WorldWideScience

Sample records for bimodal pore size

  1. Multifractal Characteristics of Bimodal Mercury Pore Size Distribution Curves

    Science.gov (United States)

    dos Santos Bonini, C.; Alves, M. C.; Paz González, A.

    2012-04-01

    Characterization of Hg pore size distribution (PSDs) curves by monofractal or multifractal analysis has been demonstrated to be an useful tool, which allows a better understanding of the organization of the soil pore space. There are also evidences that multiscale analysis of different segments found in bimodal pore size distributions measured by Hg intrusion can provide further valuable information. In this study we selected bimodal PSDs from samples taken from an experimental area in São Paulo state, Brazil, where a revegetation trial was set up over saprolitic material. The saprolite was left abandoned after decapitation of an Oxisol for building purposes. The field trial consisted of various treatments with different grass species and amendments. Pore size distribution of the sampled aggregates was measured in the equivalent diameter range from 0.005 to about 50 μm and it was characterized by a bimodal pattern, so that two compartments, i.e. 0.005 to 0.2 μm and 0.2 to 50 μm, could be distinguished. The multifractal theory was used to analyse both segments. The scaling properties of these two segments could be fitted reasonably well with multifractal models. Multifractal parameters obtained for equivalent diameters for the segments > 0.2 and pore size distributions studied.

  2. Mesoporous ethanesilica materials with bimodal and trimodal pore-size distributions synthesised in the presence of cobalt ions

    Directory of Open Access Journals (Sweden)

    Alufelwi M. Tshavhungwe

    2010-07-01

    Full Text Available Mesoporous organosilica materials containing ethane groups in their framework were formed with two and three pore sizes (i.e. bimodal and trimodal pores when synthesised by the sol-gel method in the presence of cobalt ions. The compounds 1,2-bistrimethoxysilylethane and tetraethylorthosilicate were used as silicon sources and the reactions were done in the presence of a surfactant, which served as a template. Diffuse reflectance infrared Fourier transform spectroscopy revealed that organic functional groups were incorporated into the ethanesilica. Powder X-ray diffraction and nitrogen adsorption data indicated that the mesophase and textural properties (surface area, pore volume, pore diameter of the materials were dependent on the ageing temperature, the amount/ratio of silica precursors and cobalt ion incorporation. Secondary mesopores were drastically reduced by changing the ratio of silicon precursors.

  3. Comparative DNA isolation behaviours of silica and polymer based sorbents in batch fashion: monodisperse silica microspheres with bimodal pore size distribution as a new sorbent for DNA isolation.

    Science.gov (United States)

    Günal, Gülçin; Kip, Çiğdem; Eda Öğüt, S; İlhan, Hasan; Kibar, Güneş; Tuncel, Ali

    2018-02-01

    Monodisperse silica microspheres with bimodal pore-size distribution were proposed as a high performance sorbent for DNA isolation in batch fashion under equilibrium conditions. The proposed sorbent including both macroporous and mesoporous compartments was synthesized 5.1 μm in-size, by a "staged shape templated hydrolysis and condensation method". Hydrophilic polymer based sorbents were also obtained in the form of monodisperse-macroporous microspheres ca 5.5 μm in size, with different functionalities, by a developed "multi-stage microsuspension copolymerization" technique. The batch DNA isolation performance of proposed material was comparatively investigated using polymer based sorbents with similar morphologies. Among all sorbents tried, the best DNA isolation performance was achieved with the monodisperse silica microspheres with bimodal pore size distribution. The collocation of interconnected mesoporous and macroporous compartments within the monodisperse silica microspheres provided a high surface area and reduced the intraparticular mass transfer resistance and made easier both the adsorption and desorption of DNA. Among the polymer based sorbents, higher DNA isolation yields were achieved with the monodisperse-macroporous polymer microspheres carrying trimethoxysilyl and quaternary ammonium functionalities. However, batch DNA isolation performances of polymer based sorbents were significantly lower with respect to the silica microspheres.

  4. New bimodal pore catalysts for Fischer-Tropsch synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Shinoda, Misao; Zhang, Yi; Yoneyama, Yoshiharu; Hasegawa, Kiyoshi; Tsubaki, Noritatsu [Department of Material System and Life Science, School of Engineering, Toyama University, Gofuku 3190, Toyama 930-8555 (Japan)

    2004-11-15

    A simple preparation method of bimodal pore supports was developed by introducing SiO{sub 2} or ZrO{sub 2} sols into large pores of SiO{sub 2} gel pellets directly. The pores of the obtained bimodal pore supports distributed distinctly as two kinds of main pores. On the other hand, the increased BET surface area and decreased pore volume, compared to those of original silica gel, indicated that the obtained bimodal pore supports formed according to the designed route. The obtained bimodal pore supports were applied in liquid-phase Fischer-Tropsch synthesis (FTS) where cobalt was supported. The bimodal pore catalysts presented the best reaction performance in liquid-phase Fischer-Tropsch synthesis (FTS) as higher reaction rate and lower methane selectivities, because the spatial promotional effect of bimodal pore structure and chemical effect of the porous zirconia behaved inside the large pores of original silica gel.

  5. Control of pore size in epoxy systems.

    Energy Technology Data Exchange (ETDEWEB)

    Sawyer, Patricia Sue; Lenhart, Joseph Ludlow (North Dakota State University, Fargo, ND); Lee, Elizabeth (North Dakota State University, Fargo, ND); Kallam, Alekhya (North Dakota State University, Fargo, ND); Majumdar, Partha (North Dakota State University, Fargo, ND); Dirk, Shawn M.; Gubbins, Nathan; Chisholm, Bret J. (North Dakota State University, Fargo, ND); Celina, Mathias C.; Bahr, James (North Dakota State University, Fargo, ND); Klein, Robert J.

    2009-01-01

    Both conventional and combinatorial approaches were used to study the pore formation process in epoxy based polymer systems. Sandia National Laboratories conducted the initial work and collaborated with North Dakota State University (NDSU) using a combinatorial research approach to produce a library of novel monomers and crosslinkers capable of forming porous polymers. The library was screened to determine the physical factors that control porosity, such as porogen loading, polymer-porogen interactions, and polymer crosslink density. We have identified the physical and chemical factors that control the average porosity, pore size, and pore size distribution within epoxy based systems.

  6. Yield stress of ultrafine-grained or nanocrystalline materials with a bimodal grain size distribution

    Science.gov (United States)

    Pande, C. S.; DeGiorgi, V. G.; E Moser, A.

    2018-02-01

    An attractive processing route for enhancing the yield strength of high-strength nanocrystalline metals and alloys while maintaining high ductility is to develop a bimodal grain size distribution (GSD), in which, supposedly, the finer grains provide strength, and the coarser grains maintain or even enhance ductility. We present a theoretical model predicting the strength of such a system, and show, analytically, how the yield stress is related to the various parameters of the bimodal GSD, such as volume fraction of the two components of the bimodal distribution and their standard deviations.

  7. Bimodal grain-size distribution of Chinese loess, and its palaeoclimatic implications

    NARCIS (Netherlands)

    Sun, D.G.; Bloemendal, J.; Rea, D.K.; An, Z.S.; Vandenberghe, J.; Lu, H.; Su, R.; Liu, T.S.

    2004-01-01

    Grain-size analysis indicates that Chinese loess generally shows a bimodal distribution with a coarse and a fine component. The coarse component, comprising the main part of the loess, has pronounced kurtosis and is well sorted, which is interpreted to be the product of dust storms generated by

  8. Possible human impacts on adaptive radiation: beak size bimodality in Darwin's finches.

    Science.gov (United States)

    Hendry, Andrew P; Grant, Peter R; Rosemary Grant, B; Ford, Hugh A; Brewer, Mark J; Podos, Jeffrey

    2006-08-07

    Adaptive radiation is facilitated by a rugged adaptive landscape, where fitness peaks correspond to trait values that enhance the use of distinct resources. Different species are thought to occupy the different peaks, with hybrids falling into low-fitness valleys between them. We hypothesize that human activities can smooth adaptive landscapes, increase hybrid fitness and hamper evolutionary diversification. We investigated this possibility by analysing beak size data for 1755 Geospiza fortis measured between 1964 and 2005 on the island of Santa Cruz, Galápagos. Some populations of this species can display a resource-based bimodality in beak size, which mirrors the greater beak size differences among species. We first show that an historically bimodal population at one site, Academy Bay, has lost this property in concert with a marked increase in local human population density. We next show that a nearby site with lower human impacts, El Garrapatero, currently manifests strong bimodality. This comparison suggests that bimodality can persist when human densities are low (Academy Bay in the past, El Garrapatero in the present), but not when they are high (Academy Bay in the present). Human activities may negatively impact diversification in 'young' adaptive radiations, perhaps by altering adaptive landscapes.

  9. Effect of pore size on the calculated pressure at biological cells pore wall.

    Science.gov (United States)

    El-Hag, Ayman H; Zheng, Zhong; Boggs, Steven A; Jayaram, Shesha H

    2006-09-01

    A transient nonlinear finite-element program has been used to calculate the electric field distribution as a function of time for a spherical cell with a pore in a conducting medium during application of a subnanosecond rise time "step" wave, including the effects of dipolar saturation in the water-based cytoplasm and cell medium. The time-dependent pressure on the pore wall has been computed as a function of time as the system polarizes from the change of the energy in the electric field to the left (inside the pore) and to the right (inside the membrane) of the pore wall. The computations suggest that dipolar saturation, while significant, has little effect on the time-dependent electric field distribution but a substantial effect on the field-induced pore wall pressure. Also, the effect of pore size on both the computed electric field and field-induced pressure was studied. As the pore size increases, a collapse in both the electric field and field-induced pressure has been noticed. This suggests that as the pore size increases, the driving force for further opening the pore is not electrical.

  10. Pore size determination from charged particle energy loss measurement

    International Nuclear Information System (INIS)

    Brady, F.P.; Armitage, B.H.

    1977-01-01

    A new method aimed at measuring porosity and mean pore size in materials has been developed at Harwell. The energy width or variance of a transmitted or backscattered charged particle beam is measured and related to the mean pore size via the assumption that the variance in total path length in the porous material is given by (Δx 2 )=na 2 , where n is the mean number of pores and a the mean pore size. It is shown on the basis of a general and rigorous theory of total path length distribution that this approximation can give rise to large errors in the mean pore size determination particularly in the case of large porosities (epsilon>0.5). In practice it is found that it is not easy to utilize fully the general theory because accurate measurements of the first four moments are required to determine the means and variances of the pore and inter-pore length distributions. Several models for these distributions are proposed. When these are incorporated in the general theory the determinations of mean pore size from experimental measurements on powder samples are in good agreement with values determined by other methods. (Auth.)

  11. Novel Techniques to Characterize Pore Size of Porous Materials

    KAUST Repository

    Alabdulghani, Ali J.

    2016-04-24

    Porous materials are implemented in several industrial applications such as water desalination, gas separation and pharmaceutical care which they are mainly governed by the pore size and the PSD. Analyzing shale reservoirs are not excluded from these applications and numerous advantages can be gained by evaluating the PSD of a given shale reservoir. Because of the limitations of the conventional characterization techniques, novel methods for characterizing the PSD have to be proposed in order to obtain better characterization results for the porous materials, in general, and shale rocks in particular. Thus, permporosimetry and evapoporometry (EP) technologies were introduced, designed and utilized for evaluating the two key parameters, pore size and pore size distribution. The pore size and PSD profiles of different shale samples from Norway and Argentina were analyzed using these technologies and then confirmed by mercury intrusion porosimeter (MIP). Norway samples showed an average pore diameter of 12.94 nm and 19.22 nm with an average diameter of 13.77 nm and 23.23 nm for Argentina samples using permporosimetry and EP respectively. Both techniques are therefore indicative of the heterogeneity of the shales. The results from permporosimetry are in good agreement with those obtained from MIP technique, but EP for most part over-estimates the average pore size. The divergence of EP results compared to permporosimetry results is referred to the fact that the latter technique measures only the active pores which is not the case with the former technique. Overall, both techniques are complementary to each other which the results from both techniques seem reasonable and reliable and provide two simple techniques to estimate the pore size and pore size distributions for shale rocks.

  12. Microfiltration of distillery stillage: Influence of membrane pore size

    Directory of Open Access Journals (Sweden)

    Vasić Vesna M.

    2012-01-01

    Full Text Available Stillage is one of the most polluted waste products of the food industry. Beside large volume, the stillage contains high amount of suspended solids, high values of chemical oxygen demand and biological oxygen demand, so it should not be discharged in the nature before previous purification. In this work, three ceramic membranes for microfiltration with different pore sizes were tested for stillage purification in order to find the most suitable membrane for the filtration process. Ceramic membranes with a nominal pore size of 200 nm, 450 nm and 800 nm were used for filtration. The influence of pore size on permeate flux and removal efficiency was investigated. A membrane with the pore size of 200 nm showed the best filtration performance so it was chosen for the microfiltration process.

  13. Pore size matters for potassium channel conductance

    Science.gov (United States)

    Moldenhauer, Hans; Pincuntureo, Matías

    2016-01-01

    Ion channels are membrane proteins that mediate efficient ion transport across the hydrophobic core of cell membranes, an unlikely process in their absence. K+ channels discriminate K+ over cations with similar radii with extraordinary selectivity and display a wide diversity of ion transport rates, covering differences of two orders of magnitude in unitary conductance. The pore domains of large- and small-conductance K+ channels share a general architectural design comprising a conserved narrow selectivity filter, which forms intimate interactions with permeant ions, flanked by two wider vestibules toward the internal and external openings. In large-conductance K+ channels, the inner vestibule is wide, whereas in small-conductance channels it is narrow. Here we raise the idea that the physical dimensions of the hydrophobic internal vestibule limit ion transport in K+ channels, accounting for their diversity in unitary conductance. PMID:27619418

  14. Preparation of bimodal grain size 7075 aviation aluminum alloys and their corrosion properties

    Directory of Open Access Journals (Sweden)

    Wenming TIAN

    2017-10-01

    Full Text Available The bimodal grain size metals show improved strength and ductility compared to traditional metals; however, their corrosion properties are unknown. In order to evaluate the corrosion properties of these metals, the bimodal grain size 7075 aviation aluminum alloys containing different ratios of coarse (100 μm in diameter and fine (10 μm in diameter grains were prepared by spark plasma sintering (SPS. The effects of grain size as well as the mixture degree of coarse and fine grains on general corrosion were estimated by immersion tests, electrochemical measurements and complementary techniques such as scanning electron microscope (SEM and transmission electron microscope-energy disperse spectroscopy (TEM-EDS. The results show that, compared to fine grains, the coarse grains have a faster dissolution rate in acidic NaCl solution due to the bigger size, higher alloying elements content and larger area fraction of second phases in them. In coarse grains, the hydrogen ions have a faster reduction rate on cathodic second phases, therefore promoting the corrosion propagation. The mixture of coarse and fine grains also increases the electrochemical heterogeneity of alloys in micro-scale, and thus the increased mixture degree of these grains in metal matrix accelerates the corrosion rate of alloys in acidic NaCl solution.

  15. A pore-size classification for peat bogs derived from unsaturated hydraulic properties

    Science.gov (United States)

    Weber, Tobias Karl David; Iden, Sascha Christian; Durner, Wolfgang

    2017-12-01

    In ombrotrophic peatlands, the moisture content of the acrotelm (vadoze zone) controls oxygen diffusion rates, redox state, and the turnover of organic matter. Thus, variably saturated flow processes determine whether peatlands act as sinks or sources of atmospheric carbon, and modelling these processes is crucial to assess effects of changed environmental conditions on the future development of these ecosystems. We show that the Richards equation can be used to accurately describe the moisture dynamics under evaporative conditions in variably saturated peat soil, encompassing the transition from the topmost living moss layer to the decomposed peat as part of the vadose zone. Soil hydraulic properties (SHP) were identified by inverse simulation of evaporation experiments on samples from the entire acrotelm. To obtain consistent descriptions of the observations, the traditional van Genuchten-Mualem model was extended to account for non-capillary water storage and flow. We found that the SHP of the uppermost moss layer reflect a pore-size distribution (PSD) that combines three distinct pore systems of the Sphagnum moss. For deeper samples, acrotelm pedogenesis changes the shape of the SHP due to the collapse of inter-plant pores and an infill with smaller particles. This leads to gradually more homogeneous and bi-modal PSDs with increasing depth, which in turn can serve as a proxy for increasing state of pedogenesis in peatlands. From this, we derive a nomenclature and size classification for the pore spaces of Sphagnum mosses and define inter-, intra-, and inner-plant pore spaces, with effective pore diameters of > 300, 300-30, and 30-10 µm, respectively.

  16. A pore-size classification for peat bogs derived from unsaturated hydraulic properties

    Directory of Open Access Journals (Sweden)

    T. K. D. Weber

    2017-12-01

    Full Text Available In ombrotrophic peatlands, the moisture content of the acrotelm (vadoze zone controls oxygen diffusion rates, redox state, and the turnover of organic matter. Thus, variably saturated flow processes determine whether peatlands act as sinks or sources of atmospheric carbon, and modelling these processes is crucial to assess effects of changed environmental conditions on the future development of these ecosystems. We show that the Richards equation can be used to accurately describe the moisture dynamics under evaporative conditions in variably saturated peat soil, encompassing the transition from the topmost living moss layer to the decomposed peat as part of the vadose zone. Soil hydraulic properties (SHP were identified by inverse simulation of evaporation experiments on samples from the entire acrotelm. To obtain consistent descriptions of the observations, the traditional van Genuchten–Mualem model was extended to account for non-capillary water storage and flow. We found that the SHP of the uppermost moss layer reflect a pore-size distribution (PSD that combines three distinct pore systems of the Sphagnum moss. For deeper samples, acrotelm pedogenesis changes the shape of the SHP due to the collapse of inter-plant pores and an infill with smaller particles. This leads to gradually more homogeneous and bi-modal PSDs with increasing depth, which in turn can serve as a proxy for increasing state of pedogenesis in peatlands. From this, we derive a nomenclature and size classification for the pore spaces of Sphagnum mosses and define inter-, intra-, and inner-plant pore spaces, with effective pore diameters of >  300, 300–30, and 30–10 µm, respectively.

  17. X-ray diffraction microstructural analysis of bimodal size distribution MgO nano powder

    International Nuclear Information System (INIS)

    Suminar Pratapa; Budi Hartono

    2009-01-01

    Investigation on the characteristics of x-ray diffraction data for MgO powdered mixture of nano and sub-nano particles has been carried out to reveal the crystallite-size-related microstructural information. The MgO powders were prepared by co-precipitation method followed by heat treatment at 500 degree Celsius and 1200 degree Celsius for 1 hour, being the difference in the temperature was to obtain two powders with distinct crystallite size and size-distribution. The powders were then blended in air to give the presumably bimodal-size- distribution MgO nano powder. High-quality laboratory X-ray diffraction data for the powders were collected and then analysed using Rietveld-based MAUD software using the lognormal size distribution. Results show that the single-mode powders exhibit spherical crystallite size (R) of 20(1) nm and 160(1) nm for the 500 degree Celsius and 1200 degree Celsius data respectively with the nano metric powder displays narrower crystallite size distribution character, indicated by lognormal dispersion parameter of 0.21 as compared to 0.01 for the sub-nano metric powder. The mixture exhibits relatively more asymmetric peak broadening. Analysing the x-ray diffraction data for the latter specimen using single phase approach give unrealistic results. Introducing two phase models for the double-phase mixture to accommodate the bimodal-size-distribution characteristics give R = 100(6) and σ = 0.62 for the nano metric phase and R = 170(5) and σ= 0.12 for the σ sub-nano metric phase. (author)

  18. Multifractal Characterization of Pore Size Distributions of Peat Soil

    Directory of Open Access Journals (Sweden)

    Joko Sampurno

    2016-08-01

    Full Text Available This paper discusses a multifractal analysis of the microscopic structure of peat soil. The aim of this study was to apply the multifractal technique to analyze the properties of five slices of peat soil (L1-L5. Binary images (220 x 220 pixels, with a conversion value of 9.41 μm/pixel were made from the thin slices and then analyzed. This analysis was conducted to obtain the relationship between physical parameters and complexity parameters. The results showed that the spectrum of f(α can describe well the pore size distribution and average size of pores correlated with the value of D(0. A high value of the average pore size is followed by a low D value and vice versa.

  19. Superferromagnetism in mechanically alloyed fcc Fe23Cu77 with bimodal cluster size distribution

    International Nuclear Information System (INIS)

    Silva, N J O; Amaral, J S; Amaral, V S; Costa, B F O; Le Caer, G

    2009-01-01

    Magnetic measurements, x-ray diffraction and Moessbauer spectroscopy were used to characterize a nanostructured fcc Fe 23 Cu 77 at.% alloy prepared by high-energy ball-milling, addressing in particular the effect of clustering on the nature of the interacting magnetic entities. The interpretation of magnetization measurements leads to the conclusion that grains, whose mean size is ∼16 nm, contain two populations of magnetic Fe-rich nanoclusters with a bimodal size distribution. These two sets of clusters contain about 14 and 400 Fe atoms and have magnetic moments of 30 μ B and 860 μ B , respectively. The inter-cluster ferromagnetic interactions that lead to superferromagnetism with a Curie temperature T C ∼220 K can be described by a mean field determined by the smaller clusters only, which account for 90% of the magnetization.

  20. Role of scaffold mean pore size in meniscus regeneration.

    Science.gov (United States)

    Zhang, Zheng-Zheng; Jiang, Dong; Ding, Jian-Xun; Wang, Shao-Jie; Zhang, Lei; Zhang, Ji-Ying; Qi, Yan-Song; Chen, Xue-Si; Yu, Jia-Kuo

    2016-10-01

    Recently, meniscus tissue engineering offers a promising management for meniscus regeneration. Although rarely reported, the microarchitectures of scaffolds can deeply influence the behaviors of endogenous or exogenous stem/progenitor cells and subsequent tissue formation in meniscus tissue engineering. Herein, a series of three-dimensional (3D) poly(ε-caprolactone) (PCL) scaffolds with three distinct mean pore sizes (i.e., 215, 320, and 515μm) were fabricated via fused deposition modeling. The scaffold with the mean pore size of 215μm significantly improved both the proliferation and extracellular matrix (ECM) production/deposition of mesenchymal stem cells compared to all other groups in vitro. Moreover, scaffolds with mean pore size of 215μm exhibited the greatest tensile and compressive moduli in all the acellular and cellular studies. In addition, the relatively better results of fibrocartilaginous tissue formation and chondroprotection were observed in the 215μm scaffold group after substituting the rabbit medial meniscectomy for 12weeks. Overall, the mean pore size of 3D-printed PCL scaffold could affect cell behavior, ECM production, biomechanics, and repair effect significantly. The PCL scaffold with mean pore size of 215μm presented superior results both in vitro and in vivo, which could be an alternative for meniscus tissue engineering. Meniscus tissue engineering provides a promising strategy for meniscus regeneration. In this regard, the microarchitectures (e.g., mean pore size) of scaffolds remarkably impact the behaviors of cells and subsequent tissue formation, which has been rarely reported. Herein, three three-dimensional poly(ε-caprolactone) scaffolds with different mean pore sizes (i.e., 215, 320, and 515μm) were fabricated via fused deposition modeling. The results suggested that the mean pore size significantly affected the behaviors of endogenous or exogenous stem/progenitor cells and subsequent tissue formation. This study furthers

  1. The hydraulic conductivity of sediments: A pore size perspective

    KAUST Repository

    Ren, X.W.

    2017-12-06

    This article presents an analysis of previously published hydraulic conductivity data for a wide range of sediments. All soils exhibit a prevalent power trend between the hydraulic conductivity and void ratio. Data trends span 12 orders of magnitude in hydraulic conductivity and collapse onto a single narrow trend when the hydraulic conductivity data are plotted versus the mean pore size, estimated using void ratio and specific surface area measurements. The sensitivity of hydraulic conductivity to changes in the void ratio is higher than the theoretical value due to two concurrent phenomena: 1) percolating large pores are responsible for most of the flow, and 2) the larger pores close first during compaction. The prediction of hydraulic conductivity based on macroscale index parameters in this and similar previous studies has reached an asymptote in the range of kmeas/5≤kpredict≤5kmeas. The remaining uncertainty underscores the important role of underlying sediment characteristics such as pore size distribution, shape, and connectivity that are not measured with index properties. Furthermore, the anisotropy in hydraulic conductivity cannot be recovered from scalar parameters such as index properties. Overall, results highlight the robustness of the physics inspired data scrutiny based Hagen–Poiseuille and Kozeny-Carman analyses.

  2. Why liquid displacement methods are sometimes wrong in estimating the pore-size distribution

    NARCIS (Netherlands)

    Gijsbertsen-Abrahamse, A.J.; Boom, R.M.; Padt, van der A.

    2004-01-01

    The liquid displacement method is a commonly used method to determine the pore size distribution of micro- and ultrafiltration membranes. One of the assumptions for the calculation of the pore sizes is that the pores are parallel and thus are not interconnected. To show that the estimated pore size

  3. Relation between the ion size and pore size for an electric double-layer capacitor.

    Science.gov (United States)

    Largeot, Celine; Portet, Cristelle; Chmiola, John; Taberna, Pierre-Louis; Gogotsi, Yury; Simon, Patrice

    2008-03-05

    The research on electrochemical double layer capacitors (EDLC), also known as supercapacitors or ultracapacitors, is quickly expanding because their power delivery performance fills the gap between dielectric capacitors and traditional batteries. However, many fundamental questions, such as the relations between the pore size of carbon electrodes, ion size of the electrolyte, and the capacitance have not yet been fully answered. We show that the pore size leading to the maximum double-layer capacitance of a TiC-derived carbon electrode in a solvent-free ethyl-methylimmidazolium-bis(trifluoro-methane-sulfonyl)imide (EMI-TFSI) ionic liquid is roughly equal to the ion size (approximately 0.7 nm). The capacitance values of TiC-CDC produced at 500 degrees C are more than 160 F/g and 85 F/cm(3) at 60 degrees C, while standard activated carbons with larger pores and a broader pore size distribution present capacitance values lower than 100 F/g and 50 F/cm(3) in ionic liquids. A significant drop in capacitance has been observed in pores that were larger or smaller than the ion size by just an angstrom, suggesting that the pore size must be tuned with sub-angstrom accuracy when selecting a carbon/ion couple. This work suggests a general approach to EDLC design leading to the maximum energy density, which has been now proved for both solvated organic salts and solvent-free liquid electrolytes.

  4. Molecular theory of size exclusion chromatography for wide pore size distributions.

    Science.gov (United States)

    Sepsey, Annamária; Bacskay, Ivett; Felinger, Attila

    2014-02-28

    Chromatographic processes can conveniently be modeled at a microscopic level using the molecular theory of chromatography. This molecular or microscopic theory is completely general; therefore it can be used for any chromatographic process such as adsorption, partition, ion-exchange or size exclusion chromatography. The molecular theory of chromatography allows taking into account the kinetics of the pore ingress and egress processes, the heterogeneity of the pore sizes and polymer polydispersion. In this work, we assume that the pore size in the stationary phase of chromatographic columns is governed by a wide lognormal distribution. This property is integrated into the molecular model of size exclusion chromatography and the moments of the elution profiles were calculated for several kinds of pore structure. Our results demonstrate that wide pore size distributions have strong influence on the retention properties (retention time, peak width, and peak shape) of macromolecules. The novel model allows us to estimate the real pore size distribution of commonly used HPLC stationary phases, and the effect of this distribution on the size exclusion process. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. NLDFT Pore Size Distribution in Amorphous Microporous Materials.

    Science.gov (United States)

    Kupgan, Grit; Liyana-Arachchi, Thilanga P; Colina, Coray M

    2017-10-24

    The pore size distribution (PSD) is one of the most important properties when characterizing and designing materials for gas storage and separation applications. Experimentally, one of the current standards for determining microscopic PSD is using indirect molecular adsorption methods such as nonlocal density functional theory (NLDFT) and N 2 isotherms at 77 K. Because determining the PSD from NLDFT is an indirect method, the validation can be a nontrivial task for amorphous microporous materials. This is especially crucial since this method is known to produce artifacts. In this work, the accuracy of NLDFT PSD was compared against the exact geometric PSD for 11 different simulated amorphous microporous materials. The geometric surface area and micropore volumes of these materials were between 5 and 1698 m 2 /g and 0.039 and 0.55 cm 3 /g, respectively. N 2 isotherms at 77 K were constructed using Gibbs ensemble Monte Carlo (GEMC) simulations. Our results show that the discrepancies between NLDFT and geometric PSD are significant. NLDFT PSD produced several artificial gaps and peaks that were further confirmed by the coordinates of inserted particles of a specific size. We found that dominant peaks from NLDFT typically reported in the literature do not necessarily represent the truly dominant pore size within the system. The confirmation provides concrete evidence for artifacts that arise from the NLDFT method. Furthermore, a sensitivity analysis was performed to show the high dependency of PSD as a function of the regularization parameter, λ. A higher value of λ produced a broader and smoother PSD that closely resembles geometric PSD. As an alternative, a new criterion for choosing λ, called here the smooth-shift method (SSNLDFT), is proposed that tuned the NLDFT PSD to better match the true geometric PSD. Using the geometric pore size distribution as our reference, the smooth-shift method reduced the root-mean-square deviation by ∼70% when the geometric

  6. Research on bimodal particle extinction coefficient during Brownian coagulation and condensation for the entire particle size regime

    International Nuclear Information System (INIS)

    Tang Hong; Lin Jianzhong

    2011-01-01

    The extinction coefficient of atmospheric aerosol particles influences the earth’s radiation balance directly or indirectly, and it can be determined by the scattering and absorption characteristics of aerosol particles. The problem of estimating the change of extinction coefficient due to time evolution of bimodal particle size distribution is studied, and two improved methods for calculating the Brownian coagulation coefficient and the condensation growth rate are proposed, respectively. Through the improved method based on Otto kernel, the Brownian coagulation coefficient can be expressed simply in powers of particle volume for the entire particle size regime based on the fitted polynomials of the mean enhancement function. Meanwhile, the improved method based on Fuchs–Sutugin kernel is developed to obtain the condensation growth rate for the entire particle size regime. And then, the change of the overall extinction coefficient of bimodal distributions undergoing Brownian coagulation and condensation can be estimated comprehensively for the entire particle size regime. Simulation experiments indicate that the extinction coefficients obtained with the improved methods coincide fairly well with the true values, which provide a simple, reliable, and general method to estimate the change of extinction coefficient for the entire particle size regime during the bimodal particle dynamic processes.

  7. Effects of pore size on the adsorption of hydrogen in slit pores of constant width and varying height

    Energy Technology Data Exchange (ETDEWEB)

    Culp, J.T.; Natesakhawat, S.; Smith, M.R.; Bittner, E.W.; Matranga, C.S.; Bockrath, B.C.

    2007-08-01

    The effects of pore size on the hydrogen storage properties of a series of pillared layered solids were investigated at 77 K and 87 K up to a pressure of 1 atm. The isotherms were fit to the Langmuir-Freundlich equation and extrapolated to determine saturation values. The materials studied are based on the M(L)[M'(CN)4] structural motif, where M = Co or Ni, L = pyrazine (pyz), 4,4'bipyridine (bpy) or 4,4'-dipyridylacetylene (dpac), and M' = Ni, Pd or Pt. The compounds all possess slit like pores with constant inplane dimensions and pore heights that vary as a function of (L). The pyz pillared materials with the smallest pore dimensions store hydrogen at a pore density similar to the bulk liquid. The adsorbed hydrogen density drops by a factor of two as the relative pore size is tripled in the dpac material. The decreased storage efficiency diminishes the expected gravimetric gain in capacity for the larger pore materials. The heats of adsorption were found to range from 6 to 8 kJ/mol in the series, and weakly correlate with pore size.

  8. Study on Compatibility of Polymer Hydrodynamic Size and Pore Throat Size for Honggang Reservoir

    Directory of Open Access Journals (Sweden)

    Dan-Dan Yin

    2014-01-01

    Full Text Available Long core flow experiment was conducted to study problems like excessive injection pressure and effective lag of oil wells during the polymer flooding in Honggang reservoir in Jilin oilfield. According to the changes in viscosity and hydrodynamic dimensions before and after polymer solution was injected into porous media, the compatibility of polymer hydrodynamic dimension and the pore throat size was studied in this experiment. On the basis of the median of radius R of pore throats in rocks with different permeability, dynamic light scattering method (DLS was adopted to measure the hydrodynamic size Rh of polymer solution with different molecular weights. The results state that three kinds of 1500 mg/L concentration polymer solution with 2000 × 104, 1500 × 104, and 1000 × 104 molecular weight matched well with the pore throat in rocks with permeability of 300 mD, 180 mD, and 75 mD in sequence. In this case, the ratios of core pore throat radius median to the size of polymer molecular clew R/Rh are 6.16, 5.74, and 6.04. For Honggang oil reservoir in Jilin, when that ratio ranges from 5.5 to 6.0, the compatibility of polymer and the pore structure will be relatively better.

  9. Sebum output as a factor contributing to the size of facial pores.

    Science.gov (United States)

    Roh, M; Han, M; Kim, D; Chung, K

    2006-11-01

    Many endogenous and exogenous factors are known to cause enlarged pilosebaceous pores. Such factors include sex, genetic predisposition, ageing, chronic ultraviolet light exposure, comedogenic xenobiotics, acne and seborrhoea. This study was an attempt to determine the factors related to enlarged pores. To assess the relationship of sebum output, age, sex, hormonal factors and severity of acne with pore size. A prospective, randomized, controlled study was designed. A total of 60 volunteers, 30 males and 30 females, were recruited for this study. Magnified images of pores were taken using a dermoscopic video camera and measured using an image analysis program. The sebum output level was measured with a Sebumeter. Using multiple linear regression analysis, increased pore size was significantly associated with increased sebum output level, sex and age. Among the variables, sebum output level correlated most with the pore size followed by male sex. In comparing male and female participants, males had higher correlation between the sebum output level and the pore size (male: r = 0.47, female: r = 0.38). Thus, additional factors seem to influence pore size in females. Pore size was significantly increased during the ovulation phase (P = 0.008), but severity of acne was not significantly associated with the pore size. Enlarged pore sizes are associated with increased sebum output level, age and male sex. In female patients, additional hormonal factors, such as those of the menstrual cycle, affect the pore size.

  10. Bimodal distribution of the magnetic dipole moment in nanoparticles with a monomodal distribution of the physical size

    International Nuclear Information System (INIS)

    Rijssel, Jos van; Kuipers, Bonny W.M.; Erné, Ben H.

    2015-01-01

    High-frequency applications of magnetic nanoparticles, such as therapeutic hyperthermia and magnetic particle imaging, are sensitive to nanoparticle size and dipole moment. Usually, it is assumed that magnetic nanoparticles with a log-normal distribution of the physical size also have a log-normal distribution of the magnetic dipole moment. Here, we test this assumption for different types of superparamagnetic iron oxide nanoparticles in the 5–20 nm range, by multimodal fitting of magnetization curves using the MINORIM inversion method. The particles are studied while in dilute colloidal dispersion in a liquid, thereby preventing hysteresis and diminishing the effects of magnetic anisotropy on the interpretation of the magnetization curves. For two different types of well crystallized particles, the magnetic distribution is indeed log-normal, as expected from the physical size distribution. However, two other types of particles, with twinning defects or inhomogeneous oxide phases, are found to have a bimodal magnetic distribution. Our qualitative explanation is that relatively low fields are sufficient to begin aligning the particles in the liquid on the basis of their net dipole moment, whereas higher fields are required to align the smaller domains or less magnetic phases inside the particles. - Highlights: • Multimodal fits of dilute ferrofluids reveal when the particles are multidomain. • No a priori shape of the distribution is assumed by the MINORIM inversion method. • Well crystallized particles have log-normal TEM and magnetic size distributions. • Defective particles can combine a monomodal size and a bimodal dipole moment

  11. Idealized Shale Sorption Isotherm Measurements to Determine Pore Volume, Pore Size Distribution, and Surface Area

    Science.gov (United States)

    Holmes, R.; Wang, B.; Aljama, H.; Rupp, E.; Wilcox, J.

    2014-12-01

    One method for mitigating the impacts of anthropogenic CO2-related climate change is the sequestration of CO2 in depleted gas and oil reservoirs, including shale. The accurate characterization of the heterogeneous material properties of shale, including pore volume, surface area, pore size distributions (PSDs) and composition is needed to understand the interaction of CO2 with shale. Idealized powdered shale sorption isotherms were created by varying incremental amounts of four essential components by weight. The first two components, organic carbon and clay, have been shown to be the most important components for CO2 uptake in shales. Organic carbon was represented by kerogen isolated from a Silurian shale, and clay groups were represented by illite from the Green River shale formation. The rest of the idealized shale was composed of equal parts by weight of SiO2 to represent quartz and CaCO3 to represent carbonate components. Baltic, Eagle Ford, and Barnett shale sorption measurements were used to validate the idealized samples. The idealized and validation shale sorption isotherms were measured volumetrically using low pressure N2 (77K) and CO2 (273K) adsorbates on a Quantachrome Autosorb IQ2. Gravimetric isotherms were also produced for a subset of these samples using CO2 and CH4adsorbates under subsurface temperature and pressure conditions using a Rubotherm magnetic suspension balance. Preliminary analyses were inconclusive in validating the idealized samples. This could be a result of conflicting reports of total organic carbon (TOC) content in each sample, a problem stemming from the heterogeneity of the samples and different techniques used for measuring TOC content. The TOC content of the validation samples (Eagle Ford and Barnett) was measured by Rock-Eval pyrolysis at Weatherford Laboratories, while the TOC content in the Baltic validation samples was determined by LECO TOC. Development of a uniform process for measuring TOC in the validation samples is

  12. Mesoporous carbon synthesized from different pore sizes of SBA-15 for high density electrode supercapacitor application

    Science.gov (United States)

    Jamil, Farinaa Md; Sulaiman, Mohd Ali; Ibrahim, Suhaina Mohd; Masrom, Abdul Kadir; Yahya, Muhd Zu Azhan

    2017-12-01

    A series of mesoporous carbon sample was synthesized using silica template, SBA-15 with two different pore sizes. Impregnation method was applied using glucose as a precursor for converting it into carbon. An appropriate carbonization and silica removal process were carried out to produce a series of mesoporous carbon with different pore sizes and surface areas. Mesoporous carbon sample was then assembled as electrode and its performance was tested using cyclic voltammetry and impedance spectroscopy to study the effect of ion transportation into several pore sizes on electric double layer capacitor (EDLC) system. 6M KOH was used as electrolyte at various scan rates of 10, 20, 30 and 50 mVs-1. The results showed that the pore size of carbon increased as the pore size of template increased and the specific capacitance improved as the increasing of the pore size of carbon.

  13. Modeling the Hydrological Cycle in the Atmosphere of Mars: Influence of a Bimodal Size Distribution of Aerosol Nucleation Particles

    Science.gov (United States)

    Shaposhnikov, Dmitry S.; Rodin, Alexander V.; Medvedev, Alexander S.; Fedorova, Anna A.; Kuroda, Takeshi; Hartogh, Paul

    2018-02-01

    We present a new implementation of the hydrological cycle scheme into a general circulation model of the Martian atmosphere. The model includes a semi-Lagrangian transport scheme for water vapor and ice and accounts for microphysics of phase transitions between them. The hydrological scheme includes processes of saturation, nucleation, particle growth, sublimation, and sedimentation under the assumption of a variable size distribution. The scheme has been implemented into the Max Planck Institute Martian general circulation model and tested assuming monomodal and bimodal lognormal distributions of ice condensation nuclei. We present a comparison of the simulated annual variations, horizontal and vertical distributions of water vapor, and ice clouds with the available observations from instruments on board Mars orbiters. The accounting for bimodality of aerosol particle distribution improves the simulations of the annual hydrological cycle, including predicted ice clouds mass, opacity, number density, and particle radii. The increased number density and lower nucleation rates bring the simulated cloud opacities closer to observations. Simulations show a weak effect of the excess of small aerosol particles on the simulated water vapor distributions.

  14. Effect of pore size and interpore distance on endothelial cell growth on polymers.

    Science.gov (United States)

    Narayan, D; Venkatraman, S S

    2008-12-01

    The endothelization of polymers using surface modification has received great attention. In particular, creation of physical surface features such as craters or pores has been an active area of research. However, there have been no reported studies of the effects of pore sizes (wide range) and interpore distance on endothelial cell growth. This report details the study done on endothelial cell attachment on the surfaces of polymers modified by porogen leaching. The polymeric system studied includes PLLA and PLGA (80/20). Factors such as porogen type, pore size, and interpore distance were varied, and the surface was evaluated for its influence on endothelial cell growth. Three groups of pore sizes were evaluated: small (5-20 mum), medium (20-45 mum), and large pores (45-90 mum). Two porogens were evaluated: sugar and gelatin. In addition to counting the attached endothelial cells, their proliferation was also quantified. Pore size and interpore distances were evaluated using scanning electron microscopy (SEM), and cell morphology was studied by staining with crystal violet. Analysis of variance demonstrated that the main parameters, pore size and interpore distance were significant in endothelial cell growth. In PLGA (80/20), it was found that endothelial cell growth was enhanced by smaller pore size and lower interpore distance, whereas the growth was poor on PLLA regardless of pore features. (c) 2008 Wiley Periodicals, Inc. J Biomed Mater Res, 2008.

  15. Effect of pore size on gas resistance of nanofiber membrane by the bubble electrospinning

    Directory of Open Access Journals (Sweden)

    Shen Jing

    2015-01-01

    Full Text Available This paper explores the influence of pore size on gas resistance by comparing micron non-woven and nanofiber membrane. The result shows that membrane with a higher filtration and lower gas resistance can be received by controlling the pore size of nanofiber membrane.

  16. Local Pore Size Correlations Determine Flow Distributions in Porous Media.

    Science.gov (United States)

    Alim, Karen; Parsa, Shima; Weitz, David A; Brenner, Michael P

    2017-10-06

    The relationship between the microstructure of a porous medium and the observed flow distribution is still a puzzle. We resolve it with an analytical model, where the local correlations between adjacent pores, which determine the distribution of flows propagated from one pore downstream, predict the flow distribution. Numerical simulations of a two-dimensional porous medium verify the model and clearly show the transition of flow distributions from δ-function-like via Gaussians to exponential with increasing disorder. Comparison to experimental data further verifies our numerical approach.

  17. Self-assembled isoporous block copolymer membranes with tuned pore sizes

    KAUST Repository

    Yu, Haizhou

    2014-07-23

    The combination of nonsolvent-induced phase separation and the self-assembly of block copolymers can lead to asymmetric membranes with a thin highly ordered isoporous skin layer. The effective pore size of such membranes is usually larger than 15 nm. We reduced the pore size of these membranes by electroless gold deposition. We demonstrate that the pore sizes can be controlled precisely between 3 and 20 nm leading to a tunable sharp size discrimination in filtration processes. Besides fractionation of nanoparticles and biomaterials, controlled drug delivery is an attractive potential application. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Self-assembled isoporous block copolymer membranes with tuned pore sizes.

    Science.gov (United States)

    Yu, Haizhou; Qiu, Xiaoyan; Nunes, Suzana P; Peinemann, Klaus-Viktor

    2014-09-15

    The combination of nonsolvent-induced phase separation and the self-assembly of block copolymers can lead to asymmetric membranes with a thin highly ordered isoporous skin layer. The effective pore size of such membranes is usually larger than 15 nm. We reduced the pore size of these membranes by electroless gold deposition. We demonstrate that the pore sizes can be controlled precisely between 3 and 20 nm leading to a tunable sharp size discrimination in filtration processes. Besides fractionation of nanoparticles and biomaterials, controlled drug delivery is an attractive potential application. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Confocal pore size measurement based on super-resolution image restoration.

    Science.gov (United States)

    Liu, Dali; Wang, Yun; Qiu, Lirong; Mao, Xinyue; Zhao, Weiqian

    2014-09-01

    A confocal pore size measurement based on super-resolution image restoration is proposed to obtain a fast and accurate measurement for submicrometer pore size of nuclear track-etched membranes (NTEMs). This method facilitates the online inspection of the pore size evolution during etching. Combining confocal microscopy with super-resolution image restoration significantly improves the lateral resolution of the NTEM image, yields a reasonable circle edge-setting criterion of 0.2408, and achieves precise pore edge detection. Theoretical analysis shows that the minimum measuring diameter can reach 0.19 μm, and the root mean square of the residuals is only 1.4 nm. Edge response simulation and experiment reveal that the edge response of the proposed method is better than 80 nm. The NTEM pore size measurement results obtained by the proposed method agree well with that obtained by scanning electron microscopy.

  20. Influence of stress-path on pore size distribution in granular materials

    Science.gov (United States)

    Das, Arghya; Kumar, Abhinav

    2017-06-01

    Pore size distribution is an important feature of granular materials in the context of filtration and erosion in soil hydraulic structures. Present study focuses on the evolution characteristics of pore size distribution for numerically simulated granular assemblies while subjected to various compression boundary constrain, namely, conventional drained triaxial compression, one-dimensional or oedometric compression and isotropic compression. We consider the effects initial packing of the granular assembly, loose or dense state. A simplified algorithm based on Delaunay tessellation is used for the estimation of pore size distribution for the deforming granular assemblies at various stress states. The analyses show that, the evolution of pore size is predominantly governed by the current porosity of the granular assembly while the stress path or loading process has minimal influence. Further it has also been observed that pore volume distribution reaches towards a critical distribution at the critical porosity during shear enhanced loading process irrespective of the deformation mechanism either compaction or dilation.

  1. Impact of pore size variability and network coupling on electrokinetic transport in porous media

    Science.gov (United States)

    Alizadeh, Shima; Bazant, Martin Z.; Mani, Ali

    2016-11-01

    We have developed and validated an efficient and robust computational model to study the coupled fluid and ion transport through electrokinetic porous media, which are exposed to external gradients of pressure, electric potential, and concentration. In our approach a porous media is modeled as a network of many pores through which the transport is described by the coupled Poisson-Nernst-Planck-Stokes equations. When the pore sizes are random, the interactions between various modes of transport may provoke complexities such as concentration polarization shocks and internal flow circulations. These phenomena impact mixing and transport in various systems including deionization and filtration systems, supercapacitors, and lab-on-a-chip devices. In this work, we present simulations of massive networks of pores and we demonstrate the impact of pore size variation, and pore-pore coupling on the overall electrokinetic transport in porous media.

  2. Hydrogen Storage Properties of Rigid Three-Dimensional Hofmann Clathrate Derivatives: The Effects of Pore Size

    Energy Technology Data Exchange (ETDEWEB)

    Culp, J.T.; Natesakhawat, Sittichai; Smith, M.R.; Bittner, E.; Matranga, C.S.; Bockrath, B.

    2008-05-01

    The effects of pore size on the hydrogen storage properties of a series of pillared layered solids based on the M(L)[M'(CN)4] structural motif, where M ) Co or Ni, L ) pyrazine (pyz), 4,4'-bipyridine (bpy), or 4,4'-dipyridylacetylene (dpac), and M' ) Ni, Pd, or Pt, has been investigated. The compounds all possess slitlike pores with constant in-plane dimensions and similar organic functionality. The pore heights vary as a function of L and provide a means for a systematic investigation of the effects of pore dimension on hydrogen storage properties in porous materials. Hydrogen isotherms were measured at 77 and 87 K up to a pressure of 1 atm. The pyz pillared materials with the smallest pore dimensions store hydrogen at a pore density similar to that of liquid hydrogen. The adsorbed hydrogen density drops by a factor of 2 as the relative pore size is tripled in the dpac material. The decreased storage efficiency diminishes the expected gravimetric gain in capacity for the larger pore materials. The heats of adsorption were found to range from 6 to 8 kJ/mol in the series and weakly correlate with pore size.

  3. Hydrogen Storage Properties of Rigid Three-Dimensional Hofmann Clathrate Derivatives: The Effects of Pore Size

    Energy Technology Data Exchange (ETDEWEB)

    Culp, Jeffery T. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Natesakhawat, Sittichai [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Smith, Milton R. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Bittner, Edward [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Matranga, Christopher [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Bockrath, Bradley [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2008-05-01

    The effects of pore size on the hydrogen storage properties of a series of pillared layered solids based on the M(L)[M'(CN)(4)] structural motif, where M = Co or Ni, L = pyrazine (pyz), 4,4'-bipyridine (bpy), or 4,4'-dipyridylacetylene (dpac), and M' = Ni, Pd, or Pt, has been investigated. The compounds all possess slitlike pores with constant in-plane dimensions and similar organic functionality. The pore heights vary as a function of L and provide a means for a systematic investigation of the effects of pore dimension on hydrogen storage properties in porous materials. Hydrogen isotherms were measured at 77 and 87 K up to a pressure of 1 atm. The pyz pillared materials with the smallest pore dimensions store hydrogen at a pore density similar to that of liquid hydrogen. The adsorbed hydrogen density drops by a factor of 2 as the relative pore size is tripled in the dpac material. The decreased storage efficiency diminishes the expected gravimetric gain in capacity for the larger pore materials. The heats of adsorption were found to range from 6 to 8 kJ/mol in the series and weakly correlate with pore size.

  4. Pore-size distribution and compressibility of coarse sandy subsoil with added biochar

    DEFF Research Database (Denmark)

    Petersen, C. T.; Hansen, E.; Larsen, H. H.

    2016-01-01

    Sustainable agricultural production on coarse sandy soil is constrained by the restricted growth of roots, and poor water and nutrient retention. Amending the soil with biochar can reduce these problems, but the processes involved are not known in detail. We investigated in the laboratory...... the effects of two fine-grained gasification biochars made of straw (LTST) and other materials (LTSN) and of one fast pyrolysis straw biochar (FPST) on pore-size distribution and soil compressibility when added to coarse sandy subsoil. Water retention and therefore pore-size distribution were affected...... systematically. All biochars converted drainable pore space with pore diameters in the range 60–300 µm into water-retaining pores of size 0.2–60 µm, which was taken as an estimate of available water capacity (AWC). Effects were linear over the whole range of biochar (0–4% by mass). The effect of LTST and LTSN...

  5. Intra-cohort cannibalism and size bimodality: A balance between hatching synchrony and resource feedbacks

    NARCIS (Netherlands)

    Huss, M.; Kooten, van T.; Persson, L.

    2010-01-01

    Cannibalistic interactions generally depend on the size relationship between cannibals and victims. In many populations, a large enough size variation to allow for cannibalism may not only develop among age-cohorts but also within cohorts. We studied the implications of variation in hatching period

  6. Use of intradermal botulinum toxin to reduce sebum production and facial pore size.

    Science.gov (United States)

    Shah, Anil R

    2008-09-01

    Review the safety profile and subjective efficacy of intradermal botulinum toxin type A in facial pore size and sebum production. Retrospective analysis of 20 patients. Twenty consecutive patients with a single application of intradermal botulinum toxin type A were examined: Patients (17/20) noted an improvement in sebum production and a decrease in pores size at 1 month after injection. No complications were observed, and 17/20 patients were satisfied with the procedure. Preliminary data suggests that intradermal botulinum toxin may play a role in decreasing sebum production. Further quantitive study may be necessary to determine effects of intradermal botulinum toxin on pore size.

  7. Experimental investigation on pore size effect on the linear viscoelastic properties of acoustic foams.

    Science.gov (United States)

    Deverge, Mickaël; Benyahia, Lazhar; Sahraoui, Sohbi

    2009-09-01

    This paper presents linear viscoelastic measurement on a large frequency range (10(-2)-10(8) Hz) for cross-linked polymer open-cell foams of same density and different pore sizes. This large extension of frequency range is obtained by the validation of a frequency-temperature superposition principle, commonly used with polymers. At higher frequencies, the shear moduli are independent of the pore size. In acoustical insulation range (1 Hz-16 kHz), the shear moduli decreases with the foams' pore size.

  8. The Correlation of Pore Size and Bioactivity of Spray-Pyrolyzed Mesoporous Bioactive Glasses

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chou

    2017-05-01

    Full Text Available SiO2–CaO–P2O5-based mesoporous bioactive glasses (MBGs were synthesized by spray pyrolysis in this study. Three commonly used non-ionic tri-block copolymers (L121, P123, and F127 with various lengths of hydrophilic chains were applied as structural templates to achieve different pore sizes. A mesoporous structure was observed in each as-prepared specimen, and the results showed that the L121-treated MBG had the largest pore size. The results of bioactivity tests indicated that the growth of hydroxyapatite is related to the pore size of the materials.

  9. Chondrogenesis of adipose stem cells in a porous polymer scaffold: influence of the pore size.

    Science.gov (United States)

    Im, Gun-Ii; Ko, Ji-Yun; Lee, Jin Ho

    2012-01-01

    This study examined how the difference in pore size of porous scaffolds affected the in vitro chondrogenic differentiation of seeded adipose stem cells (ASCs) and the in vivo cartilage repair of ASC/scaffold construct. ASCs were isolated from 18 rabbits and seeded in a porous poly (ε-caprolactone) (PCL) scaffold with different pore sizes (100, 200, 400 μm). The ASCs underwent in vitro chondrogenic induction under TGF-β2 and BMP-7 for 21 days before analysis. The ASC/scaffold construct was also implanted on the osteochondral defect created on the distal femur of the same rabbits, and the quality of cartilage regeneration was analyzed after 8 weeks. At day 21, the ASCs proliferated and spread on the surface of the scaffolds with a pore size 100 and 200 μm, whereas there were many lumps of conglomerated ASCs on those with a pore size of 400 μm. The DNA content was significantly lower in the scaffold with a pore size of 400 μm than in that with a pore size of 100 or 200 μm. Proteoglycan production was significantly greater in the scaffold with a pore size of 400 and 200 μm than in that with a pore size of 100 μm. The chondrogenic marker gene expression including SOX9 and COL2A1 was greatest in the scaffold with a pore size of 400 μm followed by 200 μm. Immunofluorescent imaging showed that, while SOX9 was localized to nucleus, type II collagen was observed on the cytoplasm and secreted matrix around the cells most abundantly in the scaffold with a pore size of 400 μm followed by 200 μm. The gross and histological findings from the osteochondral defects showed that the cartilage repair was better in the scaffold with a pore size of 400 and 200 μm than in that with a pore size of 100 μm.

  10. Virus-sized colloid transport in a single pore: Model development and sensitivity analysis

    NARCIS (Netherlands)

    Seetha, N.; Mohan Kumar, M.S.; Hassanizadeh, S.M.; Raoof, A.

    2014-01-01

    A mathematical model is developed to simulate the transport and deposition of virus-sized colloids in a cylindrical pore throat considering various processes such as advection, diffusion, colloid–collector surface interactions and hydrodynamic wall effects. The pore space is divided into three

  11. Modulation of Asymmetric Flux in Heterotypic Gap Junctions by Pore Shape, Particle Size and Charge.

    Science.gov (United States)

    Mondal, Abhijit; Sachse, Frank B; Moreno, Alonso P

    2017-01-01

    Gap junction channels play a vital role in intercellular communication by connecting cytoplasm of adjoined cells through arrays of channel-pores formed at the common membrane junction. Their structure and properties vary depending on the connexin isoform(s) involved in forming the full gap junction channel. Lack of information on the molecular structure of gap junction channels has limited the development of computational tools for single channel studies. Currently, we rely on cumbersome experimental techniques that have limited capabilities. We have earlier reported a simplified Brownian dynamics gap junction pore model and demonstrated that variations in pore shape at the single channel level can explain some of the differences in permeability of heterotypic channels observed in in vitro experiments. Based on this computational model, we designed simulations to study the influence of pore shape, particle size and charge in homotypic and heterotypic pores. We simulated dye diffusion under whole cell voltage clamping. Our simulation studies with pore shape variations revealed a pore shape with maximal flux asymmetry in a heterotypic pore. We identified pore shape profiles that match the in silico flux asymmetry results to the in vitro results of homotypic and heterotypic gap junction formed out of Cx43 and Cx45. Our simulation results indicate that the channel's pore-shape established flux asymmetry and that flux asymmetry is primarily regulated by the sizes of the conical and/or cylindrical mouths at each end of the pore. Within the set range of particle size and charge, flux asymmetry was found to be independent of particle size and directly proportional to charge magnitude. While particle charge was vital to creating flux asymmetry, charge magnitude only scaled the observed flux asymmetry. Our studies identified the key factors that help predict asymmetry. Finally, we suggest the role of such flux asymmetry in creating concentration imbalances of messenger

  12. The Effect of Membrane Material and Surface Pore Size on the Fouling Properties of Submerged Membranes

    Directory of Open Access Journals (Sweden)

    Sungil Jeon

    2016-12-01

    Full Text Available We aimed to investigate the relationship between membrane material and the development of membrane fouling in a membrane bioreactor (MBR using membranes with different pore sizes and hydrophilicities. Batch filtration tests were performed using submerged single hollow fiber membrane ultrafiltration (UF modules with different polymeric membrane materials including cellulose acetate (CA, polyethersulfone (PES, and polyvinylidene fluoride (PVDF with activated sludge taken from a municipal wastewater treatment plant. The three UF hollow fiber membranes were prepared by a non-solvent-induced phase separation method and had similar water permeabilities and pore sizes. The results revealed that transmembrane pressure (TMP increased more sharply for the hydrophobic PVDF membrane than for the hydrophilic CA membrane in batch filtration tests, even when membranes with similar permeabilities and pore sizes were used. PVDF hollow fiber membranes with smaller pores had greater fouling propensity than those with larger pores. In contrast, CA hollow fiber membranes showed good mitigation of membrane fouling regardless of pore size. The results obtained in this study suggest that the surface hydrophilicity and pore size of UF membranes clearly affect the fouling properties in MBR operation when using activated sludge.

  13. Evaluation of capillary pore size characteristics in high-strength concrete at early ages

    International Nuclear Information System (INIS)

    Igarashi, Shin-ichi; Watanabe, Akio; Kawamura, Mitsunori

    2005-01-01

    The quantitative scanning electron microscope-backscattered electron (SEM-BSE) image analysis was used to evaluate capillary porosity and pore size distributions in high-strength concretes at early ages. The Powers model for the hydration of cement was applied to the interpretation of the results of image analysis. The image analysis revealed that pore size distributions in concretes with an extremely low water/binder ratio of 0.25 at early ages were discontinuous in the range of finer capillary pores. However, silica-fume-containing concretes with a water/binder ratio of 0.25 had larger amounts of fine pores than did concretes without silica fume. The presence of larger amounts of fine capillary pores in the concretes with silica fume may be responsible for greater autogenous shrinkage in the silica-fume-containing concretes at early ages

  14. Voronoi-Based DEM Simulation Approach for Sandstone Considering Grain Structure and Pore Size

    Science.gov (United States)

    Li, Jun; Konietzky, Heinz; Frühwirt, Thomas

    2017-10-01

    This paper presents a new procedure to create numerical models considering grain shape and size as well as pore size in an explicit and stochastic equivalent manner. Four shape factors are introduced to reproduce shape and size of grains and pores. Thin sections are used to analyze grain shape and pore size of rock specimen. First, a particle-based numerical model is set up by best fitted clumps from a shape library according to thin sections. Finally, an equivalent Voronoi-based discrete element model is set up based on the superimposed particle model. Uniaxial compression and tensile tests are simulated for validation. Both tests indicate that grain boundaries and pores provide preferred paths of weakness for crack propagation, but they also reveal significant differences in terms of intra- and inter-granular fracturing.

  15. Fabrication of Aluminum Foams with Small Pore Size by Melt Foaming Method

    Science.gov (United States)

    Cheng, Ying; Li, Yanxiang; Chen, Xiang; Shi, Tong; Liu, Zhiyong; Wang, Ningzhen

    2017-04-01

    This article introduces an improvement to the fabrication of aluminum foams with small pore size by melt foaming method. Before added to the melt, the foaming agent (titanium hydride) was pretreated in two steps. It firstly went through the traditional pre-oxidation treatment, which delayed the decomposition of titanium hydride and made sure the dispersion stage was controllable. Then such pre-oxidized titanium hydride powder was mixed with copper powder in a planetary ball mill. This treatment can not only increase the number of foaming agent particles and make them easier to disperse in the melt, which helps to increase the number of pores, but also reduce the amount of hydrogen released in the foaming stage. Therefore, the pore size could be decreased. Using such a ball-milled foaming agent in melt foaming method, aluminum foams with small pore size (average size of 1.6 mm) were successfully fabricated.

  16. Cancerous epithelial cell lines shed extracellular vesicles with a bimodal size distribution that is sensitive to glutamine inhibition

    International Nuclear Information System (INIS)

    Santana, Steven Michael; Kirby, Brian J; Antonyak, Marc A; Cerione, Richard A

    2014-01-01

    Extracellular shed vesicles (ESVs) facilitate a unique mode of cell–cell communication wherein vesicle uptake can induce a change in the recipient cell's state. Despite the intensity of ESV research, currently reported data represent the bulk characterization of concentrated vesicle samples with little attention paid to heterogeneity. ESV populations likely represent diversity in mechanisms of formation, cargo and size. To better understand ESV subpopulations and the signaling cascades implicated in their formation, we characterize ESV size distributions to identify subpopulations in normal and cancerous epithelial cells. We have discovered that cancer cells exhibit bimodal ESV distributions, one small-diameter and another large-diameter population, suggesting that two mechanisms may govern ESV formation, an exosome population and a cancer-specific microvesicle population. Altered glutamine metabolism in cancer is thought to fuel cancer growth but may also support metastatic niche formation through microvesicle production. We describe the role of a glutaminase inhibitor, compound 968, in ESV production. We have discovered that inhibiting glutamine metabolism significantly impairs large-diameter microvesicle production in cancer cells. (paper)

  17. Cancerous epithelial cell lines shed extracellular vesicles with a bimodal size distribution that is sensitive to glutamine inhibition

    Science.gov (United States)

    Santana, Steven Michael; Antonyak, Marc A.; Cerione, Richard A.; Kirby, Brian J.

    2014-12-01

    Extracellular shed vesicles (ESVs) facilitate a unique mode of cell-cell communication wherein vesicle uptake can induce a change in the recipient cell's state. Despite the intensity of ESV research, currently reported data represent the bulk characterization of concentrated vesicle samples with little attention paid to heterogeneity. ESV populations likely represent diversity in mechanisms of formation, cargo and size. To better understand ESV subpopulations and the signaling cascades implicated in their formation, we characterize ESV size distributions to identify subpopulations in normal and cancerous epithelial cells. We have discovered that cancer cells exhibit bimodal ESV distributions, one small-diameter and another large-diameter population, suggesting that two mechanisms may govern ESV formation, an exosome population and a cancer-specific microvesicle population. Altered glutamine metabolism in cancer is thought to fuel cancer growth but may also support metastatic niche formation through microvesicle production. We describe the role of a glutaminase inhibitor, compound 968, in ESV production. We have discovered that inhibiting glutamine metabolism significantly impairs large-diameter microvesicle production in cancer cells.

  18. A study of the pore-size distributions of some virgin Oldbury test-well graphites

    International Nuclear Information System (INIS)

    Bahia, A.; Bowden, E.A.T.

    1988-02-01

    The pore-size distributions of some virgin Oldbury test-well graphite specimens have been determined using both image analysis and mercury porosimetry. Image analysis has revealed that the pore-size distribution (PSD) is not a function of distance from the channel wall (fuel and interstitial). Differences found between the PSDs of individual specimens have led to predicted weight losses which exhibit a variability similar to that found in installed-specimen data. The results, therefore, confirm that the channel wall densification is unlikely to be pore related, but rather to be due to short-range inhibition in the gas phase. (author)

  19. Flow rate through microfilters: Influence of the pore size distribution, hydrodynamic interactions, wall slip, and inertia

    DEFF Research Database (Denmark)

    Jensen, Kaare Hartvig; Valente, Andre X. C. N.; Stone, Howard A.

    2014-01-01

    We examine the fluid mechanics of viscous flow through filters consisting of perforated thin plates. We classify the effects that contribute to the hydraulic resistance of the filter. Classical analyses assume a single pore size and account only for filter thickness. We extend these results...... to obtain an analytical formula for the pressure drop across the microfilter versus the flow rate that accounts for the non-uniform distribution of pore sizes, the hydrodynamic interactions between the pores given their layout pattern, and wall slip. Further, we discuss inertial effects and their order...

  20. Flow rate through microfilters: Influence of the pore size distribution, hydrodynamic interactions, wall slip, and inertia

    Science.gov (United States)

    Jensen, Kaare H.; Valente, André X. C. N.; Stone, Howard A.

    2014-05-01

    We examine the fluid mechanics of viscous flow through filters consisting of perforated thin plates. We classify the effects that contribute to the hydraulic resistance of the filter. Classical analyses assume a single pore size and account only for filter thickness. We extend these results to obtain an analytical formula for the pressure drop across the microfilter versus the flow rate that accounts for the non-uniform distribution of pore sizes, the hydrodynamic interactions between the pores given their layout pattern, and wall slip. Further, we discuss inertial effects and their order of scaling.

  1. Synthesis and characterization of mesoporous ZnS with narrow size distribution of small pores

    Science.gov (United States)

    Nistor, L. C.; Mateescu, C. D.; Birjega, R.; Nistor, S. V.

    2008-08-01

    Pure, nanocrystalline cubic ZnS forming a stable mesoporous structure was synthesized at room temperature by a non-toxic surfactant-assisted liquid liquid reaction, in the 9.5 10.5 pH range of values. The appearance of an X-ray diffraction (XRD) peak in the region of very small angles (˜ 2°) reveals the presence of a porous material with a narrow pore size distribution, but with an irregular arrangement of the pores, a so-called worm hole or sponge-like material. The analysis of the wide angle XRD diffractograms shows the building blocks to be ZnS nanocrystals with cubic structure and average diameter of 2 nm. Transmission electron microscopy (TEM) investigations confirm the XRD results; ZnS crystallites of 2.5 nm with cubic (blende) structure are the building blocks of the pore walls with pore sizes from 1.9 to 2.5 nm, and a broader size distribution for samples with smaller pores. Textural measurements (N2 adsorption desorption isotherms) confirm the presence of mesoporous ZnS with a narrow range of small pore sizes. The relatively lower surface area of around 100 m2/g is attributed to some remaining organic molecules, which are filling the smallest pores. Their presence, confirmed by IR spectroscopy, seems to be responsible for the high stability of the resulting mesoporous ZnS as well.

  2. Estimation of pore size distribution using concentric double pulsed-field gradient NMR.

    Science.gov (United States)

    Benjamini, Dan; Nevo, Uri

    2013-05-01

    Estimation of pore size distribution of well calibrated phantoms using NMR is demonstrated here for the first time. Porous materials are a central constituent in fields as diverse as biology, geology, and oil drilling. Noninvasive characterization of monodisperse porous samples using conventional pulsed-field gradient (PFG) NMR is a well-established method. However, estimation of pore size distribution of heterogeneous polydisperse systems, which comprise most of the materials found in nature, remains extremely challenging. Concentric double pulsed-field gradient (CDPFG) is a 2-D technique where both q (the amplitude of the diffusion gradient) and φ (the relative angle between the gradient pairs) are varied. A recent prediction indicates this method should produce a more accurate and robust estimation of pore size distribution than its conventional 1-D versions. Five well defined size distribution phantoms, consisting of 1-5 different pore sizes in the range of 5-25 μm were used. The estimated pore size distributions were all in good agreement with the known theoretical size distributions, and were obtained without any a priori assumption on the size distribution model. These findings support that in addition to its theoretical benefits, the CDPFG method is experimentally reliable. Furthermore, by adding the angle parameter, sensitivity to small compartment sizes is increased without the use of strong gradients, thus making CDPFG safe for biological applications. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. A thermal porosimetry method to estimate pore size distribution in highly porous insulating materials.

    Science.gov (United States)

    Félix, V; Jannot, Y; Degiovanni, A

    2012-05-01

    Standard pore size determination methods such as mercury porosimetry, nitrogen sorption, microscopy, or x-ray tomography are not always applicable to highly porous, low density, and thus very fragile materials. For this kind of materials, a method based on thermal characterization is proposed. Indeed, the thermal conductivity of a highly porous and insulating medium is significantly dependent on the thermal conductivity of the interstitial gas that depends on both gas pressure and size of the considered pore (Knudsen effect). It is also possible to link the pore size with the thermal conductivity of the medium. Thermal conductivity measurements are realized on specimens placed in an enclosure where the air pressure is successively set to different values varying from 10(-1) to 10(5) Pa. Knowing the global porosity ratio, an effective thermal conductivity model for a two-phase air-solid material based on a combined serial-parallel model is established. Pore size distribution can be identified by minimizing the sum of the quadratic differences between measured values and modeled ones. The results of the estimation process are the volume fractions of the chosen ranges of pore size. In order to validate the method, measurements done on insulating materials are presented. The results are discussed and show that pore size distribution estimated by the proposed method is coherent.

  4. Effect of pore size on performance of monolithic tube chromatography of large biomolecules.

    Science.gov (United States)

    Podgornik, Ales; Hamachi, Masataka; Isakari, Yu; Yoshimoto, Noriko; Yamamoto, Shuichi

    2017-11-01

    Effect of pore size on the performance of ion-exchange monolith tube chromatography of large biomolecules was investigated. Radial flow 1 mL polymer based monolith tubes of different pore sizes (1.5, 2, and 6 μm) were tested with model samples such as 20 mer poly T-DNA, basic proteins, and acidic proteins (molecular weight 14 000-670 000). Pressure drop, pH transient, the number of binding site, dynamic binding capacity, and peak width were examined. Pressure drop-flow rate curves and dynamic binding capacity values were well correlated with the nominal pore size. While duration of the pH transient curves depends on the pore size, it was found that pH duration normalized on estimated surface area was constant, indicating that the ligand density is the same. This was also confirmed by the constant number of binding site values being independent of pore size. The peak width values were similar to those for axial flow monolith chromatography. These results showed that it is easy to scale up axial flow monolith chromatography to radial flow monolith tube chromatography by choosing the right pore size in terms of the pressure drop and capacity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Possible human impacts on adaptive radiation: beak size bimodality in Darwin's finches

    OpenAIRE

    Hendry, Andrew P; Grant, Peter R; Rosemary Grant, B; Ford, Hugh A; Brewer, Mark J; Podos, Jeffrey

    2006-01-01

    Adaptive radiation is facilitated by a rugged adaptive landscape, where fitness peaks correspond to trait values that enhance the use of distinct resources. Different species are thought to occupy the different peaks, with hybrids falling into low-fitness valleys between them. We hypothesize that human activities can smooth adaptive landscapes, increase hybrid fitness and hamper evolutionary diversification. We investigated this possibility by analysing beak size data for 1755 Geospiza fortis...

