WorldWideScience

Sample records for bimodal space power

  1. Innovative Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems

    International Nuclear Information System (INIS)

    The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonably assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible

  2. Integrated propulsion and power modeling for bimodal nuclear thermal rockets

    Science.gov (United States)

    Clough, Joshua

    Bimodal nuclear thermal rocket (BNTR) engines have been shown to reduce the weight of space vehicles to the Moon, Mars, and beyond by utilizing a common reactor for propulsion and power generation. These savings lead to reduced launch vehicle costs and/or increased mission safety and capability. Experimental work of the Rover/NERVA program demonstrated the feasibility of NTR systems for trajectories to Mars. Numerous recent studies have demonstrated the economic and performance benefits of BNTR operation. Relatively little, however, is known about the reactor-level operation of a BNTR engine. The objective of this dissertation is to develop a numerical BNTR engine model in order to study the feasibility and component-level impact of utilizing a NERVA-derived reactor as a heat source for both propulsion and power. The primary contribution is to provide the first-of-its-kind model and analysis of a NERVA-derived BNTR engine. Numerical component models have been modified and created for the NERVA reactor fuel elements and tie tubes, including 1-D coolant thermodynamics and radial thermal conduction with heat generation. A BNTR engine system model has been created in order to design and analyze an engine employing an expander-cycle nuclear rocket and Brayton cycle power generator using the same reactor. Design point results show that a 316 MWt reactor produces a thrust and specific impulse of 66.6 kN and 917 s, respectively. The same reactor can be run at 73.8 kWt to produce the necessary 16.7 kW electric power with a Brayton cycle generator. This demonstrates the feasibility of BNTR operation with a NERVA-derived reactor but also indicates that the reactor control system must be able to operate with precision across a wide power range, and that the transient analysis of reactor decay heat merits future investigation. Results also identify a significant reactor pressure-drop limitation during propulsion and power-generation operation that is caused by poor tie tube

  3. Finite-thrust optimization of interplanetary transfers of space vehicle with bimodal nuclear thermal propulsion

    Science.gov (United States)

    Kharytonov, Oleksii M.; Kiforenko, Boris M.

    2011-08-01

    The nuclear thermal rocket (NTR) propulsion is one of the leading promising technologies for primary space propulsion for manned exploration of the solar system due to its high specific impulse capability and sufficiently high thrust-to-weight ratio. Another benefit of NTR is its possible bimodal design, when nuclear reactor is used for generation of a jet thrust in a high-thrust mode and (with an appropriate power conversion system) as a source of electric power to supply the payload and the electric engines in a low-thrust mode. The model of the NTR thrust control was developed considering high-thrust NTR as a propulsion system of limited power and exhaust velocity. For the proposed model the control of the thrust value is accomplished by the regulation of reactor thermal power and propellant mass flow rate. The problem of joint optimization of the combination of high- and low-thrust arcs and the parameters of bimodal NTR (BNTR) propulsion system is considered for the interplanetary transfers. The interplanetary trajectory of the space vehicle is formed by the high-thrust NTR burns, which define planet-centric maneuvers and by the low-thrust heliocentric arcs where the nuclear electric propulsion (NEP) is used. The high-thrust arcs are analyzed using finite-thrust approach. The motion of the corresponding dynamical system is realized in three phase spaces concerning the departure planet-centric maneuver by means of high-thrust NTR propulsion, the low-thrust NEP heliocentric maneuver and the approach high-thrust NTR planet-centric maneuver. The phase coordinates are related at the time instants of the change of the phase spaces due to the relations between the space vehicle masses. The optimal control analysis is performed using Pontryagin's maximum principle. The numerical results are analyzed for Earth-Mars "sprint" transfer. The optimal values of the parameters that define the masses of NTR and NEP subsystems have been evaluated. It is shown that the low

  4. An examination of bimodal nuclear power and propulsion benefits for outer solar system missions

    Energy Technology Data Exchange (ETDEWEB)

    Zubrin, R. [Lockheed Martin Atronautics, PO Box 179, Denver, Colorado 80201 (United States); Mondt, J. [Jet Propulsion Lab, 4800 Oak Grove Drive, Pasadena, California 91109 (United States)

    1996-03-01

    This paper presents the results of an analysis of the capability of nuclear bimodal systems to perform outer solar system exploration missions. Missions of interest include orbiter missions to Jupiter, Saturn, Uranus, Neptune, and Pluto. An initial technology baseline consisting of the NEBA 10 kWe, 1000 N thrust, 850 s, 1500 kg bimodal system was selected, and its performance examined against a data base for trajectories to outer solar system planetary destinations to select optimal direct and gravity assisted trajectories for study. A conceptual design for a common bimodal spacecraft capable of performing missions to all the planetary destinations was developed and made the basis of end to end mission designs for orbiter missions to Jupiter, Saturn, and Neptune. All mission designs considered use the Atlas 2AS for launch. The radiological hazard associated with using Earth gravity assists on such missions was examined and shown to be small compared to that currently accepted on Earth fly-by missions involving RTGs. It is shown that the bimodal nuclear power and propulsion system offers many attractive options for planetary missions, including both conventional planetary missions in which all instruments are carried by a single primary orbiting spacecraft, and unconventional missions in which the primary spacecraft acts as a carrier, relay, and mother ship for a fleet of micro spacecraft deployed at the planetary destination. {copyright} {ital 1996 American Institute of Physics.}

  5. Space Solar Power Program

    Energy Technology Data Exchange (ETDEWEB)

    Arif, H.; Barbosa, H.; Bardet, C.; Baroud, M.; Behar, A.; Berrier, K.; Berthe, P.; Bertrand, R.; Bibyk, I.; Bisson, J.; Bloch, L.; Bobadilla, G.; Bourque, D.; Bush, L.; Carandang, R.; Chiku, T.; Crosby, N.; De Seixas, M.; De Vries, J.; Doll, S.; Dufour, F.; Eckart, P.; Fahey, M.; Fenot, F.; Foeckersperger, S.; Fontaine, J.E.; Fowler, R.; Frey, H.; Fujio, H.; Gasa, J.M.; Gleave, J.; Godoe, J.; Green, I.; Haeberli, R.; Hanada, T.; Ha

    1992-08-01

    Information pertaining to the Space Solar Power Program is presented on energy analysis; markets; overall development plan; organizational plan; environmental and safety issues; power systems; space transportation; space manufacturing, construction, operations; design examples; and finance.

  6. Development of a steady state creep behavior model of polycrystalline tungsten for bimodal space reactor application

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, A.; Hanan, N.A.; Bhattacharyya, S.K.; Gruber, E.E.

    1995-02-01

    The fuel element for one of the many reactor concepts being currently evaluated for bimodal applications in space consists of spherical fuel particles clad with tungsten or alloys of tungsten. The fuel itself consists of stabilized UO{sub 2}. One of the life limiting phenomena for the fuel element is failure of the cladding because of creep deformation. This report summarizes the information available in literature regarding the creep deformation of tungsten and its alloys and proposes a relation to be used for calculating the creep strains for elevated temperatures in the low stress region ({sigma} {le} 20 MPa). Also, results of the application of this creep relation to one of the reactor design concepts (NEBA-3) are discussed. Based on the traditional definition of creep deformation, the temperatures of 1500 K to 2900 K for tungsten and its alloys are considered to be in the {open_quotes}high{close_quotes} temperature range. In this temperature range, the rate controlling mechanisms for creep deformation are believed to be non-conservative motion of screw dislocations and short circuit diffusional paths. Extensive theoretical work on creep and in particular for creep of tungsten and its alloys have been reported in the literature. These theoretical efforts have produced complex mathematical models that require detailed materials properties. These relations, however, are not presently suitable for the creep analysis because of lack of consistent material properties required for their use. Variations in material chemistry and thermomechanical pre-treatment of tungsten have significant effects on creep and the mechanical properties. Analysis of the theoretical models and limited data indicates that the following empirical relation originally proposed by M. Jacox of INEL and the Air Force Phillips Laboratory, for calculating creep deformation of tungsten cladding, can be used for the downselection of preliminary bimodal reactor design concepts.

  7. Nuclear Power in Space

    Science.gov (United States)

    1994-01-01

    In the early years of the United States space program, lightweight batteries, fuel cells, and solar modules provided electric power for space missions. As missions became more ambitious and complex, power needs increased and scientists investigated various options to meet these challenging power requirements. One of the options was nuclear energy. By the mid-1950s, research had begun in earnest on ways to use nuclear power in space. These efforts resulted in the first radioisotope thermoelectric generators (RTGs), which are nuclear power generators build specifically for space and special terrestrial uses. These RTGs convert the heat generated from the natural decay of their radioactive fuel into electricity. RTGs have powered many spacecraft used for exploring the outer planets of the solar system and orbiting the sun and Earth. They have also landed on Mars and the moon. They provide the power that enables us to see and learn about even the farthermost objects in our solar system.

  8. Nuclear power in space

    International Nuclear Information System (INIS)

    The development of space nuclear power and propulsion in the United States started in 1955 with the initiation of the ROVER project. The first step in the ROVER program was the KIWI project that included the development and testing of 8 non-flyable ultrahigh temperature nuclear test reactors during 1955-1964. The KIWI project was precursor to the PHOEBUS carbon-based fuel reactor project that resulted in ground testing of three high power reactors during 1965-1968 with the last reactor operated at 4,100 MW. During the same time period a parallel program was pursued to develop a nuclear thermal rocket based on cermet fuel technology. The third component of the ROVER program was the Nuclear Engine for Rocket Vehicle Applications (NERVA) that was initiated in 1961 with the primary goal of designing the first generation of nuclear rocket engine based on the KIWI project experience. The fourth component of the ROVER program was the Reactor In-Flight Test (RIFT) project that was intended to design, fabricate, and flight test a NERVA powered upper stage engine for the Saturn-class lunch vehicle. During the ROVER program era, the Unites States ventured in a comprehensive space nuclear program that included design and testing of several compact reactors and space suitable power conversion systems, and the development of a few light weight heat rejection systems. Contrary to its sister ROVER program, the space nuclear power program resulted in the first ever deployment and in-space operation of the nuclear powered SNAP-10A in 1965. The USSR space nuclear program started in early 70's and resulted in deployment of two 6 kWe TOPAZ reactors into space and ground testing of the prototype of a relatively small nuclear rocket engine in 1984. The US ambition for the development and deployment of space nuclear powered systems was resurrected in mid 1980's and intermittently continued to date with the initiation of several research programs that included the SP-100, Space Exploration

  9. Space Nuclear Power Systems

    Science.gov (United States)

    Houts, Michael G.

    2012-01-01

    Fission power and propulsion systems can enable exciting space exploration missions. These include bases on the moon and Mars; and the exploration, development, and utilization of the solar system. In the near-term, fission surface power systems could provide abundant, constant, cost-effective power anywhere on the surface of the Moon or Mars, independent of available sunlight. Affordable access to Mars, the asteroid belt, or other destinations could be provided by nuclear thermal rockets. In the further term, high performance fission power supplies could enable both extremely high power levels on planetary surfaces and fission electric propulsion vehicles for rapid, efficient cargo and crew transfer. Advanced fission propulsion systems could eventually allow routine access to the entire solar system. Fission systems could also enable the utilization of resources within the solar system.

  10. Space Power Engineering Problems

    Science.gov (United States)

    Senkevich, V. P.

    2002-01-01

    Development of space power engineering in the first half of XXI century shall be aimed at preventing the forthcoming energy crisis and ecological catastrophes. The problem can be solved through using solar energy being perpetual, endless, and ecologically safe. As of now, issues on the development and employment of solar power stations and its beaming to the ground stations in the SHF band are put on the agenda. The most pressing problem is to develop orbital solar reflectors to illuminate towns in the polar regions, agricultural regions, and areas of processing sea products. Space-based technologies can be used to deal with typhoons, green house effects, and "ozone holes". Recently, large, frameless film structures formed by centrifugal forces offer the promise of structures for orbital power plants, reflectors, and solar sails. A big success is achieved in the development of power generating solar array elements of amorphous silicon. These innovations would make the development of orbital solar power plants dozens of times cheaper. Such solar arrays shall be used in the nearest future on heavy communication satellites and the Earth remote sensing platforms for generation of 140-160 kW at a specific power beyond 300 W/kg. The cargo traffic needed to develop and maintain the orbital power plants and reflector systems could be equipped with solar sails as the future low thrust propulsion. In 2000, the mankind witnessed an unexpected beginning of energy crisis along with strong hydro- meteorological events (typhoons, floods) that shocked the USA, the Western Europe, England, Japan, and other countries. The total damage is estimated as 90 billions of dollars. The mankind is approaching a boundary beyond which its further existence would depend on how people would learn to control weather and use ecologically safe power sources. Space technology base on the research potential accumulated in the previous century could serve for the solution of this problem.

  11. Free-space power transmission

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    NASA Lewis Research Center organized a workshop on technology availability for free-space power transmission (beam power). This document contains a collection of viewgraph presentations that describes the effort by academia, industry, and the national laboratories in the area of high-frequency, high-power technology applicable to free-space power transmission systems. The areas covered were rectenna technology, high-frequency, high-power generation (gyrotrons, solar pumped lasers, and free electron lasers), and antenna technology.

  12. Space power station. Uchu hatsuden

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, I. (Electrotechnical Laboratory, Tsukuba (Japan))

    1993-02-20

    A calculation tells that the amount of electric power the world will use in the future will require 100 to 500 power plants each with an output of 5-GW class. If this conception is true, it is beyond dispute that utilizing nuclear power will constitute a core of the power generation even though the geographical conditions are severe for nuclear power plants. It is also certain that power generation using clean solar energy will play important roles if power supply stability can be achieved. This paper describes plans to develop space solar power generation and space nuclear power generation that can supply power solving problems concerning geographical conditions and power supply stability. The space solar power generation is a system to arrest solar energy on a static orbit. According to a result of discussions in the U.S.A., the plan calls for solar cell sheets spread over the surface of a structure with a size of 5 km [times] 10 km [times] 0.5 km thick, and electric power obtained therefrom is transmitted to a rectenna with a size of 10 km [times] 13 km, a receiving antenna on the ground. The space nuclear power generation will be constructed similarly on a static orbit. Researches on space nuclear reactors have already begun. 10 refs., 8 figs., 1 tab.

  13. Power beaming providing a space power infrastructure

    International Nuclear Information System (INIS)

    This paper, based on two levels of technology maturity, applied the power beaming concept to four panned satellite constellations. The analysis shows that with currently available technology, power beaming can provide mass savings to constellations in orbits ranging from low-Earth orbit to geosynchronous orbit. Two constellations, space surveillance and tracking system and space-based radar, can be supported with current technology. The other two constellations, space-based laser array and boost surveillance and tracking system, will require power and transmission system improvements before their breakeven specific mass is achieved. A doubling of SP-100 conversion efficiency from 10 to 20% would meet or exceed breakeven for these constellations

  14. Bimodal Bilingualism

    Science.gov (United States)

    Emmorey, Karen; Borinstein, Helsa B.; Thompson, Robin; Gollan, Tamar H.

    2008-01-01

    Speech-sign or "bimodal" bilingualism is exceptional because distinct modalities allow for simultaneous production of two languages. We investigated the ramifications of this phenomenon for models of language production by eliciting language mixing from eleven hearing native users of American Sign Language (ASL) and English. Instead of switching…

  15. Space nuclear power systems

    International Nuclear Information System (INIS)

    Materials of the 19-th Symposium on Space Nuclear Energetic and Engine Units taking place in 2002, in Albuquerque, USA are reviewed. Reports on transformation of heat energy produced by nuclear reactors in electrical one are presented in the reports. Result of works on improvement as traditional (Brayton and Rankine cycles, thermoelectricity and thermionic emission), so innovation converter systems (Stirling engine, alkali metal thermal to electric converter - AMTEC, thermoacoustic engine) are represented

  16. Power systems for space exploration

    Science.gov (United States)

    Shipbaugh, Calvin; Solomon, Kenneth A.

    The Outreach Program was designed to solicit creative ideas from academia, research institutions, private enterprises, and the general public and is intended to be helpful in defining promising technical areas and program paths for more detailed study. To the Outreach Program, a number of power system concepts were proposed. In conclusion, there are a number of advanced concepts for space power and propulsion sources that deserve study if we want to expand our ability to not only explore space, but to utilize it. Advanced nuclear concepts and power beaming concepts are two areas worthy of detailed assessments.

  17. Nuclear space power and propulsion requirements and issues

    Energy Technology Data Exchange (ETDEWEB)

    Swerdling, M. [IR Associates, North Hills, CA (United States); Isenberg, L. [IR Associates, La Habra, CA (United States)

    1995-12-31

    The use of nuclear power in space is going through a low point. The kinds of missions that would use nuclear power are expensive and there are few new expensive missions. Both NASA and DoD are in a mode of cheaper, faster, better, which means using what is available as much as possible and only incorporating new technology to reduce mission cost. NASA is performing Mission to Planet Earth and detailed exploration missions of Mars. These NASA missions can be done with solar-battery power subsystems and there is no need for nuclear power. The NASA mission to Pluto does require nuclear radioisotope power. Ways to reduce the power subsystem cost and the power level are being investigated. NASA is studying ways to explore beyond Mars with solar-battery power because of the cost and uncertainty in the availability and launchability of nuclear space power systems. The DoD missions are all in earth orbit and can be done with solar-battery systems. The major DoD requirement at present is to reduce costs of all their space missions. One way to do this is to develop highly efficient upper stage boosters that can be integrated with lower cost Earth to low orbit stages and still place their payloads in to higher orbits. One attractive upper stage is a nuclear bimodal (propulsion and power) engine to accomplished lower booster cost to place space assets in GEO. However this is not being pursued because of DOE`s new policy not to fund nuclear space power research and development as well as the difficulty in obtaining launch approval for nuclear propulsion and power systems.

  18. The distribution of wave heights and periods for seas with unimodal and bimodal power density spectra

    OpenAIRE

    Sharpe, Matthew Michael

    1990-01-01

    CIVINS Approved for public release ; distribution is unlimited Observed distributions of wave heights and periods taken from one year of surface wave monitoring near Martha's Vineyard are compared to distributions based on narrow-band theory. The joint distributions of wave heights and periods and the marginal height distributions are examined. The observed significant wave heights and periods of the extreme waves are also studied. Seas are classified by the shapes of their power densit...

  19. Space Solar Power Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Arif, Humayun; Barbosa, Hugo; Bardet, Christophe; Baroud, Michel; Behar, Alberto; Berrier, Keith; Berthe, Phillipe; Bertrand, Reinhold; Bibyk, Irene; Bisson, Joel; Bloch, Lawrence; Bobadilla, Gabriel; Bourque, Denis; Bush, Lawrence; Carandang, Romeo; Chiku, Takemi; Crosby, Norma; De Seixas, Manuel; De Vries, Joha; Doll, Susan; Dufour, Francois; Eckart, Peter; Fahey, Michael; Fenot, Frederic; Foeckersperger, Stefan; Fontaine, Jean-Emmanuel; Fowler, Robert; Frey, Harald; Fujio, Hironobu; Gasa, Jaume Munich; Gleave, Janet; Godoe, Jostein; Green, Iain; Haeberli, Roman; Hanada, Toshiya; Harris, Peter; Hucteau, Mario; Jacobs, Didier Fernand; Johnson, Richard; Kanno, Yoshitsugu; Koenig, Eva Maria; Kojima, Kazuo; Kondepudi, Phani; Kottbauer, Christian; Kulper, Doede; Kulagin, Konstantin; Kumara, Pekka; Kurz, Rainer; Laaksonen, Jyrki; Lang, Andrew Neill; Lathan, Corinna; Le Fur, Thierry; Lewis, David; Louis, Alain; Mori, Takeshi; Morlanes, Juan; Murbach, Marcus; Nagatomo, Hideo; O' brien, Ivan; Paines, Justin; Palaszewski, Bryan; Palmnaes, Ulf; Paraschivolu, Marius; Pathare, Asmin; Perov, Egor; Persson, Jan; Pessoa-Lopes, Isabel; Pinto, Michel; Porro, Irene; Reichert, Michael; Ritt-Fischer, Monika; Roberts, Margaret; Robertson II, Lawrence; Rogers, Keith; Sasaki, Tetsuo; Scire, Francesca; Shibatou, Katsuya; Shirai, Tatsuya; Shiraishi, Atsushi; Soucaille, Jean-Francois; Spivack, Nova; St. Pierre, Dany; Suleman, Afzal; Sullivan, Thomas; Theelen, Bas Johan; Thonstad, Hallvard; Tsuji, Masatoshi; Uchiumi, Masaharu; Vidqvist, Jouni; Warrell, David; Watanabe, Takafumi; Willis, Richard; Wolf, Frank; Yamakawa, Hiroshi; Zhao, Hong

    1992-08-01

    Information pertaining to the Space Solar Power Program is presented on energy analysis; markets; overall development plan; organizational plan; environmental and safety issues; power systems; space transportation; space manufacturing, construction, operations; design examples; and finance.

  20. Thermoelectric power conversion in space

    Science.gov (United States)

    Awaya, Henry I.; Ewell, Richard; Nesmith, Bill; Vandersande, James

    1990-01-01

    A radiatively-heated multicouple for use in the next generation of radioisotope thermoelectric generator (RTG) will employ 20 individual couples within a single cell, so that 40 n- and p-semiconductor legs will be interconnected in series. At the hot end of the RTG, the legs will be electrically interconnected using silicon molybdenum; on the cold side, the legs are interconnected by tungsten. The entire cell is then mechanically attached to a radiator, which conducts heat away and radiates it into space. Deep-space applications will use RTGs developed for vacuum operation; thermoelectric converter power systems using a unicouple configuration have flown on such missions as Pioneers 10 and 11, which used lead telluride thermoelectric converters, and Voyagers I and II, which used silicon germanium-based thermoelectrics.

  1. Space power technology 21: Photovoltaics

    Science.gov (United States)

    Wise, Joseph

    1989-01-01

    The Space Power needs for the 21st Century and the program in photovoltaics needed to achieve it are discussed. Workshops were conducted in eight different power disciplines involving industry and other government agencies. The Photovoltaics Workshop was conducted at Aerospace Corporation in June 1987. The major findings and recommended program from this workshop are discussed. The major finding is that a survivable solar power capability is needed in photovoltaics for critical Department of Defense missions including Air Force and Strategic Defense Initiative. The tasks needed to realize this capability are described in technical, not financial, terms. The second finding is the need for lightweight, moderately survivable planar solar arrays. High efficiency thin III-V solar cells can meet some of these requirements. Higher efficiency, longer life solar cells are needed for application to both future planar and concentrator arrays with usable life up to 10 years. Increasing threats are also anticipated and means for avoiding prolonged exposure, retraction, maneuvering and autonomous operation are discussed.

  2. Atomic power in space: A history

    International Nuclear Information System (INIS)

    ''Atomic Power in Space,'' a history of the Space Isotope Power Program of the United States, covers the period from the program's inception in the mid-1950s through 1982. Written in non-technical language, the history is addressed to both the general public and those more specialized in nuclear and space technologies. 19 figs., 3 tabs

  3. A hybrid approach to space power control

    Science.gov (United States)

    Gholdston, E. W.; Janik, D. F.; Newton, K. A.

    1990-01-01

    Conventional control systems have traditionally been utilized for space-based power designs. However, the use of expert systems is becoming important for NASA applications. Rocketdyne has been pursuing the development of expert systems to aid and enhance control designs of space-based power systems. The need for integrated expert systems is vital for the development of autonomous power systems.

  4. Space nuclear power and man's extraterrestrial civilization

    International Nuclear Information System (INIS)

    This paper examines leading space nuclear power technology candidates. Particular emphasis is given the heat-pipe reactor technology currently under development at the Los Alamos National Laboratory. This program is aimed at developing a 10-100 kWe, 7-year lifetime space nuclear power plant. As the demand for space-based power reaches megawatt levels, other nuclear reactor designs including: solid core, fluidized bed, and gaseous core, are considered

  5. Challenges for future space power systems

    International Nuclear Information System (INIS)

    Forecasts of space power needs are presented. The needs fall into three broad categories: survival, self-sufficiency, and industrialization. The cost of delivering payloads to orbital locations and from Low Earth Orbit (LEO) to Mars are determined. Future launch cost reductions are predicted. From these projections the performances necessary for future solar and nuclear space power options are identified. The availability of plentiful cost effective electric power and of low cost access to space are identified as crucial factors in the future extension of human presence in space

  6. Space nuclear power: a strategy for tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.; Angelo, J. Jr.

    1981-01-01

    Energy: reliable, portable, abundant and low cost will be a most critical factor, perhaps the sine qua non, for the unfolding of man's permanent presence in space. Space-based nuclear power, in turn, is a key technology for developing such space platforms and the transportation systems necessary to service them. A strategy for meeting space power requirements is the development of a 100-kW(e) nuclear reactor system for high earth orbit missions, transportation from Shuttle orbits to geosynchronous orbit, and for outer planet exploration. The component technology for this nuclear power plant is now underway at the Los Alamos National Laboratory. As permanent settlements are established on the Moon and in space, multimegawatt power plants will be needed. This would involve different technology similar to terrestrial nuclear power plants.

  7. Atomic power in space: A history

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    ''Atomic Power in Space,'' a history of the Space Isotope Power Program of the United States, covers the period from the program's inception in the mid-1950s through 1982. Written in non-technical language, the history is addressed to both the general public and those more specialized in nuclear and space technologies. 19 figs., 3 tabs.

  8. Models for multimegawatt space power systems

    Energy Technology Data Exchange (ETDEWEB)

    Edenburn, M.W.

    1990-06-01

    This report describes models for multimegawatt, space power systems which Sandia's Advanced Power Systems Division has constructed to help evaluate space power systems for SDI's Space Power Office. Five system models and models for associated components are presented for both open (power system waste products are exhausted into space) and closed (no waste products) systems: open, burst mode, hydrogen cooled nuclear reactor -- turboalternator system; open, hydrogen-oxygen combustion turboalternator system; closed, nuclear reactor powered Brayton cycle system; closed, liquid metal Rankine cycle system; and closed, in-core, reactor therminonic system. The models estimate performance and mass for the components in each of these systems. 17 refs., 8 figs., 15 tabs.

  9. Irreducible complexity of iterated symmetric bimodal maps

    OpenAIRE

    Lampreia, J. P.; Severino, R.; J. Sousa Ramos

    2004-01-01

    We introduce a tree structure for the iterates of symmetric bimodal maps and identify a subset which we prove to be isomorphic to the family of unimodal maps. This subset is used as a second factor for a $\\ast $-product that we define in the space of bimodal kneading sequences. Finally, we give some properties for this product and study the *-product induced on the associated Markov shifts.

  10. Irreducible complexity of iterated symmetric bimodal maps

    Directory of Open Access Journals (Sweden)

    J. P. Lampreia

    2005-01-01

    Full Text Available We introduce a tree structure for the iterates of symmetric bimodal maps and identify a subset which we prove to be isomorphic to the family of unimodal maps. This subset is used as a second factor for a ∗-product that we define in the space of bimodal kneading sequences. Finally, we give some properties for this product and study the ∗-product induced on the associated Markov shifts.

  11. New generation of reactors for space power

    International Nuclear Information System (INIS)

    Space nuclear reactor power is expected to enable many new space missions that will require several times to several orders of magnitude anything flown in space to date. Power in the 100-kW range may be required in high earth orbit spacecraft and planetary exploration. The technology for this power system range is under development for the Department of Energy with the Los Alamos National Laboratory responsible for the critical components in the nuclear subsystem. The baseline design for this particular nuclear sybsystem technology is described in this paper; additionally, reactor technology is reviewed from previous space power programs, a preliminary assessment is made of technology candidates covering an extended power spectrum, and the status is given of other reactor technologies

  12. Inertial fusion power for space applications

    International Nuclear Information System (INIS)

    It is now considered very likely that within the next ten years, inertial confinement fusion (ICF) will have achieved high (10-100) gain (ratio of fusion energy produced to driver energy on target) in the laboratory. Current ICF power plant designs, based upon the most technologically advanced earthbound drivers, tend to be very high power (≅1000 MW/sub e/) and heavy (the Nova laser weighs about 500 tons without the building). Space power needs are currently much smaller than this (but are growing), and the space application places a premium on low mass and high efficiency. This paper evaluates current ICF driver and reactor alternative technologies using space power criteria. The authors also consider how current technologies might be altered to produce smaller, lighter fusion power sources for space. It is shown that the technologies currently leading for terrestrial application (emphasizing low development risk and low cost) are not the best ones for space power; however, technologies are identified that would result in attractive ICF space power plants an order of magnitude less massive

  13. Deep Space Cryogenic Power Electronics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Technology Application, Inc. (TAI) is proposing to demonstrate feasibility of implementing silicon germanium (SiGe) strained-gate technology in the power...

  14. Future Photovoltaic Power Generation for Space-Based Power Utilities

    Science.gov (United States)

    Bailey, S.; Landis, G.; Raffaelle, R.; Hepp, A.

    2002-01-01

    A recent NASA program, Space Solar Power Exploratory Research and Technology (SERT), investigated the technologies needed to provide cost-competitive ground baseload electrical power from space based solar energy conversion. This goal mandated low cost, light weight gigawatt (GW) power generation. Investment in solar power generation technologies would also benefit high power military, commercial and science missions. These missions are generally those involving solar electric propulsion, surface power systems to sustain an outpost or a permanent colony on the surface of the moon or mars, space based lasers or radar, or as large earth orbiting power stations which can serve as central utilities for other orbiting spacecraft, or as in the SERT program, potentially beaming power to the earth itself. This paper will discuss requirements for the two latter options, the current state of the art of space solar cells, and a variety of both evolving thin film cells as well as new technologies which may impact the future choice of space solar cells for a high power mission application. The space world has primarily transitioned to commercially available III-V (GaInP/GaAs/Ge) cells with 24-26% air mass zero (AMO) efficiencies. Research in the III-V multi-junction solar cells has focused on fabricating either lattice-mismatched materials with optimum stacking bandgaps or new lattice matched materials with optimum bandgaps. In the near term this will yield a 30% commercially available space cell and in the far term possibly a 40% cell. Cost reduction would be achieved if these cells could be grown on a silicon rather than a germanium substrate since the substrate is ~65% of the cell cost or, better yet, on a polyimide or possibly a ceramic substrate. An overview of multi-junction cell characteristics will be presented here. Thin film cells require substantially less material and have promised the advantage of large area, low cost manufacturing. However, space cell requirements

  15. New directions for space solar power

    Science.gov (United States)

    Mankins, John C.

    2009-07-01

    Several of the central issues associated with the eventual realization of the vision of solar power from space for terrestrial markets resolve around the expect costs associated with the assembly, inspection, maintenance and repair of future solar power satellite (SPS) stations. In past studies (for example, NASA's "Fresh Look Study", c. 1995-1997) efforts were made to reduce both the scale and mass of large, systems-level interfaces (e.g., the power management and distribution (PMAD) system) and on-orbit fixed infrastructures through the use of modular systems strategies. These efforts have had mixed success (as reflected in the projected on-orbit mass of various systems concepts. However, the author remains convinced of the importance of modular strategies for exceptionally large space systems in eventually realizing the vision of power from space. This paper will introduce some of the key issues associated with cost-competitive space solar power in terrestrial markets. It will examine some of the relevant SPS concepts and will assess the 'pros and cons' of each in terms of space assembly, maintenance and servicing (SAMS) requirements. The paper discusses at a high level some relevant concepts and technologies that may play r role in the eventual, successful resolution of these challenges. The paper concludes with an example of the kind of novel architectural approach for space solar power that is needed.

  16. Space Power Facility Reverberation Chamber Calibration Report

    Science.gov (United States)

    Lewis, Catherine C.; Dolesh, Robert J.; Garrett, Michael J.

    2014-01-01

    This document describes the process and results of calibrating the Space Environmental Test EMI Test facility at NASA Plum Brook Space Power Facility according to the specifications of IEC61000-4-21 for susceptibility testing from 100 MHz to 40 GHz. The chamber passed the field uniformity test, in both the empty and loaded conditions, making it the world's largest Reverberation Chamber.

  17. Can Power from Space Compete?

    OpenAIRE

    Macauley, Molly; Darmstadter, Joel; Fini, John; Greenberg, Joel; Maulbetsch, John; Schaal, A. Michael; Styles, Geoffrey; Vedda, James

    2000-01-01

    Satellite solar power (SSP) has been suggested as an alternative to terrestrial energy resources for electricity generation. In this study, we consider the market for electricity from the present to 2020, roughly the year when many experts expect SSP to be technically achievable. We identify several key challenges for SSP in competing with conventional electricity generation in developed and developing countries, discuss the role of market and economic analysis as technical development of SSP...

  18. Millimeterwave Space Power Grid architecture development 2012

    Science.gov (United States)

    Komerath, Narayanan; Dessanti, Brendan; Shah, Shaan

    This is an update of the Space Power Grid architecture for space-based solar power with an improved design of the collector/converter link, the primary heater and the radiator of the active thermal control system. The Space Power Grid offers an evolutionary approach towards TeraWatt-level Space-based solar power. The use of millimeter wave frequencies (around 220GHz) and Low-Mid Earth Orbits shrinks the size of the space and ground infrastructure to manageable levels. In prior work we showed that using Brayton cycle conversion of solar power allows large economies of scale compared to the linear mass-power relationship of photovoltaic conversion. With high-temperature materials permitting 3600 K temperature in the primary heater, over 80 percent cycle efficiency was shown with a closed helium cycle for the 1GW converter satellite which formed the core element of the architecture. Work done since the last IEEE conference has shown that the use of waveguides incorporated into lighter-than-air antenna platforms, can overcome the difficulties in transmitting millimeter wave power through the moist, dense lower atmosphere. A graphene-based radiator design conservatively meets the mass budget for the waste heat rejection system needed for the compressor inlet temperature. Placing the ultralight Mirasol collectors in lower orbits overcomes the solar beam spot size problem of high-orbit collection. The architecture begins by establishing a power exchange with terrestrial renewable energy plants, creating an early revenue generation approach with low investment. The approach allows for technology development and demonstration of high power millimeter wave technology. A multinational experiment using the International Space Station and another power exchange satellite is proposed to gather required data and experience, thus reducing the technical and policy risks. The full-scale architecture deploys pairs of Mirasol sunlight collectors and Girasol 1 GW converter satellites t

  19. POWER LASER BEAMING AND APPLICATIONS IN SPACE

    OpenAIRE

    Lee, JA; Conway, E.

    1991-01-01

    A brief overview of the concept of power laser beaming in space and its applications are presented. A direct solar-pumped iodine laser with the iodide t-C4F9I lasant is described as an example of the power laser system.

  20. Space Power for Communication Satellites Beyond 1995

    Science.gov (United States)

    Pierce, P. R.

    1984-01-01

    The space power trends for communication satellites beginning in the mid-70's are reviewed. Predictions of technology advancements and requirements were compared with actual growth patterns. The conclusions derived suggest that the spacecraft power system technology base and present rate of advancement will not be able to meet the power demands of the early to mid-90's. It is recommended that an emphasis on accelerating the technology development be made to minimize the technology gap.

  1. Space solar power - An energy alternative

    Science.gov (United States)

    Johnson, R. W.

    1978-01-01

    The space solar power concept is concerned with the use of a Space Power Satellite (SPS) which orbits the earth at geostationary altitude. Two large symmetrical solar collectors convert solar energy directly to electricity using photovoltaic cells woven into blankets. The dc electricity is directed to microwave generators incorporated in a transmitting antenna located between the solar collectors. The antenna directs the microwave beam to a receiving antenna on earth where the microwave energy is efficiently converted back to dc electricity. The SPS design promises 30-year and beyond lifetimes. The SPS is relatively pollution free as it promises earth-equivalence of 80-85% efficient ground-based thermal power plant.

  2. Advanced materials for space nuclear power systems

    Science.gov (United States)

    Titran, Robert H.; Grobstein, Toni L.; Ellis, David L.

    1991-01-01

    The overall philosophy of the research was to develop and characterize new high temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites for heat rejection fins, and tungsten fiber reinforced niobium matrix composites for fuel containment and structural supports) considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  3. Thermionic reactors for space nuclear power

    Science.gov (United States)

    Griaznov, Georgii M.; Zhabotinskii, Evgenii E.; Serbin, Victor I.; Zrodnikov, Anatolii V.; Pupko, Victor Ia.; Ponomarev-Stepnoi, Nikolai N.; Usov, V. A.; Nikolaev, Iu. V.

    Compact thermionic nuclear reactor systems with satisfactory mass performance are competitive with space nuclear power systems based on the organic Rankine and closed Brayton cycles. The mass characteristics of the thermionic space nuclear power system are better than that of the solar power system for power levels beyond about 10 kWe. Longlife thermionic fuel element requirements, including their optimal dimensions, and common requirements for the in-core thermionic reactor design are formulated. Thermal and fast in-core thermionic reactors are considered and the ranges of their sensible use are discussed. Some design features of the fast in-core thermionic reactors cores (power range to 1 MWe) including a choice of coolants are discussed. Mass and dimensional performance for thermionic nuclear power reactor system are assessed. It is concluded that thermionic space nuclear power systems are promising power supplies for spacecrafts and that a single basic type of thermionic fuel element may be used for power requirements ranging to several hundred kWe.

  4. Fusion power for space propulsion.

    Science.gov (United States)

    Roth, R.; Rayle, W.; Reinmann, J.

    1972-01-01

    Principles of operation, interplanetary orbit-to-orbit mission capabilities, technical problems, and environmental safeguards are examined for thermonuclear fusion propulsion systems. Two systems examined include (1) a fusion-electric concept in which kinetic energy of charged particles from the plasma is converted into electric power (for accelerating the propellant in an electrostatic thrustor) by the van de Graaf generator principle and (2) the direct fusion rocket in which energetic plasma lost from the reactor has a suitable amount of added propellant to obtain the optimum exhaust velocity. The deuterium-tritium and the deuterium/helium-3 reactions are considered as suitable candidates, and attention is given to problems of cryogenic refrigeration systems, magnet shielding, and high-energy particle extraction and guidance.

  5. SPGD: A central power system for space title in French

    International Nuclear Information System (INIS)

    This paper describes the Space Power Generation and Distribution (SPGD) concept for providing power to any satellite in earth orbit via power beaming. Other applications such as providing power for terrestrial or space exploration purposes are identified. An assessment of SPGD versus conventional space power is summarized concluding SPGD appears extremely attractive for our space future. 1 ref

  6. Space Shuttle Orbiter auxiliary power unit status

    Science.gov (United States)

    Reck, M.; Loken, G.; Horton, J.; Lukens, W.; Scott, W.; Baughman, J.; Bauch, T.

    An overview of the United States Space Shuttle Orbiter APU, which provides power to the Orbiter vehicle hydraulic system, is presented. Three complete APU systems, each with its own separate fuel system, supply power to three dedicated hydraulic systems. These in turn provide power to all Orbiter vehicle critical flight functions including launch, orbit, reentry, and landing. The basic APU logic diagram is presented. The APU includes a hydrazine-powered turbine that drives a hydraulic pump and various accessories through a high-speed gearbox. The APU also features a sophisticated thermal management system designed to ensure safe and reliable operation in the various launch, orbit, reentry, and landing environments.

  7. Space Solar Power Demonstrations: Challenges and Progress

    Science.gov (United States)

    Howell, Joe T.; Mankins, John C.; Lavoie, Anthony R. (Technical Monitor)

    2002-01-01

    The prospects of using electrical power beamed from space are coming closer to reality with the continued pursuit and improvements in the supporting space solar research and technology. Space Solar Power (SSP) has been explored off and on for approximately three decades as a viable alternative and clean energy source. Results produced through the more recent Space Solar Power Exploratory Research and Technology (SERT) program involving extensive participation by industry, universities, and government has provided a sound technical basis for believing that technology can be improved to the extent that SSP systems can be built, economically feasible, and successfully deployed in space. Considerable advancements have been made in conceptual designs and supporting technologies including solar power generation, wireless power transmission, power management distribution, thermal management and materials, and the integrated systems engineering assessments. Basic technologies have progressed to the point were the next logical step is to formulate and conduct sophisticated demonstrations involving prototype hardware as final proof of concepts and identify high end technology readiness levels in preparation for full scale SSP systems designs. In addition to continued technical development issues, environmental and safety issues must be addressed and appropriate actions taken to reassure the public and prepare them for the future use of this alternative renewable energy resource. Accomplishing these objectives will allow informed future decisions regarding further SSP and related R&D investments by both NASA management and prospective external partners. In particular, accomplishing these objectives will also guide further definition of SSP and related technology roadmaps including performance objectives, resources and schedules; including 'multi-purpose' applications (terrestrial markets, science, commercial development of space, and other government missions).

  8. Automation concepts for large space power systems

    Science.gov (United States)

    Imamura, M. S.; Moser, R.; Aichele, D.; Lanier, R., Jr.

    1983-01-01

    A study was undertaken to develop a methodology for analyzing, selecting, and implementing automation functions for multi-hundred-kW photovoltaic power systems intended for manned space station. The study involved identification of generic power system elements and their potential faults, definition of automation functions and their resulting benefits, and partitioning of automation functions between power subsystem, central spacecraft computer, and ground. Automation to a varying degree was concluded to be mandatory to meet the design and operational requirements of the space station. The key drivers are indefinite lifetime, modular growth, high performance flexibility, a need to accommodate different electrical user load equipment, on-orbit assembly/maintenance/servicing, and potentially large number of power subsystem components. Functions that are good candidates for automation via expert system approach includes battery management and electrical consumables management.

  9. Multi-mode nuclear space power systems

    International Nuclear Information System (INIS)

    This paper is concerned with early versions of multi-mode nuclear space power systems (M-M NSPS) and their important mission applications for the early years of the next century. These systems are characterized as being capable of selectively operating over wide ranges of electric power levels and duty cycles and also produce direct propulsive thrust. Their special configurations will be composed of both current and neoteric elements and special configurations requiring substantial analysis, research, development and test

  10. Test report on the Abacus 30 kW bimode(reg sign) inverter and Maximum Power Tracker (MPT)

    Science.gov (United States)

    Bonn, Russell; Ginn, Jerry; Zirzow, Jeff; Sittler, Greg

    1995-06-01

    Sandia National Laboratories conducts the photovoltaic balance of systems (BOS) program, which is sponsored by the US Department of Energy's Office of Energy Management. Under this program, SNL lets commercialization contracts and conducts a laboratory program designed to advance BOS technology, improve BOS component reliability, and reduce the BOS life-cycle-cost. This report details the testing of the first large US manufactured hybrid inverter and its associated maximum power tracker.

  11. Test report on the Abacus 30 kW bimode{reg_sign} inverter and maximum power tracker (MPT)

    Energy Technology Data Exchange (ETDEWEB)

    Bonn, R.; Ginn, J.; Zirzow, J. [and others

    1995-06-01

    Sandia National Laboratories conducts the photovoltaic balance of systems (BOS) program, which is sponsored by the US Department of Energy`s Office of Energy Management. Under this program, SNL lets commercialization contracts and conducts a laboratory program designed to advance BOS technology, improve BOS component reliability, and reduce the BOS life-cycle-cost. This report details the testing of the first large US manufactured hybrid inverter and its associated maximum power tracker.

  12. Space solar power - The transportation challenge. [for Space Shuttle

    Science.gov (United States)

    Davis, H. P.

    1977-01-01

    The status of space transportation systems analyses referable to the SPS (solar power satellite) is reviewed briefly. Propulsion systems (including magnetoplasmadynamic) and booster arrangements for the SPS mission and variants in recovery arrangements (including winged recovery) are summarized, along with proposals for production of SPS components in space from lunar and asteroidal materials. Transportation of the pilot plant into low circumterrestrial orbit or high geosynchronous orbit, transfers between those orbits, and construction of a large work bench structure (orbital construction demonstration article - OCDA) in low earth orbit are discussed.

  13. Solar Power Beaming: From Space to Earth

    Energy Technology Data Exchange (ETDEWEB)

    Rubenchik, A M; Parker, J M; Beach, R J; Yamamoto, R M

    2009-04-14

    Harvesting solar energy in space and power beaming the collected energy to a receiver station on Earth is a very attractive way to help solve mankind's current energy and environmental problems. However, the colossal and expensive 'first step' required in achieving this goal has to-date stifled its initiation. In this paper, we will demonstrate that recent advance advances in laser and optical technology now make it possible to deploy a space-based system capable of delivering 1 MW of energy to a terrestrial receiver station, via a single unmanned commercial launch into Low Earth Orbit (LEO). Figure 1 depicts the overall concept of our solar power beaming system, showing a large solar collector in space, beaming a coherent laser beam to a receiving station on Earth. We will describe all major subsystems and provide technical and economic discussion to support our conclusions.

  14. Small high cooling power space cooler

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, T. V.; Raab, J.; Durand, D.; Tward, E. [Northrop Grumman Aerospace Systems Redondo Beach, Ca, 90278 (United States)

    2014-01-29

    The small High Efficiency pulse tube Cooler (HEC) cooler, that has been produced and flown on a number of space infrared instruments, was originally designed to provide cooling of 10 W @ 95 K. It achieved its goal with >50% margin when limited by the 180 W output ac power of its flight electronics. It has also been produced in 2 stage configurations, typically for simultaneously cooling of focal planes to temperatures as low as 35 K and optics at higher temperatures. The need for even higher cooling power in such a low mass cryocooler is motivated by the advent of large focal plane arrays. With the current availability at NGAS of much larger power cryocooler flight electronics, reliable long term operation in space with much larger cooling powers is now possible with the flight proven 4 kg HEC mechanical cooler. Even though the single stage cooler design can be re-qualified for those larger input powers without design change, we redesigned both the linear and coaxial version passive pulse tube cold heads to re-optimize them for high power cooling at temperatures above 130 K while rejecting heat to 300 K. Small changes to the regenerator packing, the re-optimization of the tuned inertance and no change to the compressor resulted in the increased performance at 150 K. The cooler operating at 290 W input power achieves 35 W@ 150 K corresponding to a specific cooling power at 150 K of 8.25 W/W and a very high specific power of 72.5 W/Kg. At these powers the cooler still maintains large stroke, thermal and current margins. In this paper we will present the measured data and the changes to this flight proven cooler that were made to achieve this increased performance.

  15. Nuclear Power Sources for Space Systems

    Science.gov (United States)

    Kukharkin, N. E.; Ponomarev-Stepnoi, N. N.; Usov, V. A.

    This chapter contains the information about nuclear power sources for space systems. Reactor nuclear sources are considered that use the energy of heavy nuclei fission generated by controlled chain fission reaction, as well as the isotope ones producing heat due to the energy of nuclei radioactive decay. Power of reactor nuclear sources is determined by the rate of heavy nuclei fission that may be controlled within a wide range from the zero up to the nominal one. Thermal power of isotope sources cannot be controlled. It is determined by the type and quantity of isotopes and decreases in time due to their radioactive decay. Both, in the reactor sources and in the isotope ones, nuclear power is converted into the thermal one that may be consumed for the coolant heating to produce thrust (Nuclear Power Propulsion System, NPPS) or may be converted into electricity (Nuclear Power Source, NPS) dynamically (a turbine generator) or statically (thermoelectric or thermionic converters). Electric power is supplied to the airborne equipment or is used to produce thrust in electric (ionic, plasma) low-thrust engines. A brief description is presented of the different nuclear systems with reactor and isotopic power sources implemented in Russia and the USA. The information is also given about isotopic sources for the ground-based application, mainly for navigation systems.

  16. Solar dynamic space power system heat rejection

    Science.gov (United States)

    Carlson, A. W.; Gustafson, E.; Mclallin, K. L.

    1986-01-01

    A radiator system concept is described that meets the heat rejection requirements of the NASA Space Station solar dynamic power modules. The heat pipe radiator is a high-reliability, high-performance approach that is capable of erection in space and is maintainable on orbit. Results are present of trade studies that compare the radiator system area and weight estimates for candidate advanced high performance heat pipes. The results indicate the advantages of the dual-slot heat pipe radiator for high temperature applications as well as its weight-reduction potential over the range of temperatures to be encountered in the solar dynamic heat rejection systems.

  17. Space Power Requirements for Future NASA Missions

    Science.gov (United States)

    Mulville, Daniel R.

    1996-01-01

    The key technology issues for the power requirements of future NASA space missions are: reduction in mass to enable smaller launch vehicles, faster trip time and lower cost; simpler more autonomous operations to reduce life cycle cost; reduce design, development , and qualification time to enable frequent low-cost missions; increase payload fraction and science return; enable next generation missions; stimulate U.S. industry to promote strong world leadership capability; and incorporate dual-use strategy into technology development.

  18. Mobility and power in networked European space

    DEFF Research Database (Denmark)

    Richardson, Tim; Jensen, Ole B.

    This paper seeks to contribute to debates about how urban, social and critical theory can conceptualise the socio-technologies of connection, resilience, mobility, and collapse in contemporary urban space. The paper offers a theoretical frame for conceptualising this New Urban Condition, focusing...... on themes of mobility, power, flow, network and scale. The analysis suggests the importance of close atention to the knowledge claims which are deployed in multi-level struggles to assert smooth futures in face of dysfunction....

  19. Bimodal Nuclear Thermal Rocket Analysis Developments

    Science.gov (United States)

    Belair, Michael; Lavelle, Thomas; Saimento, Charles; Juhasz, Albert; Stewart, Mark

    2014-01-01

    Nuclear thermal propulsion has long been considered an enabling technology for human missions to Mars and beyond. One concept of operations for these missions utilizes the nuclear reactor to generate electrical power during coast phases, known as bimodal operation. This presentation focuses on the systems modeling and analysis efforts for a NERVA derived concept. The NERVA bimodal operation derives the thermal energy from the core tie tube elements. Recent analysis has shown potential temperature distributions in the tie tube elements that may limit the thermodynamic efficiency of the closed Brayton cycle used to generate electricity with the current design. The results of this analysis are discussed as well as the potential implications to a bimodal NERVA type reactor.

  20. Photovoltaics for high capacity space power systems

    Science.gov (United States)

    Flood, Dennis J.

    1988-01-01

    The anticipated energy requirements of future space missions will grow by factors approaching 100 or more, particularly as a permanent manned presence is established in space. The advances that can be expected in solar array performance and lifetime, when coupled with advanced, high energy density storage batteries and/or fuel cells, will continue to make photovoltaic energy conversion a viable power generating option for the large systems of the future. The specific technologies required to satisfy any particular set of power requirements will vary from mission to mission. Nonetheless, in almost all cases the technology push will be toward lighter weight and higher efficiency, whether of solar arrays of storage devices. This paper will describe the content and direction of the current NASA program in space photovoltaic technology. The paper will also discuss projected system level capabilities of photovoltaic power systems in the context of some of the new mission opportunities under study by NASA, such as a manned lunar base, and a manned visit to Mars.

  1. Advanced space solar dynamic power systems beyond IOC Space Station

    Science.gov (United States)

    Wallin, Wayne E.; Dustin, Miles O.

    1987-01-01

    Three different solar dynamic power cycle systems were evaluated for application to missions projected beyond the IOC Space Station. All three systems were found to be superior to two photovoltaic systems (a planar silicon array and a GaAs concentrator array), with both lower weight and area. The alkali-metal Rankine cycle was eliminated from consideration due to low performance, and the Stirling cycle was found to be superior to the closed Brayton cycle in both weight and area. LiF salt, which establishes peak cycle temperatures for both of the considered cycles at about 1090 K, was shown to be the most suitable material for Thermal Energy Storage.

  2. Sandwich module testing for space solar power

    Science.gov (United States)

    Jaffe, Paul

    Solar power satellites have been envisioned as a means to provide electricity for terrestrial use. The approach entails collection of solar energy in space and its wireless transmission to the earth. This potentially gives the benefit of provision of baseload power while avoiding the losses due to the day/night cycle and tropospheric effects that are associated with terrestrial solar power. Proponents have contended that the implementation of such systems could offer energy security, environmental, and technological advantages to those who would undertake their development. Among recent implementations commonly proposed for SSP, the Modular Symmetrical Concentrator and other modular concepts have received considerable attention. Each employs an array of modules for performing conversion of concentrated sunlight into microwaves or laser beams for transmission to earth. The research described herein details efforts in the development and testing of photovoltaic arrays, power electronics, microwave conversion electronics, and antennas for 2.45 GHz microwave-based “ sandwich” module prototypes. Prototypes were designed, fabricated, and subjected to the challenging conditions inherent in the space environment, including the solar concentration levels in which an array of modules might be required to operate.

  3. Performance tuned radioisotope thermophotovoltaic space power system

    Science.gov (United States)

    Horne, W. E.; Morgan, M. D.; Saban, S. B.

    1998-01-01

    The trend in space exploration is to use many small, low-cost, special-purpose satellites instead of the large, high-cost, multipurpose satellites used in the past. As a result of this new trend, there is a need for lightweight, efficient, and compact radioisotope fueled electrical power generators. This paper presents an improved design for a radioisotope thermophotovoltaic (RTPV) space power system in the 10 W to 20 W class which promises up to 37.6 watts at 30.1% efficiency and 25 W/kg specific power. The RTPV power system concept has been studied and compared to radioisotope thermoelectric generators (RTG) radioisotope, Stirling generators and alkali metal thermal electric conversion (AMTEC) generators (Schock, 1995). The studies indicate that RTPV has the potential to be the lightest weight, most efficient and most reliable of the three concepts. However, in spite of the efficiency and light weight, the size of the thermal radiator required to eliminate excess heat from the PV cells and the lack of actual system operational performance data are perceived as obstacles to RTPV acceptance for space applications. Between 1994 and 1997 EDTEK optimized the key converter components for an RTPV generator under Department of Energy (DOE) funding administered via subcontracts to Orbital Sciences Corporation (OSC) and EG&G Mound Applied Technologies Laboratory (Horne, 1995). The optimized components included a resonant micromesh infrared bandpass filter, low-bandgap GaSb PV cells and cell arrays. Parametric data from these components were supplied to OSC who developed and analyzed the performance of 100 W, 20 W, and 10 W RTPV generators. These designs are described in references (Schock 1994, 1995 and 1996). Since the performance of each class of supply was roughly equivalent and simply scaled with size, this paper will consider the OSC 20 W design as a baseline. The baseline 20-W RTPV design was developed by Schock, et al of OSC and has been presented elsewhere. The

  4. Power lines harmonic radiation in circumterrestrial space

    Science.gov (United States)

    Pronenko, Vira; Korepanov, Valery; Dudkin, Denis

    2014-05-01

    Currently, one of the main areas in the near-Earth space research is the space weather exploration and forecasting. This study mainly relates to solar activity influence on the ionosphere and the Earth's atmosphere (i.e., the energy transfer in the direction of the Sun-magnetosphere-ionosphere-atmosphere-surface of the Earth) and does not reflect a significant impact of the powerful natural and anthropogenic processes, which occur on the Earth's surface and influence on the atmosphere-ionosphere-magnetosphere chain. The powerful sources and consumers of electrical energy (radio transmitters, power plants, power lines and industrial objects) cause different ionospheric phenomena, for example, changes of the electromagnetic (EM) field and plasma in the ionosphere, and affect on the state of the Earth atmosphere. Anthropogenic EM effects in the ionosphere are already observed by the scientific satellites. Consequences of anthropogenic impacts on the ionosphere are not currently known. Therefore, it is very important and urgent task to conduct the statistically significant research of the ionospheric parameters variations due to the influence of the powerful man-made factors, primarily owing to substantial increase of the EM energy production. Naturally, the satellite monitoring of the ionosphere and magnetosphere in the frequency range from tens of hertz to tens of MHz with wide ground support offers the best opportunity to observe the EM energy release, both in the global and local scales. The available experimental data, as well as theoretical estimations, allow with a high degree of certainty to say that the permanent satellite monitoring of the ionospheric and magnetospheric anthropogenic EM perturbations can be used for: a) objective assessment and prediction of the space weather conditions; b) evaluation of the daily or seasonal changes in the level of energy consumption; c) construction of a map for estimation of near space EM pollution. The examples of power

  5. Green Applications for Space Power Project

    Science.gov (United States)

    Robinson, Joel (Principal Investigator)

    2014-01-01

    Spacecraft propulsion and power for many decades has relied on Hydrazine monopropellant technology for auxiliary power units (APU), orbital circularization, orbit raising/lowering and attitude control. However, Hydrazine is toxic and therefore requires special ground handling procedures to ensure launch crew safety. The Swedish Company ECAPS has developed a technology based upon the propellant Ammonium Dinitramide (ADN) that offers higher performance, higher density and reduced ground handling support than Hydrazine. This blended propellant is called LMP-103S. Currently, the United States Air Force (USAF) is pursuing a technology based on Hydroxyl Ammonium Nitrate (HAN, otherwise known as AF-M315E) with industry partners Aerojet and Moog. Based on the advantages offered by these propellants, MSFC should explore powering APU's with these propellants. Due to the availability of space hardware, the principal investigator has found a collection of USAF hardware, that will act as a surrogate, which operates on a Hydrazine derivative. The F-16 fighter jet uses H-70 or 30% diluted Hydrazine for an Emergency Power Unit (EPU) which supplies power to the plane. The PI has acquired two EPU's from planes slated for destruction at the Davis Monthan AFB. This CIF will include a partnership with 2 other NASA Centers who are individually seeking seed funds from their respective organizations: Kennedy Space Center (KSC) and Dryden Flight Research Center (DFRC). KSC is preparing for future flights from their launch pads that will utilize green propellants and desire a low-cost testbed in which to test and calibrate new leak detection sensors. DFRC has access to F-16's which can be used by MSFC & KSC to perform a ground test that demonstrates emergency power supplied to the jet. Neither of the green propellant alternatives have been considered nor evaluated for an APU application. Work has already been accomplished to characterize and obtain the properties of these 2 propellants

  6. Liquid Metal Cooled Reactor for Space Power

    Science.gov (United States)

    Weitzberg, Abraham

    2003-01-01

    The conceptual design is for a liquid metal (LM) cooled nuclear reactor that would provide heat to a closed Brayton cycle (CBC) power conversion subsystem to provide electricity for electric propulsion thrusters and spacecraft power. The baseline power level is 100 kWe to the user. For long term power generation, UN pin fuel with Nb1Zr alloy cladding was selected. As part of the SP-100 Program this fuel demonstrated lifetime with greater than six atom percent burnup, at temperatures in the range of 1400-1500 K. The CBC subsystem was selected because of the performance and lifetime database from commercial and aircraft applications and from prior NASA and DOE space programs. The high efficiency of the CBC also allows the reactor to operate at relatively low power levels over its 15-year life, minimizing the long-term power density and temperature of the fuel. The scope of this paper is limited to only the nuclear components that provide heated helium-xenon gas to the CBC subsystem. The principal challenge for the LM reactor concept was to design the reactor core, shield and primary heat transport subsystems to meet mission requirements in a low mass configuration. The LM concept design approach was to assemble components from prior programs and, with minimum change, determine if the system met the objective of the study. All of the components are based on technologies having substantial data bases. Nuclear, thermalhydraulic, stress, and shielding analyses were performed using available computer codes. Neutronics issues included maintaining adequate operating and shutdown reactivities, even under accident conditions. Thermalhydraulic and stress analyses calculated fuel and material temperatures, coolant flows and temperatures, and thermal stresses in the fuel pins, components and structures. Using conservative design assumptions and practices, consistent with the detailed design work performed during the SP-100 Program, the mass of the reactor, shield, primary heat

  7. A Space Based Solar Power Satellite System

    Science.gov (United States)

    Engel, J. M.; Polling, D.; Ustamujic, F.; Yaldiz, R.; et al.

