affinity of each of the drugs to HSA in binary and ternary systems confirms the spectroscopic results. - Highlights: ► We studied the interaction of ropinirole hydrochloride and aspirin with HSA. ► Molecular modeling and zeta-potential used to describe competitive interaction. ► We determined the critical induced aggregation concentration of both drugs on HSA. ► The binding mechanism of drugs as separate and simultaneous to HSA has been compared. ► The binding site of both drugs as simultaneous effects on HSA has been determined.

  5. Interaction between ropinirole hydrochloride and aspirin with human serum albumin as binary and ternary systems by multi-spectroscopic, molecular modeling and zeta potential

    Energy Technology Data Exchange (ETDEWEB)

    Mahaki, Hanie, E-mail: hanieh.mahaki@gmail.com [Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Memarpoor-Yazdi, Mina; Chamani, Jamshidkhan [Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Reza Saberi, Mohammad [Medical Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of)

    2013-02-15

    The aim of the present study was to describe the competition of ropinirole hydrochloride (RP) and aspirin (ASA) in binding to human serum albumin (HSA) in physiological buffer (pH=7.4) using multi-spectroscopic, molecular modeling and zeta-potential measurements. Fluorescence analysis was used to define the binding and quenching properties of drug-HSA complexes in binary and ternary systems. Fluorescence spectroscopy showed that in the presence of RP, the binding constant of HSA-ASA was increased. Static quenching was confirmed to result in the fluorescence quenching and FRET. The effect of drugs on the conformation of HSA was analyzed using synchronous fluorescence spectroscopy, three-dimensional fluorescence spectra and circular dichroism (CD). The RLS method determined the critical aggregation concentration of drugs on HSA in binary and ternary systems that confirmed the zeta potential results. Structural modeling showed that the affinity of each of the drugs to HSA in binary and ternary systems confirms the spectroscopic results. - Highlights: Black-Right-Pointing-Pointer We studied the interaction of ropinirole hydrochloride and aspirin with HSA. Black-Right-Pointing-Pointer Molecular modeling and zeta-potential used to describe competitive interaction. Black-Right-Pointing-Pointer We determined the critical induced aggregation concentration of both drugs on HSA. Black-Right-Pointing-Pointer The binding mechanism of drugs as separate and simultaneous to HSA has been compared. Black-Right-Pointing-Pointer The binding site of both drugs as simultaneous effects on HSA has been determined.

  6. The role of binary and many-centre molecular interactions in spin crossover in the solid state. Part II. Non-ideality parameters defined via binary molecular potentials

    International Nuclear Information System (INIS)

    Koudriavtsev, A.B.; Linert, W.

    2005-01-01

    Parameters of the formalism [1-6] describing spin crossover in the solid state have been defined via molecular potentials in model systems of neutral and ionic complexes. In the first instance Lennard-Jones and electric dipole-dipole potentials have been used whereas in ionic systems Lennard-Jones and electric point-charge potentials have been used. Electric dipole-dipole interaction of neutral complexes brings about a positive excess energy controlled by the difference of electric dipole moments of HS and LS molecules. Differences of the order of Δμ = 1-2D cause an abrupt spin crossover in systems with T 1/2 = 100-150K. Magnetic coupling contributes both to the excess energy and excess entropy, however the overall effect is equivalent to a modest positive excess energy. Ionic systems in the absence of specific interactions are characterized by very small excess energies corresponding to practically linear van't Hoff plots. Detectable positive and negative excess energies in these systems may arise from interactions of ligands belonging to neighbouring complexes. The HOMO-LUMO overlap in HS-LS pairs can bring about a nontrivial variation of the shape of transition curves. Examples of regression analysis of experimental transition curves in terms of molecular potentials are given. (author)

  7. Conservation of connectivity of model-space effective interactions under a class of similarity transformation

    International Nuclear Information System (INIS)

    Duan Changkui; Gong Yungui; Dong Huining; Reid, Michael F.

    2004-01-01

    Effective interaction operators usually act on a restricted model space and give the same energies (for Hamiltonian) and matrix elements (for transition operators, etc.) as those of the original operators between the corresponding true eigenstates. Various types of effective operators are possible. Those well defined effective operators have been shown to be related to each other by similarity transformation. Some of the effective operators have been shown to have connected-diagram expansions. It is shown in this paper that under a class of very general similarity transformations, the connectivity is conserved. The similarity transformation between Hermitian and non-Hermitian Rayleigh-Schroedinger perturbative effective operators is one of such transformations and hence the connectivity can be deducted from each other

  8. Conservation of connectivity of model-space effective interactions under a class of similarity transformation.

    Science.gov (United States)

    Duan, Chang-Kui; Gong, Yungui; Dong, Hui-Ning; Reid, Michael F

    2004-09-15

    Effective interaction operators usually act on a restricted model space and give the same energies (for Hamiltonian) and matrix elements (for transition operators, etc.) as those of the original operators between the corresponding true eigenstates. Various types of effective operators are possible. Those well defined effective operators have been shown to be related to each other by similarity transformation. Some of the effective operators have been shown to have connected-diagram expansions. It is shown in this paper that under a class of very general similarity transformations, the connectivity is conserved. The similarity transformation between Hermitian and non-Hermitian Rayleigh-Schrodinger perturbative effective operators is one of such transformations and hence the connectivity can be deducted from each other.

  9. Collaborative filtering for brain-computer interaction using transfer learning and active class selection.

    Directory of Open Access Journals (Sweden)

    Dongrui Wu

    Full Text Available Brain-computer interaction (BCI and physiological computing are terms that refer to using processed neural or physiological signals to influence human interaction with computers, environment, and each other. A major challenge in developing these systems arises from the large individual differences typically seen in the neural/physiological responses. As a result, many researchers use individually-trained recognition algorithms to process this data. In order to minimize time, cost, and barriers to use, there is a need to minimize the amount of individual training data required, or equivalently, to increase the recognition accuracy without increasing the number of user-specific training samples. One promising method for achieving this is collaborative filtering, which combines training data from the individual subject with additional training data from other, similar subjects. This paper describes a successful application of a collaborative filtering approach intended for a BCI system. This approach is based on transfer learning (TL, active class selection (ACS, and a mean squared difference user-similarity heuristic. The resulting BCI system uses neural and physiological signals for automatic task difficulty recognition. TL improves the learning performance by combining a small number of user-specific training samples with a large number of auxiliary training samples from other similar subjects. ACS optimally selects the classes to generate user-specific training samples. Experimental results on 18 subjects, using both k nearest neighbors and support vector machine classifiers, demonstrate that the proposed approach can significantly reduce the number of user-specific training data samples. This collaborative filtering approach will also be generalizable to handling individual differences in many other applications that involve human neural or physiological data, such as affective computing.

  10. Collaborative filtering for brain-computer interaction using transfer learning and active class selection.

    Science.gov (United States)

    Wu, Dongrui; Lance, Brent J; Parsons, Thomas D

    2013-01-01

    Brain-computer interaction (BCI) and physiological computing are terms that refer to using processed neural or physiological signals to influence human interaction with computers, environment, and each other. A major challenge in developing these systems arises from the large individual differences typically seen in the neural/physiological responses. As a result, many researchers use individually-trained recognition algorithms to process this data. In order to minimize time, cost, and barriers to use, there is a need to minimize the amount of individual training data required, or equivalently, to increase the recognition accuracy without increasing the number of user-specific training samples. One promising method for achieving this is collaborative filtering, which combines training data from the individual subject with additional training data from other, similar subjects. This paper describes a successful application of a collaborative filtering approach intended for a BCI system. This approach is based on transfer learning (TL), active class selection (ACS), and a mean squared difference user-similarity heuristic. The resulting BCI system uses neural and physiological signals for automatic task difficulty recognition. TL improves the learning performance by combining a small number of user-specific training samples with a large number of auxiliary training samples from other similar subjects. ACS optimally selects the classes to generate user-specific training samples. Experimental results on 18 subjects, using both k nearest neighbors and support vector machine classifiers, demonstrate that the proposed approach can significantly reduce the number of user-specific training data samples. This collaborative filtering approach will also be generalizable to handling individual differences in many other applications that involve human neural or physiological data, such as affective computing.

  11. Interaction between HIV-1 Tat and DNA-PKcs modulates HIV transcription and class switch recombination.

    Science.gov (United States)

    Zhang, Shi-Meng; Zhang, He; Yang, Tian-Yi; Ying, Tian-Yi; Yang, Pei-Xiang; Liu, Xiao-Dan; Tang, Sheng-Jian; Zhou, Ping-Kun

    2014-01-01

    HIV-1 tat targets a variety of host cell proteins to facilitate viral transcription and disrupts host cellular immunity by inducing lymphocyte apoptosis, but whether it influences humoral immunity remains unclear. Previously, our group demonstrated that tat depresses expression of DNA-PKcs, a critical component of the non-homologous end joining pathway (NHEJ) of DNA double-strand breaks repair, immunoglobulin class switch recombination (CSR) and V(D)J recombination, and sensitizes cells to ionizing radiation. In this study, we demonstrated that HIV-1 Tat down-regulates DNA-PKcs expression by directly binding to the core promoter sequence. In addition, Tat interacts with and activates the kinase activity of DNA-PKcs in a dose-dependent and DNA independent manner. Furthermore, Tat inhibits class switch recombination (CSR) at low concentrations (≤ 4 µg/ml) and stimulates CSR at high concentrations (≥ 8 µg/ml). On the other hand, low protein level and high kinase activity of DNA-PKcs promotes HIV-1 transcription, while high protein level and low kinase activity inhibit HIV-1 transcription. Co-immunoprecipitation results revealed that DNA-PKcs forms a large complex comprised of Cyclin T1, CDK9 and Tat via direct interacting with CDK9 and Tat but not Cyclin T1. Taken together, our results provide new clues that Tat regulates host humoral immunity via both transcriptional depression and kinase activation of DNA-PKcs. We also raise the possibility that inhibitors and interventions directed towards DNA-PKcs may inhibit HIV-1 transcription in AIDS patients.

  12. Massive Black Hole Binary Evolution

    Directory of Open Access Journals (Sweden)

    Merritt David

    2005-11-01

    Full Text Available Coalescence of binary supermassive black holes (SBHs would constitute the strongest sources of gravitational waves to be observed by LISA. While the formation of binary SBHs during galaxy mergers is almost inevitable, coalescence requires that the separation between binary components first drop by a few orders of magnitude, due presumably to interaction of the binary with stars and gas in a galactic nucleus. This article reviews the observational evidence for binary SBHs and discusses how they would evolve. No completely convincing case of a bound, binary SBH has yet been found, although a handful of systems (e.g. interacting galaxies; remnants of galaxy mergers are now believed to contain two SBHs at projected separations of <~ 1kpc. N-body studies of binary evolution in gas-free galaxies have reached large enough particle numbers to reproduce the slow, “diffusive” refilling of the binary’s loss cone that is believed to characterize binary evolution in real galactic nuclei. While some of the results of these simulations - e.g. the binary hardening rate and eccentricity evolution - are strongly N-dependent, others - e.g. the “damage” inflicted by the binary on the nucleus - are not. Luminous early-type galaxies often exhibit depleted cores with masses of ~ 1-2 times the mass of their nuclear SBHs, consistent with the predictions of the binary model. Studies of the interaction of massive binaries with gas are still in their infancy, although much progress is expected in the near future. Binary coalescence has a large influence on the spins of SBHs, even for mass ratios as extreme as 10:1, and evidence of spin-flips may have been observed.

  13. Specific and Class Object Recognition for Service Robots through Autonomous and Interactive Methods

    Science.gov (United States)

    Mansur, Al; Kuno, Yoshinori

    Service robots need to be able to recognize and identify objects located within complex backgrounds. Since no single method may work in every situation, several methods need to be combined and robots have to select the appropriate one automatically. In this paper we propose a scheme to classify situations depending on the characteristics of the object of interest and user demand. We classify situations into four groups and employ different techniques for each. We use Scale-invariant feature transform (SIFT), Kernel Principal Components Analysis (KPCA) in conjunction with Support Vector Machine (SVM) using intensity, color, and Gabor features for five object categories. We show that the use of appropriate features is important for the use of KPCA and SVM based techniques on different kinds of objects. Through experiments we show that by using our categorization scheme a service robot can select an appropriate feature and method, and considerably improve its recognition performance. Yet, recognition is not perfect. Thus, we propose to combine the autonomous method with an interactive method that allows the robot to recognize the user request for a specific object and class when the robot fails to recognize the object. We also propose an interactive way to update the object model that is used to recognize an object upon failure in conjunction with the user's feedback.

  14. Skewed Binary Search Trees

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Moruz, Gabriel

    2006-01-01

    It is well-known that to minimize the number of comparisons a binary search tree should be perfectly balanced. Previous work has shown that a dominating factor over the running time for a search is the number of cache faults performed, and that an appropriate memory layout of a binary search tree...... can reduce the number of cache faults by several hundred percent. Motivated by the fact that during a search branching to the left or right at a node does not necessarily have the same cost, e.g. because of branch prediction schemes, we in this paper study the class of skewed binary search trees....... For all nodes in a skewed binary search tree the ratio between the size of the left subtree and the size of the tree is a fixed constant (a ratio of 1/2 gives perfect balanced trees). In this paper we present an experimental study of various memory layouts of static skewed binary search trees, where each...

  15. Trojan Binaries

    Science.gov (United States)

    Noll, K. S.

    2017-12-01

    The Jupiter Trojans, in the context of giant planet migration models, can be thought of as an extension of the small body populations found beyond Neptune in the Kuiper Belt. Binaries are a distinctive feature of small body populations in the Kuiper Belt with an especially high fraction apparent among the brightest Cold Classicals. The binary fraction, relative sizes, and separations in the dynamically excited populations (Scattered, Resonant) reflects processes that may have eroded a more abundant initial population. This trend continues in the Centaurs and Trojans where few binaries have been found. We review new evidence including a third resolved Trojan binary and lightcurve studies to understand how the Trojans are related to the small body populations that originated in the outer protoplanetary disk.

  16. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Matthew J. Benacquista

    2013-03-01

    Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  17. A SOFTWARE TO PROMOTE INTERACTIVE TEACHING OF WATER PROPERTIES IN BIOCHEMISTRY CLASSES

    Directory of Open Access Journals (Sweden)

    O.M.M. Lapouble

    2005-07-01

    Full Text Available The improvement and  development of new tools in design and  informatics  helped the  creation  of biochemistry teaching  material. Many molecules, metabolic  pathways, reactions,  and interactions are best  explained  and  understood when  shown  in three  dimensions  and  allowing interactivity.  Water is, usually,  the first topic to be presented  during  basic biochemistry courses.  Importance, properties, ionization,  pH, buffering and  titration curves,  are frequently  presented  subjects,  but  static graphics don´t show to  students the  interactions between water molecules,  interactions with  the  solutes  and buffer titration in a clear way.  In this  work, Flash  software  from Macromedia,  was used to produce the llustrations, animations, and ActionScript programming was used to simulate  the titration of some buffers and correlate  the molecular  concept  to the graphic  charts.With  this  work,  we are trying  to improve  the  quality  of biochemistry teaching  material, and  to show, in a clear way, subjects  that are difficult to explain by static  graphics limitation. This material could be used in regular classes, to be projected  or showed in computers  and could be used by students in self-guided study because it allows optional  visualization of texts.  An assisted navigation tool could suggest to students, a sequence of topics but still allowing the freedom of choice of any available topic.

  18. Method of non-interacting thermodynamic calculation of binary phase diagrams containing p disordered phases with variable composition and q phases with constant composition at (p, q) ≤ 10

    International Nuclear Information System (INIS)

    Udovskij, A.L.; Karpushkin, V.N.; Nikishina, E.A.

    1991-01-01

    Method of non-interacting thermodynamic calculation of state diagram of binary systems contacting p disordered phases with variable composition and q phases with constant composition for (p, q) ≤ 10 case is developed. Determination of all possible solutions of phase equilibrium equations is realized in the method. Certain application examples of computer-realized method of T-x thermodynamic calculation using PC for Cr-W, Ni-W, Ni-Al, Ni-Re binary systems are given

  19. Teleducation : Linking Continents Across Time and Space Through Live, Real-Time Interactive Classes

    Science.gov (United States)

    Macko, S. A.; Szuba, T.; Swap, R.; Annegarn, H.; Marjanovic, B.; Vieira, F.; Brito, R.

    2005-12-01

    International education is a natural extension of global economies, global environmental concerns, and global science. While faculty and student exchanges between geographic areas permit for educational experiences and cultural exchanges for the privileged few, distance learning offers opportunities for educational exchanges under any circumstance where time, expense, or location otherwise inhibit offering or taking a particular course of study. However, there are severe pedagogical limitations to traditional Web-based courses that suffer from a lack of personalized, spontaneous exchange between instructor and student. The technology to establish a real time, interactive teleducation program exists, but to our knowledge is relatively untested in a science classroom situation, especially internationally over great distances. In a project to evaluate this type of linkage, we offered a real-time, interactive class at three separate universities, which communicated instantaneously across an ocean at a distance of greater than 8,000 miles and seven time zones. The course, 'Seminar on the Ecology of African Savannas', consisted of a series of 11 lectures originating in either Mozambique (University of Eduardo Mondlane), South Africa (University of the Witwatersrand) or the United States (University of Virginia). We combined ISDN, internet and satellite linkages to facilitate the lectures and real time discussions between instructors and approximately 200 university students in the three countries. Although numerous technical, logistical, and pedagogical issues - both expected and unexpected - arose throughout the pilot year, the project can be viewed as overwhelmingly successful and certainly serves as proof-of-concept for future initiatives, both internationally and locally. This review of our experience will help to prepare other students, faculty, and institutions interested in establishing or developing international education initiatives

  20. Blended Polyurethane and Tropoelastin as a Novel Class of Biologically Interactive Elastomer

    Science.gov (United States)

    Wise, Steven G.; Liu, Hongjuan; Yeo, Giselle C.; Michael, Praveesuda L.; Chan, Alex H.P.; Ngo, Alan K.Y.; Bilek, Marcela M.M.; Bao, Shisan

    2016-01-01

    Polyurethanes are versatile elastomers but suffer from biological limitations such as poor control over cell attachment and the associated disadvantages of increased fibrosis. We address this problem by presenting a novel strategy that retains elasticity while modulating biological performance. We describe a new biomaterial that comprises a blend of synthetic and natural elastomers: the biostable polyurethane Elast-Eon and the recombinant human tropoelastin protein. We demonstrate that the hybrid constructs yield a class of coblended elastomers with unique physical properties. Hybrid constructs displayed higher elasticity and linear stress–strain responses over more than threefold strain. The hybrid materials showed increased overall porosity and swelling in comparison to polyurethane alone, facilitating enhanced cellular interactions. In vitro, human dermal fibroblasts showed enhanced proliferation, while in vivo, following subcutaneous implantation in mice, hybrid scaffolds displayed a reduced fibrotic response and tunable degradation rate. To our knowledge, this is the first example of a blend of synthetic and natural elastomers and is a promising approach for generating tailored bioactive scaffolds for tissue repair. PMID:26857114

  1. Social stars: Modeling the interactive lives of stars in dense clusters and binary systems in the era of time domain astronomy

    Science.gov (United States)

    MacLeod, Morgan Elowe

    This thesis uses computational modeling to study of phases of dramatic interaction that intersperse stellar lifetimes. In galactic centers stars trace dangerously wandering orbits dictated by the combined gravitational force of a central, supermassive black hole and all of the surrounding stars. In binary systems, stars' evolution -- which causes their radii to increase substantially -- can bring initially non-interacting systems into contact. Moments of strong stellar interaction transform stars, their subsequent evolution, and the stellar environments they inhabit. In tidal disruption events, a star is partially or completely destroyed as tidal forces from a supermassive black hole overwhelm the star's self gravity. A portion of the stellar debris falls back to the black hole powering a luminous flare as it accretes. This thesis studies the relative event rates and properties of tidal disruption events for stars across the stellar evolutionary spectrum. Tidal disruptions of giant stars occur with high specific frequency; these objects' extended envelopes make them vulnerable to disruption. More-compact white dwarf stars are tidally disrupted relatively rarely. Their transients are also of very different duration and luminosity. Giant star disruptions power accretion flares with timescales of tens to hundreds of years; white dwarf disruption flares take hours to days. White dwarf tidal interactions can additionally trigger thermonuclear burning and lead to transients with signatures similar to type I supernovae. In binary star systems, a phase of hydrodynamic interaction called a common envelope episode occurs when one star evolves to swallow its companion. Dragged by the surrounding gas, the companion star spirals through the envelope to tighter orbits. This thesis studies accretion and flow morphologies during this phase. Density gradients across the gravitationally-focussed material lead to a strong angular momentum barrier to accretion during common envelope

  2. Understanding the Effect of Response Rate and Class Size Interaction on Students Evaluation of Teaching in a Higher Education

    Science.gov (United States)

    Al Kuwaiti, Ahmed; AlQuraan, Mahmoud; Subbarayalu, Arun Vijay

    2016-01-01

    Objective: This study aims to investigate the interaction between response rate and class size and its effects on students' evaluation of instructors and the courses offered at a higher education Institution in Saudi Arabia. Study Design: A retrospective study design was chosen. Methods: One thousand four hundred and forty four different courses…

  3. The Nature of Interactions between Chinese Immigrant Families and Preschool Staff: How Culture, Class, and Methodology Matter

    Science.gov (United States)

    Heng, Tang T.

    2014-01-01

    While the parental involvement field has progressed from asking what the impact of parental involvement is to how we can better involve parents, research has lagged in finding out how sociocultural and class differentials between homes and schools affect immigrant families' interactions with schools. This case study uses ethnographic tools to…

  4. pH dependence of the interaction between immunogenic peptides and MHC class II molecules. Evidence for an acidic intracellular compartment being the organelle of interaction

    DEFF Research Database (Denmark)

    Mouritsen, S; Buus, Anette Stryhn; Petersen, B L

    1992-01-01

    and most notably in the endosome-lysosome compartment in which Ag processing is thought to occur. Thus, Ag processing and interaction with MHC class II molecules can potentially happen in the very same compartment. This yet undefined acidic compartment would have to contain proteolytic enzymes and MHC...

  5. The interaction between beta 2-microglobulin (beta 2m) and purified class-I major histocompatibility (MHC) antigen

    DEFF Research Database (Denmark)

    Pedersen, L O; Hansen, A S; Olsen, A C

    1994-01-01

    been generated recently and this paper reports on a similar assay for the interaction between beta 2m and class I. As a model system human beta 2m binding to mouse class I was used. The assay is strictly biochemical using purified reagents which interact in solution and complex formation is determined...... by size separation. It is specific and highly sensitive. The observed affinity of the interaction, KD, is close to 0.4 nM. The rate of association at 37 degrees C is very fast (the ka is around 5 x 10(4)/M/s) whereas the dissociation is slow (the kd is around 8 x 10(-6)/s); the ratio of dissociation...

  6. Interactions between lower urinary tract symptoms and cardiovascular risk factors determine distinct patterns of erectile dysfunction: a latent class analysis.

    Science.gov (United States)

    Barbosa, João A B A; Muracca, Eduardo; Nakano, Élcio; Assalin, Adriana R; Cordeiro, Paulo; Paranhos, Mario; Cury, José; Srougi, Miguel; Antunes, Alberto A

    2013-12-01

    An epidemiological association between lower urinary tract symptoms and erectile dysfunction is well established. However, interactions among multiple risk factors and the role of each in pathological mechanisms are not fully elucidated We enrolled 898 men undergoing prostate cancer screening for evaluation with the International Prostate Symptom Score (I-PSS) and simplified International Index of Erectile Function-5 (IIEF-5) questionnaires. Age, race, hypertension, diabetes, dyslipidemia, metabolic syndrome, cardiovascular disease, serum hormones and anthropometric parameters were also evaluated. Risk factors for erectile dysfunction were identified by logistic regression. The 333 men with at least mild to moderate erectile dysfunction (IIEF 16 or less) were included in a latent class model to identify relationships across erectile dysfunction risk factors. Age, hypertension, diabetes, lower urinary tract symptoms and cardiovascular event were independent predictors of erectile dysfunction (pclasses of patients with erectile dysfunction (R2 entropy=0.82). Latent class 1 had younger men at low cardiovascular risk and a moderate/high prevalence of lower urinary tract symptoms. Latent class 2 had the oldest patients at moderate cardiovascular risk with an increased prevalence of lower urinary tract symptoms. Latent class 3 had men of intermediate age with the highest prevalence of cardiovascular risk factors and lower urinary tract symptoms. Erectile dysfunction severity and lower urinary tract symptoms increased from latent class 1 to 3. Risk factor interactions determined different severities of lower urinary tract symptoms and erectile dysfunction. The effect of lower urinary tract symptoms and cardiovascular risk outweighed that of age. While in the youngest patients lower urinary tract symptoms acted as a single risk factor for erectile dysfunction, the contribution of vascular disease resulted in significantly more severe dysfunction. Applying a risk factor

  7. Interactions between the Isolated-Interactive Elements Effect and Levels of Learner Expertise: Experimental Evidence from an Accountancy Class

    Science.gov (United States)

    Blayney, Paul; Kalyuga, Slava; Sweller, John

    2010-01-01

    This study investigated interactions between the isolated-interactive elements effect and levels of learner expertise with first year undergraduate university accounting students. The isolated-interactive elements effect occurs when learning is facilitated by initially presenting elements of information sequentially in an isolated form rather than…

  8. Quantum chemical analysis explains hemagglutinin peptide-MHC Class II molecule HLA-DRβ1*0101 interactions

    International Nuclear Information System (INIS)

    Cardenas, Constanza; Villaveces, Jose Luis; Bohorquez, Hugo; Llanos, Eugenio; Suarez, Carlos; Obregon, Mateo; Patarroyo, Manuel Elkin

    2004-01-01

    We present a new method to explore interactions between peptides and major histocompatibility complex (MHC) molecules using the resultant vector of the three principal multipole terms of the electrostatic field expansion. Being that molecular interactions are driven by electrostatic interactions, we applied quantum chemistry methods to better understand variations in the electrostatic field of the MHC Class II HLA-DRβ1*0101-HA complex. Multipole terms were studied, finding strong alterations of the field in Pocket 1 of this MHC molecule, and weak variations in other pockets, with Pocket 1 >> Pocket 4 > Pocket 9 ∼ Pocket 7 > Pocket 6. Variations produced by 'ideal' amino acids and by other occupying amino acids were compared. Two types of interactions were found in all pockets: a strong unspecific one (global interaction) and a weak specific interaction (differential interaction). Interactions in Pocket 1, the dominant pocket for this allele, are driven mainly by the quadrupole term, confirming the idea that aromatic rings are important in these interactions. Multipolar analysis is in agreement with experimental results, suggesting quantum chemistry methods as an adequate methodology to understand these interactions

  9. Formation and Evolution of X-ray Binaries

    Science.gov (United States)

    Shao, Y.

    2017-07-01

    X-ray binaries are a class of binary systems, in which the accretor is a compact star (i.e., black hole, neutron star, or white dwarf). They are one of the most important objects in the universe, which can be used to study not only binary evolution but also accretion disks and compact stars. Statistical investigations of these binaries help to understand the formation and evolution of galaxies, and sometimes provide useful constraints on the cosmological models. The goal of this thesis is to investigate the formation and evolution processes of X-ray binaries including Be/X-ray binaries, low-mass X-ray binaries (LMXBs), ultraluminous X-ray sources (ULXs), and cataclysmic variables. In Chapter 1 we give a brief review on the basic knowledge of the binary evolution. In Chapter 2 we discuss the formation of Be stars through binary interaction. In this chapter we investigate the formation of Be stars resulting from mass transfer in binaries in the Galaxy. Using binary evolution and population synthesis calculations, we find that in Be/neutron star binaries the Be stars have a lower limit of mass ˜ 8 M⊙ if they are formed by a stable (i.e., without the occurrence of common envelope evolution) and nonconservative mass transfer. We demonstrate that the isolated Be stars may originate from both mergers of two main-sequence stars and disrupted Be binaries during the supernova explosions of the primary stars, but mergers seem to play a much more important role. Finally the fraction of Be stars produced by binary interactions in all B type stars can be as high as ˜ 13%-30% , implying that most of Be stars may result from binary interaction. In Chapter 3 we show the evolution of intermediate- and low-mass X-ray binaries (I/LMXBs) and the formation of millisecond pulsars. Comparing the calculated results with the observations of binary radio pulsars, we report the following results: (1) The allowed parameter space for forming binary pulsars in the initial orbital period

  10. The binary response of the GAL/MEL genetic switch of Saccharomyces cerevisiae is critically dependent on Gal80p-Gal4p interaction.

    Science.gov (United States)

    Das Adhikari, Akshay Kumar; Bhat, Paike Jayadeva

    2016-09-01

    Studies on the Saccharomyces cerevisiae GAL/MEL genetic switch have revealed that its bistability is dependent on ultrasensitivity that can be altered or abolished by disabling different combinations of nested feedback loops. In contrast, we have previously demonstrated that weakening of the interaction between Gal80p and Gal4p alone is sufficient to abolish the ultrasensitivity (Das Adhikari et al. 2014). Here, we demonstrate that altering the epistatic interaction between Gal80p and Gal4p also abolishes the bistability, and the switch response to galactose becomes graded instead of binary. However, the GAL/MEL switch of wild-type and epistatically altered strains responded in a graded fashion to melibiose. The properties of the epistatically altered strain resemble Kluyveromyces lactis, which separated from the Saccharomyces lineage 100 mya before whole-genome duplication (WGD). Based on the results reported here, we propose that epistatic interactions played a crucial role in the evolution of the fine regulation of S. cerevisiae GAL/MEL switch following WGD. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Dissipative binary collisions

    International Nuclear Information System (INIS)

    Aboufirassi, M; Angelique, J.C.; Bizard, G.; Bougault, R.; Brou, R.; Buta, A.; Colin, J.; Cussol, D.; Durand, D.; Genoux-Lubain, A.; Horn, D.; Kerambrun, A.; Laville, J.L.; Le Brun, C.; Lecolley, J.F.; Lefebvres, F.; Lopez, O.; Louvel, M.; Meslin, C.; Metivier, V.; Nakagawa, T.; Peter, J.; Popescu, R.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Wieloch, A.; Yuasa-Nakagawa, K.

    1998-01-01

    The binary character of the heavy ion collisions at intermediate energies in the exit channel has been observed under 30 MeV/n in medium and heavy systems. Measurements in light systems at energies approaching ∼ 100 MeV/nucleon as well as in very heavy systems have allowed to extend considerably the investigations of this binary process. Thus, the study of the Pb + Au system showed that the complete charge events indicated two distinct sources: the quasi-projectile and the quasi-target. The characteristics of these two sources are rather well reproduced by a trajectory computation which takes into account the Coulomb and nuclear forces and the friction appearing from the projectile-target interaction. The Wilczynski diagram is used to probe the correlation between the kinetic energy quenching and the deflecting angle. In case of the system Pb + Au at 29 MeV/nucleon the diagram indicate dissipative binary collisions typical for low energies. This binary aspect was also detected in the systems Xe + Ag at 44 MeV/nucleon, 36 Ar + 27 Al and 64 Zn + nat Ti. Thus, it was possible to reconstruct the quasi-projectile and to study its mass and excitation energy evolution as a function of the impact parameter. The dissipative binary collisions represent for the systems and energies under considerations the main contribution to the cross section. This does not implies that there are not other processes; particularly, the more or less complete fusion is also observed but with a low cross section which decreases with the increase of bombardment energy. More exclusive measurements with the INDRA detector on quasi-symmetric systems as Ar + KCl and Xe + Sn seem to confirm the importance of the binary collisions. The two source reconstruction of the Xe + Sn data at 50 MeV/nucleon reproduces the same behaviour as that observed in the system Pb + Au at 29 MeV/nucleon

  12. Binary effectivity rules

    DEFF Research Database (Denmark)

    Keiding, Hans; Peleg, Bezalel

    2006-01-01

    is binary if it is rationalized by an acyclic binary relation. The foregoing result motivates our definition of a binary effectivity rule as the effectivity rule of some binary SCR. A binary SCR is regular if it satisfies unanimity, monotonicity, and independence of infeasible alternatives. A binary...

  13. Comparing Interactions in Literature Circles in Both Online and in Class Discussions

    Science.gov (United States)

    Skeen, Christel Ghrist

    2014-01-01

    Discourse analysis of literature circles can lead educators to understand the different types of interactions taking place as students talk about text. Social and academic interactions exist in both face-to-face and online discussions of reading material. This study examines two different settings of literature circles and compares interactions of…

  14. Coevolution of Binaries and Circumbinary Gaseous Disks

    Science.gov (United States)

    Fleming, David; Quinn, Thomas R.

    2018-04-01

    The recent discoveries of circumbinary planets by Kepler raise questions for contemporary planet formation models. Understanding how these planets form requires characterizing their formation environment, the circumbinary protoplanetary disk, and how the disk and binary interact. The central binary excites resonances in the surrounding protoplanetary disk that drive evolution in both the binary orbital elements and in the disk. To probe how these interactions impact both binary eccentricity and disk structure evolution, we ran N-body smooth particle hydrodynamics (SPH) simulations of gaseous protoplanetary disks surrounding binaries based on Kepler 38 for 10^4 binary orbital periods for several initial binary eccentricities. We find that nearly circular binaries weakly couple to the disk via a parametric instability and excite disk eccentricity growth. Eccentric binaries strongly couple to the disk causing eccentricity growth for both the disk and binary. Disks around sufficiently eccentric binaries strongly couple to the disk and develop an m = 1 spiral wave launched from the 1:3 eccentric outer Lindblad resonance (EOLR). This wave corresponds to an alignment of gas particle longitude of periastrons. We find that in all simulations, the binary semi-major axis decays due to dissipation from the viscous disk.

  15. [Framework on drug interactions between herbal medicine and western medicine: building Ⅰ/Ⅱ/Ⅲ class pathways of interactions].

    Science.gov (United States)

    Jin, Rui; Huang, Jian-Mei; Wang, Yu-Guang; Zhang, Bing

    2016-02-01

    Combined use of Chinese medicine and western medicine is one of the hot spots in the domestic medical and academic fields for many years. There are lots of involved reports and studies on interaction problems due to combined used of Chinese medicine and western medicine, however, framework understanding is still rarely seen, affecting the clinical rationality of drug combinations. Actually, the inference ideas of drug interactions in clinical practice are more extensive and practical, and the overall viewpoint and pragmatic idea are the important factors in evaluating the rationality of clinical drug combinations. Based on above points, this paper systemically analyzed the existing information and examples, deeply discuss the embryology background (environment and action mechanism of interactions), and principally divided the interactions into three important and independent categories. Among the three categories, the first category (Ⅰapproach) was defined as the physical/chemical reactions after direct contact in vivo or in vitro, such as the combination of Chinese medicine injections and western medicine injections (in vitro), combination of bromide and Chinese medicines containing cinnabar (in vivo). The evaluation method for such interactions may be generalized theory of Acid-Base reaction. The second category (Ⅱ approach) was defined as the interactions through the pharmacokinetic process including absorption (such as the combination of aspirin and Huowei capsule), distribution (such as the combination of artosin and medicinal herbs containing coumarin), metabolism (such as the combination of phenobarbital and glycyrrhiza) and excretion (such as the combination of furadantin and Crataegi Fructus). The existing pharmacokinetic theory can act as the evaluation method for this type of interaction. The third category (Ⅲ approach) was defined as the synergy/antagonism interactions by pharmacological effects or biological pathways. The combination of warfarin

  16. PEER INTERACTION IN CLASSES WHICH USE THE CONCEPT OF INCLUSIVE EDUCATION

    Directory of Open Access Journals (Sweden)

    Violeta ARNAUDOVA

    2004-06-01

    Full Text Available We have evaluated a social status of the pupils individually, especially the status of the pupils with developmental disabilities. The sample is convenient and includes 55 pupils from two classes at the age of 9-10 and 13-14 from the regular elementary school “Dimo Hadzi-Dimov”. Children with physical disabilities and anorexic problems are included in both classes. The research has been carried out using socio-metric procedure, applying three socio-metric criteria and both limited and unlimited choices.

  17. NEW EVIDENCE OF MAGNETIC INTERACTIONS BETWEEN STARS FROM THREE-DIMENSIONAL DOPPLER TOMOGRAPHY OF ALGOL BINARIES: {beta} PER AND RS VUL

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Mercedes T. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Agafonov, Michail I.; Sharova, Olga I., E-mail: mrichards@astro.psu.edu, E-mail: agfn@nirfi.sci-nnov.ru, E-mail: shol@nirfi.sci-nnov.ru [Radiophysical Research Institute (NIRFI), 25/12a, Bolshaya Pecherskaya St., Nizhny Novgorod 603950 (Russian Federation)

    2012-11-20

    Time-resolved H{alpha} spectra of magnetically active interacting binaries have been used to create three-dimensional (3D) Doppler tomograms by means of the Radioastronomical Approach. This is the first 3D reconstruction of {beta} Per, with RS Vul for comparison. These 3D tomograms have revealed evidence of the mass transfer process (gas stream, circumprimary emission, localized region, absorption zone), as well as loop prominences and coronal mass ejections (CMEs) in {beta} Per and RS Vul that could not be discovered from two-dimensional tomograms alone. The gas stream in both binaries may have been deflected beyond the central plane by the donor star's magnetic field. The stream was more elongated along the predicted trajectory in RS Vul than in {beta} Per, but not as pronounced as in U CrB (stream state). The loop prominence reached maximum V{sub z} velocities of {+-}155 km s{sup -1} in RS Vul compared to {+-}120 km s{sup -1} in {beta} Per, while the CME reached a maximum V{sub z} velocity of +150 km s{sup -1} in RS Vul and +100 km s{sup -1} in {beta} Per. The 3D tomograms show that the gas flows are not symmetric relative to the central plane and are not confined to that plane, a result confirmed by recent 15 GHz VLBI radio images of {beta} Per. Both the 3D H{alpha} tomography and the VLBI radio images support an earlier prediction of the superhump phenomenon in {beta} Per: that the gas between the stars is threaded with a magnetic field even though the hot B8V mass-gaining star is not known to have a magnetic field.

  18. Case Studies of Interactive Whole-Class Teaching in Primary Science: Communicative Approach and Pedagogic Purposes

    Science.gov (United States)

    McMahon, Kendra

    2012-01-01

    By developing two case studies of expert teaching in action, this study aimed to develop knowledge of talk in whole-class teaching in UK primary science lessons and understand this in relation to both the teachers' interpretations and sociocultural theoretical frameworks. Lessons were observed and video-recorded and the teachers engaged in…

  19. A STUDY OF TEACHER-PUPIL INTERACTION IN HIGH SCHOOL BIOLOGY CLASSES.

    Science.gov (United States)

    PARAKH, JAL SOHRAB

    A CATEGORY SYSTEM FOR SYSTEMATIC OBSERVATION OF HIGH SCHOOL BIOLOGY LABORATORY AND LECTURE-DISCUSSION-RECITATION CLASSES WAS DEVELOPED AND USED TO QUANTIFY, ANALYZE, AND DESCRIBE OBSERVED CLASSROOM BEHAVIOR. THE CATEGORY SYSTEM WAS DEVELOPED BY OBSERVING EIGHT HIGH SCHOOL BIOLOGY TEACHERS ONCE EACH MONTH FOR FOUR SUCCESSIVE MONTHS. THE OBSERVER…

  20. Trends in Using Social Media as Substitute for Class Interaction in ...

    African Journals Online (AJOL)

    Open and distance education has been instrumental in eliminating the challenges in education beyond classrooms as well as redefining school age limit by absorbing not only the working class into schooling but also the neglected segment. of the population. The ideal mass education to improve literacy rate, which has ...

  1. Interaction of benzoate pyrimidine analogues with class 1A dihydroorotate dehydrogenase from Lactococcus lactis

    DEFF Research Database (Denmark)

    Wolfe, Abigail E; Thymark, Majbritt; Gattis, Samuel G

    2007-01-01

    Dihydroorotate dehydrogenases (DHODs) catalyze the oxidation of dihydroorotate to orotate in the only redox reaction in pyrimidine biosynthesis. The pyrimidine binding sites are very similar in all structurally characterized DHODs, suggesting that the prospects for identifying a class-specific in......-system of the flavin, resulting in a green color....

  2. Comprehensive Binary Interaction Mapping of SH2 Domains via Fluorescence Polarization Reveals Novel Functional Diversification of ErbB Receptors

    Science.gov (United States)

    Ciaccio, Mark F.; Chuu, Chih-pin; Jones, Richard B.

    2012-01-01

    First-generation interaction maps of Src homology 2 (SH2) domains with receptor tyrosine kinase (RTK) phosphosites have previously been generated using protein microarray (PM) technologies. Here, we developed a large-scale fluorescence polarization (FP) methodology that was able to characterize interactions between SH2 domains and ErbB receptor phosphosites with higher fidelity and sensitivity than was previously achieved with PMs. We used the FP assay to query the interaction of synthetic phosphopeptides corresponding to 89 ErbB receptor intracellular tyrosine sites against 93 human SH2 domains and 2 phosphotyrosine binding (PTB) domains. From 358,944 polarization measurements, the affinities for 1,405 unique biological interactions were determined, 83% of which are novel. In contrast to data from previous reports, our analyses suggested that ErbB2 was not more promiscuous than the other ErbB receptors. Our results showed that each receptor displays unique preferences in the affinity and location of recruited SH2 domains that may contribute to differences in downstream signaling potential. ErbB1 was enriched versus the other receptors for recruitment of domains from RAS GEFs whereas ErbB2 was enriched for recruitment of domains from tyrosine and phosphatidyl inositol phosphatases. ErbB3, the kinase inactive ErbB receptor family member, was predictably enriched for recruitment of domains from phosphatidyl inositol kinases and surprisingly, was enriched for recruitment of domains from tyrosine kinases, cytoskeletal regulatory proteins, and RHO GEFs but depleted for recruitment of domains from phosphatidyl inositol phosphatases. Many novel interactions were also observed with phosphopeptides corresponding to ErbB receptor tyrosines not previously reported to be phosphorylated by mass spectrometry, suggesting the existence of many biologically relevant RTK sites that may be phosphorylated but below the detection threshold of standard mass spectrometry procedures. This

  3. Comprehensive binary interaction mapping of SH2 domains via fluorescence polarization reveals novel functional diversification of ErbB receptors.

    Directory of Open Access Journals (Sweden)

    Ronald J Hause

    Full Text Available First-generation interaction maps of Src homology 2 (SH2 domains with receptor tyrosine kinase (RTK phosphosites have previously been generated using protein microarray (PM technologies. Here, we developed a large-scale fluorescence polarization (FP methodology that was able to characterize interactions between SH2 domains and ErbB receptor phosphosites with higher fidelity and sensitivity than was previously achieved with PMs. We used the FP assay to query the interaction of synthetic phosphopeptides corresponding to 89 ErbB receptor intracellular tyrosine sites against 93 human SH2 domains and 2 phosphotyrosine binding (PTB domains. From 358,944 polarization measurements, the affinities for 1,405 unique biological interactions were determined, 83% of which are novel. In contrast to data from previous reports, our analyses suggested that ErbB2 was not more promiscuous than the other ErbB receptors. Our results showed that each receptor displays unique preferences in the affinity and location of recruited SH2 domains that may contribute to differences in downstream signaling potential. ErbB1 was enriched versus the other receptors for recruitment of domains from RAS GEFs whereas ErbB2 was enriched for recruitment of domains from tyrosine and phosphatidyl inositol phosphatases. ErbB3, the kinase inactive ErbB receptor family member, was predictably enriched for recruitment of domains from phosphatidyl inositol kinases and surprisingly, was enriched for recruitment of domains from tyrosine kinases, cytoskeletal regulatory proteins, and RHO GEFs but depleted for recruitment of domains from phosphatidyl inositol phosphatases. Many novel interactions were also observed with phosphopeptides corresponding to ErbB receptor tyrosines not previously reported to be phosphorylated by mass spectrometry, suggesting the existence of many biologically relevant RTK sites that may be phosphorylated but below the detection threshold of standard mass spectrometry

  4. Molecular Interactions in Binary Mixtures of Benzene with 1-Alkanols(C5,C7,C8) at 35℃:An Ultrasonic Study

    Institute of Scientific and Technical Information of China (English)

    ALI,A.; IBRAHIM.M; 等

    2003-01-01

    Densities and ultrasonic speeds have been measured in binary mixtures of benzene with 1-pentanol,1-heptanol and 1-octanol,and in the pure components,as a function of compostion at 35℃.The isentropic compressibility,intermolecular free length,relative association,acoustic impedance,isothermal compressibility,thermal expansion coefficient,deviations in isentropic compressibility,excess freee length,excess volume,deviations in ultrasonic speed,excess acoustic impedance,apparent molar compressibility,apparent molar volume,partial molar volume of 1-alkanol in benzene have been calculated from the experimental data of densities and ultrasonic speeds.The variation of these parameters with composition indicates weak interaction between the component molecules and this interaction decreases in the order:1-pentanol>1-heptanol>1-octanol.Further,theoretical values of ultrasonic speeds were evaluated using free length theory,collision factor theory,Nomoto's relation and Van Dael-Vangeel ideal mixing relation.The relative merits of these theories and relations were discussed for these systems.

  5. Transcriptomics analysis of interactive effects of benzene, trichloroethylene and methyl mercury within binary and ternary mixtures on the liver and kidney following subchronic exposure in the rat

    International Nuclear Information System (INIS)

    Hendriksen, Peter J.M.; Freidig, Andreas P.; Jonker, Diana; Thissen, Uwe; Bogaards, Jan J.P.; Mumtaz, Moiz M.; Groten, John P.; Stierum, Rob H.