  6. Pore size determination using normalized J-function for different hydraulic flow units

    Directory of Open Access Journals (Sweden)

    Ali Abedini

    2015-06-01

    Full Text Available Pore size determination of hydrocarbon reservoirs is one of the main challenging areas in reservoir studies. Precise estimation of this parameter leads to enhance the reservoir simulation, process evaluation, and further forecasting of reservoir behavior. Hence, it is of great importance to estimate the pore size of reservoir rocks with an appropriate accuracy. In the present study, a modified J-function was developed and applied to determine the pore radius in one of the hydrocarbon reservoir rocks located in the Middle East. The capillary pressure data vs. water saturation (Pc–Sw as well as routine reservoir core analysis include porosity (φ and permeability (k were used to develop the J-function. First, the normalized porosity (φz, the rock quality index (RQI, and the flow zone indicator (FZI concepts were used to categorize all data into discrete hydraulic flow units (HFU containing unique pore geometry and bedding characteristics. Thereafter, the modified J-function was used to normalize all capillary pressure curves corresponding to each of predetermined HFU. The results showed that the reservoir rock was classified into five separate rock types with the definite HFU and reservoir pore geometry. Eventually, the pore radius for each of these HFUs was determined using a developed equation obtained by normalized J-function corresponding to each HFU. The proposed equation is a function of reservoir rock characteristics including φz, FZI, lithology index (J*, and pore size distribution index (ɛ. This methodology used, the reservoir under study was classified into five discrete HFU with unique equations for permeability, normalized J-function and pore size. The proposed technique is able to apply on any reservoir to determine the pore size of the reservoir rock, specially the one with high range of heterogeneity in the reservoir rock properties.

  7. MD simulation analysis of resin filling into nano-sized pore formed on metal surface

    Science.gov (United States)

    Mori, Hodaka; Matubayasi, Nobuyuki

    2018-01-01

    All-atom MD simulation was conducted for the filling of epoxy resin into a nano-sized pore formed on aluminum surface. The resin species examined were polyphenol mixed with polyglycidylether of o-cresol formaldehyde novolac and their oligomers formed through ring-opening reactions. The degree of oligomerization was varied from 0.5 to 2.5 nm in terms of the radius of gyration, and the radius of the cylindrical pore was fixed at 2.5 nm. It was observed that a small resin penetrates into the pore along the wall, while larger resins move rather uniformly in the pore. The maximum density in the pore achieved with pushing was then seen to be larger when the resin is smaller. It was found that when the radius of gyration of resin is larger than half the pore radius, the resin density in the pore does not reach half the bulk density of the resin. This implies that the resin-resin interaction inhibits the filling of the nano-sized pore.

  8. Relation between pore size and the compressibility of a confined fluid

    Energy Technology Data Exchange (ETDEWEB)

    Gor, Gennady Y., E-mail: gennady.y.gor@gmail.com [NRC Research Associate, Resident at Center for Computational Materials Science, Naval Research Laboratory, Washington, DC 20375 (United States); Siderius, Daniel W.; Krekelberg, William P.; Shen, Vincent K. [Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Rasmussen, Christopher J. [DuPont Central Research and Development Experimental Station, Wilmington, Delaware 19803 (United States); Bernstein, Noam [Center for Computational Materials Science, Naval Research Laboratory, Washington, DC 20375 (United States)

    2015-11-21

    When a fluid is confined to a nanopore, its thermodynamic properties differ from the properties of a bulk fluid, so measuring such properties of the confined fluid can provide information about the pore sizes. Here, we report a simple relation between the pore size and isothermal compressibility of argon confined in such pores. Compressibility is calculated from the fluctuations of the number of particles in the grand canonical ensemble using two different simulation techniques: conventional grand-canonical Monte Carlo and grand-canonical ensemble transition-matrix Monte Carlo. Our results provide a theoretical framework for extracting the information on the pore sizes of fluid-saturated samples by measuring the compressibility from ultrasonic experiments.

  9. Effect of large pore size of multifunctional mesoporous microsphere on removal of heavy metal ions.

    Science.gov (United States)

    Yuan, Qing; Li, Nan; Chi, Yue; Geng, Wangchang; Yan, Wenfu; Zhao, Ying; Li, Xiaotian; Dong, Bin

    2013-06-15

    Pore size of mesoporous materials is crucial for their surface grafting. This article develops a novel multifunctional microsphere with a large pore size mesoporous silica shell (ca. 10.3 nm) and a magnetic core (Fe₃O₄), which is fabricated using cetyltrimethylammonium bromide (CTAB) as pore-forming agents, tetraethyl orthosilicate (TEOS) as silicon source through a sol-gel process. Compared with small pore size mesoporous silica magnetic microspheres (ca. 2-4 nm), the large pore size one can graft 447 mg/g amino groups in order to adsorb more heavy metal ions (Pb(2+): 880.6 mg/g, Cu(2+): 628.3mg/g, Cd(2+): 492.4 mg/g). The metal-loaded multifunctional microspheres could be easily removed from aqueous solution by magnetic separation and regenerated easily by acid treatment. The results suggest that the large pore size multifunctional microspheres are potentially useful materials for high effectively adsorbing and removing different heavy metal ions in aqueous solution. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Understanding the role of pore size homogeneity in the water transport through graphene layers.

    Science.gov (United States)

    Su, Jiaye; Zhao, Yunzhen; Fang, Chang

    2018-03-16

    Graphene is a versatile 2D material and attracts increasing attentions from a broad scientific community, including novel nanofluidic devices. In this work, we use molecular dynamics simulations to study the pressure driven water transport through graphene layers, focusing on the pore size homogeneity, realized by the arrangement of two pore sizes. For a given layer number, we find the water flux exhibits an excellent linear behavior with the pressure, in agreement with the prediction of Hagen-Poiseuille equation. Interestingly, the flux for concentrated pore size distribution is around twice larger than that of uniform distribution. More surprisingly, under a given pressure, the water flux changes in an opposite way for these two distributions, where the flux ratio almost increases linearly with the layer number. For the largest layer number, more distributions suggest the same conclusion that higher water flux can be attained for more concentrated pore size distributions. Similar differences for the water translocation time and occupancy are also identified. The major reason for these results should be clearly due to hydrogen bond and density profile distributions. Our results are helpful to delineate the exquisite role of pore size homogeneity, and should have great implications for the design of high flux nanofluidic devices and inversely the detection of pore structures. © 2018 IOP Publishing Ltd.

  11. Investigation on size tolerance of pore defect of girth weld pipe

    Science.gov (United States)

    Shuai, Jian; Xu, Kui

    2018-01-01

    Welding quality control is an important parameter for safe operation of oil and gas pipes, especially for high-strength steel pipes. Size control of welding defect is a bottleneck problem for current pipe construction. As a key part of construction procedure for butt-welding of pipes, pore defects in girth weld is difficult to ignore. A three-dimensional non-linear finite element numerical model is established to study applicability of size control indices based on groove shape and softening phenomenon of material in heat-affected zone of practical pipe girth weld. Taking design criteria of pipe as the basis, basic tensile, extremely tensile and extremely compressive loading conditions are determined for pipe stress analysis, and failure criteria based on flow stress is employed to perform stress analysis for pipe girth weld with pore defect. Results show that pipe girth welding stresses of pores at various radial locations are similar. Whereas, stress for pores of different sharpness varied significantly. Besides, tolerance capability of API 5L X90 grade pipe to pore defect of girth weld is lower than that of API 5L X80 grade pipe, and size control index of 3 mm related to pore defect in current standards is applicable to API 5L X80 and X90 grade girth welded pipes with radially non-sharp pore defects. PMID:29364986

  12. High frequency compressional wave speed and attenuation measurements in water-saturated granular media with unimodal and bimodal grain size distributions.

    Science.gov (United States)

    Yang, Haesang; Seong, Woojae

    2018-02-01

    Compressional wave speed and attenuation were measured for water-saturated granular media employing five kinds of glass beads having unimodal and bimodal grain size distributions. Glass beads with grain sizes ranging from 250 to 850  μm were used for the acoustic measurements at a frequency range from 350 kHz to 1.1 MHz, which includes the transition range where scattering and non-scattering losses co-exist. The compressional wave speed and attenuation data are presented as a function of frequency and grain size distribution. The compressional wave speed and attenuation data show a variety of frequency dependencies for varying grain size distribution. The observed acoustic properties are investigated for the volume ratio of larger and smaller sized grains in the mixed bimodal media. Also, the measured results are compared with the empirical multiple scattering formula as a function of Rayleigh parameter  kd (product of wavenumber in the water k and mean grain diameter of the glass beads d) using weighted mean grain size. The measured results are also discussed, focusing on the geophysical difference between unimodal and bimodal mixed grains.

  13. Pore size distribution effect on rarefied gas transport in porous media

    Science.gov (United States)

    Hori, Takuma; Yoshimoto, Yuta; Takagi, Shu; Kinefuchi, Ikuya

    2017-11-01

    Gas transport phenomena in porous media are known to strongly influence the performance of devices such as gas separation membranes and fuel cells. Knudsen diffusion is a dominant flow regime in these devices since they have nanoscale pores. Many experiments have shown that these porous media have complex structures and pore size distributions; thus, the diffusion coefficient in these media cannot be easily assessed. Previous studies have reported that the characteristic pore diameter of porous media can be defined in light of the pore size distribution; however, tortuosity factor, which is necessary for the evaluation of diffusion coefficient, is still unknown without gas transport measurements or simulations. Thus, the relation between pore size distributions and tortuosity factors is required to obtain the gas transport properties. We perform numerical simulations to prove the relation between them. Porous media are numerically constructed while satisfying given pore size distributions. Then, the mean-square displacement simulation is performed to obtain the tortuosity factors of the constructed porous media.. This paper is based on results obtained from a project commissioned by the New Energy and Industrial Development Organization (NEDO).

  14. Different size biomolecules anchoring on porous silicon surface: fluorescence and reflectivity pores infiltration comparative studies

    Energy Technology Data Exchange (ETDEWEB)

    Giovannozzi, Andrea M.; Rossi, Andrea M. [National Institute for Metrological Research, Thermodynamic Division, Strada delle Cacce 91, 10135 Torino (Italy); Renacco, Chiara; Farano, Alessandro [Ribes Ricecrhe Srl, Via Lavoratori Vittime del Col du Mont 24, 11100 Aosta (Italy); Derosas, Manuela [Biodiversity Srl, Via Corfu 71, 25124 Brescia (Italy); Enrico, Emanuele [National Institute for Metrological Research, Electromagnetism Division, Strada delle Cacce 91, 10135 Torino (Italy)

    2011-06-15

    The performance of porous silicon optical based biosensors strongly depends on material nanomorphology, on biomolecules distribution inside the pores and on the ability to link sensing species to the pore walls. In this paper we studied the immobilization of biomolecules with different size, such as antibody anti aflatoxin (anti Aflatox Ab, {proportional_to}150 KDa), malate dehydrogenase (MDH, {proportional_to}36KDa) and metallothionein (MT, {proportional_to}6KDa) at different concentrations on mesoporous silicon samples ({proportional_to}15 nm pores diameter). Fluorescence measurements using FITC- labeled biomolecules and refractive index analysis based on reflectivity spectra have been employed together to detect the amount of proteins bound to the surface and to evaluate their diffusion inside the pores. Here we suggest that these two techniques should be used together to have a better understanding of what happens at the porous silicon surface. In fact, when pores dimensions are not perfectly tuned to the protein size a higher fluorescence signal doesn't often correspond to a higher biomolecules distribution inside the pores. When a too much higher concentration of biomolecule is anchored on the surface, steric crowd effects and repulsive interactions probably take over and hinder pores infiltration, inducing a small or absent shift in the fringe pattern even if a higher fluorescence signal is registered. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Determination of Matrix Pore Size Distribution in Fractured Clayey Till and Assessment of Matrix Migration of Dechlorinationg Bacteria

    DEFF Research Database (Denmark)

    Cong, Lu; Broholm, Mette Martina; Fabricius, Ida Lykke

    2014-01-01

    The pore structure and pore size distribution (PSD) in the clayey till matrix from three Danish field sites were investigated by image analysis to assess the matrix migration of dechlorinating bacteria in clayey till. Clayey till samples had a wide range of pore sizes, with diameters of 0.1–100 μ...

  16. Nano-porous carbide derived carbon with tunable pore size: synthesis and energy-related applications

    International Nuclear Information System (INIS)

    Gleb Yushin; John Chmiola; Ranjan K Dash; Elisabeth Hoffman; Michel Barsoum; Yury Gogotsi; Giovanna Laudisio; John E Fischer

    2005-01-01

    The large surface area and adjustable internal surface chemistry of porous carbons are attractive for a wide range of energy applications, including gas separation and storage, high power super-capacitors and lithium ion batteries. Major efforts in the field have been directed toward control of pore size, shape and uniformity, and total pore volume. Here we demonstrate that pore size can be precisely tuned with sub-Angstroms accuracy over a 0.5-3.0 nm range by preferentially removing metals from metal carbides. This is achieved by 'burning out' the metals (and metalloids) in halogen atmospheres at modest temperatures. The resulting carbide-derived carbon (CDC) retains the original shape of the carbide and shows linear reaction kinetics, allowing conversion of a carbide surface to a CDC layer of any thickness, including the entire monolith, film or particle. CDCs produced from binary and ternary carbides have been investigated, and specific surface areas (SSA) in excess of 2000 m 2 /g have been achieved. Pore size is determined by the structure and chemistry of the precursor, and by process parameters including temperature and composition of the reaction mixture. Most CDCs show smaller and more uniform pores when processed below 400-800 C, while larger and less uniform pores are found at 600-1200 C. Some CDCs (e.g. from B 4 C) have relatively broad pore size distributions, including meso-pores, even when processed at low temperatures. In contrast, other CDCs, e.g from SiC maintain a narrow distribution up to 1200 C. CDC microstructures become more ordered, evolving from amorphous to graphitic, with increasing process temperature. Other carbon forms, e.g. nano-tubes, onions, and nanocrystalline diamonds have also been obtained as CDC. The ability to fine tune the pore size, and independently to control the microstructure and surface termination, offers unique opportunities for parametric studies of gas sorption and desorption phenomena. Our recent studies show that

  17. Pore size distribution and supercritical hydrogen adsorption in activated carbon fibers

    Science.gov (United States)

    Purewal, J. J.; Kabbour, H.; Vajo, J. J.; Ahn, C. C.; Fultz, B.

    2009-05-01

    Pore size distributions (PSD) and supercritical H2 isotherms have been measured for two activated carbon fiber (ACF) samples. The surface area and the PSD both depend on the degree of activation to which the ACF has been exposed. The low-surface-area ACF has a narrow PSD centered at 0.5 nm, while the high-surface-area ACF has a broad distribution of pore widths between 0.5 and 2 nm. The H2 adsorption enthalpy in the zero-coverage limit depends on the relative abundance of the smallest pores relative to the larger pores. Measurements of the H2 isosteric adsorption enthalpy indicate the presence of energy heterogeneity in both ACF samples. Additional measurements on a microporous, coconut-derived activated carbon are presented for reference.

  18. Pore size distribution and supercritical hydrogen adsorption in activated carbon fibers

    International Nuclear Information System (INIS)

    Purewal, J J; Kabbour, H; Ahn, C C; Fultz, B; Vajo, J J

    2009-01-01

    Pore size distributions (PSD) and supercritical H 2 isotherms have been measured for two activated carbon fiber (ACF) samples. The surface area and the PSD both depend on the degree of activation to which the ACF has been exposed. The low-surface-area ACF has a narrow PSD centered at 0.5 nm, while the high-surface-area ACF has a broad distribution of pore widths between 0.5 and 2 nm. The H 2 adsorption enthalpy in the zero-coverage limit depends on the relative abundance of the smallest pores relative to the larger pores. Measurements of the H 2 isosteric adsorption enthalpy indicate the presence of energy heterogeneity in both ACF samples. Additional measurements on a microporous, coconut-derived activated carbon are presented for reference.

  19. Pore Size Distribution in Chicken Eggs as Determined by Mercury Porosimetry

    Directory of Open Access Journals (Sweden)

    La Scala Jr N

    2000-01-01

    Full Text Available In this study we investigated the application of mercury porosimetry technique into the determination of porosity features in 28 week old hen eggshells. Our results have shown that the majority of the pores have sizes between 1 to 10 mu m in the eggshells studied. By applying mercury porosimetry technique we were able to describe the porosity features better, by determining a pore size distribution in the eggshells. Here, we introduce mercury porosimetry technique as a new routine technique applied into the study of eggshells.

  20. Pore size distribution calculation from 1H NMR signal and N2 adsorption-desorption techniques

    International Nuclear Information System (INIS)

    Hassan, Jamal

    2012-01-01

    The pore size distribution (PSD) of nano-material MCM-41 is determined using two different approaches: N 2 adsorption-desorption and 1 H NMR signal of water confined in silica nano-pores of MCM-41. The first approach is based on the recently modified Kelvin equation [J.V. Rocha, D. Barrera, K. Sapag, Top. Catal. 54(2011) 121-134] which deals with the known underestimation in pore size distribution for the mesoporous materials such as MCM-41 by introducing a correction factor to the classical Kelvin equation. The second method employs the Gibbs-Thompson equation, using NMR, for melting point depression of liquid in confined geometries. The result shows that both approaches give similar pore size distribution to some extent, and also the NMR technique can be considered as an alternative direct method to obtain quantitative results especially for mesoporous materials. The pore diameter estimated for the nano-material used in this study was about 35 and 38 Å for the modified Kelvin and NMR methods respectively. A comparison between these methods and the classical Kelvin equation is also presented.

  1. Percolating macropore networks in tilled topsoil: effects of sample size, minimum pore thickness and soil type

    Science.gov (United States)

    Jarvis, Nicholas; Larsbo, Mats; Koestel, John; Keck, Hannes

    2017-04-01

    The long-range connectivity of macropore networks may exert a strong control on near-saturated and saturated hydraulic conductivity and the occurrence of preferential flow through soil. It has been suggested that percolation concepts may provide a suitable theoretical framework to characterize and quantify macropore connectivity, although this idea has not yet been thoroughly investigated. We tested the applicability of percolation concepts to describe macropore networks quantified by X-ray scanning at a resolution of 0.24 mm in eighteen cylinders (20 cm diameter and height) sampled from the ploughed layer of four soils of contrasting texture in east-central Sweden. The analyses were performed for sample sizes ("regions of interest", ROI) varying between 3 and 12 cm in cube side-length and for minimum pore thicknesses ranging between image resolution and 1 mm. Finite sample size effects were clearly found for ROI's of cube side-length smaller than ca. 6 cm. For larger sample sizes, the results showed the relevance of percolation concepts to soil macropore networks, with a close relationship found between imaged porosity and the fraction of the pore space which percolated (i.e. was connected from top to bottom of the ROI). The percolating fraction increased rapidly as a function of porosity above a small percolation threshold (1-4%). This reflects the ordered nature of the pore networks. The percolation relationships were similar for all four soils. Although pores larger than 1 mm appeared to be somewhat better connected, only small effects of minimum pore thickness were noted across the range of tested pore sizes. The utility of percolation concepts to describe the connectivity of more anisotropic macropore networks (e.g. in subsoil horizons) should also be tested, although with current X-ray scanning equipment it may prove difficult in many cases to analyze sufficiently large samples that would avoid finite size effects.

  2. Prediction of the filtrate particle size distribution from the pore size distribution in membrane filtration: Numerical correlations from computer simulations

    Science.gov (United States)

    Marrufo-Hernández, Norma Alejandra; Hernández-Guerrero, Maribel; Nápoles-Duarte, José Manuel; Palomares-Báez, Juan Pedro; Chávez-Rojo, Marco Antonio

    2018-03-01

    We present a computational model that describes the diffusion of a hard spheres colloidal fluid through a membrane. The membrane matrix is modeled as a series of flat parallel planes with circular pores of different sizes and random spatial distribution. This model was employed to determine how the size distribution of the colloidal filtrate depends on the size distributions of both, the particles in the feed and the pores of the membrane, as well as to describe the filtration kinetics. A Brownian dynamics simulation study considering normal distributions was developed in order to determine empirical correlations between the parameters that characterize these distributions. The model can also be extended to other distributions such as log-normal. This study could, therefore, facilitate the selection of membranes for industrial or scientific filtration processes once the size distribution of the feed is known and the expected characteristics in the filtrate have been defined.

  3. Improvement of endothelial progenitor outgrowth cell (EPOC)-mediated vascularization in gelatin-based hydrogels through pore size manipulation.

    Science.gov (United States)

    Fu, Jiayin; Wiraja, Christian; Muhammad, Hamizan B; Xu, Chenjie; Wang, Dong-An

    2017-08-01

    In addition to chemical compositions, physical properties of scaffolds, such as pore size, can also influence vascularization within the scaffolds. A larger pore has been shown to improve host vascular tissue invasion into scaffolds. However, the influence of pore sizes on vascularization by endothelial cells directly encapsulated in hydrogels remains unknown. In this study, micro-cavitary hydrogels with different pore sizes were created in gelatin-methacrylate hydrogels with dissolvable gelatin microspheres (MS) varying in sizes. The effect of pore sizes on vascular network formation by endothelial progenitor outgrowth cells (EPOCs) encapsulated in hydrogels was then investigated both in vitro and in vivo. When cultured in vitro, vascular networks were formed around pore structures in micro-cavitary hydrogels. The middle pore size supported best differentiation of EPOCs and thus best hydrogel vascularization in vitro. When implantation in vivo, functional connections between encapsulated EPOCs and host vasculature micro-cavitary hydrogels were established. Vascularization in vivo was promoted best in hydrogels with the large pore size due to the increased vascular tissue invasion. These results highlight the difference between in vitro and in vivo culture conditions and indicate that pore sizes shall be designed for in vitro and in vivo hydrogel vascularization respectively. Pore sizes for hydrogel vascularization in vitro shall be middle ones and pore sizes for hydrogel vascularization in vivo shall be large ones. This study reveals that the optimal pore size for hydrogel vascularization in vitro and in vivo is different. The middle pore size supported best differentiation of EPOCs and thus best hydrogel vascularization in vitro, while vascularization in vivo was promoted best in hydrogels with the large pore size due to the increased vascular tissue invasion. These results highlight the difference between in vitro and in vivo culture conditions and indicate that

  4. Facile fabrication of BiVO4 nanofilms with controlled pore size and their photoelectrochemical performances

    Science.gov (United States)

    Feng, Chenchen; Jiao, Zhengbo; Li, Shaopeng; Zhang, Yan; Bi, Yingpu

    2015-12-01

    We demonstrate a facile method for the rational fabrication of pore-size controlled nanoporous BiVO4 photoanodes, and confirmed that the optimum pore-size distributions could effectively absorb visible light through light diffraction and confinement functions. Furthermore, in situ X-ray photoelectron spectroscopy (XPS) reveals more efficient photoexcited electron-hole separation than conventional particle films, induced by light confinement and rapid charge transfer in the inter-crossed worm-like structures.We demonstrate a facile method for the rational fabrication of pore-size controlled nanoporous BiVO4 photoanodes, and confirmed that the optimum pore-size distributions could effectively absorb visible light through light diffraction and confinement functions. Furthermore, in situ X-ray photoelectron spectroscopy (XPS) reveals more efficient photoexcited electron-hole separation than conventional particle films, induced by light confinement and rapid charge transfer in the inter-crossed worm-like structures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06584d

  5. Nanometre-sized pores in coal: Variations between coal basins and coal origin

    Science.gov (United States)

    Sakurovs, Richard; Koval, Lukas; Grigore, Mihaela; Sokolava, Anna; Ruppert, Leslie F.; Melnichenko, Yuri B.

    2018-01-01

    We have used small angle neutron scattering (SANS) to investigate the differences in methane and hexane penetration in pores in bituminous coal samples from the U.S., Canada, South Africa, and China, and maceral concentrates from Australian coals. This work is an extension of previous work that showed consistent differences between the extent of penetration by methane into 10–20 nm size pores in inertinite in bituminous coals from Australia, North America and Poland.In this study we have confirmed that there are differences in the response of inertinite to methane and hexane penetration in coals sourced from different coal basins. Inertinite in Permian Australian coals generally has relatively high numbers of pores in the 2.5–250 nm size range and the pores are highly penetrable by methane and hexane; coals sourced from Western Canada had similar penetrability to these Australian coals. However, the penetrability of methane and hexane into inertinite from the Australian Illawarra Coal Measures (also Permian) is substantially less than that of the other Australian coals; there are about 80% fewer 12 nm pores in Illawarra inertinite compared to the other Australian coals examined. The inertinite in coals sourced from South Africa and China had accessibility intermediate between the Illawarra coals and the other Australian coals.The extent of hexane penetration was 10–20% less than CD4 penetration into the same coal and this difference was most pronounced in the 5–50 nm pore size range. Hexane and methane penetrability into the coals showed similar trends with inertinite content.The observed variations in inertinite porosity between coals from different coal regions and coal basins may explain why previous studies differ in their observations of the relationships between gas sorption behavior, permeability, porosity, and maceral composition. These variations are not simply a demarcation between Northern and Southern Hemisphere coals.

  6. Amine-modified ordered mesoporous silica: The effect of pore size on CO2 capture performance

    International Nuclear Information System (INIS)

    Wang, Lin; Yao, Manli; Hu, Xin; Hu, Gengshen; Lu, Jiqing; Luo, Mengfei; Fan, Maohong

    2015-01-01

    Highlights: • Larger pore size could decrease the mass transfer resistance and increase the interaction between CO 2 and TEPA. • The CO 2 uptakes of sorbents were enhanced in the presence of moisture. • The sorbents are stable and regenerable under test conditions. - Abstract: The objective of current research is to investigate the effect of pore size of mesoporous silica supports on the CO 2 capture performance of solid amine sorbents. Two ordered mesoporous silicas (OMS) with different pore sizes (5.6 nm and 7.6 nm) were synthesized as tetraethylenepentamine (TEPA) supports. A serious of techniques, such as physical adsorption, infrared spectroscopy and thermal gravimetric analysis were used to characterize the solid amine sorbents. The CO 2 capture performances of the sorbents were evaluated using breakthrough method with a fixed-bed reactor equipped with an online mass spectrometer. The experimental results indicate that the pore size has significant influence on CO 2 capture performance. Larger pore size could decrease the mass transfer resistance and increase the interaction between CO 2 and TEPA. Therefore, OMS-7.6 is better than OMS-5.6 as amine support. The highest CO 2 sorption capacities achieved with OMS-7.6 with 50 wt% TEPA loading (OMS-7.6-50) in the absence and presence of moisture are 3.45 mmol/g and 4.28 mmol/g, respectively, under the conditions of 10.0% CO 2 /N 2 mixture at 75 °C. Cyclic CO 2 adsorption–desorption experiments indicate that the solid amine sorbents are fairly stable and regenerable

  7. Linking particle and pore-size distribution parameters to soil gas transport properties

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Møldrup, Per; Schjønning, Per

    2012-01-01

    Accurate estimation of soil gas diffusivity (Dp/Do, the ratio of gas diffusion coefficients in soil and free air) and air permeability (ka) from basic texture and pore characteristics will be highly valuable for modeling soil gas transport and emission and their field-scale variations. From......, respectively) and the Campbell water retention parameter b were used to characterize particle and pore size distributions, respectively. Campbell b yielded a wide interval (4.6–26.2) and was highly correlated with α, β, and volumetric clay content. Both Dp/Do and ka followed simple power-law functions (PLFs...

  8. Primary particle diameter differentiation and bimodality identification by five analytical methods using gold nanoparticle size distributions synthesized by pulsed laser ablation in liquids

    Science.gov (United States)

    Letzel, Alexander; Gökce, Bilal; Menzel, Andreas; Plech, Anton; Barcikowski, Stephan

    2018-03-01

    For a known material, the size distribution of a nanoparticle colloid is a crucial parameter that defines its properties. However, measured size distributions are not easy to interpret as one has to consider weighting (e.g. by light absorption, scattering intensity, volume, surface, number) and the way size information was gained. The radius of a suspended nanoparticle can be given as e.g. sphere equivalent, hydrodynamic, Feret or radius of gyration. In this study, gold nanoparticles in water are synthesized by pulsed-laser ablation (LAL) and fragmentation (LFL) in liquids and characterized by various techniques (scanning transmission electron microscopy (STEM), small-angle X-ray scattering (SAXS), analytical disc centrifugation (ADC), dynamic light scattering (DLS) and UV-vis spectroscopy with Mie-Gans Theory) to study the comparability of different analytical techniques and determine the method that is preferable for a given task related to laser-generated nanoparticles. In particular, laser-generated colloids are known to be bimodal and/or polydisperse, but bimodality is sometimes not analytically resolved in literature. In addition, frequently reported small size shifts of the primary particle mode around 10 nm needs evaluation of its statistical significance related to the analytical method. Closely related to earlier studies on SAXS, different colloids in defined proportions are mixed and their size as a function of the nominal mixing ratio is analyzed. It is found that the derived particle size is independent of the nominal mixing ratio if the colloid size fractions do not overlap considerably. Conversely, the obtained size for colloids with overlapping size fractions strongly depends on the nominal mixing ratio since most methods cannot distinguish between such fractions. Overall, SAXS and ADC are very accurate methods for particle size analysis. Further, the ability of different methods to determine the nominal mixing ratio of sizes fractions is studied

  9. Joint inversion of NMR and SIP data to estimate pore size distribution of geomaterials

    Science.gov (United States)

    Niu, Qifei; Zhang, Chi

    2018-03-01

    There are growing interests in using geophysical tools to characterize the microstructure of geomaterials because of the non-invasive nature and the applicability in field. In these applications, multiple types of geophysical data sets are usually processed separately, which may be inadequate to constrain the key feature of target variables. Therefore, simultaneous processing of multiple data sets could potentially improve the resolution. In this study, we propose a method to estimate pore size distribution by joint inversion of nuclear magnetic resonance (NMR) T2 relaxation and spectral induced polarization (SIP) spectra. The petrophysical relation between NMR T2 relaxation time and SIP relaxation time is incorporated in a nonlinear least squares problem formulation, which is solved using Gauss-Newton method. The joint inversion scheme is applied to a synthetic sample and a Berea sandstone sample. The jointly estimated pore size distributions are very close to the true model and results from other experimental method. Even when the knowledge of the petrophysical models of the sample is incomplete, the joint inversion can still capture the main features of the pore size distribution of the samples, including the general shape and relative peak positions of the distribution curves. It is also found from the numerical example that the surface relaxivity of the sample could be extracted with the joint inversion of NMR and SIP data if the diffusion coefficient of the ions in the electrical double layer is known. Comparing to individual inversions, the joint inversion could improve the resolution of the estimated pore size distribution because of the addition of extra data sets. The proposed approach might constitute a first step towards a comprehensive joint inversion that can extract the full pore geometry information of a geomaterial from NMR and SIP data.

  10. Measure of pore size in micro filtration polymeric membrane using ultrasonic technique and artificial neural networks

    International Nuclear Information System (INIS)

    Lucas, Carla de Souza

    2009-01-01

    This work presents a study of the pore size in micro filtration polymeric membranes, used in the nuclear area for the filtration of radioactive liquid effluent, in the residual water treatment of the petrochemical industry, in the electronic industry for the ultrapure water production for the manufacture of conductors and laundering of microcircuits and in many other processes of separation. Diverse processes for measures of pores sizes in membranes exist, amongst these, electronic microscopy, of bubble point and mercury intrusion porosimetry, however the majority of these uses destructive techniques, of high cost or great time of analysis. The proposal of this work is to measure so great of pore being used ultrasonic technique in the time domain of the frequency and artificial neural networks. A receiving/generator of ultrasonic pulses, a immersion transducer of 25 MHz was used, a tank of immersion and microporous membranes of pores sizes of 0,2 μm, 0,4 μm, 0,6 μm, 8 μm, 10 μm and 12 μm. The ultrasonic signals after to cover the membrane, come back to the transducer (emitting/receiving) bringing information of the interaction of the signal with the membranes. These signals had been used for the training of neural networks, and these had supplied the necessary precision the distinction of the same ones. Soon after, technique with the one of electronic microscopy of sweepings was made the comparison of this. The experiment showed very resulted next to the results gotten with the MEV, what it indicated that the studied technique is ideal for measure of pore size in membranes for being not destructive and of this form to be able to be used also on-line of production. (author)

  11. Virus-sized colloid transport in a single pore: model development and sensitivity analysis.

    Science.gov (United States)

    Seetha, N; Mohan Kumar, M S; Majid Hassanizadeh, S; Raoof, Amir

    2014-08-01

    A mathematical model is developed to simulate the transport and deposition of virus-sized colloids in a cylindrical pore throat considering various processes such as advection, diffusion, colloid-collector surface interactions and hydrodynamic wall effects. The pore space is divided into three different regions, namely, bulk, diffusion and potential regions, based on the dominant processes acting in each of these regions. In the bulk region, colloid transport is governed by advection and diffusion whereas in the diffusion region, colloid mobility due to diffusion is retarded by hydrodynamic wall effects. Colloid-collector interaction forces dominate the transport in the potential region where colloid deposition occurs. The governing equations are non-dimensionalized and solved numerically. A sensitivity analysis indicates that the virus-sized colloid transport and deposition is significantly affected by various pore-scale parameters such as the surface potentials on colloid and collector, ionic strength of the solution, flow velocity, pore size and colloid size. The adsorbed concentration and hence, the favorability of the surface for adsorption increases with: (i) decreasing magnitude and ratio of surface potentials on colloid and collector, (ii) increasing ionic strength and (iii) increasing pore radius. The adsorbed concentration increases with increasing Pe, reaching a maximum value at Pe=0.1 and then decreases thereafter. Also, the colloid size significantly affects particle deposition with the adsorbed concentration increasing with increasing particle radius, reaching a maximum value at a particle radius of 100nm and then decreasing with increasing radius. System hydrodynamics is found to have a greater effect on larger particles than on smaller ones. The secondary minimum contribution to particle deposition has been found to increase as the favorability of the surface for adsorption decreases. The sensitivity of the model to a given parameter will be high if

  12. DIFFERENT PORE SIZE ALUMINA FOAMS AND STUDY OF THEIR MECHANICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    A. Hadi

    2015-03-01

    Full Text Available Recently, the open-cell ceramic foams have been extensively investigated due to special properties of these structures. They are excellent candidates for various applications such as molten metal and hot gas filtration, fabrication of metal matrix composites (MMC, heat exchangers and catalyst support. In this study to prepare high strength and high permeable foams, alumina suspensions with proper solid contents and suitable rheological behavior were used for different pore density foams. The properties of the prepared foams such as mean pore size, total porosity, mechanical strength and water permeability were characterized by using different techniques. A reduction in pore density caused an increase in total porosity from 78.5 % to 83 %. The compression strength of the samples was dependent on total porosity as well as properties of the suspension. Compression strengths of 1.77; 3.24 and 3.55 MPa were measured for 10, 17 and 27 ppi foams, respectively. Presence of high volume of permeable pores and good uniformity of the structure led to high permeable foams. The permeability measurement confirmed a rise in permeability rate with a decrease in pore density of the foams.

  13. Role of pore size and morphology in musculo-skeletal tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Roman A., E-mail: romanp@dankook.ac.kr [Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714 (Korea, Republic of); Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714 (Korea, Republic of); Mestres, Gemma [Department of Engineering Sciences, Uppsala University, Box 534, 751 21 Uppsala (Sweden)

    2016-04-01

    Biomaterials in the form of scaffolds hold great promise in the regeneration of diseased tissues. The scaffolds stimulate cellular adhesion, proliferation and differentiation. While the scaffold composition will dictate their biocompatibility, their porosity plays a key role in allowing proper cell penetration, nutrient diffusion as well as bone ingrowth. Porous scaffolds are processed with the help of a wide variety of techniques. Designing scaffolds with the appropriate porosity is a complex issue since this may jeopardize other physico-chemical properties. From a macroscopic point of view, parameters such as the overall architecture, pore morphology, interconnectivity and pore size distribution, have unique roles in allowing bone ingrowth to take place. From a microscopic perspective, the adsorption and retention of proteins in the microporosities of the material will dictate the subsequent cell adhesion. Therefore, the microstructure of the substrate can determine cell proliferation as well as the expression of specific osteogenic genes. This review aims at discussing the effect of micro- and macroporosity on the physico-chemical and biological properties of scaffolds for musculo-skeletal tissue regeneration. - Highlights: • Osteoconduction and osteoinduction of a biomaterial relies on its pattern of micro/macroporosity. • Size, morphology, distribution and interconnection of the pores influence both mechanical and biological properties. • Macroporosity (pores > 50 μm) determines cell colonization and therefore growth of vascular and bone tissue. • Micropores (< 50 μm) are crucial for proteins adsorption, which in turn can determine cell fate.

  14. Do Surface Porosity and Pore Size Influence Mechanical Properties and Cellular Response to PEEK?

    Science.gov (United States)

    Torstrick, F Brennan; Evans, Nathan T; Stevens, Hazel Y; Gall, Ken; Guldberg, Robert E

    2016-11-01

    Despite its widespread use in orthopaedic implants such as soft tissue fasteners and spinal intervertebral implants, polyetheretherketone (PEEK) often suffers from poor osseointegration. Introducing porosity can overcome this limitation by encouraging bone ingrowth; however, the corresponding decrease in implant strength can potentially reduce the implant's ability to bear physiologic loads. We have previously shown, using a single pore size, that limiting porosity to the surface of PEEK implants preserves strength while supporting in vivo osseointegration. However, additional work is needed to investigate the effect of pore size on both the mechanical properties and cellular response to PEEK. (1) Can surface porous PEEK (PEEK-SP) microstructure be reliably controlled? (2) What is the effect of pore size on the mechanical properties of PEEK-SP? (3) Do surface porosity and pore size influence the cellular response to PEEK? PEEK-SP was created by extruding PEEK through NaCl crystals of three controlled ranges: 200 to 312, 312 to 425, and 425 to 508 µm. Micro-CT was used to characterize the microstructure of PEEK-SP. Tensile, fatigue, and interfacial shear tests were performed to compare the mechanical properties of PEEK-SP with injection-molded PEEK (PEEK-IM). The cellular response to PEEK-SP, assessed by proliferation, alkaline phosphatase activity, vascular endothelial growth factor production, and calcium content of osteoblast, mesenchymal stem cell, and preosteoblast (MC3T3-E1) cultures, was compared with that of machined smooth PEEK and Ti6Al4V. Micro-CT analysis showed that PEEK-SP layers possessed pores that were 284 ± 35 µm, 341 ± 49 µm, and 416 ± 54 µm for each pore size group. Porosity and pore layer depth ranged from 61% to 69% and 303 to 391 µm, respectively. Mechanical testing revealed tensile strengths > 67 MPa and interfacial shear strengths > 20 MPa for all three pore size groups. All PEEK-SP groups exhibited > 50% decrease

  15. Nanofiltration Membranes with Narrow Pore Size Distribution via Contra-Diffusion-Induced Mussel-Inspired Chemistry.

    Science.gov (United States)

    Du, Yong; Qiu, Wen-Ze; Lv, Yan; Wu, Jian; Xu, Zhi-Kang

    2016-11-02

    Nanofiltration membranes (NFMs) are widely used in saline water desalination, wastewater treatment, and chemical product purification. However, conventional NFMs suffer from broad pore size distribution, which limits their applications for fine separation, especially in complete separation of molecules with slight differences in molecular size. Herein, defect-free composite NFMs with narrow pore size distribution are fabricated using a contra-diffusion method, with dopamine/polyethylenimine solution on the skin side and ammonium persulfate solution on the other side of the ultrafiltration substrate. Persulfate ions can diffuse through the ultrafiltration substrate into the other side and in situ trigger dopamine to form a codeposited coating with polyethylenimine. The codeposition is hindered on those sites completely covered by the polydopamine/polyethylenimine coating, although it is promoted at the defects or highly permeable regions because it is induced by the diffused persulfate ions. Such a "self-completion" process results in NFMs with highly uniform structures and narrow pore size distribution, as determined by their rejection of neutral solutes. These near electrically neutral NFMs show a high rejection of divalent ions with a low rejection of monovalent ions (MgCl 2 rejection = 96%, NaCl rejection = 23%), majorly based on a steric hindrance effect. The as-prepared NFMs can be applied in molecular separation such as isolating cellulose hydrogenation products.

  16. Inter-laboratory comparison on the size and stability of monodisperse and bimodal synthetic reference particles for standardization of extracellular vesicle measurements

    Science.gov (United States)

    Nicolet, Anaïs; Meli, Felix; van der Pol, Edwin; Yuana, Yuana; Gollwitzer, Christian; Krumrey, Michael; Cizmar, Petr; Buhr, Egbert; Pétry, Jasmine; Sebaihi, Noham; de Boeck, Bert; Fokkema, Vincent; Bergmans, Rob; Nieuwland, Rienk

    2016-03-01

    In future, measurements of extracellular vesicles in body fluids could become a standard diagnostic tool in medicine. For this purpose, reliable and traceable methods, which can be easily applied in hospitals, have to be established. Within the European Metrological Research Project (EMRP) ‘Metrological characterization of micro-vesicles from body fluids as non-invasive diagnostic biomarkers’ (www.metves.eu), various nanoparticle reference materials were developed and characterized. We present results of an international comparison among four national metrology institutes and a university hospital. The size distributions of five monodisperse and two bimodal spherical particle samples with diameters ranging from 50 nm to 315 nm made out of silica and polystyrene were compared. Furthermore, the stability of the samples was verified over a period of 18 months. While monodisperse reference particle samples above a certain size level lead to good agreements of the size measurements among the different methods, small and bimodal samples show the limitations of current ‘clinical’ methods. All samples proved to be stable within the uncertainty of the applied methods.

  17. Inter-laboratory comparison on the size and stability of monodisperse and bimodal synthetic reference particles for standardization of extracellular vesicle measurements

    International Nuclear Information System (INIS)

    Nicolet, Anaïs; Meli, Felix; Van der Pol, Edwin; Yuana, Yuana; Nieuwland, Rienk; Gollwitzer, Christian; Krumrey, Michael; Cizmar, Petr; Buhr, Egbert; Pétry, Jasmine; Sebaihi, Noham; De Boeck, Bert; Fokkema, Vincent; Bergmans, Rob

    2016-01-01

    In future, measurements of extracellular vesicles in body fluids could become a standard diagnostic tool in medicine. For this purpose, reliable and traceable methods, which can be easily applied in hospitals, have to be established. Within the European Metrological Research Project (EMRP) ‘Metrological characterization of micro-vesicles from body fluids as non-invasive diagnostic biomarkers’ (www.metves.eu), various nanoparticle reference materials were developed and characterized. We present results of an international comparison among four national metrology institutes and a university hospital. The size distributions of five monodisperse and two bimodal spherical particle samples with diameters ranging from 50 nm to 315 nm made out of silica and polystyrene were compared. Furthermore, the stability of the samples was verified over a period of 18 months. While monodisperse reference particle samples above a certain size level lead to good agreements of the size measurements among the different methods, small and bimodal samples show the limitations of current ‘clinical’ methods. All samples proved to be stable within the uncertainty of the applied methods. (paper)

  18. Improvement of electrospun polymer fiber meshes pore size by femtosecond laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Rebollar, Esther, E-mail: e.rebollar@iqfr.csic.es [Departamento de Fisica Aplicada, E.T.S.I. Industriales, Universidad de Vigo, Rua Maxwell s/n, Campus Lagoas-Marcosende, 36310 Vigo (Spain); Cordero, Diego [Departamento de Fisica Aplicada, E.T.S.I. Industriales, Universidad de Vigo, Rua Maxwell s/n, Campus Lagoas-Marcosende, 36310 Vigo (Spain); Martins, Albino [3B' s Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimaraes (Portugal); Chiussi, Stefano [Departamento de Fisica Aplicada, E.T.S.I. Industriales, Universidad de Vigo, Rua Maxwell s/n, Campus Lagoas-Marcosende, 36310 Vigo (Spain); Reis, Rui L.; Neves, Nuno M. [3B' s Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimaraes (Portugal); Leon, Betty [Departamento de Fisica Aplicada, E.T.S.I. Industriales, Universidad de Vigo, Rua Maxwell s/n, Campus Lagoas-Marcosende, 36310 Vigo (Spain)

    2011-02-15

    Polymer meshes have recently attracted great attention due to their great variety of applications in fields such as tissue engineering and drug delivery. Poly({epsilon}-caprolactone) nanofibers were prepared by electrospinning giving rise to porous meshes. However, for some applications in tissue engineering where, for instance, cell migration into the inner regions of the mesh is aimed, the pore size obtained by conventional techniques is too narrow. To improve the pore size, laser irradiation with femtosecond pulses (i.e., negligible heat diffusion into the polymer material and confined excitation energy) is performed. A detailed study of the influence of the pulse energy, pulse length, and number of pulses on the topography of electrospun fiber meshes has been carried out, and the irradiated areas have been studied by scanning electron microscopy, contact angle measurements and spectroscopic techniques. The results show that using the optimal laser parameters, micropores are formed and the nature of the fibers is preserved.

  19. Flow perfusion culture of human mesenchymal stem cells on coralline hydroxyapatite scaffolds with various pore sizes

    DEFF Research Database (Denmark)

    Bjerre, Lea; Bünger, Cody; Baatrup, Anette

    2011-01-01

    Bone grafts are widely used in orthopaedic reconstructive surgery, but harvesting of autologous grafts is limited due to donor site complications. Bone tissue engineering is a possible alternative source for substitutes, and to date, mainly small scaffold sizes have been evaluated. The aim...... of this study was to obtain a clinically relevant substitute size using a direct perfusion culture system. Human bone marrowderived mesenchymal stem cells were seeded on coralline hydroxyapatite scaffolds with 200 μm or 500 μm pores, and resulting constructs were cultured in a perfusion bioreactor or in static...... number of cells was higher in 500 μm constructs as compared with 200 μm constructs. Alkaline phosphatase enzyme activity assays and real time RT-PCR on seven osteogenic markers showed that differentiation occurred primarily and earlier in statically cultured constructs with 200 μm pores compared with 500...

  20. Fabrication and Characterization of Polymeric Hollow Fiber Membranes with Nano-scale Pore Sizes

    International Nuclear Information System (INIS)

    Amir Mansourizadeh; Ahmad Fauzi Ismail

    2011-01-01

    Porous polyvinylidene fluoride (PVDF) and polysulfide (PSF) hollow fiber membranes were fabricated via a wet spinning method. The membranes were characterized in terms of gas permeability, wetting pressure, overall porosity and water contact angle. The morphology of the membranes was examined by FESEM. From gas permeation test, mean pore sizes of 7.3 and 9.6 nm were obtained for PSF and PVDF membrane, respectively. Using low polymer concentration in the dopes, the membranes demonstrated a relatively high overall porosity of 77 %. From FESEM examination, the PSF membrane presented a denser outer skin layer, which resulted in significantly lower N 2 permeance. Therefore, due to the high hydrophobicity and nano-scale pore sizes of the PVDF membrane, a good wetting pressure of 4.5x10 -5 Pa was achieved. (author)

  1. Pore size engineering applied to the design of separators for nickel-hydrogen cells and batteries

    Science.gov (United States)

    Abbey, K. M.; Britton, D. L.

    1983-01-01

    Pore size engineering in starved alkaline multiplate cells involves adopting techniques to widen the volume tolerance of individual cells. Separators with appropriate pore size distributions and wettability characteristics (capillary pressure considerations) to have wider volume tolerances and an ability to resist dimensional changes in the electrodes were designed. The separators studied for potential use in nickel-hydrogen cells consist of polymeric membranes as well as inorganic microporous mats. In addition to standard measurements, the resistance and distribution of electrolyte as a function of total cell electrolyte content were determined. New composite separators consisting of fibers, particles and/or binders deposited on Zircar cloth were developed in order to engineer the proper capillary pressure characteristics in the separator. These asymmetric separators were prepared from a variety of fibers, particles and binders. Previously announced in STAR as N83-24571

  2. Microfiltration of red berry juice with thread filters: Effects of temperature, flow and filter pore size

    DEFF Research Database (Denmark)

    Bagger-Jørgensen, Rico; Casani, Sandra Dobon; Meyer, Anne Boye Strunge

    2002-01-01

    A series of experiments was conducted to demonstrate the applicability of a new Filtomat(R) thread filtration principle for microfiltration of semiprocessed blackcurrant juice and cherry juice. The effect of juice temperature (3-20C), flow (20-80 L/h), and filter pore size (3-10 mum) on the trans......A series of experiments was conducted to demonstrate the applicability of a new Filtomat(R) thread filtration principle for microfiltration of semiprocessed blackcurrant juice and cherry juice. The effect of juice temperature (3-20C), flow (20-80 L/h), and filter pore size (3-10 mum......) on the transmembrane pressure, juice turbidity, protein, sugar, and total phenols levels was evaluated in a lab scale microfiltration unit employing statistically designed factorial experiments. Thread microfiltration reduced significantly the turbidity of both juices. For blackcurrant juice, in all experiments...

  3. The effect of pore size and porosity on thermal management performance of phase change material infiltrated microcellular metal foams

    International Nuclear Information System (INIS)

    Sundarram, Sriharsha S.; Li, Wei

    2014-01-01

    The effect of pore size and porosity on the performance of phase change material (PCM) infiltrated metal foams, especially when the pore size reduces to less than 100 μm, is investigated in this study. A three dimensional finite element model was developed to consider both the metal and PCM domains, with heat exchange between them. The pore size and porosity effects were studied along with other system variables including heat generation and dissipation of the PCM-based thermal management system. It is shown that both porosity and pore size have strong effects on the heating of PCM. At a fixed porosity, a smaller pore size results in a lower temperature at the heat source for a longer period of time. The effects of pore size and porosity were more pronounced at high heat generation and low convective cooling conditions, representing the situation of portable electronics. There is an optimal porosity for the PCM-metal foam system; however, the optimal value only occurs at high cooling conditions. The net effective thermal conductivity of a PCM-microcellular metal foam system could be doubled by reducing the pore size from 100 μm to 25 μm. - Highlights: •Pore size and porosity of phase change material-microcellular metal foam were investigated. •A smaller pore size results in a lower temperature at the heat source for a longer period of time. •The effects were more pronounced at high heating and low cooling conditions. •Net thermal conductivity doubled by reducing the pore size from 100 μm to 25 μm

  4. Numerical simulation of pore size dependent anhydrite precipitation in geothermal reservoirs

    Science.gov (United States)

    Mürmann, Mario; Kühn, Michael; Pape, Hansgeorg; Clauser, Christoph

    2013-04-01

    Porosity and permeability of reservoirs are key parameters for an economical use of hot water from geothermal installations and can be significantly reduced by precipitation of minerals, such as anhydrite. The borehole Allermöhe 1 near Hamburg (Germany) represents a failed attempt of geothermal heat mining due to anhydrite precipitation (Baermann et al. 2000). For a risk assessment of future boreholes it is essential to understand how and when anhydrite cementation occurred under reservoir conditions. From core samples of the Allermöhe borehole it was determined that anhydrite precipitation took place in regions of relatively high porosity while regions of low porosity remained uncemented (Wagner et al. 2005). These findings correspond to the fact that e.g. halite precipitation in porous media is found only in relatively large pores (Putnis and Mauthe 2001). This study and others underline that pore size controls crystallization and that it is therefore necessary to establish a relation between pore size and nucleation. The work presented here is based on investigations of Emmanuel and Berkowitz (2007) who present such a relation by applying a thermodynamic approach. However this approach cannot explain the heterogeneous precipitation observed in the Allermöhe core samples. We chose an advanced approach by considering electric system properties resulting in another relation between pore size and crystallization. It is well known that a high fluid supersaturation can be maintained in porous rocks (Putnis and Mauthe 2001). This clearly indicates that a supersaturation threshold exists exceeding thermodynamic equilibrium considerably. In order to quantify spatially heterogeneous anhydrite cementation a theoretical approach was chosen which considered the electric interaction between surface charges of the matrix and calcium and sulphate ions in the fluid. This approach was implemented into the numerical code SHEMAT (Clauser 2003) and used to simulate anhydrite

  5. Determining the dynamic range of MCPs based on pore size and strip current

    Science.gov (United States)

    Hunt, C.; Adrian, M. L.; Herrero, F.; James, P.; Jones, H. H.; Rodriguez, M.; Roman, P.; Shappirio, M.

    2010-12-01

    Micro-Channel Plates (MCPs) are used as detectors for almost all detectors measuring particles (both ions, electrons and neutrals) below 30 keV. Recent advances in the manufacturing technology of the MCPs have increased the number of options one has when selecting plates for an instrument. But it is not clear how many of these options affect the performance of the MCPs. In particular the dynamic range is not a clear cut calculation to make from the strip current. There is also some evidence that pore size and coating play a role. We measured the dynamic range and pulse height distribution of MCPs detector chevron stacks with a wide variety of strip currents from the low “normal” range in the EDR range. We also looked at the effects of varying the pore size from 25 microns to 10 microns, partial plating of the MCP surface and coating one surface on each MCP with gold rather than the standard zinc chromium. We will show how the dynamic range and pulse height distributions vary vs. strip current, pore size, and surface plating configurations.

  6. Particle Size and Pore Structure Characterization of Silver Nanoparticles Prepared by Confined Arc Plasma

    Directory of Open Access Journals (Sweden)

    Mingru Zhou

    2009-01-01

    Full Text Available In the protecting inert gas, silver nanoparticles were successfully prepared by confined arc plasma method. The particle size, microstructure, and morphology of the particles by this process were characterized via X-ray powder diffraction (XRD, transmission electron microscopy (TEM and the corresponding selected area electron diffraction (SAED. The N2 absorption-desorption isotherms of the samples were measured by using the static volumetric absorption analyzer, the pore structure of the sample was calculated by Barrett-Joyner-Halenda (BJH academic model, and the specific surface area was calculated from Brunauer-Emmett-Teller (BET adsorption equation. The experiment results indicate that the crystal structure of the samples is face-centered cubic (FCC structure the same as the bulk materials, the particle size distribution ranging from 5 to 65 nm, with an average particle size about 26 nm obtained by TEM and confirmed by XRD and BET results. The specific surface area is 23.81 m2/g, pore volumes are 0.09 cm3/g, and average pore diameter is 18.7 nm.

  7. Performance of Granular Starch with Controlled Pore Size during Hydrolysis with Digestive Enzymes.

    Science.gov (United States)

    Benavent-Gil, Yaiza; Rosell, Cristina M

    2017-12-01

    Studies on porous starch have been directed to explore different industrial applications as bio-adsorbents of a variety of compounds. However, the analysis of starch digestibility is essential for food application. The objective of this study was to determine the impact of porous structure on in vitro starch digestibility. Porous starches were obtained using a range of concentrations of amyloglucosidase (AMG), α-amylase (AM), cyclodextrin-glycosyltransferase (CGTase) or branching enzyme (BE). Porous starches exhibited major content of digestible starch (DS) that increased with the intensity of the enzymatic treatment, and very low amount of resistant starch (RS). Porous starches behaved differently during in vitro hydrolysis depending on their enzymatic treatment. AMG was the unique treatment that increased the digestive amylolysis and estimated glycemic index, whereas AM, CGTase and BE reduced them. A significant relationship was found between the pore size and the severity of the amylolysis, suggesting that a specific pore size is required for the accessibility of the digestive amylase. Therefore, pore size in the starch surface was a limiting factor for digestion of starch granules.

  8. Multiscale characterization of pore size distributions using mercury porosimetry and nitrogen adsorption

    Science.gov (United States)

    Paz-Ferreiro, J.; Tarquis, A. M.; Miranda, J. G. V.; Vidal Vázquez, E.

    2009-04-01

    The soil pore space is a continuum extremely variable in size, including structures smaller than nanometres and as large as macropores or cracks with millimetres or even centimetres size. Pore size distributions (PSDs) affects important soil functions, such as those related with transmission and storage of water, and root growth. Direct and indirect measurements of PSDs are becoming increasingly used to characterize soil structure. Mercury injection porosimetry and nitrogen adsorption isotherms are techniques commonly employed for assessing equivalent pore size diameters in the range from about 50 nm to 100 m and 2 to 500 nm, respectively. The multifractal formalism was used to describe Hg injection curves and N2 adsorption isotherms from two series of a Mollisol cultivated under no tillage and minimum tillage. Soil samples were taken from 0-10, 10-20 and 20-30 cm depths in two experimental fields located in the north of Buenos Aires and South of Santa Fe provinces, Argentina. All the data sets analyzed from the two studied soil attributes showed remarkably good scaling trends as assessed by singularity spectrum and generalized dimension spectrum. Both, experimental Hg injection curves and N2 adsorption isotherms could be fitted reasonably well with multifractal models. A wide variety of singularity and generalized dimension spectra was found for the variables. The capacity dimensions, D0, for both Hg injection and N2 adsorption data were not significantly different from the Euclidean dimension. However, the entropy dimension, D1, and correlation dimension, D2, obtained from mercury injection and nitrogen adsorption data showed significant differences. So, D1 values were on average 0.868 and varied from 0.787 to 0.925 for Hg intrusion curves. Entropy dimension, D1, values for N2 adsorption isotherms were on average 0.582 significantly lower than those obtained when using the former technique. Twenty-three out of twenty-four N2 isotherms had D1 values in a

  9. Hydrophobic polymers modification of mesoporous silica with large pore size for drug release

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Shenmin, E-mail: smzhu@sjtu.edu.c [Shanghai Jiao Tong University, State Key Lab of Metal Matrix Composites (China); Zhang Di; Yang Na [Fudan University, Ministry of Education, Key Lab of Molecular Engineering of Polymers (China)

    2009-04-15

    Mesostructure cellular foam (MCF) materials were modified with hydrophobic polyisoprene (PI) through free radical polymerization in the pores network, and the resulting materials (MCF-PI) were investigated as matrices for drug storage. The successful synthesis of PI inside MCF was characterized by Fourier transform infrared (FT-IR), hydrogen nuclear magnetic resonance ({sup 1}H NMR), X-ray diffraction patterns (XRD) and nitrogen adsorption/desorption measurements. It was interesting to find the resultant system held a relatively large pore size (19.5 nm) and pore volume (1.02 cm{sup 3} g{sup -1}), which would benefit for drug storage. Ibuprofen (IBU) and vancomycin were selected as model drugs and loaded onto unmodified MCF and modified MCF (MCF-PI). The adsorption capacities of these model drugs on MCF-PI were observed increase as compared to that of on pure MCF, due to the trap effects induced by polyisoprene chains inside the pores. The delivery system of MCF-PI was found to be more favorable for the adsorption of IBU (31 wt%, IBU/silica), possibly attributing to the hydrophobic interaction between IBU and PI formed on the internal surface of MCF matrix. The release of drug through the porous network was investigated by measuring uptake and release of IBU.

  10. Controlling pore size of activated carbon through self-activation process for removing contaminants of different molecular sizes.

    Science.gov (United States)

    Wu, Yingji; Xia, Changlei; Cai, Liping; Shi, Sheldon Q

    2018-05-15

    Self-activation was employed for the manufacturing of activated carbon (AC) using kenaf core fibers, which is more environmentally friendly and cost-effective than the conventional physical/chemical activations. It makes the use of the gases emitted from the thermal treatment to activate the converted carbon itself. The mechanism was illustrated by the Fourier transform infrared spectroscopy and mass spectrometry analysis of the emitted gases, showing that CO 2 served as an activating agent. The AC from self-activation presented high performance, for instance, the Brunauer-Emmett-Teller surface area was up to 2296 m 2 g -1 , Using the Density Functional Theory (DFT), the pore volume (PV) was determined to be 1.876 cm 3 g -1 . Linear relations of PV DFT-micropore /iodine number, and PV DFT-mesopore /tannin value were established, indicating a strong relationship between the pore structure of AC and its adsorbing preference. Adsorption results for copper (II) and rhodamine 6G also indicated that the pore size of AC should be designed based on the molecular size of the contaminants. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Elimination of Bimodal Size in InAs/GaAs Quantum Dots for Preparation of 1.3-μm Quantum Dot Lasers.

    Science.gov (United States)

    Su, Xiang-Bin; Ding, Ying; Ma, Ben; Zhang, Ke-Lu; Chen, Ze-Sheng; Li, Jing-Lun; Cui, Xiao-Ran; Xu, Ying-Qiang; Ni, Hai-Qiao; Niu, Zhi-Chuan

    2018-02-21

    The device characteristics of semiconductor quantum dot lasers have been improved with progress in active layer structures. Self-assembly formed InAs quantum dots grown on GaAs had been intensively promoted in order to achieve quantum dot lasers with superior device performances. In the process of growing high-density InAs/GaAs quantum dots, bimodal size occurs due to large mismatch and other factors. The bimodal size in the InAs/GaAs quantum dot system is eliminated by the method of high-temperature annealing and optimized the in situ annealing temperature. The annealing temperature is taken as the key optimization parameters, and the optimal annealing temperature of 680 °C was obtained. In this process, quantum dot growth temperature, InAs deposition, and arsenic (As) pressure are optimized to improve quantum dot quality and emission wavelength. A 1.3-μm high-performance F-P quantum dot laser with a threshold current density of 110 A/cm 2 was demonstrated.

  12. Effect of support material pore size on the filtration behavior of dynamic membrane bioreactor.

    Science.gov (United States)

    Cai, Donglong; Huang, Ju; Liu, Guoqiang; Li, Mingyu; Yu, Yang; Meng, Fangang

    2018-05-01

    The effect of support material pore size on the filtration behaviors during start-up and stabilized stages in the dynamic membrane bioreactors (DMBR) was studied. Before the dynamic membrane (DM) was formed, the turbidity at 50-μm could be more than 250 NTU, while it was less than 40 and 10 NTU at 25- and 10-μm, respectively. After the DM was formed, the stabilized stage lasted for 61 days with low transmembrane pressure pressure filtration, a mesh size of ∼25 μm is more suitable for DMBR. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Estimating the number and size of phloem sieve plate pores using longitudinal views and geometric reconstruction.

    Science.gov (United States)

    Bussières, Philippe

    2014-05-12

    Because it is difficult to obtain transverse views of the plant phloem sieve plate pores, which are short tubes, to estimate their number and diameters, a method based on longitudinal views is proposed. This method uses recent methods to estimate the number and the sizes of approximately circular objects from their images, given by slices perpendicular to the objects. Moreover, because such longitudinal views are obtained from slices that are rather close to the plate centres whereas the pore size may vary with the pore distance from the plate edge, a sieve plate reconstruction model was developed and incorporated in the method to consider this bias. The method was successfully tested with published longitudinal views of phloem of Soybean and an exceptional entire transverse view from the same tissue. The method was also validated with simulated slices in two sieve plates from Cucurbita and Phaseolus. This method will likely be useful to estimate and to model the hydraulic conductivity and the architecture of the plant phloem, and it could have applications for other materials with approximately cylindrical structures.

  14. Physiologic upper limit of pore size in the blood-tumor barrier of malignant solid tumors

    Directory of Open Access Journals (Sweden)

    Griffiths Gary L

    2009-06-01

    Full Text Available Abstract Background The existence of large pores in the blood-tumor barrier (BTB of malignant solid tumor microvasculature makes the blood-tumor barrier more permeable to macromolecules than the endothelial barrier of most normal tissue microvasculature. The BTB of malignant solid tumors growing outside the brain, in peripheral tissues, is more permeable than that of similar tumors growing inside the brain. This has been previously attributed to the larger anatomic sizes of the pores within the BTB of peripheral tumors. Since in the physiological state in vivo a fibrous glycocalyx layer coats the pores of the BTB, it is possible that the effective physiologic pore size in the BTB of brain tumors and peripheral tumors is similar. If this were the case, then the higher permeability of the BTB of peripheral tumor would be attributable to the presence of a greater number of pores in the BTB of peripheral tumors. In this study, we probed in vivo the upper limit of pore size in the BTB of rodent malignant gliomas grown inside the brain, the orthotopic site, as well as outside the brain in temporalis skeletal muscle, the ectopic site. Methods Generation 5 (G5 through generation 8 (G8 polyamidoamine dendrimers were labeled with gadolinium (Gd-diethyltriaminepentaacetic acid, an anionic MRI contrast agent. The respective Gd-dendrimer generations were visualized in vitro by scanning transmission electron microscopy. Following intravenous infusion of the respective Gd-dendrimer generations (Gd-G5, N = 6; Gd-G6, N = 6; Gd-G7, N = 5; Gd-G8, N = 5 the blood and tumor tissue pharmacokinetics of the Gd-dendrimer generations were visualized in vivo over 600 to 700 minutes by dynamic contrast-enhanced MRI. One additional animal was imaged in each Gd-dendrimer generation group for 175 minutes under continuous anesthesia for the creation of voxel-by-voxel Gd concentration maps. Results The estimated diameters of Gd-G7 dendrimers were 11 ± 1 nm and those of Gd-G8

  15. Effect of pore size and cross-linking of a novel collagen-elastin dermal substitute on wound healing

    NARCIS (Netherlands)

    Boekema, B.K.H.L.; Vlig, M.; Damink, L.O.; Middelkoop, E.; Eummelen, L.; Buhren, A.V.; Ulrich, M.M.W.

    2014-01-01

    Collagen-elastin (CE) scaffolds are frequently used for dermal replacement in the treatment of full-thickness skin defects such as burn wounds. But little is known about the optimal pore size and level of cross-linking. Different formulations of dermal substitutes with unidirectional pores were

  16. Linkage disequilibrium in the insulin gene region: Size variation at the 5{prime} flanking polymorphism and bimodality among {open_quotes}Class I{close_quotes} alleles

    Energy Technology Data Exchange (ETDEWEB)

    McGinnis, R.E.; Spielman, R.S. [Univ. of Pennsylvania School of Medicine, Philadelphia, PA (United States)

    1994-09-01

    The 5{prime} flanking polymorphism (5{prime}FP), a hypervariable region at the 5{prime} end of the insulin gene, has {open_quotes}class 1{close_quotes} alleles (650-900 bp long) that are in positive linkage disequilibrium with insulin-dependent diabetes mellitus (IDDM). The authors report that precise sizing of the 5{prime}FP yields a bimodal frequency distribution of class 1 allele lengths. Class 1 alleles belonging to the lower component (650-750 bp) of the bimodal distribution were somewhat more highly associated with IDDM than were alleles from the upper component (760-900 bp), but the difference was not statistically significant. They also examined 5{prime}FP length variation in relation to allelic variation at nearby polymorphisms. At biallelic RFLPs on both sides of the 5{prime}FP, they found that one allele exhibits near-total association with the upper component of the 5FP class 1 distribution. Such associations represent a little-known but potentially wide-spread form of linkage disequilibrium. In this type of disequilibrium, a flanking allele has near-complete association with a single mode of VNTR alleles whose lengths represent consecutive numbers of tandem repeats (CNTR). Such extreme disequilibrium between a CNTR mode and flanking alleles may originate and persist because length mutations at some VNTR loci usually add or delete only one or two repeat units. 22 refs., 5 figs., 6 tabs.

  17. The effects of diatom pore-size on the structures and extensibilities of single mucilage molecules.

    Science.gov (United States)

    Sanka, Immanuel; Suyono, Eko Agus; Alam, Parvez

    2017-08-07

    Diatoms secrete extracellular polymeric substances (EPS), or mucilage, around the cell wall that may serve to aid in motility and form a discrete layer that may help maintain thicker layers of EPS that have a greater role in adhesion. Mucilage molecules adhere to the diatom frustules, which are biosilica skeletons that develop from the diatom cell walls. Here, molecular dynamics methods were used to determine the characteristics of mucilage molecules as a function of pore size; notably 1,4-α-D-galacturonic acid, 1,4-β-glucuronic acid and 1,4-β-D-mannuronic acid. These uronic acids differ from each other in structure and extensibility as a function of their folding characteristics. Here, we find that when overlain upon a pore, mucilage molecules try to return to their native folded states but are restrained by their interactions with the silica surfaces. Furthermore, the extensibility of mucilage molecules over pore spaces affects the extent of mechanical energy required to straighten them. As such, different EPS molecules will affect sliding, friction and adhesion to subsequent layers of EPS in different ways. We conclude that higher EPS extensibility is homonymous with higher adhesive or frictive resistance since the molecules will be able to strain more before they reach the most extended (and thus rigid) conformation. The research herein is applicable to modern engineering as it yields insight into the biomimetic design of molecules and surfaces for improved adhesion or motility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Pore Size Distribution and Methane Equilibrium Conditions at Walker Ridge Block 313, Northern Gulf of Mexico

    Science.gov (United States)

    Bihani, A. D.; Daigle, H.; Cook, A.; Glosser, D.; Shushtarian, A.

    2015-12-01

    Coexistence of three methane phases (liquid (L), gas (G), hydrate (H)) in marine gas hydrate systems may occur according to in-situ pressure, temperature, salinity and pore size. In sediments with salinity close to seawater, a discrete zone of three-phase (3P) equilibrium may occur near the base of the regional hydrate stability zone (RHSZ) due to capillary effects. The existence of a 3P zone influences the location of the bottom-simulating reflection (BSR) and has implications for methane fluxes at the base of the RHSZ. We studied hydrate stability conditions in two wells, WR313-G and WR313-H, at Walker Ridge Block 313 in the northern Gulf of Mexico. We determined pore size distributions (PSD) by constructing a synthetic nuclear magnetic resonance (NMR) relaxation time distribution. Correlations were obtained by non-linear regression on NMR, gamma ray, and bulk density logs from well KC-151 at Keathley Canyon. The correlations enabled construction of relaxation time distributions for WR313-G and WR313-H, which were used to predict PSD through comparison with mercury injection capillary pressure measurements. With the computed PSD, L+H and L+G methane solubility was determined from in-situ pressure and temperature. The intersection of the L+G and L+H curves for various pore sizes allowed calculation of the depth range of the 3P equilibrium zone. As in previous studies at Blake Ridge and Hydrate Ridge, the top of the 3P zone moves upwards with increasing water depth and overlies the bulk 3P equilibrium depth. In clays at Walker Ridge, the predicted thickness of the 3P zone is approximately 35 m, but in coarse sands it is only a few meters due to the difference in absolute pore sizes and the width of the PSD. The thick 3P zone in the clays may explain in part why the BSR is only observed in the sand layers at Walker Ridge, although other factors may influence the presence or absence of a BSR.