    2002-01-01

    (SPoTS) supplying other satellites with energy. SPoTS is due to be commercially viable and operative in 2020. of Technology designed the SPoTS during a full-time design period of six weeks as a third year final project. The team, organized according to the principles of systems engineering, first conducted a literature study on space wireless energy transfer to select the most suitable candidates for use on the SPoTS. After that, several different system concepts have been generated and evaluated, the most promising concept being worked out in greater detail. km altitude. Each SPoTS satellite has a 50m diameter inflatable solar collector that focuses all received sunlight. Then, the received sunlight is further redirected by means of four pointing mirrors toward four individual customer satellites. A market-analysis study showed, that providing power to geo-stationary communication satellites during their eclipse would be most beneficial. At arrival at geo-stationary orbit, the focused beam has expended to such an extent that its density equals one solar flux. This means that customer satellites can continue to use their regular solar arrays during their eclipse for power generation, resulting in a satellite battery mass reduction. the customer satellites in geo-stationary orbit, the transmitted energy beams needs to be pointed with very high accuracy. Computations showed that for this degree of accuracy, sensors are needed, which are not mainstream nowadays. Therefore further research must be conducted in this area in order to make these high-accuracy-pointing systems commercially attractive for use on the SPoTS satellites around 2020. Total 20-year system lifetime cost for 18 SPoT satellites are estimated at approximately USD 6 billion [FY2001]. In order to compete with traditional battery-based satellite power systems or possible ground based wireless power transfer systems the price per kWh for the customer must be significantly lower than the present one

  8. Operators of Approximations and Approximate Power Set Spaces

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xian-yong; MO Zhi-wen; SHU Lan

    2004-01-01

    Boundary inner and outer operators are introduced; and union, intersection, complement operators of approximations are redefined. The approximation operators have a good property of maintaining union, intersection, complement operators, so the rough set theory has been enriched from the operator-oriented and set-oriented views. Approximate power set spaces are defined, and it is proved that the approximation operators are epimorphisms from power set space to approximate power set spaces. Some basic properties of approximate power set space are got by epimorphisms in contrast to power set space.

  9. Biomimetic synthesized bimodal nanoporous silica: Bimodal mesostructure formation and application for ibuprofen delivery.

    Science.gov (United States)

    Li, Jing; Xu, Lu; Zheng, Nan; Wang, Hongyu; Lu, Fangzheng; Li, Sanming

    2016-01-01

    The present paper innovatively reports bimodal nanoporous silica synthesized using biomimetic method (B-BNS) with synthesized polymer (C16-L-serine) as template. Formation mechanism of B-BNS was deeply studied and exploration of its application as carrier of poorly water-soluble drug ibuprofen (IBU) was conducted. The bimodal nanopores and curved mesoscopic channels of B-BNS were achieved due to the dynamic self-assembly of C16-L-serine induced by silane coupling agent (3-aminopropyltriethoxysilane, APTES) and silica source (tetraethoxysilane, TEOS). Characterization results confirmed the successful synthesis of B-BNS, and particularly, nitrogen adsorption/desorption measurement demonstrated that B-BNS was meso-meso porous silica material. In application, B-BNS loaded IBU with high drug loading content due to its enlarged nanopores. After being loaded, IBU presented amorphous phase because nanoporous space and curved mesoscopic channels of B-BNS prevented the crystallization of IBU. In vitro release result revealed that B-BNS controlled IBU release with two release phases based on bimodal nanopores and improved dissolution in simulated gastric fluid due to crystalline conversion of IBU. It is convincible that biomimetic method provides novel theory and insight for synthesizing bimodal nanoporous silica, and unique functionalities of B-BNS as drug carrier can undoubtedly promote the application of bimodal nanoporous silica and development of pharmaceutical science.

  10. Learning bimodal structure in audio-visual data

    OpenAIRE

    Monaci, Gianluca; Vandergheynst, Pierre; Sommer, Friederich T.

    2009-01-01

    A novel model is presented to learn bimodally informative structures from audio-visual signals. The signal is represented as a sparse sum of audio- visual kernels. Each kernel is a bimodal function consisting of synchronous snippets of an audio waveform and a spatio-temporal visual basis function. To represent an audio-visual signal, the kernels can be positioned independently and arbitrarily in space and time. The proposed algorithm uses unsupervised learning to form dicti...

  11. An Advanced Light Weight Recuperator for Space Power Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Closed Brayton Cycle (CBC) space power system is one of the most efficient energy conversion technologies for nuclear and solar electric propulsion. The recuperator...

  12. An Advanced Light Weight Recuperator for Space Power Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nuclear Electric Propulsion (NEP) technology holds great promise for power and propulsion demands of NASA current and future deep space explorations. Closed Brayton...

  13. Advanced Space Power Systems (ASPS): Regenerative Fuel Cells (RFC) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the regenerative fuel cell project element is to develop power and energy storage technologies that enable new capabilities for future human space...

  14. High Power Uplink Amplifier for Deep Space Communications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Critical to the success of delivering on the promise of deep space optical communications is the creation of a stable and reliable high power multichannel optical...

  15. Recent advances in nuclear powered electric propulsion for space exploration

    Energy Technology Data Exchange (ETDEWEB)

    Cassady, R. Joseph [Aerojet Corp., Redmond, CA (United States); Frisbee, Robert H. [Jet Propulsion Laboratory, Pasadena, CA (United States); Gilland, James H. [Ohio Aerospace Institute, Cleveland, OH (United States); Houts, Michael G. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); LaPointe, Michael R. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)], E-mail: michael.r.lapointe@nasa.gov; Maresse-Reading, Colleen M. [Jet Propulsion Laboratory, Pasadena, CA (United States); Oleson, Steven R. [NASA Glenn Research Center, Cleveland, OH (United States); Polk, James E. [Jet Propulsion Laboratory, Pasadena, CA (United States); Russell, Derrek [Northrop Grumman Space Technology, Redondo Beach, CA (United States); Sengupta, Anita [Jet Propulsion Laboratory, Pasadena, CA (United States)

    2008-03-15

    Nuclear and radioisotope powered electric thrusters are being developed as primary in space propulsion systems for potential future robotic and piloted space missions. Possible applications for high-power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent US high-power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high-power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems.

  16. Recent Advances in Nuclear Powered Electric Propulsion for Space Exploration

    Science.gov (United States)

    Cassady, R. Joseph; Frisbee, Robert H.; Gilland, James H.; Houts, Michael G.; LaPointe, Michael R.; Maresse-Reading, Colleen M.; Oleson, Steven R.; Polk, James E.; Russell, Derrek; Sengupta, Anita

    2007-01-01

    Nuclear and radioisotope powered electric thrusters are being developed as primary in-space propulsion systems for potential future robotic and piloted space missions. Possible applications for high power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent U.S. high power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems,

  17. Development and Utilization of Space Fission Power Systems

    Science.gov (United States)

    Houts, Michael G.; Mason, Lee S.; Palac, Donald T.; Harlow, Scott E.

    2009-01-01

    Space fission power systems could enable advanced civilian space missions. Terrestrially, thousands of fission systems have been operated since 1942. In addition, the US flew a space fission system in 1965, and the former Soviet Union flew 33 such systems prior to the end of the Cold War. Modern design and development practices, coupled with 65 years of experience with terrestrial reactors, could enable the affordable development of space fission power systems for near-term planetary surface applications.

  18. Is power-space a continuum? Distance effect during power judgments.

    Science.gov (United States)

    Jiang, Tianjiao; Zhu, Lei

    2015-12-01

    Despite the increasing evidence suggesting that power processing can activate vertical space schema, it still remains unclear whether this power-space is dichotomic or continuous. Here we tested the nature of the power-space by the distance effect, a continuous property of space cognition. In two experiments, participants were required to judge the power of one single word (Experiment 1) or compare the power of two words presented in pairs (Experiment 2). The power distance was indexed by the absolute difference of power ratings. Results demonstrated that reaction time decreased with the power distance, whereas accuracy increased with the power distance. The findings indicated that different levels of power were presented as different vertical heights, implying that there was a common mechanism underlying space and power cognition.

  19. Generalized Hertz model for bimodal nanomechanical mapping.

    Science.gov (United States)

    Labuda, Aleksander; Kocuń, Marta; Meinhold, Waiman; Walters, Deron; Proksch, Roger

    2016-01-01

    Bimodal atomic force microscopy uses a cantilever that is simultaneously driven at two of its eigenmodes (resonant modes). Parameters associated with both resonances can be measured and used to extract quantitative nanomechanical information about the sample surface. Driving the first eigenmode at a large amplitude and a higher eigenmode at a small amplitude simultaneously provides four independent observables that are sensitive to the tip-sample nanomechanical interaction parameters. To demonstrate this, a generalized theoretical framework for extracting nanomechanical sample properties from bimodal experiments is presented based on Hertzian contact mechanics. Three modes of operation for measuring cantilever parameters are considered: amplitude, phase, and frequency modulation. The experimental equivalence of all three modes is demonstrated on measurements of the second eigenmode parameters. The contact mechanics theory is then extended to power-law tip shape geometries, which is applied to analyze the experimental data and extract a shape and size of the tip interacting with a polystyrene surface. PMID:27547614

  20. Space power development impact on technology requirements

    Science.gov (United States)

    Cassidy, J. F.; Fitzgerald, T. J.; Gilje, R. I.; Gordon, J. D.

    1986-01-01

    The paper is concerned with the selection of a specific spacecraft power technology and the identification of technology development to meet system requirements. Requirements which influence the selection of a given technology include the power level required, whether the load is constant or transient in nature, and in the case of transient loads, the time required to recover the power, and overall system safety. Various power technologies, such as solar voltaic power, solar dynamic power, nuclear power systems, and electrochemical energy storage, are briefly described.

  1. Nuclear space power safety and facility guidelines study

    International Nuclear Information System (INIS)

    This report addresses safety guidelines for space nuclear reactor power missions and was prepared by The Johns Hopkins University Applied Physics Laboratory (JHU/APL) under a Department of Energy grant, DE-FG01-94NE32180 dated 27 September 1994. This grant was based on a proposal submitted by the JHU/APL in response to an open-quotes Invitation for Proposals Designed to Support Federal Agencies and Commercial Interests in Meeting Special Power and Propulsion Needs for Future Space Missionsclose quotes. The United States has not launched a nuclear reactor since SNAP 10A in April 1965 although many Radioisotope Thermoelectric Generators (RTGs) have been launched. An RTG powered system is planned for launch as part of the Cassini mission to Saturn in 1997. Recently the Ballistic Missile Defense Office (BMDO) sponsored the Nuclear Electric Propulsion Space Test Program (NEPSTP) which was to demonstrate and evaluate the Russian-built TOPAZ II nuclear reactor as a power source in space. As of late 1993 the flight portion of this program was canceled but work to investigate the attributes of the reactor were continued but at a reduced level. While the future of space nuclear power systems is uncertain there are potential space missions which would require space nuclear power systems. The differences between space nuclear power systems and RTG devices are sufficient that safety and facility requirements warrant a review in the context of the unique features of a space nuclear reactor power system

  2. High-power converters for space applications

    Science.gov (United States)

    Park, J. N.; Cooper, Randy

    1991-01-01

    Phase 1 was a concept definition effort to extend space-type dc/dc converter technology to the megawatt level with a weight of less than 0.1 kg/kW (220 lb./MW). Two system designs were evaluated in Phase 1. Each design operates from a 5 kV stacked fuel cell source and provides a voltage step-up to 100 kV at 10 A for charging capacitors (100 pps at a duty cycle of 17 min on, 17 min off). Both designs use an MCT-based, full-bridge inverter, gaseous hydrogen cooling, and crowbar fault protection. The GE-CRD system uses an advanced high-voltage transformer/rectifier filter is series with a resonant tank circuit, driven by an inverter operating at 20 to 50 kHz. Output voltage is controlled through frequency and phase shift control. Fast transient response and stability is ensured via optimal control. Super-resonant operation employing MCTs provides the advantages of lossless snubbing, no turn-on switching loss, use of medium-speed diodes, and intrinsic current limiting under load-fault conditions. Estimated weight of the GE-CRD system is 88 kg (1.5 cu ft.). Efficiency of 94.4 percent and total system loss is 55.711 kW operating at 1 MW load power. The Maxwell system is based on a resonance transformer approach using a cascade of five LC resonant sections at 100 kHz. The 5 kV bus is converted to a square wave, stepped-up to a 100 kV sine wave by the LC sections, rectified, and filtered. Output voltage is controlled with a special series regulator circuit. Estimated weight of the Maxwell system is 83.8 kg (4.0 cu ft.). Efficiency is 87.2 percent and total system loss is 146.411 kW operating at 1 MW load power.

  3. High-power converters for space applications

    Science.gov (United States)

    Park, J. N.; Cooper, Randy

    1991-06-01

    Phase 1 was a concept definition effort to extend space-type dc/dc converter technology to the megawatt level with a weight of less than 0.1 kg/kW (220 lb./MW). Two system designs were evaluated in Phase 1. Each design operates from a 5 kV stacked fuel cell source and provides a voltage step-up to 100 kV at 10 A for charging capacitors (100 pps at a duty cycle of 17 min on, 17 min off). Both designs use an MCT-based, full-bridge inverter, gaseous hydrogen cooling, and crowbar fault protection. The GE-CRD system uses an advanced high-voltage transformer/rectifier filter is series with a resonant tank circuit, driven by an inverter operating at 20 to 50 kHz. Output voltage is controlled through frequency and phase shift control. Fast transient response and stability is ensured via optimal control. Super-resonant operation employing MCTs provides the advantages of lossless snubbing, no turn-on switching loss, use of medium-speed diodes, and intrinsic current limiting under load-fault conditions. Estimated weight of the GE-CRD system is 88 kg (1.5 cu ft.). Efficiency of 94.4 percent and total system loss is 55.711 kW operating at 1 MW load power. The Maxwell system is based on a resonance transformer approach using a cascade of five LC resonant sections at 100 kHz. The 5 kV bus is converted to a square wave, stepped-up to a 100 kV sine wave by the LC sections, rectified, and filtered. Output voltage is controlled with a special series regulator circuit. Estimated weight of the Maxwell system is 83.8 kg (4.0 cu ft.). Efficiency is 87.2 percent and total system loss is 146.411 kW operating at 1 MW load power.

  4. CW 100MW microwave power transfer in space

    Energy Technology Data Exchange (ETDEWEB)

    Takayama, K. (Houston Univ., TX (United States). Inst. for Beam Particle Dynamics National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan) Texas Accelerator Center, The Woodlands, TX (United States)); Hiramatsu, S. (National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)); Shiho, M. (Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan))

    1991-01-01

    A proposal is made for high-power microwave transfer in space. The concept consists in a microwave power station integrating a multistage microwave free-electron laser and asymmetric dual-reflector system. Its use in space is discussed. 9 refs., 2 figs., 1 tab.

  5. Modern Air&Space Power and political goals at war

    Science.gov (United States)

    Özer, Güngör.

    2014-05-01

    Modern AirandSpace Power is increasingly becoming a political tool. In this article, AirandSpacePower as a political tool will be discussed. The primary purpose of this article is to search how AirandSpacePower can provide contributions to security and also determine if it may reach the political goals on its own at war by SWOT Analysis Method and analysing the role of AirandSpace Power in Operation Unified Protector (Libya) as a case study. In conclusion, AirandSpacePower may not be sufficient to win the political goals on its own. However it may reach the political aims partially against the adversary on its own depending upon the situations. Moreover it can alone persuade the adversary to alter its behavior(s) in war.

  6. Transactions of the fourth symposium on space nuclear power systems

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, M.S.; Hoover, M.D. (eds.)

    1987-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these papers include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, refractory alloys and high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  7. Transactions of the fifth symposium on space nuclear power systems

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, M.S.; Hoover, M.D. (eds.)

    1988-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these paper include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  8. Controllable synthesis of high loading LiFePO4/C nanocomposites using bimodal mesoporous carbon as support for high power Li-ion battery cathodes

    Institute of Scientific and Technical Information of China (English)

    Fei; Cheng; Duo; Li; Anhui; Lu; Wencui; Li

    2013-01-01

    Mesoporous LiFePO4/C composites containing 80 wt% of highly dispersed LiFePO4 nanoparticles(4-6 nm) were fabricated using bimodal mesoporous carbon(BMC) as continuous conductive networks. The unique pore structure of BMC not only promises good particle connectivity for LiFePO4, but also acts as a rigid nano-confinement support that controls the particle size. Furthermore, the capacities were investigated respectively based on the weight of LiFePO4 and the whole composite. When calculated based on the weight of the whole composite, it is 120 mAh·g-1at 0.1 C of the high loading electrode and 42 mAh·g-1at 10 C of the low loading electrode. The electrochemical performance shows that high LiFePO4 loading benefits large tap density and contributes to the energy storage at low rates, while the electrode with low content of LiFePO4 displays superior high rate performance, which can mainly be due to the small particle size, good dispersion and high utilization of the active material, thus leading to a fast ion and electron diffusion.

  9. Green Applications for Space Power Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A key technical difference (aside from the differences in toxicity) between Hydrazine and the green propellant alternatives is the combustion temperature. ...

  10. Space nuclear power in views: 50 years ago and prevision for 50 years

    International Nuclear Information System (INIS)

    Full text: The second half of the XXth century became the age of the origin and formation of space nuclear power. During that time the potentialities and advantages of its application in large, medium and small nuclear rocket propulsions (NRP) were being earnestly demonstrated. The prototypes of different level NRP reactors were being tested in the USA and in the USSR during 1970-1980. Since 1956 the practical works on studying the opportunities of use the nuclear power installations (NPI) with direct methods of converting thermal power into electricity at the space vehicles have been launched. In addition to radio-isotopic space generators of current, reactor thermoelectric installations SNAP-10A of 0,5 kW, 'Bouk' of 3 kW and thermo-emission installation 'TOPAZ' of ∼6 kW were proposed, designed and constructed. 32 'Bouk' installations were operating in space during 1970-1988. Two 'TOPAZ' installations successfully passed flight space testing in 1987-1988. An important contribution to design and construction of 'Bouk' and 'TOPAZ' installations was made by V. Ya. Poupko. Simultaneously with the designs which reached their technical realization, the feasibility studies of the whole number of installations with different class reactors were carried out in the USSR (Russia) and USA. Brief descriptions of some of them are cited in the present Report. They were the modernized variants of thermo-emission and thermoelectric installations ('TOPAZ-2', SP-100) as well as the variants of combinations of the NPIs with multi-mode functioning, installations with power convert systems removed from the core, bimodal installations using NRP and NPI solutions, installations based on the lithium-niobium technology and installations with machine methods of conversion. However, in the end of the XXth - in the beginning of the XXIst centuries, depending on the economical expedience of the space NPIs, the higher requirements were presented to power (from several kW units to several

  11. Key issues in space nuclear power challenges for the future

    International Nuclear Information System (INIS)

    The future appears rich in missions that will extend the frontiers of knowledge, human presence in space, and opportunities for profitable commerce. Key to success of these ventures is the availability of plentiful, cost effective electric power and assured, low cost access to space. While forecasts of space power needs are problematic, an assessment of future needs based on terrestrial experience has been made. These needs fall into three broad categories: survival, self sufficiency and industrialization. The cost of delivering payloads to orbital locations from LEO to Mars has been determined and future launch cost reductions projected. From these factors, then, projections of the performance necessary for future solar and nuclear space power options has been made. These goals are largely dependent upon orbital location and energy storage needs. Finally the cost of present space power systems has been determined and projections made for future systems

  12. Key issues in space nuclear power challenges for the future

    Science.gov (United States)

    Brandhorst, Henry W.

    1991-01-01

    The future appears rich in missions that will extend the frontiers of knowledge, human presence in space, and opportunities for profitable commerce. Key to success of these ventures is the availability of plentiful, cost effective electric power and assured, low cost access to space. While forecasts of space power needs are problematic, an assessment of future needs based on terrestrial experience has been made. These needs fall into three broad categories: survival, self sufficiency and industrialization. The cost of delivering payloads to orbital locations from LEO to Mars has been determined and future launch cost reductions projected. From these factors, then, projections of the performance necessary for future solar and nuclear space power options has been made. These goals are largely dependent upon orbital location and energy storage needs. Finally the cost of present space power systems has been determined and projections made for future systems.

  13. Energy loss analysis of an integrated space power distribution system

    Science.gov (United States)

    Kankam, M. David; Ribeiro, P. F.

    1992-01-01

    The results of studies related to conceptual topologies of an integrated utility-like space power system are described. The system topologies are comparatively analyzed by considering their transmission energy losses as functions of mainly distribution voltage level and load composition. The analysis is expedited by use of a Distribution System Analysis and Simulation (DSAS) software. This recently developed computer program by the Electric Power Research Institute (EPRI) uses improved load models to solve the power flow within the system. However, present shortcomings of the software with regard to space applications, and incompletely defined characteristics of a space power system make the results applicable to only the fundamental trends of energy losses of the topologies studied. Accountability, such as included, for the effects of the various parameters on the system performance can constitute part of a planning tool for a space power distribution system.

  14. Free-piston Stirling technology for space power

    International Nuclear Information System (INIS)

    An overview is presented of the NASA Lewis Research Center free-piston Stirling engine activities directed toward space power. This work is being carried out under NASA's new Civil Space Technology Initiative (CSTI). The overall goal of CSTI's High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space missions. The Stirling cycle offers an attractive power conversion concept for space power needs. Discussed in this paper is the completion of the Space Power Demonstrator Engine (SPDE) testing - culminating in the generation of 25 kW of engine power from a dynamically-balanced opposed-piston Stirling engine at a temperature ratio of 2.0. Engine efficiency was approximately 22 percent. The SPDE recently has been divided into two separate single-cylinder engines, called Space Power Research Engines (SPRE), that now serve as test beds for the evaluation of key technology disciplines. These disciplines include hydrodynamic gas bearings, high-efficiency linear alternators, space qualified heat pipe heat exchangers, oscillating flow code validation, and engine loss understanding. The success of the SPDE at 650 K has resulted in a more ambitious Stirling endeavor - the design, fabrication, test and evaluation of a designed-for-space 25 kW per cylinder Stirling Space Engine (SSE). The SSE will operate at a hot metal temperature of 1050 K using superalloy materials. This design is a low temperature confirmation of the 1300 K design. It is the 1300 K free-piston Stirling power conversion system that is the ultimate goal; to be used in conjunction with the SP-100 reactor. The approach to this goal is in three temperature steps. However, this paper concentrates on the first two phases of this program - the 650 K SPDE and the 1050 K SSE

  15. Earth to space power beaming: A new NASA technology initiative

    Science.gov (United States)

    Rather, John D. G.

    1992-02-01

    Laser power beaming from the Earth's surface is an innovative and potentially cost-effective option for reliably providing electrical power for applications such as space transportation, Earth-orbiting satellites, and lunar development. The maturation of laser power beaming technology can support low power applications such as upgraded conventional communications satellites in the present decade. Power beaming systems to support extensive lunar base operations that may consume extremely large amounts of power can be implemented early in the 21st century. The synergistic advantages of high-thrust, high specific-impulse electric propulsion may make enhanced, low cost space logistics an area of unique significance for laser power beaming. Economic forces will continue as a driving factor in the selection of major system elements for both commercial applications as well as the avant-garde national space missions envisioned for the 21st century. As a result, the implementation of laser power beaming systems will only take place if they can demonstrate clear economic benefits without sacrificing performance, personnel safety, or the environment. Similarly, the development activities that are a necessary precursor to any operational system will take place only if key industry and government leaders perceive laser power beaming systems as an achievable goal with realistic payoffs in comparison to competing energy options. This paper summarizes NASA's current research to evaluate laser power beaming systems as they apply to applications of greatest interest, and it includes a summary of the current laser power beaming program within the NASA Headquarters Office of Aeronautics and Space Technology. This research effort will quantify some key technical certainties and uncertainties pertaining to laser power beaming systems appropriate for space applications as well as establish a path of development that includes maturation of key technology components for reliable laser and

  16. Silicon Carbide Based Power Mangement and Distribution for Space Nuclear Power Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project, APEI, Inc. is proposing to develop a high efficiency, rad-hard, 100's kWe power management and distribution (PMAD) system for space nuclear...

  17. Space power by ground-based laser transmission

    Science.gov (United States)

    Landis, Geoffrey A.

    1992-01-01

    A new method for providing power to space vehicles consists of using high-power CW lasers on the ground to beam power to photovoltaic receivers in space. Such large lasers could be located at cloud-free sites at one or more ground locations, and use large mirrors with adaptive optical correction to reduce the beam spread due to diffraction or atmospheric turbulence. This can result in lower requirements for battery storage, due to continuous illumination of arrays even during periods of shadow by the earth, and higher power output, due to the higher efficiency of photovoltaic arrays under laser illumination compared to solar and the ability to achieve higher intensities of illumination. Applications include providing power for satellites during eclipse, providing power to resurrect satellites which are failing due to solar array degradation, powering orbital transfer vehicles or lunar transfer shuttles, and providing night power to a solar array on the moon.

  18. Space nuclear power supply design in the shuttle ERA

    International Nuclear Information System (INIS)

    Developing technology and the transition period of the late 1970's from expendable launchers to reusable space shuttles and from single satellite designs to standardized and modularized configurations represents a strong motivation and unique opportunity to actively investigate new applications of nuclear power for satellites. The work reported here consists of a many faceted effort to establish nuclear power supply design guidelines for space missions through the 1980s. Configuration, integration, and launch constraints are reviewed. Of particular interest is the space shuttle system and new technologies related to nuclear power. These will require significant new innovations to optimize future missions

  19. Transfer learning for bimodal biometrics recognition

    Science.gov (United States)

    Dan, Zhiping; Sun, Shuifa; Chen, Yanfei; Gan, Haitao

    2013-10-01

    Biometrics recognition aims to identify and predict new personal identities based on their existing knowledge. As the use of multiple biometric traits of the individual may enables more information to be used for recognition, it has been proved that multi-biometrics can produce higher accuracy than single biometrics. However, a common problem with traditional machine learning is that the training and test data should be in the same feature space, and have the same underlying distribution. If the distributions and features are different between training and future data, the model performance often drops. In this paper, we propose a transfer learning method for face recognition on bimodal biometrics. The training and test samples of bimodal biometric images are composed of the visible light face images and the infrared face images. Our algorithm transfers the knowledge across feature spaces, relaxing the assumption of same feature space as well as same underlying distribution by automatically learning a mapping between two different but somewhat similar face images. According to the experiments in the face images, the results show that the accuracy of face recognition has been greatly improved by the proposed method compared with the other previous methods. It demonstrates the effectiveness and robustness of our method.

  20. Nuclear Power Technologies for Deep Space and Planetary Missions

    Science.gov (United States)

    Stephenson, K.; Blancquaert, T.

    2008-09-01

    Photovoltaic cells are well established as the appropriate primary power source for most space missions. For long duration missions that cannot rely on harnessing the external power of the sun, electrochemical processes are simply too low in energy density to provide useful sustained power. Nuclear processes, however, can have huge energy densities, and for this reason, nuclear power systems (NPS) are the only current alternative to solar arrays for long-term generation of power in space.Although nuclear power has been in use since the beginnings of spaceflight, it remains a niche technology that has not enjoyed the visibility and commercial-sector development effort of solar photovoltaics. However, as our space science and exploration programmes look to the outer planets or to long-duration lander missions, nuclear power becomes a key enabling technology.It is logical and useful to divide space nuclear power systems into three categories. In order of increasing complexity, these are:• Direct production of heat by radioactive decay.• Electrical power generation via radioactive decay heat.• Nuclear reactor systems.Past and future mission applications for these are briefly considered before examining, in greater detail, the technology challenges presented by the first two classes of NPS; the radioactive decay heat systems. Of particular current interest are the various methods for conversion of heat to electrical power. For space nuclear power systems, thermoelectricity has been the dominant technology, due to its long-term reliability and vibration-free operation. However, the cost, mass, and safety implications of radioisotopic fuel provide a strong driver to move towards higher-efficiency conversion techniques that could greatly reduce the fuel quantities required.This paper reviews the established technologies used in space nuclear power systems, and then looks to the future, summarising the main areas of worldwide development and considering the

  1. Space photovoltaic power generation. Uchu taiyo hatsuden ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, I. (Electrotechnical Laboratory, Tsukuba (Japan))

    1993-07-20

    Introduction is made of space photovoltaic power generation which is the ultimate clean energy source. This is a system to obtain electric energy from the solar cells placed on a geostatic orbit and transmit the power onto the earth by microwave. The US formulates a plan of placing 60[times]5GW power generation satellites to obtain 300GW power on the earth in 2000. As for the scale of space structure, the array of solar cells is dimensionally 10km[times]5km and the power transmitting antenna is 1km in diameter. The electric energy is amplified to microwave and power-transmitted by wireless onto the earth. The ground rectenna which receives it is dimensionally 10km[times]13km. The biggest difficulty consists in transportation of construction materials onto the orbit. In Japan, activity comprises three matters, which are research committee organized three years ago by the Agency of Industrial Science and technology, 10MW class model conceptually designed by the Institute of Space and Astronautical Science, and experiment conducted by Kyoto University on the power transmission by wireless. Pertaining to the research on the space power generation, the following two points are judged still unclarified: Reason for which the electric power companies did not apply the power transmission by wireless regarded as high in transmission efficiency. Influence of the microwave on the ionosphere and biosystem. 7 refs., 4 figs.

  2. An economically viable space power relay system

    Science.gov (United States)

    Bekey, Ivan; Boudreault, Richard

    1999-09-01

    This paper describes and analyzes the economics of a power relay system that takes advantage of recent technological advances to implement a system that is economically viable. A series of power relay systems are described and analyzed which transport power ranging from 1,250 megawatts to 5,000 megawatts, and distribute it to receiving sites at transcontinental distances. Two classes of systems are discussed—those with a single reflector and delivering all the power to a single rectenna, and a second type which has multiple reflectors and distributes it to 10 rectenna sites, sharing power among them. It is shown that when offering electricity at prices competitive to those prevalent in developed cities in the US that a low IRR is inevitable, and economic feasibility of a business is unlikely. However, when the target market is Japan where the prevalent electricity prices are much greater, that an IRR exceeding 65% is readily attainable. This is extremely attractive to potential investors, making capitalization of a venture likely. The paper shows that the capital investment required for the system can be less than 1 per installed watt, contributing less than 0.02 /KW-hr to the cost of energy provision. Since selling prices in feasible regions range from 0.18 to over 030 $/kW-hr, these costs are but a small fraction of the operating expenses. Thus a very large IRR is possible for such a business.

  3. Design investigation of solar powered lasers for space applications

    Science.gov (United States)

    Taussig, R.; Bruzzone, C.; Quimby, D.; Nelson, L.; Christiansen, W.; Neice, S.; Cassady, P.; Pindroh, A.

    1979-01-01

    The feasibility of solar powered lasers for continuous operation in space power transmission was investigated. Laser power transmission in space over distances of 10 to 100 thousand kilometers appears possible. A variety of lasers was considered, including solar-powered GDLs and EDLs, and solar-pumped lasers. An indirect solar-pumped laser was investigated which uses a solar-heated black body cavity to pump the lasant. Efficiencies in the range of 10 to 20 percent are projected for these indirect optically pumped lasers.

  4. Performance evaluation of space solar Brayton cycle power systems

    Science.gov (United States)

    Diao, Zheng-Gang

    1992-06-01

    Unlike gas turbine power systems which consume chemical or nuclear energy, the energy consumption and/or cycle efficiency should not be a suitable criterion for evaluating the performance of space solar Brayton cycle power. A new design goal, life cycle cost, can combine all the power system characteristics, such as mass, area, and station-keeping propellant, into a unified criterion. Effects of pressure ratio, recuperator effectiveness, and compressor inlet temperature on life cycle cost were examined. This method would aid in making design choices for a space power system.

  5. Striction-based Power Monitoring in Space Environment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The program delivers a completely new technology solution to isolation and sensing of power flow (current and voltage). Based on striction materials technology,...

  6. An Isotope-Powered Thermal Storage unit for space applications

    Science.gov (United States)

    Lisano, Michael E.; Rose, M. F.

    1991-01-01

    An Isotope-Powered Thermal Storage Unit (ITSU), that would store and utilize heat energy in a 'pulsed' fashion in space operations, is described. Properties of various radioisotopes are considered in conjunction with characteristics of thermal energy storage materials, to evaluate possible implementation of such a device. The utility of the unit is discussed in light of various space applications, including rocket propulsion, power generation, and spacecraft thermal management.

  7. Geoengineering: The beneficial environmental factor in power from space

    Science.gov (United States)

    Jenkins, Lyle M.

    1995-01-01

    The Earth's environment may be in danger from the buildup of carbon dioxide and geoengineering may be needed to counter the threat of global warming. Energy from space provides a benefit to the global environment through the replacement of fossil fuels with a clean, renewable energy source from space. This paper calls for the analysis of space power system concepts, a definition of technologies that need to be developed, and the demonstration of those technologies. Integration of technology needs into a program of space exploration provides a means of preparing to deal with global change while producing a useful product. Space exploration may also lead to better ways of constructing space power facilities through the use of lunar materials.

  8. Power in the Production of Spaces Transformed by Rural Tourism

    Science.gov (United States)

    Frisvoll, Svein

    2012-01-01

    The article critiques Halfacree's conceptualisation of rural space for masking the workings of power within "black boxes" such as "structural coherence" and "trial by space". One consequence is that rural change's social activities and also their social and personal consequences are cloaked, thereby rendering the localised fault lines of rurality…

  9. Heat pipe reactors for space power applications

    Science.gov (United States)

    Koenig, D. R.; Ranken, W. A.; Salmi, E. W.

    1977-01-01

    A family of heat pipe reactors design concepts has been developed to provide heat to a variety of electrical conversion systems. Three power plants are described that span the power range 1-500 kWe and operate in the temperature range 1200-1700 K. The reactors are fast, compact, heat-pipe cooled, high-temperature nuclear reactors fueled with fully enriched refractory fuels, UC-ZrC or UO2. Each fuel element is cooled by an axially located molybdenum heat pipe containing either sodium or lithium vapor. Virtues of the reactor designs are the avoidance of single-point failure mechanisms, the relatively high operating temperature, and the expected long lifetimes of the fuel element components.

  10. Power from space and the hydrogen economy

    Science.gov (United States)

    Chapman, Philip K.; Haynes, William E.

    2005-07-01

    Recent discoveries of methane hydrates under the Arctic permafrost and on continental shelves have revealed an immense energy resource. This has two major implications for the Solar Power Satellite (SPS). First, the SPS will not be built unless it can produce electricity at a price competitive with that generated using methane from hydrates (perhaps with sequestration of carbon dioxide). Second, steam reformation of methane is much cheaper than water electrolysis as a source of hydrogen, so there is little role for the SPS (or any other electric power technology) in the proposed hydrogen economy. On the other hand, an economy based on methane-electric hybrid vehicles offers advantages quite comparable to the hydrogen economy, without its technical problems and immense capital requirements. The methane economy also offers a transitional path to increasing direct use of electricity in transportation, a development that could create a major market for the SPS.

  11. Space nuclear power, propulsion, and related technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Marshall

    1992-01-01

    Sandia National Laboratories (Sandia) is one of the nation's largest research and development (R&D) facilities, with headquarters at Albuquerque, New Mexico; a laboratory at Livermore, California; and a test range near Tonopah, Nevada. Smaller testing facilities are also operated at other locations. Established in 1945, Sandia was operated by the University of California until 1949, when, at the request of President Truman, Sandia Corporation was formed as a subsidiary of Bell Lab's Western Electric Company to operate Sandia as a service to the U.S. Government without profit or fee. Sandia is currently operated for the U.S. Department of Energy (DOE) by AT&T Technologies, Inc., a wholly-owned subsidiary of AT&T. Sandia's responsibility is national security programs in defense and energy with primary emphasis on nuclear weapon research and development (R&D). However, Sandia also supports a wide variety of projects ranging from basic materials research to the design of specialized parachutes. Assets, owned by DOE and valued at more than $1.2 billion, include about 600 major buildings containing about 372,000 square meters (m2) (4 million square feet [ft2]) of floor space, located on land totalling approximately 1460 square kilometers (km2) (562 square miles [mi]). Sandia employs about 8500 people, the majority in Albuquerque, with about 1000 in Livermore. Approximately 60% of Sandia's employees are in technical and scientific positions, and the remainder are in crafts, skilled labor, and administrative positions. As a multiprogram national laboratory, Sandia has much to offer both industrial and government customers in pursuing space nuclear technologies. The purpose of this brochure is to provide the reader with a brief summary of Sandia's technical capabilities, test facilities, and example programs that relate to military and civilian objectives in space. Sandia is interested in forming partnerships with industry and government

  12. Power system requirements and selection for the space exploration initiative

    Energy Technology Data Exchange (ETDEWEB)

    Biringer, K.L. (Sandia National Labs., Albuquerque, NM (United States)); Bartine, D.E. (Oak Ridge National Lab., TN (United States)); Buden, D. (Idaho National Engineering Lab., Idaho Falls, ID (United States)); Foreman, J. (Naval Research Lab., Washington, DC (United States)); Harrison, S. (Strategic Defense Initiative Organization, Washington, DC (United States))

    1991-01-01

    The Space Exploration Initiative (SEI) seeks to reestablish a US program of manned and unmanned space exploration. The President has called for a program which includes a space station element, a manned habitation of the moon, and a human exploration of Mars. The NASA Synthesis Group has developed four significantly different architectures for the SEI program. One key element of a space exploration effort is the power required to support the missions. The Power Speciality Team of the Synthesis Group was tasked with assessing and evaluating the power requirements and candidate power technologies for such missions. Inputs to the effort came from existing NASA studies as well as other governments agency inputs such as those from DOD and DOE. In addition, there were industry and university briefings and results of solicitations from the AIAA and the general public as part of the NASA outreach effort. Because of the variety of power needs in the SEI program, there will be a need for multiple power system technologies including solar, nuclear and electrochemical. Due to the high rocket masses required to propel payloads to the moon and beyond to Mars, there is great emphasis placed on the need for high power density and high energy density systems. Power system technology development work is needed results will determine the ultimate technology selections. 23 refs., 10 figs.

  13. Power system requirements and selection for the space exploration initiative

    International Nuclear Information System (INIS)

    The Space Exploration Initiative (SEI) seeks to reestablish a US program of manned and unmanned space exploration. The President has called for a program which includes a space station element, a manned habitation of the moon, and a human exploration of Mars. The NASA Synthesis Group has developed four significantly different architectures for the SEI program. One key element of a space exploration effort is the power required to support the missions. The Power Speciality Team of the Synthesis Group was tasked with assessing and evaluating the power requirements and candidate power technologies for such missions. Inputs to the effort came from existing NASA studies as well as other governments agency inputs such as those from DOD and DOE. In addition, there were industry and university briefings and results of solicitations from the AIAA and the general public as part of the NASA outreach effort. Because of the variety of power needs in the SEI program, there will be a need for multiple power system technologies including solar, nuclear and electrochemical. Due to the high rocket masses required to propel payloads to the moon and beyond to Mars, there is great emphasis placed on the need for high power density and high energy density systems. Power system technology development work is needed results will determine the ultimate technology selections. 23 refs., 10 figs

  14. Systems definition space based power conversion systems: Executive summary

    Science.gov (United States)

    1977-01-01

    Potential space-located systems for the generation of electrical power for use on earth were investigated. These systems were of three basic types: (1) systems producing electrical power from solar energy; (2) systems producing electrical power from nuclear reactors; (3) systems for augmenting ground-based solar power plants by orbital sunlight reflectors. Configurations implementing these concepts were developed through an optimization process intended to yield the lowest cost for each. A complete program was developed for each concept, identifying required production rates, quantities of launches, required facilities, etc. Each program was costed in order to provide the electric power cost appropriate to each concept.

  15. A Review of Tribomaterial Technology for Space Nuclear Power Systems

    Science.gov (United States)

    Stanford, Malcolm K.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) has recently proposed a nuclear closed-cycle electric power conversion system for generation of 100-kW of electrical power for space exploration missions. A critical issue is the tribological performance of sliding components within the power conversion unit that will be exposed to neutron radiation. This paper presents a review of the main considerations that have been made in the selection of solid lubricants for similar applications in the past as well as a recommendations for continuing development of the technology.

  16. Dynamics of bimodality in vehicular traffic flows

    OpenAIRE

    Mullick, Arjun; Ray, Arnab K.

    2012-01-01

    A model equation has been proposed to describe bimodal features in vehicular traffic flows. The dynamics of the bimodal distribution reveals the existence of a fixed point that is connected to itself by a homoclinic trajectory. The mathematical conditions associated with bimodality have been established. The critical factors necessary for both a breaking of symmetry and a transition from bimodal to unimodal behaviour, in the manner of a bifurcation, have been analysed.

  17. Opening up the future in space with nuclear power

    International Nuclear Information System (INIS)

    Man's extraterrestrial development is dependent on abundant power. For example, space-based manufacturing facilities are projected to have a power demand of 300 kWe by the end of this Century, and several megawatts in the early part of next millennium. The development of the lunar resource base will result in power needs ranging from an initial 100 kW(e) to many megawatts. Human visits to Mars could be achieved using a multimegawatt nuclear electric propulsion system or high thrust nuclear rockets. Detailed exploration of the solar system will also be greatly enhanced by the availability of large nuclear electric propulsion systems. All of these activities will require substantial increases in space power - hundreds of kilowatts to many megawatts. The challenge is clear: how to effectively use nuclear energy to support humanity's expansion into space

  18. An Approach to Autonomous Control for Space Nuclear Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Richard Thomas [ORNL; Upadhyaya, Belle R. [University of Tennessee, Knoxville (UTK)

    2011-01-01

    Under Project Prometheus, the National Aeronautics and Space Administration (NASA) investigated deep space missions that would utilize space nuclear power systems (SNPSs) to provide energy for propulsion and spacecraft power. The initial study involved the Jupiter Icy Moons Orbiter (JIMO), which was proposed to conduct in-depth studies of three Jovian moons. Current radioisotope thermoelectric generator (RTG) and solar power systems cannot meet expected mission power demands, which include propulsion, scientific instrument packages, and communications. Historically, RTGs have provided long-lived, highly reliable, low-power-level systems. Solar power systems can provide much greater levels of power, but power density levels decrease dramatically at {approx} 1.5 astronomical units (AU) and beyond. Alternatively, an SNPS can supply high-sustained power for space applications that is both reliable and mass efficient. Terrestrial nuclear reactors employ varying degrees of human control and decision-making for operations and benefit from periodic human interaction for maintenance. In contrast, the control system of an SNPS must be able to provide continuous operatio for the mission duration with limited immediate human interaction and no opportunity for hardware maintenance or sensor calibration. In effect, the SNPS control system must be able to independently operate the power plant while maintaining power production even when subject to off-normal events and component failure. This capability is critical because it will not be possible to rely upon continuous, immediate human interaction for control due to communications delays and periods of planetary occlusion. In addition, uncertainties, rare events, and component degradation combine with the aforementioned inaccessibility and unattended operation to pose unique challenges that an SNPS control system must accommodate. Autonomous control is needed to address these challenges and optimize the reactor control design.

  19. High-Power Electron Accelerators for Space (and other) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lewellen, John W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-23

    This is a presentation on high-power electron accelerators for space and other applications. The main points covered are: electron beams for space applications, new designs of RF accelerators, high-power HEMT testing, and battery design. In summary, we have considered a concept of 1-MeV electron accelerator that can operate up to several seconds. This concept can be extended to higher energy to produce higher beam power. Going to higher beam energy requires adding more cavities and solid-state HEMT RF power devices. The commercial HEMT have been tested for frequency response and RF output power (up to 420 W). And finally, we are testing these HEMT into a resonant load and planning for an electron beam test in FY17.

  20. Large Scale Magnetic Fields: Density Power Spectrum in Redshift Space

    Indian Academy of Sciences (India)

    Rajesh Gopal; Shiv K. Sethi

    2003-09-01

    We compute the density redshift-space power spectrum in the presence of tangled magnetic fields and compare it with existing observations. Our analysis shows that if these magnetic fields originated in the early universe then it is possible to construct models for which the shape of the power spectrum agrees with the large scale slope of the observed power spectrum. However requiring compatibility with observed CMBR anisotropies, the normalization of the power spectrum is too low for magnetic fields to have significant impact on the large scale structure at present. Magnetic fields of a more recent origin generically give density power spectrum ∝ 4 which doesn’t agree with the shape of the observed power spectrum at any scale. Magnetic fields generate curl modes of the velocity field which increase both the quadrupole and hexadecapole of the redshift space power spectrum. For curl modes, the hexadecapole dominates over quadrupole. So the presence of curl modes could be indicated by an anomalously large hexadecapole, which has not yet been computed from observation. It appears difficult to construct models in which tangled magnetic fields could have played a major role in shaping the large scale structure in the present epoch. However if they did, one of the best ways to infer their presence would be from the redshift space effects in the density power spectrum.

  1. Man-machine interface issues for space nuclear power systems

    Science.gov (United States)

    Nelson, William R.; Haugset, Kjell

    1991-01-01

    The deployment of nuclear reactors in space necessitates an entirely new set of guidelines for the design of the man-machine interface (MMI) when compared to earth-based applications such as commerical nuclear power plants. Although the design objectives of earth- and space-based nuclear power systems are the same, that is, to produce electrical power, the differences in the application environments mean that the operator's role will be significantly different for space-based systems. This paper explores the issues associated with establishing the necessary MMI guidelines for space nuclear power systems. The generic human performance requirements for space-based systems are described, and the operator roles that are utilized for the operation of current and advanced earth-based reactors are briefly summarized. The development of a prototype advanced control room, the Integrated Surveillance and Control System (ISACS) at the Organization for Economic Cooperation and Development (OECD) Halden Reactor Project is introduced. Finally, preliminary ideas for the use of the ISACS system as a test bed for establishing MMI guidelines for space nuclear systems are presented.

  2. A cooperative power trading system based on satisfaction space technology

    International Nuclear Information System (INIS)

    This paper proposed a new power trading system model designed to ensure customer cooperation with power suppliers. Designed as an Internet application, the cooperative power trading system modelled power markets using a satisfaction space technology A network model of electric power trading systems was developed to create a communication network system that consisted of suppliers, customers, and auctioneers. When demand exceeded supply, the auctioneer in the trading system requested power reductions from customers. Rewards were paid to maintain the degree of satisfaction of the customers. The supplier's evaluation function was defined as a function of market price and power supply. A power reducing method was developed using a combinatorial optimization technique. Suppliers and customers submitted bids for initial power trading quantities, while the auctioneer decided a market price based on bidding values. After receiving the market price, suppliers and customers submitted a second set of bids for expected power trading quantities. A power reduction plan was then developed by the auctioneer to balance the amount of power supply and demand. The system can be applied to customers whose evaluation functions cannot be estimated beforehand, as the auctioneer was able to choose the most efficient power reduction point selected by consumers using a maximum steep slope method. Simulations conducted to validate the trading system demonstrated that the system is capable of choosing efficient energy reduction plans. 6 refs., 4 tabs., 3 figs

  3. The outlook for application of powerful nuclear thermionic reactor -powered space electric jet propulsion engines

    International Nuclear Information System (INIS)

    This paper summarizes main study results for application of powerful space electric jet propulsion unit (EJPUs) which is powered by Nuclear Thermionic Power Unit (NTPU). They are combined in Nuclear Power/Propulsion Unit (NPPU) which serves as means of spacecraft equipment power supply and spacecraft movement. Problems the paper deals with are the following: information satellites delivery and their on-orbit power supply during 10-15 years, removal of especially hazardous nuclear wastes, mining of asteroid resources and others. Evaluations on power/time/mass relationship for this type of mission are given. EJPU parameters are compatible with Russian existent or being under development launch vehicle. (author)

  4. The outlook for application of powerful nuclear thermionic reactor - powered space electric jet propulsion engines

    Energy Technology Data Exchange (ETDEWEB)

    Semyonov, Y.P.; Bakanov, Y.A.; Synyavsky, V.V.; Yuditsky, V.D. [Rocket-Space Corp. `Energia`, Moscow (Russian Federation)

    1997-12-31

    This paper summarizes main study results for application of powerful space electric jet propulsion unit (EJPUs) which is powered by Nuclear Thermionic Power Unit (NTPU). They are combined in Nuclear Power/Propulsion Unit (NPPU) which serves as means of spacecraft equipment power supply and spacecraft movement. Problems the paper deals with are the following: information satellites delivery and their on-orbit power supply during 10-15 years, removal of especially hazardous nuclear wastes, mining of asteroid resources and others. Evaluations on power/time/mass relationship for this type of mission are given. EJPU parameters are compatible with Russian existent or being under development launch vehicle. (author)

  5. Space Power Amplification with Active Linearly Tapered Slot Antenna Array

    Science.gov (United States)

    Simons, Rainee N.; Lee, Richard Q.

    1993-01-01

    A space power amplifier composed of active linearly tapered slot antennas (LTSA's) has been demonstrated and shown to have a gain of 30 dB at 20 GHz. In each of the antenna elements, a GaAs monolithic microwave integrated circuit (MMIC) three-stage power amplifier is integrated with two LTSA's. The LTSA and the MMIC power amplifier has a gain of 11 dB and power added efficiency of 14 percent respectively. The design is suitable for constructing a large array using monolithic integration techniques.

  6. Open channel current noise analysis of S6 peptides from KvAP channel on bilayer lipid membrane shows bimodal power law scaling

    Science.gov (United States)

    Shrivastava, Rajan; Malik, Chetan; Ghosh, Subhendu

    2016-06-01

    Open channel current noise in synthetic peptide S6 of KvAP channel was investigated in a voltage clamp experiment on bilayer lipid membrane (BLM). It was observed that the power spectral density (PSD) of the component frequencies follows power law with different slopes in different frequency ranges. In order to know the origin of the slopes PSD analysis was done with signal filtering. It was found that the first slope in the noise profile follows 1 / f pattern which exists at lower frequencies and has high amplitude current noise, while the second slope corresponds to 1 /f 2 - 3 pattern which exists at higher frequencies with low amplitude current noise. In addition, white noise was observed at very large frequencies. It was concluded that the plausible reason for the multiple power-law scaling is the existence of different modes of non-equilibrium ion transport through the S6 channel.

  7. Space Solar Power Technology Demonstration for Lunar Polar Applications: Laser-Photovoltaic Wireless Power Transmission

    Science.gov (United States)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.

  8. Civilian Power from Space in the Early 21st Century

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, R; Ishikawa, M; Wood, L

    2003-06-01

    If power beamed from space is to be become widely used on Earth in the first half of the 21St century, several thus-far-persistent impediments must be obviated, including threshold effects and problematic aspects of cost, availability, reliability, hazards and environmental impacts. We sketch a generally-applicable route to doing so, noting key enabling technologies and practical features. Likely-essential features of any successful strategy include vigorous, systematic leveraging of all intrinsic features of space-derived power, e.g., addressing marginal, high-value-added markets for electric power in space- and time-agile manners to conveniently provide power-upon-demand, and incrementally ''wedging'' into ever-larger markets with ever more cost-efficient generations and scales of technology. We suggest that no prudent strategic plan will rely upon large-scale, long-term public subsidies--fiscal, regulatory, etc.--with their attendant ''sovereign risks'' and interminable delays, and that plan-essential governmental support likely will be limited to early feasibility demonstrations, provision of threshold technologies and a rational, competition-neutral licensing environment. If salient realities are uniformly respected and accessible technologies are intelligently leveraged, electricity derived from space-sourced power-beams may come into significant civilian use during the latter part of the first quarter of this century, and may become widely used by the half-century point.

  9. Safety and Nuclear Power Sources for Space Systems

    Science.gov (United States)

    Segalas, Corinne C.; Schmidt, George R.

    2010-09-01

    Nuclear power sources have been used in space applications for decades. They have been used extensively for electrical power production, and their future potential for propulsion has been recognized since the dawn of the spaceflight era. Nuclear power sources offer many advantages in terms of long duration operation and high power densities independent of distance and orientation with respect to the Sun. However, it is also broadly known that use of radioactive materials do carry more risk that must be addressed to ensure safe operation during all phases of the mission, particularly before and during launch into orbit. Almost all of the nuclear-powered missions to date have been flown by the United States and former Soviet Union, but other space-faring nations have recognized its importance for their future missions. Consequently, many in the space community have advocated the development of a broad set of principles that could be applied on an international basis. This paper examines the current guidelines by the major space-faring nations, and suggests a framework primarily based on the U.S. methodology for ensuring reduction of risk, mitigating environmental impact and promoting launch safety.

