WorldWideScience

Sample records for bimetallic nanoparticles film

  1. Radiation-induced preparation of bimetallic nanoparticles in the films of interpolyelectrolyte complexes

    Science.gov (United States)

    Klimov, Dmitry I.; Zezina, Elena A.; Zezin, Sergei B.; Yang, Mingshu; Wang, Feng; Shvedunov, Vasiliy I.; Feldman, Vladimir I.; Zezin, Alexey A.

    2018-01-01

    The bimetallic nanostructures are of considerable interest for various prospective applications. This paper reports a generation of the Cu/Ag and Cu/Au nanoparticles in the interpolyelectrolyte films irradiated in aqueous media. It was shown that the radiation-induced reduction of (Cu/Ag) or (Cu/Au) ions in the matrix of poly(acrylic acid)-polyethylenimine complexes led to formation of the nanoparticles with narrow size distribution. The core-shell structure of nanoparticles was demonstrated by the TEM results. According to the X-ray diffraction data, the nanoparticle cores (Ag or Au) are formed at early stage of irradiation, while increase of the absorbed dose results in the growth of copper shell. It was demonstrated that the radiation-induced reduction could be applied for effective preparation of bimetallic nanoparticles directly in the polymer matrix.

  2. Biosensors Incorporating Bimetallic Nanoparticles

    Directory of Open Access Journals (Sweden)

    John Rick

    2015-12-01

    Full Text Available This article presents a review of electrochemical bio-sensing for target analytes based on the use of electrocatalytic bimetallic nanoparticles (NPs, which can improve both the sensitivity and selectivity of biosensors. The review moves quickly from an introduction to the field of bio-sensing, to the importance of biosensors in today’s society, the nature of the electrochemical methods employed and the attendant problems encountered. The role of electrocatalysts is introduced with reference to the three generations of biosensors. The contributions made by previous workers using bimetallic constructs, grouped by target analyte, are then examined in detail; following which, the synthesis and characterization of the catalytic particles is examined prior to a summary of the current state of endeavor. Finally, some perspectives for the future of bimetallic NPs in biosensors are given.

  3. Structure and Morphology Effects on the Optical Properties of Bimetallic Nanoparticle Films Laser Deposited on a Glass Substrate

    Directory of Open Access Journals (Sweden)

    A. O. Kucherik

    2017-01-01

    Full Text Available Moving nanosecond laser system is used for laser-assisted thermodiffusion deposition of metallic nanoparticles from water-based colloidal solutions. The results obtained for both gold and silver nanoparticles show that film morphology strongly depends on laser scanning speed and the number of passages. We show, furthermore, the possibility of producing bimetallic Au:Ag thin films by laser irradiation of the mixed solutions. As a result of several laser scans, granular nanometric films are found to grow with a well-controlled composition, thickness, and morphology. By changing laser scanning parameters, film morphology can be varied from island structures to quasi-periodic arrays. The optical properties of the deposited structures are found to depend on the film composition, thickness, and mean separation between the particles. The transparency spectra of the deposited films are shown to be defined by their morphology.

  4. Electrocatalytic properties of monometallic and bimetallic nanoparticles-incorporated polypyrrole films for electro-oxidation of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraj, V.; Alagar, M. [Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai 600025 (India); Hamerton, I. [Chemistry Division, School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2006-10-06

    Oxidative electrochemical polymerization of pyrrole at indium-doped tin oxide (ITO) is accomplished from a neat monomer solution with a supporting electrolyte (0.3M n-tetrabutyl ammonium tetrafluoroborate) by multiple-scan cyclic voltammetry. Polypyrrole (Ppy) films containing nanometer-sized platinum and Pt/Pd bimetallic particles are electro-synthesized on ITO glass plates by voltammetric cycling between -0.1 and +1V (versus Ag/AgCl/3M NaCl). The electrocatalytic oxidation of methanol on the nanoparticle-modified polypyrrole films is studied by means of electrochemical techniques. The modified electrode exhibits significant eletrocatalytic activity for methanol oxidation. The enhanced electrocatalytic activities may be due to the uniform dispersion of nanoparticles in the polypyrrole film and a synergistic effect of the highly-dispersed metal particles so that the polypyrrole film reduces electrode poisoning by adsorbed CO species. The monometallic (Pt) and bimetallic (Pt/Pd) nanoparticles are uniformly dispersed in polypyrrole matrixes, as confirmed by scanning electron microscopic and atomic force microscopic analysis. Energy dispersive X-ray analysis is used to characterize the composition of metal present in the nanoparticle-modified electrodes. (author)

  5. Observation of exchanging role of gold and silver nanoparticles in bimetallic thin film upon annealing above the glass transition temperature

    Science.gov (United States)

    Htet Kyaw, Htet; Tay Zar Myint, Myo; Hamood Al-Harthi, Salim; Maekawa, Toru; Yanagisawa, Keiichi; Sellai, Azzouz; Dutta, Joydeep

    2017-08-01

    The exchange role of gold (Au) and silver (Ag) in bimetallic films co-evaporated onto soda-lime glass substrates with Au-Ag volume ratios of 1:2, 1:1 and 2:1 have been demonstrated. Annealing of the films above the glass transition temperature in air led to non-alloying nature of the films, silver neutrals (Ag0) and gold nanoparticles (AuNPs) on the surface, along with silver nanoparticles (AgNPs) inside the glass matrix. Moreover, the size distribution and interparticle spacing of the AuNPs on the surface were governed by the Ag content in the deposited film. In contrast, the content of Au in the film played an opposite role leading to the migration of Ag ions (i.e. Ag0 being transformed to Ag ions after annealing in oxygen ambient) to form AgNPs inside the glass matrix. The higher the Au content in the film is, the more likely Ag0 to stay on the surface and impacts on the size distribution of AuNPs and consequently on the refractive index sensitivity measurements. Experimental realisation of this fact was reflected from the best performance for localized surface plasmon resonance (LSPR) sensitivity test achieved with Au-Ag ratio of 1:2. The Au/Ag/glass bimetallic dynamic results of this study can be pertinent to sensor applications integrated with optical devices.

  6. Facile fabrication of Ag-Pd bimetallic nanoparticles in ultrathin TiO(2)-gel films: nanoparticle morphology and catalytic activity.

    Science.gov (United States)

    He, Junhui; Ichinose, Izumi; Kunitake, Toyoki; Nakao, Aiko; Shiraishi, Yukihide; Toshima, Naoki

    2003-09-10

    Ag-Pd bimetallic nanoparticles were prepared directly in ultrathin TiO(2)-gel films by a stepwise ion-exchange/reduction approach. Ion-exchange sites were created in ultrathin films using Mg(2+) ions as template. Ag(+) ion was then incorporated by ion exchange, and converted into metallic nanoparticles by low-temperature H(2) plasma, regenerating ion-exchange sites. The same procedure was then carried out for Pd(2+) ion, producing Pd-on-Ag bimetallic nanoparticles, as TEM observation and plasmon resonance absorption indicate. By contrast, reversed metal incorporation procedure appeared to give a mixture of individual Ag and Pd nanoparticles, as confirmed by TEM, absorption spectroscopy and X-ray photoelectron spectroscopy. For hydrogenation of methyl acrylate, the catalytic activity of the Pd-on-Ag nanoparticle is 367 times as large as that of commercial Pd black and 1.6 times as large as that of Pd monometallic nanoparticle. The outstanding catalytic activity was explicable by the large fraction of the surface-exposed Pd atoms. The formation process of the bimetallic nanoparticle and their general morphological feature are discussed.

  7. Active Chicken Meat Packaging Based on Polylactide Films and Bimetallic Ag-Cu Nanoparticles and Essential Oil.

    Science.gov (United States)

    Ahmed, Jasim; Arfat, Yasir Ali; Bher, Anibal; Mulla, Mehrajfatema; Jacob, Harsha; Auras, Rafael

    2018-04-16

    Plasticized polylactide (PLA) composite films with multifunctional properties were created by loading bimetallic silver-copper (Ag-Cu) nanoparticles (NPs) and cinnamon essential oil (CEO) into polymer matrix via compression molding technique. Rheological, structural, thermal, barrier, and antimicrobial properties of the produced films, and its utilization in the packaging of chicken meat were investigated. PLA/PEG/Ag-Cu/CEO composites showed a very complex rheological system where both plasticizing and antiplasticizing effects were evident. Thermal properties of plasticized PLA film with polyethylene glycol (PEG) enhanced considerably with the reinforcement of NPs whereas loading of CEO decreased glass transition, melting, and crystallization temperature. The barrier properties of the composite films were reduced with the increase of CEO loading (P packaging. The nanoparticles and essential oil loaded PLA composite films are capable of exhibiting antimicrobial effects against Gram (+) and (-) bacteria, and extend the shelf-life of chicken meat. The bionanocomposite films showed the potential to be manufactured commercially because of the thermal stability of the active components during the hot-press compression molding process. The developed bionanocomposites could have practical importance and open a new direction for the active food packaging to control the spoilage and the pathogenic bacteria associated with the fresh chicken meat. © 2018 Institute of Food Technologists®.

  8. Bimetallic PdAg nanoparticle arrays from monolayer films of diblock copolymer micelles

    Science.gov (United States)

    Ehret, E.; Beyou, E.; Mamontov, G. V.; Bugrova, T. A.; Prakash, S.; Aouine, M.; Domenichini, B.; Cadete Santos Aires, F. J.

    2015-07-01

    The self-assembly technique provides a highly efficient route to generate well-ordered structures on a nanometer scale. In this paper, well-ordered arrays of PdAg alloy nanoparticles on flat substrates with narrow distributions of particle size (6-7 nm) and interparticle spacing (about 60 nm) were synthesized by the block copolymer micelle approach. A home-made PS-b-P4VP diblock copolymer was prepared to obtain a micellar structure in toluene. Pd and Ag salts were then successfully loaded in the micellar core of the PS-b-P4VP copolymer. A self-assembled monolayer of the loaded micelles was obtained by dipping the flat substrate in the solution. At this stage, the core of the micelles was still loaded with the metal precursor rather than with a metal. Physical and chemical reducing methods were used to reduce the metal salts embedded in the P4VP core into PdAg nanoparticles. HRTEM and EDX indicated that Pd-rich PdAg alloy nanoparticles were synthesized by chemical or physical reduction; UV-visible spectroscopy observations confirmed that metallic PdAg nanoparticles were quickly formed after chemical reduction; XPS measurements revealed that the PdAg alloy nanoparticles were in a metallic state after a short time of exposure to O2 plasma and after hydrazine reduction.

  9. Dendrimer-templated Ag-Pd bimetallic nanoparticles.

    Science.gov (United States)

    Chung, Young-Min; Rhee, Hyun-Ku

    2004-03-01

    Ultrafine dendrimer-templated Ag-Pd bimetallic nanoparticles with various metal compositions have been prepared successfully using silver(I)-bis(oxalato)palladate(II) complex. The use of an oxalate complex, in which two metal ions exist in one complex, is found to be effective in preventing unfavorable silver halide formation and thus suitable for the formation of Ag-Pd bimetallic nanoparticles.

  10. Shaped Ir-Ni bimetallic nanoparticles for minimizing Ir utilization in oxygen evolution reaction.

    Science.gov (United States)

    Lim, Jinkyu; Yang, Sungeun; Kim, Chanyeon; Roh, Chi-Woo; Kwon, Yongwoo; Kim, Yong-Tae; Lee, Hyunjoo

    2016-04-25

    Shaped Ir-Ni bimetallic nanoparticles were synthesized and used for electrocatalytic oxygen evolution reaction (OER). The obtained bimetallic nanoparticles showed significantly enhanced Ir mass activity and durability compared with Ir nanoparticles.

  11. Synthesis of Fe–Ni bimetallic nanoparticles from pixel target ablation: plume dynamics and surface characterization

    International Nuclear Information System (INIS)

    Niu Xiaoxu; Murray, Paul T.; Sarangan, Andrew

    2012-01-01

    A novel Fe–Ni bimetallic nanoparticle synthesis technique, denoted pixel target ablation, is reported. The technique entails ablating a thin film target consisting of patterned Fe and Ni pixels with a selected ratio using a KrF excimer laser. The laser energy breaks a known amount of target materials into metal atoms, which then form nanoparticles by recombination in the gas phase. Due to the nature of thin-film ablation, splashing of large particles was eliminated with the added benefit of minimizing nanoparticle agglomeration. Plume dynamics and surface characterizations were carried out to exploit the formation of Fe–Ni nanoparticles more fully. The composition was readily controlled by varying the initial relative amount of Fe and Ni target pixels. Synthesis of multi-element nanoparticles by pixel target ablation should be possible with any element combination that can be prepared as a thin-film target.

  12. Bimetallic Nanoparticles in Alternative Solvents for Catalytic Purposes

    Directory of Open Access Journals (Sweden)

    Trung Dang-Bao

    2017-07-01

    Full Text Available Bimetallic nanoparticles represent attractive catalytic systems thanks to the synergy between both partners at the atomic level, mainly induced by electronic effects which in turn are associated with the corresponding structures (alloy, core-shell, hetero-dimer. This type of engineered material can trigger changes in the kinetics of catalyzed processes by variations on the electrophilicity/nucleophilicity of the metal centers involved and also promote cooperative effects to foster organic transformations, including multi-component and multi-step processes. Solvents become a crucial factor in the conception of catalytic processes, not only due to their environmental impact, but also because they can preserve the bimetallic structure during the catalytic reaction and therefore increase the catalyst life-time. In this frame, the present review focuses on the recent works described in the literature concerning the synthesis of bimetallic nanoparticles in non-conventional solvents, i.e., other than common volatile compounds, for catalytic applications.

  13. Nanocrystal and surface alloy properties of bimetallic Gold-Platinum nanoparticles

    Directory of Open Access Journals (Sweden)

    Mott Derrick

    2006-01-01

    Full Text Available AbstractWe report on the correlation between the nanocrystal and surface alloy properties with the bimetallic composition of gold-platinum(AuPt nanoparticles. The fundamental understanding of whether the AuPt nanocrystal core is alloyed or phase-segregated and how the surface binding properties are correlated with the nanoscale bimetallic properties is important not only for the exploitation of catalytic activity of the nanoscale bimetallic catalysts, but also to the general exploration of the surface or interfacial reactivities of bimetallic or multimetallic nanoparticles. The AuPt nanoparticles are shown to exhibit not only single-phase alloy character in the nanocrystal, but also bimetallic alloy property on the surface. The nanocrystal and surface alloy properties are directly correlated with the bimetallic composition. The FTIR probing of CO adsorption on the bimetallic nanoparticles supported on silica reveals that the surface binding sites are dependent on the bimetallic composition. The analysis of this dependence further led to the conclusion that the relative Au-atop and Pt-atop sites for the linear CO adsorption on the nanoparticle surface are not only correlated with the bimetallic composition, but also with the electronic effect as a result of the d-band shift of Pt in the bimetallic nanocrystals, which is the first demonstration of the nanoscale core-surface property correlation for the bimetallic nanoparticles over a wide range of bimetallic composition.

  14. Synthesis of ultrasmall, homogeneously alloyed, bimetallic nanoparticles on silica supports

    Science.gov (United States)

    Wong, A.; Liu, Q.; Griffin, S.; Nicholls, A.; Regalbuto, J. R.

    2017-12-01

    Supported nanoparticles containing more than one metal have a variety of applications in sensing, catalysis, and biomedicine. Common synthesis techniques for this type of material often result in large, unalloyed nanoparticles that lack the interactions between the two metals that give the particles their desired characteristics. We demonstrate a relatively simple, effective, generalizable method to produce highly dispersed, well-alloyed bimetallic nanoparticles. Ten permutations of noble and base metals (platinum, palladium, copper, nickel, and cobalt) were synthesized with average particle sizes from 0.9 to 1.4 nanometers, with tight size distributions. High-resolution imaging and x-ray analysis confirmed the homogeneity of alloying in these ultrasmall nanoparticles.

  15. Bimetallic Nanoparticles as Efficient Catalysts: Facile and Green Microwave Synthesis

    Science.gov (United States)

    Blosi, Magda; Ortelli, Simona; Costa, Anna Luisa; Dondi, Michele; Lolli, Alice; Andreoli, Sara; Benito, Patricia; Albonetti, Stefania

    2016-01-01

    This work deals with the development of a green and versatile synthesis of stable mono- and bi-metallic colloids by means of microwave heating and exploiting ecofriendly reagents: water as the solvent, glucose as a mild and non-toxic reducer and polyvinylpirrolidone (PVP) as the chelating agent. Particle size-control, total reaction yield and long-term stability of colloids were achieved with this method of preparation. All of the materials were tested as effective catalysts in the reduction of p-nitrophenol in the presence of NaBH4 as the probe reaction. A synergistic positive effect of the bimetallic phase was assessed for Au/Cu and Pd/Au alloy nanoparticles, the latter showing the highest catalytic performance. Moreover, monoand bi-metallic colloids were used to prepare TiO2- and CeO2-supported catalysts for the liquid phase oxidation of 5-hydroxymethylfufural (HMF) to 2,5-furandicarboxylic acid (FDCA). The use of Au/Cu and Au/Pd bimetallic catalysts led to an increase in FDCA selectivity. Finally, preformed Pd/Cu nanoparticles were incorporated into the structure of MCM-41-silica. The resulting Pd/Cu MCM-41 catalysts were tested in the hydrodechlorination of CF3OCFClCF2Cl to CF3OCF=CF2. The effect of Cu on the hydrogenating properties of Pd was demonstrated. PMID:28773672

  16. Bimetallic Nanoparticles as Efficient Catalysts: Facile and Green Microwave Synthesis

    Directory of Open Access Journals (Sweden)

    Magda Blosi

    2016-07-01

    Full Text Available This work deals with the development of a green and versatile synthesis of stable mono- and bi-metallic colloids by means of microwave heating and exploiting ecofriendly reagents: water as the solvent, glucose as a mild and non-toxic reducer and polyvinylpirrolidone (PVP as the chelating agent. Particle size-control, total reaction yield and long-term stability of colloids were achieved with this method of preparation. All of the materials were tested as effective catalysts in the reduction of p-nitrophenol in the presence of NaBH4 as the probe reaction. A synergistic positive effect of the bimetallic phase was assessed for Au/Cu and Pd/Au alloy nanoparticles, the latter showing the highest catalytic performance. Moreover, monoand bi-metallic colloids were used to prepare TiO2- and CeO2-supported catalysts for the liquid phase oxidation of 5-hydroxymethylfufural (HMF to 2,5-furandicarboxylic acid (FDCA. The use of Au/Cu and Au/Pd bimetallic catalysts led to an increase in FDCA selectivity. Finally, preformed Pd/Cu nanoparticles were incorporated into the structure of MCM-41-silica. The resulting Pd/Cu MCM-41 catalysts were tested in the hydrodechlorination of CF3OCFClCF2Cl to CF3OCF=CF2. The effect of Cu on the hydrogenating properties of Pd was demonstrated.

  17. Controllable Catalysis with Nanoparticles: Bimetallic Alloy Systems and Surface Adsorbates

    KAUST Repository

    Chen, Tianyou

    2016-05-16

    Transition metal nanoparticles are privileged materials in catalysis due to their high specific surface areas and abundance of active catalytic sites. While many of these catalysts are quite useful, we are only beginning to understand the underlying catalytic mechanisms. Opening the “black box” of nanoparticle catalysis is essential to achieve the ultimate goal of catalysis by design. In this Perspective we highlight recent work addressing the topic of controlled catalysis with bimetallic alloy and “designer” adsorbate-stabilized metal nanoparticles.

  18. Methods to synthesize NiPt bimetallic nanoparticles by a reversed-phase microemulsion, deposition of NiPt bimetallic nanoparticles on a support, and application of the supported catalyst for CO.sub.2 reforming of methane

    KAUST Repository

    Biausque, Gregory

    2015-04-28

    Methods to synthesize NiPt bimetallic nanoparticles by a reversed-phase microemulsion, deposition of NiPt bimetallic nanoparticles on a support, and application of the supported catalyst for CO.sub.2 reforming of methane

  19. Bimetallic Nanoparticles: Synthesis, Characterization, and Applications in Catalysis

    OpenAIRE

    Landry, Alexandra Marcela

    2016-01-01

    Bimetallic nanoparticles can lead to catalysts with improved turnover rates and selectivities, but many synthetic protocols, such as impregnation or precipitation, typically form particles of non-uniform size and composition. Colloidal methods may be able to improve their uniformity, but often require reagents that poison catalytic surfaces (ex. S, B, P). Such compositional non-uniformity and ubiquitous impurities have prevented rigorous conclusions about the consequences of alloying on react...

  20. One-step synthesis of gold bimetallic nanoparticles with various metal-compositions

    International Nuclear Information System (INIS)

    Bratescu, Maria Antoaneta; Takai, Osamu; Saito, Nagahiro

    2013-01-01

    Highlights: ► Synthesis of bimetallic nanoparticles in an aqueous solution discharge. ► Alloying gold with divalent sp metals, trivalent sp metals, 3d or 4d metals. ► Formation mechanism of bimetallic nanoparticles by metal reduction and gold erosion. ► Blue and red shift of surface plasmon resonance. -- Abstract: A rapid, one-step process for the synthesis of bimetallic nanoparticles by simultaneous metal reduction and gold erosion in an aqueous solution discharge was investigated. Gold bimetallic nanoparticles were obtained by alloying gold with various types of metals belonging to one of the following categories: divalent sp metals, trivalent sp metals, 3d or 4d metals. The composition of the various gold bimetallic nanoparticles obtained depends on electrochemical factors, charge transfer between gold and other metal, and initial concentration of metal in solution. Transmission electron microscopy and energy dispersive spectroscopy show that the gold bimetallic nanoparticles were of mixed pattern, with sizes of between 5 and 20 nm. A red-shift of the surface plasmon resonance band in the case of the bimetallic nanoparticles Au–Fe, Au–Ga, and Au–In, and a blue-shift of the plasmon band of the Au–Ag nanoparticles was observed. In addition, the interaction of gold bimetallic nanoparticles with unpaired electrons, provided by a stable free radical molecule, was highest for those NPs obtained by alloying gold with a 3d metal

  1. Bi-metallic nanoparticles as cathode electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jun; Amine, Khalil; Wang, Xiaoping; Luo, Xiangyi; Myers, Deborah J.

    2018-03-27

    A lithium-air battery cathode catalyst includes core-shell nanoparticles on a carbon support, wherein: a core of the core-shell nanoparticles is platinum metal; and a shell of the core-shell nanoparticles is copper metal; wherein: the core-shell nanoparticles have a weight ratio of the copper metal to the platinum metal from about 4% to about 6% copper to from about 2% to about 12% platinum, with a remaining percentage being the carbon support.

  2. Facile synthesis of bimetallic nanoparticles by femtosecond laser irradiation method

    Directory of Open Access Journals (Sweden)

    Joseph Lik Hang Chau

    2017-02-01

    Full Text Available Bimetallic Pt–Au and Fe–Pt nanoparticles are successfully fabricated by high-intensity laser irradiation of aqueous solution without any chemical reducing agent. The mechanism of the formation of bimetallic nanoalloys by laser irradiation of the solution without using any reducing agent was mainly attributed to the optically induced decomposition of water molecule. When an intense femtosecond laser field is focused in an aqueous solution containing metal ions, the free electrons will be produced by the dissociation of water molecules, these free electrons and hydrogen radicals contained in the plasma might be caught by H+ or OH− ions to form the bubbles of H2 and O2 gases or they can be trapped by metal ions, resulting in the formation of metal atoms during the femtosecond laser irradiation process. The average size of the bimetallic nanoparticles increases with irradiation time. This technique is simple and ‘green’ process without using any chemicals except for metal salt and dispersing agent.

  3. Preparation of bimetallic nanoparticles using a facile green synthesis method and their application.

    Science.gov (United States)

    Xia, Bihua; He, Fang; Li, Lidong

    2013-04-16

    A straightforward, economically viable, and green approach for the synthesis of well-stabilized Au/Ag bimetallic nanoparticles is described; this method uses nontoxic and renewable degraded pueraria starch (DPS) as a matrix and mild reaction conditions. The DPS acted as both a reducing agent and a capping agent for the bimetallic nanoparticles. Au/Ag bimetallic nanoparticles were successfully grown within the DPS matrixes, and the bimetallic structures were characterized using various methods, including high-resolution transmission electron microscopy, energy-dispersive X-ray, and X-ray diffraction. Moreover, it was shown that these DPS-capped Au/Ag bimetallic nanoparticles could function as catalysts for the reduction of 4-nitrophenol in the presence of NaBH4 and were more effective than Au or Ag monometallic nanoparticles.

  4. Thin film metallization for micro-bimetallic actuators

    Science.gov (United States)

    Gorrell, Jonathan Frank

    In this study, eleven different thin film metallization systems were evaluated for use in micro-bimetallic actuators for microelectromechanical structures. These films were evaporated or sputtered onto silicon wafers. The film stress and stress relaxation were determined by measuring changes in the wafer curvature. The phases and micro-structure of these films were evaluated with, scanning electron microscopy, transmission electron microscopy, Auger electron spectroscopy, electron probe micro-analysis, X-ray diffraction and line shape analysis, and atomic force microscopy. Bimetallic actuator may be operated to generate either force or displacement. The displacement mode is dominated by the coefficient of thermal expansion while the force mode is a function of both Young's modulus and coefficient of thermal expansion of the active layer material. In both modes the maximum displacement or force is determined by the material's yield strength. A figure of merit was developed to aid in material selection. The 5052 aluminum alloy films showed that solid solution strengthening can double the yield strength of a thin film. The T201 aluminum alloy films showed that precipitates can increase yield strength by 2.5 times. The 2090 alloy film oxidized during the first heating. Based on isothermal stress relaxation data and changes in the micro-structure of the 5052 and T201 alloy thin films, two mechanisms involving logarithmic creep have been postulated to cause stress relaxation. One mechanism is movement of dislocations in slip systems that terminate at the surface while the other is dislocations moving in slip systems that terminate at grain boundaries. Copper gold intermetallics films oxidized and plastically deformed before the order-disorder transformation occurred, but showed that ordered intermetallics have a lower stress relaxation rate than the solid solution phase. The Alsb3Ti films showed no stress relaxation at 450sp°C, plastically deformed only above 500sp

  5. Atomic Structure of Au−Pd Bimetallic Alloyed Nanoparticles

    KAUST Repository

    Ding, Yong

    2010-09-08

    Using a two-step seed-mediated growth method, we synthesized bimetallic nanoparticles (NPs) having a gold octahedron core and a palladium epitaxial shell with controlled Pd-shell thickness. The mismatch-release mechanism between the Au core and Pd shell of the NPs was systematically investigated by high-resolution transmission electron microscopy. In the NPs coated with a single atomic layer of Pd, the strain between the surface Pd layer and the Au core is released by Shockley partial dislocations (SPDs) accompanied by the formation of stacking faults. For NPs coated with more Pd (>2 nm), the stacking faults still exist, but no SPDs are found. This may be due to the diffusion of Au atoms into the Pd shell layers to eliminate the SPDs. At the same time, a long-range ordered L11 AuPd alloy phase has been identified in the interface area, supporting the assumption of the diffusion of Au into Pd to release the interface mismatch. With increasing numbers of Pd shell layers, the shape of the Au-Pd NP changes, step by step, from truncated-octahedral to cubic. After the bimetallic NPs were annealed at 523 K for 10 min, the SPDs at the surface of the NPs coated with a single atomic layer of Pd disappeared due to diffusion of the Au atoms into the surface layer, while the stacking faults and the L11 Au-Pd alloyed structure remained. When the annealing temperature was increased to 800 K, electron diffraction patterns and diffraction contrast images revealed that the NPs became a uniform Au-Pd alloy, and most of the stacking faults disappeared as a result of the annealing. Even so, some clues still support the existence of the L11 phase, which suggests that the L11 phase is a stable, long-range ordered structure in Au-Pd bimetallic NPs. © 2010 American Chemical Society.

  6. Versatile Optimization of Chemical Ordering in Bimetallic Nanoparticles

    KAUST Repository

    Kovács, Gábor

    2017-01-05

    Chemical ordering in bimetallic nanocrystallites can now be efficiently determined by density-functional calculations with the help of topological energy expressions. Herein, we deal with extending the usage of that computational scheme. We show that it enables one to structurally characterize bimetallic nanoparticles of less regular shapes than previously studied magic-type particles. In fcc Pd–Au particles of different shapes (cuboctahedral Pd58Au58, C3v Pd61Au61, cubic Pd68Au67, and truncated octahedral Pd70Au70), we identify the surface segregation of gold as the driving force to the lowest-energy chemical ordering. We applied the calculated descriptor values quantifying the segregation propensity of Au and energies of Pd–Au bonds in these ∼1.5 nm large particles to optimize and analyze the chemical ordering in 3.7–6 nm large Pd–Au particles. We also discuss how to predict the chemical ordering in nanoalloys at elevated temperatures. The present study paves the way to advanced structural investigations of nanoalloys to substantially accelerate their knowledge-driven engineering and manufacturing.

  7. Bimetallic Pt-Ru Nanoparticle Catalyst for Hydrogen Peroxide Detection

    Directory of Open Access Journals (Sweden)

    Metini Janyasupab

    2011-01-01

    Full Text Available A bimetallic Pt-Ru nanoparticle catalyst was prepared and characterized for the enhancement of hydrogen peroxide (H2O2 detection in biosensing applications. The particles were synthesized via sodium borohydride reduction, with low heat treatment, and characterized by TEM and HRTEM. The chemical composition analyses were performed by EDX. The bimetallic particle diameters ranged from 2 to 12 nm, with an average of 4.5 nm. The Pt-Ru catalyst exhibited an improved performance at low overpotential (+0.2 V versus Ag/AgCl reference electrode in H2O2 detection, suggesting a sensitivity value of 78.95 μA⋅mM-1 (or 402.1 μA⋅mM-1⋅cm-2 which was 30% higher than that for the single Pt catalyst. The major contribution of this enhancement comes from the stronger oxygen adsorption on Ru metal. The Pt-Ru catalyst also showed a more stable signal at the high overpotential (+0.4 V versus Ag/AgCl, providing better accuracy in the detection of H2O2.

  8. CO2 activation on bimetallic CuNi nanoparticles

    Directory of Open Access Journals (Sweden)

    Natalie Austin

    2016-10-01

    Full Text Available Density functional theory calculations have been performed to investigate the structural, electronic, and CO2 adsorption properties of 55-atom bimetallic CuNi nanoparticles (NPs in core-shell and decorated architectures, as well as of their monometallic counterparts. Our results revealed that with respect to the monometallic Cu55 and Ni55 parents, the formation of decorated Cu12Ni43 and core-shell Cu42Ni13 are energetically favorable. We found that CO2 chemisorbs on monometallic Ni55, core-shell Cu13Ni42, and decorated Cu12Ni43 and Cu43Ni12, whereas, it physisorbs on monometallic Cu55 and core-shell Cu42Ni13. The presence of surface Ni on the NPs is key in strongly adsorbing and activating the CO2 molecule (linear to bent transition and elongation of C˭O bonds. This activation occurs through a charge transfer from the NPs to the CO2 molecule, where the local metal d-orbital density localization on surface Ni plays a pivotal role. This work identifies insightful structure-property relationships for CO2 activation and highlights the importance of keeping a balance between NP stability and CO2 adsorption behavior in designing catalytic bimetallic NPs that activate CO2.

  9. Microbially supported synthesis of catalytically active bimetallic Pd-Au nanoparticles

    DEFF Research Database (Denmark)

    Hosseinkhani, Baharak; Søbjerg, Lina Sveidal; Rotaru, Amelia-Elena

    2012-01-01

    Bimetallic nanoparticles are considered the next generation of nanocatalysts with increased stability and catalytic activity. Bio-supported synthesis of monometallic nanoparticles has been proposed as an environmentally friendly alternative to the conventional chemical and physical protocols....... In this study we synthesize bimetallic bio-supported Pd-Au nanoparticles for the first time using microorganisms as support material. The synthesis involved two steps: (1) Formation of monometallic bio-supported Pd(0) and Au(0) nanoparticles on the surface of Cupriavidus necator cells, and (2) formation...... of bimetallic bio-supported nanoparticles by reduction of either Au(III) or Pd(II) on to the nanoparticles prepared in step one. Bio-supported monometallic Pd(0) or Au(0) nanoparticles were formed on the surface of C. necator by reduction of Pd(II) or Au(III) with formate. Addition of Au(III) or Pd...

  10. Effects of different additives on bimetallic Au-Pt nanoparticles electrodeposited onto indium tin oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ballarin, Barbara, E-mail: ballarin@ms.fci.unibo.i [Dipartimento di Chimica Fisica ed Inorganica, Universita di Bologna, V.le Risorgimento, 4, 40136-Bologna (Italy)] [INSTM, UdR Bologna (Italy); Gazzano, Massimo [ISOF-CNR, V. Selmi, 40126-Bologna (Italy); Tonelli, Domenica [Dipartimento di Chimica Fisica ed Inorganica, Universita di Bologna, V.le Risorgimento, 4, 40136-Bologna (Italy)] [INSTM, UdR Bologna (Italy)

    2010-09-01

    Bimetallic Au-Pt nanoparticles (Au-Pt{sub NPs}) have been synthesized using an electrochemical reduction approach. The effects of the addition of different additives in the electrodeposition bath namely KI, 1-nonanesulfonic acid sodium salt and Triton X-100 have been investigated. The structural characterization of the bimetallic nanoparticles has been carried out using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), UV-vis spectroscopy, X-ray diffraction (XRD) and cyclic voltammetry (CV). The Au-Pt{sub NPs} prepared in the presence of KI and Triton X-100 characterized by a relatively narrow size distribution as well as a higher particle density and surface coverage whereas no changes in the morphology were observed. These results suggest a dependence of the size and distribution of the bimetallic nanoparticles from the type and concentration of the additives employed.

  11. The formation mechanism of bimetallic PtRu alloy nanoparticles in solvothermal synthesis

    Science.gov (United States)

    Mi, Jian-Li; Nørby, Peter; Bremholm, Martin; Becker, Jacob; Iversen, Bo B.

    2015-10-01

    An understanding of the nucleation and growth mechanism of bimetallic nanoparticles in solvothermal synthesis is important for further development of nanoparticles with tailored nanostructures and properties. Here the formation of PtRu alloy nanoparticles in a solvothermal synthesis using metal acetylacetonate salts as precursors and ethanol as both the solvent and reducing agent has been studied by in situ synchrotron radiation powder X-ray diffraction (SR-PXRD). Unlike the classical mechanism for the synthesis of monodisperse sols, the nucleation and growth processes of bimetallic PtRu nanoparticles occur simultaneously under solvothermal conditions. In the literature co-reduction of Pt and Ru is often assumed to be required to form PtRu bimetallic nanocrystals, but it is shown that monometallic Pt nanocrystals nucleate first and rapidly grow to an average size of 5 nm. Subsequently, the PtRu bimetallic alloy is formed in the second nucleation stage through a surface nucleation mechanism related to the reduction of Ru. The calculated average crystallite size of the resulting PtRu nanocrystals is smaller than that of the primary Pt nanocrystals due to the large disorder in the PtRu alloyed structure.An understanding of the nucleation and growth mechanism of bimetallic nanoparticles in solvothermal synthesis is important for further development of nanoparticles with tailored nanostructures and properties. Here the formation of PtRu alloy nanoparticles in a solvothermal synthesis using metal acetylacetonate salts as precursors and ethanol as both the solvent and reducing agent has been studied by in situ synchrotron radiation powder X-ray diffraction (SR-PXRD). Unlike the classical mechanism for the synthesis of monodisperse sols, the nucleation and growth processes of bimetallic PtRu nanoparticles occur simultaneously under solvothermal conditions. In the literature co-reduction of Pt and Ru is often assumed to be required to form PtRu bimetallic nanocrystals, but

  12. Plasmonic emission enhancement of colloidal quantum dots in the presence of bimetallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, S. M., E-mail: seyed.sadeghi@uah.edu [Department of Physics, University of Alabama in Huntsville, Huntsville, Alabama 35899 (United States); Nano and Micro Device Center, University of Alabama in Huntsville, Huntsville, Alabama 35899 (United States); Hatef, A.; Meunier, M. [Ecole Polytechnique de Montreal, Laser Processing and Plasmonics Laboratory, Engineering Physics Department, Montreal, Quebec H3C 3A7 (Canada); Nejat, A. [Department of Electrical and Computer Engineering, Boston University, 8 Saint Marys Street, Boston, Massachusetts 02215 (United States); Campbell, Q. [Department of Physics, University of Alabama in Huntsville, Huntsville, Alabama 35899 (United States)

    2014-04-07

    We studied plasmonic features of bimetallic nanostructures consisting of gold nanoisland cores semi-coated with a chromium layer and explored how they influence emission of CdSe/ZnS quantum dots. We showed that, compared with chromium-covered glass substrates without the gold cores, the bimetallic nanostructures could significantly enhance the emission of the quantum dots. We studied the impact of the excitation intensity and thickness of the chromium layer on this process and utilized numerical means to identify the mechanisms behind it. Our results suggest that when the chromium layer is thin, the enhancement process is the result of the bimetallic plasmonic features of the nanostructures. As the chromium layer becomes thick, the impact of the gold cores is screened and the enhancement mostly happens mostly via the field enhancement of chromium nanoparticles in the absence of significant energy transfer from the quantum dots to these nanoparticles.

  13. Comparative toxicity study of Ag, Au, and Ag-Au bimetallic nanoparticles on Daphnia magna.

    Science.gov (United States)

    Li, Ting; Albee, Brian; Alemayehu, Matti; Diaz, Rocio; Ingham, Leigha; Kamal, Shawn; Rodriguez, Maritza; Bishnoi, Sandra Whaley

    2010-09-01

    A comparative assessment of the 48-h acute toxicity of aqueous nanoparticles synthesized using the same methodology, including Au, Ag, and Ag-Au bimetallic nanoparticles, was conducted to determine their ecological effect in freshwater environments through the use of Daphnia magna, using their mortality as a toxicological endpoint. D. magna are one of the standard organisms used for ecotoxicity studies due to their sensitivity to chemical toxicants. Particle suspensions used in toxicity testing were well-characterized through a combination of absorbance measurements, atomic force or electron microscopy, flame atomic absorption spectrometry, and dynamic light scattering to determine composition, aggregation state, and particle size. The toxicity of all nanoparticles tested was found to be dose and composition dependent. The concentration of Au nanoparticles that killed 50% of the test organisms (LC(50)) ranged from 65-75 mg/L. In addition, three different sized Ag nanoparticles (diameters = 36, 52, and 66 nm) were studied to analyze the toxicological effects of particle size on D. magna; however, it was found that toxicity was not a function of size and ranged from 3-4 μg/L for all three sets of Ag nanoparticles tested. This was possibly due to the large degree of aggregation when these nanoparticles were suspended in standard synthetic freshwater. Moreover, the LC(50) values for Ag-Au bimetallic nanoparticles were found to be between that of Ag and Au but much closer to that of Ag. The bimetallic particles containing 80% Ag and 20% Au were found to have a significantly lower toxicity to Daphnia (LC(50) of 15 μg/L) compared to Ag nanoparticles, while the toxicity of the nanoparticles containing 20% Ag and 80% Au was greater than expected at 12 μg/L. The comparison results confirm that Ag nanoparticles were much more toxic than Au nanoparticles, and that the introduction of gold into silver nanoparticles may lower their environmental impact by lowering the amount

  14. Mesoporous silica supported Pd/Ag bimetallic nanoparticles as a ...

    Indian Academy of Sciences (India)

    Priyanka Verma

    2017-09-19

    Sep 19, 2017 ... bUnit of Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520,. Japan. cJST, PRESTO, 4-1-8 Honcho, Kawaguchi, ... Silver-based bimetallic Pd/Ag plasmonic catalysts supported on mesoporous silica catalyze the chemoselective reduction of nitrostyrene (NS) to ...

  15. Enhanced dechlorination of trichloroethylene using electrospun polymer nanofibrous mats immobilized with iron/palladium bimetallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hui [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Huang, Yunpeng; Shen, Mingwu; Guo, Rui; Cao, Xueyan [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Shi, Xiangyang, E-mail: xshi@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); CQM - Centro de Quimica da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal (Portugal)

    2012-04-15

    Fe/Pd bimetallic nanoparticles (NPs) have held great promise for treating trichloroethylene (TCE)-contaminated groundwater, without the accumulation of chlorinated intermediates. However, the conventionally used colloidal Fe/Pd NPs usually aggregate rapidly, resulting in a reduced reactivity. To reduce the particle aggregation, we employed electrospun polyacrylic acid (PAA)/polyvinyl alcohol (PVA) polymer nanofibers as a nanoreactor to immobilize Fe/Pd bimetallic NPs. In the study, the water-stable PAA/PVA nanofibrous mats were complexed with Fe (III) ions via the binding with the free carboxyl groups of PAA for subsequent formation and immobilization of zero-valent iron (ZVI) NPs. Fe/Pd bimetallic NPs were then formed by the partial reduction of Pd(II) ions with ZVI NPs. The formed electrospun nanofibrous mats containing Fe/Pd bimetallic NPs with a diameter of 2.8 nm were characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, thermogravimetric analysis, and inductively coupled plasma-atomic emission spectroscopy. The Fe/Pd NP-containing electrospun PAA/PVA nanofibrous mats exhibited higher reactivity than that of the ZVI NP-containing mats or colloidal Fe/Pd NPs in the dechlorination of trichloroethylene (TCE), which was used as a model contaminant. With the high surface area to volume ratio, high porosity, and great reusability of the fibrous mats immobilized with the bimetallic NPs, the composite nanofibrous mats should be amenable for applications in remediation of various environmental contaminants.

  16. Enhanced dechlorination of trichloroethylene using electrospun polymer nanofibrous mats immobilized with iron/palladium bimetallic nanoparticles

    International Nuclear Information System (INIS)

    Ma, Hui; Huang, Yunpeng; Shen, Mingwu; Guo, Rui; Cao, Xueyan; Shi, Xiangyang

    2012-01-01

    Fe/Pd bimetallic nanoparticles (NPs) have held great promise for treating trichloroethylene (TCE)-contaminated groundwater, without the accumulation of chlorinated intermediates. However, the conventionally used colloidal Fe/Pd NPs usually aggregate rapidly, resulting in a reduced reactivity. To reduce the particle aggregation, we employed electrospun polyacrylic acid (PAA)/polyvinyl alcohol (PVA) polymer nanofibers as a nanoreactor to immobilize Fe/Pd bimetallic NPs. In the study, the water-stable PAA/PVA nanofibrous mats were complexed with Fe (III) ions via the binding with the free carboxyl groups of PAA for subsequent formation and immobilization of zero-valent iron (ZVI) NPs. Fe/Pd bimetallic NPs were then formed by the partial reduction of Pd(II) ions with ZVI NPs. The formed electrospun nanofibrous mats containing Fe/Pd bimetallic NPs with a diameter of 2.8 nm were characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, thermogravimetric analysis, and inductively coupled plasma-atomic emission spectroscopy. The Fe/Pd NP-containing electrospun PAA/PVA nanofibrous mats exhibited higher reactivity than that of the ZVI NP-containing mats or colloidal Fe/Pd NPs in the dechlorination of trichloroethylene (TCE), which was used as a model contaminant. With the high surface area to volume ratio, high porosity, and great reusability of the fibrous mats immobilized with the bimetallic NPs, the composite nanofibrous mats should be amenable for applications in remediation of various environmental contaminants.

  17. Direct Measurement of the Surface Energy of Bimetallic Nanoparticles: Evidence of Vegard's Rulelike Dependence

    Science.gov (United States)

    Chmielewski, Adrian; Nelayah, Jaysen; Amara, Hakim; Creuze, Jérôme; Alloyeau, Damien; Wang, Guillaume; Ricolleau, Christian

    2018-01-01

    We use in situ transmission electron microscopy to monitor in real time the evaporation of gold, copper, and bimetallic copper-gold nanoparticles at high temperature. Besides, we extend the Kelvin equation to two-component systems to predict the evaporation rates of spherical liquid mono- and bimetallic nanoparticles. By linking this macroscopic model to experimental TEM data, we determine the surface energies of pure gold, pure copper, Cu50 Au50 , and Cu25 Au75 nanoparticles in the liquid state. Our model suggests that the surface energy varies linearly with the composition in the liquid Cu-Au nanoalloy; i.e., it follows a Vegard's rulelike dependence. To get atomic-scale insights into the thermodynamic properties of Cu-Au alloys on the whole composition range, we perform Monte Carlo simulations employing N -body interatomic potentials. These simulations at a microscopic level confirm the Vegard's rulelike behavior of the surface energy obtained from experiments combined with macroscopic modeling.

  18. Monodispersed bimetallic PdAg nanoparticles with twinned structures: Formation and enhancement for the methanol oxidation

    Science.gov (United States)

    Yin, Zhen; Zhang, Yining; Chen, Kai; Li, Jing; Li, Wenjing; Tang, Pei; Zhao, Huabo; Zhu, Qingjun; Bao, Xinhe; Ma, Ding

    2014-03-01

    Monodispersed bimetallic PdAg nanoparticles can be fabricated through the emulsion-assisted ethylene glycol (EG) ternary system. Different compositions of bimetallic PdAg nanoparticles, Pd80Ag20, Pd65Ag35 and Pd46Ag54 can be obtained via adjusting the reaction parameters. For the formation process of the bimetallic PdAg nanoparticles, there have two-stage growth processes: firstly, nucleation and growth of the primary nanoclusters; secondly, formation of the secondary nanoparticles with the size-selection and relax process via the coalescence or aggregation of the primary nanoclusters. The as-prepared PdAg can be supported on the carbon black without any post-treatment, which exhibited high electro-oxidation activity towards methanol oxidation under alkaline media. More importantly, carbon-supported Pd80Ag20 nanoparticles reveal distinctly superior activities for the methanol oxidation, even if compared with commercial Pt/C electro-catalyst. It is concluded that the enhanced activity is dependant on the unique twinning structure with heterogeneous phase due to the dominating coalescence growth in EG ternary system.

  19. Synthesis of Supported NiPt Bimetallic Nanoparticles, Methods for Controlling the Surface Coverage of Ni Nanoparticles With Pt, Methods Of Making NiPt Multilayer Core-Shell Structures and Application of the Supported Catalysts for CO2 Reforming

    KAUST Repository

    Li, Lidong

    2015-06-25

    Embodiments of the present disclosure provide for supported Ni/Pt bimetallic nanoparticles, compositions including supported NiPt nanoparticles, methods of making supported NiPt nanoparticles, methods of using supported NiPt nanoparticles, and the like.