  19. Pore size distribution and methane equilibrium conditions at Walker Ridge Block 313, northern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Bihani, Abhishek [University of Texas at Austin; Daigle, Hugh [University of Texas at Austin; Cook, Ann [Ohio State University; Glosser, Deborah [Ohio State University; Shushtarian, Arash [University of Texas at Austin

    2015-12-15

    Coexistence of three methane phases (liquid (L), gas (G), hydrate (H)) in marine gas hydrate systems may occur according to in-situ pressure, temperature, salinity and pore size. In sediments with salinity close to seawater, a discrete zone of three-phase (3P) equilibrium may occur near the base of the regional hydrate stability zone (RHSZ) due to capillary effects. The existence of a 3P zone influences the location of the bottom-simulating reflection (BSR) and has implications for methane fluxes at the base of the RHSZ. We studied hydrate stability conditions in two wells, WR313-G and WR313-H, at Walker Ridge Block 313 in the northern Gulf of Mexico. We determined pore size distributions (PSD) by constructing a synthetic nuclear magnetic resonance (NMR) relaxation time distribution. Correlations were obtained by non-linear regression on NMR, gamma ray, and bulk density logs from well KC-151 at Keathley Canyon. The correlations enabled construction of relaxation time distributions for WR313-G and WR313-H, which were used to predict PSD through comparison with mercury injection capillary pressure measurements. With the computed PSD, L+H and L+G methane solubility was determined from in-situ pressure and temperature. The intersection of the L+G and L+H curves for various pore sizes allowed calculation of the depth range of the 3P equilibrium zone. As in previous studies at Blake Ridge and Hydrate Ridge, the top of the 3P zone moves upwards with increasing water depth and overlies the bulk 3P equilibrium depth. In clays at Walker Ridge, the predicted thickness of the 3P zone is approximately 35 m, but in coarse sands it is only a few meters due to the difference in absolute pore sizes and the width of the PSD. The thick 3P zone in the clays may explain in part why the BSR is only observed in the sand layers at Walker Ridge, although other factors may influence the presence or absence of a BSR.

  20. Tuning Pore Size in Square-Lattice Coordination Networks for Size-Selective Sieving of CO2.

    Science.gov (United States)

    Chen, Kai-Jie; Madden, David G; Pham, Tony; Forrest, Katherine A; Kumar, Amrit; Yang, Qing-Yuan; Xue, Wei; Space, Brian; Perry, John J; Zhang, Jie-Peng; Chen, Xiao-Ming; Zaworotko, Michael J

    2016-08-22

    Porous materials capable of selectively capturing CO2 from flue-gases or natural gas are of interest in terms of rising atmospheric CO2 levels and methane purification. Size-exclusive sieving of CO2 over CH4 and N2 has rarely been achieved. Herein we show that a crystal engineering approach to tuning of pore-size in a coordination network, [Cu(quinoline-5-carboxyate)2 ]n (Qc-5-Cu) ena+bles ultra-high selectivity for CO2 over N2 (SCN ≈40 000) and CH4 (SCM ≈3300). Qc-5-Cu-sql-β, a narrow pore polymorph of the square lattice (sql) coordination network Qc-5-Cu-sql-α, adsorbs CO2 while excluding both CH4 and N2 . Experimental measurements and molecular modeling validate and explain the performance. Qc-5-Cu-sql-β is stable to moisture and its separation performance is unaffected by humidity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Surface Observation and Pore Size Analyses of Polypropylene/Low-Melting Point Polyester Filter Materials: Influences of Heat Treatment

    Directory of Open Access Journals (Sweden)

    Lin Jia-Horng

    2016-01-01

    Full Text Available This study proposes making filter materials with polypropylene (PP and low-melting point (LPET fibers. The influences of temperatures and times of heat treatment on the morphology of thermal bonding points and average pore size of the PP/LPET filter materials. The test results indicate that the morphology of thermal bonding points is highly correlated with the average pore size. When the temperature of heat treatment is increased, the fibers are joined first with the thermal bonding points, and then with the large thermal bonding areas, thereby decreasing the average pore size of the PP/LPET filter materials. A heat treatment of 110 °C for 60 seconds can decrease the pore size from 39.6 μm to 12.0 μm.

  2. Effect of pore-size distribution on the collapse behaviour of anthropogenic sandy soil deposits

    Directory of Open Access Journals (Sweden)

    Baille Wiebke

    2016-01-01

    Full Text Available In the former open-pit mines of the Lusatian region in Germany, several liquefaction events have occurred during the recent years in the anthropogenic deposits made of very loose sandy soils. These events are related to the rising ground water table after the stop of controlled ground water lowering. The very loose state is due to the formation of sand aggregates (pseudo-grains during the deposition process. The pseudo-grains enclose larger voids of dimension greater than the single sand grain. Wetting induced collapse of the pseudo-grains is presumed to be one of the possible mechanisms triggering liquefaction. In the present study, the effect of larger voids on the wetting induced deformation behaviour of sandy soils is experimentally investigated by laboratory box tests. The deformation field in the sample during wetting was measured using Digital Image Correlation (DIC technique. The results show that the observed deformations are affected by the pore size distribution, thus the amount of voids between the pseudo-grains (macro-void ratio and the voids inside the pseudo-grains (matrix void ratio. The global void ratio of a sandy soil is not sufficient as single state parameter, but the pore size distribution has to be taken into account, experimentally as well as in modelling.

  3. Anodic aluminum oxide with fine pore size control for selective and effective particulate matter filtering

    Science.gov (United States)

    Zhang, Su; Wang, Yang; Tan, Yingling; Zhu, Jianfeng; Liu, Kai; Zhu, Jia

    2016-07-01

    Air pollution is widely considered as one of the most pressing environmental health issues. Particularly, atmospheric particulate matters (PM), a complex mixture of solid or liquid matter suspended in the atmosphere, are a harmful form of air pollution due to its ability to penetrate deep into the lungs and blood streams, causing permanent damages such as DNA mutations and premature death. Therefore, porous materials which can effectively filter out particulate matters are highly desirable. Here, for the first time, we demonstrate that anodic aluminum oxide with fine pore size control fabricated through a scalable process can serve as effective and selective filtering materials for different types of particulate matters (such as PM2.5, PM10). Combining selective and dramatic filtering effect, fine pore size control and a scalable process, this type of anodic aluminum oxide templates can potentially serve as a novel selective filter for different kinds of particulate matters, and a promising and complementary solution to tackle this serious environmental issue.

  4. Predicting Soil-Water Characteristics from Volumetric Contents of Pore-Size Analogue Particle Fractions

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Møldrup, Per; Tuller, Markus

    *-model) for the SWC, derived from readily available soil properties such as texture and bulk density. A total of 46 soils from different horizons at 15 locations across Denmark were used for models evaluation. The Xw-model predicts the volumetric water content as a function of volumetric fines content (organic matter......Modelling water distribution and flow in partially saturated soils requires knowledge of the soil-water characteristic (SWC). However, measurement of the SWC is challenging and time-consuming, and in some cases not feasible. This study introduces two predictive models (Xw-model and Xw...... (organic matter, clay, silt, fine and coarse sand), variably included in the model depending on the pF value. The volumetric content of a particular soil particle size fraction was included in the model if it was assumed to contribute to the pore size fraction still occupied with water at the given p...

  5. Incorporation of the Pore Size Variation to Modeling of the Elastic Behavior of Metallic Open-Cell Foams

    Directory of Open Access Journals (Sweden)

    Ćwieka K.

    2017-03-01

    Full Text Available In the present paper we present the approach for modeling of the elastic behavior of open-cell metallic foams concerning non-uniform pore size distribution. This approach combines design of foam structures and numerical simulations of compression tests using finite element method (FEM. In the design stage, Laguerre-Voronoi tessellations (LVT were performed on several sets of packed spheres with defined variation of radii, bringing about a set of foam structures with porosity ranging from 74 to 98% and different pore size variation quantified by the coefficient of pore volume variation, CV(V, from 0.5 to 2.1. Each structure was numerically subjected to uni-axial compression test along three directions within the elastic region. Basing on the numerical response, the effective Young’s modulus, Eeff, was calculated for each structure. It is shown that the Eeff is not only dependent on the porosity but also on the pore size variation.

  6. Knudsen diffusion - The effect of small pore size and low gas pressure on gaseous transport in soil

    Science.gov (United States)

    Clifford, S. M.; Hillel, D.

    1986-01-01

    The analytical principles and applications of the theory of Knudsen diffusion are reviewed, with emphasis on gas transport in the soils of planetary bodies. Knudsen diffusion occurs when the mean free path of diffusing gas molecules surpasses the size of the pores through which diffusion proceeds. The process is then dominated by collisions with the pore walls. Computational techniques for deriving the Knudsen coefficient for soils with a nonreentrant cross-section shape are reviewed, along with methods of deriving a coefficient for soils which permit both Knudsen and bulk diffusion. Sample calculations for three pore-size distributions are provided to illustrate the decrease in transport efficiency with increasingly smaller soil pore sizes.

  7. Effect of Graphene and Fullerene Nanofillers on Controlling the Pore Size and Physicochemical Properties of Chitosan Nanocomposite Mesoporous Membranes

    Directory of Open Access Journals (Sweden)

    Irene S. Fahim

    2015-01-01

    Full Text Available Chitosan (CS nanocomposite mesoporous membranes were fabricated by mixing CS with graphene (G and fullerene (F nanofillers, and the diffusion properties through CS membranes were studied. In addition, in order to enhance the binding between the internal CS chains, physical cross-linking of CS by sodium tripolyphosphate (TPP was carried out. F and G with different weight percentages (0.1, 0.5, and 1 wt.% were added on physically cross-linked chitosan (CLCS and non-cross-linked chitosan (NCLCS membranes by wet mixing. Permeability and diffusion time of CLCS and NCLCS membranes at different temperatures were investigated. The results revealed that the pore size of all fabricated CS membranes is in the mesoporous range (i.e., 2–50 nm. Moreover, the addition of G and F nanofillers to CLCS and NCLCS solutions aided in controlling the CS membranes’ pore size and was found to enhance the barrier effect of the CS membranes either by blocking the internal pores or decreasing the pore size. These results illustrate the significant possibility of controlling the pore size of CS membranes by cross-linking and more importantly the careful selection of nanofillers and their percentage within the CS membranes. Controlling the pore size of CS membranes is a fundamental factor in packaging applications and membrane technology.

  8. Study of shale reservoir nanometer-sized pores in Member 1 of Shahejie Formation in JX area, Liaozhong sag

    Science.gov (United States)

    Cheng, Yong; Zhang, Yu; Wen, Yiming

    2018-02-01

    The microscopic pore structure is the key of the shale reservoir study; however, traditional Scanning Electron Microscopy (SEM) methods cannot identify the irregular morphology caused by mechanical polishing. In this work, Scanning Electron Microscopy combined argon ion polishing technology was taken to study the characteristics of shale reservoir pores of Member 1 of Shahejie Formation (E3s1) located in JX1-1 area of Liaozhong Sag. The results show that pores between clay platelets, intraplatelet pores within clay aggregates and organic-matter pores are very rich in the area and with good pore connectivity, so these types of pores are of great significance for oil-gas exporation. Pores between clay platelets are formed by directional or semi-directional contact between edge and surface, edge and edge or surface and surface of laminated clay minerals, whose shapes are linear, mesh, and irregular with the size of 500 nm to 5 μm. The intraplatelet pores within clay aggregates are formed in the process of the transformation and compaction of clay minerals, whose shapes are usually linear with the width of 30 to 500 nm and the length of 2 to 50 μm. The organic-matter pores are from the process of the conversion from organic matters to the hydrocarbon under thermal evolution, whose shapes are gneissic, irregular, pitted and elliptical with the size of 100 nm to 2 μm. This study is of certain guiding significance to selecting target zones, evaluating resource potential and exploring & developing of shale gas in this region.

  9. Bimodal distribution of the magnetic dipole moment in nanoparticles with a monomodal distribution of the physical size

    NARCIS (Netherlands)

    van Rijssel, Jozef; Kuipers, Bonny W M; Erne, Ben

    2015-01-01

    High-frequency applications of magnetic nanoparticles, such as therapeutic hyperthermia and magnetic particle imaging, are sensitive to nanoparticle size and dipole moment. Usually, it is assumed that magnetic nanoparticles with a log-normal distribution of the physical size also have a log-normal

  10. Evaluation of borate bioactive glass scaffolds with different pore sizes in a rat subcutaneous implantation model.

    Science.gov (United States)

    Deliormanli, Aylin M; Liu, Xin; Rahaman, Mohamed N

    2014-01-01

    Borate bioactive glass has been shown to convert faster and more completely to hydroxyapatite and enhance new bone formation in vivo when compared to silicate bioactive glass (such as 45S5 and 13-93 bioactive glass). In this work, the effects of the borate glass microstructure on its conversion to hydroxyapatite (HA) in vitro and its ability to support tissue ingrowth in a rat subcutaneous implantation model were investigated. Bioactive borate glass scaffolds, designated 13-93B3, with a grid-like microstructure and pore widths of 300, 600, and 900 µm were prepared by a robocasting technique. The scaffolds were implanted subcutaneously for 4 weeks in Sprague Dawley rats. Silicate 13-93 glass scaffolds with the same microstructure were used as the control. The conversion of the scaffolds to HA was studied as a function of immersion time in a simulated body fluid. Histology and scanning electron microscopy were used to evaluate conversion of the bioactive glass implants to hydroxyapatite, as well as tissue ingrowth and blood vessel formation in the implants. The pore size of the scaffolds was found to have little effect on tissue infiltration and angiogenesis after the 4-week implantation.

  11. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Naoya, E-mail: tani110@kuhp.kyoto-u.ac.jp [Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507 (Japan); Fujibayashi, Shunsuke, E-mail: shfuji@kuhp.kyoto-u.ac.jp [Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507 (Japan); Takemoto, Mitsuru, E-mail: m.take@kuhp.kyoto-u.ac.jp [Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507 (Japan); Sasaki, Kiyoyuki, E-mail: kiy-sasaki@spcom.co.jp [Sagawa Printing Co., Ltd., 5-3, Inui, Morimoto-Cho, Mukou-Shi, Kyoto 617-8588 (Japan); Otsuki, Bungo, E-mail: bungo@kuhp.kyoto-u.ac.jp [Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507 (Japan); Nakamura, Takashi, E-mail: ntaka@kuhp.kyoto-u.ac.jp [National Hospital Organization Kyoto Medical Center, 1-1, Mukaihatacho, Hukakusa, Hushimi, Kyoto 612-8555 (Japan); Matsushita, Tomiharu, E-mail: matsushi@isc.chubu.ac.jp [Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 (Japan); Kokubo, Tadashi, E-mail: kokubo@isc.chubu.ac.jp [Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 (Japan); Matsuda, Shuichi, E-mail: smat522@kuhp.kyoto-u.ac.jp [Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507 (Japan)

    2016-02-01

    Selective laser melting (SLM) is an additive manufacturing technique with the ability to produce metallic scaffolds with accurately controlled pore size, porosity, and interconnectivity for orthopedic applications. However, the optimal pore structure of porous titanium manufactured by SLM remains unclear. In this study, we evaluated the effect of pore size with constant porosity on in vivo bone ingrowth in rabbits into porous titanium implants manufactured by SLM. Three porous titanium implants (with an intended porosity of 65% and pore sizes of 300, 600, and 900 μm, designated the P300, P600, and P900 implants, respectively) were manufactured by SLM. A diamond lattice was adapted as the basic structure. Their porous structures were evaluated and verified using microfocus X-ray computed tomography. Their bone–implant fixation ability was evaluated by their implantation as porous-surfaced titanium plates into the cortical bone of the rabbit tibia. Bone ingrowth was evaluated by their implantation as cylindrical porous titanium implants into the cancellous bone of the rabbit femur for 2, 4, and 8 weeks. The average pore sizes of the P300, P600, and P900 implants were 309, 632, and 956 μm, respectively. The P600 implant demonstrated a significantly higher fixation ability at 2 weeks than the other implants. After 4 weeks, all models had sufficiently high fixation ability in a detaching test. Bone ingrowth into the P300 implant was lower than into the other implants at 4 weeks. Because of its appropriate mechanical strength, high fixation ability, and rapid bone ingrowth, our results indicate that the pore structure of the P600 implant is a suitable porous structure for orthopedic implants manufactured by SLM. - Highlights: • We studied the effect of pore size on bone tissue in-growth in a rabbit in vivo model. • Titanium samples with 300/600/900 μm pore size in three-dimensionally controlled shapes were fabricated by additive manufacturing. • Samples were

  12. Revealing the influence of water-cement ratio on the pore size distribution in hydrated cement paste by using cyclohexane

    Science.gov (United States)

    Bede, Andrea; Ardelean, Ioan

    2017-12-01

    Varying the amount of water in a concrete mix will influence its final properties considerably due to the changes in the capillary porosity. That is why a non-destructive technique is necessary for revealing the capillary pore distribution inside hydrated cement based materials and linking the capillary porosity with the macroscopic properties of these materials. In the present work, we demonstrate a simple approach for revealing the differences in capillary pore size distributions introduced by the preparation of cement paste with different water-to-cement ratios. The approach relies on monitoring the nuclear magnetic resonance transverse relaxation distribution of cyclohexane molecules confined inside the cement paste pores. The technique reveals the whole spectrum of pores inside the hydrated cement pastes, allowing a qualitative and quantitative analysis of different pore sizes. The cement pastes with higher water-to-cement ratios show an increase in capillary porosity, while for all the samples the intra-C-S-H and inter-C-S-H pores (also known as gel pores) remain unchanged. The technique can be applied to various porous materials with internal mineral surfaces.

  13. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene

    KAUST Repository

    Cui, X.

    2016-05-20

    The trade-off between physical adsorption capacity and selectivity of porous materials is a major barrier for efficient gas separation and purification through physisorption. We report control over pore chemistry and size in metal coordination networks with hexafluorosilicate and organic linkers for the purpose of preferential binding and orderly assembly of acetylene molecules through cooperative host-guest and/or guest-guest interactions. The specific binding sites for acetylene are validated by modeling and neutron powder diffraction studies. The energies associated with these binding interactions afford high adsorption capacity (2.1 millimoles per gram at 0.025 bar) and selectivity (39.7 to 44.8) for acetylene at ambient conditions. Their efficiency for the separation of acetylene/ethylene mixtures is demonstrated by experimental breakthrough curves (0.73 millimoles per gram from a 1/99 mixture).

  14. Micron-Sized Pored Membranes Based on Polyvinylidene Difluoride Hexafluoropropylene Prepared by Phase Inversion Techniques

    Directory of Open Access Journals (Sweden)

    Andreas Hofmann

    2017-10-01

    Full Text Available In this study, micron-sized pored membranes, based on the co-polymer polyvinylidene difluoride hexafluoropropylene (PVdF-HFP were prepared via phase inversion techniques. The aim of the approach was to find less harmful and less toxic solvents to fabricate such films. Therefore, the Hansen solubility approach was used to identify safer and less toxic organic solvents for the phase inversion process, relative to present solvent mixtures, based on acetone, dimethyl formamide, dimethyl acetamide or methanol. With this approach, it was possible to identify cyclopentanone, ethylene glycol and benzyl alcohol as suitable solvents for the membrane preparation process. Physicochemical and mechanical properties were analyzed and compared, which revealed a uniform membrane structure through the cross section. Differences were observed at the top surface, in dependence of both preparation approaches, which are described in detail.

  15. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability.

    Science.gov (United States)

    Sarin, Hemant

    2010-08-11

    Much of our current understanding of microvascular permeability is based on the findings of classic experimental studies of blood capillary permeability to various-sized lipid-insoluble endogenous and non-endogenous macromolecules. According to the classic small pore theory of microvascular permeability, which was formulated on the basis of the findings of studies on the transcapillary flow rates of various-sized systemically or regionally perfused endogenous macromolecules, transcapillary exchange across the capillary wall takes place through a single population of small pores that are approximately 6 nm in diameter; whereas, according to the dual pore theory of microvascular permeability, which was formulated on the basis of the findings of studies on the accumulation of various-sized systemically or regionally perfused non-endogenous macromolecules in the locoregional tissue lymphatic drainages, transcapillary exchange across the capillary wall also takes place through a separate population of large pores, or capillary leaks, that are between 24 and 60 nm in diameter. The classification of blood capillary types on the basis of differences in the physiologic upper limits of pore size to transvascular flow highlights the differences in the transcapillary exchange routes for the transvascular transport of endogenous and non-endogenous macromolecules across the capillary walls of different blood capillary types. The findings and published data of studies on capillary wall ultrastructure and capillary microvascular permeability to lipid-insoluble endogenous and non-endogenous molecules from the 1950s to date were reviewed. In this study, the blood capillary types in different tissues and organs were classified on the basis of the physiologic upper limits of pore size to the transvascular flow of lipid-insoluble molecules. Blood capillaries were classified as non-sinusoidal or sinusoidal on the basis of capillary wall basement membrane layer continuity or lack thereof

  16. Numerical and Experimental Study of the Structural Color by Widening the Pore Size of Nanoporous Anodic Alumina

    OpenAIRE

    Jiawen Li; Zhiqiang Zhu; Yanlei Hu; Jinjin Zheng; Jiaru Chu; Wenhao Huang

    2014-01-01

    The structural color originated from the nanoporous anodic alumina (NAA) film is related to the structural characteristics. This paper aimed to obtain different structural colors which can cover the whole visible range by widening the pore size of metal-coated NAA. First, we used the Finite Difference Time Domain (FDTD) method to analyze the relationship between the physical structure and optical properties. Then, we fabricated different colors and expected color pattern by widening the pore...

  17. Linking Intra-Aggregate Pore Size Distribution with Organic Matter Decomposition Status, Evidence from FTIR and X-Ray Tomography

    Science.gov (United States)

    Toosi, E. R.; Quigley, M.; Kravchenko, A. N.

    2014-12-01

    It has been reported that conversion of intensively cultivated lands to less disturbed systems enhances soil OM storage capacity, primarily through OM stabilization in macroaggregates. We hypothesized that the potential for OM stabilization inside macro-aggregates is influenced by presence and abundance of intra-aggregate pores. Pores determine microbial access to OM and regulate diffusion of solution/gases within aggregates which drives microbial functioning. We investigated the influence of longterm disturbance intensity on soil OM composition and its relation to pore size distribution within macroaggregates. We used quantitative FTIR to determine OM decomposition status and X-ray micro-tomography to assess pore size distribution in macroaggregates as affected by management and landuse. Macroaggregates 4-6 mm in size where selected from topsoil under long term conventional tillage (CT), cover-crop (CC), and native succession vegetation (NS) treatments at Kellogg Biological Station, Michigan. Comparison of main soil OM functional groups suggested that with increasing disturbance intensity, the proportion of aromatic and carboxylic/carbohydrates associated compounds increased and it was concomitant with a decrease in the proportion of aliphatic associated compounds and lignin derivatives. Further, FTIR-based decomposition indices revealed that overall decomposition status of macroaggregates followed the pattern of CT > CC ≈ NS. X-ray micro-tomography findings suggested that greater OM decomposition within the macroaggregates was associated with i) greater percent of pores >13 micron in size within the aggregates, as well as ii) greater proportion of small to medium pores (13-110 micron). The results develop previous findings, suggesting that shift in landuse or management indirectly affects soil OM stabilization through alteration of pore size distribution within macroaggregates that itself, is coupled with OM decomposition status.

  18. Producing laminated NiAl with bimodal distribution of grain size by solid–liquid reaction treatment

    DEFF Research Database (Denmark)

    Fan, G.H.; Wang, Q.W.; Du, Y.

    2014-01-01

    The prospect of combining laminated structure design and grain size tailoring to toughen brittle materials is examined. Laminated NiAl consisting of coarse-grained layers and fine-grained layers was fabricated by solid–liquid reaction treatment of stacking Ni and Al foils. The fracture toughness ...

  19. Effect of membrane polymeric materials on relationship between surface pore size and membrane fouling in membrane bioreactors

    Science.gov (United States)

    Miyoshi, Taro; Yuasa, Kotaku; Ishigami, Toru; Rajabzadeh, Saeid; Kamio, Eiji; Ohmukai, Yoshikage; Saeki, Daisuke; Ni, Jinren; Matsuyama, Hideto

    2015-03-01

    We investigated the effect of different membrane polymeric materials on the relationship between membrane pore size and development of membrane fouling in a membrane bioreactor (MBR). Membranes with different pore sizes were prepared using three different polymeric materials, cellulose acetate butyrate (CAB), polyvinyl butyral (PVB), and polyvinylidene fluoride (PVDF), and the development of membrane fouling in each membrane was evaluated by batch filtration tests using a mixed liquor suspension obtained from a laboratory-scale MBR. The results revealed that the optimal membrane pore size to mitigate membrane fouling differed depending on membrane polymeric material. For PVDF membranes, the degree of membrane fouling decreased as membrane pore size increased. In contrast, CAB membranes with smaller pores had less fouling propensity than those with larger ones. Such difference can be attributed to the difference in major membrane foulants in each membrane; in PVDF, they were small colloids or dissolved organics in which proteins are abundant, and in CAB, microbial flocs. The results obtained in this study strongly suggested that optimum operating conditions of MBRs differ depending on the characteristics of the used membrane.

  20. Unsaturated hydraulic properties of Sphagnum moss and peat reveal trimodal pore-size distributions

    Science.gov (United States)

    Weber, Tobias K. D.; Iden, Sascha C.; Durner, Wolfgang

    2017-01-01

    In ombrotrophic peatlands, the moisture content of the vadose zone (acrotelm) controls oxygen diffusion rates, redox state, and the turnover of organic matter. Whether peatlands act as sinks or sources of atmospheric carbon thus relies on variably saturated flow processes. The Richards equation is the standard model for water flow in soils, but it is not clear whether it can be applied to simulate water flow in live Sphagnum moss. Transient laboratory evaporation experiments were conducted to observe evaporative water fluxes in the acrotelm, containing living Sphagnum moss, and a deeper layer containing decomposed moss peat. The experimental data were evaluated by inverse modeling using the Richards equation as process model for variably-saturated flow. It was tested whether water fluxes and time series of measured pressure heads during evaporation could be simulated. The results showed that the measurements could be matched very well providing the hydraulic properties are represented by a suitable model. For this, a trimodal parametrization of the underlying pore-size distribution was necessary which reflects three distinct pore systems of the Sphagnum constituted by inter-, intra-, and inner-plant water. While the traditional van Genuchten-Mualem model led to great discrepancies, the physically more comprehensive Peters-Durner-Iden model which accounts for capillary and noncapillary flow, led to a more consistent description of the observations. We conclude that the Richards equation is a valid process description for variably saturated moisture fluxes over a wide pressure range in peatlands supporting the conceptualization of the live moss as part of the vadose zone.

  1. Inverse Opal-like Porous MoSex Films for Hydrogen Evolution Catalysis: Overpotential-Pore Size Dependence.

    Science.gov (United States)

    Chia, Xinyi; Pumera, Martin

    2018-02-07

    Transition metal dichalcogenides (TMDs) are prized as electrocatalysts for hydrogen evolution reaction (HER). Common TMD syntheses entail conditions of high temperatures and reagents that are detrimental to the environment. The electrochemical synthesis of TMDs is advocated as a viable alternative to the conventional synthetic procedures in terms of simplicity, ecological sustainability, and versatility of deposition on various surfaces at room temperature. In this work, we demonstrate the successful fabrication of electrocatalytic inverse opal porous MoSe x films, where 2 ≤ x ≤ 3, via solid template-assisted electrodeposition from the simultaneous electroreduction of molybdic acid and selenium dioxide as the respective metal and chalcogen precursors in an aqueous electrolyte. The electrosynthesized porous MoSe x films contain pores with diameters of 0.1, 0.3, 0.6, or 1.0 μm, depending on the size of the polystyrene bead template used. The investigation reveals that porous MoSe x films with a pore size of 0.1 μm, which prevailed over the other pore sizes, are endowed with the lowest HER overpotential of 0.57 V at -30 mA cm -2 and a Tafel slope of 118 mV dec -1 , alluding to the adsorption step as rate limiting. Across all pore sizes, the Volmer adsorption step limits the HER mechanism. Nevertheless, the pore size dictates the catalytic activity of the porous MoSe x films apropos of HER overpotential such that the HER performance of smaller pore sizes of 0.1 and 0.3 μm surpasses those with wider pore sizes of 0.6 and 1.0 μm. The observed trends in their HER behavior may be rationalized by the tunable surface wettability as pore sizes vary. These fundamental findings offer a glimpse into the efficacy of electrodeposited porous TMDs as electrocatalysts and exemplify the feasibility of the electrosynthesis method in altering the morphological structure of the TMDs.

  2. Significant Corrosion Resistance in an Ultrafine-Grained Al6063 Alloy with a Bimodal Grain-Size Distribution through a Self-Anodic Protection Mechanism

    Directory of Open Access Journals (Sweden)

    Mahdieh Shakoori Oskooie

    2016-12-01

    Full Text Available The bimodal microstructures of Al6063 consisting of 15, 30, and 45 vol. % coarse-grained (CG bands within the ultrafine-grained (UFG matrix were synthesized via blending of high-energy mechanically milled powders with unmilled powders followed by hot powder extrusion. The corrosion behavior of the bimodal specimens was assessed by means of polarization, steady-state cyclic polarization and impedance tests, whereas their microstructural features and corrosion products were examined using optical microscopy (OM, scanning transmission electron microscopy (STEM, field emission scanning electron microscopy (FE-SEM, electron backscattered diffraction (EBSD, energy dispersive spectroscopy (EDS, and X-ray diffraction (XRD techniques. The bimodal Al6063 containing 15 vol. % CG phase exhibits the highest corrosion resistance among the bimodal microstructures and even superior electrochemical behavior compared with the plain UFG and CG materials in the 3.5% NaCl solution. The enhanced corrosion resistance is attributed to the optimum cathode to anode surface area ratio that gives rise to the formation of an effective galvanic couple between CG areas and the UFG matrix. The operational galvanic coupling leads to the domination of a “self-anodic protection system” on bimodal microstructure and consequently forms a uniform thick protective passive layer over it. In contrast, the 45 vol. % CG bimodal specimen shows the least corrosion resistance due to the catastrophic galvanic corrosion in UFG regions. The observed results for UFG Al6063 suggest that metallurgical tailoring of the grain structure in terms of bimodal microstructures leads to simultaneous enhancement in the electrochemical behavior and mechanical properties of passivable alloys that are usually inversely correlated. The mechanism of self-anodic protection for passivable metals with bimodal microstructures is discussed here for the first time.

  3. Influences of composition of starting powders and sintering temperature on the pore size distribution of porous corundum-mullite ceramics

    Directory of Open Access Journals (Sweden)

    Shujing Li

    2005-01-01

    Full Text Available Porous corundum-mullite ceramics were prepared by an in-situ decomposition pore-forming technique. Starting powders were mixtures of milled Al(OH3 and microsilica and were formed into oblong samples with a length of 100mm and a square cross-section with edge size of 20mm. The samples were heated at 1300°C, 1400°C, 1500°C or 1600°C for 3h in air atmosphere, respectively. Apparent porosity was detected by Archimedes’ Principle with water as a medium. Pore size distribution and the volume percentage of micropores were measured by mercury intrusion porosimetry. The results show that the pore morphology parameters in the samples depend on four factors: particle size distribution of starting powders, decomposition of Al(OH3, the expansion caused by mullite and sintering. The optimum mode which has a higher apparent porosity up to 42.3%, well-distributed pores and more microsize pores up to 16.3% is sample No.3 and the most apposite sintering temperature of this sample is 1500°C.

  4. Pore size is a critical parameter for obtaining sustained protein release from electrochemically synthesized mesoporous silicon microparticles

    Directory of Open Access Journals (Sweden)

    Ester L. Pastor

    2015-10-01

    Full Text Available Mesoporous silicon has become a material of high interest for drug delivery due to its outstanding internal surface area and inherent biodegradability. We have previously reported the preparation of mesoporous silicon microparticles (MS-MPs synthesized by an advantageous electrochemical method, and showed that due to their inner structure they can adsorb proteins in amounts exceeding the mass of the carrier itself. Protein release from these MS-MPs showed low burst effect and fast delivery kinetics with complete release in a few hours. In this work, we explored if tailoring the size of the inner pores of the particles would retard the protein release process. To address this hypothesis, three new MS-MPs prototypes were prepared by electrochemical synthesis, and the resulting carriers were characterized for morphology, particle size, and pore structure. All MS-MP prototypes had 90 µm mean particle size, but depending on the current density applied for synthesis, pore size changed between 5 and 13 nm. The model protein α-chymotrypsinogen was loaded into MS-MPs by adsorption and solvent evaporation. In the subsequent release experiments, no burst release of the protein was detected for any prototype. However, prototypes with larger pores (>10 nm reached 100% release in 24–48 h, whereas prototypes with small mesopores (<6 nm still retained most of their cargo after 96 h. MS-MPs with ∼6 nm pores were loaded with the osteogenic factor BMP7, and sustained release of this protein for up to two weeks was achieved. In conclusion, our results confirm that tailoring pore size can modify protein release from MS-MPs, and that prototypes with potential therapeutic utility for regional delivery of osteogenic factors can be prepared by convenient techniques.

  5. Ångstrom-size exocytotic fusion pore: Implications for pituitary hormone secretion.

    Science.gov (United States)

    Kreft, Marko; Jorgačevski, Jernej; Stenovec, Matjaž; Zorec, Robert

    2018-03-05

    In the past, vesicle content release was thought to occur immediately and completely after triggering of exocytosis. However, vesicles may merge with the plasma membrane to form an Ångstrom diameter fusion pore that prevents the exit of secretions from the vesicle lumen. The advantage of such a narrow pore is to minimize the delay between the trigger and the release. Instead of stimulating a sequence of processes, leading to vesicle merger with the plasma membrane and a formation of a fusion pore, the stimulus only widens the pre-established fusion pore. The fusion pore may be stable and may exhibit repetitive opening of the vesicle lumen to the cell exterior accompanied by a content discharge. Such release of vesicle content is partial (subquantal), and depends on fusion pore open time, diameter and the diffusibility of the cargo. Such transient mode of fusion pore opening was not confirmed until the development of the membrane capacitance patch-clamp technique, which enables high-resolution measurement of changes in membrane surface area. It allows millisecond dwell-time measurements of fusion pores with subnanometer diameters. Currently, the soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) proteins are considered to be key entities in end-stage exocytosis, and the SNARE complex assembly/disassembly may regulate the fusion pore. Moreover, lipids or other membrane constituents with anisotropic (non-axisymmetric) geometry may also favour the establishment of stable narrow fusion pores, if positioned in the neck of the fusion pore. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Determination of pore size distributions in capillary-channeled polymer fiber stationary phases by inverse size-exclusion chromatography and implications for fast protein separations.

    Science.gov (United States)

    Wang, Zhengxin; Marcus, R Kenneth

    2014-07-18

    Capillary-channeled polymer (C-CP) fibers have been utilized as liquid chromatography stationary phases, primarily for biomacromolecule separations on the analytical and preparative scales. The collinear packing of the eight-channeled C-CP fibers provides for very efficient flow, allowing operation at high linear velocity (u>100mm s(-1)) and low backpressure (chromatography (iSEC) has been employed to determine the pore size distribution (PSD) within C-CP fibers. A diversity of test species (from metal ions to large proteins) was used as probes under non-retaining conditions to obtain a response curve reflecting the apparent partition coefficient (Kd) versus hydrodynamic radii (rm). A mean pore radius (rp) of 4.2nm with standard deviation (sp) of ±1.1nm was calculated by fitting the Kd versus rm data to model equations with a Gaussian pore size distribution, and a pore radius of 4.0±0.1nm was calculated based on a log-normal distribution. The derived mean pore radius is much smaller than traditional support materials, with the standard deviation showing a relatively uniform pore distribution. van Deemter plots were analyzed to provide practical confirmation of the structural implications. Large molecules (e.g., proteins) that are fully excluded from pores have no significant C-terms in the van Deemter plots whereas small molecules that can access the pore volumes display appreciable C-terms, as expected. Fitting of retention data to the Knox equation suggests that the columns operate with a characteristic particle diameter (dp) of ∼53μm. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Pore-Scale Investigation of Micron-Size Polyacrylamide Elastic Microspheres (MPEMs) Transport and Retention in Saturated Porous Media

    KAUST Repository

    Yao, Chuanjin

    2014-05-06

    Knowledge of micrometer-size polyacrylamide elastic microsphere (MPEM) transport and retention mechanisms in porous media is essential for the application of MPEMs as a smart sweep improvement and profile modification agent in improving oil recovery. A transparent micromodel packed with translucent quartz sand was constructed and used to investigate the pore-scale transport, surface deposition-release, and plugging deposition-remigration mechanisms of MPEMs in porous media. The results indicate that the combination of colloidal and hydrodynamic forces controls the deposition and release of MPEMs on pore-surfaces; the reduction of fluid salinity and the increase of Darcy velocity are beneficial to the MPEM release from pore-surfaces; the hydrodynamic forces also influence the remigration of MPEMs in pore-throats. MPEMs can plug pore-throats through the mechanisms of capture-plugging, superposition-plugging, and bridge-plugging, which produces resistance to water flow; the interception with MPEM particulate filters occurring in the interior of porous media can enhance the plugging effect of MPEMs; while the interception with MPEM particulate filters occurring at the surface of low-permeability layer can prevent the low-permeability layer from being damaged by MPEMs. MPEMs can remigrate in pore-throats depending on their elasticity through four steps of capture-plugging, elastic deformation, steady migration, and deformation recovery. © 2014 American Chemical Society.

  8. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment.

    Science.gov (United States)

    Taniguchi, Naoya; Fujibayashi, Shunsuke; Takemoto, Mitsuru; Sasaki, Kiyoyuki; Otsuki, Bungo; Nakamura, Takashi; Matsushita, Tomiharu; Kokubo, Tadashi; Matsuda, Shuichi

    2016-02-01

    Selective laser melting (SLM) is an additive manufacturing technique with the ability to produce metallic scaffolds with accurately controlled pore size, porosity, and interconnectivity for orthopedic applications. However, the optimal pore structure of porous titanium manufactured by SLM remains unclear. In this study, we evaluated the effect of pore size with constant porosity on in vivo bone ingrowth in rabbits into porous titanium implants manufactured by SLM. Three porous titanium implants (with an intended porosity of 65% and pore sizes of 300, 600, and 900μm, designated the P300, P600, and P900 implants, respectively) were manufactured by SLM. A diamond lattice was adapted as the basic structure. Their porous structures were evaluated and verified using microfocus X-ray computed tomography. Their bone-implant fixation ability was evaluated by their implantation as porous-surfaced titanium plates into the cortical bone of the rabbit tibia. Bone ingrowth was evaluated by their implantation as cylindrical porous titanium implants into the cancellous bone of the rabbit femur for 2, 4, and 8weeks. The average pore sizes of the P300, P600, and P900 implants were 309, 632, and 956μm, respectively. The P600 implant demonstrated a significantly higher fixation ability at 2weeks than the other implants. After 4weeks, all models had sufficiently high fixation ability in a detaching test. Bone ingrowth into the P300 implant was lower than into the other implants at 4weeks. Because of its appropriate mechanical strength, high fixation ability, and rapid bone ingrowth, our results indicate that the pore structure of the P600 implant is a suitable porous structure for orthopedic implants manufactured by SLM. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Synthesis of silica aerogel monoliths with controlled specific surface areas and pore sizes

    Science.gov (United States)

    Gao, Bingying; Lu, Shaoxiang; Kalulu, Mulenga; Oderinde, Olayinka; Ren, Lili

    2017-07-01

    To replace traditional preparation methods of silica aerogels, a small-molecule 1,2-epoxypropane (PO) has been introduced into the preparation process instead of using ammonia as the cross-linking agent, thus generating a lightweight, high porosity, and large surface area silica aerogel monolithic. We put forward a simple solution route for the chemical synthesis of silica aerogels, which was characterized by scanning electron microscopy (SEM), TEM, XRD, FTIR, thermogravimetric analysis (TGA) and the Brunauer-Emmett-Teller (BET) method In this paper, the effect of the amount of PO on the microstructure of silica aerogels is discussed. The BET surface areas and pore sizes of the resulting silica aerogels can be freely adjusted by changing the amount of PO, which will be helpful in promoting the development of silica aerogels to fabricate other porous materials with similar requirements. We also adopted a new organic solvent sublimation drying (OSSD) method to replace traditional expensive and dangerous drying methods such as critical point drying and freeze drying. This simple approach is easy to operate and has good repeatability, which will further facilitate actual applications of silica aerogels.

  10. Beer Clarification by Novel Ceramic Hollow-Fiber Membranes: Effect of Pore Size on Product Quality.

    Science.gov (United States)

    Cimini, Alessio; Moresi, Mauro

    2016-10-01

    In this work, the crossflow microfiltration performance of rough beer samples was assessed using ceramic hollow-fiber (HF) membrane modules with a nominal pore size ranging from 0.2 to 1.4 μm. Under constant operating conditions (that is, transmembrane pressure difference, TMP = 2.35 bar; feed superficial velocity, v S = 2.5 m/s; temperature, T = 10 °C), quite small steady-state permeation fluxes (J * ) of 32 or 37 L/m 2 /h were achieved using the 0.2- or 0.5-μm symmetric membrane modules. Both permeates exhibited turbidity beer quality parameters. Moreover, it exhibited J * values of the same order of magnitude of those claimed for the polyethersulfone HF membrane modules currently commercialized. The 1.4-μm asymmetric membrane module yielded quite a high steady-state permeation flux (196 ± 38 L/m 2 /h), and a minimum decline in permeate quality parameters, except for the high levels of turbidity at room temperature and chill haze. In the circumstances, such a membrane module might be regarded as a real valid alternative to conventional powder filters on condition that the resulting permeate were submitted to a final finishing step using 0.45- or 0.65-μm microbially rated membrane cartridges prior to aseptic bottling. A novel combined beer clarification process was thus outlined. © 2016 Institute of Food Technologists®.

  11. Doping and controllable pore size enhanced electrochemical performance of free-standing 3D graphene films

    Science.gov (United States)

    Wang, Liping; Qin, Kaiqiang; Li, Jiajun; Zhao, Naiqin; Shi, Chunsheng; Ma, Liying; He, Chunnian; He, Fang; Liu, Enzuo

    2018-01-01

    High quality free-standing 3D nanoporous graphene (3DNG) films were fabricated using nanoporous nickel as template and catalyst. The effect of heteroatom doping and pore size on the electrochemical performance of the 3D graphene films as supercapacitor electrodes are systematically studied. Compared with macroporous graphene films, nanoporous graphene films exhibit an extraordinarily large operational window in neutral, acidic and alkaline aqueous electrolytes, as well as high packing density. Nitrogen and oxygen doping play different roles in different aqueous electrolytes on the electrical conductivity and pseudocapacitance of 3DNG. The realization of both high packing density, 3.65 mg/cm2, and the maximum working window, as well as the synergistic effect between N and O doping, gives rise to a high areal capacitance of 435 mF/cm2 in neutral electrolyte and excellent cycle stability up to 5000 cycles. The results provide a potential strategy to further increase the volumetric or areal energy density of carbon-based aqueous supercapacitor.

  12. Comparison of Polytetrafluoroethylene Flat-Sheet Membranes with Different Pore Sizes in Application to Submerged Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    Manabu Motoori

    2012-06-01

    Full Text Available This study focused on phase separation of activated sludge mixed liquor by flat-sheet membranes of polytetrafluoroethylene (PTFE. A 20 liter working volume lab-scale MBR incorporating immersed PTFE flat-sheet membrane modules with different pore sizes (0.3, 0.5 and 1.0 μm was operated for 19 days treating a synthetic wastewater. The experiment was interrupted twice at days 5 and 13 when the modules were removed and cleaned physically and chemically in sequence. The pure water permeate flux of each membrane module was measured before and after each cleaning step to calculate membrane resistances. Results showed that fouling of membrane modules with 0.3 μm pore size was more rapid than other membrane modules with different pore sizes (0.5 and 1.0 μm. On the other hand, it was not clear whether fouling of the 0.5 μm membrane module was more severe than that of the 1.0 μm membrane module. This was partly because of the membrane condition after chemical cleaning, which seemed to determine the fouling of those modules over the next period. When irreversible resistance (Ri i.e., differences in membrane resistance before use and after chemical cleaning was high, the transmembrane pressure increased quickly during the next period irrespective of membrane pore size.

  13. Influence of Pore Size on the Optical and Electrical Properties of Screen Printed TiO2 Thin Films

    Directory of Open Access Journals (Sweden)

    Dinfa Luka Domtau

    2016-01-01

    Full Text Available Influence of pore size on the optical and electrical properties of TiO2 thin films was studied. TiO2 thin films with different weight percentages (wt% of carbon black were deposited by screen printing method on fluorine doped tin oxide (FTO coated on glass substrate. Carbon black decomposed on annealing and artificial pores were created in the films. All the films were 3.2 µm thick as measured by a surface profiler. UV-VIS-NIR spectrophotometer was used to study transmittance and reflectance spectra of the films in the photon wavelength of 300–900 nm while absorbance was studied in the range of 350–900 nm. Band gaps and refractive index of the films were studied using the spectra. Reflectance, absorbance, and refractive index were found to increase with concentrations of carbon black. There was no significant variation in band gaps of films with change in carbon black concentrations. Transmittance reduced as the concentration of carbon black in TiO2 increased (i.e., increase in pore size. Currents and voltages (I-V characteristics of the films were measured by a 4-point probe. Resistivity (ρ and conductivity (σ of the films were computed from the I-V values. It was observed that resistivity increased with carbon black concentrations while conductivity decreased as the pore size of the films increased.

  14. Numerical and Experimental Study of the Structural Color by Widening the Pore Size of Nanoporous Anodic Alumina

    Directory of Open Access Journals (Sweden)

    Jiawen Li

    2014-01-01

    Full Text Available The structural color originated from the nanoporous anodic alumina (NAA film is related to the structural characteristics. This paper aimed to obtain different structural colors which can cover the whole visible range by widening the pore size of metal-coated NAA. First, we used the Finite Difference Time Domain (FDTD method to analyze the relationship between the physical structure and optical properties. Then, we fabricated different colors and expected color pattern by widening the pore diameter of NAA. Numerical and experimental study shows that the colors can cover the whole visible range by widening the pore diameter. This work can not only lead to better understanding of the mechanism of tuning color on NAA film, but also help us to fabricate expected color in the whole light range.

  15. Pore size and pore shape--but not mesh density--alter the mechanical strength of tissue ingrowth and host tissue response to synthetic mesh materials in a porcine model of ventral hernia repair.

    Science.gov (United States)

    Lake, Spencer P; Ray, Shuddhadeb; Zihni, Ahmed M; Thompson, Dominic M; Gluckstein, Jeffrey; Deeken, Corey R

    2015-02-01

    Over 100 types of soft tissue repair materials are commercially available for hernia repair applications. These materials vary in characteristics such as mesh density, pore size, and pore shape. It is difficult to determine the impact of a single variable of interest due to other compounding variables in a particular design. Thus, the current study utilized prototype meshes designed to evaluate each of these mesh parameters individually. Five prototype meshes composed of planar, monofilament polyethylene terephthalate (PET) were evaluated in this study. The meshes were designed to focus on three key parameters, namely mesh density, pore size, and pore shape. The prototype meshes were implanted in the preperitoneal, retrorectus space in a porcine model of ventral incisional hernia repair, and tissue ingrowth characteristics were evaluated after 90 days. Mesh-tissue composite specimens were obtained from each repair site and evaluated via T-peel mechanical testing. Force-displacement data for each T-peel test were analyzed and five characteristics of tissue ingrowth reported: peak force (fp), critical force (fc), fracture energy (Γc), work (W), and work density (Wden). Hematoxylin and eosin (H&E) stained sections of explanted mesh-tissue composites were also assessed for characteristics of tissue response including cellular infiltration, cell types, inflammatory response, extracellular matrix deposition, neovascularization, and fibrosis, with a composite score assigned to represent overall tissue response. The medium-weight, very large pore, hexagonal (MWVLH) mesh performed significantly better than the light-weight, medium pore, diamond (LWMD) mesh for all parameters evaluated (fp, fc, Γc, W, Wden) and trended toward better results than the medium-weight, medium pore, diamond (MWMD) mesh for the majority of the parameters evaluated. When the data for the five meshes was grouped to evaluate mesh density, pore size, and pore shape, differences were more pronounced

  16. Effect of pore size and cross-linking of a novel collagen-elastin dermal substitute on wound healing.

    Science.gov (United States)

    Boekema, Bouke K H L; Vlig, Marcel; Olde Damink, Leon; Middelkoop, Esther; Eummelen, Lizette; Bühren, Anne V; Ulrich, Magda M W

    2014-02-01

    Collagen-elastin (CE) scaffolds are frequently used for dermal replacement in the treatment of full-thickness skin defects such as burn wounds. But little is known about the optimal pore size and level of cross-linking. Different formulations of dermal substitutes with unidirectional pores were tested in porcine full-thickness wounds in combination with autologous split skin mesh grafts (SSG). Effect on wound healing was evaluated both macro- and microscopically. CE scaffolds with a pore size of 80 or 100 μm resulted in good wound healing after one-stage grafting. Application of scaffolds with a larger average pore size (120 μm) resulted in more myofibroblasts and more foreign body giant cells (FBGC). Moderate crosslinking impaired wound healing as it resulted in more wound contraction, more FBGC and increased epidermal thickness compared to no cross-linking. In addition, take rate and redness were negatively affected compared to SSG only. Vascularization and the number of myofibroblasts were not affected by cross-linking. Surprisingly, stability of cross-linked scaffolds was not increased in the wound environment, in contrast to in vitro results. Cross-linking reduced the proliferation of fibroblasts in vitro, which might explain the reduced clinical outcome. The non-cross-linked CE substitute with unidirectional pores allowed one-stage grafting of SSG, resulting in good wound healing. In addition, only a very mild foreign body reaction was observed. Cross-linking of CE scaffolds negatively affected wound healing on several important parameters. The optimal non-cross-linked CE substitute is a promising candidate for future clinical evaluation.

  17. Effect of Pore Size on the Carbon Dioxide Adsorption Behavior of Porous Liquids Based on Hollow Silica.

    Science.gov (United States)

    Shi, Ting; Zheng, Yaping; Wang, Tianyu; Li, Peipei; Wang, Yudeng; Yao, Dongdong

    2018-01-05

    Porous liquids are an expanding class of material that has huge potential in gas separation and gas adsorption. Pore size has a dramatic influence on the gas adsorption of porous liquids. In this article, we chose hollow silica nanoparticles as cores, 3-(trihydroxysilyl)-1-propanesulfonic acid (SIT) as corona, and inexpensive industrial reagent polyether amine (M2070) as canopy to obtain a new type of porous liquids. Hollow silica nanospheres with different pore sizes were chosen to investigate the influence of porosity size on CO 2 adsorption capacity of porous liquids. Their chemical structure, morphology, thermal behavior and possible adsorption mechanism are discussed in detail. It was proved that with similar grafting density, porous liquid that has bigger pore size possesses a better CO 2 adsorption capacity (2.182 mmol g -1 under 2.5 MPa at 298 K). More than that, this article demonstrates a more facile and low-cost method to obtain porous liquids with good CO 2 adsorption capacity, recyclability, and huge variability. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Comparative study of pore size of low-dielectric-constant porous spin-on-glass films using different methods of nondestructive instrumentation

    International Nuclear Information System (INIS)

    Kondoh, Eiichi; Baklanov, M.R.; Lin, E.; Gidley, D.; Nakashima, Akira

    2001-01-01

    The pore size of hydrogen-methyl-siloxane-based porous spin-on-glass(SOG) thin films having different k values (k=1.8-2.5) are comparatively studied using different nondestructive instrumental ways and also with reference to sorption porosimetry. The pore size and its spread are found to increase with increasing porosity, or with decreasing dielectric constant. (author)

  19. Effect of Etching Parameter on Pore Size and Porosity of Electrochemically Formed Nanoporous Silicon

    Directory of Open Access Journals (Sweden)

    Pushpendra Kumar

    2007-01-01

    Full Text Available The most common fabrication technique of porous silicon (PS is electrochemical etching of a crystalline silicon wafer in a hydrofluoric (HF acid-based solution. The electrochemical process allows for precise control of the properties of PS such as thickness of the porous layer, porosity, and average pore diameter. The control of these properties of PS was shown to depend on the HF concentration in the used electrolyte, the applied current density, and the thickness of PS. The change in pore diameter, porosity, and specific surface area of PS was investigated by measuring nitrogen sorption isotherms.

  20. Hydrogel Pore-Size Modulation for Enhanced Single-Cell Western Blotting.

    Science.gov (United States)

    Duncombe, Todd A; Kang, Chi-Chih; Maity, Santanu; Ward, Toby M; Pegram, Mark D; Murthy, Niren; Herr, Amy E

    2016-01-13

    Pore-gradient microgel arrays enable thousands of parallel high-resolution single-cell protein electrophoresis separations for targets accross a wide molecular mass (25-289 kDa), yet within 1 mm separation distances. Dual crosslinked hydrogels facilitate gel-pore expansion after electrophoresis for efficient and uniform immunoprobing. The photopatterned, light-activated, and acid-expandable hydrogel underpins single-cell protein analysis, here for oncoprotein-related signaling in human breast biopsy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Controlling drug delivery kinetics from mesoporous titania thin films by pore size and surface energy

    Directory of Open Access Journals (Sweden)

    Karlsson J

    2015-07-01

    Full Text Available Johan Karlsson, Saba Atefyekta, Martin Andersson Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden Abstract: The osseointegration capacity of bone-anchoring implants can be improved by the use of drugs that are administrated by an inbuilt drug delivery system. However, to attain superior control of drug delivery and to have the ability to administer drugs of varying size, including proteins, further material development of drug carriers is needed. Mesoporous materials have shown great potential in drug delivery applications to provide and maintain a drug concentration within the therapeutic window for the desired period of time. Moreover, drug delivery from coatings consisting of mesoporous titania has shown to be promising to improve healing of bone-anchoring implants. Here we report on how the delivery of an osteoporosis drug, alendronate, can be controlled by altering pore size and surface energy of mesoporous titania thin films. The pore size was varied from 3.4 nm to 7.2 nm by the use of different structure-directing templates and addition of a swelling agent. The surface energy was also altered by grafting dimethylsilane to the pore walls. The drug uptake and release profiles were monitored in situ using quartz crystal microbalance with dissipation (QCM-D and it was shown that both pore size and surface energy had a profound effect on both the adsorption and release kinetics of alendronate. The QCM-D data provided evidence that the drug delivery from mesoporous titania films is controlled by a binding–diffusion mechanism. The yielded knowledge of release kinetics is crucial in order to improve the in vivo tissue response associated to therapeutic treatments. Keywords: mesoporous titania, controlled drug delivery, release kinetics, alendronate, QCM-D

  2. Effects of pore size, implantation time and nano-surface properties on rat skin ingrowth into percutaneous porous titanium implants

    OpenAIRE

    Farrell, Brad J.; Prilutsky, Boris I.; Ritter, Jana M.; Kelley, Sean; Popat, Ketul; Pitkin, Mark

    2013-01-01

    The main problem of percutaneous osseointegrated implants is poor skin-implant integration, which may cause infection. This study investigated the effects of pore size (Small, 40–100 microns and Large, 100–160 microns), nanotubular surface treatment (Nano), and duration of implantation (3 and 6 weeks) on skin ingrowth into porous titanium. Each implant type was percutaneously inserted in the back of 35 rats randomly assigned to 7 groups. Implant extrusion rate was measured w...

  3. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength.

    Science.gov (United States)

    Maji, Kanchan; Dasgupta, Sudip; Kundu, Biswanath; Bissoyi, Akalabya

    2015-01-01

    Hydroxyapatite-chitosan/gelatin (HA:Chi:Gel) nanocomposite scaffold has potential to serve as a template matrix to regenerate extra cellular matrix of human bone. Scaffolds with varying composition of hydroxyapatite, chitosan, and gelatin were prepared using lyophilization technique where glutaraldehyde (GTA) acted as a cross-linking agent for biopolymers. First, phase pure hydroxyapatite-chitosan nanocrystals were in situ synthesized by coprecipitation method using a solution of 2% acetic acid dissolved chitosan and aqueous solution of calcium nitrate tetrahydrate [Ca(NO3)2,4H2O] and diammonium hydrogen phosphate [(NH4)2H PO4]. Keeping solid loading constant at 30 wt% and changing the composition of the original slurry of gelatin, HA-chitosan allowed control of the pore size, its distribution, and mechanical properties of the scaffolds. Microstructural investigation by scanning electron microscopy revealed the formation of a well interconnected porous scaffold with a pore size in the range of 35-150 μm. The HA granules were uniformly dispersed in the gelatin-chitosan network. An optimal composition in terms of pore size and mechanical properties was obtained from the scaffold with an HA:Chi:Gel ratio of 21:49:30. The composite scaffold having 70% porosity with pore size distribution of 35-150 μm exhibited a compressive strength of 3.3-3.5 MPa, which is within the range of that exhibited by cancellous bone. The bioactivity of the scaffold was evaluated after conducting mesenchymal stem cell (MSC) - materials interaction and MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay using MSCs. The scaffold found to be conducive to MSC's adhesion as evident from lamellipodia, filopodia extensions from cell cytoskeleton, proliferation, and differentiation up to 14 days of cell culture.

  4. ZnO Coatings with Controlled Pore Size, Crystallinity and Electrical Conductivity

    Directory of Open Access Journals (Sweden)

    Roman SCHMACK

    2016-05-01

    Full Text Available Zinc oxide is a wide bandgap semiconductor with unique optical, electrical and catalytic properties. Many of its practical applications rely on the materials pore structure, crystallinity and electrical conductivity. We report a synthesis method for ZnO films with ordered mesopore structure and tuneable crystallinity and electrical conductivity. The synthesis relies on dip-coating of solutions containing micelles of an amphiphilic block copolymer and complexes of Zn2+ ions with aliphatic ligands. A subsequent calcination at 400°C removes the template and induces crystallization of the pore walls. The pore structure is controlled by the template polymer, whereas the aliphatic ligands control the crystallinity of the pore walls. Complexes with a higher thermal stability result in ZnO films with a higher content of residual carbon, smaller ZnO crystals and therefore lower electrical conductivity. The paper discusses the ability of different types of ligands to assist in the synthesis of mesoporous ZnO and relates the structure and thermal stability of the precursor complexes to the crystallinity and electrical conductivity of the zinc oxide.DOI: http://dx.doi.org/10.5755/j01.ms.22.1.8634

  5. Molecularly imprinted macroporous monoliths for solid-phase extraction: Effect of pore size and column length on recognition properties.

    Science.gov (United States)

    Vlakh, E G; Stepanova, M A; Korneeva, Yu M; Tennikova, T B

    2016-09-01

    The series of macroporous monolithic molecularly imprinted monoliths differed by pore size, column length (volume) and amount of template used for imprinting was synthesized using methacrylic acid and glycerol dimethacrylate as co-monomers and antibiotic ciprofloxacin as a template. The prepared monoliths were characterized regarding to their permeability, pore size, porosity, and resistance to the flow of a mobile phase. The surface morphology was also analyzed. The slight dependence of imprinting factor on flow rate, as well as its independence on pore size of macroporous molecularly imprinted monolithic media was observed. The column obtained at different conditions exhibited different affinity of ciprofloxacin to the imprinted sites that was characterized with Kdiss values in the range of 10(-5)-10(-4)M. The solid-phase extraction of ciprofloxacin from such biological liquids as human blood serum, human urine and cow milk serum was performed using the developed monolithic columns. In all cases, the extraction was found to be 95.0-98.6%. Additionally, the comparison of extraction of three fluoroqinolone analogues, e.g. ciprofloxacin, levofloxacin and moxifloxacin, from human blood plasma was carried out. Contrary to ciprofloxacin extracted with more than 95%, this parameter did not exceed 40% for its analogues. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. A simple semi-quantitative approach studying the in vivo degradation of regenerated silk fibroin scaffolds with different pore sizes.

    Science.gov (United States)

    Guo, Yongwei; Chen, Zhongchun; Wen, Jianchuan; Jia, Minghui; Shao, Zhengzhong; Zhao, Xia

    2017-10-01

    The biocompatibility and in vivo degradation rate of biomaterials represent critical control points in the long-term success of scaffolds for tissue restoration. In this study, new three-dimensional (3D) regenerated silk fibroin scaffolds (RSFs) were prepared by the freezing-defrosting procedure, and then were implanted beneath the dorsal skin of rats. This study aims to develop a kinetic semi-quantitative approach to assess in vivo degradation rate and biocompatibility of this kind of RSFs with different pore sizes for the first time, and to evaluate the relationship between the biodegradation and tissue responses by measuring the thickness of residual scaffolds, fibrous capsules and infiltrated tissues through integrated techniques of histology, optical imaging and image analysis. Our results showed that scaffolds with both pore sizes (74.35±10.84μm and 139.23±44.93μm, respectively) were well tolerated by host animals and pore size was found to be the rate limiting factor to the biodegradation in the subcutaneous implantation model. In addition, the biodegradation of RSFs was inflammation-mediated to a certain degree and fibroblasts may play a critical role in this process. Overall, such semi-quantitative approach was demonstrated to be a simple and effective method to assess the in vivo degradation rate, and the prepared RSFs were presented to have promising potential in tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Effect of Pore Size and Porosity on the Biomechanical Properties and Cytocompatibility of Porous NiTi Alloys.

    Science.gov (United States)

    Jian, Yu-Tao; Yang, Yue; Tian, Tian; Stanford, Clark; Zhang, Xin-Ping; Zhao, Ke

    2015-01-01

    Five types of porous Nickel-Titanium (NiTi) alloy samples of different porosities and pore sizes were fabricated. According to compressive and fracture strengths, three groups of porous NiTi alloy samples underwent further cytocompatibility experiments. Porous NiTi alloys exhibited a lower Young's modulus (2.0 GPa ~ 0.8 GPa). Both compressive strength (108.8 MPa ~ 56.2 MPa) and fracture strength (64.6 MPa ~ 41.6 MPa) decreased gradually with increasing mean pore size (MPS). Cells grew and spread well on all porous NiTi alloy samples. Cells attached more strongly on control group and blank group than on all porous NiTi alloy samples (p NiTi alloys was correlated negatively to MPS (277.2 μm ~ 566.5 μm; p NiTi alloy samples (p NiTi alloy samples was higher than on control group and blank group (p NiTi alloys with optimized pore size could be a potential orthopedic material.

  8. Effective porosity and pore-throat sizes of Conasauga Group mudrock: Application, test and evaluation of petrophysical techniques

    International Nuclear Information System (INIS)

    Dorsch, J.; Katsube, T.J.; Sanford, W.E.; Univ. of Tennessee, Knoxville, TN; Dugan, B.E.; Tourkow, L.M.

    1996-04-01

    Effective porosity (specifically referring to the interconnected pore space) was recently recognized as being essential in determining the effectiveness and extent of matrix diffusion as a transport mechanism within fractured low-permeability rock formations. The research presented in this report was performed to test the applicability of several petrophysical techniques for the determination of effective porosity of fine-grained siliciclastic rocks. In addition, the aim was to gather quantitative data on the effective porosity of Conasauga Group mudrock from the Oak Ridge Reservation (ORR). The quantitative data reported here include not only effective porosities based on diverse measurement techniques, but also data on the sizes of pore throats and their distribution, and specimen bulk and grain densities. The petrophysical techniques employed include the immersion-saturation method, mercury and helium porosimetry, and the radial diffusion-cell method

  9. Beyond the rhizosphere: growth and function of arbuscular mycorrhizal external hyphae in sands of varying pore sizes

    DEFF Research Database (Denmark)

    Drew, E.A.; Murray, R.S.; Smith, S.E.

    2003-01-01

    individually in 'single arm cross-pots' with and without AM fungi. The side arm was separated from the main compartment by nylon mesh to prevent root penetration. It contained three zones: 5 mm of soil: sand mix (HC1); 25 mm of media treatment (HC2); and 20 mm of P-33-labelled soil (HC3). There were four media......Research on nutrient acquisition by symbiotic arbuscular mycorrhizal (AM) fungi has mainly focused on the root fungus interface and less attention has been given to the growth and functioning of external hyphae in the bulk soil. The growth and function of external hyphae may be affected...... by unfavourable soil environments, such as compacted soils in which pores may be narrow. The effects of pore size on the growth of two AM fungi (Glomus intraradices and G. mosseae) and their ability to transport P-33 from the bulk soil to the host were investigated. Trifolium subterraneum L. plants were grown...

  10. Persistent effects of subsoil compaction on pore size distribution and gas transport in a loamy soil

    DEFF Research Database (Denmark)

    Berisso, Feto Esimo; Schjønning, Per; Keller, T

    2012-01-01

    The ever-increasing weight of agricultural machines exacerbates the risk of subsoil compaction, a condition believed to be persistent and difficult to alleviate by soil tillage and natural loosening processes. However, experimental data on the persistency of subsoil compaction effects on soil pore...... included four repeated wheelings with ∼10 Mg wheel loads. Water retention characteristics (WRC), air permeability (ka) and gas diffusivity (Ds/Do) were measured. A dual-porosity model fitted the WRC well, and there was a reduction in the volume of macropores >30 μm in compacted compared with control soil...

  11. Effects of particle size and forming pressure on pore properties of Fe-Cr-Al porous metal by pressureless sintering

    Science.gov (United States)

    Koo, Bon-Uk; Yi, Yujeong; Lee, Minjeong; Kim, Byoung-Kee

    2017-03-01

    With increased hydrogen consumption in ammonia production, refining and synthesis, fuel cells and vehicle industries, development of the material components related to hydrogen production is becoming an important factor in industry growth. Porous metals for fabrication of hydrogen are commonly known for their relative excellence in terms of large area, lightness, lower heat capacity, high toughness, and permeability. Fe-Cr-Al alloys not only have high corrosion resistance, heat resistance, and chemical stability but also ductility, excellent mechanical properties. In order to control powder size and sintering temperature effects of Fe-Cr-Al porous metal fabrication, Fe-Cr-Al powder was classified into 25-35 μm, 35-45 μm, 45-75 μm using an auto shaking sieve machine and then classified Fe-Cr-Al powders were pressed into disk shapes using a uniaxial press machine and CIP. The pelletized Fe-Cr-Al specimens were sintered at various temperatures in high vacuum. Properties such as pore size, porosity, and air permeability were evaluated using perm-porosimetry. Microstructure and phase changes were observed with SEM and XRD. Porosity and relative density were proportionated to increasing sintering temperature. With sufficient sintering at increasing temperatures, the pore size is expected to be gradually reduced. Porosity decreased with increasing sintering temperature and gradually increased necking of the powder.

  12. Quantification of pore size distribution in reservoir rocks using MRI logging: A case study of South Pars Gas Field.

    Science.gov (United States)

    Ghojogh, Jalal Neshat; Esmaili, Mohammad; Noruzi-Masir, Behrooz; Bakhshi, Puyan

    2017-12-01

    Pore size distribution (PSD) is an important factor for controlling fluid transport through porous media. The study of PSD can be applicable in areas such as hydrocarbon storage, contaminant transport, prediction of multiphase flow, and analysis of the formation damage by mud infiltration. Nitrogen adsorption, centrifugation method, mercury injection, and X-ray computed tomography are commonly used to measure the distribution of pores. A core sample is occasionally not available because of the unconsolidated nature of reservoirs, high cost of coring operation, and program limitations. Magnetic resonance imaging logging (MRIL) is a proper logging technique that allows the direct measurement of the relaxation time of protons in pore fluids and correlating T 2 distribution to PSD using proper mathematical equations. It is nondestructive and fast and does not require core samples. In this paper, 8 core samples collected from the Dalan reservoir in South Pars Gas Field were studied by processing MRIL data and comparing them by PSD determined in the laboratory. By using the MRIL method, variation in PSD corresponding to the depth for the entire logged interval was determined. Moreover, a detailed mineralogical composition of the reservoir samples related to T 2 distribution was obtained. A good correlation between MRIL and mercury injection data was observed. High degree of similarity was also observed between T 2 distribution and PSD (R 2 = 0.85 to 0.91). Based on the findings from the MRIL method, the obtained values for clay bond water varied between 1E-6 and 1E-3µm, a range that is comprehended from an extra peak on the PSD curve. The frequent pore radius was determined to be 1µm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Polystyrene-block-poly(ethylene oxide) copolymers as templates for stacked, spherical large-mesopore silica coatings: dependence of silica pore size on the PS/PEO ratio.

    Science.gov (United States)

    Nisticò, Roberto; Magnacca, Giuliana; Jadhav, Sushilkumar A; Scalarone, Dominique

    2016-01-01

    Large-mesopore silica films with a narrow pore size distribution and high porosity have been obtained by a sol-gel reaction of a silicon oxide precursor (TEOS) and using polystyrene- block -poly(ethylene oxide) (PS- b -PEO) copolymers as templates in an acidic environment. PS- b -PEO copolymers with different molecular weight and composition have been studied in order to assess the effects of the block length on the pore size of the templated silica films. The changes in the morphology of the porous systems have been investigated by transmission electron microscopy and a systematic analysis has been carried out, evidencing the dependence between the hydrophilic/hydrophobic ratio of the two polymer blocks and the size of the final silica pores. The obtained results prove that by tuning the PS/PEO ratio, the pore size of the templated silica films can be easily and finely predicted.

  14. Polystyrene-block-poly(ethylene oxide copolymers as templates for stacked, spherical large-mesopore silica coatings: dependence of silica pore size on the PS/PEO ratio

    Directory of Open Access Journals (Sweden)

    Roberto Nisticò

    2016-10-01

    Full Text Available Large-mesopore silica films with a narrow pore size distribution and high porosity have been obtained by a sol–gel reaction of a silicon oxide precursor (TEOS and using polystyrene-block-poly(ethylene oxide (PS-b-PEO copolymers as templates in an acidic environment. PS-b-PEO copolymers with different molecular weight and composition have been studied in order to assess the effects of the block length on the pore size of the templated silica films. The changes in the morphology of the porous systems have been investigated by transmission electron microscopy and a systematic analysis has been carried out, evidencing the dependence between the hydrophilic/hydrophobic ratio of the two polymer blocks and the size of the final silica pores. The obtained results prove that by tuning the PS/PEO ratio, the pore size of the templated silica films can be easily and finely predicted.

  15. A combinatorial variation in surface chemistry and pore size of three-dimensional porous poly(ε-caprolactone) scaffolds modulates the behaviors of mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yingdi; Tan, Ke; Zhou, Yan; Ye, Zhaoyang, E-mail: zhaoyangye@ecust.edu.cn; Tan, Wen-Song

    2016-02-01

    Biomaterial properties play significant roles in controlling cellular behaviors. The objective of the present study was to investigate how pore size and surface chemistry of three-dimensional (3D) porous scaffolds regulate the fate of mesenchymal stem cells (MSCs) in vitro in combination. First, on poly(ε-caprolactone) (PCL) films, the hydrolytic treatment was found to stimulate the adhesion, spreading and proliferation of human MSCs (hMSCs) in comparison with pristine films, while the aminolysis showed mixed effects. Then, 3D porous PCL scaffolds with varying pore sizes (100–200 μm, 200–300 μm and 300–450 μm) were fabricated and subjected to either hydrolysis or aminolysis. It was found that a pore size of 200–300 μm with hydrolysis in 3D scaffolds was the most favorable condition for growth of hMSCs. Importantly, while a pore size of 200–300 μm with hydrolysis for 1 h supported the best osteogenic differentiation of hMSCs, the chondrogenic differentiation was greatest in scaffolds with a pore size of 300–450 μm and treated with aminolysis for 1 h. Taken together, these results suggest that surface chemistry and pore size of 3D porous scaffolds may potentially have a synergistic impact on the behaviors of MSCs. - Highlights: • Surface chemistry of poly(ε-caprolactone) films actively modulates MSC behaviors. • Varying surface chemistry and pore size in combination is enabled in 3D scaffolds. • Surface chemistry and pore size potentially dictate MSC fates in synergy.