  10. Multimegawatt space nuclear power supply, Phase 1 Final report

    Energy Technology Data Exchange (ETDEWEB)

    1989-02-17

    This Specification establishes the performance, design, development, and test requirements for the Boeing Multimegawatt Space Nuclear Power System (MSNPS). The Boeing Multimegawatt Space Power System is part of the DOE/SDIO Multimegawatt Space Nuclear Power Program. The purpose of this program is to provide a space-based nuclear power system to meet the needs of SDIO missions. The Boeing MSNPS is a category 1 concept which is capable of delivering 10's of MW(e) for 100's of seconds with effluent permitted. A design goal is for the system to have growth or downscale capability for other power system concepts. The growth objective is to meet the category 3 capability of 100's of MW(e) for 100's of seconds, also with effluent permitted. The purpose of this preliminary document is to guide the conceptual design effort throughout the Phase 1 study effort. This document will be updated through out the study. It will thus result in a record of the development of the design effort.

  11. A bimodal biometric identification system

    Science.gov (United States)

    Laghari, Mohammad S.; Khuwaja, Gulzar A.

    2013-03-01

    Biometrics consists of methods for uniquely recognizing humans based upon one or more intrinsic physical or behavioral traits. Physicals are related to the shape of the body. Behavioral are related to the behavior of a person. However, biometric authentication systems suffer from imprecision and difficulty in person recognition due to a number of reasons and no single biometrics is expected to effectively satisfy the requirements of all verification and/or identification applications. Bimodal biometric systems are expected to be more reliable due to the presence of two pieces of evidence and also be able to meet the severe performance requirements imposed by various applications. This paper presents a neural network based bimodal biometric identification system by using human face and handwritten signature features.

  12. Oculomotor interference of bimodal distractors

    OpenAIRE

    Heeman, Jessica; Nijboer, Tanja C. W.; van der Stoep, Nathan; Theeuwes, Jan; Stigchel, Stefan Van der

    2016-01-01

    When executing an eye movement to a target location, the presence of an irrelevant distracting stimulus can influence the saccade metrics and latency. The present study investigated the influence of distractors of different sensory modalities (i.e. auditory, visual and audiovisual) which were presented at various distances (i.e. close or remote) from a visual target. The interfering effects of a bimodal distractor were more pronounced in the spatial domain than in the temporal domain. The res...

  13. Thermal control system for Space Station Freedom photovoltaic power module

    Science.gov (United States)

    Hacha, Thomas H.; Howard, Laura

    1994-01-01

    The electric power for Space Station Freedom (SSF) is generated by the solar arrays of the photovoltaic power modules (PVM's) and conditioned, controlled, and distributed by a power management and distribution system. The PVM's are located outboard of the alpha gimbals of SSF. A single-phase thermal control system is being developed to provide thermal control of PVM electrical equipment and energy storage batteries. This system uses ammonia as the coolant and a direct-flow deployable radiator. The description and development status of the PVM thermal control system is presented.

  14. Space power by ground-based laser illumination

    Science.gov (United States)

    Landis, Geoffrey A.

    1991-01-01

    Reducing energy storage requirements of space power systems by illuminating the photovoltaic arrays with a remotely located laser system is addressed. It is proposed that large lasers be located on cloud-free sites at one or more ground locations and that large lenses or mirrors with adaptive optical correction be used to reduce the beam spread due to diffraction or atmospheric turbulence. During the eclipse periods or lunar night, the lasers illuminate the solar arrays to a level sufficient to provide operating power. Two applications are discussed: illumination of geosynchronous orbit satellites and illumination of a moonbase power system. Issues for photovoltaic receivers for such a system are discussed.

  15. Nuclear reactor closed Brayton cycle space power conversion systems

    International Nuclear Information System (INIS)

    This paper presents the past history, present status and future prospects for closed Brayton cycle power conversion systems to be used in space when requirements have been established. Since there is a classic lack of coordination between advanced technology and its perceived need that can be strongly affected by associated factors, recommendations will be made to assist in the current situation. 4 refs

  16. Safety Framework for Nuclear Power Source Applications in Outer Space

    International Nuclear Information System (INIS)

    Nuclear power sources (NPS) for use in outer space have been developed and used in space applications where unique mission requirements and constraints on electrical power and thermal management precluded the use of non-nuclear power sources. Such missions have included interplanetary missions to the outer limits of the Solar System, for which solar panels were not suitable as a source of electrical power because of the long duration of these missions at great distances from the Sun. According to current knowledge and capabilities, space NPS are the only viable energy option to power some space missions and significantly enhance others. Several ongoing and foreseeable missions would not be possible without the use of space NPS. Past, present and foreseeable space NPS applications include radioisotope power systems (for example, radioisotope thermoelectric generators and radioisotope heater units) and nuclear reactor systems for power and propulsion. The presence of radioactive materials or nuclear fuels in space NPS and their consequent potential for harm to people and the environment in Earth's biosphere due to an accident require that safety should always be an inherent part of the design and application of space NPS. NPS applications in outer space have unique safety considerations compared with terrestrial applications. Unlike many terrestrial nuclear applications, space applications tend to be used infrequently and their requirements can vary significantly depending upon the specific mission. Mission launch and outer space operational requirements impose size, mass and other space environment limitations not present for many terrestrial nuclear facilities. For some applications, space NPS must operate autonomously at great distances from Earth in harsh environments. Potential accident conditions resulting from launch failures and inadvertent re-entry could expose NPS to extreme physical conditions. These and other unique safety considerations for the use of

  17. Space Environment Stability and Physical Properties of New Materials for Space Power and Commercial Applications

    Science.gov (United States)

    Hambourger, Paul D.

    1997-01-01

    To test and evaluate suitability of materials for use in space power systems and related space and commercial applications, and to achieve sufficient understanding of the mechanisms by which, the materials perform in their intended applications. Materials and proposed applications included but were not limited to: Improved anodes for lithium ion batteries, highly-transparent arc-proof solar array coatings, and improved surface materials for solar dynamic concentrators and receivers. Cooperation and interchange of data with industrial companies as appropriate.

  18. Center for Space Power, Texas A and M University

    Science.gov (United States)

    Jones, Ken

    Johnson Controls is a 106 year old company employing 42,000 people worldwide with $4.7 billion annual sales. Though we are new to the aerospace industry we are a world leader in automobile battery manufacturing, automotive seating, plastic bottling, and facilities environment controls. The battery division produces over 24,000,000 batteries annually under private label for the new car manufacturers and the replacement market. We are entering the aerospace market with the nickel hydrogen battery with the help of NASA's Center for Space Power at Texas A&M. Unlike traditional nickel hydrogen battery manufacturers, we are reaching beyond the space applications to the higher volume markets of aircraft starting and utility load leveling. Though space applications alone will not provide sufficient volume to support the economies of scale and opportunities for statistical process control, these additional terrestrial applications will. For example, nickel hydrogen batteries do not have the environmental problems of nickel cadmium or lead acid and may someday start your car or power your electric vehicle. However you envision the future, keep in mind that no manufacturer moves into a large volume market without fine tuning their process. The Center for Space Power at Texas A&M is providing indepth technical analysis of all of the materials and fabricated parts of our battery as well as thermal and mechanical design computer modeling. Several examples of what we are doing with nickel hydrogen chemistry to lead to these production efficiencies are presented.

  19. Bimodal gene expression patterns in breast cancer

    OpenAIRE

    Nikolsky Yuri; Bugrim Andrej; Shi Weiwei; Kirillov Eugene; Bessarabova Marina; Nikolskaya Tatiana

    2010-01-01

    Abstract We identified a set of genes with an unexpected bimodal distribution among breast cancer patients in multiple studies. The property of bimodality seems to be common, as these genes were found on multiple microarray platforms and in studies with different end-points and patient cohorts. Bimodal genes tend to cluster into small groups of four to six genes with synchronised expression within the group (but not between the groups), which makes them good candidates for robust conditional ...

  20. Performance Sampling and Bimodal Duration Dependence

    OpenAIRE

    Jerker Denrell; Zur Shapira

    2006-01-01

    Performance sampling models of duration dependence in employee turnover and firm exit predict that hazard rates will initially be low, gradually rise to a maximum, and then fall. As we note in this paper, however, several empirical duration distributions have bimodal hazard rates. This paper shows that such bimodal hazard rates can be derived from existing models of performance sampling by small changes in the assumptions. In particular, bimodal hazard rates emerge if the mean or the variance...

  1. Structural Materials and Fuels for Space Power Plants

    Science.gov (United States)

    Bowman, Cheryl; Busby, Jeremy; Porter, Douglas

    2008-01-01

    A fission reactor combined with Stirling convertor power generation is one promising candidate in on-going Fission Surface Power (FSP) studies for future lunar and Martian bases. There are many challenges for designing and qualifying space-rated nuclear power plants. In order to have an affordable and sustainable program, NASA and DOE designers want to build upon the extensive foundation in nuclear fuels and structural materials. This talk will outline the current Fission Surface Power program and outline baseline design options for a lunar power plant with an emphasis on materials challenges. NASA first organized an Affordable Fission Surface Power System Study Team to establish a reference design that could be scrutinized for technical and fiscal feasibility. Previous papers and presentations have discussed this study process in detail. Considerations for the reference design included that no significant nuclear technology, fuels, or material development were required for near term use. The desire was to build upon terrestrial-derived reactor technology including conventional fuels and materials. Here we will present an overview of the reference design, Figure 1, and examine the materials choices. The system definition included analysis and recommendations for power level and life, plant configuration, shielding approach, reactor type, and power conversion type. It is important to note that this is just one concept undergoing refinement. The design team, however, understands that materials selection and improvement must be an integral part of the system development.

  2. Sandwich module prototype progress for space solar power

    Science.gov (United States)

    Jaffe, Paul; Hodkin, Jason; Harrington, Forest; Person, Clark; Nurnberger, Michael; Nguyen, Bang; LaCava, Susie; Scheiman, Dave; Stewart, Grant; Han, Andrew; Hettwer, Ethan; Rhoades, Daniel

    2014-02-01

    Space solar power (SSP) has been broadly defined as the collection of solar energy in space and its wireless transmission for use on earth. This approach potentially gives the benefit of provision of baseload power while avoiding the losses due to the day/night cycle and tropospheric effects that are associated with terrestrial solar power. Proponents have contended that the implementation of such systems could offer energy security, environmental, and technological advantages to those who would undertake their development. Among recent implementations commonly proposed for SSP, the modular symmetrical concentrator (MSC) and other modular concepts have received considerable attention. Each employs an array of modules for performing conversion of concentrated sunlight into microwaves or laser beams for transmission to earth. While prototypes of such modules have been designed and developed previously by several groups, none have been subjected to the challenging conditions inherent to the space environment and the possible solar concentration levels in which an array of modules might be required to operate. The research described herein details our team's efforts in the development of photovoltaic arrays, power electronics, microwave conversion electronics, and antennas for microwave-based "sandwich" module prototypes. The implementation status and testing results of the prototypes are reviewed.

  3. MHD conversion of solar energy. [space electric power system

    Science.gov (United States)

    Lau, C. V.; Decher, R.

    1978-01-01

    Low temperature plasmas wherein an alkali metal vapor is a component are uniquely suited to simultaneously absorb solar radiation by coupling to the resonance lines and produce electrical power by the MHD interaction. This work is an examination of the possibility of developing space power systems which take advantage of concentrated solar power to produce electricity. It is shown that efficient cycles in which expansion work takes place at nearly constant top cycle temperature can be devised. The power density of the solar MHD generator is lower than that of conventional MHD generators because of the relatively high seed concentration required for radiation absorption and the lower flow velocity permitted to avoid total pressure losses due to heating.

  4. A preliminary study of the modified Ericsson for space power

    Science.gov (United States)

    Berner, J.; Louis, J. F.; Juhasz, A.

    1985-01-01

    Simple modifications of the Ericsson cycle are analyzed for their application as high power, compact and reliable space power systems. They use the same components as the technologically advanced and reliable Brayton system. These modifications approximate the Ericsson cycle's isothermal expansion by several stages of expansion with reheat and the isothermal compression by several compression stages with intercooling. Preliminary cycle analysis including non-ideal components indicates potential advantages in both power per unit area and efficiency over the Brayton system. Evaluation of the system mass indicates a significant mass and radiator area advantage of a Modified Ericsson cycle using one reheat and one expansion stage when a high temperature titanium radiator is used. Whereas the configuration using one reheat and one intercooling with two stages of compression and expansion provided the lowest mass per unit power using a lower temperature aluminum radiator.

  5. Thin-Film Photovoltaics: Status and Applications to Space Power

    Science.gov (United States)

    Landis, Geoffrey A.; Hepp, Aloysius F.

    1991-01-01

    The potential applications of thin film polycrystalline and amorphous cells for space are discussed. There have been great advances in thin film solar cells for terrestrial applications; transfer of this technology to space applications could result in ultra low weight solar arrays with potentially large gains in specific power. Recent advances in thin film solar cells are reviewed, including polycrystalline copper iridium selenide and related I-III-VI2 compounds, polycrystalline cadmium telluride and related II-VI compounds, and amorphous silicon alloys. The possibility of thin film multi bandgap cascade solar cells is discussed.

  6. Photovoltaic-Concentrator Based Power Beaming For Space Elevator Application

    International Nuclear Information System (INIS)

    The MClimber team, at the Student Space Systems Fabrication Laboratory of the University of Michigan, has developed a prototype robotic climber for competition in the NASA sponsored Power Beaming Challenge. This paper describes the development of the system that utilizes a simple telescope to deliver an 8 kW beam to a photovoltaic panel in order to power a one kilometer climb. Its unique approach utilizes a precision GPS signal to track the panel. Fundamental systems of the project were implemented using a design strategy focusing on robustness and modularity. Development of this design and its results are presented.

  7. On the power quantum computation over real Hilbert spaces

    OpenAIRE

    McKague, Matthew

    2011-01-01

    We consider the power of various quantum complexity classes with the restriction that states and operators are defined over a real, rather than complex, Hilbert space. It is well know that a quantum circuit over the complex numbers can be transformed into a quantum circuit over the real numbers with the addition of a single qubit. This implies that BQP retains its power when restricted to using states and operations over the reals. We show that the same is true for QMA(k), QIP(k), QMIP, and Q...

  8. CVD refractory metals and alloys for space nuclear power application

    International Nuclear Information System (INIS)

    CVD technology has made significant contributions to the development of space nuclear power systems during the period 1962 to 1972. For the in-core thermionic concept, CVD technology is essential to the fabrication of the tungsten electron emitter. For the liquid metal cooled fuel pin using uranium nitride as fuel and T-111 and Nb-1 Zr as cladding, a tungsten barrier possibly produced by CVD methods is essential to the fuel-cladding compatibility at the designed operating temperature. Space power reactors may use heat pipes to transfer heat from the reactor core to the conversion system. CVD technology has been used for fabricating the heat pipe used as cross-flow heat exchanger, including the built-in channels on the condenser wall for liquid lithium return. 28 references, 17 figures

  9. Spaces of power: feminism, neoliberalism and gendered labor

    OpenAIRE

    Newman, Janet

    2013-01-01

    This paper offers an intervention into current debates about the demise of feminist politics in neoliberal times. It draws on an empirical study of women working the spaces of power over the last 50 years to trace different mappings of the ‘landscapes of antagonism’ in which feminism and neoliberalism are entangled. The paper challenges singular conceptions of both feminism and neoliberalism, and seeks to offer a political-cultural analysis that does not erase the possibility of politics

  10. Refractory alloy technology for space nuclear power applications

    International Nuclear Information System (INIS)

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys

  11. Refractory alloy technology for space nuclear power applications

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.H. Jr.; Hoffman, E.E. (eds.)

    1984-01-01

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys. (DLC)

  12. Autonomous Control Capabilities for Space Reactor Power Systems

    Science.gov (United States)

    Wood, Richard T.; Neal, John S.; Brittain, C. Ray; Mullens, James A.

    2004-02-01

    The National Aeronautics and Space Administration's (NASA's) Project Prometheus, the Nuclear Systems Program, is investigating a possible Jupiter Icy Moons Orbiter (JIMO) mission, which would conduct in-depth studies of three of the moons of Jupiter by using a space reactor power system (SRPS) to provide energy for propulsion and spacecraft power for more than a decade. Terrestrial nuclear power plants rely upon varying degrees of direct human control and interaction for operations and maintenance over a forty to sixty year lifetime. In contrast, an SRPS is intended to provide continuous, remote, unattended operation for up to fifteen years with no maintenance. Uncertainties, rare events, degradation, and communications delays with Earth are challenges that SRPS control must accommodate. Autonomous control is needed to address these challenges and optimize the reactor control design. In this paper, we describe an autonomous control concept for generic SRPS designs. The formulation of an autonomous control concept, which includes identification of high-level functional requirements and generation of a research and development plan for enabling technologies, is among the technical activities that are being conducted under the U.S. Department of Energy's Space Reactor Technology Program in support of the NASA's Project Prometheus. The findings from this program are intended to contribute to the successful realization of the JIMO mission.

  13. Binaural advantages in users of bimodal and bilateral cochlear implant devices

    OpenAIRE

    Kokkinakis, Kostas; Pak, Natalie

    2013-01-01

    This paper investigates to what extent users of bilateral and bimodal fittings should expect to benefit from all three different binaural advantages found to be present in normal-hearing listeners. Head-shadow and binaural squelch are advantages occurring under spatially separated speech and noise, while summation emerges when speech and noise coincide in space. For 14 bilateral or bimodal listeners, speech reception thresholds in the presence of four-talker babble were measured in sound-fiel...

  14. High Power Combline Filter for Deep Space Applications

    Directory of Open Access Journals (Sweden)

    A. V. G. Subramanyam

    2014-01-01

    Full Text Available An S-band, compact, high power filter, for use in the Mars Orbiter Mission (MOM of Indian Space Research Organization (ISRO, has been designed and tested for multipaction. The telemetry, tracking, and commanding (TT&C transponder of MOM is required to handle continuous RF power of 200 W in the telemetry path besides simultaneously maintaining an isolation of greater than 145 dBc to its sensitive telecommand path. This is accomplished with the help of a complex diplexer, requiring high power, high rejection transmit path filter, and a low power receive path filter. To reduce the complexity in the multipaction-free design and testing, the transmit path filter of the diplexer is split into a low rejection filter integral to the diplexer and an external high rejection filter. This paper highlights the design and space qualification phases of this high rejection filter. Multipaction test results with 6 dB margin are also presented. Major concerns of this filter design are isolation, insertion loss, and multipaction. Mission performance of the on-board filter is normal.

  15. Space Station Freedom electric power system photovoltaic power module integrated launch package

    Science.gov (United States)

    Nathanson, Theodore H.; Clemens, Donald D.; Spatz, Raymond R.; Kirch, Luke A.

    1990-01-01

    The launch of the Space Station Freedom solar power module requires a weight efficient structure that will include large components within the limited load capacity of the Space Shuttle cargo bay. The design iterations to meet these requirements have evolved from a proposal concept featuring a separate cradle and integrated equipment assembly (IEA), to a package that interfaces directly with the Shuttle. Size, weight, and cost have been reduced as a result.

  16. Space Solar Power Satellite Systems, Modern Small Satellites, and Space Rectenna

    Science.gov (United States)

    Bergsrud, Corey Alexis Marvin

    Space solar power satellite (SSPS) systems is the concept of placing large satellite into geostationary Earth orbit (GEO) to harvest and convert massive amounts of solar energy into microwave energy, and to transmit the microwaves to a rectifying antenna (rectenna) array on Earth. The rectenna array captures and converts the microwave power into usable power that is injected into the terrestrial electric grid for use. This work approached the microwave power beam as an additional source of power (with solar) for lower orbiting satellites. Assuming the concept of retrodirectivity, a GEO-SSPS antenna array system tracks and delivers microwave power to lower orbiting satellites. The lower orbiting satellites are equipped with a stacked photovoltaic (PV)/rectenna array hybrid power generation unit (HPGU) in order to harvest solar and/or microwave energy for on-board use during orbit. The area, and mass of the PV array part of the HPGU was reduced at about 32% beginning-of-life power in order to achieve the spacecraft power requirements. The HPGU proved to offer a mass decrease in the PGU, and an increase in mission life due to longer living component life of the rectenna array. Moreover, greater mission flexibility is achieved through a track and power delivery concept. To validate the potential advantages offered by a HPGU, a mission concept was presented that utilizes modern small satellites as technology demonstrators. During launch, a smaller power receiving "daughter" satellite sits inside a larger power transmitting "mother" satellite. Once separated from the launch vehicle the daughter satellite is ejected away from the mother satellite, and each satellite deploys its respective power transmitting or power receiving hardware's for experimentation. The concept of close proximity mission operations between the satellites is considered. To validate the technology of the space rectenna array part of the HPGU, six milestones were completed in the design. The first

  17. BSA adsorption on bimodal PEO brushes

    NARCIS (Netherlands)

    Bosker, WTE; Iakovlev, PA; Norde, W; Stuart, Martien A. Cohen

    2005-01-01

    BSA adsorption onto bimodal PEO brushes at a solid surface was measured using optical reflectometry. Bimodal brushes consist of long (N = 770) and short (N = 48) PEO chains and were prepared on PS surfaces, applying mixtures of PS29-PEO48 and PS37-PEO770 block copolymers and using the Langmuir-Blodg

  18. BSA adsorption on bimodal PEO brushes

    NARCIS (Netherlands)

    Bosker, W.T.E.; Iakovlev, P.A.; Norde, W.; Cohen Stuart, M.A.

    2005-01-01

    BSA adsorption onto bimodal PEO brushes at a solid surface was measured using optical reflectometry. Bimodal brushes consist of long (N=770) and short (N=48) PEO chains and were prepared on PS surfaces, applying mixtures of PS 29-PEO48 and PS37-PEO770 block copolymers and using the Langmuir-Blodgett

  19. Miniversal Deformations of Bimodal Picewise Linear Systems

    OpenAIRE

    Ferrer Llop, Josep; Magret Planas, Maria dels Dolors; Pacha Andújar, Juan Ramón; Peña Carrera, Marta

    2010-01-01

    Keywords: Bimodal piecewise linear system, miniversal deformations, reduced forms. Bimodal linear systems are those consisting of two linear systems on each side of a given hyperplane, having continuous dynamics along that hyperplane. In this work, we focus on the derivation of (orthogonal) miniversal deformations, by using reduced forms.

  20. Applications of power beaming from space-based nuclear power stations

    International Nuclear Information System (INIS)

    Power beaming from space-based reactor systems is examined using an advanced compact, lightweight Rotating Bed Reactor (RBR). Closed Brayton power conversion efficiencies in the range of 30 to 40% can be achieved with turbines, with reactor exit temperatures on the order of 20000K and a liquid drop radiator to reject heat at temperatures of approx. 5000K. Higher RBR coolant temperatures (up to approx. 30000K) are possible, but gains in power conversion efficiency are minimal, due to lower expander efficiency (e.g., a MHD generator). Two power beaming applications are examined - laser beaming to airplanes and microwave beaming to fixed ground receivers. Use of the RBR greatly reduces system weight and cost, as compared to solar power sources. Payback times are a few years at present prices for power and airplane fuel

  1. Towards Space Solar Power - Examining Atmospheric Interactions of Power Beams with the HAARP Facility

    OpenAIRE

    Leitgab, M.; Cowley, A

    2014-01-01

    In the most common space solar power (SSP) system architectures, solar energy harvested by large satellites in geostationary orbit is transmitted to Earth via microwave radiation. Currently, only limited information about the interactions of microwave beams with energy densities of several tens to hundreds of W/m$^2$ with the different layers of the atmosphere is available. Governmental bodies will likely require detailed investigations of safety and atmospheric effects of microwave power bea...

  2. Technological implications of SNAP reactor power system development on future space nuclear power systems

    International Nuclear Information System (INIS)

    Nuclear reactor systems are one method of satisfying space mission power needs. The development of such systems must proceed on a path consistent with mission needs and schedules. This path, or technology roadmap, starts from the power system technology data base available today. Much of this data base was established during the 1960s and early 1970s, when government and industry developed space nuclear reactor systems for steady-state power and propulsion. One of the largest development programs was the Systems for Nuclear Auxiliary Power (SNAP) Program. By the early 1970s, a technology base had evolved from this program at the system, subsystem, and component levels. There are many implications of this technology base on future reactor power systems. A review of this base highlights the need for performing a power system technology and mission overview study. Such a study is currently being performed by Rockwell's Energy Systems Group for the Department of Energy and will assess power system capabilities versus mission needs, considering development, schedule, and cost implications. The end product of the study will be a technology roadmap to guide reactor power system development

  3. Emerging Space Powers The New Space Programs of Asia, the Middle East, and South America

    CERN Document Server

    Harvey, Brian; Pirard, Théo

    2010-01-01

    This work introduces the important emerging space powers of the world. Brian Harvey describes the origins of the Japanese space program, from rocket designs based on WW II German U-boats to tiny solid fuel 'pencil' rockets, which led to the launch of the first Japanese satellite in 1970. The next two chapters relate how Japan expanded its space program, developing small satellites into astronomical observatories and sending missions to the Moon, Mars, comet Halley, and asteroids. Chapter 4 describes how India's Vikram Sarabhai developed a sounding rocket program in the 1960s. The following chapter describes the expansion of the Indian space program. Chapter 6 relates how the Indian space program is looking ahead to the success of the moon probe Chandrayan, due to launch in 2008, and its first manned launching in 2014. Chapters 7, 8, and 9 demonstrate how, in Iran, communications and remote sensing drive space technology. Chapter 10 outlines Brazil's road to space, begun in the mid-1960's with the launch of th...

  4. Space craft thermal thermionic reactors with flat power distribution

    International Nuclear Information System (INIS)

    The nuclear reactors are potential candidates for energy generation in space missions over longer periods where high power output is required. Among different nuclear energy conversion options, the statical ones, such as thermo-electric or thermionic reactors, are preferable in order to avoid the kinetic disturbances of the space craft and furthermore in order to reduce the failure probabilities to a minimum, caused by lubricants and seals. In the present study, the main parameters of different types of thermal thermionic reactors are discussed which are fueled with U-233 or U-235 and moderated with ZrH1.7 or Beryllium. The investigated thermionic reactors will be layed out to have a constant heat production density on the emitter surface over the space variable, so as to achieve a maximum engineering efficiency with respect to the electrical conversion, nuclear fuel utilization, material damage, thermal and radiation gradients. The power flattening procedure is performed by varying the moderator to fuel ratio, both in axial and radial directions

  5. Systems definition space-based power conversion systems. [for satellite power transmission to earth

    Science.gov (United States)

    1976-01-01

    Potential space-located systems for the generation of electrical power for use on Earth are discussed and include: (1) systems producing electrical power from solar energy; (2) systems producing electrical power from nuclear reactors; and (3) systems for augmenting ground-based solar power plants by orbital sunlight reflectors. Systems (1) and (2) would utilize a microwave beam system to transmit their output to Earth. Configurations implementing these concepts were developed through an optimization process intended to yield the lowest cost for each. A complete program was developed for each concept, identifying required production rates, quantities of launches, required facilities, etc. Each program was costed in order to provide the electric power cost appropriate to each concept.

  6. Cooperating expert systems for space station power distribution management

    International Nuclear Information System (INIS)

    In a complex system such as the manned Space Station, it is deemed necessary that many expert systems must perform tasks in a concurrent and cooperative manner. An important question to arise is: what cooperative-task-performing models are appropriate for multiple expert systems to jointly perform tasks. The solution to this question will provide a crucial automation design criteria for the Space Station complex systems architecture. Based on a client/server model for performing tasks, the authors have developed a system that acts as a front-end to support loosely-coupled communications between expert systems running on multiple Symbolics machines. As an example, they use the two ART*-based expert systems to demonstrate the concept of parallel symbolic manipulation for power distribution management and dynamic load planner/scheduler in the simulated Space Station environment. This on-going work will also explore other cooperative-task-performing models as alternatives which can evaluate inter and intra expert system communication mechanisms. It will serve as a testbed and a bench-marking tool for other Space Station expert subsystem communication and information exchange

  7. Combined-Brayton cycle, space nuclear power systems

    International Nuclear Information System (INIS)

    Because it is a widely recognized dynamic space conversion system, the Brayton cycle has been studied in France since several years, especially within the framework of a limited space program. A recuperated cycle of 20 to 30 kWe has been considered so far. However, possible applications could evolve and the need for an extended, diversified utilization of the Brayton cycle could appear. So, for Lunar or Mars bases which would accept large radiators and can benefit from a certain gravity level, combined cycle systems could be proposed. Following a reference to past works on space combined cycles, a possible association of a Brayton cycle with a thermoionic reactor is presented. The power level of a 'Topaz-2' type space nuclear system can be boosted from 8 kWe to around 36 to 53 kWe, at the expense of a large radiator of course. Furthermore, combined Brayton-Rankine, organic (toluene) or steam, cycles can pave the way to a simpler gas-cooled, particle bed reactor concept. A particular arrangement of HeXe heater and boiler or steam generator in series is proposed. It makes it possible to lower the reactor inlet temperature, which is quite adequate for the use of light water as moderator. Oustanding net efficiencies of 25.8 to 27.6 per cent, given the reactor temperature profile, are obtained. Consequences on the reactor design are mentioned

  8. Overview of materials technologies for space nuclear power and propulsion

    Science.gov (United States)

    Zinkle, S. J.; Ott, L. J.; Ingersoll, D. T.; Ellis, R. J.; Grossbeck, M. L.

    2002-01-01

    A wide range of different space nuclear systems are currently being evaluated as part of the DOE Special Purpose Fission Technology program. The near-term subset of systems scheduled to be evaluated range from 50 kWe gas-, pumped liquid metal-, or liquid metal heat pipe-cooled reactors for space propulsion to 3 kWe heat pipe or pumped liquid metal systems for Mars surface power applications. The current status of the materials technologies required for the successful development of near-term space nuclear power and propulsion systems is reviewed. Materials examined in this overview include fuels (UN, UO2, UZrH), cladding and structural materials (stainless steel, superalloys, refractory alloys), neutron reflector materials (Be, BeO), and neutron shield materials (B4C,LiH). The materials technologies issues are considerably less demanding for the 3 kWe reactor systems due to lower operating temperatures, lower fuel burnup, and lower radiation damage levels. A few reactor subcomponents in the 3 kWe reactors under evaluation are being used near or above their engineering limits, which may adversely affect the 5 to 10 year lifetime design goal. It appears that most of these issues for the 3 kWe reactor systems can be accommodated by incorporating a few engineering design changes. Design limits (temperature, burnup, stress, radiation levels) for the various materials proposed for space nuclear reactors will be summarized. For example, the temperature and stress limits for Type 316 stainless steel in the 3 kWe Na-cooled heat pipe reactor (Stirling engine) concept will be controlled by thermal creep and CO2 corrosion considerations rather than radiation damage issues. Conversely, the lower operating temperature limit for the LiH shield material will likely be defined by ionizing radiation damage (radiolysis)-induced swelling, even for the relatively low radiation doses associated with the 3 kWe reactor. .

  9. Protoflight photovoltaic power module system-level tests in the space power facility

    Science.gov (United States)

    Rivera, Juan C.; Kirch, Luke A.

    1989-01-01

    Work Package Four, which includes the NASA-Lewis and Rocketdyne, has selected an approach for the Space Station Freedom Photovoltaic (PV) Power Module flight certification that combines system level qualification and acceptance testing in the thermal vacuum environment: The protoflight vehicle approach. This approach maximizes ground test verification to assure system level performance and to minimize risk of on-orbit failures. The preliminary plans for system level thermal vacuum environmental testing of the protoflight PV Power Module in the NASA-Lewis Space Power Facility (SPF), are addressed. Details of the facility modifications to refurbish SPF, after 13 years of downtime, are briefly discussed. The results of an evaluation of the effectiveness of system level environmental testing in screening out incipient part and workmanship defects and unique failure modes are discussed. Preliminary test objectives, test hardware configurations, test support equipment, and operations are presented.

  10. Performance projections for laser beam power to space

    Science.gov (United States)

    Greenwood, Darryl P.

    1992-01-01

    We examine the requirements placed on an adaptive-optics system used to compensate atmospheric effects in propagating high-power lasers from ground to space. The particular application involves energy transfer from a ground station to a satellite. Our analysis explores performance associated with various beacon configurations, including satellite-based beacons, beacons in the lead-ahead direction, and synthetic beacons. Other system parameters are adjusted as well, including number of actuators in the deformable mirror and bandwidth of the servo system. We show that with an optimized system design it is possible to achieve collection efficiencies of 10-50 percent over zenith angles as great as 70 deg.

  11. Performance/Power Space Exploration for Binary64 Division Units

    DEFF Research Database (Denmark)

    Nannarelli, Alberto

    2016-01-01

    The digit-recurrence division algorithm is used in several high-performance processors because it provides good tradeoffs in terms of latency, area and power dissipation. In this work we develop a minimally redundant radix-8 divider for binary64 (double-precision) aiming at obtaining better energy...... efficiency in the performance-per-watt space. The results show that the radix-8 divider, when compared to radix-4 and radix-16 units, requires less energy to complete a division for high clock rates....

  12. PLASMAK star power for energy intensive space applications

    International Nuclear Information System (INIS)

    Aneutronic energy (fusion with little or negligible neutron flux) requires plasma pressures and stable confinement times larger than an be delivered by current approaches. If plasma pressures appropriate to burn times on the order of milliseconds could be achieved in aneutronic fuels, then high power densities and very compact, relatively clean burning engines for space and other applications would be at hand. The PLASMAK innovation will make this possible; its unique pressure efficient structure, exceptional stability, fluid-mechanically compressible Mantle and direct inductive MHD electric power conversion advantages are described. Peak burn densities of tens of megawatts per cc give it compactness even in the multi-gigawatt electric output size. Engineering advantages indicate a rapid development schedule at very modest cost

  13. Small Stirling dynamic isotope power system for robotic space missions

    Science.gov (United States)

    Bents, D. J.

    1992-08-01

    The design of a multihundred-watt Dynamic Isotope Power System (DIPS), based on the U.S. Department of Energy (DOE) General Purpose Heat Source (GPHS) and small (multihundred-watt) free-piston Stirling engine (FPSE), is being pursued as a potential lower cost alternative to radioisotope thermoelectric generators (RTG's). The design is targeted at the power needs of future unmanned deep space and planetary surface exploration missions ranging from scientific probes to Space Exploration Initiative precursor missions. Power level for these missions is less than a kilowatt. The incentive for any dynamic system is that it can save fuel and reduce costs and radiological hazard. Unlike DIPS based on turbomachinery conversion (e.g. Brayton), this small Stirling DIPS can be advantageously scaled to multihundred-watt unit size while preserving size and mass competitiveness with RTG's. Stirling conversion extends the competitive range for dynamic systems down to a few hundred watts--a power level not previously considered for dynamic systems. The challenge for Stirling conversion will be to demonstrate reliability and life similar to RTG experience. Since the competitive potential of FPSE as an isotope converter was first identified, work has focused on feasibility of directly integrating GPHS with the Stirling heater head. Thermal modeling of various radiatively coupled heat source/heater head geometries has been performed using data furnished by the developers of FPSE and GPHS. The analysis indicates that, for the 1050 K heater head configurations considered, GPHS fuel clad temperatures remain within acceptable operating limits. Based on these results, preliminary characterizations of multihundred-watt units have been established.

  14. Stirling System Modeling for Space Nuclear Power Systems

    Science.gov (United States)

    Lewandowski, Edward J.; Johnson, Paul K.

    2008-01-01

    A dynamic model of a high-power Stirling convertor has been developed for space nuclear power systems modeling. The model is based on the Component Test Power Convertor (CTPC), a 12.5-kWe free-piston Stirling convertor. The model includes the fluid heat source, the Stirling convertor, output power, and heat rejection. The Stirling convertor model includes the Stirling cycle thermodynamics, heat flow, mechanical mass-spring damper systems, and the linear alternator. The model was validated against test data. Both nonlinear and linear versions of the model were developed. The linear version algebraically couples two separate linear dynamic models; one model of the Stirling cycle and one model of the thermal system, through the pressure factors. Future possible uses of the Stirling system dynamic model are discussed. A pair of commercially available 1-kWe Stirling convertors is being purchased by NASA Glenn Research Center. The specifications of those convertors may eventually be incorporated into the dynamic model and analysis compared to the convertor test data. Subsequent potential testing could include integrating the convertors into a pumped liquid metal hot-end interface. This test would provide more data for comparison to the dynamic model analysis.

  15. A heat receiver design for solar dynamic space power systems

    Science.gov (United States)

    Baker, Karl W.; Dustin, Miles O.; Crane, Roger

    1990-01-01

    An advanced heat pipe receiver designed for a solar dynamic space power system is described. The power system consists of a solar concentrator, solar heat receiver, Stirling heat engine, linear alternator and waste heat radiator. The solar concentrator focuses the sun's energy into a heat receiver. The engine and alternator convert a portion of this energy to electric power and the remaining heat is rejected by a waste heat radiator. Primary liquid metal heat pipes transport heat energy to the Stirling engine. Thermal energy storage allows this power system to operate during the shade portion of an orbit. Lithium fluoride/calcium fluoride eutectic is the thermal energy storage material. Thermal energy storage canisters are attached to the midsection of each heat pipe. The primary heat pipes pass through a secondary vapor cavity heat pipe near the engine and receiver interface. The secondary vapor cavity heat pipe serves three important functions. First, it smooths out hot spots in the solar cavity and provides even distribution of heat to the engine. Second, the event of a heat pipe failure, the secondary heat pipe cavity can efficiently transfer heat from other operating primary heat pipes to the engine heat exchanger of the defunct heat pipe. Third, the secondary heat pipe vapor cavity reduces temperature drops caused by heat flow into the engine. This unique design provides a high level of reliability and performance.

  16. Control of the differential interference contrast in reinjected bimode laser

    CERN Document Server

    Lacot, Eric; Hugon, Olivier; de Chatellus, Hugues Guillet

    2016-01-01

    We have demonstrated, both theoretically and experimentally, that it is possible to control (i.e., to enhance or cancel) the contrast of the interference pattern appearing in the intensity images obtained with a laser optical feedback imaging (LOFI) setup using a bimode laser. The laser is composed of two coupled orthogonally polarized states that interact (i.e., interfere) through the cross saturation laser dynamics. We created the contrast control by choosing the frequency shift (i.e., the beating frequency) between the feedback electric fields and the intracavity electric fields. We have shown that the interference contrast of the output power modulation of the laser total intensity is independent from the frequency shift and is always maximal. On the other hand, the interference contrast of each polarization state is frequency dependent. We obtained the maximal contrast when the frequency shift was equal to one of the resonance frequencies of the bimode dynamics, and was very low (and almost cancels) for ...

  17. The Power of Transient Piezometric Head Data in Inverse Modeling: An Application of the Localized Normal-score EnKF with Covariance Inflation in a Heterogenous Bimodal Hydraulic Conductivity Field

    OpenAIRE

    XU, TENG; Gómez-Hernández, J. Jaime; Zhou, Haiyan; Li ., Liangping

    2013-01-01

    The localized normal-score ensemble Kalman filter (NS-EnKF) coupled with covariance inflation is used to characterize the spatial variability of a channelized bimodal hydraulic conductivity field, for which the only existing prior information about conductivity is its univariate marginal distribution. We demonstrate that we can retrieve the main patterns of the reference field by assimilating a sufficient number of piezometric observations using the NS-EnKF. The possibility of characterizing ...

  18. Power conversion for a microreactor: a nuclear space application

    International Nuclear Information System (INIS)

    Generating nuclear power in space is of fundamental importance if it is desired to realize some aggressive type of exploration. Basically, at Earth orbit (either LEO or GEO) most applications tend to use solar panels, which are just fine, in spite of problems such as vibration, non optimal light incidence angle and non electricity generation due to Earth's shadow. For deep space exploration the nuclear power is been considered as a strong candidate and maybe the only one. The Institute for Advanced Studies is conducting the TERRA project that tracks the developments in the area and, also, intends to develop the key technologies that will allow such a machine to be build with indigenous technology. TERRA stands for TEcnologia de Reatores Rapidos Avancados. This project, at its first stage aims at the specification of the microreactor fuel element with its possible geometrical arrangements. Also for this stage a gas Brayton closed cycle is being considered as a heat conversion to electricity and/or propulsion effect. The basic idea is to adapt an open loop aeronautic gas turbine to operate as a closed loop gas Turbine. This arrangement will use heat pipes as a cold source, or a heat rejection passive system. Up to this point a lot has been done in terms of numerical and graphical development. It is expected that some built up will be happening during this year. An account of this work will be presented at the conference. (author)

  19. Powering Up With Space-Time Wind Forecasting

    KAUST Repository

    Hering, Amanda S.

    2010-03-01

    The technology to harvest electricity from wind energy is now advanced enough to make entire cities powered by it a reality. High-quality, short-term forecasts of wind speed are vital to making this a more reliable energy source. Gneiting et al. (2006) have introduced a model for the average wind speed two hours ahead based on both spatial and temporal information. The forecasts produced by this model are accurate, and subject to accuracy, the predictive distribution is sharp, that is, highly concentrated around its center. However, this model is split into nonunique regimes based on the wind direction at an offsite location. This paper both generalizes and improves upon this model by treating wind direction as a circular variable and including it in the model. It is robust in many experiments, such as predicting wind at other locations. We compare this with the more common approach of modeling wind speeds and directions in the Cartesian space and use a skew-t distribution for the errors. The quality of the predictions from all of these models can be more realistically assessed with a loss measure that depends upon the power curve relating wind speed to power output. This proposed loss measure yields more insight into the true value of each models predictions. © 2010 American Statistical Association.

  20. SPACE-R Thermionic Space Nuclear Power System: Design and Technology Demonstration Program

    Science.gov (United States)

    1993-05-01

    This semiannual technical progress report summarizes the technical progress and accomplishments for the Thermionic Space Nuclear Power System (TI-SNPS) Design and Technology Demonstration Program of the prime contractor, Space Power Incorporated (SPI), its subcontractors, and supporting national laboratories during the first half of the government fiscal year (GFY) 1993. SPI's subcontractors and supporting national laboratories include: Babcock & Wilcox for the reactor core and externals; Space Systems/Loral for the spacecraft integration; Thermocore for the radiator heat pipes and the heat exchanger; INERTEK of CIS for the TFE, core elements, and nuclear tests; Argonne National Laboratories for nuclear safety, physics, and control verification; and Oak Ridge National laboratories for materials testing. Parametric trade studies are near completion. However, technical input from INERTEK has yet to be provided to determine some of the baseline design configurations. The INERTEK subcontract is expected to be initiated soon. The point design task has been initiated. The thermionic fuel element (TFE) is undergoing several design iterations. The reactor core vessel analysis and design has also been started.

  1. A Note on Bimodal Accretion Disks

    OpenAIRE

    Dullemond, C.P.; Turolla, R.

    1998-01-01

    The existence of bimodal disks is investigated. Following a simple argument based on energetic considerations we show that stationary, bimodal accretion disk models in which a Shakura--Sunyaev disk (SSD) at large radii matches an advection dominated accretion flow (ADAF) at smaller radii are never possible using the standard slim disk approach, unless some extra energy flux is present. The same argument, however, predicts the possibility of a transition from an outer Shapiro--Lightman--Eardle...

  2. Thermostatistics of a damped bimodal particle

    Science.gov (United States)

    Medeiros, João R.; Duarte Queirós, Sílvio M.

    2015-12-01

    We study the thermostatistics of a damped bimodal particle, i.e., a particle of mass m subject to a work reservoir that is analytically represented by the telegraph noise. Because of the colored nature of the noise, it does not fit the Lévy-Itô class of stochastic processes, making this system an instance of a nonequilibrium system in contact with a non-Gaussian external reservoir. We obtain the statistical description of the position and velocity, namely in the stationary state, as well as the (time-dependent) statistics of the energy fluxes in the system considering no constraints on the telegraph noise features. With that result we are able to give an account of the statistical properties of the large deviations of the injected and dissipated power that can change from sub-Gaussianity to super-Gaussianity depending on the color of the noise. By properly defining an effective temperature for this system, T , we are capable of obtaining an equivalent entropy production-exchange rate equal to the ratio between the dissipation of the medium, γ , and the mass of the particle, m , a relation that concurs with the case of a standard thermal reservoir at temperature, T =T .

  3. Summary of space nuclear reactor power systems, 1983--1992

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.

    1993-08-11

    This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts:were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987--88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.

  4. Summary of space nuclear reactor power systems, 1983--1992

    International Nuclear Information System (INIS)

    This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts:were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987--88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power

  5. Solar Selective Coatings Developed for Space Power Applications

    Science.gov (United States)

    Jaworske, Donald A.

    2002-01-01

    A solar collector having the combined properties of high solar absorptance, low infrared emittance, and high thermal conductivity is envisioned for space power applications on minisatellites. A high solar absorptance is needed to collect as much of the incident solar radiation as possible and a low infrared emittance is needed to minimize radiant energy losses. A lightweight material having a high thermal conductivity is needed to transport the absorbed energy to where it is needed. Such a solar collector may be used with a low temperature-differential heat engine to provide electric power to the minisatellite components or as a source of thermal energy for a thermal bus that would heat remote regions of the spacecraft. The key to such a collector is the use of cermet coatings. Cermet coatings are composed of molecular islands of metal embedded in a three-dimensional matrix of dielectric. Recent research on molecular mixtures of aluminum and aluminum oxide at the NASA Glenn Research Center has yielded cermet coatings with a solar absorptance a of 0.797 and an infrared emittance epsilon of 0.131, yielding an alpha/epsilon ratio of 6. Although additional work is needed to further increase the alpha/epsilon ratio, these coatings are attractive owing to their potential durability in the space environment. The aluminum oxide surface should provide substantial protection from the atomic oxygen found in low Earth orbit. To help minimize emittance, these coatings are deposited on a smooth surface. The selected surface is aluminum that has been diamond turned to a mirror finish. Cermet coatings are manufactured by sputter deposition. To achieve the desired variable composition, Glenn's researchers implemented a novel approach using a cylindrical target composed of aluminum and aluminum oxide. Rotating the cylinder during the deposition process yields a coating of variable composition. A photograph of the custom-made aluminum and aluminum oxide cylindrical target installed

  6. Selection of power plant elements for future reactor space electric power systems

    International Nuclear Information System (INIS)

    Various types of reactor designs, electric power conversion equipment, and reject-heat systems to be used in nuclear reactor power plants for future space missions were studied. The designs included gas-cooled, liquid-cooled, and heat-pipe reactors. For the power converters, passive types such as thermoelectric and thermionic converters and dynamic types such as Brayton, potassium Rankine, and Stirling cycles were considered. For the radiators, heat pipes for transfer and radiating surface, pumped fluid for heat transfer with fins as the radiating surface, and pumped fluid for heat transfer with heat pipes as the radiating surface were considered. After careful consideration of weights, sizes, reliabilities, safety, and development cost and time, a heat-pipe reactor design, thermoelectric converters, and a heat-pipe radiator for an experimental program were selected

  7. Selection of power plant elements for future reactor space electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.; Bennett, G.A.; Copper, K.

    1979-09-01

    Various types of reactor designs, electric power conversion equipment, and reject-heat systems to be used in nuclear reactor power plants for future space missions were studied. The designs included gas-cooled, liquid-cooled, and heat-pipe reactors. For the power converters, passive types such as thermoelectric and thermionic converters and dynamic types such as Brayton, potassium Rankine, and Stirling cycles were considered. For the radiators, heat pipes for transfer and radiating surface, pumped fluid for heat transfer with fins as the radiating surface, and pumped fluid for heat transfer with heat pipes as the radiating surface were considered. After careful consideration of weights, sizes, reliabilities, safety, and development cost and time, a heat-pipe reactor design, thermoelectric converters, and a heat-pipe radiator for an experimental program were selected.

  8. Towards Space Solar Power - Examining Atmospheric Interactions of Power Beams with the HAARP Facility

    CERN Document Server

    Leitgab, M

    2014-01-01

    In the most common space solar power (SSP) system architectures, solar energy harvested by large satellites in geostationary orbit is transmitted to Earth via microwave radiation. Currently, only limited information about the interactions of microwave beams with energy densities of several tens to hundreds of W/m$^2$ with the different layers of the atmosphere is available. Governmental bodies will likely require detailed investigations of safety and atmospheric effects of microwave power beams before issuing launch licenses for SSP satellite systems. This paper proposes to collect representative and comprehensive data of the interaction of power beams with the atmosphere by extending the infrastructure of the High Frequency Active Auroral Research Program (HAARP) facility in Alaska, USA. Estimates of the transmission infrastructure performance as well as measurement devices and scientific capabilities of possible upgrade scenarios will be discussed. The proposed upgrade of the HAARP facility is expected to d...

  9. Space and Terrestrial Power System Integration Optimization Code BRMAPS for Gas Turbine Space Power Plants With Nuclear Reactor Heat Sources

    Science.gov (United States)

    Juhasz, Albert J.

    2007-01-01

    In view of the difficult times the US and global economies are experiencing today, funds for the development of advanced fission reactors nuclear power systems for space propulsion and planetary surface applications are currently not available. However, according to the Energy Policy Act of 2005 the U.S. needs to invest in developing fission reactor technology for ground based terrestrial power plants. Such plants would make a significant contribution toward drastic reduction of worldwide greenhouse gas emissions and associated global warming. To accomplish this goal the Next Generation Nuclear Plant Project (NGNP) has been established by DOE under the Generation IV Nuclear Systems Initiative. Idaho National Laboratory (INL) was designated as the lead in the development of VHTR (Very High Temperature Reactor) and HTGR (High Temperature Gas Reactor) technology to be integrated with MMW (multi-megawatt) helium gas turbine driven electric power AC generators. However, the advantages of transmitting power in high voltage DC form over large distances are also explored in the seminar lecture series. As an attractive alternate heat source the Liquid Fluoride Reactor (LFR), pioneered at ORNL (Oak Ridge National Laboratory) in the mid 1960's, would offer much higher energy yields than current nuclear plants by using an inherently safe energy conversion scheme based on the Thorium --> U233 fuel cycle and a fission process with a negative temperature coefficient of reactivity. The power plants are to be sized to meet electric power demand during peak periods and also for providing thermal energy for hydrogen (H2) production during "off peak" periods. This approach will both supply electric power by using environmentally clean nuclear heat which does not generate green house gases, and also provide a clean fuel H2 for the future, when, due to increased global demand and the decline in discovering new deposits, our supply of liquid fossil fuels will have been used up. This is

  10. Advanced Fusion Reactors for Space Propulsion and Power Systems

    Science.gov (United States)

    Chapman, John J.

    2011-01-01

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles "exhaust" momentum can be used directly to produce high ISP thrust and also offer possibility of power conversion into electricity. p- 11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  11. Dispersion modeling of thermal power plant emissions on stochastic space

    Science.gov (United States)

    Gorle, J. M. R.; Sambana, N. R.

    2016-05-01

    This study aims to couple a deterministic atmospheric dispersion solver based on Gaussian model with a nonintrusive stochastic model to quantify the propagation of multiple uncertainties. The nonintrusive model is based on probabilistic collocation framework. The advantage of nonintrusive nature is to retain the existing deterministic plume dispersion model without missing the accuracy in extracting the statistics of stochastic solution. The developed model is applied to analyze the SO2 emission released from coal firing unit in the second stage of the National Thermal Power Corporation (NTPC) in Dadri, India using "urban" conditions. The entire application is split into two cases, depending on the source of uncertainty. In case 1, the uncertainties in stack gas exit conditions are used to construct the stochastic space while in case 2, meteorological conditions are considered as the sources of uncertainty. Both cases develop 2D uncertain random space in which the uncertainty propagation is quantified in terms of plume rise and pollutant concentration distribution under slightly unstable atmospheric stability conditions. Starting with deterministic Gaussian plume model demonstration and its application, development of stochastic collocation model, convergence study, error analysis, and uncertainty quantification are presented in this paper.

  12. Application of Hybrid Optimization-Expert System for Optimal Power Management on Board Space Power Station

    Science.gov (United States)

    Momoh, James; Chattopadhyay, Deb; Basheer, Omar Ali AL

    1996-01-01

    The space power system has two sources of energy: photo-voltaic blankets and batteries. The optimal power management problem on-board has two broad operations: off-line power scheduling to determine the load allocation schedule of the next several hours based on the forecast of load and solar power availability. The nature of this study puts less emphasis on speed requirement for computation and more importance on the optimality of the solution. The second category problem, on-line power rescheduling, is needed in the event of occurrence of a contingency to optimally reschedule the loads to minimize the 'unused' or 'wasted' energy while keeping the priority on certain type of load and minimum disturbance of the original optimal schedule determined in the first-stage off-line study. The computational performance of the on-line 'rescheduler' is an important criterion and plays a critical role in the selection of the appropriate tool. The Howard University Center for Energy Systems and Control has developed a hybrid optimization-expert systems based power management program. The pre-scheduler has been developed using a non-linear multi-objective optimization technique called the Outer Approximation method and implemented using the General Algebraic Modeling System (GAMS). The optimization model has the capability of dealing with multiple conflicting objectives viz. maximizing energy utilization, minimizing the variation of load over a day, etc. and incorporates several complex interaction between the loads in a space system. The rescheduling is performed using an expert system developed in PROLOG which utilizes a rule-base for reallocation of the loads in an emergency condition viz. shortage of power due to solar array failure, increase of base load, addition of new activity, repetition of old activity etc. Both the modules handle decision making on battery charging and discharging and allocation of loads over a time-horizon of a day divided into intervals of 10

  13. An Ultra Low Power Cryo-Refrigerator for Space Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future NASA Space Science Missions will incorporate detectors, sensors, shields, and telescopes that must be cooled to cryogenic temperatures. An enabling...

  14. 46 CFR 92.05-15 - Segregation of spaces containing the emergency source of electric power.

    Science.gov (United States)

    2010-10-01

    ... electric power. 92.05-15 Section 92.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Segregation of spaces containing the emergency source of electric power. (a) The provisions of this section... the emergency source of electric power, or vital components thereof, adjoins a space containing...

  15. 46 CFR 190.05-15 - Segregation of spaces containing the emergency source of electric power.

    Science.gov (United States)

    2010-10-01

    ... electric power. 190.05-15 Section 190.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Segregation of spaces containing the emergency source of electric power. (a) When a compartment containing the emergency source of electric power, or vital components thereof, adjoins a space containing either the...

  16. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Power ventilation systems except machinery space ventilation systems. 111.103-1 Section 111.103-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Power ventilation systems except machinery space ventilation systems. Each power ventilation system...

  17. Radioisotope fueled pulsed power generation system for propulsion and electrical power for deep space missions

    Science.gov (United States)

    Howe, Troy

    Space exploration missions to the moon, Mars, and other celestial bodies have allowed for great scientific leaps to enhance our knowledge of the universe; yet the astronomical cost of these missions limits their utility to only a few select agencies. Reducing the cost of exploratory space travel will give rise to a new era of exploration, where private investors, universities, and world governments can send satellites to far off planets and gather important data. By using radioisotope power sources and thermal storage devices, a duty cycle can be introduced to extract large amounts of energy in short amounts of time, allowing for efficient space travel. The same device can also provide electrical power for subsystems such as communications, drills, lasers, or other components that can provide valuable scientific information. This project examines the use of multiple radioisotope sources combined with a thermal capacitor using Phase Change Materials (PCMs) which can collect energy over a period of time. The result of this design culminates in a variety of possible spacecraft with their own varying costs, transit times, and objectives. Among the most promising are missions to Mars which cost less than 17M, missions that can provide power to satellite constellations for decades, or missions that can deliver large, Opportunity-sized (185kg) payloads to mars for less than 53M. All made available to a much wider range of customer with commercially available satellite launches from earth. The true cost of such progress though lies in the sometimes substantial increase in transit times for these missions.

  18. High Power Electro-Optic Modulator for Space-Based Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I effort will establish the feasibility of developing a fiber coupled, high power, electro-optically controlled, space...

  19. High Power Electro-Optic Modulator for Space-Based Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ADVR, Inc. proposes the development of a fiber coupled, high power, electro-optically controlled, space qualified, phase modulator for the NASA Laser Interferometer...

  20. Advanced sensible heat solar receiver for space power

    Science.gov (United States)

    Bennett, Timothy J.; Lacy, Dovie E.