    2007-01-01

    The present research aimed to study the interaction of three chemicals, methyl mercury, benzene and trichloroethylene, on mRNA expression alterations in rat liver and kidney measured by microarray analysis. These compounds were selected based on presumed different modes of action. The chemicals were administered daily for 14 days at the Lowest-Observed-Adverse-Effect-Level (LOAEL) or at a two- or threefold lower concentration individually or in binary or ternary mixtures. The compounds had strong antagonistic effects on each other's gene expression changes, which included several genes encoding Phase I and II metabolizing enzymes. On the other hand, the mixtures affected the expression of 'novel' genes that were not or little affected by the individual compounds. The three compounds exhibited a synergistic interaction on gene expression changes at the LOAEL in the liver and both at the sub-LOAEL and LOAEL in the kidney. Many of the genes induced by mixtures but not by single compounds, such as Id2, Nr2f6, Tnfrsf1a, Ccng1, Mdm2 and Nfkb1 in the liver, are known to affect cellular proliferation, apoptosis and tissue-specific function. This indicates a shift from compound specific response on exposure to individual compounds to a more generic stress response to mixtures. Most of the effects on cell viability as concluded from transcriptomics were not detected by classical toxicological endpoints illustrating the benefit of increased sensitivity of assessing gene expression profiling. These results emphasize the benefit of applying toxicogenomics in mixture interaction studies, which yields biomarkers for joint toxicity and eventually can result in an interaction model for most known toxicants

  6. Comparative Sacred Texts and Interactive Interpretation: Another Alternative to the "World Religions" Class

    Science.gov (United States)

    Patton, Laurie L.; Robbins, Vernon K.; Newby, Gordon D.

    2009-01-01

    In this article we argue for an introductory course in the study of religion that proceeds through interactive interpretation as a responsible form of comparison. Interactive interpretation proceeds provisionally, and encourages students to formulate new questions of the materials instead of making final categories about the materials. We use…

  7. Interaction of Dopamine Transporter (DAT1) Genotype and Maltreatment for ADHD: A Latent Class Analysis

    Science.gov (United States)

    Li, James J.; Lee, Steve S.

    2012-01-01

    Background: Although the association of the dopamine transporter (DAT1) gene and attention-deficit/hyperactivity disorder (ADHD) has been widely studied, far less is known about its potential interaction with environmental risk factors. Given that maltreatment is a replicated risk factor for ADHD, we explored the interaction between DAT1 and…

  8. Beyond Astro 101: A First Report on Applying Interactive Education Techniques to an Astronphysics Class for Majors

    Science.gov (United States)

    Perrin, Marshall D.; Ghez, A. M.

    2009-05-01

    Learner-centered interactive instruction methods now have a proven track record in improving learning in "Astro 101" courses for non-majors, but have rarely been applied to higher-level astronomy courses. Can we hope for similar gains in classes aimed at astrophysics majors, or is the subject matter too fundamentally different for those techniques to apply? We present here an initial report on an updated calculus-based Introduction to Astrophysics class at UCLA that suggests such techniques can indeed result in increased learning for major students. We augmented the traditional blackboard-derivation lectures and challenging weekly problem sets by adding online questions on pre-reading assignments (''just-in-time teaching'') and frequent multiple-choice questions in class ("Think-Pair-Share''). We describe our approach, and present examples of the new Think-Pair-Share questions developed for this more sophisticated material. Our informal observations after one term are that with this approach, students are more engaged and alert, and score higher on exams than typical in previous years. This is anecdotal evidence, not hard data yet, and there is clearly a vast amount of work to be done in this area. But our first impressions strongly encourage us that interactive methods should be able improve the astrophysics major just as they have improved Astro 101.

  9. Anionic Sites, Fucose Residues and Class I Human Leukocyte Antigen Fate During Interaction of Toxoplasma gondii with Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Stumbo Ana Carolina

    2002-01-01

    Full Text Available Toxoplasma gondii invades and proliferates in human umbilical vein endothelial cells where it resides in a parasitophorous vacuole. In order to analyze which components of the endothelial cell plasma membrane are internalized and become part of the parasitophorous vacuole membrane, the culture of endothelial cells was labeled with cationized ferritin or UEA I lectin or anti Class I human leukocytte antigen (HLA before or after infection with T. gondii. The results showed no cationized ferritin and UEA I lectin in any parasitophorous vacuole membrane, however, the Class I HLA molecule labeling was observed in some endocytic vacuoles containing parasite until 1 h of interaction with T. gondii. After 24 h parasite-host cell interaction, the labeling was absent on the vacuolar membrane, but presents only in small vesicles near parasitophorous vacuole. These results suggest the anionic site and fucose residues are excluded at the time of parasitophorous vacuole formation while Class I HLA molecules are present only on a minority of Toxoplasma-containig vacuoles.

  10. A class of stochastic games with infinitely many interacting agents related to Glauber dynamics on random graphs

    International Nuclear Information System (INIS)

    De Santis, Emilio; Marinelli, Carlo

    2007-01-01

    We introduce and study a class of infinite-horizon non-zero-sum non-cooperative stochastic games with infinitely many interacting agents using ideas of statistical mechanics. First we show, in the general case of asymmetric interactions, the existence of a strategy that allows any player to eliminate losses after a finite random time. In the special case of symmetric interactions, we also prove that, as time goes to infinity, the game converges to a Nash equilibrium. Moreover, assuming that all agents adopt the same strategy, using arguments related to those leading to perfect simulation algorithms, spatial mixing and ergodicity are proved. In turn, ergodicity allows us to prove 'fixation', i.e. players will adopt a constant strategy after a finite time. The resulting dynamics is related to zero-temperature Glauber dynamics on random graphs of possibly infinite volume

  11. Ionizing spectra of stars that lose their envelope through interaction with a binary companion: role of metallicity

    OpenAIRE

    Gotberg, Y.; de Mink, S. E.; Groh, J. H.

    2017-01-01

    Understanding ionizing fluxes of stellar populations is crucial for various astrophysical problems including the epoch of reionization. Massive short-lived Wolf-Rayet stars are generally considered as the main ionizing sources. We examine the role of less massive stars that lose their envelope through interaction with a companion. We use the evolutionary code MESA and the radiative transfer code CMFGEN to investigate stripped stars as a function of metallicity (Z). We show that typical progen...

  12. Use of Spectroscopic, Zeta Potential and Molecular Dynamic Techniques to Study the Interaction between Human Holo-Transferrin and Two Antagonist Drugs: Comparison of Binary and Ternary Systems

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Saberi

    2012-03-01

    Full Text Available For the first time, the binding of ropinirole hydrochloride (ROP and aspirin (ASA to human holo-transferrin (hTf has been investigated by spectroscopic approaches (fluorescence quenching, synchronous fluorescence, time-resolved fluorescence, three-dimensional fluorescence, UV-vis absorption, circular dichroism, resonance light scattering, as well as zeta potential and molecular modeling techniques, under simulated physiological conditions. Fluorescence analysis was used to estimate the effect of the ROP and ASA drugs on the fluorescence of hTf as well as to define the binding and quenching properties of binary and ternary complexes. The synchronized fluorescence and three-dimensional fluorescence spectra demonstrated some micro-environmental and conformational changes around the Trp and Tyr residues with a faint red shift. Thermodynamic analysis displayed the van der Waals forces and hydrogen bonds interactions are the major acting forces in stabilizing the complexes. Steady-state and time-resolved fluorescence data revealed that the fluorescence quenching of complexes are static mechanism. The effect of the drugs aggregating on the hTf resulted in an enhancement of the resonance light scattering (RLS intensity. The average binding distance between were computed according to the forster non-radiation energy transfer theory. The circular dichroism (CD spectral examinations indicated that the binding of the drugs induced a conformational change of hTf. Measurements of the zeta potential indicated that the combination of electrostatic and hydrophobic interactions between ROP, ASA and hTf formed micelle-like clusters. The molecular modeling confirmed the experimental results. This study is expected to provide important insight into the interaction of hTf with ROP and ASA to use in various toxicological and therapeutic processes.

  13. Surface interactions, thermodynamics and topography of binary monolayers of Insulin with dipalmitoylphosphatidylcholine and 1-palmitoyl-2-oleoylphosphatidylcholine at the air/water interface.

    Science.gov (United States)

    Grasso, E J; Oliveira, R G; Maggio, B

    2016-02-15

    The molecular packing, thermodynamics and surface topography of binary Langmuir monolayers of Insulin and DPPC (dipalmitoylphosphatidylcholine) or POCP (1-palmitoyl-2-oleoylphosphatidylcholine) at the air/water interface on Zn(2+) containing solutions were studied. Miscibility and interactions were ascertained by the variation of surface pressure-mean molecular area isotherms, surface compressional modulus and surface (dipole) potential with the film composition. Brewster Angle Microscopy was used to visualize the surface topography of the monolayers. Below 20mN/m Insulin forms stable homogenous films with DPPC and POPC at all mole fractions studied (except for films with XINS=0.05 at 10mN/m where domain coexistence was observed). Above 20mN/m, a segregation process between mixed phases occurred in all monolayers without squeezing out of individual components. Under compression the films exhibit formation of a viscoelastic or kinetically trapped organization leading to considerable composition-dependent hysteresis under expansion that occurs with entropic-enthalpic compensation. The spontaneously unfavorable interactions of Insulin with DPPC are driven by favorable enthalpy that is overcome by unfavorable entropic ordering; in films with POPC both the enthalpic and entropic effects are unfavorable. The surface topography reveals domain coexistence at relatively high pressure showing a striped appearance. The interactions of Insulin with two major membrane phospholipids induces composition-dependent and long-range changes of the surface organization that ought to be considered in the context of the information-transducing capabilities of the hormone for cell functioning. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Solid state interaction studies on binary nitrate mixtures of uranyl nitrate hexahydrate and lanthanum nitrate hexahydrate at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kalekar, Bhupesh; Raje, Naina, E-mail: nraje@barc.gov.in; Reddy, A.V.R.

    2017-02-15

    Interaction behavior of uranyl nitrate hexahydrate (UNH) and lanthanum nitrate hexahydrate (LaNH) have been investigated on the mixtures in different molar ratios of the two precursors and monitoring the reactions at elevated temperatures with thermoanalytical and X-ray diffraction measurement techniques. During the decomposition of equimolar mixture of LaNH and UNH, formation of lanthanum uranate (U{sub 0.5}La{sub 0.5})O{sub 2}, was seen by the temperature of 500 °C along with lanthanum oxide (La{sub 2}O{sub 3}) and uranium trioxide (UO{sub 3}). By the temperature of 700 °C, the formation of uranium sesquioxide (U{sub 3}O{sub 8}) was observed along with (U{sub 0.5}La{sub 0.5})O{sub 2} as end products in uranium rich mixtures. Lanthanum rich compositions decomposed by the temperature of 700 °C to give (U{sub 0.5}La{sub 0.5})O{sub 2} and La{sub 2}O{sub 3} as end products. - Highlights: • UO{sub 2}(NO{sub 3}){sub 2}.6H{sub 2}O and La(NO{sub 3}){sub 3}.6H{sub 2}O interact through their intermediates. • Formation of (U{sub 0.5}La{sub 0.5})O{sub 2} by 500 °C. • La deficient mixtures decompose to give U{sub 3}O{sub 8} and (U{sub 0.5}La{sub 0.5})O{sub 2} as end products. • La rich mixtures decompose to give La{sub 2}O{sub 3} and (U{sub 0.5}La{sub 0.5})O{sub 2} as end product.

  15. On a class of problems on interaction of stress concentrators of different types with an elastic semi-infinite plate

    Science.gov (United States)

    Mkhitaryan, S. M.

    2018-04-01

    A class of mixed boundary-value problems of mathematical theory of elasticity dealing with interaction between stress concentrators of different types (such as cracks, absolutely rigid thin inclusions, punches, and stringers) and an elastic semi-infinite plate is considered. The method of Mellin integral transformation is used to reduce solving these problems to solving singular integral equations (SIE). After the governing SIE are solved, the following characteristics of the problem are determined: tangential contact stresses under stringers, dislocation density on the crack edges, breaking stresses outside the cracks on their line of location, the stress intensity factor (SIF), crack openings, jumps of contact stresses on the edges of inclusions.

  16. Using a dual safeguard web-based interactive teaching approach in an introductory physics class

    Directory of Open Access Journals (Sweden)

    Lie-Ming Li

    2015-03-01

    Full Text Available We modified the Just-in-Time Teaching approach and developed a dual safeguard web-based interactive (DGWI teaching system for an introductory physics course. The system consists of four instructional components that improve student learning by including warm-up assignments and online homework. Student and instructor activities involve activities both in the classroom and on a designated web site. An experimental study with control groups evaluated the effectiveness of the DGWI teaching method. The results indicate that the DGWI method is an effective way to improve students’ understanding of physics concepts, develop students’ problem-solving abilities through instructor-student interactions, and identify students’ misconceptions through a safeguard framework based on questions that satisfy teaching requirements and cover all of the course material. The empirical study and a follow-up survey found that the DGWI method increased student-teacher interaction and improved student learning outcomes.

  17. Mesoscopic model for binary fluids

    Science.gov (United States)

    Echeverria, C.; Tucci, K.; Alvarez-Llamoza, O.; Orozco-Guillén, E. E.; Morales, M.; Cosenza, M. G.

    2017-10-01

    We propose a model for studying binary fluids based on the mesoscopic molecular simulation technique known as multiparticle collision, where the space and state variables are continuous, and time is discrete. We include a repulsion rule to simulate segregation processes that does not require calculation of the interaction forces between particles, so binary fluids can be described on a mesoscopic scale. The model is conceptually simple and computationally efficient; it maintains Galilean invariance and conserves the mass and energy in the system at the micro- and macro-scale, whereas momentum is conserved globally. For a wide range of temperatures and densities, the model yields results in good agreement with the known properties of binary fluids, such as the density profile, interface width, phase separation, and phase growth. We also apply the model to the study of binary fluids in crowded environments with consistent results.

  18. Establishment of a quantitative ELISA capable of determining peptide - MHC class I interaction

    DEFF Research Database (Denmark)

    Sylvester-Hvid, C; Kristensen, N; Blicher, T

    2002-01-01

    dependent manner. Here, we exploit the availability of these molecules to generate a quantitative ELISA-based assay capable of measuring the affinity of the interaction between peptide and MHC-I. This assay is simple and sensitive, and one can easily envisage that the necessary reagents, standards...

  19. Absent Presences: The Recognition of Social Class and Gender Dimensions within Peer Assessment Interactions

    Science.gov (United States)

    Crossouard, Barbara

    2012-01-01

    This article focuses on the discursive characteristics of peer assessment interactions, drawing upon recent research into formative assessment within a task design involving extended project-based work tackled in groups by pupils. Case studies were conducted within two schools in socially deprived areas of Scotland. They included classroom…

  20. Interaction in Classes at a New Zealand University: Some International Students' Experiences.

    Science.gov (United States)

    Mills, Colleen

    1997-01-01

    Data from 5 Indonesian, 5 Thai, 21 Singaporean, and 85 Malaysian students in a New Zealand college were obtained through interviews, surveys, and observations. Differences in level and style of teacher-student interaction, difficulties learning English, perceptions of local students, lack of a common experience, and acculturation were the issues…

  1. The Relationship between Class Attitudes towards Peers with a Disability and Peer Acceptance, Friendships and Peer Interactions of Students with a Disability in Regular Secondary Schools

    Science.gov (United States)

    Petry, Katja

    2018-01-01

    Students with a disability in inclusive classes often face problems with peer acceptance, friendships and peer interactions. In this paper, the relationship between these difficulties in social participation and the attitudes that typically developing adolescents hold towards peers with a disability at the level of the class was explored. A…

  2. English language learners with learning disabilities interacting in a science class within an inclusion setting

    Science.gov (United States)

    Ayala, Vivian Luz

    In today's schools there are by far more students identified with learning disabilities (LD) than with any other disability. The U.S. Department of Education in the year 1997--98 reported that there are 38.13% students with LD in our nations' schools (Smith, Polloway, Patton, & Dowdy, 2001; U.S. Department of Education, 1999). Of those, 1,198,200 are considered ELLs with LD (Baca & Cervantes. 1998). These figures which represent an increase evidence the need to provide these students with educational experiences geared to address both their academic and language needs (Ortiz, 1997; Ortiz, & Garcia, 1995). English language learners with LD must be provided with experiences in the least restrictive environment (LRE) and must be able to share the same kind of social and academic experiences as those students from the general population (Etscheidt & Bartlett, 1999; Lloyd, Kameenui, & Chard, 1997) The purpose of this research was to conduct a detailed qualitative study on classroom interactions to enhance the understanding of the science curriculum in order to foster the understanding of content and facilitate the acquisition of English as a second language (Cummins, 2000; Echevarria, Vogt, & Short, 2000). This study was grounded on the theories of socioconstructivism, second language acquisition, comprehensible input, and classroom interactions. The participants of the study were fourth and fifth grade ELLS with LD in a science elementary school bilingual inclusive setting. Data was collected through observations, semi-structured interviews (students and teacher), video and audio taping, field notes, document analysis, and the Classroom Observation Schedule (COS). The transcriptions of the video and audio tapes were coded to highlight emergent patterns on the type of interactions and language used by the participants. The findings of the study intend to provide information for teachers of ELLs with LD about the implications of using classroom interactions point to

  3. A classification system for tableting behaviors of binary powder mixtures

    Directory of Open Access Journals (Sweden)

    Changquan Calvin Sun

    2016-08-01

    Full Text Available The ability to predict tableting properties of a powder mixture from individual components is of both fundamental and practical importance to the efficient formulation development of tablet products. A common tableting classification system (TCS of binary powder mixtures facilitates the systematic development of new knowledge in this direction. Based on the dependence of tablet tensile strength on weight fraction in a binary mixture, three main types of tableting behavior are identified. Each type is further divided to arrive at a total of 15 sub-classes. The proposed classification system lays a framework for a better understanding of powder interactions during compaction. Potential applications and limitations of this classification system are discussed.

  4. Rural N(SO) and German middle-class mothers' interaction with their 3- and 6-month-old infants: A longitudinal cross-cultural analysis.

    Science.gov (United States)

    Lamm, Bettina; Gudi, Helene; Fassbender, Ina; Freitag, Claudia; Graf, Frauke; Goertz, Claudia; Spangler, Sibylle; Teubert, Manuel; Knopf, Monika; Lohaus, Arnold; Schwarzer, Gudrun; Keller, Heidi

    2015-08-01

    This study aims to analyze culture-specific development of maternal interactional behavior longitudinally. Rural Cameroonian Nso mothers (n = 72) and German middle-class mothers (n = 106) were observed in free-play interactions with their 3- and 6-month-old infants. Results reveal the expected shift from a social to a nonsocial focus only in the German middle-class mothers' play interactions but not the rural Nso mothers' play. Nso mothers continue their proximal interactional style with a focus on body contact and body stimulation, whereas German middle-class mothers prefer a distal style of interaction with increasing object-centeredness. These cultural differences are in line with broader cultural models and become more accentuated as the infants grow older. (c) 2015 APA, all rights reserved).

  5. An analysis of the dialogical interactions science in classes of the primary school

    Directory of Open Access Journals (Sweden)

    Marco Aurélio Alvarenga Monteiro

    2004-12-01

    Full Text Available The search for understanding the interactive processes of complex dynamic has motivated relative researches on the teacher's speech and its impact in the conduction of activities that are developed in the classroom. This work discusses the results of an activity of physics knowledge developed by three different student groups of three different primary schools. We focus our analysis about the way teachers organized their speeches to conduct that didactic activity and how those speeches influenced in the students argumentative construction. The results show that the teacher's speech, that mixes different discursive resources, contributes more significantly to the process of argument construction by the students.

  6. Effect of intruder mass on collisions with hard binaries. II - Dependence on impact parameter and computations of the interaction cross sections

    Science.gov (United States)

    Hills, J. G.

    1992-06-01

    Over 125,000 encounters between a hard binary with equal mass, components and orbital eccentricity of 0, and intruders with solar masses ranging from 0.01 to 10,000 are simulated. Each encounter was followed up to a maximum of 5 x 10 exp 6 integration steps to allow long-term 'resonances', temporary trinary systems, to break into a binary and a single star. These simulations were done over a range of impact parameters to find the cross sections for various processes occurring in these encounters. A critical impact parameter found in these simulations is the one beyond which no exchange collisions can occur. The energy exchange between the binary and a massive intruder decreases greatly in collisions with Rmin of not less than Rc. The semimajor axes and orbital eccentricity of the surviving binary also drops rapidly at Rc in encounters with massive intruders. The formation of temporary trinary systems is important for all intruder masses.

  7. DEVELOPMENT OF MOBILE LEARNING BASED- INTERACTIVE MULTIMEDIA IN PROGRAMMING LANGUAGE CLASS AT STAIN BATUSANGKAR

    Directory of Open Access Journals (Sweden)

    Lita Sari Muchlis

    2018-04-01

    Full Text Available This study aims at developing mobile learning-based interactive media in programming language I subject. This research uses the ADDIE model, in which the proposed instructional media are tested to students of Informatics Management study program at STAIN Batusangkar, particularly in Programming Language course I. Data collection was done by distributing the questionnaires. At first, the need analysis was conducted by observing the related phenomena and previous research. Next, after the designing stage, the product was validated by three experts. As the result, the product, in terms of content, was 81,05 categorised very valid, besides in terms of design, it was valid with 85,6 score. In terms of practicality, the product was applied to the students. The result shows that the product was practical to use in Progamming Language course I. In order to find out its effectivity, the product was tested twice, before and after treatment. The mean score of post-test result was higher t “test” 0,001<0,05 than that of the pre-rest. Based on data analysis both design validation by experts and test results of the students, then the interactive online learning media is recommended to be developed for STAIN Batusangkar students.

  8. Structural requirements for the interaction between class II MHC molecules and peptide antigens

    DEFF Research Database (Denmark)

    Sette, A; Buus, S; Appella, E

    1990-01-01

    of binding, it is possible to define certain structural features of peptides that are associated with the capacity to bind to a particular MHC specificity (IA(d) or IE(d)); 3) IA(d) and IE(d) molecules recognize different and independent structures on the antigen molecule; 4) only about 10% of the single...... IA(d) and IE(d) molecules and their peptide ligands, we found that some structural characteristics apply to both antigen-MHC interactions. In particular, we found: 1) each MHC molecule is capable of binding many unrelated peptides through the same peptide-binding site; 2) despite this permissiveness...... amino acid substitutions tested on two IA(d)- and IE(d)-binding peptides had significant effect on their MHC-binding capacities, while over 80% of these substitutions significantly impaired T cell recognition of the Ia-peptide complex; 5) based on the segregation between residues that are crucial for T...

  9. A class of P,T-invariant topological phases of interacting electrons

    International Nuclear Information System (INIS)

    Freedman, Michael; Nayak, Chetan; Shtengel, Kirill; Walker, Kevin; Wang Zhenghan

    2004-01-01

    We describe a class of parity- and time-reversal-invariant topological states of matter which can arise in correlated electron systems in 2+1-dimensions. These states are characterized by particle-like excitations exhibiting exotic braiding statistics. P and T invariance are maintained by a 'doubling' of the low-energy degrees of freedom which occurs naturally without doubling the underlying microscopic degrees of freedom. The simplest examples have been the subject of considerable interest as proposed mechanisms for high-T c superconductivity. One is the 'doubled' version of the chiral spin liquid. The chiral spin liquid gives rise to anyon superconductivity at finite doping and the corresponding field theory is U(1) Chern-Simons theory at coupling constant m=2. The 'doubled' theory is two copies of this theory, one with m=2 the other with m=-2. The second example corresponds to Z 2 gauge theory, which describes a scenario for spin-charge separation. Our main concern, with an eye towards applications to quantum computation, are richer models which support non-Abelian statistics. All of these models, richer or poorer, lie in a tightly organized discrete family indexed by the Baraha numbers, 2cos(π/(k+2)), for positive integer k. The physical inference is that a material manifesting the Z 2 gauge theory or a doubled chiral spin liquid might be easily altered to one capable of universal quantum computation. These phases of matter have a field-theoretic description in terms of gauge theories which, in their infrared limits, are topological field theories. We motivate these gauge theories using a parton model or slave-fermion construction and show how they can be solved exactly. The structure of the resulting Hilbert spaces can be understood in purely combinatorial terms. The highly constrained nature of this combinatorial construction, phrased in the language of the topology of curves on surfaces, lays the groundwork for a strategy for constructing microscopic

  10. Using Research-Based Interactive Video Vignettes to Enhance Out-of-Class Learning in Introductory Physics

    Science.gov (United States)

    Laws, Priscilla W.; Willis, Maxine C.; Jackson, David P.; Koenig, Kathleen; Teese, Robert

    2015-02-01

    Ever since the first generalized computer-assisted instruction system (PLATO1) was introduced over 50 years ago, educators have been adding computer-based materials to their classes. Today many textbooks have complete online versions that include video lectures and other supplements. In the past 25 years the web has fueled an explosion of online homework and course management systems, both as blended learning and online courses. Meanwhile, introductory physics instructors have been implementing new approaches to teaching based on the outcomes of Physics Education Research (PER). A common theme of PER-based instruction has been the use of active-learning strategies designed to help students overcome alternative conceptions that they often bring to the study of physics.2 Unfortunately, while classrooms have become more active, online learning typically relies on passive lecture videos or Kahn-style3 tablet drawings. To bring active learning online, the LivePhoto Physics Group has been developing Interactive Video Vignettes (IVVs) that add interactivity and PER-based elements to short presentations. These vignettes incorporate web-based video activities that contain interactive elements and typically require students to make predictions and analyze real-world phenomena.

  11. Social Orders and Interactions among Children in Age-Mixed Classes in Primary Schools--New Perspectives from a Synthesis of Ethnographic Data

    Science.gov (United States)

    Huf, Christina; Raggl, Andrea

    2015-01-01

    The article synthesises data from two ethnographic projects, which both explore interactions of children in age-mixed groups in primary schools. It illuminates critical perspectives on social orders and children's interactions in age-mixed classes by showing how pupils in age-mixed groups become involved in power relations and how the teacher's…

  12. Blended learning in a first-year language class: Evaluating the acceptance of an interactive learning environment

    Directory of Open Access Journals (Sweden)

    Jako Olivier

    2016-10-01

    Full Text Available Increasingly blended learning, as a combination of face-to-face and online instruction is applied in university classrooms. In this study the use of an interactive learning environment (ILE, within a Sakai-based learning management system, as well as face-to-face teaching and learning in a first-year Afrikaans language class is explored. The Technology Acceptance Model (TAM was employed by means of a survey and the Structure Equation Model was used to explore factors relevant to this first-year class. In addition, qualitative research was conducted through an open questionnaire in order to determine the perceptions regarding the blended learning context and the ILE. It was found that students are generally able to function within the ILE and they are quite positive towards the use of the learning environment for learning and teaching. However, it is clear that some students still prefer printed study material. Despite the fact that students indicated that they use the ILE daily, actual usage statistics did not always correspond. Finally, this paper makes suggestions with regard to adapting teaching in terms of students’ behaviour based on their computer anxiety and Internet self-efficacy as well as the perceived usefulness and ease of use of the ILE.

  13. Use of interactive live digital imaging to enhance histology learning in introductory level anatomy and physiology classes.

    Science.gov (United States)

    Higazi, Tarig B

    2011-01-01

    Histology is one of the main subjects in introductory college-level Human Anatomy and Physiology classes. Institutions are moving toward the replacement of traditional microscope-based histology learning with virtual microscopy learning amid concerns of losing the valuable learning experience of traditional microscopy. This study used live digital imaging (LDI) of microscopic slides on a SMART board to enhance Histology laboratory teaching. The interactive LDI system consists of a digital camera-equipped microscope that projects live images on a wall-mounted SMART board via a computer. This set-up allows real-time illustration of microscopic slides with highlighted key structural components, as well as the ability to provide the students with relevant study and review material. The impact of interactive LDI on student learning of Histology was then measured based on performance in subsequent laboratory tests before and after its implementation. Student grades increased from a mean of 76% (70.3-82.0, 95% CI) before to 92% (88.8-95.3, 95% CI) after integration of LDI indicating highly significant (P < 0.001) enhancement in students' Histology laboratory performance. In addition, student ratings of the impact of the interactive LDI on their Histology learning were strongly positive, suggesting that a majority of students who valued this learning approach also improved learning and understanding of the material as a result. The interactive LDI technique is an innovative, highly efficient and affordable tool to enhance student Histology learning, which is likely to expand knowledge and student perception of the subject and in turn enrich future science careers. Copyright © 2011 American Association of Anatomists.

  14. Infrastructure for genomic interactions: Bioconductor classes for Hi-C, ChIA-PET and related experiments [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Aaron T. L. Lun

    2016-05-01

    Full Text Available The study of genomic interactions has been greatly facilitated by techniques such as chromatin conformation capture with high-throughput sequencing (Hi-C. These genome-wide experiments generate large amounts of data that require careful analysis to obtain useful biological conclusions. However, development of the appropriate software tools is hindered by the lack of basic infrastructure to represent and manipulate genomic interaction data. Here, we present the InteractionSet package that provides classes to represent genomic interactions and store their associated experimental data, along with the methods required for low-level manipulation and processing of those classes. The InteractionSet package exploits existing infrastructure in the open-source Bioconductor project, while in turn being used by Bioconductor packages designed for higher-level analyses. For new packages, use of the functionality in InteractionSet will simplify development, allow access to more features and improve interoperability between packages.

  15. Infrastructure for genomic interactions: Bioconductor classes for Hi-C, ChIA-PET and related experiments [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Aaron T. L. Lun

    2016-06-01

    Full Text Available The study of genomic interactions has been greatly facilitated by techniques such as chromatin conformation capture with high-throughput sequencing (Hi-C. These genome-wide experiments generate large amounts of data that require careful analysis to obtain useful biological conclusions. However, development of the appropriate software tools is hindered by the lack of basic infrastructure to represent and manipulate genomic interaction data. Here, we present the InteractionSet package that provides classes to represent genomic interactions and store their associated experimental data, along with the methods required for low-level manipulation and processing of those classes. The InteractionSet package exploits existing infrastructure in the open-source Bioconductor project, while in turn being used by Bioconductor packages designed for higher-level analyses. For new packages, use of the functionality in InteractionSet will simplify development, allow access to more features and improve interoperability between packages.

  16. Bondi-Hoyle-Lyttleton Accretion onto Binaries

    Science.gov (United States)

    Antoni, Andrea; MacLeod, Morgan; Ramírez-Ruiz, Enrico

    2018-01-01

    Binary stars are not rare. While only close binary stars will eventually interact with one another, even the widest binary systems interact with their gaseous surroundings. The rates of accretion and the gaseous drag forces arising in these interactions are the key to understanding how these systems evolve. This poster examines accretion flows around a binary system moving supersonically through a background gas. We perform three-dimensional hydrodynamic simulations of Bondi-Hoyle-Lyttleton accretion using the adaptive mesh refinement code FLASH. We simulate a range of values of semi-major axis of the orbit relative to the gravitational focusing impact parameter of the pair. On large scales, gas is gravitationally focused by the center-of-mass of the binary, leading to dynamical friction drag and to the accretion of mass and momentum. On smaller scales, the orbital motion imprints itself on the gas. Notably, the magnitude and direction of the forces acting on the binary inherit this orbital dependence. The long-term evolution of the binary is determined by the timescales for accretion, slow down of the center-of-mass, and decay of the orbit. We use our simulations to measure these timescales and to establish a hierarchy between them. In general, our simulations indicate that binaries moving through gaseous media will slow down before the orbit decays.

  17. Assessment of Teaching Strategies, Classroom Interaction and Teacher Concerns in the Implementation of Large Class Policy on a Speech Communication Course

    Directory of Open Access Journals (Sweden)

    Elizabeth Segura-Krueger

    2017-09-01

    Full Text Available This study aimed to identify the teaching strategies used in the classroom and concerns of teachers in the implementation of large class policy. This study also looked at the perception of teachers in their interaction with their students as well as the perception of students at their teacher’s interaction with them. The six speech communication lecturers and 716 undergraduate students in the 2nd semester of 2014-2015 were the participants of the study. Researchers asked teacher respondents to fill out several questionnaires to identify large class-teaching strategies, gauge teacher-student interaction in large classes and determine personal concerns. One-on-one interview with the teacher respondents was also done to validate the results obtained from surveys. Moreover, they also asked students to fill out the Questionnaire on Teacher Interaction (QTI to determine their perception of teacher’s interaction in the classroom. The teachers revealed their various large class teaching strategies, the most common of which is the discussion type. Teachers’ perceived classroom interaction with their students were in agreement with that of their students giving higher scores in the types depicting positive interpersonal behavior like leadership and helpfulness and lower scores in the types depicting negative behavior such as dissatisfaction and admonition. Based from the one-on-one interviews, teacher respondents felt lesser interaction with students in the large lecture class compared to the previous small classroom set-up. Results from teachers’ stages of concern profile showed that they were unconcerned on the implementation of large class policy. Some expressed their strong opposition on the policy and had other educational changes in mind that competed for their attention at the time of the study. There were also issues on credit loading and collaboration with recitation teachers raised during interviews.

  18. Assessment of Teaching Strategies, Classroom Interaction and Teacher Concerns in the Implementation of Large Class Policy on a Speech Communication Course (

    Directory of Open Access Journals (Sweden)

    Elizabeth Segura-Krueger

    2017-09-01

    Full Text Available This study aimed to identify the teaching strategies used in the classroom and concerns of teachers in the implementation of large class policy. This study also looked at the perception of teachers in their interaction with their students as well as the perception of students at their teacher’s interaction with them. The six speech communication lecturers and 716 undergraduate students in the 2nd semester of 2014-2015 were the participants of the study. Researchers asked teacher respondents to fill out several questionnaires to identify large class-teaching strategies, gauge teacher-student interaction in large classes and determine personal concerns. One-on-one interview with the teacher respondents was also done to validate the results obtained from surveys. Moreover, they also asked students to fill out the Questionnaire on Teacher Interaction (QTI to determine their perception of teacher’s interaction in the classroom. The teachers revealed their various large class teaching strategies, the most common of which is the discussion type. Teachers’ perceived classroom interaction with their students were in agreement with that of their students giving higher scores in the types depicting positive interpersonal behavior like leadership and helpfulness and lower scores in the types depicting negative behavior such as dissatisfaction and admonition. Based from the one-on-one interviews, teacher respondents felt lesser interaction with students in the large lecture class compared to the previous small classroom set-up. Results from teachers’ stages of concern profile showed that they were unconcerned on the implementation of large class policy. Some expressed their strong opposition on the policy and had other educational changes in mind that competed for their attention at the time of the study. There were also issues on credit loading and collaboration with recitation teachers raised during interviews.

  19. Semi-empirical correlation for binary interaction parameters of the Peng–Robinson equation of state with the van der Waals mixing rules for the prediction of high-pressure vapor–liquid equilibrium

    Directory of Open Access Journals (Sweden)

    Seif-Eddeen K. Fateen

    2013-03-01

    Full Text Available Peng–Robinson equation of state is widely used with the classical van der Waals mixing rules to predict vapor liquid equilibria for systems containing hydrocarbons and related compounds. This model requires good values of the binary interaction parameter kij. In this work, we developed a semi-empirical correlation for kij partly based on the Huron–Vidal mixing rules. We obtained values for the adjustable parameters of the developed formula for over 60 binary systems and over 10 categories of components. The predictions of the new equation system were slightly better than the constant-kij model in most cases, except for 10 systems whose predictions were considerably improved with the new correlation.

  20. Semi-empirical correlation for binary interaction parameters of the Peng-Robinson equation of state with the van der Waals mixing rules for the prediction of high-pressure vapor-liquid equilibrium.

    Science.gov (United States)

    Fateen, Seif-Eddeen K; Khalil, Menna M; Elnabawy, Ahmed O

    2013-03-01

    Peng-Robinson equation of state is widely used with the classical van der Waals mixing rules to predict vapor liquid equilibria for systems containing hydrocarbons and related compounds. This model requires good values of the binary interaction parameter kij . In this work, we developed a semi-empirical correlation for kij partly based on the Huron-Vidal mixing rules. We obtained values for the adjustable parameters of the developed formula for over 60 binary systems and over 10 categories of components. The predictions of the new equation system were slightly better than the constant-kij model in most cases, except for 10 systems whose predictions were considerably improved with the new correlation.

  1. FY 2000 report on the development of hydrothermal use power plant, etc. Development of the binary cycle power plant (Development of a 10MW class plant); 2000 nendo Nessui riyo hatsuden plant tou kaihatsu. Bainari cycle hatsuden plant no kaihatsu - 10MW kyu plant no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-01-01

    For the purpose of developing a 10MW class demonstrative plant for geothermal binary power generation, the R and D were carried out, and the results obtained from FY 1995 to FY 1999 were summed up. In the interim evaluation made in July 1994, study was to be phasedly proceeded with for the main three systems (hydrothermal system, medium system and power generation system) which compose the 10MW class binary cycle power plant. The test on the hydrothermal system was started in FY 1995. In the R and D, the following were conducted for evaluation: design/manufacture/installation of the test device for the hydrothermal system, manufacture of demonstrative downhole pump (DHP) No.3 and test at plant, test on the hydrothermal system. As to the turbine working medium suitable for binary power plant, the specified freon/substitute freon have been used, but it seems that hydrocarbons such as butane and pentane can be effective in future. In the study of the economical efficiency, it was pointed out that for the commercialization, it is important to improve durability of DHP and further reduce the cost of DHP equipment and cost of repairs. (NEDO)

  2. Evolution of binaries with compact objects in globular clusters

    OpenAIRE

    Ivanova, Natalia

    2017-01-01

    Dynamical interactions that take place between objects in dense stellar systems lead to frequent formation of exotic stellar objects, unusual binaries, and systems of higher multiplicity. They are most important for the formation of binaries with neutron stars and black holes, which are usually observationally revealed in mass-transferring binaries. Here we review the current understanding of compact object's retention, of the metallicity dependence on the formation of low-mass X-ray binaries...

  3. Physical properties of the binary systems methylcyclopentane with ketones (acetone, butanone and 2-pentanone) at T = (293.15, 298.15, and 303.15) K. New UNIFAC-VISCO interaction parameters

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, B. [Department of Chemical Engineering, University of Vigo, Lagoas-Marconende, s/n Apartado 874, 36200 Vigo (Spain); Dominguez, A. [Department of Chemical Engineering, University of Vigo, Lagoas-Marconende, s/n Apartado 874, 36200 Vigo (Spain); Tojo, J. [Department of Chemical Engineering, University of Vigo, Lagoas-Marconende, s/n Apartado 874, 36200 Vigo (Spain)]. E-mail: jtojo@uvigo.es

    2006-06-15

    In this work, the physical properties, dynamic viscosities, densities, and speed of sound have been measured over the whole composition range and atmospheric pressure for the binary mixtures (methylcyclopentane with acetone, butanone, and 2-pentanone) at several temperatures T = (293.15, 298.15, and 303.15) K along with the properties of the pure components. Excess molar volumes, isentropic compressibility, deviations in isentropic compressibility and viscosity deviation for the binary systems at the above-mentioned temperatures were calculated and fitted to the Redlich-Kister equation to determine the fitting parameters and the root-mean-square deviations. The UNIQUAC equation was used to correlate the experimental viscosity data. The UNIFAC-VISCO method and ASOG-VISCO method, based on contribution groups, were used to predict the dynamic viscosities of the binary mixtures. The interaction parameters of cycloalkanes with ketones (CH{sub cy}/CO) have been determined for their application in the predictive UNIFAC-VISCO method.

  4. Dynamic viscosities of binary mixtures of cycloalkanes with primary alcohols at T = (293.15, 298.15, and 303.15) K: New UNIFAC-VISCO interaction parameters

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Begona [Chemical Engineering Department, Vigo University, 36200 Vigo (Spain); Calvar, Noelia [Chemical Engineering Department, Vigo University, 36200 Vigo (Spain); Dominguez, Angeles [Chemical Engineering Department, Vigo University, 36200 Vigo (Spain)]. E-mail: admguez@uvigo.es; Tojo, Jose [Chemical Engineering Department, Vigo University, 36200 Vigo (Spain)

    2007-02-15

    In this work, dynamic viscosities, densities, and speed of sound have been measured over the whole composition range and 0.1 MPa for the binary mixtures (cyclopentane and cyclohexane with ethanol, 1-propanol, and 1-butanol) at several temperatures (293.15, 298.15, 303.15) K along with the properties of the pure components. Excess molar volumes, molar isentropic compression, excess molar isentropic compression, and excess free energy of activation for the binary systems at the above mentioned temperatures, were calculated and fitted to the Redlich-Kister equation to determine the fitting parameters and the root-mean-square deviations. The UNIQUAC equation was used to correlate the experimental viscosity data. The UNIFAC-VISCO method and ASOG-VISCO method, based on contribution groups, were used to predict the dynamic viscosities of the binary mixtures. The interaction parameters of cycloalkanes with primary alcohol (CH{sub cy}/-OH) have been determined for their application in the predictive UNIFAC-VISCO method.

  5. Word classes

    DEFF Research Database (Denmark)

    Rijkhoff, Jan

    2007-01-01

    in grammatical descriptions of some 50 languages, which together constitute a representative sample of the world’s languages (Hengeveld et al. 2004: 529). It appears that there are both quantitative and qualitative differences between word class systems of individual languages. Whereas some languages employ...... a parts-of-speech system that includes the categories Verb, Noun, Adjective and Adverb, other languages may use only a subset of these four lexical categories. Furthermore, quite a few languages have a major word class whose members cannot be classified in terms of the categories Verb – Noun – Adjective...... – Adverb, because they have properties that are strongly associated with at least two of these four traditional word classes (e.g. Adjective and Adverb). Finally, this article discusses some of the ways in which word class distinctions interact with other grammatical domains, such as syntax and morphology....

  6. Solving a binary puzzle

    NARCIS (Netherlands)

    Utomo, P.H.; Makarim, R.H.

    2017-01-01

    A Binary puzzle is a Sudoku-like puzzle with values in each cell taken from the set {0,1} {0,1}. Let n≥4 be an even integer, a solved binary puzzle is an n×n binary array that satisfies the following conditions: (1) no three consecutive ones and no three consecutive zeros in each row and each

  7. Eclipsing binaries in open clusters

    DEFF Research Database (Denmark)

    Southworth, John; Clausen, J.V.

    2006-01-01

    Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August......Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August...

  8. Mass Transfer in Mira-Type Binaries

    Directory of Open Access Journals (Sweden)

    Mohamed S.

    2012-06-01

    Full Text Available Detached, symbiotic binaries are generally assumed to interact via Bondi-Hoyle-Littleton (BHL wind accretion. However, the accretion rates and outflow geometries that result from this mass-transfer mechanism cannot adequately explain the observations of the nearest and best studied symbiotic binary, Mira, or the formation of some post-AGB binaries, e.g. barium stars. We propose a new mass-transfer mode for Mira-type binaries, which we call ‘wind Roche-lobe overflow’ (WRLOF, and which we demonstrate with 3D hydrodynamic simulations. Importantly, we show that the circumstellar outflows which result from WRLOF tend to be highly aspherical and strongly focused towards the binary orbital plane. Furthermore, the subsequent mass-transfer rates are at least an order of magnitude greater than the analogous BHL values. We discuss the implications of these results for the shaping of bipolar (proto-planetary nebulae and other related systems.

  9. A viral, transporter associated with antigen processing (TAP)-independent, high affinity ligand with alternative interactions endogenously presented by the nonclassical human leukocyte antigen E class I molecule.

    Science.gov (United States)

    Lorente, Elena; Infantes, Susana; Abia, David; Barnea, Eilon; Beer, Ilan; García, Ruth; Lasala, Fátima; Jiménez, Mercedes; Mir, Carmen; Morreale, Antonio; Admon, Arie; López, Daniel

    2012-10-12

    The transporter associated with antigen processing (TAP) enables the flow of viral peptides generated in the cytosol by the proteasome and other proteases to the endoplasmic reticulum, where they complex with nascent human leukocyte antigen (HLA) class I. Later, these peptide-HLA class I complexes can be recognized by CD8(+) lymphocytes. Cancerous cells and infected cells in which TAP is blocked, as well as individuals with unusable TAP complexes, are able to present peptides on HLA class I by generating them through TAP-independent processing pathways. Here, we identify a physiologically processed HLA-E ligand derived from the D8L protein in TAP-deficient vaccinia virus-infected cells. This natural high affinity HLA-E class I ligand uses alternative interactions to the anchor motifs previously described to be presented on nonclassical HLA class I molecules. This octameric peptide was also presented on HLA-Cw1 with similar binding affinity on both classical and nonclassical class I molecules. In addition, this viral peptide inhibits HLA-E-mediated cytolysis by natural killer cells. Comparison between the amino acid sequences of the presenting HLA-E and HLA-Cw1 alleles revealed a shared structural motif in both HLA class molecules, which could be related to their observed similar cross-reactivity affinities. This motif consists of several residues located on the floor of the peptide-binding site. These data expand the role of HLA-E as an antigen-presenting molecule.

  10. The Interactive Modes of Non-Native Speakers in International Chinese Language Distance Class Discussions: An Analysis of Smiling as a Facial Cue

    Science.gov (United States)

    Sunaoka, Kazuko

    2018-01-01

    The focus of this research is on an international distance discussion class carried out in Chinese between university students in Japan, China and Taiwan using videoconferencing. Smiling was used as an interactional index in an analysis of the archival footage of the recordings of the discussion between native speakers (NS) of Chinese and…

  11. Binary classification posed as a quadratically constrained quadratic ...

    Indian Academy of Sciences (India)

    Binary classification is posed as a quadratically constrained quadratic problem and solved using the proposed method. Each class in the binary classification problem is modeled as a multidimensional ellipsoid to forma quadratic constraint in the problem. Particle swarms help in determining the optimal hyperplane or ...

  12. THE PROGENITORS OF TYPE Ia SUPERNOVAE. II. ARE THEY DOUBLE-DEGENERATE BINARIES? THE SYMBIOTIC CHANNEL

    International Nuclear Information System (INIS)

    Di Stefano, R.