  16. Dramatic effect of pore size reduction on the dynamics of hydrogen adsorbed in metal–organic materials

    KAUST Repository

    Nugent, Patrick

    2014-07-21

    The effects of pore size reduction on the dynamics of hydrogen sorption in metal-organic materials (MOMs) were elucidated by studying SIFSIX-2-Cu and its doubly interpenetrated polymorph SIFSIX-2-Cu-i by means of sorption, inelastic neutron scattering (INS), and computational modeling. SIFSIX-2-Cu-i exhibits much smaller pore sizes, which possess high H2 sorption affinity at low loadings. Experimental H2 sorption measurements revealed that the isosteric heat of adsorption (Qst) for H2 in SIFSIX-2-Cu-i is nearly two times higher than that for SIFSIX-2-Cu (8.6 vs. 4.6 kJ mol-1). The INS spectrum for H2 in SIFSIX-2-Cu-i is rather unique for a porous material, as only one broad peak appears at low energies near 6 meV, which simply increases in intensity with loading until the pores are filled. The value for this rotational transition is lower than that in most neutral metal-organic frameworks (MOFs), including those with open Cu sites (8-9 meV), which is indicative of a higher barrier to rotation and stronger interaction in the channels of SIFSIX-2-Cu-i than the open Cu sites in MOFs. Simulations of H2 sorption in SIFSIX-2-Cu-i revealed two hydrogen sorption sites in the MOM: direct interaction with the equatorial fluorine atom (site 1) and between two equatorial fluorine atoms on opposite walls (site 2). The calculated rotational energy levels and rotational barriers for the two sites in SIFSIX-2-Cu-i are in good agreement with INS data. Furthermore, the rotational barriers and binding energies for site 2 are slightly higher than that for site 1, which is consistent with INS results. The lowest calculated transition for the primary site in SIFSIX-2-Cu is also in good agreement with INS data. In addition, this transition in the non-interpenetrating material is higher than any of the sites in SIFSIX-2-Cu-i, which indicates a significantly weaker interaction with the host as a result of the larger pore size. This journal is © the Partner Organisations 2014.

  17. NMR studies of organic liquids confined in mesoporous materials: (1) Pore size distribution and (2) Phase behaviour and dynamic studies in restricted geometry

    Energy Technology Data Exchange (ETDEWEB)

    Foerland, Kjersti

    2005-07-01

    In the thesis NMR spectroscopy is used for studying liquids confined in various porous materials. In the first part, pore size distributions of mesoporous silicas and controlled pore glasses were determined by measuring the 1H NMR signal from the non-frozen fraction of the confined liquid as a function of temperature, using benzene, acetonitrile and HMDS as probe molecules. In the second part, the molecular dynamics of acetonitrile, hexamethyldisilane, cyclohexane and cyclopentane confined in mesoporous materials were studied as a function of temperature. 6 papers are included with titles: 1) Pore-size determination of mesoporous materials by 1H NMR spectroscopy. 2) Pore-size distribution in mesoporous materials as studied by 1H NMR. 3) Dynamic 1H and 2H NMR investigations of acetonitrile confined in porous silica. 4) NMR investigations of hexamethyldisilane confined in controlled pore glasses: Pore size distribution and molecular dynamics studies. 5) 1H and 2H NMR studies of cyclohexane nano crystals in controlled pore glasses. 6) 1H NMR relaxation and diffusion studies of cyclohexane and cyclopentane confined in MCM-41.

  18. NMR studies of organic liquids confined in mesoporous materials: (1) Pore size distribution and (2) Phase behaviour and dynamic studies in restricted geometry

    International Nuclear Information System (INIS)

    Foerland, Kjersti

    2005-01-01

    In the thesis NMR spectroscopy is used for studying liquids confined in various porous materials. In the first part, pore size distributions of mesoporous silicas and controlled pore glasses were determined by measuring the 1H NMR signal from the non-frozen fraction of the confined liquid as a function of temperature, using benzene, acetonitrile and HMDS as probe molecules. In the second part, the molecular dynamics of acetonitrile, hexamethyldisilane, cyclohexane and cyclopentane confined in mesoporous materials were studied as a function of temperature. 6 papers are included with titles: 1) Pore-size determination of mesoporous materials by 1H NMR spectroscopy. 2) Pore-size distribution in mesoporous materials as studied by 1H NMR. 3) Dynamic 1H and 2H NMR investigations of acetonitrile confined in porous silica. 4) NMR investigations of hexamethyldisilane confined in controlled pore glasses: Pore size distribution and molecular dynamics studies. 5) 1H and 2H NMR studies of cyclohexane nano crystals in controlled pore glasses. 6) 1H NMR relaxation and diffusion studies of cyclohexane and cyclopentane confined in MCM-41

  19. Topical application of a cleanser containing extracts of Diospyros kaki folium, Polygonum cuspidatum and Castanea crenata var. dulcis reduces skin oil content and pore size in human skin.

    Science.gov (United States)

    Lee, Bo Mi; An, Sungkwan; Kim, Soo-Yeon; Han, Hyun Joo; Jeong, Yu-Jin; Lee, Kyoung-Rok; Roh, Nam Kyung; Ahn, Kyu Joong; An, In-Sook; Cha, Hwa Jun

    2015-05-01

    The effects of skin pores on skin topographic features can be reduced by decreasing excessive production and accumulation of sebum and elimination of comedones. Therefore, a cosmetic cleanser that regulates sebum homeostasis is required. In the present study, the effects of a cosmetic cleanser that contained Diospyros kaki folium, Polygonum cuspidatum and Castanea crenata var. dulcis (DPC) was examined on the removal of sebum and on skin pore size. Healthy volunteers (n=23) aged 20-50 years were asked to apply the test materials to the face. Skin oil content, pore size, pore number and extracted sebum surface area were measured using various measurement methods. All the measurements were performed at pre- and post-application of the test materials. When the cosmetic cleanser containing DPC was applied to the skin, the oil content decreased by 77.3%, from 6.19 to 1.40. The number of skin pores decreased by 24.83%, from 125.39 to 94.23. Skin pore size decreased from 0.07 to 0.02 µm 3 (71.43% decrease). The amount of extracted sebum increased by 335% when the DPC cleanser was used. Compared to the control cleanser, skin oil content was significantly decreased when the cleanser that contained DPC was used. The cleanser containing DPC also decreased pore size and number. Finally, the DPC cleanser easily removed solidified sebum from the skin.

  20. Spectral Induced Polarization of Low-pH Concrete. Influence of the Electrical Double Layer and Pore Size

    Science.gov (United States)

    Leroy, P. G.; Gaboreau, S.; Zimmermann, E.; Hoerdt, A.; Claret, F.; Huisman, J. A.; Tournassat, C.

    2017-12-01

    Low-pH concretes are foreseen to be used in nuclear waste disposal. Understanding their reactivity upon the considered host-rock is a key point. Evolution of mineralogy, porosity, pore size distribution and connectivity can be monitored in situ using geophysical methods such as induced polarization (IP). This electrical method consists of injecting an alternating current and measuring the resulting voltage in the porous medium. Spectral IP (SIP) measurements in the 10 mHz to 10 kHz frequency range were carried out on low-pH concrete and cement paste first in equilibrium and then in contact with a CO2 enriched and diluted water. We observed a very high resistivity of the materials (> 10 kOhm m) and a strong phase shift between injected current and measured voltage (superior to 40 mrad and above 100 mrad for frequencies > 100 Hz). These observations were modelled by considering membrane polarization with ion exclusion in nanopores whose surface electrical properties were computed using a basic Stern model of the cement/water interface. Pore size distribution was deduced from SIP and was compared to the measured ones. In addition, we observed a decrease of the material resistivity due to the dissolution of cement in contact with external water. Our results show that SIP may be a valuable method to monitor the mineralogy and the petrophysical and transport properties of cements.

  1. Dynamic adsorption of diarrhetic shellfish poisoning (DSP) toxins in passive sampling relates to pore size distribution of aromatic adsorbent.

    Science.gov (United States)

    Li, Aifeng; Ma, Feifei; Song, Xiuli; Yu, Rencheng

    2011-03-18

    Solid-phase adsorption toxin tracking (SPATT) technology was developed as an effective passive sampling method for dissolved diarrhetic shellfish poisoning (DSP) toxins in seawater. HP20 and SP700 resins have been reported as preferred adsorption substrates for lipophilic algal toxins and are recommended for use in SPATT testing. However, information on the mechanism of passive adsorption by these polymeric resins is still limited. Described herein is a study on the adsorption of OA and DTX1 toxins extracted from Prorocentrum lima algae by HP20 and SP700 resins. The pore size distribution of the adsorbents was characterized by a nitrogen adsorption method to determine the relationship between adsorption and resin porosity. The Freundlich equation constant showed that the difference in adsorption capacity for OA and DTX1 toxins was not determined by specific surface area, but by the pore size distribution in particular, with micropores playing an especially important role. Additionally, it was found that differences in affinity between OA and DTX1 for aromatic resins were as a result of polarity discrepancies due to DTX1 having an additional methyl moiety. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  2. Concentration and temperature effect on controlling pore size and surface area of mesoporous titania by using template of F-68 and F-127 co-polymer in the sol-gel process.

    Science.gov (United States)

    Jadhav, Nitin A; Kim, Chang Woo; Pal, Umapada; Kim, Jinheung; Kang, Young Soo

    2012-07-01

    Mesoporous titania with crystalline pore walls and controlled pore sizes was fabricated through triblock copolymer (pluronic series) templated sol-gel process by changing the copolymer concentration and by adjusting their calcination temperature. Compared with mesoprous silicate, the synthetic condition of mesoporous titania would be sensitive to calcination temperature. Their pore arrangement and pore size depend strongly on the concentration of copolymer used as a template. Their arrangement of pores and specific surface area increases with the increase of calcination temperature up to critical limit, 320 degrees C. Beyond the critical temperature, the orderness of pores and specific surface area decreases due to the collapse of the pore walls. The specific surface area, pore size and pore orderness can be controlled by optimizing calcination temperature as well as polymer concentration. We demonstrate the mechanism of pore formation and their collapse in the sol-gel synthesis of mesoporous titania.

  3. Surface effects on ionic Coulomb blockade in nanometer-size pores

    Science.gov (United States)

    Tanaka, Hiroya; Iizuka, Hideo; Pershin, Yuriy V.; Di Ventra, Massimiliano

    2018-01-01

    Ionic Coulomb blockade in nanopores is a phenomenon that shares some similarities but also differences with its electronic counterpart. Here, we investigate this phenomenon extensively using all-atom molecular dynamics of ionic transport through nanopores of about one nanometer in diameter and up to several nanometers in length. Our goal is to better understand the role of atomic roughness and structure of the pore walls in the ionic Coulomb blockade. Our numerical results reveal the following general trends. First, the nanopore selectivity changes with its diameter, and the nanopore position in the membrane influences the current strength. Second, the ionic transport through the nanopore takes place in a hopping-like fashion over a set of discretized states caused by local electric fields due to membrane atoms. In some cases, this creates a slow-varying ‘crystal-like’ structure of ions inside the nanopore. Third, while at a given voltage, the resistance of the nanopore depends on its length, the slope of this dependence appears to be independent of the molarity of ions. An effective kinetic model that captures the ionic Coulomb blockade behavior observed in MD simulations is formulated.

  4. The effect of increasing the pore size of nanofibrous scaffolds on the osteogenic cell culture using a combination of sacrificial agent electrospinning and ultrasonication.

    Science.gov (United States)

    Aghajanpoor, Mahdiyeh; Hashemi-Najafabadi, Sameereh; Baghaban-Eslaminejad, Mohamadreza; Bagheri, Fatemeh; Mohammad Mousavi, Seyyed; Azam Sayyahpour, Foruogh

    2017-07-01

    One of the major problems associated with the electrospun scaffolds is their small pore size, which limits the cellular infiltration for bone tissue engineering. In this study, the effect of increasing the pore size on cellular infiltration was studied in poly/nanohydroxyapatite electrospun scaffolds, which were modified using ultrasonication, co-electrospinning with poly (ethylene oxide), and a combination of both. Ultrasonic process was optimized by central composite design. The ultrasonic output power and time of the process were considered as the effective parameters. The pore size of the scaffolds was evaluated by scanning electron microscope. The optimum conditions, according to the pore area and mechanical properties of the scaffolds were selected, and finally the groups that had the highest pore size and mechanical strength were selected for the combined method. Increasing the pore size enhanced the cellular proliferation, extension and infiltration, as well as the osteodifferentiation of stem cells. At the optimum condition, the average cellular infiltration was 36.51 µm compared to the control group with no cellular infiltration. In addition, alkaline phosphatase activity and the expression of osteocalcin and collagen I (COL I) were, respectively, 1.86, 2.54, and 2.16 fold compared to the control group on day 14. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1887-1899, 2017. © 2017 Wiley Periodicals, Inc.

  5. PS-b-PMMA/PLA blends for nanoporous templates with hierarchical and tunable pore size

    Science.gov (United States)

    Nguyen, Thi-Hoa; Vayer, Marylène; Sinturel, Christophe

    2018-01-01

    Blends of poly(styrene)-block-poly(methyl methacrylate) (PS-b-PMMA) and poly(lactide) (PLA) were deposited in the form of thin films on the surface of modified silicon wafers and exposed to tetrahydrofuran (THF) vapor annealing. It was shown that in specific experimental conditions, a core-shell morphology consisting in cylinders with a PMMA shell and a PLA core, within a continuous matrix of PS, was formed. In this case, PLA naturally segregated in the core of the PMMA cylinders, minimizing the PS/PLA interaction, which constitutes the most incompatible pair (the interaction strength between the various components was confirmed in thin films of the corresponding polymer blends). Compared to other block copolymer/homopolymer blends described in the literature, this system exhibits unexpected high increase of the characteristic lengths of the system (center-to-center distance and diameter). This was attributed to a partial solubilization of the PLA in the PMMA corona (the two polymers are highly compatible), inducing an enhanced level of PS and PLA stretching caused by the strong repulsion between these two polymers. The selective extraction of the PLA yielded to porous domains with small dimensions (6 ± 2.5 nm), reaching the performances that are currently attained in highly incompatible block polymers with low molecular weight. Further PMMA removal revealed a second porosity level, with higher pores diameter and center-to-center distance compared to the neat PS-b-PMMA system. This work highlights how PS-b-PMMA, that currently represents one of the industrial standards nanoporous template precursors, can be modified in an easy and costless approach using PLA homopolymer addition.

  6. Effective Hydraulic Conductivity for a Soil of Variable Pore Size with ...

    African Journals Online (AJOL)

    As the layer thickness increases, the values of Ke for the exponential model increases drastically, exceeding the Ke estimate of the power model. The percentage difference between the two models assumes an asymptotic form to the y-axis at a percentage difference of 5%, as the size of layer approaches zero. power model ...

  7. Refining Bimodal Microstructure of Materials with MSTRUCT

    Czech Academy of Sciences Publication Activity Database

    Matěj, Z.; Kadlecová, A.; Janeček, M.; Matějová, Lenka; Dopita, M.; Kužel, R.

    2014-01-01

    Roč. 29, S2 (2014), S35-S41 ISSN 0885-7156 R&D Projects: GA ČR GA14-23274S Grant - others:UK(CZ) UNCE 204023/2012 Institutional support: RVO:67985858 Keywords : XRD * bimodal * crystallite size Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.636, year: 2014

  8. Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery

    Science.gov (United States)

    Gao, Lin; Sun, Jihong; Li, Yuzhen

    2011-08-01

    The bimodal mesoporous silica modified with 3-aminopropyltriethoxysilane was performed as the aspirin carrier. The samples' structure, drug loading and release profiles were characterized with X-ray diffraction, scanning electron microscopy, N 2 adsorption and desorption, Fourier transform infrared spectroscopy, TG analysis, elemental analysis and UV-spectrophotometer. For further exploring the effects of the bimodal mesopores on the drug delivery behavior, the unimodal mesoporous material MCM-41 was also modified as the aspirin carrier. Meantime, Korsmeyer-Peppas equation ft= ktn was employed to analyze the dissolution data in details. It is indicated that the bimodal mesopores are beneficial for unrestricted drug molecules diffusing and therefore lead to a higher loading and faster releasing than that of MCM-41. The results show that the aspirin delivery properties are influenced considerably by the mesoporous matrix, whereas the large pore of bimodal mesoporous silica is the key point for the improved controlled-release properties.

  9. Fabrication of porous polymer microparticles with tunable pore size and density through the combination of phase separation and emulsion-solvent evaporation approach

    Science.gov (United States)

    Liu, Shanqin; Cai, Mingle; Deng, Renhua; Wang, Jianying; Liang, Ruijing; Zhu, Jintao

    2014-02-01

    A facile and versatile route to prepare porous polymer microparticles with tunable pore size and density through the combination of phase separation and emulsion-solvent evaporation method is demonstrated. When volatile organic solvent ( e.g., chloroform) diffuses through the aqueous phase containing poly(vinyl alcohol) (PVA) and evaporates, n-hexadecane (HD) and polystyrene (PS) in oil-in-water emulsion droplets occur to phase separate due to the incompatibility between PS and HD, ultimately yielding microparticles with porous structures. Interestingly, density of the pores (pore number) on the shell of microparticles can be tailored from one to hundreds by simply varying the HD concentration and/ or the rate of solvent evaporation. Moreover, this versatile approach for preparing porous microparticles with tunable pore size and density can be applied to other types of hydrophobic polymers, organic solvents, and alkanes, which will find potential applications in the fields of pharmaceutical, catalyst carrier, separation, and diagnostics.

  10. Porous glass membranes for vanadium redox-flow battery application - Effect of pore size on the performance

    Science.gov (United States)

    Mögelin, H.; Yao, G.; Zhong, H.; dos Santos, A. R.; Barascu, A.; Meyer, R.; Krenkel, S.; Wassersleben, S.; Hickmann, T.; Enke, D.; Turek, T.; Kunz, U.

    2018-02-01

    The improvement of redox-flow batteries requires the development of chemically stable and highly conductive separators. Porous glass membranes can be an attractive alternative to the nowadays most common polymeric membranes. Flat porous glass membranes with a pore size in the range from 2 to 50 nm and a thickness of 300 and 500 μm have been used for that purpose. Maximum values for voltage efficiency of 85.1%, coulombic efficiency of 97.9% and energy efficiency of 76.3% at current densities in the range from 20 to 60 mA cm-2 have been achieved. Furthermore, a maximum power density of 95.2 mW cm-2 at a current density of 140 mA cm-2 was gained. These results can be related to small vanadium crossover, high conductivity and chemical stability, confirming the great potential of porous glass membranes for vanadium redox-flow applications.

  11. Effects of pore size, implantation time, and nano-surface properties on rat skin ingrowth into percutaneous porous titanium implants.

    Science.gov (United States)

    Farrell, Brad J; Prilutsky, Boris I; Ritter, Jana M; Kelley, Sean; Popat, Ketul; Pitkin, Mark

    2014-05-01

    The main problem of percutaneous osseointegrated implants is poor skin-implant integration, which may cause infection. This study investigated the effects of pore size (Small, 40-100 μm and Large, 100-160 μm), nanotubular surface treatment (Nano), and duration of implantation (3 and 6 weeks) on skin ingrowth into porous titanium. Each implant type was percutaneously inserted in the back of 35 rats randomly assigned to seven groups. Implant extrusion rate was measured weekly and skin ingrowth into implants was determined histologically after harvesting implants. It was found that all three types of implants demonstrated skin tissue ingrowth of over 30% (at week 3) and 50% (at weeks 4-6) of total implant porous area under the skin; longer implantation resulted in greater skin ingrowth (p skin integration with the potential for a safe seal. Copyright © 2013 Wiley Periodicals, Inc.

  12. Topical application of a cleanser containing extracts of Diospyros kaki folium, Polygonum cuspidatum and Castanea crenata var. dulcis reduces skin oil content and pore size in human skin

    OpenAIRE

    LEE, BO MI; AN, SUNGKWAN; KIM, SOO-YEON; HAN, HYUN JOO; JEONG, YU-JIN; LEE, KYOUNG-ROK; ROH, NAM KYUNG; AHN, KYU JOONG; AN, IN-SOOK; CHA, HWA JUN

    2015-01-01

    The effects of skin pores on skin topographic features can be reduced by decreasing excessive production and accumulation of sebum and elimination of comedones. Therefore, a cosmetic cleanser that regulates sebum homeostasis is required. In the present study, the effects of a cosmetic cleanser that contained Diospyros kaki folium, Polygonum cuspidatum and Castanea crenata var. dulcis (DPC) was examined on the removal of sebum and on skin pore size. Healthy volunteers (n=23) aged 20–50 years w...

  13. Bimodal immune activation in psoriasis.

    Science.gov (United States)

    Christophers, E; Metzler, G; Röcken, M

    2014-01-01

    Psoriasis is an immune-regulated skin disease with various clinical subtypes and disease activities. The majority of patients present with predominantly stable plaques. At the onset of new lesions, plaque-type psoriasis frequently demonstrates pin-sized and highly inflammatory papules sometimes with an inflammatory border. The histopathology of initial psoriasis differs from stable plaque-type psoriasis. Early lesions demonstrate innate immune cells with neutrophils, degranulating mast cells and macrophages. These are followed by interleukin (IL)-1-dependent T helper (Th)17 cells, finally resulting in the Th1-dominated immunopathology of stable plaque-type psoriasis, where mononuclear cells predominate with interspersed neutrophilic (Munro) microabscesses. These features suggest a bimodal immune pathway where alternate activation of either innate (autoinflammatory) or adaptive (autoimmune) immunity predominates. Neutrophilic infiltrations appear during early psoriasis with Munro abscesses. They are time limited and occur periodically, clinically best seen in linear nail pitting. These features strongly suggest a critical role for an IL-1-Th17-dominated autoinflammation in the initiation of psoriasis, followed by a Th1-dominated late-phase reaction. The concept of bimodal immune activation helps to explain results from therapeutic interventions that are variable and previously only partly understood. © 2013 British Association of Dermatologists.

  14. The use of nylon and glass fiber filter separators with different pore sizes in air-cathode single-chamber microbial fuel cells

    KAUST Repository

    Zhang, Xiaoyuan

    2010-01-01

    Separators are needed in microbial fuel cells (MFCs) to reduce electrode spacing and preventing electrode short circuiting. The use of nylon and glass fiber filter separators in single-chamber, air-cathode MFCs was examined for their effect on performance. Larger pore nylon mesh were used that had regular mesh weaves with pores ranging from 10 to 160 μm, while smaller pore-size nylon filters (0.2-0.45 μm) and glass fiber filters (0.7-2.0 μm) had a more random structure. The pore size of both types of nylon filters had a direct and predictable effect on power production, with power increasing from 443 ± 27 to 650 ± 7 mW m-2 for pore sizes of 0.2 and 0.45 μm, and from 769 ± 65 to 941 ± 47 mW m-2 for 10 to 160 μm. In contrast, changes in pore sizes of the glass fiber filters resulted in a relatively narrow change in power (732 ± 48 to 779 ± 43 mW m-2) for pore sizes of 0.7 to 2 μm. An ideal separator should increase both power density and Coulombic efficiency (CE). However, CEs measured for the different separators were inversely correlated with power production, demonstrating that materials which reduced the oxygen diffusion into the reactor also hindered proton transport to the cathode, reducing power production through increased internal resistance. Our results highlight the need to develop separators that control oxygen transfer and facilitate proton transfer to the cathode. © 2010 The Royal Society of Chemistry.

  15. Microscopic determination of the PuO2 grain size and pore size distribution of MOX pellets with an image analysis system

    International Nuclear Information System (INIS)

    Vandezande, J.

    2000-01-01

    The industrial way to obtain the Pu distribution in a MOX pellet is by Image Analysis. The PuO 2 grains are made visible by alpha-autoradiography. Along with the Pu distribution the pore structure is an item which is examined, the latter is determined on the unetched sample. After the visualization of the sample structure, the sample is evaluated with an Image Analysis System. Each image is enhanced and a distinction is made between the objects to be measured and the matrix. The relevant parameters are then analyzed. When the overall particle distribution is wanted, all identified particles are measured and classified in size groups, based on a logarithmic scale. The possible conversion of two-dimensional diameters to three-dimensional diameters is accomplished by application of the Saltykov algorithm. When a single object is of interest, the object is selected interactively, and the result is reported to the user. (author)

  16. The pore size distribution and its relationship with shale gas capacity in organic-rich mudstone of Wufeng-Longmaxi Formations, Sichuan Basin, China

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2016-06-01

    Full Text Available The pore size distribution for the 23 fresh outcrop shale samples collected from Shuanghe Town and Changning County, as well as the 14 core samples collected from the Qianqian 1 core well in southeast Chongqing, Sichuan Basin were investigated by means of low-pressure nitrogen adsorption. The main factors controlling pore development and gas accumulation in shales were discussed by integrating total organic carbon (TOC, mineralogy, and shale gas content. The results showed that open, slit-like, and parallel plate structure are major pore types that posses an average pore diameter of 3.76–8.53 nm; chiefly 2–30 nm for mesopores. The BET surface area and total pore volume are high in the Wufeng Formation and in the lower part of the Longmaxi Formation, and it's a bit lower in the upper part of the Longmaxi Formation. Consistent with the trends of TOC, that organic matter is the key controlling factor in the shale pore development. In addition, samples with higher content of clay minerals, but comparative TOC content have a larger specific surface area where clay mineral hosted pores are present. The Wufeng Formation and lower part of the Longmaxi Formation in the Sichuan Basin are preferred layers of shale reservoir fracturing due to high TOC, high rock brittleness, and high gas content.

  17. Mesoporous Silica Gel–Based Mixed Matrix Membranes for Improving Mass Transfer in Forward Osmosis: Effect of Pore Size of Filler

    Science.gov (United States)

    Lee, Jian-Yuan; Wang, Yining; Tang, Chuyang Y.; Huo, Fengwei

    2015-01-01

    The efficiency of forward osmosis (FO) process is generally limited by the internal concentration polarization (ICP) of solutes inside its porous substrate. In this study, mesoporous silica gel (SG) with nominal pore size ranging from 4–30 nm was used as fillers to prepare SG-based mixed matrix substrates. The resulting mixed matrix membranes had significantly reduced structural parameter and enhanced membrane water permeability as a result of the improved surface porosity of the substrates. An optimal filler pore size of ~9 nm was observed. This is in direct contrast to the case of thin film nanocomposite membranes, where microporous nanoparticle fillers are loaded to the membrane rejection layer and are designed in such a way that these fillers are able to retain solutes while allowing water to permeate through them. In the current study, the mesoporous fillers are designed as channels to both water and solute molecules. FO performance was enhanced at increasing filler pore size up to 9 nm due to the lower hydraulic resistance of the fillers. Nevertheless, further increasing filler pore size to 30 nm was accompanied with reduced FO efficiency, which can be attributed to the intrusion of polymer dope into the filler pores. PMID:26592565

  18. A novel layer-structured scaffold with large pore sizes suitable for 3D cell culture prepared by near-field electrospinning.

    Science.gov (United States)

    He, Feng-Li; Li, Da-Wei; He, Jin; Liu, Yang-Yang; Ahmad, Fiaz; Liu, Ya-Li; Deng, Xudong; Ye, Ya-Jing; Yin, Da-Chuan

    2018-05-01

    Electrospinning is a powerful method for preparing porous materials that can be applied as biomedical materials for implantation or tissue engineering or as scaffolds for 3D cell culture experiments. However, this technique is limited in practical applications because the pore size of 3D scaffolds directly prepared by conventional electrospinning is usually less than several tens of micrometres, which may not be suitable for 3D cell culture and tissue growth. To allow for satisfactory 3D cell culture and tissue engineering, the pore size of the scaffold should be controllable according to the requirement of the specific cells to be cultured. Here, we show that layer-structured scaffolds with pore sizes larger than 100μm can be obtained by stacking meshes prepared by direct-writing using the near-field electrospinning (NFES) technique. In the study, we prepared composite scaffolds made of polycaprolactone (PCL) and hydroxyapatite (HAp) via the above-mentioned method and tested the effectiveness of the novel scaffold in cell culture using mouse pre-osteoblast cells (MC3T3-E1). The pore size and the degradability of the PCL/HAp scaffolds were characterized. The results showed that the average pore size of the scaffolds was 167μm, which was controllable based on the required application; the degradation rate was controllable depending on the ratio of PCL to HAp. The biocompatibility of the scaffolds in vitro was studied, and it was found that the scaffolds showed no toxicity and that the cells could effectively attach, proliferate, and differentiate in the 3D skeleton of the scaffolds. Our studies showed that a simple modification of the preparation procedure can lead to a new way to fabricate novel layer-structured 3D scaffolds with controllable structures and pore sizes suitable for practical applications in implantation, tissue engineering and 3D cell culture. Copyright © 2017. Published by Elsevier B.V.

  19. Magnetic properties of Fe{sub 20} Ni{sub 80} antidots: Pore size and array disorder

    Energy Technology Data Exchange (ETDEWEB)

    Palma, J.L., E-mail: juan.palma.s@usach.cl [Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Gallardo, C. [Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Spinu, L.; Vargas, J.M. [Advanced Material Research Institute (AMRI) and Department of Physics, University of New Orleans, New Orleans, LA 70148 (United States); Dorneles, L.S. [Departamento de Fisica, Universidade Federal de Santa Maria UFSM, Av. Roraima 1000, Camobi, Santa Maria, RS 97105-900 (Brazil); Denardin, J.C.; Escrig, J. [Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avda. Ecuador 3493, 917-0124 Santiago (Chile)

    2013-10-15

    Magnetic properties of nanoscale Fe{sub 20}Ni{sub 80} antidot arrays with different hole sizes prepared on top of nanoporous alumina membranes have been studied by means of magnetometry and micromagnetic simulations. The results show a significant increase of the coercivity as well as a reduction of the remanence of the antidot arrays, as compared with their parent continuous film, which depends on the hole size introduced in the Fe{sub 20}Ni{sub 80} thin film. When the external field is applied parallel to the antidots, the reversal of magnetization is achieved by free-core vortex propagation, whereas when the external field is applied perpendicular to the antidots, the reversal occurs through a process other than the coherent rotation (a maze-like pattern). Besides, in-plane hysteresis loops varying the angle show that the degree of disorder in the sample breaks the expected hexagonal symmetry. - Highlights: • Magnetic properties are strongly influenced by the pore diameter of the samples. • Coercive fields for antidots are higher than the values for the continuous film. • Disorder breaks the hexagonal symmetry of the sample. • Each hole acts as a vortex nucleation point. • Antidots have unique properties that allow them to be used in applications.

  20. Corredor Bimodal Cafetero

    OpenAIRE

    Duque Escobar, Gonzalo

    2015-01-01

    El Corredor Bimodal Cafetero es un proyecto de infraestructura estratégica que articula la Hidrovía del Magdalena con el Corredor Férreo del río Cauca, inscrito en el Plan Nacional de Desarrollo 2014/2018 y financiable con la salida de 30 mil toneladas diarias de carbón andino a la cuenca del Pacífico. Incluye el Túnel Cumanday para cruzar la Cordillera Central, el Ferrocarril Cafetero de 150 km y 3% de pendiente entre La Dorada y el Km 41, y la Transversal Cafetera de 108 km para una vía de...

  1. Three-Year Results of a Single-Centre Single-Blinded Randomised Study Evaluating the Impact of Mesh Pore Size on Chronic Pain after Lichtenstein Hernioplasty.

    Science.gov (United States)

    Nikkolo, C; Vaasna, T; Murruste, M; Seepter, H; Kirsimägi, Ü; Lepner, U

    2016-09-01

    The aim of the present study was to determine whether usage of mesh with larger pores, compared with mesh with smaller pores, would result in a decreased rate of chronic pain at 3-year follow-up. According to earlier published short-term results, differences in mesh pore size do not influence the rate of chronic pain. The patients were randomized into two study groups for which meshes with similar weight but different pore size were used: the UM group received Ultrapro mesh (pore size 3-4 mm) and the OM group received Optilene LP mesh (pore size 1 mm). Pain scores were measured on a visual analog scale. The feeling of a foreign body was a yes-or-no question. A total of 65 patients in the UM group and 63 patients in the OM group were included in analysis. Of the patients, 33.9% in the UM group and 15.9% in the OM group reported having experienced pain during different activities at 3-year follow-up (P = 0.025). Comparison with the results of 6-month follow-up (46.3% in the UM group, 34.3% in the OM group) showed that the rate of chronic pain had decreased significantly in the OM group (P = 0.009) but not in the UM group (P = 0.113). The feeling of a foreign body in the inguinal region was experienced by 23.1% of the patients in the UM group and by 15.9% in the OM group (P = 0.375). There was one hernia recurrence in the OM group. Severe preoperative pain and younger age were identified as risk factors for development of chronic pain. Mesh with larger pores, compared with mesh with smaller pores, has no advantages in reducing the rate of chronic pain. We speculate that the reason for the higher rate of chronic pain in the study group where the mesh with larger pores was used might have been the different composition of the meshes at implantation. Also, it is possible as development of chronic pain after inguinal hernia repair is multifactorial, we failed to find a plausible explanation for this difference. Low recurrence rates were achieved with

  2. The effects of charge, polymerization, and cluster size on the diffusivity of dissolved Si species in pore water

    Science.gov (United States)

    Yokoyama, Tadashi; Sakuma, Hiroshi

    2018-03-01

    Silicon (Si) is the most abundant cation in crustal rocks. The charge and degree of polymerization of dissolved Si significantly change depending on solution pH and Si concentration. We used molecular dynamics (MD) simulations to predict the self-diffusion coefficients of dissolved Si, DSi, for 15 monomeric and polymeric species at ambient temperature. The results showed that DSi decreased with increasing negative charge and increasing degree of polymerization. The relationship between DSi and charge (Z) can be expressed by DSi/10-6 = 2.0 + 9.8e0.47Z, and that between DSi and number of polymerization (NSi) by DSi/10-6 = 9.7/NSi0.56. The results also revealed that multiple Si molecules assembled into a cluster and D decreased as the cluster size increased. Experiments to evaluate the diffusivity of Si in pore water revealed that the diffusion coefficient decreased with increasing Si concentration, a result consistent with the MD simulations. Simulation results can now be used to quantitatively assess water-rock interactions and water-concrete reactions over a wide range of environmentally relevant conditions.

  3. Impact of the capillary pressure-saturation pore-size distribution parameter on geological carbon sequestration estimates

    Directory of Open Access Journals (Sweden)

    Chu-Lin Cheng

    2017-01-01

    Full Text Available Cost estimates for geologic carbon sequestration (GCS are vital for policy and decision makers evaluating carbon capture and storage strategies. Numerical models are often used in feasibility studies for the different stages of carbon injection and redistribution. Knowledge of the capillary pressure-saturation function for a selected storage rock unit is essential in applications used for simulating multiphase fluid flow and transport. However, the parameters describing these functions (e.g. the van Genuchten m pore size distribution parameter are often not measured or neglected compared to other physical properties such as porosity and intrinsic permeability. In addition, the use of average instead of point estimates of m for numerical simulations of flow and transport can result in significant errors, especially in the case of coarse-grained sediments and fractured rocks. Such erroneous predictions can pose great risks and challenges to decision-making. We present a comparison of numerical simulation results based on average and point estimates of the van Genuchten m parameter for different porous media. Forward numerical simulations using the STOMP code were employed to illustrate the magnitudes of the differences in carbon sequestration predictions resulting from the use of height-averaged instead of point parameters. The model predictions were converted into cost estimates and the results indicate that varying m values in GCS modeling can cause cost differences of up to hundreds of millions dollars.

  4. Relationship between Pore-size Distribution and Flexibility of Adsorbent Materials: Statistical Mechanics and Future Material Characterization Techniques.

    Science.gov (United States)

    Siderius, Daniel W; Mahynski, Nathan A; Shen, Vincent K

    2017-05-01

    Measurement of the pore-size distribution (PSD) via gas adsorption and the so-called "kernel method" is a widely used characterization technique for rigid adsorbents. Yet, standard techniques and analytical equipment are not appropriate to characterize the emerging class of flexible adsorbents that deform in response to the stress imparted by an adsorbate gas, as the PSD is a characteristic of the material that varies with the gas pressure and any other external stresses. Here, we derive the PSD for a flexible adsorbent using statistical mechanics in the osmotic ensemble to draw analogy to the kernel method for rigid materials. The resultant PSD is a function of the ensemble constraints including all imposed stresses and, most importantly, the deformation free energy of the adsorbent material. Consequently, a pressure-dependent PSD is a descriptor of the deformation characteristics of an adsorbent and may be the basis of future material characterization techniques. We discuss how, given a technique for resolving pressure-dependent PSDs, the present statistical mechanical theory could enable a new generation of analytical tools that measure and characterize certain intrinsic material properties of flexible adsorbents via otherwise simple adsorption experiments.

  5. Cationic osteogenic peptide P15-CSP coatings promote 3-D osteogenesis in poly(epsilon-caprolactone) scaffolds of distinct pore size.

    Science.gov (United States)

    Li, Xian; Ghavidel Mehr, Nima; Guzmán-Morales, Jessica; Favis, Basil D; De Crescenzo, Gregory; Yakandawala, Nandadeva; Hoemann, Caroline D

    2017-08-01

    P15-CSP is a biomimetic cationic fusion peptide that stimulates osteogenesis and inhibits bacterial biofilm formation when coated on 2-D surfaces. This study tested the hypothesis that P15-CSP coatings enhance 3-D osteogenesis in a porous but otherwise hydrophobic poly-(ɛ-caprolactone) (PCL) scaffold. Scaffolds of 84 µm and 141 µm average pore size were coated or not with Layer-by-Layer polyelectrolytes followed by P15-CSP, seeded with adult primary human mesenchymal stem cells (MSCs), and cultured 10 days in proliferation medium, then 21 days in osteogenic medium. Atomic analyses showed that P15-CSP was successfully captured by LbL. After 2 days of culture, MSCs adhered and spread more on P15-CSP coated pores than PCL-only. At day 10, all constructs contained nonmineralized tissue. At day 31, all constructs became enveloped in a "skin" of tissue that, like 2-D cultures, underwent sporadic mineralization in areas of high cell density that extended into some 141 µm edge pores. By quantitative histomorphometry, 2.5-fold more tissue and biomineral accumulated in edge pores versus inner pores. P15-CSP specifically promoted tissue-scaffold integration, fourfold higher overall biomineralization, and more mineral deposits in the outer 84 µm and inner 141 µm pores than PCL-only (p pore surfaces with 3-D topography. Biomineralization deeper than 150 µm from the scaffold edge was optimally attained with the larger 141 µm peptide-coated pores. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2171-2181, 2017. © 2017 Wiley Periodicals, Inc.

  6. Passage of Campylobacter jejuni and C. coli subtypes through 0.45 and 0.65 µm pore size nitro-cellulose filters

    Science.gov (United States)

    Campylobacter can be difficult to recover from complex samples due to overgrowth by background bacteria. A 0.45 or 0.65 µm pore size filter overlaid on agar plates can be used as a means to separate Campylobacter from confounding non-Campylobacter cells, facilitating detection on solid plating medi...

  7. Cryo-FIB-SEM and MIP study of porosity and pore size distribution of bentonite and kaolin at different moisture contents

    NARCIS (Netherlands)

    Lubelli, B.; Winter, D.A.M. de; Post, J.A.; Hees, R.P.J. van; Drury, M.R.

    2013-01-01

    Clays often constitute the main component of poultices used for salt extraction from porous materials in conservation intervention. Knowledge of the evolution in porosity and pore size of clay based poultices, due to shrinkage during drying, is of crucial importance for the selection of the most

  8. Nonparametric pore size distribution using d-PFG: Comparison to s-PFG and migration to MRI

    Science.gov (United States)

    Benjamini, Dan; Komlosh, Michal E.; Basser, Peter J.; Nevo, Uri

    2014-09-01

    Here we present the successful translation of a pore size distribution (PSD) estimation method from NMR to MRI. This approach is validated using a well-characterized MRI phantom consisting of stacked glass capillary arrays (GCA) having different diameters. By employing a double pulsed-field gradient (d-PFG) MRI sequence, this method overcomes several important theoretical and experimental limitations of previous single-PFG (s-PFG) based MRI methods by allowing the relative diffusion gradients’ direction to vary. This feature adds an essential second dimension in the parameters space, which can potentially improve the reliability and stability of the PSD estimation. To infer PSDs from the MRI data in each voxel an inverse linear problem is solved in conjunction with the multiple correlation function (MCF) framework, which can account for arbitrary experimental parameters (e.g., long diffusion pulses). This scheme makes no a priori assumptions about the functional form of the underlying PSD. Creative use of region of interest (ROI) analysis allows us to create different underlying PSDs using the same GCA MRI phantom. We show that an s-PFG experiment on the GCA phantom fails to accurately reconstruct the size distribution, thus demonstrating the superiority of the d-PFG experiment. In addition, signal simulations corrupted by different noise levels were used to generate continuous and complex PSDs, which were then successfully reconstructed. Finally, owing to the reduced q- or b- values required to measure microscopic PSDs via d-PFG MRI, this method will be better suited to biomedical and clinical applications, in which gradient strength of scanners is limited.

  9. Gas Release Behavior of Cu-TiH2 Composite Powder and Its Application as a Blowing Agent to Fabricate Aluminum Foams with Low Porosity and Small Pore Size

    Science.gov (United States)

    Cheng, Ying; Li, Yanxiang; Chen, Xiang; Liu, Zhiyong; Zhou, Xu; Wang, Ningzhen

    2018-03-01

    Compared to traditional pore structure with high porosity (≥ 80 pct) and large pore size (≥ 3 mm), aluminum foams with low porosity (60 to 70 pct) and small pore size (≤ 2 mm) possess higher compressive property and formability. In order to achieve the goal of reducing pore size, Cu-TiH2 composite powder prepared by ball milling preoxidized TiH2 with Cu powder was used as a blowing agent. Its gas release behavior was characterized by thermogravimetric analysis and differential scanning calorimetry. The results show that the ball milling treatment can advance the gas release process and slow the gas release rate at the same time. All these changes are favorable to the reduction of porosity and pore size. Such Cu-TiH2 composite powder provides an alternative way to fabricate aluminum foams with low porosity and small pore size.

  10. Combined Effects of Surface Charge and Pore Size on Co-enhanced Permeability and Ion Selectivity through RGO-OCNT Nanofiltration Membranes.

    Science.gov (United States)

    Zhang, Haiguang; Quan, Xie; Chen, Shuo; Fan, Xinfei; Wei, Gaoliang; Yu, Hongtao

    2018-04-04

    Nanofiltration (NF) has received much attention for wastewater treatment and desalination. However, NF membranes generally suffer from the trade-off between permeability and selectivity. In this work, the co-enhancement of permeability and ion selectivity was achieved through tuning the surface charge and pore size of oxidized carbon nanotube (OCNT) intercalated reduced graphene oxide (RGO) membranes. With the increase of OCNT content from 0 to 83%, the surface charge and the pore size are increased. The permeability increased to 10.6 L m-2 h-1 bar-1 and rejection rate reached 78.1% for Na2SO4 filtration at a transmembrane pressure of 2 bar, which were 11.8 and 1.3 times higher than those of pristine RGO membrane. The composite membrane also showed 11.1 times higher permeability (11.1 L m-2 h-1 bar-1) and 2.9 times higher rejection rate (35.3%) for NaCl filtration. The analyses based on Donnan steric pore model suggest that the increased permeability is attributed to the combined effects of enlarged pore size and increased surface charge, while the enhanced ion selectivity is mainly dependent on the electrostatic interaction between the membrane and target ions. This finding provides a new insight for the development of high-performance NF membranes in water treatment and desalination.

  11. Nitrogen-doped porous “green carbon” derived from shrimp shell: Combined effects of pore sizes and nitrogen doping on the performance of lithium sulfur battery

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jiangying, E-mail: qujy@lnnu.edu.cn [Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029 (China); Carbon Research Laboratory, Center for Nano Materials and Science, School of Chemical Engineering, State Key Lab of Fine Chemicals, Dalian University of Technology, Dalian, 116024 (China); Lv, Siyuan; Peng, Xiyue; Tian, Shuo; Wang, Jia [Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029 (China); Gao, Feng, E-mail: fenggao2003@163.com [Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029 (China); Carbon Research Laboratory, Center for Nano Materials and Science, School of Chemical Engineering, State Key Lab of Fine Chemicals, Dalian University of Technology, Dalian, 116024 (China)

    2016-06-25

    Nitrogen-rich porous “green carbons” derived from abundant shrimp shell shows good performance for Li–S batteries. The strategy in this work is highlighted to selective removal of intrinsic CaCO{sub 3} in shrimp shell followed by KOH activation to tune the pore sizes of the obtained carbons. On the basis of the different porous structures, the discharge capacity of the obtained carbons as Li–S cathodes follows the order of micro-mesoporous carbon>mesoporous carbon>microporous carbon. The high capacity of the micro-mesoporous carbon is attributed to its positive characters such as the coexistence of micro-mesoporous structure, the large pore volume and the high specific surface area. Furthermore, well-dispersed nitrogen in the porous carbons is naturally doped and inherited from shrimp shell, and can help to enhance cycle stability when used as cathodes. As a result, all carbon cathodes exhibit the good cycle stability (>78%) due to their nitrogen doping induced chemical adsorption of sulfur on the surface areas of the porous carbons. Among them, mesoporous carbon cathode shows the best cycle stability with 90% retention within 100 cycles, which is mainly attributed to the synergistic effects of its both large pore size (5.12 nm) and high nitrogen content (6.67 wt %). - Highlights: • Nitrogen-rich porous “green carbons” derived from abundant shrimp shell shows good performance for Li–S batteries. • Intrinsic CaCO{sub 3} in shrimp shell as the natural template plays an important role on tailoring of the pore sizes of the porous carbons. • Nitrogen containing polysaccharide in shrimp shell benefits to produce nitrogen-rich carbons. • The effects of pore sizes on the electrochemical performance are investigated in detail. • The carbon-sulfur cathodes exhibit the good cycle stability because of nitrogen doping induced chemical adsorption of sulfur.

  12. Dynamical and statistical bimodality in nuclear fragmentation

    Science.gov (United States)

    Mallik, S.; Chaudhuri, G.; Gulminelli, F.

    2018-02-01

    The origin of bimodal behavior in the residue distribution experimentally measured in heavy ion reactions is reexamined using Boltzmann-Uehling-Uhlenbeck simulations. We suggest that, depending on the incident energy and impact parameter of the reaction, both entrance channel and exit channel effects can be at the origin of the observed behavior. Specifically, fluctuations in the reaction mechanism induced by fluctuations in the collision rate, as well as thermal bimodality directly linked to the nuclear liquid-gas phase transition, are observed in our simulations. Both phenomenologies were previously proposed in the literature but presented as incompatible and contradictory interpretations of the experimental measurements. These results indicate that heavy ion collisions at intermediate energies can be viewed as a powerful tool to study both bifurcations induced by out-of-equilibrium critical phenomena, as well as finite-size precursors of thermal phase transitions.

  13. Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery

    International Nuclear Information System (INIS)

    Gao Lin; Sun Jihong; Li Yuzhen

    2011-01-01

    The bimodal mesoporous silica modified with 3-aminopropyltriethoxysilane was performed as the aspirin carrier. The samples' structure, drug loading and release profiles were characterized with X-ray diffraction, scanning electron microscopy, N 2 adsorption and desorption, Fourier transform infrared spectroscopy, TG analysis, elemental analysis and UV-spectrophotometer. For further exploring the effects of the bimodal mesopores on the drug delivery behavior, the unimodal mesoporous material MCM-41 was also modified as the aspirin carrier. Meantime, Korsmeyer-Peppas equation f t =kt n was employed to analyze the dissolution data in details. It is indicated that the bimodal mesopores are beneficial for unrestricted drug molecules diffusing and therefore lead to a higher loading and faster releasing than that of MCM-41. The results show that the aspirin delivery properties are influenced considerably by the mesoporous matrix, whereas the large pore of bimodal mesoporous silica is the key point for the improved controlled-release properties. - Graphical abstract: Loading (A) and release profiles (B) of aspirin in N-BMMs and N-MCM-41 indicated that BMMs have more drug loading capacity and faster release rate than that MCM-41. Highlights: → Bimodal mesoporous silicas (BMMs) and MCM-41 modified with amino group via post-treatment procedure. → Loading and release profiles of aspirin in modified BMMs and MCM-41. → Modified BMMs have more drug loading capacity and faster release rate than that modified MCM-41.

  14. The Pore Size Distribution of Naturally Porous Cigarette Paper and its Relation to Permeability and Diffusion Capacity

    Directory of Open Access Journals (Sweden)

    Eitzinger Bernhard

    2015-09-01

    Full Text Available La distribution de la taille des pores détermine la perméabilité d’air et la capacité de diffusion d’un papier à cigarettes, et par conséquent elle a une influence signifiante sur les échanges gazeux à travers le papier à cigarettes, non seulement d’une cigarette allumée, mais aussi d’une cigarette qui s’éteint. Pour le dessin des cigarettes, et notamment des papiers à cigarettes, il faut comprendre comment la distribution de la taille des pores du papier à cigarettes est influencée par la structure et les qualités du papier, ainsi que comment la distribution de la taille des pores influence la perméabilité d’air et la capacité de diffusion.

  15. Saturated hydraulic conductivity model computed from bimodal water retention curves for a range of New Zealand soils

    Science.gov (United States)

    Pollacco, Joseph Alexander Paul; Webb, Trevor; McNeill, Stephen; Hu, Wei; Carrick, Sam; Hewitt, Allan; Lilburne, Linda

    2017-06-01

    Descriptions of soil hydraulic properties, such as the soil moisture retention curve, θ(h), and saturated hydraulic conductivities, Ks, are a prerequisite for hydrological models. Since the measurement of Ks is expensive, it is frequently derived from statistical pedotransfer functions (PTFs). Because it is usually more difficult to describe Ks than θ(h) from pedotransfer functions, Pollacco et al. (2013) developed a physical unimodal model to compute Ks solely from hydraulic parameters derived from the Kosugi θ(h). This unimodal Ks model, which is based on a unimodal Kosugi soil pore-size distribution, was developed by combining the approach of Hagen-Poiseuille with Darcy's law and by introducing three tortuosity parameters. We report here on (1) the suitability of the Pollacco unimodal Ks model to predict Ks for a range of New Zealand soils from the New Zealand soil database (S-map) and (2) further adaptations to this model to adapt it to dual-porosity structured soils by computing the soil water flux through a continuous function of an improved bimodal pore-size distribution. The improved bimodal Ks model was tested with a New Zealand data set derived from historical measurements of Ks and θ(h) for a range of soils derived from sandstone and siltstone. The Ks data were collected using a small core size of 10 cm diameter, causing large uncertainty in replicate measurements. Predictions of Ks were further improved by distinguishing topsoils from subsoil. Nevertheless, as expected, stratifying the data with soil texture only slightly improved the predictions of the physical Ks models because the Ks model is based on pore-size distribution and the calibrated parameters were obtained within the physically feasible range. The improvements made to the unimodal Ks model by using the new bimodal Ks model are modest when compared to the unimodal model, which is explained by the poor accuracy of measured total porosity. Nevertheless, the new bimodal model provides an

  16. Saturated hydraulic conductivity model computed from bimodal water retention curves for a range of New Zealand soils

    Directory of Open Access Journals (Sweden)

    J. A. P. Pollacco

    2017-06-01

    Full Text Available Descriptions of soil hydraulic properties, such as the soil moisture retention curve, θ(h, and saturated hydraulic conductivities, Ks, are a prerequisite for hydrological models. Since the measurement of Ks is expensive, it is frequently derived from statistical pedotransfer functions (PTFs. Because it is usually more difficult to describe Ks than θ(h from pedotransfer functions, Pollacco et al. (2013 developed a physical unimodal model to compute Ks solely from hydraulic parameters derived from the Kosugi θ(h. This unimodal Ks model, which is based on a unimodal Kosugi soil pore-size distribution, was developed by combining the approach of Hagen–Poiseuille with Darcy's law and by introducing three tortuosity parameters. We report here on (1 the suitability of the Pollacco unimodal Ks model to predict Ks for a range of New Zealand soils from the New Zealand soil database (S-map and (2 further adaptations to this model to adapt it to dual-porosity structured soils by computing the soil water flux through a continuous function of an improved bimodal pore-size distribution. The improved bimodal Ks model was tested with a New Zealand data set derived from historical measurements of Ks and θ(h for a range of soils derived from sandstone and siltstone. The Ks data were collected using a small core size of 10 cm diameter, causing large uncertainty in replicate measurements. Predictions of Ks were further improved by distinguishing topsoils from subsoil. Nevertheless, as expected, stratifying the data with soil texture only slightly improved the predictions of the physical Ks models because the Ks model is based on pore-size distribution and the calibrated parameters were obtained within the physically feasible range. The improvements made to the unimodal Ks model by using the new bimodal Ks model are modest when compared to the unimodal model, which is explained by the poor accuracy of measured total porosity. Nevertheless, the new bimodal

  17. Impact of matric potential and pore size distribution on growth dynamics of filamentous and non-filamentous soil bacteria

    NARCIS (Netherlands)

    Wolf, A.B.; Vos, M.; De Boer, W.; Kowalchuk, G.A.

    2013-01-01

    The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal growth form of fungi. However, it is unknown if, and to

  18. Impact of Matric Potential and Pore Size Distribution on Growth Dynamics of Filamentous and Non-Filamentous Soil Bacteria

    NARCIS (Netherlands)

    Wolf, A.B.; Vos, de M.; Boer, de W.; Kowalchuk, G.A.

    2013-01-01

    The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal growth form of fungi. However, it is unknown if, and to

  19. Performance Comparisons of Nanoaluminum, Coated Microaluminum and Their Bimodal Mixtures

    Science.gov (United States)

    Woody, D. L.; Dokhan, A.; Johnson, C. E.

    2004-07-01

    Comparison studies of materials containing standard nano aluminum (ultrafine) and micro aluminum coated with BaSO4 were performed. Differential thermal analysis and thermogravimetric analysis output were used to observe the effect of adding an unconventional coating to micron-sized aluminum particle materials. These results were compared to those of ultrafine aluminum particles. Bimodal combinations of ultrafine aluminum and micron-sized aluminum (coated and uncoated) were observed also. These preliminary results showed an interaction between the ultrafine aluminum (UFAL) and micron-sized aluminum in bimodal mixtures.

  20. Doubly localized surface plasmon resonance in bimodally distributed silver nanoparticles.

    Science.gov (United States)

    Ranjan, M

    2012-06-01

    Growth of bimodally distributed silver nanoparticles using sequential physical vapour deposition (PVD) is reported. Growth conditions of nanoparticles are defined in the following three steps: In the first step, nanoparticles are grown at a heated substrate and then exposed to atmosphere, in the second step, nanoparticles are vacuum annealed and finally re-deposition of silver is performed in the third step. This special way of deposition leads to the formation of bimodally distributed nanoparticles. It has been investigated that by changing the deposition time, different sets of bimodally distributed nanoparticles can be grown. Localized surface plasmon resonance (LSPR) of such bimodally distributed nanoparticles generates double plasmon resonance peaks with overlapped absorption spectra. Double plasmon resonance peaks provide a quick indication of the existence of two sets of nanoparticles. LSPR spectra of such bimodally distributed nanoparticles could be modeled with double Lorentz oscillator model. Inclusion of double Lorentz oscillator model indicates that there exist two sets of non-interacting nanoparticles resonating at different plasma frequencies. It is also reported that silver nanoparticles grown at a heated substrate, again attain the new shape while being exposed to atmosphere, followed by vacuum annealing at the same temperature. This is because of physisorption of oxygen at the silver surface and change in surface free energy. The re-shaping due to the adsorbed oxygen on the surface is responsible for bimodal size distribution of nanoparticles.

  1. Alkali metal ion storage properties of sulphur and phosphorous molecules encapsulated in nanometer size carbon cylindrical pores

    Directory of Open Access Journals (Sweden)

    Yosuke Ishii

    2016-03-01

    Full Text Available We investigated the physical and chemical stabilities of sulfur and phosphorus molecules encapsulated in a mesoporous carbon (MPC and two kinds of single-walled carbon nanotubes (SWCNTs having different cylindrical pore diameters. The sublimation temperatures of sulfur molecules encapsulated in MPC and the two kinds of SWCNTs were measured by thermo-gravimetric measurements. It was found that the sublimation temperature of sulfur molecules encapsulated in SWCNTs having mean tube diameter of 1.5 nm is much higher than any other molecules encapsulated in larger pores. It was also found that the capacity fading of lithium-sulfur battery can be diminished by encapsulation of sulfur molecules in SWCNTs. We also investigated the electrochemical properties of phosphorus molecules encapsulated in SWCNTs (P@SWCNTs. It was shown that P@SWCNT can adsorb and desorb both Li and Na ions reversibly.

  2. Fabrication of epoxy composites with large-pore sized mesoporous silica and investigation of their thermal expansion.

    Science.gov (United States)

    Suzuki, Norihiro; Kiba, Shosuke; Yamauchi, Yusuke

    2012-02-01

    We fabricate epoxy composites with low thermal expansion by using mesoporous silica particles with a large pore diameter (around 10 nm) as inorganic fillers. From a simple calculation, almost all the mesopores are estimated to be completely filled with the epoxy polymer. The coefficient of linear thermal expansion (CTE) values of the obtained epoxy composites proportionally decrease with the increase of the mesoporous silica content.

  3. Investigation of mixed fluorinated and triblock copolymer liquid crystals: imprint for mesostructured bimodal silica.

    Science.gov (United States)

    Assaker, Karine; Naboulsi, Issam; Stébé, Marie-José; Emo, Mélanie; Blin, Jean-Luc

    2015-05-15

    Due to the difference in «mutual phobicity» between fluorocarbon and hydrocarbon chains, mixtures of fluorinated and hydrogenated surfactants are excellent candidates to design bimodal systems having two types of mesopores. In literature, only a few papers deal with these bimodal systems. Here hexagonal liquid crystal mixtures of the polyoxyethylene fluoroalkyl ether [R(F)8(EO)9] and the Pluronic [P123] have been used to template this kind of mesostructure through the liquid crystal mechanism, which is barely considered. After the detailed investigation of the R(F)8(EO)9/P123/water liquid crystal domain, materials have been synthesized and characterized by small angle X-ray scattering, transmission electron microscopy and nitrogen adsorption-desorption analysis. Our results show that this system provides two separate pore sizes in the materials over the mesoporous range. The ratio between the small mesopores and the large ones depends on the proportion between the porogens in the mixture. Nonetheless, we also outline that a minimum quantity of silica is required to recover the two hexagonal networks. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Penetration in bimodal, polydisperse granular material

    KAUST Repository

    Kouraytem, N.

    2016-11-07

    We investigate the impact penetration of spheres into granular media which are compositions of two discrete size ranges, thus creating a polydisperse bimodal material. We examine the penetration depth as a function of the composition (volume fractions of the respective sizes) and impact speed. Penetration depths were found to vary between delta = 0.5D(0) and delta = 7D(0), which, for mono-modal media only, could be correlated in terms of the total drop height, H = h + delta, as in previous studies, by incorporating correction factors for the packing fraction. Bimodal data can only be collapsed by deriving a critical packing fraction for each mass fraction. The data for the mixed grains exhibit a surprising lubricating effect, which was most significant when the finest grains [d(s) similar to O(30) mu m] were added to the larger particles [d(l) similar to O(200 - 500) mu m], with a size ratio, epsilon = d(l)/d(s), larger than 3 and mass fractions over 25%, despite the increased packing fraction. We postulate that the small grains get between the large grains and reduce their intergrain friction, only when their mass fraction is sufficiently large to prevent them from simply rattling in the voids between the large particles. This is supported by our experimental observations of the largest lubrication effect produced by adding small glass beads to a bed of large sand particles with rough surfaces.

  5. Proton Conduction in Sulfonated Organic-Inorganic Hybrid Monoliths with Hierarchical Pore Structure.

    Science.gov (United States)

    von der Lehr, Martin; Seidler, Christopher F; Taffa, Dereje H; Wark, Michael; Smarsly, Bernd M; Marschall, Roland

    2016-09-28

    Porous organic-inorganic hybrid monoliths with hierarchical porosity exhibiting macro- and mesopores are prepared via sol-gel process under variation of the mesopore size. Organic moieties in the pore walls are incorporated by substituting up to 10% of the silicon precursor tetramethylorthosilicate with bisilylated benzene molecules. After functionalization with sulfonic acid groups, the resulting sulfonated hybrid monoliths featuring a bimodal pore structure are investigated regarding proton conduction depending on temperature and relative humidity. The hierarchical pore system and controlled mesopore design turn out to be crucial for sulfonation and proton conduction. These sulfonated hybrid hierarchical monoliths containing only 10% organic precursor exhibit higher proton conduction at different relative humidities than sulfonated periodic mesoporous organosilica made of 100% bisilylated precursors exhibiting solely mesopores, even with a lower concentration of sulfonic acid groups.

  6. Tunable Rare Earth fcu-MOF Platform: Access to Adsorption Kinetics Driven Gas/Vapor Separations via Pore Size Contraction

    KAUST Repository

    Xue, Dongxu

    2015-03-31

    Reticular chemistry approach was successfully employed to deliberately construct new rare-earth (RE, i.e. Eu3+, Tb3+ and Y3+) fcu metal‒organic frameworks (MOFs) with restricted window apertures. Controlled and selective access to the resultant contracted fcu-MOF pores permits the achievement of the requisite sorbate cut-off ideal for selective adsorption kinetics separation and/or molecular sieving of gases and vapors. Predetermined reaction conditions that permitted the formation in-situ of the 12-connected RE hexanuclear molecular building block (MBB) and the establishment of the RE-fcu-MOF plat-form, especially in the presence of 2-fluorobenzoic acid (2-FBA) as a modulator and a structure directing agent, were used to synthesize isostructural RE-1,4-NDC-fcu-MOFs based on a relatively bulkier 2-connected bridging ligand, namely 1,4-naphthalenedicarboxylate (1,4-NDC). The subsequent RE-1,4-NDC-fcu-MOF structural features, contracted windows/pores and high concentration of open metal sites combined with exceptional hydrothermal and chemical stabilities, yielded nota-ble gas/solvent separation properties, driven mostly by adsorption kinetics as exemplified in this work for n-butane/methane, butanol/methanol and butanol/water pair systems.

  7. Tunable Rare Earth fcu-MOF Platform: Access to Adsorption Kinetics Driven Gas/Vapor Separations via Pore Size Contraction.

    Science.gov (United States)

    Xue, Dong-Xu; Belmabkhout, Youssef; Shekhah, Osama; Jiang, Hao; Adil, Karim; Cairns, Amy J; Eddaoudi, Mohamed

    2015-04-22

    Reticular chemistry approach was successfully employed to deliberately construct new rare-earth (RE, i.e., Eu(3+), Tb(3+), and Y(3+)) fcu metal-organic frameworks (MOFs) with restricted window apertures. Controlled and selective access to the resultant contracted fcu-MOF pores permits the achievement of the requisite sorbate cutoff, ideal for selective adsorption kinetics based separation and/or molecular sieving of gases and vapors. Predetermined reaction conditions that permitted the formation in situ of the 12-connected RE hexanuclear molecular building block (MBB) and the establishment of the first RE-fcu-MOF platform, especially in the presence of 2-fluorobenzoic acid (2-FBA) as a modulator and a structure directing agent, were used to synthesize isostructural RE-1,4-NDC-fcu-MOFs based on a relatively bulkier 2-connected bridging ligand, namely 1,4-naphthalenedicarboxylate (1,4-NDC). The subsequent RE-1,4-NDC-fcu-MOF structural features, contracted windows/pores and high concentration of open metal sites combined with exceptional hydrothermal and chemical stabilities, yielded notable gas/solvent separation properties, driven mostly by adsorption kinetics as exemplified in this work for n-butane/methane, butanol/methanol, and butanol/water pair systems.

  8. Isoreticular metal-organic frameworks, process for forming the same, and systematic design of pore size and functionality therein, with application for gas storage

    Science.gov (United States)

    Yaghi, Omar M.; Eddaoudi, Mohamed; Li, Hailian; Kim, Jaheon; Rosi, Nathaniel

    2007-03-27

    The ability to design and construct solid-state materials with pre-determined structures is a grand challenge in chemistry. An inventive strategy based on reticulating metal ions and organic carboxylate links into extended networks has been advanced to a point that has allowed the design of porous structures in which pore size and functionality can be varied systematically. MOF-5, a prototype of a new class of porous materials and one that is constructed from octahedral Zn--O--C clusters and benzene links, was used to demonstrate that its 3-D porous system can be functionalized with the organic groups, --Br, --NH2, --OC3H7, --OC5H11, --H4C2, and --H4C4, and its pore size expanded with the long molecular struts biphenyl, tetrahydropyrene, pyrene, and terphenyl. The ability to direct the formation of the octahedral clusters in the presence of a desired carboxylate link is an essential feature of this strategy, which resulted in the design of an isoreticular (having the same framework topology) series of sixteen well-defined materials whose crystals have open space representing up to 91.1% of the crystal volume, and homogeneous periodic pores that can be incrementally varied from 3.8 to 28.8 angstroms. Unlike the unpredictable nature of zeolite and other molecular sieve syntheses, the deliberate control exercised at the molecular level in the design of these crystals is expected to have tremendous implications on materials properties and future technologies. Indeed, data indicate that members of this series represent the first monocrystalline mesoporous organic/inorganic frameworks, and exhibit the highest capacity for methane storage (155 cm3/cm3 at 36 atm) and the lowest densities (0.41 to 0.21 g/cm3) attained to date for any crystalline material at room temperature.

  9. Impact of Pore Size on Fenton Oxidation of Methyl Orange Adsorbed on Magnetic Carbon Materials: Trade-Off between Capacity and Regenerability.

    Science.gov (United States)

    Xiao, Ye; Hill, Josephine M

    2017-04-18

    The economic cleanup of wastewater continues to be an active area of research. In this study, the influence of pore size on regeneration by Fenton oxidation for carbon materials with adsorbed methyl orange (MO) was investigated. More specifically three carbon supports, with pore sizes ranging from mainly microporous to half microporous-half mesoporous to mainly mesoporous, were impregnated with γ-Fe 2 O 3 to make them magnetic and easy to separate from solution. The carbon samples were characterized before adsorption and after regeneration with hydrogen peroxide at 20 °C. In addition, adsorption kinetics and isotherms were collected, and the Weber-Morris intraparticle diffusion model and Freundlich isotherm model fit to the data. The adsorption capacity increased with increasing microporosity while the regeneration efficiency increased with increasing mesoporosity. Further experiments with varying regeneration and adsorption conditions suggested that the regeneration process may be kinetically limited. The MO adsorbed in the micropores was strongly adsorbed and difficult to remove unlike the MO adsorbed in the mesopores, which could be reacted under relatively mild conditions. Thus, there was a trade-off between adsorption capacity and regeneration.

  10. Effect of seawater salinity on pore-size distribution on a poly(styrene)-based HP20 resin and its adsorption of diarrhetic shellfish toxins.

    Science.gov (United States)

    Fan, Lin; Sun, Geng; Qiu, Jiangbing; Ma, Qimin; Hess, Philipp; Li, Aifeng

    2014-12-19

    In the present study, okadaic acid (OA) and dinophysistoxin-1 (DTX1) were spiked into artificial seawater at low, medium and high estuarine salinities (9‰, 13.5‰ and 27‰). Passive samplers (HP20 resin) used for solid phase adsorption toxin tracking (SPATT) technology were exposed in these seawaters for 12-h periods. Adsorption curves well fitted a pseudo-secondary kinetics model. The highest initial sorption rates of both toxins occurred in the seawater of medium salinity, followed by seawater of low and high estuarine salinity. Pore volumes of micropores (seawater at high and low salinity but not in seawater at medium salinity, which demonstrated that the toxin molecules entered into micropores and mesopores (below 10nm in size) in seawaters of high and low salinity. More toxin or other matrix agglomerates were displayed on the surface of resin deployed in the seawater of medium salinity. Taking into consideration the pore-size distribution and surface images, it appears that intra-particle diffusion governs toxin adsorption in seawater at high salinity while film diffusion mainly controls the adsorption process in seawater at medium salinity. This is the first study to confirm that molecules of OA and DTX1 are able to enter into micropores (seawater with high salinity (∼27‰). Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Interaural bimodal pitch matching with two-formant vowels

    DEFF Research Database (Denmark)

    Guérit, François; Chalupper, Josef; Santurette, Sébastien

    2013-01-01

    For bimodal patients, with a hearing aid (HA) in one ear and a cochlear implant (CI) in the opposite ear, usually a default frequency-to-electrode map is used in the CI. This assumes that the human brain can adapt to interaural place-pitch mismatches. This “one-size-fits-all” method might be part...

  12. Visualisation and characterisation of heterogeneous bimodal PDMS networks

    DEFF Research Database (Denmark)

    Bahrt, Frederikke; Daugaard, Anders Egede; Fleury, Clemence

    2014-01-01

    The existence of short-chain domains in heterogeneous bimodal PDMS networks has been confirmed visually, for the first time, through confocal fluorescence microscopy. The networks were prepared using a controlled reaction scheme where short PDMS chains were reacted below the gelation point...... bimodal networks with short-chain domains within a long-chain network. The average sizes of the short-chain domains were found to vary from 2.1 to 5.7 mm depending on the short-chain content. The visualised network structure could be correlated thereafter to the elastic properties, which were determined...... by rheology. All heterogeneous bimodal networks displayed significantly lower moduli than mono-modal PDMS elastomers prepared from the long polymer chains. Low-loss moduli as well as low-sol fractions indicate that low-elastic moduli can be obtained without compromising the network's structure...

  13. An experimental investigation into the influence of specimen size, in-situ pore pressures and temperatures on the spalling of difference size concrete panels when exposed to a hydrocarbon fire

    Directory of Open Access Journals (Sweden)

    Guerrieri M.

    2013-09-01

    Full Text Available Small and large scale reinforced concrete panels/walls were tested under hydrocarbon fire conditions to investigate concrete spalling. Results indicated that spalling is caused by the combination of thermal stresses and pore water pressure build-up. The degree and magnitude of spalling is governed by a number of inter-dependent factors including panel size, thickness and compressive strengths, all of which are investigated in this research. High strength concrete panels of increased surface area and thickness had higher degrees of concrete spalling.

  14. Effect of variation of average pore size and specific surface area of ZnO electrode (WE) on efficiency of dye-sensitized solar cells.