    1988-01-01

    NASA Lewis, through in-house efforts, has begun a study to generate a conceptual design of a sensible heat solar receiver and to determine the feasibility of such a system for space power applications. The sensible heat solar receiver generated in this study uses pure lithium as the thermal storage medium and was designed for a 7 kWe Brayton (PCS) operating at 1100 K. The receiver consists of two stages interconnected via temperature sensing variable conductance sodium heat pipes. The lithium is contained within a niobium vessel and the outer shell of the receiver is constructed of third generation rigid, fibrous ceramic insulation material. Reradiation losses are controlled with niobium and aluminum shields. By nature of design, the sensible heat receiver generated in this study is comparable in both size and mass to a latent heat system of similar thermal capacitance. The heat receiver design and thermal analysis were conducted through the combined use of PATRAN, SINDA, TRASYS, and NASTRAN software packages.

  1. A New Probabilistic Transformation in Generalized Power Space

    Institute of Scientific and Technical Information of China (English)

    HU Lifang; HE You; GUAN Xin; DENG Yong; HAN Deqiang

    2011-01-01

    The mapping from the belief to the probability domain is a controversial issue,whose original purpose is to make(hard) decision,but for contrariwise to erroneous widespread idea/claim,this is not the only interest for using such mappings nowadays.Actually the probabilistic transformations of belief mass assignments are very useful in modern multitarget multisensor tracking systems where one deals with soft decisions,especially when precise belief structures are not always available due to the existence of uncertainty in human being's subjective judgments.Therefore,a new probabilistic transformation of interval-valued belief structure is put forward in the generalized power space,in order to build a subjective probability measure from any basic belief assignment defined on any model of the frame of discernment.Several examples are given to show how the new transformation works and we compare it to the main existing transformations proposed in the literature so far.Results are provided to illustrate the rationality and efficiency of this new proposed method making the decision problem simpler.

  2. Gas Foil Bearings for Space Propulsion Nuclear Electric Power Generation

    Science.gov (United States)

    Howard, Samuel A.; DellaCorte, Christopher

    2006-01-01

    The choice of power conversion technology is critical in directing the design of a space vehicle for the future NASA mission to Mars. One candidate design consists of a foil bearing supported turbo alternator driven by a helium-xenon gas mixture heated by a nuclear reactor. The system is a closed-loop, meaning there is a constant volume of process fluid that is sealed from the environment. Therefore, foil bearings are proposed due to their ability to use the process gas as a lubricant. As such, the rotor dynamics of a foil bearing supported rotor is an important factor in the eventual design. The current work describes a rotor dynamic analysis to assess the viability of such a system. A brief technology background, assumptions, analyses, and conclusions are discussed in this report. The results indicate that a foil bearing supported turbo alternator is possible, although more work will be needed to gain knowledge about foil bearing behavior in helium-xenon gas.

  3. Language choice in bimodal bilingual development

    Directory of Open Access Journals (Sweden)

    Diane eLillo-Martin

    2014-10-01

    Full Text Available Bilingual children develop sensitivity to the language used by their interlocutors at an early age, reflected in differential use of each language by the child depending on their interlocutor. Factors such as discourse context and relative language dominance in the community may mediate the degree of language differentiation in preschool age children.Bimodal bilingual children, acquiring both a sign language and a spoken language, have an even more complex situation. Their Deaf parents vary considerably in access to the spoken language. Furthermore, in addition to code-mixing and code-switching, they use code-blending – expressions in both speech and sign simultaneously – an option uniquely available to bimodal bilinguals. Code-blending is analogous to code-switching sociolinguistically, but is also a way to communicate without suppressing one language. For adult bimodal bilinguals, complete suppression of the non-selected language is cognitively demanding. We expect that bimodal bilingual children also find suppression difficult, and use blending rather than suppression in some contexts. We also expect relative community language dominance to be a factor in children’s language choices.This study analyzes longitudinal spontaneous production data from four bimodal bilingual children and their Deaf and hearing interlocutors. Even at the earliest observations, the children produced more signed utterances with Deaf interlocutors and more speech with hearing interlocutors. However, while three of the four children produced >75% speech alone in speech target sessions, they produced <25% sign alone in sign target sessions. All four produced bimodal utterances in both, but more frequently in the sign sessions, potentially because they find suppression of the dominant language more difficult.Our results indicate that these children are sensitive to the language used by their interlocutors, while showing considerable influence from the dominant

  4. Bimodality and negative heat capacity in multifragmentation

    International Nuclear Information System (INIS)

    This contribution addresses the question of the possible link between multifragmentation and the liquid-gas phase transition of nuclear matter. Bi-modality seems to be a robust signal of this link in the sense that theoretical calculations indicate that it is preserved even if a sizeable fraction of the available energy has not been shared among all the degrees of freedom. The corresponding measured properties are coherent with what is expected in a liquid-gas phase transition picture. Moreover, bi-modality and negative heat capacity are observed for the same set of events. (authors)

  5. Co-speech gesture in bimodal bilinguals

    OpenAIRE

    Casey, Shannon; Emmorey, Karen

    2008-01-01

    The effects of knowledge of sign language on co-speech gesture were investigated by comparing the spontaneous gestures of bimodal bilinguals (native users of American Sign Language and English; n = 13) and non-signing native English speakers (n = 12). Each participant viewed and re-told the Canary Row cartoon to a non-signer whom they did not know. Nine of the thirteen bimodal bilinguals produced at least one ASL sign, which we hypothesise resulted from a failure to inhibit ASL. Compared with...

  6. Periodicity in bimodal atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Chia-Yun; Santos, Sergio, E-mail: santos-en@yahoo.com; Chiesa, Matteo [Laboratory for Energy and NanoScience (LENS), Institute Center for Future Energy (iFES), Masdar Institute of Science and Technology, Abu Dhabi (United Arab Emirates); Barcons, Victor [Departament de Disseny i Programació de Sistemes Electrònics, UPC - Universitat Politècnica de Catalunya, Av. Bases, 61, 08242 Manresa (Barcelona) (Spain)

    2015-07-28

    Periodicity is fundamental for quantification and the application of conservation principles of many important systems. Here, we discuss periodicity in the context of bimodal atomic force microscopy (AFM). The relationship between the excited frequencies is shown to affect and control both experimental observables and the main expressions quantified via these observables, i.e., virial and energy transfer expressions, which form the basis of the bimodal AFM theory. The presence of a fundamental frequency further simplifies the theory and leads to close form solutions. Predictions are verified via numerical integration of the equation of motion and experimentally on a mica surface.

  7. Hypermodular Self-Assembling Space Solar Power -- Design Option for Mid-Term GEO Utility-Scale Power Plants

    CERN Document Server

    Leitgab, Martin

    2013-01-01

    This paper presents a design for scaleable space solar power systems based on free-flying reflectors and module self-assembly. Lower system cost of utility-scale space solar power is achieved by design independence of yet-to-be-built in-space assembly or transportation infrastructure. Using current and expected near-term technology, this study describe a design for mid-term utility-scale power plants in geosynchronous orbits. High-level economic considerations in the context of current and expected future launch costs are given as well.

  8. Low-power formaldehyde detector for space applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Trace contamination of the International Space Station (ISS) by formaldehyde?a known carcinogen? is a significant potential threat to crew health. The spacecraft...

  9. Low-Power Formaldehyde Detector for Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Trace contamination of the International Space Station (ISS) by formaldehyde -- a known carcinogen -- is a significant threat to crew health. The spacecraft maximum...

  10. Space fusion energy conversion using a field reversed configuration reactor: A new technical approach for space propulsion and power

    Science.gov (United States)

    Schulze, Norman R.; Miley, George H.; Santarius, John F.

    1991-01-01

    The fusion energy conversion design approach, the Field Reversed Configuration (FRC) - when burning deuterium and helium-3, offers a new method and concept for space transportation with high energy demanding programs, like the Manned Mars Mission and planetary science outpost missions require. FRC's will increase safety, reduce costs, and enable new missions by providing a high specific power propulsion system from a high performance fusion engine system that can be optimally designed. By using spacecraft powered by FRC's the space program can fulfill High Energy Space Missions (HESM) in a manner not otherwise possible. FRC's can potentially enable the attainment of high payload mass fractions while doing so within shorter flight times.

  11. HRM, POWER and possible spaces of becoming human

    DEFF Research Database (Denmark)

    Bramming, Pia

    2003-01-01

    What has power to do with Human Resource Management (HRM)? Perusing HRMtextbooksone will find, that power as a concept, only seldom is approached explicitly.When the subject of power is addressed directly, it is primarily as a question ofbargaining power between organisation and labour market...... institutions, the power of aleader or person in terms of the right to execute punishment and the duty to obedienceor empowerment, as a countermove to the effects of bureaucratic workplace routines`... where initiative is stifled and workers become alienated'1. Indirectly one canidentify power as interesting...

  12. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 3: Space power and thermal management

    Science.gov (United States)

    1991-01-01

    Viewgraphs of briefings from the SSTAC/ARTS review of the draft integrated technology plan on thermal power and thermal management are presented. Topics covered include: space energy conversion research and technology; space photovoltaic energy conversion; chemical energy conversion and storage; thermal energy conversion; power management; thermal management; space nuclear power; high capacity power; surface power and thermal management; space platforms power and thermal management; and project SELENE.

  13. High-Temperature, Wirebondless, Ultra-Compact Wide Bandgap Power Semiconductor Modules for Space Power Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Silicon carbide (SiC) and other wide band-gap semiconductors offer great promise of high power rating, high operating temperature, simple thermal management, and...

  14. Controllability of Continuous Bimodal Linear Systems

    OpenAIRE

    Josep Ferrer; Juan R. Pacha; Marta Peña

    2013-01-01

    We consider bimodal linear systems consisting of two linear dynamics acting on each side of a given hyperplane, assuming continuity along the separating hyperplane. We prove that the study of controllability can be reduced to the unobservable case, and for these ones we obtain a simple explicit characterization of controllability for dimensions 2 and 3, as well as some partial criteria for higher dimensions.

  15. Bimodal mesoporous silica with bottleneck pores.

    Science.gov (United States)

    Reber, M J; Brühwiler, D

    2015-11-01

    Bimodal mesoporous silica consisting of two sets of well-defined mesopores is synthesized by a partial pseudomorphic transformation of an ordered mesoporous starting material (SBA-15 type). The introduction of a second set of smaller mesopores (MCM-41 type) establishes a pore system with bottlenecks that restricts the access to the core of the bimodal mesoporous silica particles. The particle size and shape of the starting material are retained, but micropores present in the starting material disappear during the transformation, leading to a true bimodal mesoporous product. A varying degree of transformation allows the adjustment of the pore volume contribution of the two mesopore domains. Information on the accessibility of the mesopores is obtained by the adsorption of fluorescence-labeled poly(amidoamine) dendrimers and imaging by confocal laser scanning microscopy. This information is correlated with nitrogen sorption data to provide insights regarding the spatial distribution of the two mesopore domains. The bimodal mesoporous materials are excellent model systems for the investigation of cavitation effects in nitrogen desorption isotherms. PMID:26399172

  16. Deaf Children's Bimodal Bilingualism and Education

    Science.gov (United States)

    Swanwick, Ruth

    2016-01-01

    This paper provides an overview of the research into deaf children's bilingualism and bilingual education through a synthesis of studies published over the last 15 years. This review brings together the linguistic and pedagogical work on bimodal bilingualism to inform educational practice. The first section of the review provides a synthesis of…

  17. Bimodal Networks as Candidates for Electroactive Polymers

    DEFF Research Database (Denmark)

    Bahrt, Frederikke; Daugaard, Anders Egede; Bejenariu, Anca Gabriela;

    An alternative network formulation method was adopted in order to obtain a different type of silicone based elastomeric systems - the so-called bimodal networks - using two vinyl-terminated polydimethyl siloxanes (PDMS) of different molecular weight, a labelled crosslinker (3 or 4-functional), an...

  18. Development of a Robust Tri-Carbide Fueled Reactor for Multimegawatt Space Power and Propulsion Applications

    Energy Technology Data Exchange (ETDEWEB)

    Samim Anghaie; Travis W. Knight; Johann Plancher; Reza Gouw

    2004-08-11

    An innovative reactor core design based on advanced, mixed carbide fuels was analyzed for nuclear space power applications. Solid solution, mixed carbide fuels such as (U,Zr,Nb)c and (U,Zr, Ta)C offer great promise as an advanced high temperature fuel for space power reactors.

  19. Fano resonance in two-dimensional optical waveguide arrays with a bi-modal defect

    OpenAIRE

    Vicencio, R.; Gorbach, A.; Flach, S.

    2005-01-01

    We study the two-dimensional extension of the Fano-Anderson model on the basis of a two-dimensional optical waveguide array with a bi-modal defect. We demonstrate numerically the persistence of the Fano resonance in wavepacket scattering process by the defect. An analytical approximation is derived for the total scattered light power.

  20. Thermo-Acoustic Convertor for Space Power Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Sunpower will introduce thermoacoustic Stirling heat engine (TASHE) technology into its existing Stirling convertor technology to eliminate the moving mechanical...

  1. Lightweight Radiator Fins for Space Nuclear Power Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase 1 project shall investigate concept radiator fins that incorporate novel carbon materials for improved performance of segmented high temperature...

  2. Applications of power beaming from space-based nuclear power stations

    Science.gov (United States)

    Powell, J. R.; Botts, T. E.; Hertzberg, A.

    Power beaming from space-based nuclear reactors to earth, aircraft, or spacecraft is offered as an alternative to the SPSS. A rotating bed reactor (RBR) is described, in which the nuclear fuel is an annular bed of small particulates held in a rotating basket through which a coolant passes. Advantages over a previous nuclear rocket program, NERVA, are given as minimized size, external moderation and reflection, and several GW available from a reactor about one cu m in size. Testing of a model fluidized bed is described, noting favorable results from U-233 fuel, a projected 50 cm diam bed, and total mass of 3 metric tons. Two Brayton cycle generator systems are examined, and it is found that a turbine inlet temperature of 2,000 K and a simple Brayton cycle without regeneration yields a best efficiency of 30%. The RBR components are discussed, and microwave and laser power beaming systems are compared; economic projections indicate laser beaming to cruising aircraft is competitive with current jet fuel use.

  3. A comparative study of nuclear technology and direct energy conversion methods for space power systems

    OpenAIRE

    Reason, Joseph P., Jr.

    1997-01-01

    Approved for public release; distribution in unlimited. The objectives of this thesis are to investigate the theory of direct energy conversion, research the development of space nuclear power systems, evaluate the status of current systems, and draw conclusions about the feasibility and merit of using nuclear power for future space missions. Development of the earliest systems began in 1955 with the Systems for Nuclear Auxiliary Power (SNAP) Program and Project Rover. A detailed review of...

  4. Community Coordinated Modeling Center: A Powerful Resource in Space Science and Space Weather Education

    Science.gov (United States)

    Chulaki, A.; Kuznetsova, M. M.; Rastaetter, L.; MacNeice, P. J.; Shim, J. S.; Pulkkinen, A. A.; Taktakishvili, A.; Mays, M. L.; Mendoza, A. M. M.; Zheng, Y.; Mullinix, R.; Collado-Vega, Y. M.; Maddox, M. M.; Pembroke, A. D.; Wiegand, C.

    2015-12-01

    Community Coordinated Modeling Center (CCMC) is a NASA affiliated interagency partnership with the primary goal of aiding the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable this small group to serve as a hub for raising generations of young space scientists and engineers. CCMC resources are publicly available online, providing unprecedented global access to the largest collection of modern space science models (developed by the international research community). CCMC has revolutionized the way simulations are utilized in classrooms settings, student projects, and scientific labs and serves hundreds of educators, students and researchers every year. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unrivaled capabilities and experiences, the team provides in-depth space weather training to students and professionals worldwide, and offers an amazing opportunity for undergraduates to engage in real-time space weather monitoring, analysis, forecasting and research. In-house development of state-of-the-art space weather tools and applications provides exciting opportunities to students majoring in computer science and computer engineering fields to intern with the software engineers at the CCMC while also learning about the space weather from the NASA scientists.

  5. A novel design project for space solar power station (SSPS-OMEGA)

    Science.gov (United States)

    Yang, Yang; Zhang, Yiqun; Duan, Baoyan; Wang, Dongxu; Li, Xun

    2016-04-01

    The space solar power station (SSPS) capable of providing earth with primary power has been researched for 50 years. The SSPS is a tremendous design involving optics, mechanics, electromagnetism, thermology, control, and other disciplines. This paper presents a novel design project for SSPS named OMEGA. The space segment of the proposed GEO-based SSPS is composed of four main parts, such as spherical solar power collector, hyperboloid photovoltaic (PV) cell array, power management and distribution (PMAD) and microwave transmitting antenna. Principle of optics, structure configuration, wired and wireless power transmissions are presented.

  6. MITEE-B: A Compact Ultra Lightweight Bi-Modal Nuclear Propulsion Engine for Robotic Planetary Science Missions

    Science.gov (United States)

    Powell, James; Maise, George; Paniagua, John; Borowski, Stanley

    2003-01-01

    Nuclear thermal propulsion (NTP) enables unique new robotic planetary science missions that are impossible with chemical or nuclear electric propulsion systems. A compact and ultra lightweight bi-modal nuclear engine, termed MITEE-B (MInature ReacTor EnginE - Bi-Modal) can deliver 1000's of kilograms of propulsive thrust when it operates in the NTP mode, and many kilowatts of continuous electric power when it operates in the electric generation mode. The high propulsive thrust NTP mode enables spacecraft to land and takeoff from the surface of a planet or moon, to hop to multiple widely separated sites on the surface, and virtually unlimited flight in planetary atmospheres. The continuous electric generation mode enables a spacecraft to replenish its propellant by processing in-situ resources, provide power for controls, instruments, and communications while in space and on the surface, and operate electric propulsion units. Six examples of unique and important missions enabled by the MITEE-B engine are described, including: (1) Pluto lander and sample return; (2) Europa lander and ocean explorer; (3) Mars Hopper; (4) Jupiter atmospheric flyer; (5) SunBurn hypervelocity spacecraft; and (6) He3 mining from Uranus. Many additional important missions are enabled by MITEE-B. A strong technology base for MITEE-B already exists. With a vigorous development program, it could be ready for initial robotic science and exploration missions by 2010 AD. Potential mission benefits include much shorter in-space times, reduced IMLEO requirements, and replenishment of supplies from in-situ resources.

  7. Space Power Free-Piston Stirling Engine Scaling Study

    Science.gov (United States)

    Jones, D.

    1989-01-01

    The design feasibility study is documented of a single cylinder, free piston Stirling engine/linear alternator (FPSE/LA) power module generating 150 kW-electric (kW sub e), and the determination of the module's maximum feasible power level. The power module configuration was specified to be a single cylinder (single piston, single displacer) FPSE/LA, with tuning capacitors if required. The design requirements were as follows: (1) Maximum electrical power output; (2) Power module thermal efficiency equal to or greater than 20 percent at a specific mass of 5 to 8 kg/kW(sub e); (3) Heater wall temperature/cooler wall temperature = 1050 K/525 K; (4) Sodium heat-pipe heat transport system, pumped loop NaK (sodium-potassium eutectic mixture) rejection system; (5) Maximum power module vibration amplitude = 0.0038 cm; and (6) Design life = 7 years (60,000 hr). The results show that a single cylinder FPSE/LA is capable of meeting program goals and has attractive scaling attributes over the power range from 25 to 150 kW(sub e). Scaling beyond the 150 kW(sub e) power level, the power module efficiency falls and the power module specific mass reaches 10 kg/kW(sub e) at a power output of 500 kW(sub e). A discussion of scaling rules for the engine, alternator, and heat transport systems is presented, along with a detailed description of the conceptual design of a 150 kW(sub e) power module that meets the requirements. Included is a discussion of the design of a dynamic balance system. A parametric study of power module performance conducted over the power output range of 25 to 150 kW(sub e) for temperature ratios of 1.7, 2.0, 2.5, and 3.0 is presented and discussed. The results show that as the temperature ratio decreases, the efficiency falls and specific mass increases. At a temperature ratio of 1.7, the 150 kW(sub e) power module cannot satisfy both efficiency and specific mass goals. As the power level increases from 25 to 150 kW(sub e) at a fixed temperature ratio, power

  8. A Low Input Power Cryocooler for Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future NASA missions will require cryocoolers providing cooling capacities upwards of 0.3W at 35K with heat rejection capability to temperature sinks as low as 150K...

  9. Striction-based Power Monitoring in Space Environment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The program will leverage recent advances in striction materials and coupled striction devices as to enable highly isolated (analog) voltage and current flow...

  10. Thermo-Acoustic Convertor for Space Power Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase Sunpower looked at Thermoacoustic Stirling Heat Engines (TASHEs). These ranged from a TASHE which was sized for the heat from a single General Purpose Heat...

  11. Advanced Space Power Systems (ASPS): Advanced Energy Storage Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The development of high specific energy devices will enable NASA’s future robotic and human-exploration missions.  The need for advances in energy...

  12. Recent developments in refractive concentrators for space photovoltaic power systems

    Science.gov (United States)

    Piszczor, Michael F.; Oneill, Mark J.

    1993-01-01

    Since SPRAT 11, significant progress has been made in the development of refractive concentrator elements and components designed specifically for space applications. The status of the mini-dome Fresnel lens concentrator array is discussed and then the results of work recently completed in the area of prismatic cell covers for concentrator systems are summarized. This is followed by a brief discussion of some work just starting in the area of line-focus refractive concentrators for space.

  13. Democritos: preparing demonstrators for high power nuclear electric space propulsion

    OpenAIRE

    Masson, Frederic; Ruault, Jean-Marc; WORMS, Jean-Claude; Detsis, Emmanouil; Beaurain, André; Lassoudiere, Francois; Gaia, Enrico; Tosi, Maria -Christina; Jansen, Frank; Bauer, Waldemar; Semenkin, Alexander; Tinsley, Tim; Hodgson, Zara

    2015-01-01

    The Democritos project aims at preparing demonstrators for a megawatt class nuclearelectric space propulsion. It is funded by Horizon 2020, the R&T program of the European Community. It is a new European and Russian project, including as partners: Nuclear National Laboratory (U.K.), DLR (Germany), The Keldysh Research Center (Russia), Thales Alenia Space Italia (Italy), Snecma (France), ESF (France) and CNES (France). IEAV (Brazil) will join as an observer. Democritos is the follo...

  14. Building Power Between Polarities: On the Space-in-Between.

    Science.gov (United States)

    Ventres, William B

    2016-02-01

    In this article, I introduce the concept of the space-in-between. This space-in-between is born of the realization that, between the expression of any two polarities (across dimensions such as emotion, thought, geography, and ideology), there exists a philosophical construct useful for framing thinking about practice, research, and managerial relationships in the health professions. Out of this construct emerge practical considerations useful for structuring the conduct of meaningful interpersonal and intercultural interactions. I describe how the idea of a space-in-between developed out of my medical practice, grew as a result of my experiences in international environments. and has found fulfillment in my ongoing work. I explore the application of a space-in-between in public health, medical anthropology, medical ethics, and global health. I review how, as a result of incorporating this space in their daily work, clinicians, educators, researchers, and managers can grow as leaders by sharing the presence that arises from the space-in-between them and the people in the communities they serve. PMID:26531880

  15. Building Power Between Polarities: On the Space-in-Between.

    Science.gov (United States)

    Ventres, William B

    2016-02-01

    In this article, I introduce the concept of the space-in-between. This space-in-between is born of the realization that, between the expression of any two polarities (across dimensions such as emotion, thought, geography, and ideology), there exists a philosophical construct useful for framing thinking about practice, research, and managerial relationships in the health professions. Out of this construct emerge practical considerations useful for structuring the conduct of meaningful interpersonal and intercultural interactions. I describe how the idea of a space-in-between developed out of my medical practice, grew as a result of my experiences in international environments. and has found fulfillment in my ongoing work. I explore the application of a space-in-between in public health, medical anthropology, medical ethics, and global health. I review how, as a result of incorporating this space in their daily work, clinicians, educators, researchers, and managers can grow as leaders by sharing the presence that arises from the space-in-between them and the people in the communities they serve.

  16. Test facility of thermal storage equipment for space power generation

    Science.gov (United States)

    Inoue, T.; Nakagawa, M.; Mochida, Y.; Ohtomo, F.; Shimizu, K.; Tanaka, K.; Abe, Y.; Nomura, O.; Kamimoto, M.

    A thermal storage equipment test facility has been built in connection with developing solar dynamic power systems (SDPSs). The test facility consists of a recuperative closed Brayton cycle system (CBC), with a mixture of helium and xenon with a molecular weight of 39.9 serving as the working fluid. CBC has been shown to be the most attractive power generation system among several types of SDPSs because of its ability to meet the required high power demand and its thermal efficiency, about 30 percent. The authors present a description of this test facility and give results of the preliminary test and the first-stage test with heat storage equipment.

  17. Synthesis and Characterization of Bimodal Mesoporous Silica

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiaofang; GUO Cuili; WANG Xiaoli; WU Yuanyuan

    2012-01-01

    Mesoporous silica with controllable bimodal pore size distribution was synthesized with cetyltrimethylammonium bromide (CTAB) as chemical template for small mesopores and silica gel as physical template for large mesopores.The structure of synthesized samples were characterized by Fourier transform infrared (FT-IR) spectroscopy,X-ray diffraction (XRD),scanning electron microscopy (SEM),transmission electron microscopy (TEM) and N2 adsorption-desorption measurements.The experimental results show that bimodal mesoporous silica consists of small mesopores of about 3 nm and large mesopores of about 45 nm.The small mesopores which were formed on the external surface and pore walls of the silica gel had similar characters with those of MCM-41,while large mesopores were inherited from parent silica gel material.The pore size distribution of the synthesized silica can be adjusted by changing the relative content of TEOS and silica gel or the feeding sequence of silica gel and NH4OH.

  18. On Bimodal Offset Cauchy Distribution

    Directory of Open Access Journals (Sweden)

    Girija S.V.S.

    2013-05-01

    Full Text Available The bivariate Cauchy distribution has received applications in many areas, including biological analyses, clinical trials, stochastic modeling of decreasing failure rate life components, study of labour turnover, queuing theory and reliability (Nayak (1987 and Lee and Gross (1991. In the study of biological analyses, clinical trials and reliability circular distributions will yield suitable results. Circular data arises in a number of different areas such as geological, meteorological, biological and industrial sciences. It is not suggestive to use standard statistical techniques to model circular data, due to the circular geometry of the sample space (p.2 Jammalamadaka and Sen Gupta (2001. It is possible to construct a circular model by transforming a bivariate linear random variate to just its directional component and the resultant model is called ‘offset distribution’. In the literature most of the available circular models were constructed by wrapping a linear model. In recent years some wrapped models were constructed by Dattatreya Rao et al (2007. Here an attempt is made to exploit method of offsetting on Bivariate Cauchy distribution to construct a circular model named by us “OFFSET CAUCHY DISTRIBUTION (OC”. The characteristic function of the Offset Cauchy model is derived and its characteristics are discussed.

  19. Refining Bimodal Microstructure of Materials with MSTRUCT

    OpenAIRE

    Matěj, Z.; Kadlecová, A.; Janeček, M.; Matějová, L. (Lenka); Dopita, M.; Kužel, R.

    2014-01-01

    The possibilities of modelling the diffraction profiles from bimodal microstructure in computer program MSTRUCT are demonstrated on two examples. A special Double Component profile effect can be utilized for such problems. At first it was applied to an analysis of a mixture of two nanocrystalline anatase powders with different crystallite sizes and the relative ratio of both components was determined from X-ray diffraction data. In the second case study, diffraction peaks from a pure polycry...

  20. Bimodal representation of the tropical intraseasonal oscillation

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Kazuyoshi [University of Hawaii, International Pacific Research Center, School of Ocean and Earth Science and Technology, Manoa Honolulu, HI (United States); Wang, Bin [University of Hawaii, Department of Meteorology and International Pacific Research Center, School of Ocean and Earth Science and Technology, Manoa Honolulu, HI (United States); Kajikawa, Yoshiyuki [Nagoya University, Hydrospheric Atmospheric Research Center, Nagoya (Japan)

    2012-05-15

    The tropical intraseasonal oscillation (ISO) shows distinct variability centers and propagation patterns between boreal winter and summer. To accurately represent the state of the ISO at any particular time of a year, a bimodal ISO index was developed. It consists of Madden-Julian Oscillation (MJO) mode with predominant eastward propagation along the equator and Boreal Summer ISO (BSISO) mode with prominent northward propagation and large variability in off-equatorial monsoon trough regions. The spatial-temporal patterns of the MJO and BSISO modes are identified with the extended empirical orthogonal function analysis of 31 years (1979-2009) OLR data for the December-February and June-August period, respectively. The dominant mode of the ISO at any given time can be judged by the proportions of the OLR anomalies projected onto the two modes. The bimodal ISO index provides objective and quantitative measures on the annual and interannual variations of the predominant ISO modes. It is shown that from December to April the MJO mode dominates while from June to October the BSISO mode dominates. May and November are transitional months when the predominant mode changes from one to the other. It is also shown that the fractional variance reconstructed based on the bimodal index is significantly higher than the counterpart reconstructed based on the Wheeler and Hendon's index. The bimodal ISO index provides a reliable real time monitoring skill, too. The method and results provide critical information in assessing models' performance to reproduce the ISO and developing further research on predictability of the ISO and are also useful for a variety of scientific and practical purposes. (orig.)

  1. Review of the Tri-Agency Space Nuclear Reactor Power System Technology Program

    International Nuclear Information System (INIS)

    The Space Nuclear Reactor Power System Technology Program (SP-100) was created in February 1983 by Memorandum of Agreement among NASA, DARPA and DOE. The tasks of the SP-100 organization in its first year have included detailed program, objective, and role definition; civil and military mission analysis; space nuclear power system functional requirement definition; conclusion of initial space nuclear power system concepted definition studies; selection of primary concepts for technology feasibility validation; defining and initiating specific technology programs and objectives to support the system concepts; and obtaining initial experimental and analytic results

  2. United Nations deliberations of the use of nuclear power sources in space: 1978-1987

    Science.gov (United States)

    Bennett, Gary L.; Sholtis, Joseph A., Jr.; Rashkow, Bruce C.

    1988-01-01

    The United Nations (U.N.) is continuing its deliberations on the use of nuclear power sources (NPS) in space. Although no complete set of legal principles has yet been agreed upon, certain scientific and technical criteria for the safe design and use of NPS have been accepted. In this respect, it should be noted that in its 1981 report, the Working Group on the Use of Power Sources in Outer Space concluded that power sources can be used safely in outer space, provided that all necessary safety requirements are met. This is also a succinct statement of the U.S. position.

  3. Space Nuclear Power Public and Stakeholder Risk Communication

    Science.gov (United States)

    Dawson, Sandra M.; Sklar, Maria

    2005-01-01

    The 1986 Challenger accident coupled with the Chernobyl nuclear reactor accident increased public concern about the safety of spacecraft using nuclear technology. While three nuclear powered spacecraft had been launched before 1986 with little public interest, future nuclear powered missions would see significantly more public concern and require NASA to increase its efforts to communicate mission risks to the public. In 1987 a separate risk communication area within the Launch Approval Planning Group of the Jet Propulsion Laboratory was created to address public concern about the health, environmental, and safety risks of NASA missions. The lessons learned from the risk communication strategies developed for the nuclear powered Galileo, Ulysses, and Cassini missions are reviewed in this paper and recommendations are given as to how these lessons can be applied to future NASA missions that may use nuclear power systems and other potentially controversial NASA missions.

  4. Direct conversion of infrared radiant energy for space power applications

    Science.gov (United States)

    Finke, R. C.

    1982-01-01

    A proposed technology to convert the earth radiant energy (infrared albedo) for spacecraft power is presented. The resultant system would eliminate energy storage requirements and simplify the spacecraft design. The design and performance of a infrared rectenna is discussed.

  5. A role for high frequency superconducting devices in free space power transmission systems

    Science.gov (United States)

    Christian, Jose L., Jr.; Cull, Ronald C.

    1988-01-01

    Major advances in space power technology are being made in photovoltaic, solar thermal, and nuclear systems. Despite these advances, the power systems required by the energy and power intensive mission of the future will be massive due to the large collecting surfaces, large thermal management systems, and heavy shielding. Reducing this mass on board the space vehicle can result in significant benefits because of the high cost of transporting and moving mass about in space. An approach to this problem is beaming the power from a point where the massiveness of the power plant is not such a major concern. The viability of such an approach was already investigated. Efficient microwave power beam transmission at 2.45 GHz was demonstrated over short range. Higher frequencies are desired for efficient transmission over several hundred or thousand kilometers in space. Superconducting DC-RF conversion as well as RF-DC conversion offers exciting possibilities. Multivoltage power conditioning for multicavity high power RF tubes could be eliminated since only low voltages are required for Josephson junctions. Small, high efficiency receivers may be possible using the reverse Josephson effects. A conceptual receiving antenna design using superconducting devices to determine possible system operating efficiency is assessed. If realized, these preliminary assessments indicate a role for superconducting devices in millimeter and submillimeter free space power transmission systems.

  6. Approach to develop space solar power as a new energy system for developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Nagatomo, Makoto [Inst. of Space and Astronautical Science, Sagamihara (Japan)

    1996-12-31

    The idea of space solar power proposed by Glaser was explained as a set of a solar power station in geostationary earth orbit to transmit microwave power and a ground station to receive the microwave power. Most of the ideas and concepts since Glaser used the same context. On the other hand, Collins et al. introduced the concept of microwave `fuel` to assess the commercial relations of power from space, in which space solar power stations are considered to sell microwave power to any unspecified rectenna. This concept changed the theoretical context of `power from space` to an industrial and economic relation of producers and buyers of an industrial product. This new context has been applied to the SPS 2000 conceptual study. As a result, if 2.45 GHz microwave power transmission is used, each rectenna can be planned and engineered independently from the space sector by local users, especially in developing countries, who are familiar with such activities as introducing solar energy systems. 7 refs., 3 figs.

  7. Ground-Based and Space-Based Laser Beam Power Applications

    Science.gov (United States)

    Bozek, John M.

    1995-01-01

    A space power system based on laser beam power is sized to reduce mass, increase operational capabilities, and reduce complexity. The advantages of laser systems over solar-based systems are compared as a function of application. Power produced from the conversion of a laser beam that has been generated on the Earth's surface and beamed into cislunar space resulted in decreased round-trip time for Earth satellite electric propulsion tugs and a substantial landed mass savings for a lunar surface mission. The mass of a space-based laser system (generator in space and receiver near user) that beams down to an extraterrestrial airplane, orbiting spacecraft, surface outpost, or rover is calculated and compared to a solar system. In general, the advantage of low mass for these space-based laser systems is limited to high solar eclipse time missions at distances inside Jupiter. The power system mass is less in a continuously moving Mars rover or surface outpost using space-based laser technology than in a comparable solar-based power system, but only during dust storm conditions. Even at large distances for the Sun, the user-site portion of a space-based laser power system (e.g., the laser receiver component) is substantially less massive than a solar-based system with requisite on-board electrochemical energy storage.

  8. Space matters: the relational power of mobile technologies

    Directory of Open Access Journals (Sweden)

    Nancy Odendaal

    2014-01-01

    Full Text Available The ubiquitous presence of mobile telephony and proliferation of digital networks imply a critical role for these technologies in overcoming the constraints of space in fragmented cities. Academic literature draws from a range of disciplines but fails to address the significance of new technologies for African and South African cities. Debates on technologies and urban spaces reflect a Northern bias and case literature that dwells on the developmental aspects of ICT do not engage with the broader significance with regards to urban change in African cities. This research addresses these gaps by examining the local transformative qualities of mobile telephony in a South African city, Durban. It focuses on the ways in which informal traders active in the city use technology. Actor-network theory was used in the analysis of the field work, uncovering material and human actors, network stabilization processes and agency in determining the transformative potential of this form of digital networking at city and local scales. Findings indicate that appropriation of technology is informed by livelihood strategies. Innovation is enabled when translation extends to appropriation. More in-depth research is needed on how technology is molded and appropriated to suit livelihoods. Throughout the research the spatial dimensions of the relationship between mobile telephony and networks were considered. The network spaces that emerge from actor relations do not correspond with the physical spaces usually considered in policy.

  9. Powering an in-space 3D printer using solar light energy

    Science.gov (United States)

    Leake, Skye; McGuire, Thomas; Parsons, Michael; Hirsch, Michael P.; Straub, Jeremy

    2016-05-01

    This paper describes how a solar power source can enable in-space 3D printing without requiring conversion to electric power and back. A design for an in-space 3D printer is presented, with a particular focus on the power generation system. Then, key benefits are presented and evaluated. Specifically, the approach facilitates the design of a spacecraft that can be built, launched, and operated at very low cost levels. The proposed approach also facilitates easy configuration of the amount of energy that is supplied. Finally, it facilitates easier disposal by removing the heavy metals and radioactive materials required for a nuclear-power solution.

  10. Preparation of All-Ceramic, High Performance Li-ion Batteries for Deep Space Power Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium (Li) ion batteries are among the most promising power sources for many civilian, military and space applications due to their high power and high energy...

  11. Advanced In-Space Propulsion (AISP): High Temperature Boost Power Processing Unit (PPU) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The task is to investigate the technology path to develop a 10kW modular Silicon Carbide (SiC) based power processing unit (PPU). The PPU utilizes the high...

  12. Proposal of bimodal solution for urban vehicular contamination problem

    Directory of Open Access Journals (Sweden)

    Gilberto Osorio Gómez

    2010-04-01

    Full Text Available In research field of alternative solutions to internal combustion engine vehicles, the Politecnico di Milano has developed a design and manufacturing project for an adaptable electro-mechanical kit intended to transform a city car with en-dothermic propulsion into a bimodal one, using existent technologies and innovative solutions. This project involves mechanical and electrical competences in order to develop a new transmission parallel to the current endothermic propulsion and its control system. This paper describes, in general, the developed procedure to obtain the final proto-type. At first, the requirements and constraints to fulfil a standard transport urban cycle has been established and the vehicle to modify was selected, in this case the Fiat Grande Punto. Next, new components and the required space to their installation have been identified and specified, whilst mechanical components were designed and manufactured. Instruments of reverse engineering and virtual prototyping have been employed to carry out the geometrical models, simulations and layouts and to identify useful spaces in the vehicle. Finally, general modifications, installation of new components, implementation of control and data acquisition system, fine-tuning and check of specifications fulfilment have been carried out. A 30 km range working in electrical mode, with a top speed of 70 km/h, is assured with the developed kit. These results demonstrate the feasibility to implement a forward bimodal propulsion system into a com-mercial city car with a little invasive commercial kit, and now, the Politecnico is working at its industrialization and im-plementation to different models of city cars. Regione Lombardia (Regional government in Italy has funded this project as an investigation oriented to find new solutions to sustainable transport and reduction of environmental pollution.

  13. High Power Electric Propulsion for Deep Space Missions

    Science.gov (United States)

    Polk, Jay

    2011-01-01

    Slide presentation reviews: (1) An Electric Propulsion Primer (2) The Flexible Path and the Electric Path (2a) A New Plan for Human Exploration (2b)The Role of Electric Propulsion (3) High Power Electric Thrusters (3a)Hall Thrusters (3b) Magnetoplasmadynamic Thrusters (4)Challenges for the Next Generation of Advanced Propulsion Technologist

  14. Political geography : an introduction to space and power.

    OpenAIRE

    Painter, J; Jeffrey, A

    2009-01-01

    Revised and updated, this is a new edition of a core undergraduate resource on Political Geography. Unique in the teaching literature, Political Geography (published originally as Politics, Geography, and 'Political Geography') retains its focus on the social and cultural, while systematically overviewing the entire discipline. The text explains: - Politics, geography, and "political" geography: power, resources, institutions, and the history of political geography - State formation: ...

  15. Finite element analysis of space debris removal by high-power lasers

    Science.gov (United States)

    Xue, Li; Jiang, Guanlei; Yu, Shuang; Li, Ming

    2015-08-01

    With the development of space station technologies, irradiation of space debris by space-based high-power lasers, can locally generate high-temperature plasmas and micro momentum, which may achieve the removal of debris through tracking down. Considered typical square-shaped space debris of material Ti with 5cm×5cm size, whose thermal conductivity, density, specific heat capacity and emissivity are 7.62W/(m·°C), 4500kg/m3, 0.52J/(kg·°C) and 0.3,respectively, based on the finite element analysis of ANSYS, each irradiation of space debris by high-power lasers with power density 106W/m2 and weapons-grade lasers with power density 3000W/m2 are simulated under space environment, and the temperature curves due to laser thermal irradiation are obtained and compared. Results show only 2s is needed for high-power lasers to make the debris temperature reach to about 10000K, which is the threshold temperature for plasmas-state conversion. While for weapons-grade lasers, it is 13min needed. Using two line elements (TLE), and combined with the coordinate transformation from celestial coordinate system to site coordinate system, the visible period of space debris is calculated as 5-10min. That is, in order to remove space debris by laser plasmas, the laser power density should be further improved. The article provides an intuitive and visual feasibility analysis method of space debris removal, and the debris material and shape, laser power density and spot characteristics are adjustable. This finite element analysis method is low-cost, repeatable and adaptable, which has an engineering-prospective applications.

  16. Applications of power beaming from space-based nuclear power stations. [Laser beaming to airplanes; microwave beaming to ground

    Energy Technology Data Exchange (ETDEWEB)

    Powell, J.R.; Botts, T.E.; Hertzberg, A.

    1981-01-01

    Power beaming from space-based reactor systems is examined using an advanced compact, lightweight Rotating Bed Reactor (RBR). Closed Brayton power conversion efficiencies in the range of 30 to 40% can be achieved with turbines, with reactor exit temperatures on the order of 2000/sup 0/K and a liquid drop radiator to reject heat at temperatures of approx. 500/sup 0/K. Higher RBR coolant temperatures (up to approx. 3000/sup 0/K) are possible, but gains in power conversion efficiency are minimal, due to lower expander efficiency (e.g., a MHD generator). Two power beaming applications are examined - laser beaming to airplanes and microwave beaming to fixed ground receivers. Use of the RBR greatly reduces system weight and cost, as compared to solar power sources. Payback times are a few years at present prices for power and airplane fuel.

  17. An interconnecting bus power optimization method combining interconnect wire spacing with wire ordering

    Institute of Scientific and Technical Information of China (English)

    Zhu Zhang-Ming; Hao Bao-Tian; En Yun-Fei; Yang Yin-Tang; Li Yue-Jin

    2011-01-01

    On-chip interconnect buses consume tens of percents of dynamic power in a nanometer scale integrated circuit and they will consume more power with the rapid scaling down of technology size and continuously rising clock frequency,therefore it is meaningful to lower the interconnecting bus power in design. In this paper, a simple yet accurate interconnect parasitic capacitance model is presented first and then, based on this model, a novel interconnecting bus optimization method is proposed. Wire spacing is a process for spacing wires for minimum dynamic power, while wire ordering is a process that searches for wire orders that maximally enhance it. The method, i.e., combining wire spacing with wire ordering, focuses on bus dynamic power optimization with a consideration of bus performance requirements.The optimization method is verified based on various nanometer technology parameters, showing that with 50% slack of routing space, 25.71% and 32.65% of power can be saved on average by the proposed optimization method for a globalbus and an intermediate bus, respectively, under a 65-nm technology node, compared with 21.78% and 27.68% of power saved on average by uniform spacing technology. The proposed method is especially suitable for computer-aided designof nanometer scale on-chip buses.

  18. Differential topological characteristics of the DSR on injection space of electrical power system

    Institute of Scientific and Technical Information of China (English)

    YU; Yixin(余贻鑫); ZENG; Yuan(曾沅); FENG; Fei(冯飞)

    2002-01-01

    This paper analyzes the differential topological characteristics of the dynamic security region (DSR) on injection space of electrical power system by differential topology theories. It is shown that the boundary of the DSR on injection space has no suspension and is compact, and there are no holes inside the DSR defined based on controlling unstable equilibrium point (UEP) method. The 10-generator, 39-bus New England Test System, is taken as an example to show these characteristics of the DSR on injection space.

  19. Power Supplies for Space Systems Quality Assurance by Sandia Laboratories

    Science.gov (United States)

    Hannigan, R. L.; Harnar, R. R.

    1976-07-01

    The Sandia Laboratories` participation in Quality Assurance programs for Radioisotopic Thermoelectric Generators which have been used in space systems over the past 10 years is summarized. Basic elements of this QA program are briefly described and recognition of assistance from other Sandia organizations is included. Descriptions of the various systems for which Sandia has had the QA responsibility are presented, including SNAP 19 (Nimbus, Pioneer, Viking), SNAP 27 (Apollo), Transit, Multi Hundred Watt (LES 8/9 and MJS), and a new program, High Performance Generator Mod 3. The outlook for Sandia participation in RTG programs for the next several years is noted.

  20. Optimization of phase contrast in bimodal amplitude modulation AFM

    OpenAIRE

    Mehrnoosh Damircheli; Amir F. Payam; Ricardo Garcia

    2015-01-01

    Bimodal force microscopy has expanded the capabilities of atomic force microscopy (AFM) by providing high spatial resolution images, compositional contrast and quantitative mapping of material properties without compromising the data acquisition speed. In the first bimodal AFM configuration, an amplitude feedback loop keeps constant the amplitude of the first mode while the observables of the second mode have not feedback restrictions (bimodal AM). Here we study the conditions to enhance the ...

  1. Bidirectional grapheme-phoneme activation in a bimodal detection task

    OpenAIRE

    Dijkstra, Ton; Frauenfelder, Ulrich Hans; Schreuder, Robert

    1993-01-01

    A divided attention paradigm was used to investigate whether graphemes and phonemes can mutually activate or inhibit each other during bimodal processing. In 3 experiments, Dutch subjects reacted to visual and auditory targets in single-channel or bimodal stimuli. In some bimodal conditions, the visual and auditory targets were nominally identical or redundant (e.g., visual A and auditory /a/); in others they were not (e.g., visual U and auditory /a/). Temporal aspects of cross-modal activati...

  2. Reactive Sintering of Bimodal WC-Co Hardmetals

    OpenAIRE

    Marek Tarraste; Kristjan Juhani; Jüri Pirso; Mart Viljus

    2015-01-01

    Bimodal WC-Co hardmetals were produced using novel technology - reactive sintering. Milled and activated tungsten and graphite powders were mixed with commercial coarse grained WC-Co powder and then sintered. The microstructure of produced materials was free of defects and consisted of evenly distributed coarse and fine tungsten carbide grains in cobalt binder. The microstructure, hardness and fracture toughness of reactive sintered bimodal WC-Co hardmetals is exhibited. Developed bimodal har...

  3. A survey of beam-combining technologies for laser space power transmission

    Science.gov (United States)

    Kwon, J. H.; Williams, M. D.; Lee, J. H.

    1988-01-01

    The combination of laser beams holds much promise for obtaining powerful beams. Methods are surveyed for beam combination (coherent and incoherent) and two of them are identified as the most effective means for achieving high power transmission in space. The two methods as applied to laser diode arrays are analyzed, and potentially productive work areas for the advancement of technology are delineated.

  4. Active and reactive power control of a current-source PWM-rectifier using space vectors

    Energy Technology Data Exchange (ETDEWEB)

    Salo, M.; Tuusa, H. [Tampere University of Technology (Finland). Department of Electrical Engineering, Power Electronics

    1997-12-31

    In this paper the current-source PWM-rectifier with active and reactive power control is presented. The control system is realized using space vector methods. Also, compensation of the reactive power drawn by the line filter is discussed. Some simulation results are shown. (orig.) 8 refs.

  5. Technology development for nuclear power generation for space application

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Lamartine N.F.; Ribeiro, Guilherme B.; Braz Filho, Francisco A.; Nascimento, Jamil A.; Placco, Guilherme M., E-mail: guimarae@ieav.cta.br, E-mail: lamartine.guimaraes@pq.cnpq.br [Instituto de Estudos Avancados (IEAv), Sao Jose dos Campos, SP (Brazil). Divisao de Energia Nuclear; Faria, Saulo M. de [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil)

    2015-07-01

    For a few years now, the TERRA project is developing several technology pieces to foster nuclear space applications. In this way, a nuclear reactor concept has been developed as a first proposal. Together, the problem of heat to electricity conversion has been addressed. A closed Brayton cycle is being built and a Stirling machine is being worked out and perfected. In addition, two types of heat pipes are being look at. One related with high temperature made of Mo13Re, an especial alloy. And a second one made of copper, which mainly could be used as a passive heat rejection. In this way, all major areas of interest in a micro station to be used in space has been addressed. A new passive technology has been inferred and is related with Tesla turbine or its evolution, known as multi fluid passive turbine. This technology has the potential to either: improve the Brayton cycle or its efficiency. In this paper, some details are discussed and some will be shown during the presentation, as the work evolve. (author)

  6. Technology development for nuclear power generation for space application

    International Nuclear Information System (INIS)

    For a few years now, the TERRA project is developing several technology pieces to foster nuclear space applications. In this way, a nuclear reactor concept has been developed as a first proposal. Together, the problem of heat to electricity conversion has been addressed. A closed Brayton cycle is being built and a Stirling machine is being worked out and perfected. In addition, two types of heat pipes are being look at. One related with high temperature made of Mo13Re, an especial alloy. And a second one made of copper, which mainly could be used as a passive heat rejection. In this way, all major areas of interest in a micro station to be used in space has been addressed. A new passive technology has been inferred and is related with Tesla turbine or its evolution, known as multi fluid passive turbine. This technology has the potential to either: improve the Brayton cycle or its efficiency. In this paper, some details are discussed and some will be shown during the presentation, as the work evolve. (author)

  7. Observing power blackouts from space - A disaster related study

    Science.gov (United States)

    Aubrecht, C.; Elvidge, C. D.; Ziskin, D.; Baugh, K. E.; Tuttle, B.; Erwin, E.; Kerle, N.

    2009-04-01

    In case of emergency disaster managers worldwide require immediate information on affected areas and estimations of the number of affected people. Natural disasters such as earthquakes, hurricanes, tornados, wind and ice storms often involve failures in the electrical power generation system and grid. Near real time identification of power blackouts gives a first impression of the area affected by the event (Elvidge et al. 2007), which can subsequently be linked to population estimations. Power blackouts disrupt societal activities and compound the difficulties associated with search and rescue, clean up, and the provision of food and other supplies following a disastrous event. Locations and spatial extents of power blackouts are key considerations in planning and execution of the primary disaster missions of emergency management organizations. To date only one satellite data source has been used successfully for the detection of power blackouts. Operated by NOAA's National Geophysical Data Center (NGDC) the U.S. Air Force Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) offers a unique capability to observe lights present at the Earth's surface at night. Including a pair of visible and thermal spectral bands and originally designed to detect moonlit clouds, this sensor enables mapping of lights from cities and towns, gas flares and offshore platforms, fires, and heavily lit fishing boats. The low light imaging of the OLS is accomplished using a photomultiplier tube (PMT) which intensifies the visible band signal at night. With 14 orbits collected per day and a 3.000 km swath width, each OLS is capable of collecting a complete set of images of the Earth every 24 hours. NGDC runs the long-term archive for OLS data with the digital version extending back to 1992. OLS data is received by NGDC in near real time (1-2 hours from acquisition) and subscription based services for the near real time data are provided for users all over the

  8. The bimodal theory of plasticity: A form-invariant generalisation

    Science.gov (United States)

    Soldatos, Kostas P.

    2011-08-01

    The bimodal plasticity model of fibre-reinforced materials is currently available and applicable only in association with thin-walled fibrous composites containing a family of straight fibres which are conveniently assumed parallel with the x1-axis of an appropriately chosen Cartesian co-ordinate system. Based on reliable experimental evidence, the model suggests that plastic slip in the composite operates in two distinct modes; the so-called matrix dominated mode (MDM) which depends on a matrix yield stress, and the fibre dominated mode (FDM) which depends also on the fibre yield stress. Each mode is activated by different states of applied stress, has its own yield surface (or surfaces) in the stress space and has its own segment on the overall yield surface of the composite. This paper employs theory of tensor representations and produces a form-invariant generalisation of both modes of the model. This generalisation furnishes the model with direct applicability to relevant plasticity problems, regardless of the shape of the fibres or the orientation of the co-ordinate system. It thus provides a proper mathematical foundation that underpins important physical concepts associated with the model while it also elucidates several technical relevant issues. A most interesting of those issues is the revelation that activation of the MDM plastic regime is possible only if the applied stress state allows the fibres to act like they are practically inextensible. Moreover, activation of the more dominant, between the two MDM plastic slip branches is possible only if conditions of material incompressibility hold, in addition to the implied condition of fibre inextensibility. A direct mathematical connection is thus achieved between basic, experimentally verified concepts of the bimodal plasticity model and a relevant mathematical model originated earlier from the theory of ideal fibre-reinforced materials. An additional issue of discussion involves the number of

  9. A controller based on FPGA state-space equation solver for HIRFL-CSR power supply

    International Nuclear Information System (INIS)

    The control system of HIRFL-CSR magnet power supply should be improved. In order to realize the complex control algorithms based on modern control theory, digital controller of the power supply was designed with ARM + FPGA architecture. State-space equation solver was designed in the FPGA to realize the state feedback control of the power supply. The results show that the dynamic response speed, steady state accuracy and robustness of the control system are greatly improved. (authors)

  10. Direct Estimation of Power Distribution in Reactors for Nuclear Thermal Space Propulsion

    Science.gov (United States)

    Aldemir, Tunc; Miller, Don W.; Burghelea, Andrei

    2004-02-01

    A recently proposed constant temperature power sensor (CTPS) has the capability to directly measure the local power deposition rate in nuclear reactor cores proposed for space thermal propulsion. Such a capability reduces the uncertainties in the estimated power peaking factors and hence increases the reliability of the nuclear engine. The CTPS operation is sensitive to the changes in the local thermal conditions. A procedure is described for the automatic on-line calibration of the sensor through estimation of changes in thermal .conditions.

  11. Structural Stability of Planar Bimodal Linear Systems

    Directory of Open Access Journals (Sweden)

    Josep Ferrer

    2014-01-01

    Full Text Available Structural stability ensures that the qualitative behavior of a system is preserved under small perturbations. We study it for planar bimodal linear dynamical systems, that is, systems consisting of two linear dynamics acting on each side of a given hyperplane and assuming continuity along the separating hyperplane. We describe which one of these systems is structurally stable when (real spiral does not appear and when it does we give necessary and sufficient conditions concerning finite periodic orbits and saddle connections. In particular, we study the finite periodic orbits and the homoclinic orbits in the saddle/spiral case.

  12. Lightweight Inflatable Solar Array: Providing a Flexible, Efficient Solution to Space Power Systems for Small Spacecraft

    Science.gov (United States)

    Johnson, Les; Fabisinski, Leo; Justice, Stefanie

    2014-01-01

    Affordable and convenient access to electrical power is critical to consumers, spacecraft, military and other applications alike. In the aerospace industry, an increased emphasis on small satellite flights and a move toward CubeSat and NanoSat technologies, the need for systems that could package into a small stowage volume while still being able to power robust space missions has become more critical. As a result, the Marshall Space Flight Center's Advanced Concepts Office identified a need for more efficient, affordable, and smaller space power systems to trade in performing design and feasibility studies. The Lightweight Inflatable Solar Array (LISA), a concept designed, prototyped, and tested at the NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama provides an affordable, lightweight, scalable, and easily manufactured approach for power generation in space or on Earth. This flexible technology has many wide-ranging applications from serving small satellites to soldiers in the field. By using very thin, ultraflexible solar arrays adhered to an inflatable structure, a large area (and thus large amount of power) can be folded and packaged into a relatively small volume (shown in artist rendering in Figure 1 below). The proposed presentation will provide an overview of the progress to date on the LISA project as well as a look at its potential, with continued development, to revolutionize small spacecraft and portable terrestrial power systems.