  20. Morphological and Spectral Characteristics of Hybrid Nanosystems Based on Mono- and Bimetallic Platinum Nanoparticles and Silver

    Science.gov (United States)

    Valueva, S. V.; Vylegzhanina, M. E.; Sukhanova, T. E.

    2018-02-01

    Morphological and spectral characteristics of hybrid nanosystems (NSes) based on mono- and bimetallic silver and platinum nanoparticles (NPs) stabilized by a cationic polyelectrolyte (CP), poly- N,N,N,N-trimethylmethacryloyloxyethylammonium methylsulfate, are determined via static/dynamic light scattering, UV spectroscopy, and atomic force microscopy. The formation of dense spherical polymolecular nanostructures is established. The possibility of controlling the morphological and spectral characteristics of the NS is shown by varying the nature and composition of NPs.

  1. Preparation of Rh/Ag bimetallic nanoparticles as effective catalyst for hydrogen generation from hydrolysis of KBH4

    Science.gov (United States)

    Huang, Liang; Jiao, Chengpeng; Wang, Liqiong; Huang, Zili; Liang, Feng; Liu, Simin; Wang, Yuhua; Zhang, Haijun; Zhang, Shaowei

    2018-01-01

    ISOBAM-104 protected Rh/Ag bimetallic nanoparticles (NPs) with average diameter less than 3.0 nm were synthesized by a co-reduction method. Ultraviolet–visible spectroscopy, transmission electron microscopy (TEM), high-resolution TEM and x-ray photoelectron spectroscopy (XPS) were employed to characterize the structure, particle size, and electronic structure of the prepared bimetallic NPs. The catalytic activities of prepared bimetallic NPs for hydrogen generation from hydrolysis of a basic KBH4 solution were evaluated in detail. The results indicated that as-prepared Rh/Ag bimetallic NPs showed a higher catalytic activity than corresponding monometallic NPs. Among all the monometallic NPs and bimetallic NPs, Rh80Ag20 bimetallic NPs exhibited the highest catalytic activity with a value of 6010 mol-H2·h‑1·mol-catalyst‑1 at pH = 12 and 303 K. The high catalytic activities of Rh/Ag bimetallic NPs could be attributed to presence of negatively charged Rh atoms and positively charged Ag atoms, which is supported by the results of XPS and density functional theory calculation. Based on the kinetic study, the apparent activation energy for the hydrolysis reaction of the basic KBH4 solution catalyzed by Rh80Ag20 bimetallic NPs was about 47.0 ± 3.9 kJ mol‑1.

  2. Optical properties and sensing applications of stellated and bimetallic nanoparticles

    Science.gov (United States)

    Smith, Alison F.

    This dissertation focuses on developing guidelines to aid in the design of new bimetallic platforms for sensing applications. Stellated metal nanostructures are a class of plasmonic colloids in which large electric field enhancements can occur at sharp features, making them excellent candidates for surface enhanced Raman spectroscopy (SERS) and surface enhanced infrared spectroscopy (SE-IRS) platforms. Shape-dependent rules for convex polyhedra such as cubes or octahedra exist, which describe far-field scattering and near-field enhancements. However, such rules are lacking for their concave (stellated) counterparts. This dissertation presents the optical response of stellated Au nanocrystals with Oh, D4h, D3h, C2v, and T d symmetry, which were modeled to systematically investigate the role of symmetry, branching, and particle orientation with respect to excitation source using finite difference time domain (FDTD) calculations. Expanding on stellated nanostructures, bimetallic compositions introduce an interplay between overall architecture and composition to provide tunable optical properties and the potential of new functionality. However, decoupling the complex compositional and structural contributions to the localized surface plasmon resonance (LSPR) remains a challenge, especially when the monometallic counterparts are not synthetically accessible for comparison and the theoretical tools for capturing gradient compositions are lacking. This dissertation explores a stellated Au-Pd nanocrystal model system with Oh symmetry to decouple structural and complex compositional effects on LSPR. (Abstract shortened by ProQuest.).

  3. Temperature and composition dependent structural evolution of AgPd bimetallic nanoparticle: phase diagram of (AgPd)151 nanoparticle.

    Science.gov (United States)

    Kim, Hyun You; Kim, Da Hye; Lee, Hyuck Mo

    2011-03-01

    We study the structural evolution of a 151 atom Ag-Pd bimetallic nanoparticle with composition and temperature. The solid-to-liquid transition region was investigated using molecular dynamics simulations with an improved collision method, and the solid-state structure of the nanoparticle was explored with a combination of molecular dynamics and density functional theory. Results show that an fcc-to-icosahedron transformation occurs at high temperature in all composition range and that a composition of nanoparticles concerns the atomic distribution of the (AgPd)151 nanoparticle. As a result, we constructed a phase diagram of the (AgPd)151 nanoparticle. Our phase diagram offers guidance on the application of Ag-Pd nanoparticles.

  4. Mono and bimetallic nanoparticles of gold, silver and palladium-catalyzed NADH oxidation-coupled reduction of Eosin-Y

    International Nuclear Information System (INIS)

    Santhanalakshmi, J.; Venkatesan, P.

    2011-01-01

    Mono metallic (Au, Ag, Pd) and bimetallic (Au–Ag, Ag–Pd, Au–Pd) with 1:1 mol stoichiometry, nanoparticles are synthesized using one-pot, temperature controlled chemical method using cetyltrimethylammonium bromide (CTAB) as the capping agent. The particle sizes (Au = 5.6, Ag = 5.0, Pd = 6.0, Au–Ag = 9.2, Ag–Pd = 9.6, Au–Pd = 9.4 nm) are characterized by UV–Vis, HRTEM, and XRD measurements, respectively. CTAB bindings onto mono and bimetallic nanoparticles are analyzed by FTIR spectra. The catalytic activities of mono and bimetallic nanoparticles are tested on the reaction between NADH oxidation and Eosin-Y reduction. The effects of base, pH, ionic strength, nature of mono and bimetallic catalysts are studied and the reaction conditions are optimized. Bimetallic nanoparticles exhibited better catalysis than the mono metallic nanoparticles, which may be due to the electronic effects of the core to shell metal atoms.Graphical Abstract

  5. Mono and bimetallic nanoparticles of gold, silver and palladium-catalyzed NADH oxidation-coupled reduction of Eosin-Y

    Science.gov (United States)

    Santhanalakshmi, J.; Venkatesan, P.

    2011-02-01

    Mono metallic (Au, Ag, Pd) and bimetallic (Au-Ag, Ag-Pd, Au-Pd) with 1:1 mol stoichiometry, nanoparticles are synthesized using one-pot, temperature controlled chemical method using cetyltrimethylammonium bromide (CTAB) as the capping agent. The particle sizes (Au = 5.6, Ag = 5.0, Pd = 6.0, Au-Ag = 9.2, Ag-Pd = 9.6, Au-Pd = 9.4 nm) are characterized by UV-Vis, HRTEM, and XRD measurements, respectively. CTAB bindings onto mono and bimetallic nanoparticles are analyzed by FTIR spectra. The catalytic activities of mono and bimetallic nanoparticles are tested on the reaction between NADH oxidation and Eosin-Y reduction. The effects of base, pH, ionic strength, nature of mono and bimetallic catalysts are studied and the reaction conditions are optimized. Bimetallic nanoparticles exhibited better catalysis than the mono metallic nanoparticles, which may be due to the electronic effects of the core to shell metal atoms.

  6. High Sensitive and Selective Sensing of Hydrogen Peroxide Released from Pheochromocytoma Cells Based on Pt-Au Bimetallic Nanoparticles Electrodeposited on Reduced Graphene Sheets

    Directory of Open Access Journals (Sweden)

    Guangxia Yu

    2015-01-01

    Full Text Available In this study, a high sensitive and selective hydrogen peroxide (H2O2 sensor was successfully constructed with Pt-Au bimetallic nanoparticles (Pt-Au NPs/reduced graphene sheets (rGSs hybrid films. Various molar ratios of Au to Pt and different electrodeposition conditions were evaluated to control the morphology and electrocatalytic activity of the Pt-Au bimetallic nanoparticles. Upon optimal conditions, wide linear ranges from 1 µM to 1.78 mM and 1.78 mM to 16.8 mM were obtained, with a detection limit as low as 0.31 µM. Besides, due to the synergetic effects of the bimetallic NPs and rGSs, the amperometric H2O2 sensor could operate at a low potential of 0 V. Under this potential, not only common anodic interferences induced from ascorbic acid, uric acid and dopamine, but also the cathodic interference induced from endogenous O2 could be effectively avoided. Furthermore, with rat pheochromocytoma cells (PC 12 as model, the proposed sensor had been successfully used in the detection of H2O2 released from the cancer cells. This method with wide linear ranges and excellent selectivity can provide a promising alternative for H2O2 monitoring in vivo in the fields of physiology, pathology and diagnosis.

  7. A simple approach for facile synthesis of Ag, anisotropic Au and bimetallic (Ag/Au) nanoparticles using cruciferous vegetable extracts

    International Nuclear Information System (INIS)

    Jacob, Jasmine; Mukherjee, Tulsi; Kapoor, Sudhir

    2012-01-01

    We present a simple and straightforward approach for the synthesis and stabilization of relatively monodisperse Ag, Au and bimetallic (Ag/Au) nanoparticles by using cruciferous vegetable (green/red) extracts by simply adjusting the pH environment in the aqueous medium. The vegetable extracts act both as reducing and capping agents. The monometallic and bimetallic nanoparticles of Ag and Au so obtained were characterized by UV–visible spectroscopy, X-ray diffraction (XRD), dynamic light scattering (DLS) and transmission electron microscopy (TEM). It is shown that red cabbage extract can be used for the preparation of anisotropic Au nanoparticles. The formation of Au anisotropic nanoparticles was found to depend on a number of environmental factors, such as the pH of the reaction medium, reaction time, and initial reactant concentrations. Additionally, it is shown that these extract-stabilized Au and Ag nanoparticles can be used as a seed for preparation of bimetallic Au/Ag nanoparticles. For bimetallic alloy nanoparticles the absorption peak was observed between the two maxima of the corresponding metallic particles. The surface plasmon absorption maxima for bimetallic nanoparticles changed linearly with increasing Au mole ratio content in various alloy compositions. It has been shown that the formation of hollow Au spheres depends on the experimental conditions. - Graphical abstract: TEM image of gold nanoparticles at pH 3.27 formed by red cabbage extract. Highlights: ► First report on the reactivity of the extracts toward metal ions using a spectrophotometric technique. ► Red cabbage extract has better reducing properties than green cabbage extract. ► Red cabbage extract can reduce metal ions at any pH. ► Reduction of metal ions can have important consequences in the study of soil chemistry.

  8. A simple approach for facile synthesis of Ag, anisotropic Au and bimetallic (Ag/Au) nanoparticles using cruciferous vegetable extracts

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Jasmine; Mukherjee, Tulsi; Kapoor, Sudhir, E-mail: sudhirk@barc.gov.in

    2012-10-01

    We present a simple and straightforward approach for the synthesis and stabilization of relatively monodisperse Ag, Au and bimetallic (Ag/Au) nanoparticles by using cruciferous vegetable (green/red) extracts by simply adjusting the pH environment in the aqueous medium. The vegetable extracts act both as reducing and capping agents. The monometallic and bimetallic nanoparticles of Ag and Au so obtained were characterized by UV-visible spectroscopy, X-ray diffraction (XRD), dynamic light scattering (DLS) and transmission electron microscopy (TEM). It is shown that red cabbage extract can be used for the preparation of anisotropic Au nanoparticles. The formation of Au anisotropic nanoparticles was found to depend on a number of environmental factors, such as the pH of the reaction medium, reaction time, and initial reactant concentrations. Additionally, it is shown that these extract-stabilized Au and Ag nanoparticles can be used as a seed for preparation of bimetallic Au/Ag nanoparticles. For bimetallic alloy nanoparticles the absorption peak was observed between the two maxima of the corresponding metallic particles. The surface plasmon absorption maxima for bimetallic nanoparticles changed linearly with increasing Au mole ratio content in various alloy compositions. It has been shown that the formation of hollow Au spheres depends on the experimental conditions. - Graphical abstract: TEM image of gold nanoparticles at pH 3.27 formed by red cabbage extract. Highlights: Black-Right-Pointing-Pointer First report on the reactivity of the extracts toward metal ions using a spectrophotometric technique. Black-Right-Pointing-Pointer Red cabbage extract has better reducing properties than green cabbage extract. Black-Right-Pointing-Pointer Red cabbage extract can reduce metal ions at any pH. Black-Right-Pointing-Pointer Reduction of metal ions can have important consequences in the study of soil chemistry.

  9. Study of thermal diffusivity of nanofluids with bimetallic nanoparticles with Au(core)/Ag(shell) structure

    International Nuclear Information System (INIS)

    Gutierrez Fuentes, R.; Pescador Rojas, J.A.; Jimenez-Perez, J.L.; Sanchez Ramirez, J.F.; Cruz-Orea, A.; Mendoza-Alvarez, J.G.

    2008-01-01

    The thermal diffusivity of Au/Ag nanoparticles with core/shell structure, at different compositions (Au/Ag = 3/1, 1/1, 1/3, 1/6), was measured by using the mismatched mode of the dual-beam thermal lens (TL) technique. This study determines the effect of the bimetallic composition on the thermal diffusivity of the nanofluids. In these results we find a lineal increment of the nanofluid it thermal diffusivity when the Ag shell thickness is increased. Our results show that the nanoparticle structure is an important parameter to improve the heat transport in composites and nanofluids. These results could have importance for applications in therapies and photothermal deliberation of drugs. Complementary measurements with UV-vis spectroscopy and TEM, were used to characterize the Au(core)/Ag(shell) nanoparticles

  10. Thermal Stability of Platinum-Cobalt Bimetallic Nanoparticles: Chemically Disordered Alloys, Ordered Intermetallics, and Core-Shell Structures.

    Science.gov (United States)

    Huang, Rao; Shao, Gui-Fang; Zhang, Yang; Wen, Yu-Hua

    2017-04-12

    Pt-Co bimetallic nanoparticles are promising candidates for Pt-based nanocatalysts and magnetic-storage materials. By using molecular dynamics simulations, we here present a detailed examination on the thermal stabilities of Pt-Co bimetallic nanoparticles with three configurations including chemically disordered alloy, ordered intermetallics, and core-shell structures. It has been revealed that ordered intermetallic nanoparticles possess better structural and thermal stability than disordered alloyed ones for both Pt 3 Co and PtCo systems, and Pt 3 Co-Pt core-shell nanoparticles exhibit the highest melting points and the best thermal stability among Pt-Co bimetallic nanoparticles, although their meltings all initiate at the surface and evolve inward with increasing temperatures. In contrast, Co-Pt core-shell nanoparticles display the worst thermal stability compared with the aforementioned nanoparticles. Furthermore, their melting initiates in the core and extends outward surface, showing a typical two-stage melting mode. The solid-solid phase transition is discovered in Co core before its melting. This work demonstrates the importance of composition distribution to tuning the properties of binary nanoparticles.

  11. Study of carbon-supported bimetallic PtCu nanoparticles by ASAXS

    International Nuclear Information System (INIS)

    Bulat, N.V.; Avakyan, L.A; Pryadchenko, V.V.; Srabionyan, V.V.; Belenov, S.V.; Bugaev, L.A.

    2017-01-01

    Bimetallic platinum-copper nanoparticles on carbon support are studied as a perspective electrochemical catalyst by anomalous small-angle X-ray scattering near the Pt absorption L 3 -edge. The simultaneous fitting of several diffraction patterns measured at different photon energies lead to a satisfactory agreement between experimental and model curves in the assumption of core-shell structure of the particles with Pt-rich shell and Cu-rich core. It is shown that the average size of as prepared nanoparticles is about 6 nm with distribution spread of about ±2 nm and with thickness of Pt-rich shell approximately 1.6 nm. After annealing at 350o C the average size of the particles increased by two times with additional enlargement of the Pt-rich shell thickness. (paper)

  12. Atomic structure and thermal stability of Pt-Fe bimetallic nanoparticles: from alloy to core/shell architectures.

    Science.gov (United States)

    Huang, Rao; Wen, Yu-Hua; Shao, Gui-Fang; Sun, Shi-Gang

    2016-06-22

    Bimetallic nanoparticles comprising noble metal and non-noble metal have attracted intense interest over the past few decades due to their low cost and significantly enhanced catalytic performances. In this article, we have explored the atomic structure and thermal stability of Pt-Fe alloy and core-shell nanoparticles by molecular dynamics simulations. In Fe-core/Pt-shell nanoparticles, Fe with three different structures, i.e., body-centered cubic (bcc), face-centered cubic (fcc), and amorphous phases, has been considered. Our results show that Pt-Fe alloy is the most stable configuration among the four types of bimetallic nanoparticles. It has been discovered that the amorphous Fe cannot stably exist in the core and preferentially transforms into the fcc phase. The phase transition from bcc to hexagonal close packed (hcp) has also been observed in bcc-Fe-core/Pt-shell nanoparticles. In contrast, Fe with the fcc structure is the most preferred as the core component. These findings are helpful for understanding the structure-property relationships of Pt-Fe bimetallic nanoparticles, and are also of significance to the synthesis and application of noble metal based nanoparticle catalysts.

  13. Novel platinum-palladium bimetallic nanoparticles synthesized by Dioscorea bulbifera: anticancer and antioxidant activities.

    Science.gov (United States)

    Ghosh, Sougata; Nitnavare, Rahul; Dewle, Ankush; Tomar, Geetanjali B; Chippalkatti, Rohan; More, Piyush; Kitture, Rohini; Kale, Sangeeta; Bellare, Jayesh; Chopade, Balu A

    2015-01-01

    Medicinal plants serve as rich sources of diverse bioactive phytochemicals that might even take part in bioreduction and stabilization of phytogenic nanoparticles with immense therapeutic properties. Herein, we report for the first time the rapid efficient synthesis of novel platinum-palladium bimetallic nanoparticles (Pt-PdNPs) along with individual platinum (PtNPs) and palladium (PdNPs) nanoparticles using a medicinal plant, Dioscorea bulbifera tuber extract (DBTE). High-resolution transmission electron microscopy revealed monodispersed PtNPs of size 2-5 nm, while PdNPs and Pt-PdNPs between 10 and 25 nm. Energy dispersive spectroscopy analysis confirmed 30.88% ± 1.73% elemental Pt and 68.96% ± 1.48% elemental Pd in the bimetallic nanoparticles. Fourier transform infrared spectra indicated strong peaks at 3,373 cm(-1), attributed to hydroxyl group of polyphenolic compounds in DBTE that might play a key role in bioreduction in addition to the sharp peaks at 2,937, 1,647, 1,518, and 1,024 cm(-1), associated with C-H stretching, N-H bending in primary amines, N-O stretching in nitro group, and C-C stretch, respectively. Anticancer activity against HeLa cells showed that Pt-PdNPs exhibited more pronounced cell death of 74.25% compared to individual PtNPs (12.6%) or PdNPs (33.15%). Further, Pt-PdNPs showed an enhanced scavenging activity against 2,2-diphenyl-1-picrylhydrazyl, superoxide, nitric oxide, and hydroxyl radicals.

  14. Novel platinum–palladium bimetallic nanoparticles synthesized by Dioscorea bulbifera: anticancer and antioxidant activities

    Science.gov (United States)

    Ghosh, Sougata; Nitnavare, Rahul; Dewle, Ankush; Tomar, Geetanjali B; Chippalkatti, Rohan; More, Piyush; Kitture, Rohini; Kale, Sangeeta; Bellare, Jayesh; Chopade, Balu A

    2015-01-01

    Medicinal plants serve as rich sources of diverse bioactive phytochemicals that might even take part in bioreduction and stabilization of phytogenic nanoparticles with immense therapeutic properties. Herein, we report for the first time the rapid efficient synthesis of novel platinum–palladium bimetallic nanoparticles (Pt–PdNPs) along with individual platinum (PtNPs) and palladium (PdNPs) nanoparticles using a medicinal plant, Dioscorea bulbifera tuber extract (DBTE). High-resolution transmission electron microscopy revealed monodispersed PtNPs of size 2–5 nm, while PdNPs and Pt–PdNPs between 10 and 25 nm. Energy dispersive spectroscopy analysis confirmed 30.88%±1.73% elemental Pt and 68.96%±1.48% elemental Pd in the bimetallic nanoparticles. Fourier transform infrared spectra indicated strong peaks at 3,373 cm−1, attributed to hydroxyl group of polyphenolic compounds in DBTE that might play a key role in bioreduction in addition to the sharp peaks at 2,937, 1,647, 1,518, and 1,024 cm−1, associated with C–H stretching, N–H bending in primary amines, N–O stretching in nitro group, and C–C stretch, respectively. Anticancer activity against HeLa cells showed that Pt–PdNPs exhibited more pronounced cell death of 74.25% compared to individual PtNPs (12.6%) or PdNPs (33.15%). Further, Pt–PdNPs showed an enhanced scavenging activity against 2,2-diphenyl-1-picrylhydrazyl, superoxide, nitric oxide, and hydroxyl radicals. PMID:26719690

  15. Comparing and Optimizing Nitrate Adsorption from Aqueous Solution Using Fe/Pt Bimetallic Nanoparticles and Anion Exchange Resins

    International Nuclear Information System (INIS)

    Daud, M.; Khan, Z.; Ashgar, A.; Danish, M. I.; Qazi, I. A.

    2015-01-01

    This research work was carried out for the removal of nitrate from raw water for a drinking water supply. Nitrate is a widespread ground water contaminant. Methodology employed in this study included adsorption on metal based nanoparticles and ion exchange using anionic resins. Fe/Pt bimetallic nanoparticles were prepared in the laboratory, by the reduction of their respective salts using sodium borohydride. Scanning electron microscope, X-ray diffraction, energy dispersive spectrometry, and X-ray florescence techniques were utilized for characterization of bimetallic Fe/Pt nanoparticles. Optimum dose, ph, temperature, and contact time were determined for removal through batch tests, both for metal based nanoparticles and anionic exchange resin. Adsorption data fitted well the Langmuir isotherm and conformed to the pseudo first-order kinetic model. Results indicated 97% reduction in nitrate by 0.25 mg/L of Fe/Pt nanoparticles at ph 7 and 83% reduction in nitrate was observed using 0.50 mg/L anionic exchange resins at ph 4 and contact time of one hour. Overall, Fe/Pt bimetallic nanoparticles demonstrated greater removal efficiency due to the small particle size, extremely large surface area (627 m 2 /g), and high adsorption capacity.

  16. One-step green synthesis of bimetallic Fe/Pd nanoparticles used to degrade Orange II

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Fang; Yang, Die; Chen, Zuliang, E-mail: zuliang.chen@newcastle.edu.au; Megharaj, Mallavarapu; Naidu, Ravendra

    2016-02-13

    Highlights: • Green synthesis of bimetallic Fe/Pd NPs was firstly reported using the one-step method. • 98.0% of Orange II was removed by Fe/Pd NPs, but only 16.0% by Fe NPs. • Fe/Pd NPs with a diameter ranging from 10 to 100 nm were observed. • Removing Orange II using Fe/Pd NPs involved both adsorption and catalytic degradation. - Abstract: To reduce cost and enhance reactivity, bimetallic Fe/Pd nanoparticles (NPs) were firstly synthesized using grape leaf aqueous extract to remove Orange II. Green synthesized bimetallic Fe/Pd NPs (98.0%) demonstrated a far higher ability to remove Orange II in 12 h compared to Fe NPs (16.0%). Meanwhile, all precursors, e.g., grape leaf extract, Fe{sup 2+} and Pd{sup 2+}, had no obvious effect on removing Orange II since less than 2.0% was removed. Kinetics study revealed that the removal rate fitted well to the pseudo-first-order reduction and pseudo-second-order adsorption model, meaning that removing Orange II via Fe/Pd NPs involved both adsorption and catalytic reduction. The remarkable stability of Fe/Pd NPs showed the potential application for removing azo dyes. Furthermore, Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) confirmed the changes in Fe/Pd NPs before and after reaction with Orange II. High Performance Liquid Chromatography–Mass Spectrum (HPLC–MS) identified the degraded products in the removal of Orange II, and finally a removal mechanism was proposed. This one-step strategy using grape leaf aqueous extract to synthesize Fe/Pd NPs is simple, cost-effective and environmentally benign, making possible the large-scale production of Fe/Pd NPs for field remediation.

  17. Effect of nanoparticle metal composition: mono- and bimetallic gold/copper dendrimer stabilized nanoparticles as solvent-free styrene oxidation catalysts

    Science.gov (United States)

    Blanckenberg, A.; Kotze, G.; Swarts, A. J.; Malgas-Enus, R.

    2018-02-01

    A range of mono- and bimetallic AumCun nanoparticles (NPs), with varying metal compositions, was prepared by using a third-generation diaminobutane poly(propylene imine) (G3 DAB-PPI) dendrimer, modified with alkyl chains, as a stabilizer. It was found that the length of the peripheral alkyl chain, ( M1 (C15), M2 (C11), and M3 (C5)), had a direct influence on the average nanoparticle size obtained, confirming the importance of the nanoparticle stabilizer during synthesis. The Au NPs showed the highest degree of agglomeration and polydispersity, whereas the Cu NPs were the smallest and most monodisperse of the NPs. The bimetallic NPs sizes were found to vary between those of the monometallic NPs, depending on the metal composition. Interestingly, the bimetallic NPs were found to be the most stable, showing very little variation in size over time, even up to 9 months. The DSNs were evaluated in the catalytic oxidation of styrene, using either H2O2 or TBHP as oxidant. Here, we show that the bimetallic DSNs are indeed the superior catalysts when compared to their monometallic analogues, under the same reaction conditions, since a good compromise between stability and activity can be achieved where the Au provides catalytic activity and the Cu serves as a stabilizer. These AumCun bimetallic DSNs present a less expensive and more stable catalyst with negligible loss of activity, opening the door to green catalysis.

  18. Catalytic Sorption of (Chloro)Benzene and Napthalene in Aqueous Solutions by Granular Activated Carbon Supported Bimetallic Iron and Palladium Nanoparticles

    Science.gov (United States)

    Adsorption of benzene, chlorobenzene, and naphthalene on commercially available granular activated carbon (GAC) and bimetallic nanoparticle (Fe/Pd) loaded GAC was investigated for the potential use in active capping of contaminated sediments. Freundlich and Langmuir linearizatio...

  19. Ag-Cu Bimetallic Nanoparticles Prepared by Microemulsion Method as Catalyst for Epoxidation of Styrene

    Directory of Open Access Journals (Sweden)

    Hong-Kui Wang

    2012-01-01

    Full Text Available Ag/Cu bimetallic nanocatalysts supported on reticulate-like γ-alumina were prepared by a microemulsion method using N2H4·H2O as the reducing agent. The catalysts were activated by calcination followed with hydrogen reduction at 873K, and the properties were confirmed using various characterization techniques. Compared with metal oxides particles, Ag-Cu particles exhibited smaller sizes (<5 nm after calcination in H2 at 873K. XPS results indicated that the binding energies changed with the Ag/Cu ratios, suggesting that increasing the copper content gave both metals a greater tendency to lose electrons. Furthermore, Ag-Cu bimetallic nanoparticles supported on γ-alumina showed better catalytic activity on the epoxidation of styrene as compared with the corresponding monometallic silver or copper. The styrene oxide selectivity could reach 76.6% at Ag/Cu molar ratio of 3/1, while the maximum conversion (up to 94.6% appeared at Ag/Cu molar ratio of 1/1 because of the maximum interaction between silver and copper.

  20. Gas-Phase Synthesis of Bimetallic Oxide Nanoparticles with Designed Elemental Compositions for Controlling the Explosive Reactivity of Nanoenergetic Materials

    Directory of Open Access Journals (Sweden)

    Ji Young Ahn

    2011-01-01

    Full Text Available We demonstrate a simple and viable method for controlling the energy release rate and pressurization rate of nanoenergetic materials by controlling the relative elemental compositions of oxidizers. First, bimetallic oxide nanoparticles (NPs with a homogeneous distribution of two different oxidizer components (CuO and Fe2O3 were generated by a conventional spray pyrolysis method. Next, the Al NPs employed as a fuel were mixed with CuO-Fe2O3 bimetallic oxide NPs by an ultrasonication process in ethanol solution. Finally, after the removal of ethanol by a drying process, the NPs were converted into energetic materials (EMs. The effects of the mass fraction of CuO in the CuO-Fe2O3 bimetallic oxide NPs on the explosive reactivity of the resulting EMs were examined by using a differential scanning calorimeter and pressure cell tester (PCT systems. The results clearly indicate that the energy release rate and pressurization rate of EMs increased linearly as the mass fraction of CuO in the CuO-Fe2O3 bimetallic oxide NPs increased. This suggests that the precise control of the stoichiometric proportions of the strong oxidizer (CuO and mild oxidizer (Fe2O3 components in the bimetallic oxide NPs is a key factor in tuning the explosive reactivity of EMs.

  1. Synergistic effect in the oxidation of benzyl alcohol using citrate-stabilized gold bimetallic nanoparticles supported on alumina

    Science.gov (United States)

    Gómez-Villarraga, Fernando; Radnik, Jörg; Martin, Andreas; Köckritz, Angela

    2016-06-01

    Bimetallic nanoparticles (NPs) containing gold and various second metals ( M = Pd, Pt, Cu, and Ag) supported on alumina (AuM/Alumina) were prepared using sodium citrate as stabilizer. In addition, supported monometallic Au/Alumina and Pd/Alumina were synthesized and tested to reveal synergistic effects in the catalytic evaluation of the bimetallic catalysts. The monometallic and bimetallic NPs revealed average sizes below 10 nm. The oxidation of benzyl alcohol with molecular oxygen as oxidant at mild conditions in liquid phase in the absence and presence (toluene or NaOH aqueous solution, 0.2 M) of a solvent was selected as test reaction to evaluate the catalytic properties of the above-mentioned solids. AuPd/Alumina exhibited the best catalytic activity among all bimetallic catalysts using toluene as solvent and under solvent-free conditions, respectively. In comparison to the monometallic catalysts, a synergistic effect with AuPd/Alumina was only evident in the solvent-free reaction. The AuPd/Alumina catalyst was able to oxidize benzyl alcohol selectively depending on the reaction medium into benzaldehyde (toluene or solvent-free) or benzoic acid (NaOH aqueous solution, 0.2 M). However, the catalyst deactivated due to particle growth of the bimetallic AuPd NPs by Ostwald ripening and leaching was not observed in the oxidation using toluene as solvent. The size of the catalytically active NPs, the metal composition of the particles, and the reaction conditions greatly influenced the catalytic oxidation results.

  2. Enhanced and tunable optical quantum efficiencies from plasmon bandwidth engineering in bimetallic CoAg nanoparticles

    Directory of Open Access Journals (Sweden)

    A. Malasi

    2016-10-01

    Full Text Available Plasmonic nanoparticles are amongst the most effective ways to resonantly couple optical energy into and out of nanometer sized volumes. However, controlling and/or tuning the transfer of this incident energy to the surrounding near and far field is one of the most interesting challenges in this area. Due to the dielectric properties of metallic silver (Ag, its nanoparticles have amongst the highest radiative quantum efficiencies (η, i.e., the ability to radiatively transfer the incident energy to the surrounding. Here we report the discovery that bimetallic nanoparticles of Ag made with immiscible and plasmonically weak Co metal can show comparable and/or even higher η values. The enhancement is a result of the narrowing of the plasmon bandwidth from these bimetal systems. The phenomenological explanation of this effect based on the dipolar approximation points to the reduction in radiative losses within the Ag nanoparticles when in contact with cobalt. This is also supported by a model of coupling between poor and good conductors based on the surface to volume ratio. This study presents a new type of bandwidth engineering, one based on using bimetal nanostructures, to tune and/or enhance the quality factor and quantum efficiency for near and far-field plasmonic applications.

  3. Tryptophan-Assisted Synthesis Reduces Bimetallic Gold/Silver Nanoparticle Cytotoxicity and Improves Biological Activity

    Directory of Open Access Journals (Sweden)

    Igor O. Shmarakov

    2014-10-01

    Full Text Available Aiming to reduce the potential in vivo hepato-and nephrotoxicity of Ag/Au bimetallic nanoparticles (NPs stabilized by sodium dodecyl sulphate (SDS, an approach involving a simultaneous reduction of silver nitrate and tetrachlorauratic acid using tryptophan (Trp as a reducing/stabilizing agent was applied during NP synthesis. The obtained Ag/Au/Trp NPs (5–15 nm sized were able to form stable aggregates with an average size of 370–450 nm and were potentially less toxic than Ag/Au/SDS in relation to a mouse model system based on clinical biochemical parameters and oxidative damage product estimation. Ag/Au/Trp NPs were shown to exhibit anticancer activity in relation to a Lewis lung carcinoma model. The data generated from the present study support the fact that the use of tryptophan in NP synthesis is effective in attenuating the potential hepatotoxicity and nephrotoxicity of NPs during their in vivo application.

  4. Bimetallic Cu-Ni nanoparticles supported on activated carbon for catalytic oxidation of benzyl alcohol

    Science.gov (United States)

    Kimi, Melody; Jaidie, Mohd Muazmil Hadi; Pang, Suh Cem

    2018-01-01

    A series of bimetallic copper-nickel (CuNix, x = 0.1, 0.2, 0.5 and 1) nanoparticles supported on activated carbon (AC) were prepared by deposition-precipitation method for the oxidation of benzyl alcohol to benzaldehyde using hydrogen peroxide as oxidising agent. Analyses by means of X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) confirmed that Cu and Ni was successfully added on the surface of activated carbon. CuNi1/AC showed the best catalytic activity for the oxidation of benzyl alcohols to the corresponding aldehyde within a short reaction period at 80 °C. The catalytic performance is significantly enhanced by the addition of equal amount of Ni as compared to the monometallic counterpart. This result indicates the synergistic effect between Ni and Cu particles in the catalytic oxidation reaction.

  5. Surface-Bound Ligands Modulate Chemoselectivity and Activity of a Bimetallic Nanoparticle Catalyst

    KAUST Repository

    Vu, Khanh B.

    2015-04-03

    "Naked" metal nanoparticles (NPs) are thermodynamically and kinetically unstable in solution. Ligands, surfactants, or polymers, which adsorb at a particle\\'s surface, can be used to stabilize NPs; however, such a mode of stabilization is undesirable for catalytic applications because the adsorbates block the surface active sites. The catalytic activity and the stability of NPs are usually inversely correlated. Here, we describe an example of a bimetallic (PtFe) NP catalyst stabilized by carboxylate surface ligands that bind preferentially to one of the metals (Fe). NPs stabilized by fluorous ligands were found to be remarkably competent in catalyzing the hydrogenation of cinnamaldehyde; NPs stabilized by hydrocarbon ligands were significantly less active. The chain length of the fluorous ligands played a key role in determining the chemoselectivity of the FePt NP catalysts. (Chemical Presented). © 2015 American Chemical Society.

  6. Acousto-Plasmonic Sensing Assisted by Nonlinear Optical Interactions in Bimetallic Au-Pt Nanoparticles

    Directory of Open Access Journals (Sweden)

    Eric Abraham Hurtado-Aviles

    2017-10-01

    Full Text Available A strong influence of mechanical action in nonlinear optical transmittance experiments with bimetallic nanoparticles integrated by gold and platinum was observed. The nanostructured samples were synthesized by a sol-gel method and contained in an ethanol suspension. UV-VIS spectroscopy evaluations, Transmission electron microscopy studies and input-output laser experiments were characterized. A two-photon absorption effect was induced by nanosecond pulses at 532 nm wavelength with an important contribution from the plasmonic response of the nanomaterials. All-optical identification of acoustical waves was remarkably improved by optical nonlinearities. High sensitivity for instrumentation of mechano-optical signals sensing particular fluids was demonstrated by using a variable carbon dioxide incorporation to the system.

  7. Debromination of polybrominated diphenyl ethers by attapulgite-supported Fe/Ni bimetallic nanoparticles: Influencing factors, kinetics and mechanism.

    Science.gov (United States)

    Liu, Zongtang; Gu, Chenggang; Ye, Mao; Bian, Yongrong; Cheng, Yinwen; Wang, Fang; Yang, Xinglun; Song, Yang; Jiang, Xin

    2015-11-15

    To enhance the removal efficiency of 2,2',4,4'-tetrabromodiphenylether (BDE47) in aqueous solutions, novel attapulgite-supported Fe/Ni bimetallic nanoparticles (A-Fe/Ni), which were characterized by a core-shell nanoparticle structure and with an average diameter of 20-40 nm, were synthesized for use in BDE47 degradation. The presence of attapulgite in bimetallic systems could reduce Fe/Ni nanoparticle aggregation and enhance their reactivity. BDE47 was degraded with a significant improvement in removal efficiency of at least 96% by A-Fe/Ni that played a reductive role in the reaction. The degradation kinetics of BDE47 by A-Fe/Ni complied with pseudo-first-order characteristics. To better understand the removal mechanism, detailed analyses were performed for several influential parameters. The improved dosage of A-Fe/Ni was found to be beneficial, and higher values of initial concentration, pH, and methanol/water ratio hindered the degradation rate, which, for example, decreased significantly in mixtures with a methanol proportion higher than 50%. The identification of BDE47 degradation products revealed a stepwise debromination from n-bromo-DE to (n-1)-bromo-DE as a possible pathway, wherein the para-Br was more easily eliminated than ortho-Br. Our findings provide insight into the removal mechanism and evidence for polybrominated diphenyl ether debromination by clay-Fe/Ni bimetallic nanoparticles. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. High-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles for phenol hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chao [The Key Laboratory of Fuel Cell Technology of Guangdong Province and The Key Laboratory for New Energy of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou (China); Yang, Xu [Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China); Yang, Hui; Huang, Peiyan; Song, Huiyu [The Key Laboratory of Fuel Cell Technology of Guangdong Province and The Key Laboratory for New Energy of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou (China); Liao, Shijun, E-mail: chsjliao@scut.edu.cn [The Key Laboratory of Fuel Cell Technology of Guangdong Province and The Key Laboratory for New Energy of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou (China)

    2014-10-01

    Graphical abstract: The addition of Ru could significantly improve the performance of the mesoporous silica nanoparticles supported PdRu/MSN catalyst, which showed over 5 times higher mass activity than the mono-Pd/MSN towards the liquid-phase hydrogenation of phenol. The improved dispersion and the electronic interaction contributed to the enhanced catalytic activity for the catalyst towards phenol hydrogenation. - Highlights: • PdRu bimetal catalyst supported on mesoporous silica nanoparticles was prepared. • The average sizeof PdRu alloy is smaller than that of mono-Pd. • The addition of Ru to Pd modulates the electronic properties between Pd and Ru. • PdRu/MSN catalyst shows superior activity on phenol hydrogenation than Pd/MSN. • PdRu/MSN catalyst shows good selectivity for cyclohexanol to some extent. - Abstract: A high-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles (MSN), PdRu/MSN, was prepared by a facile impregnation–hydrogen reduction method. It was found that PdRu/MSN showed 5 times higher activity than that of Pd/MSN towards the liquid-phase hydrogenation of phenol. The catalysts were characterized comprehensively by multiple techniques, X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and hydrogen temperature program reduction (TPR). It was revealed that adding Ru could effectively improve the Pd dispersion and promote the electronic interaction between the Pd and Ru, both of which contribute to enhancing the catalytic activity.

  9. High-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles for phenol hydrogenation

    International Nuclear Information System (INIS)

    Huang, Chao; Yang, Xu; Yang, Hui; Huang, Peiyan; Song, Huiyu; Liao, Shijun

    2014-01-01

    Graphical abstract: The addition of Ru could significantly improve the performance of the mesoporous silica nanoparticles supported PdRu/MSN catalyst, which showed over 5 times higher mass activity than the mono-Pd/MSN towards the liquid-phase hydrogenation of phenol. The improved dispersion and the electronic interaction contributed to the enhanced catalytic activity for the catalyst towards phenol hydrogenation. - Highlights: • PdRu bimetal catalyst supported on mesoporous silica nanoparticles was prepared. • The average sizeof PdRu alloy is smaller than that of mono-Pd. • The addition of Ru to Pd modulates the electronic properties between Pd and Ru. • PdRu/MSN catalyst shows superior activity on phenol hydrogenation than Pd/MSN. • PdRu/MSN catalyst shows good selectivity for cyclohexanol to some extent. - Abstract: A high-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles (MSN), PdRu/MSN, was prepared by a facile impregnation–hydrogen reduction method. It was found that PdRu/MSN showed 5 times higher activity than that of Pd/MSN towards the liquid-phase hydrogenation of phenol. The catalysts were characterized comprehensively by multiple techniques, X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and hydrogen temperature program reduction (TPR). It was revealed that adding Ru could effectively improve the Pd dispersion and promote the electronic interaction between the Pd and Ru, both of which contribute to enhancing the catalytic activity

  10. Chemical composition dispersion in bi-metallic nanoparticles: semi-automated analysis using HAADF-STEM

    International Nuclear Information System (INIS)

    Epicier, T.; Sato, K.; Tournus, F.; Konno, T.

    2012-01-01

    We present a method using high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) to determine the chemical composition of bi-metallic nanoparticles. This method, which can be applied in a semi-automated way, allows large scale analysis with a statistical number of particles (several hundreds) in a short time. Once a calibration curve has been obtained, e.g., using energy-dispersive X-ray spectroscopy (EDX) measurements on a few particles, the HAADF integrated intensity of each particle can indeed be directly related to its chemical composition. After a theoretical description, this approach is applied to the case of iron–palladium nanoparticles (expected to be nearly stoichiometric) with a mean size of 8.3 nm. It will be shown that an accurate chemical composition histogram is obtained, i.e., the Fe content has been determined to be 49.0 at.% with a dispersion of 10.4 %. HAADF-STEM analysis represents a powerful alternative to fastidious single particle EDX measurements, for the compositional dispersion in alloy nanoparticles.

  11. Real-time cellular and molecular dynamics of bi-metallic self-therapeutic nanoparticle in cancer cells

    Science.gov (United States)

    Vishwakarma, Sandeep Kumar; Bardia, Avinash; Lakkireddy, Chandrakala; Paspala, Syed Ameer Basha; Habeeb, Md. Aejaz; Khan, Aleem Ahmed

    2018-02-01

    Since last decades various kinds of nanoparticles have been functionalized to improve their biomedical applications. However, the biological effect of un-modified/non-functionalized bi-metallic magnetic nanoparticles remains under investigated. Herein we demonstrate a multifaceted non-functionalized bi-metallic inorganic Gd-SPIO nanoparticle which passes dual high MRI contrast and can kill the cancer cells through several mechanisms. The results of the present study demonstrate that Gd-SPIO nanoparticles have potential to induce cancer cell death by production of reactive oxygen species and apoptotic events. Furthermore, Gd-SPIO nanoparticles also enhance the expression levels of miRNA-199a and miRNA-181a-7p which results in decreased levels of cancer markers such as C-met, TGF-β and hURP. One very interesting finding of this study reveals side scatter-based real-time analysis of nanoparticle uptake in cancer cells using flow cytometry analysis. In conclusion, this study paves a way for future investigation of un-modified inorganic nanoparticles to purport enhanced therapeutic effect in combination with potential anti-tumor drugs/molecules in cancer cells.

  12. Removal of trichloroethylene DNAPL trapped in porous media using nanoscale zerovalent iron and bimetallic nanoparticles: Direct observation and quantification

    International Nuclear Information System (INIS)

    Wang, Qiliang; Jeong, Seung-Woo; Choi, Heechul

    2012-01-01

    Highlights: ► TCE DNAPL removal inside pores using NZVI or bimetals in a 2-D system was visualized. ► Presence of nitrate and humic substances decrease the TCE DNAPL removal efficiency. ► Presence of ethanol increases the TCE DNAPL removal efficiency. ► Metal catalysts enhance the TCE DNAPL removal using NZVI in a short term reaction. ► Metal catalysts do not increase the DNAPL removal efficiency for a long term reaction. - Abstract: Direct trichloroethylene (TCE) dense non-aqueous phase liquid (DNAPL) removal inside pore areas using nanoscale zerovalent iron (NZVI) and bimetallic nanoparticles were first investigated in a water-saturated porous glass micromodel. Effects of nitrate, aqueous ethanol co-solvent, humic substance, and elapsed time on TCE DNAPL removal using NZVI were studied by direct visualization. The removal efficiency was then quantified by directly measuring the remaining TCE DNAPL blobs area using an image analyzer. As ethanol content of co-solvent increased, TCE DNAPL removal by NZVI was also increased implying sequential TCE DNAPL removal mechanisms: as dissolved TCE was degraded by NZVI, TCE dissolution from TCE blobs would be then facilitated and the TCE blob areas would be eventually reduced. The presence of nitrate and humic substance hindered the NZVI reactivity for the TCE DNAPL removal. In contrast, the TCE DNAPL removal efficiency was enhanced using bimetallic nanoparticles in a short-term reaction by generating atomic hydrogen for catalytic hydro-dechlorination. However, all TCE DNAPL removal efficiencies reached the same level after long-term reaction using both NZVI and bimetallic nanoparticles. Direct TCE DNAPL observation clearly implied that TCE blobs existed for long time even though all TCE blobs were fully exposed to NZVI and bimetallic nanoparticles.

  13. Tuning structural motifs and alloying of bulk immiscible Mo-Cu bimetallic nanoparticles by gas-phase synthesis

    Science.gov (United States)

    Krishnan, Gopi; Verheijen, Marcel A.; Ten Brink, Gert H.; Palasantzas, George; Kooi, Bart J.