    Science.gov (United States)

    Jadhav, Nitin A; Singh, Pramod K; Rhee, Hee Woo; Bhattacharya, Bhaskar

    2014-01-01

    Mesoporous ZnO nanoparticles have been synthesized with tremendous increase in specific surface area of up to 578 m(2)/g which was 5.54 m(2)/g in previous reports (J. Phys. Chem. C 113:14676-14680, 2009). Different mesoporous ZnO nanoparticles with average pore sizes ranging from 7.22 to 13.43 nm and specific surface area ranging from 50.41 to 578 m(2)/g were prepared through the sol-gel method via a simple evaporation-induced self-assembly process. The hydrolysis rate of zinc acetate was varied using different concentrations of sodium hydroxide. Morphology, crystallinity, porosity, and J-V characteristics of the materials have been studied using transmission electron microscopy (TEM), X-ray diffraction (XRD), BET nitrogen adsorption/desorption, and Keithley instruments.

  15. Surface characterisation and photocatalytic performance of N-doped TiO2 thin films deposited onto 200 nm pore size alumina membranes by sol–gel methods

    International Nuclear Information System (INIS)

    Grilli, R.; Di Camillo, D.; Lozzi, L.; Horovitz, I.; Mamane, H.; Avisar, D.; Baker, M.A.

    2015-01-01

    Membrane filtration is employed for water treatment and wastewater reclamation purposes, but membranes alone are unable to remove pollutant molecules and certain pathogens. Photocatalytically active N-doped TiO 2 coatings have been deposited by sol–gel onto 200 nm pore size alumina membranes for water treatment applications using two different methods, via pipette droplets or spiral bar applicator. The uncoated and coated membranes were characterised by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray spectrometry (EDX). Both coatings showed the presence of N-doped anatase, with a surface coverage between 84 and 92%, and nitrogen concentration (predominantly interstitial) of 0.9 at.%. The spiral bar applicator deposited coatings exhibit a thicker mud-cracked surface layer with limited penetration of the porous membrane, whilst the pipette deposited coatings have mostly penetrated into the bulk of the membrane and a thinner layer is present at the surface. The photocatalytic activity (PCA), measured through the degradation of carbamazepine (CBZ), under irradiation of a solar simulator was 58.6% for the pipette coating and 63.3% for the spiral bar coating. These photocatalytically active N-doped sol–gel coated membranes offer strong potential in forming the fundamental basis of a sunlight based water treatment system. - Highlights: • Sol gel N-doped TiO 2 thin films were deposited on 200 nm pore size Al 2 O 3 membranes. • Two sol–gel methods have been compared – pipette drop and spiral bar deposition. • The coatings showed a similar microstructure and composition but different morphology. • The PCA (degradation of carbamazepine) was ∼60% for both sol–gel coatings. • The coated membranes are promising for use in a membrane based water treatment system

  16. Mass transfer kinetic mechanism in monolithic columns and application to the characterization of new research monolithic samples with different average pore sizes.

    Science.gov (United States)

    Gritti, Fabrice; Guiochon, Georges

    2009-06-05

    A general reduced HETP (height equivalent to a theoretical plate) equation is proposed that accounts for the mass transfer of a wide range of molecular weight compounds in monolithic columns. The detailed derivatization of each one of the individual and independent mass transfer contributions (longitudinal diffusion, eddy dispersion, film mass transfer resistance, and trans-skeleton mass transfer resistance) is discussed. The reduced HETPs of a series of small molecules (phenol, toluene, acenaphthene, and amylbenzene) and of a larger molecule, insulin, were measured on three research grade monolithic columns (M150, M225, M350) having different average pore size (approximately 150, 225, and 350 A, respectively) but the same dimension (100 mm x 4.6 mm). The first and second central moments of 2 muL samples were measured and corrected for the extra-column contributions. The h data were fitted to the new HETP equation in order to identify which contribution controls the band broadening in monolithic columns. The contribution of the B-term was found to be negligible compared to that of the A-term, even at very low reduced velocities (nu5), the C-term of the monolithic columns is controlled by film mass transfer resistance between the eluent circulating in the large throughpores and the eluent stagnant inside the thin porous skeleton. The experimental Sherwood number measured on the monolith columns increases from 0.05 to 0.22 while the adsorption energy increases by nearly 6 kJ/mol. Stronger adsorption leads to an increase in the value of the estimated film mass transfer coefficient when a first order film mass transfer rate is assumed (j proportional, variantk(f)DeltaC). The average pore size and the trans-skeleton mass transfer have no (<0.5%, small molecules) or little (<10%, insulin) effect on the overall C-term.

  17. Experimental study on imbibition displacement mechanisms of two-phase fluid using micromodel: Fracture network, distribution of pore size, and matrix construction

    Science.gov (United States)

    Jafari, Iman; Masihi, Mohsen; Nasiri Zarandi, Masoud

    2017-12-01

    In this study, the effect of different parameters on the fluid transport in a fractured micromodel has been investigated. All experiments in this study have been conducted in a glass micromodel. Since the state of wetting is important in the micromodel, the wetting experiments have been conducted to determine the state of wetting in the micromodel. The used micromodel was wet by water and non-wet regarding normal decane. The fracture network, distribution of pore size, matrix construction, and injection rate are the most important parameters affecting the process. Therefore, the influence of these parameters was studied using five different patterns (A to E). The obtained results from pattern A showed that increasing water injection the flow rate results in both higher rate of imbibition and higher ultimate recovery. Pattern B, which was characterized with higher porosity and permeability, was employed to study the effect of matrix pore size distribution on the imbibition process. Compared to pattern A, a higher normal decane production was observed in this pattern. Patterns C and D were designed to understand the impact of lateral fractures on the displacement process. Higher ultimate recoveries were obtained in these patterns. A system of matrix-fracture was designed (pattern E) to evaluate water injection performance in a multi-block system. Injection of water with the flow rate of 0.01 cc/min could produce 15% of the oil available in the system. While in the test with the flow rate of 0.1 cc/min, a normal decane recovery of 0.28 was achieved.

  18. A HYPOTHESIS FOR THE COLOR BIMODALITY OF JUPITER TROJANS

    International Nuclear Information System (INIS)

    Wong, Ian; Brown, Michael E.

    2016-01-01

    One of the most enigmatic and hitherto unexplained properties of Jupiter Trojans is their bimodal color distribution. This bimodality is indicative of two sub-populations within the Trojans, which have distinct size distributions. In this paper, we present a simple, plausible hypothesis for the origin and evolution of the two Trojan color sub-populations. In the framework of dynamical instability models of early solar system evolution, which suggest a common primordial progenitor population for both Trojans and Kuiper Belt objects, we use observational constraints to assert that the color bimodalities evident in both minor body populations developed within the primordial population prior to the onset of instability. We show that, beginning with an initial composition of rock and ices, location-dependent volatile loss through sublimation in this primordial population could have led to sharp changes in the surface composition with heliocentric distance. We propose that the depletion or retention of H 2 S ice on the surface of these objects was the key factor in creating an initial color bimodality. Objects that retained H 2 S on their surfaces developed characteristically redder colors upon irradiation than those that did not. After the bodies from the primordial population were scattered and emplaced into their current positions, they preserved this primordial color bimodality to the present day. We explore predictions of the volatile loss model—in particular, the effect of collisions within the Trojan population on the size distributions of the two sub-populations—and propose further experimental and observational tests of our hypothesis.

  19. A HYPOTHESIS FOR THE COLOR BIMODALITY OF JUPITER TROJANS

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Ian; Brown, Michael E., E-mail: iwong@caltech.edu [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)

    2016-10-01

    One of the most enigmatic and hitherto unexplained properties of Jupiter Trojans is their bimodal color distribution. This bimodality is indicative of two sub-populations within the Trojans, which have distinct size distributions. In this paper, we present a simple, plausible hypothesis for the origin and evolution of the two Trojan color sub-populations. In the framework of dynamical instability models of early solar system evolution, which suggest a common primordial progenitor population for both Trojans and Kuiper Belt objects, we use observational constraints to assert that the color bimodalities evident in both minor body populations developed within the primordial population prior to the onset of instability. We show that, beginning with an initial composition of rock and ices, location-dependent volatile loss through sublimation in this primordial population could have led to sharp changes in the surface composition with heliocentric distance. We propose that the depletion or retention of H{sub 2}S ice on the surface of these objects was the key factor in creating an initial color bimodality. Objects that retained H{sub 2}S on their surfaces developed characteristically redder colors upon irradiation than those that did not. After the bodies from the primordial population were scattered and emplaced into their current positions, they preserved this primordial color bimodality to the present day. We explore predictions of the volatile loss model—in particular, the effect of collisions within the Trojan population on the size distributions of the two sub-populations—and propose further experimental and observational tests of our hypothesis.

  20. The Bimodal Color Distribution of Small Kuiper Belt Objects

    Science.gov (United States)

    Wong, Ian; Brown, Michael E.

    2017-04-01

    We conducted a two-night photometric survey of small Kuiper Belt objects (KBOs) near opposition using the wide-field Hyper Suprime-Cam instrument on the 8.2 m Subaru Telescope. The survey covered about 90 deg2 of sky, with each field imaged in the g and I bands. We detected 356 KBOs, ranging in absolute magnitude from 6.5 to 10.4. Filtering for high-inclination objects within the hot KBO population, we show that the g - I color distribution is strongly bimodal, indicative of two color classes—the red and very red subpopulations. After categorizing objects into the two subpopulations by color, we present the first dedicated analysis of the magnitude distributions of the individual color subpopulations and demonstrate that the two distributions are roughly identical in shape throughout the entire size range covered by our survey. Comparing the color distribution of small hot KBOs with that of Centaurs, we find that they have similar bimodal shapes, thereby providing strong confirmation of previous explanations for the attested bimodality of Centaurs. We also show that the magnitude distributions of the two KBO color subpopulations and the two color subpopulations observed in the Jupiter Trojans are statistically indistinguishable. Finally, we discuss a hypothesis describing the origin of the KBO color bimodality based on our survey results. Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  1. BSA adsorption on bimodal PEO brushes

    NARCIS (Netherlands)

    Bosker, WTE; Iakovlev, PA; Norde, W; Stuart, Martien A. Cohen

    2005-01-01

    BSA adsorption onto bimodal PEO brushes at a solid surface was measured using optical reflectometry. Bimodal brushes consist of long (N = 770) and short (N = 48) PEO chains and were prepared on PS surfaces, applying mixtures of PS29-PEO48 and PS37-PEO770 block copolymers and using the

  2. BSA adsorption on bimodal PEO brushes

    NARCIS (Netherlands)

    Bosker, W.T.E.; Iakovlev, P.A.; Norde, W.; Cohen Stuart, M.A.

    2005-01-01

    BSA adsorption onto bimodal PEO brushes at a solid surface was measured using optical reflectometry. Bimodal brushes consist of long (N=770) and short (N=48) PEO chains and were prepared on PS surfaces, applying mixtures of PS 29-PEO48 and PS37-PEO770 block copolymers and using the Langmuir-Blodgett

  3. Pore volume is most highly correlated with the visual assessment of skin pores.

    Science.gov (United States)

    Kim, S J; Shin, M K; Back, J H; Koh, J S

    2014-11-01

    Many studies have been focused on evaluating assessment techniques for facial pores amid growing attention on skin care. Ubiquitous techniques used to assess the size of facial pores include visual assessment, cross-section images of the skin surface, and profilometric analysis of silicone replica of the facial skin. In addition, there are indirect assessment methods, including observation of pores based on confocal laser scanning microscopy and the analysis of sebum secretion and skin elasticity. The aim of this study was to identify parameters useful in estimating pore of surface in normal skin. The severity of pores on the cheek area by frontal optical images was divided on a 0-6 scale with '0' being faint and small pore and '6' being obvious and large pore. After the photos of the frontal cheek of 32 women aged between 35 and 49 were taken, the size of their pores was measured on a 0-6 scale; and the correlation between visual grading of pore and various evaluations (pore volume by 3-D image, pore area and number by Optical Image Analyzer) contributing to pore severity investigated using direct, objective, and noninvasive evaluations. The visual score revealed that the size of pores was graded on a 1-6 scale. Visual grading of pore was highly correlated with pore volume measured from 3-D images and pore area measured from 2-D optical images in the order (P pore was also slightly correlated with the number of pores in size of over 0.04 mm(2) (P pore score and pore volume can be explained by 3-D structural characteristics of pores. It is concluded that pore volume and area serve as useful parameters in estimating pore of skin surface. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Experimental study on pore structure and performance of sintered porous wick

    Science.gov (United States)

    He, Da; Wang, Shufan; Liu, Rutie; Wang, Zhubo; Xiong, Xiang; Zou, Jianpeng

    2018-02-01

    Porous wicks were prepared via powder metallurgy using NH4HCO3 powders as pore-forming agent. The pore-forming agent particle size was varied to control the pore structure and equivalent pore size distribution feature of porous wick. The effect of pore-forming agent particle size on the porosity, pore structures, equivalent pore size distribution and capillary pumping performance were investigated. Results show that with the particle size of pore-forming agent decrease, the green density and the volume shrinkage of the porous wicks gradually increase and the porosity reduces slightly. There are two types of pores inside the porous wick, large-sized prefabricated pores and small-sized gap pores. With the particle size of pore-forming agent decrease, the size of the prefabricated pores becomes smaller and the distribution tends to be uniform. Gap pores and prefabricated pores inside the wick can make up different types of pore channels. The equivalent pore size of wick is closely related to the structure of pore channels. Furthermore, the equivalent pore size distribution of wick shows an obvious double-peak feature when the pore-forming agent particle size is large. With the particle size of pore-forming agent decrease, the two peaks of equivalent pore size distribution approach gradually to each other, resulting in a single-peak feature. Porous wick with single-peak feature equivalent pore size distribution possesses the better capillary pumping performances.

  5. Nuclear bimodal new vision solar system missions

    International Nuclear Information System (INIS)

    Mondt, J.F.; Zubrin, R.M.

    1996-01-01

    This paper presents an analysis of the potential mission capability using space reactor bimodal systems for planetary missions. Missions of interest include the Main belt asteroids, Jupiter, Saturn, Neptune, and Pluto. The space reactor bimodal system, defined by an Air Force study for Earth orbital missions, provides 10 kWe power, 1000 N thrust, 850 s Isp, with a 1500 kg system mass. Trajectories to the planetary destinations were examined and optimal direct and gravity assisted trajectories were selected. A conceptual design for a spacecraft using the space reactor bimodal system for propulsion and power, that is capable of performing the missions of interest, is defined. End-to-end mission conceptual designs for bimodal orbiter missions to Jupiter and Saturn are described. All missions considered use the Delta 3 class or Atlas 2AS launch vehicles. The space reactor bimodal power and propulsion system offers both; new vision open-quote open-quote constellation close-quote close-quote type missions in which the space reactor bimodal spacecraft acts as a carrier and communication spacecraft for a fleet of microspacecraft deployed at different scientific targets and; conventional missions with only a space reactor bimodal spacecraft and its science payload. copyright 1996 American Institute of Physics

  6. A simple hydrothermal route to bimodal mesoporous nanorod {gamma}-alumina with high thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang; Han, Dezhi; Xue, Hongxia; Liu, Xinmei; Yan, Zifeng [China Univ. of Petroleum, Qingdao (China). State Key Lab. of Heavy Oil Processing

    2011-12-15

    In the presence of polyethylene glycol, bimodal mesoporous nanorod {gamma}-alumina was successfully synthesized via the thermal decomposition of ammonium aluminium carbonate hydroxide precursor which was prepared via hydrothermal processing with inorganic aluminium salt. The alumina exhibits high surface area (494 m{sup 2}g{sup -1}), large porosity (1.1 m{sup 3}g{sup -1}) and a particular double-pore structure after calcination at 500 C. The smaller pore diameter is concentrated on about 3 nm and the larger one is exhibited in the range of 10 - 38 nm. The scaffold-like aggregation of {gamma}-alumina nanorods endows this novel material with excellent thermal stability. A possible formation mechanism of bimodal mesoporous structure is also proposed in this study. (orig.)

  7. Metal structures with parallel pores

    Science.gov (United States)

    Sherfey, J. M.

    1976-01-01

    Four methods of fabricating metal plates having uniformly sized parallel pores are studied: elongate bundle, wind and sinter, extrude and sinter, and corrugate stack. Such plates are suitable for electrodes for electrochemical and fuel cells.

  8. Irreducible complexity of iterated symmetric bimodal maps

    Directory of Open Access Journals (Sweden)

    J. P. Lampreia

    2005-01-01

    Full Text Available We introduce a tree structure for the iterates of symmetric bimodal maps and identify a subset which we prove to be isomorphic to the family of unimodal maps. This subset is used as a second factor for a ∗-product that we define in the space of bimodal kneading sequences. Finally, we give some properties for this product and study the ∗-product induced on the associated Markov shifts.

  9. On the effect of segregation on intense bimodal bed load

    Directory of Open Access Journals (Sweden)

    Zrostlík Štěpán

    2017-01-01

    Full Text Available Open-channel two-phase flow above a granular mobile bed is studied experimentally and theoretically. In the two-phase flow, water serves as a carrying liquid for plastic grains transported as collisional contact load in the upper-stage plane bed regime. The investigation evaluates friction- and transport characteristics of the flow under the condition of intense collisional transport of grains and links them with the internal structure of the two-phase flow. The paper focusses on the effect of bimodal solids (mixed two fractions of grains of similar density and different size and shape on the flow characteristics and internal structure. Hence, experimental results obtained for the bimodal mixture are compared with results for individual grain fractions. The experiments show that the bimodal character of the transported solids affects the layered internal structure of the flow as a result of fraction segregation due primarily to gravity (kinetic sieving during transport. The segregation also affects the friction- and transport characteristics of intense bed load. In the paper, the effects are described and quantified.

  10. On the effect of segregation on intense bimodal bed load

    Science.gov (United States)

    Zrostlík, Štěpán; Matoušek, Václav

    Open-channel two-phase flow above a granular mobile bed is studied experimentally and theoretically. In the two-phase flow, water serves as a carrying liquid for plastic grains transported as collisional contact load in the upper-stage plane bed regime. The investigation evaluates friction- and transport characteristics of the flow under the condition of intense collisional transport of grains and links them with the internal structure of the two-phase flow. The paper focusses on the effect of bimodal solids (mixed two fractions of grains of similar density and different size and shape) on the flow characteristics and internal structure. Hence, experimental results obtained for the bimodal mixture are compared with results for individual grain fractions. The experiments show that the bimodal character of the transported solids affects the layered internal structure of the flow as a result of fraction segregation due primarily to gravity (kinetic) sieving during transport. The segregation also affects the friction- and transport characteristics of intense bed load. In the paper, the effects are described and quantified.

  11. PORE SIZE DISTRIBUTION AND SOIL HYDRO PHYSICAL PROPERTIES UNDER DIFFERENT TILLAGE PRACTICES AND COVER CROPS IN A TYPIC HAPLUSULT IN NORTHERN NIGERIA

    Directory of Open Access Journals (Sweden)

    Halima Mohammed Lawal

    2017-05-01

    Full Text Available Tillage practices influence soil physical, chemical and biological qualities which in-turn alters plant growth and crop yield. In the Northern Guinea Savanna (NGS ecological zone of Nigeria, agricultural production is mainly constrained by low soil nutrient and water holding capacity, it is therefore, imperative to develop appropriate management practices that will give optimal soil hydro-physical properties for proper plant growth, effective soil and water management and environmental conservation. This study investigated the effect of three tillage practices (no till, reduced till and conventional till and four cover crops (Centrosema pascuorum, Macrotyloma uniflorum, Cucurbita maxima and Glyine max and a bare/control (no cover crop on some soil physical properties of a Typic Haplusult during the rainy seasons of 2011, 2012 and 2013 in Samaru, NGS ecological zone of Nigeria. The field trials were laid out in a split plot arrangement with tillage practices in the main plots and cover crops in the subplots, all treatments were replicated three times. Auger and core soil samples were collected at the end of each cropping season each year in three replicates from each treatment plot at four depths (0-5, 5-10, 10-15 and 15-20 cm. Particle size distribution, bulk density, total pore volume and water retention at various soil matric potentials were determined using standard methods. Data obtained were compared with optimum values and fitted into a RETC computer code for quantifying soil hydraulic behavior and physical quality. Results showed that different tillage practices had varied effect on soil physical properties. No-till had the highest water holding capacity at most suction points evaluated, it had 4.3 % and 12.9 % more soil moisture than the reduced till  and conventionally tilled systems across all matric potentials while Centrosema pascuorum (3.1% and Cucurbita maxima (5.5% were best among evaluated cover crops in retaining soil moisture

  12. Antera 3D capabilities for pore measurements.

    Science.gov (United States)

    Messaraa, C; Metois, A; Walsh, M; Flynn, J; Doyle, L; Robertson, N; Mansfield, A; O'Connor, C; Mavon, A

    2018-04-29

    The cause of enlarged pores remains obscure but still remains of concern for women. To complement subjective methods, bioengineered methods are needed for quantification of pores visibility following treatments. The study objective was to demonstrate the suitability of pore measurements from the Antera 3D. Pore measurements were collected on 22 female volunteers aged 18-65 years with the Antera 3D, the DermaTOP and image analysis on photographs. Additionally, 4 raters graded pore size on photographs on a scale 0-5. Repeatability of Antera 3D parameters was ascertained and the benefit of a pore minimizer product on the cheek was assessed on a sub panel of seven female volunteers. Pore parameters using the Antera were shown to depict pore severity similar to raters on photographs, except for Max Depth. Mean pore volume, mean pore area and count were moderately correlated with DermaTOP parameters (up to r = .50). No relationship was seen between the Antera 3D and pore visibility analysis on photographs. The most repeatable parameters were found to be mean pore volume, mean pore area and max depth, especially for the small and medium filters. The benefits of a pore minimizer product were the most striking for mean pore volume and mean pore area when using the small filter for analysis, rather than the medium/large ones. Pore measurements with the Antera 3D represent a reliable tool for efficacy and field studies, with an emphasis of the small filter for analysis for the mean pore volume/mean pore area parameters. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Multifractal Characterization of Soil Pore Shapes

    Science.gov (United States)

    Gimenez, Daniel; Posadas, Adolfo; Cooper, Miguel

    2010-05-01

    Two dimensional (2-D) images representing pores and solids are used for direct quantification of soil structure using tools that are sensitive to the spatial arrangement of pores or by grouping pores by morphological properties such as shape and size. Pore shapes and sizes are related and have been used to interpret soil processes. Fractal and multifractal methods of pore characterization have been applied separately to spatial arrangement of soil pores and to pore size distributions derived from 2-D images. The objective of this work was to estimate fractal dimensions of spatial arrangement of soil pores of predetermined shapes. Images covering a range of soil structures were analyzed. Pore shape was classified using a shape factor S that quantifies the circularity of pores (S=1 for circular pores). Images containing only pores with S values smaller than 0.1, between 0.1 and 0.2, 0.2 and 0.5, 0.5 and 0.7 and greater than 0.7 were derived from the initial images and analyzed with a multifractal algorithm. The findings of this work will be discussed in relation to models of soil hydraulic properties.

  14. Laboratory characterization of shale pores

    Science.gov (United States)

    Nur Listiyowati, Lina

    2018-02-01

    To estimate the potential of shale gas reservoir, one needs to understand the characteristics of pore structures. Characterization of shale gas reservoir microstructure is still a challenge due to ultra-fine grained micro-fabric and micro level heterogeneity of these sedimentary rocks. The sample used in the analysis is a small portion of any reservoir. Thus, each measurement technique has a different result. It raises the question which methods are suitable for characterizing pore shale. The goal of this paper is to summarize some of the microstructure analysis tools of shale rock to get near-real results. The two analyzing pore structure methods are indirect measurement (MIP, He, NMR, LTNA) and direct observation (SEM, TEM, Xray CT). Shale rocks have a high heterogeneity; thus, it needs multiscale quantification techniques to understand their pore structures. To describe the complex pore system of shale, several measurement techniques are needed to characterize the surface area and pore size distribution (LTNA, MIP), shapes, size and distribution of pore (FIB-SEM, TEM, Xray CT), and total porosity (He pycnometer, NMR). The choice of techniques and methods should take into account the purpose of the analysis and also the time and budget.

  15. Beta-binomial regression and bimodal utilization.

    Science.gov (United States)

    Liu, Chuan-Fen; Burgess, James F; Manning, Willard G; Maciejewski, Matthew L

    2013-10-01

    To illustrate how the analysis of bimodal U-shaped distributed utilization can be modeled with beta-binomial regression, which is rarely used in health services research. Veterans Affairs (VA) administrative data and Medicare claims in 2001-2004 for 11,123 Medicare-eligible VA primary care users in 2000. We compared means and distributions of VA reliance (the proportion of all VA/Medicare primary care visits occurring in VA) predicted from beta-binomial, binomial, and ordinary least-squares (OLS) models. Beta-binomial model fits the bimodal distribution of VA reliance better than binomial and OLS models due to the nondependence on normality and the greater flexibility in shape parameters. Increased awareness of beta-binomial regression may help analysts apply appropriate methods to outcomes with bimodal or U-shaped distributions. © Health Research and Educational Trust.

  16. Bimodal Nuclear Thermal Rocket Analysis Developments

    Science.gov (United States)

    Belair, Michael; Lavelle, Thomas; Saimento, Charles; Juhasz, Albert; Stewart, Mark

    2014-01-01

    Nuclear thermal propulsion has long been considered an enabling technology for human missions to Mars and beyond. One concept of operations for these missions utilizes the nuclear reactor to generate electrical power during coast phases, known as bimodal operation. This presentation focuses on the systems modeling and analysis efforts for a NERVA derived concept. The NERVA bimodal operation derives the thermal energy from the core tie tube elements. Recent analysis has shown potential temperature distributions in the tie tube elements that may limit the thermodynamic efficiency of the closed Brayton cycle used to generate electricity with the current design. The results of this analysis are discussed as well as the potential implications to a bimodal NERVA type reactor.

  17. Language choice in bimodal bilingual development

    Directory of Open Access Journals (Sweden)

    Diane eLillo-Martin

    2014-10-01

    Full Text Available Bilingual children develop sensitivity to the language used by their interlocutors at an early age, reflected in differential use of each language by the child depending on their interlocutor. Factors such as discourse context and relative language dominance in the community may mediate the degree of language differentiation in preschool age children.Bimodal bilingual children, acquiring both a sign language and a spoken language, have an even more complex situation. Their Deaf parents vary considerably in access to the spoken language. Furthermore, in addition to code-mixing and code-switching, they use code-blending – expressions in both speech and sign simultaneously – an option uniquely available to bimodal bilinguals. Code-blending is analogous to code-switching sociolinguistically, but is also a way to communicate without suppressing one language. For adult bimodal bilinguals, complete suppression of the non-selected language is cognitively demanding. We expect that bimodal bilingual children also find suppression difficult, and use blending rather than suppression in some contexts. We also expect relative community language dominance to be a factor in children’s language choices.This study analyzes longitudinal spontaneous production data from four bimodal bilingual children and their Deaf and hearing interlocutors. Even at the earliest observations, the children produced more signed utterances with Deaf interlocutors and more speech with hearing interlocutors. However, while three of the four children produced >75% speech alone in speech target sessions, they produced <25% sign alone in sign target sessions. All four produced bimodal utterances in both, but more frequently in the sign sessions, potentially because they find suppression of the dominant language more difficult.Our results indicate that these children are sensitive to the language used by their interlocutors, while showing considerable influence from the dominant

  18. Si/Ag composite with bimodal micro-nano porous structure as a high-performance anode for Li-ion batteries.

    Science.gov (United States)

    Hao, Qin; Zhao, Dianyun; Duan, Huimei; Zhou, Qiuxia; Xu, Caixia

    2015-03-12

    A one-step dealloying method is employed to conveniently fabricate a bimodal porous (BP) Si/Ag composite in high throughput under mild conditions. Upon dealloying the carefully designed SiAgAl ternary alloy in HCl solution at room temperature, the obtained Si/Ag composite has a uniform bicontinuous porous structure in three dimensions with micro-nano bimodal pore size distribution. Compared with the traditional preparation methods for porous Si and Si-based composites, this dealloying route is easily operated and environmentally benign. More importantly, it is convenient to realize the controllable components and uniform distribution of Si and Ag in the product. Owing to the rich porosity of the unique BP structure and the incorporation of highly conductive Ag, the as-made Si/Ag composite possesses the improved conductivity and alleviated volume changes of the Si network during repeated charging and discharging. As expected, the BP Si/Ag anode exhibits high capacity, excellent cycling reversibility, long cycling life and good rate capability for lithium storage. When the current rate is up to 1 A g(-1), BP Si/Ag can deliver a stable reversible capacity above 1000 mA h g(-1), and exhibits a capacity retention of up to 89.2% against the highest capacity after 200 cycles. With the advantages of unique performance and easy preparation, the BP Si/Ag composite holds great application potential as an advanced anode material for Li-ion batteries.

  19. Bimodal condensation silicone elastomers as dielectric elastomers

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Skov, Anne Ladegaard

    unimodal refers to that there is one polymer only in the system. As an alternative to unimodal networks there are the bimodal networks where two polymers with significantly different molecular weights are mixed with one crosslinker. [2]Silicone rubber can be divided into condensation type and addition type...... according to the curing reaction. The advantages of condensation silicones compared to addition are the relatively low cost, the curing rate largely being independent of temperature, the excellent adhesion, and the catalyst being nontoxic. [3]In this work, a series of bimodal condensation silicone...

  20. CO2-filling capacity and selectivity of carbon nanopores: synthesis, texture, and pore-size distribution from quenched-solid density functional theory (QSDFT).

    Science.gov (United States)

    Hu, Xin; Radosz, Maciej; Cychosz, Katie A; Thommes, Matthias

    2011-08-15

    Porous carbons synthesized by KOH activation of petroleum coke can have high surface areas, over 3000 m(2)/g, and high CO(2) sorption capacity, over 15 wt % at 1 bar. This makes them attractive sorbents for carbon capture from combustion flue gas. Quenched solid density functional theory (QSDFT) analysis of high-resolution nitrogen-sorption data for such materials leads to the conclusion that it is the pores smaller than 1 nm in diameter that fill with high-density CO(2) at atmospheric pressure. Upon increasing pressure, larger and larger pores are filled, up to about 4 nm at 10 bar. An ideal CO(2)/N(2) selectivity of such carbon materials tends to decrease substantially upon increasing pressure, for example, from about 8-10 at 1 bar to about 4-5 at 10 bar. All in all, this work confirms the robust CO(2)-filling properties of porous carbon sorbents, their low-pressure selectivity advantages, and points to the critical role of <1 nm pores that can be controlled with activation conditions.

  1. Bimodal and Gaussian Ising spin glasses in dimension two

    Science.gov (United States)

    Lundow, P. H.; Campbell, I. A.

    2016-02-01

    An analysis is given of numerical simulation data to size L =128 on the archetype square lattice Ising spin glasses (ISGs) with bimodal (±J ) and Gaussian interaction distributions. It is well established that the ordering temperature of both models is zero. The Gaussian model has a nondegenerate ground state and thus a critical exponent η ≡0 , and a continuous distribution of energy levels. For the bimodal model, above a size-dependent crossover temperature T*(L ) there is a regime of effectively continuous energy levels; below T*(L ) there is a distinct regime dominated by the highly degenerate ground state plus an energy gap to the excited states. T*(L ) tends to zero at very large L , leaving only the effectively continuous regime in the thermodynamic limit. The simulation data on both models are analyzed with the conventional scaling variable t =T and with a scaling variable τb=T2/(1 +T2) suitable for zero-temperature transition ISGs, together with appropriate scaling expressions. The data for the temperature dependence of the reduced susceptibility χ (τb,L ) and second moment correlation length ξ (τb,L ) in the thermodynamic limit regime are extrapolated to the τb=0 critical limit. The Gaussian critical exponent estimates from the simulations, η =0 and ν =3.55 (5 ) , are in full agreement with the well-established values in the literature. The bimodal critical exponents, estimated from the thermodynamic limit regime analyses using the same extrapolation protocols as for the Gaussian model, are η =0.20 (2 ) and ν =4.8 (3 ) , distinctly different from the Gaussian critical exponents.

  2. Deaf Children's Bimodal Bilingualism and Education

    Science.gov (United States)

    Swanwick, Ruth

    2016-01-01

    This paper provides an overview of the research into deaf children's bilingualism and bilingual education through a synthesis of studies published over the last 15 years. This review brings together the linguistic and pedagogical work on bimodal bilingualism to inform educational practice. The first section of the review provides a synthesis of…

  3. Nonlinear dynamics of the bimodal optical computer

    Science.gov (United States)

    Caulfield, H. John

    1999-03-01

    In the bimodal optical computer, linear and nonlinear acts occur in rapid succession generating solutions to Ax equals b. Both chaos and stochastic resonance can appear in some cases. This is the first observation of such complexity effects in optical processors.

  4. Pore-scale modeling of pore structure effects on P-wave scattering attenuation in dry rocks.

    Science.gov (United States)

    Wang, Zizhen; Wang, Ruihe; Li, Tianyang; Qiu, Hao; Wang, Feifei

    2015-01-01

    Underground rocks usually have complex pore system with a variety of pore types and a wide range of pore size. The effects of pore structure on elastic wave attenuation cannot be neglected. We investigated the pore structure effects on P-wave scattering attenuation in dry rocks by pore-scale modeling based on the wave theory and the similarity principle. Our modeling results indicate that pore size, pore shape (such as aspect ratio), and pore density are important factors influencing P-wave scattering attenuation in porous rocks, and can explain the variation of scattering attenuation at the same porosity. From the perspective of scattering attenuation, porous rocks can safely suit to the long wavelength assumption when the ratio of wavelength to pore size is larger than 15. Under the long wavelength condition, the scattering attenuation coefficient increases as a power function as the pore density increases, and it increases exponentially with the increase in aspect ratio. For a certain porosity, rocks with smaller aspect ratio and/or larger pore size have stronger scattering attenuation. When the pore aspect ratio is larger than 0.5, the variation of scattering attenuation at the same porosity is dominantly caused by pore size and almost independent of the pore aspect ratio. These results lay a foundation for pore structure inversion from elastic wave responses in porous rocks.

  5. Ring-opening metathesis polymerization based pore-size-selective functionalization of glycidyl methacrylate based monolithic media: access to size-stable nanoparticles for ligand-free metal catalysis.

    Science.gov (United States)

    Bandari, Rajendar; Höche, Thomas; Prager, Andrea; Dirnberger, Klaus; Buchmeiser, Michael R

    2010-04-19

    Monolithic polymeric supports have been prepared by electron-beam-triggered free-radical polymerization using a mixture of glycidyl methacrylate and trimethylolpropane triacrylate in 2-propanol, 1-dodecanol, and toluene. Under appropriate conditions, phase separation occurred, which resulted in the formation of a porous monolithic matrix that was characterized by large (convective) pores in the 30 μm range as well as pores of 7 nm were hydrolyzed by using poly(styrenesulfonic acid) (Mw = 69,400 g mol(-1), PDI=2.4). The remaining epoxy groups inside pores of nanoparticles 2 nm in diameter were formed. The palladium-nanoparticle-loaded monoliths were used in both Heck- and Suzuki-type coupling reactions achieving turnover numbers of up to 167,000 and 63,000, respectively. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Facial Pores: Definition, Causes, and Treatment Options.

    Science.gov (United States)

    Lee, Sang Ju; Seok, Joon; Jeong, Se Yeong; Park, Kui Young; Li, Kapsok; Seo, Seong Jun

    2016-03-01

    Enlarged skin pores refer to conditions that present with visible topographic changes of skin surfaces. Although not a medical concern, enlarged pores are a cosmetic concern for a large number of individuals. Moreover, clear definition and possible causes of enlarged pores have not been elucidated. To review the possible causes and treatment options for skin pores. This article is based on a review of the medical literature and the authors' clinical experience in investigating and treating skin pores. There are 3 major clinical causes of enlarged facial pores, namely high sebum excretion, decreased elasticity around pores, and increased hair follicle volume. In addition, chronic recurrent acne, sex hormones, and skin care regimen can affect pore size. Given the different possible causes for enlarged pores, therapeutic modalities must be individualized for each patient. Potential factors that contribute to enlarged skin pores include excessive sebum, decreased elasticity around pores, and increased hair follicle volume. Because various factors cause enlarged facial pores, it might be useful to identify the underlying causes to be able to select the appropriate treatment.

  7. Effective porosity and pore-throat sizes of mudrock saprolite from the Nolichucky Shale within Bear Creek Valley on the Oak Ridge Reservation: Implications for contaminant transport and retardation through matrix diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Dorsch, J. [Oak Ridge National Laboratory, TN (United States); Katsube, T.J. [Geological Survey of Canada, Ottawa, Ontario (Canada)

    1996-05-01

    Specimens of saprolite developed from mudrock of the Nolichucky Shale (Upper Cambrian, Conasauga Group) from the Whiteoak Mountain thrust sheet on the Oak Ridge Reservation (ORR) were analyzed. Petrophysical techniques include helium porosimetry and mercury porosimetry. Petrophysical data obtained from the laboratory experiments include effective porosity, pore-throat sizes and their distribution, specimen bulk-density, and specimen grain-density. It is expected that the data from this study will significantly contribute to constraining the modeling of the hydrologic behavior of saprolite developed from mudrock of the Conasauga Group in general and from the Nolichucky Shale specifically.

  8. The Efficiency of the Bimodal System Transportation

    Directory of Open Access Journals (Sweden)

    Nada Štrumberger

    2012-10-01

    Full Text Available The development of fast railway results in an increased applicationof Trailer Train bimodal system transportation. Thetraffic costs are multiply reduced, particularly the variablecosts. On the other hand the environmental pollution from exhaustgases is also reduced. Therefore, by the year 2010 cargotransport should be preponderant~v used which would be characterisedby fast electric trains producing less noise, at lowercosts and with clean environment.

  9. A bimodal flexible distribution for lifetime data

    OpenAIRE

    Ramires, Thiago G.; Ortega, Edwin M. M.; Cordeiro, Gauss M.; Hens, Niel

    2016-01-01

    A four-parameter extended bimodal lifetime model called the exponentiated log-sinh Cauchy distribution is proposed. It extends the log-sinh Cauchy and folded Cauchy distributions. We derive some of its mathematical properties including explicit expressions for the ordinary moments and generating and quantile functions. The method of maximum likelihood is used to estimate the model parameters. We implement the fit of the model in the GAMLSS package and provide the codes. The flexibility of the...

  10. Automatic facial pore analysis system using multi-scale pore detection.

    Science.gov (United States)

    Sun, J Y; Kim, S W; Lee, S H; Choi, J E; Ko, S J

    2017-08-01

    As facial pore widening and its treatments have become common concerns in the beauty care field, the necessity for an objective pore-analyzing system has been increased. Conventional apparatuses lack in usability requiring strong light sources and a cumbersome photographing process, and they often yield unsatisfactory analysis results. This study was conducted to develop an image processing technique for automatic facial pore analysis. The proposed method detects facial pores using multi-scale detection and optimal scale selection scheme and then extracts pore-related features such as total area, average size, depth, and the number of pores. Facial photographs of 50 subjects were graded by two expert dermatologists, and correlation analyses between the features and clinical grading were conducted. We also compared our analysis result with those of conventional pore-analyzing devices. The number of large pores and the average pore size were highly correlated with the severity of pore enlargement. In comparison with the conventional devices, the proposed analysis system achieved better performance showing stronger correlation with the clinical grading. The proposed system is highly accurate and reliable for measuring the severity of skin pore enlargement. It can be suitably used for objective assessment of the pore tightening treatments. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. The Effect of the Pore Entrance on Particle Motion in Slit Pores: Implications for Ultrathin Membranes.

    Science.gov (United States)

    Delavari, Armin; Baltus, Ruth

    2017-08-10

    Membrane rejection models generally neglect the effect of the pore entrance on intrapore particle transport. However, entrance effects are expected to be particularly important with ultrathin membranes, where membrane thickness is typically comparable to pore size. In this work, a 2D model was developed to simulate particle motion for spherical particles moving at small Re and infinite Pe from the reservoir outside the pore into a slit pore. Using a finite element method, particles were tracked as they accelerated across the pore entrance until they reached a steady velocity in the pore. The axial position in the pore where particle motion becomes steady is defined as the particle entrance length (PEL). PELs were found to be comparable to the fluid entrance length, larger than the pore size and larger than the thickness typical of many ultrathin membranes. Results also show that, in the absence of particle diffusion, hydrodynamic particle-membrane interactions at the pore mouth result in particle "funneling" in the pore, yielding cross-pore particle concentration profiles focused at the pore centerline. The implications of these phenomena on rejection from ultrathin membranes are examined.

  12. Impact of pore characteristics of silica materials on loading capacity and release behavior of ibuprofen

    Energy Technology Data Exchange (ETDEWEB)

    Numpilai, Thanapha [Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900 (Thailand); Muenmee, Suthaporn [Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900 (Thailand); Center for Advanced Studies in Nanotechnology and Its Applications in Chemical Food and Agricultural Industries, Kasetsart University, Bangkok 10900 (Thailand); Witoon, Thongthai, E-mail: fengttwi@ku.ac.th [Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900 (Thailand); Center for Advanced Studies in Nanotechnology and Its Applications in Chemical Food and Agricultural Industries, Kasetsart University, Bangkok 10900 (Thailand); NANOTEC-KU-Center of Excellence on Nanoscale Materials Design for Green Nanotechnology, Kasetsart University, Bangkok 10900 (Thailand)

    2016-02-01

    Impact of pore characteristics of porous silica supports on loading capacity and release behavior of ibuprofen was investigated. The porous silica materials and ibuprofen-loaded porous silica materials were thoroughly characterized by N{sub 2}-sorption, thermal gravimetric and derivative weight analyses (TG-DTW), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscope (TEM) to determine the physical properties of materials, amount of ibuprofen adsorbed and position of ibuprofen. The detailed characterization reveals that the ibuprofen molecules adsorbed inside the mesopores. Increasing the mesopore size from 5 nm to 10 nm increased the ibuprofen loading from 0.74 to 0.85 mmol/g, respectively. Incorporation of macropore into the structure of porous silica materials enhanced the ibuprofen loading capacity of 11.8–20.3%. The ibuprofen-loaded bimodal meso-macroporous silica materials exhibited the highest dissolution of 92 wt.% within an hour. The ibuprofen particles deposited on the external surface of the porous silica materials showed a lower dissolution rate than the ibuprofen adsorbed inside the mesopores due to the formation of ibuprofen crystalline. - Highlights: • Impacts of pore characteristics of supports on adsorption and release of ibuprofen • Increasing mesopore size increased the ibuprofen loading and dissolution rate. • Macropores reduced the diffusion pathway of ibuprofen and dissolution medium.

  13. Impact of pore characteristics of silica materials on loading capacity and release behavior of ibuprofen

    International Nuclear Information System (INIS)

    Numpilai, Thanapha; Muenmee, Suthaporn; Witoon, Thongthai

    2016-01-01

    Impact of pore characteristics of porous silica supports on loading capacity and release behavior of ibuprofen was investigated. The porous silica materials and ibuprofen-loaded porous silica materials were thoroughly characterized by N 2 -sorption, thermal gravimetric and derivative weight analyses (TG-DTW), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscope (TEM) to determine the physical properties of materials, amount of ibuprofen adsorbed and position of ibuprofen. The detailed characterization reveals that the ibuprofen molecules adsorbed inside the mesopores. Increasing the mesopore size from 5 nm to 10 nm increased the ibuprofen loading from 0.74 to 0.85 mmol/g, respectively. Incorporation of macropore into the structure of porous silica materials enhanced the ibuprofen loading capacity of 11.8–20.3%. The ibuprofen-loaded bimodal meso-macroporous silica materials exhibited the highest dissolution of 92 wt.% within an hour. The ibuprofen particles deposited on the external surface of the porous silica materials showed a lower dissolution rate than the ibuprofen adsorbed inside the mesopores due to the formation of ibuprofen crystalline. - Highlights: • Impacts of pore characteristics of supports on adsorption and release of ibuprofen • Increasing mesopore size increased the ibuprofen loading and dissolution rate. • Macropores reduced the diffusion pathway of ibuprofen and dissolution medium.

  14. Distribuição e tamanho de poros em três tipos de solos do estado de São Paulo Pore size-distribution in three types of soil of the state of São Paulo

    Directory of Open Access Journals (Sweden)

    F. Grohmann

    1960-01-01

    Full Text Available Curvas da distribuição e tamanho de poros dos solos terra-roxa-misturada, terra-roxa-legítima, arenito Bauru e de um bloco de areia foram obtidas pela aplicação das tensões 0-15, 15-30, 30-60 e 60-150 cm de altura de água. Estudaram-se as camadas 0-25, 25-50 e 50-80 cm de profundidade, com sua estrutura natural e em três repetições. Procurou-se, também, caracterizar a porosidade capilar (microporosidade e a não capilar (macroporosidade, tomando-se por base a tensão de 60 cm de altura de água. As curvas de distribuição e tamanho de poros mostram que nas terras roxa-misturada e roxa-legítima o tamanho e distribuição dos poros aumenta em profundidade no perfil de solo. Como conseqüência, a porosidade capilar, que é maior na camada superficial, decresce nas camadas mais profundas do perfil. Em um bloco de areia, com distribuição granulométrica conhecida, aplicamos também as mesmas tensões, e os dados obtidos mostram que 89,9% da água foi extraída do bloco a uma tensão de 30 cm de altura de água, e que 76% dos poros são maiores que 0,2 mm de diâmetro. A porosidade capilar é baixa, sendo elevada a porosidade não capilar.Natural soil cores were used in this study to obtain the pore size-distribution of the "terra-roxa-misturada", "terra-roxa-legítima" and "arenito Bauru". For textural comparison a sand core artificially packed was included in this group of soils. Data for pore space were obtained by water tensions of from 0-15, 15-30, 30-60 and 60-150 cm. The pore space at tension of 60 cm of water was used to define noncapitlary and capillary porosity. The tension-moisture curves of the "terra-roxa-misturada" and "terra-roxa-legíitima" indicated that in both soils the top soil hos a higher percentage of small pores than in the sub-soil. The capillary porosity is also higher in the top soil. In the "arenito Bauru" soil a large proportion of small pores is in the sub-soil. At 30 cm tension a high percentage of woter

  15. Nuclear pore structure: warming up the core.

    Science.gov (United States)

    Harel, Amnon; Gruenbaum, Yosef

    2011-07-22

    Structural determination of the nuclear pore complex has been limited by the complexity and size of this cellular megalith. By taking advantage of exceptionally stable nucleoporins from the thermophilic fungus Chaetomium thermophilum, Amlacher et al. (2011) provide new insight into a core element of the nuclear pore scaffold. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Effect of morphology and pore size of sulfonated mesoporous benzene-silicas in the preparation of poly(vinyl alcohol)-based hybrid nanocomposite membranes for direct methanol fuel cell application.

    Science.gov (United States)

    Cho, Eun-Bum; Kim, Hoyoung; Kim, Dukjoon

    2009-07-23

    Sulfonated mesoporous benzene-silicas were introduced into a poly(vinyl alcohol) (PVA) polymer matrix to act as a barrier for methanol crossover, to prepare composite electrolyte membranes for direct methanol fuel cell applications. Highly ordered 2D hexagonal mesoporous benzene-silicas were prepared using 1,4-bis(triethoxysilyl)benzene (BTEB) organosilica precursor and two kinds of organic templates, such as an octadecyltrimethylammonium bromide (ODTMA) and a Pluronic P123 poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer, to investigate the effect of the morphology and the pore size on the methanol permeability and the proton conductivity of the membranes. The sulfonated mesoporous benzene-silica and PVA were mixed with a sulfosuccinic acid (SSA) cross-linker to improve the membrane stability from mechanical and conductive viewpoints. The physical and chemical characterization of the hybrid electrolyte membranes was performed by varying the contents of sulfonated mesoporous benzene-silicas and SSA. All the hybrid membranes studied showed good performance in lowering the methanol crossover (i.e., approximately 68% reduction in comparison with the Nafion117 membrane), and mesoporous benzene-silica with smaller particle morphology and pores (2-3 nm) was observed to be a more effective additive.

  17. Reactive Sintering of Bimodal WC-Co Hardmetals

    OpenAIRE

    Marek Tarraste; Kristjan Juhani; Jüri Pirso; Mart Viljus

    2015-01-01

    Bimodal WC-Co hardmetals were produced using novel technology - reactive sintering. Milled and activated tungsten and graphite powders were mixed with commercial coarse grained WC-Co powder and then sintered. The microstructure of produced materials was free of defects and consisted of evenly distributed coarse and fine tungsten carbide grains in cobalt binder. The microstructure, hardness and fracture toughness of reactive sintered bimodal WC-Co hardmetals is exhibited. Developed bimodal har...

  18. Characterization of the Pore Structure of Functionalized Calcium Carbonate Tablets by Terahertz Time-Domain Spectroscopy and X-Ray Computed Microtomography.

    Science.gov (United States)

    Markl, Daniel; Wang, Parry; Ridgway, Cathy; Karttunen, Anssi-Pekka; Chakraborty, Mousumi; Bawuah, Prince; Pääkkönen, Pertti; Gane, Patrick; Ketolainen, Jarkko; Peiponen, Kai-Erik; Zeitler, J Axel

    2017-06-01

    Novel excipients are entering the market to enhance the bioavailability of drug particles by having a high porosity and, thus, providing a rapid liquid uptake and disintegration to accelerate subsequent drug dissolution. One example of such a novel excipient is functionalized calcium carbonate, which enables the manufacture of compacts with a bimodal pore size distribution consisting of larger interparticle and fine intraparticle pores. Five sets of functionalized calcium carbonate tablets with a target porosity of 45%-65% were prepared in 5% steps and characterized using terahertz time-domain spectroscopy and X-ray computed microtomography. Terahertz time-domain spectroscopy was used to derive the porosity using effective medium approximations, that is, the traditional and an anisotropic Bruggeman model. The anisotropic Bruggeman model yields the better correlation with the nominal porosity (R 2  = 0.995) and it provided additional information about the shape and orientation of the pores within the powder compact. The spheroidal (ellipsoids of revolution) shaped pores have a preferred orientation perpendicular to the compaction direction causing an anisotropic behavior of the dielectric porous medium. The results from X-ray computed microtomography confirmed the nonspherical shape and the orientation of the pores, and it further revealed that the anisotropic behavior is mainly caused by the interparticle pores. The information from both techniques provides a detailed insight into the pore structure of pharmaceutical tablets. This is of great interest to study the impact of tablet microstructure on the disintegration and dissolution performance. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Design of Pore Size and Functionality in Pillar-Layered Zn-Triazolate-Dicarboxylate Frameworks and Their High CO2/CH4 and C2 Hydrocarbons/CH4 Selectivity.

    Science.gov (United States)

    Zhai, Quan-Guo; Bai, Ni; Li, Shu'ni; Bu, Xianhui; Feng, Pingyun

    2015-10-19

    In the design of new materials, those with rare and exceptional compositional and structural features are often highly valued and sought after. On the other hand, materials with common and more accessible modes can often provide richer and unsurpassed compositional and structural variety that makes them a more suitable platform for systematically probing the composition-structure-property correlation. We focus here on one such class of materials, pillar-layered metal-organic frameworks (MOFs), because different pore size and shape as well as functionality can be controlled and adjusted by using pillars with different geometrical and chemical features. Our approach takes advantage of the readily accessible layered Zn-1,2,4-triazolate motif and diverse dicarboxylate ligands with variable length and functional groups, to prepare seven Zn-triazolate-dicarboxylate pillar-layered MOFs. Six different gases (N2, H2, CO2, C2H2, C2H4, and CH4) were used to systematically examine the dependency of gas sorption properties on chemical and geometrical properties of those MOFs as well as their potential applications in gas storage and separation. All of these pillar-layered MOFs show not only remarkable CO2 uptake capacity, but also high CO2 over CH4 and C2 hydrocarbons over CH4 selectivity. An interesting observation is that the BDC ligand (BDC = benzenedicarboxylate) led to a material with the CO2 uptake outperforming all other metal-triazolate-dicarboxylate MOFs, even though most of them are decorated with amino groups, generally believed to be a key factor for high CO2 uptake. Overall, the data show that the exploration of the synergistic effect resulting from combined tuning of functional groups and pore size may be a promising strategy to develop materials with the optimum integration of geometrical and chemical factors for the highest possible gas adsorption capacity and separation performance.

  20. Influence of Sintering Temperature on Pore Structure and Electrical properties of Technologically Modified MgO-Al2O3 Ceramics

    Directory of Open Access Journals (Sweden)

    Halyna Klym

    2015-03-01

    Full Text Available Technologically modified spinel ceramics are prepared from Al2O3 and 4MgCO3×Mg(OH2×5H2O powders at 1200, 1300 and 1400 oC. The influence of sintering temperature on porous structure and exploitation properties of obtained humidity-sensitive MgO-Al2O3 ceramics are studied. It is shown that increasing of preparing temperature from 1200 to 1400 oC result in transformation of pore size distribution in ceramics from tri- to bi-modal including the open macro- and mesopores with sizes from tem to hundreds nm and nanopores until to a few nm. The studied ceramic elements with electrical resistances ~ 10-2-102 MОhm are high humidity sensitive in the region of 30-95 % with minimal hysteresis in adsorption-desorption cycles. It is established that increasing of humidity sensitivity in ceramics are related to achievement near to optimum pore size distribution and quantity of pores in the all regions. Prolonged degradation transformation in ceramics at higher temperature and relative humidity result in lose sensitivity up to 40-50 %.DOI: http://dx.doi.org/10.5755/j01.ms.21.1.5189

  1. Speech Recognition and Cognitive Skills in Bimodal Cochlear Implant Users

    Science.gov (United States)

    Hua, Håkan; Johansson, Björn; Magnusson, Lennart; Lyxell, Björn; Ellis, Rachel J.

    2017-01-01

    Purpose: To examine the relation between speech recognition and cognitive skills in bimodal cochlear implant (CI) and hearing aid users. Method: Seventeen bimodal CI users (28-74 years) were recruited to the study. Speech recognition tests were carried out in quiet and in noise. The cognitive tests employed included the Reading Span Test and the…

  2. Bimodal condensation silicone elastomers as dielectric elastomers

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Skov, Anne Ladegaard

    as well as high electrical and mechanical breakdown strengths. [1] Most model elastomers are prepared by an end-linking process using a crosslinker with a certain functionality ƒ and a linear polymer with functional groups in both ends, and the resulting networks are so-called unimodal networks where...... unimodal refers to that there is one polymer only in the system. As an alternative to unimodal networks there are the bimodal networks where two polymers with significantly different molecular weights are mixed with one crosslinker. [2]Silicone rubber can be divided into condensation type and addition type...... elastomers were prepared by mixing different mass ratios (9:1, 8:2, 7:3, 6:4, 5:5, 4:6) between long polydimethylsiloxane (PDMS) chains and short PDMS chains. The resulting elastomers were investigated with respect to their rheology, dielectric properties, tensile strength, electrical breakdown, as well...

  3. Temperature and Pressure from Collapsing Pores in HMX

    Science.gov (United States)

    Hardin, D. Barrett

    2017-06-01

    The thermal and mechanical response of collapsing voids in HMX is analyzed. In this work, the focus is simulating the temperature and pressure fields arising from isolated, idealized pores as they collapse in the presence of a shock. HMX slabs are numerically generated which contain a single pore, isolated from the boundaries to remove all wave reflections. In order to understand the primary pore characteristics leading to temperature rise, a series of 2D, plane strain simulations are conducted on HMX slabs containing both cylindrical and elliptical pores of constant size equal to the area of a circular pore with a 1 micron diameter. Each of these pore types is then subjected to shock pressures ranging from a weak shock that is unable to fully collapse the pore to a strong shock which overwhelms the tendency for localization. Results indicate that as shock strength increases, pore collapse phenomenology for a cylindrical pore transitions from a mode dominated by localized melt cracking to an idealized hydrodynamic pore collapse. For the case of elliptical pores, the orientation causing maximum temperature and pressure rise is found. The relative heating in elliptical pores is then quantified as a function of pore orientation and aspect ratio for a pore of a given area. Distribution A: Distribution unlimited. (96TW 2017-0036).

  4. Pore structure in blended cement pastes

    DEFF Research Database (Denmark)

    Canut, Mariana Moreira Cavalcanti

    Supplementary cementitious materials (SCMs), such as slag and fly ash, are increasingly used as a substitute for Portland cement in the interests of improvement of engineering properties and sustainability of concrete. According to studies improvement of engineering properties can be explained...... supplement each other. Cement pastes (w/b=0.4) with and without slag and fly ash cured at two moisture (sealed and saturated) and temperature (20 and 55ºC) conditions were used to investigate the combined impact of SCMs addition and curing on the pore structure of pastes cured up to two years. Also...... volume and threshold pore size were found when comparing with plain cement paste at the same curing conditions. The porosity methods MIP, LTC and SEM have been shown to be suitable to characterise pore parameters of the pastes. MIP is a simple and fast method which covers a large range of pore sizes...

  5. Roles of factorial noise in inducing bimodal gene expression

    Science.gov (United States)

    Liu, Peijiang; Yuan, Zhanjiang; Huang, Lifang; Zhou, Tianshou

    2015-06-01

    Some gene regulatory systems can exhibit bimodal distributions of mRNA or protein although the deterministic counterparts are monostable. This noise-induced bimodality is an interesting phenomenon and has important biological implications, but it is unclear how different sources of expression noise (each source creates so-called factorial noise that is defined as a component of the total noise) contribute separately to this stochastic bimodality. Here we consider a minimal model of gene regulation, which is monostable in the deterministic case. Although simple, this system contains factorial noise of two main kinds: promoter noise due to switching between gene states and transcriptional (or translational) noise due to synthesis and degradation of mRNA (or protein). To better trace the roles of factorial noise in inducing bimodality, we also analyze two limit models, continuous and adiabatic approximations, apart from the exact model. We show that in the case of slow gene switching, the continuous model where only promoter noise is considered can exhibit bimodality; in the case of fast switching, the adiabatic model where only transcriptional or translational noise is considered can also exhibit bimodality but the exact model cannot; and in other cases, both promoter noise and transcriptional or translational noise can cooperatively induce bimodality. Since slow gene switching and large protein copy numbers are characteristics of eukaryotic cells, whereas fast gene switching and small protein copy numbers are characteristics of prokaryotic cells, we infer that eukaryotic stochastic bimodality is induced mainly by promoter noise, whereas prokaryotic stochastic bimodality is induced primarily by transcriptional or translational noise.

  6. Die Bonding Performance Using Bimodal Cu Particle Paste Under Different Sintering Atmospheres

    Science.gov (United States)

    Gao, Yue; Zhang, Hao; Li, Wanli; Jiu, Jinting; Nagao, Shijo; Sugahara, Tohru; Suganuma, Katsuaki

    2017-07-01

    A one-step polyol method was employed to synthesize bimodal Cu particles with average diameters around 200 nm and 1000 nm, respectively. The bimodal Cu particles were mixed with a reductive solvent of polyethylene glycol (PEG) to form a paste. The Cu paste was used as die bonding material to prepare Cu joints under N2 or vacuum sintering atmosphere. The results showed that the strength of the Cu joints in N2 atmosphere was always higher than that in vacuum. The shear strength of a Cu joint processed at 350°C under only 0.4 MPa bonding pressure in N2 was above 40 MPa, which was far higher than that obtained using single-sized nano-Cu particle paste. It is related to the dense packing of the bimodal Cu particles and slow decomposition behavior of the reductive PEG solvent. The reductive PEG solvent in the Cu paste, which effectively removed oxides on the surface of the Cu particles, was necessary for easy-oxidized Cu pastes. These results suggested that Cu pastes with suitable particle sizes, reducing solvent and sintering atmosphere could be a proper candidate for low-temperature and low-pressure bonding process.

  7. Pore size distribution in soils irrigated with sodic water and wastewater Distribuição de poros em solos irrigados com água salina e com água residuária

    Directory of Open Access Journals (Sweden)

    Roberta Alessandra Bruschi Gonçalves

    2010-06-01

    Full Text Available Soil porosity, especially pore size distribution, is an important controlling factor for soil infiltration, hydraulic conductivity, and water retention. This study aimed to verify the effect of secondary-treated domestic wastewater (STW on the porosity of a sandy loam Oxisol in the city of Lins, state of São Paulo, Brazil. The two-year experiment was divided into three plots: soil cultivated with corn and sunflower and irrigated with STW, soil cultivated and irrigated with sodic groundwater, and non-irrigated and non-cultivated soil (control. At the end of the experiment, undisturbed core samples were sampled from 0 to 2.0 m (8 depths. The water retention curves were obtained by tension plates and Richard's pressure plate apparatus, and the pore size distribution inferred from the retention curves. It was found that irrigation with treated wastewater and treated groundwater led to a decrease in microporosity (V MI, defined as the pore class ranging from 0.2 to 50 μm diameter. On the other hand, a significant increase in cryptoporosity (V CRI (A porosidade do solo, principalmente a distribuição dos poros, é um fator importante que controla a infiltração de água, condutividade hidráulica e retenção da água no solo. Este estudo teve como objetivo verificar os efeitos do efluente de estação de tratamento de esgoto (TSE na porosidade de um Latossolo de textura média. A área experimental foi dividida em três parcelas: solo cultivado com milho e girassol e irrigado com TSE (STW; solo cultivado e irrigado com água subterrânea sódica (W; e solo não cultivado e não irrigado (C-controle. No final de dois anos de experimento, amostras não deformadas de solo foram coletadas de 0 a 2,0 m (oito amostras. As curvas de retenção de água no solo foram obtidas com mesas de tensão e câmara de Richards, e a distribuição de poros no solo foi calculada a partir da derivação dessas curvas. Foi observado decréscimo da microporosidade V MI

  8. Development of a Repeatable Protocol to Uniformly Coat Internal Complex Geometries of Fine Featured 3D Printed Objects with Ceramic Material, including Determination of Viscosity Limits to Properly Coat Certain Pore Sizes

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-05-18

    HEPA filters are commonly used in air filtration systems ranging in application from simple home systems to the more advanced networks used in research and development. Currently, these filters are most often composed of glass fibers with diameter on the order of one micron with polymer binders. These fibers, as well as the polymers used, are known to be fragile and can degrade or become extremely brittle with heat, severely limiting their use in high temperature applications. Ceramics are one promising alternative and can enhance the filtration capabilities compared to the current technology. Because ceramic materials are more thermally resistant and chemically stable, there is great interest in developing a repeatable protocol to uniformly coat fine featured polymer objects with ceramic material for use as a filter. The purpose of this experiment is to determine viscosity limits that are able to properly coat certain pore sizes in 3D printed objects, and additionally to characterize the coatings themselves. Latex paint was used as a surrogate because it is specifically designed to produce uniform coatings.

  9. Fragmentation versus stability in bimodal coalitions

    Science.gov (United States)

    Galam, Serge

    1996-02-01

    Competing bimodal coalitions among a group of actors are discussed. First, a model from political sciences is revisited. Most of the model statements are found not to be contained in the model. Second, a new coalition model is built. It accounts for local versus global alignment with respect to the joining of a coalition. The existence of two competing world coalitions is found to yield one unique stable distribution of actors. On the opposite a unique world leadership allows the emergence of unstable relationships. In parallel to regular actors which have a clear coalition choice, “neutral”, “frustrated” and “risky” actors are produced. The cold war organisation after world war II is shown to be rather stable. The emergence of a fragmentation process from eastern group disappearance is explained as well as continuing western group stability. Some hints are obtained about possible policies to stabilize world nation relationships. European construction is analyzed with respect to European stability. Chinese stability is also discussed.

  10. Annual and diurnal precipitation bimodal distributions as simulated by WRF-based CORDEX-Cetral America

    Science.gov (United States)

    Angel, M. C.; Mejia, J.; Chang, H. I.; Ochoa, C. A.; Castro, C. L.

    2017-12-01

    We examine the ability of a regional climate model (RCM) to simulate the observed annual and diurnal cycles of precipitation over Central America (CA), the Caribbean Sea and NW South America (NWSA). The region's annual cycle is dominated by a bimodal precipitation annual cycle: over CA and the Caribbean, the mid-summer drought suppresses the rainy season in July-August; over the NWSA, and more pronouncedly over the Andes, the ITCZ meridional migration is argue to dominate the bimodal distribution of the annual cycle. The intricate land-ocean distribution, the complex terrain, and the long lasting mesoscale convective systems have been related to intricate bimodal diurnal distribution of precipitation over the far eastern Pacific and NWSA. A CORDEX-CA simulation based on the Weather and Research Forecasting (WRF) model at 25 km grid size driven by ERA-Interim reanalysis for the period 1979-2015 was implemented. The simulations were evaluated using surface observations and the research-based High-Resolution Satellite Precipitation Product from TRMM (3B42) and CMORPH. We use spectral analysis to estimate the mean phase and amplitude spatial patterns at annual and diurnal time scales. We further contrast the consistencies and differences using more focus and higher resolution simulations based on WRF and ERA-Interim at 10km and convection-permitting simulations (<4 km grid sizes). The research discusses the flow and orographic dependencies on the ability to adequately simulate the annual and diurnal bimodal distributions of precipitation. These comparisons provide a high-level validation of the WRF-based CORDEX-CA's ability to simulate one of the rainniest region on earth and its basic but challenging small-scale spatial-temporal climate variations.

  11. Bimodal metal micro-nanopowders for powder injection molding

    Science.gov (United States)

    Pervikov, Aleksandr; Rodkevich, Nikolay; Glazkova, Elena; Lerner, Marat

    2017-12-01

    The paper studies a bimodal metal powder composition designed to prepare feedstock for powder injection molding, as well as microstructure and porosity of sintered pats. Two kinds of metal powder compositions are used, in particular, a mixture of micro- and nanopowders and a bimodal powder prepared with dispersion of steel wire. The feedstock is prepared by mixing a bimodal metal powder composition with acetylacetone and paraffin wax. The microstructure of the debound parts is observed by scanning electron microscopy. The sintered parts are characterized by density measurements and metallographic analysis. The technique of the metal powder composition proves to affect the characteristics of sintered parts. Nanoparticles are shown in the interstitial spaces among the microparticles upon mixing micro- and nanopowders, but the regular distribution of nanoparticles on the surface of microparticles is observed in the bimodal powder providing the reduction of the porosity of sintered parts and increasing the density to the proper density of steel.

  12. Reactive Sintering of Bimodal WC-Co Hardmetals

    Directory of Open Access Journals (Sweden)

    Marek Tarraste

    2015-09-01

    Full Text Available Bimodal WC-Co hardmetals were produced using novel technology - reactive sintering. Milled and activated tungsten and graphite powders were mixed with commercial coarse grained WC-Co powder and then sintered. The microstructure of produced materials was free of defects and consisted of evenly distributed coarse and fine tungsten carbide grains in cobalt binder. The microstructure, hardness and fracture toughness of reactive sintered bimodal WC-Co hardmetals is exhibited. Developed bimodal hardmetal has perspective for demanding wear applications for its increased combined hardness and toughness. Compared to coarse material there is only slight decrease in fracture toughness (K1c is 14.7 for coarse grained and 14.4 for bimodal, hardness is increased from 1290 to 1350 HV units.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7511

  13. Bimodal distribution of damage morphology generated by ion implantation

    International Nuclear Information System (INIS)

    Mok, K.R.C.; Jaraiz, M.; Martin-Bragado, I.; Rubio, J.E.; Castrillo, P.; Pinacho, R.; Srinivasan, M.P.; Benistant, F.

    2005-01-01

    A nucleation and evolution model of damage based on amorphous pockets (APs) has recently been developed and implemented in an atomistic kinetic Monte Carlo simulator. In the model, APs are disordered structures (I n V m ), which are agglomerates of interstitials (I) and vacancies (V). This model has been used to study the composition and size distribution of APs during different ion implantations. Depending strongly on the dose rate, ion mass and implant temperature, the APs can evolve to a defect population where the agglomerates have a similar number of I and V (n ∼ m), or to a defect population with pure I (m ∼ 0) and pure V (n ∼ 0) clusters, or a mixture of APs and clusters. This behaviour corresponds to a bimodal (APs/clusters) distribution of damage. As the AP have different thermal stability compared to the I and V clusters, the same damage concentration obtained through different implant conditions has a different damage morphology and, consequently, exhibit a different resistance to subsequent thermal treatments

  14. Bimodal Programming: A Survey of Current Clinical Practice.

    Science.gov (United States)

    Siburt, Hannah W; Holmes, Alice E

    2015-06-01

    The purpose of this study was to determine the current clinical practice in approaches to bimodal programming in the United States. To be specific, if clinicians are recommending bimodal stimulation, who programs the hearing aid in the bimodal condition, and what method is used for programming the hearing aid? An 11-question online survey was created and sent via email to a comprehensive list of cochlear implant programming centers in the United States. The survey was sent to 360 recipients. Respondents in this study represented a diverse group of clinical settings (response rate: 26%). Results indicate little agreement about who programs the hearing aids, when they are programmed, and how they are programmed in the bimodal condition. Analysis of small versus large implant centers indicated small centers are less likely to add a device to the contralateral ear. Although a growing number of cochlear implant recipients choose to wear a hearing aid on the contralateral ear, there is inconsistency in the current clinical approach to bimodal programming. These survey results provide evidence of large variability in the current bimodal programming practices and indicate a need for more structured clinical recommendations and programming approaches.

  15. Reconstituted Fusion Pore

    OpenAIRE

    Jeremic, Aleksandar; Kelly, Marie; Cho, Sang-Joon; Stromer, Marvin H.; Jena, Bhanu P.

    2003-01-01

    Fusion pores or porosomes are basket-like structures at the cell plasma membrane, at the base of which, membrane-bound secretory vesicles dock and fuse to release vesicular contents. Earlier studies using atomic force microscopy (AFM) demonstrated the presence of fusion pores at the cell plasma membrane in a number of live secretory cells, revealing their morphology and dynamics at nm resolution and in real time. ImmunoAFM studies demonstrated the release of vesicular contents through the por...

  16. Fabrication of bimodal porous silicate with silicalite-1 core/mesoporous shell structures and synthesis of nonspherical carbon and silica nanocases with hollow core/mesoporous shell structures.

    Science.gov (United States)

    Yu, Jong-Sung; Yoon, Suk Bon; Lee, Yun Jo; Yoon, Kyung Byung

    2005-04-21

    In this work, an attempt has been made to modify the shape and nanostructure of core-shell materials, which have been usually generated on the basis of amorphous spherical cores. Novel core-shell silicate particles, each of which consists of a silicalite-1 zeolite crystal core and mesoporous shell (ZCMS), were synthesized for the first time. The ZCMS core-shell particles are unique because they are of pseudohexagonal prismatic shape and have hierarchical porosity of both a uniform microporous core and a mesoporous shell coexisting in a particle framework. The nonspherical bimodal porous core-shell particles were then utilized as templates to fabricate a new carbon replica structure. Interestingly, the pore replication process was carried out only through the mesopores in the shell, and not through the micropores due to the narrower micropore size in the core, resulting in nonspherical carbon nanocases with a hollow core and mesoporous shell (HCMS) structure. Nonspherical silica nanocases with HCMS structure were also generated by replication using the carbon nanocases as templates, which are not possible to synthesize through other synthetic methods. Interestingly, the pseudohexagonal prismatic shape of the zeolite crystals was transferred onto the carbon and silica nanocases.