  13. Influence and hazard of disastrous space weather on power grid in China%Influence and hazard of disastrous space weather on power grid in China

    Institute of Scientific and Technical Information of China (English)

    Liu Lianguang; Zheng Kuan; Liu Chunming

    2011-01-01

    Based on the measured data of geomagnetically induced currents (GIC) in Guangdong Ling' ao 500 kV power networks during several magnetic storms at the peak years of 23rd Solar Cycle, the GIC calculation results of 750 kV planning power grid in Shartxi, Gansu, Qinghai and Ningxia, the structure and characteristics of power networks from 500 kV to 1 000 kV, and super magnetic storm in 1859 are analyzed in this paper. Through the analysis, the possible impacts of extreme space weather on the future ultra-high voltage (UHV) grid, the security of large-scale power system in China are expounded, and the research suggestions coping with the strong solar storms are proposed.

  14. NASA solar dynamic ground test demonstration (GTD) program and its application to space nuclear power

    Science.gov (United States)

    Harper, William B.; Shaltens, Richard K.

    1993-01-01

    Closed Brayton cycle power conversion systems are readily adaptable to any heat source contemplated for space application. The inert gas working fluid can be used directly in gas-cooled reactors and coupled to a variety of heat sources (reactor, isotope or solar) by a heat exchanger. This point is demonstrated by the incorporation in the NASA 2 kWe Solar Dynamic (SD) Space Power Ground Test Demonstration (GTD) Program of the turboalternator-compressor and recuperator from the Brayton Isotope Power System (BIPS) program. This paper will review the goals and status of the SD GTD Program, initiated in April 1992. The performance of the BIPS isotope-heated system will be compared to the solar-heated GTD system incorporating the BIPS components and the applicability of the GTD test bed to dynamics space nuclear power R&D will be discussed.

  15. The ground testing of a 2 kWe solar dynamic space power system

    International Nuclear Information System (INIS)

    Over the past 25 years Space Solar Dynamic component development has advanced to the point where it is considered a leading candidate power source technology for the evolutionary phases of the Space Station Freedom (SSF) program. Selection of SD power was based on studies and analyses which indicated significant savings in life cycle costs, launch mass and EVA requirements were possible when the system is compared to more conventional photovoltaic/battery power systems. Issues associated with micro-gravity operation such as the behavior of the thermal energy storage materials are being addressed in other programs. This paper reports that a ground test of a 2 kWe solar dynamic system is being planned by the NASA Office of Aeronautics and Space Technology to address the integration issues. The test will be scalable up to 25 kWe, will be flight configured and will incorporate relevant features of the SSF Solar Dynamic Power Module design

  16. Sensible heat receiver for solar dynamic space power system

    Science.gov (United States)

    Perez-Davis, Marla E.; Gaier, James R.; Petrefski, Chris

    1991-01-01

    A sensible heat receiver is considered which uses a vapor grown carbon fiber-carbon (VGCF/C) composite as the thermal storage medium and which was designed for a 7-kW Brayton engine. This heat receiver stores the required energy to power the system during eclipse in the VGCF/C composite. The heat receiver thermal analysis was conducted through the Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA) software package. The sensible heat receiver compares well with other latent and advanced sensible heat receivers analyzed in other studies, while avoiding the problems associated with latent heat storage salts and liquid metal heat pipes. The concept also satisfies the design requirements for a 7-kW Brayton engine system. The weight and size of the system can be optimized by changes in geometry and technology advances for this new material.

  17. Space and Power in the Ivory Tower: Effective Space Management and Decision Making

    Science.gov (United States)

    Blanchette, Sandra

    2012-01-01

    At a time when there are enormous economic pressures on campuses to use resources effectively, space being one of these resources, the academic culture of shared governance, with its fragmented roles for decision making, presents additional challenges. These roles are fragmented due to independent faculty and administrative action. They are…

  18. The Bimodality Index: A Criterion for Discovering and Ranking Bimodal Signatures from Cancer Gene Expression Profiling Data

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2009-01-01

    Full Text Available Motivation: Identifying genes with bimodal expression patterns from large-scale expression profiling data is an important analytical task. Model-based clustering is popular for this purpose. That technique commonly uses the Bayesian information criterion (BIC for model selection. In practice, however, BIC appears to be overly sensitive and may lead to the identification of bimodally expressed genes that are unreliable or not clinically useful. We propose using a novel criterion, the bimodality index, not only to identify but also to rank meaningful and reliable bimodal patterns. The bimodality index can be computed using either a mixture model-based algorithm or Markov chain Monte Carlo techniques.Results: We carried out simulation studies and applied the method to real data from a cancer gene expression profiling study. Our findings suggest that BIC behaves like a lax cutoff based on the bimodality index, and that the bimodality index provides an objective measure to identify and rank meaningful and reliable bimodal patterns from large-scale gene expression datasets. R code to compute the bimodality index is included in the ClassDiscovery package of the Object-Oriented Microarray and Proteomic Analysis (OOMPA suite available at the web site http://bioinformatics.mdanderson.org/Software/OOMPA.

  19. A Crewed Mission to Apophis Using a Hybrid Bimodal Nuclear Thermal Electric Propulsion (BNTEP) System

    Science.gov (United States)

    Mccurdy, David R.; Borowski, Stanley K.; Burke, Laura M.; Packard, Thomas W.

    2014-01-01

    A BNTEP system is a dual propellant, hybrid propulsion concept that utilizes Bimodal Nuclear Thermal Rocket (BNTR) propulsion during high thrust operations, providing 10's of kilo-Newtons of thrust per engine at a high specific impulse (Isp) of 900 s, and an Electric Propulsion (EP) system during low thrust operations at even higher Isp of around 3000 s. Electrical power for the EP system is provided by the BNTR engines in combination with a Brayton Power Conversion (BPC) closed loop system, which can provide electrical power on the order of 100's of kWe. High thrust BNTR operation uses liquid hydrogen (LH2) as reactor coolant propellant expelled out a nozzle, while low thrust EP uses high pressure xenon expelled by an electric grid. By utilizing an optimized combination of low and high thrust propulsion, significant mass savings over a conventional NTR vehicle can be realized. Low thrust mission events, such as midcourse corrections (MCC), tank settling burns, some reaction control system (RCS) burns, and even a small portion at the end of the departure burn can be performed with EP. Crewed and robotic deep space missions to a near Earth asteroid (NEA) are best suited for this hybrid propulsion approach. For these mission scenarios, the Earth return V is typically small enough that EP alone is sufficient. A crewed mission to the NEA Apophis in the year 2028 with an expendable BNTEP transfer vehicle is presented. Assembly operations, launch element masses, and other key characteristics of the vehicle are described. A comparison with a conventional NTR vehicle performing the same mission is also provided. Finally, reusability of the BNTEP transfer vehicle is explored.

  20. Bimodal Color Distribution in Hierarchical Galaxy Formation

    CERN Document Server

    Menci, N; Giallongo, E; Salimbeni, S

    2005-01-01

    We show how the observed bimodality in the color distribution of galaxies can be explained in the framework of the hierarchical clustering picture in terms of the interplay between the properties of the merging histories and the feedback/star-formation processes in the progenitors of local galaxies. Using a semi-analytic model of hierarchical galaxy formation, we compute the color distributions of galaxies with different luminosities and compare them with the observations. Our fiducial model matches the fundamental properties of the observed distributions, namely: 1) the distribution of objects brighter than M_r = -18 is clearly bimodal, with a fraction of red objects increasing with luminosity; 2) for objects brighter than M_r = -21 the color distribution is dominated by red objects with color u-r = 2.2-2.4; 3) the spread on the distribution of the red population is smaller than that of the blue population; 4) the fraction of red galaxies is larger in denser environments, even for low-luminosity objects; 5) ...

  1. Bimodal schwa: Evidence from acoustic measurements

    Science.gov (United States)

    Yamane-Tanaka, Noriko; Gick, Bryan; Bird, Sonya

    2001-05-01

    The question of whether schwa is targeted or targetless has been the subject of much debate (Browman et al., 1992; Browman and Goldstein, 1995; Gick, 1999, 2002). Gick (2002) found that there is a pharyngeal constriction during schwa relative to rest position, and concluded that schwa is not targetless. This experiment further showed a ``bimodal'' pattern in schwa in a nonrhotic speaker, indicating that the subject has distinct schwas in lexical words and function words. The present study examines the existence of the ``bimodal'' pattern in schwas in nonrhotic dialects through an acoustic experiment. It is predicted that there is a significant difference in formant values between lexical schwas and function schwas. Results to date indicate a significant difference in them between schwas in lexical versus function words, both between historical schwas and those derived from final /r/ reduction. Data from several additional nonrhotic subjects will be presented. Implications for intrusive r as well as for the phonological treatment of function words will be discussed. [Work funded by NSERC and SSHRC.

  2. PC Software graphics tool for conceptual design of space/planetary electrical power systems

    Science.gov (United States)

    Truong, Long V.

    1995-01-01

    This paper describes the Decision Support System (DSS), a personal computer software graphics tool for designing conceptual space and/or planetary electrical power systems. By using the DSS, users can obtain desirable system design and operating parameters, such as system weight, electrical distribution efficiency, and bus power. With this tool, a large-scale specific power system was designed in a matter of days. It is an excellent tool to help designers make tradeoffs between system components, hardware architectures, and operation parameters in the early stages of the design cycle. The DSS is a user-friendly, menu-driven tool with online help and a custom graphical user interface. An example design and results are illustrated for a typical space power system with multiple types of power sources, frequencies, energy storage systems, and loads.

  3. SP-100 nuclear space power reactor system hardware and testing progress

    International Nuclear Information System (INIS)

    The SP-100 Space Reactor System was established by agencies of the US government as the system of choice to meet the nation's long lifetime, high reliability space power needs in the 10's to 100's of kWe power range. SP-100 is compatible with all power conversion technologies that can utilize reactor coolant temperatures ≤ 1,350 K. The technologies incorporated in SP-100 are directly applicable to earth orbiting satellites, planetary probes or surface power for commercial, military or civil missions. The most significant hardware and testing accomplishments that were made during the past year are reported in this summary paper, including fuel, fabrication technologies, control mechanisms, liquid metal pumps, lithium thaw behavior and characterization, and thermoelectric power conversion

  4. A high power ion thruster for deep space missions

    Science.gov (United States)

    Polk, James E.; Goebel, Dan M.; Snyder, John S.; Schneider, Analyn C.; Johnson, Lee K.; Sengupta, Anita

    2012-07-01

    The Nuclear Electric Xenon Ion System ion thruster was developed for potential outer planet robotic missions using nuclear electric propulsion (NEP). This engine was designed to operate at power levels ranging from 13 to 28 kW at specific impulses of 6000-8500 s and for burn times of up to 10 years. State-of-the-art performance and life assessment tools were used to design the thruster, which featured 57-cm-diameter carbon-carbon composite grids operating at voltages of 3.5-6.5 kV. Preliminary validation of the thruster performance was accomplished with a laboratory model thruster, while in parallel, a flight-like development model (DM) thruster was completed and two DM thrusters fabricated. The first thruster completed full performance testing and a 2000-h wear test. The second successfully completed vibration tests at the full protoflight levels defined for this NEP program and then passed performance validation testing. The thruster design, performance, and the experimental validation of the design tools are discussed in this paper.

  5. Methodolgy For Evaluation Of Technology Impacts In Space Electric Power Systems

    Science.gov (United States)

    Holda, Julie

    2004-01-01

    The Analysis and Management branch of the Power and Propulsion Office at NASA Glenn Research Center is responsible for performing complex analyses of the space power and In-Space propulsion products developed by GRC. This work quantifies the benefits of the advanced technologies to support on-going advocacy efforts. The Power and Propulsion Office is committed to understanding how the advancement in space technologies could benefit future NASA missions. They support many diverse projects and missions throughout NASA as well as industry and academia. The area of work that we are concentrating on is space technology investment strategies. Our goal is to develop a Monte-Carlo based tool to investigate technology impacts in space electric power systems. The framework is being developed at this stage, which will be used to set up a computer simulation of a space electric power system (EPS). The outcome is expected to be a probabilistic assessment of critical technologies and potential development issues. We are developing methods for integrating existing spreadsheet-based tools into the simulation tool. Also, work is being done on defining interface protocols to enable rapid integration of future tools. Monte Carlo-based simulation programs for statistical modeling of the EPS Model. I decided to learn and evaluate Palisade's @Risk and Risk Optimizer software, and utilize it's capabilities for the Electric Power System (EPS) model. I also looked at similar software packages (JMP, SPSS, Crystal Ball, VenSim, Analytica) available from other suppliers and evaluated them. The second task was to develop the framework for the tool, in which we had to define technology characteristics using weighing factors and probability distributions. Also we had to define the simulation space and add hard and soft constraints to the model. The third task is to incorporate (preliminary) cost factors into the model. A final task is developing a cross-platform solution of this framework.

  6. Fabric composite radiators for space nuclear power applications. Final report, March 1993

    Energy Technology Data Exchange (ETDEWEB)

    Klein, A.C.; Al-Baroudi, H.; Gulshan-Ara, Z.; Kiestler, W.C.; Snuggerud, R.D.; Abdul-Hamid, S.A.; Marks, T.S.

    1993-03-24

    Nuclear power systems will be required to provide much greater power levels for both civilian and defense space activities in the future than an currently needed. Limitations on the amount of usable power from radioisotope thermal generators and the limited availability of radioisotope heat source materials lead directly to the conclusion that nuclear power reactors will be needed to enhance the exploration of the solar system as well as to provide for an adequate defense. Lunar bases and travel to the Martian surface will be greatly enhanced by the use of high levels of nuclear power. Space based radar systems requiring many kilowatts of electrical power can provide intercontinental airline traffic control and defense early warning systems. Since the, figure of merit used in defining any space power system is the specific power, the decrease in die mass of any reactor system component will yield a tremendous benefit to the overall system performance. Also, since the heat rejection system of any power system can make up a large portion of the total system mass, any reduction in the mass of the heat rejection radiators will significantly affect the performance of the power system. Composite materials which combine the high strength, flexibility, and low mass characteristics of Si% based fibers with the attractive compatibility and heat transfer features of metallic foils, have been proposed for use m a number of space radiator applications. Thus, the weave of the fabric and the high strength capability of the individual fibers are combined with the high conductivity and chemical stability of a metallic liner to provide a light weight, flexible alternative to heavy, rigid, metallic radiator structural containers. The primary focus of this investigation revolves around two applications of the fabric composite materials, notably a fabric heat pipe radiator design and the Bubble Membrane Radiator concept.

  7. High power free space optical link for rapid energy and data transmission

    Science.gov (United States)

    Dhadwal, Harbans S.; Rastegar, Jahangir; Feng, Dake; Kwok, Philip

    2016-05-01

    Design and experimental data for a high power laser diode based free space point-to-point optical power/data link is presented. In time critical power up applications, such as providing power and guidance information to a munition shell just prior to deployment, energy of the order of 100 J needs to be transferred in under 10 s. Current inductive technology is slow and broadcasts a radio-frequency signal which is undesirable for stealth operation. Rapid energy transfer times require high irradiance levels at the surface of the photovoltaic cells, typically, exceeding 1000X suns. Through efficient thermal design of heat sinks, high optical to electrical power conversion efficiencies of 50%, which are usually attainable at low power levels of 1 W, are achievable at higher power levels.

  8. Radioisotope space power generator. Annual report, October 1978-September 1979

    International Nuclear Information System (INIS)

    The emphasis of the Isotec Technology Program shifted from development of a Galileo generator to study of a segmented selenide element and couple technology. The goal of the FY 79 program was to determine the feasibility of fabricating segmented selenide P and N elements which exploit the high thermoelectric efficiency of (Cu,Ag)2Se and Gd2Se3 materials. A preliminary evaluation of segmented element efficiencies, material compatibilities, and fabrication abilities was used to select (Cu,Ag)2Se/Fe(Bi,Sb)2Te3 for the P element and Gd2Se3/PbTe for the N element. The iron barrier between the (Cu,Ag)2Se and (Bi,Sb)2Te3 prevented degradation of thermoelectric properties from copper contamination of the (Bi,Sb)2Te3. Fabrication processes for both elements were developed. Gd2Se3 was friable and difficult to fabricate crack-free. It also exhibited a phase transition from cubic to orthorhombic, which increased its susceptibility to microcracking and reduced its thermoelectric efficiency. Life testing of an all-bonded couple with unsegmented (Cu,Ag)2Se P-type and Gd2Se3 N-type elements was stopped after 3300 h in a nominal 8300C/3900C thermal gradient. The Gd2Se3 leg did not show any significant degradation during the test. Examination of the hot end of the P element showed the need for a less reactive hot cap material and an improved vapor supression system. Module testing of a 1-W (Bi,Sb)2(Se,Te)3 generator was performed for 5000 h with no degradation in power. High-temperature Thermid 600 adhesive curing cycles were examined, 75-mW module loading tests were performed, and diagnostic examination of RTG-2A and RTG-201 was completed

  9. A One-year, Short-Stay Crewed Mars Mission Using Bimodal Nuclear Thermal Electric Propulsion (BNTEP) - A Preliminary Assessment

    Science.gov (United States)

    Burke, Laura M.; Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2013-01-01

    A crewed mission to Mars poses a significant challenge in dealing with the physiological issues that arise with the crew being exposed to a near zero-gravity environment as well as significant solar and galactic radiation for such a long duration. While long surface stay missions exceeding 500 days are the ultimate goal for human Mars exploration, short round trip, short surface stay missions could be an important intermediate step that would allow NASA to demonstrate technology as well as study the physiological effects on the crew. However, for a 1-year round trip mission, the outbound and inbound hyperbolic velocity at Earth and Mars can be very large resulting in a significant propellant requirement for a high thrust system like Nuclear Thermal Propulsion (NTP). Similarly, a low thrust Nuclear Electric Propulsion (NEP) system requires high electrical power levels (10 megawatts electric (MWe) or more), plus advanced power conversion technology to achieve the lower specific mass values needed for such a mission. A Bimodal Nuclear Thermal Electric Propulsion (BNTEP) system is examined here that uses three high thrust Bimodal Nuclear Thermal Rocket (BNTR) engines allowing short departure and capture maneuvers. The engines also generate electrical power that drives a low thrust Electric Propulsion (EP) system used for efficient interplanetary transit. This combined system can help reduce the total launch mass, system and operational requirements that would otherwise be required for equivalent NEP or Solar Electric Propulsion (SEP) mission. The BNTEP system is a hybrid propulsion concept where the BNTR reactors operate in two separate modes. During high-thrust mode operation, each BNTR provides 10's of kilo-Newtons of thrust at reasonably high specific impulse (Isp) of 900 seconds for impulsive transplanetary injection and orbital insertion maneuvers. When in power generation/EP mode, the BNTR reactors are coupled to a Brayton power conversion system allowing each

  10. A One-year, Short-Stay Crewed Mars Mission Using Bimodal Nuclear Thermal Electric Propulsion (BNTEP) - A Preliminary Assessment

    Science.gov (United States)

    Burke, Laura A.; Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2013-01-01

    A crewed mission to Mars poses a signi cant challenge in dealing with the physiolog- ical issues that arise with the crew being exposed to a near zero-gravity environment as well as signi cant solar and galactic radiation for such a long duration. While long sur- face stay missions exceeding 500 days are the ultimate goal for human Mars exploration, short round trip, short surface stay missions could be an important intermediate step that would allow NASA to demonstrate technology as well as study the physiological e ects on the crew. However, for a 1-year round trip mission, the outbound and inbound hy- perbolic velocity at Earth and Mars can be very large resulting in a signi cant propellant requirement for a high thrust system like Nuclear Thermal Propulsion (NTP). Similarly, a low thrust Nuclear Electric Propulsion (NEP) system requires high electrical power lev- els (10 megawatts electric (MWe) or more), plus advanced power conversion technology to achieve the lower speci c mass values needed for such a mission. A Bimodal Nuclear Thermal Electric Propulsion (BNTEP) system is examined here that uses three high thrust Bimodal Nuclear Thermal Rocket (BNTR) engines allowing short departure and capture maneuvers. The engines also generate electrical power that drives a low thrust Electric Propulsion (EP) system used for ecient interplanetary transit. This combined system can help reduce the total launch mass, system and operational requirements that would otherwise be required for equivalent NEP or Solar Electric Propulsion (SEP) mission. The BNTEP system is a hybrid propulsion concept where the BNTR reactors operate in two separate modes. During high-thrust mode operation, each BNTR provides 10's of kilo- Newtons of thrust at reasonably high speci c impulse (Isp) of 900 seconds for impulsive trans-planetary injection and orbital insertion maneuvers. When in power generation / EP mode, the BNTR reactors are coupled to a Brayton power conversion system allowing each

  11. Energy storage and thermal control system design status. [for space station power supplies

    Science.gov (United States)

    Simons, Stephen N.; Willhoite, Bryan C.; Van Ommering, Gert

    1989-01-01

    The Space Station Freedom electric power system (EPS) will initially rely on photovoltaics for power generation and Ni/H2 batteries for electrical energy storage. The current design for the development status of two major subsystems in the PV Power Module is discussed. The energy storage subsystem comprised of high capacity Ni/H2 batteries and the single-phase thermal control system that rejects the excess heat generated by the batteries and other components associated with power generation andstorage is described.

  12. Improved Statistical Analysis of Low Abundance Phenomena in Bimodal Bacterial Populations

    OpenAIRE

    Friedrich Reinhard; Jan Roelof van der Meer

    2013-01-01

    Accurate detection of subpopulation size determinations in bimodal populations remains problematic yet it represents a powerful way by which cellular heterogeneity under different environmental conditions can be compared. So far, most studies have relied on qualitative descriptions of population distribution patterns, on population-independent descriptors, or on arbitrary placement of thresholds distinguishing biological ON from OFF states. We found that all these methods fall short of accura...

  13. A note on bimodal singularities and mirror symmetry

    OpenAIRE

    Mase, Makiko; UEDA, Kazushi

    2014-01-01

    We discuss the relation between transposition mirror symmetry of Berlund and H\\"ubsch for bimodal singularities and polar duality of Batyrev for associated toric K3 hypersurfaces. We also show that homological mirror symmetry for singularities implies the geometric construction of Coxeter-Dynkin diagrams of bimodal singularities by Ebeling and Ploog.

  14. Energetic Argument for Bimodal Black Hole Accretion discs

    Institute of Scientific and Technical Information of China (English)

    林一清; 卢炬甫; 顾为民

    2002-01-01

    Based on simple energetic considerations, we show that two crucial ingredients of bimodal black hole accretiondiscs, namely the sonic point and the transition radius, can be determined from the disc constant parameters.Thus, we can further justify the model of bimodal discs containing thermal instability triggered transition.

  15. Differentiable Families of Planar Bimodal Linear Control Systems

    OpenAIRE

    Josep Ferrer; M. Dolors Magret; Marta Peña

    2014-01-01

    We consider bimodal linear control systems consisting of two subsystems acting on each side of a given hyperplane, assuming continuity along it. For a differentiable family of planar bimodal linear control systems, we obtain its stratification diagram and, if controllability holds for each value of the parameters, we construct a differentiable family of feedbacks which stabilizes both subsystems for each value of the parameters.

  16. The Bimodal Bilingual Brain: Effects of Sign Language Experience

    Science.gov (United States)

    Emmorey, Karen; McCullough, Stephen

    2009-01-01

    Bimodal bilinguals are hearing individuals who know both a signed and a spoken language. Effects of bimodal bilingualism on behavior and brain organization are reviewed, and an fMRI investigation of the recognition of facial expressions by ASL-English bilinguals is reported. The fMRI results reveal separate effects of sign language and spoken…

  17. Low earth orbit environmental effects on the Space Station photovoltaic power generation systems

    Science.gov (United States)

    Nahra, H. K.

    1988-01-01

    A summary of the low earth orbital environment, its impact on the photovoltaic power systems of the Space Station and the solutions implemented to resolve the environmental concerns or issues are described. Low earth orbital environment (LEO) presents several concerns to the photovoltaic power systems of the Space Station. These concerns include atomic oxygen interaction with the polymeric substrate of the solar arrays, ionized environment effects on the array operating voltage, the effects of the meteoroids and debris impacts and penetration through the different layers of the solar cells and their circuits, and the high energy particle and radiation effects on the overall solar array performance. Potential solutions to some of the degrading environmental interactions that will provide the photovoltaic power system of the Space Station with the desired life are also summarized.

  18. Space Nuclear Power and Propulsion: Materials Challenges for the 21st Century

    Science.gov (United States)

    Houts, Mike

    2008-01-01

    The current focus of NASA s space fission effort is Fission Surface Power (FSP). FSP systems could be used to provide power anytime, anywhere on the surface of the Moon or Mars. FSP systems could be used at locations away from the lunar poles or in permanently shaded regions, with no performance penalty. A potential reference 40 kWe option has been devised that is cost-competitive with alternatives while providing more power for less mass. The potential reference system is readily extensible for use on Mars. At Mars the system could be capable of operating through global dust storms and providing year-round power at any Martian latitude. To ensure affordability, the potential near-term, 40 kWe reference concept is designed to use only well established materials and fuels. However, if various materials challenges could be overcome, extremely high performance fission systems could be devised. These include high power, low mass fission surface power systems; in-space systems with high specific power; and high performance nuclear thermal propulsion systems. This tutorial will provide a brief overview of space fission systems and will focus on materials challenges that, if overcome, could help enable advanced exploration and utilization of the solar system.

  19. Efficient coding schemes with power allocation using space-time-frequency spreading

    Institute of Scientific and Technical Information of China (English)

    Jiang Haining; Luo Hanwen; Tian Jifeng; Song Wentao; Liu Xingzhao

    2006-01-01

    An efficient space-time-frequency (STF) coding strategy for multi-input multi-output orthogonal frequency division multiplexing (MIMO-OFDM) systems is presented for high bit rate data transmission over frequency selective fading channels. The proposed scheme is a new approach to space-time-frequency coded OFDM (COFDM) that combines OFDM with space-time coding, linear precoding and adaptive power allocation to provide higher quality of transmission in terms of the bit error rate performance and power efficiency. In addition to exploiting the maximum diversity gain in frequency, time and space, the proposed scheme enjoys high coding advantages and low-complexity decoding. The significant performance improvement of our design is confirmed by corroborating numerical simulations.

  20. Bimodal stimulation: benefits for music perception and sound quality.

    Science.gov (United States)

    Sucher, Catherine M; McDermott, Hugh J

    2009-01-01

    With recent expansions in cochlear implantation candidacy criteria, increasing numbers of implantees can exploit their remaining hearing by using bimodal stimulation (combining electrical stimulation via the implant with acoustic stimulation via hearing aids). This study examined the effect of bimodal stimulation on music perception and perceived sound quality. The perception of music and sound quality by nine post-lingually deafened adult implantees was examined in three conditions: implant alone, hearing aid alone and bimodal stimulation. On average, bimodal stimulation provided the best results for music perception and perceived sound quality when compared with results obtained with electrical stimulation alone. Thus, for implantees with usable acoustic hearing, bimodal stimulation may be advantageous when listening to music and other non-speech sounds. PMID:19230032

  1. Bimodal stimulation: benefits for music perception and sound quality.

    Science.gov (United States)

    Sucher, Catherine M; McDermott, Hugh J

    2009-01-01

    With recent expansions in cochlear implantation candidacy criteria, increasing numbers of implantees can exploit their remaining hearing by using bimodal stimulation (combining electrical stimulation via the implant with acoustic stimulation via hearing aids). This study examined the effect of bimodal stimulation on music perception and perceived sound quality. The perception of music and sound quality by nine post-lingually deafened adult implantees was examined in three conditions: implant alone, hearing aid alone and bimodal stimulation. On average, bimodal stimulation provided the best results for music perception and perceived sound quality when compared with results obtained with electrical stimulation alone. Thus, for implantees with usable acoustic hearing, bimodal stimulation may be advantageous when listening to music and other non-speech sounds.

  2. RSMASS-D nuclear thermal propulsion and bimodal system mass models

    Energy Technology Data Exchange (ETDEWEB)

    King, D.B. [DSWA/FC, Thermionic Evaluation Facility 801 University Blvd. SE Albuquerque, New Mexico (United States); Marshall, A.C. [DSWA/FC, Thermionic Evaluation Facility 801 University Blvd. SE Albuquerque, New Mexico (United States)

    1997-01-01

    Two relatively simple models have been developed to estimate reactor, radiation shield, and balance of system masses for a particle bed reactor (PBR) nuclear thermal propulsion concept and a cermet-core power and propulsion (bimodal) concept. The approach was based on the methodology developed for the RSMASS-D models. The RSMASS-D approach for the reactor and shield sub-systems uses a combination of simple equations derived from reactor physics and other fundamental considerations along with tabulations of data from more detailed neutron and gamma transport theory computations. Relatively simple models are used to estimate the masses of other subsystem components of the nuclear propulsion and bimodal systems. Other subsystem components include instrumentation and control (I&C), boom, safety systems, radiator, thermoelectrics, heat pipes, and nozzle. The user of these models can vary basic design parameters within an allowed range to achieve a parameter choice which yields a minimum mass for the operational conditions of interest. Estimated system masses are presented for a range of reactor power levels for propulsion for the PBR propulsion concept and for both electrical power and propulsion for the cermet-core bimodal concept. The estimated reactor system masses agree with mass predictions from detailed calculations with xx percent for both models. {copyright} {ital 1997 American Institute of Physics.}

  3. Development of Bimodal Grain Structures in Nb-Containing High-Strength Low-Alloy Steels during Slab Reheating

    Science.gov (United States)

    Chakrabarti, Debalay; Davis, Claire; Strangwood, Martin

    2008-08-01

    Bimodal (mixed coarse and fine) grain structures, which have been observed in some Nb-containing thermomechanically-controlled rolled steel plates, adversely affect their mechanical properties by causing scatter in cleavage fracture stress values. It is known that bimodal grain structures can develop during reheating prior to rolling; however, no quantitative predictions of the level of bimodality or the critical reheat temperatures for formation have been reported. In this article, three high-strength low-alloy (HSLA) steel slabs with varying microalloying additions (Ti, Nb, and V) have been characterized in the as-continuously cast and reheated (to various temperatures in the range 1050 °C to 1225 °C) conditions to determine the link between their grain size distribution (and any bimodality observed) and the microalloy precipitate type, size, and distribution. The as-cast slabs showed inhomogeneous microalloying precipitate distributions with the separation between precipitate-rich and precipitate-poor regions being consistent with interdendritic segregation and hence, the secondary dendrite arm spacing (SDAS). The susceptibility of the slabs to the formation of bimodality, based on the steel chemical compositions and critical reheat temperature ranges has been identified, both experimentally and theoretically using ThermoCalc (Thermo-Calc Software, Stockholm, Sweden) modeling of precipitate stability in the solute-rich and the solute-depleted regions formed during casting.

  4. Advanced Magnetic-Nuclear Power Systems for Reliability Demanding Applications Including Deep Space Missions

    OpenAIRE

    Tsvetkov, Pavel; Guy, Troy

    2010-01-01

    The MAGNUS concept, which is based on the FFMCR approach, offers space power and propulsion technology with a number of unique characteristics such as: ï‚· Direct FF energy conversion is uniquely suitable for space operation; ï‚· High efficiency DEC promises reduced thermal control and radiators; ï‚· High specific impulse allows short trip times and extends exploration to the outer reaches of the solar system and beyond; ï‚· Achievability of long-term operation assures power for missions with...

  5. Overview of high-temperature materials for high-energy space power systems

    Science.gov (United States)

    Saunders, N. T.

    1982-01-01

    The current state of technology and some of the more pressing research needs and challenges associated with the possible use of high temperature materials in future high energy space power systems are discussed. Particularly, emphasis is on the need to improve and quantify the fundamental understanding of the effects of the following: (1) fast neutron radiation on the properties and behavior of nuclear reactor fuels and claddings; and (2) long term, high temperature, space (vacuum) exposure on the properties of refractory metals considered for use as structural materials in various power conversion systems.

  6. Space Nuclear Power Plant Pre-Conceptual Design Report, For Information

    Energy Technology Data Exchange (ETDEWEB)

    B. Levine

    2006-01-27

    This letter transmits, for information, the Project Prometheus Space Nuclear Power Plant (SNPP) Pre-Conceptual Design Report completed by the Naval Reactors Prime Contractor Team (NRPCT). This report documents the work pertaining to the Reactor Module, which includes integration of the space nuclear reactor with the reactor radiation shield, energy conversion, and instrumentation and control segments. This document also describes integration of the Reactor Module with the Heat Rejection segment, the Power Conditioning and Distribution subsystem (which comprise the SNPP), and the remainder of the Prometheus spaceship.

  7. Hydrogen turbines for space power systems: A simplified axial flow gas turbine model

    Science.gov (United States)

    Hudson, Steven L.

    1988-01-01

    Hydrogen cooled, turbine powered space weapon systems require a relatively simple, but reasonably accurate hydrogen gas expansion turbine model. Such a simplified turbine model would require little computational time and allow incorporation into system level computer programs while providing reasonably accurate volume/mass estimates. This model would then allow optimization studies to be performed on multiparameter space power systems and provide improved turbine mass and size estimates for the various operating conditions (when compared to empirical and power law approaches). An axial flow gas expansion turbine model was developed for these reasons and is in use as a comparative bench mark in space power system studies at Sandia. The turbine model is based on fluid dynamic, thermodynamic, and material strength considerations, but is considered simplified because it does not account for design details such as boundary layer effects, shock waves, turbulence, stress concentrations, and seal leakage. Although the basic principles presented here apply to any gas or vapor axial flow turbine, hydrogen turbines are discussed because of their immense importance on space burst power platforms.

  8. A bimodal search strategy for SETI

    Science.gov (United States)

    Gulkis, S.; Olsen, E. T.; Tarter, J.

    1980-01-01

    The search strategy and resultant observational plan which was developed to carry out a comprehensive Search for Extraterrestrial Intelligence (SETI) over that portion of the electromagnetic spectrum known as the terrestrial microwave window is described. The limiting sensitivity achieved was parameterized and calculated for Deep Space Network antennas as well as several radio astronomy observatories. A brief description of the instrumentation to be employed in the search and the classes of signals to be looked for is given. One observational goal is to survey the entire sky over a wide range of frequency to a relatively constant flux level. This survey ensures that all potential life sites are observed to some limiting equivalent isotropic radiated power depending upon their distance. A second goal is to survey a set of potential transmission sites selected a priori to be especially promising, achieving very high sensitivity over a smaller range of frequency.

  9. Study of multi-megawatt technology needs for photovoltaic space power systems. Volume 1: Executive summary

    Science.gov (United States)

    Peterson, D. M.; Pleasant, R. L.

    1981-01-01

    Possible missions requiring multimegawatt photovoltaic space power systems in the 1990's time frame and associated power system technology needs are examined. The following concepts for photovoltaic power approaches are considered: planar arrays, concentrating arrays, hybrid systems using Rankine engines, thermophotovoltaic and AC/DC power management approaches, battery, fuel cell, flywheel energy storage, and interactions with the electrical ion engine injection and stationkeeping system. The levels of modularity for efficient, safe, constructable, serviceable, and cost effective system design are analyzed, and the benefits of alternate approaches developed. Both manned low Earth orbit and unmanned geosynchronous Earth orbit applications were examined for technological development. Technology developments applicable to power systems which appear to have benefits independent of the absolute power level are suggested.

  10. Bimodal and multimodal plant biomass particle mixtures

    Science.gov (United States)

    Dooley, James H.

    2013-07-09

    An industrial feedstock of plant biomass particles having fibers aligned in a grain, wherein the particles are individually characterized by a length dimension (L) aligned substantially parallel to the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L, wherein the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces, and wherein the particles in the feedstock are collectively characterized by having a bimodal or multimodal size distribution.

  11. Sex identification in female crayfish is bimodal

    Science.gov (United States)

    Aquiloni, Laura; Massolo, Alessandro; Gherardi, Francesca

    2009-01-01

    Sex identification has been studied in several species of crustacean decapods but only seldom was the role of multimodality investigated in a systematic fashion. Here, we analyse the effect of single/combined chemical and visual stimuli on the ability of the crayfish Procambarus clarkii to identify the sex of a conspecific during mating interactions. Our results show that crayfish respond to the offered stimuli depending on their sex. While males rely on olfaction alone for sex identification, females require the combination of olfaction and vision to do so. In the latter, chemical and visual stimuli act as non-redundant signal components that possibly enhance the female ability to discriminate potential mates in the crowded social context experienced during mating period. This is one of the few clear examples in invertebrates of non-redundancy in a bimodal communication system.

  12. Bimodal condensation silicone elastomers as dielectric elastomers

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Skov, Anne Ladegaard

    Lately, dielectric elastomers (DEs) which consist of an elastomer sandwiched between electrodes on both sides, have gained interest as materials for actuators, generators, and sensors. An ideal elastomer for DE uses is characterized by high extensibility, flexibility and good mechanical fatigue.......Moreover, a series of elastomers with the same mass ratio (7:3) between long and short PDMS chains were made at different humidity (90%, 70%, 50%, 30%, 10%) at 23oC. The dielectric and mechincal properties of the resulting elastomers were shown to depend strongly on the atmospheric humidity level.In addition......, the top and bottom surfaces of the elastomer (7:3) prepared at 23oC and 50% humidity were tested by water contact angle and optical microscope. The results show the bimodal condensation elastomer possesses structural heterogeneity, which may lead to favourable properties for DE applications....

  13. Emergence of bimodality in controlling complex networks

    CERN Document Server

    Jia, Tao; Csóka, Endre; Pósfai, Márton; Slotine, Jean-Jacques; Barabási, Albert-László

    2015-01-01

    Our ability to control complex systems is a fundamental challenge of contemporary science. Recently introduced tools to identify the driver nodes, nodes through which we can achieve full control, predict the existence of multiple control configurations, prompting us to classify each node in a network based on their role in control. Accordingly a node is critical, intermittent or redundant if it acts as a driver node in all, some or none of the control configurations. Here we develop an analytical framework to identify the category of each node, leading to the discovery of two distinct control modes in complex systems: centralized vs distributed control. We predict the control mode for an arbitrary network and show that one can alter it through small structural perturbations. The uncovered bimodality has implications from network security to organizational research and offers new insights into the dynamics and control of complex systems.

  14. High Efficiency Space Power Systems Project Advanced Space-Rated Batteries

    Science.gov (United States)

    Reid, Concha M.

    2011-01-01

    Case Western Reserve University (CWRU) has an agreement with China National Offshore Oil Corporation New Energy Investment Company, Ltd. (CNOOC), under the United States-China EcoPartnerships Framework, to create a bi-national entity seeking to develop technically feasible and economically viable solutions to energy and environmental issues. Advanced batteries have been identified as one of the initial areas targeted for collaborations. CWRU invited NASA Glenn Research Center (GRC) personnel from the Electrochemistry Branch to CWRU to discuss various aspects of advanced battery development as they might apply to this partnership. Topics discussed included: the process for the selection of a battery chemistry; the establishment of an integrated development program; project management/technical interactions; new technology developments; and synergies between batteries for automotive and space operations. Additional collaborations between CWRU and NASA GRC's Electrochemistry Branch were also discussed.

  15. Feasibility study on polonium-209 as radioisotope fuel for space nuclear power

    International Nuclear Information System (INIS)

    We have investigated the performance and the production method of alternative isotopes of 238Pu as a radioisotope fuel for use in space radioisotope power generators. Polonium-209 has the possibility to be an alternative material of 238Pu. It has enough half-time of 102 years and the specific power of 490 W/kg. From the simulation, the beam current of 14 A with 40 MeV proton energy provides 1 kg/yr of 209Po annually. (author)

  16. Power consumption in agitated vessels with dual pitched blade turbines: baffle length and impeller spacing effects

    Energy Technology Data Exchange (ETDEWEB)

    Markopoulos, J.; Babalona, E.; Tsiliopoulou, E.; Tasopoulou, K. [Department of Chemical Engineering, Aristotle University of Thessaloniki, Univ. Box. 453, GR-54124 Thessaloniki (Greece)

    2005-09-01

    The power consumed in mechanically agitated vessels is an important parameter, especially for the energy requirements and the heat and mass transfer efficiencies of these systems. Power consumption does not only depend on the impeller type, the fluid properties and the stirring speed, but also on the geometry of the agitated system, including the impeller spacing and the length of the baffles in the mixing vessel. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  17. Space debris proximity analysis in powered and orbital phases during satellite launch

    Science.gov (United States)

    Bandyopadhyay, Priyankar; Sharma, R. K.; Adimurthy, V.

    2004-01-01

    This paper describes the methodology of the space debris proximity analysis in powered and orbital phase at the time of a satellite launch. The details of the SPADEPRO analysis package, developed for this purpose, are presented. It consists of modules which provide the functions related to ephemeris generation and reconstruction of primary object (launch vehicle or its payload upon insertion), determination of close approaches with resident space objects, computation of the state vector variance of the primary and the secondary objects to represent the knowledge uncertainty, and computation of the collision risk given the variance. This has been successfully applied during the recent launches of the Indian Space Research Organization.

  18. Radiation resistance of thin-film solar cells for space photovoltaic power

    Science.gov (United States)

    Woodyard, James R.; Landis, Geoffrey A.

    1991-01-01

    Copper indium diselenide, cadmium telluride, and amorphous silicon alloy solar cells have achieved noteworthy performance and are currently being studied for space power applications. Cadmium sulfide cells had been the subject of much effort but are no longer considered for space applications. A review is presented of what is known about the radiation degradation of thin film solar cells in space. Experimental cadmium telluride and amorphous silicon alloy cells are reviewed. Damage mechanisms and radiation induced defect generation and passivation in the amorphous silicon alloy cell are discussed in detail due to the greater amount of experimental data available.

  19. Bimodality as a signal of liquid-gas phase transition in nuclei?

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, O.; Lacroix, D.; Vient, E

    2005-09-15

    We use the HIPSE (Heavy-Ion Phase-Space Exploration) Model to discuss the origin of the bi-modality in charge asymmetry observed in nuclear reactions around the Fermi energy. We show that it may be related to the important angular momentum (spin) transferred into the quasi-projectile before secondary decay. As the spin overcomes the critical value, a sudden opening of decay channels is induced and leads to a bimodal distribution for the charge asymmetry. In the model, it is not assigned to a liquid-gas phase transition but to specific instabilities in nuclei with high spin. Therefore, we propose to use these reactions to study instabilities in rotating nuclear droplets. (authors)

  20. Space Power Program Semiannual Progress Report for period ending June 30, 1963

    Energy Technology Data Exchange (ETDEWEB)

    Miller, A. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    1963-10-11

    This is a report of progress on the Oak Ridge National Laboratory's research and development program on nuclear power plants for electrical power production in space vehicles. The work is carried out under AEG Reactor Experiments, Fuels, and Materials, and Reactor Component programs. Research and development work is under way on the stainless steel boiling-potassium reactor and the Medium Power Reactor Experiment, boiling alkali metal heat transfer, high-temperature and refractory alloys, fuel material, and space reactor shielding, particularly in connection with SNAP 2, 8, 10, and 50. Many of these OREL efforts are directed toward the development of a specific type of power plant, but they also furnish a significant contribution of scientific and engineering information needed in other programs on advanced SNAP systems. Progress on research and development directly related to the Medium Power Reactor Experiment (MPRE) is presented mostly in Part I of this report. Progress on the MPRE will, in the future, be reported on a quarterly basis. The form of the reporting will alternate from MPRE Quarterly Progress Reports to Space Power Semiannual Progress Reports.

  1. Overview of Intelligent Power Controller Development for Human Deep Space Exploration

    Science.gov (United States)

    Soeder, James F.; Dever, Timothy P.; McNelis, Anne M.; Beach, Raymond F.; Trase, Larry M.; May, Ryan D.

    2014-01-01

    Intelligent or autonomous control of an entire spacecraft is a major technology that must be developed to enable NASA to meet its human exploration goals. NASA's current long term human space platform, the International Space Station, is in low Earth orbit with almost continuous communication with the ground based mission control. This permits the near real-time control by the ground of all of the core systems including power. As NASA moves beyond low Earth orbit, the issues of communication time-lag and lack of communication bandwidth beyond geosynchronous orbit does not permit this type of operation. This paper presents the work currently ongoing at NASA to develop an architecture for an autonomous power control system as well as the effort to assemble that controller into the framework of the vehicle mission manager and other subsystem controllers to enable autonomous control of the complete spacecraft. Due to the common problems faced in both space power systems and terrestrial power system, the potential for spin-off applications of this technology for use in micro-grids located at the edge or user end of terrestrial power grids for peak power accommodation and reliability are described.

  2. Influence of age, spatial memory, and ocular fixation on localization of auditory, visual, and bimodal targets by human subjects.

    Science.gov (United States)

    Dobreva, Marina S; O'Neill, William E; Paige, Gary D

    2012-12-01

    A common complaint of the elderly is difficulty identifying and localizing auditory and visual sources, particularly in competing background noise. Spatial errors in the elderly may pose challenges and even threats to self and others during everyday activities, such as localizing sounds in a crowded room or driving in traffic. In this study, we investigated the influence of aging, spatial memory, and ocular fixation on the localization of auditory, visual, and combined auditory-visual (bimodal) targets. Head-restrained young and elderly subjects localized targets in a dark, echo-attenuated room using a manual laser pointer. Localization accuracy and precision (repeatability) were quantified for both ongoing and transient (remembered) targets at response delays up to 10 s. Because eye movements bias auditory spatial perception, localization was assessed under target fixation (eyes free, pointer guided by foveal vision) and central fixation (eyes fixed straight ahead, pointer guided by peripheral vision) conditions. Spatial localization across the frontal field in young adults demonstrated (1) horizontal overshoot and vertical undershoot for ongoing auditory targets under target fixation conditions, but near-ideal horizontal localization with central fixation; (2) accurate and precise localization of ongoing visual targets guided by foveal vision under target fixation that degraded when guided by peripheral vision during central fixation; (3) overestimation in horizontal central space (±10°) of remembered auditory, visual, and bimodal targets with increasing response delay. In comparison with young adults, elderly subjects showed (1) worse precision in most paradigms, especially when localizing with peripheral vision under central fixation; (2) greatly impaired vertical localization of auditory and bimodal targets; (3) increased horizontal overshoot in the central field for remembered visual and bimodal targets across response delays; (4) greater vulnerability to

  3. AN LED-BASED SOLAR SIMULATOR FOR RESEARCH, DEVELOPMENT, AND TESTING OF PHOTOVOLTAIC SPACE POWER SYSTEMS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Solar cells are the critical power source for the majority of space missions. The advancement from single junction silicon cells to current, state-of-the-art,...

  4. 12th Symposium on Space Nuclear Power and Propulsion. Conference on Alternative Power from Space (APFS),Conference on Accelerator-Driven Transmutation Technologies and Applications (A-DTTA)

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, S.E. [ed.] [Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM (United States)

    1995-12-31

    These proceedings represent papers presented at the 12th symposium on Space Nuclear Power and Propulsion held in Albuquerque, New Mexico. The symposium theme was ``commercialization and technology transfer``. The topics discussed include: wireless power transmission, solar power from space next generation spacecraft, space power electronics and power management, flight testing of components, manufacturing and processing of materials, nuclear propulsion, reactors and shielding and many others of interest to the scientific community representing industry, government and academic institutions. There were 163 papers presented at the conference and 60 have been abstracted for the Energy Science and Technology database. (AIP)

  5. Small space reactor power systems for unmanned solar system exploration missions

    International Nuclear Information System (INIS)

    A preliminary feasibility study of the application of small nuclear reactor space power systems to the Mariner Mark II Cassini spacecraft/mission was conducted. The purpose of the study was to identify and assess the technology and performance issues associated with the reactor power system/spacecraft/mission integration. The Cassini mission was selected because study of the Saturn system was identified as a high priority outer planet exploration objective. Reactor power systems applied to this mission were evaluated for two different uses. First, a very small 1 kWe reactor power system was used as an RTG replacement for the nominal spacecraft mission science payload power requirements while still retaining the spacecraft's usual bipropellant chemical propulsion system. The second use of reactor power involved the additional replacement of the chemical propulsion system with a small reactor power system and an electric propulsion system. The study also provides an examination of potential applications for the additional power available for scientific data collection. The reactor power system characteristics utilized in the study were based on a parametric mass model that was developed specifically for these low power applications. The model was generated following a neutronic safety and operational feasibility assessment of six small reactor concepts solicited from U.S. industry. This assessment provided the validation of reactor safety for all mission phases and generatad the reactor mass and dimensional data needed for the system mass model

  6. Summary of gas bearing applications in the field of space electric power systems.

    Science.gov (United States)

    Dunn, J. H.; Ream, L. W.

    1972-01-01

    The NASA-Lewis Research Center is investigating the technology of closed Brayton cycle electric power systems for space. The turbine-alternator-compressor power conversion unit for such a system is designated Brayton Rotating Unit (BRU). In parallel to power system testing, a BRU improvement effort was initiated. A major portion of this effort involves the testing and evaluation of different bearing systems. A description of each bearing is presented along with results of the evaluation to date and a comparison of the merits and limitations of each bearing.

  7. Optical sensing in high voltage transmission lines using power over fiber and free space optics

    Science.gov (United States)

    Rosolem, João Batista; Bassan, Fabio Renato; Penze, Rivael Strobel; Leonardi, Ariovaldo Antonio; Fracarolli, João Paulo Vicentini; Floridia, Claudio

    2015-12-01

    In this work we propose the use of power over fiber (PoF) and free space optics (FSO) techniques to powering and receive signals from an electrical current sensor placed at high voltage potential using a pair of optical collimators. The technique evaluation was performed in a laboratorial prototype using 62.5/125 μm multimode fiber to study the sensitivity of the optical alignment and the influence of the collimation process in the sensing system wavelengths: data communication (1310 nm) and powering (830 nm). The collimators were installed in a rigid electric insulator in order to maintain the stability of transmission.

  8. More Wind Power Integration with Adjusted Energy Carriers for Space Heating in Northern China

    Directory of Open Access Journals (Sweden)

    Jianjun He

    2012-08-01

    Full Text Available In Northern China, due to the high penetration of coal-fired cogeneration facilities, which are generally equipped with extraction-condensing steam turbines, lots of wind power resources may be wasted during the heating season. In contrast, considerable coal is consumed in the power generation sector. In this article, firstly it is revealed that there exists a serious divergence in the ratio of electrical to thermal energy between end users’ demand and the cogenerations’ production during off-peak load at night, which may negate active power-balancing of the electric power grid. Secondly, with respect to this divergence only occurring during off-peak load at night, a temporary proposal is given so as to enable the integration of more wind power. The authors suggest that if the energy carrier for part of the end users’ space heating is switched from heating water to electricity (e.g., electric heat pumps (EHPs can provide space heating in the domestic sector, the ratio of electricity to heating water load should be adjusted to optimize the power dispatch between cogeneration units and wind turbines, resulting in fuel conservation. With this proposal, existing infrastructures are made full use of, and no additional ones are required. Finally a numerical simulation is performed in order to illustrate both the technical and economic feasibility of the aforementioned proposal, under ongoing infrastructures as well as electricity and space heating tariff conditions without changing participants’ benefits. The authors aim to persuade Chinese policy makers to enable EHPs to provide space heating to enable the integration of more wind power.

  9. Prospects to solar energy power generation in space. Uchu taiyo hatsuden eno tenbo

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, I. (Electrotechnical Laboratory, Tsukuba (Japan))

    1993-05-01

    Solar energy power generation in space uses large arrays of solar cells developed on a geosynchronous orbit to obtain electric energy, which is transmitted to the earth using microwaves. The idea had already been advocated in 1968, which was followed a decade later by joint discussions done by NASA and DOE. The concept intended to take care of the U.S. power demand by using 60 power plant satellites, each having an output of 5 GW. This expanse of the scale, regarded reasonable even today, calls for the solar cell arrays in space spreading over an area of 10 km [times] 5 km if silicon solar cells with a conversion efficiency of 15% are used, and rectenna on the ground (a received wave converting facility) forming an ellipse of 10 km [times] 13 km (assuming a location at the north latitude of 36[degree]). Although there are a number of problems in the idea such as transportation means to lift construction materials into the space and effect of microwaves on the ionosphere and the ecosystems, the Agency of Industrial Science and Technology organized a 'committee for investigating and studying the space power generation systems' in the fiscal year 1991, and has been moving discussions forward since then. 7 refs., 5 figs.

  10. Forward Modeling of Reduced Power Spectra From Three-Dimensional k-Space

    OpenAIRE

    von Papen, Michael; Saur, Joachim

    2015-01-01

    We present results from a numerical forward model to evaluate one-dimensional reduced power spectral densities (PSD) from arbitrary energy distributions in $\\mathbf{k}$-space. In this model, we can separately calculate the diagonal elements of the spectral tensor for incompressible axisymmetric turbulence with vanishing helicity. Given a critically balanced turbulent cascade with $k_\\|\\sim k_\\perp^\\alpha$ and $\\alpha

  11. Electric space heating scheduling for real-time explicit power control in active distribution networks

    DEFF Research Database (Denmark)

    Costanzo, Giuseppe Tommaso; Bernstein, Andrey; Chamorro, Lorenzo Reyes;

    2015-01-01

    This paper presents a systematic approach for abstracting the flexibility of a building space heating system and using it within a composable framework for real-time explicit power control of microgrids and, more in general, active distribution networks. In particular, the proposed approach...

  12. 46 CFR 108.139 - Boundary bulkheads and decks of a space containing emergency power.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Boundary bulkheads and decks of a space containing emergency power. 108.139 Section 108.139 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Structural Fire Protection § 108.139 Boundary bulkheads and...

  13. Micro space power system using MEMS fuel cell for nano-satellites

    Science.gov (United States)

    Lee, Jongkwang; Kim, Taegyu

    2014-08-01

    A micro space power system using micro fuel cell was developed for nano-satellites. The power system was fabricated using microelectromechanical system (MEMS) fabrication technologies. Polymer electrolyte membrane (PEM) fuel cell was selected in consideration of space environment. Sodium borohydride (NaBH4) was selected as a hydrogen source while hydrogen peroxide (H2O2) was selected as an oxygen source. The power system consists of a micro fuel cell, micro-reactor, micro-pump, and fuel cartridges. The micro fuel cell was fabricated on a light-weight and corrosion-resistant glass plates. The micro-reactor was used to generate hydrogen from NaBH4 alkaline solution via a catalytic hydrolysis reaction. All components such as micro-pump, fuel cartridges, and auxiliary battery were integrated for a complete power system. The storability of NaBH4 solution was evaluated at -25 °C and the performance of the micro power system was measured at various operating conditions. The power output of micro power system reasonably followed up the given electric load conditions.

  14. Space station electrical power distribution analysis using a load flow approach

    Science.gov (United States)

    Emanuel, Ervin M.

    1987-01-01

    The space station's electrical power system will evolve and grow in a manner much similar to the present terrestrial electrical power system utilities. The initial baseline reference configuration will contain more than 50 nodes or busses, inverters, transformers, overcurrent protection devices, distribution lines, solar arrays, and/or solar dynamic power generating sources. The system is designed to manage and distribute 75 KW of power single phase or three phase at 20 KHz, and grow to a level of 300 KW steady state, and must be capable of operating at a peak of 450 KW for 5 to 10 min. In order to plan far into the future and keep pace with load growth, a load flow power system analysis approach must be developed and utilized. This method is a well known energy assessment and management tool that is widely used throughout the Electrical Power Utility Industry. The results of a comprehensive evaluation and assessment of an Electrical Distribution System Analysis Program (EDSA) is discussed. Its potential use as an analysis and design tool for the 20 KHz space station electrical power system is addressed.

  15. Passive Shielding Effect on Space Profile of Magnetic Field Emissions for Wireless Power Transfer to Vehicles

    DEFF Research Database (Denmark)

    Batra, Tushar; Schaltz, Erik

    2015-01-01

    Magnetic fields emitted by wireless power transfer systems are of high importance with respect to human safety and health. Aluminum and ferrite are used in the system to reduce the fields and are termed as passive shielding. In this paper, the influence of these materials on the space profile has...... been investigated with the help of simulations on Comsol for the four possible geometries—no shielding, ferrite, aluminum, and full shielding. As the reflected impedance varies for the four geometries, the primary current is varied accordingly to maintain constant power transfer to the secondary side...... and an increase in the resultant field from space point of view. This closeness varies with distance in the horizontal direction and vertical gap between the coils and is explained in the paper. This paper provides a better understanding of effect of the passive shielding materials on the space nature of magnetic...