    2010-01-01

    In order for a white dwarf (WD) to achieve the Chandrasekhar mass, M C , and explode as a Type Ia supernova (SNIa), it must interact with another star, either accreting matter from or merging with it. The failure to identify the class or classes of binaries which produce SNeIa is the long-standing 'progenitor problem'. Its solution is required if we are to utilize the full potential of SNeIa to elucidate basic cosmological and physical principles. In single-degenerate models, a WD accretes and burns matter at high rates. Nuclear-burning white dwarfs (NBWDs) with mass close to M C are hot and luminous, potentially detectable as supersoft X-ray sources (SSSs). In previous work, we showed that >90%-99% of the required number of progenitors do not appear as SSSs during most of the crucial phase of mass increase. The obvious implication might be that double-degenerate binaries form the main class of progenitors. We show in this paper, however, that many binaries that later become double degenerates must pass through a long-lived NBWD phase during which they are potentially detectable as SSSs. The paucity of SSSs is therefore not a strong argument in favor of double-degenerate models. Those NBWDs that are the progenitors of double-degenerate binaries are likely to appear as symbiotic binaries for intervals >10 6 years. In fact, symbiotic pre-double-degenerates should be common, whether or not the WDs eventually produce SNeIa. The key to solving the Type Ia progenitor problem lies in understanding the appearance of NBWDs. Most of them do not appear as SSSs most of the time. We therefore consider the evolution of NBWDs to address the question of what their appearance may be and how we can hope to detect them.

  13. Do stellar clusters form fewer binaries? Using moderate separation binaries to distinguish between nature and nurture

    Science.gov (United States)

    Reiter, Megan

    2017-08-01

    Fewer wide-separation binaries are found in dense stellar clusters than in looser stellar associations. It is therefore unclear whether feedback in clusters prevents the formation of multiple systems or dynamical interactions destroy them. Measuring the prevalence of close, bound binary systems provide a key test to distinguish between these possibilities. Systems with separations of 10-50 AU will survive interactions in the cluster environment, and therefore are more representative of the natal population of multiple systems. By fitting a double-star PSF, we will identify visual binaries in the Orion Nebula with separations as small as 0.03. At the distance of Orion, this corresponds to a physical separation of 12 AU, effectively closing the observational gap in the binary separation distribution left between known visual and spectroscopic binaries (>65 AU or PhD thesis.

  14. What Predicts Student Success in Introductory Data Management Classes? An Investigation of Demographic, Personality, Computer-Related, and Interaction Variables

    Science.gov (United States)

    Harris, Kenneth J.; Harris, Ranida B.; Lambert, Alysa D.

    2011-01-01

    Introduction to data management classes are often times students' first exposure to advanced material in these areas. Many factors are likely to influence success in these classes, but empirical investigations have focused on relatively few variables. In this study, we extend this research by examining the relative contributions of the previously…

  15. Social Classes

    DEFF Research Database (Denmark)

    Aktor, Mikael

    2018-01-01

    . Although this social structure was ideal in nature and not equally confirmed in other genres of ancient and medieval literature, it has nevertheless had an immense impact on Indian society. The chapter presents an overview of the system with its three privileged classes, the Brahmins, the Kṣatriyas......The notions of class (varṇa) and caste (jāti) run through the dharmaśāstra literature (i.e. Hindu Law Books) on all levels. They regulate marriage, economic transactions, work, punishment, penance, entitlement to rituals, identity markers like the sacred thread, and social interaction in general...

  16. Galactic binaries with eLISA

    OpenAIRE

    Nelemans, G.

    2013-01-01

    I review what eLISA will see from Galactic binaries -- double stars with orbital periods less than a few hours and white dwarf (or neutron star/black hole) components. I discuss the currently known binaries that are guaranteed (or verification) sources and explain why the expected total number of eLISA Galactic binaries is several thousand, even though there are large uncertainties in our knowledge of this population, in particular that of the interacting AM CVn systems. I very briefly sketch...

  17. Theoretical studies of binaries in astrophysics

    Science.gov (United States)

    Dischler, Johann Sebastian

    This thesis introduces and summarizes four papers dealing with computer simulations of astrophysical processes involving binaries. The first part gives the rational and theoretical background to these papers. In paper I and II a statistical approach to studying eclipsing binaries is described. By using population synthesis models for binaries the probabilities for eclipses are calculated for different luminosity classes of binaries. These are compared with Hipparcos data and they agree well if one uses a standard input distribution for the orbit sizes. If one uses a random pairing model, where both companions are independently picked from an IMF, one finds too feclipsing binaries by an order of magnitude. In paper III we investigate a possible scenario for the origin of the stars observed close to the centre of our galaxy, called S stars. We propose that a cluster falls radially cowards the central black hole. The binaries within the cluster can then, if they have small impact parameters, be broken up by the black hole's tidal held and one of the components of the binary will be captured by the black hole. Paper IV investigates how the onset of mass transfer in eccentric binaries depends on the eccentricity. To do this we have developed a new two-phase SPH scheme where very light particles are at tire outer edge of our simulated star. This enables us to get a much better resolution of the very small mass that is transferred in close binaries. Our simulations show that the minimum required distance between the stars to have mass transfer decreases with the eccentricity.

  18. Study of molecular interactions in binary liquid mixtures of 1-octanol with n-hexane, n-octane, and n-decane using volumetric, viscometric, and acoustic properties

    International Nuclear Information System (INIS)

    Dubey, Gyan P.; Sharma, Monika

    2008-01-01

    Experimental values of densities (ρ) and speeds of sound (u) at T = (298.15, 303.15, and 308.15) K while the viscosities (η) at T = 298.15 K in the binary mixtures of 1-octanol with n-hexane, n-octane, and n-decane are presented over the entire composition range of the binary mixtures. Using these data, excess molar volumes (V m E ), viscosity deviation (Δη), deviation in speeds of sound (Δu), deviation in isentropic compressibility (Δκ s ), excess free volume (V f E ), and excess Gibbs free energy of activation of viscous flow (ΔG* E ) are calculated and presented graphically. All the computed quantities are fitted to a polynomial equation. The values of V m E have been analyzed using Prigogine-Flory-Patterson (PFP) theory. Furthermore, the theoretical values of speed of sound (u) and isentropic compressibility (κ s ) have also been estimated using the Prigogine-Flory-Patterson (PFP) theory with the van der Waals (vdW) potential energy model and the results have been compared with experimental values. The experimental and calculated quantities are used to study the nature of mixing behaviour between the mixture components

  19. Non-binary Hybrid LDPC Codes: Structure, Decoding and Optimization

    OpenAIRE

    Sassatelli, Lucile; Declercq, David

    2007-01-01

    In this paper, we propose to study and optimize a very general class of LDPC codes whose variable nodes belong to finite sets with different orders. We named this class of codes Hybrid LDPC codes. Although efficient optimization techniques exist for binary LDPC codes and more recently for non-binary LDPC codes, they both exhibit drawbacks due to different reasons. Our goal is to capitalize on the advantages of both families by building codes with binary (or small finite set order) and non-bin...

  20. Binary Masking & Speech Intelligibility

    DEFF Research Database (Denmark)

    Boldt, Jesper

    The purpose of this thesis is to examine how binary masking can be used to increase intelligibility in situations where hearing impaired listeners have difficulties understanding what is being said. The major part of the experiments carried out in this thesis can be categorized as either experime......The purpose of this thesis is to examine how binary masking can be used to increase intelligibility in situations where hearing impaired listeners have difficulties understanding what is being said. The major part of the experiments carried out in this thesis can be categorized as either...... experiments under ideal conditions or as experiments under more realistic conditions useful for real-life applications such as hearing aids. In the experiments under ideal conditions, the previously defined ideal binary mask is evaluated using hearing impaired listeners, and a novel binary mask -- the target...... binary mask -- is introduced. The target binary mask shows the same substantial increase in intelligibility as the ideal binary mask and is proposed as a new reference for binary masking. In the category of real-life applications, two new methods are proposed: a method for estimation of the ideal binary...

  1. Binary classification of items of interest in a repeatable process

    Science.gov (United States)

    Abell, Jeffrey A.; Spicer, John Patrick; Wincek, Michael Anthony; Wang, Hui; Chakraborty, Debejyo

    2014-06-24

    A system includes host and learning machines in electrical communication with sensors positioned with respect to an item of interest, e.g., a weld, and memory. The host executes instructions from memory to predict a binary quality status of the item. The learning machine receives signals from the sensor(s), identifies candidate features, and extracts features from the candidates that are more predictive of the binary quality status relative to other candidate features. The learning machine maps the extracted features to a dimensional space that includes most of the items from a passing binary class and excludes all or most of the items from a failing binary class. The host also compares the received signals for a subsequent item of interest to the dimensional space to thereby predict, in real time, the binary quality status of the subsequent item of interest.

  2. Statistical Analysis of a Comprehensive List of Visual Binaries

    Directory of Open Access Journals (Sweden)

    Kovaleva D.

    2015-12-01

    Full Text Available Visual binary stars are the most abundant class of observed binaries. The most comprehensive list of data on visual binaries compiled recently by cross-matching the largest catalogues of visual binaries allowed a statistical investigation of observational parameters of these systems. The dataset was cleaned by correcting uncertainties and misclassifications, and supplemented with available parallax data. The refined dataset is free from technical biases and contains 3676 presumably physical visual pairs of luminosity class V with known angular separations, magnitudes of the components, spectral types, and parallaxes. We also compiled a restricted sample of 998 pairs free from observational biases due to the probability of binary discovery. Certain distributions of observational and physical parameters of stars of our dataset are discussed.

  3. Planar quark diagrams and binary spin processes

    International Nuclear Information System (INIS)

    Grigoryan, A.A.; Ivanov, N.Ya.

    1986-01-01

    Contributions of planar diagrams to the binary scattering processes are analyzed. The analysis is based on the predictions of quark-gluon picture of strong interactions for the coupling of reggeons with quarks as well as on the SU(6)-classification of hadrons. The dependence of contributions of nonplanar corrections on spins and quark composition of interacting particles is discussed

  4. The interaction of mammalian Class C Vps with nSec-1/Munc18-a and syntaxin 1A regulates pre-synaptic release

    International Nuclear Information System (INIS)

    Kim, Bong Yoon; Sahara, Yoshinori; Yamamoto, Akitsugu; Kominami, Eiki; Kohsaka, Shinichi; Akazawa, Chihiro

    2006-01-01

    Membrane docking and fusion in neurons is a highly regulated process requiring the participation of a large number of SNAREs (soluble N-ethylmaleimide sensitive factor attachment protein receptors) and SNARE-interacting proteins. We found that mammalian Class C Vps protein complex associated specifically with nSec-1/Munc18-a, and syntaxin 1A both in vivo and in vitro. In contrast, VAMP2 and SNAP-25, other neuronal core complex proteins, did not interact. When co-transfected with the human growth hormone (hGH) reporter gene, mammalian Class C Vps proteins enhanced Ca 2+ -dependent exocytosis, which was abolished by the Ca 2+ -channel blocker nifedipine. In hippocampal primary cultures, the lentivirus-mediated overexpression of hVps18 increased asynchronous spontaneous synaptic release without changing mEPSCs. These results indicate that mammalian Class C Vps proteins are involved in the regulation of membrane docking and fusion through an interaction with neuronal specific SNARE molecules, nSec-1/Munc18-a and syntaxin 1A

  5. Mining frequent binary expressions

    NARCIS (Netherlands)

    Calders, T.; Paredaens, J.; Kambayashi, Y.; Mohania, M.K.; Tjoa, A.M.

    2000-01-01

    In data mining, searching for frequent patterns is a common basic operation. It forms the basis of many interesting decision support processes. In this paper we present a new type of patterns, binary expressions. Based on the properties of a specified binary test, such as reflexivity, transitivity

  6. Making Large Class Basic Histology Lectures More Interactive: The Use of Draw-Along Mapping Techniques and Associated Educational Activities

    Science.gov (United States)

    Kotzé, Sanet Henriët; Mole, Calvin Gerald

    2015-01-01

    At Stellenbosch University, South Africa, basic histology is taught to a combination class of almost 400 first-year medical, physiotherapy, and dietetic students. Many students often find the amount of work in basic histology lectures overwhelming and consequently loose interest. The aim was to determine if a draw-along mapping activity would…

  7. Sex and Class Differences in Parent-Child Interaction: A Test of Kohn's Hypothesis. Scientific Paper No. 4181.

    Science.gov (United States)

    Gecas, Viktor; Nye, F. Ivan

    This paper examines sex and class differences in the style and circumstances of parental discipline of the child. Specifically, we have focused on Melvin Kohn's suggestive hypothesis that white collar parents stress the development of internal standards of conduct in their children and thus are more likely to discipline the child on the basis of…

  8. Use of Interactive Live Digital Imaging to Enhance Histology Learning in Introductory Level Anatomy and Physiology Classes

    Science.gov (United States)

    Higazi, Tarig B.

    2011-01-01

    Histology is one of the main subjects in introductory college-level Human Anatomy and Physiology classes. Institutions are moving toward the replacement of traditional microscope-based histology learning with virtual microscopy learning amid concerns of losing the valuable learning experience of traditional microscopy. This study used live digital…

  9. The occurrence of binary evolution pulsators in classical instability strip of RR Lyrae and Cepheid variables

    Science.gov (United States)

    Karczmarek, P.; Wiktorowicz, G.; Iłkiewicz, K.; Smolec, R.; Stępień, K.; Pietrzyński, G.; Gieren, W.; Belczynski, K.

    2017-04-01

    Single star evolution does not allow extremely low-mass stars to cross the classical instability strip (IS) during the Hubble time. However, within binary evolution framework low-mass stars can appear inside the IS once the mass transfer (MT) is taken into account. Triggered by a discovery of low-mass (0.26 M⊙) RR Lyrae-like variable in a binary system, OGLE-BLG-RRLYR-02792, we investigate the occurrence of similar binary components in the IS, which set up a new class of low-mass pulsators. They are referred to as binary evolution pulsators (BEPs) to underline the interaction between components, which is crucial for substantial mass-loss prior to the IS entrance. We simulate a population of 500 000 metal-rich binaries and report that 28 143 components of binary systems experience severe MT (losing up to 90 per cent of mass), followed by at least one IS crossing in luminosity range of RR Lyrae (RRL) or Cepheid variables. A half of these systems enter the IS before the age of 4 Gyr. BEPs display a variety of physical and orbital parameters, with the most important being the BEP mass in range 0.2-0.8 M⊙, and the orbital period in range 10-2 500 d. Based on the light curve only, BEPs can be misclassified as genuine classical pulsators, and as such they would contaminate genuine RRL and classical Cepheid variables at levels of 0.8 and 5 per cent, respectively. We state that the majority of BEPs will remain undetected and we discuss relevant detection limitations.

  10. Improvement of Binary Analysis Components in Automated Malware Analysis Framework

    Science.gov (United States)

    2017-02-21

    AFRL-AFOSR-JP-TR-2017-0018 Improvement of Binary Analysis Components in Automated Malware Analysis Framework Keiji Takeda KEIO UNIVERSITY Final...TYPE Final 3. DATES COVERED (From - To) 26 May 2015 to 25 Nov 2016 4. TITLE AND SUBTITLE Improvement of Binary Analysis Components in Automated Malware ...analyze malicious software ( malware ) with minimum human interaction. The system autonomously analyze malware samples by analyzing malware binary program

  11. The fate of close encounters between binary stars and binary supermassive black holes

    Science.gov (United States)

    Wang, Yi-Han; Leigh, Nathan; Yuan, Ye-Fei; Perna, Rosalba

    2018-04-01

    The evolution of main-sequence binaries that reside in the Galactic Centre can be heavily influenced by the central supermassive black hole (SMBH). Due to these perturbative effects, the stellar binaries in dense environments are likely to experience mergers, collisions, or ejections through secular and/or non-secular interactions. More direct interactions with the central SMBH are thought to produce hypervelocity stars (HVSs) and tidal disruption events (TDEs). In this paper, we use N-body simulations to study the dynamics of stellar binaries orbiting a central SMBH primary with an outer SMBH secondary orbiting this inner triple. The effects of the secondary SMBH on the event rates of HVSs, TDEs, and stellar mergers are investigated, as a function of the SMBH-SMBH binary mass ratio. Our numerical experiments reveal that, relative to the isolated SMBH case, the TDE and HVS rates are enhanced for, respectively, the smallest and largest mass ratio SMBH-SMBH binaries. This suggests that the observed event rates of TDEs and HVSs have the potential to serve as a diagnostic of the mass ratio of a central SMBH-SMBH binary. The presence of a secondary SMBH also allows for the creation of hypervelocity binaries. Observations of these systems could thus constrain the presence of a secondary SMBH in the Galactic Centre.

  12. Hybrid Black-Hole Binary Initial Data

    Science.gov (United States)

    Mundim, Bruno C.; Kelly, Bernard J.; Nakano, Hiroyuki; Zlochower, Yosef; Campanelli, Manuela

    2010-01-01

    "Traditional black-hole binary puncture initial data is conformally flat. This unphysical assumption is coupled with a lack of radiation signature from the binary's past life. As a result, waveforms extracted from evolutions of this data display an abrupt jump. In Kelly et al. [Class. Quantum Grav. 27:114005 (2010)], a new binary black-hole initial data with radiation contents derived in the post-Newtonian (PN) calculations was adapted to puncture evolutions in numerical relativity. This data satisfies the constraint equations to the 2.5PN order, and contains a transverse-traceless "wavy" metric contribution, violating the standard assumption of conformal flatness. Although the evolution contained less spurious radiation, there were undesired features; the unphysical horizon mass loss and the large initial orbital eccentricity. Introducing a hybrid approach to the initial data evaluation, we significantly reduce these undesired features."

  13. A BINARY ORBIT FOR THE MASSIVE, EVOLVED STAR HDE 326823, A WR+O SYSTEM PROGENITOR

    International Nuclear Information System (INIS)

    Richardson, N. D.; Gies, D. R.; Williams, S. J.

    2011-01-01

    The hot star HDE 326823 is a candidate transition-phase object that is evolving into a nitrogen-enriched Wolf-Rayet star. It is also a known low-amplitude, photometric variable with a 6.123 day period. We present new, high- and moderate-resolution spectroscopy of HDE 326823, and we show that the absorption lines show coherent Doppler shifts with this period while the emission lines display little or no velocity variation. We interpret the absorption line shifts as the orbital motion of the apparently brighter star in a close, interacting binary. We argue that this star is losing mass to a mass gainer star hidden in a thick accretion torus and to a circumbinary disk that is the source of the emission lines. HDE 326823 probably belongs to a class of objects that produce short-period WR+O binaries.

  14. Volumetric, acoustic, and viscometric studies of molecular interactions in binary mixtures of dipropylene glycol dimethyl ether with 1-alkanols at 298.15 K

    International Nuclear Information System (INIS)

    Pal, Amalendu; Gaba, Rekha

    2008-01-01

    In this work densities, ρ, ultrasonic speeds, u, and viscosities, η, have been measured over the whole composition range for the binary mixtures of dipropylene glycol dimethyl ether (DPGDME) with ethanol, 1-propanol, 1-pentanol, and 1-heptanol at 298.15 K along with the properties of the pure components. By using the experimental values of ρ, u, and η, excess molar volume, V m E , deviations in viscosity, Δη, excess free energy of activation for viscous flow, ΔG* E , excess molar isentropic compressibility, K S,m E , deviation of the speeds of sound, u D , from their ideal values u id in an ideal mixtures, apparent molar volume, and apparent molar compressibility, V-bar φ,i 0 and K-bar φ,i 0 of the components at infinite dilution have been calculated. Finally, the experimental viscosity data have been correlated by the methods of Grunberg-Nissan, Hind, Tamura-Kurata, Chaudhry, Auslaender, Heric, and with McAllister correlations

  15. B and V photoelectric photometry and light curve solution of the interacting binary systems HI Puppis, BL Eridani and SY Horologii

    International Nuclear Information System (INIS)

    Kern, J.R.

    1985-01-01

    The first photoelectric observations of the eclipsing binary systems HI Puppis, BL Eridani, and SY Horologii were obtained and complete B and V light curves are presented. Improved light elements were derived for all three systems. The light curves of HI Puppis were analyzed by the three different computer models of Wilson and Devinney (1971), Binnendijk (1977), and Wood (1971) to get the geometrical and photometric elements of the system. HI Puppis, whose light curves show a total eclipse at secondary minimum, is shown to be a classic A-Type W Ursae Majoris system. The geometrical and photometric elements of BL Eridani were obtained from the analysis of the light curves using the method of Wilson and Devinney. The asymmetric nature of the light curve is treated as being due to the presence of an underluminous starspot on the primary component. The light curves of BL Eri show secondary eclipse to be total. The system is found to be a near contact system with the primary component filling its Roche lobe and the secondary nearly filling its lobe with a fill-out ratio of approximately 1.0. The light curves of SY Horologii were also subjected to the model of Wilson and Devinney. Both primary and secondary eclipses are partial

  16. A Correlational Study on Interactive Technology Use and Student Persistence in eLearning Classes at an Online University

    Science.gov (United States)

    Edwards, Carol T.

    2017-01-01

    The increase in enrollments in online courses in higher education have led to a corresponding decrease in student persistence. Educators in an effort to increase student persistence have included interactive technologies in some of their courses. However, there was no empirical evidence on whether the use of interactive technology in on online…

  17. Verification of f(R-gravity in binary pulsars

    Directory of Open Access Journals (Sweden)

    Dyadina Polina

    2016-01-01

    Full Text Available We develop the parameterized post-Keplerian approach for class of analytic f (R-gravity models. Using the double binary pulsar system PSR J0737-3039 data we obtain restrictions on the parameters of this class of f (R-models and show that f (R-gravity is not ruled out by the observations in strong field regime.

  18. Migration-related health inequalities: showing the complex interactions between gender, social class and place of origin.

    Science.gov (United States)

    Malmusi, Davide; Borrell, Carme; Benach, Joan

    2010-11-01

    In this paper, we briefly review theories and findings on migration and health from the health equity perspective, and then analyse migration-related health inequalities taking into account gender, social class and migration characteristics in the adult population aged 25-64 living in Catalonia, Spain. On the basis of the characterisation of migration types derived from the review, we distinguished between immigrants from other regions of Spain and those from other countries, and within each group, those from richer or poorer areas; foreign immigrants from low-income countries were also distinguished according to duration of residence. Further stratification by sex and social class was applied. Groups were compared in relation to self-assessed health in two cross-sectional population-based surveys, and in relation to indicators of socio-economic conditions (individual income, an index of material and financial assets, and an index of employment precariousness) in one survey. Social class and gender inequalities were evident in both health and socio-economic conditions, and within both the native and immigrant subgroups. Migration-related health inequalities affected both internal and international immigrants, but were mainly limited to those from poor areas, were generally consistent with their socio-economic deprivation, and apparently more pronounced in manual social classes and especially for women. Foreign immigrants from poor countries had the poorest socio-economic situation but relatively better health (especially men with shorter length of residence). Our findings on immigrants from Spain highlight the transitory nature of the 'healthy immigrant effect', and that action on inequality in socio-economic determinants affecting migrant groups should not be deferred. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Asynchronous interaction, online technologies self-efficacy and self-regulated learning as predictors of academic achievement in an online class

    Science.gov (United States)

    McGhee, Rosie M. Hector

    This research is a correlational study of the relationship among the independent variables: asynchronous interaction, online technologies self-efficacy, and self-regulated learning, and the dependent variable; academic achievement. This study involves an online computer literacy course at a local community college. Very little research exists on the relationship among asynchronous interaction, online technologies self-efficacy and self-regulated learning on predicting academic achievement in an online class. Liu (2008), in his study on student interaction in online courses, concluded that student interaction is a complex issue that needs more research to increase our understanding as it relates to distance education. The purpose of this study was to examine the relationships between asynchronous interaction, online technologies self-efficacy, self-regulated learning and academic achievement in an online computer literacy class at a community college. The researcher used quantitative methods to obtain and analyze data on the relationships among the variables during the summer 2010 semester. Forty-five community college students completed three web-based self-reporting instruments: (a) the GVU 10th WWW User Survey Questionnaire, (b) the Online Technologies Self-Efficacy Survey, and (c) selected items from the Motivated Strategies for Learning Questionnaire. Additional data was obtained from asynchronous discussions posted on Blackboard(TM) Learning Management System. The results of this study found that there were statistically significant relationships between asynchronous interaction and academic achievement (r = .55, p online technologies self-efficacy and academic achievement (r = .50, p online instructors, online course designers, faculty, students and others who are concerned about predictors for online students' success. Also, it serves as a foundation for future research and provides valuable information for educators interested in taking online teaching and

  20. Full Ionisation In Binary-Binary Encounters With Small Positive Energies

    Science.gov (United States)

    Sweatman, W. L.

    2006-08-01

    Interactions between binary stars and single stars and binary stars and other binary stars play a key role in the dynamics of a dense stellar system. Energy can be transferred between the internal dynamics of a binary and the larger scale dynamics of the interacting objects. Binaries can be destroyed and created by the interaction. In a binary-binary encounter, full ionisation occurs when both of the binary stars are destroyed in the interaction to create four single stars. This is only possible when the total energy of the system is positive. For very small energies the probability of this occurring is very low and it tends towards zero as the total energy tends towards zero. Here the case is considered for which all the stars have equal masses. An asymptotic power law is predicted relating the probability of full ionisation with the total energy when this latter quantity is small. The exponent, which is approximately 2.31, is compared with the results from numerical scattering experiments. The theoretical approach taken is similar to one used previously in the three-body problem. It makes use of the fact that the most dramatic changes in scale and energies of a few-body system occur when its components pass near to a central configuration. The position, and number, of these configurations is not known for the general four-body problem, however, with equal masses there are known to be exactly five different cases. Separate consideration and comparison of the properties of orbits close to each of these five central configurations enables the prediction of the form of the cross-section for full ionisation for the case of small positive total energy. This is the relation between total energy and the probability of total ionisation described above.

  1. Intermolecular Interactions in Binary Liquid Mixtures of Styrene with m-, o-, or p-xylene%苯乙烯与邻、间、对-二甲苯二元混合液的分子间相互作用

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The densities (ρ), ultrasonic speeds (v), and refractive indices (n) of binary mixtures of styrene (STY)with m-, o-, or p-xylene, including those of their pure liquids, were measured over the entire composition range at the temperatures 298.15, 303.15, 308.15, and 313.15 K. The excess volumes (VE), deviations in isentropic compressibilities(△ks), acoustic impedances (△Z), and refractive indices (△n) were calculated from the experimental data. Partial molar volumes (V0φ,2) and partial molar isentropic compressibilities (K0φ,2) of xylenes in styrene have also been calculated. The derived functions, namely, VE, △ks, △Z, △n, V0φ,2, and K0φ,2 were used to have a better understanding of the intermolecular interactions occurring between the component molecules of the present liquid mixtures. The variations of these parameters suggest that the interactions between styrene and o-, m-, or p-xylene molecules follow the sequences: p-xylene>o-xylene>m-xylene. Apart from using density data for the calculation of VE, excess molar volumes were also estimated using refractive index data. Furthermore, several refractive index mixing rules have been used to estimate the refractive indices of the studied liquid mixtures theoretically. Overall, the computed and measured data were interpreted in terms of interactions between the mixing components.

  2. Majors soil classes of the metropolitan region of Curitiba (PR, Brazil: II - interaction of Pb with mineral and organic constituents

    Directory of Open Access Journals (Sweden)

    Ana Christina Duarte Pires

    2007-03-01

    Full Text Available The interaction between heavy metals and soil constituents is one of the most important factors influencing the potential for ground water pollution. To study Pb behavior, samples of soils were incubated with a salt solution containing this metal. The experimental units consisted of plastic bags, partially opened with 0.1 dm³ of soil with three replications. After incubation, samples were subjected to sequential and selective extractions. Lead retention, measured by the maximum adsorption capacity of the soil, was relatively high with values ranging from 6,439 to 22,148 mg kg-1. The sequential and selective extractions showed that Pb adsorption was stable where the metal was found mainly in organic matter, Fe and Al oxides, and residual forms (specific adsorption. The capacity of the soils to retain Pb, thereby increasing the leaching potential of the metal, was in the sequence of: Histosol - Oxisol - Inceptisol.A interação entre os metais pesados e os constituintes orgânicos e minerais do solo é um dos fatores mais importantes para definir o potencial de contaminação das águas subterrâneas. Para estudar o comportamento do Pb em solos da região metropolitana de Curitiba, estado do Paraná, amostras das classes Organossolo, Latossolo e Cambissolo foram submetidas a análises físicas e químicas, e incubadas com soluções de sais desse metal. A dosagem utilizada correspondeu a 40% da Capacidade Máxima de Adsorção de Pb do solo (CMA. O ensaio foi conduzido na Universidade Federal do Paraná, em condições de casa de vegetação, no período de 29 de outubro a 29 de dezembro de 2003. O delineamento experimental foi em blocos ao acaso, com três repetições e as unidades experimentais corresponderam a sacos plásticos parcialmente abertos com 0,1 dm³ de solo. Após o período de incubação (60 dias, as amostras foram submetidas a extrações seqüenciais e seletivas, na seguinte ordem: 1 KCl 0,005 mol L-1; 2 BaCl2 0,1 mol L-1; 3 Na

  3. Multivariate Relationships of Specific Impression Cues with Teacher Expectations and Dyadic Interactions in Elementary Physical Education Classes.

    Science.gov (United States)

    Martinek, Thomas J.; Karper, William B.

    1984-01-01

    This study determined multivariate relationships of the impression cues of attractiveness and effort with teacher expectations and dyadic interaction in two groups of elementary school children. (Author/JMK)

  4. BtcA, A class IA type III chaperone, interacts with the BteA N-terminal domain through a globular/non-globular mechanism.

    Directory of Open Access Journals (Sweden)

    Chen Guttman

    Full Text Available Bordetella pertussis, the etiological agent of "whooping cough" disease, utilizes the type III secretion system (T3SS to deliver a 69 kDa cytotoxic effector protein, BteA, directly into the host cells. As with other T3SS effectors, prior to its secretion BteA binds BtcA, a 13.9 kDa protein predicted to act as a T3SS class IA chaperone. While this interaction had been characterized for such effector-chaperone pairs in other pathogens, it has yet to be fully investigated in Bordetella. Here we provide the first biochemical proof that BtcA is indeed a class IA chaperone, responsible for the binding of BteA's N-terminal domain. We bring forth extensive evidence that BtcA binds its substrate effector through a dual-interface binding mechanism comprising of non-globular and bi-globular interactions at a moderate micromolar level binding affinity. We demonstrate that the non-globular interactions involve the first 31 N-terminal residues of BteA287 and their removal leads to destabilization of the effector-chaperone complex and lower binding affinities to BtcA. These findings represent an important first step towards a molecular understanding of BteA secretion and cell entry.

  5. Close binary stars

    International Nuclear Information System (INIS)

    Larsson-Leander, G.

    1979-01-01

    Studies of close binary stars are being persued more vigorously than ever, with about 3000 research papers and notes pertaining to the field being published during the triennium 1976-1978. Many major advances and spectacular discoveries were made, mostly due to increased observational efficiency and precision, especially in the X-ray, radio, and ultraviolet domains. Progress reports are presented in the following areas: observational techniques, methods of analyzing light curves, observational data, physical data, structure and models of close binaries, statistical investigations, and origin and evolution of close binaries. Reports from the Coordinates Programs Committee, the Committee for Extra-Terrestrial Observations and the Working Group on RS CVn binaries are included. (Auth./C.F.)

  6. Making large class basic histology lectures more interactive: The use of draw-along mapping techniques and associated educational activities.

    Science.gov (United States)

    Kotzé, Sanet Henriët; Mole, Calvin Gerald

    2015-01-01

    At Stellenbosch University, South Africa, basic histology is taught to a combination class of almost 400 first-year medical, physiotherapy, and dietetic students. Many students often find the amount of work in basic histology lectures overwhelming and consequently loose interest. The aim was to determine if a draw-along mapping activity would focus students during large class lectures. After each lecture on three basic histology tissues, a guided draw-along mapping session covering the work from the lecture was introduced in the form of a click-advance PowerPoint presentation which was used to demonstrate the unfolding of an "ideal" map. The lecturer simultaneously drew a similar map using an overhead projector allowing the students to draw their own maps on blank sheets of paper along with the lecturer. Students remained attentive during the activity and many participated in answering informal questions posed by the lecturer as the map-making session progressed. After the last session, students completed an anonymous, voluntary questionnaire (response rate of 78%). The majority of students found the draw-along maps useful (94%) and believed that its use should be continued in the future (93%). A significant increase (P < 0.001) was found in the test results of student cohorts who were given the current intervention compared to cohorts from previous years who were given mind maps as handouts only or had no intervention. The use of the draw-along mapping sessions were successful in focusing students during large class lectures while also providing them with a useful tool for their studies. © 2015 American Association of Anatomists.

  7. The formation of eccentric compact binary inspirals and the role of gravitational wave emission in binary-single stellar encounters

    International Nuclear Information System (INIS)

    Samsing, Johan; MacLeod, Morgan; Ramirez-Ruiz, Enrico

    2014-01-01

    The inspiral and merger of eccentric binaries leads to gravitational waveforms distinct from those generated by circularly merging binaries. Dynamical environments can assemble binaries with high eccentricity and peak frequencies within the LIGO band. In this paper, we study binary-single stellar scatterings occurring in dense stellar systems as a source of eccentrically inspiraling binaries. Many interactions between compact binaries and single objects are characterized by chaotic resonances in which the binary-single system undergoes many exchanges before reaching a final state. During these chaotic resonances, a pair of objects has a non-negligible probability of experiencing a very close passage. Significant orbital energy and angular momentum are carried away from the system by gravitational wave (GW) radiation in these close passages, and in some cases this implies an inspiral time shorter than the orbital period of the bound third body. We derive the cross section for such dynamical inspiral outcomes through analytical arguments and through numerical scattering experiments including GW losses. We show that the cross section for dynamical inspirals grows with increasing target binary semi-major axis a and that for equal-mass binaries it scales as a 2/7 . Thus, we expect wide target binaries to predominantly contribute to the production of these relativistic outcomes. We estimate that eccentric inspirals account for approximately 1% of dynamically assembled non-eccentric merging binaries. While these events are rare, we show that binary-single scatterings are a more effective formation channel than single-single captures for the production of eccentrically inspiraling binaries, even given modest binary fractions.

  8. Binary and ternary systems

    International Nuclear Information System (INIS)

    Petrov, D.A.

    1986-01-01

    Conditions for thermodynamical equilibrium in binary and ternary systems are considered. Main types of binary and ternary system phase diagrams are sequently constructed on the basis of general regularities on the character of transition from one equilibria to others. New statements on equilibrium line direction in the diagram triple points and their isothermal cross sections are developed. New represenations on equilibria in case of monovariant curve minimum and maximum on three-phase equilibrium formation in ternary system are introduced

  9. Planet formation in Binaries

    OpenAIRE

    Thebault, Ph.; Haghighipour, N.

    2014-01-01

    Spurred by the discovery of numerous exoplanets in multiple systems, binaries have become in recent years one of the main topics in planet formation research. Numerous studies have investigated to what extent the presence of a stellar companion can affect the planet formation process. Such studies have implications that can reach beyond the sole context of binaries, as they allow to test certain aspects of the planet formation scenario by submitting them to extreme environments. We review her...

  10. Mycobacterium tuberculosis class II apurinic/apyrimidinic-endonuclease/3'-5' exonuclease III exhibits DNA regulated modes of interaction with the sliding DNA β-clamp.

    Science.gov (United States)

    Khanam, Taran; Rai, Niyati; Ramachandran, Ravishankar

    2015-10-01

    The class-II AP-endonuclease (XthA) acts on abasic sites of damaged DNA in bacterial base excision repair. We identified that the sliding DNA β-clamp forms in vivo and in vitro complexes with XthA in Mycobacterium tuberculosis. A novel 239 QLRFPKK245 motif in the DNA-binding domain of XthA was found to be important for the interactions. Likewise, the peptide binding-groove (PBG) and the C-terminal of β-clamp located on different domains interact with XthA. The β-clamp-XthA complex can be disrupted by clamp binding peptides and also by a specific bacterial clamp inhibitor that binds at the PBG. We also identified that β-clamp stimulates the activities of XthA primarily by increasing its affinity for the substrate and its processivity. Additionally, loading of the β-clamp onto DNA is required for activity stimulation. A reduction in XthA activity stimulation was observed in the presence of β-clamp binding peptides supporting that direct interactions between the proteins are necessary to cause stimulation. Finally, we found that in the absence of DNA, the PBG located on the second domain of the β-clamp is important for interactions with XthA, while the C-terminal domain predominantly mediates functional interactions in the substrate's presence. © 2015 John Wiley & Sons Ltd.

  11. Transcriptomics analysis of interactive effects of benzene, trichloroethylene and methyl mercury within binary and ternary mixtures on the liver and kidney following subchronic exposure in the rat

    NARCIS (Netherlands)

    Hendriksen, P.J.M.; Freidig, A.P.; Jonker, D.; Thissen, U.; Bogaards, J.J.P.; Mumtaz, M.M.; Groten, J.P.; Stierum, R.H.

    2007-01-01

    The present research aimed to study the interaction of three chemicals, methyl mercury, benzene and trichloroethylene, on mRNA expression alterations in rat liver and kidney measured by microarray analysis. These compounds were selected based on presumed different modes of action. The chemicals were

  12. Perceived Support from Adults, Interactions with Police, and Adolescents' Depressive Symptomology: An Examination of Sex, Race, and Social Class

    Science.gov (United States)

    Tummala-Narra, Pratyusha; Sathasivam-Rueckert, Nina

    2013-01-01

    Several risk factors, including female sex, racial minority status, and family poverty, have been implicated in adolescents' depression. The present study focused on the role of one specific aspect of adolescents' ecological context, interactions with adults, in depressive symptomology. We examined the relationship between perceived support from…

  13. Using In-class Group Exercises to Enhance Lectures and Provide Introductory Physics Students an Opportunity to Perfect Problem Solving Skills through Interactions with Fellow Students

    Science.gov (United States)

    Trout, Joseph; Bland, Jared

    2013-03-01

    In this pilot project, one hour of lecture time was replaced with one hour of in-class assignments, which groups of students collaborated on. These in-class assignments consisted of problems or projects selected for the calculus-based introductory physics students The first problem was at a level of difficulty that the majority of the students could complete with a small to moderate amount of difficulty. Each successive problem was increasingly more difficult, the last problem being having a level of difficulty that was beyond the capabilities of the majority of the students and required some instructor intervention. The students were free to choose their own groups. Students were encouraged to interact and help each other understand. The success of the in-class exercises were measured using pre-tests and post-tests. The pre-test and post-test were completed by each student independently. Statistics were also compiled on each student's attendance record and the amount of time spent reading and studying, as reported by the student. Statistics were also completed on the student responses when asked if they had sufficient time to complete the pre-test and post-test and if they would have completed the test with the correct answers if they had more time. The pre-tests and post-tests were not used in the computation of the grades of the students.

  14. Involvement of two classes of binding sites in the interactions of cyclophilin B with peripheral blood T-lymphocytes.

    Science.gov (United States)

    Denys, A; Allain, F; Carpentier, M; Spik, G

    1998-12-15

    Cyclophilin B (CyPB) is a cyclosporin A (CsA)-binding protein, mainly associated with the secretory pathway, and is released in biological fluids. We recently reported that CyPB specifically binds to T-lymphocytes and promotes enhanced incorporation of CsA. The interactions with cellular binding sites involved, at least in part, the specific N-terminal extension of the protein. In this study, we intended to specify further the nature of the CyPB-binding sites on peripheral blood T-lymphocytes. We first provide evidence that the CyPB binding to heparin-Sepharose is prevented by soluble sulphated glycosaminoglycans (GAG), raising the interesting possibility that such interactions may occur on the T-cell surface. We then characterized CyPB binding to T-cell surface GAG and found that these interactions involved the N-terminal extension of CyPB, but not its conserved CsA-binding domain. In addition, we determined the presence of a second CyPB binding site, which we termed a type I site, in contrast with type II for GAG interactions. The two binding sites exhibit a similar affinity but the expression of the type I site was 3-fold lower. The conclusion that CyPB binding to the type I site is distinct from the interactions with GAG was based on the findings that it was (1) resistant to NaCl wash and GAG-degrading enzyme treatments, (2) reduced in the presence of CsA or cyclophilin C, and (3) unmodified in the presence of either the N-terminal peptide of CyPB or protamine. Finally, we showed that the type I binding sites were involved in an endocytosis process, supporting the hypothesis that they may correspond to a functional receptor for CyPB.

  15. The student-institution fit at university: Interactive effects of academic competition and social class on achievement goals.

    Directory of Open Access Journals (Sweden)

    Nicolas eSommet

    2015-06-01

    Full Text Available As compared to continuing-generation students, first-generation students are struggling more at university. In the present article, we question the unconditional nature of such a phenomenon and argue that it depends on structural competition. Indeed, most academic departments use harsh selection procedure all throughout the curriculum, fostering between-student competition. In these departments, first-generation students tend to suffer from a lack of student-institution fit, that is, inconsistencies with the competitive institution's culture, practices, and identity. However, one might contend that in less competitive academic departments continuing-generation students might be the ones experiencing a lack of fit. Using a cross-sectional design, we investigated the consequences of such a context- and category-dependent lack of fit on the endorsement of scholastically adaptive goals. We surveyed N = 378 first- and continuing-generation students from either a more competitive or a less competitive department in their first or final year of bachelor’s study. In the more competitive department, first-to-third year decrease of mastery goals (i.e., the desire to learn was found to be steeper for first- than for continuing-generation students. In the less competitive department, the reversed pattern was found. Moreover, first-to-third year decrease of performance goals (i.e., the desire to outperform others was found to be steeper within the less competitive department but did not depend on social class. This single-site preliminary research highlights the need to take the academic context into account when studying the social class graduation gap.

  16. COSMIC probes into compact binary formation and evolution

    Science.gov (United States)

    Breivik, Katelyn

    2018-01-01

    The population of compact binaries in the galaxy represents the final state of all binaries that have lived up to the present epoch. Compact binaries present a unique opportunity to probe binary evolution since many of the interactions binaries experience can be imprinted on the compact binary population. By combining binary evolution simulations with catalogs of observable compact binary systems, we can distill the dominant physical processes that govern binary star evolution, as well as predict the abundance and variety of their end products.The next decades herald a previously unseen opportunity to study compact binaries. Multi-messenger observations from telescopes across all wavelengths and gravitational-wave observatories spanning several decades of frequency will give an unprecedented view into the structure of these systems and the composition of their components. Observations will not always be coincident and in some cases may be separated by several years, providing an avenue for simulations to better constrain binary evolution models in preparation for future observations.I will present the results of three population synthesis studies of compact binary populations carried out with the Compact Object Synthesis and Monte Carlo Investigation Code (COSMIC). I will first show how binary-black-hole formation channels can be understood with LISA observations. I will then show how the population of double white dwarfs observed with LISA and Gaia could provide a detailed view of mass transfer and accretion. Finally, I will show that Gaia could discover thousands black holes in the Milky Way through astrometric observations, yielding view into black-hole astrophysics that is complementary to and independent from both X-ray and gravitational-wave astronomy.

  17. Binary interaction parameters for nonpolar systems with cubic equations of state: a theoretical approach 1. CO2/hydrocarbons using SRK equation of state

    DEFF Research Database (Denmark)

    Coutinho, João A.P.; Kontogeorgis, Georgios M.; Stenby, Erling H.

    1994-01-01

    This work shows that, when suitable theoretically based combining rules are used for the cross energy and cross co-volume parameters, cubic equations of state (EoS) with the van der Waals one-fluid mixing rules can adequately represent phase equilibria for the asymmetric CO2/hydrocarbon mixtures...... for the prediction of phase behavior of petroleum fluids. A brief theoretical analysis on the temperature dependency of the Kij interaction parameter is also presented....

  18. Mixed hyperfine interaction - a tool to investigate the short range order and the strange magnetic behaviour of amorphous Fe-based binary alloys

    International Nuclear Information System (INIS)

    Fries, S.M.; Crummenauer, J.; Gonser, U.; Schaaf, P.; Chien, C.L.

    1989-01-01

    The Moessbauer study of the mixed magnetic dipole and electric quadrupole interaction in the paramagnetic state of amorphous Fe-Zr and Fe-Hf alloys is presented. Strong evidence for chemical short range order of the iron-pure alloys is found. The hyperfine parameters of the iron-rich alloys are marked by a complex applied field and temperature dependence, suggesting a not negligible spin-correlation well above Tc. (orig.)

  19. PCP-B class pollen coat proteins are key regulators of the hydration checkpoint in Arabidopsis thaliana pollen-stigma interactions.

    Science.gov (United States)

    Wang, Ludi; Clarke, Lisa A; Eason, Russell J; Parker, Christopher C; Qi, Baoxiu; Scott, Rod J; Doughty, James

    2017-01-01

    The establishment of pollen-pistil compatibility is strictly regulated by factors derived from both male and female reproductive structures. Highly diverse small cysteine-rich proteins (CRPs) have been found to play multiple roles in plant reproduction, including the earliest stages of the pollen-stigma interaction. Secreted CRPs found in the pollen coat of members of the Brassicaceae, the pollen coat proteins (PCPs), are emerging as important signalling molecules that regulate the pollen-stigma interaction. Using a combination of protein characterization, expression and phylogenetic analyses we identified a novel class of Arabidopsis thaliana pollen-borne CRPs, the PCP-Bs (for pollen coat protein B-class) that are related to embryo surrounding factor (ESF1) developmental regulators. Single and multiple PCP-B mutant lines were utilized in bioassays to assess effects on pollen hydration, adhesion and pollen tube growth. Our results revealed that pollen hydration is severely impaired when multiple PCP-Bs are lost from the pollen coat. The hydration defect also resulted in reduced pollen adhesion and delayed pollen tube growth in all mutants studied. These results demonstrate that AtPCP-Bs are key regulators of the hydration 'checkpoint' in establishment of pollen-stigma compatibility. In addition, we propose that interspecies diversity of PCP-Bs may contribute to reproductive barriers in the Brassicaceae. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  20. ECO-generation for some restricted classes of compositions

    Directory of Open Access Journals (Sweden)

    Jean-Luc Baril

    2013-04-01

    Full Text Available We study several restricted classes of compositions by giving one-to-one maps between them and different classes of restricted binary strings or pattern avoiding permutations. Inspired by the ECO method \\cite{BDPP99}, new succession rules for these classes are presented. Finally, we obtain generating algorithms in Constant Amortized Time (CAT for theses classes.