  17. Facial skin pores: a multiethnic study.

    Science.gov (United States)

    Flament, Frederic; Francois, Ghislain; Qiu, Huixia; Ye, Chengda; Hanaya, Tomoo; Batisse, Dominique; Cointereau-Chardon, Suzy; Seixas, Mirela Donato Gianeti; Dal Belo, Susi Elaine; Bazin, Roland

    2015-01-01

    Skin pores (SP), as they are called by laymen, are common and benign features mostly located on the face (nose, cheeks, etc) that generate many aesthetic concerns or complaints. Despite the prevalence of skin pores, related literature is scarce. With the aim of describing the prevalence of skin pores and anatomic features among ethnic groups, a dermatoscopic instrument, using polarized lighting, coupled to a digital camera recorded the major features of skin pores (size, density, coverage) on the cheeks of 2,585 women in different countries and continents. A detection threshold of 250 μm, correlated to clinical scorings by experts, was input into a specific software to further allow for automatic counting of the SP density (N/cm(2)) and determination of their respective sizes in mm(2). Integrating both criteria also led to establishing the relative part of the skin surface (as a percentage) that is actually covered by SP on cheeks. The results showed that the values of respective sizes, densities, and skin coverage: 1) were recorded in all studied subjects; 2) varied greatly with ethnicity; 3) plateaued with age in most cases; and 4) globally refected self-assessment by subjects, in particular those who self-declare having "enlarged pores" like Brazilian women. Inversely, Chinese women were clearly distinct from other ethnicities in having very low density and sizes. Analyzing the present results suggests that facial skin pore's morphology as perceived by human eye less result from functional criteria of associated appendages such as sebaceous glands. To what extent skin pores may be viewed as additional criteria of a photo-altered skin is an issue to be further addressed.

  18. Pluto/Charon exploration utilizing a bi-modal PBR nuclear propulsion/power system

    Science.gov (United States)

    Venetoklis, Peter S.

    1995-01-01

    The paper describes a Pluto/Charon orbiter utilizing a bi-modal nuclear propulsion and power system based on the Particle Bed Reactor. The orbiter is sized for launch to Nuclear-Safe orbit atop a Titan IV or equivalent launch veicle. The bi-modal system provides thermal propulsion for Earth orbital departure and Pluto orbital capture, and 10 kWe of electric power for payload functions and for in-system maneuvering with ion thrusters. Ion thrusters are used to perform inclination changes about Pluto, a transfer from low Pluto orbit to low Charon orbit, and inclination changes about charon. A nominal payload can be deliverd in as little as 15 years, 1000 kg in 17 years, and close to 2000 kg in 20 years. Scientific return is enormously aided by the availability of up to 10 kWe, due to greater data transfer rates and more/better instruments. The bi-modal system can provide power at Pluto/Charon for 10 or more years, enabling an extremely robust, scientifically rewarding, and cost-effective exploration mission.

  19. Impact of gamma irradiation on porosity and pore distribution of poly [ethylene-oxide] films: correlation with dielectric and microstructural properties

    Science.gov (United States)

    Saha, Mou; Mukhopadhyay, Madhumita; Ray, Ruma

    2018-03-01

    The structure and morphology of polymers are significantly altered upon exposure to high energy gamma irradiation either through bond breakage i.e. scission or cross-linkage. The present article reports the influence of gamma radiation (1-20 kGy) on the distribution of molecular weight and porosity of the films prepared using irradiated and unirradiated poly-[ethylene oxide] (PEO) powder. The PEO films exhibit pore dimension in the range of 20-500 nm. Selective irradiation is capable of tailoring the pore-size and reducing the multimodal trait to uni-or bimodal upon high energy perturbation. The porosity of PEO films is determined from both 2D-pore surface calculation from SEM images and compared with 3D-BET porosity. Correlation is established among dielectric constant (ɛ') and porosity. The magnitude of ɛ' increases sharply towards low frequency due to electrode polarization effects. Relaxation time is found to be highest and comparable for 1 and 10 KGy. With increase in irradiation dose, scission is predominant, owing to which smaller polymer fragments are produced which are able to follow fast frequency regime and thereby relax at lesser time.

  20. Multiple Approaches to Characterizing Pore Structure in Natural Rock

    Science.gov (United States)

    Hu, Q.; Dultz, S.; Hamamoto, S.; Ewing, R. P.

    2012-12-01

    Microscopic characteristics of porous media - pore shape, pore-size distribution, and pore connectivity - control fluid flow and chemical transport, and are important in hydrogeological studies of rock formations in the context of energy, environmental, and water resources management. This presentation discusses various approaches to investigating pore structure of rock, with a particular focus on the Barnett Shale in north Texas used for natural gas production. Approaches include imbibition, tracer diffusion, porosimetry (MIP, vapor adsorption/desorption isotherms, NMR cyroporometry), and imaging (μ-tomography, Wood's metal impregnation, FIB/SEM). Results show that the Barnett Shale pores are predominantly in the nm size range, with a measured median pore-throat diameter of 6.5 nm. But small pore size is not the major contributor to low gas recovery; rather, the low gas diffusivity appears to be caused by low pore connectivity. Chemical diffusion in sparsely-connected pore spaces is not well described by classical Fickian behavior; anomalous behavior is suggested by percolation theory, and confirmed by results of imbibition tests. Our evolving complementary approaches, with their several advantages and disadvantages, provide a rich toolbox for tackling the pore structure characteristics in the Barnett Shale and other natural rocks.

  1. Pore Structure Characterization of Indiana Limestone and Pink Dolomite from Pore Network Reconstructions

    Directory of Open Access Journals (Sweden)

    Freire-Gormaly Marina

    2016-05-01

    Full Text Available Carbon sequestration in deep underground saline aquifers holds significant promise for reducing atmospheric carbon dioxide emissions (CO2. However, challenges remain in predicting the long term migration of injected CO2. Addressing these challenges requires an understanding of pore-scale transport of CO2 within existing brine-filled geological reservoirs. Studies on the transport of fluids through geological porous media have predominantly focused on oil-bearing formations such as sandstone. However, few studies have considered pore-scale transport within limestone and other carbonate formations, which are found in potential storage sites. In this work, high-resolution micro-Computed Tomography (microCT was used to obtain pore-scale structural information of two model carbonates: Indiana Limestone and Pink Dolomite. A modified watershed algorithm was applied to extract pore network from the reconstructed microCT volumetric images of rock samples and compile a list of pore-scale characteristics from the extracted networks. These include statistical distributions of pore size and radius, pore-pore separation, throat radius, and network coordination. Finally, invasion percolation algorithms were applied to determine saturation-pressure curves for the rock samples. The statistical distributions were comparable to literature values for the Indiana Limestone. This served as validation for the network extraction approach for Pink Dolomite, which has not been considered previously. Based on the connectivity and the pore-pore separation, formations such as Pink Dolomite may present suitable storage sites for carbon storage. The pore structural distributions and saturation curves obtained in this study can be used to inform core- and reservoir-scale modeling and experimental studies of sequestration feasibility.

  2. Localization ability with bimodal hearing aids and bilateral cochlear implants

    Science.gov (United States)

    Seeber, Bernhard U.; Baumann, Uwe; Fastl, Hugo

    2004-09-01

    After successful cochlear implantation in one ear, some patients continue to use a hearing aid at the contralateral ear. They report an improved reception of speech, especially in noise, as well as a better perception of music when the hearing aid and cochlear implant are used in this bimodal combination. Some individuals in this bimodal patient group also report the impression of an improved localization ability. Similar experiences are reported by the group of bilateral cochlear implantees. In this study, a survey of 11 bimodally and 4 bilaterally equipped cochlear implant users was carried out to assess localization ability. Individuals in the bimodal implant group were all provided with the same type of hearing aid in the opposite ear, and subjects in the bilateral implant group used cochlear implants of the same manufacturer on each ear. Subjects adjusted the spot of a computer-controlled laser-pointer to the perceived direction of sound incidence in the frontal horizontal plane by rotating a trackball. Two subjects of the bimodal group who had substantial residual hearing showed localization ability in the bimodal configuration, whereas using each single device only the subject with better residual hearing was able to discriminate the side of sound origin. Five other subjects with more pronounced hearing loss displayed an ability for side discrimination through the use of bimodal aids, while four of them were already able to discriminate the side with a single device. Of the bilateral cochlear implant group one subject showed localization accuracy close to that of normal hearing subjects. This subject was also able to discriminate the side of sound origin using the first implanted device alone. The other three bilaterally equipped subjects showed limited localization ability using both devices. Among them one subject demonstrated a side-discrimination ability using only the first implanted device.

  3. Fiscal 1998 research report. Survey on development and application of membranes with pores of micron to nano-meter sizes; 1998 nendo chosa kenkyu hokokusho. Makuro kara mikuro (nano mezo dai) size wo motsu, menburenmaku no kaihatsu narabi ni oyo ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Researches on preparation of membranes of various materials have been promoted by not systematic technique but separate techniques according to needs of concerned fields. To establish the efficient technique for membranes with pores of required uniform size according to needs of various industries, survey and study were made on process optimization and low-cost production method. Porous membrane is the leading candidate for new separation systems as separation medium in chemical industry, hot gas filtration for energy production and environmental purification engineering. The electrode, separator and gas storage medium of fuel cell vehicles and next-generation batteries require effective porous materials. The workshop on engineering porous materials held in May 1993 confirmed the time of following materials: High-efficiency gas separation membrane, chemical catalytic membrane, fuel cell electrode and absorbent for environmental purification. Development of inorganic membranes more excellent in high-temperature stability, strength, catalytic activity and corrosion resistance than previous polymer membranes is important. (NEDO)

  4. Merging history of three bimodal clusters

    Science.gov (United States)

    Maurogordato, S.; Sauvageot, J. L.; Bourdin, H.; Cappi, A.; Benoist, C.; Ferrari, C.; Mars, G.; Houairi, K.

    2011-01-01

    We present a combined X-ray and optical analysis of three bimodal galaxy clusters selected as merging candidates at z ~ 0.1. These targets are part of MUSIC (MUlti-Wavelength Sample of Interacting Clusters), which is a general project designed to study the physics of merging clusters by means of multi-wavelength observations. Observations include spectro-imaging with XMM-Newton EPIC camera, multi-object spectroscopy (260 new redshifts), and wide-field imaging at the ESO 3.6 m and 2.2 m telescopes. We build a global picture of these clusters using X-ray luminosity and temperature maps together with galaxy density and velocity distributions. Idealized numerical simulations were used to constrain the merging scenario for each system. We show that A2933 is very likely an equal-mass advanced pre-merger ~200 Myr before the core collapse, while A2440 and A2384 are post-merger systems (~450 Myr and ~1.5 Gyr after core collapse, respectively). In the case of A2384, we detect a spectacular filament of galaxies and gas spreading over more than 1 h-1 Mpc, which we infer to have been stripped during the previous collision. The analysis of the MUSIC sample allows us to outline some general properties of merging clusters: a strong luminosity segregation of galaxies in recent post-mergers; the existence of preferential axes - corresponding to the merging directions - along which the BCGs and structures on various scales are aligned; the concomitance, in most major merger cases, of secondary merging or accretion events, with groups infalling onto the main cluster, and in some cases the evidence of previous merging episodes in one of the main components. These results are in good agreement with the hierarchical scenario of structure formation, in which clusters are expected to form by successive merging events, and matter is accreted along large-scale filaments. Based on data obtained with the European Southern Observatory, Chile (programs 072.A-0595, 075.A-0264, and 079.A-0425

  5. Monte Carlo analysis of field water flow comparing uni- and bimodal effective hydraulic parameters for structured soil.

    Science.gov (United States)

    Coppola, A; Basile, A; Comegna, A; Lamaddalena, N

    2009-02-16

    Soil structure critically affects the hydrological behaviour of soils. In this paper, we examined the impact of areal heterogeneity of hydraulic properties of a structured soil on soil ensemble behaviour for various soil water flow processes with different top boundary conditions (redistribution and drainage plus evaporation and infiltration). Using a numerical solution of the Richards' equation in a stochastic framework, the ensemble characteristics and flow dynamics were studied for drying and wetting processes observed during a time interval of ten days when a series of relatively intense rainfall events occurred. The effects of using unimodal and bimodal interpretative models of hydraulic properties on the ensemble hydrological behaviour of the soil were illustrated by comparing predictions to mean water contents measured over time in several sites at field scale. Although the differences between unimodal and bimodal fitting are not significant in terms of goodness of fit, the differences in process predictions are considerable with the bimodal soil simulating water content measurements much better than unimodal soil. We also investigated the relative contribution of the soil variability of each parameter on the variance of the water contents obtained as the main output of the stochastic simulations. The variability of the structural parameter, weighting the two pore space fractions in the bimodal interpretative model, has the largest contribution to water content variance. The contribution of each parameter depends only partly on the coefficient of variation, much more on the sensitivity of the model to the parameters and on the flow process being observed. We observed that the contribution of the retention parameters to uncertainty increases during drainage processes; the opposite occurs with the hydraulic conductivity parameters.

  6. Aggressive Bimodal Communication in Domestic Dogs, Canis familiaris.

    Science.gov (United States)

    Déaux, Éloïse C; Clarke, Jennifer A; Charrier, Isabelle

    2015-01-01

    Evidence of animal multimodal signalling is widespread and compelling. Dogs' aggressive vocalisations (growls and barks) have been extensively studied, but without any consideration of the simultaneously produced visual displays. In this study we aimed to categorize dogs' bimodal aggressive signals according to the redundant/non-redundant classification framework. We presented dogs with unimodal (audio or visual) or bimodal (audio-visual) stimuli and measured their gazing and motor behaviours. Responses did not qualitatively differ between the bimodal and two unimodal contexts, indicating that acoustic and visual signals provide redundant information. We could not further classify the signal as 'equivalent' or 'enhancing' as we found evidence for both subcategories. We discuss our findings in relation to the complex signal framework, and propose several hypotheses for this signal's function.

  7. Aggressive Bimodal Communication in Domestic Dogs, Canis familiaris.

    Directory of Open Access Journals (Sweden)

    Éloïse C Déaux

    Full Text Available Evidence of animal multimodal signalling is widespread and compelling. Dogs' aggressive vocalisations (growls and barks have been extensively studied, but without any consideration of the simultaneously produced visual displays. In this study we aimed to categorize dogs' bimodal aggressive signals according to the redundant/non-redundant classification framework. We presented dogs with unimodal (audio or visual or bimodal (audio-visual stimuli and measured their gazing and motor behaviours. Responses did not qualitatively differ between the bimodal and two unimodal contexts, indicating that acoustic and visual signals provide redundant information. We could not further classify the signal as 'equivalent' or 'enhancing' as we found evidence for both subcategories. We discuss our findings in relation to the complex signal framework, and propose several hypotheses for this signal's function.

  8. Impact of pore characteristics of silica materials on loading capacity and release behavior of ibuprofen.

    Science.gov (United States)

    Numpilai, Thanapha; Muenmee, Suthaporn; Witoon, Thongthai

    2016-02-01

    Impact of pore characteristics of porous silica supports on loading capacity and release behavior of ibuprofen was investigated. The porous silica materials and ibuprofen-loaded porous silica materials were thoroughly characterized by N2-sorption, thermal gravimetric and derivative weight analyses (TG-DTW), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscope (TEM) to determine the physical properties of materials, amount of ibuprofen adsorbed and position of ibuprofen. The detailed characterization reveals that the ibuprofen molecules adsorbed inside the mesopores. Increasing the mesopore size from 5nm to 10nm increased the ibuprofen loading from 0.74 to 0.85mmol/g, respectively. Incorporation of macropore into the structure of porous silica materials enhanced the ibuprofen loading capacity of 11.8-20.3%. The ibuprofen-loaded bimodal meso-macroporous silica materials exhibited the highest dissolution of 92wt.% within an hour. The ibuprofen particles deposited on the external surface of the porous silica materials showed a lower dissolution rate than the ibuprofen adsorbed inside the mesopores due to the formation of ibuprofen crystalline. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. X-ray microtomography application in pore space reservoir rock.

    Science.gov (United States)

    Oliveira, M F S; Lima, I; Borghi, L; Lopes, R T

    2012-07-01

    Characterization of porosity in carbonate rocks is important in the oil and gas industry since a major hydrocarbons field is formed by this lithology and they have a complex media porous. In this context, this research presents a study of the pore space in limestones rocks by x-ray microtomography. Total porosity, type of porosity and pore size distribution were evaluated from 3D high resolution images. Results show that carbonate rocks has a complex pore space system with different pores types at the same facies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Bimodal porous TiO2 structures templated by graft copolymer/homopolymer blend for dye-sensitized solar cells with polymer electrolyte

    Science.gov (United States)

    Kim, Jin Kyu; Lee, Chang Soo; Lee, Sang-Yup; Cho, Hyung Hee; Kim, Jong Hak

    2016-12-01

    Bimodal porous TiO2 (BP-TiO2) with large surface area, high porosity, good interconnectivity, and excellent light-scattering ability are synthesized via a facile one-step method using a self-assembled blend template consisting of an amphiphilic poly(vinyl chloride)-g-poly(oxyethylene methacrylate) (PVC-g-POEM) graft copolymer and a hydrophobic poly(vinyl chloride) (PVC) homopolymer. The hydrophilically surface-modified TiO2 nanoparticles selectively interact with the hydrophilic POEM chains, while the addition of the PVC homopolymer increases the hydrophobic domain size, resulting in the formation of dual pores (i.e., macropores and mesopores). The sizes and numbers of macropores can easily be controlled by changing the molecular weight and amount of the PVC homopolymer. The polymer electrolyte dye-sensitized solar cells (DSSCs) fabricated with BP-TiO2 photoanodes exhibited energy conversion efficiencies of up to 7.6% at 100 mW cm-2, which is much higher than those of mesoporous TiO2 (5.8%) with PVC-g-POEM only and conventional nanocrystalline TiO2 (4.9%) with commercial Dyesol paste. The enhanced energy conversion efficiencies mostly resulted from the light-scattering effects of the macropores, which increased the light-harvesting efficiencies. The improved light-harvesting and photovoltaic performances of the DSSCs were characterized by UV-vis spectroscopy, incident photon-to-current conversion efficiency analysis, electrochemical impedance spectroscopy, intensity-modulated photocurrent spectroscopy, and intensity-modulated photovoltage spectroscopy.

  11. Aspects of stochastic resonance in Josephson junction, bimodal ...

    Indian Academy of Sciences (India)

    the noise amplitude helps to define maximum SNR or peak SNR for an optimum amplitude of input noise. Although .... Here we consider a typical 2-parameter bimodal cubic map defined by. Xn+1 = b + aXn − X3 n. (2) ... due to shuttling with chaotic input of a logistic map (called chaotic resonance) have been reported earlier ...

  12. Asymmetric Bimodal Exponential Power Distribution on the Real Line

    Directory of Open Access Journals (Sweden)

    Mehmet Niyazi Çankaya

    2018-01-01

    Full Text Available The asymmetric bimodal exponential power (ABEP distribution is an extension of the generalized gamma distribution to the real line via adding two parameters that fit the shape of peakedness in bimodality on the real line. The special values of peakedness parameters of the distribution are a combination of half Laplace and half normal distributions on the real line. The distribution has two parameters fitting the height of bimodality, so capacity of bimodality is enhanced by using these parameters. Adding a skewness parameter is considered to model asymmetry in data. The location-scale form of this distribution is proposed. The Fisher information matrix of these parameters in ABEP is obtained explicitly. Properties of ABEP are examined. Real data examples are given to illustrate the modelling capacity of ABEP. The replicated artificial data from maximum likelihood estimates of parameters of ABEP and other distributions having an algorithm for artificial data generation procedure are provided to test the similarity with real data. A brief simulation study is presented.

  13. Stochastic resonance and chaotic resonance in bimodal maps: A ...

    Indian Academy of Sciences (India)

    We present the results of an extensive numerical study on the phenomenon of stochastic resonance in a bimodal cubic map. Both Gaussian random noise as well as deterministic chaos are used as input to drive the system between the basins. Our main result is that when two identical systems capable of stochastic ...

  14. Moving Magnetic Features Around a Pore

    Energy Technology Data Exchange (ETDEWEB)

    Kaithakkal, A. J.; Riethmüller, T. L.; Solanki, S. K.; Lagg, A.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; VanNoort, M. [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, Göttingen D-37077 (Germany); Rodríguez, J. Blanco [Grupo de Astronomía y Ciencias del Espacio, Universidad de Valencia, E-46980 Paterna, Valencia (Spain); Iniesta, J. C. Del Toro; Suárez, D. Orozco [Instituto de Astrofísica de Andalucía (CSIC), Apartado de Correos 3004, E-18080 Granada (Spain); Schmidt, W. [Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, D-79104 Freiburg (Germany); Pillet, V. Martínez [National Solar Observatory, 3665 Discovery Drive, Boulder, CO 80303 (United States); Knölker, M., E-mail: anjali@mps.mpg.de [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States)

    2017-03-01

    Spectropolarimetric observations from Sunrise/IMaX, obtained in 2013 June, are used for a statistical analysis to determine the physical properties of moving magnetic features (MMFs) observed near a pore. MMFs of the same and opposite polarity, with respect to the pore, are found to stream from its border at an average speed of 1.3 km s{sup −1} and 1.2 km s{sup −1}, respectively, with mainly same-polarity MMFs found further away from the pore. MMFs of both polarities are found to harbor rather weak, inclined magnetic fields. Opposite-polarity MMFs are blueshifted, whereas same-polarity MMFs do not show any preference for up- or downflows. Most of the MMFs are found to be of sub-arcsecond size and carry a mean flux of ∼1.2 × 10{sup 17} Mx.

  15. The Pore Structure of Direct Methanol Fuel Cell Electrodes

    DEFF Research Database (Denmark)

    Lund, Peter Brilner

    2005-01-01

    The pore structure and morphology of direct methanol fuel cell electrodes are characterized using mercury intrusion porosimetry and scanning electron microscopy. It is found that the pore size distributions of printed primer and catalyst layers are largely dictated by the powders used to make...... the printing ink. The extent to which the pore structure is modified by changing several parameters in the membrane electrode assembly MEA manufacturing process is discussed. The pore structure of the printed layers is found to be invariant with respect to changes in powder loading or in choice of printing...... substrate, and is relatively undisturbed by MEA hot-pressing. Changing the source of the primer powder and adding a pore-forming agent to the catalyst ink are found to be successful methods of creating a more open pore structure in the printed layers....

  16. Preparation of micro-pored silicone elastomer through radiation crosslinking

    International Nuclear Information System (INIS)

    Gao Xiaoling; Gu Mei; Xie Xubing; Huang Wei

    2013-01-01

    The radiation crosslinking was adopted to prepare the micro-pored silicone elastomer, which was performed by vulcanization and foaming respectively. Radiation crosslinking is a new method to prepare micro-pored material with high performance by use of radiation technology. Silicon dioxide was used as filler, and silicone elastomer was vulcanized by electron beams, then the micro-pored material was made by heating method at a high temperature. The effects of absorbed dose and filler content on the performance and morphology were investigated. The structure and distribution of pores were observed by SEM. The results show that the micro-pored silicon elastomer can be prepared successfully by controlling the absorbed dose and filler content. It has a smooth surface similar to a rubber meanwhile the pores are round and unconnected to each other with the minimum size of 14 μm. And the good mechanical performance can be suitable for further uses. (authors)

  17. The role of martensitic transformation on bimodal grain structure in ultrafine grained AISI 304L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Sabooni, S., E-mail: s.sabooni@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of); Karimzadeh, F.; Enayati, M.H. [Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of); Ngan, A.H.W. [Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (China)

    2015-06-11

    In the present study, metastable AISI 304L austenitic stainless steel samples were subjected to different cold rolling reductions from 70% to 93%, followed by annealing at 700 °C for 300 min to form ultrafine grained (UFG) austenite with different grain structures. Transmission electron microscopy (TEM) and nanoindentation were used to characterize the martensitic transformation, in order to relate it to the bimodal distribution of the austenite grain size after subsequent annealing. The results showed that the martensite morphology changed from lath type in the 60% rolled sample to a mixture of lath and dislocation-cell types in the higher rolling reductions. Calculation of the Gibbs free energy change during the reversion treatment showed that the reversion mechanism is shear controlled at the annealing temperature and so the morphology of the reverted austenite is completely dependent on the morphology of the deformation induced martensite. It was found that the austenite had a bimodal grain size distribution in the 80% rolled and annealed state and this is related to the existence of different types of martensite. Increasing the rolling reduction to 93% followed by annealing caused changing of the grain structure to a monomodal like structure, which was mostly covered with small grains of around 300 nm. The existence of bimodal austenite grain size in the 80% rolled and annealed 304L stainless steel led to the improvement of ductility while maintaining a high tensile strength in comparison with the 93% rolled and annealed sample.

  18. HYDROXYETHYL METHACRYLATE BASED NANOCOMPOSITE HYDROGELS WITH TUNABLE PORE ARCHITECTURE

    Directory of Open Access Journals (Sweden)

    Erhan Bat

    2016-10-01

    Full Text Available Hydroxyethyl methacrylate (HEMA based hydrogels have found increasing number of applications in areas such as chromatographic separations, controlled drug release, biosensing, and membrane separations. In all these applications, the pore size and pore interconnectivity are crucial for successful application of these materials as they determine the rate of diffusion through the matrix. 2-Hydroxyethyl methacrylate is a water soluble monomer but its polymer, polyHEMA, is not soluble in water. Therefore, during polymerization of HEMA in aqueous media, a porous structure is obtained as a result of phase separation. Pore size and interconnectivity in these hydrogels is a function of several variables such as monomer concentration, cross-linker concentration, temperature etc. In this study, we investigated the effect of monomer concentration, graphene oxide addition or clay addition on hydrogel pore size, pore interconnectivity, water uptake, and thermal properties. PolyHEMA hydrogels have been prepared by redox initiated free radical polymerization of the monomer using ethylene glycol dimethacrylate as a cross-linker. As a nanofiller, a synthetic hectorite Laponite® XLG and graphene oxide were used. Graphene oxide was prepared by the Tour Method. Pore morphology of the pristine HEMA based hydrogels and nanocomposite hydrogels were studied by scanning electron microscopy. The formed hydrogels were found to be highly elastic and flexible. A dramatic change in the pore structure and size was observed in the range between 22 to 24 wt/vol monomer at 0.5 % of cross-linker. In this range, the hydrogel morphology changes from typical cauliflower architecture to continuous hydrogel with dispersed water droplets forming the pores where the pores are submicron in size and show an interconnected structure. Such controlled pore structure is highly important when these hydrogels are used for solute diffusion or when there’s flow through monolithic hydrogels

  19. The pore space scramble

    Science.gov (United States)

    Gormally, Alexandra; Bentham, Michelle; Vermeylen, Saskia; Markusson, Nils

    2015-04-01

    Climate change and energy security continue to be the context of the transition to a secure, affordable and low carbon energy future, both in the UK and beyond. This is reflected in for example, binding climate policy targets at the EU level, the introduction of renewable energy targets, and has also led to an increasing interest in Carbon Capture and Storage (CCS) technology with its potential to help mitigate against the effects of CO2 emissions from fossil fuel burning. The UK has proposed a three phase strategy to integrate CCS into its energy system in the long term focussing on off-shore subsurface storage (DECC, 2014). The potential of CCS therefore, raises a number of challenging questions and issues surrounding the long-term storage of CO2 captured and injected into underground spaces and, alongside other novel uses of the subsurface, contributes to opening a new field for discussion on the governance of the subsurface. Such 'novel' uses of the subsurface have lead to it becoming an increasingly contested space in terms of its governance, with issues emerging around the role of ownership, liability and property rights of subsurface pore space. For instance, questions over the legal ownership of pore space have arisen with ambiguity over the legal standpoint of the surface owner and those wanting to utilise the pore space for gas storage, and suggestions of whether there are depths at which legal 'ownership' becomes obsolete (Barton, 2014). Here we propose to discuss this 'pore space scramble' and provide examples of the competing trajectories of different stakeholders, particularly in the off-shore context given its priority in the UK. We also propose to highlight the current ambiguity around property law of pore space in the UK with reference to approaches currently taken in different national contexts. Ultimately we delineate contrasting models of governance to illustrate the choices we face and consider the ethics of these models for the common good

  20. Modeling branching pore structures in membrane filters

    Science.gov (United States)

    Sanaei, Pejman; Cummings, Linda J.

    2016-11-01

    Membrane filters are in widespread industrial use, and mathematical models to predict their efficacy are potentially very useful, as such models can suggest design modifications to improve filter performance and lifetime. Many models have been proposed to describe particle capture by membrane filters and the associated fluid dynamics, but most such models are based on a very simple structure in which the pores of the membrane are assumed to be simple circularly-cylindrical tubes spanning the depth of the membrane. Real membranes used in applications usually have much more complex geometry, with interconnected pores which may branch and bifurcate. Pores are also typically larger on the upstream side of the membrane than on the downstream side. We present an idealized mathematical model, in which a membrane consists of a series of bifurcating pores, which decrease in size as the membrane is traversed. Feed solution is forced through the membrane by applied pressure, and particles are removed from the feed either by sieving, or by particle adsorption within pores (which shrinks them). Thus the membrane's permeability decreases as the filtration progresses, ultimately falling to zero. We discuss how filtration efficiency depends on the characteristics of the branching structure. Partial support from NSF DMS 1261596 is gratefully acknowledged.

  1. Straight Pore Microfilter with Efficient Regeneration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project is directed toward development of a novel microfiltration filter that has distinctively narrow pore size...

  2. Straight Pore Microfilter with Efficient Regeneration, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase II project is directed toward development of a novel microfiltration filter that has distinctively narrow pore size...

  3. Time evolution of pore system in lime - Pozzolana composites

    Science.gov (United States)

    Doleželová, Magdaléna; Čáchová, Monika; Scheinherrová, Lenka; Keppert, Martin

    2017-11-01

    The lime - pozzolana mortars and plasters are used in restoration works on building cultural heritage but these materials are also following the trend of energy - efficient solutions in civil engineering. Porosity and pore size distribution is one of crucial parameters influencing engineering properties of porous materials. The pore size distribution of lime based system is changing in time due to chemical processes occurring in the material. The present paper describes time evolution of pore system in lime - pozzolana composites; the obtained results are useful in prediction of performance of lime - pozzolana systems in building structures.

  4. Impact of pore and pore-throat distributions on porosity-permeability evolution in heterogeneous mineral dissolution and precipitation scenarios

    Science.gov (United States)

    Beckingham, L. E.; Bensinger, J.; Steinwinder, J.

    2017-12-01

    Porosity and permeability in porous media can be altered by mineral dissolution and precipitation reactions, such as those following CO2 injection in saline aquifers. While the extent of reaction controls changes in porosity, the spatial location of geochemical reactions in individual pores and throats and in the greater pore network controls the evolution of permeability. Geochemical reactions have been observed to occur uniformly on all grain surfaces and non-uniformly, controlled by pore size, PeDa, or mineral distribution, for example. These discrete reaction patterns result in variations in pore scale porosity and corresponding differences in permeability. Macroscopic porosity-permeability relationships are often used to predict the evolution of permeability. These relationships, however, are unable to reflect non-uniform structure modifications. Using pore network modeling simulations, the permeability evolution for a range of uniform and non-uniform mineral reaction scenarios and the applicability of common macroscopic porosity—permeability relationships is investigated. The impact of variations in pore and pore-throat size distributions is evaluated using distributions for real sandstone samples complemented with synthetic distributions. Simulated permeability varies greatly for different reaction patterns. For an Alberta basin sandstone sample, macroscopic relationships are only able to reflect permeability alteration given a uniform reaction scenario where the extent of reaction is related to pore and pore-throat size. For this same sample, simulated permeability for uniform reactions with a fixed reaction thickness and all non-uniform reaction scenarios are unable to be captured using common porosity-permeability relationships. Size-dependent reaction scenarios, where reactions initiate in small or large pores, have the largest disagreement with the porosity-permeability relationships. In these scenarios, porosity-permeability resembles a step function

  5. Pore structure and growth kinetics in carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Bose, S.

    1978-04-01

    Pore structure of glassy carbon (GC) and pyrolytic graphite (PG) have been investigated. GC is one of the most impervious of solids finding applications in prosthetic devices and fuel cells while PG is used extensively in the aerospace industry. One third of the microstructure of GC consists of closed pores inaccessible to fluids. The microstructure of this material has been characterized using x-ray diffraction (XRD) and high resolution electron microscopy. Small angle x-ray scattering (SAXS) has been used to measure the angstrom sized pores and to follow the evolution of pore surface area as a function of heat treatment temperature (HTT) and heat treatment time (HTt) at constant temperature. From these measurements an analysis of the surface area kinetics was made to find out if rate processes are involved and to locate graphitization occurring at pore surfaces. PG on the other hand has been found to have larger sized pores that comprise five percent of its volume. In addition to being closed these pores are oriented. Some pore models are proposed for PG and the existing scattering theory from oriented ellipsoids is modified to include the proposed shapes.

  6. Rapid intensification and the bimodal distribution of tropical cyclone intensity.

    Science.gov (United States)

    Lee, Chia-Ying; Tippett, Michael K; Sobel, Adam H; Camargo, Suzana J

    2016-02-03

    The severity of a tropical cyclone (TC) is often summarized by its lifetime maximum intensity (LMI), and the climatological LMI distribution is a fundamental feature of the climate system. The distinctive bimodality of the LMI distribution means that major storms (LMI >96 kt) are not very rare compared with less intense storms. Rapid intensification (RI) is the dramatic strengthening of a TC in a short time, and is notoriously difficult to forecast or simulate. Here we show that the bimodality of the LMI distribution reflects two types of storms: those that undergo RI during their lifetime (RI storms) and those that do not (non-RI storms). The vast majority (79%) of major storms are RI storms. Few non-RI storms (6%) become major storms. While the importance of RI has been recognized in weather forecasting, our results demonstrate that RI also plays a crucial role in the TC climatology.

  7. The Development of Bimodal Bilingualism: Implications for Linguistic Theory.

    Science.gov (United States)

    Lillo-Martin, Diane; de Quadros, Ronice Müller; Pichler, Deborah Chen

    2016-01-01

    A wide range of linguistic phenomena contribute to our understanding of the architecture of the human linguistic system. In this paper we present a proposal dubbed Language Synthesis to capture bilingual phenomena including code-switching and 'transfer' as automatic consequences of the addition of a second language, using basic concepts of Minimalism and Distributed Morphology. Bimodal bilinguals, who use a sign language and a spoken language, provide a new type of evidence regarding possible bilingual phenomena, namely code-blending, the simultaneous production of (aspects of) a message in both speech and sign. We argue that code-blending also follows naturally once a second articulatory interface is added to the model. Several different types of code-blending are discussed in connection to the predictions of the Synthesis model. Our primary data come from children developing as bimodal bilinguals, but our proposal is intended to capture a wide range of bilingual effects across any language pair.

  8. A novel broadband bi-mode active frequency selective surface

    Science.gov (United States)

    Xu, Yang; Gao, Jinsong; Xu, Nianxi; Shan, Dongzhi; Song, Naitao

    2017-05-01

    A novel broadband bi-mode active frequency selective surface (AFSS) is presented in this paper. The proposed structure is composed of a periodic array of convoluted square patches and Jerusalem Crosses. According to simulation results, the frequency response of AFSS definitely exhibits a mode switch feature between band-pass and band-stop modes when the diodes stay in ON and OFF states. In order to apply a uniform bias to each PIN diode, an ingenious biasing network based on the extension of Wheatstone bridge is adopted in prototype AFSS. The test results are in good agreement with the simulation results. A further physical mechanism of the bi-mode AFSS is shown by contrasting the distribution of electric field on the AFSS patterns for the two working states.

  9. A novel broadband bi-mode active frequency selective surface

    Directory of Open Access Journals (Sweden)

    Yang Xu

    2017-05-01

    Full Text Available A novel broadband bi-mode active frequency selective surface (AFSS is presented in this paper. The proposed structure is composed of a periodic array of convoluted square patches and Jerusalem Crosses. According to simulation results, the frequency response of AFSS definitely exhibits a mode switch feature between band-pass and band-stop modes when the diodes stay in ON and OFF states. In order to apply a uniform bias to each PIN diode, an ingenious biasing network based on the extension of Wheatstone bridge is adopted in prototype AFSS. The test results are in good agreement with the simulation results. A further physical mechanism of the bi-mode AFSS is shown by contrasting the distribution of electric field on the AFSS patterns for the two working states.

  10. Wear behavior of light-cured resin composites with bimodal silica nanostructures as fillers.

    Science.gov (United States)

    Wang, Ruili; Bao, Shuang; Liu, Fengwei; Jiang, Xiaoze; Zhang, Qinghong; Sun, Bin; Zhu, Meifang

    2013-12-01

    To enhance wear behavior of resin composites, bimodal silica nanostructures including silica nanoparticles and silica nanoclusters were prepared and proposed as fillers. The silica nanoclusters, a combination of individually dispersed silica nanoparticles and their agglomerations, with size distribution of 0.07-2.70 μm, were fabricated by the coupling reaction between amino and epoxy functionalized silica nanoparticles, which were obtained by the surface modification of silica nanoparticles (~70 nm) using 3-aminopropyl triethoxysilane (APTES) and 3-glycidoxypropyl trimethoxysilane (GPS) as coupling agents, respectively. Silica nanoparticles and nanoclusters were then silanized with 3-methacryloxypropyl trimethoxysilane (γ-MPS) to prepare composites by mixing with bisphenol A glycerolate dimethacrylate (Bis-GMA) and tri (ethylene glycol) dimethacrylate (TEGDMA). Experimental composites with various filler compositions were prepared and their wear behaviors were assessed in this work. The results suggested that composites with increasing addition of silica nanoparticles in co-fillers possessed lower wear volume and smoother worn surface. Particularly, the composite 53:17 with the optimum weight ratio of silica nanoparticles and silica nanoclusters presented the excellent wear behavior with respect to that of the commercial Esthet-X, although the smallest wear volume was achieved by Z350 XT. The introduction of bimodal silica nanostructures as fillers might provide a new sight for the design of resin composites with significantly improved wear resistance. Crown Copyright © 2013. All rights reserved.

  11. Effects of Strain Rate on Compressive Properties in Bimodal 7075 Al-SiCp Composite

    Science.gov (United States)

    Lee, Hyungsoo; Choi, Jin Hyeok; Jo, Min Chul; Jo, Ilguk; Lee, Sang-Kwan; Lee, Sunghak

    2018-03-01

    A 7075 Al alloy matrix composite reinforced with SiC particulates (SiCps) whose sizes were 10 and 30 μm, i.e., a bimodal Al-SiCp composite, was made by a liquid pressing process, and its quasi-static and dynamic compressive properties were evaluated by using a universal testing machine and a split Hopkinson pressure bar, respectively. Mg-Si-, Al-Fe-, and Cu-rich intermetallic compounds existed inside the Al matrix, but might not deteriorate compressive properties because of their low volume fraction (about 2.6%) which was much lower than that of SiCp. The dynamic compressive strength was higher than the quasi-static strength, and was higher in the specimen tested at 2800 s-1 than in the specimen tested at 1400 s-1 according to the strain-rate hardening. For explaining the strain data, the blocking extent of crack propagation by the Al matrix was quantitatively examined. The melting of Al matrix occurred by adiabatic heating was favorable for the improvement in compressive strain because it favorably worked for activating the shear band formation and for blocking the crack propagation, thereby leading to the excellent compressive strain (10.9-11.6%) as well as maximum compressive strength (1057-1147 MPa). Thus, the present bimodal 7075 Al-SiCp composite provides a promise for new applications to high-performance armor plates.

  12. Mobile Education: Towards Affective Bi-modal Interaction for Adaptivity

    Directory of Open Access Journals (Sweden)

    Efthymios Alepis

    2009-04-01

    Full Text Available One important field where mobile technology can make significant contributions is education. However one criticism in mobile education is that students receive impersonal teaching. Affective computing may give a solution to this problem. In this paper we describe an affective bi-modal educational system for mobile devices. In our research we describe a novel approach of combining information from two modalities namely the keyboard and the microphone through a multi-criteria decision making theory.

  13. 'Bi-modal' isoscalar giant dipole strength in 58Ni

    International Nuclear Information System (INIS)

    Nayak, B.K.; Garg, U.; Hedden, M.; Koss, M.; Li, T.; Liu, Y.; Madhusudhana Rao, P.V.; Zhu, S.; Itoh, M.; Sakaguchi, H.; Takeda, H.; Uchida, M.; Yasuda, Y.; Yosoi, M.; Fujimura, H.; Fujiwara, M.; Hara, K.; Kawabata, T.; Akimune, H.; Harakeh, M.N.

    2006-01-01

    The strength distribution of the isoscalar giant dipole resonance (ISGDR) in 58 Ni has been obtained over the energy range 10.5-49.5 MeV via extreme forward angle scattering (including 0 deg.) of 386 MeV α particles. We observe a 'bi-modal' E1 strength distribution for the first time in an A<90 nucleus. The observed ISGDR strength distribution is in reasonable agreement with the predictions of a recent RPA calculation

  14. Studying Pore Structure of Nonwovens with 3D Imaging and Modeling Permeability

    Science.gov (United States)

    Baradari, Mehdi Gholipour

    Nonwovens are classified as a porous material and pore structure is named as the most important and complex feature of them. Since pore structure is out of control during any nonwovens manufacturing processes, many attempts have been made to measure the major characteristics of a pore network including: pore size, pore volume, pore surface area and pore shape. Among all pore characteristics, pore size due to its significant influence on many nonwovens applications such as filtration is counted as the most significant one. Generally, experiment, theoretical modeling and image analysis are the most common methods to measure pore size of nonwovens. Normally, pores in nonwovens make many convergences and divergences along the length and for this reason, many pore diameters could be assigned for a media. Due to inefficiency of the aforementioned techniques to measure all these diameters, they are not precise enough to study pore structure. The initial objective of this research is obtaining information of the pore structure, especially pore sizes, by applying image analysis techniques to a 3D image of nonwovens obtained through 3D imaging techniques such as DVI and micro CT. This 3D structure of the nonwoven media will be transformed to a graph, employing skeletonization through AvizoRTM software. The obtained graph exhibits topology, shape and connectivity of the pore structure for the utilized nonwoven. In this graph, each node and link would be a representative for pores intersection and body of pore, respectively. Saving the information of this graph results to some matrices/vectors including nodes coordinated, connectivity and nodes thickness, which exhibits the pore size. Therefore, all the pore sizes available in the structure will be extracted through this method. As expected, the information obtained from pore network is very complex consisting many numbers, so analyse them would be very difficult. Therefore, it was tried to use the saved information to model

  15. Pore roller filtration apparatus

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to the field of filtering, more precisely the present invention concerns an apparatus and a method for the separation of dry matter from a medium and the use of said apparatus. One embodiment discloses an apparatus for the separation of dry matter from a medium, comp...... of a pore roller and one other roller, means for establishing a pressure difference across the filter, means for passing filter and filter cake through the set of rollers, and a closure mechanism configured to control the transverse tension between the rollers......., comprising a pressure regulated separation chamber defined, in cross section, by a plurality of rollers mounted between opposing sidewalls, each of said rollers having a shaft adapted to be engaged with the sidewalls, a filter arranged so that it passes between at least one set of said rollers consisting...

  16. Integrative structure and functional anatomy of a nuclear pore complex

    Science.gov (United States)

    Kim, Seung Joong; Fernandez-Martinez, Javier; Nudelman, Ilona; Shi, Yi; Zhang, Wenzhu; Raveh, Barak; Herricks, Thurston; Slaughter, Brian D.; Hogan, Joanna A.; Upla, Paula; Chemmama, Ilan E.; Pellarin, Riccardo; Echeverria, Ignacia; Shivaraju, Manjunatha; Chaudhury, Azraa S.; Wang, Junjie; Williams, Rosemary; Unruh, Jay R.; Greenberg, Charles H.; Jacobs, Erica Y.; Yu, Zhiheng; de La Cruz, M. Jason; Mironska, Roxana; Stokes, David L.; Aitchison, John D.; Jarrold, Martin F.; Gerton, Jennifer L.; Ludtke, Steven J.; Akey, Christopher W.; Chait, Brian T.; Sali, Andrej; Rout, Michael P.

    2018-03-01

    Nuclear pore complexes play central roles as gatekeepers of RNA and protein transport between the cytoplasm and nucleoplasm. However, their large size and dynamic nature have impeded a full structural and functional elucidation. Here we determined the structure of the entire 552-protein nuclear pore complex of the yeast Saccharomyces cerevisiae at sub-nanometre precision by satisfying a wide range of data relating to the molecular arrangement of its constituents. The nuclear pore complex incorporates sturdy diagonal columns and connector cables attached to these columns, imbuing the structure with strength and flexibility. These cables also tie together all other elements of the nuclear pore complex, including membrane-interacting regions, outer rings and RNA-processing platforms. Inwardly directed anchors create a high density of transport factor-docking Phe-Gly repeats in the central channel, organized into distinct functional units. This integrative structure enables us to rationalize the architecture, transport mechanism and evolutionary origins of the nuclear pore complex.

  17. A pore water conductivity sensor

    NARCIS (Netherlands)

    Hilhorst, M.A.

    2001-01-01

    The electrical permittivity and conductivity of the bulk soil are a function of the permittivity and conductivity of the pore water. For soil water contents higher than 0.10 both functions are equal, facilitating in situ conductivity measurements of the pore water. A novel method is described, based

  18. Integrating SANS and fluid-invasion methods to characterize pore structure of typical American shale oil reservoirs.

    Science.gov (United States)

    Zhao, Jianhua; Jin, Zhijun; Hu, Qinhong; Jin, Zhenkui; Barber, Troy J; Zhang, Yuxiang; Bleuel, Markus

    2017-11-13

    An integration of small-angle neutron scattering (SANS), low-pressure N 2 physisorption (LPNP), and mercury injection capillary pressure (MICP) methods was employed to study the pore structure of four oil shale samples from leading Niobrara, Wolfcamp, Bakken, and Utica Formations in USA. Porosity values obtained from SANS are higher than those from two fluid-invasion methods, due to the ability of neutrons to probe pore spaces inaccessible to N 2 and mercury. However, SANS and LPNP methods exhibit a similar pore-size distribution, and both methods (in measuring total pore volume) show different results of porosity and pore-size distribution obtained from the MICP method (quantifying pore throats). Multi-scale (five pore-diameter intervals) inaccessible porosity to N 2 was determined using SANS and LPNP data. Overall, a large value of inaccessible porosity occurs at pore diameters pores in these shales. While each method probes a unique aspect of complex pore structure of shale, the discrepancy between pore structure results from different methods is explained with respect to their difference in measurable ranges of pore diameter, pore space, pore type, sample size and associated pore connectivity, as well as theoretical base and interpretation.

  19. Facial skin pores: a multiethnic study

    Directory of Open Access Journals (Sweden)

    Flament F

    2015-02-01

    Full Text Available Frederic Flament,1 Ghislain Francois,1 Huixia Qiu,2 Chengda Ye,2 Tomoo Hanaya,3 Dominique Batisse,3 Suzy Cointereau-Chardon,1 Mirela Donato Gianeti Seixas,4 Susi Elaine Dal Belo,4 Roland Bazin5 1Department of Applied Research and Development, L’Oreal Research and Innovation, Paris, France; 2Department of Applied Research and Development, L’Oreal Research and Innovation, Shanghai, People’s Republic of China; 3Department of Applied Research and Development, L’Oreal Research and Innovation, Tokyo, Japan; 4Department of Applied Research and Development, L’Oreal Research and Innovation, Rio de Janeiro, Brazil; 5RB Consult, Bievres, France Abstract: Skin pores (SP, as they are called by laymen, are common and benign features mostly located on the face (nose, cheeks, etc that generate many aesthetic concerns or complaints. Despite the prevalence of skin pores, related literature is scarce. With the aim of describing the prevalence of skin pores and anatomic features among ethnic groups, a dermatoscopic instrument, using polarized lighting, coupled to a digital camera recorded the major features of skin pores (size, density, coverage on the cheeks of 2,585 women in different countries and continents. A detection threshold of 250 µm, correlated to clinical scorings by experts, was input into a specific software to further allow for automatic counting of the SP density (N/cm2 and determination of their respective sizes in mm2. Integrating both criteria also led to establishing the relative part of the skin surface (as a percentage that is actually covered by SP on cheeks. The results showed that the values of respective sizes, densities, and skin coverage: 1 were recorded in all studied subjects; 2 varied greatly with ethnicity; 3 plateaued with age in most cases; and 4 globally reflected self-assessment by subjects, in particular those who self-declare having “enlarged pores” like Brazilian women. Inversely, Chinese women were clearly

  20. Relationship between pore structure and compressive strength of ...

    Indian Academy of Sciences (India)

    J BU

    [16] Shi C 1996 Strength, pore structure and permeability of alkali-activated slag mortars. Cem. Concr. Res. 26(10): 1789–. 1799. [17] O'Farrell M, Wild S and Sabir B B 2001 Pore size distribution and compressive strength of waste clay brick mortar. Cem. Concr. Res. 23(1): 81–91. [18] Wen C E, Yamada Y, Shimojima K, ...

  1. Small Low Mass Advanced PBR's for Bi-Modal Operation

    Science.gov (United States)

    Ludewig, Hans; Todosow, Michael; Powell, James R.

    1994-07-01

    A preliminary assessment is made of a low mass bi-modal reactor for use as a propulsion unit and as a heat source for generating electricity. This reactor is based on the particle bed reactor (PBR) concept. It will be able to generate both thrust and electricity simultaneously. This assessment indicates that the reactor can generate approximately 6.8 (4) N of thrust using hydrogen as a coolant, and 100 KWe using a closed Brayton cycle (CBC) power conversion system. Two cooling paths pass through the reactor allowing simultaneous operation of both modes. The development of all the components for this reactor are within the experience base of the NTP project.

  2. Bifurcation Structures in a Bimodal Piecewise Linear Map

    Directory of Open Access Journals (Sweden)

    Anastasiia Panchuk

    2017-05-01

    Full Text Available In this paper we present an overview of the results concerning dynamics of a piecewise linear bimodal map. The organizing principles of the bifurcation structures in both regular and chaotic domains of the parameter space of the map are discussed. In addition to the previously reported structures, a family of regions closely related to the so-called U-sequence is described. The boundaries of distinct regions belonging to these structures are obtained analytically using the skew tent map and the map replacement technique.

  3. Software Image J to study soil pore distribution

    Directory of Open Access Journals (Sweden)

    Sabrina Passoni

    2014-04-01

    Full Text Available In the soil science, a direct method that allows the study of soil pore distribution is the bi-dimensional (2D digital image analysis. Such technique provides quantitative results of soil pore shape, number and size. The use of specific softwares for the treatment and processing of images allows a fast and efficient method to quantify the soil porous system. However, due to the high cost of commercial softwares, public ones can be an interesting alternative for soil structure analysis. The objective of this work was to evaluate the quality of data provided by the Image J software (public domain used to characterize the voids of two soils, characterized as Geric Ferralsol and Rhodic Ferralsol, from the southeast region of Brazil. The pore distribution analysis technique from impregnated soil blocks was utilized for this purpose. The 2D image acquisition was carried out by using a CCD camera coupled to a conventional optical microscope. After acquisition and treatment of images, they were processed and analyzed by the software Noesis Visilog 5.4® (chosen as the reference program and ImageJ. The parameters chosen to characterize the soil voids were: shape, number and pore size distribution. For both soils, the results obtained for the image total porosity (%, the total number of pores and the pore size distribution showed that the Image J is a suitable software to be applied in the characterization of the soil sample voids impregnated with resin.

  4. Reactive transport in porous media: Pore-network model approach compared to pore-scale model

    Science.gov (United States)

    Varloteaux, Clément; Vu, Minh Tan; Békri, Samir; Adler, Pierre M.

    2013-02-01

    Accurate determination of three macroscopic parameters governing reactive transport in porous media, namely, the apparent solute velocity, the dispersion, and the apparent reaction rate, is of key importance for predicting solute migration through reservoir aquifers. Two methods are proposed to calculate these parameters as functions of the Péclet and the Péclet-Dahmköhler numbers. In the first method called the pore-scale model (PSM), the porous medium is discretized by the level set method; the Stokes and convection-diffusion equations with reaction at the wall are solved by a finite-difference scheme. In the second method, called the pore-network model (PNM), the void space of the porous medium is represented by an idealized geometry of pore bodies joined by pore throats; the flow field is computed by solving Kirchhoff's laws and transport calculations are performed in the asymptotic regime where the solute concentration undergoes an exponential evolution with time. Two synthetic geometries of porous media are addressed by using both numerical codes. The first geometry is constructed in order to validate the hypotheses implemented in PNM. PSM is also used for a better understanding of the various reaction patterns observed in the asymptotic regime. Despite the PNM approximations, a very good agreement between the models is obtained, which shows that PNM is an accurate description of reactive transport. PNM, which can address much larger pore volumes than PSM, is used to evaluate the influence of the concentration distribution on macroscopic properties of a large irregular network reconstructed from microtomography images. The role of the dimensionless numbers and of the location and size of the largest pore bodies is highlighted.

  5. Micro/Nano-pore Network Analysis of Gas Flow in Shale Matrix.

    Science.gov (United States)

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N; Gao, Shengyan

    2015-08-27

    The gas flow in shale matrix is of great research interests for optimized shale gas extraction. The gas flow in the nano-scale pore may fall in flow regimes such as viscous flow, slip flow and Knudsen diffusion. A 3-dimensional nano-scale pore network model was developed to simulate dynamic gas flow, and to describe the transient properties of flow regimes. The proposed pore network model accounts for the various size distributions and low connectivity of shale pores. The pore size, pore throat size and coordination number obey normal distribution, and the average values can be obtained from shale reservoir data. The gas flow regimes were simulated using an extracted pore network backbone. The numerical results show that apparent permeability is strongly dependent on pore pressure in the reservoir and pore throat size, which is overestimated by low-pressure laboratory tests. With the decrease of reservoir pressure, viscous flow is weakening, then slip flow and Knudsen diffusion are gradually becoming dominant flow regimes. The fingering phenomenon can be predicted by micro/nano-pore network for gas flow, which provides an effective way to capture heterogeneity of shale gas reservoir.

  6. Superplastically foaming method to make closed pores inclusive porous ceramics

    International Nuclear Information System (INIS)

    Kishimoto, Akira; Hayashi, Hidetaka

    2011-01-01

    Porous ceramics incorporates pores to improve several properties including thermal insulation maintaining inherenet ceramic properties such as corrosion resistance and large mechanical strength. Conventional porous ceramics is usually fabricated through an insufficient sintering. Since the sintering accompanies the exclusion of pores, it must be terminated at the early stage to maintain the high porosity, leading to degraded strength and durability. Contrary to this, we have innovated superplastically foaming method to make ceramic foams only in the solid state. In this method, the previously inserted foam agent evaporates after the full densification of matrix at around the sintering temperature. Closed pores expand utilizing the superplastic deformation driven by the evolved gas pressure. The typical features of this superplastically foaming method are listed as follows, 1. The pores are introduced after sintering the solid polycrystal. 2. Only closed pores are introduced, improving the insulation of gas and sound in addition to heat. 3. The pore walls are fully densified expecting a large mechanical strength. 4. Compared with the melt foaming method, this method is practical because the fabrication temperature is far below the melting point and it does not need molds. 5. The size and the location pores can be controlled by the amount and position of the foam agent.

  7. Human and mouse switch-like genes share common transcriptional regulatory mechanisms for bimodality

    Directory of Open Access Journals (Sweden)

    Tozeren Aydin

    2008-12-01

    Full Text Available Abstract Background Gene expression is controlled over a wide range at the transcript level through complex interplay between DNA and regulatory proteins, resulting in profiles of gene expression that can be represented as normal, graded, and bimodal (switch-like distributions. We have previously performed genome-scale identification and annotation of genes with switch-like expression at the transcript level in mouse, using large microarray datasets for healthy tissue, in order to study the cellular pathways and regulatory mechanisms involving this class of genes. We showed that a large population of bimodal mouse genes encoding for cell membrane and extracellular matrix proteins is involved in communication pathways. This study expands on previous results by annotating human bimodal genes, investigating their correspondence to bimodality in mouse orthologs and exploring possible regulatory mechanisms that contribute to bimodality in gene expression in human and mouse. Results Fourteen percent of the human genes on the HGU133A array (1847 out of 13076 were identified as bimodal or switch-like. More than 40% were found to have bimodal mouse orthologs. KEGG pathways enriched for bimodal genes included ECM-receptor interaction, focal adhesion, and tight junction, showing strong similarity to the results obtained in mouse. Tissue-specific modes of expression of bimodal genes among brain, heart, and skeletal muscle were common between human and mouse. Promoter analysis revealed a higher than average number of transcription start sites per gene within the set of bimodal genes. Moreover, the bimodal gene set had differentially methylated histones compared to the set of the remaining genes in the genome. Conclusion The fact that bimodal genes were enriched within the cell membrane and extracellular environment make these genes as candidates for biomarkers for tissue specificity. The commonality of the important roles bimodal genes play in tissue

  8. Highly Aminated Mesoporous Silica Nanoparticles with Cubic Pore Structure

    KAUST Repository

    Suteewong, Teeraporn

    2011-01-19

    Mesoporous silica with cubic symmetry has attracted interest from researchers for some time. Here, we present the room temperature synthesis of mesoporous silica nanoparticles possessing cubic Pm3n symmetry with very high molar ratios (>50%) of 3-aminopropyl triethoxysilane. The synthesis is robust allowing, for example, co-condensation of organic dyes without loss of structure. By means of pore expander molecules, the pore size can be enlarged from 2.7 to 5 nm, while particle size decreases. Adding pore expander and co-condensing fluorescent dyes in the same synthesis reduces average particle size further down to 100 nm. After PEGylation, such fluorescent aminated mesoporous silica nanoparticles are spontaneously taken up by cells as demonstrated by fluorescence microscopy.

  9. Effect of pore structure on chemico-osmotic, diffusion and hydraulic properties of mud-stones

    International Nuclear Information System (INIS)

    Takeda, M.; Manaka, M.; Ito, K.; Miyoshi, S.; Tokunaga, T.

    2012-01-01

    Formations in the Horonobe research area of Japan, where the Japan Atomic Energy Agency (JAEA) has been operating an Underground Research Laboratory. The rock samples are of cylindrical shape with 50 mm in diameter and 10 mm in length. The rock samples were immersed in 0.1 M NaCl solutions before experiments. The densities, specific surface area and cation exchange capacity were measured for the remains of drill cores from which the samples were taken. Pore radius distribution, average pore radius and porosity were also evaluated for each drill cores by mercury porosimetry. The permeability and chemical-osmosis experiments were performed in sequence on each rock sample under the confining pressures simulating in-situ effective stress condition. 0.1 M NaCl solution was used as permeant fluid in the permeability experiment, and the same solution was used as initial solution in the subsequent chemical-osmosis experiment. In the permeability experiment, a constant pressure was applied to the upper surface of rock sample. In the chemical-osmosis experiment, the bottom reservoir solution was replaced with 0.6 M NaCl solution. Both experiments were performed with the bottom reservoir isolated from the pressure buffer tank, and the progress of each experiment was monitored by measuring the bottom reservoir pressure. Figure 2 shows the chemico-osmotic, diffusion and hydraulic parameters determined for the Koetoi and Wakkanai mud-stone samples as functions of porosity. The diffusion and hydraulic parameters of these samples generally decrease with the decrease of porosity, while the osmotic efficiency is not a simple function of porosity. A relatively large osmotic efficiency was obtained only from a Wakkanai mud-stone sample with porosity of 0.33. The Wakkanai mud-stone samples have similar average pore radius, ranging from 6.8 to 7.6 nm; however, the Wakkanai mud-stone samples without large osmotic efficiency have bimodal pore structures. These suggest that even if small size pores

  10. Pore growth in U-Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Jeong, G.Y.; Sohn, D.-S. [Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 689-798 (Korea, Republic of); Jamison, L.M. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2016-09-15

    U-Mo/Al dispersion fuel is currently under development in the DOE’s Material Management and Minimization program to convert HEU-fueled research reactors to LEU-fueled reactors. In some demanding conditions in high-power and high-performance reactors, large pores form in the interaction layers between the U-Mo fuel particles and the Al matrix, which pose a potential to cause fuel failure. In this study, comprehension of the formation and growth of these pores was explored. As a product, a model to predict pore growth and porosity increase was developed. The model includes three major topics: fission gas release from the U-Mo and the IL to the pores, stress evolution in the fuel meat, and the effect of amorphous IL growth. Well-characterized in-pile data from reduced-size plates were used to fit the model parameters. A data set from full-sized plates, independent and distinctively different from those used to fit the model parameters, was used to examine the accuracy of the model. The model showed fair agreement with the measured data. The model suggested that the growth of the IL has a critical effect on pore growth, as both its material properties and energetics are favorable to pore formation. Therefore, one area of the current effort, focused on suppressing IL growth, appears to be on the right track to improve the performance of this fuel.

  11. The climatic imprint of bimodal distributions in vegetation cover for western Africa

    NARCIS (Netherlands)

    Yin, Z.; Dekker, S. C.; van den Hurk, B. J. J. M.; Dijkstra, H. A.

    2016-01-01

    Observed bimodal distributions of woody cover in western Africa provide evidence that alternative ecosystem states may exist under the same precipitation regimes. In this study, we show that bimodality can also be observed in mean annual shortwave radiation and above-ground biomass, which might

  12. Gaze-independent ERP-BCIs: augmenting performance through location-congruent bimodal stimuli

    Science.gov (United States)

    Thurlings, Marieke E.; Brouwer, Anne-Marie; Van Erp, Jan B. F.; Werkhoven, Peter

    2014-01-01

    Gaze-independent event-related potential (ERP) based brain-computer interfaces (BCIs) yield relatively low BCI performance and traditionally employ unimodal stimuli. Bimodal ERP-BCIs may increase BCI performance due to multisensory integration or summation in the brain. An additional advantage of bimodal BCIs may be that the user can choose which modality or modalities to attend to. We studied bimodal, visual-tactile, gaze-independent BCIs and investigated whether or not ERP components’ tAUCs and subsequent classification accuracies are increased for (1) bimodal vs. unimodal stimuli; (2) location-congruent vs. location-incongruent bimodal stimuli; and (3) attending to both modalities vs. to either one modality. We observed an enhanced bimodal (compared to unimodal) P300 tAUC, which appeared to be positively affected by location-congruency (p = 0.056) and resulted in higher classification accuracies. Attending either to one or to both modalities of the bimodal location-congruent stimuli resulted in differences between ERP components, but not in classification performance. We conclude that location-congruent bimodal stimuli improve ERP-BCIs, and offer the user the possibility to switch the attended modality without losing performance. PMID:25249947

  13. Nonlatching positive feedback enables robust bimodality by decoupling expression noise from the mean

    Science.gov (United States)

    Razooky, Brandon S.; Cao, Youfang; Hansen, Maike M. K.; Perelson, Alan S.; Simpson, Michael L.

    2017-01-01

    Fundamental to biological decision-making is the ability to generate bimodal expression patterns where 2 alternate expression states simultaneously exist. Here, we use a combination of single-cell analysis and mathematical modeling to examine the sources of bimodality in the transcriptional program controlling HIV’s fate decision between active replication and viral latency. We find that the HIV transactivator of transcription (Tat) protein manipulates the intrinsic toggling of HIV’s promoter, the long terminal repeat (LTR), to generate bimodal ON-OFF expression and that transcriptional positive feedback from Tat shifts and expands the regime of LTR bimodality. This result holds for both minimal synthetic viral circuits and full-length virus. Strikingly, computational analysis indicates that the Tat circuit’s noncooperative “nonlatching” feedback architecture is optimized to slow the promoter’s toggling and generate bimodality by stochastic extinction of Tat. In contrast to the standard Poisson model, theory and experiment show that nonlatching positive feedback substantially dampens the inverse noise-mean relationship to maintain stochastic bimodality despite increasing mean expression levels. Given the rapid evolution of HIV, the presence of a circuit optimized to robustly generate bimodal expression appears consistent with the hypothesis that HIV’s decision between active replication and latency provides a viral fitness advantage. More broadly, the results suggest that positive-feedback circuits may have evolved not only for signal amplification but also for robustly generating bimodality by decoupling expression fluctuations (noise) from mean expression levels. PMID:29045398

  14. Nonlatching positive feedback enables robust bimodality by decoupling expression noise from the mean

    Energy Technology Data Exchange (ETDEWEB)

    Razooky, Brandon S. [Rockefeller Univ., New York, NY (United States). Lab. of Virology and Infectious Disease; Gladstone Institutes (Virology and Immunology), San Francisco, CA (United States); Univ. of California, San Francisco, CA (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Univ. of Tennessee, Knoxville, TN (United States). Bredesen Center for Interdisciplinary; Cao, Youfang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hansen, Maike M. K. [Gladstone Institutes (Virology and Immunology), San Francisco, CA (United States); Perelson, Alan S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Simpson, Michael L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Univ. of Tennessee, Knoxville, TN (United States). Bredesen Center for Interdisciplinary; Weinberger, Leor S. [Gladstone Institutes (Virology and Immunology), San Francisco, CA (United States); Univ. of California, San Francisco, CA (United States). Dept. of Biochemistry and Biophysics; Univ. of California, San Francisco, CA (United States). QB3: California Inst. of Quantitative Biosciences; Univ. of California, San Francisco, CA (United States). Dept. of Pharmaceutical Chemistry

    2017-10-18

    Fundamental to biological decision-making is the ability to generate bimodal expression patterns where two alternate expression states simultaneously exist. Here in this study, we use a combination of single-cell analysis and mathematical modeling to examine the sources of bimodality in the transcriptional program controlling HIV’s fate decision between active replication and viral latency. We find that the HIV Tat protein manipulates the intrinsic toggling of HIV’s promoter, the LTR, to generate bimodal ON-OFF expression, and that transcriptional positive feedback from Tat shifts and expands the regime of LTR bimodality. This result holds for both minimal synthetic viral circuits and full-length virus. Strikingly, computational analysis indicates that the Tat circuit’s non-cooperative ‘non-latching’ feedback architecture is optimized to slow the promoter’s toggling and generate bimodality by stochastic extinction of Tat. In contrast to the standard Poisson model, theory and experiment show that non-latching positive feedback substantially dampens the inverse noise-mean relationship to maintain stochastic bimodality despite increasing mean-expression levels. Given the rapid evolution of HIV, the presence of a circuit optimized to robustly generate bimodal expression appears consistent with the hypothesis that HIV’s decision between active replication and latency provides a viral fitness advantage. More broadly, the results suggest that positive-feedback circuits may have evolved not only for signal amplification but also for robustly generating bimodality by decoupling expression fluctuations (noise) from mean expression levels.

  15. Bimodal distribution of glucose is not universally useful for diagnosing diabetes

    DEFF Research Database (Denmark)

    Vistisen, Dorte; Colagiuri, Stephen; Borch-Johnsen, Knut

    2009-01-01

    OBJECTIVE: Bimodality in the distribution of glucose has been used to define the cut point for the diagnosis of diabetes. Previous studies on bimodality have primarily been in populations with a high prevalence of type 2 diabetes, including one study in a white Caucasian population. All studies i...

  16. Isomap nonlinear dimensionality reduction and bimodality of Asian monsoon convection

    Science.gov (United States)

    Hannachi, A.; Turner, A. G.

    2013-04-01

    It is known that the empirical orthogonal function method is unable to detect possible nonlinear structure in climate data. Here, isometric feature mapping (Isomap), as a tool for nonlinear dimensionality reduction, is applied to 1958-2001 ERA-40 sea-level pressure anomalies to study nonlinearity of the Asian summer monsoon intraseasonal variability. Using the leading two Isomap time series, the probability density function is shown to be bimodal. A two-dimensional bivariate Gaussian mixture model is then applied to identify the monsoon phases, the obtained regimes representing enhanced and suppressed phases, respectively. The relationship with the large-scale seasonal mean monsoon indicates that the frequency of monsoon regime occurrence is significantly perturbed in agreement with conceptual ideas, with preference for enhanced convection on intraseasonal time scales during large-scale strong monsoons. Trend analysis suggests a shift in concentration of monsoon convection, with less emphasis on South Asia and more on the East China Sea.

  17. [What bimodal bilingual have to say about bilingual developing?

    Science.gov (United States)

    de Quadros, Ronice Müller; Lillo-Martin, Diane; Pichler, Deborah Chen

    2013-07-01

    The goal of this work is to present what our research with hearing children from Deaf parents, acquiring Brazilian Sign Language (Libras) and Portuguese, and American Sign Language (ASL) and English (Lillo-Martin et. al. 2010) have to say about bilingual development. The data analyzed in this study is part of the database of spontaneous interactions collected longitudinally, alternating contexts of sign and spoken languages. Moreover, there is data from experimental studies with tests in both pairs of languages that is incorporated to the present study. A general view about previous studies related to bimodal bilingual acquisition with hearing children, from "deaf" parents, will be presented. Then, we will show some linguistics aspects of this kind of acquisition found in our study and discuss about bilingual acquisition.

  18. Bimodal nature in low-energy fission of light actinides

    International Nuclear Information System (INIS)

    Nagame, Yuichiro; Nishinaka, Ichiro; Tsukada, Kazuaki; Ikezoe, Hiroshi; Otsuki, Tsutomu; Sueki, Keisuke; Nakahara, Hiromichi; Kudo, Hisaaki.

    1995-01-01

    To solve various problems in the mass division process of light actinoids, some experiments on the basis of bimodal fission were carried. Mass and kinetic energy distribution of Th-232 and U-238 were determined. Pa-225 (N= 134) and Pa-227 (N=136), fission nuclei, were produced by Bi-209 + 0-16 and Bi-209 + 0-18 heavy ion nucleus reactions, and the mass yield distribution were determined by the time-of-flight method and the radiochemical procedure. From the results, two independent deforming processes were proved in the fission process of light actinoid nuclei. On the deforming process through the low fission barrier, nucleus fissioned after small deformation under the influence of stabilization of the shell structure of fission product. In the case of process through the high barrier, however, the nucleus fissioned after large deformation. The unsymmetrical mass division was derived from the former and the symmetrical one from the latter. (S.Y.)