  16. Advancement of High Power Quasi-CW Laser Diode Arrays For Space-based Laser Instruments

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, nathaniel R.; Baggott, Renee S.; Singh, Upendra N.; Kavaya, Michael J.

    2004-01-01

    Space-based laser and lidar instruments play an important role in NASA s plans for meeting its objectives in both Earth Science and Space Exploration areas. Almost all the lidar instrument concepts being considered by NASA scientist utilize moderate to high power diode-pumped solid state lasers as their transmitter source. Perhaps the most critical component of any solid state laser system is its pump laser diode array which essentially dictates instrument efficiency, reliability and lifetime. For this reason, premature failures and rapid degradation of high power laser diode arrays that have been experienced by laser system designers are of major concern to NASA. This work addresses these reliability and lifetime issues by attempting to eliminate the causes of failures and developing methods for screening laser diode arrays and qualifying them for operation in space.

  17. High Intensity Laser Power Beaming Architecture for Space and Terrestrial Missions

    Science.gov (United States)

    Nayfeh, Taysir; Fast, Brian; Raible, Daniel; Dinca, Dragos; Tollis, Nick; Jalics, Andrew

    2011-01-01

    High Intensity Laser Power Beaming (HILPB) has been developed as a technique to achieve Wireless Power Transmission (WPT) for both space and terrestrial applications. In this paper, the system architecture and hardware results for a terrestrial application of HILPB are presented. These results demonstrate continuous conversion of high intensity optical energy at near-IR wavelengths directly to electrical energy at output power levels as high as 6.24 W from the single cell 0.8 cm2 aperture receiver. These results are scalable, and may be realized by implementing receiver arraying and utilizing higher power source lasers. This type of system would enable long range optical refueling of electric platforms, such as MUAV s, airships, robotic exploration missions and provide power to spacecraft platforms which may utilize it to drive electric means of propulsion.

  18. The Space Station Module Power Management and Distribution automation test bed

    Science.gov (United States)

    Lollar, Louis F.

    1991-01-01

    The Space Station Module Power Management And Distribution (SSM/PMAD) automation test bed project was begun at NASA/Marshall Space Flight Center (MSFC) in the mid-1980s to develop an autonomous, user-supportive power management and distribution test bed simulating the Space Station Freedom Hab/Lab modules. As the test bed has matured, many new technologies and projects have been added. The author focuses on three primary areas. The first area is the overall accomplishments of the test bed itself. These include a much-improved user interface, a more efficient expert system scheduler, improved communication among the three expert systems, and initial work on adding intermediate levels of autonomy. The second area is the addition of a more realistic power source to the SSM/PMAD test bed; this project is called the Large Autonomous Spacecraft Electrical Power System (LASEPS). The third area is the completion of a virtual link between the SSM/PMAD test bed at MSFC and the Autonomous Power Expert at Lewis Research Center.

  19. Reflection on Development of Space Power and Space Security%我国空间力量发展与空间安全的思考

    Institute of Scientific and Technical Information of China (English)

    冯书兴

    2012-01-01

    空间力量作为维护国家空间安全与利益的物质基础和综合国力新的增长源,在国家安全与发展中的地位与作用越来越突出.分析了我国空间力量发展的现状和诸多制约因素,研究了空间安全对维护国家安全的重要作用,提出了制定空间战略、发展空间力量、维护空间安全和提升综合国力的对策思考.%Space power is not only the material foundation of maintaining space security and interest, but also a new source of development of comprehensive national power. And it's playing a more and more prominent role in a country's security and development. The actualities of our country's space power are analyzed, and the restriction of the development of our country's space power is concluded. The vital function which space security plays on safeguarding national security is studied. The eountermeasures about constituting space strategy, developing space power, maintaining space security and advancing comprehensive national power are put forward.

  20. Vehicle and Mission Design Options for the Human Exploration of Mars/Phobos Using "Bimodal" NTR and LANTR Propulsion

    Science.gov (United States)

    Borowski, Stanley K.; Dudzinski, Leonard A.; McGuire, Melissa L.

    2002-12-01

    The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human missions to Mars because of its high specific impulse (1sp is approximately 850-1000 s) capability and its attractive engine thrust-to-weight ratio (approximately 3-10). To stay within the available mass and payload volume limits of a "Magnum" heavy lift vehicle, a high performance propulsion system is required for trans-Mars injection (TMI). An expendable TMI stage, powered by three 15 thousand pounds force (klbf) NTR engines is currently under consideration by NASA for its Design Reference Mission (DRM). However, because of the miniscule burnup of enriched uranium-235 during the Earth departure phase (approximately 10 grams out of 33 kilograms in each NTR core), disposal of the TMI stage and its engines after a single use is a costly and inefficient use of this high performance stage. By reconfiguring the engines for both propulsive thrust and modest power generation (referred to as "bimodal" operation), a robust, multiple burn, "power-rich" stage with propulsive Mars capture and reuse capability is possible. A family of modular bimodal NTR (BNTR) vehicles are described which utilize a common "core" stage powered by three 15 klbf BNTRs that produce 50 kWe of total electrical power for crew life support, an active refrigeration / reliquification system for long term, zero-boiloff liquid hydrogen (LH2) storage, and high data rate communications. An innovative, spine-like "saddle truss" design connects the core stage and payload element and is open underneath to allow supplemental "in-line" propellant tanks and contingency crew consumables to be easily jettisoned to improve vehicle performance. A "modified" DRM using BNTR transfer vehicles requires fewer transportation system elements, reduces IMLEO and mission risk, and simplifies space operations. By taking the next logical step--use of the BNTR for propulsive capture of all payload elements into Mars orbit--the power

  1. Baryon Acoustic Oscillations in 2D: Modeling Redshift-space Power Spectrum from Perturbation Theory

    CERN Document Server

    Taruya, Atsushi; Saito, Shun

    2010-01-01

    We present an improved prescription for matter power spectrum in redshift space taking a proper account of both the non-linear gravitational clustering and redshift distortion, which are of particular importance for accurately modeling baryon acoustic oscillations (BAOs). Contrary to the models of redshift distortion phenomenologically introduced but frequently used in the literature, the new model includes the corrections arising from the non-linear coupling between the density and velocity fields associated with two competitive effects of redshift distortion, i.e., Kaiser and Finger-of-God effects. Based on the improved treatment of perturbation theory for gravitational clustering, we compare our model predictions with monopole and quadrupole power spectra of N-body simulations, and an excellent agreement is achieved over the scales of BAOs. Potential impacts on constraining dark energy and modified gravity from the redshift-space power spectrum are also investigated based on the Fisher-matrix formalism. We...

  2. Space nuclear-power reactor design based on combined neutronic and thermal-fluid analyses

    International Nuclear Information System (INIS)

    The design and performance analysis of a space nuclear-power system requires sophisticated analytical capabilities such as those developed during the nuclear rocket propulsion (Rover) program. In particular, optimizing the size of a space nuclear reactor for a given power level requires satisfying the conflicting requirements of nuclear criticality and heat removal. The optimization involves the determination of the coolant void (volume) fraction for which the reactor diameter is a minimum and temperature and structural limits are satisfied. A minimum exists because the critical diameter increases with increasing void fraction, whereas the reactor diameter needed to remove a specified power decreases with void fraction. The purpose of this presentation is to describe and demonstrate our analytical capability for the determination of minimum reactor size. The analysis is based on combining neutronic criticality calculations with OPTION-code thermal-fluid calculations

  3. Comments on dual-mode nuclear space power and propulsion system concepts

    Science.gov (United States)

    Layton, J. Preston; Grey, Jerry

    1991-01-01

    Some form of Dual-Mode Nuclear Space Power & Propulsion System (D-MNSP&PS) will be essential to spacefaring throughout teh solar system and that such systems must evolve as mankind moves into outer space. The initial D-MNPSP&PS Reference System should be based on (1) present (1990), and (2) advanced (1995) technology for use on comparable mission in the 2000 and 2005 time period respectively. D-MNSP&PS can be broken down into a number of subsystems: Nuclear subsystems including the energy source and controls for the release of thermal power at elevated temperatures; power conversion subsystems; waste heat rejection subsystems; and control and safety subsystems. These systems are briefly detailed.

  4. Comments on dual-mode nuclear space power and propulsion system concepts

    International Nuclear Information System (INIS)

    Some form of Dual-Mode Nuclear Space Power ampersand Propulsion System (D-MNSP ampersand PS) will be essential to spacefaring throughout teh solar system and that such systems must evolve as mankind moves into outer space. The initial D-MNPSP ampersand PS Reference System should be based on (1) present (1990), and (2) advanced (1995) technology for use on comparable mission in the 2000 and 2005 time period respectively. D-MNSP ampersand PS can be broken down into a number of subsystems: Nuclear subsystems including the energy source and controls for the release of thermal power at elevated temperatures; power conversion subsystems; waste heat rejection subsystems; and control and safety subsystems. These systems are briefly detailed

  5. Thermal stability improvement of a multiple finger power SiGe heterojunction bipolar transistor under different power dissipations using non-uniform finger spacing

    Institute of Scientific and Technical Information of China (English)

    Chen Liang; Zhang Wan-Rong; Jin Dong-Yue; Shen Pei; Xie Hong-Yun; Ding Chun-Bao; Xiaa Ying; Sun Bo-Tao; Wang Ren-Qing

    2011-01-01

    method of non-uniform finger spacing is proposed to enhance thermal stability of a multiple finger power SiGe hererojunction bipolar transistor under different power dissipations. Temperature distribution on the emitter fingers of a multi-finger SiGe heterojunction bipolar transistor is studied using a numerical electro-thermal model. The results show that the SiGe heterojunction bipolar transistor with non-uniform finger spacing has a small temperature difference between fingers compared with a traditional uniform finger spacing heterojunction bipolar transistor at the same power dissipation. What is most important is that the ability to improve temperature non-uniformity is not weakened as power dissipation increases. So the method of non-uniform finger spacing is very effective in enhancing the thermal stability and the power handing capability of power device. Experimental results verify our conclusious.

  6. Reference concepts for a space-based hydrogen-oxygen combustion, turboalternator, burst power system

    Energy Technology Data Exchange (ETDEWEB)

    Edenburn, M.W.

    1990-07-01

    This report describes reference concepts for a hydrogen-oxygen combustion, turboalternator power system that supplies power during battle engagement to a space-based, ballistic missile defense platform. All of the concepts are open''; that is, they exhaust hydrogen or a mixture of hydrogen and water vapor into space. We considered the situation where hydrogen is presumed to be free to the power system because it is also needed to cool the platform's weapon and the situation where hydrogen is not free and its mass must be added to that of the power system. We also considered the situation where water vapor is an acceptable exhaust and the situation where it is not. The combination of these two sets of situations required four different power generation systems, and this report describes each, suggests parameter values, and estimates masses for each of the four. These reference concepts are expected to serve as a baseline'' to which other types of power systems can be compared, and they are expected to help guide technology development efforts in that they suggest parameter value ranges that will lead to optimum system designs. 7 refs., 18 figs., 5 tabs.

  7. Maximizing photovoltaic power generation of a space-dart configured satellite

    Science.gov (United States)

    Lee, Dae Young; Cutler, James W.; Mancewicz, Joe; Ridley, Aaron J.

    2015-06-01

    Many small satellites are power constrained due to their minimal solar panel area and the eclipse environment of low-Earth orbit. As with larger satellites, these small satellites, including CubeSats, use deployable power arrays to increase power production. This presents a design opportunity to develop various objective functions related to energy management and methods for optimizing these functions over a satellite design. A novel power generation model was created, and a simulation system was developed to evaluate various objective functions describing energy management for complex satellite designs. The model uses a spacecraft-body-fixed spherical coordinate system to analyze the complex geometry of a satellite's self-induced shadowing with computation provided by the Open Graphics Library. As an example design problem, a CubeSat configured as a space-dart with four deployable panels is optimized. Due to the fast computation speed of the solution, an exhaustive search over the design space is used to find the solar panel deployment angles which maximize total power generation. Simulation results are presented for a variety of orbit scenarios. The method is extendable to a variety of complex satellite geometries and power generation systems.

  8. Design of a gigawatt space solar power satellite using optical concentrator system

    Science.gov (United States)

    Dessanti, B.; Komerath, N.; Shah, S.

    A 1-gigawatt space solar power satellite using a large array of individually pointable optical elements is identified as the key mass element of a large scale space solar power architecture using the Space Power Grid concept. The proposed satellite design enables a significant increase in specific power. Placed in sun-synchronous dynamic orbits near 2000km altitude, these satellites can maintain the constant solar view requirement of GEO-based architectures, while greatly reducing the beaming distance required, decreasing the required antenna size and in turn the overall system mass. The satellite uses an array of individually pointable optical elements (which we call a Mirasol Concentrator Array) to concentrate solar energy to an intensified feed target that feeds into the main heater of the spacecraft, similar conceptually to heliostat arrays. The spacecraft then utilizes Brayton cycle conversion to take advantage of non-linear power level scaling in order to generate high specific power values. Using phase array antennas, the power is then beamed at a millimeter wave frequency of 220GHz down to Earth. The design of the Mirasol concentrator system will be described and a detailed mass estimation of the system is developed. The technical challenges of pointing the elements and maintaining constant solar view is investigated. An end-to-end efficiency analysis is performed. Subsystem designs for the spacecraft are outlined. A detailed mass budget is refined to reflect reductions in uncertainty of the spacecraft mass, particularly in the Mirasol system. One of the key mass drivers of the spacecraft is the active thermal control system. The design of a lightweight thermal control system utilizing graphene sheets is also detailed.

  9. 航天电源技术研究进展%Progress of space power technology

    Institute of Scientific and Technical Information of China (English)

    杨紫光; 叶芳; 郭航; 马重芳

    2012-01-01

    航天电源具备高能量密度、高可靠性、长时间供电等特点,近年来多种航天电源发展迅速。本文介绍了再生型燃料电池、锂离子蓄电池等新型化学能源,新型的太阳能电池技术,太阳能热动力发电系统和核能热发电系统的现状;着重阐述了在航天飞行器上应用的化学蓄电池、太阳能电池阵-蓄电池组、燃料电池、核能发电系统等电源系统的特点及存在的问题。对于航天电源运控相关的流动与传热问题做了深入探讨,并展望了航天电源的研究方向:太阳能电池有向薄膜化方向发展的趋势,化学蓄电池主要配合太阳能电池;燃料电池适用于长时间远距离活动;核能适用大功率、长航时航天器。%The space power is required for high energy density,high reliability and long running time. The research of new energy technologies has drawn a great attention.This paper describes the development of these technologies,including new chemical energy as regenerative fuel cell(RFC), lithium-ion batteries;new solar photovoltaic;solar and nuclear dynamic with high and long running power.And it is focused on the characteristics and the problem in these application space power systems:accumulators,solar array-accumulators,fuel cells and nuclear power,etc.The flow and heat transfer of these space power systems are described in this paper.Also,this paper has some future view on the space power:solar cells have the development for the thin film,chemical power need the breakthrough of the new technology,the progress of the nuclear and solar dynamic power technology are essential to the long-running and high power in space.

  10. INTEGRATING NEPHELOMETER RESPONSE CORRECTIONS FOR BIMODAL SIZE DISTRIBUTIONS

    Science.gov (United States)

    Correction factors are calculated for obtaining true scattering extinction coefficients from integrating nephelometer measurements. The corrections are based on the bimodal representation of ambient aerosol size distributions, and take account of the effects of angular truncation...

  11. Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery

    Science.gov (United States)

    Gao, Lin; Sun, Jihong; Li, Yuzhen

    2011-08-01

    The bimodal mesoporous silica modified with 3-aminopropyltriethoxysilane was performed as the aspirin carrier. The samples' structure, drug loading and release profiles were characterized with X-ray diffraction, scanning electron microscopy, N 2 adsorption and desorption, Fourier transform infrared spectroscopy, TG analysis, elemental analysis and UV-spectrophotometer. For further exploring the effects of the bimodal mesopores on the drug delivery behavior, the unimodal mesoporous material MCM-41 was also modified as the aspirin carrier. Meantime, Korsmeyer-Peppas equation ft= ktn was employed to analyze the dissolution data in details. It is indicated that the bimodal mesopores are beneficial for unrestricted drug molecules diffusing and therefore lead to a higher loading and faster releasing than that of MCM-41. The results show that the aspirin delivery properties are influenced considerably by the mesoporous matrix, whereas the large pore of bimodal mesoporous silica is the key point for the improved controlled-release properties.

  12. Reactive Sintering of Bimodal WC-Co Hardmetals

    Directory of Open Access Journals (Sweden)

    Marek Tarraste

    2015-09-01

    Full Text Available Bimodal WC-Co hardmetals were produced using novel technology - reactive sintering. Milled and activated tungsten and graphite powders were mixed with commercial coarse grained WC-Co powder and then sintered. The microstructure of produced materials was free of defects and consisted of evenly distributed coarse and fine tungsten carbide grains in cobalt binder. The microstructure, hardness and fracture toughness of reactive sintered bimodal WC-Co hardmetals is exhibited. Developed bimodal hardmetal has perspective for demanding wear applications for its increased combined hardness and toughness. Compared to coarse material there is only slight decrease in fracture toughness (K1c is 14.7 for coarse grained and 14.4 for bimodal, hardness is increased from 1290 to 1350 HV units.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7511

  13. Using EPSAT to analyze high power systems in the space environment. [Environment Power System Analysis Tool

    Science.gov (United States)

    Kuharski, Robert A.; Jongeward, Gary A.; Wilcox, Katherine G.; Rankin, Tom R.; Roche, James C.

    1991-01-01

    The authors review the Environment Power System Analysis Tool (EPSAT) design and demonstrate its capabilities by using it to address some questions that arose in designing the SPEAR III experiment. It is shown that that the rocket body cannot be driven to large positive voltages under the constraints of this experiment. Hence, attempts to measure the effects of a highly positive rocket body in the plasma environment should not be made in this experiment. It is determined that a hollow cathode will need to draw only about 50 mA to ground the rocket body. It is shown that a relatively small amount of gas needs to be released to induce a bulk breakdown near the rocket body, and this gas release should not discharge the sphere. Therefore, the experiment provides an excellent opportunity to study the neutralization of a differential charge.

  14. Intelligent agents: adaptation of autonomous bimodal microsystems

    Science.gov (United States)

    Smith, Patrice; Terry, Theodore B.

    2014-03-01

    Autonomous bimodal microsystems exhibiting survivability behaviors and characteristics are able to adapt dynamically in any given environment. Equipped with a background blending exoskeleton it will have the capability to stealthily detect and observe a self-chosen viewing area while exercising some measurable form of selfpreservation by either flying or crawling away from a potential adversary. The robotic agent in this capacity activates a walk-fly algorithm, which uses a built in multi-sensor processing and navigation subsystem or algorithm for visual guidance and best walk-fly path trajectory to evade capture or annihilation. The research detailed in this paper describes the theoretical walk-fly algorithm, which broadens the scope of spatial and temporal learning, locomotion, and navigational performances based on optical flow signals necessary for flight dynamics and walking stabilities. By observing a fly's travel and avoidance behaviors; and, understanding the reverse bioengineering research efforts of others, we were able to conceptualize an algorithm, which works in conjunction with decisionmaking functions, sensory processing, and sensorimotor integration. Our findings suggest that this highly complex decentralized algorithm promotes inflight or terrain travel mobile stability which is highly suitable for nonaggressive micro platforms supporting search and rescue (SAR), and chemical and explosive detection (CED) purposes; a necessity in turbulent, non-violent structured or unstructured environments.

  15. Earth storable bimodal engine, phase 1

    Science.gov (United States)

    1973-01-01

    An in-depth study of an Earth Storable Bimodal (ESB) Engine using earth storable propellants N2O/N2H4 and operating in either a monopropellant or bipropellant mode was conducted. Detailed studies were completed for both a hot-gas, regeneratively cooled thrust chamber and a ducted hot-gas, film cooled thrust chamber. Hydrazine decomposition products were used for cooling in either configuration. The various arrangements and configurations of hydrazine reactors, secondary injectors, chambers and gimbal methods were considered. The two basic materials selected for the major components were columbium alloys and L-605. The secondary injector types considered were previously demonstrated by JPL and consisted of a liquid-on-gas triplet, a liquid-on-gas doublet, and a liquid-on-gas coaxial injector. Various design tradeoffs were made with different reactor types located at: the secondary injector station, the thrust chamber throat, and the nozzle/extension interface. Associated thermal, structural, and mass analyses were completed.

  16. Galaxy bimodality versus stellar mass and environment

    CERN Document Server

    Baldry, I; Bower, R; Glazebrook, K; Nichol, R; Bamford, S; Budavari, T

    2006-01-01

    We analyse a z<0.1 galaxy sample from the Sloan Digital Sky Survey focusing on the variation of the galaxy colour bimodality with stellar mass and projected neighbour density Sigma, and on measurements of the galaxy stellar mass functions. The characteristic mass increases with environmental density from about 10^10.6 Msun to 10^10.9 Msun (Kroupa IMF, H_0=70) for Sigma in the range 0.1--10 per Mpc^2. The galaxy population naturally divides into a red and blue sequence with the locus of the sequences in colour-mass and colour-concentration index not varying strongly with environment. The fraction of galaxies on the red sequence is determined in bins of 0.2 in log Sigma and log mass (12 x 13 bins). The red fraction f_r generally increases continuously in both Sigma and mass such that there is a unified relation: f_r = F(Sigma,mass). Two simple functions are proposed which provide good fits to the data. These data are compared with analogous quantities in semi-analytical models based on the Millennium N-body ...

  17. Merging history of three bimodal clusters

    CERN Document Server

    Maurogordato, S; Bourdin, H; Cappi, A; Benoist, C; Ferrari, C; Mars, G; Houairi, K

    2010-01-01

    We present a combined X-ray and optical analysis of three bimodal galaxy clusters selected as merging candidates at z ~ 0.1. These targets are part of MUSIC (MUlti--Wavelength Sample of Interacting Clusters), which is a general project designed to study the physics of merging clusters by means of multi-wavelength observations. Observations include spectro-imaging with XMM-Newton EPIC camera, multi-object spectroscopy (260 new redshifts), and wide-field imaging at the ESO 3.6m and 2.2m telescopes. We build a global picture of these clusters using X-ray luminosity and temperature maps together with galaxy density and velocity distributions. Idealized numerical simulations were used to constrain the merging scenario for each system. We show that A2933 is very likely an equal-mass advanced pre-merger ~ 200 Myr before the core collapse, while A2440 and A2384 are post-merger systems ~ 450 Myr and ~1.5 Gyr after core collapse, respectively). In the case of A2384, we detect a spectacular filament of galaxies and gas ...

  18. Audiovisual bimodal mutual compensation of Chinese

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The perception of human languages is inherently a multi-modalprocess, in which audio information can be compensated by visual information to improve the recognition performance. Such a phenomenon in English, German, Spanish and so on has been researched, but in Chinese it has not been reported yet. In our experiment, 14 syllables (/ba, bi, bian, biao, bin, de, di, dian, duo, dong, gai, gan, gen, gu/), extracted from Chinese audiovisual bimodal speech database CAVSR-1.0, were pronounced by 10 subjects. The audio-only stimuli, audiovisual stimuli, and visual-only stimuli were recognized by 20 observers. The audio-only stimuli and audiovisual stimuli both were presented under 5 conditions: no noise, SNR 0 dB, -8 dB, -12 dB, and -16 dB. The experimental result is studied and the following conclusions for Chinese speech are reached. Human beings can recognize visual-only stimuli rather well. The place of articulation determines the visual distinction. In noisy environment, audio information can remarkably be compensated by visual information and as a result the recognition performance is greatly improved.

  19. Bi-Modal Methods: An Overview

    Directory of Open Access Journals (Sweden)

    Olatunji K. A

    2015-07-01

    Full Text Available Various security challenges such as Boko Haram, theft, kidnapping, ISIL, abduction, and so on have been on a high rise as one of the major menace facing our society today. In order to overcome these challenges there is need for identification of the culprits to bring them to book. Uni-modal biometric is not enough to combat these security challenges because of its shortcomings which include- spoof attach, noise in the sensed data, inter class variation and so on. Combining two or more biometric features (bi-modal has been proved to provide better performance than uni-modal biometric approach for authentication and verification. This paper presents some literature on biometrics systems that can be employed in achieving a better accuracy in authentication and verification of biometric features. Different kind of fusion strategies to combine these characteristics, different available classifiers and fusion methodologies to achieve greater and accurate recognition performance were also discussed. It is hopeful that researchers in the area of biometrics will find this work very useful.

  20. Audiovisual bimodal mutual compensation of Chinese

    Institute of Scientific and Technical Information of China (English)

    ZHOU; Zhi

    2001-01-01

    [1]Richard, P., Schumeyer, Kenneth E. B., The effect of visual information on word initial consonant perception of dysarthric speech, in Proc. ICSLP'96 October 3-6 1996, Philadephia, Pennsylvania, USA.[2]Goff, B. L., Marigny, T. G., Benoit, C., Read my lips...and my jaw! How intelligible are the components of a speaker's face? Eurospeech'95, 4th European Conference on Speech Communication and Technology, Madrid, September 1995.[3]McGurk, H., MacDonald, J. Hearing lips and seeing voices, Nature, 1976, 264: 746.[4]Duran A. F., Mcgurk effect in Spanish and German listeners: Influences of visual cues in the perception of Spanish and German confliction audio-visual stimuli, Eurospeech'95. 4th European Conference on Speech Communication and Technology, Madrid, September 1995.[5]Luettin, J., Visual speech and speaker recognition, Ph.D thesis, University of Sheffield, 1997.[6]Xu Yanjun, Du Limin, Chinese audiovisual bimodal speech database CAVSR1.0, Chinese Journal of Acoustics, to appear.[7]Zhang Jialu, Speech corpora and language input/output methods' evaluation, Chinese Applied Acoustics, 1994, 13(3): 5.

  1. Space Molten Salt Reactor Concept for Nuclear Electric Propulsion and Surface Power

    Science.gov (United States)

    Eades, M.; Flanders, J.; McMurray, N.; Denning, R.; Sun, X.; Windl, W.; Blue, T.

    Students at The Ohio State University working under the NASA Steckler Grant sought to investigate how molten salt reactors with fissile material dissolved in a liquid fuel medium can be applied to space applications. Molten salt reactors of this kind, built for non-space applications, have demonstrated high power densities, high temperature operation without pressurization, high fuel burn up and other characteristics that are ideal for space fission systems. However, little research has been published on the application of molten salt reactor technology to space fission systems. This paper presents a conceptual design of the Space Molten Salt Reactor (SMSR), which utilizes molten salt reactor technology for Nuclear Electric Propulsion (NEP) and surface power at the 100 kWe to 15 MWe level. Central to the SMSR design is a liquid mixture of LiF, BeF2 and highly enriched U235F4 that acts as both fuel and core coolant. In brief, some of the positive characteristics of the SMSR are compact size, simplified core design, high fuel burn up percentages, proliferation resistant features, passive safety mechanisms, a considerable body of previous research, and the possibility for flexible mission architecture.

  2. A Space Cam Mechanism for Power Transmission of an Opposite-cylinder Piston Engine

    Directory of Open Access Journals (Sweden)

    Zhang Haoyue

    2015-01-01

    Full Text Available For the purpose of improving the engine’s power density, we put forward a new type of power transmission mechanism which is used for opposed-cylinder engine. The gas pressure acts on the cam through the piston and push rod, and the spindle rotation of external is driven by the cam. The design of spatial cam work surface is completed by using the enveloping theory of a family of space curves, the force between roller and cam is analyzed using dynamic analysis software. Under the condition of equal number, size and stroke of piston, the new one with larger power density is more compact in structure than the traditional power transmission mechanism, and the reaction force on either side of the main shaft and the acting force between pistons and cylinders are smaller than those in traditional one, which prolongs the service life of the pistons.

  3. Direct power control of DFIG based on discrete space vector modulation

    Energy Technology Data Exchange (ETDEWEB)

    Verij Kazemi, Mohammad; Sadeghi Yazdankhah, Ahmad; Madadi Kojabadi, Hossein [Electrical Engineering Department, Sahand University of Technology, Tabriz (Iran)

    2010-05-15

    This paper presents a new direct power control (DPC) strategy for a double fed induction generator (DFIG) based wind energy generation system. Switching vectors for rotor side converter were selected from the optimal switching table using the estimated stator flux position and the errors of the active and reactive power. A few number of voltage vectors may cause undesired power and stator current ripple. In this paper the increased number of voltage vectors with application of the Discrete Space Vector Modulation (DSVM) will be presented. Then a new switching table in supersynchronous and subsynchronous frames will be proposed. Simulation results of a 2 MW DFIG system demonstrate the effectiveness and robustness of the proposed control strategy during variations of active and reactive power, machine parameters, and wind speed. (author)

  4. Combinatorial pulse position modulation for power-efficient free-space laser communications

    Science.gov (United States)

    Budinger, James M.; Vanderaar, M.; Wagner, P.; Bibyk, Steven

    1993-01-01

    A new modulation technique called combinatorial pulse position modulation (CPPM) is presented as a power-efficient alternative to quaternary pulse position modulation (QPPM) for direct-detection, free-space laser communications. The special case of 16C4PPM is compared to QPPM in terms of data throughput and bit error rate (BER) performance for similar laser power and pulse duty cycle requirements. The increased throughput from CPPM enables the use of forward error corrective (FEC) encoding for a net decrease in the amount of laser power required for a given data throughput compared to uncoded QPPM. A specific, practical case of coded CPPM is shown to reduce the amount of power required to transmit and receive a given data sequence by at least 4.7 dB. Hardware techniques for maximum likelihood detection and symbol timing recovery are presented.

  5. On the controllability of bimodal piecewise linear systems

    OpenAIRE

    Çamlıbel, Mehmet Kanat; Heemels, W.P.M.H.; Schumacher, J.M.

    2004-01-01

    This paper studies controllability of bimodal systems that consist of two linear dynamics on each side of a given hyperplane. We show that the controllability properties of these systems can be inferred from those of linear systems for which the inputs are constrained in a certain way. Inspired by the earlier work on constrained controllability of linear systems, we derive necessary and sufficient conditions for a bimodal piecewise linear system to be controllable.

  6. A feasibility assessment of magnetic bearings for free-piston Stirling space power converters

    Energy Technology Data Exchange (ETDEWEB)

    Curwen, P.W.; Rao, D.K.; Wilson, D.S. [Mechanical Technology Inc., Latham, NY (United States)

    1992-06-01

    This report describes work performed by Mechanical Technology Incorporated (MTI) under NASA Contract NAS3-26061, {open_quotes}A Feasibility Assessment of Magnetic Bearings for Free-Piston Stirling Space Engines.{close_quotes} The work was performed over the period from July 1990 through August 1991. The objective of the effort was to assess the feasibility and efficacy of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery of the type currently being evaluated for possible use in future long-term space missions.

  7. A feasibility assessment of magnetic bearings for free-piston Stirling space power converters

    International Nuclear Information System (INIS)

    This report describes work performed by Mechanical Technology Incorporated (MTI) under NASA Contract NAS3-26061, open-quotes A Feasibility Assessment of Magnetic Bearings for Free-Piston Stirling Space Engines.close quotes The work was performed over the period from July 1990 through August 1991. The objective of the effort was to assess the feasibility and efficacy of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery of the type currently being evaluated for possible use in future long-term space missions

  8. A systems engineering approach to automated failure cause diagnosis in space power systems

    Science.gov (United States)

    Dolce, James L.; Faymon, Karl A.

    1987-01-01

    Automatic failure-cause diagnosis is a key element in autonomous operation of space power systems such as Space Station's. A rule-based diagnostic system has been developed for determining the cause of degraded performance. The knowledge required for such diagnosis is elicited from the system engineering process by using traditional failure analysis techniques. Symptoms, failures, causes, and detector information are represented with structured data; and diagnostic procedural knowledge is represented with rules. Detected symptoms instantiate failure modes and possible causes consistent with currently held beliefs about the likelihood of the cause. A diagnosis concludes with an explanation of the observed symptoms in terms of a chain of possible causes and subcauses.

  9. Test-retest reliability of resting-state magnetoencephalography power in sensor and source space.

    Science.gov (United States)

    Martín-Buro, María Carmen; Garcés, Pilar; Maestú, Fernando

    2016-01-01

    Several studies have reported changes in spontaneous brain rhythms that could be used as clinical biomarkers or in the evaluation of neuropsychological and drug treatments in longitudinal studies using magnetoencephalography (MEG). There is an increasing necessity to use these measures in early diagnosis and pathology progression; however, there is a lack of studies addressing how reliable they are. Here, we provide the first test-retest reliability estimate of MEG power in resting-state at sensor and source space. In this study, we recorded 3 sessions of resting-state MEG activity from 24 healthy subjects with an interval of a week between each session. Power values were estimated at sensor and source space with beamforming for classical frequency bands: delta (2-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), low beta (13-20 Hz), high beta (20-30 Hz), and gamma (30-45 Hz). Then, test-retest reliability was evaluated using the intraclass correlation coefficient (ICC). We also evaluated the relation between source power and the within-subject variability. In general, ICC of theta, alpha, and low beta power was fairly high (ICC > 0.6) while in delta and gamma power was lower. In source space, fronto-posterior alpha, frontal beta, and medial temporal theta showed the most reliable profiles. Signal-to-noise ratio could be partially responsible for reliability as low signal intensity resulted in high within-subject variability, but also the inherent nature of some brain rhythms in resting-state might be driving these reliability patterns. In conclusion, our results described the reliability of MEG power estimates in each frequency band, which could be considered in disease characterization or clinical trials.

  10. Wind speed analysis in La Vainest, Mexico: a bimodal probability distribution case

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo, O.A.; Borja, M.A. [Energias No Convencionales, Morelos (Mexico). Instituto de Investigaciones Electricas

    2004-08-01

    The statistical characteristics of the wind speed in La Vainest, Oxoic, Mexico, have been analyzed by using wind speed data recorded by Instituto de Investigaciones Electricas (IIE). By grouping the observations by annual, seasonal and wind direction, we show that the wind speed distribution, with calms included, is not represented by the typical two-parameter Weibull function. A mathematical formulation by using a bimodal Weibull and Weibull probability distribution function (PDF) has been developed to analyse the wind speed frequency distribution in that region. The model developed here can be applied for similar regions where the wind speed distribution presents a bimodal PDF. The two-parameter Weibull wind speed distribution must not be generalised, since it is not accurate to represent some wind regimes as the case of La Ventosa, Mexico. The analysis of wind data shows that computing the capacity factor for wind power plants to be installed in La Ventosa must be carded out by means of a bimodal PDF instead of the typical Weibull PDF. Otherwise, the capacity factor will be underestimated. (author)

  11. Space Weather Impact on the European Interconnected Power Transmission System at High Latitudes

    Science.gov (United States)

    Piccinelli, Roberta; Krausmann, Elisabeth

    2016-04-01

    High voltage power transmission grids can suffer outages or blackouts during geomagnetic storms (GMS). More specifically, GMS can inject geomagnetically induced currents (GICs) into the power network. Transformers were identified as the most vulnerable components of the power networks: GICs cause transformers to work in saturation regions generating voltage instabilities and eventually driving the system to collapse. Since GMS are expected to cause more pronounced disturbances at high latitudes, we addressed the effects of extreme GMS on the Scandinavian 400 kV interconnected power transmission grid, including Finland, Sweden and Norway. By applying extreme 100-year-benchmark scenarios, we analyzed potential space-weather triggered voltage instabilities in the power grid considering mono-phase transformers, which are known to be more vulnerable to GIC injection, and three-phase transformers, which are more resistant. We assumed that every node of the grid included either transformers of the mono-phase type, or three-phase transformers.Our simulations indicate that the three-phase configuration of the network is significantly more robust than the mono-phase one. Our study indicates that for a system with only three-phase transformers the likelihood of grid collapse is very low, and collapse only occurs for the worst-case scenario with extremely high geoelectric field intensities. In such a case, the increase in reactive power demand caused by transformer saturation is too high for the system to continue to provide power. Our results indicate that lines that experience higher reactive power losses during normal operation are more likely to increase losses during a GMS event. According to our study, the portion of the Scandinavian interconnected power transmission grid most vulnerable to extreme space weather is the part where the highest reactive losses in transmission lines and in voltage magnitudes are observed. This corresponds to the southern parts of Sweden and

  12. Space-time wind speed forecasting for improved power system dispatch

    KAUST Repository

    Zhu, Xinxin

    2014-02-27

    To support large-scale integration of wind power into electric energy systems, state-of-the-art wind speed forecasting methods should be able to provide accurate and adequate information to enable efficient, reliable, and cost-effective scheduling of wind power. Here, we incorporate space-time wind forecasts into electric power system scheduling. First, we propose a modified regime-switching, space-time wind speed forecasting model that allows the forecast regimes to vary with the dominant wind direction and with the seasons, hence avoiding a subjective choice of regimes. Then, results from the wind forecasts are incorporated into a power system economic dispatch model, the cost of which is used as a loss measure of the quality of the forecast models. This, in turn, leads to cost-effective scheduling of system-wide wind generation. Potential economic benefits arise from the system-wide generation of cost savings and from the ancillary service cost savings. We illustrate the economic benefits using a test system in the northwest region of the United States. Compared with persistence and autoregressive models, our model suggests that cost savings from integration of wind power could be on the scale of tens of millions of dollars annually in regions with high wind penetration, such as Texas and the Pacific northwest. © 2014 Sociedad de Estadística e Investigación Operativa.

  13. Power Management and Distribution Trades Studies for a Deep-Space Mission Scientific Spacecraft

    Science.gov (United States)

    Kimnach, Greg L.; Soltis, James V.

    2004-01-01

    As part of NASA's Project Prometheus, the Nuclear Systems Program, NASA GRC performed trade studies on the various Power Management and Distribution (PMAD) options for a deep-space scientific spacecraft which would have a nominal electrical power requirement of 100 kWe. These options included AC (1000Hz and 1500Hz and DC primary distribution at various voltages. The distribution system efficiency, reliability, mass, thermal, corona, space radiation levels and technology readiness of devices and components were considered. The final proposed system consisted of two independent power distribution channels, sourced by two 3-phase, 110 kVA alternators nominally operating at half-rated power. Each alternator nominally supplies 50kWe to one half of the ion thrusters and science modules but is capable of supplying the total power re3quirements in the event of loss of one alternator. This paper is an introduction to the methodology for the trades done to arrive at the proposed PMAD architecture. Any opinions expressed are those of the author(s) and do not necessarily reflect the views of Project Prometheus.

  14. Simulation and Control Lab Development for Power and Energy Management for NASA Manned Deep Space Missions

    Science.gov (United States)

    McNelis, Anne M.; Beach, Raymond F.; Soeder, James F.; McNelis, Nancy B.; May, Ryan; Dever, Timothy P.; Trase, Larry

    2014-01-01

    The development of distributed hierarchical and agent-based control systems will allow for reliable autonomous energy management and power distribution for on-orbit missions. Power is one of the most critical systems on board a space vehicle, requiring quick response time when a fault or emergency is identified. As NASAs missions with human presence extend beyond low earth orbit autonomous control of vehicle power systems will be necessary and will need to reliably function for long periods of time. In the design of autonomous electrical power control systems there is a need to dynamically simulate and verify the EPS controller functionality prior to use on-orbit. This paper presents the work at NASA Glenn Research Center in Cleveland, Ohio where the development of a controls laboratory is being completed that will be utilized to demonstrate advanced prototype EPS controllers for space, aeronautical and terrestrial applications. The control laboratory hardware, software and application of an autonomous controller for demonstration with the ISS electrical power system is the subject of this paper.

  15. Lightweight Damage Tolerant Radiators for In-Space Nuclear Electric Power and Propulsion

    Science.gov (United States)

    Craven, Paul; SanSoucie, Michael P.; Tomboulian, Briana; Rogers, Jan; Hyers, Robert

    2014-01-01

    Nuclear electric propulsion (NEP) is a promising option for high-speed in-space travel due to the high energy density of nuclear power sources and efficient electric thrusters. Advanced power conversion technologies for converting thermal energy from the reactor to electrical energy at high operating temperatures would benefit from lightweight, high temperature radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature and mass. An effort at the NASA Marshall Space Flight Center to show that woven high thermal conductivity carbon fiber mats can be used to replace standard metal and composite radiator fins to dissipate waste heat from NEP systems is ongoing. The goals of this effort are to demonstrate a proof of concept, to show that a significant improvement of specific power (power/mass) can be achieved, and to develop a thermal model with predictive capabilities. A description of this effort is presented.

  16. A Space Cam Mechanism for Power Transmission of an Opposite-cylinder Piston Engine

    OpenAIRE

    Zhang Haoyue; Xu Xiaojun; Zhang Lei; Zhou Faliang

    2015-01-01

    For the purpose of improving the engine’s power density, we put forward a new type of power transmission mechanism which is used for opposed-cylinder engine. The gas pressure acts on the cam through the piston and push rod, and the spindle rotation of external is driven by the cam. The design of spatial cam work surface is completed by using the enveloping theory of a family of space curves, the force between roller and cam is analyzed using dynamic analysis software. Under the condition of e...

  17. The Use of Software Agents for Autonomous Control of a DC Space Power System

    Science.gov (United States)

    May, Ryan D.; Loparo, Kenneth A.

    2014-01-01

    In order to enable manned deep-space missions, the spacecraft must be controlled autonomously using on-board algorithms. A control architecture is proposed to enable this autonomous operation for an spacecraft electric power system and then implemented using a highly distributed network of software agents. These agents collaborate and compete with each other in order to implement each of the control functions. A subset of this control architecture is tested against a steadystate power system simulation and found to be able to solve a constrained optimization problem with competing objectives using only local information.

  18. Frequency Domain Modeling and Simulation of DC Power Electronic Systems Using Harmonic State Space (HSS) Method

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Blaabjerg, Frede;

    2016-01-01

    For the efficiency and simplicity of electric systems, the dc power electronic systems are widely used in a variety of applications such as electric vehicles, ships, aircraft and also in homes. In these systems, there could be a number of dynamic interactions and frequency coupling between network...... with different switching frequency or harmonics from ac-dc converters makes that harmonics and frequency coupling are both problems of ac system and challenges of dc system. This paper presents a modeling and simulation method for a large dc power electronic system by using Harmonic State Space (HSS) modeling...

  19. Review of the Tri-Agency Space Nuclear Reactor Power System Technology Program

    International Nuclear Information System (INIS)

    The Space Nuclear Reactor Power System Technology Program designated SP-100 was created in 1983 by NASA, the U.S. Department of Defense, and the Defense Advanced Research Projects Agency. Attention is presently given to the development history of SP-100 over the course of its first year, in which it has been engaged in program objectives definition, the analysis of civil and military missions, nuclear power system functional requirements definition, concept definition studies, the selection of primary concepts for technology feasibility validation, and the acquisition of initial experimental and analytical results

  20. First observations of proton induced power MOSFET burnout in space: The CRUX experiment on APEX

    International Nuclear Information System (INIS)

    Ground testing has shown that power MOSFETs are susceptible to burnout when irradiated with heavy ions and protons. Satellite data from the Cosmic Ray Upset Experiment (CRUX) demonstrate that single event burnouts (SEBs) on 100-volt and 200-volt power MOSFETs can and do occur in space. Few SEBs occurred on the 100-volt devices, all at L1 > 3. The 200-volt devices experience many SEBs at L D-S) was greater than 85% of maximum rated voltage. CRUX flight lot devices were ground tested with protons. The SEB rates calculated with the cross-sections from the ground tests show close agreement with the measured rates

  1. A Perturbative Approach to the Redshift Space Power Spectrum: Beyond the Standard Model

    CERN Document Server

    Bose, Benjamin

    2016-01-01

    We develop a code to produce the power spectrum in redshift space based on standard perturbation theory (SPT) at 1-loop order. The code can be applied to a wide range of modified gravity and dark energy models using a recently proposed numerical method by A.Taruya. This includes Horndeski's theory with a general potential, which accommodates both chameleon and Vainshtein screening mechanisms and provides a non-linear extension of the effective theory of dark energy up to third order. Focus is on a recent non-linear model of the redshift space power spectrum which has been shown to model the anisotropy very well at relevant scales for the SPT framework, as well as capturing relevant non-linear effects typical of modified gravity theories. We provide consistency checks of the code against established results and elucidate it's application within the light of upcoming high precision RSD data.

  2. Modeling and Simulation of DC Power Electronics Systems Using Harmonic State Space (HSS) Method

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth;

    2015-01-01

    For the efficiency and simplicity of electric systems, the dc based power electronics systems are widely used in variety applications such as electric vehicles, ships, aircrafts and also in homes. In these systems, there could be a number of dynamic interactions between loads and other dc......-dc converters. Hence, in order to analyze these problems, simulations are required to consider such a complex system, which typically are time consuming. However, simulations in the time domain may increase the calculation time and computer memory. Even though several simplified approaches may be developed...... based on the state-space averaging and generalized averaging, these also have limitations to show the same results as with the non-linear time domain simulations. This paper presents a modeling and simulation method for a large dc power electronic system by using Harmonic State Space (HSS) modeling...

  3. A perturbative approach to the redshift space power spectrum: beyond the Standard Model

    Science.gov (United States)

    Bose, Benjamin; Koyama, Kazuya

    2016-08-01

    We develop a code to produce the power spectrum in redshift space based on standard perturbation theory (SPT) at 1-loop order. The code can be applied to a wide range of modified gravity and dark energy models using a recently proposed numerical method by A.Taruya to find the SPT kernels. This includes Horndeski's theory with a general potential, which accommodates both chameleon and Vainshtein screening mechanisms and provides a non-linear extension of the effective theory of dark energy up to the third order. Focus is on a recent non-linear model of the redshift space power spectrum which has been shown to model the anisotropy very well at relevant scales for the SPT framework, as well as capturing relevant non-linear effects typical of modified gravity theories. We provide consistency checks of the code against established results and elucidate its application within the light of upcoming high precision RSD data.

  4. Economic analysis of the design and fabrication of a space qualified power system

    Science.gov (United States)

    Ruselowski, G.

    1980-01-01

    An economic analysis was performed to determine the cost of the design and fabrication of a low Earth orbit, 2 kW photovoltaic/battery, space qualified power system. A commercially available computer program called PRICE (programmed review of information for costing and evaluation) was used to conduct the analysis. The sensitivity of the various cost factors to the assumptions used is discussed. Total cost of the power system was found to be $2.46 million with the solar array accounting for 70.5%. Using the assumption that the prototype becomes the flight system, 77.3% of the total cost is associated with manufacturing. Results will be used to establish whether the cost of space qualified hardware can be reduced by the incorporation of commercial design, fabrication, and quality assurance methods.

  5. The Bimodality Index: A Criterion for Discovering and Ranking Bimodal Signatures from Cancer Gene Expression Profiling Data

    OpenAIRE

    Jing Wang; Sijin Wen; Fraser Symmans, W; Lajos Pusztai; Coombes, Kevin R.

    2009-01-01

    Motivation: Identifying genes with bimodal expression patterns from large-scale expression profiling data is an important analytical task. Model-based clustering is popular for this purpose. That technique commonly uses the Bayesian information criterion (BIC) for model selection. In practice, however, BIC appears to be overly sensitive and may lead to the identification of bimodally expressed genes that are unreliable or not clinically useful. We propose using a novel criterion, the bimodali...

  6. Performance predictions and measurements for space-power-system heat pipes

    International Nuclear Information System (INIS)

    High temperature liquid metal heat pipes designed for space power systems have been analyzed and tested. Three wick designs are discussed and a design rationale for the heat pipe is provided. Test results on a molybdenum, annular wick heat pipe are presented. Performance limitations due to boiling and capillary limits are presented. There is evidence that the vapor flow in the adiabatic section is turbulent and that the transition Reynolds number is 4000

  7. Status of several Stirling loss characterization efforts and their significance for Stirling space power development

    Science.gov (United States)

    Tew, Roy C., Jr.

    1988-01-01

    NASA-Lewis and other U.S. Government agencies have supported experimental and analytical programs for the characterization of Stirling cycle engines' thermodynamic losses, with a view to the improvement of Stirling engine design capabilities. The Space Power Demonstrator Engine is noted to have benefited from these efforts; test data and model predictions suggest that even greater performance improvements would be obtainable through additional modifications of engine regenerator and heater hardware.

  8. Power beaming, orbital debris removal, and other space applications of a ground based free electron laser

    OpenAIRE

    Wilder, Benjamin A.

    2010-01-01

    When compared to other laser types, the Free Electron Laser (FEL) provides optimal beam quality for successful atmospheric propagation. Assuming the development and deployment of a mega-watt (MW) class, ground or sea based FEL, this thesis investigates several proposed space applications including power beaming to satellites, the removal of orbital debris, laser illumination of objects within the solar system for scientific study, and interstellar laser illumination for communications. Po...

  9. Power and space in the drone age: a literature review and politico-geographical research agenda

    OpenAIRE

    Klauser, F.; Pedrozo, S.

    2015-01-01

    Camera-fitted drones are now easily affordable to the public. The resulting proliferation of the aerial gaze raises a series of critical issues, ranging from the changing regimes of visibility across urban and rural space to the novel risks and dynamics of control implied by current drone developments. The paper argues that a distinct "spatial curiosity" and "power sensitivity" are required if we are to grasp and explore these issues. On this basis, and grounded in an ext...

  10. Space debris removal using a high-power ground-based laser

    Energy Technology Data Exchange (ETDEWEB)

    Monroe, D.K.

    1993-12-31

    The feasibility and practicality of using a ground-based laser (GBL) to remove artificial space debris is examined. Physical constraints indicate that a reactor-pumped laser (RPL) may be best suited for this mission, because of its capabilities for multimegawatt output long run-times, and near-diffraction-limited initial beams. Simulations of a laser-powered debris removal system indicate that a 5-MW RPL with a 10-meter-diameter beam director and adaptive optics capabilities can deorbit 1-kg debris from space station altitudes. Larger debris can be deorbited or transferred to safer orbits after multiple laser engagements. A ground-based laser system may be the only realistic way to access and remove some 10,000 separate objects, having velocities in the neighborhood of 7 km/sec, and being spatially distributed over some 10{sup 10} km{sup 3} of space.

  11. Passive shielding effect on space profile of magnetic field emissions for wireless power transfer to vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Batra, T., E-mail: tba@et.aau.dk; Schaltz, E. [Department of Energy Technology, Aalborg University, Aalborg 9220 (Denmark)

    2015-05-07

    Magnetic fields emitted by wireless power transfer systems are of high importance with respect to human safety and health. Aluminum and ferrite are used in the system to reduce the fields and are termed as passive shielding. In this paper, the influence of these materials on the space profile has been investigated with the help of simulations on Comsol for the four possible geometries—no shielding, ferrite, aluminum, and full shielding. As the reflected impedance varies for the four geometries, the primary current is varied accordingly to maintain constant power transfer to the secondary side. Surrounding magnetic field plots in the vertical direction show that maxima's of the two coils for the no shielding geometry are centered at the respective coils and for the remaining three are displaced closer to each other. This closeness would lead to more effective addition of the two coil fields and an increase in the resultant field from space point of view. This closeness varies with distance in the horizontal direction and vertical gap between the coils and is explained in the paper. This paper provides a better understanding of effect of the passive shielding materials on the space nature of magnetic fields for wireless power transfer for vehicle applications.

  12. Passive shielding effect on space profile of magnetic field emissions for wireless power transfer to vehicles

    International Nuclear Information System (INIS)

    Magnetic fields emitted by wireless power transfer systems are of high importance with respect to human safety and health. Aluminum and ferrite are used in the system to reduce the fields and are termed as passive shielding. In this paper, the influence of these materials on the space profile has been investigated with the help of simulations on Comsol for the four possible geometries—no shielding, ferrite, aluminum, and full shielding. As the reflected impedance varies for the four geometries, the primary current is varied accordingly to maintain constant power transfer to the secondary side. Surrounding magnetic field plots in the vertical direction show that maxima's of the two coils for the no shielding geometry are centered at the respective coils and for the remaining three are displaced closer to each other. This closeness would lead to more effective addition of the two coil fields and an increase in the resultant field from space point of view. This closeness varies with distance in the horizontal direction and vertical gap between the coils and is explained in the paper. This paper provides a better understanding of effect of the passive shielding materials on the space nature of magnetic fields for wireless power transfer for vehicle applications

  13. Space Solar Power Multi-body Dynamics and Controls, Concepts for the Integrated Symmetrical Concentrator Configuration

    Science.gov (United States)

    Glaese, John R.; McDonald, Emmett J.

    2000-01-01

    Orbiting space solar power systems are currently being investigated for possible flight in the time frame of 2015-2020 and later. Such space solar power (SSP) satellites are required to be extremely large in order to make practical the process of collection, conversion to microwave radiation, and reconversion to electrical power at earth stations or at remote locations in space. These large structures are expected to be very flexible presenting unique problems associated with their dynamics and control. The purpose of this project is to apply the expanded TREETOPS multi-body dynamics analysis computer simulation program (with expanded capabilities developed in the previous activity) to investigate the control problems associated with the integrated symmetrical concentrator (ISC) conceptual SSP system. SSP satellites are, as noted, large orbital systems having many bodies (perhaps hundreds) with flexible arrays operating in an orbiting environment where the non-uniform gravitational forces may be the major load producers on the structure so that a high fidelity gravity model is required. The current activity arises from our NRA8-23 SERT proposal. Funding, as a supplemental selection, has been provided by NASA with reduced scope from that originally proposed.

  14. Space- and Earth-based solar power for the growing energy needs of future generations

    Science.gov (United States)

    Seboldt, Wolfgang

    2004-08-01

    The future global supply with terrestrial regenerative energies (solar, wind, hydro and geothermal) is discussed and compared to energy from space via Solar Power Satellites. It is shown that both have the potential to satisfy global energy needs. Obviously, regenerative solutions must be taken into account and installed with higher priority within the next decades to reduce the deposition of CO 2 into the atmosphere. This is absolutely necessary to stabilize the climate. In addition, the threatening depletion of fossil and nuclear fuels in the long run forces research into alternative solutions. Concerning solar power from space, the recently developed concepts for light-weight inflatable and deployable solar arrays/concentrators—like in the NASA 'Sun Tower' and the 'European Sail Tower SPS'—are reviewed and major problems with wireless power transmission are discussed. Compared to earlier concepts the designs have the potential to reduce significantly the masses and, thus, the costs. But the technological demands and operational uncertainties are still immense. Anyhow, major progress with cost reductions of one to two orders of magnitude is required for the space option to become competitive with terrestrial regenerative options.

  15. Optimisation of functionally gradated material thermoelectric cooler for the solar space power system

    International Nuclear Information System (INIS)

    New solar space power system (SSPS) is designed for harvesting solar energy in space and its conversion and transmission to the Earth using laser radiation. This laser system needs to be kept within constant temperature range and the cooling system should have no moving parts, which makes a Peltier device (thermoelectric cooling; TEC) to be a viable option. The challenge of the TEC system is low coefficient of performance and need of a huge radiator to dissipate excess low-grade heat into the space. The present study analyses and optimizes the TEC system for SSPS with use of functionally gradated material (FGM) semiconductors. The performance of FGM semiconductors is calculated against set of objectives and constrains, taking into account temperature-dependent properties. Application of FGM vs. homogeneous TEC materials allows increase of COP by several times, halving current to form-factor ratio. - Highlights: •Heat management concept for new solar space power system (SSPS) has been analysed. •The thermoelectric cooling was designed using functionally gradated materials (FGM). •Optimal current/form-factor ratio could be decreased almost twice for FGM case. •Higher COP values (even 36 times) could be obtained vs. homogeneous materials. •The results demonstrate the benefits of FGM solutions for “smart” thermal designs

  16. Gaseous-fuel nuclear reactor research for multimegawatt power in space

    Science.gov (United States)

    Thom, K.; Schneider, R. T.; Helmick, H. H.