  1. Excess molar volumes and isentropic compressibilities of binary ...

    Indian Academy of Sciences (India)

    Excess molar volume; binary liquid mixtures; isentropic compressibility; intermolecular interactions. ... mixtures are essential for fluid flow, mass flow and heat transfer processes in chemical ... Experimentally determined values of density(ρ).

  2. Development of hot water utilizing power plant in fiscal 1999. Development of binary cycle power plant (Development of 10-MW class plant); 1999 nendo nessui riyo hatsuden plant to kaihatsu. Binary cycle hatsuden plant no kaihatsu (10MW kyu plant no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With an objective to utilize effectively middle to high temperature hot water type geothermal resources, R and D has been performed on a downhole pump-applied binary cycle power plant which exchanges heat energy with a secondary media in a heat exchanger, and generates electric power. This paper summarizes the achievements in fiscal 1999. This fiscal year has installed an operation control device and made partial modification therein for the hot water system testing device installed in the previous fiscal year, which was followed by test operation. Having been performed in addition were the installation of cooling water collection pumps, improvement of water storage tanks, modification of piping for injection of downhole pump cooling water, inspection of high-temperature cooling device and low-temperature cooling device, and discussions on deposits onto the downhole pumps. Furthermore, an environmental impact survey has performed measurements of precipitation, river flow rates, thermal spring, spring water, noise, and groundwater fluctuation. A survey was also carried out on transplantation of precious plants. In the single and overall test operation of the hot water system testing device, normal operation was identified. However, the operation had to be suspended because of a trouble in the downhole pump. (NEDO)

  3. Development of hot water utilizing power plant in fiscal 1998. Development of a binary cycle power generation plant (development of a 10-MW class plant); 1998 nendo nessui riyo hatsuden plant nado kaihatsu. Binary cycle hatsuden plant no kaihatsu (10MW kyu plant no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This paper summarizes the achievements in fiscal 1998 on developing a 10-MW geothermal power plant in the Hohi-Sugawara area being a representative area of middle-to-high temperature hot water resources. In designing the plant, domestic and overseas surveys were carried out on media suitable for binary cycle power plants, thermal cycle characteristics, construction cost, environmental effects, safety, operation, maintenance and control. Latest technologies were also surveyed and analyzed. The plant construction performed development construction around the testing devices, new construction of a plant control room building, constructions for installing electrical machines including the hot water system testing devices, river water intake facility construction, and cooling water intake facility installing construction. The environmental effect investigation included investigations on rain falls, river flow rates, hot springs, spring water, monitoring during the construction, and the state of transplantation of precious plants, and observation on groundwater variation. In verifying the geothermal water pumping system, factory tests were carried out on DHP3 demonstration machine which couples the pump section of a down-hole pump with the motor section, whose performance and functions were verified. (NEDO)

  4. MARVELS Radial Velocity Solutions to Seven Kepler Eclipsing Binaries

    Science.gov (United States)

    Heslar, Michael Francis; Thomas, Neil B.; Ge, Jian; Ma, Bo; Herczeg, Alec; Reyes, Alan; SDSS-III MARVELS Team

    2016-01-01

    Eclipsing binaries serve momentous purposes to improve the basis of understanding aspects of stellar astrophysics, such as the accurate calculation of the physical parameters of stars and the enigmatic mass-radius relationship of M and K dwarfs. We report the investigation results of 7 eclipsing binary candidates, initially identified by the Kepler mission, overlapped with the radial velocity observations from the SDSS-III Multi-Object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS). The RV extractions and spectroscopic solutions of these eclipsing binaries were generated by the University of Florida's 1D data pipeline with a median RV precision of ~60-100 m/s, which was utilized for the DR12 data release. We performed the cross-reference fitting of the MARVELS RV data and the Kepler photometric fluxes obtained from the Kepler Eclipsing Binary Catalog (V2) and modelled the 7 eclipsing binaries in the BinaryMaker3 and PHOEBE programs. This analysis accurately determined the absolute physical and orbital parameters of each binary. Most of the companion stars were determined to have masses of K and M dwarf stars (0.3-0.8 M⊙), and allowed for an investigation into the mass-radius relationship of M and K dwarfs. Among the cases are KIC 9163796, a 122.2 day period "heartbeat star", a recently-discovered class of eccentric binaries known for tidal distortions and pulsations, with a high eccentricity (e~0.75) and KIC 11244501, a 0.29 day period, contact binary with a double-lined spectrum and mass ratio (q~0.45). We also report on the possible reclassification of 2 Kepler eclipsing binary candidates as background eclipsing binaries based on the analysis of the flux measurements, flux ratios of the spectroscopic and photometric solutions, the differences in the FOVs, the image processing of Kepler, and RV and spectral analysis of MARVELS.

  5. MESA models for the evolutionary status of the epsilon Aurigae disk-eclipsed binary system

    Science.gov (United States)

    Stencel, Robert E.; Gibson, Justus

    2018-06-01

    The brightest member of the class of disk-eclipsed binary stars is the Algol-like long-period binary, epsilon Aurigae (HD 31964, F0Iap + disk, http://adsabs.harvard.edu/abs/2016SPIE.9907E..17S ). Using MESA (Modules for Experiments in Stellar Astrophysics, version 9575), we have made an evaluation of its evolutionary state. We sought to satisfy several observational constraints, including: (1) requiring evolutionary tracks to pass close to the current temperature and luminosity of the primary star; (2) obtaining a period near the observed value of 27.1 years; (3) matching a mass function of 3.0; (4) concurrent Roche lobe overflow and mass transfer; (5) an isotopic ratio 12C / 13C = 5 and, (6) matching the interferometrically determined angular diameter. A MESA model starting with binary masses of 9.85 + 4.5 solar masses, with a 100 day initial period, produces a 1.2 + 10.6 solar masses result having a 547 day period, plus a single digit 12C / 13C ratio. These values were reached near an age of 20 Myr, when the donor star comes close to the observed luminosity and temperature for epsilon Aurigae A, as a post-RGB/pre-AGB star. Contemporaneously, the accretor then appears as an upper main sequence, early B-type star. This benchmark model can provide a basis for further exploration of this interacting binary, and other long period binary stars. This report has been submitted to MNRAS, along with a parallel investigation of mass transfer stream and disk sub-structure. The authors are grateful to the estate of William Herschel Womble for the support of astronomy at the University of Denver.

  6. Involvement of two classes of binding sites in the interactions of cyclophilin B with peripheral blood T-lymphocytes.

    OpenAIRE

    Denys, A; Allain, F; Carpentier, M; Spik, G

    1998-01-01

    Cyclophilin B (CyPB) is a cyclosporin A (CsA)-binding protein, mainly associated with the secretory pathway, and is released in biological fluids. We recently reported that CyPB specifically binds to T-lymphocytes and promotes enhanced incorporation of CsA. The interactions with cellular binding sites involved, at least in part, the specific N-terminal extension of the protein. In this study, we intended to specify further the nature of the CyPB-binding sites on peripheral blood T-lymphocytes...

  7. Modelling binary data

    CERN Document Server

    Collett, David

    2002-01-01

    INTRODUCTION Some Examples The Scope of this Book Use of Statistical Software STATISTICAL INFERENCE FOR BINARY DATA The Binomial Distribution Inference about the Success Probability Comparison of Two Proportions Comparison of Two or More Proportions MODELS FOR BINARY AND BINOMIAL DATA Statistical Modelling Linear Models Methods of Estimation Fitting Linear Models to Binomial Data Models for Binomial Response Data The Linear Logistic Model Fitting the Linear Logistic Model to Binomial Data Goodness of Fit of a Linear Logistic Model Comparing Linear Logistic Models Linear Trend in Proportions Comparing Stimulus-Response Relationships Non-Convergence and Overfitting Some other Goodness of Fit Statistics Strategy for Model Selection Predicting a Binary Response Probability BIOASSAY AND SOME OTHER APPLICATIONS The Tolerance Distribution Estimating an Effective Dose Relative Potency Natural Response Non-Linear Logistic Regression Models Applications of the Complementary Log-Log Model MODEL CHECKING Definition of Re...

  8. Evolution of dwarf binaries

    International Nuclear Information System (INIS)

    Tutukov, A.V.; Fedorova, A.V.; Yungel'son, L.R.

    1982-01-01

    The conditions of mass exchange in close binary systems with masses of components less or equal to one solar mass have been analysed for the case, when the system radiates gravitational waves. It has been shown that the mass exchange rate depends in a certain way on the mass ratio of components and on the mass of component that fills its inner critical lobe. The comparison of observed periods, masses of contact components, and mass exchange rates of observed cataclysmic binaries have led to the conclusion that the evolution of close binaries WZ Sge, OY Car, Z Cha, TT Ari, 2A 0311-227, and G 61-29 may be driven by the emission of gravitational waves [ru

  9. Binary catalogue of exoplanets

    Science.gov (United States)

    Schwarz, Richard; Bazso, Akos; Zechner, Renate; Funk, Barbara

    2016-02-01

    Since 1995 there is a database which list most of the known exoplanets (The Extrasolar Planets Encyclopaedia at http://exoplanet.eu/). With the growing number of detected exoplanets in binary and multiple star systems it became more important to mark and to separate them into a new database, which is not available in the Extrasolar Planets Encyclopaedia. Therefore we established an online database (which can be found at: http://www.univie.ac.at/adg/schwarz/multiple.html) for all known exoplanets in binary star systems and in addition for multiple star systems, which will be updated regularly and linked to the Extrasolar Planets Encyclopaedia. The binary catalogue of exoplanets is available online as data file and can be used for statistical purposes. Our database is divided into two parts: the data of the stars and the planets, given in a separate list. We describe also the different parameters of the exoplanetary systems and present some applications.

  10. Binary and Millisecond Pulsars.

    Science.gov (United States)

    Lorimer, Duncan R

    2008-01-01

    We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5 M ⊙ , a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric ( e = 0.44) orbit around an unevolved companion. Supplementary material is available for this article at 10.12942/lrr-2008-8.

  11. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2008-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5M_⊙, a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric (e = 0.44 orbit around an unevolved companion.

  12. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2005-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1700. There are now 80 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 103 pulsars in 24 of the Galactic globular clusters. Recent highlights have been the discovery of the first ever double pulsar system and a recent flurry of discoveries in globular clusters, in particular Terzan 5.

  13. Prepulse and amplified spontaneous emission effects on the interaction of a petawatt class laser with thin solid targets

    Energy Technology Data Exchange (ETDEWEB)

    Esirkepov, Timur Zh. [QuBS, Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215 (Japan); Koga, James K., E-mail: koga.james@jaea.go.jp [QuBS, Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215 (Japan); Sunahara, Atsushi [Institute for Laser Technology, 2-6 Yamadaoka Suita, Osaka 565-0871 (Japan); Morita, Toshimasa; Nishikino, Masaharu [QuBS, Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215 (Japan); Kageyama, Kei [Graduate School of Engineering, Osaka University, Osaka 565-0871 (Japan); Nagatomo, Hideo; Nishihara, Katsunobu [Institute of Laser Engineering, 2-6 Yamadaoka Suita, Osaka 565-0871 (Japan); Sagisaka, Akito; Kotaki, Hideyuki; Nakamura, Tatsufumi; Fukuda, Yuji; Okada, Hajime; Pirozhkov, Alexander S.; Yogo, Akifumi; Nishiuchi, Mamiko; Kiriyama, Hiromitsu; Kondo, Kiminori; Kando, Masaki [QuBS, Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215 (Japan); Bulanov, Sergei V. [QuBS, Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215 (Japan); A.M. Prokhorov Institute of General Physics of RAS, Vavilova st. 38, Moscow 117942 (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation)

    2014-05-01

    When a finite contrast petawatt laser pulse irradiates a micron-thick foil, a prepulse (including amplified spontaneous emission) creates a preplasma, where an ultrashort relativistically strong portion of the laser pulse (the main pulse) acquires higher intensity due to relativistic self-focusing and undergoes fast depletion transferring energy to fast electrons. If the preplasma thickness is optimal, the main pulse can reach the target accelerating fast ions more efficiently than an ideal, infinite contrast, laser pulse. A simple analytical model of a target with preplasma formation is developed and the radiation pressure dominant acceleration of ions in this target is predicted. The preplasma formation by a nanosecond prepulse is analyzed with dissipative hydrodynamic simulations. The main pulse interaction with the preplasma is studied with multi-parametric particle-in-cell simulations. The optimal conditions for hundreds of MeV ion acceleration are found with accompanying effects important for diagnostics, including high-order harmonics generation.

  14. Dependent Classes

    DEFF Research Database (Denmark)

    Gasiunas, Vaidas; Mezini, Mira; Ostermann, Klaus

    2007-01-01

    of dependent classes and a machine-checked type soundness proof in Isabelle/HOL [29], the first of this kind for a language with virtual classes and path-dependent types. [29] T.Nipkow, L.C. Poulson, and M. Wenzel. Isabelle/HOL -- A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS, Springer, 2002......Virtual classes allow nested classes to be refined in subclasses. In this way nested classes can be seen as dependent abstractions of the objects of the enclosing classes. Expressing dependency via nesting, however, has two limitations: Abstractions that depend on more than one object cannot...... be modeled and a class must know all classes that depend on its objects. This paper presents dependent classes, a generalization of virtual classes that expresses similar semantics by parameterization rather than by nesting. This increases expressivity of class variations as well as the flexibility...

  15. Investigation on molecular interactions of binary mixtures of isobutanol with 1-alkanols (C1 - C6) at different temperatures. Application of the Peng-Robinson-Stryjek-Vera (PSRV) equation of state (EOS)

    Science.gov (United States)

    Khanlarzadeh, K.; Iloukhani, H.; Soleimani, M.

    2017-07-01

    Densities were measured for binary mixtures of isobutanol with 1-alkanols, namely: methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol and 1-hexanol at the temperatures of (288.15, 298.15 and 308.15) K and ambient pressure. Excess molar volumes, VmE , thermal expansion coefficients α, excess thermal expansion coefficients αE, and isothermal coefficients of pressure excess molar enthalpy, (∂HmE / ∂ P) T , x , were derived from the experimental data and the computed results were fitted to the Redlich-Kister equation. The Peng-Robinson-Stryjek-Vera (PRSV) equation of state was applied, in combination with simple mixing rules to predict the excess molar volume. The VmE results were positive for the mixtures of isobutanol with methanol, ethanol, 1-propanol, 1-butanol, and negative for isobutanol with 1-pentanol and 1-hexanol over the whole composition range. The results showed very small deviations from the behavior of ideal solutions in these mixtures and were analyzed to discuss the nature and strength of intermolecular interactions.

  16. The duplicated B-class heterodimer model: whorl-specific effects and complex genetic interactions in Petunia hybrida flower development.

    Science.gov (United States)

    Vandenbussche, Michiel; Zethof, Jan; Royaert, Stefan; Weterings, Koen; Gerats, Tom

    2004-03-01

    In both Antirrhinum (Antirrhinum majus) and Arabidopsis (Arabidopsis thaliana), the floral B-function, which specifies petal and stamen development, is embedded in a heterodimer consisting of one DEFICIENS (DEF)/APETALA3 (AP3)-like and one GLOBOSA (GLO)/PISTILLATA (PI)-like MADS box protein. Here, we demonstrate that gene duplications in both the DEF/AP3 and GLO/PI lineages in Petunia hybrida (petunia) have led to a functional diversification of their respective members, which is reflected by partner specificity and whorl-specific functions among these proteins. Previously, it has been shown that mutations in PhDEF (formerly known as GREEN PETALS) only affect petal development. We have isolated insertion alleles for PhGLO1 (FLORAL BINDING PROTEIN1) and PhGLO2 (PETUNIA MADS BOX GENE2) and demonstrate unique and redundant properties of PhDEF, PhGLO1, and PhGLO2. Besides a full homeotic conversion of petals to sepals and of stamens to carpels as observed in phglo1 phglo2 and phdef phglo2 flowers, we found that gene dosage effects for several mutant combinations cause qualitative and quantitative changes in whorl 2 and 3 meristem fate, and we show that the PHDEF/PHGLO1 heterodimer controls the fusion of the stamen filaments with the petal tube. Nevertheless, when the activity of PhDEF, PhGLO1, and PhGLO2 are considered jointly, they basically appear to function as DEF/GLO does in Antirrhinum and to a lesser extent as AP3/PI in Arabidopsis. By contrast, our data suggest that the function of the fourth B-class MADS box member, the paleoAP3-type PETUNIA HYBRIDA TM6 (PhTM6) gene, differs significantly from the known euAP3-type DEF/AP3-like proteins; PhTM6 is mainly expressed in the developing stamens and ovary of wild-type flowers, whereas its expression level is upregulated in whorls 1 and 2 of an A-function floral mutant; PhTM6 is most likely not involved in petal development. The latter is consistent with the hypothesis that the evolutionary origin of the higher eudicot

  17. Equational binary decision diagrams

    NARCIS (Netherlands)

    J.F. Groote (Jan Friso); J.C. van de Pol (Jaco)

    2000-01-01

    textabstractWe incorporate equations in binary decision diagrams (BDD). The resulting objects are called EQ-BDDs. A straightforward notion of ordered EQ-BDDs (EQ-OBDD) is defined, and it is proved that each EQ-BDD is logically equivalent to an EQ-OBDD. Moreover, on EQ-OBDDs satisfiability and

  18. Binary tense and modality

    NARCIS (Netherlands)

    Broekhuis, H.; Verkuyl, H.J

    2014-01-01

    The present paper adopts as its point of departure the claim by Te Winkel (1866) and Verkuyl (2008) that mental temporal representations are built on the basis of three binary oppositions: Present/Past, Synchronous/Posterior and Imperfect/Perfect. Te Winkel took the second opposition in terms of the

  19. N-Bit Binary Resistor

    Science.gov (United States)

    Tcheng, Ping

    1989-01-01

    Binary resistors in series tailored to precise value of resistance. Desired value of resistance obtained by cutting appropriate traces across resistors. Multibit, binary-based, adjustable resistor with high resolution used in many applications where precise resistance required.

  20. Outside-in HLA class I signaling regulates ICAM-1 clustering and endothelial cell-monocyte interactions via mTOR in transplant antibody-mediated rejection.

    Science.gov (United States)

    Salehi, Sahar; Sosa, Rebecca A; Jin, Yi-Ping; Kageyama, Shoichi; Fishbein, Michael C; Rozengurt, Enrique; Kupiec-Weglinski, Jerzy W; Reed, Elaine F

    2018-05-01

    Antibody-mediated rejection (AMR) resulting in transplant allograft vasculopathy (TAV) is the major obstacle for long-term survival of solid organ transplants. AMR is caused by donor-specific antibodies to HLA, which contribute to TAV by initiating outside-in signaling transduction pathways that elicit monocyte recruitment to activated endothelium. Mechanistic target of rapamycin (mTOR) inhibitors can attenuate TAV; therefore, we sought to understand the mechanistic underpinnings of mTOR signaling in HLA class I Ab-mediated endothelial cell activation and monocyte recruitment. We used an in vitro model to assess monocyte binding to HLA I Ab-activated endothelial cells and found mTOR inhibition reduced ezrin/radixin/moesin (ERM) phosphorylation, intercellular adhesion molecule 1 (ICAM-1) clustering, and monocyte firm adhesion to HLA I Ab-activated endothelium. Further, in a mouse model of AMR, in which C57BL/6. RAG1 -/- recipients of BALB/c cardiac allografts were passively transferred with donor-specific MHC I antibodies, mTOR inhibition significantly reduced vascular injury, ERM phosphorylation, and macrophage infiltration of the allograft. Taken together, these studies indicate mTOR inhibition suppresses ERM phosphorylation in endothelial cells, which impedes ICAM-1 clustering in response to HLA class I Ab and prevents macrophage infiltration into cardiac allografts. These findings indicate a novel therapeutic application for mTOR inhibitors to disrupt endothelial cell-monocyte interactions during AMR. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  1. NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data

    DEFF Research Database (Denmark)

    Jurtz, Vanessa Isabell; Paul, Sinu; Andreatta, Massimo

    2017-01-01

    by mass spectrometry have been reported containing information about peptide-processing steps in the presentation pathway and the length distribution of naturally presented peptides. In this article, we present NetMHCpan-4.0, a method trained on binding affinity and eluted ligand data leveraging......Cytotoxic T cells are of central importance in the immune system's response to disease. They recognize defective cells by binding to peptides presented on the cell surface by MHC class I molecules. Peptide binding to MHC molecules is the single most selective step in the Ag-presentation pathway....... Therefore, in the quest for T cell epitopes, the prediction of peptide binding to MHC molecules has attracted widespread attention. In the past, predictors of peptide-MHC interactions have primarily been trained on binding affinity data. Recently, an increasing number of MHC-presented peptides identified...

  2. The True Ultracool Binary Fraction Using Spectral Binaries

    Science.gov (United States)

    Bardalez Gagliuffi, Daniella; Burgasser, Adam J.; Schmidt, Sarah J.; Gagné, Jonathan; Faherty, Jacqueline K.; Cruz, Kelle; Gelino, Chris

    2018-01-01

    Brown dwarfs bridge the gap between stars and giant planets. While the essential mechanisms governing their formation are not well constrained, binary statistics are a direct outcome of the formation process, and thus provide a means to test formation theories. Observational constraints on the brown dwarf binary fraction place it at 10 ‑ 20%, dominated by imaging studies (85% of systems) with the most common separation at 4 AU. This coincides with the resolution limit of state-of-the-art imaging techniques, suggesting that the binary fraction is underestimated. We have developed a separation-independent method to identify and characterize tightly-separated (dwarfs as spectral binaries by identifying traces of methane in the spectra of late-M and early-L dwarfs. Imaging follow-up of 17 spectral binaries yielded 3 (18%) resolved systems, corroborating the observed binary fraction, but 5 (29%) known binaries were missed, reinforcing the hypothesis that the short-separation systems are undercounted. In order to find the true binary fraction of brown dwarfs, we have compiled a volume-limited, spectroscopic sample of M7-L5 dwarfs and searched for T dwarf companions. In the 25 pc volume, 4 candidates were found, three of which are already confirmed, leading to a spectral binary fraction of 0.95 ± 0.50%, albeit for a specific combination of spectral types. To extract the true binary fraction and determine the biases of the spectral binary method, we have produced a binary population simulation based on different assumptions of the mass function, age distribution, evolutionary models and mass ratio distribution. Applying the correction fraction resulting from this method to the observed spectral binary fraction yields a true binary fraction of 27 ± 4%, which is roughly within 1σ of the binary fraction obtained from high resolution imaging studies, radial velocity and astrometric monitoring. This method can be extended to identify giant planet companions to young brown

  3. Black holes in binary stars

    NARCIS (Netherlands)

    Wijers, R.A.M.J.

    1996-01-01

    Introduction Distinguishing neutron stars and black holes Optical companions and dynamical masses X-ray signatures of the nature of a compact object Structure and evolution of black-hole binaries High-mass black-hole binaries Low-mass black-hole binaries Low-mass black holes Formation of black holes

  4. Phonons in fcc binary alloys

    International Nuclear Information System (INIS)

    Sharma, Amita; Rathore, R.P.S.

    1992-01-01

    Born-Mayer potential has been modified to account for the unpaired (three body) forces among the common nearest neighbours of the ordered binary fcc alloys i.e. Ni 3 Fe 7 , Ni 5 Fe 5 and Ni 75 Fe 25 . The three body potential is added to the two body form of Morse to formalize the total interaction potential. Measured inverse ionic compressibility, cohesive energy, lattice constant and one measured phonon frequency are used to evaluate the defining parameters of the potential. The potential seeks to bring about the binding among 140 and 132 atoms though pair wise (two body) and non-pair wise (three body) forces respectively. The phonon-dispersion relations obtained by solving the secular equation are compared with the experimental findings on the aforesaid alloys. (author). 19 refs., 3 figs

  5. Learning to assign binary weights to binary descriptor

    Science.gov (United States)

    Huang, Zhoudi; Wei, Zhenzhong; Zhang, Guangjun

    2016-10-01

    Constructing robust binary local feature descriptors are receiving increasing interest due to their binary nature, which can enable fast processing while requiring significantly less memory than their floating-point competitors. To bridge the performance gap between the binary and floating-point descriptors without increasing the computational cost of computing and matching, optimal binary weights are learning to assign to binary descriptor for considering each bit might contribute differently to the distinctiveness and robustness. Technically, a large-scale regularized optimization method is applied to learn float weights for each bit of the binary descriptor. Furthermore, binary approximation for the float weights is performed by utilizing an efficient alternatively greedy strategy, which can significantly improve the discriminative power while preserve fast matching advantage. Extensive experimental results on two challenging datasets (Brown dataset and Oxford dataset) demonstrate the effectiveness and efficiency of the proposed method.

  6. Rotation invariant deep binary hashing for fast image retrieval

    Science.gov (United States)

    Dai, Lai; Liu, Jianming; Jiang, Aiwen

    2017-07-01

    In this paper, we study how to compactly represent image's characteristics for fast image retrieval. We propose supervised rotation invariant compact discriminative binary descriptors through combining convolutional neural network with hashing. In the proposed network, binary codes are learned by employing a hidden layer for representing latent concepts that dominate on class labels. A loss function is proposed to minimize the difference between binary descriptors that describe reference image and the rotated one. Compared with some other supervised methods, the proposed network doesn't have to require pair-wised inputs for binary code learning. Experimental results show that our method is effective and achieves state-of-the-art results on the CIFAR-10 and MNIST datasets.

  7. Dynamical Formation and Merger of Binary Black Holes

    Science.gov (United States)

    Stone, Nicholas

    2017-01-01

    The advent of gravitational wave (GW) astronomy began with Advanced LIGO's 2015 discovery of GWs from coalescing black hole (BH) binaries. GW astronomy holds great promise for testing general relativity, but also for investigating open astrophysical questions not amenable to traditional electromagnetic observations. One such question concerns the origin of stellar mass BH binaries in the universe: do these form primarily from evolution of isolated binaries of massive stars, or do they form through more exotic dynamical channels? The best studied dynamical formation channel involves multibody interactions of BHs and stars in dense globular cluster environments, but many other dynamical scenarios have recently been proposed, ranging from the Kozai effect in hierarchical triple systems to BH binary formation in the outskirts of Toomre-unstable accretion disks surrounding supermassive black holes. The BH binaries formed through these processes will have different distributions of observable parameters (e.g. mass ratios, spins) than BH binaries formed through the evolution of isolated binary stars. In my talk I will overview these and other dynamical formation scenarios, and summarize the key observational tests that will enable Advanced LIGO or other future detectors to determine what formation pathway creates the majority of binary BHs in the universe. NCS thanks NASA, which has funded his work through Einstein postdoctoral grant PF5-160145.

  8. Processing Of Binary Images

    Science.gov (United States)

    Hou, H. S.

    1985-07-01

    An overview of the recent progress in the area of digital processing of binary images in the context of document processing is presented here. The topics covered include input scan, adaptive thresholding, halftoning, scaling and resolution conversion, data compression, character recognition, electronic mail, digital typography, and output scan. Emphasis has been placed on illustrating the basic principles rather than descriptions of a particular system. Recent technology advances and research in this field are also mentioned.

  9. Close Binaries in the 21st Century: New Opportunities and Challenges

    CERN Document Server

    Giménez, Àlvaro; Niarchos, Panagiotis; Rucinski, Slavek

    2006-01-01

    An International Conference entitled "Close Binaries in the 21st Century: New Opportunities and Challenges", was held in Syros island, Greece, from 27 to 30 June, 2005. There are many binary star systems whose components are so close together, that they interact in various ways. Stars in such systems do not pass through all stages of their evolution independently of each other; in fact their evolutionary path is significantly affected by their companions. Processes of interaction include gravitational effects, mutual irradiation, mass exchange, mass loss from the system, phenomena of extended atmospheres, semi-transparent atmospheric clouds, variable thickness disks and gas streams. The zoo of Close Binary Systems includes: Close Eclipsing Binaries (Detached, Semi-detached, Contact), High and Low-Mass X-ray Binaries, Cataclysmic Variables, RS CVn systems, Pulsar Binaries and Symbiotic Stars. The study of these binaries triggered the development of new branches of astrophysics dealing with the structure and ev...

  10. Cutting Classes

    Science.gov (United States)

    Hacker, Andrew

    1976-01-01

    Provides critical reviews of three books, "The Political Economy of Social Class", "Ethnicity: Theory and Experience," and "Ethnicity in the United States," focusing on the political economy of social class and ethnicity. (Author/AM)

  11. The interaction of beta 2-microglobulin (beta 2m) with mouse class I major histocompatibility antigens and its ability to support peptide binding. A comparison of human and mouse beta 2m

    DEFF Research Database (Denmark)

    Pedersen, L O; Stryhn, A; Holter, T L

    1995-01-01

    of class I molecules are involved in peptide binding, whereas most of class I molecules are involved in beta 2m binding. We propose that mouse beta 2m interacts with the minor peptide binding (i.e. the "empty") fraction with a lower affinity than human beta 2m does, whereas mouse and human beta 2m interact......The function of major histocompatibility complex (MHC) class I molecules is to sample peptides derived from intracellular proteins and to present these peptides to CD8+ cytotoxic T lymphocytes. In this paper, biochemical assays addressing MHC class I binding of both peptide and beta 2-microglobulin...... (beta 2m) have been used to examine the assembly of the trimolecular MHC class I/beta 2m/peptide complex. Recombinant human beta 2m and mouse beta 2ma have been generated to compare the binding of the two beta 2m to mouse class I. It is frequently assumed that human beta 2m binds to mouse class I heavy...

  12. BROWN DWARF BINARIES FROM DISINTEGRATING TRIPLE SYSTEMS

    International Nuclear Information System (INIS)

    Reipurth, Bo; Mikkola, Seppo

    2015-01-01

    Binaries in which both components are brown dwarfs (BDs) are being discovered at an increasing rate, and their properties may hold clues to their origin. We have carried out 200,000 N-body simulations of three identical stellar embryos with masses drawn from a Chabrier IMF and embedded in a molecular core. The bodies are initially non-hierarchical and undergo chaotic motions within the cloud core, while accreting using Bondi–Hoyle accretion. The coupling of dynamics and accretion often leads to one or two dominant bodies controlling the center of the cloud core, while banishing the other(s) to the lower-density outskirts, leading to stunted growth. Eventually each system transforms either to a bound hierarchical configuration or breaks apart into separate single and binary components. The orbital motion is followed for 100 Myr. In order to illustrate 200,000 end-states of such dynamical evolution with accretion, we introduce the “triple diagnostic diagram,” which plots two dimensionless numbers against each other, representing the binary mass ratio and the mass ratio of the third body to the total system mass. Numerous freefloating BD binaries are formed in these simulations, and statistical properties are derived. The separation distribution function is in good correspondence with observations, showing a steep rise at close separations, peaking around 13 AU and declining more gently, reaching zero at separations greater than 200 AU. Unresolved BD triple systems may appear as wider BD binaries. Mass ratios are strongly peaked toward unity, as observed, but this is partially due to the initial assumptions. Eccentricities gradually increase toward higher values, due to the lack of viscous interactions in the simulations, which would both shrink the orbits and decrease their eccentricities. Most newborn triple systems are unstable and while there are 9209 ejected BD binaries at 1 Myr, corresponding to about 4% of the 200,000 simulations, this number has grown to

  13. BROWN DWARF BINARIES FROM DISINTEGRATING TRIPLE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Reipurth, Bo [Institute for Astronomy and NASA Astrobiology Institute University of Hawaii, 640 N. Aohoku Place, Hilo, HI 96720 (United States); Mikkola, Seppo, E-mail: reipurth@ifa.hawaii.edu, E-mail: Seppo.Mikkola@utu.fi [Tuorla Observatory, University of Turku, Väisäläntie 20, Piikkiö (Finland)

    2015-04-15

    Binaries in which both components are brown dwarfs (BDs) are being discovered at an increasing rate, and their properties may hold clues to their origin. We have carried out 200,000 N-body simulations of three identical stellar embryos with masses drawn from a Chabrier IMF and embedded in a molecular core. The bodies are initially non-hierarchical and undergo chaotic motions within the cloud core, while accreting using Bondi–Hoyle accretion. The coupling of dynamics and accretion often leads to one or two dominant bodies controlling the center of the cloud core, while banishing the other(s) to the lower-density outskirts, leading to stunted growth. Eventually each system transforms either to a bound hierarchical configuration or breaks apart into separate single and binary components. The orbital motion is followed for 100 Myr. In order to illustrate 200,000 end-states of such dynamical evolution with accretion, we introduce the “triple diagnostic diagram,” which plots two dimensionless numbers against each other, representing the binary mass ratio and the mass ratio of the third body to the total system mass. Numerous freefloating BD binaries are formed in these simulations, and statistical properties are derived. The separation distribution function is in good correspondence with observations, showing a steep rise at close separations, peaking around 13 AU and declining more gently, reaching zero at separations greater than 200 AU. Unresolved BD triple systems may appear as wider BD binaries. Mass ratios are strongly peaked toward unity, as observed, but this is partially due to the initial assumptions. Eccentricities gradually increase toward higher values, due to the lack of viscous interactions in the simulations, which would both shrink the orbits and decrease their eccentricities. Most newborn triple systems are unstable and while there are 9209 ejected BD binaries at 1 Myr, corresponding to about 4% of the 200,000 simulations, this number has grown to

  14. Binary Cepheids: Separations and Mass Ratios in 5 M ⊙ Binaries

    Science.gov (United States)

    Evans, Nancy Evans; Bond, Howard E.; Schaefer, Gail H.; Mason, Brian D.; Karovska, Margarita; Tingle, Evan

    2013-10-01

    Deriving the distribution of binary parameters for a particular class of stars over the full range of orbital separations usually requires the combination of results from many different observing techniques (radial velocities, interferometry, astrometry, photometry, direct imaging), each with selection biases. However, Cepheids—cool, evolved stars of ~5 M ⊙—are a special case because ultraviolet (UV) spectra will immediately reveal any companion star hotter than early type A, regardless of the orbital separation. We have used International Ultraviolet Explorer UV spectra of a complete sample of all 76 Cepheids brighter than V = 8 to create a list of all 18 Cepheids with companions more massive than 2.0 M ⊙. Orbital periods of many of these binaries are available from radial-velocity studies, or can be estimated for longer-period systems from detected velocity variability. In an imaging survey with the Hubble Space Telescope Wide Field Camera 3, we resolved three of the companions (those of η Aql, S Nor, and V659 Cen), allowing us to make estimates of the periods out to the long-period end of the distribution. Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations, orbital periods, and mass ratios. The distribution of orbital periods shows that the 5 M ⊙ binaries have systematically shorter periods than do 1 M ⊙ stars. Our data also suggest that the distribution of mass ratios depends on both binary separation and system multiplicity. The distribution of mass ratios as a function of orbital separation, however, does not depend on whether a system is a binary or a triple. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained by the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  15. BINARY CEPHEIDS: SEPARATIONS AND MASS RATIOS IN 5 M ☉ BINARIES

    International Nuclear Information System (INIS)

    Evans, Nancy Remage; Karovska, Margarita; Tingle, Evan; Bond, Howard E.; Schaefer, Gail H.; Mason, Brian D.

    2013-01-01

    Deriving the distribution of binary parameters for a particular class of stars over the full range of orbital separations usually requires the combination of results from many different observing techniques (radial velocities, interferometry, astrometry, photometry, direct imaging), each with selection biases. However, Cepheids—cool, evolved stars of ∼5 M ☉ —are a special case because ultraviolet (UV) spectra will immediately reveal any companion star hotter than early type A, regardless of the orbital separation. We have used International Ultraviolet Explorer UV spectra of a complete sample of all 76 Cepheids brighter than V = 8 to create a list of all 18 Cepheids with companions more massive than 2.0 M ☉ . Orbital periods of many of these binaries are available from radial-velocity studies, or can be estimated for longer-period systems from detected velocity variability. In an imaging survey with the Hubble Space Telescope Wide Field Camera 3, we resolved three of the companions (those of η Aql, S Nor, and V659 Cen), allowing us to make estimates of the periods out to the long-period end of the distribution. Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations, orbital periods, and mass ratios. The distribution of orbital periods shows that the 5 M ☉ binaries have systematically shorter periods than do 1 M ☉ stars. Our data also suggest that the distribution of mass ratios depends on both binary separation and system multiplicity. The distribution of mass ratios as a function of orbital separation, however, does not depend on whether a system is a binary or a triple

  16. BINARY CEPHEIDS: SEPARATIONS AND MASS RATIOS IN 5 M {sub ☉} BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Nancy Remage; Karovska, Margarita; Tingle, Evan [Smithsonian Astrophysical Observatory, MS 4, 60 Garden Street, Cambridge, MA 02138 (United States); Bond, Howard E. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Schaefer, Gail H. [The CHARA Array, Georgia State University, P.O. Box 3965, Atlanta, GA 30302-3965 (United States); Mason, Brian D., E-mail: nevans@cfa.harvard.edu, E-mail: heb11@psu.edu, E-mail: schaefer@chara-array.org [US Naval Observatory, 3450 Massachusetts Avenue, NW, Washington, DC 20392-5420 (United States)

    2013-10-01

    Deriving the distribution of binary parameters for a particular class of stars over the full range of orbital separations usually requires the combination of results from many different observing techniques (radial velocities, interferometry, astrometry, photometry, direct imaging), each with selection biases. However, Cepheids—cool, evolved stars of ∼5 M {sub ☉}—are a special case because ultraviolet (UV) spectra will immediately reveal any companion star hotter than early type A, regardless of the orbital separation. We have used International Ultraviolet Explorer UV spectra of a complete sample of all 76 Cepheids brighter than V = 8 to create a list of all 18 Cepheids with companions more massive than 2.0 M {sub ☉}. Orbital periods of many of these binaries are available from radial-velocity studies, or can be estimated for longer-period systems from detected velocity variability. In an imaging survey with the Hubble Space Telescope Wide Field Camera 3, we resolved three of the companions (those of η Aql, S Nor, and V659 Cen), allowing us to make estimates of the periods out to the long-period end of the distribution. Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations, orbital periods, and mass ratios. The distribution of orbital periods shows that the 5 M {sub ☉} binaries have systematically shorter periods than do 1 M {sub ☉} stars. Our data also suggest that the distribution of mass ratios depends on both binary separation and system multiplicity. The distribution of mass ratios as a function of orbital separation, however, does not depend on whether a system is a binary or a triple.

  17. Binary gabor statistical features for palmprint template protection

    NARCIS (Netherlands)

    Mu, Meiru; Ruan, Qiuqi; Shao, X.; Spreeuwers, Lieuwe Jan; Veldhuis, Raymond N.J.

    2012-01-01

    The biometric template protection system requires a highquality biometric channel and a well-designed error correction code (ECC). Due to the intra-class variations of biometric data, an efficient fixed-length binary feature extractor is required to provide a high-quality biometric channel so that

  18. Analysis of Non-binary Hybrid LDPC Codes

    OpenAIRE

    Sassatelli, Lucile; Declercq, David

    2008-01-01

    In this paper, we analyse asymptotically a new class of LDPC codes called Non-binary Hybrid LDPC codes, which has been recently introduced. We use density evolution techniques to derive a stability condition for hybrid LDPC codes, and prove their threshold behavior. We study this stability condition to conclude on asymptotic advantages of hybrid LDPC codes compared to their non-hybrid counterparts.

  19. THE BINARY FRACTION OF LOW-MASS WHITE DWARFS

    International Nuclear Information System (INIS)

    Brown, Justin M.; Kilic, Mukremin; Brown, Warren R.; Kenyon, Scott J.

    2011-01-01

    We describe spectroscopic observations of 21 low-mass (≤0.45 M sun ) white dwarfs (WDs) from the Palomar-Green survey obtained over four years. We use both radial velocities and infrared photometry to identify binary systems, and find that the fraction of single, low-mass WDs is ≤30%. We discuss the potential formation channels for these single stars including binary mergers of lower-mass objects. However, binary mergers are not likely to explain the observed number of single low-mass WDs. Thus, additional formation channels, such as enhanced mass loss due to winds or interactions with substellar companions, are likely.

  20. Dielectric properties of binary solutions a data handbook

    CERN Document Server

    Akhadov, Y Y

    1980-01-01

    Dielectric Properties of Binary Solutions focuses on the investigation of the dielectric properties of solutions, as well as the molecular interactions and mechanisms of molecular processes that occur in liquids. The book first discusses the fundamental formulas describing the dielectric properties of liquids and dielectric data for binary systems of non-aqueous solutions. Topics include permittivity and dielectric dispersion parameters of non-aqueous solutions of organic and inorganic compounds. The text also tackles dielectric data for binary systems of aqueous solutions, including permittiv

  1. The interacting binary β Lyr. III

    International Nuclear Information System (INIS)

    Dimitrov, D.L.; Kubat, J.

    1988-01-01

    The results are presented of a non-LTE treatment of 24 He I lines based on a model atmosphere for β Lyr primary. The effects of an increased helium abundance on the departure coefficients (b-factors) and equivalent widths of the He I lines as well as on the equivalent widths of the Balmer lines are discussed. Apart from the already established fact that departures from LTE upon equivalent widths become increasingly important for longer wavelengths, it was also found that an increase in He abundance leads to a decrease in the non-LTE to LTE widths ratio, i.e. a reduction in the non-LTE effects upon equivalent widths of He I lines in a helium-rich atmosphere (although the b-factors are increasing). The influence of circumstellar matter on some spectral features is clearly evident, suggesting their origin in layers with lower densities and temperatures. (author). 19 figs., 3 tabs., 14 refs

  2. Discovering Interacting Binaries with Halpha Surveys

    NARCIS (Netherlands)

    Witham, A.; Knigge, C.; Drew, J.; Groot, P.J.; Greimel, R.; Parker, Q.

    2005-01-01

    A deep (R ~ 19.5) photographic Halpha Survey of the southern Galactic Plane was recently completed using the UK Schmidt Telescope at the AAO. In addition, we have recently started a similar, CCD-based survey of the northern Galactic Plane using the Wide Field Camera on the INT. Both surveys aim to

  3. Class impressions : Higher social class elicits lower prosociality

    NARCIS (Netherlands)

    Van Doesum, Niels J.; Tybur, Joshua M.; Van Lange, Paul A.M.

    2017-01-01

    Social class predicts numerous important life outcomes and social orientations. To date, literature has mainly examined how an individual's own class shapes interactions with others. But how prosocially do people treat others they perceive as coming from lower, middle, or higher social classes?

  4. Describing three-class task performance: three-class linear discriminant analysis and three-class ROC analysis

    Science.gov (United States)

    He, Xin; Frey, Eric C.

    2007-03-01

    Binary ROC analysis has solid decision-theoretic foundations and a close relationship to linear discriminant analysis (LDA). In particular, for the case of Gaussian equal covariance input data, the area under the ROC curve (AUC) value has a direct relationship to the Hotelling trace. Many attempts have been made to extend binary classification methods to multi-class. For example, Fukunaga extended binary LDA to obtain multi-class LDA, which uses the multi-class Hotelling trace as a figure-of-merit, and we have previously developed a three-class ROC analysis method. This work explores the relationship between conventional multi-class LDA and three-class ROC analysis. First, we developed a linear observer, the three-class Hotelling observer (3-HO). For Gaussian equal covariance data, the 3- HO provides equivalent performance to the three-class ideal observer and, under less strict conditions, maximizes the signal to noise ratio for classification of all pairs of the three classes simultaneously. The 3-HO templates are not the eigenvectors obtained from multi-class LDA. Second, we show that the three-class Hotelling trace, which is the figureof- merit in the conventional three-class extension of LDA, has significant limitations. Third, we demonstrate that, under certain conditions, there is a linear relationship between the eigenvectors obtained from multi-class LDA and 3-HO templates. We conclude that the 3-HO based on decision theory has advantages both in its decision theoretic background and in the usefulness of its figure-of-merit. Additionally, there exists the possibility of interpreting the two linear features extracted by the conventional extension of LDA from a decision theoretic point of view.

  5. On the binary expansions of algebraic numbers

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, David H.; Borwein, Jonathan M.; Crandall, Richard E.; Pomerance, Carl

    2003-07-01

    Employing concepts from additive number theory, together with results on binary evaluations and partial series, we establish bounds on the density of 1's in the binary expansions of real algebraic numbers. A central result is that if a real y has algebraic degree D > 1, then the number {number_sign}(|y|, N) of 1-bits in the expansion of |y| through bit position N satisfies {number_sign}(|y|, N) > CN{sup 1/D} for a positive number C (depending on y) and sufficiently large N. This in itself establishes the transcendency of a class of reals {summation}{sub n{ge}0} 1/2{sup f(n)} where the integer-valued function f grows sufficiently fast; say, faster than any fixed power of n. By these methods we re-establish the transcendency of the Kempner--Mahler number {summation}{sub n{ge}0}1/2{sup 2{sup n}}, yet we can also handle numbers with a substantially denser occurrence of 1's. Though the number z = {summation}{sub n{ge}0}1/2{sup n{sup 2}} has too high a 1's density for application of our central result, we are able to invoke some rather intricate number-theoretical analysis and extended computations to reveal aspects of the binary structure of z{sup 2}.

  6. Evolution of massive close binary stars

    International Nuclear Information System (INIS)

    Masevich, A.G.; Tutukov, A.V.

    1982-01-01

    Some problems of the evolution of massive close binary stars are discussed. Most of them are nonevolutionized stars with close masses of components. After filling the Roche cavity and exchange of matter between the components the Wolf-Rayet star is formed. As a result of the supernovae explosion a neutron star or a black hole is formed in the system. The system does not disintegrate but obtains high space velocity owing to the loss of the supernovae envelope. The satellite of the neutron star or black hole - the star of the O or B spectral class loses about 10 -6 of the solar mass for a year. Around the neighbouring component a disc of this matter is formed the incidence of which on a compact star leads to X radiation appearance. The neutron star cannot absorb the whole matter of the widening component and the binary system submerges into the common envelope. As a result of the evolution of massive close binary systems single neutron stars can appear which after the lapse of some time become radiopulsars. Radiopulsars with such high space velocities have been found in our Galaxy [ru

  7. Binary optics: Trends and limitations

    Science.gov (United States)

    Farn, Michael W.; Veldkamp, Wilfrid B.