    2013-05-01

    Nowadays bimetallic nanoparticles (NPs) have emerged as key materials for important modern applications in nanoplasmonics, catalysis, biodiagnostics, and nanomagnetics. Consequently the control of bimetallic structural motifs with specific shapes provides increasing functionality and selectivity for related applications. However, producing bimetallic NPs with well controlled structural motifs still remains a formidable challenge. Hence, we present here a general methodology for gas phase synthesis of bimetallic NPs with distinctively different structural motifs ranging at a single particle level from a fully mixed alloy to core-shell, to onion (multi-shell), and finally to a Janus/dumbbell, with the same overall particle composition. These concepts are illustrated for Mo-Cu NPs, where the precise control of the bimetallic NPs with various degrees of chemical ordering, including different shapes from spherical to cube, is achieved by tailoring the energy and thermal environment that the NPs experience during their production. The initial state of NP growth, either in the liquid or in the solid state phase, has important implications for the different structural motifs and shapes of synthesized NPs. Finally we demonstrate that we are able to tune the alloying regime, for the otherwise bulk immiscible Mo-Cu, by achieving an increase of the critical size, below which alloying occurs, closely up to an order of magnitude. It is discovered that the critical size of the NP alloy is not only affected by controlled tuning of the alloying temperature but also by the particle shape.Nowadays bimetallic nanoparticles (NPs) have emerged as key materials for important modern applications in nanoplasmonics, catalysis, biodiagnostics, and nanomagnetics. Consequently the control of bimetallic structural motifs with specific shapes provides increasing functionality and selectivity for related applications. However, producing bimetallic NPs with well controlled structural motifs still

  14. Catalytic Partial Oxidation of Cyclohexane by Bimetallic Ag/Pd Nanoparticles on Magnesium Oxide.

    Science.gov (United States)

    Liu, Xi; Conte, Marco; He, Qian; Knight, David W; Murphy, Damien M; Taylor, Stuart H; Whiston, Keith; Kiely, Christopher J; Hutchings, Graham J

    2017-09-04

    The liquid-phase oxidation of cyclohexane to cyclohexanol and cyclohexanone was investigated by synthesizing and testing an array of heterogeneous catalysts comprising: monometallic Ag/MgO, monometallic Pd/MgO and a set of bimetallic AgPd/MgO catalysts. Interestingly, Ag/MgO was capable of a conversion comparable to current industrial routes of approximately 5 %, and with a high selectivity (up to 60 %) to cyclohexanol, thus making Ag/MgO an attractive system for the synthesis of intermediates for the manufacture of nylon fibres. Furthermore, following the doping of Ag nanoparticles with Pd, the conversion increased up to 10 % whilst simultaneously preserving a high selectivity to the alcohol. Scanning transmission electron microscopy and energy dispersive spectroscopy of the catalysts showed a systematic particle-size-composition variation with the smaller Ag-Pd nanoparticles being statistically richer in Pd. Analysis of the reaction mixture by electron paramagnetic resonance (EPR) spectroscopy coupled with the spin-trapping technique showed the presence of large amounts of alkoxy radicals, thus providing insights for a possible reaction mechanism. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Synthesis, characterization and antibacterial activity of copper, nickel and bimetallic Cu–Ni nanoparticles for potential use in dental materials

    Directory of Open Access Journals (Sweden)

    Liliana Argueta-Figueroa

    2014-08-01

    Full Text Available The antibacterial effect is a desirable property in dental materials. Development of simple methods for the preparation of nanosized metal particles has attracted significant attention because of their future applications due to unusual size-dependent antibacterial properties. Copper (Cu, Nickel (Ni and bimetallic Cu–Ni nanoparticles were prepared by a simple chemical method and their antibacterial activity was tested against the widely used standard human pathogens Staphylococcus aureus (gram-negative and Escherichia coli (gram-positive. Additionally, these nanoparticles were tested against the dental pathogen Streptococcus mutans. Our results are promising for potential use in dental materials science.

  16. Synergistic effect in the oxidation of benzyl alcohol using citrate-stabilized gold bimetallic nanoparticles supported on alumina

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Villarraga, Fernando, E-mail: ferchogomezv@gmail.com; Radnik, Jörg; Martin, Andreas; Köckritz, Angela [Leibniz-Institut für Katalyse e.V. an der Universität Rostock (Germany)

    2016-06-15

    Bimetallic nanoparticles (NPs) containing gold and various second metals (M = Pd, Pt, Cu, and Ag) supported on alumina (AuM/Alumina) were prepared using sodium citrate as stabilizer. In addition, supported monometallic Au/Alumina and Pd/Alumina were synthesized and tested to reveal synergistic effects in the catalytic evaluation of the bimetallic catalysts. The monometallic and bimetallic NPs revealed average sizes below 10 nm. The oxidation of benzyl alcohol with molecular oxygen as oxidant at mild conditions in liquid phase in the absence and presence (toluene or NaOH aqueous solution, 0.2 M) of a solvent was selected as test reaction to evaluate the catalytic properties of the above-mentioned solids. AuPd/Alumina exhibited the best catalytic activity among all bimetallic catalysts using toluene as solvent and under solvent-free conditions, respectively. In comparison to the monometallic catalysts, a synergistic effect with AuPd/Alumina was only evident in the solvent-free reaction. The AuPd/Alumina catalyst was able to oxidize benzyl alcohol selectively depending on the reaction medium into benzaldehyde (toluene or solvent-free) or benzoic acid (NaOH aqueous solution, 0.2 M). However, the catalyst deactivated due to particle growth of the bimetallic AuPd NPs by Ostwald ripening and leaching was not observed in the oxidation using toluene as solvent. The size of the catalytically active NPs, the metal composition of the particles, and the reaction conditions greatly influenced the catalytic oxidation results.Graphical Abstract.

  17. Pt-Pd bimetallic nanoparticles on MWCNTs: catalyst for hydrogen peroxide electrosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Felix-Navarro, R. M., E-mail: moi6salazar@hotmail.com; Beltran-Gastelum, M.; Salazar-Gastelum, M. I.; Silva-Carrillo, C.; Reynoso-Soto, E. A.; Perez-Sicairos, S.; Lin, S. W. [Centro de Graduados e Investigacion, Instituto Tecnologico de Tijuana (Mexico); Paraguay-Delgado, F. [Centro de Investigacion en Materiales Avanzados (Mexico); Alonso-Nunez, G. [Centro de Nanociencias y Nanotecnologia (Mexico)

    2013-08-15

    Bimetallic nanoparticles of Pt-Pd were deposited by the microemulsion method on a multiwall carbon nanotube (MWCNTs) to obtain a Pt-Pd/MWCNTs for electrocatalytic reduction of O{sub 2} to H{sub 2}O{sub 2}. The activity and selectivity of the catalyst was determined qualitatively by the rotating disk electrode method in acidic medium. The catalyst was spray-coated onto a reticulated vitreous carbon substrate and quantitatively was tested in bulk electrolysis for 20 min under potentiostatic conditions (0.5 V vs Ag/AgCl) in a 0.5 M H{sub 2}SO{sub 4} electrolyte using dissolved O{sub 2}. The bulk electrolysis experiments show that the Pt-Pd/MWCNTs catalyst is more efficient for H{sub 2}O{sub 2} electrogeneration than a MWCNTs catalyst. Nitrobenzene degradation by electrogenerated H{sub 2}O{sub 2} alone and Electro-Fenton process were also tested. Our results show that both processes decompose nitrobenzene, but the Electro-Fenton process does it more efficiently. The prepared nanoparticulated catalyst shows a great potential in environmental applications.

  18. Tryptophan-Assisted Synthesis Reduces Bimetallic Gold/Silver Nanoparticle Cytotoxicity and Improves Biological Activity

    Directory of Open Access Journals (Sweden)

    Igor O. Shmarakov

    2014-10-01

    Full Text Available Aiming to reduce the potential in vivo hepato-and neph‐ rotoxicity of Ag/Au bimetallic nanoparticles (NPs stabi‐ lized by sodium dodecyl sulphate (SDS, an approach involving a simultaneous reduction of silver nitrate and tetrachlorauratic acid using tryptophan (Trp as a reduc‐ ing/stabilizing agent was applied during NP synthesis. The obtained Ag/Au/Trp NPs (5-15 nm sized were able to form stable aggregates with an average size of 370-450 nm and were potentially less toxic than Ag/Au/SDS in relation to a mouse model system based on clinical biochemical param‐ eters and oxidative damage product estimation. Ag/Au/Trp NPs were shown to exhibit anticancer activity in relation to a Lewis lung carcinoma model. The data generated from the present study support the fact that the use of tryptophan in NP synthesis is effective in attenuating the potential hepatotoxicity and nephrotoxicity of NPs during their in vivo application.

  19. Remediation of polybrominated diphenyl ethers in soil using Ni/Fe bimetallic nanoparticles: Influencing factors, kinetics and mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yingying [School of Chemistry and Environment, South China Normal University, Guangzhou 51006 (China); Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou 51006 (China); Fang, Zhanqiang, E-mail: zhqfang@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 51006 (China); Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou 51006 (China); Cheng, Wen [School of Chemistry and Environment, South China Normal University, Guangzhou 51006 (China); Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou 51006 (China); Tsang, Pokeung Eric [Department of Science and Environmental Studies, The Hong Kong Institute of Education, Hong Kong 00852 (China); Zhao, Dongye [Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849 (United States)

    2014-07-01

    Polybrominated diphenyl ethers (PBDEs) are commonly used as additive flame retardants in all kinds of electronic products. PBDEs are now ubiquitous in the environment, with soil as a major sink, especially in e-waste recycling sites. This study investigated the degradation of decabromodiphenyl ether (BDE209) in a spiked soil using Ni/Fe bimetallic nanoparticles. The results indicated that Ni/Fe bimetallic nanoparticles are able to degrade BDE209 in soil at ambient temperature and the removal efficiency can reach 72% when an initial pH of 5.6 and at a Ni/Fe dosage of 0.03 g/g. A declining trend in degradation was noticed with decreasing Ni loading and increasing of initial BDE209 concentration. The degradation products of BDE209 were analyzed by GC-MS, which showed that the degradation of BDE209 was a process of stepwise debromination from nBr to (n − 1)Br. And a possible debromination pathway was proposed. At last, the degradation process was analyzed as two-step mechanism, mass transfer and reaction. This current study shows the potential ability of Ni/Fe nanoparticles to be used for removal of PBDEs in contaminated soil. - Highlights: • Ni/Fe bimetallic nanoparticles could effectively degradate BDE209 in soil. • The effects of various factors on remediation of BDE209 in soil using Ni/Fe were considered. • The degradation of BDE209 was a process of stepwise debromination from nBr to (n − 1)Br. • A possible debromination pathway and mechanism about removal of BDE209 in soil were proposed.

  20. Preparation and catalytic activities for H{sub 2}O{sub 2} decomposition of Rh/Au bimetallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haijun, E-mail: zhanghaijun@wust.edu.cn [Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); The State Key Laboratory of Refractory and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Deng, Xiangong; Jiao, Chengpeng; Lu, Lilin; Zhang, Shaowei [The State Key Laboratory of Refractory and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China)

    2016-07-15

    Graphical abstract: PVP-protected Rh/Au bimetallic nanoparticles (BNPs) were prepared by using hydrogen sacrificial reduction method, the activity of Rh80Au20 BNPs were about 3.6 times higher than that of Rh NPs. - Highlights: • Rh/Au bimetallic nanoparticles (BNPs) of 3∼5 nm in diameter were prepared. • Activity for H{sub 2}O{sub 2} decomposition of BNPs is 3.6 times higher than that of Rh NPs. • The high activity of BNPs was caused by the existence of charged Rh atoms. • The apparent activation energy for H{sub 2}O{sub 2} decomposition over the BNPs was calculated. - Abstract: PVP-protected Rh/Au bimetallic nanoparticles (BNPs) were prepared by using hydrogen sacrificial reduction method and characterized by UV–vis, XRD, FT-IR, XPS, TEM, HR-TEM and DF-STEM, the effects of composition on their particle sizes and catalytic activities for H{sub 2}O{sub 2} decomposition were also studied. The as-prepared Rh/Au BNPs possessed a high catalytic activity for the H{sub 2}O{sub 2} decomposition, and the activity of the Rh{sub 80}Au{sub 20} BNPs with average size of 2.7 nm were about 3.6 times higher than that of Rh monometallic nanoparticles (MNPs) even the Rh MNPs possess a smaller particle size of 1.7 nm. In contrast, Au MNPs with size of 2.7 nm show no any activity. Density functional theory (DFT) calculation as well as XPS results showed that charged Rh and Au atoms formed via electronic charge transfer effects could be responsible for the high catalytic activity of the BNPs.

  1. From First Principles Design to Realization of Bimetallic Catalysts for Ultrahigh Selectivity - Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Richard M. Crooks

    2007-04-11

    (A) Synthesis, Characterization, and Fundamental Properties of Bimetallic DENs. AuAg alloy and core/shell bimetallic DENs were synthesized and characterized. Selective extraction was used as a structural characterization tool for these bimetallic nanoparticles. This is significant because there are few easily accessible methods for structure elucidation of bimetallic nanoparticles in this size regime. As a first step towards the synthesis of catalytically active, bimetallic heterogeneous materials we reported the incorporation of Au and Pd monometallic DENs and AuPd bimetallic DENs into amorphous titania networks. The compositional fidelity of the original DENs, and to some extent their size, is retained following dendrimer removal. Gas-phase catalytic activity for CO oxidation is higher for the bimetallic catalysts than for the corresponding Pd-only and Au-only monometallics. (B) Electrocatalysts based on dendrimer-encapsulated nanoparticles. Platinum dendrimer-encapsulated nanoparticles (DENs) were prepared within fourth-generation, hydroxyl-terminated, poly(amidoamine) dendrimers and immobilized on glassy carbon electrodes using an electrochemical immobilization strategy. X-ray photoelectron spectroscopy, electron microscopy, and electrochemical experiments confirm that the Pt DENs are about 1.4 nm in diameter and that they remain within the dendrimer following surface immobilization. The resulting Pt DEN films were electrocatalytically active for the oxygen reduction reaction (ORR). The films are also robust, surviving up to 50 consecutive cyclic voltammograms and sonication. Monometallic Pd DENs were also prepared and found to have little catalytic activity for the ORR. However, PtPd bimetallic DENs had catalytic activity nearly identical to that found for Pt-only DENs. This indicates an overall catalytic enhancement for the bimetallic electrocatalysts.

  2. Effect of Cu{sup 2+}/Al{sup 3+} mole ratio on structure of Cu-Al bimetallic nanoparticles prepared by radiation induced method

    Energy Technology Data Exchange (ETDEWEB)

    Abedini, Alam; Larki, Farhad; Saion, Elias; Noroozi, Monir [Putra Malaysia Univ., Serdang, Selangor (Malaysia). Dept. of Physics

    2013-07-15

    Cu-Al bimetallic nanoparticles were synthesized by gamma irradiation technique in aqueous solutions containing metal chlorides as precursors, polyvinyl alcohol (PVA) as a capping agent, isopropanol as a radical scavenger, and distilled water as a solvent. The Cu-Al bimetallic nanoparticles were characterized by transmission electron microscopy (TEM), UV-visible absorption spectrometry, powder X-ray diffractometer (XRD), and Energy-dispersive X-ray spectroscopy (EDX). The TEM, XRD, EDX, and absorption analyses confirmed the formation of core-shell structure of Cu-Al bimetallic nanoparticles at lower Cu{sup 2+}/Al{sup 3+} mole ratio, and the formation of Cu-Al alloy nanoparticles at higher Cu{sup 2+}/Al{sup 3+} mole ratio. The TEM analysis for particle size and size distribution revealed that the average particle size of Cu-Al bimetallic nanoparticles decreased with the increase of absorbed dose. It may be explained due to the competition between nucleation and aggregation processes in the formation of metallic nanoparticles under irradiation. (orig.)

  3. Crystal and electronic structure study of AgAu and AgCu bimetallic alloy thin films by X-ray techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ozkendir, O. Murat, E-mail: ozkendir@gmail.com [Mersin University, Faculty of Technology, Energy Systems Engineering, Tarsus (Turkey); Mersin University, Institute of Natural Science, Department of Nanotechnology and Advanced Materials, Mersin (Turkey); Cengiz, E. [Karadeniz Technical University, Faculty of Science, Department of Physics, Trabzon (Turkey); Yalaz, E. [Mersin University, Institute of Natural Science, Department of Nanotechnology and Advanced Materials, Mersin (Turkey); Söğüt, Ö.; Ayas, D.H. [Kahramanmaraş Sütçü İmam Üniversitesi, Faculty of Science and Letters, Department of Physics, Kahramanmaraş (Turkey); Thammajak, B. Nirawat [Synchrotron Light Research Institute (Public Organisation), 111 University Avenue, T. Suranaree, A. Muang, Nakhon Ratchasima 30000 (Thailand)

    2016-05-15

    Highlights: • Crystal and electronic properties of bimetallic AgCu and AgAu alloy thin films were studied. • Both AgCu and AgAu bimetallic samples were determined to have cubic crystal geometry. • Strong influence of Cu and Au atoms on the electronic structure of the Ag atoms were determined. - Abstract: Crystal and electronic structure properties of bimetallic AgAu and AgCu alloy thin films were investigated by X-ray spectroscopic techniques. The aim of this study is to probe the influence of Au or Cu atoms on the electronic behaviors of Ag ions in bimetallic alloy materials that yields different crystal properties. To identify the mechanisms causing crystal phase transitions, study were supported by the collected EXAFS (Extended X-ray Absorption Fine Structure) data. Crystal structures of both Cu and Au doped bimetallic Ag samples were determined mainly in cubic geometry with “Fm3m” space group. Through the Ag–Au and Ag–Cu molecular interactions during bimetallic alloy formations, highly overlapped electronic levels that supports large molecular band formations were observed with different ionization states. Besides, traces of the d–d interactions in Au rich samples were determined as the main interplay in the broad molecular bond formations. The exact atomic locations and types in the samples were determined by EXAFS studies and supported by the performed calculations with FEFF scientific code.

  4. Investigation of a Cu/Pd Bimetallic System Electrodeposited on Boron-Doped Diamond Films for Application in Electrocatalytic Reduction of Nitrate

    Directory of Open Access Journals (Sweden)

    Jorge T. Matsushima

    2012-01-01

    Full Text Available The Cu/Pd bimetallic system electrodeposited on boron-doped diamond (BDD films for application, as electrode material in the electrochemical reduction of nitrate was studied. The electrochemical behavior of Cu, Pd, and Cu/Pd bimetallic system was evaluated by cyclic voltammetry. From these results, the formation of the Cu/Pd composite was verified. In addition, Cu with different phases and a Cu/Pd phase in the composite were obtained. Morphological analysis by scanning electron microscopy (SEM revealed a homogeneous distribution of Cu/Pd bimetallic particles with intermediary dimensions compared to those observed in Cu or Pd electrodeposits separately. These composites were tested as electrocatalysts for nitrate reduction in Britton-Robinson buffer solution (pH 9. Electrochemical measurements showed that composites with higher Cu content displayed the best electrocatalytic activity for nitrate reduction, and the Cu/Pd phase in the bimetallic system served to improve the Cu adherence on BDD electrode.

  5. Sn surface-enriched Pt-Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation

    KAUST Repository

    Zhu, Haibo

    2014-12-01

    A new one pot, surfactant-free, synthetic route based on the surface organometallic chemistry (SOMC) concept has been developed for the synthesis of Sn surface-enriched Pt-Sn nanoparticles. Bu3SnH selectively reacts with [Pt]-H formed in situ at the surface of Pt nanoparticles, Pt NPs, obtained by reduction of K2PtCl4 by LiB(C2H5)3H. Chemical analysis, 1H MAS and 13C CP/MAS solid-state NMR as well as two-dimensional double-quantum (DQ) and triple-quantum (TQ) experiments show that organo-tin moieties Sn(n-C4H9) are chemically linked to the surface of Pt NPs to produce, in fine, after removal of most of the n-butyl fragment, bimetallic Pt-Sn nanoparticles. The Sn(n-CH2CH2CH2CH3) groups remaining at the surface are believed to stabilize the as-synthesized Pt-Sn NPs, enabling the bimetallic NPs to be well dispersed in THF. Additionally, the Pt-Sn nanoparticles can be supported on MgAl2O4 during the synthesis of the nanoparticles. Some of the Pt-Sn/MgAl2O4 catalyst thus prepared exhibits high activity in PROX of CO and an extremely high selectivity and stability in propane dehydrogenation to propylene. The enhanced activity in propane dehydrogenation is associated with the high concentration of inactive Sn at the surface of Pt nanoparticles which ”isolates” the active Pt atoms. This conclusion is confirmed by XRD, NMR, TEM, and XPS analysis.

  6. Surface vertical deposition for gold nanoparticle film

    International Nuclear Information System (INIS)

    Diao, J J; Qiu, F S; Chen, G D; Reeves, M E

    2003-01-01

    In this rapid communication, we present the surface vertical deposition (SVD) method to synthesize the gold nanoparticle films. Under conditions where the surface of the gold nanoparticle suspension descends slowly by evaporation, the gold nanoparticles in the solid-liquid-gas junction of the suspension aggregate together on the substrate by the force of solid and liquid interface. When the surface properties of the substrate and colloidal nanoparticle suspension define for the SVD, the density of gold nanoparticles in the thin film made by SVD only depends on the descending velocity of the suspension surface and on the concentration of the gold nanoparticle suspension. (rapid communication)

  7. Facile and Rapid Synthesis of Ultrafine PtPd Bimetallic Nanoparticles and Their High Performance toward Methanol Electrooxidation

    Directory of Open Access Journals (Sweden)

    Tiantian Xia

    2014-01-01

    Full Text Available Uniform and sub-10 nm size bimetallic PtPd nanoparticles (NPs have been synthesized via a simple and facile method without using any surfactants at an ambient temperature. As a green and clean reductive agent, ascorbic acid (AA was employed for the coreduction of K2PtCl4 and K2PdCl4 in aqueous solution. The morphology, composition, and structure of PtPd NPs had been characterized by transmission electron microscopy (TEM, field emission high resolution transmission electron microscopy (FE-HRTEM, energy dispersive spectroscopy (EDS, X-ray diffraction (XRD, and X-ray photoelectron spectroscope (XPS. Comparing with both the monometallic Pt and Pd, the as-prepared alloy nanoparticles show superior electrocatalytic activity and better tolerance against poisoning by intermediates generated during methanol electrooxidation, which makes them a promising electrocatalysts for direct methanol fuel cells (DMFCs. Meanwhile, the green and simple approach could be easily extended to the manufacture of bimetallic or trimetallic alloy nanomaterials.

  8. Eco-friendly synthesis of gelatin-capped bimetallic Au-Ag nanoparticles for chemiluminescence detection of anticancer raloxifene hydrochloride.

    Science.gov (United States)

    Alarfaj, Nawal A; El-Tohamy, Maha F

    2016-09-01

    This study described the utility of green analytical chemistry in the synthesis of gelatin-capped silver, gold and bimetallic gold-silver nanoparticles (NPs). The preparation of nanoparticles was based on the reaction of silver nitrate or chlorauric acid with a 1.0 wt% aqueous gelatin solution at 50°C. The gelatin-capped silver, gold and bimetallic NPs were characterized using transmission electron microscopy, UV-vis, X-ray diffraction and Fourier transform infrared spectroscopy, and were used to enhance a sensitive sequential injection chemiluminescence luminol-potassium ferricyanide system for determination of the anticancer drug raloxifene hydrochloride. The developed method is eco-friendly and sensitive for chemiluminescence detection of the selected drug in its bulk powder, pharmaceutical injections and biosamples. After optimizing the conditions, a linear relationship in the range of 1.0 × 10(-9) to 1.0 × 10(-1)  mol/L was obtained with a limit of detection of 5.0 × 10(-10)  mol/L and a limit of quantification of 1.0 × 10(-9)  mol/L. Statistical treatment and method validation were performed based on ICH guidelines. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Synthesis and characterization of core-shell bimetallic nanoparticles for synergistic antimicrobial effect studies in combination with doxycycline on burn specific pathogens.

    Science.gov (United States)

    Fakhri, Ali; Tahami, Shiva; Naji, Mahsa

    2017-04-01

    Nano-medicine is a breakthrough discovery in the healthcare sector. Doxycycline is a new generation antibiotic which is proved to be a boon in the treatment of patients with complicated skin infections. We have tried to explore the benefits of synthesized bimetallic silver-gold nanoparticles in combination with new generation antibiotic for burn infections. The bimetallic nanoparticles synthesized by core-shell method were characterized using scanning electron microscopy equipped with an energy dispersive spectrometer, transmission electron microscopy, X-ray diffraction and UV-Vis spectroscopy. The calculated average particle sizes of the Ag-Au NPs were found to be 27.5nm. The Ag-Au core-shell BNPs show a characteristic Plasmon peak at 525nm which is broad and red shifted. The synergistic antimicrobial activity of doxycycline conjugated bimetallic nanoparticles was investigated against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Micrococcus luteus. This combined therapeutic agent showed greater bactericidal activity. Synergy of antibiotic with bimetallic nanoparticles is quite promising for significant application in burn healing therapy. The mechanism of the antibacterial activity was studied through the formation of reactive oxygen species (ROS) that was later suppressed with antioxidant to establish correlation with the Ag-Au NPs antimicrobial activity. Ag-Au NPs showed effective antiproliferative activity toward A549 human lung cancer (CCL-185) and MCF-7 human breast cancer (HTB-22) cell lines. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Microwave-assisted synthesis and characterization of bimetallic PtRu alloy nanoparticles supported on carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Rahsepar, Mansour, E-mail: rahsepar@shirazu.ac.ir [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Zand Boulevard, Shiraz, 7134851154 (Iran, Islamic Republic of); Kim, Hasuck, E-mail: hasuckim@snu.ac.kr [Department of Chemistry, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 151-747 (Korea, Republic of); Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 711-873 (Korea, Republic of)

    2015-11-15

    Multiwalled carbon nanotube (MWCNT) supported PtRu nanoparticles were synthesized by using a microwave-assisted improved impregnation technique. X-ray diffraction, transmission electron microscopy and X-ray photo electron spectroscopy were used to characterize the prepared PtRu/MWCNT nanoparticles. The PtRu nanoparticles with a satisfactory dispersion were formed on the external surface of MWCNTs. The CO stripping experiment was performed to evaluate the poisoning resistance of the prepared PtRu/MWCNT nanoparticles. Results of electrochemical measurements indicate that the prepared PtRu/MWCNTs shows an enhanced performance toward CO poisoning. The results of characterization revealed that microwave-assisted improved impregnation technique have a high yield of alloy phase formation and could be effectively used as a simple, quick and efficient technique for preparation of bimetallic PtRu/MWCNT nanoparticles. - Highlights: • Highly dispersed PtRu/MWCNTs were formed without use of any stabilizing agent. • Microwave irradiation enhances the uniform dispersion of the PtRu nanoparticles. • Microwave-assisted improved impregnation have a high yield of alloy phase formation. • The prepared PtRu/MWCNTs shows an enhanced performance toward CO poisoning.

  11. Highly efficient removal of chromium(VI) by Fe/Ni bimetallic nanoparticles in an ultrasound-assisted system.

    Science.gov (United States)

    Zhou, Xiaobin; Jing, Guohua; Lv, Bihong; Zhou, Zuoming; Zhu, Runliang

    2016-10-01

    Highly active Fe/Ni bimetallic nanocomposites were prepared by using the liquid-phase reduction method, and they were proven to be effective for Cr(VI) removal coupled with US irradiation. The US-assisted Fe/Ni bimetallic system could maintain a good performance for Cr(VI) removal at a wide pH range of 3-9. Based on the characterization of the Fe/Ni nanoparticles before and after reaction, the high efficiency of the mixed system could attribute to the synergistic effects of the catalysis of Ni(0) and US cavitation. Ni(0) could facilitate the Cr(VI) reduction through electron transfer and catalytic hydrogenation. Meanwhile, US could fluidize the Fe/Ni nanoparticles to increase the actual reactive surface area and clean off the co-precipitated Fe(III)-Cr(III) hydroxides to maintain the active sites on the surface of the Fe/Ni nanoparticles. Thus, compared with shaking, the US-assisted Fe/Ni system was more efficient on Cr(VI) removal, which achieved 94.7% removal efficiency of Cr(VI) within 10 min. The pseudo-first-order rate constant (kobs) in US-assisted Fe/Ni system (0.5075 min(-1)) was over 5 times higher than that under shaking (0.0972 min(-1)). Moreover, the Fe/Ni nanoparticles still have a good performance under US irradiation after 26 days aging as well as regeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Bactericidal and catalytic performance of green nanocomposite based-on chitosan/carbon black fiber supported monometallic and bimetallic nanoparticles.

    Science.gov (United States)

    Ali, Fayaz; Khan, Sher Bahadar; Kamal, Tahseen; Anwar, Yasir; Alamry, Khalid A; Asiri, Abdullah M

    2017-12-01

    Nanoparticles were synthesized on the surface of green nanocomposite based on carbon black dispersed in chitosan (CB-CS) fibres. The nanoparticles were monometallic Co, Ag and Cu and bimetallic Co + Cu and Co + Ag. The CB-CS fibres were prepared and introduced into separate metal salt solutions containing Co 2+ , Ag + and Cu 2+ and mixed Co 2+ +Cu 2+ and Co 2+ +Ag + ions. The metal ions immobilized on the surface of CB-CS were reduced using sodium borohydride (NaBH 4 ) as reducing agent to synthesize the corresponding zero-valent metal nanoparticles-loaded CB-CS fibres. All the nanoparticles-loaded CB-CS samples were characterized using field emission-scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction techniques. When tested as catalysts, the nanoparticles-loaded CB-CS showed excellent catalytic ability for the reduction of toxic and environmentally unwanted pollutants of para-nitrophenol, congo red and methyl orange dyes. Afterwards, the antimicrobial activities of virgin and metal-loaded CB-CS fibres were tested and the metal-loaded CB-CS fibres were found to be effective against Escherichia coli. In addition, the catalyst can be recovered easily by simply removing the fibres from the reaction mixture and can be recycled several times while maintaining high catalytic efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Gyroscopic behavior exhibited by the optical Kerr effect in bimetallic Au–Pt nanoparticles suspended in ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Valdés, D.; Torres-Torres, C., E-mail: ctorrest@ipn.mx, E-mail: crstorres@yahoo.com.mx; Martínez-González, C. L. [Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco (Mexico); Trejo-Valdez, M. [Instituto Politécnico Nacional, Escuela Superior de Ingeniería Química e Industrias Extractivas (Mexico); Hernández-Gómez, L. H. [Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco (Mexico); Torres-Martínez, R. [Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada Unidad Querétaro (Mexico)

    2016-07-15

    The modification in the third-order nonlinear optical response exhibited by rotating bimetallic Au–Pt nanoparticles in an ethanol solution was analyzed. The samples were prepared by a sol–gel processing route. The anisotropy associated to the elemental composition of the nanoparticles was confirmed by high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy measurements. The size of the nanoparticles varies in the range from 9 to 13 nm, with an average size of 11 nm. Changes in the spatial orientation of the nanomaterials automatically generated a variation in their plasmonic response evaluated by UV–Vis spectroscopy. A two-wave mixing experiment was conducted to explore an induced birefringence at 532 nm wavelength with nanosecond pulses interacting with the samples. A strong optical Kerr effect was identified to be the main responsible effect for the third-order nonlinear optical phenomenon exhibited by the nanoparticles. It was estimated that the rotation of inhomogeneous nanostructures can provide a remarkable change in the participation of different surface plasmon resonances, if they correspond to multimetallic nanoparticles. Potential applications for developing low-dimensional gyroscopic systems can be contemplated.

  14. Hydrodechlorination of polychlorinated biphenyls in contaminated soil from an e-waste recycling area, using nanoscale zerovalent iron and Pd/Fe bimetallic nanoparticles.

    Science.gov (United States)

    Chen, Xi; Yao, Xiaoyan; Yu, Chunna; Su, Xiaomei; Shen, Chaofeng; Chen, Chen; Huang, Ronglang; Xu, Xinhua

    2014-04-01

    Soil pollution by polychlorinated biphenyls (PCBs) arising from the crude disposal and recycling of electronic and electrical waste (e-waste) is a serious issue, and effective remediation technologies are urgently needed. Nanoscale zerovalent iron (nZVI) and bimetallic systems have been shown to promote successfully the destruction of halogenated organic compounds. In the present study, nZVI and Pd/Fe bimetallic nanoparticles synthesized by chemical deposition were used to remove 2,2',4,4',5,5'-hexachlorobiphenyl from deionized water, and then applied to PCBs contaminated soil collected from an e-waste recycling area. The results indicated that the hydrodechlorination of 2,2',4,4',5,5'-hexachlorobiphenyl by nZVI and Pd/Fe bimetallic nanoparticles followed pseudo-first-order kinetics and Pd loading was beneficial to the hydrodechlorination process. It was also found that the removal efficiencies of PCBs from soil achieved using Pd/Fe bimetallic nanoparticles were higher than that achieved using nZVI and that PCBs degradation might be affected by the soil properties. Finally, the potential challenges of nZVI application to in situ remediation were explored.

  15. Enhancement of Degradation and Dechlorination of Trichloroethylene via Supporting Palladium/Iron Bimetallic Nanoparticles onto Mesoporous Silica

    Directory of Open Access Journals (Sweden)

    Jianjun Wei

    2016-07-01

    Full Text Available This study is aimed to prevent the agglomeration of Pd/Fe bimetallic nanoparticles and thus improve the efficiency toward degradation and dechlorination of chlorinated organic contaminants. A mesoporous silica with a primary pore diameter of 8.3 nm and a specific surface area of 688 m2/g was prepared and used as the host of Pd/Fe nanoparticles. The Pd/Fe nanoparticles were deposited onto or into the mesoporous silica by reduction of ferrous ion and hexachloropalladate ion in aqueous phase. Batch degradation and dechlorination reactions of trichloroethylene were conducted with initial trichloroethylene concentration of 23.7 mg/L, iron loading of 203 or 1.91 × 103 mg/L and silica loading of 8.10 g/L at 25 °C. Concentration of trichloroethylene occurs on the supported Pd/Fe nanoparticles, with trichloroethylene degrading to 56% and 59% in 30 min on the supported Pd/Fe nanoparticles with weight percentage of palladium to iron at 0.075% and 0.10% respectively. The supported Pd/Fe nanoparticles exhibit better dechlorination activity. When the supported Pd/Fe nanoparticles with a weight percentage of palladium to iron of 0.10% were loaded much less than the bare counterpart, the yield of ethylene plus ethane in 10 h on them was comparable, i.e., 19% vs. 21%. This study offers a future approach to efficiently combine the reactivity of supported Pd/Fe nanoparticles and the adsorption ability of mesoporous silica.

  16. Structure determination of chitosan-stabilized Pt and Pd based bimetallic nanoparticles by X-ray photoelectron spectroscopy and transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Lihua; Shafii, Salimah [Faculty of Industrial Science and Technology, Universiti Malaysia Pahang, 26300 Kuantan, Pahang (Malaysia); Nordin, Mohd Ridzuan, E-mail: mridzuan@ump.edu.my [Faculty of Industrial Science and Technology, Universiti Malaysia Pahang, 26300 Kuantan, Pahang (Malaysia); Liew, Kong Yong [Faculty of Industrial Science and Technology, Universiti Malaysia Pahang, 26300 Kuantan, Pahang (Malaysia); Li, Jinlin [Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, Hubei Province, South-Central University for Nationalities, 430074 Wuhan (China)

    2012-12-14

    Chitosan (CTS)-stabilized bimetallic nanoparticles were prepared at room temperature (rt.) in aqueous solution. Palladium (Pd) and platinum (Pt) were selected as the first metals while iron (Fe) and nickel (Ni) functioned as the second metals. In order to obtain the noble metal core-transition metal shell structures, bimetallic nanoparticles were prepared in a two-step process: the preparation of mono noble metallic (Pd or Pt) nanoparticles and the deposition of transition metals (Fe or Ni) on the surface of the monometallic nanoparticles. The structures of the nanoparticles were studied using X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The XPS results show that Pd and Pt exist mainly in zero valences. The presence of Fe and Ni in the bimetallic nanoparticles affects the binding energy of Pd and Pt. Moreover, the studies of O 1s spectra indicate the presence of Fe or Ni shells. The analyses of TEM micrographs give the particle size and size distributions while the high-resolution TEM (HRTEM) micrographs show the existence of noble metal core lattices. The results confirm the formation of noble metal core-transition metal shell structures. -- Highlights: Black-Right-Pointing-Pointer Chitosan-stabilized bimetallic nanoparticles were prepared at room temperature in aqueous solution. Black-Right-Pointing-Pointer The presence of Fe or Ni shells was proven by XPS study. Black-Right-Pointing-Pointer The existence of noble metal cores covered by amorphous shells was indicated by TEM study. Black-Right-Pointing-Pointer The formation of noble metal core-transition metal shell structures was confirmed.

  17. Characterization and electrocatalytic activity of Pt–M (M=Cu, Ag, and Pd) bimetallic nanoparticles synthesized by pulsed plasma discharge in water

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Min; Cho, Ah-Rong; Lee, Sang-Yul, E-mail: sylee@kau.ac.kr [Korea Aerospace University, Department of Materials Engineering, Center for Surface Technology and Applications (Korea, Republic of)

    2015-07-15

    The synthetic approach for electrocatalysts is one of the most important methods of determining electrocatalytic performance. In this work, we synthesized Pt and Pt–M (M=Cu, Ag, and Pd) bimetallic nanoparticles using a pulsed plasma discharge in water. A morphological investigation revealed that the as-synthesized Pt and Pt–M bimetallic nanoparticles constituted a nanochain network structure interconnected with primary nanoparticles of 4–6 nm in size, and the nanochains grew from the primary nanoparticles via the oriented attachment. The Z-contrast, EDX line scanning, and XRD analysis confirmed that the Pt was alloyed with M without elemental segregation or phase segregation. Furthermore, it was found that the composition difference was dependent on the electrode temperature determined by the power density and thermal parameters. The electrochemical results revealed that the electrocatalytic activity, stability, and durability of the Pt–Ag bimetallic nanoparticles were superior with respect to the methanol oxidation reaction, which could be attributed to the downshift of the d-band center via electronic modification.

  18. Study of Ag-Pd bimetallic nanoparticles modified glassy carbon electrode for detection of L-cysteine

    Science.gov (United States)

    Murugavelu, M.; Karthikeyan, B.

    2014-11-01

    Ag-Pd bimetallic nanoparticles (Ag-Pd BNPs) as an enhanced sensing material with improved electronic transmission rates in the electrochemical sensing of L-cysteine (L-cys) has been reported. The morphology of Ag-Pd BNPs was characterized with X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and cyclic voltammetry (CV). Oxidation of L-cys on Ag-Pd BNPs is investigated in detail by discussing the effect of the structure and from the electrocatalytic oxidation of L-cys. We found that the Ag-Pd BNPs exhibited high electrocatalytic activity towards L-cys oxidation in neutral condition and could be used for the development of nonenzymatic L-cys sensor. Based on the efficient catalytic ability of Ag-Pd BNPs, the fabricated biosensor exhibited a wide linear range of responses to the L-cys with the concentration detection limit of nearly down to 2 mM with fast response time.

  19. Synthesis and Characterization of Optically Active Fractal Seed Mediated Silver Nickel Bimetallic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Joseph Adeyemi Adekoya

    2014-01-01

    Full Text Available The synthesis of new seed mediated AgNi allied bimetallic nanocomposites was successfully carried out by the successive reduction of the metal ions in diethylene glycol, ethylene glycol, glycerol, and pentaerythritol solutions, with concomitant precipitation of Ag/Ni bimetal sols. The optical measurement revealed the existence of distinct band edge with surface plasmon resonance (SPR in the region of 400–425 nm and excitonic emission with maximum peak at 382 nm which were reminiscent of cluster-in-cluster surface enriched bimetallic silver-nickel sols. The morphological characterization by transmission electron microscopy, high resolution transmission electron microscopy, and X-ray diffraction analyses complimented by surface scan using X-ray photoelectron spectroscopy strongly supported the formation of intimately alloyed face-centered silver/nickel nanoclusters.

  20. Enhanced debromination of decabrominated diphenyl ether in aqueous solution by attapulgite supported Fe/Ni bimetallic nanoparticles: kinetics and pathways

    Science.gov (United States)

    Liu, Zongtang; Gu, Chenggang; Bian, Yongrong; Jiang, Xin; Sun, Yufeng; Fei, Zhenghao; Dai, Jingtao

    2017-08-01

    In this study, Fe/Ni bimetallic nanoparticles were supported on the attapulgite (A-Fe/Ni) to enhance the degradation reactivity of decabrominated diphenyl ether (BDE209) in aqueous solution. The Fe/Ni nanoparticles were well distributed on the attapulgite surface with an average diameter of 20-40 nm. The removal percentage of BDE209 by A-Fe/Ni was 1.59 times higher than Fe/Ni nanoparticles alone because attapulgite could act as supporting material to disperse Fe/Ni nanoparticles and prevent Fe/Ni nanoparticles from aggregation. The degradation kinetics for BDE209 debromination by A-Fe/Ni could be well described by a pseudo-first-order model, and the debromination rate constant of BDE209 increased with increasing the dosage of A-Fe/Ni, water/THF ratio, and decreasing the initial BDE209 concentration and solution pH. The degradation products were identified using a third-order polynomial regression equation between the experimental and reference gas chromatography relative retention times. Stepwise debromination from n-bromo-DE to (n  -  1)-bromo-DE was a possible pathway with bromines being substituted sequentially by hydrogen. The preferred elimination of bromines of BDE209 by A-Fe/Ni followed the debromination preference of para-Br  >  meta-Br  >  ortho-Br. The results provide evidences for understanding the debromination mechanism of polybrominated diphenyl ether by clay-supported Fe/Ni nanoparticles.

  1. Production of biodiesel from sunflower oil using highly catalytic bimetallic gold–silver core–shell nanoparticle

    International Nuclear Information System (INIS)

    Banerjee, Madhuchanda; Dey, Binita; Talukdar, Jayanta; Chandra Kalita, Mohan

    2014-01-01

    Bimetallic Gold–silver core–shell nanoparticles (Au@Ag NPs) were synthesized at room temperature, where gold nanoparticles (AuNPs) served as seeds for continuous deposition of silver atoms on its surface. The core–shell structure was examined by UV–vis spectroscopy, transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) analysis. The catalytic activity of these nanoparticles toward biodiesel production from Sunflower oil through transesterification was studied. The confirmation for biofuel synthesis was performed using Fourier Transform Infra-Red (FTIR) spectroscopy. Fuel properties are determined by standard ASTM (American society for Testing and Materials) protocols. Our observations show that at certain catalyst concentration, temperature and reaction time, highest yield of biodiesel (86.9%) is attained. The fuel properties of the synthesized biofuel are at par with standard biofuel. Further, the catalyst showed sustained activity for 3 cycles of transesterification. - Highlights: • Gold–silver core–shell NPs were used for biofuel synthesis from sunflower oil. • At the optimized condition, biodiesel yield of 86.9% was achieved. • Fuel properties of the biofuel synthesized are at par with standard biofuel. • The catalyst showed sustained activity for 3 cycles of transesterification

  2. Design of supported bi-metallic nanoparticles based on Platinum and Palladium using Surface Organometallic Chemistry (SOMC)

    KAUST Repository

    Al-Shareef, Reem A.

    2017-11-01

    Well-defined silica supported bimetallic catalysts Pt100-x Pdx (where x is the molar ratio of Pd) are prepared by Surface Organometallic Chemistry (SOMC) via controlled decomposition of Pd2(allyl)2Cl2 on Pt/SiO2. For comparison purposes, Pt100-x Pdx bimetallic catalysts is also prepared by ion-exchange (IE). According to the results of STEM, XAS and H2 chemisorption, all bimetallic nanoparticles, prepared using neither SOMC nor IE, produce discrete formation of monometallic species (either Pt or Pd). Most catalysts exhibit a narrow particle size distribution with an average diameter ranging from 1 to 3 nm for samples prepared by IE and from 2 to 5 nm for the ones synthesized by SOMC. For all catalysts investigated in the present work, iso-butane reaction with hydrogen under differential conditions (conversions below 5%) leads to the formation of methane and propane (hydrogenolysis), n-butane (isomerization), and traces of iso-butylene (dehydrogenation). The total rate of reaction decreases with increasing the Pd loading for both catalysts series as a result of decreasing turnover rate (expressed as moles converted per total surface metal per second) of both isomerization and hydrogenolysis. In the case of Pt100-x Pdx(SOMC) catalysts, the results suggest a selective coverage of Pt (100) surface by a Pd layer, followed by a buildup of Pd overcoat onto a Pd layer assuming that each metal keeps its intrinsic catalytic properties. There is no mutual electronic charge transfer between the two metals (DFT). For the PtPd catalysts prepared by IE, the catalytic behavior cannot simply be explained by a surface coverage of highly active Pt metal by less active Pd (not observed), suggesting there is formation of a surface alloy between Pt and Pd collaborated by EXAFS and DFT. The catalytic results are explained by a simple structure activity relationship based on the previously proposed mechanism of C-H bond and C-C Bond activation and cleavage for iso-butane hydrogenolysis

  3. Physicochemical transformation of Fe/Ni bimetallic nanoparticles during aging in simulated groundwater and the consequent effect on contaminant removal.

    Science.gov (United States)

    Dong, Haoran; Jiang, Zhao; Deng, Junmin; Zhang, Cong; Cheng, Yujun; Hou, Kunjie; Zhang, Lihua; Tang, Lin; Zeng, Guangming

    2018-02-01

    To assess the fate and long-term reactivity of bimetallic nanoparticles used in groundwater remediation, it is important to trace the physicochemical transformation of nanoparticles during aging in water. This study investigated the short-term (within 5 d) and long-term (up to 90 d) aging process of Fe/Ni bimetallic nanoparticles (Fe/Ni BNPs) in simulated groundwater and the consequent effect on the particle reactivity. Results indicate that the morphological, compositional and structural transformation of Fe/Ni BNPs happened during the aging. In the 5-d short-term aging, Fe 0 corrosion occurred rapidly and was transformed to ferrous ions which were adsorbed onto the surface of Fe/Ni BNPs, accompanied by the elevation of solution pH and the negative redox potential. In the long-term aging, scanning electron microscopy (SEM) images show that the particles transformed from spherical to rod-like and further to sheet-like and needle-like. X-ray diffraction (XRD) analysis reveals that the main aging product was magnetite (Fe 3 O 4 ) and/or maghemite (γ-Fe 2 O 3 ) after aging for 60-90 d. Energy dispersive spectrometer (EDS) analysis demonstrates that the mass ratio of Fe/Ni increased with aging, revealing that Ni were possibly gradually entrapped and covered by the iron oxides. Besides, the release of Ni into solution was also detected during the aging. The reactivity of the aged Fe/Ni BNPs was examined by studying its performance in tetracycline (TC) removal. The aged Fe/Ni BNPs within 2 d kept similar removal efficiency of TC as the fresh particles. However, the removal efficiency of TC by Fe/Ni BNPs aged for 5-15 d dropped by 20-50% due to aggregation and oxidation of particles, and the removal efficiency further decreased slowly with the prolongation of aging time up to 90 d. This reveals that Fe/Ni BNPs were vulnerable to passivation in water environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Electrochemically reduced graphene-oxide supported bimetallic nanoparticles highly efficient for oxygen reduction reaction with excellent methanol tolerance

    Science.gov (United States)

    Yasmin, Sabina; Cho, Sung; Jeon, Seungwon

    2018-03-01

    We report a simple and facile method for the fabrication of bimetallic nanoparticles on electrochemically reduced graphene oxide (ErGO) for electrocatalytic oxygen reduction reaction (ORR) in alkaline media. First, reduced graphene oxide supported palladium and manganese oxide nanoparticle (rGO/Pd-Mn2O3) catalyst was synthesized via a simple chemical method at room temperature; then, it was electrochemically reduced for oxidation reduction reaction (ORR) in alkaline media. The chemical composition and morphological properties of ErGO/Pd-Mn2O3 was characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). The TEM images reveals that, nano-sized Pd and Mn2O3 particles were disperse on the ErGO sheet without aggregation. The as-prepared ErGO/Pd-Mn2O3 was employed for ORR in alkaline media which shows higher ORR activity with more positive onset and half-wave potential, respectively. Remarkably, ErGO/Pd-Mn2O3 reduced oxygen via four-electron transfer pathway with negligible amount of intermediate peroxide species (HO2-). Furthermore, the higher stability and excellent methanol tolerance of the ErGO/Pd-Mn2O3 compared to commercial Pt/C (20 wt%) catalyst, indicating its suitability for fuel cells.