    1977-01-01

    In the gaseous-fuel reactor concept, the fissile material is contained in a moderator-reflector cavity and exists in the form of a flowing gas or plasma separated from the cavity walls by means of fluid mechanical forces. Temperatures in excess of structural limitations are possible for low-specific-mass power and high-specific-impulse propulsion in space. Experiments have been conducted with a canister filled with enriched UF6 inserted into a beryllium-reflected cavity. A theoretically predicted critical mass of 6 kg was measured. The UF6 was also circulated through this cavity, demonstrating stable reactor operation with the fuel in motion. Because the flowing gaseous fuel can be continuously processed, the radioactive waste in this type of reactor can be kept small. Another potential of fissioning gases is the possibility of converting the kinetic energy of fission fragments directly into coherent electromagnetic radiation, the nuclear pumping of lasers. Numerous nuclear laser experiments indicate the possibility of transmitting power in space directly from fission energy. The estimated specific mass of a multimegawatt gaseous-fuel reactor power system is from 1 to 5 kg/kW while the companion laser-power receiver station would be much lower in specific mass.

  17. The potential impact of new power system technology on the design of a manned Space Station

    Science.gov (United States)

    Fordyce, J. S.; Schwartz, H. J.

    1984-01-01

    Larger, more complex spacecraft of the future such as a manned Space Station will require electric power systems of 100 kW and more, orders of magnitude greater than the present state of the art. Power systems at this level will have a significant impact on the spacecraft design. Historically, long-lived spacecraft have relied on silicon solar cell arrays, a nickel-cadmium storage battery and operation at 28 V dc. These technologies lead to large array areas and heavy batteries for a Space Station application. This, in turn, presents orbit altitude maintenance, attitude control, energy management and launch weight and volume constraints. Size (area) and weight of such a power system can be reduced if new higher efficiency conversion and lighter weight storage technologies are used. Several promising technology options including concentrator solar photovoltaic arrays, solar thermal dynamic and ultimately nuclear dynamic systems to reduce area are discussed. Also, higher energy storage systems such as nickel-hydrogen and the regenerative fuel cell (RFC) and higher voltage power distribution which add system flexibility, simplicity and reduce weight are examined. Emphasis placed on the attributes and development status of emerging technologies that are sufficiently developed so that they could be available for flight use in the early to mid 1990's.

  18. The NASA-Lewis program on fusion energy for space power and propulsion, 1958-1978

    Science.gov (United States)

    Schulze, Norman R.; Roth, J. Reece

    1990-01-01

    An historical synopsis is provided of the NASA-Lewis research program on fusion energy for space power and propulsion systems. It was initiated to explore the potential applications of fusion energy to space power and propulsion systems. Some fusion related accomplishments and program areas covered include: basic research on the Electric Field Bumpy Torus (EFBT) magnetoelectric fusion containment concept, including identification of its radial transport mechanism and confinement time scaling; operation of the Pilot Rig mirror machine, the first superconducting magnet facility to be used in plasma physics or fusion research; operation of the Superconducting Bumpy Torus magnet facility, first used to generate a toroidal magnetic field; steady state production of neutrons from DD reactions; studies of the direct conversion of plasma enthalpy to thrust by a direct fusion rocket via propellant addition and magnetic nozzles; power and propulsion system studies, including D(3)He power balance, neutron shielding, and refrigeration requirements; and development of large volume, high field superconducting and cryogenic magnet technology.

  19. The scalability of OTR (out-of-core thermionic reactor) space nuclear power systems

    Energy Technology Data Exchange (ETDEWEB)

    Gallup, D.R.

    1990-03-01

    In this document, masses of the STAR-C power system and an optimized out-of-core thermionic reactor (OTR) power system versus power level are investigated. The impacts of key system parameters on system performance are also addressed. The STAR-C is mass competitive below about 15 kWe, but at higher power levels the scalability is relatively poor. An optimized OR is the least massive space nuclear power system below 25 kWe, and scales well to 50 kWe. The system parameters that have a significant impact on the scalability of the STAR-C are core thermal flux, thermionic converter efficiency, and core length to diameter ratio. The emissivity of the core surface is shown to be a relatively unimportant parameter. For an optimized OR power system, the most significant system parameter is the maximum allowable fuel temperature. It is also shown that if advanced radiation-hardened electronics are used in the satellite payload, a very large mass savings is realized. 10 refs., 23 figs., 7 tabs.

  20. Multi-MW Closed Cycle MHD Nuclear Space Power Via Nonequilibrium He/Xe Working Plasma

    Science.gov (United States)

    Litchford, Ron J.; Harada, Nobuhiro

    2011-01-01

    Prospects for a low specific mass multi-megawatt nuclear space power plant were examined assuming closed cycle coupling of a high-temperature fission reactor with magnetohydrodynamic (MHD) energy conversion and utilization of a nonequilibrium helium/xenon frozen inert plasma (FIP). Critical evaluation of performance attributes and specific mass characteristics was based on a comprehensive systems analysis assuming a reactor operating temperature of 1800 K for a range of subsystem mass properties. Total plant efficiency was expected to be 55.2% including plasma pre-ionization power, and the effects of compressor stage number, regenerator efficiency and radiation cooler temperature on plant efficiency were assessed. Optimal specific mass characteristics were found to be dependent on overall power plant scale with 3 kg/kWe being potentially achievable at a net electrical power output of 1-MWe. This figure drops to less than 2 kg/kWe when power output exceeds 3 MWe. Key technical issues include identification of effective methods for non-equilibrium pre-ionization and achievement of frozen inert plasma conditions within the MHD generator channel. A three-phase research and development strategy is proposed encompassing Phase-I Proof of Principle Experiments, a Phase-II Subscale Power Generation Experiment, and a Phase-III Closed-Loop Prototypical Laboratory Demonstration Test.

  1. Short-term wind power forecasting: probabilistic and space-time aspects

    DEFF Research Database (Denmark)

    Tastu, Julija

    a statistical model which would improve the quality of state-of-the-art prediction methods by accounting for the fact that forecasts errors made by such locally-optimized forecasting methods propagate in space and in time under the influence of prevailing weather conditions. Subsequently, the extension from......Optimal integration of wind energy into power systems calls for high quality wind power predictions. State-of-the-art forecasting systems typically provide forecasts for every location individually, without taking into account information coming from the neighbouring territories. It is however...... intuitively expected that owing to the inertia in meteorological systems such local approach to power forecasting is sub-optimal. Indeed, errors in meteorological forecasts might translate to fronts of imbalances, i.e. taking the form of a band of forecast errors propagating across entire regions. My research...

  2. Charge generation by heavy ions in power MOSFETs, burnout space predictions, and dynamic SEB sensitivity

    Science.gov (United States)

    Stassinopoulos, E. G.; Brucker, G. J.; Calvel, P.; Baiget, A.; Peyrotte, C.; Gaillard, R.

    1992-01-01

    The transport, energy loss, and charge production of heavy ions in the sensitive regions of IRF 150 power MOSFETs are described. The dependence and variation of transport parameters with ion type and energy relative to the requirements for single event burnout in this part type are discussed. Test data taken with this power MOSFET are used together with analyses by means of a computer code of the ion energy loss and charge production in the device to establish criteria for burnout and parameters for space predictions. These parameters are then used in an application to predict burnout rates in a geostationary orbit for power converters operating in a dynamic mode. Comparisons of rates for different geometries in simulating SEU (single event upset) sensitive volumes are presented.

  3. Optimal Solution of the EPED Problem Considering Space Areas of HSABC on the Power System Operation

    Directory of Open Access Journals (Sweden)

    A.N. Afandi

    2015-10-01

    Full Text Available Recently, the emission problem and economic dispatch (EPED becomes crucial aspects in the power system operation. These aspects are measured technically using financial payments as the total operating cost based on pollutant productions and fuel consumptions throughout individual costs of generating units based on a committed power output to meet a load demand. This paper introduces the newest artificial intelligent computation, harvest season artificial bee colony (HSABC algorithm, for determining the optimal solution of the EPED based on the operating cost function using IEEE-62 bus system with various operational constraints. Results obtained show that HSABC has short time computations and fast convergences while space areas give different implications on performances. The optimal solution produces various individual power outputs, pollutants, and costs.

  4. Localization ability with bimodal hearing aids and bilateral cochlear implants

    Science.gov (United States)

    Seeber, Bernhard U.; Baumann, Uwe; Fastl, Hugo

    2004-09-01

    After successful cochlear implantation in one ear, some patients continue to use a hearing aid at the contralateral ear. They report an improved reception of speech, especially in noise, as well as a better perception of music when the hearing aid and cochlear implant are used in this bimodal combination. Some individuals in this bimodal patient group also report the impression of an improved localization ability. Similar experiences are reported by the group of bilateral cochlear implantees. In this study, a survey of 11 bimodally and 4 bilaterally equipped cochlear implant users was carried out to assess localization ability. Individuals in the bimodal implant group were all provided with the same type of hearing aid in the opposite ear, and subjects in the bilateral implant group used cochlear implants of the same manufacturer on each ear. Subjects adjusted the spot of a computer-controlled laser-pointer to the perceived direction of sound incidence in the frontal horizontal plane by rotating a trackball. Two subjects of the bimodal group who had substantial residual hearing showed localization ability in the bimodal configuration, whereas using each single device only the subject with better residual hearing was able to discriminate the side of sound origin. Five other subjects with more pronounced hearing loss displayed an ability for side discrimination through the use of bimodal aids, while four of them were already able to discriminate the side with a single device. Of the bilateral cochlear implant group one subject showed localization accuracy close to that of normal hearing subjects. This subject was also able to discriminate the side of sound origin using the first implanted device alone. The other three bilaterally equipped subjects showed limited localization ability using both devices. Among them one subject demonstrated a side-discrimination ability using only the first implanted device.

  5. Preliminary Results From NASA's Space Solar Power Exploratory Research and Technology Program

    Science.gov (United States)

    Howell, Joe T.; Mankins, John C.

    2000-01-01

    Large solar power satellite (SPS) systems that might provide base load power into terrestrial markets were examined extensively in the 1970s by the US Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). Following a hiatus of about 15 years, the subject of space solar power (SSP) was reexamined by NASA from 1995-1997 in the "fresh look" study, and during 1998 in an SSP "concept definition study". As a result of these efforts, during 1999-2000, NASA has been conducting the SSP Exploratory Research and Technology (SERT) program. The goal of the SERT activity has been to conduct preliminary strategic technology research and development to enable large, multi-megawatt SSP systems and wireless power transmission (WPT) for government missions and commercial markets (in-space and terrestrial). In pursuing that goal, the SERT: (1) refined and modeled systems approaches for the utilization of SSP concepts and technologies, ranging from the near-term (e.g., for space science, exploration and commercial space applications) to the far-term (e.g., SSP for terrestrial markets), including systems concepts, architectures, technology, infrastructure (e.g. transportation), and economics; (2) conducted technology research, development and demonstration activities to produce "proof-of-concept" validation of critical SSP elements for both nearer and farther-term applications; and (3) engendered the beginnings of partnerships (nationally and internationally) that could be expanded, as appropriate, to pursue later SSP technology and applications. Through these efforts, the SERT should allow better informed future decisions regarding further SSP and related technology research and development investments by both NASA and prospective partners, and guide further definition of technology roadmaps - including performance objectives, resources and schedules, as well as "multi-purpose" applications (e.g., commerce, science, and government). This paper

  6. High-Efficiency, High-Power Ka-Band Elliptic-Beam Traveling-Wave-Tube Amplifier for Long-Range Space RF Telecommunications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Space telecommunications require amplifiers that are efficient, high-power, wideband, small, lightweight, and highly reliable. Currently, helix traveling wave tube...

  7. U.S. Space Radioisotope Power Systems and Applications: Past, Present and Future

    Science.gov (United States)

    Cataldo, Robert L.; Bennett, Gary L.

    2011-01-01

    Radioisotope power systems (RPS) have been essential to the U.S. exploration of outer space. RPS have two primary uses: electrical power and thermal power. To provide electrical power, the RPS uses the heat produced by the natural decay of a radioisotope (e.g., plutonium-238 in U.S. RPS) to drive a converter (e.g., thermoelectric elements or Stirling linear alternator). As a thermal power source the heat is conducted to whatever component on the spacecraft needs to be kept warm; this heat can be produced by a radioisotope heater unit (RHU) or by using the excess heat of a radioisotope thermoelectric generator (RTG). As of 2010, the U.S. has launched 41 RTGs on 26 space systems. These space systems have ranged from navigational satellites to challenging outer planet missions such as Pioneer 10/11, Voyager 1/2, Galileo, Ulysses, Cassini and the New Horizons mission to Pluto. In the fall of 2011, NASA plans to launch the Mars Science Laboratory (MSL) that will employ the new Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) as the principal power source. Hundreds of radioisotope heater units (RHUs) have been launched to provide warmth to Apollo 11, used to provide heating of critical components in a seismic experiment package, Pioneer 10/11, Voyager 1/2, Galileo, Cassini, Mars Pathfinder, MER rovers, etc. to provide temperature control to critical spacecraft electronics and other mechanical devices such as propulsion system propellant valves. A radioisotope (electrical) power source or system (RPS) consists of three basic elements: (1) the radioisotope heat source that provides the thermal power, (2) the converter that transforms the thermal power into electrical power and (3) the heat rejection radiator. Figure 1 illustrates the basic features of an RPS. The idea of a radioisotope power source follows closely after the early investigations of radioactivity by researchers such as Henri Becquerel (1852-1908), Marie Curie (1867-1935), Pierre Curie (1859

  8. An economic analysis of a commercial approach to the design and fabrication of a space power system

    Science.gov (United States)

    Putney, Z.; Been, J.

    1979-01-01

    This paper discusses a commercial approach to the design and fabrication of an economical space power system. With the advent of the space shuttle, steps can be taken to back away from the presently used space qualified approach in order to reduce cost of space hardware by incorporating, where possible, commercial design, fabrication, and quality assurance methods. Cost reductions are projected through the conceptual design of a 2 kW space power system built with the capability for having serviceability. The approach to system costing that has been used takes into account both the constraints of operation in space and commercial production engineering approaches. The cost of this power system reflects a variety of cost/benefit tradeoffs that would reduce system cost as a function of system reliability requirements, complexity, and the impact of rigid specifications. A breakdown of the system design, documentation, fabrication and reliability and quality assurance cost estimates are detailed.

  9. Type Ia Supernovae with Bi-Modal Explosions Are Common -- Possible Smoking Gun for Direct Collisions of White-Dwarfs

    CERN Document Server

    Dong, Subo; Kushnir, Doron; Prieto, Jose L

    2014-01-01

    We discover clear doubly-peaked line profiles in 3 out of ~20 type Ia supernovae (SNe Ia) with high-quality nebular-phase spectra. The profiles are consistently present in three well-separated Co/Fe emission features. The two peaks are respectively blue-shifted and red-shifted relative to the host galaxies and are separated by ~5000 km/s. The doubly-peaked profiles directly reflect a bi-modal velocity distribution of the radioactive Ni56 in the ejecta that powers the emission of these SNe. Due to their random orientations, only a fraction of SNe with intrinsically bi-modal velocity distributions will appear as doubly-peaked spectra. Therefore SNe with intrinsic bi-modality are likely common, especially among the SNe in the low-luminosity (~40% of all SNe Ia) part on the Philips relation \\Delta m15(B) >~ 1.3. Bi-modality is naturally expected from direct collisions of white dwarfs (WDs) due to the detonation of both WDs and is demonstrated in a 3D 0.64 M_Sun-0.64 M_Sun WD collision simulation.

  10. Direct Energy Conversion for Low Specific Mass In-Space Power and Propulsion

    Science.gov (United States)

    Scott, John H.; George, Jeffrey A.; Tarditi, Alfonso G.

    2013-01-01

    "Changing the game" in space exploration involves changing the paradigm for the human exploration of the Solar System, e.g, changing the human exploration of Mars from a three-year epic event to an annual expedition. For the purposes of this assessment an "annual expedition" capability is defined as an in-space power & propulsion system which, with launch mass limits as defined in NASA s Mars Architecture 5.0, enables sending a crew to Mars and returning them after a 30-day surface stay within one year, irrespective of planetary alignment. In this work the authors intend to show that obtaining this capability requires the development of an in-space power & propulsion system with an end-to-end specific mass considerably less than 3 kg/kWe. A first order energy balance analysis reveals that the technologies required to create a system with this specific mass include direct energy conversion and nuclear sources that release energy in the form of charged particle beams. This paper lays out this first order approximation and details these conclusions.

  11. Monolithic fiber end cap collimator for high-power free-space fiber-fiber coupling.

    Science.gov (United States)

    Zhou, Xuanfeng; Chen, Zilun; Wang, Zefeng; Hou, Jing

    2016-05-20

    In this paper, we present the design, construction, and testing of a monolithic fiber end cap collimator for high-power free-space fiber-fiber coupling applications. The collimator is based on a large-sized fiber end cap and a spherical lens design on the output facet. Values of the spot size and working distance are theoretically analyzed based on Gaussian approximation and ABCD transmission matrix. The free-space fiber-fiber coupling process is also analyzed for different lens curvature radii and coupling distances. In the experiment, a collimated laser beam is obtained with Rayleigh length of about 400 mm. A high-power laser with 1.1 kW output is tested on the end cap collimator, which only heats up by 7°C at the output facet without active cooling. Free-space fiber-fiber coupling between two 20/400 μm fibers is achieved based on these collimators, with measured coupling loss lower than 0.3 dB. PMID:27411125

  12. Nuclear safety, legal aspects and policy recommendations for space nuclear power and propulsion systems

    Science.gov (United States)

    Lenard, Roger X.

    2006-07-01

    This paper represents a chapter of the International Astronautical Academy's Cosmic Study on safety, legal and policy aspects of advanced (specifically nuclear) power and propulsions systems; it is divided into several sections. The first section covers a series of findings and develops a set of recommendations for operations of space reactor systems in a safe, environmentally compliant fashion. The second section develops a generic set of hazard scenarios that might be experienced by a space nuclear system with emphasis on different methods under which such a system could be engaged, such as surface power, in-space nuclear electric or nuclear thermal propulsion. The third section develops these into test and analysis efforts that would likely be conducted. Risk areas with engineering judgment set toward frequency and consequences. The fourth section identifies what probable technology limits might be experienced by nuclear propulsion systems and the exploration limitations these technology restrictions might impose. Where the IAA recommends a change, the IAA leadership should be prepared to work with national and international bodies to implement the desired modifications.

  13. GPS-Like Phasing Control of the Space Solar Power System Transmission Array

    Science.gov (United States)

    Psiaki, Mark L.

    2003-01-01

    The problem of phasing of the Space Solar Power System's transmission array has been addressed by developing a GPS-like radio navigation system. The goal of this system is to provide power transmission phasing control for each node of the array that causes the power signals to add constructively at the ground reception station. The phasing control system operates in a distributed manner, which makes it practical to implement. A leader node and two radio navigation beacons are used to control the power transmission phasing of multiple follower nodes. The necessary one-way communications to the follower nodes are implemented using the RF beacon signals. The phasing control system uses differential carrier phase relative navigation/timing techniques. A special feature of the system is an integer ambiguity resolution procedure that periodically resolves carrier phase cycle count ambiguities via encoding of pseudo-random number codes on the power transmission signals. The system is capable of achieving phasing accuracies on the order of 3 mm down to 0.4 mm depending on whether the radio navigation beacons operate in the L or C bands.

  14. Power and Performance Trade-offs for Space Time Adaptive Processing

    Energy Technology Data Exchange (ETDEWEB)

    Gawande, Nitin A.; Manzano Franco, Joseph B.; Tumeo, Antonino; Tallent, Nathan R.; Kerbyson, Darren J.; Hoisie, Adolfy

    2015-07-27

    Computational efficiency – performance relative to power or energy – is one of the most important concerns when designing RADAR processing systems. This paper analyzes power and performance trade-offs for a typical Space Time Adaptive Processing (STAP) application. We study STAP implementations for CUDA and OpenMP on two computationally efficient architectures, Intel Haswell Core I7-4770TE and NVIDIA Kayla with a GK208 GPU. We analyze the power and performance of STAP’s computationally intensive kernels across the two hardware testbeds. We also show the impact and trade-offs of GPU optimization techniques. We show that data parallelism can be exploited for efficient implementation on the Haswell CPU architecture. The GPU architecture is able to process large size data sets without increase in power requirement. The use of shared memory has a significant impact on the power requirement for the GPU. A balance between the use of shared memory and main memory access leads to an improved performance in a typical STAP application.

  15. Dynamic neutronic and stability analysis of a burst mode, single cavity gas core reactor Brayton cycle space power system

    Science.gov (United States)

    Dugan, Edward T.; Kutikkad, Kiratadas

    The conceptual, burst-mode gaseous-core reactor (GCR) space nuclear power system presently subjected to reactor-dynamics and system stability studies operates on a closed Brayton cycle, via disk MHD generator for energy conversion. While the gaseous fuel density power coefficient of reactivity is found to be capable of rapidly stabilizing the GCR system, the power of this feedback renders standard external reactivity insertions inadequate for significant power-level changes during normal operation.

  16. SUSEE: A Compact, Lightweight Space Nuclear Power System Using Present Water Reactor Technology

    Science.gov (United States)

    Maise, George; Powell, James; Paniagua, John

    2006-01-01

    The SUSEE space reactor system uses existing nuclear fuels and the standard steam cycle to generate electrical and thermal power for a wide range of in-space and surface applications, including manned bases, sub-surface mobile probes to explore thick ice deposits on Mars and the Jovian moons, and mobile rovers. SUSEE cycle efficiency, thermal to electric, ranges from ~20 to 24%, depending on operating parameters. Rejection of waste heat is by a lightweight condensing radiator that can be launched as a compact rolled-up package and deployed into flat panels when appropriate. The 50 centimeter diameter SUSEE reactor can provide power over the range of 10 kW(e) to 1 MW(e) for a period of 10 years. Higher power outputs are possible using slightly larger reactors. System specific weight (reactor, turbine, generator, piping, and radiator is ~3 kg/kW(e). Two SUSEE reactor options are described, based on the existing Zr/O2 cermet and the UH3/ZrH2 TRIGA nuclear fuels.

  17. Physics and potentials of fissioning plasmas for space power and propulsion

    Science.gov (United States)

    Thom, K.; Schwenk, F. C.; Schneider, R. T.

    1976-01-01

    Fissioning uranium plasmas are the nuclear fuel in conceptual high-temperature gaseous-core reactors for advanced rocket propulsion in space. A gaseous-core nuclear rocket would be a thermal reactor in which an enriched uranium plasma at about 10,000 K is confined in a reflector-moderator cavity where it is nuclear critical and transfers its fission power to a confining propellant flow for the production of thrust at a specific impulse up to 5000 sec. With a thrust-to-engine weight ratio approaching unity, the gaseous-core nuclear rocket could provide for propulsion capabilities needed for manned missions to the nearby planets and for economical cislunar ferry services. Fueled with enriched uranium hexafluoride and operated at temperatures lower than needed for propulsion, the gaseous-core reactor scheme also offers significant benefits in applications for space and terrestrial power. They include high-efficiency power generation at low specific mass, the burnup of certain fission products and actinides, the breeding of U-233 from thorium with short doubling times, and improved convenience of fuel handling and processing in the gaseous phase.

  18. Likelihood reconstruction method of real-space density and velocity power spectra from a redshift galaxy survey

    CERN Document Server

    Tang, Jiayu; Takada, Masahiro

    2011-01-01

    We develop a maximum likelihood based method of reconstructing the real-space density and velocity power spectra from the measured galaxy clustering in redshift space. Our method reconstructs band powers of the real-space power spectra, each of which depends on the redshift-space power spectrum with different powers of angular modulations mu^2n (n=0,1,2) at each wavenumber bins, including marginalization over uncertainties in the Fingers-of-God (FoG) effect. By using N-body simulations of 70 realizations and the halo catalogs, we test our method by comparing the reconstructed power spectra with the spectra directly measured from the simulations. We show that the method can well recover the power spectrum of mu^0, or equivalently the density power spectrum, up to k~0.3 h/Mpc to a few percent accuracies in amplitudes, for both dark matter and halos, if we assume an adequate functional form of the FoG effect. For the power spectrum of mu^2, which is closely related to the density-velocity power spectrum P_dv(k),...

  19. Population Pressure, Global Living Standards, and the Promise of Space Solar Power

    Science.gov (United States)

    Strickland, John K., Jr.

    2002-01-01

    uses of electricity and fuels currently covered by fossil fuels. This is a global replacement load of about 9000 gigawatts. Green theorists are divided on this issue. Some claim that ground based solar, wind, and other renewable sources will supply all the energy we need, ignoring economic costs that severely limit their use. Others would (unrealistically) require the developed countries to reduce their energy consumption per capita to a level closer to that of the developing world, thereby admitting the limitations of the "appropriate" systems they espouse. Both sides in the past have rejected as "non-appropriate" and/or "dangerous" all the chemically clean energy sources of high capacity that have been previously proposed, such as safer nuclear fission, fusion power, and space solar power. If ground based "appropriate" energy sources are not sufficient, the economic and social effects of sudden forced curtailments of fossil energy use could be drastic. This paper supports the thesis that Space Solar Power does have the potential to provide such a clean, abundant, and economical energy source. It will cover both the limitations and promise of ground based energy sources, including the difficulties of using intermittent energy sources. It will discuss whether specified levels of energy cost increases would be damaging to the world economy and whether economical ground based sources alone would have sufficient capacity. It will show how the one major problem of launch costs, (currently preventing economical implementation of Space Solar Power), has a number of quite reasonable solutions. Finally, it will consider whether Space Solar Power, along with the other major space goals of Science &Exploration, Mars Colonization, Non- terrestrial Materials Recovery and Space Tourism, could be another space "killer app" which, by creating a high demand for launch services, could force large reductions in launch costs.

  20. A hypothesis for the color bimodality of Jupiter Trojans

    CERN Document Server

    Wong, Ian

    2016-01-01

    One of the most enigmatic and hitherto unexplained properties of Jupiter Trojans is their bimodal color distribution. This bimodality is indicative of two sub-populations within the Trojans, which have distinct size distributions. In this paper, we present a simple, plausible hypothesis for the origin and evolution of the two Trojan color sub-populations. In the framework of dynamical instability models of early Solar System evolution, which suggest a common primordial progenitor population for both Trojans and Kuiper belt objects, we use observational constraints to assert that the color bimodalities evident in both minor body populations developed within the primordial population prior to the onset of instability. We show that, beginning with an initial composition of rock and ices, location-dependent volatile loss through sublimation in this primordial population could have led to sharp changes in the surface composition with heliocentric distance. We propose that the depletion or retention of H$_{2}$S ice...

  1. Role of Bimodal RDX in LOVA Gun Propellant Combustion

    Directory of Open Access Journals (Sweden)

    M. M. Joshi

    1998-07-01

    Full Text Available Present investigation reports the results of systematic studies on the use of bimodal RDX in low-vulnerability ammunition (LOVA gun propellants. Several formulations based on bimodal RDX as oxidiser, cellulose acetate as binder, and diocty1 phthalate or triacetin as plasticizer were processed with different proportions of 5 micrometer and 20 micrometer particle size of RDX samples in the range 100:0 to 60:40 ratios. The effect of varying the proportion of fine RDX of the two particle sizes on propellant burning behaviour was found to be quite significant. The study concluded that by using bimodal RDX, it is possible to modify burning behaviour without sacrificing low-vulnerability aspects of LOVA propellants.

  2. Small Fish Species as Powerful Model Systems to Study Vertebrate Physiology in Space

    Science.gov (United States)

    Muller, M.; Aceto, J.; Dalcq, J.; Alestrom, P.; Nourizadeh-Lillabadi, R.; Goerlich, R.; Schiller, V.; Winkler, C.; Renn, J.; Eberius, M.; Slenzka, K.

    2008-06-01

    Small fish models, mainly zebrafish (Danio rerio) and medaka (Oryzias latipes), have been used for many years as powerful model systems for vertebrate developmental biology. Moreover, these species are increasingly recognized as valuable systems to study vertebrate physiology, pathology, pharmacology and toxicology, including in particular bone physiology. The biology of small fishes presents many advantages, such as transparency of the embryos, external and rapid development, small size and easy reproduction. Further characteristics are particularly useful for space research or for large scale screening approaches. Finally, many technologies for easily characterizing bones are available. Our objective is to investigate the changes induced by microgravity in small fish. By combining whole genome analysis (microarray, DNA methylation, chromatin modification) with live imaging of selected genes in transgenic animals, a comprehensive and integrated characterization of physiological changes in space could be gained, especially concerning bone physiology.

  3. Conceptual design of a multicell thermionic fuel element for a 40-KWE space nuclear power system

    International Nuclear Information System (INIS)

    This paper addresses the conceptual design of a Russian thermionic fuel element (TFE) in support of the S-PRIME 40 kWe in-core thermionic space power reactor studies sponsored by the U.S. Department of Energy TI-SNPS program. The design responds to requirements specified by the U.S. component of the S-PRIME team and is based on the multicell ''flashlight'' TFE approach. Following a general description of the TFE design, the considerations leading to several key design decisions are discussed. These include nuclear and thermionic performance, cesium management, fission product management, materials selection, fuel system, and lifetime. copyright American Institute of Physics 1995

  4. On power flow suppression in straight elastic pipes by use of equally spaced eccentric inertial attachments

    DEFF Research Database (Denmark)

    Sorokin, Sergey; Holst-Jensen, Ole

    2012-01-01

    The paper addresses the power flow suppression in an elastic beam of the tubular cross section (a pipe) at relatively low excitation frequencies by deploying a small number of equally spaced inertial attachments. The methodology of boundary integral equations is used to obtain an exact solution...... the classical Floquet theory for an infinitely long periodic structure. Parametric studies are performed to explore sensitivities of this effect to variations in the number of attachments. The theoretically predicted eigenfrequencies and insertion loss are compared with the dedicated experimental data. [DOI:10.1115/1.4005652]...

  5. Wireless ultra-wide-band transmission prototype ASICs for low-power space and radiation applications

    Energy Technology Data Exchange (ETDEWEB)

    Gabrielli, A. [Istituto Nazionale di Fisica Nucleare (INFN), Bologna (Italy); Department of Physics and Astronomy, University of Bologna, Bologna (Italy); Crepaldi, M. [IIT@Polito Istituto Italiano Tecnologia, Politecnico di Torino, Torino (Italy); Demarchi, D. [IIT@Polito Istituto Italiano Tecnologia, Politecnico di Torino, Torino (Italy); Department of Electronics (DELEN), Politecnico di Torino, Torino (Italy); Motto Ros, P. [IIT@Polito Istituto Italiano Tecnologia, Politecnico di Torino, Torino (Italy); Villani, G. [Science Technology Facility Council (STFC), Rutherford Appleton Laboratory (RAL), Didcot (United Kingdom)

    2014-11-21

    The paper describes the design and the fabrication of a microelectronic circuit composed of a sensor, an oscillator, a modulator, a transmitter and an antenna. The chip embeds a custom radiation sensor, provided by the silicon foundry that has fabricated the prototypes, but in principle the entire system can read a general sensor, as long as a proper interface circuit is used. The natural application for this circuit is radiation monitoring but the low-power budget extends the applications to space where wireless readout circuits can be applied to any type of sensors, even if not radiation sensitive devices.

  6. Wireless ultra-wide-band transmission prototype ASICs for low-power space and radiation applications

    International Nuclear Information System (INIS)

    The paper describes the design and the fabrication of a microelectronic circuit composed of a sensor, an oscillator, a modulator, a transmitter and an antenna. The chip embeds a custom radiation sensor, provided by the silicon foundry that has fabricated the prototypes, but in principle the entire system can read a general sensor, as long as a proper interface circuit is used. The natural application for this circuit is radiation monitoring but the low-power budget extends the applications to space where wireless readout circuits can be applied to any type of sensors, even if not radiation sensitive devices

  7. A Modified Fast Approximated Power Iteration Subspace Tracking Method for Space-Time Adaptive Processing

    Directory of Open Access Journals (Sweden)

    Yang Zhiwei

    2010-01-01

    Full Text Available We propose a subspace-tracking-based space-time adaptive processing technique for airborne radar applications. By applying a modified approximated power iteration subspace tracing algorithm, the principal subspace in which the clutter-plus-interference reside is estimated. Therefore, the moving targets are detected by projecting the data on the minor subspace which is orthogonal to the principal subspace. The proposed approach overcomes the shortcomings of the existing methods and has satisfactory performance. Simulation results confirm that the performance improvement is achieved at very small secondary sample support, a feature that is particularly attractive for applications in heterogeneous environments.

  8. Development of Liquid-Vapor Core Reactors with MHD Generator for Space Power and Propulsion Applications

    Energy Technology Data Exchange (ETDEWEB)

    Samim Anghaie

    2002-08-13

    Any reactor that utilizes fuel consisting of a fissile material in a gaseous state may be referred to as a gaseous core reactor (GCR). Studies on GCRs have primarily been limited to the conceptual phase, mostly due to budget cuts and program cancellations in the early 1970's. A few scientific experiments have been conducted on candidate concepts, primarily of static pressure fissile gas filling a cylindrical or spherical cavity surrounded by a moderating shell, such as beryllium, heavy water, or graphite. The main interest in this area of nuclear power generation is for space applications. The interest in space applications has developed due to the promise of significant enhancement in fuel utilization, safety, plant efficiency, special high-performance features, load-following capabilities, power conversion optimization, and other key aspects of nuclear power generation. The design of a successful GCR adapted for use in space is complicated. The fissile material studied in the pa st has been in a fluorine compound, either a tetrafluoride or a hexafluoride. Both of these molecules have an impact on the structural material used in the making of a GCR. Uranium hexafluoride as a fuel allows for a lower operating temperature, but at temperatures greater than 900K becomes essentially impossible to contain. This difficulty with the use of UF6 has caused engineers and scientists to use uranium tetrafluoride, which is a more stable molecule but has the disadvantage of requiring significantly higher operating temperatures. Gas core reactors have traditionally been studied in a steady state configuration. In this manner a fissile gas and working fluid are introduced into the core, called a cavity, that is surrounded by a reflector constructed of materials such as Be or BeO. These reactors have often been described as cavity reactors because the density of the fissile gas is low and criticality is achieved only by means of the reflector to reduce neutron leakage from the

  9. Generation and evaluation of space-Time trajectories of photovoltaic power

    DEFF Research Database (Denmark)

    Golestaneh, Faranak; Gooi, Hoay Beng; Pinson, Pierre

    2016-01-01

    In the probabilistic energy forecasting literature, emphasis is mainly placed on deriving marginal predictive densities for which each random variable is dealt with individually. Such marginals description is sufficient for power systems related operational problems if and only if optimal decisions...... are to be made for each lead-time and each location independently of each other. However, many of these operational processes are temporally and spatially coupled, while uncertainty in photovoltaic (PV) generation is strongly dependent in time and in space. This issue is addressed here by analysing and capturing...

  10. Space Solar Power and Other Renewable Energy Sources: Understanding the Market

    Science.gov (United States)

    MacAuley, Molly K.

    2002-01-01

    fossil fuels. In addition, a ground-based electricity generation system is now increasingly realized as also vulnerable to disruption. What advantages does space solar power (SSP) offer over other renewable energy sources (wind, terrestrial photovoltaics, biopower, and geothermal) in addressing these concerns? What are disadvantages? This paper discusses the economics of renewable energy in the United States' market in two geographic regions (the west coast and the north central regions) where renewable energy resources are abundant and relatively low cost (thus, aggressively competitive with SSP), but where the security and reliability advantages of SSP may indeed outweigh any generation cost advantage of the terrestrial technologies.

  11. Future thrusts of the NASA space power program. [with emphasis on electrochemical energy conversion and storage

    Science.gov (United States)

    Holcomb, L.

    1978-01-01

    General objectives and plan directions are given for current program support in the following areas: (1) solar cells and arrays; (2) batteries and fuel cells; (3) thermoelectric, thermionic, and Brayton cycle conversion systems; (4) circuits and subsystems for the management and distribution of power; and (5) the interactions of the environment with the power system and the spacecraft. Particular emphasis is given to the electrochemical energy conversion storage portion of the program where efforts are directed to improving the energy density and life of nickel cadmium batteries, to validating flight-weight silver hydrogen cells, to promoting the safe use of lithium primary batteries, to completing the silver zinc batteries and the orbital transfer fuel cell technology, to increasing the capacity of space batteries, to and to evaluating new electrochemical concepts for very high energy density. The use of the fuel cell electrolyzer concept for energy storage in both the dedicated and the truly regenerative mode is also being investigated.

  12. Evaluation of concentrated space solar arrays using computer modeling. [for spacecraft propulsion and power supplies

    Science.gov (United States)

    Rockey, D. E.

    1979-01-01

    A general approach is developed for predicting the power output of a concentrator enhanced photovoltaic space array. A ray trace routine determines the concentrator intensity arriving at each solar cell. An iterative calculation determines the cell's operating temperature since cell temperature and cell efficiency are functions of one another. The end result of the iterative calculation is that the individual cell's power output is determined as a function of temperature and intensity. Circuit output is predicted by combining the individual cell outputs using the single diode model of a solar cell. Concentrated array characteristics such as uniformity of intensity and operating temperature at various points across the array are examined using computer modeling techniques. An illustrative example is given showing how the output of an array can be enhanced using solar concentration techniques.

  13. Improved statistical analysis of low abundance phenomena in bimodal bacterial populations.

    Directory of Open Access Journals (Sweden)

    Friedrich Reinhard

    Full Text Available Accurate detection of subpopulation size determinations in bimodal populations remains problematic yet it represents a powerful way by which cellular heterogeneity under different environmental conditions can be compared. So far, most studies have relied on qualitative descriptions of population distribution patterns, on population-independent descriptors, or on arbitrary placement of thresholds distinguishing biological ON from OFF states. We found that all these methods fall short of accurately describing small population sizes in bimodal populations. Here we propose a simple, statistics-based method for the analysis of small subpopulation sizes for use in the free software environment R and test this method on real as well as simulated data. Four so-called population splitting methods were designed with different algorithms that can estimate subpopulation sizes from bimodal populations. All four methods proved more precise than previously used methods when analyzing subpopulation sizes of transfer competent cells arising in populations of the bacterium Pseudomonas knackmussii B13. The methods' resolving powers were further explored by bootstrapping and simulations. Two of the methods were not severely limited by the proportions of subpopulations they could estimate correctly, but the two others only allowed accurate subpopulation quantification when this amounted to less than 25% of the total population. In contrast, only one method was still sufficiently accurate with subpopulations smaller than 1% of the total population. This study proposes a number of rational approximations to quantifying small subpopulations and offers an easy-to-use protocol for their implementation in the open source statistical software environment R.

  14. Improved statistical analysis of low abundance phenomena in bimodal bacterial populations.

    Science.gov (United States)

    Reinhard, Friedrich; van der Meer, Jan Roelof

    2013-01-01

    Accurate detection of subpopulation size determinations in bimodal populations remains problematic yet it represents a powerful way by which cellular heterogeneity under different environmental conditions can be compared. So far, most studies have relied on qualitative descriptions of population distribution patterns, on population-independent descriptors, or on arbitrary placement of thresholds distinguishing biological ON from OFF states. We found that all these methods fall short of accurately describing small population sizes in bimodal populations. Here we propose a simple, statistics-based method for the analysis of small subpopulation sizes for use in the free software environment R and test this method on real as well as simulated data. Four so-called population splitting methods were designed with different algorithms that can estimate subpopulation sizes from bimodal populations. All four methods proved more precise than previously used methods when analyzing subpopulation sizes of transfer competent cells arising in populations of the bacterium Pseudomonas knackmussii B13. The methods' resolving powers were further explored by bootstrapping and simulations. Two of the methods were not severely limited by the proportions of subpopulations they could estimate correctly, but the two others only allowed accurate subpopulation quantification when this amounted to less than 25% of the total population. In contrast, only one method was still sufficiently accurate with subpopulations smaller than 1% of the total population. This study proposes a number of rational approximations to quantifying small subpopulations and offers an easy-to-use protocol for their implementation in the open source statistical software environment R. PMID:24205184

  15. Observation of bimodality in nanocrystalline cobalt - ferri - chromites

    Science.gov (United States)

    Modi, K. B.; Saija, K. G.; Zankat, K. B.; Kathad, C. R.; Shah, S. J.; Lakhani, V. K.; Vasoya, N. H.; Pathak, T. K.

    2015-06-01

    In this communication we present detail analysis of particle size distribution curves, differential size distribution and cumulative undersize distribution, recorded for nano particles of spinel ferrite system, CoCrxFe2-xO4 (x = 0.0, 1.1 and 2.0), synthesized by chemical co-precipitation technique. It is found that the distribution is bimodal as well as not mono disperse. Observed bimodality has been explained in the light of Ostwald ripening. Various parameters have been determined and the role of Cr3+ - substitution in governing signature of distribution patterns has been discussed.

  16. Scheme for Generation of Entanglement among Bimodal Cavities

    Institute of Scientific and Technical Information of China (English)

    SONG Xin-Guo; FENG Xun-Li

    2004-01-01

    @@ We present a scheme for generation of an entangled state in many spatially separated bimodal cavity modes via cavity quantum electrodynamics. A V-type three-level atom, initially prepared in a coherent superposition of its excited states, successively passes through both the bimodal cavities. If the atom is measured in its ground state after leaving the last cavity, an entangled state of many cavity modes can be generated. The conditions to generate the maximally entangled state with unity probability are worked out.

  17. NASA's Space Launch System: Developing the World's Most Powerful Solid Booster

    Science.gov (United States)

    Priskos, Alex

    2016-01-01

    NASA's Journey to Mars has begun. Indicative of that challenge, this will be a multi-decadal effort requiring the development of technology, operational capability, and experience. The first steps are under way with more than 15 years of continuous human operations aboard the International Space Station (ISS) and development of commercial cargo and crew transportation capabilities. NASA is making progress on the transportation required for deep space exploration - the Orion crew spacecraft and the Space Launch System (SLS) heavy-lift rocket that will launch Orion and large components such as in-space stages, habitat modules, landers, and other hardware necessary for deep-space operations. SLS is a key enabling capability and is designed to evolve with mission requirements. The initial configuration of SLS - Block 1 - will be capable of launching more than 70 metric tons (t) of payload into low Earth orbit, greater mass than any other launch vehicle in existence. By enhancing the propulsion elements and larger payload fairings, future SLS variants will launch 130 t into space, an unprecedented capability that simplifies hardware design and in-space operations, reduces travel times, and enhances the odds of mission success. SLS will be powered by four liquid fuel RS-25 engines and two solid propellant five-segment boosters, both based on space shuttle technologies. This paper will focus on development of the booster, which will provide more than 75 percent of total vehicle thrust at liftoff. Each booster is more than 17 stories tall, 3.6 meters (m) in diameter and weighs 725,000 kilograms (kg). While the SLS booster appears similar to the shuttle booster, it incorporates several changes. The additional propellant segment provides additional booster performance. Parachutes and other hardware associated with recovery operations have been deleted and the booster designated as expendable for affordability reasons. The new motor incorporates new avionics, new propellant

  18. J. Preston Layton 1919-1992: A guiding light in nuclear space power and propulsion

    Science.gov (United States)

    Brill, Yvonne C.

    An eventful, highly productive career ended with the death of James Preston ("Pres") Layton in December 1992. His career in rockets, which spanned 50 years, is a chronology of developments in the U.S. space program. Layton was instrumental in the development of rocket technologies ranging from the first jet-assisted take off (JATO) boosters used on aircraft to space nuclear power and propulsion. His work on JATOs, during World War II, involved both testing of solid-fueled units on naval aircraft in the Pacific and developing advanced liquid-fueled systems at the U.S. Naval Academy's laboratory under the direction of Robert H. Goddard, the father of American rocketry. It was Goddard who inspired Layton to devote his life to rocketry. In 1948, as chief of propulsion for the Glenn L. Martin company, he became crew chief in charge of testing the first big U.S. rocket, the Viking series. Layton subsequently joined the research faculty at Princeton University where he served from 1951 to 1976, taking a brief leave in 1955 to earn a Masters Degree at Purdue University under the direction of Maurice Zucrow, another American rocket pioneer. As Chief Engineer of Princeton's Guggenheim Jet Propulsion Center, he created the nation's foremost university rocket research facilities, where he conducted the first experimental evaluation of liquid ozone as a rocket propellant. Later Layton led Princeton's Advanced Systems and Mission Analysis Laboratory, which conducted pioneering studies of space nuclear power and propulsion systems. During this period, at the Lawrence Livermore National Laboratory (on leave from Princeton), Layton helped develop and test the world's first and only nuclear ram-rocket. During his career, Layton performed many responsible consulting tasks for industry and government in the U.S.A. and abroad. He was chief technical consultant to Mathematica, Inc., whose analyses formed the basis for the current Space Shuttle design. He conducted an AIAA assessment of

  19. International Space Station Powered Bolt Nut Anomaly and Failure Analysis Summary

    Science.gov (United States)

    Sievers, Daniel E.; Warden, Harry K.

    2010-01-01

    A key mechanism used in the on-orbit assembly of the International Space Station (ISS) pressurized elements is the Common Berthing Mechanism. The mechanism that effects the structural connection of the Common Berthing Mechanism halves is the Powered Bolt Assembly. There are sixteen Powered Bolt Assemblies per Common Berthing Mechanism. The Common Berthing Mechanism has a bolt which engages a self aligning Powered Bolt Nut (PBN) on the mating interface (Figure 1). The Powered Bolt Assemblies are preloaded to approximately 84.5 kN (19000 lb) prior to pressurization of the CBM. The PBNs mentioned below, manufactured in 2009, will be used on ISS future missions. An on orbit functional failure of this hardware would be unacceptable and in some instances catastrophic due to the failure of modules to mate and seal the atmosphere, risking loss of crew and ISS functions. The manufacturing processes that create the PBNs need to be strictly controlled. Functional (torque vs. tension) acceptance test failures will be the result of processes not being strictly followed. Without the proper knowledge of thread tolerances, fabrication techniques, and dry film lubricant application processes, PBNs will be, and have been manufactured improperly. The knowledge gained from acceptance test failures and the resolution of those failures, thread fabrication techniques and thread dry film lubrication processes can be applied to many aerospace mechanisms to enhance their performance. Test data and manufactured PBN thread geometry will be discussed for both failed and successfully accepted PBNs.

  20. Alternate space station freedom configuration considerations to accommodate solar dynamic power

    Science.gov (United States)

    Deryder, L. J.; Cruz, J. N.; Heck, M. L.; Robertson, B. P.; Troutman, P. A.

    1989-01-01

    The results of a technical audit of the Space Station Freedom Program conducted by the Program Director was announced in early 1989 and included a proposal to use solar dynamic power generation systems to provide primary electrical energy for orbital flight operations rather than photovoltaic solar array systems. To generate the current program baseline power of 75 kW, two or more solar concentrators approximately 50 feet in diameter would be required to replace four pairs of solar arrays whose rectangular blanket size is approximately 200 feet by 30 feet. The photovoltaic power system concept uses solar arrays to generate electricity that is stored in nickel-hydrogen batteries. The proposed concept uses the solar concentrator dishes to reflect and focus the Sun's energy to heat helium-xenon gas to drive electricity generating turbines. The purpose here is to consider the station configuration issues for incorporation of solar dynamic power system components. Key flight dynamic configuration geometry issues are addressed and an assembly sequence scenario is developed.

  1. Nuclear reactor power for a space-based radar. SP-100 project

    Science.gov (United States)

    Bloomfield, Harvey; Heller, Jack; Jaffe, Leonard; Beatty, Richard; Bhandari, Pradeep; Chow, Edwin; Deininger, William; Ewell, Richard; Fujita, Toshio; Grossman, Merlin

    1986-01-01

    A space-based radar mission and spacecraft, using a 300 kWe nuclear reactor power system, has been examined, with emphasis on aspects affecting the power system. The radar antenna is a horizontal planar array, 32 X 64 m. The orbit is at 61 deg, 1088 km. The mass of the antenna with support structure is 42,000 kg; of the nuclear reactor power system, 8,300 kg; of the whole spacecraft about 51,000 kg, necessitating multiple launches and orbital assembly. The assembly orbit is at 57 deg, 400 km, high enough to provide the orbital lifetime needed for orbital assembly. The selected scenario uses six Shuttle launches to bring the spacecraft and a Centaur G upper-stage vehicle to assembly orbit. After assembly, the Centaur places the spacecraft in operational orbit, where it is deployed on radio command, the power system started, and the spacecraft becomes operational. Electric propulsion is an alternative and allows deployment in assembly orbit, but introduces a question of nuclear safety.

  2. Feasibility study of a small, thorium-based fission power system for space and terrestrial applications

    Science.gov (United States)

    Worrall, Michael Jason

    One of the current challenges facing space exploration is the creation of a power source capable of providing useful energy for the entire duration of a mission. Historically, radioisotope batteries have been used to provide load power, but this conventional system may not be capable of sustaining continuous power for longer duration missions. To remedy this, many forays into nuclear powered spacecraft have been investigated, but no robust system for long-term power generation has been found. In this study, a novel spin on the traditional fission power system that represents a potential optimum solution is presented. By utilizing mature High Temperature Gas Reactor (HTGR) technology in conjunction with the capabilities of the thorium fuel cycle, we have created a light-weight, long-term power source capable of a continuous electric power output of up to 70kW for over 15 years. This system relies upon a combination of fissile, highly-enriched uranium dioxide and fertile thorium carbide Tri-Structural Isotropic (TRISO) fuel particles embedded in a hexagonal beryllium oxide matrix. As the primary fissile material is consumed, the fertile material breeds new fissile material leading to more steady fuel loading over the lifetime of the core. Reactor control is achieved through an innovative approach to the conventional boron carbide neutron absorber by utilizing sections of borated aluminum placed in rotating control drums within the reflector. Borated aluminum allows for much smaller boron concentrations, thus eliminating the potential for 10B(n,alpha)6Li heating issues that are common in boron carbide systems. A wide range of other reactivity control systems are also investigated, such as a radially-split rotating reflector. Lastly, an extension of the design to a terrestrial based system is investigated. In this system, uranium enrichment is dropped to 20 percent in order to meet current regulations, a solid uranium-zirconium hydride fissile driver replaces the

  3. Space debris proximity analysis in powered and orbital phases during satelitte launch

    Science.gov (United States)

    Bandyopadhyay, P.; Sharma, R.; Adimurthy, V.

    The need to protect a launch vehicle in its ascent phase as well as the payload upon injection in particular and to prevent generation of debris in general through collision has led to many recent developments in the methodologies of SPAce DEbris PROximity (SPADEPRO) analysis, which is required for COLlision Avoidance or COLA studies. SPADEPRO refers to assessment of collision risk between catalogued resident space objects and launch vehicle or satellite of interest. The detection of close approaches to satellites/launch vehicles during the launch and early post-deployment phase of their lifetimes is an important subset of the overall problem. Potential collisions during this period can usually be avoided by adjusting the time of launch within a specified launch window. In Ref- 1 a series of filters through which candidate objects have to pass before determining its close approach distances from either analytical propagators like SGP4/SDP4 or any numerical prediction package, has been described. Unfortunately, this detection technique cannot strictly be applied since assumption of orbital motion is violated when powered launch trajectories are considered. Ref- 2 has proposed an algorithm for determining launch window blackout intervals based on the avoidance of close approaches for trajectories, which are fixed relative to an Earth Centered Earth Fixed (ECEF) reference frame. In this paper, authors approximate the powered launch trajectory into a series of orbital trajectories so that those trajectories envelope the powered launch trajectory in position-velocity phase space. Following this, filters described in Ref- 1 have been utilized to find out potential candidates from resident space objects. In Ref- 2, 3 &4 the blackout period has been observed when the closest approach distance is below a certain threshold. Instead, in this paper authors use collision probability, considering dispersions in respective trajectories of resident space objects and launch vehicle

  4. An analytic model for the non-linear redshift-space power spectrum

    CERN Document Server

    Kang, X; Mo, H J; Börner, G

    2002-01-01

    We use N-body simulations to test the predictions of the redshift distortion in the power spectrum given by the halo model in which the clustering of dark matter particles is considered as a result of the clustering of dark halos in space and the distribution of dark matter particles in individual dark halos. The predicted redshift distortion depends sensitively on several model parameters in a way different from the real-space power spectrum. An accurate model of the redshift distortion can be constructed if the following properties of the halo population are modelled accurately: the mass function of dark halos, the velocity dispersion among dark halos, and the non-linear nature of halo bias on small scales. The model can be readily applied to interpreting the clustering properties and the velocity dispersion of different populations of galaxies once a cluster-weighted bias (or equivalently an halo occupation number model) is specified for the galaxies. Some non-trivial bias features observed from redshift s...

  5. Galaxy power spectrum in redshift space: combining perturbation theory with the halo model

    CERN Document Server

    Okumura, Teppei; Seljak, Uros; Vlah, Zvonimir; Desjacques, Vincent

    2015-01-01

    Theoretical modeling of the redshift-space power spectrum of galaxies is crucially important to correctly extract cosmological information from redshift surveys. The task is complicated by the nonlinear biasing and redshift space distortion effects, which change with halo mass, and by the wide distribution of halo masses and their occupations by galaxies. One of the main modeling challenges is the existence of satellite galaxies that have both radial distribution and large virial velocities inside halos, a phenomenon known as the Finger-of-God effect. We present a model for the galaxy power spectrum of in which we decompose a given galaxy sample into central and satellite galaxies and relate different contributions to 1- and 2-halo terms in a halo model. Our primary goal is to ensure that any parameters that we introduce have physically meaningful values, and are not just fitting parameters. For the 2-halo terms we use the previously developed RSD modeling of halos in the context of distribution function and ...

  6. Technology demonstration of a free-piston stirling advanced radioisotope space power system

    Science.gov (United States)

    White, Maurice A.; Qiu, Songgang; Olan, Ronald W.; Erbeznik, Raymond M.

    1999-01-01

    Free-piston Stirling convertors (Stirling engine with integral linear alternator) are a mature technology with demonstrated long-life, maintenance-free, degradation-free operation exceeding 46,000 hours (5+ years) on one unit. Tens of thousands of hours have been accumulated on numerous systems in beta trials, plus more than 8 million flexure-hours (900 flexure-years) on the most critical component (flexure bearings), all with no failures when operated within specifications. Vibration is a key concern for Stirling convertors in space. Recent tests have demonstrated a factor of 50 reduction in vibration, relative to a single convertor, by coupling two convertors mechanically and electrically. Even though the measured vibration level is below Jet Propulsion Laboratory (JPL) specified vibration objectives, demonstration of an additional factor of 10 vibration reduction is pending with an active vibration reduction system. Stirling cycle efficiency is well established. A four-convertor 150-W(e) end of mission (EOM) power system for deep space missions is projected to require only three general purpose heat source (GPHS) modules with conservative Inconel 718 heater heads, leaving significant efficiency improvement potential when used with higher temperature materials. Even in the unlikely scenario of one inoperative convertor, the other three convertors ramp up to provide full output. A two-convertor demonstration system, representative of one-half of a 150-W(e) power system, is described in this paper and scheduled to become operational in December 1998.

  7. Reliability Analysis of a 3-Machine Power Station Using State Space Approach

    Directory of Open Access Journals (Sweden)

    WasiuAkande Ahmed

    2014-07-01

    Full Text Available With the advent of high-integrity fault-tolerant systems, the ability to account for repairs of partially failed (but still operational systems become increasingly important. This paper presents a systemic method of determining the reliability of a 3-machine electric power station, taking into consideration the failure rates and repair rates of the individual component (machine that make up the system. A state-space transition process for a 3-machine with 23 states was developed and consequently, steady state equations were generated based on Markov mathematical modeling of the power station. Important reliability components were deduced from this analysis. This research simulation was achieved with codes written in Excel® -VBA programming environment. System reliability using state space approach proofs to be a viable and efficient technique of reliability prediction as it is able to predict the state of the system under consideration. For the purpose of neatness and easy entry of data, Graphic User Interface (GUI was designed.