    1993-01-01

    We describe the current state of binary optics, addressing both the technology and the industry (i.e., marketplace). With respect to the technology, the two dominant aspects are optical design methods and fabrication capabilities, with the optical design problem being limited by human innovation in the search for new applications and the fabrication issue being limited by the availability of resources required to improve fabrication capabilities. With respect to the industry, the current marketplace does not favor binary optics as a separate product line and so we expect that companies whose primary purpose is the production of binary optics will not represent the bulk of binary optics production. Rather, binary optics' more natural role is as an enabling technology - a technology which will directly result in a competitive advantage in a company's other business areas - and so we expect that the majority of binary optics will be produced for internal use.

  8. Particle acceleration in binaries

    Directory of Open Access Journals (Sweden)

    Sinitsyna V.G.

    2017-01-01

    Full Text Available Cygnus X-3 massive binary system is one of the powerful sources of radio and X-ray emission consisting of an accreting compact object, probably a black hole, with a Wolf-Rayet star companion. Based on the detections of ultra high energy gamma-rays by Kiel and Havera Park, Cygnus X-3 has been proposed to be one of the most powerful sources of charged cosmic ray particles in the Galaxy. The results of long-term observations of the Cyg X-3 binary at energies 800 GeV–85 TeV detected by SHALON in 1995 are presented with images, integral spectra and spectral energy distribution. The identification of source with Cygnus X-3 detected by SHALON was secured by the detection of its 4.8 hour orbital period in TeV gamma-rays. During the whole observation period of Cyg X-3 with SHALON significant flux increases were detected at energies above 0.8 TeV. These TeV flux increases are correlated with flaring activity at a lower energy range of X-ray and/or at observations of Fermi LAT as well as with radio emission from the relativistic jets of Cygnus X-3. The variability of very high-energy gamma-radiation and correlation of radiation activity in the wide energy range can provide essential information on particle mechanism production up to very high energies. Whereas, modulation of very high energy emission connected to the orbital motion of the binary system, provides an understanding of the emission processes, nature and location of particle acceleration.

  9. NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data.

    Science.gov (United States)

    Jurtz, Vanessa; Paul, Sinu; Andreatta, Massimo; Marcatili, Paolo; Peters, Bjoern; Nielsen, Morten

    2017-11-01

    Cytotoxic T cells are of central importance in the immune system's response to disease. They recognize defective cells by binding to peptides presented on the cell surface by MHC class I molecules. Peptide binding to MHC molecules is the single most selective step in the Ag-presentation pathway. Therefore, in the quest for T cell epitopes, the prediction of peptide binding to MHC molecules has attracted widespread attention. In the past, predictors of peptide-MHC interactions have primarily been trained on binding affinity data. Recently, an increasing number of MHC-presented peptides identified by mass spectrometry have been reported containing information about peptide-processing steps in the presentation pathway and the length distribution of naturally presented peptides. In this article, we present NetMHCpan-4.0, a method trained on binding affinity and eluted ligand data leveraging the information from both data types. Large-scale benchmarking of the method demonstrates an increase in predictive performance compared with state-of-the-art methods when it comes to identification of naturally processed ligands, cancer neoantigens, and T cell epitopes. Copyright © 2017 by The American Association of Immunologists, Inc.

  10. Shrinking of Binaries in a WIMPY Background at the Galactic Center

    Science.gov (United States)

    Hills, J. G.

    2001-12-01

    The nature of the dark matter in the Galactic Halo is still not clear. Constraints can be placed on it; e.g., it cannot be in baryons less massive than about 1022 grams (Hills, 1986, Astron. J. 92, 595). It may be in elementary weakly interacting massive particles, WIMPS. Apart from providing most of the mass of the Galaxy, the only known significant dynamical effect of WIMPS is to cause a gradual shrinking of tightly bound binaries (Hills 1983, Astron. J. 88, 1269) as they interact with the background soup of WIMPS. This effect may be observable in binaries close to the Galactic Center if a significant fraction of the mass density near the central black hole is from WIMPS. The requisite binaries would have to have orbital velocities greater than the local velocity dispersion of the WIMPS relative to the binary. The velocity dispersion increases near the black hole. The binary cannot be too close to the black hole or its tidal field will breakup the binary. If the local WIMP density is 107 g/cm3, the fractional rate of reduction in the binary orbital period is about 5 x 10-10/yr for a binary having a semimajor axis equal to 3 solar radii in a soup of WIMPS having a velocity dispersion of 200 km/s relative to the binary. This gradual erosion of the binary period may be detectable, particularly, if one of the binary components is a pulsar.

  11. Gravitational waves from spinning eccentric binaries

    Science.gov (United States)

    Csizmadia, Péter; Debreczeni, Gergely; Rácz, István; Vasúth, Mátyás

    2012-12-01

    This paper is to introduce a new software called CBwaves which provides a fast and accurate computational tool to determine the gravitational waveforms yielded by generic spinning binaries of neutron stars and/or black holes on eccentric orbits. This is done within the post-Newtonian (PN) framework by integrating the equations of motion and the spin precession equations, while the radiation field is determined by a simultaneous evaluation of the analytic waveforms. In applying CBwaves various physically interesting scenarios have been investigated. In particular, we have studied the appropriateness of the adiabatic approximation, and justified that the energy balance relation is indeed insensitive to the specific form of the applied radiation reaction term. By studying eccentric binary systems, it is demonstrated that circular template banks are very ineffective in identifying binaries even if they possess tiny residual orbital eccentricity, thus confirming a similar result obtained by Brown and Zimmerman (2010 Phys. Rev. D 81 024007). In addition, by investigating the validity of the energy balance relation we show that, contrary to the general expectations, the PN approximation should not be applied once the PN parameter gets beyond the critical value ˜0.08 - 0.1. Finally, by studying the early phase of the gravitational waves emitted by strongly eccentric binary systems—which could be formed e.g. in various many-body interactions in the galactic halo—we have found that they possess very specific characteristics which may be used to identify these type of binary systems. This paper is dedicated to the memory of our colleague and friend Péter Csizmadia a young physicist, computer expert and one of the best Hungarian mountaineers who disappeared in China’s Sichuan near the Ren Zhong Feng peak of the Himalayas on 23 Oct. 2009. We started to develop CBwaves jointly with Péter a couple of months before he left for China.

  12. Magnetic binary nanofillers

    International Nuclear Information System (INIS)

    Morales Mendoza, N.; Goyanes, S.; Chiliotte, C.; Bekeris, V.; Rubiolo, G.; Candal, R.

    2012-01-01

    Magnetic binary nanofillers containing multiwall carbon nanotubes (MWCNT) and hercynite were synthesized by Chemical Vapor Deposition (CVD) on Fe/AlOOH prepared by the sol-gel method. The catalyst precursor was fired at 450 °C, ground and sifted through different meshes. Two powders were obtained with different particle sizes: sample A (50-75 μm) and sample B (smaller than 50 μm). These powders are composed of iron oxide particles widely dispersed in the non-crystalline matrix of aluminum oxide and they are not ferromagnetic. After reduction process the powders are composed of α-Fe nanoparticles inside hercynite matrix. These nanofillers are composed of hercynite containing α-Fe nanoparticles and MWCNT. The binary magnetic nanofillers were slightly ferromagnetic. The saturation magnetization of the nanofillers depended on the powder particle size. The nanofiller obtained from powder particles in the range 50-75 μm showed a saturation magnetization 36% higher than the one formed from powder particles smaller than 50 μm. The phenomenon is explained in terms of changes in the magnetic environment of the particles as consequence of the presence of MWCNT.

  13. Magnetic binary nanofillers

    Energy Technology Data Exchange (ETDEWEB)

    Morales Mendoza, N. [INQUIMAE, CONICET-UBA, Ciudad Universitaria, Pab2, (C1428EHA) Bs As (Argentina); LPyMC, Dep. De Fisica, FCEN-UBA and IFIBA -CONICET, Ciudad Universitaria, Cap. Fed. (Argentina); Goyanes, S. [LPyMC, Dep. De Fisica, FCEN-UBA and IFIBA -CONICET, Ciudad Universitaria, Cap. Fed. (Argentina); Chiliotte, C.; Bekeris, V. [LBT, Dep. De Fisica, FCEN-UBA. Ciudad Universitaria, Pab1, C1428EGA CABA (Argentina); Rubiolo, G. [LPyMC, Dep. De Fisica, FCEN-UBA and IFIBA -CONICET, Ciudad Universitaria, Cap. Fed. (Argentina); Unidad de Actividad Materiales, CNEA, Av Gral. Paz 1499, San Martin (1650), Prov. de Bs As (Argentina); Candal, R., E-mail: candal@qi.fcen.uba.ar [INQUIMAE, CONICET-UBA, Ciudad Universitaria, Pab2, (C1428EHA) Bs As (Argentina); Escuela de Ciencia y Tecnologia, 3iA, Universidad de Gral. San Martin, San Martin, Prov. Bs As (Argentina)

    2012-08-15

    Magnetic binary nanofillers containing multiwall carbon nanotubes (MWCNT) and hercynite were synthesized by Chemical Vapor Deposition (CVD) on Fe/AlOOH prepared by the sol-gel method. The catalyst precursor was fired at 450 Degree-Sign C, ground and sifted through different meshes. Two powders were obtained with different particle sizes: sample A (50-75 {mu}m) and sample B (smaller than 50 {mu}m). These powders are composed of iron oxide particles widely dispersed in the non-crystalline matrix of aluminum oxide and they are not ferromagnetic. After reduction process the powders are composed of {alpha}-Fe nanoparticles inside hercynite matrix. These nanofillers are composed of hercynite containing {alpha}-Fe nanoparticles and MWCNT. The binary magnetic nanofillers were slightly ferromagnetic. The saturation magnetization of the nanofillers depended on the powder particle size. The nanofiller obtained from powder particles in the range 50-75 {mu}m showed a saturation magnetization 36% higher than the one formed from powder particles smaller than 50 {mu}m. The phenomenon is explained in terms of changes in the magnetic environment of the particles as consequence of the presence of MWCNT.

  14. Synergistic interactions between phenolic compounds identified in grape pomace extract with antibiotics of different classes against Staphylococcus aureus and Escherichia coli.

    Science.gov (United States)

    Sanhueza, Loreto; Melo, Ricardo; Montero, Ruth; Maisey, Kevin; Mendoza, Leonora; Wilkens, Marcela

    2017-01-01

    Synergy could be an effective strategy to potentiate and recover antibiotics nowadays useless in clinical treatments against multi-resistant bacteria. In this study, synergic interactions between antibiotics and grape pomace extract that contains high concentration of phenolic compounds were evaluated by the checkerboard method in clinical isolates of Staphylococcus aureus and Escherichia coli. To define which component of the extract is responsible for the synergic effect, phenolic compounds were identified by RP-HPLC and their relative abundance was determined. Combinations of extract with pure compounds identified there in were also evaluated. Results showed that the grape pomace extract combined with representatives of different classes of antibiotics as β-lactam, quinolone, fluoroquinolone, tetracycline and amphenicol act in synergy in all S. aureus and E. coli strains tested with FICI values varying from 0.031 to 0.155. The minimal inhibitory concentration (MIC) was reduced 4 to 75 times. The most abundant phenolic compounds identified in the extract were quercetin, gallic acid, protocatechuic acid and luteolin with relative abundance of 26.3, 24.4, 16.7 and 11.4%, respectively. All combinations of the extract with the components also showed synergy with FICI values varying from 0.031 to 0.5 and MIC reductions of 4 to 125 times with both bacteria strains. The relative abundance of phenolic compounds has no correlation with the obtained synergic effect, suggesting that the mechanism by which the synergic effect occurs is by a multi-objective action. It was also shown that combinations of grape pomace extract with antibiotics are not toxic for the HeLa cell line at concentrations in which the synergistic effect was observed (47 μg/mL of extract and 0.6-375 μg/mL antibiotics). Therefore, these combinations are good candidates for testing in animal models in order to enhance the effect of antibiotics of different classes and thus restore the currently unused

  15. Synergistic interactions between phenolic compounds identified in grape pomace extract with antibiotics of different classes against Staphylococcus aureus and Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Loreto Sanhueza

    Full Text Available Synergy could be an effective strategy to potentiate and recover antibiotics nowadays useless in clinical treatments against multi-resistant bacteria. In this study, synergic interactions between antibiotics and grape pomace extract that contains high concentration of phenolic compounds were evaluated by the checkerboard method in clinical isolates of Staphylococcus aureus and Escherichia coli. To define which component of the extract is responsible for the synergic effect, phenolic compounds were identified by RP-HPLC and their relative abundance was determined. Combinations of extract with pure compounds identified there in were also evaluated. Results showed that the grape pomace extract combined with representatives of different classes of antibiotics as β-lactam, quinolone, fluoroquinolone, tetracycline and amphenicol act in synergy in all S. aureus and E. coli strains tested with FICI values varying from 0.031 to 0.155. The minimal inhibitory concentration (MIC was reduced 4 to 75 times. The most abundant phenolic compounds identified in the extract were quercetin, gallic acid, protocatechuic acid and luteolin with relative abundance of 26.3, 24.4, 16.7 and 11.4%, respectively. All combinations of the extract with the components also showed synergy with FICI values varying from 0.031 to 0.5 and MIC reductions of 4 to 125 times with both bacteria strains. The relative abundance of phenolic compounds has no correlation with the obtained synergic effect, suggesting that the mechanism by which the synergic effect occurs is by a multi-objective action. It was also shown that combinations of grape pomace extract with antibiotics are not toxic for the HeLa cell line at concentrations in which the synergistic effect was observed (47 μg/mL of extract and 0.6-375 μg/mL antibiotics. Therefore, these combinations are good candidates for testing in animal models in order to enhance the effect of antibiotics of different classes and thus restore the

  16. The Effect of Novel Binary Accelerator System on Properties of Vulcanized Natural Rubber

    Directory of Open Access Journals (Sweden)

    Moez Kamoun

    2009-01-01

    Full Text Available The mechanical properties, curing characteristics, and swelling behaviour of vulcanized natural rubber with a novel binary accelerator system are investigated. Results indicate that the mechanical properties were improved. Crosslinking density of vulcanized natural rubber was measured by equilibrium swelling method. As a result, the new binary accelerator was found to be able to improve both cure rate and crosslinking density. Using the numerical analysis of test interaction between binary accelerator and operational modelling of vulcanization-factors experiments, it can be concluded that the interaction (Cystine, N-cyclohexyl-2-benzothiazyl sulfenamide was significant and the optimum value of binary accelerator was suggested, respectively, at levels 0 and +1.

  17. On the dynamics of binary galaxies

    International Nuclear Information System (INIS)

    Verner, D.A.; Chernin, A.D.

    1987-01-01

    The dynamics of close noncontact binary galaxies is investigated. It is demonsrated that the tidal interaction is ineffective for circularization of galaxy orbits. Nonsphericity of galaxies develops a torque in a binary system. For a pair of elliptical galaxies this torque leads to swinging of the galaxies with respect to the orbital plane (which can be observed as a rotation about the minor axis) and to the excitation of internal degrees of freedom. Besides, this pendulum effect may be effective for elliptical galaxies in clusters due to the presence of the torque produced by a cluster as a whole. In the case of spiral galaxies the torque leads to the precession of their rotational axes. However this effect seems to be too weak to be observable

  18. Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO.

    Science.gov (United States)

    Rodriguez, Carl L; Morscher, Meagan; Pattabiraman, Bharath; Chatterjee, Sourav; Haster, Carl-Johan; Rasio, Frederic A

    2015-07-31

    The predicted rate of binary black hole mergers from galactic fields can vary over several orders of magnitude and is extremely sensitive to the assumptions of stellar evolution. But in dense stellar environments such as globular clusters, binary black holes form by well-understood gravitational interactions. In this Letter, we study the formation of black hole binaries in an extensive collection of realistic globular cluster models. By comparing these models to observed Milky Way and extragalactic globular clusters, we find that the mergers of dynamically formed binaries could be detected at a rate of ∼100 per year, potentially dominating the binary black hole merger rate. We also find that a majority of cluster-formed binaries are more massive than their field-formed counterparts, suggesting that Advanced LIGO could identify certain binaries as originating from dense stellar environments.

  19. Autocorrelation based reconstruction of two-dimensional binary objects

    International Nuclear Information System (INIS)

    Mejia-Barbosa, Y.; Castaneda, R.

    2005-10-01

    A method for reconstructing two-dimensional binary objects from its autocorrelation function is discussed. The objects consist of a finite set of identical elements. The reconstruction algorithm is based on the concept of class of element pairs, defined as the set of element pairs with the same separation vector. This concept allows to solve the redundancy introduced by the element pairs of each class. It is also shown that different objects, consisting of an equal number of elements and the same classes of pairs, provide Fraunhofer diffraction patterns with identical intensity distributions. However, the method predicts all the possible objects that produce the same Fraunhofer pattern. (author)

  20. Formation and Evolution of X-ray Binaries

    Science.gov (United States)

    Fragkos, Anastasios

    X-ray binaries - mass-transferring binary stellar systems with compact object accretors - are unique astrophysical laboratories. They carry information about many complex physical processes such as star formation, compact object formation, and evolution of interacting binaries. My thesis work involves the study of the formation and evolution of Galactic and extra-galacticX-ray binaries using both detailed and realistic simulation tools, and population synthesis techniques. I applied an innovative analysis method that allows the reconstruction of the full evolutionary history of known black hole X-ray binaries back to the time of compact object formation. This analysis takes into account all the available observationally determined properties of a system, and models in detail four of its evolutionary evolutionary phases: mass transfer through the ongoing X-ray phase, tidal evolution before the onset of Roche-lobe overflow, motion through the Galactic potential after the formation of the black hole, and binary orbital dynamics at the time of core collapse. Motivated by deep extra-galactic Chandra survey observations, I worked on population synthesis models of low-mass X-ray binaries in the two elliptical galaxies NGC3379 and NGC4278. These simulations were targeted at understanding the origin of the shape and normalization of the observed X-ray luminosity functions. In a follow up study, I proposed a physically motivated prescription for the modeling of transient neutron star low-mass X-ray binary properties, such as duty cycle, outburst duration and recurrence time. This prescription enabled the direct comparison of transient low-mass X-ray binary population synthesis models to the Chandra X-ray survey of the two ellipticals NGC3379 and NGC4278. Finally, I worked on population synthesismodels of black holeX-ray binaries in the MilkyWay. This work was motivated by recent developments in observational techniques for the measurement of black hole spin magnitudes in

  1. Merger rate of primordial black-hole binaries

    Science.gov (United States)

    Ali-Haïmoud, Yacine; Kovetz, Ely D.; Kamionkowski, Marc

    2017-12-01

    Primordial black holes (PBHs) have long been a candidate for the elusive dark matter (DM), and remain poorly constrained in the ˜20 - 100 M⊙ mass range. PBH binaries were recently suggested as the possible source of LIGO's first detections. In this paper, we thoroughly revisit existing estimates of the merger rate of PBH binaries. We compute the probability distribution of orbital parameters for PBH binaries formed in the early Universe, accounting for tidal torquing by all other PBHs, as well as standard large-scale adiabatic perturbations. We then check whether the orbital parameters of PBH binaries formed in the early Universe can be significantly affected between formation and merger. Our analytic estimates indicate that the tidal field of halos and interactions with other PBHs, as well as dynamical friction by unbound standard DM particles, do not do significant work on nor torque PBH binaries. We estimate the torque due to baryon accretion to be much weaker than previous calculations, albeit possibly large enough to significantly affect the eccentricity of typical PBH binaries. We also revisit the PBH-binary merger rate resulting from gravitational capture in present-day halos, accounting for Poisson fluctuations. If binaries formed in the early Universe survive to the present time, as suggested by our analytic estimates, they dominate the total PBH merger rate. Moreover, this merger rate would be orders of magnitude larger than LIGO's current upper limits if PBHs make a significant fraction of the dark matter. As a consequence, LIGO would constrain ˜10 - 300 M⊙ PBHs to constitute no more than ˜1 % of the dark matter. To make this conclusion fully robust, though, numerical study of several complex astrophysical processes—such as the formation of the first PBH halos and how they may affect PBH binaries, as well as the accretion of gas onto an extremely eccentric binary—is needed.

  2. Planets in Binary Star Systems

    CERN Document Server

    Haghighipour, Nader

    2010-01-01

    The discovery of extrasolar planets over the past decade has had major impacts on our understanding of the formation and dynamical evolution of planetary systems. There are features and characteristics unseen in our solar system and unexplainable by the current theories of planet formation and dynamics. Among these new surprises is the discovery of planets in binary and multiple-star systems. The discovery of such "binary-planetary" systems has confronted astrodynamicists with many new challenges, and has led them to re-examine the theories of planet formation and dynamics. Among these challenges are: How are planets formed in binary star systems? What would be the notion of habitability in such systems? Under what conditions can binary star systems have habitable planets? How will volatiles necessary for life appear on such planets? This volume seeks to gather the current research in the area of planets in binary and multistar systems and to familiarize readers with its associated theoretical and observation...

  3. RS CVn binary systems

    International Nuclear Information System (INIS)

    Linsky, J.L.

    1984-01-01

    The author attempts to place in context the vast amount of data obtained in the last few years as a result of X-ray, ultraviolet, optical, and microwave observations of RS CVn and similar spectroscopic binary systems. He concentrates on the RS CVn systems and their long-period analogs, and restricts the scope by attempting to answer on the basis of the recent data and theory following questions: (1) Are the original defining characteristics still valid and still adequate? (2) What is the evidence for discrete active regions? (3) Have we derived any meaningful physical properties for the atmospheres of RS CVn systems? (4) What are the flare observations telling us about magnetic fields in the RS CVn systems? (5) Is there evidence for systematic trends in RS CVn systems with spectral type?

  4. Tidal Disruption of Inclined or Eccentric Binaries by Massive Black Holes

    Science.gov (United States)

    Brown, Harriet; Kobayashi, Shiho; Rossi, Elena M.; Sari, Re'em

    2018-04-01

    Binary stars that are on close orbits around massive black holes (MBH) such as Sgr A* in the centre of the Milky Way are liable to undergo tidal disruption and eject a hypervelocity star. We study the interaction between such a MBH and circular binaries for general binary orientations and penetration depths (i.e. binaries penetrate into the tidal radius around the BH). We show that for very deep penetrators, almost all binaries are disrupted when the binary rotation axis is roughly oriented toward the BH or it is in the opposite direction. The surviving chance becomes significant when the angle between the binary rotation axis and the BH direction is between 0.15π and 0.85π. The surviving chance is as high as ˜20% when the binary rotation axis is perpendicular to the BH direction. However, for shallow penetrators, the highest disruption chance is found in such a perpendicular case, especially in the prograde case. This is because the dynamics of shallow penetrators is more sensitive to the relative orientation of the binary and orbital angular momenta. We provide numerical fits to the disruption probability and energy gain at the the BH encounter as a function of the penetration depth. The latter can be simply rescaled in terms of binary masses, their initial separation and the binary-to-BH mass ratio to evaluate the ejection velocity of a binary members in various systems. We also investigate the disruption of coplanar, eccentric binaries by a MBH. It is shown that for highly eccentric binaries retrograde orbits have a significantly increased disruption probability and ejection velocities compared to the circular binaries.

  5. Binaries traveling through a gaseous medium: dynamical drag forces and internal torques

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Salcedo, F. J. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apt. Postal 70 264, C.P. 04510, Mexico City (Mexico); Chametla, Raul O., E-mail: jsanchez@astro.unam.mx [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, UP Adolfo López Mateos, Mexico City (Mexico)

    2014-10-20

    Using time-dependent linear theory, we investigate the morphology of the gravitational wake induced by a binary, whose center of mass moves at velocity V{sub cm} against a uniform background of gas. For simplicity, we assume that the components of the binary are on circular orbits about their common center of mass. The consequences of dynamical friction is twofold. First, gas dynamical friction may drag the center of mass of the binary and cause the binary to migrate. Second, drag forces also induce a braking torque, which causes the orbits of the components of the binary to shrink. We compute the drag forces acting on one component of the binary due to the gravitational interaction with its own wake. We show that the dynamical friction force responsible for decelerating the center of mass of the binary is smaller than it is in the point-mass case because of the loss of gravitational focusing. We show that the braking internal torque depends on the Mach numbers of each binary component about their center of mass, and also on the Mach number of the center of mass of the binary. In general, the internal torque decreases with increasing the velocity of the binary relative to the ambient gas cloud. However, this is not always the case. We also mention the relevance of our results to the period distribution of binaries.

  6. SMA observations of Class 0 Protostars

    DEFF Research Database (Denmark)

    Chen, Xuepeng; Arce, Héctor G.; Zhang, Qizhou

    2013-01-01

    We present high angular resolution 1.3 mm and 850 μm dust continuum data obtained with the Submillimeter Array toward 33 Class 0 protostars in nearby clouds (distance <500 pc), which represents so far the largest survey toward protostellar binary/multiple systems. The median angular resolution in...

  7. SECULAR EVOLUTION OF BINARIES NEAR MASSIVE BLACK HOLES: FORMATION OF COMPACT BINARIES, MERGER/COLLISION PRODUCTS AND G2-LIKE OBJECTS

    International Nuclear Information System (INIS)

    Prodan, Snezana; Antonini, Fabio; Perets, Hagai B.

    2015-01-01

    Here we discuss the evolution of binaries around massive black holes (MBHs) in nuclear stellar clusters. We focus on their secular evolution due to the perturbation by the MBHs, while simplistically accounting for their collisional evolution. Binaries with highly inclined orbits with respect to their orbits around MBHs are strongly affected by secular processes, which periodically change their eccentricities and inclinations (e.g., Kozai-Lidov cycles). During periapsis approach, dissipative processes such as tidal friction may become highly efficient, and may lead to shrinkage of a binary orbit and even to its merger. Binaries in this environment can therefore significantly change their orbital evolution due to the MBH third-body perturbative effects. Such orbital evolution may impinge on their later stellar evolution. Here we follow the secular dynamics of such binaries and its coupling to tidal evolution, as well as the stellar evolution of such binaries on longer timescales. We find that stellar binaries in the central parts of nuclear stellar clusters (NSCs) are highly likely to evolve into eccentric and/or short-period binaries, and become strongly interacting binaries either on the main sequence (at which point they may even merge), or through their later binary stellar evolution. The central parts of NSCs therefore catalyze the formation and evolution of strongly interacting binaries, and lead to the enhanced formation of blue stragglers, X-ray binaries, gravitational wave sources, and possible supernova progenitors. Induced mergers/collisions may also lead to the formation of G2-like cloud-like objects such as the one recently observed in the Galactic center

  8. Orbital Decay in Binaries with Evolved Stars

    Science.gov (United States)

    Sun, Meng; Arras, Phil; Weinberg, Nevin N.; Troup, Nicholas; Majewski, Steven R.

    2018-01-01

    Two mechanisms are often invoked to explain tidal friction in binary systems. The ``dynamical tide” is the resonant excitation of internal gravity waves by the tide, and their subsequent damping by nonlinear fluid processes or thermal diffusion. The ``equilibrium tide” refers to non-resonant excitation of fluid motion in the star’s convection zone, with damping by interaction with the turbulent eddies. There have been numerous studies of these processes in main sequence stars, but less so on the subgiant and red giant branches. Motivated by the newly discovered close binary systems in the Apache Point Observatory Galactic Evolution Experiment (APOGEE-1), we have performed calculations of both the dynamical and equilibrium tide processes for stars over a range of mass as the star’s cease core hydrogen burning and evolve to shell burning. Even for stars which had a radiative core on the main sequence, the dynamical tide may have very large amplitude in the newly radiative core in post-main sequence, giving rise to wave breaking. The resulting large dynamical tide dissipation rate is compared to the equilibrium tide, and the range of secondary masses and orbital periods over which rapid orbital decay may occur will be discussed, as well as applications to close APOGEE binaries.

  9. Class size versus class composition

    DEFF Research Database (Denmark)

    Jones, Sam

    Raising schooling quality in low-income countries is a pressing challenge. Substantial research has considered the impact of cutting class sizes on skills acquisition. Considerably less attention has been given to the extent to which peer effects, which refer to class composition, also may affect...... bias from omitted variables, the preferred IV results indicate considerable negative effects due to larger class sizes and larger numbers of overage-for-grade peers. The latter, driven by the highly prevalent practices of grade repetition and academic redshirting, should be considered an important...

  10. Optimally cloned binary coherent states

    Science.gov (United States)

    Müller, C. R.; Leuchs, G.; Marquardt, Ch.; Andersen, U. L.

    2017-10-01

    Binary coherent state alphabets can be represented in a two-dimensional Hilbert space. We capitalize this formal connection between the otherwise distinct domains of qubits and continuous variable states to map binary phase-shift keyed coherent states onto the Bloch sphere and to derive their quantum-optimal clones. We analyze the Wigner function and the cumulants of the clones, and we conclude that optimal cloning of binary coherent states requires a nonlinearity above second order. We propose several practical and near-optimal cloning schemes and compare their cloning fidelity to the optimal cloner.

  11. INTERACT

    DEFF Research Database (Denmark)

    Jochum, Elizabeth; Borggreen, Gunhild; Murphey, TD

    This paper considers the impact of visual art and performance on robotics and human-computer interaction and outlines a research project that combines puppetry and live performance with robotics. Kinesics—communication through movement—is the foundation of many theatre and performance traditions ...

  12. Second class weak currents

    International Nuclear Information System (INIS)

    Delorme, J.

    1978-01-01

    The definition and general properties of weak second class currents are recalled and various detection possibilities briefly reviewed. It is shown that the existing data on nuclear beta decay can be consistently analysed in terms of a phenomenological model. Their implication on the fundamental structure of weak interactions is discussed [fr

  13. Energy transfer in contact binary systems

    International Nuclear Information System (INIS)

    Robertson, J.A.

    1980-01-01

    A simple model for the transfer of energy by steady circulation within the envelope of a contact binary system is presented. The model describes the fully compressible, two-dimensional flow of a perfect gas within a rectangular region in a uniform gravitational field. The region is heated non-uniformly from below. Coriolis forces are neglected but the interaction of the circulation with convection is discussed briefly. Numerical solutions of the linearized equations of the problem are discussed in detail, and the results of some non-linear calculations are also presented. The influence of alternative boundary conditions is examined. (author)

  14. Disordered multihyperuniformity derived from binary plasmas

    Science.gov (United States)

    Lomba, Enrique; Weis, Jean-Jacques; Torquato, Salvatore

    2018-01-01

    Disordered multihyperuniform many-particle systems are exotic amorphous states that allow exquisite color sensing capabilities due to their anomalous suppression of density fluctuations for distinct subsets of particles, as recently evidenced in photoreceptor mosaics in avian retina. Motivated by this biological finding, we present a statistical-mechanical model that rigorously achieves disordered multihyperuniform many-body systems by tuning interactions in binary mixtures of nonadditive hard-disk plasmas. We demonstrate that multihyperuniformity competes with phase separation and stabilizes a clustered phase. Our work provides a systematic means to generate disordered multihyperuniform solids, and hence lays the groundwork to explore their potentially unique photonic, phononic, electronic, and transport properties.

  15. Separation in 5 Msun Binaries

    Science.gov (United States)

    Evans, Nancy R.; Bond, H. E.; Schaefer, G.; Mason, B. D.; Karovska, M.; Tingle, E.

    2013-01-01

    Cepheids (5 Msun stars) provide an excellent sample for determining the binary properties of fairly massive stars. International Ultraviolet Explorer (IUE) observations of Cepheids brighter than 8th magnitude resulted in a list of ALL companions more massive than 2.0 Msun uniformly sensitive to all separations. Hubble Space Telescope Wide Field Camera 3 (WFC3) has resolved three of these binaries (Eta Aql, S Nor, and V659 Cen). Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations for a sample of 18 Cepheids, and also a distribution of mass ratios. The distribution of orbital periods shows that the 5 Msun binaries prefer shorter periods than 1 Msun stars, reflecting differences in star formation processes.

  16. Some properties of spectral binary stars

    International Nuclear Information System (INIS)

    Krajcheva, Z.T.; Popova, E.I.; Tutukov, A.V.; Yungel'son, L.R.; AN SSSR, Moscow. Astronomicheskij Sovet)

    1978-01-01

    Statistical investigations of spectra binary stars are carried out. Binary systems consisting of main sequence stars are considered. For 826 binary stars masses of components, ratios of component masses, semiaxes of orbits and orbital angular momenta are calculated. The distributions of these parameters and their correlations are analyzed. The dependences of statistical properties of spectral binary stars on their origin and evolution are discussed

  17. Solid solution hardening in face centered binary alloys: Gliding statistics of a dislocation in random solid solution by atomistic simulation

    International Nuclear Information System (INIS)

    Patinet, S.

    2009-12-01

    The glide of edge and screw dislocation in solid solution is modeled through atomistic simulations in two model alloys of Ni(Al) and Al(Mg) described within the embedded atom method. Our approach is based on the study of the elementary interaction between dislocations and solutes to derive solid solution hardening of face centered cubic binary alloys. We identify the physical origins of the intensity and range of the interaction between a dislocation and a solute atom. The thermally activated crossing of a solute atom by a dislocation is studied at the atomistic scale. We show that hardening of edge and screw segments are similar. We develop a line tension model that reproduces quantitatively the atomistic calculations of the flow stress. We identify the universality class to which the dislocation depinning transition in solid solution belongs. (author)

  18. Repression of MHC class I transcription by HPV16E7 through interaction with a putative RXRβ motif and NF-κB cytoplasmic sequestration

    International Nuclear Information System (INIS)

    Li, Hui; Zhan, TaiLan; Li, Chang; Liu, Mugen; Wang, Qing K.

    2009-01-01

    Down-regulation of transcription of the MHC class I genes in HPV16 tumorigenic cells is partly due to HPV16E7 associated with the MHC class I promoter and repressed chromatin activation. In this study, we further demonstrated that HPV16E7 is physically associated with a putative RXRβ binding motif (GGTCA) of the proximal promoter of the MHC class I genes by using reporter transcriptional assays and chromatin immunoprecipitation assays. Our data also provide evidence that HPV16E7 inhibits TNF-α-induced up-regulation of MHC class I transcription by impaired nuclear translocation of NF-κB. More importantly, CaSki tumor cells treated with TSA and transfected with the constitutively active mutant form of IKK-α (which can activate NF-κB directly) showed a maximal level of up-regulation of MHC-I expression. Taken together, our results suggest that HPV16E7 may employ two independent mechanisms to ensure that either the constitutive or inducible transcription of MHC class I genes is down-regulated.

  19. IUE observations of long period eclipsing binaries: a study of accretion onto non-degenerate stars

    International Nuclear Information System (INIS)

    Plavec, M.J.

    1980-01-01

    It has long been thought that β Lyrae is a unique system, by virtue of its UV spectrum and its nature. The author argues that a whole class of interacting long-period binaries exists, similar to β Lyrae. According to IUE observations made in 1978-79 this group comprises: RX Cas, SX Cas, V 367 Cyg, W Cru, β Lyr, and W Ser. AR Pav is a transition case linking them with the symbiotics. The author also suggests that HD 218393 (KX And), HD 72754, and HD 51480 are their non-eclipsing counterparts. The whole group is called the W Serpentis stars. These systems are mass-transfering binaries (case B) in which the mass transfer rate is relatively high, probably on the order 10 -6 to 10 -4 solar masses/year. They display an ultraviolet continuum with a color temperature definitely higher than the one observed in the optical region. Even more characteristical is the presence of strong emission lines of N V, C IV, Si IV, Fe III, Al III, and lower ions of C and Si. The author discusses these phenomena on the assumption that they are due to accretion onto non-degenerate stars. (Auth.)

  20. ELECTROMAGNETIC EXTRACTION OF ENERGY FROM BLACK-HOLE–NEUTRON-STAR BINARIES

    International Nuclear Information System (INIS)

    McWilliams, Sean T.; Levin, Janna

    2011-01-01

    The coalescence of black-hole-neutron-star binaries is expected to be a principal source of gravitational waves for the next generation of detectors, Advanced LIGO and Advanced Virgo. For black hole masses not much larger than the neutron star mass, the tidal disruption of the neutron star by the black hole provides one avenue for generating an electromagnetic counterpart. However, in this work, we demonstrate that, for all black-hole-neutron-star binaries observable by Advanced LIGO/Virgo, the interaction of the black hole with the magnetic field of the neutron star will generate copious luminosity, comparable to supernovae and active galactic nuclei. This novel effect may have already been observed as a new class of very short gamma-ray bursts by the Swift Gamma-Ray Burst Telescope. These events may be observable to cosmological distances, so that any black-hole-neutron-star coalescence detectable with gravitational waves by Advanced LIGO/Virgo could also be detectable electromagnetically.

  1. Fitting Markovian binary trees using global and individual demographic data

    OpenAIRE

    Hautphenne, Sophie; Massaro, Melanie; Turner, Katharine

    2017-01-01

    We consider a class of branching processes called Markovian binary trees, in which the individuals lifetime and reproduction epochs are modeled using a transient Markovian arrival process (TMAP). We estimate the parameters of the TMAP based on population data containing information on age-specific fertility and mortality rates. Depending on the degree of detail of the available data, a weighted non-linear regression method or a maximum likelihood method is applied. We discuss the optimal choi...

  2. Binary pulsars as probes of a Galactic dark matter disk

    Science.gov (United States)

    Caputo, Andrea; Zavala, Jesús; Blas, Diego

    2018-03-01

    As a binary pulsar moves through a wind of dark matter particles, the resulting dynamical friction modifies the binary's orbit. We study this effect for the double disk dark matter (DDDM) scenario, where a fraction of the dark matter is dissipative and settles into a thin disk. For binaries within the dark disk, this effect is enhanced due to the higher dark matter density and lower velocity dispersion of the dark disk, and due to its co-rotation with the baryonic disk. We estimate the effect and compare it with observations for two different limits in the Knudsen number (Kn). First, in the case where DDDM is effectively collisionless within the characteristic scale of the binary (Kn ≫ 1) and ignoring the possible interaction between the pair of dark matter wakes. Second, in the fully collisional case (Kn ≪ 1), where a fluid description can be adopted and the interaction of the pair of wakes is taken into account. We find that the change in the orbital period is of the same order of magnitude in both limits. A comparison with observations reveals good prospects to probe currently allowed DDDM models with timing data from binary pulsars in the near future. We finally comment on the possibility of extending the analysis to the intermediate (rarefied gas) case with Kn ∼ 1.

  3. Project DWARF - using eclipsing binaries for searching for exoplanets and brown dwarfs

    Science.gov (United States)

    Kudak, V.; Parimucha, Š.

    2016-12-01

    Project DWARF is a long-term observation campaign for about 60 selected eclipsing binaries aimed for detection of exoplanets or other objects (brown dwarfs) in low-mass detached binaries of different types (low-mass eclipsing binaries with M and K components, short-period binaries with sdB or sdO component, post-common-envelope systems containing a white dwarf). Existence of other bodies in systems are determined by analysing of O-C diagrams, constructed from observed minima times of binaries. Objects are selected with intention to determine minima with high precision. About 40 observatories are involved into the network at present time, mostly situated in Europe. The observations are made by small or middle class telescopes with apertures of 20-200 cm. In this contribution we give information about current status of the project, we present main goals and results of 4 years observations.

  4. Birthing Classes

    Science.gov (United States)

    ... management options. Breastfeeding basics. Caring for baby at home. Birthing classes are not just for new parents, though. ... midwife. Postpartum care. Caring for your baby at home, including baby first aid. Lamaze One of the most popular birthing techniques in the U.S., Lamaze has been around ...

  5. Binary Systems and the Initial Mass Function

    Science.gov (United States)

    Malkov, O. Yu.

    2017-07-01

    In the present paper we discuss advantages and disadvantages of binary stars, which are important for star formation history determination. We show that to make definite conclusions of the initial mass function shape, it is necessary to study binary population well enough to correct the luminosity function for unresolved binaries; to construct the mass-luminosity relation based on wide binaries data, and to separate observational mass functions of primaries, of secondaries, and of unresolved binaries.

  6. Social Class and the Extracurriculum

    Science.gov (United States)

    Barratt, Will

    2012-01-01

    Social class is a powerful and often unrecognized influence on student participation in the extracurriculum. Spontaneous student-created extracurricular experiences depend on students affiliating and interacting with each other; student social class is a powerful influence on student affiliations. Students tend to exercise consciousness of kind-…

  7. A new non-thermal galactic radio source with a possible binary system

    International Nuclear Information System (INIS)

    Fuerst, E.; Reich, W.; Reich, P.; Sofue, Y.; Handa, T.

    1985-01-01

    A galactic object [G18.95-1.1], detected recently in a galactic plane survey, may belong to a new class of non-thermal radio sources that originate in accreting binary systems. The data on integrated flux density spectral index and the polarization, proves the non-thermal nature of the source. The morphology defies any classification as a supernova remnant. The authors suggest that the object is a binary system containing a compact component. (U.K.)

  8. Making In-Class Skills Training More Effective: The Scope for Interactive Videos to Complement the Delivery of Practical Pedestrian Training

    Science.gov (United States)

    Hammond, James; Cherrett, Tom; Waterson, Ben

    2015-01-01

    Skills and awareness of young pedestrians can be improved with on-street practical pedestrian training, often delivered in schools in the UK by local authorities with the intention of improving road safety. This training is often supplemented by in-class paper-based worksheet activities that are seen to be less effective than practical training in…

  9. Moments of Meeting: Difficulties and Developments in Shared Attention, Interaction, and Communication with Children with Autism during Two Years of Music Therapy in a Public Preschool Class

    Science.gov (United States)

    Barnes, Geoffrey Prescott

    2010-01-01

    Drawing upon video recordings over two years, teacher interviews, school reports, and field notes, this practitioner research study described and analyzed 16 video excerpts from a music therapy group in a public preschool class serving 14 children with autism, for durations ranging from two to sixteen months. The research centered on three of the…

  10. Electrical resistivity of Al-Cu liquid binary alloy

    Science.gov (United States)

    Thakor, P. P.; Patel, J. J.; Sonvane, Y. A.; Jani, A. R.

    2013-06-01

    Present paper deals with the electrical resistivity (ρ) of liquid Al-Cu binary alloy. To describe electron-ion interaction we have used our parameter free model potential along with Faber-Ziman formulation combined with Ashcroft-Langreth (AL) partial structure factor. To see the influence of exchange and correlation effect, Hartree, Taylor and Sarkar et al local field correlation functions are used. From present results, it is seen that good agreements between present results and experimental data have been achieved. Lastly we conclude that our model potential successfully produces the data of electrical resistivity (ρ) of liquid Al-Cu binary alloy.

  11. The binary collision approximation: Background and introduction

    International Nuclear Information System (INIS)

    Robinson, M.T.

    1992-08-01

    The binary collision approximation (BCA) has long been used in computer simulations of the interactions of energetic atoms with solid targets, as well as being the basis of most analytical theory in this area. While mainly a high-energy approximation, the BCA retains qualitative significance at low energies and, with proper formulation, gives useful quantitative information as well. Moreover, computer simulations based on the BCA can achieve good statistics in many situations where those based on full classical dynamical models require the most advanced computer hardware or are even impracticable. The foundations of the BCA in classical scattering are reviewed, including methods of evaluating the scattering integrals, interaction potentials, and electron excitation effects. The explicit evaluation of time at significant points on particle trajectories is discussed, as are scheduling algorithms for ordering the collisions in a developing cascade. An approximate treatment of nearly simultaneous collisions is outlined and the searching algorithms used in MARLOWE are presented

  12. Hidden slow pulsars in binaries

    Science.gov (United States)

    Tavani, Marco; Brookshaw, Leigh

    1993-01-01

    The recent discovery of the binary containing the slow pulsar PSR 1718-19 orbiting around a low-mass companion star adds new light on the characteristics of binary pulsars. The properties of the radio eclipses of PSR 1718-19 are the most striking observational characteristics of this system. The surface of the companion star produces a mass outflow which leaves only a small 'window' in orbital phase for the detection of PSR 1718-19 around 400 MHz. At this observing frequency, PSR 1718-19 is clearly observable only for about 1 hr out of the total 6.2 hr orbital period. The aim of this Letter is twofold: (1) to model the hydrodynamical behavior of the eclipsing material from the companion star of PSR 1718-19 and (2) to argue that a population of binary slow pulsars might have escaped detection in pulsar surveys carried out at 400 MHz. The possible existence of a population of partially or totally hidden slow pulsars in binaries will have a strong impact on current theories of binary evolution of neutron stars.

  13. Coding Class

    DEFF Research Database (Denmark)

    Ejsing-Duun, Stine; Hansbøl, Mikala

    Denne rapport rummer evaluering og dokumentation af Coding Class projektet1. Coding Class projektet blev igangsat i skoleåret 2016/2017 af IT-Branchen i samarbejde med en række medlemsvirksomheder, Københavns kommune, Vejle Kommune, Styrelsen for IT- og Læring (STIL) og den frivillige forening...... Coding Pirates2. Rapporten er forfattet af Docent i digitale læringsressourcer og forskningskoordinator for forsknings- og udviklingsmiljøet Digitalisering i Skolen (DiS), Mikala Hansbøl, fra Institut for Skole og Læring ved Professionshøjskolen Metropol; og Lektor i læringsteknologi, interaktionsdesign......, design tænkning og design-pædagogik, Stine Ejsing-Duun fra Forskningslab: It og Læringsdesign (ILD-LAB) ved Institut for kommunikation og psykologi, Aalborg Universitet i København. Vi har fulgt og gennemført evaluering og dokumentation af Coding Class projektet i perioden november 2016 til maj 2017...