  5. Preparation of Bimetallic Pd-Co Nanoparticles on Graphene Support for Use as Methanol Tolerant Oxygen Reduction Electrocatalysts

    Directory of Open Access Journals (Sweden)

    R. N. Singh

    2012-12-01

    Full Text Available Graphene-supported (40-x wt% Pd x wt% Co (0≤x≤13.33 alloys/composites have been prepared by a microwave-assisted polyol reduction method and been investigated for their structural and electrocatalytic properties for the oxygen reduction reaction (ORR in 0.5 M H2SO4 at 298 K. The study demonstrated that the bimetallic Pd-Co composite nanoparticles are, in fact, alloy nanoparticles with fcc crystalline structure. Partial substitution of Pd by Co (from 3.64 to 13.33 wt% in 40 wt% Pd/graphene decreases the lattice parameter as well as the crystallite size and increases the apparent catalytic activity, the latter, however, being the greatest with 8 wt% Co. The ORR activity of the active 32 wt% Pd 8wt% Co is found to be considerably low when it was deposited on the support multiwall carbon nanotubes under similar conditions. The rotating disk electrode study indicated that the ORR on 32 wt% Pd 8 wt% Co/GNS in 0.5 M H2SO4 follows approximately the four-electron pathway.

  6. Surface structures and compositions of Au-Rh bimetallic nanoclusters supported on thin-film Al2O3/NiAl(100) probed with CO.

    Science.gov (United States)

    Lee, Hsuan; Liao, Zhen-He; Hsu, Po-Wei; Hung, Ting-Chieh; Wu, Yu-Cheng; Lin, Yuwei; Wang, Jeng-Han; Luo, Meng-Fan

    2017-07-28

    The surface structures and compositions of Au-Rh bimetallic nanoclusters on an ordered thin film of Al 2 O 3 /NiAl(100) were investigated, primarily with infrared reflection absorption spectra and temperature-programmed desorption of CO as a probe molecule under ultrahigh-vacuum conditions and calculations based on density-functional theory. The bimetallic clusters were formed by sequential deposition of vapors of Au and Rh onto Al 2 O 3 /NiAl(100) at 300 K. Alloying in the clusters was active and proceeded toward a specific structure-a fcc phase, (100) orientation, and Rh core-Au shell structure, regardless of the order of metal deposition. For Au clusters incorporating deposited Rh, the Au atoms remained at the cluster surface through position exchange and became less coordinated; for deposition in reverse order, deposited Au simply decorated the surfaces of Rh clusters. Both adsorption energy and infrared absorption intensity were enhanced for CO on Au sites of the bimetallic clusters; both of them are associated with the bonding to Rh and also a decreased coordination number of CO-binding Au. These enhancements can thus serve as a fingerprint for alloying and atomic inter-diffusion in similar bimetallic systems.

  7. The Antibacterial and Antifungal Textile Properties Functionalized by Bimetallic Nanoparticles of Ag/Cu with Different Structures

    Directory of Open Access Journals (Sweden)

    Marta Paszkiewicz

    2016-01-01

    Full Text Available We reported a preparation and characterization of five kinds of impregnation solutions, containing Ag/Cu in the form of bimetallic nanoparticles (alloy and core-shell as well as ionic species. The cotton-polyester textiles were successfully impregnated during the washing and ironing process by as-prepared solutions to have antibacterial and antifungal properties against to Escherichia coli, Staphylococcus aureus, and Candida albicans. Moreover, we have reported the effect of type of the fabric used and number of washing/impregnation cycles (in a laboratory scale on the bactericidal and fungicidal activity of obtained textiles. The results indicated that all tested samples after 5, 10, 15, and 20 washing/impregnated cycles exhibited an antimicrobial activity. The antifungal tests showed that only textile impregnated with solutions containing Ag+/Cu2+ and Ag NPs/Cu2+ exhibited a strong inhibition of fungi growth of the after 5 (99.99% and 15 (100% washing/impregnation cycles, respectively.

  8. Bulk photoemission from metal films and nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ikhsanov, R Sh [Research Institute of Scientific Instruments, ' Rosatom' ' State Atomic Energy Corporation (Russian Federation); Babicheva, V E [Technical University of Denmark (Denmark); Protsenko, I E; Uskov, A V [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Guzhva, M E [St. Petersburg State Politechnical University, St. Petersburg (Russian Federation)

    2015-01-31

    Internal emission of photoelectrons from metal films and nanoparticles (nanowires and nanospheres) into a semiconductor matrix is studied theoretically by taking into account the jump of the effective electron mass at the metal – semiconductor interface and the cooling effect of hot electrons due to electron – electron collisions in the metal. The internal quantum efficiency of photoemission for the film and nanoparticles of two types (nanospheres and nanowires) is calculated. It is shown that the reduction of the effective mass of the electron during its transition from metal to semiconductor may lead to a significant (orders of magnitude and higher) decrease in the internal quantum efficiency of bulk photoemission. (nanostructures)

  9. Vapor phase synthesis and characterization of bimetallic alloy and supported nanoparticle catalysts

    Science.gov (United States)

    Abdelsayed, V.; Saoud, K. M.; El-Shall, M. Samy

    2006-08-01

    The laser vaporization controlled condensation (LVCC) technique coupled with a differential mobility analyzer (DMA) is used to synthesize size-selected alloy nanoparticles and nanoparticle catalyst systems. The formation of Au-Ag alloy nanoparticles is concluded from the observation of only one plasmon band. The maximum of the plasmon absorption is found to vary linearly with the gold mole fraction. For the Au-Pd system, the XRD data confirms the formation of the alloy nanoparticles with no evidence of any of the pure components. The Au/CeO2 nanoparticle catalyst prepared by the LVCC method is a promising catalyst for low temperature CO oxidation due to its high activity and stability.

  10. XPS study of silver, nickel and bimetallic silver-nickel nanoparticles prepared by seed-mediated growth

    Energy Technology Data Exchange (ETDEWEB)

    Prieto, Pilar, E-mail: pilar.prieto@uam.es [Departamento de Fisica Aplicada and Instituto de Ciencia de Materiales ' Nicolas Cabrera' , Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Nistor, Valentin [Departamento de Fisica Aplicada and Instituto de Ciencia de Materiales ' Nicolas Cabrera' , Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Nouneh, Khalid [Institute for Nanomaterials and Nanotechnology (INANOTECH), Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), ENSET, Av. Armee Royale, 10100, Rabat (Morocco); Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520 (Japan); Oyama, Munetaka [Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520 (Japan); Abd-Lefdil, Mohammed [Laboratory of Materials Physics, University Mohammed V-Agdal, Rabat (Morocco); Diaz, Raquel [Departamento de Fisica Aplicada and Instituto de Ciencia de Materiales ' Nicolas Cabrera' , Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2012-09-01

    Highlights: Black-Right-Pointing-Pointer We have prepared Ag, Ni and AgNi NPs by derived seed-mediated growth method. Black-Right-Pointing-Pointer The combined use of optical, structural and chemical characterization techniques allows to determine the presence of core-shell structures. Black-Right-Pointing-Pointer The oxidation states of Ag and Ni at the outer layers of the NPs have been studied by XPS. Black-Right-Pointing-Pointer Ag NPs are purely metallic with a fcc structure. Black-Right-Pointing-Pointer Ni NPs are formed by Ni core-NiO + Ni(OH){sub 2} shell structure. Black-Right-Pointing-Pointer Ag core-NiO + Ni(OH){sub 2} shell structure is determined for AgNi NPs, with oxidized silver atoms at the interface. - Abstract: The chemical structure of silver, nickel and bimetallic silver-nickel nanoparticles, i.e. Ag, Ni and AgNi NPs, with sizes {<=}35 nm, obtained by derived seed-mediated growth method on transparent and conductive indium tin oxide (ITO) substrates, has been studied by a comparative X-ray photoelectron spectroscopy (XPS) analysis of Ag 3d, Ni 2p and O1s core levels in combination with X-ray diffraction and optical absorption spectroscopy in the visible range. XPS indicates that the surface of Ag NPs is not oxidized, while Ni NPs are clearly oxidized to nickel oxide and hydroxide. Absorptions at 384 and 600 nm in Ni optical spectrum are consistent with the presence of nickel in oxidized state; however the presence of metallic Ni 2p signal in Ni XPS spectrum indicates that a metallic nickel core is still present. In the case of bimetallic AgNi NPs, the XPS results are consistent with the presence of metallic silver core surrounded by NiO + Ni(OH){sub 2} shell. XPS spectra also show the presence of Ag{sub 2}O at the interface between the Ag metallic core and the oxidized nickel shell. XRD patterns of AgNi and Ag NPs show the typical fcc structure of metallic silver, confirming the presence of Ag metallic core in AgNi NPs. The surface plasmon

  11. Thin films of metal-organic compounds and metal nanoparticle ...

    Indian Academy of Sciences (India)

    matrix. The methodology can be used to produce free-standing films. Optical limiting capability of the nanoparticle-embedded polymer film is demonstrated. Keywords. Polar crystal; uniaxial orientational order; thin film; second harmonic gen- eration; silver nanoparticle; polyvinyl alcohol; free-standing film; optical limiter.

  12. Electrochemical Co-Reduction Synthesis of AuPt Bimetallic Nanoparticles-Graphene Nanocomposites for Selective Detection of Dopamine in the Presence of Ascorbic Acid and Uric Acid

    Directory of Open Access Journals (Sweden)

    Zongya Zhao

    2015-07-01

    Full Text Available In this paper, AuPt bimetallic nanoparticles-graphene nanocomposites were obtained by electrochemical co-reduction of graphene oxide (GO, HAuCl4 and H2PtCl6. The as-prepared AuPt bimetallic nanoparticles-graphene nanocomposites were characterized by scanning electron microscopy (SEM, electrochemical impedance spectroscopy (EIS and other electrochemical methods. The morphology and composition of the nanocomposite could be easily controlled by adjusting the HAuCl4/H2PtCl6 concentration ratio. The electrochemical experiments showed that when the concentration ratio of HAuCl4/H2PtCl6 was 1:1, the obtained AuPt bimetallic nanoparticles-graphene nanocomposite (denoted as Au1Pt1NPs-GR possessed the highest electrocatalytic activity toward dopamine (DA. As such, Au1Pt1NPs-GR nanocomposites were used to detect DA in the presence of ascorbic acid (AA and uric acid (UA using the differential pulse voltammetry (DPV technique and on the modified electrode, there were three separate DPV oxidation peaks with the peak potential separations of 177 mV, 130 mV and 307 mV for DA and AA, DA and UA, AA and UA, respectively. The linear range of the constructed DA sensor was from 1.6 μM to 39.7 μM with a detection limit of 0.1 μM (S/N = 3. The obtained DA sensor with good stability, high reproducibility and excellent selectivity made it possible to detect DA in human urine samples.

  13. Structural studies of Au-Pd bimetallic nanoparticles by a genetic algorithm method

    Science.gov (United States)

    Shao, Gui-Fang; Tu, Na-Na; Liu, Tun-Dong; Xu, Liang-You; Wen, Yu-Hua

    2015-06-01

    Metallic nanoparticles have attracted particular interests due to their excellent electronic, catalytic and optical properties over the past decades. Atomic-level understanding of structural characteristics of metallic nanoparticles is of great importance for their syntheses and applications because the structural characteristics strongly determine their chemical and physical properties. In this article, we systematically investigated the structural stability and structural features of Au-Pd nanoparticles by using the genetic algorithm with the quantum correction Sutton-Chen potentials. Layered coordinate ranking method and an effective fitness function have been introduced into the genetic algorithm to enhance its searching ability of low-energy configurations. Here were addressed eight representative nanoshapes including single-crystalline and multiple-twinned structures. The results reveal that the developed genetic algorithm exhibits superior searching ability. In all polyhedra, the truncated octahedron possessed the best stability, while the icosahedron did the worst. Moreover, segregation of Au to the surface and that of Pd to the core were disclosed in these polyhedral Au-Pd nanoparticles. Particularly, for Au composition of 50%, the optimized structures of Au-Pd nanoparticles were predicted to exhibit core-shell structures.

  14. Synthesis of bimetallic nanostructures by nanosecond laser ablation of multicomponent thin films in water

    Science.gov (United States)

    Nikov, R. G.; Nedyalkov, N. N.; Atanasov, P. A.; Karashanova, D. B.

    2018-03-01

    The paper presents results on nanosecond laser ablation of thin films immersed in a liquid. The thin films were prepared by consecutive deposition of layers of different metals by thermal evaporation (first layer) and classical on-axis pulsed laser deposition (second layer); Ni/Au, Ag/Au and Ni/Ag thin films were thus deposited on glass substrates. The as-prepared films were then placed at the bottom of a glass vessel filled with double distilled water and irradiated by nanosecond laser pulses delivered by a Nd:YAG laser system at λ = 355 nm. This resulted in the formation of colloids of the thin films’ material. We also compared the processes of ablation of a bulk target and a thin film in the liquid by irradiating a Au target and a Au thin film by the same laser wavelength and fluence (λ = 355 nm, F = 5 J/cm2). The optical properties of the colloids were evaluated by optical transmittance measurements in the UV– VIS spectral range. Transmission electron microscopy was employed to estimate the particles’ size distribution.

  15. Formation and structures of Au-Rh bimetallic nanoclusters supported on a thin film of Al2O3/NiAl(100).

    Science.gov (United States)

    Hsu, Po-Wei; Liao, Zhen-He; Hung, Ting-Chieh; Lee, Hsuan; Wu, Yu-Cheng; Lai, Yu-Ling; Hsu, Yao-Jane; Lin, Yuwei; Wang, Jeng-Han; Luo, Meng-Fan

    2017-06-07

    Self-organized alloying of Au with Rh in nanoclusters on an ordered thin film of Al 2 O 3 /NiAl(100) was investigated via various surface probe techniques under ultrahigh-vacuum conditions and calculations based on density-functional theory. The bimetallic clusters were formed on the sequential deposition of vapors of Au and Rh onto Al 2 O 3 /NiAl(100) at 300 K. The formation was more effective on the oxide seeded with Rh, since all post-deposited Au joined the pregrown Rh clusters; for metal deposition in the reverse order, some separate Rh clusters were formed. The contrasting behavior is rationalized through the easier nucleation of Rh on the oxide surface, due to the stronger Rh-oxide and Rh-Rh bonds. The alloying in the clusters proceeded, regardless of the order of metal deposition, toward a specific structure: an fcc phase, (100) orientation and Rh core-Au shell structure. The orientation, structural ordering and lattice parameters of the Au-Rh bimetallic clusters resembled Rh clusters, rather than Au clusters, on Al 2 O 3 /NiAl(100), even with Rh in a minor proportion. The Rh-predominated core-shell structuring corresponds to the binding energies in the order Rh-Rh > Rh-Au > Au-Au. The core-shell segregation, although active, was somewhat kinetically hindered, since elevating the sample temperature induced further encapsulation of Rh. The bimetallic clusters became thermally unstable above 500 K, for which both Rh and Au atoms began to diffuse into the substrate. Moreover, the electronic structures of surface elements on the bimetallic clusters, controlled by both structural and electronic effects, show a promising reactivity.

  16. Ag-Cu Colloid Synthesis: Bimetallic Nanoparticle Characterisation and Thermal Treatment

    Czech Academy of Sciences Publication Activity Database

    Sopoušek, J.; Pinkas, J.; Brož, P.; Buršík, Jiří; Vykoukal, V.; Škoda, D.; Stýskalík, A.; Zobač, O.; Vřešťál, J.; Hrdlička, A.; Šimbera, J.

    2014-01-01

    Roč. 2014, ID 638964 (2014), s. 1-13 ISSN 1687-4110 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Ag-Cu nanoparticles * DSC * TEM Subject RIV: BJ - Thermodynamics Impact factor: 1.644, year: 2014

  17. Electrochemical Reduction of CO2 on Compositionally Variant Au-Pt Bimetallic Thin Films

    DEFF Research Database (Denmark)

    Ma, Ming; Hansen, Heine Anton; Valenti, Marco

    2017-01-01

    by a magnetron sputtering co-deposition technique with tunable composition. It was found that the syngas ratio (CO:H2) on the Au-Pt films is able to be tuned by systematically controlling the binary composition. This tunable catalytic selectivity is attributed to the variation of binding strength of COOH and CO...

  18. Functional Films from Silica/Polymer Nanoparticles

    Directory of Open Access Journals (Sweden)

    Tânia Ribeiro

    2014-05-01

    Full Text Available High performance functional coatings, based on hybrid organic/inorganic materials, are being developed to combine the polymer flexibility and ease of processing with the mechanical properties and versatility of inorganic materials. By incorporating silica nanoparticles (SiNPs in the polymeric matrices, it is possible to obtain hybrid polymer films with increased tensile strength and impact resistance, without decreasing the flexural properties of the polymer matrix. The SiNPs can further be used as carriers to impart other functionalities (optical, etc. to the hybrid films. By using polymer-coated SiNPs, it is possible to reduce particle aggregation in the films and, thus, achieve more homogeneous distributions of the inorganic components and, therefore, better properties. On the other hand, by coating polymer particles with silica, one can create hierarchically structured materials, for example to obtain superhydrophobic coatings. In this review, we will cover the latest developments in films prepared from hybrid polymer/silica functional systems.

  19. Au nanoparticles films used in biological sensing

    Energy Technology Data Exchange (ETDEWEB)

    Rosales Perez, M; Delgado Macuil, R; Rojas Lopez, M; Gayou, V L [Centro de Investigacion en BiotecnologIa Aplicada del IPN, Tepetitla Tlaxcala Mexico C.P. 90700 (Mexico); Sanchez Ramirez, J F, E-mail: mrosalespe@ipn.m [CICATA Legaria Instituto Politecnico Nacional, Mexico Distrito Federal (Mexico)

    2009-05-01

    Lactobacillus para paracasei are used commonly as functional food and probiotic substances. In this work Au nanoparticles self-assembled films were used for Lactobacillus para paracasei determination at five different concentrations. Functionalized substrates were immersed in a colloidal solution for one and a half hour at room temperature and dried at room temperature during four hours. After that, drops of Lactobacillus para paracasei in aqueous solution were put into the Au nanoparticles film and let dry at room temperature for another two hours. Infrared spectroscopy in attenuated total reflectance sampling mode was used to observe generation peaks due to substrate silanization, enhancement of Si-O band intensity due to the Au colloids added to silanized substrate and also to observe the enhancement of Lactobacillus para paracasei infrared intensity of the characteristic frequencies at 1650, 1534 and 1450 cm{sup -1} due to surface enhancement infrared absorption.

  20. Morphological and compositional characteristics of bimetallic core@shell nanoparticles revealed by MEIS

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Dario F., E-mail: dario.f.sanchez@gmail.com [Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre (Brazil); Moiraghi, Raquel; Cometto, Fernando P.; Pérez, Manuel A. [INFIQC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba (Argentina); Fichtner, Paulo F.P. [Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre (Brazil); Department of Metallurgy, Engineering School UFRGS, Porto Alegre (Brazil); Grande, Pedro L. [Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre (Brazil)

    2015-03-01

    Highlights: • Characterization of the morphology, structure and composition of Au@Ag core@shell nanoparticles, high polydispersity in the shell thickness. • Subnanometer resolution with a representative sampling achieved through the combination of Medium Energy Ion Scattering with Transmission Electron Microscopy. • For samples synthesized with baths of different AgNO{sub 3} concentrations, determination of the nanoparticles’ Ag shell thicknesses distribution of about a few nanometers around the Au core. - Abstract: In this paper we report the application of a suitable methodology to study the morphology, structure and composition of core@shell nanoparticles (NPs) systems with polydispersity in the shell thickness, with subnanometer resolution and good sampling. Through the combination of Medium Energy Ion Scattering with Transmission Electron Microscopy, we perform a systematic investigation on core@shell Au@Ag NPs synthesized by an original wet chemical method. For samples synthesized with baths of different AgNO{sub 3} concentrations, the present approach allowed us to determine the NP's Ag shell thicknesses distribution of about a few nanometers around the Au core.

  1. Preparation of Agcore/Aushell bimetallic nanoparticles from physical mixtures of Au clusters and Ag ions under dark conditions and their catalytic activity for aerobic glucose oxidation

    International Nuclear Information System (INIS)

    Zhang, Haijun; Toshima, Naoki; Takasaki, Kanako; Okumura, Mitsutaka

    2014-01-01

    Graphical abstract: The synthesis, characterization and catalytic activities for glucose oxidation of AgAu bimetallic nanoparticles (BNPs) with size of less than 2 nm are reported. The catalytic activity of Ag 10 Au 90 BNPs was about two times higher than that of Au NPs, even the BNPs have a larger particle size than that of Au NPs. -- Highlights: • Ag core /Au shell BNPs with size of less than 2.0 nm were prepared. • No any reducing reagents and lights were used for the preparation of the BNPs. • The catalytic activity of the BNPs is about two times higher than that of Au NPs. -- Abstract: AgAu bimetallic nanoparticles (BNPs), one of the most extensively studied bimetallic systems in the literatures, could have various structures and compositions depending on their preparation conditions. In the present work, catalytically highly active PVP-protected Ag core /Au shell BNPs of about 2.5 nm in diameter were fabricated from physical mixtures of aqueous dispersions of Au nanoparticles and Ag + ions under dark conditions without using any reducing agents. The prepared Ag core /Au shell BNP colloidal catalysts, which possessed a high activity for aerobic glucose oxidation, were characterized by Ultraviolet–visible spectrophotometry (UV–Vis), Inductive coupled plasma emission spectrometer (ICP), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Energy disperse spectroscopy (EDS) in High-resolution scanning transmission electron microscopy (HR-STEM). The highest activity (11,360 mol-glucose h −1 mol-metal −1 ) was observed for the BNPs with the Ag/Au atomic ratio of 1/9, the TOF value of which is about two times higher than that of Au nanoparticles with the particle size of 1.3 nm. The enhanced catalytic activity of the prepared Ag core /Au shell BNPs compared to Au NPs can be ascribed to the presence of negatively charged Au atoms resulted from electron donations from neighboring Ag atoms and PVP due to electronic charge

  2. In-operando elucidation of bimetallic CoNi nanoparticles during high-temperature CH 4 /CO 2 reaction

    KAUST Repository

    Al-Sabban, Bedour

    2017-05-02

    Dry reforming of methane (DRM) proceeds via CH4 decomposition to leave surface carbon species, followed by their removal with CO2-derived species. Reactivity tuning for stoichiometric CH4/CO2 reactants was attempted by alloying the non-noble metals Co and Ni, which have high affinity with CO2 and high activity for CH4 decomposition, respectively. This study was focused on providing evidence of the capturing surface coverage of the reactive intermediates and the associated structural changes of the metals during DRM at high temperature using in-operando X-ray absorption spectroscopy (XAS). On the Co catalysts, the first-order effects with respect to CH4 pressure and negative-order effects with respect to CO2 pressure on the DRM rate are consistent with the competitive adsorption of the surface oxygen species on the same sites as the CH4 decomposition reaction. The Ni surface provides comparatively higher rates of CH4 decomposition and the resultant DRM than the Co catalyst but leaves some deposited carbon on the catalyst surface. In contrast, the bimetallic CoNi catalyst exhibits reactivity towards the DRM but with kinetic orders resembling Co catalyst, producing negligible carbon deposition by balancing CH4 and CO2 activation. The in-operando X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) measurements confirmed that the Co catalyst was progressively oxidized from the surface to the bulk with reaction time, whereas CoNi and Ni remained relatively reduced during DRM. Density functional theory (DFT) calculation considering the high reaction temperature for DRM confirmed the unselective site arrangement between Co and Ni atoms in both the surface and bulk of the alloy nanoparticle (NP). The calculated heat of oxygen chemisorption became more exothermic in the order of Ni, CoNi, Co, consistent with the catalytic behavior. The comprehensive experimental and theoretical evidence provided herein clearly suggests

  3. α-Alkylation of ketones with primary alcohols driven by visible light and bimetallic gold and palladium nanoparticles supported on transition metal oxide

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Meifen; Xin, Hui; Guo, Zhi; Guo, Dapeng; Wang, Yan; Zhao, Peng; Li, Jingyi, E-mail: lijingyicn@163.com

    2017-01-01

    Highlights: • The catalysts were prepared by reduction method at room temperature. • α-Alkylation of ketones and primary alcohols occurred on Au-Pd/CeO{sub 2} in visible light. • Superior catalytic activities were shown on bimetallic Au-Pd/CeO{sub 2} catalysts. • The catalyst can be reused for 4 times. • The mechanism of the synthesis for ketones was proposed. - Abstract: The direct α-alkylation of ketones with primary alcohols to obtain the corresponding saturated coupled ketones was achieved with bimetallic gold(Au)-palladium(Pd) nanoparticles(NPs) supported on a transition metal oxide (such as CeO{sub 2}). This system demonstrated a higher catalytic property than Au/CeO{sub 2} and Pd/CeO{sub 2} under visible light irradiation at 40 ± 3 °C in an Ar atmosphere. Such phenomenon was caused by the synergistic effect between Au and Pd. Isopropyl alcohol was used as the solvent and CH{sub 3}ONa as the base. The effect of the bimetallic Au-Pd mass ratio and the two different transition metal oxide supports (such as CeO{sub 2} or ZrO{sub 2}) during the reaction process was studied. The highest catalytic activity of those examined happened with the 1.5 wt% Au-1.5 wt% Pd (Au and Pd mass ratio 1:1)/CeO{sub 2} photo-catalyst. The intensity and wavelength of the visible light had a strong influence on the system. The catalyst can be reused for four times. A reaction mechanism was proposed for the α-alkylation of ketones with primary alcohols.

  4. α-Alkylation of ketones with primary alcohols driven by visible light and bimetallic gold and palladium nanoparticles supported on transition metal oxide

    International Nuclear Information System (INIS)

    Bai, Meifen; Xin, Hui; Guo, Zhi; Guo, Dapeng; Wang, Yan; Zhao, Peng; Li, Jingyi

    2017-01-01

    Highlights: • The catalysts were prepared by reduction method at room temperature. • α-Alkylation of ketones and primary alcohols occurred on Au-Pd/CeO 2 in visible light. • Superior catalytic activities were shown on bimetallic Au-Pd/CeO 2 catalysts. • The catalyst can be reused for 4 times. • The mechanism of the synthesis for ketones was proposed. - Abstract: The direct α-alkylation of ketones with primary alcohols to obtain the corresponding saturated coupled ketones was achieved with bimetallic gold(Au)-palladium(Pd) nanoparticles(NPs) supported on a transition metal oxide (such as CeO 2 ). This system demonstrated a higher catalytic property than Au/CeO 2 and Pd/CeO 2 under visible light irradiation at 40 ± 3 °C in an Ar atmosphere. Such phenomenon was caused by the synergistic effect between Au and Pd. Isopropyl alcohol was used as the solvent and CH 3 ONa as the base. The effect of the bimetallic Au-Pd mass ratio and the two different transition metal oxide supports (such as CeO 2 or ZrO 2 ) during the reaction process was studied. The highest catalytic activity of those examined happened with the 1.5 wt% Au-1.5 wt% Pd (Au and Pd mass ratio 1:1)/CeO 2 photo-catalyst. The intensity and wavelength of the visible light had a strong influence on the system. The catalyst can be reused for four times. A reaction mechanism was proposed for the α-alkylation of ketones with primary alcohols.

  5. Lattice Mismatch in Crystalline Nanoparticle Thin Films.

    Science.gov (United States)

    Gabrys, Paul A; Seo, Soyoung E; Wang, Mary X; Oh, EunBi; Macfarlane, Robert J; Mirkin, Chad A

    2018-01-10

    For atomic thin films, lattice mismatch during heteroepitaxy leads to an accumulation of strain energy, generally causing the films to irreversibly deform and generate defects. In contrast, more elastically malleable building blocks should be better able to accommodate this mismatch and the resulting strain. Herein, that hypothesis is tested by utilizing DNA-modified nanoparticles as "soft," programmable atom equivalents to grow a heteroepitaxial colloidal thin film. Calculations of interaction potentials, small-angle X-ray scattering data, and electron microscopy images show that the oligomer corona surrounding a particle core can deform and rearrange to store elastic strain up to ±7.7% lattice mismatch, substantially exceeding the ±1% mismatch tolerated by atomic thin films. Importantly, these DNA-coated particles dissipate strain both elastically through a gradual and coherent relaxation/broadening of the mismatched lattice parameter and plastically (irreversibly) through the formation of dislocations or vacancies. These data also suggest that the DNA cannot be extended as readily as compressed, and thus the thin films exhibit distinctly different relaxation behavior in the positive and negative lattice mismatch regimes. These observations provide a more general understanding of how utilizing rigid building blocks coated with soft compressible polymeric materials can be used to control nano- and microstructure.

  6. Probing the interaction of Rh, Co and bimetallic Rh-Co nanoparticles with the CeO2 support: catalytic materials for alternative energy generation.

    Science.gov (United States)

    Varga, E; Pusztai, P; Óvári, L; Oszkó, A; Erdőhelyi, A; Papp, C; Steinrück, H-P; Kónya, Z; Kiss, J

    2015-10-28

    The interaction of CeO2-supported Rh, Co and bimetallic Rh-Co nanoparticles, which are active catalysts in hydrogen production via steam reforming of ethanol, a process related to renewable energy generation, was studied by X-ray diffraction (XRD), high resolution electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and low energy ion scattering (LEIS). Furthermore, diffuse reflectance infrared spectroscopy (DRIFTS) of adsorbed CO as a probe molecule was used to characterize the morphology of metal particles. At small loadings (0.1%), Rh is in a much dispersed state on ceria, while at higher contents (1-5%), Rh forms 2-8 nm particles. Between 473-673 K pronounced oxygen transfer from ceria to Rh is observed and at 773 K significant agglomeration of Rh occurs. On reduced ceria, XPS indicates a possible electron transfer from Rh to ceria. The formation of smaller ceria crystallites upon loading with Co was concluded from XRD and HRTEM; for 10% Co, the CeO2 particle size decreased from 27.6 to 10.7 nm. A strong dissolution of Co into ceria and a certain extent of encapsulation by ceria were deduced by XRD, XPS and LEIS. In the bimetallic system, the presence of Rh enhances the reduction of cobalt and ceria. During thermal treatments, reoxidation of Co occurs, and Rh agglomeration as well as oxygen migration from ceria to Rh are hindered in the presence of cobalt.

  7. Synthesis of Pd/Au bimetallic nanoparticle-loaded ultrathin graphitic carbon nitride nanosheets for highly efficientcatalytic reduction of p-nitrophenol.

    Science.gov (United States)

    Fang, Wei; Deng, Yaocheng; Tang, Lin; Zeng, Guangming; Zhou, Yaoyu; Xie, Xia; Wang, Jingjing; Wang, Yang; Wang, Jiajia

    2017-03-15

    Noble metal nanoparticles (NPs) applied in heterogeneous catalysis have attracted considerable attention due to their highly efficient catalytic performance. Pd/Au bimetallic NPs were successfully decorated on the ultrathin graphitic carbon nitride nanosheets (g-C 3 N 4 -N) by a facile one-pot deposition reduction method. The obtained results show that Pd/Au NPs with average diameter around 8nm are homogeneously dispersed on the surface of unmodified g-C 3 N 4 -N. The obtained materials were characterized via transmission electron microscopy (TEM), high-resolution TEM, energy-dispersive X-ray spectroscopy, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). In addition, considering the large surface area and special π-bonded planar structure, the unique ultrathin g-C 3 N 4 -N behave as an excellent carrier and stabilizer in this synthesis. The as-synthesized Pd/Au bimetallic nanohybrids show superior catalytic performance and stability for reduction of p-nitrophenol (p-NP), which is better than either of pure Pd or Au nanohybrids. Besides, the catalytic activities of Pd/Au@g-C 3 N 4 -N nanohybrids were found to be controlled by altering the Pd versus Au mass ratio in the preparation process. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Ordered thin Films of Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Jana Roschlova

    2006-01-01

    Full Text Available The investigation of physical properties of bulk materials is a traditional approach in materials science. Duringlast decades the interest has been focused on two-dimensional ordered systems of nanometer-size particles with unusualmechanical, electrical, magnetic, optical, chemical properties, which are perspective for applications in electronics, optics, computer science and medicine. In this paper we report on the preparation of well ordered Langmuir-Blodgett films of gFe2O3 nanoparticles with an average size of 10nm. Arrangement and homogeneity were confirmed by scanning electronmicroscopy as well as atomic force microscopy. Magnetic properties were measured by the magneto-optical Kerr effect.

  9. Methods to synthesize NiPt bimetallic nanoparticles by a reversed-phase microemulsion, deposition of NiPt bimetallic nanoparticles on a support, and application of the supported catalyst for CO2 reforming of methane

    KAUST Repository

    Biausque, Gregory

    2015-09-24

    Embodiments of the present disclosure provide for NiPt nanoparticles, compositions and supports including NiPt nanoparticles, methods of making NiPt nanoparticles, methods of supporting NiPt nanoparticles, methods of using NiPt nanoparticles, and the like.

  10. Thermal Analysis of Sintered Silver Nanoparticles Film

    Directory of Open Access Journals (Sweden)

    M. Keikhaie

    2014-07-01

    Full Text Available Thin bonded films have many applications in antireflection and reflection coating, insulating and conducting films and semiconductor industries. Thermal conductivity is one of the most important parameter for power packaging since the thermal resistance of the interconnections is directly related to the heat removal capability and thermal management of the power package. The defects in materials play very important role on the effective thermal conductivity. In this paper, finite element method (FEM was utilized to simulate the effect of pores on the effective thermal conductivity of sintered silver nanoparticles film. The simulation results indicate that the effective thermal conductivity of film is different at different directions and would be enhanced when the pore angle is 90. The simulation results will help us to further understand the heat transfer process across highly porous structures and will provide us a powerful guide to design coating with high thermal insulation or conductor property. Because of there is no similar experimental data for this simulation results, this paper is a comparative work among three different models.

  11. Characterization of bimetallic Fe/Pd nanoparticles by grape leaf aqueous extract and identification of active biomolecules involved in the synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Fang; Yang, Die; Chen, Zuliang, E-mail: Zuliang.chen@newcastle.edu.au; Megharaj, Mallavarapu; Naidu, Ravi

    2016-08-15

    This paper reports the detailed composition and morphology of one-step green synthesized bimetallic Fe/Pd nanoparticles (NPs) using grape leaf aqueous extract and identification of active biomolecules involved in the synthesis employing various techniques. Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) revealed that Fe/Pd NPs were polydispersed and quasi-spherical with a diameter ranging from 2 to 20 nm. X-ray Photoelectron Spectroscopy (XPS) and Energy Dispersive X-ray Spectroscopy (EDS) provided evidence for the composition of Fe and Pd and for their species existing on the surface of Fe/Pd NPs. In addition, biomolecules in the grape leaf aqueous extract were identified but their functions are still unclear. Biomolecules in the aqueous extract such as methoxy-phenyl-oxime, N-benzoyl-2-cyano-histamine, 2-ethyl-phenol, 1,2-benzenediol, β-hydroxyquebracamine, hydroquinone, 2-methoxy-4-vinylphenol, 5-methyl-2-furancarboxaldehyde, 4-(3-hydroxybutyl)-3,5,5-trimethyl-2-cyclohexen and some polyphenolic compounds were identified as reducing and capping agents, which were studied by Chromatography-Mass Spectroscopy (GC–MS), XPS and Fourier Transform Infrared Spectroscopy (FTIR). Our finding suggests a new insight into cost-effective, simple, and environmentally benign production of bimetallic Fe/Pd NPs. - Graphical abstract: TEM image for the Fe/Pd NPs synthesized by grape leaf aqueous extract. - Highlights: • The one-step green synthesis of Fe/Pd nanoparticles has been systematically characterized. • TEM showed that the Fe/Pd NPs were polydispersed with a diameter ranging from 2 to 20 nm. • Active biomolecules in the grape extract were identified.

  12. Characterization of bimetallic Fe/Pd nanoparticles by grape leaf aqueous extract and identification of active biomolecules involved in the synthesis

    International Nuclear Information System (INIS)

    Luo, Fang; Yang, Die; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi

    2016-01-01

    This paper reports the detailed composition and morphology of one-step green synthesized bimetallic Fe/Pd nanoparticles (NPs) using grape leaf aqueous extract and identification of active biomolecules involved in the synthesis employing various techniques. Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) revealed that Fe/Pd NPs were polydispersed and quasi-spherical with a diameter ranging from 2 to 20 nm. X-ray Photoelectron Spectroscopy (XPS) and Energy Dispersive X-ray Spectroscopy (EDS) provided evidence for the composition of Fe and Pd and for their species existing on the surface of Fe/Pd NPs. In addition, biomolecules in the grape leaf aqueous extract were identified but their functions are still unclear. Biomolecules in the aqueous extract such as methoxy-phenyl-oxime, N-benzoyl-2-cyano-histamine, 2-ethyl-phenol, 1,2-benzenediol, β-hydroxyquebracamine, hydroquinone, 2-methoxy-4-vinylphenol, 5-methyl-2-furancarboxaldehyde, 4-(3-hydroxybutyl)-3,5,5-trimethyl-2-cyclohexen and some polyphenolic compounds were identified as reducing and capping agents, which were studied by Chromatography-Mass Spectroscopy (GC–MS), XPS and Fourier Transform Infrared Spectroscopy (FTIR). Our finding suggests a new insight into cost-effective, simple, and environmentally benign production of bimetallic Fe/Pd NPs. - Graphical abstract: TEM image for the Fe/Pd NPs synthesized by grape leaf aqueous extract. - Highlights: • The one-step green synthesis of Fe/Pd nanoparticles has been systematically characterized. • TEM showed that the Fe/Pd NPs were polydispersed with a diameter ranging from 2 to 20 nm. • Active biomolecules in the grape extract were identified.

  13. Reduced graphene oxide nanosheets decorated with Au-Pd bimetallic alloy nanoparticles towards efficient photocatalytic degradation of phenolic compounds in water

    Science.gov (United States)

    Darabdhara, Gitashree; Boruah, Purna K.; Borthakur, Priyakshree; Hussain, Najrul; Das, Manash R.; Ahamad, Tansir; Alshehri, Saad M.; Malgras, Victor; Wu, Kevin C.-W.; Yamauchi, Yusuke

    2016-04-01

    Reduced graphene oxide nanosheets decorated with Au-Pd bimetallic alloy nanoparticles are successfully prepared via a chemical approach consisting of reducing the metal precursors using ascorbic acid as reductant at an elevated temperature. The prepared nanocomposite is employed as a photocatalyst for the degradation of organic contaminants such as phenol, 2-chlorophenol (2-CP), and 2-nitrophenol (2-NP). The complete degradation of phenol is achieved after 300 min under natural sunlight irradiation whereas the degradation of 2-CP and 2-NP is completed after 180 min. The activity of the photocatalyst is evaluated considering several parameters such as the initial phenol concentration, the photocatalyst loading, and the pH of the solution. The degradation kinetics of all the compounds is carefully studied and found to follow a linear Langmuir-Hinshelwood model. Furthermore, the reusability of the photocatalyst is successfully achieved up to five cycles and the catalyst exhibits an excellent stability.Reduced graphene oxide nanosheets decorated with Au-Pd bimetallic alloy nanoparticles are successfully prepared via a chemical approach consisting of reducing the metal precursors using ascorbic acid as reductant at an elevated temperature. The prepared nanocomposite is employed as a photocatalyst for the degradation of organic contaminants such as phenol, 2-chlorophenol (2-CP), and 2-nitrophenol (2-NP). The complete degradation of phenol is achieved after 300 min under natural sunlight irradiation whereas the degradation of 2-CP and 2-NP is completed after 180 min. The activity of the photocatalyst is evaluated considering several parameters such as the initial phenol concentration, the photocatalyst loading, and the pH of the solution. The degradation kinetics of all the compounds is carefully studied and found to follow a linear Langmuir-Hinshelwood model. Furthermore, the reusability of the photocatalyst is successfully achieved up to five cycles and the catalyst

  14. The effect of metal cluster deposition route on structure and photocatalytic activity of mono- and bimetallic nanoparticles supported on TiO{sub 2} by radiolytic method

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Marek [Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk (Poland); Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 80-231 Gdansk (Poland); Nadolna, Joanna, E-mail: joanna.nadolna@ug.edu.pl [Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk (Poland); Department of Environmental Technology, University of Gdansk, 80-308 Gdansk (Poland); Gołąbiewska, Anna [Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk (Poland); Mazierski, Paweł [Department of Environmental Technology, University of Gdansk, 80-308 Gdansk (Poland); Klimczuk, Tomasz [Department of Solid State Physics, Faculty of Applied Physics and Mathematics, Gdansk University of Technology, 80-233 Gdansk (Poland); Remita, Hynd [Laboratoire de Chimie Physique, CNRS-UMR 8000, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay (France); CNRS, Laboratoire de Chimie Physique, UMR 8000, 91405 Orsay (France); Zaleska-Medynska, Adriana [Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk (Poland); Department of Environmental Technology, University of Gdansk, 80-308 Gdansk (Poland)

    2016-08-15

    Highlights: • Pd-Pt decorated TiO{sub 2} shows the highest activity under visible light among all. • Concurrent addition of metal precursors results in rise of BNPs size and Vis-activity. • Subsequent addition of metal precursors enhances UV–vis stability of modified TiO{sub 2}. • Superoxide radicals are responsible for pollutants degradation over BNPs-TiO{sub 2}. - Abstract: TiO{sub 2} (P25) was modified with small and relatively monodisperse mono- and bimetallic clusters (Ag, Pd, Pt, Ag/Pd, Ag/Pt and Pd/Pt) induced by radiolysis to improve its photocatalytic activity. The as-prepared samples were characterized by X-ray fluorescence spectrometry (XRF), photoluminescence spectrometry (PL), diffuse reflectance spectroscopy (DRS), X-ray powder diffractometry (XRD), scanning transition electron microscopy (STEM) and BET surface area analysis. The effect of metal type (mono- and bimetallic modification) as well as deposition method (simultaneous or subsequent deposition of two metals) on the photocatalytic activity in toluene removal in gas phase under UV–vis irradiation (light-emitting diodes- LEDs) and phenol degradation in liquid phase under visible light irradiation (λ > 420 nm) were investigated. The highest photoactivity under Vis light was observed for TiO{sub 2} co-loaded with platinum (0.1%) and palladium (0.1%) clusters. Simultaneous addition of metal precursors results in formation of larger metal nanoparticles (15–30 nm) on TiO{sub 2} surface and enhances the Vis-induced activity of Ag/Pd-TiO{sub 2} up to four times, while the subsequent metal ions addition results in formation of metal particle size ranging from 4 to 20 nm. Subsequent addition of metal precursors results in formation of BNPs (bimetallic nanoparticle) composites showing higher stability in four cycles of toluene degradation under UV–vis. Obtained results indicated that direct electron transfer from the BNPs to the conduction band of the semiconductor is responsible for

  15. Magnetic domain formation in monolayer nanoparticle films

    Science.gov (United States)

    Maranville, Brian; Krycka, Kathryn; Borchers, Julie; Hogg, Charles; Majetich, Sara; Ijiri, Yumi

    2009-03-01

    Self-assembled magnetic nanoparticle films offer promise as data storage media, but an understanding of the interactions is missing. Modified Langmuir-Blodgett methods were used to prepare monolayer films of 7 and 11 nm diameter Fe3O4 nanoparticles with large structural domains. Small-angle neutron scattering (SANS) shows a peak at a wavevector Q corresponding to the particle size and spacing, and scattering at intermediate Q indicating possible long-range correlations. We extend to lower Q with off-specular neutron reflectivity, achieving high intensity by sacrificing resolution along one in-plane direction y while retaining high resolution in the other in-plane direction x and the normal direction z. We measure in saturation and zero field to extract magnetic scattering. In high fields, the specular scattering (Qx=0) is increased, consistent with aligned moments. Preliminary results show weak magnetic scattering for nonzero Qx . Since the maximal Qx roughly corresponds to the lowest Q in SANS, the combination of these techniques allows us to quantify field-dependent magnetic domain size.

  16. Metal nanoparticles for thin film solar cells

    DEFF Research Database (Denmark)

    Gritti, Claudia

    Among the different renewable ways to produce energy, photovoltaic cells have a big potential and the research is now focusing on getting higher efficiency and at the same time saving the manufacturing costs improving the performance of thin film solar cells. The spectral distribution in the infr......Among the different renewable ways to produce energy, photovoltaic cells have a big potential and the research is now focusing on getting higher efficiency and at the same time saving the manufacturing costs improving the performance of thin film solar cells. The spectral distribution...... characterized. Spectral responses are measured and in two types of measured GaAs solar cells (with Au and Ag nanoparticles) there was no clear efficiency enhancement in the NIR spectral range. In the case of Au nanoparticles it could be explained in similar way to the absorption data: the effect being broad...... cells spectral response to longer wavelengths, through possibly cheap and simple technologies: EBL can be substituted by colloidal solutions implementation and electroless plating is not expensive and results to be effective within a broad set of parameters (size, shape, density). Another application...

  17. Extraordinary Hall-effect in colloidal magnetic nanoparticle films

    Energy Technology Data Exchange (ETDEWEB)

    Ben Gur, Leah; Tirosh, Einat [School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801 (Israel); Segal, Amir [School of Physics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801 (Israel); Markovich, Gil, E-mail: gilmar@post.tau.ac.il [School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801 (Israel); Gerber, Alexander, E-mail: gerber@post.tau.ac.il [School of Physics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801 (Israel)

    2017-03-15

    Colloidal nickel nanoparticles (NPs) coated with polyvinylpyrrolidone (PVP) were synthesized. The nanoparticle dispersions were deposited on substrates and dried under mild heating to form conductive films. The films exhibited very small coercivity, nearly metallic conductivity, and a significant extraordinary Hall effect signal. This method could be useful for preparing simple, printed magnetic field sensors with the advantage of relatively high sensitivity around zero magnetic field, in contrast to magnetoresistive sensors, which have maximal field sensitivity away from zero magnetic field. - Highlights: • Ni nanoparticle ink capable of forming conductive films on drying. • The Ni nanoparticle films exhibit significant extraordinary Hall effect. • This system could be used for preparing printed magnetic field sensors integrated in 3D printed structures.