  8. Distributed Space-Time Block Coded Transmission with Imperfect Channel Estimation: Achievable Rate and Power Allocation

    Directory of Open Access Journals (Sweden)

    Sonia Aïssa

    2008-05-01

    Full Text Available This paper investigates the effects of channel estimation error at the receiver on the achievable rate of distributed space-time block coded transmission. We consider that multiple transmitters cooperate to send the signal to the receiver and derive lower and upper bounds on the mutual information of distributed space-time block codes (D-STBCs when the channel gains and channel estimation error variances pertaining to different transmitter-receiver links are unequal. Then, assessing the gap between these two bounds, we provide a limiting value that upper bounds the latter at any input transmit powers, and also show that the gap is minimum if the receiver can estimate the channels of different transmitters with the same accuracy. We further investigate positioning the receiving node such that the mutual information bounds of D-STBCs and their robustness to the variations of the subchannel gains are maximum, as long as the summation of these gains is constant. Furthermore, we derive the optimum power transmission strategy to achieve the outage capacity lower bound of D-STBCs under arbitrary numbers of transmit and receive antennas, and provide closed-form expressions for this capacity metric. Numerical simulations are conducted to corroborate our analysis and quantify the effects of imperfect channel estimation.

  9. Ultra High Power and Efficiency Space Traveling-Wave Tube Amplifier Power Combiner with Reduced Size and Mass for NASA Missions

    Science.gov (United States)

    Simons, Rainee N.; Wintucky, Edwin G.; Wilson, Jeffrey D.; Force, Dale A.

    2009-01-01

    In the 2008 International Microwave Symposium (IMS) Digest version of our paper, recent advances in high power and efficiency space traveling-wave tube amplifiers (TWTAs) for NASA s space-to-Earth communications are presented. The RF power and efficiency of a new K-Band amplifier are 40 W and 50 percent and that of a new Ka-Band amplifier are 200 W and 60 percent. An important figure-of-merit, which is defined as the ratio of the RF power output to the mass (W/kg) of a TWT, has improved by a factor of ten over the previous generation Ka-Band devices. In this extended paper, a high power, high efficiency Ka-band combiner for multiple TWTs, based on a novel hybrid magic-T waveguide circuit design, is presented. The measured combiner efficiency is as high as 90 percent. In addition, at the design frequency of 32.05 GHz, error-free uncoded BPSK/QPSK data transmission at 8 megabits per second (Mbps), which is typical for deep space communications is demonstrated. Furthermore, QPSK data transmission at 622 Mbps is demonstrated with a low bit error rate of 2.4x10(exp -8), which exceeds the deep space state-of-the-art data rate transmission capability by more than two orders of magnitude. A potential application of the TWT combiner is in deep space communication systems for planetary exploration requiring transmitter power on the order of a kilowatt or higher.

  10. Power lines: Urban space, energy development and the making of the modern Southwest

    Science.gov (United States)

    Needham, Todd Andrew

    "Power Lines: Urban Space, Energy Development, and the Making of the Modern Southwest" explores the social and environmental transformation of the postwar Southwest and the resulting disputes between urban boosters, federal officials, Native Americans, and environmental activists. The dissertation focuses on the infrastructure built to provide the burgeoning populations of Phoenix, Los Angeles, and other Southwestern cities with electricity. This infrastructure allowed metropolitan boosters in the Southwest to attract Cold War defense manufacturing and to build a new suburban landscape even as industrialization on Indian lands provided electricity for those landscapes. Tracing the transition of electrical generation from a dispersed geography relying on local resources to a centralized geography utilizing primarily coal from Navajo land, "Power Lines" demonstrates the increasing centrality of Indian lands and labor to the metropolitan Southwest. Paying close attention to these networks reveals the far-reaching changes caused by postwar metropolitan growth. "Power Lines" challenges understandings of urban space that neglect the material resources that allow cities to "live." As the nation's cities and suburbs became increasingly energy-intensive, electrical utilities reached deep into the metropolitan periphery, transforming landscapes hundreds of miles from city centers into urban space. The construction of the new "geography of power" in the Southwest also reflects the impact of growth liberalism on postwar growth, as federal money funded suburban, manufacturing, and infrastructure developments. This pursuit of growth produced new political struggles, both as the development of energy resources conflicted with emerging environmentalist sensibilities and as American Indians increasingly resented the industrialization of their land for the benefit of others. By the 1970s, the simultaneous pursuit and criticism of growth came to define the modern Southwest. The

  11. Basic Research and Development Effort to Design a Micro Nuclear Power Plant for Brazilian Space Applications

    Science.gov (United States)

    Guimares, L. N. F.; Camillo, G. P.; Placco, G. M.; Barrios, G., A., Jr.; Do Nascimento, J. A.; Borges, E. M.; De Castro Lobo, P. D.

    For some years the Nuclear Energy Division of the Institute for Advanced Studies is conducting the TERRA (Portuguese abbreviation for advanced fast reactor technology) project. This project aims at research and development of the key issues related with nuclear energy applied to space technology. The purpose of this development is to allow future Brazilian space explorers the access of a good and reliable heat, power and/or propulsion system based on nuclear energy. Efforts are being made in fuel and nuclear core design, designing and building a closed Brayton cycle loop for energy conversion, heat pipe systems research for passive space heat rejection, developing computational programs for thermal loop safety analysis and other technology that may be used to improve efficiency and operation. Currently there is no specific mission that requires these technology development efforts; therefore, there is a certain degree of freedom in the organization and development efforts. This paper will present what has been achieved so far, what is the current development status, where efforts are heading and a proposed time table to meet development objectives.

  12. High Power Laser Diode Array Qualification and Guidelines for Space Flight Environments

    Science.gov (United States)

    Ott, Melanie N.; Eegholm, Niels; Stephen, Mark; Leidecker, Henning; Plante, Jeannette; Meadows, Byron; Amzajerdian, Farzin; Jamison, Tracee; LaRocca, Frank

    2006-01-01

    High-power laser diode arrays (LDAs) are used for a variety of space-based remote sensor laser programs as an energy source for diode-pumped solid-state lasers. LDAs have been flown on NASA missions including MOLA, GLAS and MLA and have continued to be viewed as an important part of the laser-based instrument component suite. There are currently no military or NASA-grade, -specified, or - qualified LDAs available for "off-the-shelf" use by NASA programs. There has also been no prior attempt to define a standard screening and qualification test flow for LDAs for space applications. Initial reliability studies have also produced good results from an optical performance and stability standpoint. Usage experience has shown, howeve that the current designs being offered may be susceptible to catastrophic failures due to their physical construction (packaging) combined with the electro-optical operational modes and the environmental factors of space application. design combined with operational mode was at the root of the failures which have greatly reduced the functionality of the GLAS instrument. The continued need for LDAs for laser-based science instruments and past catastrophic failures of this part type demand examination of LDAs in a manner which enables NASA to select, buy, validate and apply them in a manner which poses as little risk to the success of the mission as possible.

  13. Comparison Of Planar And Wound Transformers For Flyback Forward And Half-Bridge Space Power Converters

    Science.gov (United States)

    Bjorklund, Thomas; Andreasen, John; Brosen, Finn; Matthiesen, Erik; Poulsen, Ole

    2011-10-01

    Planar technology has now entered the space domain. The big advantages of planar technology are; - Low profile - Excellent repeatability - Economical assembly - Mechanical integrity - Superior thermal characteristics This is why the general power industries increasingly are using planar magnetics in more and more applications, and therefore also why we see a rising demand for the usability of the planar technology among space application developers. The differences between wound and planar transformers have been mapped with a detailed look on the various parasitic component values, such as DC- and AC- resistance, Leakage Inductance and stray capacitance, and revealed the magnitude of the advantages of planar technology. This technical solution is proven in prototypes that have been built in different combination of PCB's and copper foil, with more or less interleaving of windings. Furthermore the transformers have been designed with several outputs stacked together with a fairly high number of primary turns, in order to have planar transformers similar to the wound types that are generally used for space applications.

  14. Space Solar Power Exploratory Research and Technology (SERT) Technical Interchange Meeting 2 (SERT TIM 2)

    Science.gov (United States)

    Howell, Joe; Sanders, Clark W.

    2000-01-01

    The University of Alabama in Huntsville's (UAH) Propulsion Research Center hosted the Space Solar Power Exploratory Research & Technology (SERT) Technical Interchange Meeting TIM) 2 in Huntsville, Alabama December 7-10. 1999 with 126 people in attendance. The SERT program includes both competitively procured activities. which are being implemented through a portfolio of focused R&D investments--with the maximum leveraging of existing resources inside and outside NASA. and guided by these system studies. Axel Roth. Director of the Flight Projects Directorate NASA MSFC, welcomed the SERT TIM 2 participants and challenged them to develop the necessary technologies and demonstrations that will lead to Space Solar Power (SSP) International implementation. Joe Howell, NASA MSFC, reiterated the SERT TIM 2 objectives: 1) Refining and modeling systems approaches for the utilization of SSP concepts and technologies, ranging, from the near-term e.g. for space science, exploration and commercial space applications to the far-term (e. g. SSP for terrestrial markets), including systems concepts, technology, infrastructure (i.g., transportation), and economics. 2) Conducting technology research, development and demonstration activities to produce "proof- of-concept" validation of critical SSP elements for both the nearer and farther-term applications. 3) Initiating partnerships Nationality and Internationally that could be expanded, as appropriate, to pursue later SSP technology and applications (e.g., space science. colonization, etc.). Day one began with the NASA Centers presenting their SERT activities summary since SERT TIM 1 and wound up with a presentation by Masahiro Mori, NASDA titled "NASDA In-house Study for SSP". Demonstration for the Near-Term. Day two began with the SERT Systems Studies and Analysis reports resulting from NRA 8-23 followed by presentations of SERT Technology Demonstrations reports resulting from NRA 8-23. Day two closed with John Mankins presentation

  15. Space-time scenarios of wind power generation produced using a Gaussian copula with parametrized precision matrix

    DEFF Research Database (Denmark)

    Tastu, Julija; Pinson, Pierre; Madsen, Henrik

    The emphasis in this work is placed on generating space-time trajectories (also referred to as scenarios) of wind power generation. This calls for prediction of multivariate densities describing wind power generation at a number of distributed locations and for a number of successive lead times. ...

  16. A new state-space model for three-phase systems for Kalman filtering with application to power quality estimation

    Science.gov (United States)

    Phan, Anh Tuan; Ho, Duc Du; Hermann, Gilles; Wira, Patrice

    2015-12-01

    For power quality issues like reducing harmonic pollution, reactive power and load unbalance, the estimation of the fundamental frequency of a power lines in a fast and precise way is essential. This paper introduces a new state-space model to be used with an extended Kalman filter (EKF) for estimating the frequency of distorted power system signals in real-time. The proposed model takes into account all the characteristics of a general three-phase power system and mainly the unbalance. Therefore, the symmetrical components of the power system, i.e., their amplitude and phase angle values, can also be deduced at each iteration from the proposed state-space model. The effectiveness of the method has been evaluated. Results and comparisons of online frequency estimation and symmetrical components identification show the efficiency of the proposed method for disturbed and time-varying signals.

  17. Bimodal versus Weibull wind speed distributions: an analysis of wind energy potential in La Venta, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo, O.A.; Borja, M.A.

    2004-07-01

    The International Standard IEC 61400-12 and other international recommendations suggest the use of the two-parameter Weibull probability distribution function (PDF) to estimate the Annual Energy Production (AEP) of a wind turbine. Most of the commercial software uses the unimodal Weibull PDF as the default option to carry out estimations of AEP, which in turn, are used to optimise wind farm layouts. Furthermore, AEP is essential data to assess the economic feasibility of a wind power project. However, in some regions of the world, the use of these widely adopted and recommended methods lead to incorrect results. This is the case for the region of La Ventosa in Mexico, where the frequency of the wind speed shows a bimodal distribution. In this work, mathematical formulations by using a Weibull PDF and a bimodal distribution are established to compare the AEP, the capacity factor and the levelised production cost for a specific wind turbine. By combining one year of wind speed data with the hypothetic power performance of the Vestas V27-225 kW wind turbine, it was found that using the Weibull PDF underestimates AEP (and thus the Capacity Factor) by about 12%. (author)

  18. Bimodal Bilingual Language Development of Hearing Children of Deaf Parents

    Science.gov (United States)

    Hofmann, Kristin; Chilla, Solveig

    2015-01-01

    Adopting a bimodal bilingual language acquisition model, this qualitative case study is the first in Germany to investigate the spoken and sign language development of hearing children of deaf adults (codas). The spoken language competence of six codas within the age range of 3;10 to 6;4 is assessed by a series of standardised tests (SETK 3-5,…

  19. Disturbance Decoupling for Continuous Piecewise Linear Bimodal Systems

    NARCIS (Netherlands)

    Everts, A.R.F.; Camlibel, M.K.

    2014-01-01

    In this paper we tackle the disturbance decoupling problem for continuous bimodal piecewise linear systems. After establishing necessary and sufficient geometric conditions for such a system to be disturbance decoupled, we study state feed- back and dynamic feedback controllers, both mode-dependent

  20. Bimodal Hearing and Speech Perception with a Competing Talker

    Science.gov (United States)

    Pyschny, Verena; Landwehr, Markus; Hahn, Moritz; Walger, Martin; von Wedel, Hasso; Meister, Hartmut

    2011-01-01

    Purpose: The objective of the study was to investigate the influence of bimodal stimulation upon hearing ability for speech recognition in the presence of a single competing talker. Method: Speech recognition was measured in 3 listening conditions: hearing aid (HA) alone, cochlear implant (CI) alone, and both devices together (CI + HA). To examine…

  1. Visualisation and characterisation of heterogeneous bimodal PDMS networks

    DEFF Research Database (Denmark)

    Bahrt, Frederikke; Daugaard, Anders Egede; Fleury, Clemence;

    2014-01-01

    by rheology. All heterogeneous bimodal networks displayed significantly lower moduli than mono-modal PDMS elastomers prepared from the long polymer chains. Low-loss moduli as well as low-sol fractions indicate that low-elastic moduli can be obtained without compromising the network's structure...

  2. A nonlinear theory of the bimodality of the Kuroshio extension

    NARCIS (Netherlands)

    Pierini, S.; Dijkstra, H.A.; Riccio, A.

    2009-01-01

    The Kuroshio Extension (KE) flow in the North Pacific Ocean displays a very distinctive decadal variability of bimodal character involving two completely different states (a large-meander “elongated” state and a small-meander “contracted” state) connected by very asymmetric temporal transitions. Alt

  3. Bimodal behavior of the Kuroshio and the Gulf Stream

    NARCIS (Netherlands)

    Schmeits, M.J.; Dijkstra, H.A.

    2001-01-01

    For a long time, observations have been pointing out that the Kuroshio in the North Paciffc Ocean displays bimodal meandering behavior of the southern coast of Japan. For the Gulf Stream in the North Atlantic Ocean, weakly and strongly deffected paths near the coast of South Carolina have been obser

  4. Does bimodal stimulus presentation increase ERP components usable in BCIs?

    NARCIS (Netherlands)

    Thurlings, M.E.; Brouwer, A.M.; Erp, J.B.F. van; Blankertz, B.; Werkhoven, P.J.

    2012-01-01

    Event-related potential (ERP)-based brain–computer interfaces (BCIs) employ differences in brain responses to attended and ignored stimuli. Typically, visual stimuli are used. Tactile stimuli have recently been suggested as a gaze-independent alternative. Bimodal stimuli could evoke additional brain

  5. On bimodality in warm season soil moisture observations

    NARCIS (Netherlands)

    Teuling, A.J.; Uijlenhoet, R.; Troch, P.A.A.

    2005-01-01

    It has recently been suggested that the bimodality in warm season soil moisture observations in Illinois is evidence of a soil moisture-precipitation feedback. Other studies however provide little evidence for a strong feedback in this region. Here we show that seasonality in the meteorological cond

  6. Interaural bimodal pitch matching with two-formant vowels

    DEFF Research Database (Denmark)

    Guérit, François; Chalupper, Josef; Santurette, Sébastien;

    2013-01-01

    For bimodal patients, with a hearing aid (HA) in one ear and a cochlear implant (CI) in the opposite ear, usually a default frequency-to-electrode map is used in the CI. This assumes that the human brain can adapt to interaural place-pitch mismatches. This “one-size-fits-all” method might be part...

  7. Interaural bimodal pitch matching with two-formant vowels

    DEFF Research Database (Denmark)

    Guerit, Francois Marie Louis Paul; Chalupper, Josef; Santurette, Sébastien;

    For bimodal patients, with a hearing aid (HA) in one ear and a cochlear implant (CI) in the opposite ear, usually a default frequency-to-electrode map is used in the CI. This assumes that the human brain can adapt to interaural place-pitch mismatches. This “one-size-fits-all” method might be part...

  8. Large Space Telescopes Using Fresnel Lens for Power Beaming, Astronomy and Sail Missions

    Energy Technology Data Exchange (ETDEWEB)

    Early, J T

    2002-10-15

    The concept of using Fresnel optics as part of power beaming, astronomy or sail systems has been suggested by several authors. The primary issues for large Fresnel optics are the difficulties in fabricating these structures and deploying them in space and for astronomy missions the extremely narrow frequency range of these optics. In proposals where the telescope is used to transmit narrow frequency laser power, the narrow bandwidth has not been an issue. In applications where the optic is to be used as part of a telescope, only around 10{sup -5} to limited frequency response of a Fresnel optic is addressed by the use of a corrective optic that will broaden the frequency response of the telescope by three or four orders of magnitude. This broadening will dramatically increase the optical power capabilities of the system and will allow some spectroscopy studies over a limited range. Both the fabrication of Fresnel optics as large as five meters and the use of corrector optics for telescopes have been demonstrated at LLNL. For solar and laser sail missions the use of Fresnel amplitude zone plates made of very thin sail material is also discussed.

  9. ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER SYSTEMS AT THE IDAHO NATIONAL LABORATORY BETTER SIMULATES ENVIRONMENTAL CONDITIONS OF SPACE

    Energy Technology Data Exchange (ETDEWEB)

    J. C. Giglio; A. A. Jackson

    2012-03-01

    The Idaho National Laboratory (INL) is preparing to fuel and test the Advanced Stirling Radioisotope Generator (ASRG), the next generation space power generator. The INL identified the thermal vacuum test chamber used to test past generators as inadequate. A second vacuum chamber was upgraded with a thermal shroud to process the unique needs and to test the full power capability of the new generator. The thermal vacuum test chamber is the first of its kind capable of testing a fueled power system to temperature that accurately simulate space. This paper outlines the new test and set up capabilities at the INL.

  10. High Power and Efficiency Space Traveling-Wave Tube Amplifiers With Reduced Size and Mass for NASA Missions

    Science.gov (United States)

    Simons, Rainee N.; Wilson, Jeffrey D.; Force, Dale A.

    2008-01-01

    Recent advances in high power and efficiency space traveling-wave tube amplifiers (TWTAs) for NASA s space-to-Earth communications are presented in this paper. The RF power and efficiency of a new K-Band amplifier are 40 W and 50 percent and that of a new Ka-Band amplifier are 200 W and 60 percent. An important figure-of-merit, which is defined as the ratio of the RF power output to the mass (W/kg) of a TWT has improved by a factor of ten over the previous generation Ka-Band devices.

  11. Woman, Space and Power: City and Public Transportation as Excluder Devices. Reflections from Cali.

    Directory of Open Access Journals (Sweden)

    Lina Fernanda Buchely Ibarra

    2016-06-01

    Full Text Available This work presents the results of a case study about informal transportation in the 15 and 18 communes from Cali City. Informal transportation has been working as a constant in Latin American cities. In the literature this phenomenon it is related either as an effect of neoliberal politics of the transportation systems privatization or as an evidence of the state and the public administration incapacity to take care of their own sovereignty space. This work problematizes these diagnostics and suggests a new way to address this situation. Using ethnographic techniques to observe the social places that were mentioned, this works shows how informality is a space socially constructed that evidences three main characteristics: (i persistence of men providing the service and women users, both supportive of each other in order to resist an official system that excludes them; (ii the massive use of this kind of transport by women from lower strata, that need to be mobilized in areas away from production centers, in a flexible and economical way, because they are excluded from the designs transportation routes; and (iii the bureaucratization of the practices associated with the provision of informal services, that in this specific case is functional for the playback of the male privileges in the public space (control, domination, security. These findings show that, in the Cali case study, the urban spaces are social construction constituted by power vectors. As one of this vectors, gender portrait the female and male experiences of the city as different. There is a different city for a woman.

  12. A Hypothesis for the Color Bimodality of Jupiter Trojans

    Science.gov (United States)

    Wong, Ian; Brown, Michael E.

    2016-10-01

    One of the most enigmatic and hitherto unexplained properties of Jupiter Trojans is their bimodal color distribution. This bimodality is indicative of two sub-populations within the Trojans, which have distinct size distributions. In this paper, we present a simple, plausible hypothesis for the origin and evolution of the two Trojan color sub-populations. In the framework of dynamical instability models of early solar system evolution, which suggest a common primordial progenitor population for both Trojans and Kuiper Belt objects, we use observational constraints to assert that the color bimodalities evident in both minor body populations developed within the primordial population prior to the onset of instability. We show that, beginning with an initial composition of rock and ices, location-dependent volatile loss through sublimation in this primordial population could have led to sharp changes in the surface composition with heliocentric distance. We propose that the depletion or retention of H2S ice on the surface of these objects was the key factor in creating an initial color bimodality. Objects that retained H2S on their surfaces developed characteristically redder colors upon irradiation than those that did not. After the bodies from the primordial population were scattered and emplaced into their current positions, they preserved this primordial color bimodality to the present day. We explore predictions of the volatile loss model—in particular, the effect of collisions within the Trojan population on the size distributions of the two sub-populations—and propose further experimental and observational tests of our hypothesis.

  13. The bimodality of the Luzon Strait deep water

    Institute of Scientific and Technical Information of China (English)

    WU Qingsong; ZHAO Jianru; ZHANG Junbiao; SHI Weiyong; LIU Chunqiu

    2014-01-01

    Combined conductivity-temperature-depth (CTD) casts and Argo profiles, 3 086 historical hydrocasts were used to quantify the water column characteristics in the northern South China Sea (SCS) and its adjacent waters. Based on a two-dimensional“gravest empirical mode”(GEM), a gravitational potential (׋, a verti-cally integrated variable) was used as proxy for the vertical temperature profiles TG(p,׋).׋integrated from 8 MPa to the surface shows a close relationship with the temperature, except in the deep layer greater than 15 MPa, which was caused by the bimodal deep water in the region. The GEM temperature profiles successfully revealed the bimodality of the Luzon Strait deep water, that disparate hydrophic vertical profiles can pro-duce distinct specific volume anomaly (į) in the SCS and the western Philippine Sea (WPS), but failed in the Luzon Strait, where different temperature profiles may produce a sameį. A significant temperature diver-gence between the SCS water and the WPS water confirmed that the bimodal structure is strong. The deep-water bifurcation starts at about 15 MPa, and gets stronger with increasing depth . As the only deep channel connecting the bimodal-structure waters, water column characteristics in the Luzon Strait is in between, but much closer to the SCS water because of its better connectivity with the SCS. A bimodal temperature structure below 15 MPa reveals that there was a persistent baroclinic pressure gradient driving flow through the Luzon Strait. A volume flux predicted through the Bashi Channel with the hydraulic theory yields a value of 5.62×106 m3/s using all available profiles upstream and downstream of the overflow region, and 4.03×106 and 2.70×106 m3/s by exclusively using the profiles collected during spring and summer, respectively. No volume flux was calculated during autumn and winter because profiles are only available for the upstream of the Bashi Channel during the corresponding period.

  14. The Promise and the Challenge of Space Solar Power in the 21st Century: Picking up the Gauntlet

    Science.gov (United States)

    Mankins, John C.

    2002-01-01

    The history of human civilization is a history of great infrastructure. Chief among these developments have been advances in power, transport, and communications. Without dramatic and steady advances in these critical systems during the past two hundred years-- especially in the available sources of power--the world would be a drastically poorer and harsher home for humanity. At the same time, through the global use of existing energy technologies humanity is rapidly consuming irreplaceable fossil resources as well as changing the environment and the climate for the world itself. Both must raise concerns about the long-term sustainability of the infrastructures that have enabled our world. The importance of abundant and affordable energy in space exploration and development is equally clear. Current missions of exploration and scientific discovery are narrowly constrained by a lack of energy. Future, even more ambitious missions will never be realized without new, reliable and less expensive sources of energy. Even more, the potential emergence of new space industries such as space tourism, manufacturing in space, solar power satellites (SPS) and others, will depend on advances in space power systems just as much as they will on progress in space transportation. Recent studies and technological advances suggest that large-scale space solar power (SSP) systems may enable progress in both arenas during the next several decades. Of course, there are tremendous engineering and technological barriers that must be surmounted to someday make large SSP systems possible. Diverse areas of technology must be advanced. Some of these include space transportation, solar power generation, wireless power transmission, robotics, structural concepts and materials, and others. Nevertheless, there are potential benefits in the offing that seem to many to make challenging even these daunting technical barriers worthwhile--and perhaps essential. Unfortunately, the political and

  15. Radiation risk from the nuclear power installation of space vehicle in case of reentry to the atmosphere

    International Nuclear Information System (INIS)

    Main directions of space using of nuclear power are considered. Nuclear energy has found many applications in space projects. The first application is the use of nuclear energy for the production of electricity in space and the second main application is the use of nuclear power for propulsion purposes in space flight. History of usage nuclear power systems in space technic is shown. Today there are 54 satellites with NPS in space near the Earth. The main principle of radical solution of the problem of radiation safety is based on the accommodation of space objects with nuclear units in orbits, such that the ballistic lifetime is greater than the time necessary for complete decay of the accumulated radioactivity. Radiation safety on various stages of space nuclear systems exploitation is discussed. If Main System Ensuring Radiation Safety is failed, it must operates Reserved System Ensuring Radiation Safety. Concrete development of a booster system for nuclear unit and a system for the reactor destruction in order to ensure aerodynamic destruction of fuel has been realized in satellite of 'Cosmos' series. The investigations on reserved system ensuring radiation safety in Moscow Physical - Engineering Institute are discussed. The results show that we can in principle ensure the radiation safety in accordance to ICRP recommendations. (author)

  16. A methodology for the validated design space exploration of fuel cell powered unmanned aerial vehicles

    Science.gov (United States)

    Moffitt, Blake Almy

    Unmanned Aerial Vehicles (UAVs) are the most dynamic growth sector of the aerospace industry today. The need to provide persistent intelligence, surveillance, and reconnaissance for military operations is driving the planned acquisition of over 5,000 UAVs over the next five years. The most pressing need is for quiet, small UAVs with endurance beyond what is capable with advanced batteries or small internal combustion propulsion systems. Fuel cell systems demonstrate high efficiency, high specific energy, low noise, low temperature operation, modularity, and rapid refuelability making them a promising enabler of the small, quiet, and persistent UAVs that military planners are seeking. Despite the perceived benefits, the actual near-term performance of fuel cell powered UAVs is unknown. Until the auto industry began spending billions of dollars in research, fuel cell systems were too heavy for useful flight applications. However, the last decade has seen rapid development with fuel cell gravimetric and volumetric power density nearly doubling every 2--3 years. As a result, a few design studies and demonstrator aircraft have appeared, but overall the design methodology and vehicles are still in their infancy. The design of fuel cell aircraft poses many challenges. Fuel cells differ fundamentally from combustion based propulsion in how they generate power and interact with other aircraft subsystems. As a result, traditional multidisciplinary analysis (MDA) codes are inappropriate. Building new MDAs is difficult since fuel cells are rapidly changing in design, and various competitive architectures exist for balance of plant, hydrogen storage, and all electric aircraft subsystems. In addition, fuel cell design and performance data is closely protected which makes validation difficult and uncertainty significant. Finally, low specific power and high volumes compared to traditional combustion based propulsion result in more highly constrained design spaces that are

  17. 概率可靠多播协议Bimodal Multicast的IOA形式规范%Formal specification of the Bimodal Multicast in IOA

    Institute of Scientific and Technical Information of China (English)

    郭敬林; 刘西洋; 陈平

    2003-01-01

    介绍并讨论了Bimodal Multicast的应用特征和规范形式描述方法,给出了一个基于I/O自动机的描述方案,内容包括Bimodal Multicast中消息的表达,状态和动作的定义,并重点讨论了Bimodal Multicast的最近最先语义的描述方法.

  18. Bimodal Seismic Anisotropy at Cotopaxi volcano (Ecuador): Possible implications

    Science.gov (United States)

    Amin Douillet, Guilhem; Ruiz, Mario; Robin, Claude

    2010-05-01

    A shear wave splitting analysis was performed on Cotopaxi volcano, one of Ecuador most active and hazardous volcanoes, in order to investigate the stress state under this volcano. Cotopaxi volcano is located in a highly populated area including the capital Quito. It's eruptive cycle is approximately 120 ±70 years and apart from possible minor eruptions in 1942 and 1903-1904, the last volcanic activity dates from 1878-1885. Moreover, 15 years of increasing seismicity with some major crisis during the 1995-2010 periods, lead to the current very high seismic level. Finally two years of gas monitoring suggest that the Cotopaxi's emissions are currently intermittent and passive, but non negligible. We analyzed 102 regional tectonic events recorded between 2006 and 2009 at a network of five broad-band three-component seismic stations. These stations are located on all flanks of Cotopaxi. The events used were from several seismic sources located inside a radius of 200 kilometers from the volcano and illuminate all space directions. Seismic events were manually chosen based on their clear shear wave component in regards to the compression wave and to the noise. The data were computed using Matlab software. Polarization directions and delay times of split shear waves were found using a method based on the cross correlation of displacement waveforms of shear-waves at all possible rotation angles. Our results show a bimodal anisotropic behavior. One of the fast-directions axes follows the regional Ecuadorian tectonic general strain with a ESE direction. The other trend was found to be perpendicular to the regional strain. Other studies have shown that a 90° flip may take place either prior, during, or just after the main eruptive phase, or during hydraulic injections. This 90° flip is probably relied to micro cracks filling and pressuring, creating a local reverse strain field. There is not clear trend on temporal evolution of anisotropy distribution on our data. Only one

  19. Characterising rock fracture aperture-spacing relationships using power-law relationships: some considerations

    Science.gov (United States)

    Brook, Martin; Hebblewhite, Bruce; Mitra, Rudrajit

    2016-04-01

    The size-scaling of rock fractures is a well-studied problem in geology, especially for permeability quantification. The intensity of fractures may control the economic exploitation of fractured reservoirs because fracture intensity describes the abundance of fractures potentially available for fluid flow. Moreover, in geotechnical engineering, fractures are important for parameterisation of stress models and excavation design. As fracture data is often collected from widely-spaced boreholes where core recovery is often incomplete, accurate interpretation and representation of fracture aperture-frequency relationships from sparse datasets is important. Fracture intensity is the number of fractures encountered per unit length along a sample scanline oriented perpendicular to the fractures in a set. Cumulative frequency of fractures (F) is commonly related to fracture aperture (A) in the form of a power-law (F = aA‑b), with variations in the size of the a coefficient between sites interpreted to equate to fracture frequency for a given aperture (A). However, a common flaw in this approach is that even a small change in b can have a large effect on the response of the fracture frequency (F) parameter. We compare fracture data from the Late Permian Rangal Coal Measures from Australia's Bowen Basin, with fracture data from Jurassic carbonates from the Sierra Madre Oriental, northeastern Mexico. Both power-law coefficient a and exponent b control the fracture aperture-frequency relationship in conjunction with each other; that is, power-laws with relatively low a coefficients have relatively high b exponents and vice versa. Hence, any comparison of different power-laws must take both a and b into consideration. The corollary is that different sedimentary beds in the Sierra Madre carbonates do not show ˜8× the fracture frequency for a given fracture aperture, as based solely on the comparison of coefficient a. Rather, power-law "sensitivity factors" developed from

  20. High-Power, High-Efficiency Ka-Band Space Traveling-Wave Tube

    Science.gov (United States)

    Krawczyk, Richard; Wilson, Jeffrey; Simons, Rainee; Williams, Wallace; Bhasin, Kul; Robbins, Neal; Dibb, Daniel; Menninger, William; Zhai, Xiaoling; Benton, Robert; Burdette, James

    2007-01-01

    The L-3 Communications Model 999H traveling-wave tube (TWT) has been demonstrated to generate an output power of 144 W at 60-percent overall efficiency in continuous-wave operation over the frequency band from 31.8 to 32.3 GHz. The best TWT heretofore commercially available for operation in the affected frequency band is characterized by an output power of only 35 W and an efficiency of 50 percent. Moreover, whereas prior TWTs are limited to single output power levels, it has been shown that the output power of the Model 999H can be varied from 54 to 144 W. A TWT is a vacuum electronic device used to amplify microwave signals. TWTs are typically used in free-space communication systems because they are capable of operating at power and efficiency levels significantly higher than those of solid-state devices. In a TWT, an electron beam is generated by an electron gun consisting of a cathode, focusing electrodes, and an anode. The electrons pass through a hole in the anode and are focused into a cylindrical beam by a stack of periodic permanent magnets and travel along the axis of an electrically conductive helix, along which propagates an electromagnetic wave that has been launched by an input signal that is to be amplified. The beam travels within the helix at a velocity close to the phase velocity of the electromagnetic wave. The electromagnetic field decelerates some of the electrons and accelerates others, causing the beam to become formed into electron bunches, which further interact with the electromagnetic wave in such a manner as to surrender kinetic energy to the wave, thereby amplifying the wave. The net result is to amplify the input signal by a factor of about 100,000. After the electrons have passed along the helix, they impinge on electrodes in a collector. The collector decelerates the electrons in such a manner as to recover most of the remaining kinetic energy and thereby significantly increase the power efficiency of the TWT.

  1. Scalar Field Probes of Power-Law Space-Time Singularities

    CERN Document Server

    Blau, Matthias; Weiss, S; Blau, Matthias; Frank, Denis; Weiss, Sebastian

    2006-01-01

    We analyse the effective potential of the scalar wave equation near generic space-time singularities of power-law type (Szekeres-Iyer metrics) and show that the effective potential exhibits a universal and scale invariant leading x^{-2} inverse square behaviour in the ``tortoise coordinate'' x provided that the metrics satisfy the strict Dominant Energy Condition (DEC). This result parallels that obtained in hep-th/0403252 for probes consisting of families of massless particles (null geodesic deviation, a.k.a. the Penrose Limit). The detailed properties of the scalar wave operator depend sensitively on the numerical coefficient of the x^{-2}-term, and as one application we show that timelike singularities satisfying the DEC are quantum mechanically singular in the sense of the Horowitz-Marolf (essential self-adjointness) criterion. We also comment on some related issues like the near-singularity behaviour of the scalar fields permitted by the Friedrichs extension.

  2. Design of a Mechanical NaK Pump for Fission Space Power

    Science.gov (United States)

    Mireles, Omar R.; Bradley, David E.; Godfroy, Thomas

    2011-01-01

    Alkali liquid metal cooled fission reactor concepts are under development for spaceflight power requirements. One such concept utilizes a sodium-potassium eutectic (NaK) as the primary loop working fluid, which has specific pumping requirements. Traditionally, electromagnetic linear induction pumps have been used to provide the required flow and pressure head conditions for NaK systems but they can be limited in performance, efficiency, and number of available vendors. The objective of the project was to develop a mechanical NaK centrifugal pump that takes advantages of technology advances not available in previous liquid metal mechanical pump designs. This paper details the design, build, and performance test of a mechanical NaK pump developed at NASA Marshall Space Flight Center. The pump was designed to meet reactor cooling requirements using commercially available components modified for high temperature NaK service.

  3. Space charge dosimeters for extremely low power measurements of radiation in shipping containers

    Science.gov (United States)

    Britton, Jr.; Charles L.; Buckner, Mark A.; Hanson, Gregory R.; Bryan, William L.

    2011-04-26

    Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes in situ polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.

  4. Heat pipe radiators for solar dynamic space power system heat rejection

    Science.gov (United States)

    Gustafson, Eric; Carlson, Albert

    1987-01-01

    The paper presents the results of a concept development study of heat rejection systems for Space Station solar dynamic power systems. The thermal performance and weights of each of the heat rejection subsystems have been addressed in detail, and critical technologies which require development tests and evaluation for successful demonstration were assessed and identified. Baseline and several alternate heat rejection system configurations and optimum designs were developed for both Brayton and Rankine cycles. The thermal performance, mass properties, assembly requirements, reliability, maintenance requirements, and life cycle costs were determined for each of the system configurations. Trade studies were performed on each configuration with respect to the heat pipe wall thickness and the amount of redundancy to determine the effects on system reliability, maintenance requirements, and life cycle costs. An optimum design was then selected for each configuration.

  5. Forward Modeling of Reduced Power Spectra From Three-Dimensional $\\mathbf{k}$-Space

    CERN Document Server

    von Papen, Michael

    2015-01-01

    We present results from a numerical forward model to evaluate one-dimensional reduced power spectral densities (PSD) from arbitrary energy distributions in $\\mathbf{k}$-space. In this model, we can separately calculate the diagonal elements of the spectral tensor for incompressible axisymmetric turbulence with vanishing helicity. Given a critically balanced turbulent cascade with $k_\\|\\sim k_\\perp^\\alpha$ and $\\alpha<1$, we explore the implications on the reduced PSD as a function of frequency. The spectra are obtained under the assumption of Taylor's hypothesis. We further investigate the functional dependence of the spectral index $\\kappa$ on the field-to-flow angle $\\theta$ between plasma flow and background magnetic field from MHD to electron kinetic scales. We show that critically balanced turbulence asymptotically develops toward $\\theta$-independent spectra with a slope corresponding to the perpendicular cascade. This occurs at a transition frequency $f_{2D}(L,\\alpha,\\theta)$, which is analytically ...

  6. Mast material test program (MAMATEP). [for Solar Array Assembly of Space Station Photovoltaic Power Module

    Science.gov (United States)

    Ciancone, Michael L.; Rutledge, Sharon K.

    1988-01-01

    The MAMATEP program, which is aimed at verifying the need for and evaluating the performance of various protection techniques for the solar array assembly mast of the Space Station photovoltaic power module, is discussed. Coated and uncoated mast material samples have been environmentally tested and evaluated, before and after testing, in terms of mass and bending modulus. The protective coatings include CV-1144 silicone, a Ni/Al/InSn eutectic, and an open-weave Al braid. Long-term plasma asher results from unprotected samples indicate that, even though fiberglass-epoxy samples degrade, a protection technique may not be necessary to ensure structural integrity. A protection technique, however, may be desirable to limit or contain the amount of debris generated by the degradation of the fiberglass-epoxy.

  7. Space - time structure of radiation from a high-power fast-flow CO2 laser

    International Nuclear Information System (INIS)

    The space - time structure of radiation from an industrial electric-discharge, flowing CO2 laser is studied experimentally. For the optimal design of the optical and gas-dynamic sections, a total suppression of high-frequency radiation fluctuations and a lowering of the amplitude of low-frequency fluctuations down to 6% - 10% were observed with increasing output power. At the same time, the intensity distribution in the near-field diffraction zone was complicated and unstable. 'Hot' spots and screw wave-front dislocations were observed in the laser-beam cross section. Numerical simulations showed that the properties of the near-field radiation structure are determined by random caustics and phase singularities formed due to the diffraction transformation of the initial wave-front perturbations. (control of laser radiation parameters)

  8. Experimental, analytical and computational investigation of bimodal elastomer networks

    Science.gov (United States)

    von Lockette, Paris Robert

    Advances in the synthesis of macromolecular materials have led to the creation of special classes of elastomers called bimodal because of their bimodal distributions of linear starting oligomers. Numerous studies on these materials have documented anomalous increases in ultimate strength and toughness at certain mixture combinations of the constituents but have not yet identified a cause for this behavior. In addition, the ability to predict optimal mixtures still eludes polymer chemists. Constitutive models for the behavior of bimodal materials are also unable to predict material behavior, but instead tend to capture results using complicated curve fitting and iterative schemes. This thesis uncovers topological and micromechanical sources of these enhanced properties using periodic, topological simulations of chain-level network formation and develops a constitutive model of the aggregate bimodal network. Using a topological framework, in conjunction with the eight-chain averaging scheme of Arruda and Boyce, this work develops optical and mechanical constitutive models for bimodal elastomers whose results compare favorably with data in the literature. The resulting bimodal network theory is able to predict material response for a range of bimodal compositions using only two sets of data, a direct improvement over previous models. The micromechanics of elastomeric deformation and chain orientation as described by the eight-chain model are further validated by comparing optical and mechanical data generated during large deformation shear tests on unimodal materials with finite element simulations. In addition, a newly developed optical anisotropy model for the Raman tensor of polymeric materials, generated using an eight-chain unit cell model, is shown to compare favorably with tensile data in the literature. Results generated using NETSIM, a computer program developed in this thesis, have revealed naturally occurring, self-reinforcing topological features

  9. Investigation of heat exchangers for energy conversion systems of megawatt-class space power plants

    Science.gov (United States)

    Ilmov, D. N.; Mamontov, Yu. N.; Skorohodov, A. S.; Smolyarov, V. A.; Filatov, N. I.

    2016-01-01

    The specifics of operation (high temperatures in excess of 1000 K and large pressure drops of several megapascals between "hot" and "cold" coolant paths) of heat exchangers in the closed circuit of a gasturbine power converter operating in accordance with the Brayton cycle with internal heat recovery are analyzed in the context of construction of space propulsion systems. The design of a heat-exchange matrix made from doubly convex stamped plates with a specific surface relief is proposed. This design offers the opportunity to construct heat exchangers with the required parameters (strength, rigidity, weight, and dimensions) for the given operating conditions. The diagram of the working area of a test bench is presented, and the experimental techniques are outlined. The results of experimental studies of heat exchange and flow regimes in the models of heat exchangers with matrices containing 50 and 300 plates for two pairs of coolants (gas-gas and gas-liquid) are detailed. A criterion equation for the Nusselt number in the range of Reynolds numbers from 200 to 20 000 is proposed. The coefficients of hydraulic resistance for each coolant path are determined as functions of the Reynolds number. It is noted that the pressure in the water path in the "gas-liquid" series of experiments remained almost constant. This suggests that no well-developed processes of vaporization occurred within this heat-exchange matrix design even when the temperature drop between gas and water was as large as tens or hundreds of degrees. The obtained results allow one to design flight heat exchangers for various space power plants.

  10. NASA/USRA advanced space design program: The laser powered interorbital vehicle

    Science.gov (United States)

    1989-01-01

    A preliminary design is presented for a low-thrust Laser Powered Interorbital Vehicle (LPIV) intended for cargo transportation between an earth space station and a lunar base. The LPIV receives its power from two iodide laser stations, one orbiting the earth and the other located on the surface of the moon. The selected mission utilizes a spiral trajectory, characteristic of a low-thrust spacecraft, requiring 8 days for a lunar rendezvous and an additional 9 days for return. The ship's configuration consists primarily of an optical train, two hydrogen plasma engines, a 37.1 m box beam truss, a payload module, and fuel tanks. The total mass of the vehicle fully loaded is 63300 kg. A single plasma, regeneratively cooled engine design is incorporated into the two 500 N engines. These are connected to the spacecraft by turntables which allow the vehicle to thrust tangentially to the flight path. Proper collection and transmission of the laser beam to the thrust chambers is provided through the optical train. This system consists of the 23 m diameter primary mirror, a convex parabolic secondary mirror, a beam splitter and two concave parabolic tertiary mirrors. The payload bay is capable of carrying 18000 kg of cargo. The module is located opposite the primary mirror on the main truss. Fuel tanks carrying a maximum of 35000 kg of liquid hydrogen are fastened to tracks which allow the tanks to be moved perpendicular to the main truss. This capability is required to prevent the center of mass from moving out of the thrust vector line. The laser beam is located and tracked by means of an acquisition, pointing and tracking system which can be locked onto the space-based laser station. Correct orientation of the spacecraft with the laser beam is maintained by control moment gyros and reaction control rockets. Additionally an aerobrake configuration was designed to provide the option of using the atmospheric drag in place of propulsion for a return trajectory.

  11. Advances in thin-film solar cells for lightweight space photovoltaic power

    Science.gov (United States)

    Landis, Geoffrey A.; Bailey, Sheila G.; Flood, Dennis J.

    1989-01-01

    The present stature and current research directions of photovoltaic arrays as primary power systems for space are reviewed. There have recently been great advances in the technology of thin-film solar cells for terrestrial applications. In a thin-film solar cell the thickness of the active element is only a few microns; transfer of this technology to space arrays could result in ultralow-weight solar arrays with potentially large gains in specific power. Recent advances in thin-film solar cells are reviewed, including polycrystalline copper-indium selenide (CuInSe2) and related I-III-VI2 compounds, polycrystalline cadmium telluride and related II-VI compounds, and amorphous silicon:hydrogen and alloys. The best experimental efficiency on thin-film solar cells to date is 12 percent AMO for CuIn Se2. This efficiency is likely to be increased in the next few years. The radiation tolerance of thin-film materials is far greater than that of single-crystal materials. CuIn Se2 shows no degradation when exposed to 1 MeV electrons. Experimental evidence also suggests that most of all of the radiation damage on thin-films can be removed by a low temperature anneal. The possibility of thin-film multibandgap cascade solar cells is discussed, including the tradeoffs between monolithic and mechanically stacked cells. The best current efficiency for a cascade is 12.5 percent AMO for an amorphous silicon on CuInSe2 multibandgap combination. Higher efficiencies are expected in the future. For several missions, including solar-electric propulsion, a manned Mars mission, and lunar exploration and manufacturing, thin-film photovolatic arrays may be a mission-enabling technology.

  12. Alkali metal Rankine cycle boiler technology challenges and some potential solutions for space nuclear power and propulsion applications

    Energy Technology Data Exchange (ETDEWEB)

    Stone, J.R.

    1994-07-01

    Alkali metal boilers are of interest for application to future space Rankine cycle power conversion systems. Significant progress on such boilers was accomplished in the 1960's and early 1970's, but development was not continued to operational systems since NASA's plans for future space missions were drastically curtailed in the early 1970's. In particular, piloted Mars missions were indefinitely deferred. With the announcement of the Space Exploration Initiative (SEI) in July 1989 by President Bush, interest was rekindled in challenging space missions and, consequently in space nuclear power and propulsion. Nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) were proposed for interplanetary space vehicles, particularly for Mars missions. The potassium Rankine power conversion cycle became of interest to provide electric power for NEP vehicles and for 'dual-mode' NTP vehicles, where the same reactor could be used directly for propulsion and (with an additional coolant loop) for power. Although the boiler is not a major contributor to system mass, it is of critical importance because of its interaction with the rest of the power conversion system; it can cause problems for other components such as excess liquid droplets entering the turbine, thereby reducing its life, or more critically, it can drive instabilities-some severe enough to cause system failure. Funding for the SEI and its associated technology program from 1990 to 1993 was not sufficient to support significant new work on Rankine cycle boilers for space applications. In Fiscal Year 1994, funding for these challenging missions and technologies has again been curtailed, and planning for the future is very uncertain. The purpose of this paper is to review the technologies developed in the 1960's and 1970's in the light of the recent SEI applications. In this way, future Rankine cycle boiler programs may be conducted most efficiently.

  13. Disentangling redshift-space distortions and nonlinear bias using the 2D power spectrum

    CERN Document Server

    Jennings, Elise

    2015-01-01

    We present the nonlinear 2D galaxy power spectrum, $P(k,\\mu)$, in redshift space, measured from the Dark Sky simulations, using galaxy catalogs constructed with both halo occupation distribution and subhalo abundance matching methods, chosen to represent an intermediate redshift sample of luminous red galaxies. We find that the information content in individual $\\mu$ (cosine of the angle to the line of sight) bins is substantially richer then multipole moments, and show that this can be used to isolate the impact of nonlinear growth and redshift space distortion (RSD) effects. Using the $\\mu<0.2$ simulation data, which we show is not impacted by RSD effects, we can successfully measure the nonlinear bias to an accuracy of $\\sim 5$% at $k<0.6 h$Mpc$^{-1}$. This use of individual $\\mu $ bins to extract the nonlinear bias successfully removes a large parameter degeneracy when constraining the linear growth rate of structure. We carry out a joint parameter estimation, using the low $\\mu$ simulation data to ...

  14. Thermal management of space-based, high-power solid-state RF amplifiers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rose, M.F.; Chow, L.C.; Johnson, J.H.

    1990-08-01

    The advanced weapons concepts envisioned by the SDIO employed a wide array of highly energetic devices, which due to inefficiencies, generate large quantities of waste heat. Power and thermal management are integrally related. In the vacuum of space, disposing of waste energy is a major problem which can contribute as much as 50% to the overall spacecraft mass and volume. The problem becomes more acute as the temperature at which the energy must be rejected is lowered. In an earlier study, thermal management issues associated with megawatt class RF microwave tubes were explored to determine if there were simple, approximately mass neutral schemes which might be adapted to dispose of the waste energy generated within a tube collector operating in space. The assumptions for that study were: (1) Tubes were in the megawatt class-70% efficient for single simple collector and 90% efficient for depressed collectors, (2) On-board, super critical hydrogen was available at a pressure of 35 bars and a temperature of 35 K. (3) The largest single event run time was 500 seconds. (4) The device would be dormant for long periods of time, be required to become active in tens of seconds followed by long periods of dormancy. (5) The only allowable effluent is hydrogen. (6) System impact must be minimal.

  15. Evolution of systems concepts for a 100 kWe class Space Nuclear Power System

    Science.gov (United States)

    Katucki, R.; Josloff, A.; Kirpich, A.; Florio, F.

    1985-01-01

    Conceptual designs for the SP-100 Space Nuclear Power System have been prepared that meet baseline, backup and growth program scenarios. Near-term advancement in technology was considered in the design of the Baseline Concept. An improved silicon-germanium thermoelectric technique is used to convert the heat from a fast-spectrum, liquid lithium cooled reactor. This system produces a net power of 100 kWe with a 10-year end of life, under the specific constraints of area and volume. Output of the Backup Concept is estimated to be 60 kWe for a 10-year end of life. This system differs from the Baseline Concept because currently available thermoelectric conversion is used from energy supplied by a liquid sodium cooled reactor. The Growth Concept uses Stirling engine conversion to produce 100 kWe within the constraints of mass and volume. The Growth Concept can be scaled up to produce a 1 MWe output that uses the same type reactor developed for the Baseline Concept. Assessments made for each of the program scenarios indicate the key development efforts needed to initiate detailed design and hardware program phases. Development plans were prepared for each scenario that detail the work elements and show the program activities leading to a state of flight readiness.

  16. Space Station Module Power Management and Distribution System (SSM/PMAD)

    Science.gov (United States)

    Miller, William; Britt, Daniel; Elges, Michael; Myers, Chris

    1994-05-01

    This report provides an overview of the Space Station Module Power Management and Distribution (SSM/PMAD) testbed system and describes recent enhancements to that system. Four tasks made up the original contract: (1) common module power management and distribution system automation plan definition; (2) definition of hardware and software elements of automation; (3) design, implementation and delivery of the hardware and software making up the SSM/PMAD system; and (4) definition and development of the host breadboard computer environment. Additions and/or enhancements to the SSM/PMAD test bed that have occurred since July 1990 are reported. These include: (1) rehosting the MAESTRO scheduler; (2) reorganization of the automation software internals; (3) a more robust communications package; (4) the activity editor to the MAESTRO scheduler; (5) rehosting the LPLMS to execute under KNOMAD; implementation of intermediate levels of autonomy; (6) completion of the KNOMAD knowledge management facility; (7) significant improvement of the user interface; (8) soft and incipient fault handling design; (9) intermediate levels of autonomy, and (10) switch maintenance.

  17. A direct current rectification scheme for microwave space power conversion using traveling wave electron acceleration

    Science.gov (United States)

    Manning, Robert M.

    1993-01-01

    The formation of the Vision-21 conference held three years ago allowed the present author to reflect and speculate on the problem of converting electromagnetic energy to a direct current by essentially reversing the process used in traveling wave tubes that converts energy in the form of a direct current to electromagnetic energy. The idea was to use the electric field of the electromagnetic wave to produce electrons through the field emission process and accelerate these electrons by the same field to produce an electric current across a large potential difference. The acceleration process was that of cyclotron auto-resonance. Since that time, this rather speculative ideas has been developed into a method that shows great promise and for which a patent is pending and a prototype design will be demonstrated in a potential laser power beaming application. From the point of view of the author, a forum such as Vision-21 is becoming an essential component in the rather conservative climate in which our initiatives for space exploration are presently formed. Exchanges such as Vision-21 not only allows us to deviate from the 'by-the-book' approach and rediscover the ability and power in imagination, but provides for the discussion of ideas hitherto considered 'crazy' so that they may be given the change to transcend from the level of eccentricity to applicability.

  18. Design of multihundred-watt dynamic isotope power system for robotic space missions

    Science.gov (United States)

    Bents, D. J.; Geng, S. M.; Schreiber, J. G.; Withrow, C. A.; Schmitz, P. C.; McComas, T. J.

    The design of a multihundred-watt dynamic isotope power system (DIPS) based on the US Department of Energy (DOE) general-purpose heat source (GPHS) and small (multihundred-watt) free-piston Stirling engine (FPSE) is described as a potential lower cost alternative to radioisotope thermoelectric generators (RTGs). The design is targeted at the power needs of future unmanned deep space and planetary surface exploration missions. Since the competitive potential of FPSE as an isotope convertor was first identified, work has focused on the feasibility of directly integrating GPHS with the Stirling heater head. Thermal modeling of various radiatively coupled heat source/heater head geometries has been performed using data furnished by the developers of FPSE and GPHS. The analysis indicates that, for the 1050 K heater head configurations considered, GPHS fuel clad temperatures remain safe operating limits under all conditions including shutdown of one engine on a twin engine unit. Based on these results, preliminary characterizations of multihundred-watt units have been established. They indicate that, per electrical watt, the GPHS/small Stirling DIPS will be roughly equivalent to MOD RTG in size and mass but will require about a third the amount of isotope fuel.

  19. Compressor and Turbine Models of Brayton Units for Space Nuclear Power Systems

    Science.gov (United States)

    Gallo, Bruno M.; El-Genk, Mohamed S.; Tournier, Jean-Michel

    2007-01-01

    Closed Brayton Cycles with centrifugal flow, single-shaft turbo-machines are being considered, with gas cooled nuclear reactors, to provide 10's to 100's of electrical power to support future space exploration missions and Lunar and Mars outposts. Such power system analysis is typically based on the cycle thermodynamics, for given operating pressures and temperatures and assumed polytropic efficiencies of the compressor and turbine of the Brayton energy conversion units. Thus the analysis results not suitable for modeling operation transients such as startup and changes in the electric load. To simulate these transients, accurate models of the turbine and compressor in the Brayton rotating unit, which calculate the changes in the compressor and turbine efficiencies with system operation are needed. This paper presents flow models that account for the design and dimensions of the compressor impeller and diffuser, and the turbine stator and rotor blades. These models calculate the various enthalpy losses and the polytropic efficiencies along with the pressure ratios of the turbine and compressor. The predictions of these models compare well with reported performance data of actual hardware. In addition, the results of a parametric analysis to map the operations of the compressor and turbine, as functions of the rotating shaft speed and inlet Mach number of the gas working fluid, are presented and discussed. The analysis used a binary mixture of He-Xe with a molecular weight of 40 g/mole as the working fluid.

  20. On the Power-counting Renormalizability of a Lifshitz-type QFT in Configuration Space

    Science.gov (United States)

    Franco, Daniel H. T.

    2014-06-01

    Recently, Hořava (Phys. Rev. D. 79, 084008, 2009) proposed a theory of gravity in 3+1 dimensions with anisotropic scaling using the traditional framework of quantum field theory (QFT). Such an anisotropic theory of gravity, characterized by a dynamical critical exponent z, has proven to be power-counting renormalizable at a z=3 Lifshitz Point. In the present article, we develop a mathematically precise version of power-counting theorem in Lorentz violating theories and apply this to the Hořava-Lifshitz (scalar field) models in configuration space. The analysis is performed under the light of the systematic use of the concept of extension of homogeneous distributions, a concept tailor-made to address the problem of the ultraviolet renormalization in QFT. This becomes particularly transparent in a Lifshitz-type QFT. In the specific case of the -theory, we show that is sufficient to take z=3 in order to reach the ultraviolet finiteness of the S-matrix in all orders.