  19. Event-related potentials to visual, auditory, and bimodal (combined auditory-visual) stimuli.

    Science.gov (United States)

    Isoğlu-Alkaç, Ummühan; Kedzior, Karina; Keskindemirci, Gonca; Ermutlu, Numan; Karamursel, Sacit

    2007-02-01

    The purpose of this study was to investigate the response properties of event related potentials to unimodal and bimodal stimulations. The amplitudes of N1 and P2 were larger during bimodal evoked potentials (BEPs) than auditory evoked potentials (AEPs) in the anterior sites and the amplitudes of P1 were larger during BEPs than VEPs especially at the parieto-occipital locations. Responses to bimodal stimulation had longer latencies than responses to unimodal stimulation. The N1 and P2 components were larger in amplitude and longer in latency during the bimodal paradigm and predominantly occurred at the anterior sites. Therefore, the current bimodal paradigm can be used to investigate the involvement and location of specific neural generators that contribute to higher processing of sensory information. Moreover, this paradigm may be a useful tool to investigate the level of sensory dysfunctions in clinical samples.

  20. Multiple Approaches to Characterizing Nano-Pore Structure of Barnett Shale

    Science.gov (United States)

    Hu, Q.; Gao, Z.; Ewing, R. P.; Dultz, S.; Kaufmann, J.; Hamamoto, S.; Webber, B.; Ding, M.

    2013-12-01

    Microscopic characteristics of porous media - pore shape, pore-size distribution, and pore connectivity - control fluid flow and mass transport. This presentation discusses various approaches to investigating nano-pore structure of Barnett shale, with its implications in gas production behavior. The innovative approaches include imbibition, tracer diffusion, edge-accessible porosity, porosimetry (mercury intrusion porosimetry, nitrogen and water vapor sorption isotherms, and nuclear magnetic resonance cyroporometry), and imaging (Wood's metal impregnation followed with laser ablation-inductively coupled plasma-mass spectrometry, focused ion beam/scanning electron microscopy, and small angle neutron scattering). Results show that the shale pores are predominantly in the nm size range, with measured median pore-throat diameters about 5 nm. But small pore size is not the major contributor to low gas recovery; rather, the low mass diffusivity appears to be caused by low pore connectivity of Barnett shale. Chemical diffusion in sparsely-connected pore spaces is not well described by classical Fickian behavior; anomalous behavior is suggested by percolation theory, and confirmed by results of imbibition and diffusion tests. Our evolving complementary approaches, with their several advantages and disadvantages, provide a rich toolbox for tackling the nano-pore structure characteristics of shales and other natural rocks.

  1. Movement, drivers and bimodality of the South Asian High

    Directory of Open Access Journals (Sweden)

    M. Nützel

    2016-11-01

    Full Text Available The South Asian High (SAH is an important component of the summer monsoon system in Asia. In this study we investigate the location and drivers of the SAH at 100 hPa during the boreal summers of 1979 to 2014 on interannual, seasonal and synoptic timescales using seven reanalyses and observational data. Our comparison of the different reanalyses focuses especially on the bimodality of the SAH, i.e. the two preferred modes of the SAH centre location: the Iranian Plateau to the west and the Tibetan Plateau to the east. We find that only the National Centers for Environmental Prediction–National Center of Atmospheric Research (NCEP–NCAR reanalysis shows a clear bimodal structure of the SAH centre distribution with respect to daily and pentad (5 day mean data. Furthermore, the distribution of the SAH centre location is highly variable from year to year. As in simple model studies, which connect the SAH to heating in the tropics, we find that the mean seasonal cycle of the SAH and its centre are dominated by the expansion of convection in the South Asian region (70–130° E  ×  15–30° N on the south-eastern border of the SAH. A composite analysis of precipitation and outgoing long-wave radiation data with respect to the location of the SAH centre reveals that a more westward (eastward location of the SAH is related to stronger (weaker convection and rainfall over India and weaker (stronger precipitation over the western Pacific.

  2. A novel and robust method for testing bimodality and characterizing porcine adipocytes of adipose tissue of 5 purebred lines of pig.

    Science.gov (United States)

    Testroet, Eric D; Sherman, Peter; Yoder, Chad; Testroet, Amber; Reynolds, Carmen; O'Neil, Mathew; Lei, Soi Meng; Beitz, Donald C; Baas, Tom J

    2017-04-03

    Adipocyte sizes from adipose tissue of mature animals form a bimodal distribution, thus reporting mean cell size is misleading. The objectives of this study were to develop a robust method for testing bimodality of porcine adipocytes, describe the size distribution with an informative metric, and statistically test hypertrophy and appearance of new small adipocytes, possibly resulting from hyperplasia or lipid filling of previously divided fibroblastic cells. Ninety-three percent of adipose samples measured were bimodal (P testing hyperplasia or lipid filling of previously divided fibroblastic cells based upon the probability of an adipocyte falling into 2 chosen competing "bins" as adiposity increases. We also conclude that increased adiposity is correlated positively with an adipocyte being found in the minor mode (r = 0.46) and correlated negatively with an adipocyte being found in the major mode (r = -0.22), providing evidence of either hyperplasia or lipid filling of previously divided fibroblastic cells. We additionally conclude that as adiposity increases, the mode of the major distribution of cells occurs at a larger diameter of adipocyte, indicating hypertrophy.

  3. An investigation into the effects of pore connectivity on T2 NMR relaxation

    Science.gov (United States)

    Ghomeshi, Shahin; Kryuchkov, Sergey; Kantzas, Apostolos

    2018-04-01

    Nuclear Magnetic Resonance (NMR) is a powerful technique used to characterize fluids and flow in porous media. The NMR relaxation curves are closely related to pore geometry, and the inversion of the NMR relaxometry data is known to give useful information with regards to pore size distribution (PSD) through the relative amplitudes of the fluids stored in the small and large pores. While this information is crucial, the main challenge for the successful use of the NMR measurements is the proper interpretation of the measured signals. Natural porous media patterns consist of complex pore structures with many interconnected or "coupled" regions, as well as isolated pores. This connectivity along the throats changes the relaxation distribution and in order to properly interpret this data, a thorough understanding of the effects of pore connectivity on the NMR relaxation distribution is warranted. In this paper we address two main points. The first pertains to the fact that there is a discrepancy between the relaxation distribution obtained from experiments, and the ones obtained from solving the mathematical models of diffusion process in the digitized images of the pore space. There are several reasons that may attribute to this such as the lack of a proper incorporation of surface roughness into the model. However, here we are more interested in the effects of pore connectivity and to understand why the typical NMR relaxation distribution obtained from experiments are wider, while the numerical simulations predict that a wider NMR relaxation distribution may indicate poor connectivity. Secondly, by not taking into account the pore coupling effects, from our experience in interpreting the data, we tend to underestimate the pore volume of small pores and overestimate the amplitudes in the large pores. The role of pore coupling becomes even more prominent in rocks with small pore sizes such as for example in shales, clay in sandstones, and in the microstructures of

  4. Compressive behavior of pervious concretes and a quantification of the influence of random pore structure features

    International Nuclear Information System (INIS)

    Deo, Omkar; Neithalath, Narayanan

    2010-01-01

    Research highlights: → Identified the relevant pore structure features of pervious concretes, provided methodologies to extract those, and quantified the influence of these features on compressive response. → A model for stress-strain relationship of pervious concretes, and relationship between model parameters and parameters of the stress-strain relationship developed. → Statistical model for compressive strength as a function of pore structure features; and a stochastic model for the sensitivity of pore structure features in strength prediction. - Abstract: Properties of a random porous material such as pervious concrete are strongly dependent on its pore structure features, porosity being an important one among them. This study deals with developing an understanding of the material structure-compressive response relationships in pervious concretes. Several pervious concrete mixtures with different pore structure features are proportioned and subjected to static compression tests. The pore structure features such as pore area fractions, pore sizes, mean free spacing of the pores, specific surface area, and the three-dimensional pore distribution density are extracted using image analysis methods. The compressive stress-strain response of pervious concretes, a model to predict the stress-strain response, and its relationship to several of the pore structure features are outlined. Larger aggregate sizes and increase in paste volume fractions are observed to result in increased compressive strengths. The compressive response is found to be influenced by the pore sizes, their distributions and spacing. A statistical model is used to relate the compressive strength to the relevant pore structure features, which is then used as a base model in a Monte-Carlo simulation to evaluate the sensitivity of the predicted compressive strength to the model terms.

  5. Compressibility and tablet forming ability of bimodal granule mixtures: Experiments and DEM simulations.

    Science.gov (United States)

    Nordström, Josefina; Alderborn, Göran; Frenning, Göran

    2018-04-05

    Compressibility and tablet forming ability (compactibility) of bimodal mixtures of differently sized granules formed from microcrystalline cellulose were studied experimentally and numerically with the discrete element method (DEM). Compression data was analysed using the Kawakita equation. A multi-body contact law that accounts for contact dependence resulting from plastic incompressibility/geometric hardening was used in the DEM simulations. The experimental Kawakita a and 1/b parameters both depended non-monotonically on composition (weight fraction of large particles). For the a parameter, this dependence was explained by variations in the porosity of the initial granule beds; for the 1/b parameter, other factors were found to be of importance as well. The numerical results generally compared favourably with the experiments, demonstrating the usefulness of the DEM at high relative densities, provided that a suitable multi-particle contact model is used. For all mixtures, the tensile strength of the formed tablets increased with increasing applied pressure. The tensile strength generally decreased with increasing fraction of large particle, and this decrease was more rapid for large differences in particle size. A possible interpretation of these findings was proposed, in terms of differences in lateral support of small particles in the vicinity of large particles. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Involvement of IGF-1/IGFBP-3 signaling on the conspicuousness of facial pores.

    Science.gov (United States)

    Sugiyama-Nakagiri, Yoriko; Ohuchi, Atsushi; Hachiya, Akira; Kitahara, Takashi

    2010-11-01

    Conspicuous facial pores are one type of serious esthetic defects for many women. We previously reported that the severity of impairment of skin architecture around facial pores correlates well with the appearance of facial pores in several ethnic groups. In our last report, we showed that serum levels of insulin-like growth factor-1 (IGF-1) correlate well with facial pore size and with the severity of impairment of epidermal architecture around facial pores. However, our results could not fully explain the implication between facial pores and IGF signaling. In this study, we conducted a histological analysis of facial skin to determine whether potential changes in IGF-1 availability occur in the skin with or without conspicuous pores. Immunohistochemical observations showed that expression of insulin-like growth factor binding protein-3 (IGFBP-3) is limited to the suprapapillary epidermis around facial pores and to basal cells of rete pegs without tips in epidermis with conspicuous pores. In contrast, in basal cells of skin without conspicuous pores, IGFBP-3 expression is very low. Ki-67 and IGF-1 receptor-positive cells are abundant in basal cells in the tips of the rete pegs in skin with typical epidermal architecture around facial pores. No obvious differences were observed in the expression of filaggrin, involucrin, K1, K6 or K17 in skin with or without conspicuous pores. However, increased expression of K16 was observed in skin with conspicuous pores suggesting hyperproliferation. These results suggest that the IGF-1/IGFBP-3 signaling pathway is involved in the formation of conspicuous facial pores due to the epidermal architecture around facial pores.

  7. New Insights into Pore Characteristics and Hydrocarbon Generation of Shale Using Small-Angle Neutron Scattering

    Science.gov (United States)

    Ding, M.; Hartl, M.; Wang, Y.; Hjelm, R.

    2014-12-01

    Pore size, distribution, connectivity, and shape as well as hydrocarbon saturation and composition reflect the history of hydrocarbon maturation and migration. However, characterization of the underlying factors and processes controlling hydrocarbons behavior in tight rocks is extremely limited, especially lacking of direct experimental observations. We have studied the pore characteristics of marine and lacustrine shale from the Erdos basin, China during laboratory pyrolysis using small-angle neutron scattering (SANS). Our SANS results show that scattering intensity of smaller pores (industry.

  8. Effects of pore structure and distribution on strength of porous Cu-Sn-Ti alumina composites

    Directory of Open Access Journals (Sweden)

    Biao ZHAO

    2017-12-01

    Full Text Available Porous Cu-Sn-Ti alumina composites were fabricated by sintering Cu-Sn-Ti alloy powders, graphite particles, and alumina hollow particles agent. The effects of the pore structure and distribution on the composites strength were evaluated. Different pore distributions were modeled by using finite element analysis to investigate the tensile strength of the composites. Furthermore, a fractal analysis-based box-covering algorithm was used on the Cu-Sn-Ti alumina composites topology graphs to better investigate the pore structure and distribution. Results obtained show that different sizes and concentrations of alumina hollow particles could result in different porosities from 20% to 50%. A larger pore size and a higher pore concentration reduce the strength, but provide more space for chip formation as a bonding material of a grinding wheel. The body-centered pore structure of the composites shows the highest stress under a tension load. The original composites topology graphs have been transformed to ordered distributed pore graphs based on the total pore area conservation. The information dimension magnitude difference between the original topology graphs and the ordered distributed circulars graphs is found to be linear with the Cu-Sn-Ti alumina composites strength. A larger difference renders a lower flexural strength, which indicates that uniform ordered distributed pores could benefit the composites strength. Keywords: Finite element analysis (FEA, Metal-matrix composites (MMCs, Microstructural analysis, Pore structure, Strength

  9. Multi-tests for pore structure characterization-A case study using lamprophyre

    Science.gov (United States)

    Li, Zhen; Feng, Guorui; Luo, Yi; Hu, Shengyong; Qi, Tingye; Jiang, Haina; Guo, Jun; Bai, Jinwen; Du, Xianjie; Kang, Lixun

    2017-08-01

    The pore structure plays an important role to understand methane adsorption, storage and flow behavior of geological materials. In this paper, the multi-tests including N2 adsorption, mercury intrusion porosimetry (MIP) and CT reconstruction have been proposed on Tashan lamprophyre samples. The main findings are listed: (1) The pore size distribution has a broad range ranging from 2-100000nm, among which the adsorption pores (100nm) only account for 34% of total pore volume. (2) The lamprophyre open pores are mainly slit-like/plate-like and ink-bottle-shaped pores on a two-dimensional level. The lamprophyre 3D pore structure shows more stochastic and anisotropic extension on the z axis to form a complex pore system on a three-dimensional level. (3) The closed pores (>647nm) occupy averaged 74.86% and 72.75% of total pores (>647nm) volume and specific surface area indicating a poor connectivity pore system. The revealed results provide basic information for understanding the abnormal methane emission reasons in similar geological conditions with lamprophyre invasions.

  10. Multi-tests for pore structure characterization-A case study using lamprophyre

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2017-08-01

    Full Text Available The pore structure plays an important role to understand methane adsorption, storage and flow behavior of geological materials. In this paper, the multi-tests including N2 adsorption, mercury intrusion porosimetry (MIP and CT reconstruction have been proposed on Tashan lamprophyre samples. The main findings are listed: (1 The pore size distribution has a broad range ranging from 2-100000nm, among which the adsorption pores (100nm only account for 34% of total pore volume. (2 The lamprophyre open pores are mainly slit-like/plate-like and ink-bottle-shaped pores on a two-dimensional level. The lamprophyre 3D pore structure shows more stochastic and anisotropic extension on the z axis to form a complex pore system on a three-dimensional level. (3 The closed pores (>647nm occupy averaged 74.86% and 72.75% of total pores (>647nm volume and specific surface area indicating a poor connectivity pore system. The revealed results provide basic information for understanding the abnormal methane emission reasons in similar geological conditions with lamprophyre invasions.

  11. Investigation on pore structure and small-scale agglomeration ...

    Indian Academy of Sciences (India)

    The increase in the additives results in the modification in the pore size distribution and to some extent the total porosity. SANS revealed a mass fractal nature of the agglomerated matrix microstructure. The fractal dimension of the matrix does not change appreciably with the additives although the upper cut-off value of the ...

  12. Bimodal atomic force microscopy imaging of isolated antibodies in air and liquids

    Energy Technology Data Exchange (ETDEWEB)

    MartInez, N F; Lozano, J R; Herruzo, E T; Garcia, F; Garcia, R [Instituto de Microelectronica de Madrid, CSIC, Isaac Newton 8, 28760 Tres Cantos, Madrid (Spain); Richter, C; Sulzbach, T [NanoWorld Services GmbH, Schottkystrasse 10, 91058 Erlangen (Germany)], E-mail: rgarcia@imm.cnm.csic.es

    2008-09-24

    We have developed a dynamic atomic force microscopy (AFM) method based on the simultaneous excitation of the first two flexural modes of the cantilever. The instrument, called a bimodal atomic force microscope, allows us to resolve the structural components of antibodies in both monomer and pentameric forms. The instrument operates in both high and low quality factor environments, i.e., air and liquids. We show that under the same experimental conditions, bimodal AFM is more sensitive to compositional changes than amplitude modulation AFM. By using theoretical and numerical methods, we study the material contrast sensitivity as well as the forces applied on the sample during bimodal AFM operation.

  13. Software for micromorphometric characterization of soil pores obtained from 2-D image analysis

    Directory of Open Access Journals (Sweden)

    Miguel Cooper

    2016-08-01

    Full Text Available ABSTRACT Studies of soil porosity through image analysis are important to an understanding of how the soil functions. However, the lack of a simplified methodology for the quantification of the shape, number, and size of soil pores has limited the use of information extracted from images. The present work proposes a software program for the quantification and characterization of soil porosity from data derived from 2-D images. The user-friendly software was developed in C++ and allows for the classification of pores in terms of size, shape, and combinations of size and shape. Using raw data generated by image analysis systems, the software calculates the following parameters for the characterization of soil porosity: total area of pore (Tap, number of pores, pore shape, pore shape and pore area, and pore shape and equivalent pore diameter (EqDiam. In this paper, the input file with the raw soil porosity data was generated using the Noesis Visilog 5.4 image analysis system; however other image analysis programs can be used, in which case, the input file requires a standard format to permit processing by this software. The software also shows the descriptive statistics (mean, standard deviation, variance, and the coefficient of variation of the parameters considering the total number of images evaluated. The results show that the software is a complementary tool to any analysis of soil porosity, allowing for a precise and quick analysis.

  14. The pore-load modulus of ordered nanoporous materials with surface effects

    Science.gov (United States)

    Liu, Mingchao; Wu, Jian; Gan, Yixiang; Chen, C. Q.

    2016-03-01

    Gas and liquid adsorption-induced deformation of ordered porous materials is an important physical phenomenon with a wide range of applications. In general, the deformation can be characterized by the pore-load modulus and, when the pore size reduces to nanoscale, it is affected by surface effects and shows prominent size-dependent features. In this Letter, the influence of surface effects on the elastic properties of ordered nanoporous materials with internal pressure is accounted for in a single pore model. A porosity and surface elastic constants dependent closed form solution for the size dependent pore-load modulus is obtained and verified by finite element simulations and available experimental results. In addition, it is found to depend on the geometrical arrangement of pores. This study provides an efficient tool to analyze the surface effects on the elastic response of ordered nanoporous materials.

  15. Construction of Representative Pore Morphologies in Disordered Nanoporous Two-Phase Materials

    Energy Technology Data Exchange (ETDEWEB)

    Toney, Michael F

    2003-04-01

    Materials with nanometer size heterogeneities are commonplace in the physical and biological sciences and often exhibit complex morphologies. Although this morphology has a dramatic effect on the materials' properties (e.g., transport and reaction processes), it is often difficult to accurately characterize. We describe a method, using a novel analysis of small angle x-ray scattering data, of generating representative three-dimensional morphologies of isotropic two-phase materials (one class of heterogeneous materials) where the morphology is disordered. This is applied to thin films containing nanometer sized pores with a range of porosities (4-44%). These representations provide a visualization of the pore morphology, give the pore size scale and extent of interconnection, and permit the determination of the transitions from closed pore to interconnected pores to bicontinuous morphology. This methodology will be valuable for characterizing two-phase systems, such as polymer blends, microemulsions, porous geological materials, bones, cements and ceramics.

  16. Utterance independent bimodal emotion recognition in spontaneous communication

    Science.gov (United States)

    Tao, Jianhua; Pan, Shifeng; Yang, Minghao; Li, Ya; Mu, Kaihui; Che, Jianfeng

    2011-12-01

    Emotion expressions sometimes are mixed with the utterance expression in spontaneous face-to-face communication, which makes difficulties for emotion recognition. This article introduces the methods of reducing the utterance influences in visual parameters for the audio-visual-based emotion recognition. The audio and visual channels are first combined under a Multistream Hidden Markov Model (MHMM). Then, the utterance reduction is finished by finding the residual between the real visual parameters and the outputs of the utterance related visual parameters. This article introduces the Fused Hidden Markov Model Inversion method which is trained in the neutral expressed audio-visual corpus to solve the problem. To reduce the computing complexity the inversion model is further simplified to a Gaussian Mixture Model (GMM) mapping. Compared with traditional bimodal emotion recognition methods (e.g., SVM, CART, Boosting), the utterance reduction method can give better results of emotion recognition. The experiments also show the effectiveness of our emotion recognition system when it was used in a live environment.

  17. Plastic bimodal xylogenesis in conifers from continental Mediterranean climates.

    Science.gov (United States)

    Camarero, Jesús Julio; Olano, José Miguel; Parras, Alfonso

    2010-01-01

    *Seasonal radial-increment and xylogenesis data can help to elucidate how climate modulates wood formation in conifers. Few xylogenesis studies have assessed how plastic xylogenesis is in sympatric conifer species from continental Mediterranean areas, where low winter temperatures and summer drought constrain growth. *Here, we analysed intra-annual patterns of secondary growth in sympatric conifer species (Juniperus thurifera, Pinus halepensis and Pinus sylvestris). Two field sites (xeric and mesic) were evaluated using dendrometers, microcores and climatic data. *A bimodal pattern of xylogenesis characterized by spring and autumn precipitation and subsequent cambial reactivation was detected in J. thurifera at both study sites and in P. halepensis at the xeric site, but was absent in P. sylvestris where growth was largely controlled by day length. In the xeric site J. thurifera exhibited an increased response to water availability in autumn relative to P. halepensis and summer cambial suppression was more marked in J. thurifera than in P. halepensis. *Juniperus thurifera exhibited increased plasticity in its xylogenesis pattern compared with sympatric pines, enabling this species to occupy sites with more variable climatic conditions. The plastic xylogenesis patterns of junipers in drought-stressed areas may also provide them with a competitive advantage against co-occurring pines.

  18. Time-predictable bimodal volcanism in the Coso Range, California

    Science.gov (United States)

    Bacon, Charles R.

    1982-01-01

    The bimodal Pleistocene part of the Coso volcanic field has erupted rhyolite and basalt at constant long-term rates during the past ∼0.5 m.y. Both basalt and high-silica rhyolite were erupted in several independent, geologically brief episodes. The interval between eruptions of rhyolite was proportional to the volume of the preceding eruption. Basaltic eruptions appear to have followed a similar pattern. These time-predictable relations would be expected if (1) extensional strain accumulates in roof rocks at a constant rate, (2) the accumulated strain is relieved by near-vertical fractures, which serve as conduits for eruptions, and (3) the volume of erupted material is proportional to the sum of the conduit (dike) widths. The long-term eruption rate of rhyolite is about 5.4 km3/m.y.; that of basalt is about 2.8 km3/m.y. These rates are less than those of magma supply inferred from heat-flow and petrologic arguments by factors of between 100 and 200.

  19. Effect of freeze-thaw cycling on grain size of biochar.

    Science.gov (United States)

    Liu, Zuolin; Dugan, Brandon; Masiello, Caroline A; Wahab, Leila M; Gonnermann, Helge M; Nittrouer, Jeffrey A

    2018-01-01

    Biochar may improve soil hydrology by altering soil porosity, density, hydraulic conductivity, and water-holding capacity. These properties are associated with the grain size distributions of both soil and biochar, and therefore may change as biochar weathers. Here we report how freeze-thaw (F-T) cycling impacts the grain size of pine, mesquite, miscanthus, and sewage waste biochars under two drainage conditions: undrained (all biochars) and a gravity-drained experiment (mesquite biochar only). In the undrained experiment plant biochars showed a decrease in median grain size and a change in grain-size distribution consistent with the flaking off of thin layers from the biochar surface. Biochar grain size distribution changed from unimodal to bimodal, with lower peaks and wider distributions. For plant biochars the median grain size decreased by up to 45.8% and the grain aspect ratio increased by up to 22.4% after 20 F-T cycles. F-T cycling did not change the grain size or aspect ratio of sewage waste biochar. We also observed changes in the skeletal density of biochars (maximum increase of 1.3%), envelope density (maximum decrease of 12.2%), and intraporosity (porosity inside particles, maximum increase of 3.2%). In the drained experiment, mesquite biochar exhibited a decrease of median grain size (up to 4.2%) and no change of aspect ratio after 10 F-T cycles. We also document a positive relationship between grain size decrease and initial water content, suggesting that, biochar properties that increase water content, like high intraporosity and pore connectivity large intrapores, and hydrophilicity, combined with undrained conditions and frequent F-T cycles may increase biochar breakdown. The observed changes in biochar particle size and shape can be expected to alter hydrologic properties, and thus may impact both plant growth and the hydrologic cycle.

  20. Long n-alkanes isomerization by medium pore zeolites with pore mouth and key lock mechanisms; Isomerisation des paraffines longues par des zeolithes a pores moyens selon les mecanismes ouverture de pore et cle serrure

    Energy Technology Data Exchange (ETDEWEB)

    Claude, M.

    1999-10-01

    Skeletal isomerization of long n-alkanes is practiced to improve cold flow properties of diesel and lubricant fractions. In this work, model long n-alkanes (n-C{sub 10} - n-C{sub 24}) were hydro-isomerized in a fixed bed down flow vapour phase reactor loaded with bifunctional Pt/H-ZSM-22 zeolite catalyst. The skeletal isomers were analysed and identified with GC/MS. High isomer yields were obtained. The distribution of positional mono-methyl-branched isomers obtained from n-C{sub 12} to n-C{sub 24} are typically bimodal. This is explained by adsorption and reaction of the alkanes in pore mouths and locks on the external surface of the zeolite crystals. The pore mouth mode favours branching at C{sub 2} and C{sub 3}. The 'key lock' type proceeds by penetration of the two ends of the hydrocarbon chain into a different pore opening and favours more central mono-branching of the chain. The contribution of the key lock mode increases with increasing chain length and with the reaction temperature. The preferentially formed dimethyl-branched isomers have a separation between branchings of three up to fourteen carbon atoms. The formation of the second methyl-branching occurs preferentially from a centrally branched mono-methyl-branched isomer, so that the second branching is generated always more toward the end of the chain. Owing to the differences in adsorption entropy among the locks, at higher temperatures the largest lock is preferred and the distance between the two branching along the carbon chain in the preferred isomers is biggest. Thus the work resulted in the formulation of structure-selectivity relationships. n-C{sub 18} was hydro-isomerized on other zeolites. The nature and distribution of the isomers obtained suggest that the tubular 10-ring zeolites ZSM-23, ZSM-35 and SAPO-11 also operate according to pore mouth and key lock concepts. Zeolites with 12-rings show typical product patterns for catalysis in absence of steric hindrance. (author)

  1. Effect of bimodal harmonic structure design on the deformation behaviour and mechanical properties of Co-Cr-Mo alloy.

    Science.gov (United States)

    Vajpai, Sanjay Kumar; Sawangrat, Choncharoen; Yamaguchi, Osamu; Ciuca, Octav Paul; Ameyama, Kei

    2016-01-01

    In the present work, Co-Cr-Mo alloy compacts with a unique bimodal microstructural design, harmonic structure design, were successfully prepared via a powder metallurgy route consisting of controlled mechanical milling of pre-alloyed powders followed by spark plasma sintering. The harmonic structured Co-Cr-Mo alloy with bimodal grain size distribution exhibited relatively higher strength together with higher ductility as compared to the coarse-grained specimens. The harmonic Co-Cr-Mo alloy exhibited a very complex deformation behavior wherein it was found that the higher strength and the high retained ductility are derived from fine-grained shell and coarse-grained core regions, respectively. Finally, it was observed that the peculiar spatial/topological arrangement of stronger fine-grained and ductile coarse-grained regions in the harmonic structure promotes uniformity of strain distribution, leading to improved mechanical properties by suppressing the localized plastic deformation during straining. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Bimodal behavior of post-measured entropy and one-way quantum deficit for two-qubit X states

    Science.gov (United States)

    Yurischev, Mikhail A.

    2018-01-01

    A method for calculating the one-way quantum deficit is developed. It involves a careful study of post-measured entropy shapes. We discovered that in some regions of X-state space the post-measured entropy \\tilde{S} as a function of measurement angle θ \\in [0,π /2] exhibits a bimodal behavior inside the open interval (0,π /2), i.e., it has two interior extrema: one minimum and one maximum. Furthermore, cases are found when the interior minimum of such a bimodal function \\tilde{S}(θ ) is less than that one at the endpoint θ =0 or π /2. This leads to the formation of a boundary between the phases of one-way quantum deficit via finite jumps of optimal measured angle from the endpoint to the interior minimum. Phase diagram is built up for a two-parameter family of X states. The subregions with variable optimal measured angle are around 1% of the total region, with their relative linear sizes achieving 17.5%, and the fidelity between the states of those subregions can be reduced to F=0.968. In addition, a correction to the one-way deficit due to the interior minimum can achieve 2.3%. Such conditions are favorable to detect the subregions with variable optimal measured angle of one-way quantum deficit in an experiment.

  3. Pore water colloid properties in argillaceous sedimentary rocks

    OpenAIRE

    Degueldre, Claude; Cloet, Veerle

    2016-01-01

    The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions ...

  4. Multiscale Pore Throat Network Reconstruction of Tight Porous Media Constrained by Mercury Intrusion Capillary Pressure and Nuclear Magnetic Resonance Measurements

    Science.gov (United States)

    Xu, R.; Prodanovic, M.

    2017-12-01

    Due to the low porosity and permeability of tight porous media, hydrocarbon productivity strongly depends on the pore structure. Effective characterization of pore/throat sizes and reconstruction of their connectivity in tight porous media remains challenging. Having a representative pore throat network, however, is valuable for calculation of other petrophysical properties such as permeability, which is time-consuming and costly to obtain by experimental measurements. Due to a wide range of length scales encountered, a combination of experimental methods is usually required to obtain a comprehensive picture of the pore-body and pore-throat size distributions. In this work, we combine mercury intrusion capillary pressure (MICP) and nuclear magnetic resonance (NMR) measurements by percolation theory to derive pore-body size distribution, following the work by Daigle et al. (2015). However, in their work, the actual pore-throat sizes and the distribution of coordination numbers are not well-defined. To compensate for that, we build a 3D unstructured two-scale pore throat network model initialized by the measured porosity and the calculated pore-body size distributions, with a tunable pore-throat size and coordination number distribution, which we further determine by matching the capillary pressure vs. saturation curve from MICP measurement, based on the fact that the mercury intrusion process is controlled by both the pore/throat size distributions and the connectivity of the pore system. We validate our model by characterizing several core samples from tight Middle East carbonate, and use the network model to predict the apparent permeability of the samples under single phase fluid flow condition. Results show that the permeability we get is in reasonable agreement with the Coreval experimental measurements. The pore throat network we get can be used to further calculate relative permeability curves and simulate multiphase flow behavior, which will provide valuable

  5. Pore former induced porosity in LSM/CGO cathodes for electrochemical cells for flue gas purification

    DEFF Research Database (Denmark)

    Skovgaard, M.; Andersen, Kjeld Bøhm; Kammer Hansen, Kent

    2012-01-01

    In this study the effect of the characteristics of polymethyl methacrylate (PMMA) pore formers on the porosity, pore size distribution and the air flow through the prepared lanthanum strontium manganate/gadolinium-doped cerium oxide (LSM/CGO) cathodes was investigated. Porous cathodes were obtained...

  6. Capillary pressure-saturation relationships for porous granular materials: Pore morphology method vs. pore unit assembly method

    Science.gov (United States)

    Sweijen, Thomas; Aslannejad, Hamed; Hassanizadeh, S. Majid

    2017-09-01

    In studies of two-phase flow in complex porous media it is often desirable to have an estimation of the capillary pressure-saturation curve prior to measurements. Therefore, we compare in this research the capability of three pore-scale approaches in reproducing experimentally measured capillary pressure-saturation curves. To do so, we have generated 12 packings of spheres that are representative of four different glass-bead packings and eight different sand packings, for which we have found experimental data on the capillary pressure-saturation curve in the literature. In generating the packings, we matched the particle size distributions and porosity values of the granular materials. We have used three different pore-scale approaches for generating the capillary pressure-saturation curves of each packing: i) the Pore Unit Assembly (PUA) method in combination with the Mayer and Stowe-Princen (MS-P) approximation for estimating the entry pressures of pore throats, ii) the PUA method in combination with the hemisphere approximation, and iii) the Pore Morphology Method (PMM) in combination with the hemisphere approximation. The three approaches were also used to produce capillary pressure-saturation curves for the coating layer of paper, used in inkjet printing. Curves for such layers are extremely difficult to determine experimentally, due to their very small thickness and the presence of extremely small pores (less than one micrometer in size). Results indicate that the PMM and PUA-hemisphere method give similar capillary pressure-saturation curves, because both methods rely on a hemisphere to represent the air-water interface. The ability of the hemisphere approximation and the MS-P approximation to reproduce correct capillary pressure seems to depend on the type of particle size distribution, with the hemisphere approximation working well for narrowly distributed granular materials.

  7. The effect of ethylene glycol on pore arrangement of anodic aluminium oxide prepared by hard anodization

    Science.gov (United States)

    Guo, Yang; Zhang, Li; Han, Mangui; Wang, Xin; Xie, Jianliang; Deng, Longjiang

    2018-03-01

    The influence of the addition of ethylene glycol (EG) on the pore self-ordering process in anodic aluminium oxide (AAO) membranes prepared by hard anodization (HA) was investigated. It was illustrated that EG has a substantial effect on the pore arrangement of AAO, and it was found that a smaller pore size can be obtained with an EG concentration reaching 20 wt% in aqueous electrolyte. The number of estimated defects of AAO increases significantly with an increase in EG concentration to 50 wt%. Excellent ordering of pores was realized when the samples were anodized in the 30 wt%-EG-containing aqueous electrolyte.

  8. Hierarchically templated beads with tailored pore structure for phosphopeptide capture and phosphoproteomics

    DEFF Research Database (Denmark)

    Wierzbicka, Celina; Torsetnes, Silje B.; Jensen, Ole N.

    2017-01-01

    Two templating approaches to produce imprinted phosphotyrosine capture beads with a controllable pore structure are reported and compared with respect to their ability to enrich phosphopeptides from a tryptic peptide mixture. The beads were prepared by the polymerization of urea-based host monomers...... and crosslinkers inside the pores of macroporous silica beads with both free and immobilized template. In the final step the silica was removed by fluoride etching resulting in mesoporous polymer replicas with narrow pore size distributions, pore diameters ≈ 10 nm and surface area > 260 m2 g-1. The beads displayed...

  9. Thermal stability of bimodal microstructure in magnesium alloy AZ91 processed by ECAP

    Energy Technology Data Exchange (ETDEWEB)

    Pantělejev, Libor, E-mail: pantelejev@fme.vutbr.cz [Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno (Czech Republic); NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno (Czech Republic); Štěpánek, Roman [Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno (Czech Republic); NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno (Czech Republic); Man, Ondřej [Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno (Czech Republic)

    2015-09-15

    The changes in microstructure of equal channel angular pressing (ECAP) processed magnesium alloy AZ91 during thermal exposure were studied in this paper. The microstructure stability was investigated by means of electron backscatter diffraction (EBSD), which allowed to measure the changes in grain size, mutual ratio of low-angle boundaries (LABs) to high-angle ones (HABs) and local lattice distortion evaluated by the kernel average misorientation (KAM) parameter. It was found experimentally that the threshold temperature at which significant grain coarsening takes place is 350 °C. No modification to mean grain diameter occurs below this temperature, nonetheless, some changes in LAB and HAB fraction, as well as in local lattice distortion, can be observed. - Highlights: • Thermal stability of bimodal UFG AZ91 alloy was assessed by means of EBSD. • Threshold temperature for pronounced grain coarsening was found at 350 °C. • Below 350 °C increase in LAB fraction and local lattice distortion takes place. • Local lattice distortion (LLD) can be well described using KAM approach. • LLD is influenced by coarsening and precipitation of Mg{sub 17}Al{sub 12} particles.

  10. Alumina ceramics prepared with new pore-forming agents

    Directory of Open Access Journals (Sweden)

    Zuzana Živcová

    2008-06-01

    Full Text Available Porous ceramics have a wide range of applications at all length scales, ranging from fi ltration membranes and catalyst supports to biomaterials (scaffolds for bone ingrowths and thermally or acoustically insulating bulk materials or coating layers. Organic pore-forming agents (PFAs of biological origin can be used to control porosity, pore size and pore shape. This work concerns the characterization and testing of several less common pore-forming agents (lycopodium, coffee, fl our and semolina, poppy seed, which are of potential interest from the viewpoint of size, shape or availability. The performance of these new PFAs is compared to that of starch, which has become a rather popular PFA for ceramics during the last decade. The PFAs investigated in this work are in the size range from 5 μm (rice starch to approximately 1 mm (poppy seed, all with more or less isometric shape. The burnout behavior of PFAs is studied by thermal analysis, i.e. thermogravimetry and differential thermal analysis. For the preparation of porous alumina ceramics from alumina suspensions containing PFAs traditional slip casting (into plaster molds and starch consolidation casting (using metal molds are used in this work. The resulting microstructures are investigated using optical microscopy, combined with image analysis, as well as other methods (Archimedes method of double-weighing in water, mercury intrusion porosimetry.

  11. Influence of Controlled Cooling in Bimodal Scaffold Fabrication Using Polymers with Different Melting Temperatures

    OpenAIRE

    Lara-Padilla, Hernan; Mendoza-Buenrostro, Christian; Cardenas, Diego; Rodriguez-Garcia, Aida; Rodriguez, Ciro A.

    2017-01-01

    The combination of different materials and capabilities to manufacture at several scales open new possibilities in scaffold design for bone regeneration. This work is focused on bimodal scaffolds that combine polylactic acid (PLA) melt extruded strands with polycaprolactone (PCL) electrospun fibers. This type of bimodal scaffold offers better mechanical properties, compared to the use of PCL for the extruded strands, and provides potential a means for controlled drug and/or growth factor deli...

  12. Pore sub-features reproducibility in direct microscopic and Livescan images--their reliability in personal identification.

    Science.gov (United States)

    Gupta, Abhishek; Sutton, Raul

    2010-07-01

    Third level features have been reported to have equal discriminatory power as second level details in establishing personal identification. Pore area, as an extended set third level sub-feature, has been studied by minimizing possible factors that could affect pore size. The reproducibility of pore surface area has been studied using direct microscopic and 500 ppi Livescan images. Direct microscopic pore area measurements indicated that the day on which the pore area was measured had a significant impact on the measured pore area. Pore area measurement was shown to be difficult to estimate in 500 ppi Livescan measurements owing to lack of resolution. It is not possible to reliably use pore area as an identifying feature in fingerprint examination.

  13. Electronic thermal conductivity of 2-dimensional circular-pore metallic nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Cong-Liang, E-mail: huang198564@gmail.com; Lin, Zi-Zhen; Luo, Dan-Chen; Huang, Zun

    2016-09-07

    The electronic thermal conductivity (ETC) of 2-dimensional circular-pore metallic nanoporous material (MNM) was studied here for its possible applications in thermal cloaks. A simulation method based on the free-electron-gas model was applied here without considering the quantum effects. For the MNM with circular nanopores, there is an appropriate nanopore size for thermal conductivity tuning, while a linear relationship exists for this size between the ETC and the porosity. The appropriate nanopore diameter size will be about one times that of the electron mean free path. The ETC difference along different directions would be less than 10%, which is valuable when estimating possible errors, because the nanoscale-material direction could not be controlled during its application. Like nanoparticles, the ETC increases with increasing pore size (diameter for nanoparticles) while the porosity was fixed, until the pore size reaches about four times that of electron mean free path, at which point the ETC plateaus. The specular coefficient on the surface will significantly impact the ETC, especially for a high-porosity MNM. The ETC can be decreased by 30% with a tuning specular coefficient. - Highlights: • For metallic nanoporous materials, there is an appropriate pore size for thermal conductivity tuning. • ETC increases with increasing pore size until pore size reaches about four times EMFP. • The ETC difference between different directions will be less than 10%. • The ETC can be decreased by 30% with tuning specular coefficient.

  14. Pore Pressure Measurements Inside Rubble Mound Breakwaters

    DEFF Research Database (Denmark)

    Helgason, Einar; Burcharth, H. F.; Grüne, Joachim

    2004-01-01

    The present paper presents pore pressure measurements from large scale model tests performed at the Large Wave Channel, Hannover, Germany and small scale model test performed at the Hydraulic & Coastal Engineering Laboratory, Aalborg University, Denmark. Information on pore pressure attenuation...

  15. Pore-scale supercritical CO2 dissolution and mass transfer under drainage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chun; Zhou, Quanlin; Oostrom, Mart; Kneafsey, Timothy J.; Mehta, Hardeep

    2017-02-01

    interfaces. This finding is applicable for the behavior of dissolution at pore, core, and field scales when water-filled pores and pore clusters of varying size are surrounded by scCO2 at narrow pore throats.

  16. Multiple regimes of operation in bimodal AFM: understanding the energy of cantilever eigenmodes

    Directory of Open Access Journals (Sweden)

    Daniel Kiracofe

    2013-06-01

    Full Text Available One of the key goals in atomic force microscopy (AFM imaging is to enhance material property contrast with high resolution. Bimodal AFM, where two eigenmodes are simultaneously excited, confers significant advantages over conventional single-frequency tapping mode AFM due to its ability to provide contrast between regions with different material properties under gentle imaging conditions. Bimodal AFM traditionally uses the first two eigenmodes of the AFM cantilever. In this work, the authors explore the use of higher eigenmodes in bimodal AFM (e.g., exciting the first and fourth eigenmodes. It is found that such operation leads to interesting contrast reversals compared to traditional bimodal AFM. A series of experiments and numerical simulations shows that the primary cause of the contrast reversals is not the choice of eigenmode itself (e.g., second versus fourth, but rather the relative kinetic energy between the higher eigenmode and the first eigenmode. This leads to the identification of three distinct imaging regimes in bimodal AFM. This result, which is applicable even to traditional bimodal AFM, should allow researchers to choose cantilever and operating parameters in a more rational manner in order to optimize resolution and contrast during nanoscale imaging of materials.

  17. BDVC (Bimodal Database of Violent Content): A database of violent audio and video

    Science.gov (United States)

    Rivera Martínez, Jose Luis; Mijes Cruz, Mario Humberto; Rodríguez Vázqu, Manuel Antonio; Rodríguez Espejo, Luis; Montoya Obeso, Abraham; García Vázquez, Mireya Saraí; Ramírez Acosta, Alejandro Álvaro

    2017-09-01

    Nowadays there is a trend towards the use of unimodal databases for multimedia content description, organization and retrieval applications of a single type of content like text, voice and images, instead bimodal databases allow to associate semantically two different types of content like audio-video, image-text, among others. The generation of a bimodal database of audio-video implies the creation of a connection between the multimedia content through the semantic relation that associates the actions of both types of information. This paper describes in detail the used characteristics and methodology for the creation of the bimodal database of violent content; the semantic relationship is stablished by the proposed concepts that describe the audiovisual information. The use of bimodal databases in applications related to the audiovisual content processing allows an increase in the semantic performance only and only if these applications process both type of content. This bimodal database counts with 580 audiovisual annotated segments, with a duration of 28 minutes, divided in 41 classes. Bimodal databases are a tool in the generation of applications for the semantic web.

  18. THE SLUGGS SURVEY: NGC 3115, A CRITICAL TEST CASE FOR METALLICITY BIMODALITY IN GLOBULAR CLUSTER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Brodie, Jean P.; Conroy, Charlie; Arnold, Jacob A.; Romanowsky, Aaron J. [University of California Observatories and Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Usher, Christopher; Forbes, Duncan A. [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122 (Australia); Strader, Jay, E-mail: brodie@ucolick.org [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

    2012-11-10

    Due to its proximity (9 Mpc) and the strongly bimodal color distribution of its spectroscopically well-sampled globular cluster (GC) system, the early-type galaxy NGC 3115 provides one of the best available tests of whether the color bimodality widely observed in GC systems generally reflects a true metallicity bimodality. Color bimodality has alternatively been attributed to a strongly nonlinear color-metallicity relation reflecting the influence of hot horizontal-branch stars. Here, we couple Subaru Suprime-Cam gi photometry with Keck/DEIMOS spectroscopy to accurately measure GC colors and a CaT index that measures the Ca II triplet. We find the NGC 3115 GC system to be unambiguously bimodal in both color and the CaT index. Using simple stellar population models, we show that the CaT index is essentially unaffected by variations in horizontal-branch morphology over the range of metallicities relevant to GC systems (and is thus a robust indicator of metallicity) and confirm bimodality in the metallicity distribution. We assess the existing evidence for and against multiple metallicity subpopulations in early- and late-type galaxies and conclude that metallicity bi/multimodality is common. We briefly discuss how this fundamental characteristic links directly to the star formation and assembly histories of galaxies.

  19. Synergistic dual positive feedback loops established by molecular sequestration generate robust bimodal response.

    Science.gov (United States)

    Venturelli, Ophelia S; El-Samad, Hana; Murray, Richard M

    2012-11-27

    Feedback loops are ubiquitous features of biological networks and can produce significant phenotypic heterogeneity, including a bimodal distribution of gene expression across an isogenic cell population. In this work, a combination of experiments and computational modeling was used to explore the roles of multiple feedback loops in the bimodal, switch-like response of the Saccharomyces cerevisiae galactose regulatory network. Here, we show that bistability underlies the observed bimodality, as opposed to stochastic effects, and that two unique positive feedback loops established by Gal1p and Gal3p, which both regulate network activity by molecular sequestration of Gal80p, induce this bimodality. Indeed, systematically scanning through different single and multiple feedback loop knockouts, we demonstrate that there is always a concentration regime that preserves the system's bimodality, except for the double deletion of GAL1 and the GAL3 feedback loop, which exhibits a graded response for all conditions tested. The constitutive production rates of Gal1p and Gal3p operate as bifurcation parameters because variations in these rates can also abolish the system's bimodal response. Our model indicates that this second loss of bistability ensues from the inactivation of the remaining feedback loop by the overexpressed regulatory component. More broadly, we show that the sequestration binding affinity is a critical parameter that can tune the range of conditions for bistability in a circuit with positive feedback established by molecular sequestration. In this system, two positive feedback loops can significantly enhance the region of bistability and the dynamic response time.

  20. Fines classification based on sensitivity to pore-fluid chemistry

    Science.gov (United States)

    Jang, Junbong; Santamarina, J. Carlos

    2016-01-01

    The 75-μm particle size is used to discriminate between fine and coarse grains. Further analysis of fine grains is typically based on the plasticity chart. Whereas pore-fluid-chemistry-dependent soil response is a salient and distinguishing characteristic of fine grains, pore-fluid chemistry is not addressed in current classification systems. Liquid limits obtained with electrically contrasting pore fluids (deionized water, 2-M NaCl brine, and kerosene) are combined to define the soil “electrical sensitivity.” Liquid limit and electrical sensitivity can be effectively used to classify fine grains according to their fluid-soil response into no-, low-, intermediate-, or high-plasticity fine grains of low, intermediate, or high electrical sensitivity. The proposed methodology benefits from the accumulated experience with liquid limit in the field and addresses the needs of a broader range of geotechnical engineering problems.

  1. Formation of protein induced micro-pores in Chitosan membranes

    Science.gov (United States)

    Begum, S. N. Suraiya; Aswal, V. K.; Ramasamy, Radha Perumal

    2017-05-01

    Polymer based nanocomposites are important class of materials and have wide applications. Blending two biopolymers can lead to the development of new materials with tailored properties. Chitosan is a naturally occurring polysaccharide with useful properties such as biodegradability and excellent film forming capacity. Bovine serum albumin (BSA) is a abundantly available globular protein. In our research the interaction of chitosan with BSA and the effect of formation of Au nanoparticles on chitosan-BSA system were investigated. Scanning electron microscope (SEM) of the films showed formation of micron sized pores and these pores were hindered with formation of Au nanoparticles. Small angle neutron scattering (SANS) analysis showed that BSA interacts with chitosan chain and affects the Rg value of chitosan. The formation of micro pores decreases the conductivity values (σ'), while the formation of Au nanoparticles increases σ'.

  2. Fines Classification Based on Sensitivity to Pore-Fluid Chemistry

    KAUST Repository

    Jang, Junbong

    2015-12-28

    The 75-μm particle size is used to discriminate between fine and coarse grains. Further analysis of fine grains is typically based on the plasticity chart. Whereas pore-fluid-chemistry-dependent soil response is a salient and distinguishing characteristic of fine grains, pore-fluid chemistry is not addressed in current classification systems. Liquid limits obtained with electrically contrasting pore fluids (deionized water, 2-M NaCl brine, and kerosene) are combined to define the soil "electrical sensitivity." Liquid limit and electrical sensitivity can be effectively used to classify fine grains according to their fluid-soil response into no-, low-, intermediate-, or high-plasticity fine grains of low, intermediate, or high electrical sensitivity. The proposed methodology benefits from the accumulated experience with liquid limit in the field and addresses the needs of a broader range of geotechnical engineering problems. © ASCE.

  3. Multifractal Characterization of Pore Size Distributions of Peat Soil

    OpenAIRE

    Joko Sampurno; Azrul Azwar; Fourier Dzar Eljabbar Latief; Wahyu Srigutomo

    2016-01-01

    This paper discusses a multifractal analysis of the microscopic structure of peat soil. The aim of this study was to apply the multifractal technique to analyze the properties of five slices of peat soil (L1-L5). Binary images (220 x 220 pixels, with a conversion value of 9.41 μm/pixel) were made from the thin slices and then analyzed. This analysis was conducted to obtain the relationship between physical parameters and complexity parameters. The results showed that the spectrum of f(α) can ...

  4. Magnetic relaxation--coal swelling, extraction, pore size

    Energy Technology Data Exchange (ETDEWEB)

    Doetschman, D.C.

    1991-01-01

    The grant activities during this period fall into four categories: (1) Completion of preparatory work, (2) Procedure refinement and actual preparation of whole coal, coal residue, coal extract and swelled coal samples for NMR studies, (3) Related studies of coal photolysis that employ materials from preliminary extractions and that examine the u.v.-visible and mass spectra of the extracts and (4) Continued investigations of the pulsed EPR characteristics of the whole coal samples that were prepared in the first quarter of the grant.

  5. effective hydraulic conductivity for a soil of variable pore size

    African Journals Online (AJOL)

    eobe

    quadratic form with R2 ≈ 1.As the layer thickness ... conductivity and soil moisture content as a function of soil depth as: .... Exponential Function. Following the steps already introduced for the power function above, the exponential variation of hydraulic conductivity (K) through the soil profile for the nth layer can be ...

  6. In situ temperature tunable pores of shape memory polyurethane membranes

    International Nuclear Information System (INIS)

    Ahn, Joon-Sung; Yu, Woong-Ryeol; Youk, Ji Ho; Ryu, Hee Youk

    2011-01-01

    Conventional shape memory polymers, such as shape memory polyurethanes (SMPU), can exhibit net two-way shape memory behavior (2WSM), i.e., upon heating and subsequent cooling, their macroscopic shapes change reversibly under an applied bias load. This paper is aimed at reporting similar 2WSM behavior, especially by focusing on the size of nanopores/micropores in SMPU membranes, i.e., the size of the pores can be reversibly changed by up to about 300 nm upon repeated heating and cooling. The SMPU membranes were prepared by electrospinning and elongated at temperatures higher than the transition temperature of the SMPU. Under the constant stress, the size change of the pores in the membranes was measured by applying cyclic temperature change. It was observed that the pore size changed from 150 to 440 nm according to the temperature change, demonstrating that the SMPU membrane can be utilized as a smart membrane to selectively separate substances according to their sizes by just controlling temperature

  7. Effect of pore geometry on the compressibility of a confined simple fluid

    Science.gov (United States)

    Dobrzanski, Christopher D.; Maximov, Max A.; Gor, Gennady Y.

    2018-02-01

    Fluids confined in nanopores exhibit properties different from the properties of the same fluids in bulk; among these properties is the isothermal compressibility or elastic modulus. The modulus of a fluid in nanopores can be extracted from ultrasonic experiments or calculated from molecular simulations. Using Monte Carlo simulations in the grand canonical ensemble, we calculated the modulus for liquid argon at its normal boiling point (87.3 K) adsorbed in model silica pores of two different morphologies and various sizes. For spherical pores, for all the pore sizes (diameters) exceeding 2 nm, we obtained a logarithmic dependence of fluid modulus on the vapor pressure. Calculation of the modulus at saturation showed that the modulus of the fluid in spherical pores is a linear function of the reciprocal pore size. The calculation of the modulus of the fluid in cylindrical pores appeared too scattered to make quantitative conclusions. We performed additional simulations at higher temperature (119.6 K), at which Monte Carlo insertions and removals become more efficient. The results of the simulations at higher temperature confirmed both regularities for cylindrical pores and showed quantitative difference between the fluid moduli in pores of different geometries. Both of the observed regularities for the modulus stem from the Tait-Murnaghan equation applied to the confined fluid. Our results, along with the development of the effective medium theories for nanoporous media, set the groundwork for analysis of the experimentally measured elastic properties of fluid-saturated nanoporous materials.

  8. Nano-Pore Characterization of Shale Using Nuclear Magnetic Resonance Cryoporometry

    Science.gov (United States)

    Dong, Y.; Zhang, Q.; Tong, S.

    2016-12-01

    Considering that most matrix pore sizes of shale rock are at scales of a few nanometers to microns, charactering nano-pore the pore structure are therefore significant and imperative for shale gas production. However, to accurately characterize the pore structure of shale remains a challenging task in geoscience community due to the complexity and heterogeneity of the shale pore structure. Various techniques such as Scanning Electron Microscope (SEM), Mercury Intrusion Porosimetry (MIP), Nitrogen Adsorption Method (NAM) and X-ray Computerized Tomography (XCT) all have a limited measuring range and could not cover the entire nanometer-range. This work reported nano-pore characterization of shale rock in Sichuan, China using nuclear magnetic resonance cryoporometry (NMRC), a novel and emerging technique which can probe pore size distributions from nano- to micro- scales. First, the method was validated using two materials with pre-known pore structures, a molecular sieve SBA-15 with a pore diameter of 8 nm and a controlled pore glass with a pore diameter of 24 nm. The NMRC results of two martials show a good accuracy for quantifying pore size distribution. Both bulk matrix specimens and pulverized shale samples were tested using NMRC, and two liquids, water and cyclohexane, were used to saturate the samples for NMRC experiments. MIP, NAM as well as NanoCT were also employed to validate the NMRC results. The results show that MIP was comparable to NMRC with bulk sample and NAM was similar to NMRC with pulverized sample. The porosity for bulk and pulverized sample is 3.2% and 5.7% respectively, showing that a lot of pores were connected during pulverizing process. The results for samples saturated with water and cyclohexane are similar, which demonstrates that water-rock interaction was not active during experiment due to the low temperature. However, cyclohexane has a greater Gibbs-Thomoson coefficient than water, meaning that NMRC with cyclohexane has a better

  9. Bimodal Porous Scaffolds by Sequential Electrospinning of Poly(glycolic acid with Sucrose Particles

    Directory of Open Access Journals (Sweden)

    B. Wulkersdorfer

    2010-01-01

    Full Text Available Electrospinning is a method to produce fine, biopolymer mesh with a three-dimensional architecture that mimics native extra-cellular matrix. Due to the small fiber diameter created in this process, conventional electrospun scaffolds have pore sizes smaller than the diameter of most cells. These scaffolds have limited application in tissue engineering due to poor cell penetration. We developed a hybrid electrospinning/particulate leaching technique to create scaffolds with increased porosity and improved cellular ingrowth. Poly(glycolic acid (PGA and a sucrose-ethanol suspension were electrospun in equal, alternating sequences at intervals of one, two, and ten minutes each. The scaffolds revealed fiber mesh with micropores of 10 m and uniformly distributed sucrose particles. Particulate leaching of sucrose from the one- or two-minute scaffolds revealed honeycomb structures with interconnected macropores between 50 and 250 m. Sucrose leaching from the ten-minute scaffolds resulted in laminated structures with isolated macropores between 200 and 350 m. Macropore size was directly proportional to the duration of the sucrose spinning interval. After 24 hours of cell culture, conventionally spun scaffolds demonstrated no cellular penetration. Conversely, the PGA/sucrose scaffolds demonstrated deep cellular penetration. This hybrid technique represents a novel method of generating electrospun scaffolds with interconnected pores suitable for cellular ingrowth.

  10. Geometry-driven cell organization determines tissue growths in scaffold pores: consequences for fibronectin organization.

    Directory of Open Access Journals (Sweden)

    Pascal Joly

    Full Text Available To heal tissue defects, cells have to bridge gaps and generate new extracellular matrix (ECM. Macroporous scaffolds are frequently used to support the process of defect filling and thus foster tissue regeneration. Such biomaterials contain micro-voids (pores that the cells fill with their own ECM over time. There is only limited knowledge on how pore geometry influences cell organization and matrix production, even though it is highly relevant for scaffold design. This study hypothesized that 1 a simple geometric description predicts cellular organization during pore filling at the cell level and that 2 pore closure results in a reorganization of ECM. Scaffolds with a broad distribution of pore sizes (macroporous starPEG-heparin cryogel were used as a model system and seeded with primary fibroblasts. The strategies of cells to fill pores could be explained by a simple geometrical model considering cells as tensioned chords. The model matched qualitatively as well as quantitatively by means of cell number vs. open cross-sectional area for all pore sizes. The correlation between ECM location and cell position was higher when the pores were not filled with tissue (Pearson's coefficient ρ = 0.45±0.01 and reduced once the pores were closed (ρ = 0.26±0.04 indicating a reorganization of the cell/ECM network. Scaffold pore size directed the time required for pore closure and furthermore impacted the organization of the fibronectin matrix. Understanding how cells fill micro-voids will help to design biomaterial scaffolds that support the endogenous healing process and thus allow a fast filling of tissue defects.

  11. UO2 Grain Growth: Developing Phase Field Models for Pore Dragging, Solute Dragging and Anisotropic Grain Boundary Energies

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tonks, M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Y. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Biner, B. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-28

    A detailed phase field model for the effect of pore drag on grain growth kinetics was implemented in MARMOT. The model takes into consideration both the curvature-driven grain boundary motion and pore migration by surface diffusion. As such, the model accounts for the interaction between pore and grain boundary kinetics, which tends to retard the grain growth process. Our 2D and 3D simulations demonstrate that the model capture all possible pore-grain boundary interactions proposed in theoretical models. For high enough surface mobility, the pores move along with the migrating boundary as a quasi-rigid-body, albeit hindering its migration rate compared to the pore-free case. For less mobile pores, the migrating boundary can separate from the pores. For the pore-controlled grain growth kinetics, the model predicts a strong dependence of the growth rate on the number of pores, pore size, and surface diffusivity in agreement with theroretical models. An evolution equation for the grain size that includes these parameters was derived and showed to agree well with numerical solution. It shows a smooth transition from boundary-controlled kinetics to pore-controlled kinetics as the surface diffusivity decreases or the number of pores or their size increases. This equation can be utilized in BISON to give accurate estimate for the grain size evolution. This will be accomplished in the near future. The effect of solute drag and anisotropy of grain boundary on grain growth will be investigated in future studies.

  12. Pore-Engineered Metal–Organic Frameworks with Excellent Adsorption of Water and Fluorocarbon Refrigerant for Cooling Applications

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jian [Physical; Vemuri, Rama S. [Energy; Estevez, Luis [Energy; Koech, Phillip K. [Energy; Varga, Tamas [Environmental; Camaioni, Donald M. [Physical; Blake, Thomas A. [Physical; McGrail, B. Peter [Energy; Motkuri, Radha Kishan [Energy

    2017-07-20

    Metal–organic frameworks (MOFs) are found to be promising sorbents for adsorption cooling applications. Using organic ligands with 1, 2, and 3 phenylene rings, we construct moisture-stable Ni-MOF-74 members with adjustable pore apertures. These pore-engineered materials exhibit excellent sorption capabilities towards water and fluorocarbons. The adsorption patterns for these materials differ significantly and are attributed to variances in the hydrophobic/hydrophilic pore character, associated with differences in pore size. Complementary ex situ characterizations and in situ FTIR spectra are deployed to understand the correlations between the mechanisms of gas loadings and the pore environment of the MOFs.

  13. Influence of pore structure parameters on thermal properties of corundum based castables

    International Nuclear Information System (INIS)

    Zhu, B Q; Fang, B X; Li, X C; Jiang, X; Zhao, F; Gao, X

    2011-01-01

    A series of corundum based castables bonded by ρ-Al 2 O 3 were prepared and fired at different temperature. Influences of apparent porosity and pore size distribution on thermal properties of the samples at different temperature were studied. The relationship between different pore size intervals and thermal conductivity of the samples was also discussed based on grey relational theory. The results show that thermal properties including thermal conductivity, thermal diffusivity and specific heat decline as apparent porosity of the samples increases. When apparent porosity of the samples keeps stable with little fluctuation, thermal conductivity increases as median pore size of the samples increases. It is found that thermal conductivity of the samples at a certain temperature presents the largest grey relational degree with the pore size interval that takes up the dominant volume ratio.

  14. Pore water colloid properties in argillaceous sedimentary rocks

    Energy Technology Data Exchange (ETDEWEB)

    Degueldre, Claude, E-mail: c.degueldre@lancaster.ac.uk [Engineering Department, University of Lancaster, LA1 4YW Lancaster (United Kingdom); ChiAM & Institute of Environment, University of Geneva, 1211 Genève 4, Swizerland (Switzerland); Earlier, NES, Paul Scherrer Institute, 5232 Villigen (Switzerland); Cloet, Veerle [NAGRA, Hardstrasse 73, 5430 Wettingen (Switzerland)

    2016-11-01

    The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay

  15. Lanthanide oxide and phosphate nanoparticles for thermometry and bimodal imaging =

    Science.gov (United States)

    Debasu, Mengistie Leweyehu

    . Finalmente, estudam-se as propriedades de fotoluminescencia correspondentes as conversoes ascendente e descendente de energia em nanocristais de (Gd,Yb,Tb)PO4 sintetizados por via hidrotermica. A relaxividade (ressonancia magnetica) do 1H destes materiais sao investigadas, tendo em vista possiveis aplicacoes em imagem bimodal (luminescencia e ressonancia magnetica nuclear).

  16. Generation of random microstructures and prediction of sound velocity and absorption for open foams with spherical pores.

    Science.gov (United States)

    Zieliński, Tomasz G

    2015-04-01

    This paper proposes and discusses an approach for the design and quality inspection of the morphology dedicated for sound absorbing foams, using a relatively simple technique for a random generation of periodic microstructures representative for open-cell foams with spherical pores. The design is controlled by a few parameters, namely, the total open porosity and the average pore size, as well as the standard deviation of pore size. These design parameters are set up exactly and independently, however, the setting of the standard deviation of pore sizes requires some number of pores in the representative volume element (RVE); this number is a procedure parameter. Another pore structure parameter which may be indirectly affected is the average size of windows linking the pores, however, it is in fact weakly controlled by the maximal pore-penetration factor, and moreover, it depends on the porosity and pore size. The proposed methodology for testing microstructure-designs of sound absorbing porous media applies the multi-scale modeling where some important transport parameters-responsible for sound propagation in a porous medium-are calculated from microstructure using the generated RVE, in order to estimate the sound velocity and absorption of such a designed material.

  17. Serum levels of IGF-1 are related to human skin characteristics including the conspicuousness of facial pores.

    Science.gov (United States)

    Sugiyama-Nakagiri, Y; Naoe, A; Ohuchi, A; Kitahara, T

    2011-04-01

    Conspicuous facial pores are one type of serious aesthetic defects for many women. However, the mechanism(s) that underlie the conspicuousness of facial pores remains unclear. We previously characterized the epidermal architecture around facial pores that correlates with the appearance of those pores in various ethnic groups including Japanese. The goal of this study was to evaluate the possible relationships between facial pore size, the severity of impairment of epidermal architecture around facial pores and sebum output levels to investigate the possible role of IGF-1 in the pathogenesis of conspicuous facial pores. The subjects consisted of 38 healthy Japanese women (aged 22-41 years). IGF-1 was measured using immunoradiometric assay. Surface replicas were collected to compare pore sizes of cheek skin and horizontal cross-section images of cheek skin were obtained non-invasively from the same subjects using in vivo confocal laser scanning microscopy and the severity of impairment of epidermal architecture around facial pores was determined. The skin surface lipids of each subject were collected from their cheeks and lipid classes were determined using gas chromatography/flame ionization detection. The serum level of IGF-1 correlated significantly with total pore area (R = 0.36, P facial pores (R = 0.43, P pore area (R = 0.32, P facial skin characteristics including facial pore size and with the severity of impairment of epidermal architecture around facial pores. © 2010 The Authors. Journal compilation © 2010 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  18. Pore water colloid properties in argillaceous sedimentary rocks.

    Science.gov (United States)

    Degueldre, Claude; Cloet, Veerle

    2016-11-01

    The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay

  19. Influence of pore structure on solute transport in degraded and undegraded fen peat soils

    Directory of Open Access Journals (Sweden)

    C. Kleimeier

    2017-10-01

    Full Text Available In peat soils, decomposition and degradation reduce the proportion of large pores by breaking down plant debris into smaller fragments and infilling inter-particle pore spaces. This affects water flow and solute migration which, in turn, influence reactive transport processes and biogeochemical functions. In this study we conducted flow-through reactor experiments to investigate the interplay between pore structure and solute transport in samples of undegraded and degraded peat collected in Canada and Germany, respectively. The pore size distributions and transport parameters were characterised using the breakthrough curve and two-region non-equilibrium transport model analyses for a non-reactive solute. The results of transport characterisation showed a higher fraction of immobile pores in the degraded peat with higher diffusive exchanges of solutes between the mobile and immobile pores associated with the dual-porosity structure. The rates of steady-state potential nitrate reduction were compared with pore fractions and exchange coefficients to investigate the influence of pore structure on the rates of nitrate reduction. The results indicated that the degraded peat has potential to provide the necessary boundary conditions to support nitrate removal and serves as a favourable substrate for denitrification, due to the nature of its pore structure and its lower organic carbon content compared to undegraded peat.

  20. Analysis of the effect of pore geometry in the physical properties of rocks

    Directory of Open Access Journals (Sweden)

    Luiz Alberto Oliveira Lima Roque

    2012-12-01

    Full Text Available Pore geometry is one of the main factors influencing the flow of reservoir fluids under pressure. Pores with narrower formats are more easily compressed when subject to pressure. Pressure modifies pore geometry by opening or closing cracks, causing increase or decrease in the elastic modulus, porosity, permeability, and other parameters. Rock physical properties depend on the size and shape of pores. Thus, in order to analyze changes on the physical properties behavior according to the pores geometry, it is necessary to study and improve mathematical models of the porous media by taking into account the pore shape factor for estimating rock elastic properties. Differential effective medium model (DEM, Hertz-Mindlin theory and coherent potential approximation (CPA are some of the theoretical paradigms that take into account pore geometry in changes in elastic moduli. Given the importance of the pore structure effect on the behavior of physical parameters, this article proposes an analysis of some mathematical models that consider the influence of pore shapes in the physical properties of rocks.

  1. Modeling Oil Recovery for Mixed Macro- and Micro-Pore Carbonate Grainstones.

    Science.gov (United States)

    Xu, Ye; Li, Qiuzi; King, Hubert E

    2017-08-29

    In general, modeling oil-recovery is a challenging problem involving detailed fluid flow calculations with required structural details that challenge current experimental resolution. Recent laboratory experiments on mixed micro- and macro-pore suggest that there is a systematic relationship between remaining oil saturation (ROS) and the fraction of micro-pores. Working with experimental measurements of the pores obtained from X-ray tomography and mercury intrusion capillary pressure porosimetry, we define a digital rock model exemplifying the key structural elements of these carbonate grainstones. We then test two fluid-flow models: invasion percolation model and effective medium model. Although invasion percolation identifies the important impact of macro-pore percolation on permeability, it does not describe the dependence of ROS on micro-pore percentage. We thus modified the effective medium model by introducing a single-parameter descriptor, r eff . Oil from pores r ≥ r eff is fully removed, while for the remaining pores with r pore size distributions for the mixed-pore grainstones reproduces the experimental ROS dependence.

  2. Changes in pore structure of coal caused by coal-to-gas bioconversion.

    Science.gov (United States)

    Zhang, Rui; Liu, Shimin; Bahadur, Jitendra; Elsworth, Derek; Wang, Yi; Hu, Guanglong; Liang, Yanna

    2017-06-19

    Microbial enhanced coalbed methane (ME-CBM) recovery is critically examined as a viable technology for natural gas recovery from coalbed methane (CBM) reservoirs. Since the majority of gas-in-place (GIP) is stored as an adsorbed phase in fine pores of coal matrix, the nano-pore structure directly influences gas storage and transport properties. Only limited studies have quantified the alteration of the nano-pore structure due to ME-CBM treatment. This study examines the evolution of the pore structure using a combination of small angle X-ray scattering (SAXS), low-pressure N 2 and CO 2 adsorption (LPGA) and high-pressure methane adsorption methods. The results show that the surface fractal dimension decreases for the two bioconverted coals compared to the untreated coal. After bio-treatment, the mesopore surface area and pore volume decrease with the average pore diameter increases, while the micropore surface area increases with pore volume decreases. Both inaccessible meso-/micropore size distributions decrease after bioconversion, while the accessible micropore size distribution increases, making a portion of closed micropore network accessible. In addition, the methane adsorption capacities increase after bio-treatment, which is confirmed by the increase of micropore surface area. A conceptual physical model of methanogenesis is proposed based on the evolution of the pore structure.

  3. Use of air permeability for determination of equivalent average pore diameter in woven fabrics

    Science.gov (United States)

    Dimitrovski, K.; Zupin, Ž.; Kostajnšek, K.; Branca, E.

    2017-10-01

    Scientific description of porosity/inner porous structure of textile fabrics is very complex mater and usually is made through description of so called porosity parameters. In general these are the size, number and distribution of pores in textile fabrics. Woven fabrics are the easiest case comparing them with knit and nonwovens fabrics since their structure is closer to any model representing textile fabrics. In spite many methods for determining porosity parameters no method is giving the full range of necessary results. The paper is dealing with introduction of newly developed method for determining equivalent average size of pores in woven fabrics. Equivalent average diameter of pores is defined as diameter of certain number of cylindrical pores that allow the same air permeability as real woven sample with the same number of pores (macro pores). It gives the real correlation with air permeability taking in account all characteristics of pores that participate in loose of energy i.e. the length of pores, their structure, their tortuosity and their bottle necks. The method combined with geometrical, porosity parameters determined by planar structure of woven fabrics can give connection between them and better understandings of porous structure in connection with its transmission properties.