  18. Thin films on the basis of magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    G. Alimbekova

    2012-09-01

    Full Text Available The present work is to study the adsorption of magnetic nanoparticles in the structure of nanohybrid films by layer-by-layer (LbL method. Obtained by UV-VIS absorption spectra of 5% magnetic nanoparticles and the aqueous solution polyvinyl alcohol consisting of 5 and 10 nanohybrid layers. Analysis of the optical absorption spectra shows the homogeneity and mechanical stability of the nanohybrid films.

  19. Metal nanoparticle-doped coloured films on glass and ...

    Indian Academy of Sciences (India)

    In a program on the development of metal (e.g. Au, Ag, Cu and their alloy) nanoparticles in sol{gel derived films, attempts were made to synthesize different coloured coatings on glasses and plastics. The absorption position of surface plasmon resonance (SPR) band arising from the embedded metal nanoparticles was ...

  20. Optimization of the composition of bimetallic core/shell Fe{sub 2}O{sub 3}/Au nanoparticles for MRI/CT dual-mode imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Song; Qi, Yueyong; Yang, Hua; Gong, Mingfu; Zhang, Dong; Zou, Liguang, E-mail: zlgxqyy@163.com [Third Military Medical University, Department of Radiology, Xinqiao Hospital (China)

    2013-11-15

    Bimetallic core/shell Fe{sub 2}O{sub 3}/Au nanoparticles are promising candidate dual-mode contrast agents for magnetic resonance imaging (MRI) and computed tomography (CT) imaging. However, the gold coating on the hybrid nanoparticles (hybrids) affects the MRI and CT imaging quality. A thick gold nanoshell increases the X-ray attenuation effect but decreases the magnetic saturation of the hybrids. Therefore, we studied the effect of the Fe{sub 2}O{sub 3} and Au composition on these properties to find a suitable hybrid for MRI and CT imaging. Water-soluble, Au-coated magnetic nanoparticles were synthesized by iteratively reducing Au{sup 3+} onto the Fe{sub 2}O{sub 3} surface via hydroxylamine seeding. The properties of the hybrids obtained after different numbers of Au seeding cycles were studied using transmission electron microscopy, UV–Vis spectrophotometry, a vibrating swatch gaussmeter, MRI, CT, and an MTT assay. The hybrids obtained after three Au seeding cycles had an Fe{sub 2}O{sub 3}:Au molar ratio of 7.2:26.8, a mean diameter of 48.3 nm, a UV–Vis absorbance peak of 550 nm, a saturation magnetization of 49.0 emu/g, and no cytotoxicity at a concentration of 500 μg/mL after incubation with RAW 264.7 cells for up to 72 h. The hybrids obtained after three Au seeding cycles are the preferred candidates for MRI and CT applications because of their relatively high R2 relaxivity (95 mM{sup −1 }s{sup −1}) and X-ray attenuation (1.87 times that of iodine) compared to those of the other hybrids investigated in this study.

  1. Optimization of the composition of bimetallic core/shell Fe2O3/Au nanoparticles for MRI/CT dual-mode imaging

    Science.gov (United States)

    Zhang, Song; Qi, Yueyong; Yang, Hua; Gong, Mingfu; Zhang, Dong; Zou, Liguang

    2013-11-01

    Bimetallic core/shell Fe2O3/Au nanoparticles are promising candidate dual-mode contrast agents for magnetic resonance imaging (MRI) and computed tomography (CT) imaging. However, the gold coating on the hybrid nanoparticles (hybrids) affects the MRI and CT imaging quality. A thick gold nanoshell increases the X-ray attenuation effect but decreases the magnetic saturation of the hybrids. Therefore, we studied the effect of the Fe2O3 and Au composition on these properties to find a suitable hybrid for MRI and CT imaging. Water-soluble, Au-coated magnetic nanoparticles were synthesized by iteratively reducing Au3+ onto the Fe2O3 surface via hydroxylamine seeding. The properties of the hybrids obtained after different numbers of Au seeding cycles were studied using transmission electron microscopy, UV-Vis spectrophotometry, a vibrating swatch gaussmeter, MRI, CT, and an MTT assay. The hybrids obtained after three Au seeding cycles had an Fe2O3:Au molar ratio of 7.2:26.8, a mean diameter of 48.3 nm, a UV-Vis absorbance peak of 550 nm, a saturation magnetization of 49.0 emu/g, and no cytotoxicity at a concentration of 500 μg/mL after incubation with RAW 264.7 cells for up to 72 h. The hybrids obtained after three Au seeding cycles are the preferred candidates for MRI and CT applications because of their relatively high R2 relaxivity (95 mM-1 s-1) and X-ray attenuation (1.87 times that of iodine) compared to those of the other hybrids investigated in this study.

  2. Optimization of the composition of bimetallic core/shell Fe2O3/Au nanoparticles for MRI/CT dual-mode imaging

    International Nuclear Information System (INIS)

    Zhang, Song; Qi, Yueyong; Yang, Hua; Gong, Mingfu; Zhang, Dong; Zou, Liguang

    2013-01-01

    Bimetallic core/shell Fe 2 O 3 /Au nanoparticles are promising candidate dual-mode contrast agents for magnetic resonance imaging (MRI) and computed tomography (CT) imaging. However, the gold coating on the hybrid nanoparticles (hybrids) affects the MRI and CT imaging quality. A thick gold nanoshell increases the X-ray attenuation effect but decreases the magnetic saturation of the hybrids. Therefore, we studied the effect of the Fe 2 O 3 and Au composition on these properties to find a suitable hybrid for MRI and CT imaging. Water-soluble, Au-coated magnetic nanoparticles were synthesized by iteratively reducing Au 3+ onto the Fe 2 O 3 surface via hydroxylamine seeding. The properties of the hybrids obtained after different numbers of Au seeding cycles were studied using transmission electron microscopy, UV–Vis spectrophotometry, a vibrating swatch gaussmeter, MRI, CT, and an MTT assay. The hybrids obtained after three Au seeding cycles had an Fe 2 O 3 :Au molar ratio of 7.2:26.8, a mean diameter of 48.3 nm, a UV–Vis absorbance peak of 550 nm, a saturation magnetization of 49.0 emu/g, and no cytotoxicity at a concentration of 500 μg/mL after incubation with RAW 264.7 cells for up to 72 h. The hybrids obtained after three Au seeding cycles are the preferred candidates for MRI and CT applications because of their relatively high R2 relaxivity (95 mM −1  s −1 ) and X-ray attenuation (1.87 times that of iodine) compared to those of the other hybrids investigated in this study

  3. Visible light photoactivity of TiO{sub 2} loaded with monometallic (Au or Pt) and bimetallic (Au/Pt) nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gołąbiewska, Anna, E-mail: annagolabiewska@o2.pl [Department of Chemical Technology, Gdansk University of Technology, 80-233 Gdańsk (Poland); Lisowski, Wojciech [Mazovia Center for Surface Analysis, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw (Poland); Jarek, Marcin; Nowaczyk, Grzegorz [NanoBioMedical Center, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Zielińska-Jurek, Anna; Zaleska, Adriana [Department of Chemical Technology, Gdansk University of Technology, 80-233 Gdańsk (Poland)

    2014-10-30

    Graphical abstract: - Highlights: • Au/Pt nanoparticles enhanced TiO{sub 2} photocatalytic activity under visible irradiation. • Higher photoactivity of Au/Pt-TiO{sub 2} resulted from smaller Au/Pt particles. • Intermetallic state of AuPt favors charge transfer between the metals. • TiO{sub 2} obtained by TIP hydrolysis seems to be best matrix for Au/Pt-TiO{sub 2}. - Abstract: TiO{sub 2} modified with monometallic (Au or Pt) and bimetallic (Au/Pt) nanoparticles have been prepared using a water-in-oil microemulsion system (water/AOT/cyclohexane) followed by calcination step. The effect of metal ratio, reducing agent type (NaBH{sub 4} or N{sub 2}H{sub 4}), TiO{sub 2} matrix type (P-25, ST-01, TiO-5, TiO{sub 2} nanotubes or TiO{sub 2} obtained by TIP hydrolysis) as well as calcination temperature (from 350 to 650 °C) were systematically investigated. Obtained photocatalysts were characterized by UV–vis diffuse-reflectance spectroscopy (DRS), BET surface area measurements, scanning transmission microscopy (STEM), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS). Photocatalytic activity under visible light (λ > 420 nm) has been estimated in phenol degradation reaction in aqueous phase. The results showed that phenol degradation rate under visible light in the presence of TiO{sub 2} loaded with Au/Pt nanoparticles differed from 0.7 to 2.2 μmol dm{sup −3} min{sup −1} for samples prepared using different reducing agent. Sodium borohydride (NaBH{sub 4}) favors formation of smaller Au/Pt nanoparticles and higher amount gold in Au/Pt is in the form of electronegative species (Au{sup δ−}) resulted in higher photoactivity. TiO{sub 2} obtained by TIP hydrolysis in microemulsion system seems to be the best support for Au/Pt nanoparticles from all among investigated matrix. It was also observed that enhancement of calcination temperature from 450 to 650 °C resulted in rapid drop of Au/Pt-TiO{sub 2} photoactivity under visible light

  4. Thin films of metal-organic compounds and metal nanoparticle ...

    Indian Academy of Sciences (India)

    Thin films based on two very different metal-organic systems are developed and some nonlinear optical ... capability of the nanoparticle-embedded polymer film is demonstrated. Keywords. Polar crystal; uniaxial ... systems promising candidates for a wide range of electronic, magnetic and optical applications. However ...

  5. Thin films of metal-organic compounds and metal nanoparticle

    Indian Academy of Sciences (India)

    Thin films of metal-organic compounds and metal nanoparticle-embedded polymers for nonlinear optical applications. S Philip Anthony Shatabdi Porel D ... Thin films based on two very different metal-organic systems are developed and some nonlinear optical applications are explored. A family of zinc complexes which ...

  6. Characterization of the optical properties of silver nanoparticle films

    International Nuclear Information System (INIS)

    Choi, Byung-hee; Lee, Hyun-Ho; Jin, Sunmi; Chun, Sangki; Kim, Sang-Ho

    2007-01-01

    To understand the collective properties of nanoparticles, it is necessary to control the particle size, spacing and ordering. Here we describe the chemical synthesis of well-controlled silver nanoparticles, the wet coat preparation and the optical properties of its film. The light incidence angle and polarization dependency of the resonant spectra show distinctive surface plasmon resonance extinction peaks for isolated particles and the coupled modes of neighbouring particles. Furthermore, we discuss the thermal treatment and dielectric surrounding effects on the optical properties of silver nanoparticle film

  7. One-step aerosol synthesis of nanoparticle agglomerate films: simulation of film porosity and thickness

    International Nuclear Information System (INIS)

    Maedler, Lutz; Lall, Anshuman A; Friedlander, Sheldon K

    2006-01-01

    A method is described for designing nanoparticle agglomerate films with desired film porosity and film thickness. Nanoparticle agglomerates generated in aerosol reactors can be directly deposited on substrates to form uniform porous films in one step, a significant advance over existing technologies. The effect of agglomerate morphology and deposition mechanism on film porosity and thickness are discussed. Film porosity was calculated for a given number and size of primary particles that compose the agglomerates, and fractal dimension. Agglomerate transport was described by the Langevin equation of motion. Deposition enhancing forces such as thermophoresis are incorporated in the model. The method was validated for single spherical particles using previous theoretical studies. An S-shape film porosity dependence on the particle Peclet number typical for spherical particles was also observed for agglomerates, but films formed from agglomerates had much higher porosities than films from spherical particles. Predicted film porosities compared well with measurements reported in the literature. Film porosities increased with the number of primary particles that compose an agglomerate and higher fractal dimension agglomerates resulted in denser films. Film thickness as a function of agglomerate deposition time was calculated from the agglomerate deposition flux in the presence of thermophoresis. The calculated film thickness was in good agreement with measured literature values. Thermophoresis can be used to reduce deposition time without affecting the film porosity

  8. One-Step Growth of Iron-Nickel Bimetallic Nanoparticles on FeNi Alloy Foils: Highly Efficient Advanced Electrodes for the Oxygen Evolution Reaction.

    Science.gov (United States)

    Qazi, Umair Yaqub; Yuan, Cheng-Zong; Ullah, Naseeb; Jiang, Yi-Fan; Imran, Muhammad; Zeb, Akif; Zhao, Sheng-Jie; Javaid, Rahat; Xu, An-Wu

    2017-08-30

    Electrochemical water splitting is an important process to produce hydrogen and oxygen for energy storage and conversion devices. However, it is often restricted by the oxygen evolution reaction (OER) due to its sluggish kinetics. To overcome the problem, precious metal oxide-based electrocatalysts, such as RuO 2 and IrO 2 , are widely used. The lack of availability and the high cost of precious metals compel researchers to find other resources for the development of cost-effective, environmentally friendly, earth-abundant, nonprecious electrocatalysts for OER. Such catalysts should have high OER performance and good stability in comparison to those of available commercial precious metal-based electrocatalysts. Herein, we report an inexpensive fabrication of bimetallic iron-nickel nanoparticles on FeNi-foil (FeNi 4.34 @FeNi-foil) as an integrated OER electrode using a one-step calcination process. FeNi 4.34 @FeNi-foil obtained at 900 °C shows superior OER activity in alkaline solution with an overpotential as low as 283 mV to achieve a current density of 10 mA cm -2 and a small Tafel slope of 53 mV dec -1 . The high performance and durability of the as-prepared nonprecious metal electrode even exceeds those of the available commercial RuO 2 and IrO 2 catalysts, showing great potential in replacing the expensive noble metal-based electrocatalysts for OER.

  9. Single cell imprinting on the surface of Ag-ZnO bimetallic nanoparticle modified graphene oxide sheets for targeted detection, removal and photothermal killing of E. Coli.

    Science.gov (United States)

    Roy, Ekta; Patra, Santanu; Tiwari, Ashutosh; Madhuri, Rashmi; Sharma, Prashant K

    2017-03-15

    A very cost-effective, fast, sensitive and specific imprinted polymer modified electrochemical sensor for the targeted detection, removal and destruction of Escherichia coli bacteria was developed onto the surface of Ag-ZnO bimetallic nanoparticle and graphene oxide nanocomposite. The nanocomposite played a dual role in this work, as a platform for imprinting of bacteria as well as a participated in their laser-light induced photo killing. In terms of sensing, our proposed sensor can detect E. Coli as few as 10CFUmL -1 and capture 98% of bacterial cells from their very high concentrated solution (10 5 CFUmL -1 ). Similarly to the quantitative detection, we have also investigated the quantitative destruction of E. Coli and found that 16.0cm 2 area of polymer modified glass plate is sufficient enough to kill 10 5 CFUmL -1 in the small time span of 5 minutes. The obtained results suggest that our proposed sensor have potential to serve as a promising candidate for specific and quantitative detection, removal as well as the destruction of a variety of bacterial pathogens. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Silver nanoparticles with an armor layer embedded in the alumina matrix to form nanocermet thin films with sound thermal stability.

    Science.gov (United States)

    Gao, Junhua; Tu, Chengjun; Liang, Lingyan; Zhang, Hongliang; Zhuge, Fei; Wu, Liang; Cao, Hongtao; Yu, Ke

    2014-07-23

    In this article, we demonstrate that the Al-alloyed Ag nanoparticle-embedded alumina nanocermet films lead to excellent thermal stability, even at 500 °C for 130 h under an ambient nitrogen atmosphere. The outward diffusion of Al atoms from the AgAl bimetallic alloy nanoparticles and their easy oxidation create an armor layer to suppress the mobility of Ag atoms. Then, the AlAg particles or/and agglomerates with a uniform spherical shape favor higher dispersion concentration within the host matrix, which is beneficial both for high absorptance in the visible range and for the solid localized surface plasmon absorption features in the AgAl-Al2O3 nanocermet films. Based on the AgAl-Al2O3 absorbing layer with sound optical and microstructural stability, we successfully constructed a high-temperature-endurable solar selective absorber. The multilayer stacked absorber demonstrates a high solar absorptance of ∼94.2% and a low thermal emittance of ∼15% (@ 673 K) after annealing at 450 °C for 70 h in an ambient nitrogen atmosphere.

  11. Three dimensional birefringence control using nanoparticles for uniaxially oriented films

    Science.gov (United States)

    Takatoh, Kohki; Goda, Kazuya; Akimoto, Mitsuhiro; Abo, Tomohiro

    2017-07-01

    In uniaxially stretched films, the refractive indices perpendicular to the stretching direction have the same value, and so, the out-of-plane birefringence is half that of the in-plane birefringence. This means that these values cannot be controlled independently in uniaxially stretched films. The same relationship was previously observed when needle-shaped nanoparticles were added to uniaxially stretched films. This paper presents a method to achieve the three-dimensional birefringence control of uniaxially stretched films. When we added plate-shaped smectite nanoparticles to uniaxially stretched films, different relationships were observed for the in- and out-of-plane birefringence. The magnitude of the out-of-plane birefringence increased more than would be expected according to the usual relationship. According to our results, uniaxially stretched films with no out-of-plane birefringence and negative in-plane birefringence can be formed by adding smectite nanoparticles to polymer films with negative in-plane birefringence. Using our method, the three-dimensional birefringence of uniaxial polymers can be controlled, and the possibility of the uniaxial films could be drastically extended.

  12. Phytosynthesis of Au, Ag and Au-Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale.

    Science.gov (United States)

    Sheny, D S; Mathew, Joseph; Philip, Daizy

    2011-06-01

    Present study reports a green chemistry approach for the biosynthesis of Au, Ag, Au-Ag alloy and Au core-Ag shell nanoparticles using the aqueous extract and dried powder of Anacardium occidentale leaf. The effects of quantity of extract/powder, temperature and pH on the formation of nanoparticles are studied. The nanoparticles are characterized using UV-vis and FTIR spectroscopies, XRD, HRTEM and SAED analyses. XRD studies show that the particles are crystalline in the cubic phase. The formation of Au core-Ag shell nanoparticles is evidenced by the dark core and light shell images in TEM and is supported by the appearance of two SPR bands in the UV-vis spectrum. FTIR spectra of the leaf powder before and after the bioreduction of nanoparticles are used to identify possible functional groups responsible for the reduction and capping of nanoparticles. Water soluble biomolecules like polyols and proteins are expected to bring about the bio-reduction. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Flame spray pyrolysis synthesis and aerosol deposition of nanoparticle films

    DEFF Research Database (Denmark)

    Tricoli, Antonio; Elmøe, Tobias Dokkedal

    2012-01-01

    The assembly of nanoparticle films by flame spray pyrolysis (FSP) synthesis and deposition on temperature‐controlled substrates (323–723 K) was investigated for several application‐relevant conditions. An exemplary SnO2 nanoparticle aerosol was generated by FSP and its properties (e.g., particle...... size distribution), and deposition dynamics were studied in details aiming to a simple correlation between process settings and film growth rate. At high precursor concentrations (0.05–0.5·mol/L), typically used for FSP synthesis, the nanoparticles agglomerated rapidly in the aerosol leading to large...... (>100 nm) fractal‐like structures with low diffusivity. As a result, thermophoresis was confirmed as the dominant nanoparticle deposition mechanism down to small (≈40 K) temperature differences (ΔT) between the aerosol and the substrate surface. For moderate‐high ΔT (>120 K), thermal equilibrium...

  14. Chlorine triggered de-alloying of AuAg@Carbon nanodots: Towards fabrication of a dual signalling assay combining the plasmonic property of bimetallic alloy nanoparticles and photoluminescence of carbon nanodots

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadpour, Zahra; Safavi, Afsaneh, E-mail: safavi@susc.ac.ir; Abdollahi, Seyyed Hossein

    2017-03-22

    Integration of Au-Ag alloy and fluorescent carbon nanodots (C-dots) into a single platform resulted in a new dual sensing assay for chlorine. Selective etching of Ag from AuAg@C-dots was transformed into: (i) colorimetric signal by surface plasmon resonance (SPR) tuning of the alloy and (ii) fluorimetric signal by perturbation of fluorescence energy transfer between C-dots and alloy nanoparticles. Fast oxidizing of silver atoms incorporated in the bimetallic structure induced by chlorine resulted in selective de-alloying of bimetallic hybrid nanoparticles and an intense visible change of the colloidal dispersion color. On the other hand, the systematic change in Au/Ag ratio strongly affected the emission intensity of C-dots in the hybrid structure leading to an enhancement in the fluorescence signal. Thus, the assay enables the detection of chlorine both under visible and UV lights with high sensitivity. The detection limit (DL) values were calculated as 6.2 × 10{sup −7} M and 5.1 × 10{sup −7} M through colorimetric and fluorimetric pathways, respectively. Most importantly, it was demonstrated to be selective over common cations, anions and some reactive oxygen species (ROS). This assay was successfully applied to the determination of chlorine concentration in bleach solution and tap water. It is robust and is suitable for cost effective chlorine measurement in environmental samples. - Highlights: • A new dual signalling assay for hypochlorite ion is introduced. • Bimetallic Au-Ag nanoparticles are hybridized with fluorescent carbon nanodots. • It shows amplified colorimetric response with respect to monometallic counterparts. • This sensor is multifunctional, robust, rapid and sensitive. • The practical applicability is investigated for environmental monitoring.

  15. Properties of TiO2 films with gold nanoparticles

    International Nuclear Information System (INIS)

    Aliev, S A; Nikolaev, N E; Trofimov, N S; Chekhlova, T K

    2016-01-01

    The physicochemical and optical properties of titanium dioxide films, made by gel technology and doped with gold nanoparticles, were investigated. The structures of the titanium dioxide films synthesized by different techniques have been compared. Using methods of high-resolution microscopy and the results of X-ray diffraction analysis it was shown, that the developed gel technology allows getting almost 100% nanostructured anatase phase. Titanium dioxide was modified by nanoparticles of gold with different concentration and transmittance spectra of the samples were studied. (paper)

  16. Electrochromic properties of self-assembled nanoparticle multilayer films

    International Nuclear Information System (INIS)

    Xue Bo; Li Hong; Zhang Lanlan; Peng Jun

    2010-01-01

    Hexagonal tungsten bronze (HTB) nanocrystal and TiO 2 nanoparticles were assembled into thin films by layer-by-layer self-assembly method. HTB nanocrystals were synthesized by hydrothermal route at 155 o C. UV-Vis spectra showed that the HTB/TiO 2 films exhibit a linear increase in film thickness with assembly exposure steps. The electrochromic property of the film was carefully investigated. Cyclic voltammetry indicated that the redox peak was around -0.5 V. The electrochromic contrast, coloration efficiency, switching speed, stability and optical memory were carefully investigated. The films vary from white to blue and finally dark brown. The electrochromic contrast is 63.9% at 633 nm. The coloration efficiency of the films is relatively high. The response time is less than 3 s.

  17. Confinement enhances dispersion in nanoparticle-polymer blend films.

    Science.gov (United States)

    Chandran, Sivasurender; Begam, Nafisa; Padmanabhan, Venkat; Basu, J K

    2014-05-08

    Polymer nanocomposites constitute an important class of materials whose properties depend on the state of dispersion of the nanoparticles in the polymer matrix. Here we report the first observations of confinement-induced enhancement of dispersion in nanoparticle-polymer blend films. Systematic variation in the dispersion of nanoparticles with confinement for various compositions and matrix polymer chain dimensions has been observed. For fixed composition, strong reduction in glass transition temperature, Tg, is observed with decreasing blend-film thickness. The enhanced dispersion occurs without altering the polymer-particle interactions and seems to be driven by enhanced matrix-chain orientation propensity and a tendency to minimize the density gradients within the matrix. This implies the existence of two different mechanisms in polymer nanocomposites, which determines their state of dispersion and glass transition.

  18. Degradation of γ-HCH spiked soil using stabilized Pd/Fe0 bimetallic nanoparticles: Pathways, kinetics and effect of reaction conditions

    International Nuclear Information System (INIS)

    Singh, Ritu; Misra, Virendra; Mudiam, Mohana Krishna Reddy; Chauhan, Lalit Kumar Singh; Singh, Rana Pratap

    2012-01-01

    Highlights: ► This study explores the potential of CMC-Pd/nFe 0 to degrade γ-HCH in spiked soil. ► Sorption–desorption characteristics and partitioning of γ-HCH is investigated. ► Three degradation pathways has been proposed and discussed. ► γ-HCH degradation mechanism and kinetics is elucidated. ► Activation energy reveals that γ-HCH degradation is a surface mediated reaction. - Abstract: This study investigates the degradation pathway of gamma-hexachlorocyclohexane (γ-HCH) in spiked soil using carboxymethyl cellulose stabilized Pd/Fe 0 bimetallic nanoparticles (CMC-Pd/nFe 0 ). GC–MS analysis of γ-HCH degradation products showed the formation of pentachlorocyclohexene, tri- and di-chlorobenzene as intermediate products while benzene was formed as the most stable end product. On the basis of identified intermediates and final products, degradation pathway of γ-HCH has been proposed. Batch studies showed complete γ-HCH degradation at a loading of 0.20 g/L CMC-Pd/nFe 0 within 6 h of incubation. The surface area normalized rate constant (k SA ) was found to be 7.6 × 10 −2 L min −1 m −2 . CMC-Pd/nFe 0 displayed ∼7-fold greater efficiency for γ-HCH degradation in comparison to Fe 0 nanoparticles (nFe 0 ), synthesized without CMC and Pd. Further studies showed that increase in CMC-Pd/nFe 0 loading and reaction temperature facilitates γ-HCH degradation, whereas a declining trend in degradation was noticed with the increase in pH, initial γ-HCH concentration and in the presence of cations. The data on activation energy (33.7 kJ/mol) suggests that γ-HCH degradation is a surface mediated reaction. The significance of the study with respect to remediation of γ-HCH contaminated soil using CMC-Pd/nFe 0 has been discussed.

  19. Deposition of Nanostructured Thin Film from Size-Classified Nanoparticles

    Science.gov (United States)

    Camata, Renato P.; Cunningham, Nicholas C.; Seol, Kwang Soo; Okada, Yoshiki; Takeuchi, Kazuo

    2003-01-01

    Materials comprising nanometer-sized grains (approximately 1_50 nm) exhibit properties dramatically different from those of their homogeneous and uniform counterparts. These properties vary with size, shape, and composition of nanoscale grains. Thus, nanoparticles may be used as building blocks to engineer tailor-made artificial materials with desired properties, such as non-linear optical absorption, tunable light emission, charge-storage behavior, selective catalytic activity, and countless other characteristics. This bottom-up engineering approach requires exquisite control over nanoparticle size, shape, and composition. We describe the design and characterization of an aerosol system conceived for the deposition of size classified nanoparticles whose performance is consistent with these strict demands. A nanoparticle aerosol is generated by laser ablation and sorted according to size using a differential mobility analyzer. Nanoparticles within a chosen window of sizes (e.g., (8.0 plus or minus 0.6) nm) are deposited electrostatically on a surface forming a film of the desired material. The system allows the assembly and engineering of thin films using size-classified nanoparticles as building blocks.

  20. Targeted Functionalization of Nanoparticle Thin Films via Capillary Condensation

    KAUST Repository

    Gemici, Zekeriyya

    2009-03-11

    Capillary condensation, an often undesired natural phenomenon in nanoporous materials, was used advantageously as a universal functionalization strategy in nanoparticle thin films assembled layer-by-layer. Judicious choice of nanoparticle (and therefore pore) size allowed targeted capillary condensation of chemical vapors of both hydrophilic and hydrophobic molecules across film thickness. Heterostructured thin films with modulated refractive index profiles produced in this manner exhibited broadband antireflection properties with an average reflectance over the visible region of the spectrum of only 0.4%. Capillary condensation was also used to modify surface chemistry and surface energy. Photosensitive capillary-condensates were UV-cross-linked in situ. Undesired adventitious condensation of humidity could be avoided by condensation of hydrophobic materials such as poly(dimethyl siloxane). © 2009 American Chemical Society.

  1. Nanoparticles inclusions in self assembly thin smectic films

    International Nuclear Information System (INIS)

    Hamdoun, B.; Charara, J.; Zaiour, A.

    2004-01-01

    Full text. Processing of nanocomposites based on nanoparticles inclusion in thin smectic-A liquid crystal was reviewed. Thin smectic-A liquid crystal consists of a stack of regularly spaced membranes that are frequently formed in thin diblock copolymers. Particular attention was given to the scientific concepts that underpin the fabrication of special composite derived copolymer components. The complex interplay between suspension stability and its structural evolution during nanomaterials processing was highlighted. Inclusions, such as nanoparticles, coupled locally to the smectic may deform the membranes over a large length scale. We determined the distortion field due to one inclusion using the Landau-de Gennes description of smectic liquid crystals and by neglecting the interactions between nanoparticles. The equilibrium position of the particle was shown to depend on both the surface tension at the film boundary and the volume fraction of the nanoparticles

  2. Stratification during evaporative assembly of multicomponent nanoparticle films.

    Science.gov (United States)

    Liu, Xiao; Liu, Weiping; Carr, Amanda J; Santiago Vazquez, Dayalis; Nykypanchuk, Dmytro; Majewski, Pawel W; Routh, Alexander F; Bhatia, Surita R

    2018-04-01

    Multicomponent coatings with layers comprising different functionalities are of interest for a variety of applications, including electronic devices, energy storage, and biomaterials. Rather than creating such a film using multiple deposition steps, we explore a single-step method to create such films by varying the particle Peclet numbers, Pe. Our hypothesis, based on recent theoretical descriptions of the stratification process, is that by varying particle size and evaporation rate such that Pe of large and small particles are above and below unity, we can create stratified films of polymeric and inorganic particles. We present AFM on the surface composition of films comprising poly(styrene) nanoparticles (diameter 25-90 nm) and silica nanoparticles (diameter 8-14 nm). Previous studies on films containing both inorganic and polymeric particles correspond to large Pe values (e.g., 120-460), while we utilize Pe ∼ 0.3-4, enabling us to test theories that have been developed for different regimes of Pe. We demonstrate evidence of stratification and effect of the Pe ratio, although our results agree only qualitatively with theory. Our results also provide validation of recent theoretical descriptions of the film drying process that predict different regimes for large-on-top and small-on-top stratification. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Fabrication of Au-Pd Core-shell Nanoparticles using Au Thin-Film Dewetting at High Temperature and Chemical Synthesis Methods

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Gyu; Lee, Hye-Jung; Oh, Yong-Jun [Hanbat National Univ., Daejeon (Korea, Republic of)

    2016-07-15

    Au-Pd bimetallic nanoparticles (NPs) have received a lot of attention in the fields of catalysts and hydrogen sensors. In this study, Au-Pd core-shell NP arrays were successfully fabricated using two steps: formation of the ordered array of Au NPs cores via solid-state dewetting of a Au thin film on a topographic silica substrate, and Pd shell formation via chemical synthesis using two different surfactants (CTAB and CTAC). Using the CTAB surfactant in particular, a 2-D composite structure comprised of an ordered array of Au-Pd NPs, with smaller Pd NPs on the nanoscopic gaps between the Au-Pd NPs, could be formed. This structure is expected to have potential application in resistance-base hydrogen sensors.

  4. Progress in controlling the size, composition and nanostructure of supported gold-palladium nanoparticles for catalytic applications

    NARCIS (Netherlands)

    Paalanen, P.P.|info:eu-repo/dai/nl/370602013; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397; Sankar, M.

    2013-01-01

    This review article gives an overview of the recent developments in the synthesis strategies of supported goldbased bimetallic nanoparticle catalysts. The catalytic efficiency of these supported bimetallic nanoparticles, similar to monometallic nanoparticles, depends on their structural

  5. Bimetallic Au-Pd nanoparticles on 2D supported graphitic carbon nitride and reduced graphene oxide sheets: A comparative photocatalytic degradation study of organic pollutants in water.

    Science.gov (United States)

    Darabdhara, Gitashree; Das, Manash R

    2018-04-01

    Novel and sustainable bimetallic nanoparticles of Au-Pd on 2D graphitic carbon nitride (g-C 3 N 4 ) and reduced graphene oxide (rGO) sheets was designed adopting an eco-friendly chemical route to obtain Au-Pd/g-C 3 N 4 and Au-Pd/rGO, respectively. Elimination of hazardous pollutants, particularly phenol from water is urgent for environment remediation due to its significant carcinogenicity. Considering this aspect, the Au-Pd/g-C 3 N 4 and Au-Pd/rGO nanocomposites are used as photocatalyst towards degradation of toxic phenol, 2-chlorophenol (2-CP) and 2-nitrophenol (2-NP) under natural sunlight and UV light irradiation. Au-Pd/g-C 3 N 4 nanocomposite exhibited higher activity then Au/g-C 3 N 4 , Pd/g-C 3 N 4 and Au-Pd/rGO nanocomposites with more than 95% degradation in 180 min under sunlight. The obtained degradation efficiency of our materials is better than many other reported photocatalysts. Incorporation of nitrogen atoms in the carbon skeleton of g-C 3 N 4 provides much better properties to Au-Pd/g-C 3 N 4 nanocomposite than carbon based Au-Pd/rGO leading to its higher degradation efficiency. Due to the presence of these nitrogen atoms and some defects, g-C 3 N 4 possesses appealing electrical, chemical and functional properties. Photoluminescence results further revealed the efficient charge separation and delayed recombination of photo-induced electron-hole pairs in the Au-Pd/g-C 3 N 4 nanocomposite. Generation of reactive oxygen species during photocatalysis is well explained through photoluminescence study and the sustainability of these photocatalyst was ascertained through reusability study up to eight and five consecutive cycles for Au-Pd/g-C 3 N 4 and Au-Pd/rGO nanocomposites, respectively without substantial loss in its activity. Characterization of the photocatalysts after reaction signified the stability of the nanocomposites and added advantage to our developed photocatalytic system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. CZTS nanoparticle absorber layer for thin film solar cells

    DEFF Research Database (Denmark)

    Symonowicz, Joanna; Jensen, Kirsten M. Ørnsbjerg; Engberg, Sara Lena Josefin

    Cu2ZnSnS4 (CZTS) thin film solar cells have the potential to revolutionize the solar energy market. They are cheap, non-toxic and present an efficiency up to 9,2% [1]. However, to commercialize CZTS nanoparticle thin films, the efficiency issues must yet be resolved. There are various fabrication...... is furthermore characterized. Photoluminescence measurements indicate which absorber layer are of higher efficiency, which allows us to study why some crystalline configurations enhance the efficiency of resulting solar cells....

  7. Structure and frictional properties of Langmuir-Blodgett films of Cu nanoparticles modified by dialkyldithiophosphate

    International Nuclear Information System (INIS)

    Xu Jun; Dai Shuxi; Cheng Gang; Jiang Xiaohong; Tao Xiaojun; Zhang Pingyu; Du Zuliang

    2006-01-01

    Langmuir-Blodgett (LB) films of dialkyldithiophosphate (DDP) modified Cu nanoparticles were prepared. The structure, microfrictional behaviors and adhesion of the LB films were investigated by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and atomic/friction force microscopy (AFM/FFM). Our results showed that the modified Cu nanoparticles have a typical core-shell structure and fine film-forming ability. The images of AFM/FFM showed that LB films of modified Cu nanoparticles were composed of many nanoparticles arranged closely and orderly and the nanoparticles had favorable behaviors of lower friction. The friction loop of the films indicated that the friction force was affected prominently by the surface slope of the Cu nanoparticles and the microfrictional behaviors showed obvious 'ratchet effect'. The adhesion experiment showed that the modified Cu nanoparticle had a very small adhesive force

  8. Exploratory Catalyst Screening Studies on the Base Free Conversion of Glycerol to Lactic Acid and Glyceric Acid in Water Using Bimetallic Au–Pt Nanoparticles on Acidic Zeolites

    NARCIS (Netherlands)

    Purushothaman, R.K.P.; Haveren, van J.; Mayoral, A.; Melian-Cabrera, I.; Heeres, H.J.

    2014-01-01

    The base free oxidation of glycerol with molecular oxygen in water using bimetallic Au-Pt catalysts on three different acidic zeolite supports (H-mordenite, H-beta and H-USY) was explored in a batch setup. At temperatures between 140 and 180 degrees C, lactic acid formation was significant and

  9. Fast microwave-assisted solvothermal synthesis of metal nanoparticles (Pd, Ni, Sn) supported on sulfonated MWCNTs: Pd-based bimetallic catalysts for ethanol oxidation in alkaline medium

    CSIR Research Space (South Africa)

    Ramulifho, T

    2012-01-01

    Full Text Available -MWCNT-Pd and its "mixed" bimetallic electrocatalysts (i.e., SF-MWCNT-PdSn mix and SF-MWCNT-PdNi) towards ethanol oxidation in alkaline medium was investigated. The result shows that the mixed Pd-based catalysts (obtained by simple ultrasonic...

  10. Mn doped GaN thin films and nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Šofer, Z.; Sedmidubský, D.; Huber, Š.; Hejtmánek, Jiří; Macková, Anna; Fiala, R.

    2012-01-01

    Roč. 9, 8-9 (2012), s. 809-824 ISSN 1475-7435 R&D Projects: GA ČR GA104/09/0621 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z10480505 Keywords : GaN nanoparticles * GaN thin films * manganese * transition metals * MOVPE * ion implantations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.087, year: 2012

  11. Bimetallic nanocomposite as hole transport co-buffer layer in organic solar cell

    Science.gov (United States)

    Mola, Genene Tessema; Arbab, Elhadi A. A.

    2017-12-01

    Silver-zinc bimetallic nanocomposite (Ag:Zn BiM-NPs) was used as an inter-facial buffer layer in the preparation of thin film organic solar cell (TFOSC). The current investigation focuses on the effect of bimetallic nanoparticles on the performance of TFOSC. A number experiments were conducted by employing Ag:Zn nanocomposite buffer layer of thickness 1 nm at various positions of the device structure. In all cases, we found significant improvement on the power conversion efficiency of the solar cells. It is also noted that the open circuit voltage of the devices are decreasing when Ag:Zn form direct contact with the ITO electrode and without the inclusion of PEDOT:PSS. However, all results show that the introduction of Ag:Zn nanocomposite layer close to PEDOT:PSS could be beneficial to improve the charge transport processes in the preparation of thin film organic solar cell. The Ag:Zn BiM-NPs and the device properties were presented and discussed in terms of optical, electrical and film morphologies of the devices.

  12. Modified carbon nanoparticle-chitosan film electrodes: Physisorption versus chemisorption

    International Nuclear Information System (INIS)

    Rassaei, Liza; Sillanpaeae, Mika; Marken, Frank

    2008-01-01

    Surface functionalised carbon nanoparticles of ca. 8 nm diameter co-assemble with chitosan into stable thin film electrodes at glassy carbon surfaces. Robust electrodes for application in sensing or electrocatalysis are obtained in a simple solvent evaporation process. The ratio of chitosan binder backbone to carbon nanoparticle conductor determines the properties of the resulting films. Chitosan (a poly-D-glucosamine) has a dual effect (i) as the binder for the mesoporous carbon composite structure and (ii) as binding site for redox active probes. Physisorption due to the positively charged ammonium group (pK A ∼ 6.5) occurs, for example, with anionic indigo carmine (a reversible 2e - -2H + reduction system in aqueous media). Chemisorption at the amine functionalities is demonstrated with 2-bromo-methyl-anthraquinone in acetonitrile (resulting in a reversible 2e - -2H + anthraquinone reduction system in aqueous media). Redox processes within the carbon nanoparticle-chitosan films are studied and at sufficiently high scan rates diffusion of protons (buffer concentration depended) is shown to be rate limiting. The chemisorption process provides a much more stable interfacial redox system with a characteristic and stable pH response over a pH 2-12 range. Chemisorption and physisorption can be employed simultaneously in a complementary binding process

  13. Formulation and Characterization of Acetaminophen Nanoparticles in Orally Disintegrating Films

    Science.gov (United States)

    AI-Nemrawi, Nusaiba K.

    The purpose of this study is to prepare acetaminophen loaded nanoparticles to be cast directly, while still in the emulsion form, into Orally Disintegrating Films (ODF). By casting the nanoparticles in the films, we expected to keep the particles in a stable form where the nanoparticles would be away from each other to prevent their aggregation. Once the films are applied on the buccal mucosa, they are supposed to dissolve within seconds, releasing the nanoparticles. Then the nanoparticles could be directly absorbed through the mucosa to the blood stream and deliver acetaminophen there. The oral cavity mucosa is one of the most attractive sites for systemic drug delivery due to its high permeability and blood supply. Furthermore, it is robust and shows short recovery times after stress or damage, and the drug bypasses first pass effect and avoids presystemic elimination in the GI tract. Nanoencapsulation increases drug efficacy, specificity, tolerability and therapeutic index. These Nanocapsules have several advantages in the protection of premature degradation and interaction with the biological environment, enhancement of absorption into a selected tissue, bioavailability, retention time and improvement of intracellular penetration. The most important characteristics of nanoparticles are their size, encapsulation efficiency (EE), zeta potential (surface charge), and the drug release profiles. Unfortunately, nanoparticles tend to precipitate or aggregate into larger particles within a short time after preparation or during storage. Some solutions for this problem were mentioned in literature including lyophilization and spray drying. These methods are usually expensive and give partial solutions that might have secondary problems; such as low re-dispersion efficacy of the lyophilized NPs. Furthermore, most of the formulations of NPs are invasive or topical. Few formulas are available to be given orally. Fast disintegrating films (ODFs) are rapidly gaining interest

  14. Harnessing Compositional Marangoni Flows in Depositing Nanoparticle Films

    Science.gov (United States)

    Majumder, Mainak; Pasquali, Matteo; Monash University/Rice University Team

    2012-11-01

    Attempts at depositing uniform films of nanoparticles by drop-drying have been frustrated by the ``coffee-stain'' effect, arising from the convective macroscopic flow into the solid-liquid-vapor contact line of a droplet. We have recently demonstrated that uniform deposition of nanoparticles from aqueous suspensions can be obtained by drying the droplet in an ethanol vapor atmosphere.(.).............(Majumder et al., 2012). This technique allows the particle-laden water droplets to spread on a variety of surfaces such as glass, silicon, mica, PDMS, and even Teflon® due to absorption of ethanol from the vapor. Visualization of droplet shape and internal flow shows initial droplet spreading and strong re-circulating flow during spreading and shrinkage. During the drying phase, the vapor is saturated in ethanol, leading to preferential evaporation of water at the contact line; thereby generating a surface tension gradient (or Marangoni forces) that drive a strong recirculating flow. We show that this method can be used for depositing catalyst nanoparticles for the growth of single-walled carbon nanotubes as well as to manufacture plasmonic films of well-spaced, unaggregated gold nanoparticles. MAJUMDER, M., RENDALL, C. S., PASQUALI, M. et al. 2012. Overcoming the ``Coffee-Stain'' Effect by Compositional Marangoni-Flow-Assisted Drop-Drying. J.Phys.Chem.B, 116, 6536-6542.

  15. Phase-transfer and film formation of silver nanoparticles.

    Science.gov (United States)

    Sarkar, Anjana; Chadha, Ridhima; Biswas, Nandita; Mukherjee, Tulsi; Kapoor, Sudhir

    2009-04-01

    In this article, a simple method for either transfer of silver nanoparticles from formamide to chloroform or to form a film at their interface is demonstrated. The transfer of the particles is a two-step size-dependent process. The size distribution of the colloidal hydrophobic silver particles in chloroform was almost the same as that before its transfer. Particles can be isolated by evaporation of chloroform. During evaporation, the hydrophobic particles become hydrophilic (charged) due to the formation of bilayer of CTAB over their surface. The isolated particles can be re-dispersed easily in polar solvents such as water and methanol. Nanocrystalline film of Ag is also prepared at the formamide-chloroform interface using suitable stabilizers in two immiscible layers. The nanocrystals have been characterized by various microscopic and spectroscopic techniques. The free standing film could be easily transferred on solid support.

  16. Mechanism of large optical nonlinearity in gold nanoparticle films.

    Science.gov (United States)

    Mirza, I; McCloskey, D; Blau, W J; Lunney, J G

    2018-04-01

    The Z-scan technique, using femtosecond (fs) laser pulses at 1480 nm laser pulses, was used to measure the nonlinear optical properties of gold (Au) nanoparticle (NP) films made by both nanosecond (ns) and fs pulsed laser deposition (PLD) in vacuum. At irradiance levels of 1×10 12   Wm -2 , the ns-PLD films displayed induced absorption with β=4×10 -5   mW -1 , and a negative lensing effect with n 2 =-4.7×10 -11   m 2  W -1 with somewhat smaller values for the fs-PLD films. These values of n 2 imply an unphysically large change in the real part of the refractive index, demonstrating the need to take account of nonlinear changes of the Fresnel coefficients and multiple beam interference in Z-scan measurements on nanoscale films. Following this approach, the Z-scan observations were analyzed to determine the effective complex refractive index of the NP film at high irradiance. It appears that at high irradiance the NP film behaves as a metal, while at low irradiance it behaves as a low-loss dielectric. Thus, it is conjectured that, for high irradiance near the waist of the Z-scan laser beam, laser driven electron tunneling between NPs gives rise to metal-like optical behavior.

  17. Silver Nanoparticle Enhanced Freestanding Thin-Film Silicon Solar Cells

    Science.gov (United States)

    Winans, Joshua David

    As the supply of fossil fuels diminishes in quantity the demand for alternative energy sources will consistently increase. Solar cells are an environmentally friendly and proven technology that suffer in sales due to a large upfront cost. In order to help facilitate the transition from fossil fuels to photovoltaics, module costs must be reduced to prices well below $1/Watt. Thin-film solar cells are more affordable because of the reduced materials costs, but lower in efficiency because less light is absorbed before passing through the cell. Silver nanoparticles placed at the front surface of the solar cell absorb and reradiate the energy of the light in ways such that more of the light ends being captured by the silicon. Silver nanoparticles can do this because they have free electron clouds that can take on the energy of an incident photon through collective action. This bulk action of the electrons is called a plasmon. This work begins by discussing the economics driving the need for reduced material use, and the pros and cons of taking this step. Next, the fundamental theory of light-matter interaction is briefly described followed by an introduction to the study of plasmonics. Following that we discuss a traditional method of silver nanoparticle formation and the initial experimental studies of their effects on the ability of thin-film silicon to absorb light. Then, Finite-Difference Time-Domain simulation software is used to simulate the effects of nanoparticle morphology and size on the scattering of light at the surface of the thin-film.