  14. Non-linearity parameter of binary liquid mixtures at elevated pressures

    Indian Academy of Sciences (India)

    . Ultrasonic studies in liquid mixtures provide valuable information about structure and interaction in such systems. The present investigation comprises of theoretical evaluation of the acoustic non-linearity parameter / of four binary liquid ...

  15. Special quasirandom structures for binary/ternary group IV random alloys

    KAUST Repository

    Chroneos, Alexander I.; Jiang, Chao; Grimes, Robin W.; Schwingenschlö gl, Udo

    2010-01-01

    Simulation of defect interactions in binary/ternary group IV semiconductor alloys at the density functional theory level is difficult due to the random distribution of the constituent atoms. The special quasirandom structures approach is a

  16. Exact results in a lattice model of a binary reactant mixture

    International Nuclear Information System (INIS)

    Thomas, P.B.

    1995-01-01

    We study phase separation in a binary mixture of two particles, which can react with each other and form a third compound. We determine the exact phase boundaries for a restricted range of the interaction parameters

  17. NetMHCpan 4.0: Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data

    OpenAIRE

    Jurtz, Vanessa; Paul, Sinu; Andreatta, Massimo; Marcatili, Paolo; Peters, Bjoern; Nielsen, Morten

    2017-01-01

    Cytotoxic T cells are of central importance in the immune systems response to disease. They recognize defective cells by binding to peptides presented on the cell surface by MHC (major histocompatibility complex) class I molecules. Peptide binding to MHC molecules is the single most selective step in the antigen presentation pathway. On the quest for T cell epitopes, the prediction of peptide binding to MHC molecules has therefore attracted large attention. In the past, predictors of peptide-...

  18. The Young Visual Binary Survey

    Science.gov (United States)

    Prato, Lisa; Avilez, Ian; Lindstrom, Kyle; Graham, Sean; Sullivan, Kendall; Biddle, Lauren; Skiff, Brian; Nofi, Larissa; Schaefer, Gail; Simon, Michal

    2018-01-01

    Differences in the stellar and circumstellar properties of the components of young binaries provide key information about star and disk formation and evolution processes. Because objects with separations of a few to a few hundred astronomical units share a common environment and composition, multiple systems allow us to control for some of the factors which play into star formation. We are completing analysis of a rich sample of about 100 pre-main sequence binaries and higher order multiples, primarily located in the Taurus and Ophiuchus star forming regions. This poster will highlight some of out recent, exciting results. All reduced spectra and the results of our analysis will be publicly available to the community at http://jumar.lowell.edu/BinaryStars/. Support for this research was provided in part by NSF award AST-1313399 and by NASA Keck KPDA funding.

  19. Evolution of a massive binary in a star field

    International Nuclear Information System (INIS)

    Baranov, A.S.

    1984-01-01

    The orbital evolution of a massive binary system interacting with a background field of single stars whose phase density is homogeneous in configuration space is considered. The velocity distribution is assumed isotropic up to some limiting value, and a typical field star is regarded as having a velocity much higher than the orbital speed of the pair components. An expression is derived for the transfer of energy from the binary to the field stars. The time evolution of the orbit parameters a, e is established, and the evolution rate is estimated for Kardashev's (1983) model galactic nucleus containing a central black-hole binary. On the above assumptions the components should become twice as close together within only a few tens of millennia, although the picture may change fundamentally if the nucleus is rotating. 13 references

  20. Evolution in close binary systems

    International Nuclear Information System (INIS)

    Yungel'son, L.R.; Masevich, A.G.

    1983-01-01

    Duality is the property most typical of stars. If one investigates how prevalent double stars are, making due allowance for selection effects, one finds that as many as 90 percent of all stars are paired. Contrary to tradition it is single stars that are out of the ordinary, and as will be shown presently even some of these may have been formed by coalescence of the members of binary systems. This review deals with the evolution of close binaries, defined as double-star systems whose evolution entails exchange of material between the two components

  1. Evolution of close binaries and the formation of pulsars

    International Nuclear Information System (INIS)

    Van Den Heuvel, E.P.J.

    1981-01-01

    The various ways in which compact objects (neutron stars and black holes) may be formed in interacting binary systems are examined. Attention is given to the final evolution of the primary star in a close binary system as a function of the time of Roche-lobe overflow relative to the onset of helium burning, and conditions on primary mass and orbital period leading to the appearance of a compact remnant are noted. Consideration of the fate of the stellar envelope in stars that directly evolve to core collapse indicates that binaries that evolve with conservation of total mass and orbital angular momentum will eventually become systems of two runaway pulsars. In cases of nonconservative evolution, the final state is expected to be a young runaway pulsar with a low- or moderate mass runaway star companion, or a low-mass population I X-ray binary with high space velocity. Compact objects may also be formed when a white dwarf of suitable chemical composition is driven over the Chandrasehkar limit by accretion, resulting in a low-mass X-ray binary

  2. ENHANCED TIDAL DISRUPTION RATES FROM MASSIVE BLACK HOLE BINARIES

    International Nuclear Information System (INIS)

    Chen Xian; Liu, F. K.; Madau, Piero; Sesana, Alberto

    2009-01-01

    'Hard' massive black hole (MBH) binaries embedded in steep stellar cusps can shrink via three-body slingshot interactions. We show that this process will inevitably be accompanied by a burst of stellar tidal disruptions, at a rate that can be several orders of magnitude larger than that appropriate for a single MBH. Our numerical scattering experiments reveal that (1) a significant fraction of stars initially bound to the primary hole are scattered into its tidal disruption loss cone by gravitational interactions with the secondary hole, an enhancement effect that is more pronounced for very unequal mass binaries; (2) about 25% (40%) of all strongly interacting stars are tidally disrupted by an MBH binary of mass ratio q = 1/81 (q = 1/243) and eccentricity 0.1; and (3) two mechanisms dominate the fueling of the tidal disruption loss cone, a Kozai nonresonant interaction that causes the secular evolution of the stellar angular momentum in the field of the binary, and the effect of close encounters with the secondary hole that change the stellar orbital parameters in a chaotic way. For a hard MBH binary of 10 7 M sun and mass ratio 10 -2 , embedded in an isothermal stellar cusp of velocity dispersion σ * = 100 km s -1 , the tidal disruption rate can be as large as N-dot * ∼1 yr -1 . This is 4 orders of magnitude higher than estimated for a single MBH fed by two-body relaxation. When applied to the case of a putative intermediate-mass black hole inspiraling onto Sgr A*, our results predict tidal disruption rates N-dot * ∼0.05-0.1 yr -1 .

  3. FORMATION OF BLACK HOLE X-RAY BINARIES IN GLOBULAR CLUSTERS

    International Nuclear Information System (INIS)

    Ivanova, N.; Heinke, C. O.; Woods, T. E.; Chaichenets, S.; Fregeau, J.; Lombardi, J. C.

    2010-01-01

    Inspired by the recent identification in extragalactic globular clusters of the first candidate black hole-white dwarf (BH-WD) X-ray binaries, where the compact accretors may be stellar-mass black holes (BHs), we explore how such binaries could be formed in a dynamical environment. We provide analyses of the formation rates via well-known formation channels like binary exchange and physical collisions and propose that the only possibility of forming BH-WD binaries is via coupling these usual formation channels with subsequent hardening and/or triple formation. In particular, we find that the most important mechanism for the creation of a BH-WD X-ray binary from an initially dynamically formed BH-WD binary is mass transfer induced in a triple system via the Kozai mechanism. Furthermore, we find that BH-WD binaries that evolve into X-ray sources can be formed by exchanges of a BH into a WD-WD binary or possibly by collisions of a BH and a giant star. If BHs undergo significant evaporation from the cluster or form a completely detached subcluster of BHs, then we cannot match the observationally inferred production rates even using the most optimistic estimates of formation rates. To explain the observations with stellar-mass BH-WD binaries, at least 1% of all formed BHs, or presumably 10% of the BHs present in the core now, must be involved in interactions with the rest of the core stellar population.

  4. Student Perceptions of Chemistry Laboratory Learning Environments, Student-Teacher Interactions and Attitudes in Secondary School Gifted Education Classes in Singapore

    Science.gov (United States)

    Lang, Quek Choon; Wong, Angela F. L.; Fraser, Barry J.

    2005-09-01

    This study investigated the chemistry laboratory classroom environment, teacher-student interactions and student attitudes towards chemistry among 497 gifted and non-gifted secondary-school students in Singapore. The data were collected using the 35-item Chemistry Laboratory Environment Inventory (CLEI), the 48-item Questionnaire on Teacher Interaction (QTI) and the 30-item Questionnaire on Chemistry-Related Attitudes (QOCRA). Results supported the validity and reliability of the CLEI and QTI for this sample. Stream (gifted versus non-gifted) and gender differences were found in actual and preferred chemistry laboratory classroom environments and teacher-student interactions. Some statistically significant associations of modest magnitude were found between students' attitudes towards chemistry and both the laboratory classroom environment and the interpersonal behaviour of chemistry teachers. Suggestions for improving chemistry laboratory classroom environments and the teacher-student interactions for gifted students are provided.

  5. Lattice animals in diffusion limited binary colloidal system

    Science.gov (United States)

    Shireen, Zakiya; Babu, Sujin B.

    2017-08-01

    In a soft matter system, controlling the structure of the amorphous materials has been a key challenge. In this work, we have modeled irreversible diffusion limited cluster aggregation of binary colloids, which serves as a model for chemical gels. Irreversible aggregation of binary colloidal particles leads to the formation of a percolating cluster of one species or both species which are also called bigels. Before the formation of the percolating cluster, the system forms a self-similar structure defined by a fractal dimension. For a one component system when the volume fraction is very small, the clusters are far apart from each other and the system has a fractal dimension of 1.8. Contrary to this, we will show that for the binary system, we observe the presence of lattice animals which has a fractal dimension of 2 irrespective of the volume fraction. When the clusters start inter-penetrating, we observe a fractal dimension of 2.5, which is the same as in the case of the one component system. We were also able to predict the formation of bigels using a simple inequality relation. We have also shown that the growth of clusters follows the kinetic equations introduced by Smoluchowski for diffusion limited cluster aggregation. We will also show that the chemical distance of a cluster in the flocculation regime will follow the same scaling law as predicted for the lattice animals. Further, we will also show that irreversible binary aggregation comes under the universality class of the percolation theory.

  6. ACOUSTIC EFFECTS ON BINARY AEROELASTICITY MODEL

    Directory of Open Access Journals (Sweden)

    Kok Hwa Yu

    2011-10-01

    Full Text Available Acoustics is the science concerned with the study of sound. The effects of sound on structures attract overwhelm interests and numerous studies were carried out in this particular area. Many of the preliminary investigations show that acoustic pressure produces significant influences on structures such as thin plate, membrane and also high-impedance medium like water (and other similar fluids. Thus, it is useful to investigate the structure response with the presence of acoustics on aircraft, especially on aircraft wings, tails and control surfaces which are vulnerable to flutter phenomena. The present paper describes the modeling of structural-acoustic interactions to simulate the external acoustic effect on binary flutter model. Here, the binary flutter model which illustrated as a rectangular wing is constructed using strip theory with simplified unsteady aerodynamics involving flap and pitch degree of freedom terms. The external acoustic excitation, on the other hand, is modeled using four-node quadrilateral isoparametric element via finite element approach. Both equations then carefully coupled and solved using eigenvalue solution. The mentioned approach is implemented in MATLAB and the outcome of the simulated result are later described, analyzed and illustrated in this paper.

  7. Free and binary rotation of polyatomic molecules

    International Nuclear Information System (INIS)

    Konyukhov, V K

    2003-01-01

    A modification of the quantum-mechanical theory of rotation of polyatomic molecules (binary rotation) is proposed, which is based on the algebra and representations of the SO(4) group and allows the introduction of the concept of parity, as in atomic spectroscopy. It is shown that, if an asymmetric top molecule performing binary rotation finds itself in a spatially inhomogeneous electric field, its rotational levels acquire the additional energy due to the quadrupole moment. The existence of the rotational states of polyatomic molecules that cannot transfer to the free rotation state is predicted. In particular, the spin isomers of a water molecule, which corresponds to such states, can have different absolute values of the adsorption energy due to the quadrupole interaction of the molecule with a surface. The difference in the adsorption energies allows one to explain qualitatively the behaviour of the ortho- and para-molecules of water upon their adsorption on the surface of solids in accordance with experimental data. (laser applications and other topics in quantum electronics)

  8. NONLINEAR TIDES IN CLOSE BINARY SYSTEMS

    International Nuclear Information System (INIS)

    Weinberg, Nevin N.; Arras, Phil; Quataert, Eliot; Burkart, Josh

    2012-01-01

    We study the excitation and damping of tides in close binary systems, accounting for the leading-order nonlinear corrections to linear tidal theory. These nonlinear corrections include two distinct physical effects: three-mode nonlinear interactions, i.e., the redistribution of energy among stellar modes of oscillation, and nonlinear excitation of stellar normal modes by the time-varying gravitational potential of the companion. This paper, the first in a series, presents the formalism for studying nonlinear tides and studies the nonlinear stability of the linear tidal flow. Although the formalism we present is applicable to binaries containing stars, planets, and/or compact objects, we focus on non-rotating solar-type stars with stellar or planetary companions. Our primary results include the following: (1) The linear tidal solution almost universally used in studies of binary evolution is unstable over much of the parameter space in which it is employed. More specifically, resonantly excited internal gravity waves in solar-type stars are nonlinearly unstable to parametric resonance for companion masses M' ∼> 10-100 M ⊕ at orbital periods P ≈ 1-10 days. The nearly static 'equilibrium' tidal distortion is, however, stable to parametric resonance except for solar binaries with P ∼ 3 [P/10 days] for a solar-type star) and drives them as a single coherent unit with growth rates that are a factor of ≈N faster than the standard three-wave parametric instability. These are local instabilities viewed through the lens of global analysis; the coherent global growth rate follows local rates in the regions where the shear is strongest. In solar-type stars, the dynamical tide is unstable to this collective version of the parametric instability for even sub-Jupiter companion masses with P ∼< a month. (4) Independent of the parametric instability, the dynamical and equilibrium tides excite a wide range of stellar p-modes and g-modes by nonlinear inhomogeneous forcing

  9. Physical Structure of Four Symbiotic Binaries

    Science.gov (United States)

    Kenyon, Scott J. (Principal Investigator)

    1997-01-01

    Disk accretion powers many astronomical objects, including pre-main sequence stars, interacting binary systems, and active galactic nuclei. Unfortunately, models developed to explain the behavior of disks and their surroundings - boundary layers, jets, and winds - lack much predictive power, because the physical mechanism driving disk evolution - the viscosity - is not understood. Observations of many types of accreting systems are needed to constrain the basic physics of disks and provide input for improved models. Symbiotic stars are an attractive laboratory for studying physical phenomena associated with disk accretion. These long period binaries (P(sub orb) approx. 2-3 yr) contain an evolved red giant star, a hot companion, and an ionized nebula. The secondary star usually is a white dwarf accreting material from the wind of its red giant companion. A good example of this type of symbiotic is BF Cygni: our analysis shows that disk accretion powers the nuclear burning shell of the hot white dwarf and also manages to eject material perpendicular to the orbital plane (Mikolajewska, Kenyon, and Mikolajewski 1989). The hot components in other symbiotic binaries appear powered by tidal overflow from a very evolved red giant companion. We recently completed a study of CI Cygni and demonstrated that the accreting secondary is a solar-type main sequence star, rather than a white dwarf (Kenyon et aL 1991). This project continued our study of symbiotic binary systems. Our general plan was to combine archival ultraviolet and optical spectrophotometry with high quality optical radial velocity observations to determine the variation of line and continuum sources as functions of orbital phase. We were very successful in generating orbital solutions and phasing UV+optical spectra for five systems: AG Dra, V443 Her, RW Hya, AG Peg, and AX Per. Summaries of our main results for these systems appear below. A second goal of our project was to consider general models for the

  10. The Binary Ties that Bind

    Science.gov (United States)

    Rose, Mike

    2008-01-01

    As any reader of "About Campus" knows, binary oppositions contribute to the definitions of institutional types--the trade school versus the liberal arts college, for example. They help define disciplines and subdisciplines and the status differentials among them: consider the difference in intellectual cachet as one moves from linguistics to…

  11. Optimally cloned binary coherent states

    DEFF Research Database (Denmark)

    Mueller, C. R.; Leuchs, G.; Marquardt, Ch

    2017-01-01

    their quantum-optimal clones. We analyze the Wigner function and the cumulants of the clones, and we conclude that optimal cloning of binary coherent states requires a nonlinearity above second order. We propose several practical and near-optimal cloning schemes and compare their cloning fidelity to the optimal...

  12. Subluminous X-ray binaries

    NARCIS (Netherlands)

    Armas Padilla, M.

    2013-01-01

    The discovery of the first X-ray binary, Scorpius X-1, by Giacconi et al. (1962), marked the birth of X-ray astronomy. Following that discovery, many additional X-ray sources where found with the first generation of X-ray rockets and observatories (e.g., UHURU and Einstein). The short-timescale

  13. Misclassification in binary choice models

    Czech Academy of Sciences Publication Activity Database

    Meyer, B. D.; Mittag, Nikolas

    2017-01-01

    Roč. 200, č. 2 (2017), s. 295-311 ISSN 0304-4076 R&D Projects: GA ČR(CZ) GJ16-07603Y Institutional support: Progres-Q24 Keywords : measurement error * binary choice models * program take-up Subject RIV: AH - Economics OBOR OECD: Economic Theory Impact factor: 1.633, year: 2016

  14. Misclassification in binary choice models

    Czech Academy of Sciences Publication Activity Database

    Meyer, B. D.; Mittag, Nikolas

    2017-01-01

    Roč. 200, č. 2 (2017), s. 295-311 ISSN 0304-4076 Institutional support: RVO:67985998 Keywords : measurement error * binary choice models * program take-up Subject RIV: AH - Economics OBOR OECD: Economic Theory Impact factor: 1.633, year: 2016

  15. Binary logic is rich enough

    International Nuclear Information System (INIS)

    Zapatrin, R.R.

    1992-01-01

    Given a finite ortholattice L, the *-semigroup is explicitly built whose annihilator ortholattice is isomorphic to L. Thus, it is shown that any finite quantum logic is the additive part of a binary logic. Some areas of possible applications are outlined. 7 refs

  16. Human Relations Class. A Syllabus.

    Science.gov (United States)

    Guillen, Mary A.

    A junior high level human relations class develops human interaction and oral communication skills. A week-by-week syllabus contains the following components: introduction of the students to each other and to the principles of body language, transactional analysis, and group interaction; behavior contracts; group dynamics topics and exercises;…

  17. Social Class and Work-Related Decisions: Measurement, Theory, and Social Mobility

    Science.gov (United States)

    Fouad, Nadya A.; Fitzpatrick, Mary E.

    2009-01-01

    In this reaction to Diemer and Ali's article, "Integrating Social Class Into Vocational Psychology: Theory and Practice Implications," the authors point out concerns with binary schema of social class, highlight the contribution of social class to the social cognitive career theory, argue for a more nuanced look at ways that work…

  18. Massive Black-Hole Binary Mergers: Dynamics, Environments & Expected Detections

    Science.gov (United States)

    Kelley, Luke Zoltan

    2018-05-01

    This thesis studies the populations and dynamics of massive black-hole binaries and their mergers, and explores the implications for electromagnetic and gravitational-wave signals that will be detected in the near future. Massive black-holes (MBH) reside in the centers of galaxies, and when galaxies merge, their MBH interact and often pair together. We base our study on the populations of MBH and galaxies from the `Illustris' cosmological hydrodynamic simulations. The bulk of the binary merger dynamics, however, are unresolved in cosmological simulations. We implement a suite of comprehensive physical models for the merger process, like dynamical friction and gravitational wave emission, which are added in post-processing. Contrary to many previous studies, we find that the most massive binaries with near equal-mass companions are the most efficient at coalescing; though the process still typically takes gigayears.From the data produced by these MBH binary populations and their dynamics, we calculate the expected gravitational wave (GW) signals: both the stochastic, GW background of countless unresolved sources, and the GW foreground of individually resolvable binaries which resound above the noise. Ongoing experiments, called pulsar timing arrays, are sensitive to both of these types of signals. We find that, while the current lack of detections is unsurprising, both the background and foreground will plausibly be detected in the next decade. Unlike previous studies which have predicted the foreground to be significantly harder to detect than the background, we find their typical amplitudes are comparable.With traditional electromagnetic observations, there has also been a dearth of confirmed detections of MBH binary systems. We use our binaries, combined with models of emission from accreting MBH systems, to make predictions for the occurrence rate of systems observable using photometric, periodic-variability surveys. These variables should be detectable in

  19. L’interaction orale en présentiel et à distance : une étude de cas en classe de français

    OpenAIRE

    Gemma Delgar Farrés

    2015-01-01

    Dans cet article, nous analysons les différences qui existent entre l’interaction orale directe et l’interaction orale à distance à partir de l’enregistrement d’une tâche d’expression orale réalisée par deux groupes de deux étudiants de français d’un niveau B1 face à face et par visioconférence. Ces deux enregistrements ont été transcrits avec le logiciel CLAN du programme CHILDES et ce logiciel nous a permis de caractériser les deux types d’interaction orale au niveau des pauses, des répétit...

  20. Modeling AGN outbursts from supermassive black hole binaries

    Directory of Open Access Journals (Sweden)

    Tanaka T.

    2012-12-01

    Full Text Available When galaxies merge to assemble more massive galaxies, their nuclear supermassive black holes (SMBHs should form bound binaries. As these interact with their stellar and gaseous environments, they will become increasingly compact, culminating in inspiral and coalescence through the emission of gravitational radiation. Because galaxy mergers and interactions are also thought to fuel star formation and nuclear black hole activity, it is plausible that such binaries would lie in gas-rich environments and power active galactic nuclei (AGN. The primary difference is that these binaries have gravitational potentials that vary – through their orbital motion as well as their orbital evolution – on humanly tractable timescales, and are thus excellent candidates to give rise to coherent AGN variability in the form of outbursts and recurrent transients. Although such electromagnetic signatures would be ideally observed concomitantly with the binary’s gravitational-wave signatures, they are also likely to be discovered serendipitously in wide-field, high-cadence surveys; some may even be confused for stellar tidal disruption events. I discuss several types of possible “smoking gun” AGN signatures caused by the peculiar geometry predicted for accretion disks around SMBH binaries.

  1. Astronomy of binary and multiple stars

    International Nuclear Information System (INIS)

    Tokovinin, A.A.

    1984-01-01

    Various types of binary stars and methods for their observation are described in a popular form. Some models of formation and evolution of binary and multiple star systems are presented. It is concluded that formation of binary and multiple stars is a regular stage in the process of star production

  2. Formation and evolution of compact binaries

    NARCIS (Netherlands)

    Sluijs, Marcel Vincent van der

    2006-01-01

    In this thesis we investigate the formation and evolution of compact binaries. Chapters 2 through 4 deal with the formation of luminous, ultra-compact X-ray binaries in globular clusters. We show that the proposed scenario of magnetic capture produces too few ultra-compact X-ray binaries to explain

  3. Interactive Highlighting for Just-in-Time Formative Assessment during Whole-Class Instruction: Effects on Vocabulary Learning and Reading Comprehension

    Science.gov (United States)

    Ponce, Héctor R.; Mayer, Richard E.; Figueroa, Verónica A.; López, Mario J.

    2018-01-01

    This article examines the effectiveness of a software that supports formative assessment in real-time of learners' vocabulary knowledge through an interactive highlighting method. Students in a classroom are given a passage on their computer screen and asked to highlight the words they do not understand. This information is summarized on the…

  4. Individual children's interactions with teachers, peers, and tasks : The applicability of the inCLASS Pre-K in Danish preschools

    NARCIS (Netherlands)

    Slot, Pauline L.; Bleses, Dorthe

    2018-01-01

    Social competence in a preschool setting, defined as children's success in interacting with peers and teachers, and showing adaptive classroom and task-related behavior, has shown to be predictive of subsequent positive social-emotional, academic, and school outcomes. Social competence is partly

  5. Binary Linear-Time Erasure Decoding for Non-Binary LDPC codes

    OpenAIRE

    Savin, Valentin

    2009-01-01

    In this paper, we first introduce the extended binary representation of non-binary codes, which corresponds to a covering graph of the bipartite graph associated with the non-binary code. Then we show that non-binary codewords correspond to binary codewords of the extended representation that further satisfy some simplex-constraint: that is, bits lying over the same symbol-node of the non-binary graph must form a codeword of a simplex code. Applied to the binary erasure channel, this descript...

  6. An Exact Solution of the Binary Singular Problem

    Directory of Open Access Journals (Sweden)

    Baiqing Sun

    2014-01-01

    Full Text Available Singularity problem exists in various branches of applied mathematics. Such ordinary differential equations accompany singular coefficients. In this paper, by using the properties of reproducing kernel, the exact solution expressions of dual singular problem are given in the reproducing kernel space and studied, also for a class of singular problem. For the binary equation of singular points, I put it into the singular problem first, and then reuse some excellent properties which are applied to solve the method of solving differential equations for its exact solution expression of binary singular integral equation in reproducing kernel space, and then obtain its approximate solution through the evaluation of exact solutions. Numerical examples will show the effectiveness of this method.

  7. International conference entitled Zdeněk Kopal’s Binary Star Legacy

    CERN Document Server

    Drechsel, Horst; ZDENEK KOPAL’S BINARY STAR LEGACY

    2005-01-01

    An international conference entitled "Zdenek Kopal's Binary Star Legacy" was held on the occasion of the late Professor Kopal's 90th birthday in his home town of Litomyšl/Czech Republic and dedicated to the memory of one of the leading astronomers of the 20th century. Professor Kopal, who devoted 60 years of his scientific life to the exploration of close binary systems, initiated a breakthrough in this field with his description of binary components as non-spherical stars deformed by gravity, with surfaces following Roche equipotentials. Such knowledge triggered the development of new branches of astrophysics dealing with the structure and evolution of close binaries and the interaction effects displayed by exciting objects such as cataclysmic variables, symbiotic stars or X-ray binaries. Contributions to this conference included praise of the achievements of a great astronomer and personal reminiscences brought forward by Kopal's former students and colleagues, and reflected the state of the art of the dyn...

  8. Mesoscopic electrohydrodynamic simulations of binary colloidal suspensions

    Science.gov (United States)

    Rivas, Nicolas; Frijters, Stefan; Pagonabarraga, Ignacio; Harting, Jens

    2018-04-01

    A model is presented for the solution of electrokinetic phenomena of colloidal suspensions in fluid mixtures. We solve the discrete Boltzmann equation with a Bhatnagar-Gross-Krook collision operator using the lattice Boltzmann method to simulate binary fluid flows. Solvent-solvent and solvent-solute interactions are implemented using a pseudopotential model. The Nernst-Planck equation, describing the kinetics of dissolved ion species, is solved using a finite difference discretization based on the link-flux method. The colloids are resolved on the lattice and coupled to the hydrodynamics and electrokinetics through appropriate boundary conditions. We present the first full integration of these three elements. The model is validated by comparing with known analytic solutions of ionic distributions at fluid interfaces, dielectric droplet deformations, and the electrophoretic mobility of colloidal suspensions. Its possibilities are explored by considering various physical systems, such as breakup of charged and neutral droplets and colloidal dynamics at either planar or spherical fluid interfaces.

  9. Learning from nature: binary cooperative complementary nanomaterials.

    Science.gov (United States)

    Su, Bin; Guo, Wei; Jiang, Lei

    2015-03-01

    In this Review, nature-inspired binary cooperative complementary nanomaterials (BCCNMs), consisting of two components with entirely opposite physiochemical properties at the nanoscale, are presented as a novel concept for the building of promising materials. Once the distance between the two nanoscopic components is comparable to the characteristic length of some physical interactions, the cooperation between these complementary building blocks becomes dominant and endows the macroscopic materials with novel and superior properties. The first implementation of the BCCNMs is the design of bio-inspired smart materials with superwettability and their reversible switching between different wetting states in response to various kinds of external stimuli. Coincidentally, recent studies on other types of functional nanomaterials contribute more examples to support the idea of BCCNMs, which suggests a potential yet comprehensive range of future applications in both materials science and engineering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Dual jets from binary black holes.

    Science.gov (United States)

    Palenzuela, Carlos; Lehner, Luis; Liebling, Steven L

    2010-08-20

    The coalescence of supermassive black holes--a natural outcome when galaxies merge--should produce gravitational waves and would likely be associated with energetic electromagnetic events. We have studied the coalescence of such binary black holes within an external magnetic field produced by the expected circumbinary disk surrounding them. Solving the Einstein equations to describe black holes interacting with surrounding plasma, we present numerical evidence for possible jets driven by these systems. Extending the process described by Blandford and Znajek for a single, spinning black hole, the picture that emerges suggests that the electromagnetic field extracts energy from the orbiting black holes, which ultimately merge and settle into the standard Blandford-Znajek scenario. Emissions along these jets could potentially be observable at large distances.

  11. Working Together in Class

    Directory of Open Access Journals (Sweden)

    Pateşan Marioara

    2017-12-01

    Full Text Available The scores obtained by the military students are very important as a lot of opportunities depend on them: the choice of the branch, selection for different in and off-campus activities, the appointment to the workplace and so on. A qualifier, regardless of its form of effective expression, can make a difference in a given context of issuing a value judgment, in relation to the student's performance assessment. In our research we tried to find out what motives students, what determines them to get actively involved in the tasks they are given and the ways we can improve their participation in classes and assignments. In order to have an educated generation we need to have not only well prepared teachers but ones that are open-minded, flexible and in pace with the methodological novelties that can improve the teaching learning process in class. Along the years we have noticed that in classes where students constituted a cohesive group with an increasing degree of interaction between members, the results were better than in a group that did not appreciate team-work. In this article we want to highlight the fact that a teacher can bring to class the appropriate methods and procedures can contribute decisively to the strengthening of the group cohesion and high scores.

  12. Subaltern Classes, Class Struggles and Hegemony : a Gramscian Approach

    Directory of Open Access Journals (Sweden)

    Ivete Simionatto

    2009-01-01

    Full Text Available This article sought to revive the concept of subaltern classes and their relation with other categories, particularly the State, civil society and hegemony in the thinking of Antonio Gramsci, as a support for contemporary class struggles. It also analyzes the relations between subaltern classes, common sense and ideology, as well as the forms of “overcoming” conceptualized by Gramsci, through the culture and philosophy of praxis. The paper revives the discussion of the subaltern classes, based on the original Gramscian formulation in the realm of Marxism, through the dialectic interaction between structure and superstructure, economy and politics. In addition to the conceptual revival, it indicates some elements that can support the discussion of the forms of subalternity found in contemporary reality and the possibilities for strengthening the struggles of these class layers, above all in moments of strong demobilization of popular participation.

  13. Models for the formation of binary and millisecond radio pulsars

    International Nuclear Information System (INIS)

    van den Heuvel, E.P.J.

    1984-01-01

    The peculiar combination of a relatively short pulse period and a relatively weak surface dipole magnetic field strength of binary radio pulsars finds a consistent explanation in terms of: (i) decay of the surface dipole component of neutron star magnetic fields on a timescale of (2-5).10 6 yrs, in combination with: (ii) spin up of the rotation of the neutron star during a subsequent mass-transfer phase. The two observed classes of binary radio pulsars (very close and very wide systems, respectively) are expected to have been formed by the later evolution of binaries consisting of a neutron star and a normal companion star, in which the companion was (considerably) more massive than the neutron star, or less massive than the neutron star, respectively. In the first case the companion of the neutron star in the final system will be a fairly massive white dwarf, in a circular orbit, or a neutron star in an eccentric orbit. In the second case the final companion to the neutron star will be a low-mass (approx. 0.3 Msub solar) helium white dwarf in a wide and nearly circular orbit. In systems of the second type the neutron star was most probably formed by the accretion-induced collapse of a white dwarf. This explains why PSR 1953+29 has a millisecond rotation period and why PSR 0820+02 has not. Binary coalescence models for the formation of the 1.5 millisecond pulsar appear to be viable. The companion to the neutron star may have been a low-mass red dwarf, a neutron star, or a massive (> 0.7 Msub solar) white dwarf. In the red-dwarf case the progenitor system probably was a CV binary in which the white dwarf collapsed by accretion. 66 references, 6 figures, 1 table

  14. Wide- and contact-binary formation in substructured young stellar clusters

    Science.gov (United States)

    Dorval, J.; Boily, C. M.; Moraux, E.; Roos, O.

    2017-02-01

    We explore with collisional gravitational N-body models the evolution of binary stars in initially fragmented and globally subvirial clusters of stars. Binaries are inserted in the (initially) clumpy configurations so as to match the observed distributions of the field-binary-stars' semimajor axes a and binary fraction versus primary mass. The dissolution rate of wide binaries is very high at the start of the simulations, and is much reduced once the clumps are eroded by the global infall. The transition between the two regimes is sharper as the number of stars N is increased, from N = 1.5 k up to 80 k. The fraction of dissolved binary stars increases only mildly with N, from ≈15 per cent to ≈25 per cent for the same range in N. We repeated the calculation for two initial system mean number densities of 6 per pc3 (low) and 400 per pc3 (high). We found that the longer free-fall time of the low-density runs allows for prolonged binary-binary interactions inside clumps and the formation of very tight (a ≈ 0.01 au) binaries by exchange collisions. This is an indication that the statistics of such compact binaries bear a direct link to their environment at birth. We also explore the formation of wide (a ≳ 5 × 104 au) binaries and find a low (≈0.01 per cent) fraction mildly bound to the central star cluster. The high-precision astrometric mission Gaia could identify them as outflowing shells or streams.

  15. Detecting Malicious Code by Binary File Checking

    Directory of Open Access Journals (Sweden)

    Marius POPA

    2014-01-01

    Full Text Available The object, library and executable code is stored in binary files. Functionality of a binary file is altered when its content or program source code is changed, causing undesired effects. A direct content change is possible when the intruder knows the structural information of the binary file. The paper describes the structural properties of the binary object files, how the content can be controlled by a possible intruder and what the ways to identify malicious code in such kind of files. Because the object files are inputs in linking processes, early detection of the malicious content is crucial to avoid infection of the binary executable files.

  16. Permutation Entropy for Random Binary Sequences

    Directory of Open Access Journals (Sweden)

    Lingfeng Liu

    2015-12-01

    Full Text Available In this paper, we generalize the permutation entropy (PE measure to binary sequences, which is based on Shannon’s entropy, and theoretically analyze this measure for random binary sequences. We deduce the theoretical value of PE for random binary sequences, which can be used to measure the randomness of binary sequences. We also reveal the relationship between this PE measure with other randomness measures, such as Shannon’s entropy and Lempel–Ziv complexity. The results show that PE is consistent with these two measures. Furthermore, we use PE as one of the randomness measures to evaluate the randomness of chaotic binary sequences.

  17. BSDB: A New Consistent Designation Scheme for Identifying Objects in Binary and Multiple Stars

    Directory of Open Access Journals (Sweden)

    Kovaleva D. A.

    2015-06-01

    Full Text Available The new consistent scheme for designation of objects in binary and multiple systems, BSDB, is described. It was developed in the frame of the Binary star DataBase, BDB (http://www.inasan.ru, due to necessity of a unified and consistent system for designation of objects in the database, and the name of the designation scheme was derived from that of the database. The BSDB scheme covers all types of observational data. Three classes of objects introduced within the BSDB nomenclature provide correct links between objects and data, what is especially important for complex multiple stellar systems. The final stage of establishing the BSDB scheme is compilation of the Identification List of Binaries, ILB, where all known objects in binary and multiple stars are presented with their BSDB identifiers along with identifiers according to major catalogues and lists.

  18. Toward the Discovery of a Novel Class of YAP–TEAD Interaction Inhibitors by Virtual Screening Approach Targeting YAP–TEAD Protein–Protein Interface

    Directory of Open Access Journals (Sweden)

    Floriane Gibault

    2018-05-01

    Full Text Available Intrinsically disordered protein YAP (yes-associated protein interacts with TEADs transcriptional factors family (transcriptional enhancer associated domain creating three interfaces. Interface 3, between the Ω-loop of YAP and a shallow pocket of TEAD was identified as the most important TEAD zone for YAP-TEAD interaction. Using the first X-ray structure of the hYAP50–71-hTEAD1209–426 complex (PDB 3KYS published in 2010, a protein-protein interaction inhibitors-enriched library (175,000 chemical compounds was screened against this hydrophobic pocket of TEAD. Four different chemical families have been identified and evaluated using biophysical techniques (thermal shift assay, microscale thermophoresis and in cellulo assays (luciferase activity in transfected HEK293 cells, RTqPCR in MDA-MB231 cells. A first promising hit with micromolar inhibition in the luciferase gene reporter assay was discovered. This hit also decreased mRNA levels of TEAD target genes.

  19. L’interaction orale en présentiel et à distance : une étude de cas en classe de français

    Directory of Open Access Journals (Sweden)

    Gemma Delgar Farrés

    2015-12-01

    Full Text Available Dans cet article, nous analysons les différences qui existent entre l’interaction orale directe et l’interaction orale à distance à partir de l’enregistrement d’une tâche d’expression orale réalisée par deux groupes de deux étudiants de français d’un niveau B1 face à face et par visioconférence. Ces deux enregistrements ont été transcrits avec le logiciel CLAN du programme CHILDES et ce logiciel nous a permis de caractériser les deux types d’interaction orale au niveau des pauses, des répétitions, des reformulations, de la longueur des énoncés, de la richesse lexicale, etc. Notre objectif est l’étude de l’influence du dispositif dans la communication orale à distance en cours de français.

  20. A ROSAT Survey of Contact Binary Stars

    Science.gov (United States)

    Geske, M. T.; Gettel, S. J.; McKay, T. A.

    2006-01-01

    Contact binary stars are common variable stars that are all believed to emit relatively large fluxes of X-rays. In this work we combine a large new sample of contact binary stars derived from the ROTSE-I telescope with X-ray data from the ROSAT All Sky Survey (RASS) to estimate the X-ray volume emissivity of contact binary stars in the Galaxy. We obtained X-ray fluxes for 140 contact binaries from the RASS, as well as two additional stars observed by the XMM-Newton observatory. From these data we confirm the emission of X-rays from all contact binary systems, with typical luminosities of approximately 1.0×1030 ergs s-1. Combining calculated luminosities with an estimated contact binary space density, we find that contact binaries do not have strong enough X-ray emission to account for a significant portion of the Galactic X-ray background.

  1. On the kinematics of visual binary and multiple stars of the FK4 cataloque

    International Nuclear Information System (INIS)

    Starikova, G.A.

    1981-01-01

    Kinematic features of single, binary and multiple stars are considered. To compare kinematics of such stars with the kinematics of single stars the data on positions and proper motions of those stars which are given in the basic catalogue FK4. Single as well as visual binary and multiple stars united because of their limited content in FK4 have been subdivided by spectra and classes of luminosity into groups with account for known kinematic peculiarities of various spectral groups. Kinematic features for the studied spectral groups are given. By the stars of the FK4 catalogue for various spectral classes the difference of kinematic features of single, visual binary and multiple stars is obtained. However the values of these differences need to be specified due to small number of stars included in five of six groups considered

  2. Binary evolution and observational constraints

    International Nuclear Information System (INIS)

    Loore, C. de

    1984-01-01

    The evolution of close binaries is discussed in connection with problems concerning mass and angular momentum losses. Theoretical and observational evidence for outflow of matter, leaving the system during evolution is given: statistics on total masses and mass ratios, effects of the accretion of the mass gaining component, the presence of streams, disks, rings, circumstellar envelopes, period changes, abundance changes in the atmosphere. The effects of outflowing matter on the evolution is outlined, and estimates of the fraction of matter expelled by the loser, and leaving the system, are given. The various time scales involved with evolution and observation are compared. Examples of non conservative evolution are discussed. Problems related to contact phases, on mass and energy losses, in connection with entropy changes are briefly analysed. For advanced stages the disruption probabilities for supernova explosions are examined. A global picture is given for the evolution of massive close binaries, from ZAMS, through WR phases, X-ray phases, leading to runaway pulsars or to a binary pulsar and later to a millisecond pulsar. (Auth.)

  3. X rays from radio binaries

    International Nuclear Information System (INIS)

    Apparao, K.M.V.

    1977-01-01

    Reference is made to the radio binary systems CC Cas, AR Lac, β Per (Algol), β Lyr, b Per and Cyg X-1. It is stated that a thermal interpretation of the radiation from Algol requires a much larger x-ray flux than the observed value of 3.8 x 10 -11 erg/cm 2 /sec/keV in the 2 to 6 keV energy range. Observations of some non-thermal flares, together with the small size of the radio source in Algol, indicate that the radio emission is non-thermal in nature. The radio emission is interpreted as synchrotron radiation and it is suggested that the observed x-ray emission is due to inverse Compton scattering of the light of the primary star by the radio electrons. The x-ray emission from other radio binaries is also calculated using this model. The energy for the radio electrons can arise from annihilation of magnetic lines connecting the binary stars, twisted by the rotation of the stars. (U.K.)

  4. Numerical Simulations of Wind Accretion in Symbiotic Binaries

    Science.gov (United States)

    de Val-Borro, M.; Karovska, M.; Sasselov, D.

    2009-08-01

    the mass loss from the AGB star. Our simulations of gravitationally focused wind accretion in symbiotic binaries show the formation of stream flows and enhanced accretion rates onto the compact component. We conclude that mass transfer through a focused wind is an important mechanism in wind accreting interacting binaries and can have a significant impact on the evolution of the binary itself and the individual components.

  5. NUMERICAL SIMULATIONS OF WIND ACCRETION IN SYMBIOTIC BINARIES

    International Nuclear Information System (INIS)

    De Val-Borro, M.; Karovska, M.; Sasselov, D.

    2009-01-01

    on the mass loss from the AGB star. Our simulations of gravitationally focused wind accretion in symbiotic binaries show the formation of stream flows and enhanced accretion rates onto the compact component. We conclude that mass transfer through a focused wind is an important mechanism in wind accreting interacting binaries and can have a significant impact on the evolution of the binary itself and the individual components.

  6. Micron-scale mapping of megagauss magnetic fields using optical polarimetry to probe hot electron transport in petawatt-class laser-solid interactions.

    Science.gov (United States)

    Chatterjee, Gourab; Singh, Prashant Kumar; Robinson, A P L; Blackman, D; Booth, N; Culfa, O; Dance, R J; Gizzi, L A; Gray, R J; Green, J S; Koester, P; Kumar, G Ravindra; Labate, L; Lad, Amit D; Lancaster, K L; Pasley, J; Woolsey, N C; Rajeev, P P

    2017-08-21

    The transport of hot, relativistic electrons produced by the interaction of an intense petawatt laser pulse with a solid has garnered interest due to its potential application in the development of innovative x-ray sources and ion-acceleration schemes. We report on spatially and temporally resolved measurements of megagauss magnetic fields at the rear of a 50-μm thick plastic target, irradiated by a multi-picosecond petawatt laser pulse at an incident intensity of ~10 20 W/cm 2 . The pump-probe polarimetric measurements with micron-scale spatial resolution reveal the dynamics of the magnetic fields generated by the hot electron distribution at the target rear. An annular magnetic field profile was observed ~5 ps after the interaction, indicating a relatively smooth hot electron distribution at the rear-side of the plastic target. This is contrary to previous time-integrated measurements, which infer that such targets will produce highly structured hot electron transport. We measured large-scale filamentation of the hot electron distribution at the target rear only at later time-scales of ~10 ps, resulting in a commensurate large-scale filamentation of the magnetic field profile. Three-dimensional hybrid simulations corroborate our experimental observations and demonstrate a beam-like hot electron transport at initial time-scales that may be attributed to the local resistivity profile at the target rear.

  7. A Simple Educational Method for the Measurement of Liquid Binary Diffusivities

    Science.gov (United States)

    Rice, Nicholas P.; de Beer, Martin P.; Williamson, Mark E.

    2014-01-01

    A simple low-cost experiment has been developed for the measurement of the binary diffusion coefficients of liquid substances. The experiment is suitable for demonstrating molecular diffusion to small or large undergraduate classes in chemistry or chemical engineering. Students use a cell phone camera in conjunction with open-source image…

  8. Multiplicity distributions in the binary fragmenting with inhibition at the transition line

    Energy Technology Data Exchange (ETDEWEB)

    Botet, R. [Paris-11 Univ., 91 - Orsay (France); Ploszajczak, M. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France)

    1996-03-01

    Properties of the fragment multiplicity distribution obtained in the sequential binary fragmentation process at the transition line are investigated. It is shown that the multifragment cumulant correlation functions have the hierarchical, linked-pair structure. Several distinct classes of multiplicity domains are clearly identified, and the asymptotic appearance of the Koba - Nielsen - Olesen scaling is discussed. (author). 36 refs.

  9. Multiplicity distributions in the binary fragmenting with inhibition at the transition line

    International Nuclear Information System (INIS)

    Botet, R.; Ploszajczak, M.

    1996-03-01

    Properties of the fragment multiplicity distribution obtained in the sequential binary fragmentation process at the transition line are investigated. It is shown that the multifragment cumulant correlation functions have the hierarchical, linked-pair structure. Several distinct classes of multiplicity domains are clearly identified, and the asymptotic appearance of the Koba - Nielsen - Olesen scaling is discussed. (author)

  10. eLISA eccentricity measurements as tracers of binary black hole formation

    OpenAIRE

    Nishizawa, Atsushi; Berti, Emanuele; Klein, Antoine; Sesana, Alberto

    2016-01-01

    Up to hundreds of black hole binaries individually resolvable by eLISA will coalesce in the Advanced LIGO/Virgo band within ten years, allowing for multi-band gravitational wave observations. Binaries formed via dynamical interactions in dense star clusters are expected to have eccentricities $e_0\\sim 10^{-3}$-$10^{-1}$ at the frequencies $f_0=10^{-2}$ Hz where eLISA is most sensitive, while binaries formed in the field should have negligible eccentricity in both frequency bands. We estimate ...