  4. Auditory-somatosensory bimodal stimulation desynchronizes brain circuitry to reduce tinnitus in guinea pigs and humans.

    Science.gov (United States)

    Marks, Kendra L; Martel, David T; Wu, Calvin; Basura, Gregory J; Roberts, Larry E; Schvartz-Leyzac, Kara C; Shore, Susan E

    2018-01-03

    The dorsal cochlear nucleus is the first site of multisensory convergence in mammalian auditory pathways. Principal output neurons, the fusiform cells, integrate auditory nerve inputs from the cochlea with somatosensory inputs from the head and neck. In previous work, we developed a guinea pig model of tinnitus induced by noise exposure and showed that the fusiform cells in these animals exhibited increased spontaneous activity and cross-unit synchrony, which are physiological correlates of tinnitus. We delivered repeated bimodal auditory-somatosensory stimulation to the dorsal cochlear nucleus of guinea pigs with tinnitus, choosing a stimulus interval known to induce long-term depression (LTD). Twenty minutes per day of LTD-inducing bimodal (but not unimodal) stimulation reduced physiological and behavioral evidence of tinnitus in the guinea pigs after 25 days. Next, we applied the same bimodal treatment to 20 human subjects with tinnitus using a double-blinded, sham-controlled, crossover study. Twenty-eight days of LTD-inducing bimodal stimulation reduced tinnitus loudness and intrusiveness. Unimodal auditory stimulation did not deliver either benefit. Bimodal auditory-somatosensory stimulation that induces LTD in the dorsal cochlear nucleus may hold promise for suppressing chronic tinnitus, which reduces quality of life for millions of tinnitus sufferers worldwide. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  5. Early Bimodal Stimulation Benefits Language Acquisition for Children With Cochlear Implants.

    Science.gov (United States)

    Moberly, Aaron C; Lowenstein, Joanna H; Nittrouer, Susan

    2016-01-01

    Adding a low-frequency acoustic signal to the cochlear implant (CI) signal (i.e., bimodal stimulation) for a period of time early in life improves language acquisition. Children must acquire sensitivity to the phonemic units of language to develop most language-related skills, including expressive vocabulary, working memory, and reading. Acquiring sensitivity to phonemic structure depends largely on having refined spectral (frequency) representations available in the signal, which does not happen with CIs alone. Combining the low-frequency acoustic signal available through hearing aids with the CI signal can enhance signal quality. A period with this bimodal stimulation has been shown to improve language skills in very young children. This study examined whether these benefits persist into childhood. Data were examined for 48 children with CIs implanted under age 3 years, participating in a longitudinal study. All children wore hearing aids before receiving a CI, but upon receiving a first CI, 24 children had at least 1 year of bimodal stimulation (Bimodal group), and 24 children had only electric stimulation subsequent to implantation (CI-only group). Measures of phonemic awareness were obtained at second and fourth grades, along with measures of expressive vocabulary, working memory, and reading. Children in the Bimodal group generally performed better on measures of phonemic awareness, and that advantage was reflected in other language measures. Having even a brief period of time early in life with combined electric-acoustic input provides benefits to language learning into childhood, likely because of the enhancement in spectral representations provided.

  6. Grain-size effects on PIXE and INAA analysis of IAEA-336 lichen reference material

    International Nuclear Information System (INIS)

    Marques, A.P.; Freitas, M.C.; Wolterbeek, H.Th.; Verburg, T.G.; Goeij, J.J.M. de

    2007-01-01

    IAEA-336 lichen certified reference material was used to compare outcomes from INAA and PIXE elemental analyses, in relationship with grain size. The IAEA material (grain size <125 μm) was ground and sieved through nylon nets with 64 μm, 41 μm and 20 μm pores. Particle sizes were determined by Laser Light Scattering technique: the data indicate that, after sieving, the IAEA-336 lichen reference material's particle size distribution follows a bimodal distribution, which is turning more and more monomodal after further fine sieving. Replicates of each fraction were analysed by INAA and PIXE. Results for Cl, K, Mn, Fe and Zn by both techniques were compared by application of z-values tested against the criterion vertical bar z vertical bar < 3 for approval of results at the 99.7% confidence level. Under the conditions of this study, the limited amount of lichen material as 'seen' in the PIXE analysis and the grain size distribution in the lichen material were no causes of measurable differences between the results of both techniques. However, fractionation into smaller grain sizes showed to be associated with lower element content, for Na, Cl, K, Mn and Sr even up to a factor of 2. The observed increases of the proportion of algae in the smaller grain-size fractions and the possible accumulation capacity for certain elements in the fungal part of the lichen may explain the observed phenomenon. The sieving process and consequently the discarding of part of the material have lead to a change of the properties of the original sample, namely algae/fungus percentage and elemental contents

  7. Grain-size effects on PIXE and INAA analysis of IAEA-336 lichen reference material

    Energy Technology Data Exchange (ETDEWEB)

    Marques, A.P. [ITN - Instituto Tecnologico e Nuclear, 2686-953 Sacavem (Portugal)]. E-mail: amarques@itn.pt; Freitas, M.C. [ITN - Instituto Tecnologico e Nuclear, 2686-953 Sacavem (Portugal); Wolterbeek, H.Th. [IRI - TU Delft, Mekelweg 15, 2629 JB Delft (Netherlands); Verburg, T.G. [IRI - TU Delft, Mekelweg 15, 2629 JB Delft (Netherlands); Goeij, J.J.M. de [IRI - TU Delft, Mekelweg 15, 2629 JB Delft (Netherlands)

    2007-02-15

    IAEA-336 lichen certified reference material was used to compare outcomes from INAA and PIXE elemental analyses, in relationship with grain size. The IAEA material (grain size <125 {mu}m) was ground and sieved through nylon nets with 64 {mu}m, 41 {mu}m and 20 {mu}m pores. Particle sizes were determined by Laser Light Scattering technique: the data indicate that, after sieving, the IAEA-336 lichen reference material's particle size distribution follows a bimodal distribution, which is turning more and more monomodal after further fine sieving. Replicates of each fraction were analysed by INAA and PIXE. Results for Cl, K, Mn, Fe and Zn by both techniques were compared by application of z-values tested against the criterion vertical bar z vertical bar < 3 for approval of results at the 99.7% confidence level. Under the conditions of this study, the limited amount of lichen material as 'seen' in the PIXE analysis and the grain size distribution in the lichen material were no causes of measurable differences between the results of both techniques. However, fractionation into smaller grain sizes showed to be associated with lower element content, for Na, Cl, K, Mn and Sr even up to a factor of 2. The observed increases of the proportion of algae in the smaller grain-size fractions and the possible accumulation capacity for certain elements in the fungal part of the lichen may explain the observed phenomenon. The sieving process and consequently the discarding of part of the material have lead to a change of the properties of the original sample, namely algae/fungus percentage and elemental contents.

  8. A general route towards defect and pore engineering in graphene.

    Science.gov (United States)

    Xie, Guibai; Yang, Rong; Chen, Peng; Zhang, Jing; Tian, Xuezeng; Wu, Shuang; Zhao, Jing; Cheng, Meng; Yang, Wei; Wang, Duoming; He, Congli; Bai, Xuedong; Shi, Dongxia; Zhang, Guangyu

    2014-06-12

    Defect engineering in graphene is important for tailoring graphene's properties thus applicable in various applications such as porous membranes and ultra-capacitors. In this paper, we report a general route towards defect- and pore- engineering in graphene through remote plasma treatments. Oxygen plasma irradiation was employed to create homogenous defects in graphene with controllable density from a few to ≈10(3) (μm(-2)). The created defects can be further enlarged into nanopores by hydrogen plasma anisotropic etching with well-defined pore size of a few nm or above. The achieved smallest nanopores are ≈2 nm in size, showing the potential for ultra-small graphene nanopores fabrication. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Membranes with functionalized carbon nanotube pores for selective transport

    Science.gov (United States)

    Bakajin, Olgica; Noy, Aleksandr; Fornasiero, Francesco; Park, Hyung Gyu; Holt, Jason K; Kim, Sangil

    2015-01-27

    Provided herein composition and methods for nanoporous membranes comprising single walled, double walled, or multi-walled carbon nanotubes embedded in a matrix material. Average pore size of the carbon nanotube can be 6 nm or less. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  10. Characterization of pore structure in cement-based materials using pressurization-depressurization cycling mercury intrusion porosimetry (PDC-MIP)

    International Nuclear Information System (INIS)

    Zhou Jian; Ye Guang; Breugel, Klaas van

    2010-01-01

    Numerous mercury intrusion porosimetry (MIP) studies have been carried out to investigate the pore structure in cement-based materials. However, the standard MIP often results in an underestimation of large pores and an overestimation of small pores because of its intrinsic limitation. In this paper, an innovative MIP method is developed in order to provide a more accurate estimation of pore size distribution. The new MIP measurements are conducted following a unique mercury intrusion procedure, in which the applied pressure is increased from the minimum to the maximum by repeating pressurization-depressurization cycles instead of a continuous pressurization followed by a continuous depressurization. Accordingly, this method is called pressurization-depressurization cycling MIP (PDC-MIP). By following the PDC-MIP testing sequence, the volumes of the throat pores and the corresponding ink-bottle pores can be determined at every pore size. These values are used to calculate pore size distribution by using the newly developed analysis method. This paper presents an application of PDC-MIP on the investigation of the pore size distribution in cement-based materials. The experimental results of PDC-MIP are compared with those measured by standard MIP. The PDC-MIP is further validated with the other experimental methods and numerical tool, including nitrogen sorption, backscanning electron (BSE) image analysis, Wood's metal intrusion porosimetry (WMIP) and the numerical simulation by the cement hydration model HYMOSTRUC3D.

  11. Characterization of pore structure of several activated carbons with different radon adsorption capabilities

    International Nuclear Information System (INIS)

    Wang Qingbo; Qu Jingyuan; Cao Jianzhu; Zhu Wenkai; Zhou Baichang; Cheng Jinchang; Zhang Huimin

    2011-01-01

    The radon dynamic adsorption coefficients (DAC) of four types of activated carbons measured in radon room are different from each other. The pore structures (specific surface area, pore size distribution, pore volume, etc.) influence the adsorption ability significantly. Physical adsorption of inert nitrogen was used for evaluation pore structures of those four activated carbon samples. The results show that activated carbon with specific surface area about 800 m 2 /g has the strong adsorption ability to radon and when the specific surface areas are close, the adsorption ability to radon increases with the micropore specific surface's percentage. Pore size distribution (PSD) was calculated by H-K, BJH and density function theory (DFT). The Micropore size distribution calculation by H-K method shows that pore with size between 0.7-2 nm plays the most important role for adsorption of radon. Mesopore size distribution calculated by BJH method and DFT method shows that mesopore distribution with discrete peaks is more useful to help radon adsorption on activated carbons. (authors)

  12. Bimodal Biometric Verification Using the Fusion of Palmprint and Infrared Palm-Dorsum Vein Images

    Directory of Open Access Journals (Sweden)

    Chih-Lung Lin

    2015-12-01

    Full Text Available In this paper, we present a reliable and robust biometric verification method based on bimodal physiological characteristics of palms, including the palmprint and palm-dorsum vein patterns. The proposed method consists of five steps: (1 automatically aligning and cropping the same region of interest from different palm or palm-dorsum images; (2 applying the digital wavelet transform and inverse wavelet transform to fuse palmprint and vein pattern images; (3 extracting the line-like features (LLFs from the fused image; (4 obtaining multiresolution representations of the LLFs by using a multiresolution filter; and (5 using a support vector machine to verify the multiresolution representations of the LLFs. The proposed method possesses four advantages: first, both modal images are captured in peg-free scenarios to improve the user-friendliness of the verification device. Second, palmprint and vein pattern images are captured using a low-resolution digital scanner and infrared (IR camera. The use of low-resolution images results in a smaller database. In addition, the vein pattern images are captured through the invisible IR spectrum, which improves antispoofing. Third, since the physiological characteristics of palmprint and vein pattern images are different, a hybrid fusing rule can be introduced to fuse the decomposition coefficients of different bands. The proposed method fuses decomposition coefficients at different decomposed levels, with different image sizes, captured from different sensor devices. Finally, the proposed method operates automatically and hence no parameters need to be set manually. Three thousand palmprint images and 3000 vein pattern images were collected from 100 volunteers to verify the validity of the proposed method. The results show a false rejection rate of 1.20% and a false acceptance rate of 1.56%. It demonstrates the validity and excellent performance of our proposed method comparing to other methods.

  13. Bimodal Biometric Verification Using the Fusion of Palmprint and Infrared Palm-Dorsum Vein Images.

    Science.gov (United States)

    Lin, Chih-Lung; Wang, Shih-Hung; Cheng, Hsu-Yung; Fan, Kuo-Chin; Hsu, Wei-Lieh; Lai, Chin-Rong

    2015-12-12

    In this paper, we present a reliable and robust biometric verification method based on bimodal physiological characteristics of palms, including the palmprint and palm-dorsum vein patterns. The proposed method consists of five steps: (1) automatically aligning and cropping the same region of interest from different palm or palm-dorsum images; (2) applying the digital wavelet transform and inverse wavelet transform to fuse palmprint and vein pattern images; (3) extracting the line-like features (LLFs) from the fused image; (4) obtaining multiresolution representations of the LLFs by using a multiresolution filter; and (5) using a support vector machine to verify the multiresolution representations of the LLFs. The proposed method possesses four advantages: first, both modal images are captured in peg-free scenarios to improve the user-friendliness of the verification device. Second, palmprint and vein pattern images are captured using a low-resolution digital scanner and infrared (IR) camera. The use of low-resolution images results in a smaller database. In addition, the vein pattern images are captured through the invisible IR spectrum, which improves antispoofing. Third, since the physiological characteristics of palmprint and vein pattern images are different, a hybrid fusing rule can be introduced to fuse the decomposition coefficients of different bands. The proposed method fuses decomposition coefficients at different decomposed levels, with different image sizes, captured from different sensor devices. Finally, the proposed method operates automatically and hence no parameters need to be set manually. Three thousand palmprint images and 3000 vein pattern images were collected from 100 volunteers to verify the validity of the proposed method. The results show a false rejection rate of 1.20% and a false acceptance rate of 1.56%. It demonstrates the validity and excellent performance of our proposed method comparing to other methods.

  14. Bimodal Biometric Verification Using the Fusion of Palmprint and Infrared Palm-Dorsum Vein Images

    Science.gov (United States)

    Lin, Chih-Lung; Wang, Shih-Hung; Cheng, Hsu-Yung; Fan, Kuo-Chin; Hsu, Wei-Lieh; Lai, Chin-Rong

    2015-01-01

    In this paper, we present a reliable and robust biometric verification method based on bimodal physiological characteristics of palms, including the palmprint and palm-dorsum vein patterns. The proposed method consists of five steps: (1) automatically aligning and cropping the same region of interest from different palm or palm-dorsum images; (2) applying the digital wavelet transform and inverse wavelet transform to fuse palmprint and vein pattern images; (3) extracting the line-like features (LLFs) from the fused image; (4) obtaining multiresolution representations of the LLFs by using a multiresolution filter; and (5) using a support vector machine to verify the multiresolution representations of the LLFs. The proposed method possesses four advantages: first, both modal images are captured in peg-free scenarios to improve the user-friendliness of the verification device. Second, palmprint and vein pattern images are captured using a low-resolution digital scanner and infrared (IR) camera. The use of low-resolution images results in a smaller database. In addition, the vein pattern images are captured through the invisible IR spectrum, which improves antispoofing. Third, since the physiological characteristics of palmprint and vein pattern images are different, a hybrid fusing rule can be introduced to fuse the decomposition coefficients of different bands. The proposed method fuses decomposition coefficients at different decomposed levels, with different image sizes, captured from different sensor devices. Finally, the proposed method operates automatically and hence no parameters need to be set manually. Three thousand palmprint images and 3000 vein pattern images were collected from 100 volunteers to verify the validity of the proposed method. The results show a false rejection rate of 1.20% and a false acceptance rate of 1.56%. It demonstrates the validity and excellent performance of our proposed method comparing to other methods. PMID:26703596

  15. Application of a bi-modal PBR nuclear propulsion and power system to military missions

    Science.gov (United States)

    Venetoklis, Peter S.

    1995-01-01

    The rapid proliferation of arms technology and space access combined with current economic realities in the United States are creating ever greater demands for more capable space-based military assets. The paper illustrates that bi-modal nuclear propulsion and power based on the Particle Bed Reactor (PBR) is a high-leverage tehcnology that can maximize utility while minimizing cost. Mission benefits offered by the bi-modal PBR, including enhanced maneuverability, lifetime, survivability, payload power, and operational flexibility, are discussed. The ability to deliver desired payloads on smaller boosters is also illustrated. System descriptions and parameters for 10 kWe and 100 kWe power output levels are summarized. It is demonstrated via design exercise that bi-modal PBR dramtically enhances performance of a military satellite in geosynchronous orbit, increasing payload mass, payload power, and maneuverability.

  16. A bimodal power and propulsion system based on cermet fuel and heat pipe energy transport

    International Nuclear Information System (INIS)

    Polansky, G.F.; Gunther, N.A.; Rochow, R.F.; Bixler, C.H.

    1995-01-01

    Bimodal space reactor systems provide both thermal propulsion for the spacecraft orbital transfer and electrical power to the spacecraft bus once it is on station. These systems have the potential to increase both the available payload in high energy orbits and the available power to that payload. These increased mass and power capabilities can be used to either reduce mission cost by permitting the use of smaller launch vehicles or to provide increased mission performance from the current launch vehicle. A major barrier to the deployment of these bimodal systems has been the cost associated with their development. This paper describes a bimodal reactor system with performance potential to permit more than 70% of the instrumented payload of the Titan IV/Centaur to be launched from the Atlas IIAS. The development cost is minimized by basing the design on existing component technologies

  17. Coating of silicon pore optics

    DEFF Research Database (Denmark)

    Cooper-Jensen, Carsten P.; Ackermann, M.; Christensen, Finn Erland

    2009-01-01

    For the International X-ray observatory (IXO), a mirror module with an effective area of 3 m2 at 1.25 keV and at least 0.65 m2 at 6 keV has to be realized. To achieve this goal, coated silicon pore optics has been developed over the last years. One of the challenges is to coat the Si plates...... and still to realize Si-Si bonding. It has been demonstrated that ribbed silicon plates can be produced and assembled into stacks. All previously work has been done using uncoated Si plates. In this paper we describe how to coat the ribbed Si plates with an Ir coating and a top C coating through a mask so...

  18. Unlocking the Physiochemical Controls on Organic Carbon Dynamics from the Soil Pore- to Core-Scale

    Science.gov (United States)

    Smith, A. P.; Tfaily, M. M.; Bond-Lamberty, B. P.; Todd-Brown, K. E.; Bailey, V. L.

    2015-12-01

    The physical organization of soil includes pore networks of varying size and connectivity. These networks control microbial access to soil organic carbon (C) by spatially separating microorganisms and C by both distance and size exclusion. The extent to which this spatially isolated C is vulnerable to microbial transformation under hydrologically dynamic conditions is unknown, and limits our ability to predict the source and sink capacity of soils. We investigated the effects of shifting hydrologic connectivity and soil structure on greenhouse gas C emissions from surface soils collected from the Disney Wilderness Preserve (Florida, USA). We subjected intact soil cores and re-packed homogenized soil cores to simulated groundwater rise or precipitation, monitoring their CO2 and CH4 emissions over 24 hours. Soil pore water was then extracted from each core using different suctions to sample water retained by pore throats of different sizes and then characterized by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Greater respiration rates were observed from homogenized cores compared to intact cores, and from soils wet from below, in which the wetting front is driven by capillary forces, filling fine pores first. This suggests that C located in fine pores may turn over via diffusion processes that lead to the colocation of this C with other resources and microorganisms. Both the complexity and concentration of soluble-C increased with decreasing pore size domains. Pore water extracted from homogenized cores had greater C concentrations than from intact cores, with the greatest concentrations in pore waters sampled from very fine pores, highlighting the importance of soil structure in physically protecting C. These results suggest that the spatial separation of decomposers from C is a key mechanism stabilizing C in these soils. Further research is ongoing to accurately represent this protection mechanism, and the conditions under which it breaks

  19. Wet winter pore pressures in railway embankments

    OpenAIRE

    Briggs, Kevin M; Smethurst, Joel A; Powrie, William; O'Brien, Anthony S

    2013-01-01

    This paper demonstrates the influence of extreme wet winter weather on pore water pressures within clay fill railway embankments, using field monitoring data and numerical modelling. Piezometer readings taken across the London Underground Ltd network following the wet winter of 2000/2001 were examined, and showed occurrences of hydrostatic pore water pressure within embankments but also many readings below this. A correlation was found between the maximum pore water pressures and the permeabi...

  20. A preliminary study of the influence of ions in the pore solution of hardened cement pastes on the porosity determination by low temperature calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Min, E-mail: miwu@byg.dtu.dk [Department of Civil Engineering, Technical University of Denmark, Building 118, 2800 Lyngby (Denmark); Johannesson, Björn [Department of Civil Engineering, Technical University of Denmark, Building 118, 2800 Lyngby (Denmark); Geiker, Mette [Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim (Norway)

    2014-08-10

    Highlights: • Ionic concentrations in cement pore solution at freezing temperatures were simulated. • Effects of ions in determining pore sizes by low temperature calorimetry were studied. • Ions in cement pore solution affect the pore size determination to a limited extent. - Abstract: Thermodynamic modeling was used to predict the ionic concentrations in the pore solution of cement pastes at different temperatures during a freezing and melting measurement in low temperature calorimetry (LTC) studies. By using the predicted ionic concentrations, the temperature depressions caused by the ions presented in the pore solution were determined. The influence of the freezing/melting point depression caused by the ions on the determined pore size distribution by LTC was demonstrated. Thermodynamic modeling using the program PHREEQC was performed on the cylinder and powder samples of cement pastes prepared by two types of cements, i.e., CEM I 32.5 R and CEM III/B 42.5 N. Using the modeled ionic concentrations, the calculated differential pore size distributions for the studied samples with and without considering the temperature depression caused by the ions in the pore solution were compared. The results indicate that for the studied cement paste samples, the influence of the temperature depression caused by the presence of the ions in the pore solution on the determination of the pore size distribution by LTC is limited.

  1. A preliminary study of the influence of ions in the pore solution of hardened cement pastes on the porosity determination by low temperature calorimetry

    International Nuclear Information System (INIS)

    Wu, Min; Johannesson, Björn; Geiker, Mette

    2014-01-01

    Highlights: • Ionic concentrations in cement pore solution at freezing temperatures were simulated. • Effects of ions in determining pore sizes by low temperature calorimetry were studied. • Ions in cement pore solution affect the pore size determination to a limited extent. - Abstract: Thermodynamic modeling was used to predict the ionic concentrations in the pore solution of cement pastes at different temperatures during a freezing and melting measurement in low temperature calorimetry (LTC) studies. By using the predicted ionic concentrations, the temperature depressions caused by the ions presented in the pore solution were determined. The influence of the freezing/melting point depression caused by the ions on the determined pore size distribution by LTC was demonstrated. Thermodynamic modeling using the program PHREEQC was performed on the cylinder and powder samples of cement pastes prepared by two types of cements, i.e., CEM I 32.5 R and CEM III/B 42.5 N. Using the modeled ionic concentrations, the calculated differential pore size distributions for the studied samples with and without considering the temperature depression caused by the ions in the pore solution were compared. The results indicate that for the studied cement paste samples, the influence of the temperature depression caused by the presence of the ions in the pore solution on the determination of the pore size distribution by LTC is limited

  2. Electroosmotic pore transport in human skin.

    Science.gov (United States)

    Uitto, Olivia D; White, Henry S

    2003-04-01

    To determine the pathways and origin of electroosmotic flow in human skin. Iontophoretic transport of acetaminophen in full thickness human cadaver skin was visualized and quantified by scanning electrochemical microscopy. Electroosmotic flow in the shunt pathways of full thickness skin was compared to flow in the pores of excised stratum corneum and a synthetic membrane pore. The penetration of rhodamine 6G into pore structures was investigated by laser scanning confocal microscopy. Electroosmotic transport is observed in shunt pathways in full thickness human skin (e.g., hair follicles and sweat glands), but not in pore openings of freestanding stratum corneum. Absolute values of the diffusive and iontophoretic pore fluxes of acetaminophen in full thickness human skin are also reported. Rhodamine 6G is observed to penetrate to significant depths (approximately 200 microm) along pore pathways. Iontophoresis in human cadaver skin induces localized electroosmotic flow along pore shunt paths. Electroosmotic forces arise from the passage of current through negatively charged mesoor nanoscale pores (e.g., gap functions) within cellular regions that define the pore structure beneath the stratum corneum.

  3. Plastic strain caused by contraction of pores in polycrystalline graphites

    International Nuclear Information System (INIS)

    Ioka, Ikuo; Yoda, Shinichi; Konishi, Takashi.

    1989-01-01

    The effects of porosity on mechanical properties and deformation behavior of four isotropic polycrystalline graphites were studied. The pore size distributions of the graphites were measured using a conventional mercury penetration technique. The average pore radius of ISO-88 graphite was about one-tenth of that of ISEM-1, IG-11 or IG-15 graphites. Young's modulus of the graphites decreased with increasing porosity. The stress-strain curve of each graphite was measured in its lateral and axial directions. Young's modulus of graphite decreased with increasing load. The plastic strain at a given compressive load was calculated from the stress-strain curve and the initial gradient of the unloading curve at the load. The ratio of lateral plastic strain to axial plastic strain for the graphites was less than 0.5, indicating that the volume of the graphites decreased during compressive loading. By assuming that the volume change was caused by contraction of pores, plastic strain associated with contraction of pores was calculated from the axial plastic strain and lateral plastic strain by slips along the basal planes. The plastic strain increased with increasing axial plastic strain and porosity of graphite. (author)

  4. Enhanced water transport and salt rejection through hydrophobic zeolite pores

    Science.gov (United States)

    Humplik, Thomas; Lee, Jongho; O’Hern, Sean; Laoui, Tahar; Karnik, Rohit; Wang, Evelyn N.

    2017-12-01

    The potential of improvements to reverse osmosis (RO) desalination by incorporating porous nanostructured materials such as zeolites into the selective layer in the membrane has spurred substantial research efforts over the past decade. However, because of the lack of methods to probe transport across these materials, it is still unclear which pore size or internal surface chemistry is optimal for maximizing permeability and salt rejection. We developed a platform to measure the transport of water and salt across a single layer of zeolite crystals, elucidating the effects of internal wettability on water and salt transport through the ≈5.5 Å pores of MFI zeolites. MFI zeolites with a more hydrophobic (i.e., less attractive) internal surface chemistry facilitated an approximately order of magnitude increase in water permeability compared to more hydrophilic MFI zeolites, while simultaneously fully rejecting both potassium and chlorine ions. However, our results also demonstrated approximately two orders of magnitude lower permeability compared to molecular simulations. This decreased performance suggests that additional transport resistances (such as surface barriers, pore collapse or blockages due to contamination) may be limiting the performance of experimental nanostructured membranes. Nevertheless, the inclusion of hydrophobic sub-nanometer pores into the active layer of RO membranes should improve both the water permeability and salt rejection of future RO membranes (Fasano et al 2016 Nat. Commun. 7 12762).

  5. SDSS-IV MaNGA: Stellar angular momentum of about 2300 galaxies: unveiling the bimodality of massive galaxy properties

    Science.gov (United States)

    Graham, Mark T.; Cappellari, Michele; Li, Hongyu; Mao, Shude; Bershady, Matthew; Bizyaev, Dmitry; Brinkmann, Jonathan; Brownstein, Joel R.; Bundy, Kevin; Drory, Niv; Law, David R.; Pan, Kaike; Thomas, Daniel; Wake, David A.; Weijmans, Anne-Marie; Westfall, Kyle B.; Yan, Renbin

    2018-03-01

    We measure λ _{R_e}, a proxy for galaxy specific stellar angular momentum within one effective radius, and the ellipticity, ɛ, for about 2300 galaxies of all morphological types observed with integral field spectroscopy as part of the MaNGA survey, the largest such sample to date. We use the (λ _{R_e}, ɛ ) diagram to separate early-type galaxies into fast and slow rotators. We also visually classify each galaxy according to its optical morphology and two-dimensional stellar velocity field. Comparing these classifications to quantitative λ _{R_e} measurements reveals tight relationships between angular momentum and galaxy structure. In order to account for atmospheric seeing, we use realistic models of galaxy kinematics to derive a general approximate analytic correction for λ _{R_e}. Thanks to the size of the sample and the large number of massive galaxies, we unambiguously detect a clear bimodality in the (λ _{R_e}, ɛ ) diagram which may result from fundamental differences in galaxy assembly history. There is a sharp secondary density peak inside the region of the diagram with low λ _{R_e} and ɛ definition for slow rotators. Most of these galaxies are visually classified as non-regular rotators and have high velocity dispersion. The intrinsic bimodality must be stronger, as it tends to be smoothed by noise and inclination. The large sample of slow rotators allows us for the first time to unveil a secondary peak at ±90○ in their distribution of the misalignments between the photometric and kinematic position angles. We confirm that genuine slow rotators start appearing above M ≥ 2 × 1011M⊙ where a significant number of high-mass fast rotators also exist.

  6. Influence of carbonization conditions on micro-pore structure of foundry formed coke produced with char

    Energy Technology Data Exchange (ETDEWEB)

    Jun Qiao; Jianjun Wu; Jingru Zu; Zhiyuan Gao; Guoli Zhou

    2009-07-01

    There are few studies on coke's micro-pore structure in recent years, however, micro-pore structure of foundry coke determines its macroscopically quality index and reactivity in cupola furnace. Effect of such factors on micro-pore structure were investigated under different carbonization conditions with certain ratio of raw materials and material forming process in this article as charging temperature (A); braised furnace time (B); heating rate of the first stage (C)and the second stage (D) and holding time of ultimate temperature (E). Research showed that charging temperature was the most influential factor on the coke porosity, pore volume, pore size and specific surface area. It is suggested that formation of plastic mass and releasing rate of volatile during carbonization period are two main factors on microstructure of foundry coke while charging temperature contributes most to the above factors. 6 refs., 4 figs., 9 tabs.

  7. Water retention, gas transport, and pore network complexity during short-term regeneration of soil structure

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Møldrup, Per; Schjønning, Per

    2013-01-01

    Human activities such as mining, grading, and filling results in physical disturbance of soil structure and associated functions, and knowledge on structure recovery after such activities is vital. This study quantifies the newly-formed structure of 22-month field-incubated physically-disturbed (2...... was done using water retention (pore size distribution), soil gas diffusivity, air permeability, and derived pore network complexity parameters. Significant decreases in bulk density (increased total porosity) and increases in pores > 100 1m was observed for incubated samples compared with SR samples......, incubated samples had lower water content, higher air filled porosity, and air permeability than natural intact samples at matric potential of –10 kPa. Despite this, soil pore organization was similar among the two groups but pore network complexity increased in order: SR

  8. Pore Structure Evolution and Its Effect on Strength Development of Sulfate-Containing Cemented Paste Backfill

    Directory of Open Access Journals (Sweden)

    Hao Rong

    2017-01-01

    Full Text Available In this study, the effects of the initial sulfate content on the properties of cemented paste backfill (CPB made from coarse tailings has been investigated via mercury intrusion porosimetry. The combined effects of the sulfate content and curing time on the total porosity, pore size distribution, and unconfined compressive strength of the produced material were discussed. It was found that the specimens with an initial sulfate content of 5000 and 35,000 ppm exhibited higher unconfined compressive strength, while the resulting fine porous structures characterized by pore radii of 10–400 and 1–10 μm significantly improved the mechanical properties of the CPB. In addition, an increase in the curing time decreased the overall pore volume in the radius range of 1–400 μm but increased the pore volume at pore radii less than 1 μm.

  9. Pore-scale modeling of capillary trapping in water-wet porous media: A new cooperative pore-body filling model

    Science.gov (United States)

    Ruspini, L. C.; Farokhpoor, R.; Øren, P. E.

    2017-10-01

    We present a pore-network model study of capillary trapping in water-wet porous media. The amount and distribution of trapped non-wetting phase is determined by the competition between two trapping mechanisms - snap-off and cooperative pore-body filling. We develop a new model to describe the pore-body filling mechanism in geologically realistic pore-networks. The model accounts for the geometrical characteristics of the pore, the spatial location of the connecting throats and the local fluid topology at the time of the displacement. We validate the model by comparing computed capillary trapping curves with published data for four different water-wet rocks. Computations are performed on pore-networks extracted from micro-CT images and process-based reconstructions of the actual rocks used in the experiments. Compared with commonly used stochastic models, the new model describes more accurately the experimental measurements, especially for well connected porous systems where trapping is controlled by subtleties of the pore structure. The new model successfully predicts relative permeabilities and residual saturation for Bentheimer sandstone using in-situ measured contact angles as input to the simulations. The simulated trapped cluster size distributions are compared with predictions from percolation theory.

  10. Quantitative research on skin pore widening using a stereoimage optical topometer and Sebutape.

    Science.gov (United States)

    Jo, Ho Youn; Yu, Dong Soo; Oh, Chil Hwan

    2007-05-01

    The treatment of skin pore widening is concerned with cosmetics sciences, but an objective and quantitative measurement method of the severity of skin pore widening has not been developed. In this study, bioengineering methods were applied to evaluate skin pore widening. The results from bioengineering measurements were compared with clinical visual assessment. In order to quantify skin pore widening, three-dimensional data of skin pore were produced by a stereoimage optical topometer (SOT). The sizes of follicular infundibulum were measured quantitatively, with reserved sebum by Sebutape. 50 female volunteers were divided into two groups. Group A was tested by the cosmetics including active ingredient and group B by placebo. The constricting effect of skin pores by cosmetics was measured for immediate effect and long-term effect. In the immediate effect, there was no statistical difference between groups A and B in visual scoring. In SOT, the size of the skin pores of group A had changed after application of cosmetics but there were no changes in group B. In the long-term effect, there was no statistical difference between groups A and B in visual scoring. TA, TV, SA, and SV of skin pores of groups A and B were decreased in 3 and 6 months by SOT. In Sebutape measurement, there was decreased volume of reserved sebum in groups A and B. The result of the Sebutape study was similar to that of SOT. Evaluation of skin pore change by visual assessment is difficult, but bioengineering tools are more reliable and useful methods for the assessment of skin pore change.

  11. Pore structure modification of diatomite as sulfuric acid catalyst support by high energy electron beam irradiation and hydrothermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chong [Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Zhang, Guilong; Wang, Min [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Chen, Jianfeng [Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Cai, Dongqing, E-mail: dqcai@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Wu, Zhengyan, E-mail: zywu@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China)

    2014-08-15

    Highlights: • High energy electron beam (HEEB) irradiation and hydrothermal treatment were used. • HEEB irradiation could make the impurities in the pores of diatomite loose. • Hydrothermal treatment (HT) could remove these impurities from the pores. • They could effectively improve pore size distribution and decrease the bulk density. • Catalytic performance of the corresponding catalyst was significantly improved. - Abstract: High energy electron beam (HEEB) irradiation and hydrothermal treatment (HT), were applied in order to remove the impurities and enlarge the pore size of diatomite, making diatomite more suitable to be a catalyst support. The results demonstrated that, through thermal, charge, impact and etching effects, HEEB irradiation could make the impurities in the pores of diatomite loose and remove some of them. Then HT could remove rest of them from the pores and contribute significantly to the modification of the pore size distribution of diatomite due to thermal expansion, water swelling and thermolysis effects. Moreover, the pore structure modification improved the properties (BET (Brunauer–Emmett–Teller) specific surface area, bulk density and pore volume) of diatomite and the catalytic efficiency of the catalyst prepared from the treated diatomite.

  12. Pore architecture and cell viability on freeze dried 3D recombinant human collagen-peptide (RHC)–chitosan scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing; Zhou, Aimei; Deng, Aipeng [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Yang, Yang [Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Gao, Lihu; Zhong, Zhaocai [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Yang, Shulin, E-mail: yshulin@njust.edu.cn [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2015-04-01

    Pore architecture of 3D scaffolds used in tissue engineering plays a critical role in the maintenance of cell survival, proliferation and further promotion of tissue regeneration. We investigated the pore size and structure, porosity, swelling as well as cell viability of a series of recombinant human collagen-peptide–chitosan (RHCC) scaffolds fabricated by lyophilization. In this paper, freezing regime containing a final temperature of freezing (T{sub f}) and cooling rates was applied to obtain scaffolds with pore size ranging from 100 μm to 120 μm. Other protocols of RHC/chitosan suspension concentration and ratio modification were studied to produce more homogenous and appropriate structural scaffolds. The mean pore size decreased along with the decline of T{sub f} at a slow cooling rate of 0.7 °C/min; a more rapid cooling rate under 5 °C/min resulted to a smaller pore size and more homogenous microstructure. High concentration could reduce pore size and lead to thick well of scaffold, while improved the ratio of RHC, lamellar and fiber structure coexisted with cellular pores. Human umbilical vein endothelial cells (HUVECs) were seeded on these manufactured scaffolds, the cell viability represented a negative correlation to the pore size. This study provides an alternative method to fabricate 3D RHC–chitosan scaffolds with appropriate pores for potential tissue engineering. - Highlights: • Fabrication of recombinant human collagen-chitosan scaffolds by freezing drying • Influence of freeze drying protocols on lyophilized scaffolds • Pore size, microstructure, porosity, swelling and cell viability were compared. • The optimized porous scaffold is suitable for cell (HUVEC) seeding.

  13. Estimation of pore pressure in the rim region of high burnup UO2 fuel

    International Nuclear Information System (INIS)

    Koo, Yang Hyun; Lee, Byung Ho; Sohn, Dong Seong

    1999-01-01

    An attempt has been made to estimate the pore pressure in the rim region of high burnup UO 2 fuel as a function of rim burnup using the measured rim width, average porosity and pore density in the rim region. First, a linear relationship is developed based on measured rim burnup and rim width. Second, fraction of fission gas retained in the grain boundary of rim region is estimated. Third, total pores in the rim is calculated from the measured pore density in the rim region. Finally using the assumption that all the pores in the rim have the same size of 1.2μm, pore pressure is calculated from the equation of state for ideal gas. An estimated pore pressure of about 60 to 80 MPa for the rim burnup of 90 GWd/tU appears to be in reasonable agreement with other value given in a literature that pore pressure at 800 K become 90-210 MPa for pellet average burnup of 80 GWd/tU

  14. Gas transport and subsoil pore characteristics

    DEFF Research Database (Denmark)

    Berisso, Feto Esimo; Schjønning, Per; Keller, Thomas

    2013-01-01

    Arrangements of elementary soil particles during soil deposition and subsequent biological and physical processes in long-term pedogenesis are expected to lead to anisotropy of the non-tilled subsoil pore system. Soil compaction by agricultural machinery is known to affect soil pore characteristi...

  15. Pore Formation During Solidification of Aluminum: Reconciliation of Experimental Observations, Modeling Assumptions, and Classical Nucleation Theory

    Science.gov (United States)

    Yousefian, Pedram; Tiryakioğlu, Murat

    2018-02-01

    An in-depth discussion of pore formation is presented in this paper by first reinterpreting in situ observations reported in the literature as well as assumptions commonly made to model pore formation in aluminum castings. The physics of pore formation is reviewed through theoretical fracture pressure calculations based on classical nucleation theory for homogeneous and heterogeneous nucleation, with and without dissolved gas, i.e., hydrogen. Based on the fracture pressure for aluminum, critical pore size and the corresponding probability of vacancies clustering to form that size have been calculated using thermodynamic data reported in the literature. Calculations show that it is impossible for a pore to nucleate either homogeneously or heterogeneously in aluminum, even with dissolved hydrogen. The formation of pores in aluminum castings can only be explained by inflation of entrained surface oxide films (bifilms) under reduced pressure and/or with dissolved gas, which involves only growth, avoiding any nucleation problem. This mechanism is consistent with the reinterpretations of in situ observations as well as the assumptions made in the literature to model pore formation.

  16. Understanding fluid transport through the multiscale pore network of a natural shale

    Directory of Open Access Journals (Sweden)

    Davy Catherine A.

    2017-01-01

    Full Text Available The pore structure of a natural shale is obtained by three imaging means. Micro-tomography results are extended to provide the spatial arrangement of the minerals and pores present at a voxel size of 700 nm (the macroscopic scale. FIB/SEM provides a 3D representation of the porous clay matrix on the so-called mesoscopic scale (10-20 nm; a connected pore network, devoid of cracks, is obtained for two samples out of five, while the pore network is connected through cracks for two other samples out of five. Transmission Electron Microscopy (TEM is used to visualize the pore space with a typical pixel size of less than 1 nm and a porosity ranging from 0.12 to 0.25. On this scale, in the absence of 3D images, the pore structure is reconstructed by using a classical technique, which is based on truncated Gaussian fields. Permeability calculations are performed with the Lattice Boltzmann Method on the nanoscale, on the mesoscale, and on the combination of the two. Upscaling is finally done (by a finite volume approach on the bigger macroscopic scale. Calculations show that, in the absence of cracks, the contribution of the nanoscale pore structure on the overall permeability is similar to that of the mesoscale. Complementarily, the macroscopic permeability is measured on a centimetric sample with a neutral fluid (ethanol. The upscaled permeability on the macroscopic scale is in good agreement with the experimental results.

  17. Adsorptive capacity and evolution of the pore structure of alumina on reaction with gaseous hydrogen fluoride.

    Science.gov (United States)

    McIntosh, Grant J; Agbenyegah, Gordon E K; Hyland, Margaret M; Metson, James B

    2015-05-19

    Brunauer-Emmet-Teller (BET) specific surface areas are generally used to gauge the propensity of uptake on adsorbents, with less attention paid to kinetic considerations. We explore the importance of such parameters by modeling the pore size distributions of smelter grade aluminas following HF adsorption, an industrially important process in gas cleaning at aluminum smelters. The pore size distributions of industrially fluorinated aluminas, and those contacted with HF in controlled laboratory trials, are reconstructed from the pore structure of the untreated materials when filtered through different models of adsorption. These studies demonstrate the presence of three distinct families of pores: those with uninhibited HF uptake, kinetically limited porosity, and pores that are surface blocked after negligible scrubbing. The surface areas of the inaccessible and blocked pores will overinflate estimates of the adsorption capacity of the adsorbate. We also demonstrate, contrary to conventional understanding, that porosity changes are attributed not to monolayer uptake but more reasonably to pore length attenuation. The model assumes nothing specific regarding the Al2O3-HF system and is therefore likely general to adsorbate/adsorbent phenomena.

  18. Experimental evidence of the role of pores on movement and distribution of bacteria in soil

    Science.gov (United States)

    Kravchenko, Alexandra N.; Rose, Joan B.; Marsh, Terence L.; Guber, Andrey K.

    2014-05-01

    It has been generally recognized that micro-scale heterogeneity in soil environments can have a substantial effect on movement, fate, and survival of soil microorganisms. However, only recently the development of tools for micro-scale soil analyses, including X-ray computed micro-tomography (μ-CT), enabled quantitative analyses of these effects. The long-term goal of our work is to explore how differences in micro-scale characteristics of pore structures influence movement, spatial distribution patterns, and activities of soil microorganisms. Using X-ray μ-CT we found that differences in land use and management practices lead to development of contrasting patterns in pore size-distributions within intact soil aggregates. Then our experiments with Escherichia coli added to intact soil aggregates demonstrated that the differences in pore structures can lead to substantial differences in bacteria redistribution and movement within the aggregates. Specifically, we observed more uniform E.coli redistribution in aggregates with homogeneously spread pores, while heterogeneous pore structures resulted in heterogeneous E.coli patterns. Water flow driven by capillary forces through intact aggregate pores appeared to be the main contributor to the movement patterns of the introduced bacteria. Influence of pore structure on E.coli distribution within the aggregates further continued after the aggregates were subjected to saturated water flow. E. coli's resumed movement with saturated water flow and subsequent redistribution within the soil matrix was influenced by porosity, abundance of medium and large pores, pore tortuosity, and flow rates, indicating that greater flow accompanied by less convoluted pores facilitated E. coli transport within the intra-aggregate space. We also found that intra-aggregate heterogeneity of pore structures can have an effect on spatial distribution patterns of indigenous microbial populations. Preliminary analysis showed that in aggregates from

  19. FINGERPRINT MATCHING BASED ON PORE CENTROIDS

    Directory of Open Access Journals (Sweden)

    S. Malathi

    2011-05-01

    Full Text Available In recent years there has been exponential growth in the use of bio- metrics for user authentication applications. Automated Fingerprint Identification systems have become popular tool in many security and law enforcement applications. Most of these systems rely on minutiae (ridge ending and bifurcation features. With the advancement in sensor technology, high resolution fingerprint images (1000 dpi pro- vide micro level of features (pores that have proven to be useful fea- tures for identification. In this paper, we propose a new strategy for fingerprint matching based on pores by reliably extracting the pore features The extraction of pores is done by Marker Controlled Wa- tershed segmentation method and the centroids of each pore are con- sidered as feature vectors for matching of two fingerprint images. Experimental results shows that the proposed method has better per- formance with lower false rates and higher accuracy.

  20. An examination of bimodal nuclear power and propulsion benefits for outer solar system missions

    International Nuclear Information System (INIS)

    Zubrin, R.; Mondt, J.

    1996-01-01

    This paper presents the results of an analysis of the capability of nuclear bimodal systems to perform outer solar system exploration missions. Missions of interest include orbiter missions to Jupiter, Saturn, Uranus, Neptune, and Pluto. An initial technology baseline consisting of the NEBA 10 kWe, 1000 N thrust, 850 s, 1500 kg bimodal system was selected, and its performance examined against a data base for trajectories to outer solar system planetary destinations to select optimal direct and gravity assisted trajectories for study. A conceptual design for a common bimodal spacecraft capable of performing missions to all the planetary destinations was developed and made the basis of end to end mission designs for orbiter missions to Jupiter, Saturn, and Neptune. All mission designs considered use the Atlas 2AS for launch. The radiological hazard associated with using Earth gravity assists on such missions was examined and shown to be small compared to that currently accepted on Earth fly-by missions involving RTGs. It is shown that the bimodal nuclear power and propulsion system offers many attractive options for planetary missions, including both conventional planetary missions in which all instruments are carried by a single primary orbiting spacecraft, and unconventional missions in which the primary spacecraft acts as a carrier, relay, and mother ship for a fleet of micro spacecraft deployed at the planetary destination. copyright 1996 American Institute of Physics

  1. Spatial attention triggered by unimodal, crossmodal, and bimodal exogenous cues: a comparison of reflexive orienting mechanisms

    NARCIS (Netherlands)

    Santangelo, Valerio; van der Lubbe, Robert Henricus Johannes; Belardinelli, Marta Olivetti; Postma, Albert

    The aim of this study was to establish whether spatial attention triggered by bimodal exogenous cues acts differently as compared to unimodal and crossmodal exogenous cues due to crossmodal integration. In order to investigate this issue, we examined cuing effects in discrimination tasks and

  2. Emotional Perception of Music in Children With Bimodal Fitting and Unilateral Cochlear Implant.

    Science.gov (United States)

    Shirvani, Sareh; Jafari, Zahra; Motasaddi Zarandi, Masoud; Jalaie, Shohre; Mohagheghi, Hamed; Tale, Mohammad Reza

    2016-06-01

    Biological, structural, and acoustical constraints faced by cochlear implant (CI) users can alter the perception of music. Bimodal fitting not only provides bilateral hearing but can also improve auditory skills. This study was conducted to assess the impact of this amplification style on the emotional perception of music among children with hearing loss (HL). Twenty-five children with congenital severe to profound HL and unilateral CIs, 20 children with bimodal fitting, and 30 children with normal hearing participated in this study. Their emotional perceptions of music were measured using a method where children indicated happy or sad feelings induced by music by pointing to pictures of faces showing these emotions. Children with bimodal fitting obtained significantly higher mean scores than children with unilateral CIs for both happy and sad music items and in overall test scores (P emotional perception of music compared to unilateral CI. Given the influence of music in neurological and linguistic development and social interactions, it is important to evaluate the possible benefits of bimodal fitting prescriptions for individuals with unilateral CIs. © The Author(s) 2015.

  3. Effects of Removing Low-Frequency Electric Information on Speech Perception with Bimodal Hearing

    Science.gov (United States)

    Fowler, Jennifer R.; Eggleston, Jessica L.; Reavis, Kelly M.; McMillan, Garnett P.; Reiss, Lina A. J.

    2016-01-01

    Purpose: The objective was to determine whether speech perception could be improved for bimodal listeners (those using a cochlear implant [CI] in one ear and hearing aid in the contralateral ear) by removing low-frequency information provided by the CI, thereby reducing acoustic-electric overlap. Method: Subjects were adult CI subjects with at…

  4. Phenotypic Diversity Using Bimodal and Unimodal Expression of Stress Response Proteins.

    Science.gov (United States)

    Garcia-Bernardo, Javier; Dunlop, Mary J

    2016-05-24

    Populations of cells need to express proteins to survive the sudden appearance of stressors. However, these mechanisms may be taxing. Populations can introduce diversity, allowing individual cells to stochastically switch between fast-growing and stress-tolerant states. One way to achieve this is to use genetic networks coupled with noise to generate bimodal distributions with two distinct subpopulations, each adapted to a stress condition. Another survival strategy is to rely on random fluctuations in gene expression to produce continuous, unimodal distributions of the stress response protein. To quantify the environmental conditions where bimodal versus unimodal expression is beneficial, we used a differential evolution algorithm to evolve optimal distributions of stress response proteins given environments with sudden fluctuations between low and high stress. We found that bimodality evolved for a large range of environmental conditions. However, we asked whether these findings were an artifact of considering two well-defined stress environments (low and high stress). As noise in the environment increases, or when there is an intermediate environment (medium stress), the benefits of bimodality decrease. Our results indicate that under realistic conditions, a continuum of resistance phenotypes generated through a unimodal distribution is sufficient to ensure survival without a high cost to the population. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Quantum treatment of laser cooling on weak transitions: multipeaks and bimodal momentum distributions

    Science.gov (United States)

    Ilenkov, R. Ya; Taichenachev, A. V.; Yudin, V. I.; Prudnikov, O. N.

    2018-01-01

    The work is devoted to the study of the features and parameters of the momentum distributions of atoms laser cooled on weak optical transitions. It was shown that atoms distributions are described by a bimodal momentum distribution whose characteristics depends on the parameters of the light field. In a strong field a velocity selective coherent population trapping effect is observed.

  6. mocca code for star cluster simulations - VI. Bimodal spatial distribution of blue stragglers

    Science.gov (United States)

    Hypki, Arkadiusz; Giersz, Mirek

    2017-11-01

    The paper presents an analysis of formation mechanism and properties of spatial distributions of blue stragglers in evolving globular clusters, based on numerical simulations done with the mocca code. First, there are presented N-body and mocca simulations which try to reproduce the simulations presented by Ferraro et al. (2012). Then, we show the agreement between N-body and the mocca code. Finally, we discuss the formation process of the bimodal distribution. We report that we could not reproduce simulations from Ferraro et al. (2012). Moreover, we show that the so-called bimodal spatial distribution of blue stragglers is a very transient feature. It is formed for one snapshot in time and it can easily vanish in the next one. Moreover, we show that the radius of avoidance proposed by Ferraro et al. (2012) goes out of sync with the apparent minimum of the bimodal distribution after about two half-mass relaxation times (without finding out what is the reason for that). This finding creates a real challenge for the dynamical clock, which uses this radius to determine the dynamical age of globular clusters. Additionally, the paper discusses a few important problems concerning the apparent visibilities of the bimodal distributions, which have to be taken into account while studying the spatial distributions of blue stragglers.

  7. Deaf Parents of Cochlear-Implanted Children: Beliefs on Bimodal Bilingualism

    Science.gov (United States)

    Mitchiner, Julie Cantrell

    2015-01-01

    This study investigated 17 Deaf families in North America with cochlear-implanted children about their attitudes, beliefs, and practices on bimodal bilingualism (defined as using both a visual/manual language and an aural/oral language) in American Sign Language (ASL) and English. A survey and follow-up interviews with 8 families were conducted.…

  8. Resolving the age bimodality of galaxy stellar populations on kpc scales

    NARCIS (Netherlands)

    Zibetti, Stefano; Gallazzi, Anna R.; Ascasibar, Y.; Charlot, S.; Galbany, L.; García Benito, R.; Kehrig, C.; de Lorenzo-Cáceres, A.; Lyubenova, M.; Marino, R. A.; Márquez, I.; Sánchez, S. F.; van de Ven, G.; Walcher, C. J.; Wisotzki, L.

    2017-01-01

    Galaxies in the local Universe are known to follow bimodal distributions in the global stellar population properties. We analyse the distribution of the local average stellar population ages of 654 053 sub-galactic regions resolved on ˜1 kpc scales in a volume-corrected sample of 394 galaxies, drawn

  9. Pore structure of the activated coconut shell charcoal carbon

    Science.gov (United States)

    Budi, E.; Nasbey, H.; Yuniarti, B. D. P.; Nurmayatri, Y.; Fahdiana, J.; Budi, A. S.

    2014-09-01

    The development of activated carbon from coconut shell charcoal has been investigated by using physical method to determine the influence of activation parameters in term of temperature, argon gas pressure and time period on the pore structure of the activated carbon. The coconut shell charcoal was produced by pyrolisis process at temperature of about 75 - 150 °C for 6 hours. The charcoal was activated at various temperature (532, 700 and 868 °C), argon gas pressure (6.59, 15 and 23.4 kgf/cm2) and time period of (10, 60 and 120 minutes). The results showed that the pores size were reduced and distributed uniformly as the activation parameters are increased.

  10. Resolving the age bimodality of galaxy stellar populations on kpc scales

    Science.gov (United States)

    Zibetti, Stefano; Gallazzi, Anna R.; Ascasibar, Y.; Charlot, S.; Galbany, L.; García Benito, R.; Kehrig, C.; de Lorenzo-Cáceres, A.; Lyubenova, M.; Marino, R. A.; Márquez, I.; Sánchez, S. F.; van de Ven, G.; Walcher, C. J.; Wisotzki, L.

    2017-06-01

    Galaxies in the local Universe are known to follow bimodal distributions in the global stellar population properties. We analyse the distribution of the local average stellar population ages of 654 053 sub-galactic regions resolved on ˜1 kpc scales in a volume-corrected sample of 394 galaxies, drawn from the Calar Alto Legacy Integral Field Area (CALIFA) DR3 integral-field-spectroscopy survey and complemented by Sloan Digital Sky Survey (SDSS) imaging. We find a bimodal local-age distribution, with an old and a young peak primarily due to regions in early-type galaxies and star-forming regions of spirals, respectively. Within spiral galaxies, the older ages of bulges and interarm regions relative to spiral arms support an internal age bimodality. Although regions of higher stellar mass surface density, μ*, are typically older, μ* alone does not determine the stellar population age and a bimodal distribution is found at any fixed μ*. We identify an 'old ridge' of regions of age ˜9 Gyr, independent of μ*, and a 'young sequence' of regions with age increasing with μ* from 1-1.5 to 4-5 Gyr. We interpret the former as regions containing only old stars, and the latter as regions where the relative contamination of old stellar populations by young stars decreases as μ* increases. The reason why this bimodal age distribution is not inconsistent with the unimodal shape of the cosmic-averaged star formation history is that (I) the dominating contribution by young stars biases the age low with respect to the average epoch of star formation, and (II) the use of a single average age per region is unable to represent the full time extent of the star formation history of 'young sequence' regions.

  11. A mathematical multiscale model of bone remodeling, accounting for pore space-specific mechanosensation.

    Science.gov (United States)

    Pastrama, Maria-Ioana; Scheiner, Stefan; Pivonka, Peter; Hellmich, Christian

    2018-02-01

    While bone tissue is a hierarchically organized material, mathematical formulations of bone remodeling are often defined on the level of a millimeter-sized representative volume element (RVE), "smeared" over all types of bone microstructures seen at lower observation scales. Thus, there is no explicit consideration of the fact that the biological cells and biochemical factors driving bone remodeling are actually located in differently sized pore spaces: active osteoblasts and osteoclasts can be found in the vascular pores, whereas the lacunar pores host osteocytes - bone cells originating from former osteoblasts which were then "buried" in newly deposited extracellular bone matrix. We here propose a mathematical description which considers size and shape of the pore spaces where the biological and biochemical events take place. In particular, a previously published systems biology formulation, accounting for biochemical regulatory mechanisms such as the rank-rankl-opg pathway, is cast into a multiscale framework coupled to a poromicromechanical model. The latter gives access to the vascular and lacunar pore pressures arising from macroscopic loading. Extensive experimental data on the biological consequences of this loading strongly suggest that the aforementioned pore pressures, together with the loading frequency, are essential drivers of bone remodeling. The novel approach presented here allows for satisfactory simulation of the evolution of bone tissue under various loading conditions, and for different species; including scenarios such as mechanical dis- and overuse of murine and human bone, or in osteocyte-free bone. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Influence of lyophilization factors and gelatin concentration on pore structures of atelocollagen/gelatin sponge biomaterial.

    Science.gov (United States)

    Yang, Longqiang; Tanabe, Koji; Miura, Tadashi; Yoshinari, Masao; Takemoto, Shinji; Shintani, Seikou; Kasahara, Masataka

    2017-07-26

    This study aimed to investigate influences of lyophilization factors and gelatin concentration on pore structures of ACG sponge. ACG sponges of different freezing temperatures (-30, -80 and -196 o C), freezing times (1, 2 and 24 h), gelatin concentrations (0.6%AC+0.15%G, 0.6%AC+0.6%G and 0.6%AC+2.4%G), and with 500 μM fluvastatin were fabricated. Pore structures including porosity and pore size were analyzed by scanning electron microscopy and ImageJ. The cytotoxic effects of ACG sponges were evaluated in vitro. Freezing temperature did not affect porosity while high freezing temperature (-30 o C) increased pore size. The high gelatin concentration group (0.6%AC+2.4%G) had decreased porosity and pore size. Freezing time and 500 μM fluvastatin did not affect pore structures. The cytotoxicity and cell proliferation assays revealed that ACG sponges had no cytotoxic effects on human mesenchymal stromal cell growth and proliferation. These results indicate that ACG sponge may be a good biomaterial scaffold for bone regeneration.

  13. Fabrication of Porous Aluminum with Directional Pores through Continuous Casting Technique

    Science.gov (United States)

    Ide, T.; Iio, Y.; Nakajima, H.

    2012-12-01

    Lotus-type porous aluminum with slender directional pores is fabricated via a continuous casting technique in pressurized hydrogen or a mixed gas containing hydrogen and argon. The influence of solidification conditions such as hydrogen partial pressure, solidification velocity, temperature gradient, and melt temperature on the porosity and pore size is investigated. The porosity and pore size increase upon increasing the hydrogen partial pressure or the melt temperature, whereas the porosity and pore size decrease upon increasing the solidification velocity or the temperature gradient. Furthermore, the mechanism of pore formation in lotus aluminum is examined based on the results of an improved model of hydrogen mass balance in the solidification front, which was originally proposed by Yamamura et al. The results from the present model agree with the experimental results. We conclude that the diffusion of hydrogen rejected in the solidified aluminum near the solid/liquid interface is the most important factor for pore formation because the difference in hydrogen solubility between solid and liquid aluminum is very small.

  14. Pore-scale study of flow rate on colloid attachment and remobilization in a saturated micromodel

    NARCIS (Netherlands)

    Zhang, Qiulan; Raoof, A.; Hassanizadeh, S.M.

    2015-01-01

    Colloid attachment is an important retention mechanism. It is influenced by colloid size, pore size, and flow rate, among other factors. In this work, we studied colloid attachment experimentally under various flow rates, as well as colloid release in response to a rapid change of flow rate. Colloid

  15. Evaluating facial pores and skin texture after low-energy nonablative fractional 1440-nm laser treatments.

    Science.gov (United States)

    Saedi, Nazanin; Petrell, Kathleen; Arndt, Kenneth; Dover, Jeffrey

    2013-01-01

    The fractionated nonablative 1440-nm laser creates microscopic thermal wounds within the epidermis and the dermis and is used clinically to improve tone, texture, and color of skin. We sought to investigate the use of this device to treat facial pores and to improve skin texture. Twenty patients received 6 treatments at the highest tolerable energy level performed 2 weeks apart. Photographic assessments using the VISIA-CR (Canfield Scientific Inc, Fairfield, NJ) imaging system were performed. The pore score was calculated, which is the percentage of the skin surface that has detected pores. Subjective measurements (0-4 scale) were recorded by both the subject and investigator regarding pore appearance, skin texture, and overall skin appearance. Treatment discomfort was scored by patients (1-10 scale). After 6 treatments there was a significant reduction in pore score (P pore score at baseline was 2.059 ± 0.8 and 2 weeks after the final treatment it was 1.700 ± 0.8, resulting in a 17% average reduction in pore score. Study investigators reported average scores being 1.95 ± 0.3 for improved pore appearance and 2.75 ± 0.2 for improved overall appearance (0-4 scale). Subjects noted average scores of 1.9 ± 0.5 for improvement of the appearance of pores and 2.85 ± 0.4 for improvement of overall appearance (0-4 scale). The average discomfort score during treatments was reported to be 4.6 ± 0.1 (1-10 scale). There were no serious adverse effects or long-term side effects. Small sample size and limited follow-up are study limitations. A series of treatments with the nonablative low-energy fractional 1440-nm laser appears to be safe and effective for reducing detectable pores and improving overall skin appearance. Copyright © 2012 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  16. Pore-scale studies of multiphase flow and reaction involving CO2 sequestration in geologic formations

    Science.gov (United States)

    Kang, Q.; Wang, M.; Lichtner, P. C.

    2008-12-01

    In geologic CO2 sequestration, pore-scale interfacial phenomena ultimately govern the key processes of fluid mobility, chemical transport, adsorption, and reaction. However, spatial heterogeneity at the pore scale cannot be resolved at the continuum scale, where averaging occurs over length scales much larger than typical pore sizes. Natural porous media, such as sedimentary rocks and other geological media encountered in subsurface formations, are inherently heterogeneous. This pore-scale heterogeneity can produce variabilities in flow, transport, and reaction processes that take place within a porous medium, and can result in spatial variations in fluid velocity, aqueous concentrations, and reaction rates. Consequently, the unresolved spatial heterogeneity at the pore scale may be important for reactive transport modeling at the larger scale. In addition, current continuum models of surface complexation reactions ignore a fundamental property of physical systems, namely conservation of charge. Therefore, to better understand multiphase flow and reaction involving CO2 sequestration in geologic formations, it is necessary to quantitatively investigate the influence of the pore-scale heterogeneity on the emergent behavior at the field scale. We have applied the lattice Boltzmann method to simulating the injection of CO2 saturated brine or supercritical CO2 into geological formations at the pore scale. Multiple pore-scale processes, including advection, diffusion, homogeneous reactions among multiple aqueous species, heterogeneous reactions between the aqueous solution and minerals, ion exchange and surface complexation, as well as changes in solid and pore geometry are all taken into account. The rich pore scale information will provide a basis for upscaling to the continuum scale.

  17. Enlarged facial pores: an update on treatments.

    Science.gov (United States)

    Dong, Joanna; Lanoue, Julien; Goldenberg, Gary

    2016-07-01

    Enlarged facial pores remain a common dermatologic and cosmetic concern from acne and rosacea, among other conditions, that is difficult to treat due to the multifactorial nature of their pathogenesis and negative impact on patients' quality of life. Enlarged facial pores are primarily treated through addressing associative factors, such as increased sebum production and cutaneous aging. We review the current treatment modalities for enlarged or dense facial pores, including topical retinoids, chemical peels, oral antiandrogens, and lasers and devices, with a focus on newer therapies.

  18. Particle diffusion in complex nanoscale pore networks

    DEFF Research Database (Denmark)

    Müter, Dirk; Sørensen, Henning Osholm; Bock, H.

    2015-01-01

    We studied the diffusion of particles in the highly irregular pore networks of chalk, a very fine-grained rock, by combining three-dimensional X-ray imaging and dissipative particle dynamics (DPD) simulations. X-ray imaging data were collected at 25 nm voxel dimension for two chalk samples...... with very different porosities (4% and 26%). The three-dimensional pore systems derived from the tomograms were imported into DPD simulations and filled with spherical particles of variable diameter and with an optional attractive interaction to the pore surfaces. We found that diffusion significantly...

  19. Precise small-angle X-ray scattering evaluation of the pore structures in track-etched membranes: Comparison with other convenient evaluation methods

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Tsukasa, E-mail: t_miyazaki@cross.or.jp [Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, 162-1, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1106 (Japan); Takenaka, Mikihito [Department of Polymer Chemistry, Gradual School of Engineering, Kyoto University, Kyotodaigaku-katsura, Kyoto 615-8510 (Japan)

    2017-03-01

    Poly(ethylene terephthalate) (PET)-based track-etched membranes (TMs) with pore sizes ranging from few nanometers to approximately 1 μm are used in various applications in the biological field, and their pore structures are determined by small-angle X-ray scattering (SAXS). These TMs with the nanometer-sized cylindrical pores aligned parallel to the film thickness direction are produced by chemical etching of the track in the PET films irradiated by heavy ions with the sodium hydroxide aqueous solution. It is well known that SAXS allows us to precisely and statistically estimate the pore size and the pore size distribution in the TMs by using the form factor of a cylinder with the extremely long pore length relative to the pore diameter. The results obtained were compared with those estimated with scanning electron microscopy and gas permeability measurements. The result showed that the gas permeability measurement is convenient to evaluate the pore size of TMs within a wide length scale, and the SEM observation is also suited to estimate the pore size, although SEM observation is usually limited above approximately 30 nm.

  20. Permeability and reactivity of Thermotoga maritima in latex bimodal blend coatings at 80 degrees C: a model high temperature biocatalytic coating.

    Science.gov (United States)

    Lyngberg, Olav K; Solheid, Chris; Charaniya, Salim; Ma, Yue; Thiagarajan, Venkata; Scriven, L E; Flickinger, Michael C

    2005-06-01

    Thermostable polymers cast as thin, porous coatings or membranes may be useful for concentrating and stabilizing hyperthermophilic microorganisms as biocatalysts. Hydrogel matrices can be unstable above 65 degrees C. Therefore a 55-microm thick, two layer (cell coat + polymer top coat) bimodal, adhesive latex coating of partially coalesced polystyrene particles was investigated at 80 degrees C using Thermotoga maritima as a model hyperthermophile. Coating permeability (pore structure) was critical for maintaining T. maritima viability. The permeability of bimodal coatings generated from 0.8 v/v of a suspension of non-film-forming 800 nm polystyrene particles with high glass transition temperature (T(g) = 94 degrees C, 26.9% total solids) blended with 0.2 v/v of a suspension of film-forming 158 nm polyacrylate/styrene particles (T(g) approximately -5 degrees C, 40.9% total solids) with 0.3 g sucrose/g latex was measured in a KNO3 diffusion cell. Diffusivity ratio remained above 0.04 (D(eff)/D) when incubated at 80 degrees C in artificial seawater (ASW) for 5 days. KNO3 permeability was corroborated by cryogenic-SEM images of the pore structure. In contrast, the permeability of a mono-dispersed acrylate/vinyl acetate latex Rovace SF091 (T(g) approximately 10 degrees C) rapidly decreased and became impermeable after 2 days incubation in ASW at 80 degrees C. Thermotoga maritima were entrapped in these coatings at a cell density of 49 g cell wet weight/liter of coating volume, 25-fold higher than the density in liquid culture. Viable T. maritima were released from single-layer coatings at 80 degrees C but accurate measurement of the percentage of viable entrapped cells by plate counting was not successful. Metabolic activity could be measured in bilayer coatings by utilization of glucose and maltose, which was identical for latex-entrapped and suspended cells. Starch was hydrolyzed for 200 h by latex-entrapped cells due to the slow diffusion of starch through the

  1. Children with dyslexia show a reduced processing benefit from bimodal speech information compared to their typically developing peers.

    Science.gov (United States)

    Schaadt, Gesa; van der Meer, Elke; Pannekamp, Ann; Oberecker, Regine; Männel, Claudia

    2018-01-17

    During information processing, individuals benefit from bimodally presented input, as has been demonstrated for speech perception (i.e., printed letters and speech sounds) or the perception of emotional expressions (i.e., facial expression and voice tuning). While typically developing individuals show this bimodal benefit, school children with dyslexia do not. Currently, it is unknown whether the bimodal processing deficit in dyslexia also occurs for visual-auditory speech processing that is independent of reading and spelling acquisition (i.e., no letter-sound knowledge is required). Here, we tested school children with and without spelling problems on their bimodal perception of video-recorded mouth movements pronouncing syllables. We analyzed the event-related potential Mismatch Response (MMR) to visual-auditory speech information and compared this response to the MMR to monomodal speech information (i.e., auditory-only, visual-only). We found a reduced MMR with later onset to visual-auditory speech information in children with spelling problems compared to children without spelling problems. Moreover, when comparing bimodal and monomodal speech perception, we found that children without spelling problems showed significantly larger responses in the visual-auditory experiment compared to the visual-only response, whereas children with spelling problems did not. Our results suggest that children with dyslexia exhibit general difficulties in bimodal speech perception independently of letter-speech sound knowledge, as apparent in altered bimodal speech perception and lacking benefit from bimodal information. This general deficit in children with dyslexia may underlie the previously reported reduced bimodal benefit for letter-speech sound combinations and similar findings in emotion perception. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation.

    Science.gov (United States)

    Yuan, Zhe; Govind Rajan, Ananth; Misra, Rahul Prasanna; Drahushuk, Lee W; Agrawal, Kumar Varoon; Strano, Michael S; Blankschtein, Daniel

    2017-08-22

    Due to its atomic thickness, porous graphene with sub-nanometer pore sizes constitutes a promising candidate for gas separation membranes that exhibit ultrahigh permeances. While graphene pores can greatly facilitate gas mixture separation, there is currently no validated analytical framework with which one can predict gas permeation through a given graphene pore. In this work, we simulate the permeation of adsorptive gases, such as CO 2 and CH 4 , through sub-nanometer graphene pores using molecular dynamics simulations. We show that gas permeation can typically be decoupled into two steps: (1) adsorption of gas molecules to the pore mouth and (2) translocation of gas molecules from the pore mouth on one side of the graphene membrane to the pore mouth on the other side. We find that the translocation rate coefficient can be expressed using an Arrhenius-type equation, where the energy barrier and the pre-exponential factor can be theoretically predicted using the transition state theory for classical barrier crossing events. We propose a relation between the pre-exponential factor and the entropy penalty of a gas molecule crossing the pore. Furthermore, on the basis of the theor