  18. Tailoring Surface Roughness by Grafting Nanoparticles to Random Copolymer Films

    Science.gov (United States)

    Caporizzo, Matthew; Ezzibdeh, Rami; Composto, Russell

    2013-03-01

    The effect of random copolymer composition on surface attachment and sinking of amine functionalized silica nanoparticles (d =45 nm) is investigated. Films of poly(styrene-ran-tert-butyl acrylate) (StBA) with 37% tBA are converted to poly(S-ran-acrylic acid) (SAA) by annealing for 15h at temperatures ranging from 135C to 200C. The conversion of the tBA ranges from under 10% to 100% and is monitored by ellipsometry and ATR-FTIR. At complete conversion (25 wt% AA), SAA forms nano-phase separated domains that result in particle aggregation within AA rich domains. At lower AA conversion, a disordered polymer morphology leads to grafting sites which are randomly distributed. NPs graft from nearly a complete monolayer to multilayers depending the percent of AA. Both the rate of NP attachment and the maximum loading of NPs into the film scale with the fraction of AA; this behavior is attributed to a reduction in the energetic barrier for the particle to sink into the film with increased swelling (more hydrophilic). A particularly attractive outcome of this systematic study is that optically transparent films with controlled roughness can be routinely prepared. Such films are of interest for investigating biomolecular adsorption and superhydrophobic, clear, non-fouling coatings. Supported by NSF DMR08-32802.

  19. Rapid efficient synthesis and characterization of silver, gold, and bimetallic nanoparticles from the medicinal plant Plumbago zeylanica and their application in biofilm control.

    Science.gov (United States)

    Salunke, Gayatri R; Ghosh, Sougata; Santosh Kumar, R J; Khade, Samiksha; Vashisth, Priya; Kale, Trupti; Chopade, Snehal; Pruthi, Vikas; Kundu, Gopal; Bellare, Jayesh R; Chopade, Balu A

    2014-01-01

    Nanoparticles (NPs) have gained significance in medical fields due to their high surface-area-to-volume ratio. In this study, we synthesized NPs from a medicinally important plant - Plumbago zeylanica. Aqueous root extract of P. zeylanica (PZRE) was analyzed for the presence of flavonoids, sugars, and organic acids using high-performance thin-layer chromatography (HPTLC), gas chromatography-time of flight-mass spectrometry (GC-TOF-MS), and biochemical methods. The silver NPs (AgNPs), gold NPs (AuNPs), and bimetallic NPs (AgAuNPs) were synthesized from root extract and characterized using ultraviolet-visible spectra, X-ray diffraction (XRD), energy-dispersive spectrometry (EDS), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The effects of these NPs on Acinetobacter baumannii, Staphylococcus aureus, and Escherichia coli biofilms were studied using quantitative biofilm inhibition and disruption assays, as well as using fluorescence, scanning electron microscopy, and atomic force microscopy. PZRE showed the presence of phenolics, such as plumbagin, and flavonoids, in addition to citric acid, sucrose, glucose, fructose, and starch, using HPTLC, GC-TOF-MS, and quantitative analysis. Bioreduction of silver nitrate (AgNO₃) and chloroauric acid (HAuCl₄) were confirmed at absorbances of 440 nm (AgNPs), 570 nm (AuNPs), and 540 nm (AgAuNPs), respectively. The maximum rate of synthesis at 50°C was achieved with 5 mM AgNO₃ within 4.5 hours for AgNPs; and with 0.7 mM HAuCl4 within 5 hours for AuNPs. The synthesis of AgAuNPs, which completed within 90 minutes with 0.7 mM AgNO₃ and HAuCl₄, was found to be the fastest. Fourier-transform infrared spectroscopy confirmed bioreduction, while EDS and XRD patterns confirmed purity and the crystalline nature of the NPs, respectively. TEM micrographs and DLS showed about 60 nm monodispersed Ag nanospheres, 20-30 nm Au nanospheres adhering to form Au nanotriangles, and about 90 nm hexagonal blunt

  20. Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance.

    Science.gov (United States)

    Liu, C H; Hong, M H; Cheung, H W; Zhang, F; Huang, Z Q; Tan, L S; Hor, T S A

    2008-07-07

    Tuning of surface plasmon resonance by gold and silver bimetallic thin film and bimetallic dot array is investigated. Laser interference lithography is applied to fabricate the nanostructures. A bimetallic dot structure is obtained by a lift-off procedure after gold and silver thin film deposition by an electron beam evaporator. Surface plasmon behaviors of these films and nanostructures are studied using UV-Vis spectroscopy. It is observed that for gold thin film on quartz substrate, the optical spectral peak is blue shifted when a silver thin film is coated over it. Compared to the plasmon band in single metal gold dot array, the bimetallic nanodot array shows a similar blue shift in its spectral peak. These shifts are both attributed to the interaction between gold and silver atoms. Electromagnetic interaction between gold and silver nanostructures is discussed using a simplified spring model.

  1. Aerosol assisted chemical vapor deposition using nanoparticle precursors: a route to nanocomposite thin films.

    Science.gov (United States)

    Palgrave, Robert G; Parkin, Ivan P

    2006-02-08

    Gold nanoparticle and gold/semiconductor nanocomposite thin films have been deposited using aerosol assisted chemical vapor deposition (CVD). A preformed gold colloid in toluene was used as a precursor to deposit gold films onto silica glass. These nanoparticle films showed the characteristic plasmon absorption of Au nanoparticles at 537 nm, and scanning electron microscopic (SEM) imaging confirmed the presence of individual gold particles. Nanocomposite films were deposited from the colloid concurrently with conventional CVD precursors. A film of gold particles in a host tungsten oxide matrix resulted from co-deposition with [W(OPh)(6)], while gold particles in a host titania matrix resulted from co-deposition with [Ti(O(i)Pr)(4)]. The density of Au nanoparticles within the film could be varied by changing the Au colloid concentration in the original precursor solution. Titania/gold composite films were intensely colored and showed dichromism: blue in transmitted light and red in reflected light. They showed metal-like reflection spectra and plasmon absorption. X-ray photoelectron spectroscopy and energy-dispersive X-ray analysis confirmed the presence of metallic gold, and SEM imaging showed individual Au nanoparticles embedded in the films. X-ray diffraction detected crystalline gold in the composite films. This CVD technique can be readily extended to produce other nanocomposite films by varying the colloids and precursors used, and it offers a rapid, convenient route to nanoparticle and nanocomposite thin films.

  2. Strong saturable absorption of black titanium oxide nanoparticle films

    Science.gov (United States)

    Zhang, Rong-Fang; Guo, Deng-Zhu; Zhang, Geng-Min

    2017-12-01

    Nonlinear optical materials with strong saturable absorption (SA) properties play an essential role in passive mode-locking generation of ultrafast lasers. Here we report black TiO2-x nanoparticles are promising candidate for such an application. Black TiO2-x nanoparticles are synthesized by using cathodic plasma electrolysis, and nanoparticle films are deposited on optical glass plates via natural sedimentation and post annealing. Characterization of the samples with TEM, SEM, XRD and XPS reveal that nanoparticles have diameters of 8-70 nm, and are in polycrystalline structure and co-existence of anatase, rutile and abundant oxygen-deficient phases. Optical transmittance and reflectance measurements with a UV/VIS/NIR spectrophotometer evidence an excellent wide-spectral optical absorption property. The nonlinear optical properties of the samples were measured by using open-aperture Z-scan technique with picosecond 532-nm laser, and verified by direct transmission measurements using nanosecond 1064-nm laser. Strong SA behavior was detected, and the nonlinear absorption coefficient is as high as β = - 4.9 × 10-8 m/W, at least two orders larger than most previous reports on ordinary TiO2. The strong SA behaviors are ascribed to the existence of plenty surface states and defect states within bandgap, and the relaxation rates of electrons from upper energy levels to lower ones are much slower than excitation rates.

  3. Preparation of gelatin films incorporated with tea polyphenol nanoparticles for enhancing controlled-release antioxidant properties

    Science.gov (United States)

    Tea polyphenols (TP) were incorporated into edible gelatin films either alone or incorporated into nanoparticles in order to determine the physico-chemical properties of the film and the antioxidant properties of TP in a solid gelatin matrix. The TP containing nanoparticles were prepared by cross-li...

  4. Nanoparticle formation and thin film deposition in aniline containing plasmas

    Science.gov (United States)

    Pattyn, Cedric; Dias, Ana; Hussain, Shahzad; Strunskus, Thomas; Stefanovic, Ilija; Boulmer-Leborgne, Chantal; Lecas, Thomas; Kovacevic, Eva; Berndt, Johannes

    2016-09-01

    This contribution deals with plasma based polymerization processes in mixtures of argon and aniline. The investigations are performed in a capacitively coupled RF discharge (in pulsed and continuous mode) and concern both the observed formation of nanoparticles in the plasma volume and the deposition of films. The latter process was used for the deposition of ultra-thin layers on different kind of nanocarbon materials (nanotubes and free standing graphene). The analysis of the plasma and the plasma chemistry (by means of mass spectroscopy and in-situ FTIR spectroscopy) is accompanied by several ex-situ diagnostics of the obtained materials which include NEXAFS and XPS measurements as well as Raman spectroscopy and electron microscopy. The decisive point of the investigations concern the preservation of the original monomer structure during the plasma polymerization processes and the stability of the thin films on the different substrates.

  5. Photoinduced energy and charge transfer in layered porphyrin-gold nanoparticle thin films

    NARCIS (Netherlands)

    Kotiaho, Anne; Lahtinen, Riikka; Lehtivuori, Heli; Tkachenko, Nikolai V.; Lemmetyinen, Helge

    2008-01-01

    In thin films of porphyrin (H2P) and gold nanoparticles (AuNPs), photoexcitation of porphyrins leads to energy and charge transfer to the gold nanoparticles. Alternating layers of porphyrins and octanethiol protected gold nanoparticles (dcore ∼3 nm) were deposited on solid substrates via the

  6. Deposition of crystalline Ge nanoparticle films by high-pressure RF magnetron sputtering method

    International Nuclear Information System (INIS)

    Ichida, D; Seo, H; Itagaki, N; Koga, K; Shiratani, M; Uchida, G; Kamataki, K

    2014-01-01

    We report here deposition of crystalline Ge nanoparticle films using a radio frequency magnetron sputtering method in argon and hydrogen gas mixture under a high pressure condition. The size of Ge nanoparticles is deduced to be 6.3-6.4 nm from the peak frequency shift of Raman spectra. Raman and X-ray diffraction spectra show that the films are crystalline. The film crystallinity strongly depends on substrate temperature (T s ). Highly crystalline Ge nanoparticle films are successfully fabricated at T s = 180°C

  7. Bio-interfaces--interaction of PLL/HA thick films with nanoparticles and microcapsules.

    Science.gov (United States)

    Skirtach, Andre G; Volodkin, Dmitry V; Möhwald, Helmuth

    2010-03-15

    The interaction of biocompatible, exponentially grown films composed of poly-L-lysine (PLL) and hyaluronic acid (HA) polymers with gold nanoparticles and microcapsules is studied. Both aggregated and non-aggregated nanoparticle states are achieved; desorption of PLL accounts for aggregation of nanoparticles. The presence of aggregates of gold nanoparticles on films enables remote activation by near-infrared irradiation due to local, nanometer confined heating. Thermally shrunk microcapsules, which are remarkably monodisperse upon preparation but gain polydispersity after months of storage, are also adsorbed onto films. PLL polymers desorbed from films interact with microcapsules introducing a charge imbalance which leads to an increase of the microcapsule size, thus films amplify this effect. Multifunctional, biocompatible, thick gel films with remote activation and release capabilities are targeted for cell cultures in biology and tissue engineering in medicine.

  8. Hydroxylation of Benzene via CH Activation Using Bimetallic ...

    Science.gov (United States)

    A photoactive bimetallic CuAg@g-C3N4 catalyst system has been designed and synthesized by impregnating copper and silver nanoparticles over the graphitic carbon nitride surface. Its application has been demonstrated in the hydroxylation of benzene under visible light. Prepared for submission to American Chemical Society (ACS) journal, ACS Sustainable Chemistry & Engineering.

  9. A photoactive bimetallic framework for direct aminoformylation of nitroarenes

    Science.gov (United States)

    A bimetallic catalyst, AgPd@g-C3N4, was synthesized by immobilizing silver and palladium nanoparticles over the surface of graphitic carbon nitride (g-C3N4) and its utility was demonstrated for the concerted aminoformylation of aromatic nitro compounds under visible light conditi...

  10. A bimetallic nanocomposite electrode for direct and rapid ...

    Indian Academy of Sciences (India)

    A new label-free electrochemical DNA biosensor is presented based on carbon paste electrode (CPE) modified with gold (Au) and platinum (Pt) nanoparticles to prepare the bimetallic nanocomposite electrode. The proposed sensor was made by immobilization of 15-mer single stranded oligonucleotide probe related to ...

  11. Computer-assisted electrochemical fabrication of a highly selective and sensitive amperometric nitrite sensor based on surface decoration of electrochemically reduced graphene oxide nanosheets with CoNi bimetallic alloy nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gholivand, Mohammad-Bagher, E-mail: mbgholivand2013@gmail.com [Faculty of Chemistry, Razi University, Kermanshah 671496734 (Iran, Islamic Republic of); Jalalvand, Ali R. [Faculty of Chemistry, Razi University, Kermanshah 671496734 (Iran, Islamic Republic of); Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Universidad Nacional del Litoral, Ciudad Universitaria, CC 242 (S3000ZAA), Santa Fe (Argentina); Goicoechea, Hector C. [Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Universidad Nacional del Litoral, Ciudad Universitaria, CC 242 (S3000ZAA), Santa Fe (Argentina)

    2014-07-01

    For the first time, a novel, robust and very attractive statistical experimental design (ED) using minimum-run equireplicated resolution IV factorial design (Min-Run Res IV FD) coupled with face centered central composite design (FCCCD) and Derringer's desirability function (DF) was developed to fabricate a highly selective and sensitive amperometric nitrite sensor based on electrodeposition of CoNi bimetallic alloy nanoparticles (NPs) on electrochemically reduced graphene oxide (ERGO) nanosheets. The modifications were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), energy dispersive X-ray spectroscopic (EDS), scanning electron microscopy (SEM) techniques. The CoNi bimetallic alloy NPs were characterized using digital image processing (DIP) for particle counting (density estimation) and average diameter measurement. Under the identified optimal conditions, the novel sensor detects nitrite in concentration ranges of 0.1–30.0 μM and 30.0–330.0 μM with a limit of detection (LOD) of 0.05 μM. This sensor selectively detects nitrite even in the presence of high concentration of common ions and biological interferents therefore, we found that the sensor is highly selective. The sensor also demonstrated an excellent operational stability and good antifouling properties. The proposed sensor was used to the determination of nitrite in several foodstuff and water samples. - Highlights: • Eight variables were screened by Min Run Res IV FD to identify the key variables. • Mathematical models for the two studied responses were developed by FCCCD. • By using DF the responses were optimized simultaneously. • The SEM image of the modified electrode was processed by digital image processing. • The sensor was successfully applied to determination of nitrite in real samples.

  12. Nanoparticle induced wetting of polymer films and self-assembled multilayers of nanocomponents

    Science.gov (United States)

    Krishnan, R. S.

    The control of dewetting for thin polymer films is a technical challenge and of significant academic interest. Although studies have been published on the wetting of polymer films in the presence of nanoparticles, the underlying physics is still a matter of debate. In this work, we report a systematic study of improved wetting behavior of thin polymer films containing nanoparticles, as a function of nanoparticle size and concentration. An enthalpy matched system consisting of polystyrene nanoparticles in linear polystyrene is used to show that nanoparticles are uniformly distributed in the film after spin coating and drying, however on annealing the film above its bulk glass transition temperature the nanoparticles segregate strongly to the solid substrate. We find that for a wide range of film thicknesses and nanoparticle sizes, approximately monolayer substrate coverage of nanoparticles is required for strong dewetting inhibition. We also show that cadmium selenide quantum dots inhibit dewetting of both polystyrene and PMMA thin films. Moreover, TEM microscopy images indicate that CdSe quantum dots segregate primarily to the air surface. Gain of configuration entropy of the melt linear chains promotes segregation of nanoparticles to the substrate, as occurs for polystyrene nanoparticles. However, for CdSe nanoparticles this is offset by surface energy terms which promote segregation of the nanoparticles to the air surface. We argue that this is due to the inert low-energy Oleic acid brush introduced to promote organic compatibility of the quantum dot surfaces. Finally, we use the nanoparticle induced wetting of a polymer film due to the self-assembly of nanoparticles at the interface to construct the layered assembly of polymer-nanoparticle sandwich films. We report an alternative route to multilayer nanostructures where the layered self-assembly of the constituents is driven by the interplay between entropy, due to architectural differences, and surface energy

  13. Tribological behavior of in situ Ag nanoparticles/polyelectrolyte composite molecular deposition films

    International Nuclear Information System (INIS)

    Guo Yanbao; Wang Deguo; Liu Shuhai

    2010-01-01

    Multilayer polyelectrolyte films containing silver ions were obtained by molecular deposition method on a glass plate or a quartz substrate. The in situ Ag nanoparticles were synthesized in the multilayer polyelectrolyte films which were put into fresh NaBH 4 aqueous solution. The structure and surface morphology of composite molecular deposition films were observed by UV-vis spectrophotometer, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Tribological characteristic was investigated by AFM and micro-tribometer. It was found that the in situ Ag nanoparticles/polyelectrolyte composite molecular deposition films have lower coefficient of friction and higher anti-wear life than pure polyelectrolyte molecular deposition films.

  14. Characterization of Corn Starch Films Reinforced with CaCO3 Nanoparticles

    Science.gov (United States)

    Sun, Qingjie; Xi, Tingting; Li, Ying; Xiong, Liu

    2014-01-01

    The characterization of corn starch (CS) films impregnated with CaCO3 nanoparticles was investigated. Criteria such as morphology, crystallinity, water vapor permeability (WVP), opacity, and mechanical properties were the focus of the investigation. It was found that the CaCO3 contents had significant effects on the tensile properties of the nanocomposite films. The addition of CaCO3 nanoparticles to the CS films significantly increased tensile strength from 1.40 to 2.24 MPa, elongation from 79.21 to 118.98%, and Young’s modulus from 1.82 to 2.41 MPa. The incorporation of CaCO3 nanoparticles increased the opacity of films, lowered the degree of WVP and film solubility value compared to those of the CS films. The results of scanning electron microscopy (SEM) showed that with the increase of CaCO3 nanoparticles content in starch films, the roughness of the films increased, and pores or cavities were found on the surface of the films, while small cracks were observed in the structures of the fractured surfaces. X-ray diffraction showed that the addition of nanoparticles increased the peaks in the intensity of films. PMID:25188503

  15. Sub-10 ohm resistance gold films prepared by removal of ligands from thiol-stabilized 6 nm gold nanoparticles.

    Science.gov (United States)

    Sugden, Mark W; Richardson, Tim H; Leggett, Graham

    2010-03-16

    The optical and electrical properties of dodecanethiol-stabilized nanoparticles (6 nm diameter gold core) have been investigated over a range of film thicknesses and temperatures. The surface plasmon resonance absorbance is found to be dependent on temperature. Heating of the nanoparticle film causes desorption of the thiol from the surface of the gold nanoparticle, resulting in irreversible changes to the absorption spectra of the nanoparticle film. Atomic force microscopy images of the samples before and after heating for different film thicknesses reveal structural changes and increased domain connectivity for thicker films leading to sub-10 ohm resistances measured for the 15-layer film.

  16. Percolation model for electron conduction in films of metal nanoparticles linked by organic molecules

    International Nuclear Information System (INIS)

    Muller, K.H.; Herrmann, J.; Raguse, B.; Baxter, G.; Reda, T.

    2002-01-01

    Full text: We have investigated theoretically and experimentally the temperature dependence of the conductance of films of Au nanoparticles linked by alkane dithiol molecules in the temperature range between 5 K and 300 K. Conduction in these films is due to tunneling of single electrons between neighbouring metal nanoparticles. During tunnelling an electron has to overcome the Coulomb charging energy. We find that the observed temperature dependence of the conductance is non-Arrhenius like and can be described in terms of a percolation theory which takes account of disorder in the system. Disorder in our nanoparticle films is caused by variations in the nanoparticle size, fluctuations in the separation gaps between adjacent nanoparticles and by offset charges. To explain in detail our experimental data, a wide distribution of separation gaps and charging energies is needed. We find that a wide Coulomb charging energy distribution can arise from random offset charges even if the nanoparticle size distribution is narrow

  17. Material influence on hot spot distribution in the nanoparticle heterodimer on film

    Science.gov (United States)

    Chen, Fang; Huang, Yingzhou; Wei, Hua; Wang, Shuxia; Zeng, Xiping; Cao, Wenbin; Wen, Weijia

    2018-04-01

    The metal nanoparticle aggregated on film, as an effective plasma enhancement pathway, has been widely used in various surface plasmon-related fields. In this study, the hot spots on the metal nanoparticle dimer composed of different materials (Agsbnd Au, Agsbnd Pd, and Agsbnd Cu) on metal (Au) film were investigated with finite element method. Based on the results, the hot spot distribution affected by the material can be confirmed by the electric field distribution of the metal nanoparticle dimer on the film. The aggregation effects of Au and Ag nanoparticles in Ausbnd Ag dimer system are not significant. However, for the Pdsbnd Ag dimer system, the hot spot aggregation effect is slightly larger than that of the Pd nanoparticle under the Ag nanoparticle. Besides, the non-uniform hot spots would bring about the light focusing phenomenon that the light intensity under Ag nanoparticle is almost 100 times greater than that under Cu nanoparticle in Agsbnd Cu dimer system. These results were further confirmed by the surface charge distribution, and analyzed based on the plasmonic hybridization theory. The data about the nanoparticle dimer on the dielectric (Si) film demonstrate the importance of induced image charges on the film surface in such a light focusing phenomenon. Our findings can enhance the understanding of the surface plasmon coupling in different materials, which may have great application prospects in surface plasmon-related fields, such as SERS, plasmonic enhanced solar cell, and plasmonic sensoring, etc.

  18. Gold nanoparticles and films produced by a laser ablation/gas deposition (LAGD) method

    International Nuclear Information System (INIS)

    Kawakami, Yuji; Seto, Takafumi; Yoshida, Toshinobu; Ozawa, Eiichi

    2002-01-01

    Gold nanoparticles have great potential for various nanoelectronic applications such as single electron transistors, an infrared absorption sensor and so on. It is very important to understand and control the size distribution of the particles for such a variety of applications. In this paper, we report the size distribution of gold nanoparticles and the relationship between the nanoparticle-films and the electrical property produced by a laser ablation method. Gold nanoparticle-films were prepared by a technique, which sprays nanoparticles on the substrate through a nozzle. We call it a gas deposition method. The nanoparticles were generated by the nanosecond pulsed Nd:YAG laser ablation of a gold substrate under a low-pressure inert gas atmosphere. The ambient pressure was changed to control the average size and their distribution. The particles produced in the generation chamber were transported by a helium carrier gas to the deposition chamber and deposited on a substrate to form the films composed of gold nanoparticles. The electrical resistivity of the generated gold nanoparticle-films on the glass substrates was measured using a four-probe method. The size distribution of the nanoparticles was examined using transmission electron microscopy (TEM) and a low-pressure differential mobility analyzer (LP-DMA). The relationship between the particle size and the electrical properties of each film made by the different synthesis conditions were analyzed. The electrical resistivity changed from the order of 10 -5 to 10 -1 Ω cm depending on the ambient pressure and the size distribution

  19. Layer-by-Layer Nanoassembly of Copper Indium Gallium Selenium Nanoparticle Films for Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    A. Hemati

    2012-01-01

    Full Text Available Thin films of CIGS nanoparticles interdigited with polymers have been fabricated through a cost-effective nonvacuum film deposition process called layer-by-layer (LbL nanoassembly. CIGS nanoparticles synthesized by heating copper chloride, indium chloride, gallium chloride, and selenium in oleylamine were dispersed in water, and desired surface charges were obtained through pH regulation and by coating the particles with polystyrene sulfonate (PSS. Raising the pH of the nanoparticle dispersion reduced the zeta-potential from +61 mV at pH 7 to −51 mV at pH 10.5. Coating the CIGS nanoparticles with PSS (CIGS-PSS produced a stable dispersion in water with −56.9 mV zeta-potential. Thin films of oppositely charged CIGS nanoparticles (CIGS/CIGS, CIGS nanoparticles and PSS (CIGS/PSS, and PSS-coated CIGS nanoparticles and polyethylenimine (CIGS-PSS/PEI were constructed through the LbL nanoassembly. Film thickness and resistivity of each bilayer of the films were measured, and photoelectric properties of the films were studied for solar cell applications. Solar cell devices fabricated with a 219 nm CIGS film, when illuminated by 50 W light-source, produced 0.7 V open circuit voltage and 0.3 mA/cm2 short circuit current density.

  20. Magnetic anisotropy in Ni-Si nanoparticle films produced by ultrashort pulsed laser deposition

    International Nuclear Information System (INIS)

    Iannotti, V.; Ausanio, G.; Campana, C.; D'Orazio, F.; Hison, C.; Lucari, F.; Lanotte, L.

    2008-01-01

    Pulsed laser deposition (uPLD) in vacuum by means of subpicosecond laser pulses is a powerful, versatile technique for the production of films constituted by nanoparticles. On impact with the deposition substrate, the nanodrops ejected from the target assume an oblate ellipsoidal shape, solidifying with the major cross-section parallel to the substrate plane. These features and the difficult coalescence among the deposited nanoparticles are peculiar characteristics specific to the films obtained by uPLD. In the case of magnetic nanoparticle films obtained by means of this technique, a magnetization isotropy in the film plane and a hard magnetization axis orthogonal to the film plane are expected. This simple assumption, generated by the specific shape and orientation of the deposited nanoparticles, was not experimentally verified up to now. The present investigation represents the first experimental validation of magnetic anisotropy, determined by the peculiar morphology and topology of the constituent particles, in the uPLD Ni x Si 100-x nanoparticle films. The in-plane isotropic magnetization behaviour, as well as the presence of a hard magnetization axis perpendicular to the sample surface were demonstrated for all investigated films. The difficult coalescence among the magnetic nanoparticles, even at high Ni volume fractions, is confirmed by the behaviour of the initial magnetization curve, typical for single-domain nanoparticles systems

  1. Magnetic anisotropy in Ni-Si nanoparticle films produced by ultrashort pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Iannotti, V. [CNR-INFM Coherentia, Dipartimento di Scienze Fisiche, Universita degli Studi di Napoli ' Federico II' , Piazzale V. Tecchio 80, I-80125 Napoli (Italy)], E-mail: iannotti@na.infn.it; Ausanio, G. [CNR-INFM Coherentia, Dipartimento di Scienze Fisiche, Universita degli Studi di Napoli ' Federico II' , Piazzale V. Tecchio 80, I-80125 Napoli (Italy); Campana, C. [Dipartimento di Ingegneria dei Materiali e della Produzione, Universita degli Studi di Napoli ' Federico II' , Piazzale V. Tecchio 80, I-80125 Napoli (Italy); D' Orazio, F. [Dipartimento di Fisica, Universita dell' Aquila, Via Vetoio 10, I-67010 Coppito, L' Aquila (Italy); Hison, C. [CNR-INFM Coherentia, Dipartimento di Scienze Fisiche, Universita degli Studi di Napoli ' Federico II' , Piazzale V. Tecchio 80, I-80125 Napoli (Italy); Lucari, F. [Dipartimento di Fisica, Universita dell' Aquila, Via Vetoio 10, I-67010 Coppito, L' Aquila (Italy); Lanotte, L. [CNR-INFM Coherentia, Dipartimento di Scienze Fisiche, Universita degli Studi di Napoli ' Federico II' , Piazzale V. Tecchio 80, I-80125 Napoli (Italy)

    2008-10-15

    Pulsed laser deposition (uPLD) in vacuum by means of subpicosecond laser pulses is a powerful, versatile technique for the production of films constituted by nanoparticles. On impact with the deposition substrate, the nanodrops ejected from the target assume an oblate ellipsoidal shape, solidifying with the major cross-section parallel to the substrate plane. These features and the difficult coalescence among the deposited nanoparticles are peculiar characteristics specific to the films obtained by uPLD. In the case of magnetic nanoparticle films obtained by means of this technique, a magnetization isotropy in the film plane and a hard magnetization axis orthogonal to the film plane are expected. This simple assumption, generated by the specific shape and orientation of the deposited nanoparticles, was not experimentally verified up to now. The present investigation represents the first experimental validation of magnetic anisotropy, determined by the peculiar morphology and topology of the constituent particles, in the uPLD Ni{sub x}Si{sub 100-x} nanoparticle films. The in-plane isotropic magnetization behaviour, as well as the presence of a hard magnetization axis perpendicular to the sample surface were demonstrated for all investigated films. The difficult coalescence among the magnetic nanoparticles, even at high Ni volume fractions, is confirmed by the behaviour of the initial magnetization curve, typical for single-domain nanoparticles systems.

  2. Magnetic anisotropy in Ni-Si nanoparticle films produced by ultrashort pulsed laser deposition

    Science.gov (United States)

    Iannotti, V.; Ausanio, G.; Campana, C.; D'Orazio, F.; Hison, C.; Lucari, F.; Lanotte, L.

    Pulsed laser deposition (uPLD) in vacuum by means of subpicosecond laser pulses is a powerful, versatile technique for the production of films constituted by nanoparticles. On impact with the deposition substrate, the nanodrops ejected from the target assume an oblate ellipsoidal shape, solidifying with the major cross-section parallel to the substrate plane. These features and the difficult coalescence among the deposited nanoparticles are peculiar characteristics specific to the films obtained by uPLD. In the case of magnetic nanoparticle films obtained by means of this technique, a magnetization isotropy in the film plane and a hard magnetization axis orthogonal to the film plane are expected. This simple assumption, generated by the specific shape and orientation of the deposited nanoparticles, was not experimentally verified up to now. The present investigation represents the first experimental validation of magnetic anisotropy, determined by the peculiar morphology and topology of the constituent particles, in the uPLD Ni xSi 100-x nanoparticle films. The in-plane isotropic magnetization behaviour, as well as the presence of a hard magnetization axis perpendicular to the sample surface were demonstrated for all investigated films. The difficult coalescence among the magnetic nanoparticles, even at high Ni volume fractions, is confirmed by the behaviour of the initial magnetization curve, typical for single-domain nanoparticles systems.

  3. Synthesis and characterization of magnetic nanoparticles embedded in polyvinyl pyrrolidone nanofiber film by electrospinning method

    Science.gov (United States)

    Lin, Chun-Rong; Tsai, Tsu-Chi; Chung, Max; Lu, Shih-Zong

    2009-04-01

    We fabricated magnetic nanofiber films by manufacturing the nanoparticles with the polyol process followed by the electrospinning process to combine them into a thin film. The magnetite (Fe3O4) nanoparticles with mean crystallite size of 6-8 nm were synthesized through reduction of iron (II) acetate in the polyols and using polyvinyl pyrrolidone (PVP) as the protecting agent. The PVP-coated Fe3O4 nanoparticles were dispersed into PVP ethanol solution and then electrospun directly to make nanofiber films. The diameters of fibers range between 200-400 nm, and the film thickness is about 50 μm. The Fe3O4 nanoparticles show a saturation magnetization of 36.6 emu/g, and together with the nanofiber films display a superparamagnetic behavior.

  4. A photoactive bimetallic framework for direct aminoformylation ...

    Science.gov (United States)

    A bimetallic catalyst, AgPd@g-C3N4, was synthesized by immobilizing silver and palladium nanoparticles over the surface of graphitic carbon nitride (g-C3N4) and its utility was demonstrated for the concerted aminoformylation of aromatic nitro compounds under visible light conditions. The entwined AgPd@g-C3N4 catalyst was very effective in exploiting formic acid as a source of hydrogen and acting as a formylating agent under photochemical conditions. Prepared for submission to Royal Society of Chemistry (RSC) journal, Green Chemistry

  5. Enhancement of the Optoelectronic Properties of PEDOT: PSS-PbS Nanoparticles Composite Thin Films Through Nanoparticles' Capping Ligand Exchange

    Science.gov (United States)

    García-Gutiérrez, Diana F.; Hernández-Casillas, Laura P.; Sepúlveda-Guzmán, Selene; Vazquez-Rodriguez, Sofia; García-Gutiérrez, Domingo I.

    2018-02-01

    The influence of the capping ligand on nanoparticles' optical and electronic properties is a topic of great interest currently being investigated by several research groups in different countries. In the present study, PbS nanoparticles originally synthesized with oleic acid, myristic acid and hexanoic acid underwent a ligand exchange process to replace the original carboxylic acid for uc(l)-cysteine as the capping layer, and were thoroughly characterized by means of transmission electron microscopy and its related techniques, such as energy dispersive x-ray spectroscopy and scanning-transmission electron microscopy, and Fourier transform infrared, Raman and x-ray photoelectron spectroscopy. Afterwards, these PbS nanoparticles were dispersed into a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) matrix to fabricate a composite thin film which displayed the optical absorption properties of the PbS nanoparticles and the electrical transport properties of the PEDOT:PSS matrix, in order to evaluate the impact of the nanoparticles' capping ligand on the optoelectronic properties of the fabricated composite thin films. Composite thin films with PbS nanoparticles showing uc(l)-cysteine as the capping layer displayed clear photoresponse and a threefold increment in their conductivities compared to pristine PEDOT:PSS. The properties of PEDOT:PSS, known as a hole transport layer in most organic photovoltaic devices, were enhanced by adding PbS nanoparticles with different capping ligands, producing a promising composite material for optoelectronic applications by proper selection of the nanoparticles' capping layer.

  6. Multiscale patterning of nanocomposite polyelectrolyte/nanoparticle films using inkjet printing and AFM scratching

    International Nuclear Information System (INIS)

    Leigh, S J; Bowen, J; Preece, J A

    2015-01-01

    The fabrication of structured polymer/nanoparticle composite films through a combination of additive, subtractive and self-assembly methodologies is investigated. Consumer grade inkjet printing hardware is employed to deposit cationic polyelectrolytes on (i) hydrophilic and (ii) hydrophobised glass substrates. The hydrophobisation process controls the spreading of the droplets and hence the lateral size of printed features. The printed cationic polyelectrolyte regions are used as a template to direct the self-assembly of negatively charged gold nanoparticles onto the surface. Micro-scale features are created in the polyelectrolyte/nanoparticle films using AFM scratching to selectively displace material. The effect of substrate wettability on film morphology is discussed. (paper)

  7. Characterization of starch films containing starch nanoparticles: part 1: physical and mechanical properties.

    Science.gov (United States)

    Shi, Ai-Min; Wang, Li-Jun; Li, Dong; Adhikari, Benu

    2013-07-25

    We report, for the first time, the preparation method and characteristics of starch films incorporating spray dried and vacuum freeze dried starch nanoparticles. Physical properties of these films such as morphology, crystallinity, water vapor permeability (WVP), opacity, and glass transition temperature (Tg) and mechanical properties (strain versus temperature, strain versus stress, Young's modulus and toughness) were measured. Addition of both starch nanoparticles in starch films increased roughness of surface, lowered degree of crystallinity by 23.5%, WVP by 44% and Tg by 4.3°C, respectively compared to those of starch-only films. Drying method used in preparation of starch nanoparticles only affected opacity of films. The incorporation of nanoparticles in starch films resulted into denser films due to which the extent of variation of strain with temperature was much lower. The toughness and Young's modulus of films containing both types of starch nanoparticles were lower than those of control films especially at <100°C. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Preparation of gelatin films incorporated with tea polyphenol nanoparticles for enhancing controlled-release antioxidant properties.

    Science.gov (United States)

    Liu, Fei; Antoniou, John; Li, Yue; Yi, Jiang; Yokoyama, Wallace; Ma, Jianguo; Zhong, Fang

    2015-04-22

    Gelatin films incorporated with chitosan nanoparticles in various free/encapsulated tea polyphenol (TP) ratios were prepared in order to investigate the influence of different ratios on the physicochemical and antioxidant properties of films. The TP-containing nanoparticles were prepared by cross-linking chitosan hydrochloride (CSH) with sulfobutyl ether-β-cyclodextrin sodium (SBE-β-CD) at three different encapsulation efficiencies (EE; ∼50%, ∼80%, and ∼100%) of TP. The stability of TP-loaded nanoparticles was maintained during the film drying process from the analysis of free TP content in the redissolved film solutions. Composite films showed no significant difference in visual aspects, while the light transmittance (250-550 nm) was decreased with incorporation of TP. Nanoparticles appeared to be homogeneously dispersed within the film matrix by microstructure analysis (SEM and AFM). TP-loaded films had ferric reducing and DPPH radical scavenging power that corresponded to the EEs. Sunflower oil packaged in bags made of gelatin films embedded with nanoparticles of 80% EE showed the best oxidation inhibitory effect, followed by 100% EE, 50% EE, and free TP, over 6 weeks of storage. However, when the gelatin film was placed over the headspace and was not in contact with the oil, the free TP showed the best effect. The results indicate that sustained release of TP in the contacting surface can ensure the protective effects, which vary with free/encapsulated mass ratios, thus improving antioxidant activities instead of increasing the dosage.

  9. The Roll of NaPSS Surfactant on the Ceria Nanoparticles Embedding in Polypyrrole Films

    Directory of Open Access Journals (Sweden)

    Simona Popescu

    2016-01-01

    Full Text Available Cerium oxide nanoparticles (CeO2 NPs in crystalline form have been synthesized by a coprecipitation method. CeO2 nanoparticles were then embedded in polypyrrole (PPy films during the electropolymerization of pyrrole (Py on titanium substrate. The influence of poly(sodium 4-styrenesulfonate (NaPSS surfactant used during polymerization on the embedding of CeO2 NPs in polypyrrole films was investigated. The new films were characterized in terms of surface analysis, wettability, electrochemical behaviour, and antibacterial effect. The surface and electrochemical characterization revealed the role of surfactant on PPy doping process cerium oxide incorporation. In the presence of surfactant, CeO2 NPs are preferentially embedded in the polymeric film while, without surfactant, the ceria nanoparticles are quasiuniformly spread as agglomerates onto polymeric films. The antibacterial effect of studied PPy films was substantially improved in the presence of cerium oxide and depends by the polymerization conditions.

  10. Recent Progress in Ferrocene-Modified Thin Films and Nanoparticles for Biosensors

    Directory of Open Access Journals (Sweden)

    Shigehiro Takahashi

    2013-12-01

    Full Text Available This article reviews recent progress in the development of ferrocene (Fc-modified thin films and nanoparticles in relation to their biosensor applications. Redox-active materials in enzyme biosensors commonly use Fc derivatives, which mediate electron transfer between the electrode and enzyme active site. Either voltammetric or amperometric signals originating from redox reactions of Fc are detected or modulated by the binding of analytes on the electrode. Fc-modified thin films have been prepared by a variety of protocols, including in situ polymerization, layer-by-layer (LbL deposition, host-guest complexation and molecular recognitions. In situ polymerization provides a facile way to form Fc thin films, because the Fc polymers are directly deposited onto the electrode surface. LbL deposition, which can modulate the film thickness and Fc content, is suitable for preparing well-organized thin films. Other techniques, such as host-guest complexation and protein-based molecular recognition, are useful for preparing Fc thin films. Fc-modified Au nanoparticles have been widely used as redox-active materials to fabricate electrochemical biosensors. Fc derivatives are often attached to Au nanoparticles through a thiol-Au linkage. Nanoparticles consisting of inorganic porous materials, such as zeolites and iron oxide, and nanoparticle-based composite materials have also been used to prepare Fc-modified nanoparticles. To construct biosensors, Fc-modified nanoparticles are immobilized on the electrode surface together with enzymes.

  11. Electrocatalytic glucose oxidation at gold and gold-carbon nanoparticulate film prepared from oppositely charged nanoparticles

    International Nuclear Information System (INIS)

    Karczmarczyk, Aleksandra; Celebanska, Anna; Nogala, Wojciech; Sashuk, Volodymyr; Chernyaeva, Olga; Opallo, Marcin

    2014-01-01

    Graphical abstract: - Highlights: • Gold nanoparticulate film electrodes were prepared by layer-by-layer method from oppositely charged nanoparticles. • Positively charged nanoparticles play dominant role in glucose oxidation in alkaline solution. • Gold and gold-carbon nanoparticulate film electrodes exhibit similar glucose oxidation current and onset potential. - Abstract: Electrocatalytic oxidation of glucose was studied at nanoparticulate gold and gold-carbon film electrodes. These electrodes were prepared by a layer-by-layer method without application of any linker molecules. Gold nanoparticles were stabilized by undecane thiols functionalized by trimethyl ammonium or carboxylate groups, whereas the carbon nanoparticles were covered by phenylsulfonate functionalities. The gold nanoparticulate electrodes were characterized by UV-vis and XPS spectroscopy, atomic force microscopy and voltammetry, before and after heat-treatment. Heat-treatment facilitates the aggregation of the nanoparticles and affects the structure of the film. The comparison of the results obtained with film electrodes prepared from gold nanoparticles with the same charge and with gold-carbon nanoparticulate electrodes, proved that positively charged nanoparticles are responsible for the high electrocatalytic activity, whereas negatively charged ones act rather as a linker of the film

  12. Peptide-Directed PdAu Nanoscale Surface Segregation: Toward Controlled Bimetallic Architecture for Catalytic Materials.

    Science.gov (United States)

    Bedford, Nicholas M; Showalter, Allison R; Woehl, Taylor J; Hughes, Zak E; Lee, Sungsik; Reinhart, Benjamin; Ertem, S Piril; Coughlin, E Bryan; Ren, Yang; Walsh, Tiffany R; Bunker, Bruce A

    2016-09-27

    Bimetallic nanoparticles are of immense scientific and technological interest given the synergistic properties observed when two different metallic species are mixed at the nanoscale. This is particularly prevalent in catalysis, where bimetallic nanoparticles often exhibit improved catalytic activity and durability over their monometallic counterparts. Yet despite intense research efforts, little is understood regarding how to optimize bimetallic surface composition and structure synthetically using rational design principles. Recently, it has been demonstrated that peptide-enabled routes for nanoparticle synthesis result in materials with sequence-dependent catalytic properties, providing an opportunity for rational design through sequence manipulation. In this study, bimetallic PdAu nanoparticles are synthesized with a small set of peptides containing known Pd and Au binding motifs. The resulting nanoparticles were extensively characterized using high-resolution scanning transmission electron microscopy, X-ray absorption spectroscopy, and high-energy X-ray diffraction coupled to atomic pair distribution function analysis. Structural information obtained from synchrotron radiation methods was then used to generate model nanoparticle configurations using reverse Monte Carlo simulations, which illustrate sequence dependence in both surface structure and surface composition. Replica exchange with solute tempering molecular dynamics simulations were also used to predict the modes of peptide binding on monometallic surfaces, indicating that different sequences bind to the metal interfaces via different mechanisms. As a testbed reaction, electrocatalytic methanol oxidation experiments were performed, wherein differences in catalytic activity are clearly observed in materials with identical bimetallic composition. Taken together, this study indicates that peptides could be used to arrive at bimetallic surfaces with enhanced catalytic properties, which could be leveraged

  13. Guar gum benzoate nanoparticle reinforced gelatin films for enhanced thermal insulation, mechanical and antimicrobial properties.

    Science.gov (United States)

    Kundu, Sonia; Das, Aatrayee; Basu, Aalok; Abdullah, Md Farooque; Mukherjee, Arup

    2017-08-15

    This work relates to guar gum benzoate self assembly nanoparticles synthesis and nano composite films development with gelatin. Guar gum benzoate was synthesized in a Hofmeister cation guided homogeneous phase reaction. Self assembly polysaccharide nanoparticles were prepared in solvent displacement technique. Electron microscopy and DLS study confirmed uniform quasi spherical nanoparticles with ζ-potential - 28.7mV. Nanocomposite films were further developed in gelatin matrix. The film capacity augmenting due to nanoparticles incorporation was noteworthy. Superior barrier properties, reinforcing and thermal insulation effects were observed in films dispersed with 20% w/w nanoparticles. Detailed FTIR studies and thermal analysis confirmed nanoparticles interactions in the film matrix. The nanocomposite film water vapour permeability was at 0.75gmm -1 kPa -1 h -1 , thermal conductivity 0.39Wm -1 K -1 and the tensile strength were recorded at 3.87MPa. The final film expressed excellent antimicrobial properties against water born gram negative and gram positive bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Dynamic mechanical behaviour of nanoparticle loaded biodegradable PVA films for vaginal drug delivery.

    Science.gov (United States)

    Traore, Yannick L; Fumakia, Miral; Gu, Jijin; Ho, Emmanuel A

    2018-03-01

    In this study, we investigated the viscoelastic and mechanical behaviour of polyvinyl alcohol films formulated along with carrageenan, plasticizing agents (polyethylene glycol and glycerol), and when loaded with nanoparticles as a model for potential applications as microbicides. The storage modulus, loss modulus and glass transition temperature were determined using a dynamic mechanical analyzer. Films fabricated from 2% to 5% polyvinyl alcohol containing 3 mg or 5 mg of fluorescently labeled nanoparticles were evaluated. The storage modulus and loss modulus values of blank films were shown to be higher than the nanoparticle-loaded films. Glass transition temperature determined using the storage modulus, and loss modulus was between 40-50℃ and 35-40℃, respectively. The tensile properties evaluated showed that 2% polyvinyl alcohol films were more elastic but less resistant to breaking compared to 5% polyvinyl alcohol films (2% films break around 1 N load and 5% films break around 7 N load). To our knowledge, this is the first study to evaluate the influence of nanoparticle and film composition on the physico-mechanical properties of polymeric films for vaginal drug delivery.

  15. On Metal Segregation of Bimetallic Nanocatalysts Prepared by a One-Pot Method in Microemulsions

    Directory of Open Access Journals (Sweden)

    Concha Tojo

    2017-02-01

    Full Text Available A comparative study on different bimetallic nanocatalysts prepared from microemulsions using a one-pot method has been carried out. The analysis of experimental observations, complemented by simulation studies, provides detailed insight into the factors affecting nanoparticle architecture: (1 The metal segregation in a bimetallic nanocatalysts is the result of the combination of three main kinetic parameters: the reduction rate of metal precursors (related to reduction standard potentials, the material intermicellar exchange rate (determined by microemulsion composition, and the metal precursors concentration; (2 A minimum difference between the reduction standard potentials of the two metals of 0.20 V is needed to obtain a core-shell structure. For values ∆ε0 smaller than 0.20 V the obtaining of alloys cannot be avoided, neither by changing the microemulsion nor by increasing metal concentration; (3 As a rule, the higher the film flexibility around the micelles, the higher the degree of mixture in the nanocatalyst; (4 A minimum concentration of metal precursors is required to get a core-shell structure. This minimum concentration depends on the microemulsion flexibility and on the difference in reduction rates.