  11. Study of decolorisation of binary dye mixture by response surface methodology.

    Science.gov (United States)

    Khamparia, Shraddha; Jaspal, Dipika

    2017-10-01

    Decolorisation of a complex mixture of two different classes of textile dyes Direct Red 81 (DR81) and Rhodamine B (RHB), simulating one of the most important condition in real textile effluent was investigated onto deoiled Argemone Mexicana seeds (A. Mexicana). The adsorption behaviour of DR81 and RHB dyes was simultaneously analyzed in the mixture using derivative spectrophotometric method. Central composite design (CCD) was employed for designing the experiments for this complex binary mixture where significance of important parameters and possible interactions were analyzed by response surface methodology (RSM). Maximum adsorption of DR81 and RHB by A. Mexicana was obtained at 53 °C after 63.33 min with 0.1 g of adsorbent and 8 × 10 -6  M DR81, 12 × 10 -6  M RHB with composite desirability of 0.99. The predicted values for percentage removal of dyes from the mixture were in good agreement with the experimental values with R 2 > 96% for both the dyes. CCD superimposed RSM confirmed that presence of different dyes in a solution created a competition for the adsorbent sites and hence interaction of dyes was one of the most important factor to be studied to simulate the real effluent. The adsorbent showed remarkable adsorption capacities for both the dyes in the mixture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Astrophysical Implications of the Binary Black Hole Merger GW150914

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; hide

    2016-01-01

    The discovery of the gravitational-wave (GW) source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black hole (BH) systems that in spiral and merge within the age of the universe. Such BH mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively heavy BHs (> or approx. 25 Stellar Mass) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with a metallicity lower than about 12 of the solar value. The rate of binary-BH (BBH) mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (> or approx. 1/cu Gpc/yr) from both types of formation models. The low measured redshift (z approx. = 0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either BBH formation in a low-mass galaxy in the local universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-BH formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and GW detectors in space.

  13. Evolution of highly compact binary stellar systems in globular clusters

    International Nuclear Information System (INIS)

    Krolik, J.H.; Meiksin, A.; Joss, P.C.

    1984-01-01

    We have calculated the secular evolution of a highly compact binary stellar system, composed of a collapsed object and a low-mass secondary star, in the core of a globular cluster. The binary evolves under the combined influences of (i) gravitational radiation losses from the system, (ii) the evolution of the secondary star, (iii) the resultant gradual mass transfer, if any, from the secondary to the collapsed object, and (iv) occasional encounters with passing field stars. We calculate all these effects in detail, utilizing some simplifying approximations appropriate to low-mass secondaries. The times of encounters with field stars, and the initial parameter specifying those encounters, were chosen by use of a Monte Carlo technique; the subsequent gravitational interactions were calculated utilzing a three-body integrator, and the changes in the binary orbital parmeters were thereby determined. We carried out a total of 20 such evolutionary calculations for each of two cluster core densities (1 and 3 x 10 3 stars pc -3 ). Each calculation was continued until the binary was disrupted or until 2 x 10 10 yr had elapsed

  14. Observational studies of X-ray binary systems

    International Nuclear Information System (INIS)

    Klis, M. van der.

    1983-01-01

    The subject of Chapter 1 is theoretical. The other chapters, Ch. 2 to 6, contain original observational data and efforts towards their interpretation. Of these, Ch. 3, 4 and 5 deal with massive X-ray binaries, Ch. 6 with low-mass systems and Ch. 2 with Cygnus X-3, which we have not yet been able to assign to any of these two classes. The X-ray observations described were made with the COS-B satellite. Work based on UV and optical observations is described in Ch. 5. The UV observations were made with the IUE satellite, the optical observations at several ground-based observatories. (Auth.)

  15. Extreme isolation of WN3/O3 stars and implications for their evolutionary origin as the elusive stripped binaries

    Science.gov (United States)

    Smith, Nathan; Götberg, Ylva; de Mink, Selma E.

    2018-03-01

    Recent surveys of the Magellanic Clouds have revealed a subtype of Wolf-Rayet (WR) star with peculiar properties. WN3/O3 spectra exhibit both WR-like emission and O3 V-like absorption - but at lower luminosity than O3 V or WN stars. We examine the projected spatial distribution of WN3/O3 stars in the Large Magellanic Cloud as compared to O-type stars. Surprisingly, WN3/O3 stars are among the most isolated of all classes of massive stars; they have a distribution similar to red supergiants dominated by initial masses of 10-15 M⊙, and are far more dispersed than classical WR stars or luminous blue variables. Their lack of association with clusters of O-type stars suggests strongly that WN3/O3 stars are not the descendants of single massive stars (30 M⊙ or above). Instead, they are likely products of interacting binaries at lower initial mass (10-18 M⊙). Comparison with binary models suggests a probable origin with primaries in this mass range that were stripped of their H envelopes through non-conservative mass transfer by a low-mass secondary. We show that model spectra and positions on the Hertzsprung-Russell diagram for binary-stripped stars are consistent with WN3/O3 stars. Monitoring radial velocities with high-resolution spectra can test for low-mass companions or runaway velocities. With lower initial mass and environments that avoid very massive stars, the WN3/O3 stars fit expectations for progenitors of Type Ib and possibly Type Ibn supernovae.

  16. GALAXY ROTATION AND RAPID SUPERMASSIVE BINARY COALESCENCE

    Energy Technology Data Exchange (ETDEWEB)

    Holley-Bockelmann, Kelly [Vanderbilt University, Nashville, TN (United States); Khan, Fazeel Mahmood, E-mail: k.holley@vanderbilt.edu [Institute of Space Technology (IST), Islamabad (Pakistan)

    2015-09-10

    Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy.

  17. GALAXY ROTATION AND RAPID SUPERMASSIVE BINARY COALESCENCE

    International Nuclear Information System (INIS)

    Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood

    2015-01-01

    Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy

  18. A model of two-stream non-radial accretion for binary X-ray pulsars

    International Nuclear Information System (INIS)

    Lipunov, V.M.

    1982-01-01

    The general case of non-radial accretion is assumed to occur in real binary systems containing X-ray pulsars. The structure and the stability of the magnetosphere, the interaction between the magnetosphere and accreted matter, as well as evolution of neutron star in close binary system are examined within the framework of the two-stream model of nonradial accretion onto a magnetized neutron star. Observable parameters of X-ray pulsars are explained in terms of the model considered. (orig.)

  19. Introducing adapted Nelder & Mead's downhill simplex method to a fully automated analysis of eclipsing binaries

    OpenAIRE

    Prsa, A.; Zwitter, T.

    2004-01-01

    Eclipsing binaries are extremely attractive objects because absolute physical parameters (masses, luminosities, radii) of both components may be determined from observations. Since most efforts to extract these parameters were based on dedicated observing programs, existing modeling code is based on interactivity. Gaia will make a revolutionary advance in shear number of observed eclipsing binaries and new methods for automatic handling must be introduced and thoroughly tested. This paper foc...

  20. Unification of binary star ephemeris solutions

    International Nuclear Information System (INIS)

    Wilson, R. E.; Van Hamme, W.

    2014-01-01

    Time-related binary system characteristics such as orbital period, its rate of change, apsidal motion, and variable light-time delay due to a third body, are measured in two ways that can be mutually complementary. The older way is via eclipse timings, while ephemerides by simultaneous whole light and velocity curve analysis have appeared recently. Each has its advantages, for example, eclipse timings typically cover relatively long time spans while whole curves often have densely packed data within specific intervals and allow access to systemic properties that carry additional timing information. Synthesis of the two information sources can be realized in a one step process that combines several data types, with automated weighting based on their standard deviations. Simultaneous light-velocity-timing solutions treat parameters of apsidal motion and the light-time effect coherently with those of period and period change, allow the phenomena to interact iteratively, and produce parameter standard errors based on the quantity and precision of the curves and timings. The logic and mathematics of the unification algorithm are given, including computation of theoretical conjunction times as needed for generation of eclipse timing residuals. Automated determination of eclipse type, recovery from inaccurate starting ephemerides, and automated data weighting are also covered. Computational examples are given for three timing-related cases—steady period change (XY Bootis), apsidal motion (V526 Sagittarii), and the light-time effect due to a binary's reflex motion in a triple system (AR Aurigae). Solutions for all combinations of radial velocity, light curve, and eclipse timing input show consistent results, with a few minor exceptions.

  1. A Virtual Class Calculus

    DEFF Research Database (Denmark)

    Ernst, Erik; Ostermann, Klaus; Cook, William Randall

    2006-01-01

    Virtual classes are class-valued attributes of objects. Like virtual methods, virtual classes are defined in an object's class and may be redefined within subclasses. They resemble inner classes, which are also defined within a class, but virtual classes are accessed through object instances...... model for virtual classes has been a long-standing open question. This paper presents a virtual class calculus, vc, that captures the essence of virtual classes in these full-fledged programming languages. The key contributions of the paper are a formalization of the dynamic and static semantics of vc...

  2. APPLICATION OF GAS DYNAMICAL FRICTION FOR PLANETESIMALS. II. EVOLUTION OF BINARY PLANETESIMALS

    Energy Technology Data Exchange (ETDEWEB)

    Grishin, Evgeni; Perets, Hagai B. [Physics Department, Technion—Israel Institute of Technology, Haifa, 3200003 (Israel)

    2016-04-01

    One of the first stages of planet formation is the growth of small planetesimals and their accumulation into large planetesimals and planetary embryos. This early stage occurs long before the dispersal of most of the gas from the protoplanetary disk. At this stage gas–planetesimal interactions play a key role in the dynamical evolution of single intermediate-mass planetesimals (m{sub p} ∼ 10{sup 21}–10{sup 25} g) through gas dynamical friction (GDF). A significant fraction of all solar system planetesimals (asteroids and Kuiper-belt objects) are known to be binary planetesimals (BPs). Here, we explore the effects of GDF on the evolution of BPs embedded in a gaseous disk using an N-body code with a fiducial external force accounting for GDF. We find that GDF can induce binary mergers on timescales shorter than the disk lifetime for masses above m{sub p} ≳ 10{sup 22} g at 1 au, independent of the binary initial separation and eccentricity. Such mergers can affect the structure of merger-formed planetesimals, and the GDF-induced binary inspiral can play a role in the evolution of the planetesimal disk. In addition, binaries on eccentric orbits around the star may evolve in the supersonic regime, where the torque reverses and the binary expands, which would enhance the cross section for planetesimal encounters with the binary. Highly inclined binaries with small mass ratios, evolve due to the combined effects of Kozai–Lidov (KL) cycles with GDF which lead to chaotic evolution. Prograde binaries go through semi-regular KL evolution, while retrograde binaries frequently flip their inclination and ∼50% of them are destroyed.

  3. The interaction of representative members from two classes of antimycotics--the azoles and the allylamines--with cytochromes P-450 in steroidogenic tissues and liver.

    Science.gov (United States)

    Schuster, I

    1985-06-01

    Spectrophotometric studies with ketoconazole, clotrimazole and miconazole show strong type-II interactions with several cytochromes P-450, particularly (Ks greater than 10(7)M-1; pH7.4; 25 degrees C) with the 11 beta-hydroxylase of adrenal mitochondria, with the 17 alpha/20 lyase of testis microsomes and with some forms of cytochromes P-450 of liver. A tight binding of the azoles also occurs to the reduced cytochromes, giving rise to an impeded CO binding to the haem iron. The binding of the azoles to 11 beta-hydroxylase and 17 alpha/20 lyase is much tighter than the binding of endogenous substrates, and consequently inhibition of steroidogenesis will occur at these sites. The metabolism of xenobiotic substrates by the cytochromes P-450 of liver will also be severely impeded. In contrast, the allylamines naftifine and SF 86-327 are type-I substrates for a small portion of cytochromes P-450 of liver microsomes only and there is no spectral evidence for binding to the cytochromes P-450 involved in steroid biosynthesis.

  4. The occurrence of Binary Evolution Pulsators in the classical instability strip of RR Lyrae and Cepheid variables

    OpenAIRE

    Karczmarek, P.; Wiktorowicz, G.; Iłkiewicz, K.; Smolec, R.; Stępień, K.; Pietrzyński, G.; Gieren, W.; Belczynski, K.

    2016-01-01

    Single star evolution does not allow extremely low-mass stars to cross the classical instability strip (IS) during the Hubble time. However, within binary evolution framework low-mass stars can appear inside the IS once the mass transfer (MT) is taken into account. Triggered by a discovery of low-mass 0.26 Msun RR Lyrae-like variable in a binary system, OGLE-BLG-RRLYR-02792, we investigate the occurrence of similar binary components in the IS, which set up a new class of low-mass pulsators. T...

  5. Activity coefficients of solutes in binary solvents

    International Nuclear Information System (INIS)

    Gokcen, N.A.

    1982-01-01

    The activity coefficients in dilute ternary systems are discussed in detail by using the Margules equations. Analyses of some relevant data at high temperatures show that the sparingly dissolved solutes in binary solvents follow complex behavior even when the binary solvents are very nearly ideal. It is shown that the activity data on the solute or the binary system cannot permit computation of the remaining activities except for the regular solutions. It is also shown that a fourth-order equation is usually adequate in expressing the activity coefficient of a solute in binary solvents at high temperatures. When the activity data for a binary solvent are difficult to obtain in a certain range of composition, the activity data for a sparingly dissolved solute can be used to supplement determination of the binary activities

  6. Pulsar magnetospheres in binary systems

    Science.gov (United States)

    Ershkovich, A. I.; Dolan, J. F.

    1985-01-01

    The criterion for stability of a tangential discontinuity interface in a magnetized, perfectly conducting inviscid plasma is investigated by deriving the dispersion equation including the effects of both gravitational and centrifugal acceleration. The results are applied to neutron star magnetospheres in X-ray binaries. The Kelvin-Helmholtz instability appears to be important in determining whether MHD waves of large amplitude generated by instability may intermix the plasma effectively, resulting in accretion onto the whole star as suggested by Arons and Lea and leading to no X-ray pulsar behavior.

  7. The structures of binary compounds

    CERN Document Server

    Hafner, J; Jensen, WB; Majewski, JA; Mathis, K; Villars, P; Vogl, P; de Boer, FR

    1990-01-01

    - Up-to-date compilation of the experimental data on the structures of binary compounds by Villars and colleagues. - Coloured structure maps which order the compounds into their respective structural domains and present for the first time the local co-ordination polyhedra for the 150 most frequently occurring structure types, pedagogically very helpful and useful in the search for new materials with a required crystal structure. - Crystal co-ordination formulas: a flexible notation for the interpretation of solid-state structures by chemist Bill Jensen. - Recent important advances in unders

  8. Tomographic reconstruction of binary fields

    International Nuclear Information System (INIS)

    Roux, Stéphane; Leclerc, Hugo; Hild, François

    2012-01-01

    A novel algorithm is proposed for reconstructing binary images from their projection along a set of different orientations. Based on a nonlinear transformation of the projection data, classical back-projection procedures can be used iteratively to converge to the sought image. A multiscale implementation allows for a faster convergence. The algorithm is tested on images up to 1 Mb definition, and an error free reconstruction is achieved with a very limited number of projection data, saving a factor of about 100 on the number of projections required for classical reconstruction algorithms.

  9. Young and Waltzing Binary Stars

    Science.gov (United States)

    2001-10-01

    ADONIS Observes Low-mass Eclipsing System in Orion Summary A series of very detailed images of a binary system of two young stars have been combined into a movie . In merely 3 days, the stars swing around each other. As seen from the earth, they pass in front of each other twice during a full revolution, producing eclipses during which their combined brightness diminishes . A careful analysis of the orbital motions has now made it possible to deduce the masses of the two dancing stars . Both turn out to be about as heavy as our Sun. But while the Sun is about 4500 million years old, these two stars are still in their infancy. They are located some 1500 light-years away in the Orion star-forming region and they probably formed just 10 million years ago . This is the first time such an accurate determination of the stellar masses could be achieved for a young binary system of low-mass stars . The new result provides an important piece of information for our current understanding of how young stars evolve. The observations were obtained by a team of astronomers from Italy and ESO [1] using the ADaptive Optics Near Infrared System (ADONIS) on the 3.6-m telescope at the ESO La Silla Observatory. PR Photo 29a/01 : The RXJ 0529.4+0041 system before primary eclipse PR Photo 29b/01 : The RXJ 0529.4+0041 system at mid-primary eclipse PR Photo 29c/01 : The RXJ 0529.4+0041 system after primary eclipse PR Photo 29d/01 : The RXJ 0529.4+0041 system before secondary eclipse PR Photo 29e/01 : The RXJ 0529.4+0041 system at mid-secondary eclipse PR Photo 29f/01 : The RXJ 0529.4+0041 system after secondary eclipse PR Video Clip 06/01 : Video of the RXJ 0529.4+0041 system Binary stars and stellar masses Since some time, astronomers have noted that most stars seem to form in binary or multiple systems. This is quite fortunate, as the study of binary stars is the only way in which it is possible to measure directly one of the most fundamental quantities of a star, its mass. The mass of a

  10. Entropic Behavior of Binary Carbonaceous Mesophases

    Directory of Open Access Journals (Sweden)

    Alejandro D. Rey

    2008-08-01

    Full Text Available The Maier-Saupe model for binary mixtures of uniaxial discotic nematogens, formulated in a previous study [1], is used to compute and characterize orientational entropy [2] and orientational specific heat. These thermodynamic quantities are used to determine mixture type (ideal or non-ideal which arise due to their different intrinsic properties, determined by the molecular weight asymmetry ΔMw and the molecular interaction parameter β. These molecular properties are also used to characterize the critical concentration where the mixture behaves like a single component system and exhibits the minimum nematic to isotropic (NI transition temperature (pseudo-pure mixture. A transition within the nematic phase takes place at this specific concentration. According to the Maier-Saupe model, in a single mesogen, entropy at NI transition is a universal value; in this work we quantify the mixing effect on this universal property. The results and analysis provide a new tool to characterize molecular interaction and molecular weight differences in mesogenic mixtures using standard calorimetric measurements.

  11. Microlensing Signature of Binary Black Holes

    Science.gov (United States)

    Schnittman, Jeremy; Sahu, Kailash; Littenberg, Tyson

    2012-01-01

    We calculate the light curves of galactic bulge stars magnified via microlensing by stellar-mass binary black holes along the line-of-sight. We show the sensitivity to measuring various lens parameters for a range of survey cadences and photometric precision. Using public data from the OGLE collaboration, we identify two candidates for massive binary systems, and discuss implications for theories of star formation and binary evolution.

  12. Design and Implement a Digital H{sub {infinity}}Robust Controller for a MW-Class PMSG-Based Grid-Interactive Wind Energy Conversion System

    Energy Technology Data Exchange (ETDEWEB)

    Howlander, Abdul Motin [Faculty of Engineering, Univ. of the Ryukyus, Okinawa (Japan); Urasaki, Naomitsu [Faculty of Engineering, Univ. of the Ryukyus, Okinawa (Japan); Yona, Atsushi [Faculty of Engineering, Univ. of the Ryukyus, Okinawa (Japan); Senjyu, Tomonobu [Faculty of Engineering, Univ. of the Ryukyus, Okinawa (Japan); Saber, Ahmed Yousuf [Operation Technology, Irvine, CA (United States)

    2013-04-15

    A digital H{sub {infinity}}controller for a permanent magnet synchronous generator (PMSG) based wind energy conversion system (WECS) is presented. Wind energy is an uncertain fluctuating resource which requires a tight control management. So, it is still an exigent task for the control design engineers. The conventional proportional-integral (PI) control is not ideal during high turbulence wind velocities, and the nonlinear behavior of the power converters. These are raising interest towards the robust control concepts. The robust design is to find a controller, for a given system, such that the closed-loop system becomes robust that assurance high-integrity and fault tolerant control system, robust H{sub {infinity}}control theory has befallen a standard design method of choice over the past two decades in industrial control applications. The robust H{sub {infinity}}control theory is also gaining eminence in the WECS. Due to the implementation complexity for the continuous H{sub {infinity}}controller, and availability of the high speedy micro-controllers, the design of a sample-data or a digital H{sub {infinity}}controller is very important for the realistic implementation. But there isn’t a single research to evaluate the performance of the digital H{sub {infinity}}controller for the WECS. In this paper, the proposed digital H{sub {infinity}}controller schemes comprise for the both generator and grid interactive power converters, and the control performances are compared with the conventional PI controller and the fuzzy controller. Simulation results confirm the efficacy of the proposed method Energies 2013, 6 2085 which are ensured the WECS stabilities, mitigate shaft stress, and improving the DC-link voltage and output power qualities.

  13. Investigation on heat transfer analysis and its effect on a multi-mode, beam-wave interaction for a 140 GHz, MW-class gyrotron

    Science.gov (United States)

    Liu, Qiao; Liu, Yinghui; Chen, Zhaowei; Niu, Xinjian; Li, Hongfu; Xu, Jianhua

    2018-04-01

    The interaction cavity of a 140 GHz, 1 MW continuous wave gyrotron developed in UESTC will be loaded with a very large heat load in the inner surface during operation. In order to reduce the heat, the axial wedge grooves of the outside surface of the cavity are considered and employed as the heat radiation structure. Thermoanalysis and structural analysis were discussed in detail to obtain the effects of heat on the cavity. In thermoanalysis, the external coolant-flow rates ranging from 20 L/min to 50 L/min were considered, and the distribution of wall loading was loaded as the heat flux source. In structural analysis, the cavity's deformation caused by the loads of heat and pressure was calculated. Compared with a non-deformed cavity, the effects of deformation on the performance of a cavity were discussed. For a cold-cavity, the results show that the quality factor would be reduced by 72, 89, 99 and 171 at the flow rates of 50 L/min, 40 L/min, 30 L/min and 20 L/min, respectively. Correspondingly, the cold-cavity frequencies would be decreased by 0.13 GHz, 0.15 GHz, 0.19 GHz and 0.38 GHz, respectively. For a hot-cavity, the results demonstrate that the output port frequencies would be dropped down, but the offset would be gradually decreased with increasing coolant-flow rate. Meanwhile, the output powers would be reduced dramatically with decreasing coolant-flow rate. In addition, when the coolant-flow rate reaches 40 L/min, the output power and the frequency are just reduced by 30 kW and 0.151 GHz, respectively.

  14. Design and Implement a Digital H∞ Robust Controller for a MW-Class PMSG-Based Grid-Interactive Wind Energy Conversion System

    Directory of Open Access Journals (Sweden)

    Tomonobu Senjyu

    2013-04-01

    Full Text Available A digital H∞ controller for a permanent magnet synchronous generator (PMSG based wind energy conversion system (WECS is presented. Wind energy is an uncertain fluctuating resource which requires a tight control management. So, it is still an exigent task for the control design engineers. The conventional proportional-integral (PI control is not ideal during high turbulence wind velocities, and the nonlinear behavior of the power converters. These are raising interest towards the robust control concepts. The robust design is to find a controller, for a given system, such that the closed-loop system becomes robust that assurance high-integrity and fault tolerant control system, robust H∞ control theory has befallen a standard design method of choice over the past two decades in industrial control applications. The robust H∞ control theory is also gaining eminence in the WECS. Due to the implementation complexity for the continuous H∞ controller, and availability of the high speedy micro-controllers, the design of a sample-data or a digital H∞ controller is very important for the realistic implementation. But there isn’t a single research to evaluate the performance of the digital H∞ controller for the WECS. In this paper, the proposed digital H∞ controller schemes comprise for the both generator and grid interactive power converters, and the control performances are compared with the conventional PI controller and the fuzzy controller. Simulation results confirm the efficacy of the proposed method Energies 2013, 6 2085 which are ensured the WECS stabilities, mitigate shaft stress, and improving the DC-link voltage and output power qualities.

  15. Interaction between harmane, a class of β-carboline alkaloids, and the CA1 serotonergic system in modulation of memory acquisition.

    Science.gov (United States)

    Nasehi, Mohammad; Ghadimi, Fatemeh; Khakpai, Fatemeh; Zarrindast, Mohammad-Reza

    2017-09-01

    This study set to assess the involvement of dorsal hippocampus (CA1) serotonergic system on harmane induced memory acquisition deficit. We used one trial step-down inhibitory avoidancetask to evaluate memory retention and then, open field test to evaluate locomotor activity in adult male NMRI mice. The results showed that pre-training intra-peritoneal (i.p.) administration of harmane (12mg/kg) induced impairment of memory acquisition. Pre-training intra-CA1 administration of 5-HT1B/1D receptor agonist (CP94253; 0.5 and 5ng/mouse) and 5-HT2A/2B/2C receptor agonist (α-methyl 5-HT; 50ng/mouse) impaired memory acquisition. Furthermore, intra-CA1 administration of 5-HT1B/1D receptor antagonist (GR127935; 0.5ng/mouse) and 5-HT2 receptor antagonist (cinancerine; 5ng/mouse) improved memory acquisition. In addition, pre-training intra-CA1 injection of sub-threshold dose of CP94253 (0.05ng/mouse) and α-methyl 5-HT (5ng/mouse) potentiated impairment of memory acquisition induced by harmane (12mg/kg, i.p.). On the other hand, pre-training intra-CA1 infusion of sub-threshold dose of GR127935 (0.05ng/mouse) and cinancerine (0.5ng/mouse) with the administration of harmane (12mg/kg, i.p.) weakened impairment of memory acquisition. Moreover, all above doses of drugs did not change locomotor activity. The present findings suggest that there is an interaction between harmane and the CA1 serotonergic system in modulation of memory acquisition. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  16. Evolution of Binary Supermassive Black Holes in Rotating Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Rasskazov, Alexander; Merritt, David [School of Physics and Astronomy and Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623 (United States)

    2017-03-10

    The interaction of a binary supermassive black hole with stars in a galactic nucleus can result in changes to all the elements of the binary’s orbit, including the angles that define its orientation. If the nucleus is rotating, the orientation changes can be large, causing large changes in the binary’s orbital eccentricity as well. We present a general treatment of this problem based on the Fokker–Planck equation for f , defined as the probability distribution for the binary’s orbital elements. First- and second-order diffusion coefficients are derived for the orbital elements of the binary using numerical scattering experiments, and analytic approximations are presented for some of these coefficients. Solutions of the Fokker–Planck equation are then derived under various assumptions about the initial rotational state of the nucleus and the binary hardening rate. We find that the evolution of the orbital elements can become qualitatively different when we introduce nuclear rotation: (1) the orientation of the binary’s orbit evolves toward alignment with the plane of rotation of the nucleus and (2) binary orbital eccentricity decreases for aligned binaries and increases for counteraligned ones. We find that the diffusive (random-walk) component of a binary’s evolution is small in nuclei with non-negligible rotation, and we derive the time-evolution equations for the semimajor axis, eccentricity, and inclination in that approximation. The aforementioned effects could influence gravitational wave production as well as the relative orientation of host galaxies and radio jets.

  17. Survival of planets around shrinking stellar binaries.

    Science.gov (United States)

    Muñoz, Diego J; Lai, Dong

    2015-07-28

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov-Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like.

  18. Contact Binaries on Their Way Towards Merging

    Science.gov (United States)

    Gazeas, K.

    2015-07-01

    Contact binaries are the most frequently observed type of eclipsing star system. They are small, cool, low-mass binaries belonging to a relatively old stellar population. They follow certain empirical relationships that closely connect a number of physical parameters with each other, largely because of constraints coming from the Roche geometry. As a result, contact binaries provide an excellent test of stellar evolution, specifically for stellar merger scenarios. Observing campaigns by many authors have led to the cataloging of thousands of contact binaries and enabled statistical studies of many of their properties. A large number of contact binaries have been found to exhibit extraordinary behavior, requiring follow-up observations to study their peculiarities in detail. For example, a doubly-eclipsing quadruple system consisting of a contact binary and a detached binary is a highly constrained system offering an excellent laboratory to test evolutionary theories for binaries. A new observing project was initiated at the University of Athens in 2012 in order to investigate the possible lower limit for the orbital period of binary systems before coalescence, prior to merging.

  19. On the Binary Nature of Massive Blue Hypergiants: High-resolution X-Ray Spectroscopy Suggests That Cyg OB2 12 is a Colliding Wind Binary

    Energy Technology Data Exchange (ETDEWEB)

    Oskinova, L. M.; Hamann, W.-R.; Shenar, T.; Sander, A. A. C.; Todt, H.; Hainich, R. [Institute for Physics and Astronomy, University Potsdam, D-14476 Potsdam (Germany); Huenemoerder, D. P. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, 70 Vassar St., Cambridge, MA 02139 (United States); Ignace, R., E-mail: lida@astro.physik.uni-potsdam.de [Department of Physics and Astronomy, East Tennessee State University, Johnson City, TN 37663 (United States)

    2017-08-10

    The blue hypergiant Cyg OB2 12 (B3Ia{sup +}) is a representative member of the class of very massive stars in a poorly understood evolutionary stage. We obtained its high-resolution X-ray spectrum using the Chandra observatory. PoWR model atmospheres were calculated to provide realistic wind opacities and to establish the wind density structure. We find that collisional de-excitation is the dominant mechanism depopulating the metastable upper levels of the forbidden lines of the He-like ions Si xiv and Mg xii. Comparison between the model and observations reveals that X-ray emission is produced in a dense plasma, which could reside only at the photosphere or in a colliding wind zone between binary components. The observed X-ray spectra are well-fitted by thermal plasma models, with average temperatures in excess of 10 MK. The wind speed in Cyg OB2 12 is not high enough to power such high temperatures, but the collision of two winds in a binary system can be sufficient. We used archival data to investigate the X-ray properties of other blue hypergiants. In general, stars of this class are not detected as X-ray sources. We suggest that our new Chandra observations of Cyg OB2 12 can be best explained if Cyg OB2 12 is a colliding wind binary possessing a late O-type companion. This makes Cyg OB2 12 only the second binary system among the 16 known Galactic hypergiants. This low binary fraction indicates that the blue hypergiants are likely products of massive binary evolution during which they either accreted a significant amount of mass or already merged with their companions.

  20. Fast Solution in Sparse LDA for Binary Classification

    Science.gov (United States)

    Moghaddam, Baback

    2010-01-01

    An algorithm that performs sparse linear discriminant analysis (Sparse-LDA) finds near-optimal solutions in far less time than the prior art when specialized to binary classification (of 2 classes). Sparse-LDA is a type of feature- or variable- selection problem with numerous applications in statistics, machine learning, computer vision, computational finance, operations research, and bio-informatics. Because of its combinatorial nature, feature- or variable-selection problems are NP-hard or computationally intractable in cases involving more than 30 variables or features. Therefore, one typically seeks approximate solutions by means of greedy search algorithms. The prior Sparse-LDA algorithm was a greedy algorithm that considered the best variable or feature to add/ delete to/ from its subsets in order to maximally discriminate between multiple classes of data. The present algorithm is designed for the special but prevalent case of 2-class or binary classification (e.g. 1 vs. 0, functioning vs. malfunctioning, or change versus no change). The present algorithm provides near-optimal solutions on large real-world datasets having hundreds or even thousands of variables or features (e.g. selecting the fewest wavelength bands in a hyperspectral sensor to do terrain classification) and does so in typical computation times of minutes as compared to days or weeks as taken by the prior art. Sparse LDA requires solving generalized eigenvalue problems for a large number of variable subsets (represented by the submatrices of the input within-class and between-class covariance matrices). In the general (fullrank) case, the amount of computation scales at least cubically with the number of variables and thus the size of the problems that can be solved is limited accordingly. However, in binary classification, the principal eigenvalues can be found using a special analytic formula, without resorting to costly iterative techniques. The present algorithm exploits this analytic

  1. Fast optimization of binary clusters using a novel dynamic lattice searching method

    International Nuclear Information System (INIS)

    Wu, Xia; Cheng, Wen

    2014-01-01

    Global optimization of binary clusters has been a difficult task despite of much effort and many efficient methods. Directing toward two types of elements (i.e., homotop problem) in binary clusters, two classes of virtual dynamic lattices are constructed and a modified dynamic lattice searching (DLS) method, i.e., binary DLS (BDLS) method, is developed. However, it was found that the BDLS can only be utilized for the optimization of binary clusters with small sizes because homotop problem is hard to be solved without atomic exchange operation. Therefore, the iterated local search (ILS) method is adopted to solve homotop problem and an efficient method based on the BDLS method and ILS, named as BDLS-ILS, is presented for global optimization of binary clusters. In order to assess the efficiency of the proposed method, binary Lennard-Jones clusters with up to 100 atoms are investigated. Results show that the method is proved to be efficient. Furthermore, the BDLS-ILS method is also adopted to study the geometrical structures of (AuPd) 79 clusters with DFT-fit parameters of Gupta potential

  2. SEARCHING FOR BINARY Y DWARFS WITH THE GEMINI MULTI-CONJUGATE ADAPTIVE OPTICS SYSTEM (GeMS)

    International Nuclear Information System (INIS)

    Opitz, Daniela; Tinney, C. G.; Faherty, Jacqueline K.; Sweet, Sarah; Gelino, Christopher R.; Kirkpatrick, J. Davy

    2016-01-01

    The NASA Wide-field Infrared Survey Explorer (WISE) has discovered almost all the known members of the new class of Y-type brown dwarfs. Most of these Y dwarfs have been identified as isolated objects in the field. It is known that binaries with L- and T-type brown dwarf primaries are less prevalent than either M-dwarf or solar-type primaries, they tend to have smaller separations and are more frequently detected in near-equal mass configurations. The binary statistics for Y-type brown dwarfs, however, are sparse, and so it is unclear if the same trends that hold for L- and T-type brown dwarfs also hold for Y-type ones. In addition, the detection of binary companions to very cool Y dwarfs may well be the best means available for discovering even colder objects. We present results for binary properties of a sample of five WISE Y dwarfs with the Gemini Multi-Conjugate Adaptive Optics System. We find no evidence for binary companions in these data, which suggests these systems are not equal-luminosity (or equal-mass) binaries with separations larger than ∼0.5–1.9 AU. For equal-mass binaries at an age of 5 Gyr, we find that the binary binding energies ruled out by our observations (i.e., 10 42 erg) are consistent with those observed in previous studies of hotter ultra-cool dwarfs

  3. Be discs in coplanar circular binaries: Phase-locked variations of emission lines

    Science.gov (United States)

    Panoglou, Despina; Faes, Daniel M.; Carciofi, Alex C.; Okazaki, Atsuo T.; Baade, Dietrich; Rivinius, Thomas; Borges Fernandes, Marcelo

    2018-01-01

    In this paper, we present the first results of radiative transfer calculations on decretion discs of binary Be stars. A smoothed particle hydrodynamics code computes the structure of Be discs in coplanar circular binary systems for a range of orbital and disc parameters. The resulting disc configuration consists of two spiral arms, and this can be given as input into a Monte Carlo code, which calculates the radiative transfer along the line of sight for various observational coordinates. Making use of the property of steady disc structure in coplanar circular binaries, observables are computed as functions of the orbital phase. Some orbital-phase series of line profiles are given for selected parameter sets under various viewing angles, to allow comparison with observations. Flat-topped profiles with and without superimposed multiple structures are reproduced, showing, for example, that triple-peaked profiles do not have to be necessarily associated with warped discs and misaligned binaries. It is demonstrated that binary tidal effects give rise to phase-locked variability of the violet-to-red (V/R) ratio of hydrogen emission lines. The V/R ratio exhibits two maxima per cycle; in certain cases those maxima are equal, leading to a clear new V/R cycle every half orbital period. This study opens a way to identifying binaries and to constraining the parameters of binary systems that exhibit phase-locked variations induced by tidal interaction with a companion star.

  4. Where are the Binaries? Results of a Long-term Search for Radial Velocity Binaries in Proto-planetary Nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Hrivnak, Bruce J.; Lu, Wenxian [Department of Physics and Astronomy, Valparaiso University, Valparaiso, IN 46383 (United States); Steene, Griet Van de [Royal Observatory of Belgium, Astronomy and Astrophysics, Ringlaan 3, Brussels (Belgium); Winckel, Hans Van [Instituut voor Sterrenkunde, K.U. Leuven University, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Sperauskas, Julius [Vilnius University Observatory, Ciurlionio 29 Vilnius 2009 (Lithuania); Bohlender, David, E-mail: bruce.hrivnak@valpo.edu, E-mail: wen.lu@valpo.edu, E-mail: g.vandesteene@oma.be, E-mail: Hans.VanWinckel@ster.kuleuven.be, E-mail: julius.sperauskas@ff.vu.lt, E-mail: David.Bohlender@nrc-cnrc.gc.ca [National Research Council of Canada, Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada)

    2017-09-10

    We present the results of an expanded, long-term radial velocity search (25 years) for evidence of binarity in a sample of seven bright proto-planetary nebulae (PPNe). The goal is to investigate the widely held view that the bipolar or point-symmetric shapes of planetary nebulae (PNe) and PPNe are due to binary interactions. Observations from three observatories were combined from 2007 to 2015 to search for variations on the order of a few years and then combined with earlier observations from 1991 to 1995 to search for variations on the order of decades. All seven show velocity variations due to periodic pulsation in the range of 35–135 days. However, in only one PPN, IRAS 22272+5435, did we find even marginal evidence for multi-year variations that might be due to a binary companion. This object shows marginally significant evidence of a two-year period of low semi-amplitude, which could be due to a low-mass companion, and it also displays some evidence of a much longer period of >30 years. The absence of evidence in the other six objects for long-period radial velocity variations due to a binary companion sets significant constraints on the properties of any undetected binary companions: they must be of low mass, ≤0.2 M {sub ⊙}, or long period, >30 years. Thus the present observations do not provide direct support for the binary hypothesis to explain the shapes of PNe and PPNe and severely constrains the properties of any such undetected companions.

  5. Formation of Low-Mass X-Ray Binaries. II. Common Envelope Evolution of Primordial Binaries with Extreme Mass Ratios

    Science.gov (United States)

    Kalogera, Vassiliki; Webbink, Ronald F.

    1998-01-01

    We study the formation of low-mass X-ray binaries (LMXBs) through helium star supernovae in binary systems that have each emerged from a common envelope phase. LMXB progenitors must satisfy a large number of evolutionary and structural constraints, including survival through common envelope evolution, through the post-common envelope phase, where the precursor of the neutron star becomes a Wolf-Rayet star, and survival through the supernova event. Furthermore, the binaries that survive the explosion must reach interaction within a Hubble time and must satisfy stability criteria for mass transfer. These constraints, imposed under the assumption of a symmetric supernova explosion, prohibit the formation of short-period LMXBs transferring mass at sub-Eddington rates through any channel in which the intermediate progenitor of the neutron star is not completely degenerate. Barring accretion-induced collapse, the existence of such systems therefore requires that natal kicks be imparted to neutron stars. We use an analytical method to synthesize the distribution of nascent LMXBs over donor masses and orbital periods and evaluate their birthrate and systemic velocity dispersion. Within the limitations imposed by observational incompleteness and selection effects, and our neglect of secular evolution in the LMXB state, we compare our results with observations. However, our principal objective is to evaluate how basic model parameters (common envelope ejection efficiency, rms kick velocity, primordial mass ratio distribution) influence these results. We conclude that the characteristics of newborn LMXBs are primarily determined by age and stability constraints and the efficiency of magnetic braking and are largely independent of the primordial binary population and the evolutionary history of LMXB progenitors (except for extreme values of the average kick magnitude or of the common envelope ejection efficiency). Theoretical estimates of total LMXB birthrates are not credible

  6. The Interaction of C{sup 14} Recoil Atoms in Binary Mixtures; Interaction entre Atomes {sup 14}C de Recul et Composants de Melanges Binaires; Vzaimodejstvie atomov otdachi ugleroda-14 v binarnykh smesyakh; Interaccion de los Atomos de Retroceso del {sup 14}C en Mezclas Binarias

    Energy Technology Data Exchange (ETDEWEB)

    Firsova, L. P.; Barakat, M. F.; Forys, M.; Nesmejanov, An. N. [Moskovskij Gosudarstvennyj Universitet, Moskva, SSSR (Russian Federation)

    1965-04-15

    A study was made of the intermolecular distribution of activity in C{sup 14} -labelled products, formed as a result of the interaction of C{sup 14} atoms with components of binary liquid mixtures containing heterocyclic compounds. Particular attention was paid to the systems indole-aniline, indole-pyridine, {alpha}-picoline-toluene, {alpha}-picolene-aniline, etc. Data were obtained on the relation between the radiochemical yields of labelled products and the concentration of components in dilute solutions and in comparable concentrations of substances in mixtures. Analysis of the experimental results for an additive system enabled us to determine the deviations from the additivity principle. The deviations observed were interpreted as the result of the participation of the second component of the system in the primary and secondary reactions accompanying nuclear transformations. In considering the role of the second component, we took into account the variations in its predominant reaction mechanisms in various concentration ranges. Special attention was paid to the possibility of an intermolecular transfer of the energy of a radiation shield, and also of the mechanism of the corresponding processes. (author) [French] Les auteurs etudient la distribution intermoleculaire de la radioactivite dans les produits marques avec {sup 14}C qui se forment a la suite de l'interaction entre le carbone-14 et les composants de melanges liquides binaires contenant des substances heterocycliqiies. Ils examinent notamment les systemes indole-aniline, indole- pyxidine, {alpha}-picoline-toluol, {alpha}-picoline-aniline, etc. Ils ont obtenu des donnees sur la relation entre le rendement radiochimique en produits marques et la concentration des composants pour des solutions diluees et pour des melanges ou les deux substances ont des concentrations comparables. En traitant les donnees experimentales selon un schema additif, ils ont constate des ecarts par rapport a la regle d

  7. Network class superposition analyses.

    Directory of Open Access Journals (Sweden)

    Carl A B Pearson

    Full Text Available Networks are often used to understand a whole system by modeling the interactions among its pieces. Examples include biomolecules in a cell interacting to provide some primary function, or species in an environment forming a stable community. However, these interactions are often unknown; instead, the pieces' dynamic states are known, and network structure must be inferred. Because observed function may be explained by many different networks (e.g., ≈ 10(30 for the yeast cell cycle process, considering dynamics beyond this primary function means picking a single network or suitable sample: measuring over all networks exhibiting the primary function is computationally infeasible. We circumvent that obstacle by calculating the network class ensemble. We represent the ensemble by a stochastic matrix T, which is a transition-by-transition superposition of the system dynamics for each member of the class. We present concrete results for T derived from boolean time series dynamics on networks obeying the Strong Inhibition rule, by applying T to several traditional questions about network dynamics. We show that the distribution of the number of point attractors can be accurately estimated with T. We show how to generate Derrida plots based on T. We show that T-based Shannon entropy outperforms other methods at selecting experiments to further narrow the network structure. We also outline an experimental test of predictions based on T. We motivate all of these results in terms of a popular molecular biology boolean network model for the yeast cell cycle, but the methods and analyses we introduce are general. We conclude with open questions for T, for example, application to other models, computational considerations when scaling up to larger systems, and other potential analyses.

  8. The use of hyperspectral data for tree species discrimination: Combining binary classifiers

    CSIR Research Space (South Africa)

    Dastile, X

    2010-11-01

    Full Text Available classifier Classification system 7 class 1 class 2 new sample For 5-nearest neighbour classification: assign new sample to class 1. RU SASA 2010 ? Given learning task {(x1,t1),(x 2,t2),?,(x p,tp)} (xi ? Rn feature vectors, ti ? {?1,?, ?c...). A review on the combination of binary classifiers in multiclass problems. Springer science and Business Media B.V [7] Dietterich T.G and Bakiri G.(1995). Solving Multiclass Learning Problem via Error-Correcting Output Codes. AI Access Foundation...

  9. Fabricating binary optics: An overview of binary optics process technology

    Science.gov (United States)

    Stern, Margaret B.

    1993-01-01

    A review of binary optics processing technology is presented. Pattern replication techniques have been optimized to generate high-quality efficient microoptics in visible and infrared materials. High resolution optical photolithography and precision alignment is used to fabricate maximally efficient fused silica diffractive microlenses at lambda = 633 nm. The degradation in optical efficiency of four-phase-level fused silica microlenses resulting from an intentional 0.35 micron translational error has been systematically measured as a function of lens speed (F/2 - F/60). Novel processes necessary for high sag refractive IR microoptics arrays, including deep anisotropic Si-etching, planarization of deep topography and multilayer resist techniques, are described. Initial results are presented for monolithic integration of photonic and microoptic systems.

  10. RxClass

    Data.gov (United States)

    U.S. Department of Health & Human Services — The RxClass Browser is a web application for exploring and navigating through the class hierarchies to find the RxNorm drug members associated with each class....