  16. Incorporation of europium III complex into nanoparticles and films obtained by the Sol-Gel methodology

    Directory of Open Access Journals (Sweden)

    Faley Jean de Sousa

    2010-03-01

    Full Text Available The sol-gel process is very effective for the preparation of new materials with potential applications in optics, sensors, catalyst supports, coatings, and specialty inorganic polymers that can be used as hosts for the accommodation of organic molecules. The low temperature employed in the process is the main advantage of this methodology. In this work, the europium (III complex with 1,10-phenantroline was prepared, and this luminescent complex was incorporated into silica nanoparticles and films by the sol-gel process. The nanoparticles were obtained by the modified Stöber methodology. The films were obtained by the dip-coating technique, at different deposition rates and numbers of layers. The nanoparticles and films were characterized by photoluminescence, thermal analysis, and Raman and infrared spectroscopies. Characterization revealed that the europium (III complex was not affected upon incorporation into the nanoparticles and films, opening a new field for the application of these materials.

  17. Iron nanoparticles embedded in carbon films: structural and optical properties

    Science.gov (United States)

    Mashayekhi, Fatemeh; Shafiekhani, Azizollah; Sebt, Seyed Ali

    2016-06-01

    In the present work amorphous hydrogenated carbon films with sputtered iron nanoparticles (Fe NPs @ a-C:H) were deposited by co-deposition of RF-sputtering and RF-plasma enhanced chemical vapor deposition methods using acetylene gas and iron target on quartz and silicon substrates. Samples were prepared in different initial pressures and during constant deposition time. The crystalline structure of Fe NPs @ a-C:H was studied using X-ray diffraction and selected area electron diffraction patterns. The X-ray photoelectron spectroscopy analysis presents that increasing the initial pressure decreases the atomic ratio of Fe/C and the sp3-hybridized carbon content in prepared samples. The transmission electron microscope image shows the encapsulated Fe NPs in carbon films. The optical properties and localized surface plasmon resonance (LSPR) of samples were studied using UV-visible spectrophotometry, which is shown that increasing of Fe content decreases the intensity of LSPR peak and increases the optical band gap.

  18. High-negative effective refractive index of silver nanoparticles system in nanocomposite films

    Science.gov (United States)

    Altunin, Konstantin K.; Gadomsky, Oleg N.

    2012-03-01

    We have proved on the basis of the experimental optical reflection and transmission spectra of the nanocomposite film of poly(methyl methacrylate) with silver nanoparticles that (PMMA + Ag) nanocomposite films have quasi-zero refractive indices in the optical wavelength range. We show that to achieve quasi-zero values of the complex index of refraction of composite materials is necessary to achieve high-negative effective refractive index in the system of spherical silver nanoparticles.

  19. Decomposition of Organometal Halide Perovskite Films on Zinc Oxide Nanoparticles.

    Science.gov (United States)

    Cheng, Yuanhang; Yang, Qing-Dan; Xiao, Jingyang; Xue, Qifan; Li, Ho-Wa; Guan, Zhiqiang; Yip, Hin-Lap; Tsang, Sai-Wing

    2015-09-16

    Solution processed zinc oxide (ZnO) nanoparticles (NPs) with excellent electron transport properties and a low-temperature process is a viable candidate to replace titanium dioxide (TiO2) as electron transport layer to develop high-efficiency perovskite solar cells on flexible substrates. However, the number of reported high-performance perovskite solar cells using ZnO-NPs is still limited. Here we report a detailed investigation on the chemistry and crystal growth of CH3NH3PbI3 perovskite on ZnO-NP thin films. We find that the perovskite films would severely decompose into PbI2 upon thermal annealing on the bare ZnO-NP surface. X-ray photoelectron spectroscopy (XPS) results show that the hydroxide groups on the ZnO-NP surface accelerate the decomposition of the perovskite films. To reduce the decomposition, we introduce a buffer layer in between the ZnO-NPs and perovskite layers. We find that a commonly used buffer layer with small molecule [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) can slow down but cannot completely avoid the decomposition. On the other hand, a polymeric buffer layer using poly(ethylenimine) (PEI) can effectively separate the ZnO-NPs and perovskite, which allows larger crystal formation with thermal annealing. The power conversion efficiencies of perovskite photovoltaic cells are significantly increased from 6.4% to 10.2% by replacing PC61BM with PEI as the buffer layer.

  20. Antimicrobial Activity of TiO2 Nanoparticle-Coated Film for Potential Food Packaging Applications

    Directory of Open Access Journals (Sweden)

    Siti Hajar Othman

    2014-01-01

    Full Text Available Recent uses of titanium dioxide (TiO2 have involved various applications which include the food industry. This study aims to develop TiO2 nanoparticle-coated film for potential food packaging applications due to the photocatalytic antimicrobial property of TiO2. The TiO2 nanoparticles with varying concentrations (0–0.11 g/ 100 mL organic solvent were coated on food packaging film, particularly low density polyethylene (LDPE film. The antimicrobial activity of the films was investigated by their capability to inactivate Escherichia coli (E. coli in an actual food packaging application test under various conditions, including types of light (fluorescent and ultraviolet (UV and the length of time the film was exposed to light (one–three days. The antimicrobial activity of the TiO2 nanoparticle-coated films exposed under both types of lighting was found to increase with an increase in the TiO2 nanoparticle concentration and the light exposure time. It was also found that the antimicrobial activity of the films exposed under UV light was higher than that under fluorescent light. The developed film has the potential to be used as a food packaging film that can extend the shelf life, maintain the quality, and assure the safety of food.

  1. A Humidity Sensor Based on Silver Nanoparticles Thin Film Prepared by Electrostatic Spray Deposition Process

    Directory of Open Access Journals (Sweden)

    Thutiyaporn Thiwawong

    2013-01-01

    Full Text Available In this work, thin film of silver nanoparticles for humidity sensor application was deposited by electrostatic spray deposition technique. The influence of the deposition times on properties of films was studied. The crystal structures of sample films, their surface morphology, and optical properties have been investigated by X-ray diffraction (XRD, field emission scanning electron microscopy (FE-SEM, and UV-VIS spectrophotometer, respectively. The crystalline structure of silver nanoparticles thin film was found in the orientation of (100 and (200 planes of cubic structure at diffraction angles 2θ  =  38.2° and 44.3°, respectively. Moreover, the silver nanoparticles thin films humidity sensor was fabricated onto the interdigitated electrodes. The sensor exhibited the humidity adsorption and desorption properties. The sensing mechanisms of the device were also elucidated by complex impedance analysis.

  2. Assembly of tantalum porous films with graded oxidation profile from size-selected nanoparticles

    Science.gov (United States)

    Singh, Vidyadhar; Grammatikopoulos, Panagiotis; Cassidy, Cathal; Benelmekki, Maria; Bohra, Murtaza; Hawash, Zafer; Baughman, Kenneth W.; Sowwan, Mukhles

    2014-05-01

    Functionally graded materials offer a way to improve the physical and chemical properties of thin films and coatings for different applications in the nanotechnology and biomedical fields. In this work, design and assembly of nanoporous tantalum films with a graded oxidation profile perpendicular to the substrate surface are reported. These nanoporous films are composed of size-selected, amorphous tantalum nanoparticles, deposited using a gas-aggregated magnetron sputtering system, and oxidized after coalescence, as samples evolve from mono- to multi-layered structures. Molecular dynamics computer simulations shed light on atomistic mechanisms of nanoparticle coalescence, which govern the films porosity. Aberration-corrected (S) TEM, GIXRD, AFM, SEM, and XPS were employed to study the morphology, phase and oxidation profiles of the tantalum nanoparticles, and the resultant films.

  3. Polyol-mediated Synthesis of Chalcogenide Nanoparticles for Thin-film Solar Cells

    OpenAIRE

    Dong, Hailong

    2014-01-01

    The aim of this work was polyol-mediated syntheses of chalcogenide nanoparticles for printable thin-film solar cells. In this thesis, chalcogenide nanoparticles, such as Cu2Se, In2Se3, CZTS, Se@CuSe and Te@Bi2Te3, have been successfully synthesized via a polyol-mediated method.

  4. Water vapor selective thin film nanocomposite membranes prepared by functionalized Silicon nanoparticles

    NARCIS (Netherlands)

    Baig, Muhammad Irshad; Ingole, Pravin G.; Jeon, Jae deok; Hong, Seong Uk; Choi, Won Kil; Jang, Boyun; Lee, Hyung Keun

    2017-01-01

    In this work, we have reported a facile method to improve the water vapor permeation performance of thin film nanocomposite membranes by tailoring the surface properties of Silicon nanoparticles. Inductively coupled plasma technique was utilized to synthesize amorphous Silicon nanoparticles (~. 10.

  5. Formation of nanoparticles from thin silver films irradiated by laser pulses in air

    Science.gov (United States)

    Nastulyavichus, A. A.; Smirnov, N. A.; Kudryashov, S. I.; Ionin, A. A.; Saraeva, I. N.; Busleev, N. I.; Rudenko, A. A.; Khmel'nitskii, R. A.; Zayarnyi, D. A.

    2018-03-01

    Some specific features of the transport of silver nanoparticles onto a SiO2 substrate under focused nanosecond IR laser pulses is experimentally investigated. A possibility of obtaining silver coatings is demonstrated. The formation of silver nanostructures as a result of pulsed laser ablation in air is studied. Nanoparticles are formed by exposing a silver film to radiation of an HTF MARK (Bulat) laser marker (λ = 1064 nm). The thus prepared nanoparticles are analysed using scanning electron microscopy and optical spectroscopy.

  6. Enhanced photocurrent and photocatalytic properties of porous ZnO thin film by Ag nanoparticles

    Science.gov (United States)

    Lv, Jianguo; Zhu, Qianqian; Zeng, Zheng; Zhang, Miao; Yang, Jin; Zhao, Min; Wang, Wenhao; Cheng, Yuebing; He, Gang; Sun, Zhaoqi

    2017-12-01

    ZnO thin films were deposited using an electrodeposition method and porous morphologies could be achieved by annealing treatment. A variety of Ag nanoparticles were loaded on the surface of the ZnO thin films. Surface morphology, chemical composition, crystal phase and optical properties were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), UV-vis spectrophotometer and micro-Raman spectroscopy. Evidence of Ag nanoparticles on the Ag-4/ZnO thin film was be verified by the SEM and XPS measurements. The XRD results indicated that the Ag nanoparticles had little effect on crystallinity of the thin films. The photoresponse and photocatalytic results indicated that the photocurrent and photocatalytic performance could be enhanced by moderate Ag nanoparticles modification on the surface of the ZnO thin film. The best photoresponse and photocatalytic activity in Ag-4/ZnO thin film results from the moderate Ag nanoparticles on the surface of ZnO thin film, which could enhanced separation and suppressed recombination of photogenerated electron-hole pairs.

  7. Nanoparticle assembly following Langmuir-Hinshelwood kinetics on a Langmuir film and chain networks captured in LB films.

    Science.gov (United States)

    Maganti, Lasya; Jash, Madhuri; Nair, Anju; Radhakrishnan, T P

    2015-03-21

    The Langmuir-Blodgett (LB) technique is an elegant protocol for the steered assembly of metal nanoparticles, the deposition pressure serving as a convenient parameter to tune the assembly. Adsorption of nanoparticles from the subphase to the air-water interface can provide further control of the process. Citrate-stabilized gold nanoparticles in the aqueous subphase are shown to assemble into extended 2-dimensional chain networks following adsorption on a cationic amphiphile Langmuir film at the air-water interface. Kinetic investigations show that the process can be visualized as a surface-catalyzed reaction and explained in terms of the Langmuir-Hinshelwood mechanism. The LB deposition proves to be a unique route to capture the reaction product together with the amphiphile film. The deposition pressure is used to tune the density of nanoparticle chain networks in the LB film, and their optical extinction spectrum. The unusual blue shift of the extinction observed with increasing deposition pressure is attributed to the impact of the amphiphile monolayer environment. The extent of formation of the chain network is analyzed in terms of the pathways in the corresponding graph representation, and shown to scale with the deposition pressure. The current investigation highlights the use of a charged monolayer as a heterogeneous catalyst surface, provides fundamental insight into the kinetics of nanoparticle assembly at interfaces, and demonstrates the utility of the LB technique in tuning the formation of 2-dimensional nanoparticle chain networks.

  8. Characterisation of corn starch-based films reinforced with taro starch nanoparticles.

    Science.gov (United States)

    Dai, Lei; Qiu, Chao; Xiong, Liu; Sun, Qingjie

    2015-05-01

    Taro starch nanoparticles (TSNPs) obtained by hydrolysis with pullulanase and the recrystallisation of gelatinised starch were used as reinforcing agents in corn starch films. The influence of TSNPs contents (0.5-15%) on the physical, mechanical, thermal, and structural properties of starch films was investigated. An increase in the concentration of TSNPs led to a significant decrease in the water vapour permeability (WVP) of films. The addition of TSNPs increased the tensile strength (TS) of films from 1.11 MPa to 2.87 MPa. Compared with pure starch films, the surfaces of nanocomposite films became uneven. The onset temperature (To) and melting temperature (Tm) of films containing TSNPs were higher than those of pure starch films. The addition of TSNPs improved the thermal stability of starch films. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Film forming properties of silicon nanoparticles on SixNy coated substrates during excimer laser annealing

    Science.gov (United States)

    Caninenberg, M.; Kiesler, D.; Benson, N.; Schmechel, R.

    2017-05-01

    In this article we investigate the film forming properties of excimer laser annealed silicon nanoparticles on non-silicon substrates. In contrast to their film forming properties on oxide free silicon substrates, the nanoparticle thin film tends to dewet and form a porous μ-structure on the silicon nitrite covered glass model substrates considered for our investigation. This is quantified using a SEM study in conjunction with image processing software, in order to evaluate the μ-structure size and inter μ-structure distance in dependence of the laser energy density. To generalize our results, the film forming process is described using a COMSOL Multiphysics ® fluid dynamics model, which solves the Navier Stokes equation for incompressible Newtonian fluids. To account for the porous nanoparticle thin film structure in the simulation, an effective medium approach is used by applying a conservative level set one phase method to our mesh. This effort allows us to predict the Si melt film formation ranging from a porous Si μ-structure to a compact 100% density Si thin film in dependence of the substrate / thin film interaction, as well as the laser energy used for the nanoparticle processing.

  10. Silver Nanoparticles Embedded in Natural Rubber Films: Synthesis, Characterization, and Evaluation of In Vitro Toxicity

    Directory of Open Access Journals (Sweden)

    Caroline S. Danna

    2016-01-01

    Full Text Available Natural rubber (NR films can reduce silver metal ions forming embedded metal nanoparticles, a process that could be described as green synthesis. The NR films acting as a reactor generate and incorporate silver nanoparticles (AgNPs. Organic acids and amino acids play a crucial role in the formation of AgNPs. The plasmon extinction obtained in the UV-visible spectrum shows the presence of nanoparticles in the film after dipping the NR film into a solution of silver nitrate at 80°C. Electron microscopic analysis confirms the presence of AgNPs in the NR film and characterization by atomic force microscopy shows a change in the roughness of the NR film with AgNPs. In addition, our preliminary results from in vitro toxicity studies (MTT and comet assays of the NR films and NR films with silver nanoparticles (NR/Ag show that they are not toxic to cell lineage CHO-K1 (cells from the ovary of a Chinese hamster, an important result for potential medical applications.

  11. Chitosan/poly (vinyl alcohol) films containing ZnO nanoparticles and plasticizers

    Energy Technology Data Exchange (ETDEWEB)

    Vicentini, Denice S. [Mechanical Engineering Department, Federal University of Santa Catarina, University Campus, 88040-900 Florianopolis, Santa Catarina (Brazil); Smania, Arthur [Microbiology and Parasitology Department, Federal University of Santa Catarina, University Campus, 88040-900 Florianopolis, Santa Catarina (Brazil); Laranjeira, Mauro C.M., E-mail: mauro@qmc.ufsc.br [Mechanical Engineering Department, Federal University of Santa Catarina, University Campus, 88040-900 Florianopolis, Santa Catarina (Brazil); Chemistry Department, QUITECH, Federal University of Santa Catarina, University Campus, 88040-900 Florianopolis, Santa Catarina (Brazil)

    2010-05-10

    In this study ZnO nanoparticles were prepared by the Pechini method from a polyester by reacting citric acid with ethylene glycol in which the metal ions are dissolved, and incorporated into blend films of chitosan (CS) and poly (vinyl alcohol) (PVA) with different concentrations of polyoxyethylene sorbitan monooleate, Tween 80 (T80). These films were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), swelling degree, degradation of films in Hank's solution and the mechanical properties. Besides these characterizations, the antibacterial activity of the films was tested, and the films containing ZnO nanoparticles showed antibacterial activity toward the bacterial species Staphylococcus aureus. The observed antibacterial activity in the composite films prepared in this work suggests that they may be used as hydrophilic wound and burn dressings.

  12. Asymmetric photoelectric property of transparent TiO2 nanotube films loaded with Au nanoparticles

    International Nuclear Information System (INIS)

    Wang, Hui; Liang, Wei; Liu, Yiming; Zhang, Wanggang; Zhou, Diaoyu; Wen, Jing

    2016-01-01

    Highlights: • Highly transparent films of TiO 2 nanotube arrays were directly fabricated on FTO glasses. • Semitransparent TNT-Au composite films were obtained and exhibited excellent photoelectrocatalytic ability. • Back-side of TNT-Au composite films was firstly irradiated and tested to compare with front-side of films. - Abstract: Semitransparent composite films of Au loaded TiO 2 nanotubes (TNT-Au) were prepared by sputtering Au nanoparticles on highly transparent TiO 2 nanotubes films, which were fabricated directly on FTO glasses by anodizing the Ti film sputtered on the FTO glasses. Compared with pure TNT films, the prepared TNT-Au films possessed excellent absorption ability and high photocurrent response and improved photocatalytic activity under visible-light irradiation. It could be concluded that Au nanoparticles played important roles in improving the photoelectrochemical performance of TNT-Au films. Moreover, in this work, both sides of TNT-Au films were researched and compared owing to theirs semitransparency. It was firstly found that the photoelectric activity of TNT-Au composite films with back-side illumination was obviously superior to front-side illumination.

  13. XRD total scattering of the CZTS nanoparticle absorber layer for the thin film solar cells

    DEFF Research Database (Denmark)

    Symonowicz, Joanna; Jensen, Kirsten M. Ø.; Engberg, Sara Lena Josefin

    to revolutionize the solar energy market. However, to commercialize CZTS nanoparticle thin films, the efficiency issues must yet be resolved. In order to do so, it is vital to understand in detail their nanoscale atomic structure. CZTS crystallize in the kesterite structure, where Cu and Zn is distributed between......Cu2ZnSnS4 (CZTS) thin film solar cells are cheap, non-toxic and present an efficiency up to 9,2% [1]. They can be easily manufactured by the deposition of the nanoparticle ink as a thin film followed by a thermal treatment to obtain large grains [2]. Therefore, CZTS has the potential...

  14. Effect of silver nanoparticles on photo-induced reorientation of azo groups in polymer films

    International Nuclear Information System (INIS)

    Zhou Jingli; Yang Jianjun; Sun Youyi; Zhang Douguo; Shen Jing; Zhang Qijin; Wang Keyi

    2007-01-01

    A series of polymer films containing azo groups and silver nanoparticles were prepared. Photo-induced reorientation of the film was conducted under irradiation of polarized light with wavelength at 365 nm, 442 nm and 532 nm, respectively. The influence of the concentration of dopant silver on the reorientation of the azo groups was studied. An enhancement of about 50% for the reorientation rate and about 70% for the reorientation amplitude was achieved. From a comparison of the enhancement obtained by irradiating with three different light sources, it was realized that the mechanism for enhancement of reorientation of azo groups is due to plasmon resonance of silver nanoparticles doped in the polymer films

  15. Non-monotonic wetting behavior of chitosan films induced by silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Praxedes, A.P.P.; Webler, G.D.; Souza, S.T. [Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, AL (Brazil); Ribeiro, A.S. [Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, 57072-970 Maceió, AL (Brazil); Fonseca, E.J.S. [Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, AL (Brazil); Oliveira, I.N. de, E-mail: italo@fis.ufal.br [Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, AL (Brazil)

    2016-05-01

    Highlights: • The addition of silver nanoparticles modifies the morphology of chitosan films. • Metallic nanoparticles can be used to control wetting properties of chitosan films. • The contact angle shows a non-monotonic dependence on the silver concentration. - Abstract: The present work is devoted to the study of structural and wetting properties of chitosan-based films containing silver nanoparticles. In particular, the effects of silver concentration on the morphology of chitosan films are characterized by different techniques, such as atomic force microscopy (AFM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). By means of dynamic contact angle measurements, we study the modification on surface properties of chitosan-based films due to the addition of silver nanoparticles. The results are analyzed in the light of molecular-kinetic theory which describes the wetting phenomena in terms of statistical dynamics for the displacement of liquid molecules in a solid substrate. Our results show that the wetting properties of chitosan-based films are high sensitive to the fraction of silver nanoparticles, with the equilibrium contact angle exhibiting a non-monotonic behavior.

  16. The immobilization of titania nanoparticles on hyaluronan films and their photocatalytic properties

    International Nuclear Information System (INIS)

    Pasqui, Daniela; Atrei, Andrea; Barbucci, Rolando

    2009-01-01

    We have developed a method to bind titania nanoparticles onto hyaluronic films (HA) photoimmobilized on silanized glass. Titania nanoparticles were deposited on the HA films from commercially available dispersions by casting and dip-coating methods at various pH values. XPS was used to monitor the deposition of titania and to estimate the surface coverage of the nanoparticles. The topography of the titania-modified HA films was investigated by means of AFM. XPS results indicate that the titania surface coverage depends on the preparation method and the pH of the dispersion. We found that the maximum titania nanoparticle surface coverage was obtained by the casting method with the formation of aggregates and multilayers of particles. The titania surface coverage for the surfaces prepared by the dip-coating method is pH-dependent. The surfaces prepared at pH 2 show a surface coverage of 65% and a rather uniform distribution of particles. We found that titania nanoparticles are anchored in a stable way to the HA substrate in a phosphate buffer solution (PBS) and that the interaction between the HA and the titania is through the carbonyl group of carboxylates and amidic groups of the polymer. AFM images clearly show that titania nanoparticles are uniformly distributed over the HA films. By measuring the average diameter and the average height of the nanoparticles deposited on HA films it appears that the particles are partially embedded in the polysaccharide films. The results of the study on the photobleaching of methylene blue indicate that the characteristic photocatalytic activity of titania is maintained when the nanoparticles are anchored to the HA substrate.

  17. Entropy driven spontaneous formation of highly porous films from polymer-nanoparticle composites

    International Nuclear Information System (INIS)

    Korampally, Venumadhav; Yun, Minseong; Rajagopalan, Thiruvengadathan; Gangopadhyay, Keshab; Gangopadhyay, Shubhra; Dasgupta, Purnendu K

    2009-01-01

    Nanoporous materials have become indispensable in many fields ranging from photonics, catalysis and semiconductor processing to biosensor infrastructure. Rapid and energy efficient process fabrication of these materials is, however, nontrivial. In this communication, we describe a simple method for the rapid fabrication of these materials from colloidal dispersions of Polymethyl Silsesquioxane nanoparticles. Nanoparticle-polymer composites above the decomposition temperature of the polymer are examined and the entropic gain experienced by the nanoparticles in this rubric is harnessed to fabricate novel highly porous films composed of nanoparticles. Optically smooth, hydrophobic films with low refractive indices (as low as 1.048) and high surface areas (as high as 1325 m 2 g -1 ) have been achieved with this approach. In this communication we address the behavior of such systems that are both temperature and substrate surface energy dependent. The method is applicable, in principle, to a variety of nanoparticle-polymer systems to fabricate custom nanoporous materials.

  18. The influence of thin film grain size on the size of nanoparticles generated during UV femtosecond laser ablation of thin gold films

    International Nuclear Information System (INIS)

    Haustrup, N.; O’Connor, G.M.

    2013-01-01

    The upsurge in the number of thin film products has encouraged studies into every aspect of their fabrication and application. An additional source of industrial interest is the laser ablation of thin films to generate nanoparticles. This technique offers advantages over other fabrication methods, as no chemical pre-cursers are required, thereby giving rise to a pure product. The main disadvantage lies in the difficulty with controlling the size of the nanoparticles. This study aims to clarify the influence of the microstructure of a thin film on its optical properties and also to establish the size relationship between the film grain and the nanoparticles generated during laser ablation. A comprehensive sample set of Gold (Au) films with different grain sizes was achieved using different deposition rates, temperatures, film thicknesses (<100 nm) and substrates: Silica, Quartz and Sapphire. The microstructure of each film was analyzed using Atomic Force Microscopy (AFM). Single femtosecond laser pulses, above the ablation threshold fluence of each film, were applied to generate nanoparticles. Scanning Electron Microscopy (SEM) was used to image the re-deposited nanoparticles, from which the nanoparticle size distribution was established. Results confirm that the film microstructure is directly linked to the nanoparticles generated during laser ablation.

  19. Fabrication of Cu/Pd bimetallic nanostructures with high gas sorption ability towards development of LPG sensor

    Energy Technology Data Exchange (ETDEWEB)

    Jaiswal, Aashit Kumar [Department of Physics, University of Allahabad, Allahabad 211002, U.P. (India); Singh, Satyendra, E-mail: satyendra_nano84@rediffmail.com [Department of Physics, University of Allahabad, Allahabad 211002, U.P. (India); Singh, Archana [Department of Physics, University of Lucknow, Lucknow 226007, U.P. (India); Yadav, R.R. [Department of Physics, University of Allahabad, Allahabad 211002, U.P. (India); Tandon, Poonam [Department of Physics, University of Lucknow, Lucknow 226007, U.P. (India); Yadav, B.C. [Department of Applied Physics, School for Physical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, U.P. (India)

    2015-03-15

    A one-step synthesis of bimetallic Cu/Pd nanorods with rod's diameter ∼3 nm and their length in the range 10–15 nm is presented. The average size, size distribution, surface morphology and structure of the bimetallic Cu/Pd have been determined by transmission electron microscope (TEM), acoustic particle sizer (APS), scanning electron microscope (SEM) and X-ray diffraction (XRD), respectively. Further, thin films of bimetallic Cu/Pd nanostructures have been fabricated via spin-coating method. Fabricated films are, then, investigated for humidity and liquefied petroleum gas (LPG) sensors for the first time. The sensitivity and sensor response of the films towards the LPG are found better in comparison to the humidity. The investigated sensing parameters demonstrate that the fabricated LPG sensor using Cu/Pd bimetallic nanostructures is challenging for the detection of LPG at room temperature. - Highlights: • Fabrication of Cu/Pd meso-porous bimetallic thin film. • Cu/Pd nanostructures were characterized by SEM, TEM, APS and XRD. • Bimetallic nanostructures with smaller sizes and narrower size distributions. • First report on Cu/Pd bimetallic nanostructures as sensors. • Sensitivity of the sensor was simply enhanced by Cu-incorporation.

  20. Relating structural aspects of bimetallic Pt(3)Cr(1)/C nanoparticles to their electrocatalytic activity, stability, and selectivity in the oxygen reduction reaction.

    Science.gov (United States)

    Taufany, Fadlilatul; Pan, Chun-Jern; Chou, Hung-Lung; Rick, John; Chen, Yong-Siou; Liu, Din-Goa; Lee, Jyh-Fu; Tang, Mau-Tsu; Hwang, Bing-Joe

    2011-09-12

    Two methods were used to prepare bimetallic Pt(3)Cr(1)/C nanocatalysts with similar composition but different alloying extent (structure). We investigated how these differences in alloying extent affect the catalytic activity, stability and selectivity in the oxygen reduction reaction (ORR). One method, based on slow thermal decomposition of the Cr precursor at a rate that matches that of chemical reduction of the Pt precursor, allows fine control of the composition of the Pt(3)Cr(1)/C alloy, whereas the second approach, using the ethylene glycol method, results in considerable deviation (>25 %) from the projected composition. Consequently, these two methods lead to variations in the alloying extent that strongly influence the Pt d-band vacancy and the Pt electroactive surface area (Pt ESCA). This relationship was systematically evaluated by transmission electron microscopy, X-ray absorption near edge structure spectroscopy, and electrochemical analysis. The ORR activity depends on two effects that nullify each other, namely, the number of active Pt sites and their activity. The Pt-site activity is more dominant in governing the ORR activity. The selectivity of the nanocatalyst towards the ORR and the competitive methanol oxidation reaction (MOR) depend on these two effects acting in cooperation to give enhanced ORR activity with suppressed MOR. The number of active Pt sites is associated with the Pt ESCA value, while Pt-site activity is associated with the alloying extent and Pt d-band vacancy (electronic) effects. The presence of Cr atoms in Pt(3)Cr(1)/C enhances stability during electrochemical treatment. Overall, the Pt(3)Cr(1)/C catalyst prepared by controlled-composition synthesis was shown to be superior in ORR activity, selectivity and stability owing to its favorable alloying extent, Pt d-band vacancy, and Pt ESCA. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Tunnelling conductive hybrid films of gold nanoparticles and cellulose and their applications as electrochemical electrodes

    International Nuclear Information System (INIS)

    Liu, Zhiming; Wang, Xuefeng; Wu, Wenjian; Li, Mei

    2015-01-01

    Conductive hybrid films of metal nanoparticles and polymers have practical applications in the fields of sensing, microelectronics and catalysis, etc. Herein, we present the electrochemical availability of tunnelling conductive hybrid films of gold nanoparticles (GNPs) and cellulose. The hybrid films were provided with stable tunnelling conductive properties with 12 nm GNPs of 12.7% (in weight). For the first time, the conductive hybrid films were used as substrates of electrochemical electrodes to load calmodulin (CaM) proteins for sensing of calcium cations. The electrodes of hybrid films with 20 nm GNPs of 46.7% (in weight) exhibited stable electrochemical properties, and showed significant responses to calcium cations with concentrations as low as 10 −9 M after being loaded with CaM proteins. (paper)

  2. Biosynthesis of Silver Nanoparticles from Persimmon Byproducts and Incorporation in Biodegradable Sodium Alginate Thin Film.

    Science.gov (United States)

    Ramachandraiah, Karna; Gnoc, Nguyen Trong Bao; Chin, Koo Bok

    2017-10-01

    Fruit industrial wastes such as persimmon seed, peel, and calyx were used to synthesize silver nanoparticles (AgNPs) and their antioxidant activities were compared with byproduct powders having different granularities. The AgNPs were incorporated in sodium alginate thin films and transparency and mechanical properties of the films was analyzed. Persimmon byproduct AgNPs were characterized by ultraviolet-visible spectroscopy, dynamic light scattering, X-ray diffraction, energy-dispersive x-ray spectroscopy, and scanning electron microscopy. The byproduct AgNPs displayed higher antioxidant activities than powders of different granularities (P silver nanoparticles (AgNPs) which were incorporated in sodium alginate thin films. This study evaluated the antioxidant activities and mechanical properties of the films that could be useful in the manufacture of food packaging using biodegradable films. © 2017 Institute of Food Technologists®.

  3. Biosupported Bimetallic Pd Au Nanocatalysts for Dechlorination of Environmental Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    De Corte, S.; Fitts, J.; Hennebel, T.; Sabbe, T.; Bliznuk, V.; Verschuere, S.; van der Lelie, D.; Verstraete, W.; Boon, N.

    2011-08-30

    Biologically produced monometallic palladium nanoparticles (bio-Pd) have been shown to catalyze the dehalogenation of environmental contaminants, but fail to efficiently catalyze the degradation of other important recalcitrant halogenated compounds. This study represents the first report of biologically produced bimetallic Pd/Au nanoparticle catalysts. The obtained catalysts were tested for the dechlorination of diclofenac and trichloroethylene. When aqueous bivalent Pd(II) and trivalent Au(III) ions were both added to concentrations of 50 mg L{sup -1} and reduced simultaneously by Shewanella oneidensis in the presence of H{sub 2}, the resulting cell-associated bimetallic nanoparticles (bio-Pd/Au) were able to dehalogenate 78% of the initially added diclofenac after 24 h; in comparison, no dehalogenation was observed using monometallic bio-Pd or bio-Au. Other catalyst-synthesis strategies did not show improved dehalogenation of TCE and diclofenac compared with bio-Pd. Synchrotron-based X-ray diffraction, (scanning) transmission electron microscopy and energy dispersive X-ray spectroscopy indicated that the simultaneous reduction of Pd and Au supported on cells of S. oneidensis resulted in the formation of a unique bimetallic crystalline structure. This study demonstrates that the catalytic activity and functionality of possibly environmentally more benign biosupported Pd-catalysts can be improved by coprecipitation with Au.

  4. Nickel nanoparticles encapsulated in porous carbon and carbon nanotube hybrids from bimetallic metal-organic-frameworks for highly efficient adsorption of dyes

    DEFF Research Database (Denmark)

    Jin, Lina; Zhao, Xiaoshuang; Qian, Xinye

    2018-01-01

    Nickel nanoparticles encapsulated in porous carbon/carbon nanotube hybrids (Ni/PC-CNT) were successfully prepared by a facile carbonization process using Ni/Zn-MOF as the precursor. Distinct from previous studies, Ni/Zn-MOF precursors were prepared via a direct precipitation method at room...... temperature for only 5 min. After the carbonization, magnetic Ni nanoparticles were well embedded in the porous carbon and carbon nanotube. The obtained Ni/PC-CNT composites had a high surface area (999 m(2) g(-1) Marge pore volume (0.86 cm(3) g(-1)) and well-developed graphitized wall. The Ni...

  5. Magnetic Composite Thin Films of FexOy Nanoparticles and Photocrosslinked Dextran Hydrogels

    International Nuclear Information System (INIS)

    Brunsen, Annette; Utech, Stefanie; Maskos, Michael; Knoll, Wolfgang; Jonas, Ulrich

    2012-01-01

    Magnetic hydrogel composites are promising candidates for a broad field of applications from medicine to mechanical engineering. Here, surface-attached composite films of magnetic nanoparticles (MNP) and a polymeric hydrogel (HG) were prepared from magnetic iron oxide nanoparticles and a carboxymethylated dextran with photoreactive benzophenone substituents. A blend of the MNP and the dextran polymer was prepared by mixing in solution, and after spin-coating and drying the blend film was converted into a stable MNP–HG composite by photocrosslinking through irradiation with UV light. The bulk composite material shows strong mobility in a magnetic field, imparted by the MNPs. By utilizing a surface layer of a photoreactive adhesion promoter on the substrates, the MNP–HG films were covalently immobilized during photocrosslinking. The high stability of the composite was documented by rinsing experiments with UV–Vis spectroscopy, while surface plasmon resonance and optical waveguide mode spectroscopy was employed to investigate the swelling behavior in dependence of the nanoparticle concentration, the particle type, and salt concentration. - Highlights: ► blending of iron oxide nanoparticles with photocrosslinkable carboxymethyldextran. ► UV irradiation of blend yields surface-attached, magnetic hydrogel films. ► film characterization by surface plasmon resonance/optical waveguide spectroscopy. ► swelling decreases with increasing nanoparticle content. ► swelling decreases with increasing NaCl salt concentration in the aqueous medium.

  6. Preparation and electrochemical properties of gold nanoparticles containing carbon nanotubes-polyelectrolyte multilayer thin films

    International Nuclear Information System (INIS)

    Yu Aimin; Zhang Xing; Zhang Haili; Han, Deyan; Knight, Allan R.

    2011-01-01

    Highlights: → Gold nanoparticles containing carbon nanotubes-polyelectrolyte multilayer thin films were prepared via layer-by-layer self-assembly technique. → The electron transfer behaviour of the hybrid thin films were investigated using an electrochemical probe. → The resulting thin films exhibited an electrocatalytic activity towards the oxidation of nitric oxide. - Abstract: Multi-walled carbon nanotubes (MWCNT)/polyelectrolyte (PE) hybrid thin films were fabricated by alternatively depositing negatively charged MWCNT and positively charged (diallyldimethylammonium chloride) (PDDA) via layer-by-layer (LbL) assembly technique. The stepwise growth of the multilayer films of MWCNT and PDDA was characterized by UV-vis spectroscopy. Scanning electron microscopy (SEM) images indicated that the MWCNT were uniformly embedded in the film to form a network and the coverage density of MWCNT increased with layer number. Au nanoparticles (NPs) could be further adsorbed onto the film to form PE/MWCNT/Au NPs composite films. The electron transfer behaviour of multilayer films with different compositions were studied by cyclic voltammetry using [Fe(CN) 6 ] 3-/4- as an electrochemical probe. The results indicated that the incorporation of MWCNT and Au NPs not only greatly improved the electronic conductivity of pure polyelectrolyte films, but also provided excellent electrocatalytic activity towards the oxidation of nitric oxide (NO).

  7. The effects of Fe2O3 nanoparticles on MgB2 superconducting thin films

    International Nuclear Information System (INIS)

    Koparan, E.T.; Sidorenko, A.; Yanmaz, E.

    2013-01-01

    Full text: Since the discovery of superconductivity in binary MgB 2 compounds, extensive studies have been carried out because of its excellent properties for technological applications, such as high transition temperature (T c = 39 K), high upper critical field (H c2 ), high critical current density (J c ). Thin films are important for fundamental research as well as technological applications of any functional materials. Technological applications primarily depend on critical current density. The strong field dependence of J c for MgB 2 necessitates an enhancement in flux pinning performance in order to improve values in high magnetic fields. An effective way to improve the flux pinning is to introduce flux pinning centers into MgB 2 through a dopant having size comparable to the coherence length of MgB 2 . In this study, MgB 2 film with a thickness of about 600 nm was deposited on the MgO (100) single crystal substrate using a 'two-step' synthesis technique. Firstly, deposition of boron thin film was carried out by rf magnetron sputtering on MgO substrates and followed by a post deposition annealing at 850 degrees Celsius in magnesium vapour. In order to investigate the effect of Fe 2 O 3 nanoparticles on the structural and magnetic properties of films, MgB 2 films were coated with different concentrations of Fe 2 O 3 nanoparticles by a spin coating process. The effects of different concentrations of ferromagnetic Fe 2 O 3 nanoparticles on superconducting properties of obtained films were carried out by using structural (XRD, SEM, AFM), electrical (R-T) and magnetization (M-H, M-T and AC Susceptibility) measurements. It was calculated that anisotropic coefficient was about γ = 1.2 and coherence length of 5 nm for the uncoated film. As a result of coherence length, the appropriate diameters of Fe 2 O 3 nanoparticles were found to be 10 nm, indicating that these nanoparticles served as the pinning centers. Based on the data obtained from this study, it can be

  8. Environment-dependent photochromism of silver nanoparticles interfaced with metal-oxide films

    International Nuclear Information System (INIS)

    Fu, Shencheng; Sun, Shiyu; Zhang, Xintong; Zhang, Cen; Zhao, Xiaoning; Liu, Yichun

    2015-01-01

    Graphical abstract: - Highlights: • We prepared silver/mental-oxide nanocomposite films by physical sputtering technology to investigate the environment-dependent photo-dissolution of silver nanoparticles. • We built up an airtight and in situ monitorable system to measure photochromism of different films in various atmospheres. • Silver nanoparticles were found to be more easily photo-dissolved on the n-type metal oxide films compared with that on the p-type one, conductor and insulator. • Oxygen and humidity were verified to accelerate the photochromism of silver nanoparticles. - Abstract: Different metal-oxide films were fabricated by radio frequency magnetron sputtering. Further, a layer of silver nanoparticles (NPs) was deposited on the surface of the substrate by physical sputtering. Photochromism of the silver/metal-oxide nanocomposite films were investigated in situ under the irradiation of a linearly-polarized green laser beam (532 nm). Silver NPs were found to be easily photo-dissolved on the n-type metal-oxide films. By changing experimental conditions, it was also verified that both oxygen and humidity accelerate the photochromism of silver NPs. The corresponding micro-mechanism on charge separation and Ag + -ions mobility was also discussed. These results provided theoretical basis for the application of silver NPs in biological, chemical and medical areas.

  9. Preparation and antibacterial properties of hybrid-zirconia films with silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Azocar, Ignacio, E-mail: manuel.azocar@usach.cl [Departamento de Quimica de los Materiales, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH, Avenida Bernardo O' Higgins 3363, Casilla 40, Correo 33, Santiago (Chile); Vargas, Esteban [Facultad de Ingenieria, Departamento de Metalurgia, Universidad de Santiago de Chile, USACH (Chile); Duran, Nicole [Departamento de Quimica de los Materiales, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH, Avenida Bernardo O' Higgins 3363, Casilla 40, Correo 33, Santiago (Chile); Arrieta, Abel [Departamento de Biologia, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH (Chile); Gonzalez, Evelyn [Departamento de Quimica de los Materiales, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH, Avenida Bernardo O' Higgins 3363, Casilla 40, Correo 33, Santiago (Chile); Facultad de Ingenieria, Departamento de Metalurgia, Universidad de Santiago de Chile, USACH (Chile); Departamento de Biologia, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH (Chile); Departamento de Quimica Farmacologica y Toxicologica, Facultad de Ciencias Quimicas, Universidad de Chile, Sergio Livingstone Polhammer 1007, Santiago (Chile); and others

    2012-11-15

    The antimicrobial effect of incorporating silver nanoparticles (AgNps) into zirconia matrix-polyether glycol was studied. AgNps of 4-6 nm in size were synthesized using the inverse micelles method, and different doses of metallic nanoparticles were incorporated into zirconia-polyether glycol mixtures during the ageing procedure. Atomic force microscopy (AFM) of the modified hybrid film showed a homogenous distribution of 20-80 nm diameter AgNps, indicating agglomeration of these structures during film modification; such agglomerations were greater when increasing the dosage of the colloidal system. The AgNps-hybrid films showed higher antimicrobial activity against Gram-positive bacteria than for Gram-negative bacteria. Hybrid films prepared with dioctyl sodium sulfosuccinate (AOT) stabilized AgNps presented enhanced antibacterial activity compared to that obtained through the addition of a high AgNO{sub 3} concentration (0.3 wt%). -- Graphical abstract: Atomic Force Micrographs, top and cross section view, showing silver nanoparticles embedded in a zirconia-polyether glycol hybrid film. Highlights: Black-Right-Pointing-Pointer Antibacterial activity of films (zirconia-polyether glycol) modified with silver nanoparticles. Black-Right-Pointing-Pointer Biofilm formation is prevented. Black-Right-Pointing-Pointer High sensibility against gram positive bacteria.

  10. Preparation and antibacterial properties of hybrid-zirconia films with silver nanoparticles

    International Nuclear Information System (INIS)

    Azócar, Ignacio; Vargas, Esteban; Duran, Nicole; Arrieta, Abel; González, Evelyn

    2012-01-01

    The antimicrobial effect of incorporating silver nanoparticles (AgNps) into zirconia matrix–polyether glycol was studied. AgNps of 4–6 nm in size were synthesized using the inverse micelles method, and different doses of metallic nanoparticles were incorporated into zirconia–polyether glycol mixtures during the ageing procedure. Atomic force microscopy (AFM) of the modified hybrid film showed a homogenous distribution of 20–80 nm diameter AgNps, indicating agglomeration of these structures during film modification; such agglomerations were greater when increasing the dosage of the colloidal system. The AgNps-hybrid films showed higher antimicrobial activity against Gram-positive bacteria than for Gram-negative bacteria. Hybrid films prepared with dioctyl sodium sulfosuccinate (AOT) stabilized AgNps presented enhanced antibacterial activity compared to that obtained through the addition of a high AgNO 3 concentration (0.3 wt%). -- Graphical abstract: Atomic Force Micrographs, top and cross section view, showing silver nanoparticles embedded in a zirconia–polyether glycol hybrid film. Highlights: ► Antibacterial activity of films (zirconia–polyether glycol) modified with silver nanoparticles. ► Biofilm formation is prevented. ► High sensibility against gram positive bacteria.

  11. Diazonium-derived aryl films on gold nanoparticles: evidence for a carbon-gold covalent bond.

    Science.gov (United States)

    Laurentius, Lars; Stoyanov, Stanislav R; Gusarov, Sergey; Kovalenko, Andriy; Du, Rongbing; Lopinski, Gregory P; McDermott, Mark T

    2011-05-24

    Tailoring the surface chemistry of metallic nanoparticles is generally a key step for their use in a wide range of applications. There are few examples of organic films covalently bound to metal nanoparticles. We demonstrate here that aryl films are formed on gold nanoparticles from the spontaneous reduction of diazonium salts. The structure and the bonding of the film is probed with surface-enhanced Raman scattering (SERS). Extinction spectroscopy and SERS show that a nitrobenzene film forms on gold nanoparticles from the corresponding diazonium salt. Comparison of the SERS spectrum with spectra computed from density functional theory models reveals a band characteristic of a Au-C stretch. The observation of this stretch is direct evidence of a covalent bond. A similar band is observed in high-resolution electron energy loss spectra of nitrobenzene layers on planar gold. The bonding of these types of films through a covalent interaction on gold is consistent with their enhanced stability observed in other studies. These findings provide motivation for the use of diazonium-derived films on gold and other metals in applications where high stability and/or strong adsorbate-substrate coupling are required.

  12. Achieving 3-D Nanoparticle Assembly in Nanocomposite Thin Films via Kinetic Control

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jingyu; Xiao, Yihan; Xu, Ting [UCB

    2017-02-20

    Nanocomposite thin films containing well-ordered nanoparticle (NP) assemblies are ideal candidates for the fabrication of metamaterials. Achieving 3-D assembly of NPs in nanocomposite thin films is thermodynamically challenging as the particle size gets similar to that of a single polymer chain. The entropic penalties of polymeric matrix upon NP incorporation leads to NP aggregation on the film surface or within the defects in the film. Controlling the kinetic pathways of assembly process provides an alternative path forward by arresting the system in nonequilibrium states. Here, we report the thin film 3-D hierarchical assembly of 20 nm NPs in supramolecules with a 30 nm periodicity. By mediating the NP diffusion kinetics in the supramolecular matrix, surface aggregation of NPs was suppressed and NPs coassemble with supramolecules to form new 3-D morphologies in thin films. The present studies opened a viable route to achieve designer functional composite thin films via kinetic control.