  11. THE POTENTIAL IMPORTANCE OF BINARY EVOLUTION IN ULTRAVIOLET-OPTICAL SPECTRAL FITTING OF EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Li, Zhongmu; Mao, Caiyan; Chen, Li; Zhang, Qian; Li, Maocai

    2013-01-01

    Most galaxies possibly contain some binaries, and more than half of Galactic hot subdwarf stars, which are thought to be a possible origin of the UV-upturn of old stellar populations, are found in binaries. However, the effect of binary evolution has not been taken into account in most works on the spectral fitting of galaxies. This paper studies the role of binary evolution in the spectral fitting of early-type galaxies, via a stellar population synthesis model including both single and binary star populations. Spectra from ultraviolet to optical bands are fitted to determine a few galaxy parameters. The results show that the inclusion of binaries in stellar population models may lead to obvious change in the determination of some parameters of early-type galaxies and therefore it is potentially important for spectral studies. In particular, the ages of young components of composite stellar populations become much older when using binary star population models instead of single star population models. This implies that binary star population models will measure significantly different star formation histories for early-type galaxies compared to single star population models. In addition, stellar population models with binary interactions on average measure larger dust extinctions than single star population models. This suggests that when binary star population models are used, negative extinctions are possibly no longer necessary in the spectral fitting of galaxies (see previous works, e.g., Cid Fernandes et al. for comparison). Furthermore, it is shown that optical spectra have strong constraints on stellar age while UV spectra have strong constraints on binary fraction. Finally, our results suggest that binary star population models can provide new insight into the stellar properties of globular clusters

  12. The Capsicum annuum class IV chitinase ChitIV interacts with receptor-like cytoplasmic protein kinase PIK1 to accelerate PIK1-triggered cell death and defence responses

    Science.gov (United States)

    Kim, Dae Sung; Kim, Nak Hyun; Hwang, Byung Kook

    2015-01-01

    The pepper receptor-like cytoplasmic protein kinase, CaPIK1, which mediates signalling of plant cell death and defence responses was previously identified. Here, the identification of a class IV chitinase, CaChitIV, from pepper plants (Capsicum annuum), which interacts with CaPIK1 and promotes CaPIK1-triggered cell death and defence responses, is reported. CaChitIV contains a signal peptide, chitin-binding domain, and glycol hydrolase domain. CaChitIV expression was up-regulated by Xanthomonas campestris pv. vesicatoria (Xcv) infection. Notably, avirulent Xcv infection rapidly induced CaChitIV expression in pepper leaves. Bimolecular fluorescence complementation and co-immunoprecipitation revealed that CaPIK1 interacts with CaChitIV in planta, and that the CaPIK1–CaChitIV complex is localized mainly in the cytoplasm and plasma membrane. CaChitIV is also localized in the endoplasmic reticulum. Transient co-expression of CaChitIV with CaPIK1 enhanced CaPIK1-triggered cell death response and reactive oxygen species (ROS) and nitric oxide (NO) bursts. Co-silencing of both CaChitIV and CaPIK1 in pepper plants conferred enhanced susceptibility to Xcv infection, which was accompanied by a reduced induction of cell death response, ROS and NO bursts, and defence response genes. Ectopic expression of CaPIK1 in Arabidopsis enhanced basal resistance to Hyaloperonospora arabidopsidis infection. Together, the results suggest that CaChitIV positively regulates CaPIK1-triggered cell death and defence responses through its interaction with CaPIK1. PMID:25694549

  13. Radial Velocities of 41 Kepler Eclipsing Binaries

    Science.gov (United States)

    Matson, Rachel A.; Gies, Douglas R.; Guo, Zhao; Williams, Stephen J.

    2017-12-01

    Eclipsing binaries are vital for directly determining stellar parameters without reliance on models or scaling relations. Spectroscopically derived parameters of detached and semi-detached binaries allow us to determine component masses that can inform theories of stellar and binary evolution. Here we present moderate resolution ground-based spectra of stars in close binary systems with and without (detected) tertiary companions observed by NASA’s Kepler mission and analyzed for eclipse timing variations. We obtain radial velocities and spectroscopic orbits for five single-lined and 35 double-lined systems, and confirm one false positive eclipsing binary. For the double-lined spectroscopic binaries, we also determine individual component masses and examine the mass ratio {M}2/{M}1 distribution, which is dominated by binaries with like-mass pairs and semi-detached classical Algol systems that have undergone mass transfer. Finally, we constrain the mass of the tertiary component for five double-lined binaries with previously detected companions.

  14. BHDD: Primordial black hole binaries code

    Science.gov (United States)

    Kavanagh, Bradley J.; Gaggero, Daniele; Bertone, Gianfranco

    2018-06-01

    BHDD (BlackHolesDarkDress) simulates primordial black hole (PBH) binaries that are clothed in dark matter (DM) halos. The software uses N-body simulations and analytical estimates to follow the evolution of PBH binaries formed in the early Universe.

  15. Main Memory Implementations for Binary Grouping

    OpenAIRE

    May, Norman; Moerkotte, Guido

    2005-01-01

    An increasing number of applications depend on efficient storage and analysis features for XML data. Hence, query optimization and efficient evaluation techniques for the emerging XQuery standard become more and more important. Many XQuery queries require nested expressions. Unnesting them often introduces binary grouping. We introduce several algorithms implementing binary grouping and analyze their time and space complexity. Experiments demonstrate their performance.

  16. Eliciting Subjective Probabilities with Binary Lotteries

    DEFF Research Database (Denmark)

    Harrison, Glenn W.; Martínez-Correa, Jimmy; Swarthout, J. Todd

    objective probabilities. Drawing a sample from the same subject population, we find evidence that the binary lottery procedure induces linear utility in a subjective probability elicitation task using the Quadratic Scoring Rule. We also show that the binary lottery procedure can induce direct revelation...

  17. Binary Relations as a Foundation of Mathematics

    NARCIS (Netherlands)

    Kuper, Jan; Barendsen, E.; Capretta, V.; Geuvers, H.; Niqui, M.

    2007-01-01

    We describe a theory for binary relations in the Zermelo-Fraenkel style. We choose for ZFCU, a variant of ZFC Set theory in which the Axiom of Foundation is replaced by an axiom allowing for non-wellfounded sets. The theory of binary relations is shown to be equi-consistent ZFCU by constructing a

  18. RELATIONSHIP BETWEEN FLASH POINTS OF SOME BINARY ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    Miscellaneous binary blends containing solvent neutral-150 (SN-150), ... viscosity, the flash point test has always been a standard part of a lubricant's specification. ... between structure and flash points of organic compounds [5-12] and fuels [13, 14]. ... in binary mixtures, the gaps between flash points would be high enough.

  19. The origin of the RS CVn binaries

    International Nuclear Information System (INIS)

    Biermann, P.

    1976-01-01

    Six possible origins for the RS CVn binaries are considered based on the following possibilities. RS CVn binaries might now be either pre-main-sequence or post-main-sequence. A pre-main-sequence binary might not always have been a binary but might have resulted from fission of a rapidly rotating single pre-main-sequence star. The main-sequence counterparts might be either single stars or binaries. To decide which of the six origins is possible, the following observed data for the RS CVn binaries are considered: total mass, total angular momentum, lack of observed connection with regions of star formation, large space density, kinematical age, and the visual companion of WW Dra. In addition lifetimes and space densities of single stars and other types of binaries are considered. The only origin possible is that the RS CVn binaries are in a thermal phase following fission of a main-sequence single star. In this explanation the single star had a rapidly rotating core which became unstable due to the core contraction which made it begin to evolve off the main sequence. The present Be stars might be examples of such parent single stars. (Auth.)

  20. ON THE APPARENT LACK OF Be X-RAY BINARIES WITH BLACK HOLES

    International Nuclear Information System (INIS)

    Belczynski, Krzysztof; Ziolkowski, Janusz

    2009-01-01

    In our Galaxy there are 64 Be X-ray binaries known to date. Out of these, 42 host a neutron star (NS), and for the remainder the nature of the companion is unknown. None, so far, are known to host a black hole (BH). There seems to be no apparent mechanism that would prevent formation or detection of Be stars with BHs. This disparity is referred to as a missing Be-BH X-ray binary problem. We point out that current evolutionary scenarios that lead to the formation of Be X-ray binaries predict that the ratio of binaries with NSs to the ones with BHs is rather high, F NStoBH ∼ 10-50, with the more likely formation models providing the values at the high end. The ratio is a natural outcome of (1) the stellar initial mass function that produces more NSs than BHs and (2) common envelope evolution (i.e., a major mechanism involved in the formation of interacting binaries) that naturally selects progenitors of Be X-ray binaries with NSs (binaries with comparable mass components have more likely survival probabilities) over ones with BHs (which are much more likely to be common envelope mergers). A comparison of this ratio (i.e., F NStoBH ∼ 30) with the number of confirmed Be-NS X-ray binaries (42) indicates that the expected number of Be-BH X-ray binaries is of the order of only ∼0-2. This is entirely consistent with the observed Galactic sample.

  1. Logistic chaotic maps for binary numbers generations

    International Nuclear Information System (INIS)

    Kanso, Ali; Smaoui, Nejib

    2009-01-01

    Two pseudorandom binary sequence generators, based on logistic chaotic maps intended for stream cipher applications, are proposed. The first is based on a single one-dimensional logistic map which exhibits random, noise-like properties at given certain parameter values, and the second is based on a combination of two logistic maps. The encryption step proposed in both algorithms consists of a simple bitwise XOR operation of the plaintext binary sequence with the keystream binary sequence to produce the ciphertext binary sequence. A threshold function is applied to convert the floating-point iterates into binary form. Experimental results show that the produced sequences possess high linear complexity and very good statistical properties. The systems are put forward for security evaluation by the cryptographic committees.

  2. Multiwavelength Study of Powerful New Jet Activity in the Symbiotic Binary System R Aqr

    Science.gov (United States)

    Karovska, Margarita

    2016-09-01

    We propose to carry out coordinated high-spatial resolution Chandra ACIS-S and HST/WFC3 observations of R Aqr, a very active symbiotic interacting binary system. Our main goal is to study the physical characteristics of multi-scale components of the powerful jet; from near the central binary (within a few AU) to the jet-circumbinary material interaction region (2500 AU) and beyond , and especially of the recently discovered inner jet, to gain insight on early jet formation and propagation, such as jet kinematics and precession.

  3. Binary star formation: gravitational fragmentation followed by capture

    Science.gov (United States)

    Turner, J. A.; Chapman, S. J.; Bhattal, A. S.; Disney, M. J.; Pongracic, H.; Whitworth, A. P.

    1995-11-01

    We describe in detail one of a sequence of numerical simulations which realize the mechanism of binary star formation proposed by Pringle. In these simulations, collisions between stable molecular cloud clumps produce dense shocked layers, which cool radiatively and fragment gravitationally. The resulting fragments then condense to form protostellar discs, which at the same time fall together and, as a result of tidal and viscous interactions, capture one another to form binary systems. We refer to this mechanism as shock-induced gravitational fragmentation followed by capture, or SGF+C. When the initial clumps are sufficiently massive and/or the Mach number of the collision is sufficiently high, a large number (>~10) of protostellar discs is produced; under these circumstances, the layer fragments first into filaments, and then into beads along the filaments. The marriage of two protostellar discs in this way is `arranged' in the sense that the protostellar discs involved do not form independently. First, they both condense out of the same layer, and probably also out of the same filament within this layer; this significantly increases the likelihood of them interacting dynamically. Secondly, there tends to be alignment between the orbital and spin angular momenta of the interacting protostellar discs, reflecting the fact that these angular momenta derive mainly from the systematic global angular momentum of the off-axis collision which produced the layer; this alignment of the various angular momenta pre-disposes the discs to very dissipative interactions, thereby increasing the probability of producing a strongly bound, long-lasting union. It is a marriage because the binary orbit stabilizes itself rather quickly. Any subsequent orbit evolution, as the protostellar discs `mop up' the surrounding residual gas and interact tidally, tends to harden the orbit. Therefore, as long as a third body does not intervene, the union is binding. Even if a third body does

  4. Intercultural and Media Education on Art Classes

    Science.gov (United States)

    Borges, Maria José; Chaves, Anabela; Costa, Manuela; Pereira, Emília Sá

    2009-01-01

    Visual art, music and literature, are part of the culture. Thus Art shows the interactions between different cultures. The aim of the article is to present some activities to include intercultural issues in Art and Mother Language classes. Art classes also give the opportunity to do Media Education.

  5. Social class, contextualism, and empathic accuracy.

    Science.gov (United States)

    Kraus, Michael W; Côté, Stéphane; Keltner, Dacher

    2010-11-01

    Recent research suggests that lower-class individuals favor explanations of personal and political outcomes that are oriented to features of the external environment. We extended this work by testing the hypothesis that, as a result, individuals of a lower social class are more empathically accurate in judging the emotions of other people. In three studies, lower-class individuals (compared with upper-class individuals) received higher scores on a test of empathic accuracy (Study 1), judged the emotions of an interaction partner more accurately (Study 2), and made more accurate inferences about emotion from static images of muscle movements in the eyes (Study 3). Moreover, the association between social class and empathic accuracy was explained by the tendency for lower-class individuals to explain social events in terms of features of the external environment. The implications of class-based patterns in empathic accuracy for well-being and relationship outcomes are discussed.

  6. Short-Period Binary Stars: Observations, Analyses, and Results

    CERN Document Server

    Milone, Eugene F; Hobill, David W

    2008-01-01

    Short-period binaries run the gamut from widely separated stars to black-hole pairs; in between are systems that include neutron stars and white dwarfs, and partially evolved systems such as tidally distorted and over-contact systems. These objects represent stages of evolution of binary stars, and their degrees of separation provide critical clues to how their evolutionary paths differ from that of single stars. The widest and least distorted systems provide astronomers with the essential precise data needed to study all stars: mass and radius. The interactions of binary star components, on the other hand, provide a natural laboratory to observe how the matter in these stars behaves under different and often varying physical conditions. Thus, cataclysmic variables with and without overpoweringly strong magnetic fields, and stars with densities from that found in the Sun to the degenerate matter of white dwarfs and the ultra-compact states of neutron stars and black holes are all discussed. The extensive inde...

  7. Molecular Dynamics Simulation of Binary Fluid in a Nanochannel

    International Nuclear Information System (INIS)

    Mullick, Shanta; Ahluwalia, P. K.; Pathania, Y.

    2011-01-01

    This paper presents the results from a molecular dynamics simulation of binary fluid (mixture of argon and krypton) in the nanochannel flow. The computational software LAMMPS is used for carrying out the molecular dynamics simulations. Binary fluids of argon and krypton with varying concentration of atom species were taken for two densities 0.65 and 0.45. The fluid flow takes place between two parallel plates and is bounded by horizontal walls in one direction and periodic boundary conditions are imposed in the other two directions. To drive the flow, a constant force is applied in one direction. Each fluid atom interacts with other fluid atoms and wall atoms through Week-Chandler-Anderson (WCA) potential. The velocity profile has been looked at for three nanochannel widths i.e for 12σ, 14σ and 16σ and also for the different concentration of two species. The velocity profile of the binary fluid predicted by the simulations agrees with the quadratic shape of the analytical solution of a Poiseuille flow in continuum theory.

  8. PERIODIC SIGNALS IN BINARY MICROLENSING EVENTS

    International Nuclear Information System (INIS)

    Guo, Xinyi; Stefano, Rosanne Di; Esin, Ann; Taylor, Jeffrey

    2015-01-01

    Gravitational microlensing events are powerful tools for the study of stellar populations. In particular, they can be used to discover and study a variety of binary systems. A large number of binary lenses have already been found through microlensing surveys and a few of these systems show strong evidence of orbital motion on the timescale of the lensing event. We expect that more binary lenses of this kind will be detected in the future. For binaries whose orbital period is comparable to the event duration, the orbital motion can cause the lensing signal to deviate drastically from that of a static binary lens. The most striking property of such light curves is the presence of quasi-periodic features, which are produced as the source traverses the same regions in the rotating lens plane. These repeating features contain information about the orbital period of the lens. If this period can be extracted, then much can be learned about the lensing system even without performing time-consuming, detailed light-curve modeling. However, the relative transverse motion between the source and the lens significantly complicates the problem of period extraction. To resolve this difficulty, we present a modification of the standard Lomb–Scargle periodogram analysis. We test our method for four representative binary lens systems and demonstrate its efficiency in correctly extracting binary orbital periods

  9. Topological and categorical properties of binary trees

    Directory of Open Access Journals (Sweden)

    H. Pajoohesh

    2008-04-01

    Full Text Available Binary trees are very useful tools in computer science for estimating the running time of so-called comparison based algorithms, algorithms in which every action is ultimately based on a prior comparison between two elements. For two given algorithms A and B where the decision tree of A is more balanced than that of B, it is known that the average and worst case times of A will be better than those of B, i.e., ₸A(n ≤₸B(n and TWA (n≤TWB (n. Thus the most balanced and the most imbalanced binary trees play a main role. Here we consider them as semilattices and characterize the most balanced and the most imbalanced binary trees by topological and categorical properties. Also we define the composition of binary trees as a commutative binary operation, *, such that for binary trees A and B, A * B is the binary tree obtained by attaching a copy of B to any leaf of A. We show that (T,* is a commutative po-monoid and investigate its properties.

  10. BICEPP: an example-based statistical text mining method for predicting the binary characteristics of drugs

    Directory of Open Access Journals (Sweden)

    Tsafnat Guy

    2011-04-01

    Full Text Available Abstract Background The identification of drug characteristics is a clinically important task, but it requires much expert knowledge and consumes substantial resources. We have developed a statistical text-mining approach (BInary Characteristics Extractor and biomedical Properties Predictor: BICEPP to help experts screen drugs that may have important clinical characteristics of interest. Results BICEPP first retrieves MEDLINE abstracts containing drug names, then selects tokens that best predict the list of drugs which represents the characteristic of interest. Machine learning is then used to classify drugs using a document frequency-based measure. Evaluation experiments were performed to validate BICEPP's performance on 484 characteristics of 857 drugs, identified from the Australian Medicines Handbook (AMH and the PharmacoKinetic Interaction Screening (PKIS database. Stratified cross-validations revealed that BICEPP was able to classify drugs into all 20 major therapeutic classes (100% and 157 (of 197 minor drug classes (80% with areas under the receiver operating characteristic curve (AUC > 0.80. Similarly, AUC > 0.80 could be obtained in the classification of 173 (of 238 adverse events (73%, up to 12 (of 15 groups of clinically significant cytochrome P450 enzyme (CYP inducers or inhibitors (80%, and up to 11 (of 14 groups of narrow therapeutic index drugs (79%. Interestingly, it was observed that the keywords used to describe a drug characteristic were not necessarily the most predictive ones for the classification task. Conclusions BICEPP has sufficient classification power to automatically distinguish a wide range of clinical properties of drugs. This may be used in pharmacovigilance applications to assist with rapid screening of large drug databases to identify important characteristics for further evaluation.

  11. Binary neutron star merger simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bruegmann, Bernd [Jena Univ. (Germany)

    2016-11-01

    Our research focuses on the numerical tools necessary to solve Einstein's equations. In recent years we have been particularly interested in spacetimes consisting of two neutron stars in the final stages of their evolution. Because of the emission of gravitational radiation, the objects are driven together to merge; the emitted gravitational wave signal is visualized. This emitted gravitational radiation carries energy and momentum away from the system and contains information about the system. Late last year the Laser Interferometer Gravitational-wave Observatory (LIGO) began searches for these gravitational wave signals at a sensitivity at which detections are expected. Although such systems can radiate a significant amount of their total mass-energy in gravitational waves, the gravitational wave signals one expects to receive on Earth are not strong, since sources of gravitational waves are often many millions of light years away. Therefore one needs accurate templates for the radiation one expects from such systems in order to be able to extract them out of the detector's noise. Although analytical models exist for compact binary systems when the constituents are well separated, we need numerical simulation to investigate the last orbits before merger to obtain accurate templates and validate analytical approximations. Due to the strong nonlinearity of the equations and the large separation of length scales, these simulations are computationally demanding and need to be run on large supercomputers. When matter is present the computational cost as compared to pure black hole (vacuum) simulations increases even more due to the additional matter fields. But also more interesting astrophysical phenomena can happen. In fact, there is the possibility for a strong electromagnetic signal from the merger (e.g., a short gamma-ray burst or lower-energy electromagnetic signatures from the ejecta) and significant neutrino emission. Additionally, we can expect that

  12. THE 2011 PERIASTRON PASSAGE OF THE Be BINARY {delta} Scorpii

    Energy Technology Data Exchange (ETDEWEB)

    Miroshnichenko, A. S. [Department of Physics and Astronomy, University of North Carolina at Greensboro, Greensboro, NC 27402-6170 (United States); Pasechnik, A. V. [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, FI-21500 Puekkioe (Finland); Manset, N. [CFHT Corporation, 65-1238 Mamalahoa Hwy, Kamuela, HI 96743 (United States); Carciofi, A. C. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo (Brazil); Rivinius, Th. [European Organisation for Astronomical Research in the Southern Hemisphere, Casilla 19001, Santiago 19 (Chile); Stefl, S. [ESO/ALMA, Alonso de Cordova 3107, Vitacura, Santiago (Chile); Gvaramadze, V. V. [Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetskij Pr. 13, Moscow 119992 (Russian Federation); Ribeiro, J. [Observatorio do Instituto Geografico do Exercito, Lisboa (Portugal); Fernando, A. [ATALAIA.org Group, Lisboa (Portugal); Garrel, T. [Observatoire de Juvignac, 19 avenue de Hameau du Golf F-34990, Juvignac (France); Knapen, J. H. [Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife (Spain); Buil, C. [Castanet Tolosan Observatory, 6 place Clemence Isaure F-31320 Castanet Tolosan (France); Heathcote, B. [Barfold Observatory, Glenhope, Victoria 3444 (Australia); Pollmann, E. [Emil-Nolde-Str. 12, D-51375, Leverkusen (Germany); Mauclaire, B. [Observatoire du Val d' Arc, route de Peynier F-13530, Trets (France); Thizy, O. [Shelyak Instruments, 1116 route de Chambery, F-38330, Saint-Ismier (France); Martin, J. [Barber Research Observatory, Department of Physics and Astronomy, University of Illinois-Springfield, IL 62703 (United States); Zharikov, S. V. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Apdo. Postal 877, Ensenada, 22800, Baja California (Mexico); Okazaki, A. T. [Faculty of Engineering, Hokkai-Gakuen University, Toyohira-ku, Sapporo 062-8605 (Japan); others, and

    2013-04-01

    We describe the results of the world-wide observing campaign of the highly eccentric Be binary system {delta} Scorpii 2011 periastron passage which involved professional and amateur astronomers. Our spectroscopic observations provided a precise measurement of the system orbital period at 10.8092 {+-} 0.0005 yr. Fitting of the He II 4686 A line radial velocity curve determined the periastron passage time on 2011 July 3, UT 9:20 with a 0.9-day uncertainty. Both these results are in a very good agreement with recent findings from interferometry. We also derived new evolutionary masses of the binary components (13 and 8.2 M{sub Sun }) and a new distance of 136 pc from the Sun, consistent with the HIPPARCOS parallax. The radial velocity and profile variations observed in the H{alpha} line near the 2011 periastron reflected the interaction of the secondary component and the circumstellar disk around the primary component. Using these data, we estimated a disk radius of 150 R{sub Sun }. Our analysis of the radial velocity variations measured during the periastron passage time in 2000 and 2011 along with those measured during the 20th century, the high eccentricity of the system, and the presence of a bow shock-like structure around it suggest that {delta} Sco might be a runaway triple system. The third component should be external to the known binary and move on an elliptical orbit that is tilted by at least 40 Degree-Sign with respect to the binary orbital plane for such a system to be stable and responsible for the observed long-term radial velocity variations.

  13. THE 2011 PERIASTRON PASSAGE OF THE Be BINARY δ Scorpii

    International Nuclear Information System (INIS)

    Miroshnichenko, A. S.; Pasechnik, A. V.; Manset, N.; Carciofi, A. C.; Rivinius, Th.; Štefl, S.; Gvaramadze, V. V.; Ribeiro, J.; Fernando, A.; Garrel, T.; Knapen, J. H.; Buil, C.; Heathcote, B.; Pollmann, E.; Mauclaire, B.; Thizy, O.; Martin, J.; Zharikov, S. V.; Okazaki, A. T.

    2013-01-01

    We describe the results of the world-wide observing campaign of the highly eccentric Be binary system δ Scorpii 2011 periastron passage which involved professional and amateur astronomers. Our spectroscopic observations provided a precise measurement of the system orbital period at 10.8092 ± 0.0005 yr. Fitting of the He II 4686 Å line radial velocity curve determined the periastron passage time on 2011 July 3, UT 9:20 with a 0.9-day uncertainty. Both these results are in a very good agreement with recent findings from interferometry. We also derived new evolutionary masses of the binary components (13 and 8.2 M ☉ ) and a new distance of 136 pc from the Sun, consistent with the HIPPARCOS parallax. The radial velocity and profile variations observed in the Hα line near the 2011 periastron reflected the interaction of the secondary component and the circumstellar disk around the primary component. Using these data, we estimated a disk radius of 150 R ☉ . Our analysis of the radial velocity variations measured during the periastron passage time in 2000 and 2011 along with those measured during the 20th century, the high eccentricity of the system, and the presence of a bow shock-like structure around it suggest that δ Sco might be a runaway triple system. The third component should be external to the known binary and move on an elliptical orbit that is tilted by at least 40° with respect to the binary orbital plane for such a system to be stable and responsible for the observed long-term radial velocity variations.

  14. Variance in binary stellar population synthesis

    Science.gov (United States)

    Breivik, Katelyn; Larson, Shane L.

    2016-03-01

    In the years preceding LISA, Milky Way compact binary population simulations can be used to inform the science capabilities of the mission. Galactic population simulation efforts generally focus on high fidelity models that require extensive computational power to produce a single simulated population for each model. Each simulated population represents an incomplete sample of the functions governing compact binary evolution, thus introducing variance from one simulation to another. We present a rapid Monte Carlo population simulation technique that can simulate thousands of populations in less than a week, thus allowing a full exploration of the variance associated with a binary stellar evolution model.

  15. Proposed experiment to test fundamentally binary theories

    Science.gov (United States)

    Kleinmann, Matthias; Vértesi, Tamás; Cabello, Adán

    2017-09-01

    Fundamentally binary theories are nonsignaling theories in which measurements of many outcomes are constructed by selecting from binary measurements. They constitute a sensible alternative to quantum theory and have never been directly falsified by any experiment. Here we show that fundamentally binary theories are experimentally testable with current technology. For that, we identify a feasible Bell-type experiment on pairs of entangled qutrits. In addition, we prove that, for any n , quantum n -ary correlations are not fundamentally (n -1 ) -ary. For that, we introduce a family of inequalities that hold for fundamentally (n -1 ) -ary theories but are violated by quantum n -ary correlations.

  16. Binary mixtures of condensates in generic confining potentials

    Energy Technology Data Exchange (ETDEWEB)

    Facchi, P [Dipartimento di Matematica and MECENAS, Universita di Bari, I-70125 Bari (Italy); Florio, G; Pascazio, S; Pepe, F V, E-mail: Francesco.Pepe@ba.infn.it [INFN, Sezione di Bari, I-70126 Bari (Italy)

    2011-12-16

    We study a binary mixture of Bose-Einstein condensates, confined in a generic potential, in the Thomas-Fermi approximation. We search for the zero-temperature ground state of the system, both in the case of fixed numbers of particles and fixed chemical potentials. For generic potentials, we analyze the transition from mixed to separated ground-state configurations as the inter-species interaction increases. We derive a simple formula that enables one to determine the location of the domain walls. Finally, we find criteria for the energetic stability of separated configurations, depending on the number and the position of the domain walls separating the two species. (paper)

  17. Binary mixtures of condensates in generic confining potentials

    Science.gov (United States)

    Facchi, P.; Florio, G.; Pascazio, S.; Pepe, F. V.

    2011-12-01

    We study a binary mixture of Bose-Einstein condensates, confined in a generic potential, in the Thomas-Fermi approximation. We search for the zero-temperature ground state of the system, both in the case of fixed numbers of particles and fixed chemical potentials. For generic potentials, we analyze the transition from mixed to separated ground-state configurations as the inter-species interaction increases. We derive a simple formula that enables one to determine the location of the domain walls. Finally, we find criteria for the energetic stability of separated configurations, depending on the number and the position of the domain walls separating the two species.

  18. Binary mixtures of condensates in generic confining potentials

    International Nuclear Information System (INIS)

    Facchi, P; Florio, G; Pascazio, S; Pepe, F V

    2011-01-01

    We study a binary mixture of Bose–Einstein condensates, confined in a generic potential, in the Thomas–Fermi approximation. We search for the zero-temperature ground state of the system, both in the case of fixed numbers of particles and fixed chemical potentials. For generic potentials, we analyze the transition from mixed to separated ground-state configurations as the inter-species interaction increases. We derive a simple formula that enables one to determine the location of the domain walls. Finally, we find criteria for the energetic stability of separated configurations, depending on the number and the position of the domain walls separating the two species. (paper)

  19. On the nature of the symbiotic binary CI Cygni

    International Nuclear Information System (INIS)

    Kenyon, S.J.; Oliversen, N.A.; Mikolajewska, J.; Mikolajewski, M.; Stencel, R.E.

    1991-01-01

    An analysis of ultraviolet and optical spectroscopy is presented for the symbiotic binary CI Cyg. This system contains an M5 II asymptotic branch giant Mg of about 1.5 solar mass, transfering material at a few times 0.00001 solar mass/yr into a large accretion disk surrounding a main-sequence star with Mh of about 0.5 solar mass. A boundary layer at the inner edge of the disk photoionizes a small nebula approximately confined to the Roche volume of the accreting star. An extended, more highly ionized region forms when material ejected from the disk interacts with the red giant wind. 115 refs

  20. More surprises from the violent gamma-ray binary LS 2883 /B1259-63.

    Science.gov (United States)

    Kargaltsev, Oleg; Hare, Jeremy; Pavlov, George G.

    2018-01-01

    We report the results of a Chandra X-ray Observatory (CXO) monitoring campaign of the high-mass gamma-ray binary LS 2883, which hosts the young pulsar B1259-63. The monitoring now covers two binary cycles (6.8 years) and allows us to conclude that ejections of high-velocity X-ray emitting material are common for this binary. In the first cycle we observed an extended feature which detached and moved away from the binary. The observed changes in position were consistent with a steady motion with v=(0.07+/-0.01)c and a slight hint of acceleration. Tracing the motion back in time suggested that the X-ray emitting matter was ejected close to periastron passage. In the last orbital cycle, accelerated motion (reaching (0.13+/-0.02)c) is strongly preferred over a steady motion (the latter would imply that the ejected material was launched ~400 days after the periastron passage). The moving feature is also more luminous, compared to the previous binary cycle, larger in its apparent extent, and exhibits a puzzling morphology. We will show the CXO movies from both binary cycles and discuss physical interpretation of the resolved outflow dynamics in this remarkable system, which provides unique insight into the properties of the pulsar and stellar winds and their interaction.

  1. Magnetospheres of accreting compact objects in binary systems

    International Nuclear Information System (INIS)

    Aly, J.J.

    1985-09-01

    Bright pulsating X-ray sources (X-ray pulsars, AM Her stars,...) have been identified as strongly magnetized compact objects accreting matter from a binary companion. We give here a summary of some of the work which has been recently done to try to understand the interaction between the magnetic field of the compact object and the matter around. We examine in turn the models describing the interaction of the field with: i) a spherically symmetric accretion flow; ii) a thin keplerian accretion disk; iii) the companion itself. In all these cases, we pay particular attention to the following problems: i) how the external plasma interacting with the magnetosphere can get mixed with the field; ii) by which mechanism the magnetic field controls the mass-momentum-energy exchanges between the two stars. In conclusion, we compare the magnetosphere of an accreting compact object with that one of a planet [fr

  2. Phase behaviour of the symmetric binary mixture from thermodynamic perturbation theory.

    Science.gov (United States)

    Dorsaz, N; Foffi, G

    2010-03-17

    We study the phase behaviour of symmetric binary mixtures of hard core Yukawa (HCY) particles via thermodynamic perturbation theory (TPT). We show that all the topologies of phase diagram reported for the symmetric binary mixtures are correctly reproduced within the TPT approach. In a second step we use the capability of TPT to be straightforwardly extended to mixtures that are nonsymmetric in size. Starting from mixtures that belong to the different topologies of symmetric binary mixtures we investigate the effect on the phase behaviour when an asymmetry in the diameters of the two components is introduced. Interestingly, when the energy of interaction between unlike particles is weaker than the interaction between like particles, the propensity for the solution to demix is found to increase strongly with size asymmetry.

  3. Dixie Valley Bottoming Binary Unit

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Dale [Terra-Gen Sierra Holdings, LLC, Reno, NV (United States)

    2014-12-21

    This binary plant is the first air cooled, high-output refrigeration based waste heat recovery cycle in the industry. Its working fluid is environmentally friendly and as such, the permits that would be required with a hydrocarbon based cycle are not necessary. The unit is largely modularized, meaning that the unit’s individual skids were assembled in another location and were shipped via truck to the plant site. The Air Cooled Condensers (ACC), equipment piping, and Balance of Plant (BOP) piping were constructed at site. This project further demonstrates the technical feasibility of using low temperature brine for geothermal power utilization. The development of the unit led to the realization of low temperature, high output, and environmentally friendly heat recovery systems through domestic research and engineering. The project generates additional renewable energy, resulting in cleaner air and reduced carbon dioxide emissions. Royalty and tax payments to governmental agencies will increase, resulting in reduced financial pressure on local entities. The major components of the unit were sourced from American companies, resulting in increased economic activity throughout the country.

  4. The symbiotics as binary stars

    International Nuclear Information System (INIS)

    Plavec, M.J.

    1982-01-01

    The author envisages at least three models that can give a symbiotic object: He has called them, respectively, the PN symbiotic, the Algol symbiotic, and the novalike symbiotic. Their properties are briefly discussed. The most promising model is one of a binary system in the second stage of mass transfer, actually at the beginning of it: The cool component is a red giant ascending the asymptotic branch, expanding but not yet filling its critical lobe. The hot star is a subdwarf located in the same region of the Hertzsprung-Russell diagram as the central stars of planetary nebulae. It may be closely related to them, or it may be a helium star, actually a remnant of an Algol primary which underwent the first stage of mass transfer. In these cases, accretion on this star may not play a significant role (PN symbiotic). Perhaps more often, the subdwarf is a ''rejuvenated'' degenerate dwarf whose nuclear burning shells were ignited and are maintained by accretion of material coming from the red giant in the form of a stellar wind. Eruptions are often inevitable: this is the novalike symbiotic. A third alternative is a system in the first stage of mass transfer, where the photons needed for ionization of the nebula come from an accretion disk surrounding a main sequence star: an Algol symbiotic. In spite of considerable observational effort, the symbiotics are known so poorly that it is hard to decide between the models, or even decide if all three can actually exist. (Auth.)

  5. Pulsars in binary systems: probing binary stellar evolution and general relativity.

    Science.gov (United States)

    Stairs, Ingrid H

    2004-04-23

    Radio pulsars in binary orbits often have short millisecond spin periods as a result of mass transfer from their companion stars. They therefore act as very precise, stable, moving clocks that allow us to investigate a large set of otherwise inaccessible astrophysical problems. The orbital parameters derived from high-precision binary pulsar timing provide constraints on binary evolution, characteristics of the binary pulsar population, and the masses of neutron stars with different mass-transfer histories. These binary systems also test gravitational theories, setting strong limits on deviations from general relativity. Surveys for new pulsars yield new binary systems that increase our understanding of all these fields and may open up whole new areas of physics, as most spectacularly evidenced by the recent discovery of an extremely relativistic double-pulsar system.

  6. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    International Nuclear Information System (INIS)

    Haghighipour, Nader; Kaltenegger, Lisa

    2013-01-01

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results

  7. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Haghighipour, Nader [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States); Kaltenegger, Lisa [MPIA, Koenigstuhl 17, Heidelberg, D-69117 (Germany)

    2013-11-10

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results.

  8. General simulation algorithm for autocorrelated binary processes.

    Science.gov (United States)

    Serinaldi, Francesco; Lombardo, Federico

    2017-02-01

    The apparent ubiquity of binary random processes in physics and many other fields has attracted considerable attention from the modeling community. However, generation of binary sequences with prescribed autocorrelation is a challenging task owing to the discrete nature of the marginal distributions, which makes the application of classical spectral techniques problematic. We show that such methods can effectively be used if we focus on the parent continuous process of beta distributed transition probabilities rather than on the target binary process. This change of paradigm results in a simulation procedure effectively embedding a spectrum-based iterative amplitude-adjusted Fourier transform method devised for continuous processes. The proposed algorithm is fully general, requires minimal assumptions, and can easily simulate binary signals with power-law and exponentially decaying autocorrelation functions corresponding, for instance, to Hurst-Kolmogorov and Markov processes. An application to rainfall intermittency shows that the proposed algorithm can also simulate surrogate data preserving the empirical autocorrelation.

  9. General simulation algorithm for autocorrelated binary processes

    Science.gov (United States)

    Serinaldi, Francesco; Lombardo, Federico

    2017-02-01

    The apparent ubiquity of binary random processes in physics and many other fields has attracted considerable attention from the modeling community. However, generation of binary sequences with prescribed autocorrelation is a challenging task owing to the discrete nature of the marginal distributions, which makes the application of classical spectral techniques problematic. We show that such methods can effectively be used if we focus on the parent continuous process of beta distributed transition probabilities rather than on the target binary process. This change of paradigm results in a simulation procedure effectively embedding a spectrum-based iterative amplitude-adjusted Fourier transform method devised for continuous processes. The proposed algorithm is fully general, requires minimal assumptions, and can easily simulate binary signals with power-law and exponentially decaying autocorrelation functions corresponding, for instance, to Hurst-Kolmogorov and Markov processes. An application to rainfall intermittency shows that the proposed algorithm can also simulate surrogate data preserving the empirical autocorrelation.

  10. Observations of new Wolf-Rayet binaries

    International Nuclear Information System (INIS)

    Niemela, V.S.

    1982-01-01

    The author reports here preliminary results of spectrographic observations for three southern WR stars, whose binary nature had not been previously verified: HDE 320102, CD -45 0 4482, HD 62910. The observations were carried out at the Cerro Tololo Inter-American Observatory, Chile, mostly with the Cassegrain spectrograph with IT attached to the 1-m reflector. These spectrograms were secured on Kodak IIIaJ emulsion, and have a dispersion of 45 A/mm. The results suggest that HDE 320102 must be a double-lined 05-7 + WN3 spectroscopic binary, that CD -45 0 4482 appears to be a single-lined spectroscopic binary and that HD 62910 may be a binary. (Auth.)

  11. Diffusion in ordered binary solid systems

    International Nuclear Information System (INIS)

    Stolwijk, N.A.

    1980-01-01

    This thesis contains contributions to the field of diffusion in ordered binary solid systems. An extensive experimental investigation of the self diffusion in CoGa is presented. The results of these diffusion measurements strongly suggest that a substantial part of the atomic migration is caused by a new type of defect. A quantitative description of the atomic displacements via this defect is given. Finally computer simulations are presented of diffusion and ordering in binary solid systems. (Auth.)

  12. An Introduction to Binary Decision Diagrams

    DEFF Research Database (Denmark)

    Andersen, Henrik Reif

    1996-01-01

    This note is a short introduction to Binary Decision Diagrams (BDDs). It provides some background knowledge and describes the core algorithms. It is used in the course "C4340 Advanced Algorithms" at the Technical University of Denmark, autumn 1996.......This note is a short introduction to Binary Decision Diagrams (BDDs). It provides some background knowledge and describes the core algorithms. It is used in the course "C4340 Advanced Algorithms" at the Technical University of Denmark, autumn 1996....

  13. Randomized trials, generalizability, and meta-analysis: Graphical insights for binary outcomes

    Directory of Open Access Journals (Sweden)

    Kramer Barnett S

    2003-06-01

    Full Text Available Abstract Background Randomized trials stochastically answer the question. "What would be the effect of treatment on outcome if one turned back the clock and switched treatments in the given population?" Generalizations to other subjects are reliable only if the particular trial is performed on a random sample of the target population. By considering an unobserved binary variable, we graphically investigate how randomized trials can also stochastically answer the question, "What would be the effect of treatment on outcome in a population with a possibly different distribution of an unobserved binary baseline variable that does not interact with treatment in its effect on outcome?" Method For three different outcome measures, absolute difference (DIF, relative risk (RR, and odds ratio (OR, we constructed a modified BK-Plot under the assumption that treatment has the same effect on outcome if either all or no subjects had a given level of the unobserved binary variable. (A BK-Plot shows the effect of an unobserved binary covariate on a binary outcome in two treatment groups; it was originally developed to explain Simpsons's paradox. Results For DIF and RR, but not OR, the BK-Plot shows that the estimated treatment effect is invariant to the fraction of subjects with an unobserved binary variable at a given level. Conclusion The BK-Plot provides a simple method to understand generalizability in randomized trials. Meta-analyses of randomized trials with a binary outcome that are based on DIF or RR, but not OR, will avoid bias from an unobserved covariate that does not interact with treatment in its effect on outcome.

  14. Asteroseismic effects in close binary stars

    Science.gov (United States)

    Springer, Ofer M.; Shaviv, Nir J.

    2013-09-01

    Turbulent processes in the convective envelopes of the Sun and stars have been shown to be a source of internal acoustic excitations. In single stars, acoustic waves having frequencies below a certain cut-off frequency propagate nearly adiabatically and are effectively trapped below the photosphere where they are internally reflected. This reflection essentially occurs where the local wavelength becomes comparable to the pressure scale height. In close binary stars, the sound speed is a constant on equipotentials, while the pressure scale height, which depends on the local effective gravity, varies on equipotentials and may be much greater near the inner Lagrangian point (L1). As a result, waves reaching the vicinity of L1 may propagate unimpeded into low-density regions, where they tend to dissipate quickly due to non-linear and radiative effects. We study the three-dimensional propagation and enhanced damping of such waves inside a set of close binary stellar models using a WKB approximation of the acoustic field. We find that these waves can have much higher damping rates in close binaries, compared to their non-binary counterparts. We also find that the relative distribution of acoustic energy density at the visible surface of close binaries develops a ring-like feature at specific acoustic frequencies and binary separations.

  15. Texture classification by texton: statistical versus binary.

    Directory of Open Access Journals (Sweden)

    Zhenhua Guo

    Full Text Available Using statistical textons for texture classification has shown great success recently. The maximal response 8 (Statistical_MR8, image patch (Statistical_Joint and locally invariant fractal (Statistical_Fractal are typical statistical texton algorithms and state-of-the-art texture classification methods. However, there are two limitations when using these methods. First, it needs a training stage to build a texton library, thus the recognition accuracy will be highly depended on the training samples; second, during feature extraction, local feature is assigned to a texton by searching for the nearest texton in the whole library, which is time consuming when the library size is big and the dimension of feature is high. To address the above two issues, in this paper, three binary texton counterpart methods were proposed, Binary_MR8, Binary_Joint, and Binary_Fractal. These methods do not require any training step but encode local feature into binary representation directly. The experimental results on the CUReT, UIUC and KTH-TIPS databases show that binary texton could get sound results with fast feature extraction, especially when the image size is not big and the quality of image is not poor.

  16. Synergistic toxicity and physiological impact of imidacloprid alone and binary mixtures with seven representative pesticides on honey bee (Apis mellifera)

    Science.gov (United States)

    Imidacloprid is the most widely used insecticide in the world. In this study, we used spraying methods to simulate field exposures of bees to formulated imidacloprid (Advise® 2FL) alone and binary mixtures with seven pesticides from different classes. Synergistic toxicity was detected from mixtures ...

  17. Binary Paths to Type Ia Supernovae Explosions: the Highlights

    Science.gov (United States)

    Ferrario, Lilia

    2013-01-01

    This symposium was focused on the hunt for the progenitors of Type Ia supernovae (SNe Ia). Is there a main channel for the production of SNe Ia? If so, are these elusive progenitors single degenerate or double degenerate systems? Although most participants seemed to favor the single degenerate channel, there was no general agreement on the type of binary system at play. An observational puzzle that was highlighted was the apparent paucity of supersoft sources in our Galaxy and also in external galaxies. The single degenerate channel (and as it was pointed out, quite possibly also the double degenerate channel) requires the binary system to pass through a phase of steady nuclear burning. However, the observed number of supersoft sources falls short by a factor of up to 100 in explaining the estimated birth rates of SNe Ia. Thus, are these supersoft sources somehow hidden away and radiating at different wavelengths, or are we missing some important pieces of this puzzle that may lead to the elimination of a certain class of progenitor? Another unanswered question concerns the dependence of SNe Ia luminosities on the age of their host galaxy. Several hypotheses were put forward, but none was singled out as the most likely explanation. It is fair to say that at the end of the symposium the definitive answer to the vexed progenitor question remained well and truly wide open.

  18. A general method for handling missing binary outcome data in randomized controlled trials

    OpenAIRE

    Jackson, Dan; White, Ian R; Mason, Dan; Sutton, Stephen

    2014-01-01

    Aims The analysis of randomized controlled trials with incomplete binary outcome data is challenging. We develop a general method for exploring the impact of missing data in such trials, with a focus on abstinence outcomes. Design We propose a sensitivity analysis where standard analyses, which could include ‘missing = smoking’ and ‘last observation carried forward’, are embedded in a wider class of models. Setting We apply our general method to data from two smoking cessation trials. Partici...

  19. Origin of very-short orbital-period binary systems

    International Nuclear Information System (INIS)

    Miyaji, S.

    1983-01-01

    Recent observations of four close binaries have established that there is a group of very-short orbital-period (VSOP) binaries whose orbital periods are less than 60 minutes. The VSOP binaries consist of both X-ray close binaries and cataclysmic variables. Their orbital periods are too short to have a main-sequence companion. However, four binaries, none of which belongs to any globular cluster, are too abundant to be explained by the capturing mechanism of a white dwarf. Therefore it seemed to be worthwhile to present an evolutionary scenario from an original binary system which can be applied for all VSOP binaries. (Auth.)

  20. A STRANGE STAR SCENARIO FOR THE FORMATION OF ECCENTRIC MILLISECOND PULSAR/HELIUM WHITE DWARF BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Long; Li, Xiang-Dong [Department of Astronomy, Nanjing University, Nanjing 210046 (China); Dey, Jishnu; Dey, Mira, E-mail: lixd@nju.edu.cn [Department of Physics, Presidency University, 86/1, College Street, Kolkata 700 073 (India)

    2015-07-01

    According to the recycling scenario, millisecond pulsars (MSPs) have evolved from low-mass X-ray binaries (LMXBs). Their orbits are expected to be circular due to tidal interactions during binary evolution, as observed in most binary MSPs. There are some peculiar systems that do not fit this picture. Three recent examples are the PSRs J2234+06, J1946+3417, and J1950+2414, all of which are MSPs in eccentric orbits but with mass functions compatible with expected He white dwarf (WD) companions. It has been suggested these MSPs may have formed from delayed accretion-induced collapse of massive WDs, or the eccentricity may be induced by dynamical interaction between the binary and a circumbinary disk. Assuming that the core density of accreting neutron stars (NSs) in LMXBs may reach the density of quark deconfinement, which can lead to phase transition from NSs to strange quark stars, we show that the resultant MSPs are likely to have an eccentric orbit, due to the sudden loss of the gravitational mass of the NS during the transition. The eccentricities can be reproduced with a reasonable estimate of the mass loss. This scenario might also account for the formation of the youngest known X-ray binary Cir X–1, which also possesses a low-field compact star in an eccentric orbit.