  13. Fibers and Conductive Films Using Silver Nanoparticles and Nanowires by Near-Field Electrospinning Process

    Directory of Open Access Journals (Sweden)

    Cheng-Tang Pan

    2015-01-01

    Full Text Available The silver nanowires (AgNWs and silver nanoparticles (AgNPs were synthesized. With near-field electrospinning (NFES process, fibers and thin films with AgNPs and AgNWs were fabricated. In the NFES process, 10 k voltage was applied and the AgNPs and AgNWs fibers can be directly orderly collected without breaking and bending. Then, the characteristics of the fibers were analyzed by four-point probe and EDS. The conductive film was analyzed. When the thickness of films with AgNWs and AgNPs was 1.6 µm, the sheet resistance of films was 0.032 Ω/sq which was superior to that of the commercial ITO. The transmissivity of films was analyzed. The transmissivity was inversely proportional to sheet resistance of the films. In the future, the fibers and films can be used as transparent conductive electrodes.

  14. Enhanced tribological behavior of anodic films containing SiC and PTFE nanoparticles on Ti6Al4V alloy

    International Nuclear Information System (INIS)

    Li, Songmei; Zhu, Mengqi; Liu, Jianhua; Yu, Mei; Wu, Liang; Zhang, Jindan; Liang, Hongxing

    2014-01-01

    Highlights: • An environmental friendly sodium tartrate (C 4 O 6 H 4 Na 2 ) electrolyte is used. • SiC and PTFE nanoparticles reduce friction coefficient of composite films. • SiC and PTFE nanoparticles demonstrate a favorable synergistic effect on improving tribological properties of composite films. • Lubricating mechanisms of SiC and PTFE nanoparticles are discussed. - Abstract: Anodic films containing SiC and polytetrafluoroethylene (PTFE) nanoparticles were successfully fabricated on Ti6Al4V alloy by using anodic oxidation method in an environmental friendly electrolyte. The morphology, structure and composition of the films were studied with the scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The results showed that the film contained a layered structure and have a surface full of petaloid bulges, which was totally different from the common anodic oxide film of the porous kind. The tribological properties of the films were investigated with dry friction tests in terms of the friction coefficient, wear rate and the morphology of worn surfaces. The results indicated that the SiC/PTFE composite film exhibited much better anti-wear and anti-friction performances than that of the SiC composite film, the PTFE composite film and the ordinary film without nanoparticles. The SiC/PTFE composite film has friction coefficient of 0.1 and wear rate of 20.133 mg/m, which was decreased respectively by 80% and 44.5% compared with that of the ordinary film. The lubricating mechanisms of the composite film containing SiC and PTFE nanoparticles were discussed. PTFE nanoparticles could lead to the formation of lubricating layer while SiC nanoparticles inside the lubricating layer turned sliding friction to rolling friction

  15. Coulomb blockade effects in silicon nanoparticles embedded in thin silicon-rich oxide films.

    Science.gov (United States)

    Morales-Sánchez, A; Barreto, J; Domínguez, C; Aceves, M; Yu, Z; Luna-López, J A

    2008-04-23

    Silicon nanoparticles (Si-nps) embedded in silicon oxide matrix were created using silicon-rich oxide (SRO) films deposited by low pressure chemical vapour deposition (LPCVD) followed by a thermal annealing at 1100 °C. The electrical properties were studied using metal-oxide-semiconductor (MOS) structures with the SRO films as the active layers. Capacitance versus voltage (C-V) exhibited downward and upward peaks in the accumulation region related to charge trapping and de-trapping effects of Si-nps, respectively. Current versus voltage (I-V) measurements showed fluctuations in the form of spike-like peaks and a clear staircase at room temperature. These effects have been related to the Coulomb blockade (CB) effect in the silicon nanoparticles embedded in SRO films. The observed quantum effects are due to 1 nm nanoparticles.

  16. Facile nucleation of gold nanoparticles on graphene-based thin films from Au144 molecular precursors

    Science.gov (United States)

    Venter, Andrei; Hesari, Mahdi; Shafiq Ahmed, M.; Bauld, Reg; Workentin, Mark S.; Fanchini, Giovanni

    2014-04-01

    We demonstrate a facile and cost effective method to obtain gold nanoparticles on graphene by dispersing Au144 molecular nanoclusters by spin coating them in thin layers on graphene-based films and subsequent annealing in a controlled atmosphere. The graphene-based thin films used for these experiments are prepared by solvent-assisted exfoliation of graphite in water in the presence of ribonucleic acid as a surfactant and by subsequent vacuum filtration of the resulting graphene-containing suspensions. Not only is this method easily reproducible, but it leads to gold nanoparticles that are not dependent in size on the number of graphene layers beneath them. This is a distinct advantage over other methods. Plasmonic effects have been detected in our gold nanoparticle-decorated graphene layers, indicating that these thin films may be useful in applications such as plasmonic solar cells and optical memory devices.

  17. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films.

    KAUST Repository

    Kim, Jin Young

    2015-07-13

    Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles--yet size-effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector.

  18. High resolution selective multilayer laser processing by nanosecond laser ablation of metal nanoparticle films

    International Nuclear Information System (INIS)

    Ko, Seung H.; Pan Heng; Hwang, David J.; Chung, Jaewon; Ryu, Sangil; Grigoropoulos, Costas P.; Poulikakos, Dimos

    2007-01-01

    Ablation of gold nanoparticle films on polymer was explored using a nanosecond pulsed laser, with the goal to achieve feature size reduction and functionality not amenable with inkjet printing. The ablation threshold fluence for the unsintered nanoparticle deposit was at least ten times lower than the reported threshold for the bulk film. This could be explained by the combined effects of melting temperature depression, lower conductive heat transfer loss, strong absorption of the incident laser beam, and the relatively weak bonding between nanoparticles. The ablation physics were verified by the nanoparticle sintering characterization, ablation threshold measurement, time resolved ablation plume shadowgraphs, analysis of ablation ejecta, and the measurement and calculation of optical properties. High resolution and clean feature fabrication with small energy and selective multilayer processing are demonstrated

  19. A comparative study of the adsorption and hydrogenation of acrolein on Pt(1 1 1), Ni(1 1 1) film and Pt Ni Pt(1 1 1) bimetallic surfaces

    Science.gov (United States)

    Murillo, Luis E.; Chen, Jingguang G.

    In this study we have investigated the reaction pathways for the decomposition and hydrogenation of acrolein (CH 2dbnd CH-CH dbnd O) on Ni/Pt(1 1 1) surfaces under ultra-high vacuum (UHV) conditions using temperature programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS). While gas-phase hydrogenation products are not observed from clean Pt(1 1 1), the subsurface Pt-Ni-Pt(1 1 1), with Ni residing below the first layer of Pt, is active for the self-hydrogenation of the C dbnd O bond to produce unsaturated alcohol (2-propenol) and the C dbnd C bond to produce saturated aldehyde (propanal), with the latter being the main hydrogenation product without the consecutive hydrogenation to saturated alcohol. For a thick Ni(1 1 1) film prepared on Pt(1 1 1), the self-hydrogenation yields for both products are lower than that from the Pt-Ni-Pt(1 1 1) surface. The presence of pre-adsorbed hydrogen further enhances the selectivity toward C dbnd O bond hydrogenation on the Pt-Ni-Pt(1 1 1) surface. In addition, HREELS studies of the adsorption of the two hydrogenation products, 2-propenol and propanal, are performed on the Pt-Ni-Pt(1 1 1) surface to identify the possible surface intermediates during the reaction of acrolein. The results presented here indicate that the hydrogenation activity and selectivity of acrolein on Pt(1 1 1) can be significantly modified by the formation of the bimetallic surfaces.

  20. Effect of Core–Shell Ceria/Poly(vinylpyrrolidone (PVP Nanoparticles Incorporated in Polymer Films and Their Optical Properties

    Directory of Open Access Journals (Sweden)

    Woosuck Shin

    2013-05-01

    Full Text Available We fabricated hybrid films of pentaerythritol triacrylate (PETA with core–shell ceria/poly(vinylpyrrolidone (PVP nanoparticles, which consist of cerium oxide as the core and PVP as the shell, and investigated the film optical properties. In this study, we used ceria/PVP nanoparticles with average diameters of 37, 49 and 91 nm. We obtained translucent films consisting of PETA with core–shell ceria/PVP nanoparticles. The core–shell ceria/PVP nanoparticles can reduce the transmittance of near-ultraviolet light. The transmittance of visible light and haze values depends not only on the thickness of the films, but also on the average diameter of the nanoparticles. A SEM observation and the optical analyses prove that the core–shell ceria/PVP nanoparticles do not aggregate into the PETA matrix.

  1. Physicochemical and antifungal properties of bio-nanocomposite film based on gelatin-chitin nanoparticles.

    Science.gov (United States)

    Sahraee, Samar; Milani, Jafar M; Ghanbarzadeh, Babak; Hamishehkar, Hamed

    2017-04-01

    The gelatin-based nanocomposite films containing chitin nanoparticles (N-chitin) with concentrations of 0, 3, 5 and 10% were prepared and their physical, thermal and anti-microbial properties were investigated. Scanning electron microscopy (SEM) micrographs showed that N-chitin size distribution was around 60-70nm which dispersed appropriately at low concentration in gelatin matrix. The results showed that incorporation of N-chitin significantly influenced apparent color and transparency of the gelatin films. The reduced water vapor permeability (WVP) and solubility and higher surface hydrophobicity of the nanocomposite films were obtained by enhancing N-chitin concentration in film formulation. The use of N-chitin up to 5% concentration in the gelatin based nanocomposite film led to improved mechanical properties. Also, the results of differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) confirmed improved stability of nanocomposite films against melting and degradation at high temperatures in comparison to neat gelatin film. The well compatibility of chitin nanoparticles with gelatin polymer was concluded from Fourier transform infrared (FTIR) spectra and X-ray diffraction (XRD) plots. Finally, the gelatin based nanocomposite films had anti-fungal properties against Aspergillus niger in the contact surface zone. Increasing the concentration of N-chitin up to 5% enlarged inhibition zone diameter, but the nanocomposite film containing 10% N-chitin showed smaller inhibition zone. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Hydrothermal Synthesis and Processing of Barium Titanate Nanoparticles Embedded in Polymer Films.

    Science.gov (United States)

    Toomey, Michael D; Gao, Kai; Mendis, Gamini P; Slamovich, Elliott B; Howarter, John A

    2015-12-30

    Barium titanate nanoparticles embedded in flexible polymer films were synthesized using hydrothermal processing methods. The resulting films were characterized with respect to material composition, size distribution of nanoparticles, and spatial location of particles within the polymer film. Synthesis conditions were varied based on the mechanical properties of the polymer films, ratio of polymer to barium titanate precursors, and length of aging time between initial formulations of the solution to final processing of nanoparticles. Block copolymers of poly(styrene-co-maleic anhydride) (SMAh) were used to spatially separate titanium precursors based on specific chemical interactions with the maleic anhydride moiety. However, the glassy nature of this copolymer restricted mobility of the titanium precursors during hydrothermal processing. The addition of rubbery butadiene moieties, through mixing of the SMAh with poly(styrene-butadiene-styrene) (SBS) copolymer, increased the nanoparticle dispersion as a result of greater diffusivity of the titanium precursor via higher mobility of the polymer matrix. Additionally, an aminosilane was used as a means to retard cross-linking in polymer-metalorganic solutions, as the titanium precursor molecules were shown to react and form networks prior to hydrothermal processing. By adding small amounts of competing aminosilane, excessive cross-linking was prevented without significantly impacting the quality and composition of the final barium titanate nanoparticles. X-ray diffraction and X-ray photoelectron spectroscopy were used to verify nanoparticle compositions. Particle sizes within the polymer films were measured to be 108 ± 5 nm, 100 ± 6 nm, and 60 ± 5 nm under different synthetic conditions using electron microscopy. Flexibility of the films was assessed through measurement of the glass transition temperature using dynamic mechanical analysis. Dielectric permittivity was measured using an impedance analyzer.

  3. Controlled surface segregation leads to efficient coke-resistant nickel/platinum bimetallic catalysts for the dry reforming of methane

    KAUST Repository

    Li, Lidong

    2015-02-03

    Surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. The evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core-shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. These catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure. The reform of reforming: A series of alumina-supported Ni/Pt bimetallic nanoparticles (NPs) with controlled surface composition and structure are prepared. Remarkable surface segregation for these bimetallic NPs is observed upon thermal treatment. These bimetallic NPs are active catalysts for CO2 reforming of CH4, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.

  4. Influence of Heat Treatment on the Morphologies of Copper Nanoparticles Based Films by a Spin Coating Method

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2017-01-01

    Full Text Available We have investigated the influence of heat treatment on the morphologies of copper nanoparticles based films on glass slides by a spin coating method. The experiments show that heat treatment can modify the sizes and morphologies of copper nanoparticles based films on glass slides. We suggest that through changing the parameters of heat treatment process may be helpful to vary the scattering and absorbing intensity of copper nanoparticles when used in energy harvesting/conversion and optical devices.

  5. Self-ordering of nanoparticles in magneto-organic composite films

    Science.gov (United States)

    Theis-Bröhl, Katharina; Wolff, Maximilian; Ennen, Inga; Dewhurst, Charles D.; Hütten, Andreas; Toperverg, Boris P.

    2008-10-01

    A combination of polarized neutron reflectometry and grazing incidence small-angle neutron scattering has been employed to deduce the structural and magnetic parameters of cobalt-oleyl amine nanocomplexes in thin films. It is demonstrated that inside the film the nanoparticles are self-organized into a three-dimensional paracrystallinelike lattice with the positional order well defined over a few interparticle spacings. Joint evaluation of the data elucidates the size of the saturated Co core and the CoO shell of the nanoparticles.

  6. Biodegradable Starch/Copolyesters Film Reinforced with Silica Nanoparticles: Preparation and Characterization

    Science.gov (United States)

    Lima, Roberta A.; Oliveira, Rene R.; Wataya, Célio H.; Moura, Esperidiana A. B.

    Biodegradable starch/copolyesters/silica nanocomposite films were prepared by melt extrusion, using a twin screw extruder machine and blown extrusion process. The influence of the silica nanoparticle addition on mechanical and thermal properties of nanocomposite films was investigated by tensile tests; X-rays diffraction (XRD), differential scanning calorimetry (DSC) and Scanning electron microscopy (SEM) analysis and the correlation between properties was discussed. The results showed that incorporation of 2 % (wt %) of SiO2 nanoparticle in the blend matrix of PBAT/Starch, resulted in a gain of mechanical properties of blend.

  7. Highly dispersible diamond nanoparticles for pretreatment of diamond films on Si substrate

    Science.gov (United States)

    Zhao, Shenjie; Huang, Jian; Zhou, Xinyu; Ren, Bing; Tang, Ke; Xi, Yifan; Wang, Lin; Wang, Linjun; Lu, Yicheng

    2018-03-01

    High quality diamond film on Si substrate was synthesized by coating diamond nanoparticles prepared by polyglycerol grafting (ND-PG) dispersion as pre-treatment method. Transmission electron microscope indicates that ND-PG is much more dispersible than untreated nanoparticles in organic solvents. The surface morphology was characterized by scanning electron microscope while atomic force microscope was conducted to measure the surface roughness. Microstructure properties were carried out by Raman spectroscopy and X-ray diffraction. The results revealed an increase in nucleation density, an acceleration of growth rate and an improvement of film crystalline quality by using spin-coating ND-PG pretreatment.

  8. Simulation study of depositing the carbon film on nanoparticles in the magnetized methane plasma

    Science.gov (United States)

    Mohammadzadeh, Hosein; Pourali, Nima; Ebadi, Zahra

    2018-03-01

    Plasma coating of nanoparticles in low-temperature magnetized methane plasma is studied by a simulation approach. To this end, by using the global model, the electron temperature and concentration of different species considered in this plasma are determined in the center of a capacitively coupled discharge. Then, the plasma-wall transition region in the presence of an oblique magnetic field is simulated by the multi-component fluid description. Nanoparticles with different radii are injected into the transition region and surface deposition and heating models, as well as dynamics and charging models, are employed to examine the coating process. The results of the simulation show that the non-spherical growth of nanoparticles is affected by the presence of the magnetic field, as with passing time, an oscillating increase is seen in the thickness of the film deposited on nanoparticles. Also, it is shown that the uniformity of the deposited film is dependent on the rotation velocity of nanoparticles. Generally, the obtained results imply that the sphericity of nanoparticles and uniformity of the film coated on them are controllable by the magnitude and orientation of the magnetic field.

  9. Resonant photothermal laser processing of hybrid gold/titania nanoparticle films

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Lina; Franzka, Steffen; Dzialkowski, Kevin [Fakultät für Chemie, Universität Duisburg-Essen, 45117 Essen (Germany); Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg (Germany); Hardt, Sebastian; Wiggers, Hartmut [Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg (Germany); Institut für Verbrennung und Gasdynamik, Universität Duisburg-Essen, 47048 Duisburg (Germany); Reichenberger, Sven [Fakultät für Chemie, Universität Duisburg-Essen, 45117 Essen (Germany); Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg (Germany); Institut für Lacke und Oberflächenchemie, Hochschule Niederrhein, 47798 Krefeld (Germany); Wagener, Philipp [Fakultät für Chemie, Universität Duisburg-Essen, 45117 Essen (Germany); Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg (Germany); Hartmann, Nils, E-mail: nils.hartmann@uni-due.de [Fakultät für Chemie, Universität Duisburg-Essen, 45117 Essen (Germany); Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg (Germany)

    2015-05-01

    Graphical abstract: - Highlights: • Photothermal processing of TiO{sub 2} and hybrid Au/TiO{sub 2} nanoparticles using continuous-wave lasers is demonstrated. • Processing of TiO{sub 2} nanoparticles at 355 nm results in a transition from anatase to rutile. • Decoration of TiO{sub 2} nanoparticles with Au nanoparticles results in an increased absorbance in the visible range. • Hybrid Au/TiO{sub 2} nanoparticles can be processed at 355 nm and 532 nm in a large laser parameter window. • Processing of hybrid Au/TiO{sub 2} nanoparticles at 532 nm can be carried out at low laser powers and short laser pulse lengths. - Abstract: Photothermal processing of thin anatase TiO{sub 2} and hybrid Au/anatase TiO{sub 2} nanoparticle films on glass supports is investigated using continuous-wave microfocused lasers at λ = 355 nm and λ = 532 nm. UV/Vis spectroscopy, Raman spectroscopy, optical microscopy, atomic force microscopy and scanning electron microscopy are used for characterization. Processing of TiO{sub 2} nanoparticle films is feasible at λ = 355 nm only. In contrast, the addition of Au nanoparticles enhances the overall absorbance of the material in the visible range and enables processing at both wavelengths, i.e. at λ = 355 nm and λ = 532 nm. Generally, laser heating induces a transition from anatase to rutile. The modification degree increases with increasing laser power and laser irradiation time. Resonant laser processing of hybrid Au/TiO{sub 2}-mesoporous films provide promising perspectives in various applications, e.g. in photovoltaics, where embedded nanoparticulate Au could be exploited to enhance light trapping.

  10. Spectroelectrochemical and morphological studies of the ageing of silver nanoparticles embedded in ultra-thin perfluorinated sputter deposited films

    Energy Technology Data Exchange (ETDEWEB)

    Ebbert, C., E-mail: ebbert@tc.upb.de [University of Paderborn, Faculty of Natural Science, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098 Paderborn (Germany); Alissawi, N. [Institute for Materials Science, Christian-Albrechts University at Kiel, Kaiserstr. 2, 24143 Kiel (Germany); Somsen, C.; Eggeler, G. [Institute of Materials, Department of Mechanical Engineering, Ruhr-University Bochum, Universitaetst. 150, 44780 Bochum (Germany); Strunskus, T.; Faupel, F. [Institute for Materials Science, Christian-Albrechts University at Kiel, Kaiserstr. 2, 24143 Kiel (Germany); Grundmeier, G. [University of Paderborn, Faculty of Natural Science, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098 Paderborn (Germany)

    2014-11-28

    This paper focuses on the investigation of the ageing behaviour of silver nanoparticle containing polytetrafluoroethylene thin films during exposure to phosphate buffer solution (pH = 7.5). In order to investigate the effect of the electrical connection between the silver nanoparticles via a conductive substrate, two kinds of composite films were compared. One model where the nanoparticles are directly deposited on an inert conducting substrate and then covered by an ultra-thin polytetrafluoroethylene like film. In the second case a polytetrafluoroethylene/silver nanoparticle/polytetrafluoroethylene sandwich film was prepared on the same substrate to prevent electrical connection of the silver nanoparticles. Degradation was followed in-situ by means of the combination of ultraviolet–visible spectroscopy and electrochemical impedance spectroscopy. In the case of electrically connected nanoparticles electrochemical Ostwald ripening took place, while this process was not observed for the insulated nanoparticles. The electrochemical impedance spectroscopy studies allowed for the parallel study of the correlated loss of barrier properties. Transmission electron microscopy images of both composite films confirmed the results obtained by means of the in situ electrochemical ultraviolet–visible studies. - Highlights: • Nanoparticle in polymer films could be analysed by a spectroelectrochemical approach. • Transmission electron microscopy analysis proved an Ostwald-ripening process. • Embedding of the silver nanoparticles inhibits the Ostwald-ripening process.

  11. Synthesis and characterization of TiO{sub 2} nanoparticle films coated with organic dyes

    Energy Technology Data Exchange (ETDEWEB)

    Rika [College of Engineering, Universiti Tenaga Nasional, 43009, Kajang, Selangor (Malaysia); Rahman, M.Y.A., E-mail: yusri@uniten.edu.m [College of Engineering, Universiti Tenaga Nasional, 43009, Kajang, Selangor (Malaysia); Salleh, M.M.; Umar, A.A. [Pusat Pengajian Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor (Malaysia); Ahmad, A. [Pusat Pengajian Sains Kimia dan Teknologi Makanan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor (Malaysia)

    2009-05-01

    The synthesis and characterization of TiO{sub 2} nanoparticle coated with organic dyes, coumarin and methyl orange was reported. The films were deposited onto ITO-covered glass substrate by controlled hydrolysis technique assisted with spin coating technique. The films were characterized by scanning electron microscope (SEM), X-ray dispersive (XRD) technique and ultraviolet-visible (UV-Vis) spectrophotometer. The average grain size of the TiO{sub 2} films is about 76 nm. The uncoated TiO{sub 2} film is crystalline with anatase and rutile structure. The coated TiO{sub 2} films with dye are also crystalline since the diffraction peaks have been observed at three angles. The maximum absorption of the film coated with coumarine dye is at 480 nm.

  12. Synthesis and characterization of TiO 2 nanoparticle films coated with organic dyes

    Science.gov (United States)

    Rika; Rahman, M. Y. A.; Salleh, M. M.; Umar, A. A.; Ahmad, A.

    2009-05-01

    The synthesis and characterization of TiO 2 nanoparticle coated with organic dyes, coumarin and methyl orange was reported. The films were deposited onto ITO-covered glass substrate by controlled hydrolysis technique asssited with spin coating technique. The films were characterized by scanning electron microscope (SEM), X-ray dispersive (XRD) technique and ultraviolet-visible (UV-Vis) spectrophotometer. The average grain size of the TiO 2 films is about 76 nm. The uncoated TiO 2 film is crystalline with anatase and rutile structure. The coated TiO 2 films with dye are also crystalline since the diffraction peaks have been observed at three angles. The maximum absorption of the film coated with coumarine dye is at 480 nm.

  13. Gold-coated iron nanoparticles in transparent Si3N4 matrix thin films

    Science.gov (United States)

    Sánchez-Marcos, J.; Céspedes, E.; Jiménez-Villacorta, F.; Muñoz-Martín, A.; Prieto, C.

    2013-06-01

    A new method to prepare thin films containing gold-coated iron nanoparticles is presented. The ternary Fe-Au-Si3N4 system prepared by sequential sputtering has revealed a progressive variation of microstructures from Au/Fe/Au/Si3N4 multilayers to iron nanoparticles. Microstructural characterization by transmission electron microscopy, analysis of the magnetic properties and probing of the iron short-range order by X-ray absorption spectroscopy confirm the existence of a gold-coated iron nanoparticles of 1-2 nm typical size for a specific range of iron and gold contents per layer in the transparent silicon nitride ceramic matrix.

  14. Noble metals nanoparticles on titanium dioxide nanostructured films and the influence of their photocatalytic activity

    International Nuclear Information System (INIS)

    Nakamura, Liana Key Okada

    2012-01-01

    Currently, nanoscience and nanotechnology are considered an emerging field and continuously breaking the barrier among various disciplines. The main focus of study involves controlling structures at molecular level, arranging the atoms in order to achieve an understanding and controlling the fundamental properties of matter. In this study, molecular changes on the basis of morphology, optical and crystalline properties of TiO 2 hin films in order to increase their photon efficiency were proposed. The TiO 2 thin films were prepared by sol gel process evaluating the influence of different acids and templates to obtain the nano structured arrangements. Then, metal nanoparticles like Au, Ag, Pd and Pt were incorporated on TiO 2 thin films. This incorporation might minimize the electron-hole recombination, so it could improve the photon efficiency. From the several routes studied, the TiO 2 thin films prepared with acetic acid showed the best performance by the reason of low agglomeration of TiO 2 grains, which favors the exposure of the photoactive sites. The presence of template in the formulation had a slightly effect on photon efficiency, possible due to the higher agglomeration of the grains on the TiO 2 thin films. The addition of Pt and Au nanoparticles on TiO 2 thin films showed superior photon efficiency. The TiO 2 thin films with hexamine and metallic nanoparticles did not show the improvement on photon efficiency except for Pt and Au nanoparticles. On these situations, the improvement on photon efficiency is might be due to a possible decrease at the electron-hole recombination's velocity. Thus, the present work demonstrates the great influence of preparation conditions on the optical, morphological properties and the photon efficiency. In the future, with greater understanding of the mechanism of this influence, the properties of TiO 2 thin films will be able tailoring depending on the application. (author)

  15. X-Ray Photoelectron Spectroscopy of Stabilized Zirconia Films with Embedded Au Nanoparticles Formed under Irradiation with Gold Ions

    Science.gov (United States)

    Zubkov, S. Yu.; Antonov, I. N.; Gorshkov, O. N.; Kasatkin, A. P.; Kryukov, R. N.; Nikolichev, D. E.; Pavlov, D. A.; Shenina, M. E.

    2018-03-01

    Nanosized films of stabilized zirconia with Au nanoparticles formed by implanting Au ions are studied by X-ray photoelectron spectroscopy and transmission electron microscopy. The effect of irradiation of films with Au ions and postimplantation annealing on the distribution of chemical elements and zirconium- containing ZrO x compounds over the depth of the films is studied. Based on the data on the dimensional shift of the Au 4 f photoelectron line, the average value of the nanoparticle size is determined.

  16. Hemicyanine LB film—Silver nanoparticle composite: contrasting fluorescence responses sensitive to the ultrathin film assembly sequence

    Science.gov (United States)

    Maganti, Lasya; Dwivedi, Itisha; Jose, Anju; Radhakrishnan, T. P.

    2017-07-01

    Fluorescence emission of molecules is strongly influenced by the plasmonic field of metal nanoparticles, with significant enhancement induced under optimal conditions. Nanocomposite ultrathin films fabricated with citrate-stabilized Ag nanoparticles and LB film of a cationic hemicyanine amphiphile, are shown to produce opposing fluorescence emission trends upon subtle variation in the assembly sequence. Monolayer LB films of the pure amphiphile show aggregation-induced quenching with increasing deposition pressure. Composite films formed by adsorption of Ag nanoparticles on the Langmuir film (self-assembly together with steered assembly) followed by LB transfer, show further quenching. However, adsorption of Ag nanoparticles on the pre-formed amphiphile LB film (self-assembly following steered assembly), causes the fluorescence to increase with the extent of adsorption. Spectroscopy and microscopy provide insight into the contrasting, tunable emission. Formation of Ag nanoparticle chains on the Langmuir film and their direct contact with the monolayer cause the fluorescence quenching; adsorption of isolated Ag nanoparticles on the LB film along with multilayer formation leads to the enhancement. The study illustrates the versatility of LB film—metal nanoparticle composites in producing distinct materials responses through subtle changes in the mode of assembly.

  17. Studies on plasmon characteristics and the local density of states of Au and Ag based nanoparticles

    Science.gov (United States)

    Vinod, M.; Biju, V.; Gopchandran, K. G.

    2016-01-01

    Knowledge about the conductive properties and the local density of states of chemically pure Au, Ag, Ag@Au core-shell and Au-Ag bimetallic nanoparticles is technologically important. Herein, the I-V characteristics and the density of states derived from scanning tunneling microscopy measurements made under atmospheric conditions is reported. The nanoparticles in thin film form used in this study were prepared by laser ablation in water followed by drop and evaporation. The morphology of the surface of the nanostructures was observed from optimizing tunneling current in each case. The monometallic Au and Ag particles shows almost similar current characteristics as well as discrete energy states but the slope of I-V characteristics was different for bimetallic structures. An attempt has also been made to compare the current measurements done in the nanoscale with the surface plasmon characteristics.

  18. Enhanced and Tunable Optical Quantum Efficiencies from Plasmon Bandwidth Engineering in Bimetallic CoAg Nanoparticles (Open Access Publisher’s Version)

    Science.gov (United States)

    2016-08-01

    Lozach, A. Teleki, F. Krumeich, and S. E. Pratsinis, “Hybrid, silica- coated , janus-like plasmonic-magnetic nanoparticles,” Chem. Mater. 23, 1985–1992...plasmon properties of Co-Ag nanocomposites within the mean-field approximation,” Plasmonics 7, 137–141 (2012). 29 M. Blaber, M. Arnold, and M. Ford, “A...ternary nanocomposites ,” Phys. Rev. B 75, 045439 (2007). 32 A. Malasi, R. Kalyanaraman, and H. Garcia, “From Mie to Fresnel through effective medium

  19. Electronic Tongue Based on Nanostructured Hybrid Films of Gold Nanoparticles and Phthalocyanines for Milk Analysis

    Directory of Open Access Journals (Sweden)

    Luiza A. Mercante

    2015-01-01

    Full Text Available The use of gold nanoparticles combined with other organic and inorganic materials for designing nanostructured films has demonstrated their versatility for various applications, including optoelectronic devices and chemical sensors. In this study, we reported the synthesis and characterization of gold nanoparticles stabilized with poly(allylamine hydrochloride (Au@PAH NPs, as well as the capability of this material to form multilayer Layer-by-Layer (LbL nanostructured films with metal tetrasulfonated phthalocyanines (MTsPc. Film growth was monitored by UV-Vis absorption spectroscopy, atomic force microscopy (AFM, and Fourier transform infrared spectroscopy (FTIR. Once LbL films have been applied as active layers in chemical sensors, Au@PAH/MTsPc and PAH/MTsPc LbL films were used in an electronic tongue system for milk analysis regarding fat content. The capacitance data were treated using Principal Component Analysis (PCA, revealing the role played by the gold nanoparticles on the LbL films electrical properties, enabling this kind of system to be used for analyzing complex matrices such as milk without any prior pretreatment.

  20. Investigation of physicochemical and microbiological characteristics of prepared films containing nanoparticles of titanium oxide based on soy flour polysaccharide

    Directory of Open Access Journals (Sweden)

    D Salarbashi

    2016-11-01

    Full Text Available Introduction: The natural derived biopolymers are highly interested in recent years. These polymers are considering as the alternative for un-biodegradable plastic films. This is due to the low cost and their availability from biodegradable and renewable sources. In this study, the effect of different concentrations of Tio2 nanoparticles on physicochemical and microbiological characteristics of prepared edible films based on soy flour soluble polysaccharide was investigated. MethodS: The nanocomposite films were prepared by adding the Tio2 nanoparticles (5, 10 and 15%/ db to the soy flour. In order to investigate the physicochemical and microbiological properties, the resulted nanocomposite films were synthetized based on the casting method. Results: When the content of nanoparticles increased, the moisture content and solubility of the film specimens were significantly decreased, whereas the mechanical resistance was significantly increased. Tio2 nanoparticle was highly effective against basillus cereus, staphylococus ureus and staphylococuss epidermidis. Meanwhile, MIC and MBC of molds were not affected by these films. MIC for penicilium expansum was significantly affected when the Tio2 nanoparticles increased. Conclusion: the results indicated that Tio2 nanoparticles are applicable into the polysaccharide soy films. The nanocomposite film developed in the current study could be used in food applications and as a biodegradable film.

  1. Effect of chitosan nanoparticles and pectin content on mechanical properties and water vapor permeability of banana puree films.

    Science.gov (United States)

    Martelli, Milena R; Barros, Taís T; de Moura, Márcia R; Mattoso, Luiz H C; Assis, Odilio B G

    2013-01-01

    Puree prepared from over-ripe peeled bananas was used as raw material for films processing in a laboratory padder. Pectin and glycerol as plasticizer were added in small concentrations and chitosan nanoparticles (88.79 ± 0.42 nm medium size) incorporated at 0.2% (dry weight basis) as reinforcement material. The mechanical properties, water vapor transmission, thermal stability, and scanning electron microscopy of fractured film surfaces were characterized. Both pectin and glycerol demonstrated an important role in promoting elongation and film handability as was expected. The incorporation of nanoparticles promoted noticeable improvement of the mechanical properties and acted in reducing the water vapor permeation rate, by 21% for films processed with pectin and up to 38% for films processed without pectin, when compared to the control (puree films with no pectin and nanoparticles additions). Microscopic observation revealed a denser matrix when nanoparticles are incorporated into the films. The development of films from fruit purees head to a new strategy for plastic processing from natural resources. The over-ripe or even waste banana can be adequately prepared for batch films processed with reasonable mechanical and barrier properties, suitable for applications in the food segment. The addition of small fractions of chitosan nanoparticles, form nanocomposites enhancing mechanical and thermal stability broadening potential film applications. © 2012 Institute of Food Technologists®

  2. Synergistic electrocatalytic effect of nanostructured mixed films formed by functionalised gold nanoparticles and bisphthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Medina-Plaza, C. [Universidad de Valladolid, Department of Inorganic Chemistry, Engineers School (Spain); Furini, L.N. [Universidad de Valladolid, Department of Inorganic Chemistry, Engineers School (Spain); Faculdade de Ciências e Tecnologia, UNESP Univ Estadual Paulista, 19060-900 Presidente Prudente, SP (Brazil); Constantino, C.J.L. [Faculdade de Ciências e Tecnologia, UNESP Univ Estadual Paulista, 19060-900 Presidente Prudente, SP (Brazil); Saja, J.A. de [Universidad de Valladolid, Department of Condensed Matter Physics, Faculty of Sciences (Spain); Rodriguez-Mendez, M.L., E-mail: mluz@eii.uva.es [Universidad de Valladolid, Department of Inorganic Chemistry, Engineers School (Spain)

    2014-12-03

    Graphical abstract: Sensors based on gold nanoparticles and lutetium bisphthalocyanine, co-deposited using Langmuir–Blodgett technique, have demonstrated improved sensing properties towards hydroquinone due to synergistic effects. - Highlights: • Gold nanoparticles and lutetium bisphthalocyanine have been co-deposited using the LB technique. • Films used as voltammetric sensors provide enhanced responses towards hydroquinone. • The efficient electrocatalytic properties are due to synergistic effects. - Abstract: A synergistic electrocatalytic effect was observed in sensors where two electrocatalytic materials (functionalized gold nanoparticles and lutetium bisphthalocyanine) were co-deposited using the Langmuir–Blodgett technique. Films were prepared using a novel method where water soluble functionalised gold nanoparticles [(11-mercaptoundecyl)tetra(ethylene glycol)] (SAuNPs) were inserted in floating films of lutetium bisphthalocyanine (LuPc{sub 2}) and dimethyldioctadecylammonium bromide (DODAB) as the amphiphilic matrix. The formation of stable and homogeneous mixed films was confirmed by π-A isotherms, BAM, UV–vis and Raman spectroscopy, as well as by SEM and TEM microscopy. The synergistic effect towards hydroquinone of the electrodes modified with LuPc{sub 2}:DODAB/SAuNP was characterised by an increase in the intensity of the redox peaks and a reduction of the overpotential. This synergistic electrocatalytic effect arose from the interaction between the SAuNPs and the phthalocyanines that occur in the Langmuir–Blodgett films and from the high surface area provided by the nanostructured films. The sensitivity increased with the amount of LuPc{sub 2} and SAuNPs inserted in the films and limits of detection in the range of 10{sup −7} mol L{sup −1} were attained.

  3. Dependence of Plasmonic Properties of Silver Island Films on Nanoparticle Size and Substrate Coverage

    Directory of Open Access Journals (Sweden)

    M. G. Sreenivasan

    2013-01-01

    Full Text Available Localized surface plasmon resonance displayed by metal nanoparticles has been studied in silver island films prepared by the simple technique of vacuum evaporation, which is one of the options that is easily adaptable for large area and low cost applications. Silver island films with varying island sizes and areal coverages are prepared by depositing silver films with varying thicknesses followed by annealing. The optical properties of the samples have been explained in terms of dependence of scattering and absorption on the metal island size, interparticle interaction and matrix effects, and the wavelength range over which the plasmonic effects are present.

  4. Characterization of films made with chayote tuber and potato starches blending with cellulose nanoparticles.

    Science.gov (United States)

    Aila-Suárez, Selene; Palma-Rodríguez, Heidi M; Rodríguez-Hernández, Adriana I; Hernández-Uribe, Juan P; Bello-Pérez, Luis A; Vargas-Torres, Apolonio

    2013-10-15

    The aim of this study was to characterize chayotextle starch films reinforced with cellulose (C) and cellulose nanoparticle (CN) (at concentrations of 0.3%, 0.5%, 0.8% and 1.2%), using thermal, mechanical, physicochemical, permeability, and water solubility tests. C was acid-treated to obtain CN. The films were prepared by casting; potato starch and C were used as the control. The solubility of the starch films decreased with the addition of C and CN compared with its respective film without C and CN. No statistical difference (α=0.05) was found in the films added with different concentrations of C and CN. In general, the mechanical properties were improved with the addition of C and CN, and higher values of tensile strength and elastic modulus were determined in the films reinforced with CN. The melting temperature and enthalpy increased with the addition of C and CN, and the values of both thermal parameters were higher in the films with CN than with C; the enthalpy value of the film decreased when the concentration of C or CN increased in the composite. Low concentration of C and CN is better distributed in the matrix film. The addition of C and CN in the starch films improved some mechanical, barrier, and functional properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. k-Carrageenan/poly vinyl pyrollidone/polyethylene glycol/silver nanoparticles film for biomedical application.

    Science.gov (United States)

    Fouda, Moustafa M G; El-Aassar, M R; El Fawal, G F; Hafez, Elsayed E; Masry, Saad Hamdy Daif; Abdel-Megeed, Ahmed

    2015-03-01

    Biopolymer composite film containing k-carrageenan (KC), polyvinyl pyrrolidone (PVP), and polyethylene glycol (PEG) was formulated by dissolving KC and PVP in water containing PEG. Silver nanoparticles (AgNPs), was produced by Honeybee and added to solution. Finally, all solutions were poured onto dishes and dried overnight at 40°C to form the final films. Tensile strength (TS) and elongation (E %) is evaluated. The water contact angle is inspected. Thermal properties (TGA) and swelling behavior for water were considered. Fungal activity is also examined. Morphology of all films was also explored using scanning electron microscope. AgNPs induced significant hydrophilicity to KC-PVP-PEG film with contact angle of 41.6 and 34.7 for KC-PVP-PEG-AgNPs. Films with AgNPs exhibited higher thermal stability and strength properties than other films without. Films with AgNPs explore lower swelling behavior than other films without. Both SEM and EDX proved the deposition of AgNPs on the surface of films. Films with AgNPs showed higher activity against pathogenic fungi compared with the chemical fungicide; fluconazole. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Molecular dynamics simulations of the embedding of a nano-particle into a polymer film

    International Nuclear Information System (INIS)

    Ochoa, J G Diaz; Binder, K; Paul, W

    2006-01-01

    In this work we report on molecular dynamics simulations of the embedding process of a nano-particle into a polymeric film as a function of temperature. This process has been employed experimentally in recent years to test for a shift of the glass transition of a material due to the confined film geometry and to test for the existence of a liquid-like layer on top of a glassy polymer film. The embedding process is governed thermodynamically by the prewetting properties of the polymer on the nano-particle. We show that the dynamics of the process depends on the Brownian motion characteristics of the nano-particle in and on the polymer film. It displays large sample to sample variations, suggesting that it is an activated process. On the timescales of the simulation an embedding of the nano-particle is only observed for temperatures above the bulk glass transition temperature of the polymer, agreeing with experimental observations on noble metal clusters of comparable size

  7. Electron transport in disordered films of metal nanoparticles linked by organic molecules

    International Nuclear Information System (INIS)

    Mueller, K.H.; Wei, G.; Herrmann, J.; Raguse, B.; Baxter, G.

    2004-01-01

    Full text: We have investigated theoretically and experimentally the mechanism of electron transport in films made of ∼10 nm sized gold nanoparticles linked by alkanedithiol molecules. Conduction in these films is due to linker-molecule assisted single-electron tunnelling between neighbouring nanoparticles where electrons have to overcome the Coulomb blockade energy. Strong disorder in our films in the form of separation gap fluctuations between adjacent nanoparticles and variations in Coulomb blockade energies cause electron current percolation. We have found that the dependence of the conduction on the length of the alkanedithiol molecules is affected by the degree of disorder. In addition, we have observed that percolation leads to a non-Arrhenius-like temperature dependence of the conduction and to a film-thickness dependent conductivity. I-V characteristics at low temperatures reveal Coulomb blockade effects. The strong dependence of the electrical conduction on the separation gaps between adjacent nanoparticles can be utilized in strain gauge and gas sensor applications

  8. Antimony doped tin oxide nanoparticles and their assembly in mesostructured film

    Czech Academy of Sciences Publication Activity Database

    Müller, V.; Rasp, M.; Stefanic, G.; Günther, S.; Rathouský, Jiří; Niederberger, M.; Fattakhova-Rohlfing, D.

    2011-01-01

    Roč. 8, č. 6 (2011), s. 1759-1763 ISSN 1862-6351 R&D Projects: GA ČR GA104/08/0435 Institutional research plan: CEZ:AV0Z40400503 Keywords : transparent conducting oxides * mesoporous films * nanoparticles Subject RIV: CF - Physical ; Theoretical Chemistry

  9. Local Fatigue Evaluation in PZT Thin Films with Nanoparticles by Piezoresponse Force Microscopy

    Directory of Open Access Journals (Sweden)

    B. S. Li

    2012-01-01

    Full Text Available Lead zirconate titanate (PZT thin films with the morphotropic phase boundary composition (Zr/Ti = 52/48 have been prepared using a modified diol-based sol-gel route by introducing 1–5 mol% barium titanate (BT nanoseeds into the precursor solution on platinized silicon substrates (Pt/Ti/SiO2/Si. Macroscopic electric properties of PZT film with nanoparticle showed a significant improvement of ferroelectric properties. This work aims at the systematic study of the local switching polarization behavior during fatigue in PZT films with and without nanoparticles by using very recent developed scanning piezoelectric microscopy (SPM. We show that the local fatigue performance, which is characterized by variations of local piezoloop with electric cycles, is significantly improved by adding some nanoseeds. It has been verified by scanning electron microscope (SEM that the film grain morphology changes from columnar to granular structure with the addition of the nanoseeds. On the other hand, the existence of PtxPb transition phase, which existed in interface at early crystallization stage of pure PZT thin film, deteriorates the property of the interface. These microstructures and the interfaces of these films significantly affect the electrons injection occurred on the interfaces. The domain wall pinning induced by injected electrons and the succeeding penetration into the films is discussed to explain the fatigue performance.

  10. Microwave sintering of Ag-nanoparticle thin films on a polyimide substrate

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, S., E-mail: fujii.s.ap@m.titech.ac.jp [Department of Applied Chemistry, Tokyo Institute of Technology, Tokyo 152-8522 (Japan); Department of Information and Communication System Engineering, National Institute of Technology, Okinawa College, Nago, Okinawa 905-2192 (Japan); Kawamura, S.; Maitani, M. M.; Suzuki, E.; Wada, Y. [Department of Applied Chemistry, Tokyo Institute of Technology, Tokyo 152-8522 (Japan); Mochizuki, D. [Interdisciplinary Cluster for Cutting Edge Research, Center for Energy and Environmental Science, Shinshu University, Ueda, Nagano 386-8567 (Japan)

    2015-12-15

    Ag-nanoparticle thin films on a polyimide substrate were subjected to microwave sintering by use of a single-mode waveguide applicator. A two-step sintering process was employed. First, at low conductivities of the film, the film sample was placed at the site of the maximum electric field and subjected to microwave irradiation. Second, when the conductivity of the film increased, the film sample was placed at the site of the maximum magnetic field and again subjected to microwave irradiation. The microwave sintering process was completed within 1.5 min, which is significantly lower than the time required for the oven heating process. The resulting conductivity of the film, albeit only 30% of that of the bulk material, was seven times that of a film annealed at the same temperature in a furnace. Scanning electron microscopy images revealed that the nanoparticles underwent both grain necking and grain growth during microwave sintering. In addition, this sintering process was equivalent to the oven heating process performed at a 50 °C higher annealing temperature. An electromagnetic wave simulation and a heat transfer simulation of the microwave sintering process were performed to gain a thorough understanding of the process.

  11. Microwave sintering of Ag-nanoparticle thin films on a polyimide substrate

    Directory of Open Access Journals (Sweden)

    S. Fujii

    2015-12-01

    Full Text Available Ag-nanoparticle thin films on a polyimide substrate were subjected to microwave sintering by use of a single-mode waveguide applicator. A two-step sintering process was employed. First, at low conductivities of the film, the film sample was placed at the site of the maximum electric field and subjected to microwave irradiation. Second, when the conductivity of the film increased, the film sample was placed at the site of the maximum magnetic field and again subjected to microwave irradiation. The microwave sintering process was completed within 1.5 min, which is significantly lower than the time required for the oven heating process. The resulting conductivity of the film, albeit only 30% of that of the bulk material, was seven times that of a film annealed at the same temperature in a furnace. Scanning electron microscopy images revealed that the nanoparticles underwent both grain necking and grain growth during microwave sintering. In addition, this sintering process was equivalent to the oven heating process performed at a 50 °C higher annealing temperature. An electromagnetic wave simulation and a heat transfer simulation of the microwave sintering process were performed to gain a thorough understanding of the process.

  12. Thin nanocomposite films of polyaniline/Au nanoparticles by the Langmuir-Blodgett technique.

    Science.gov (United States)

    Tanami, Golan; Gutkin, Vitaly; Mandler, Daniel

    2010-03-16

    The Langmuir-Blodgett (LB) method was used to deposit multilayers of polyaniline (PANI)- and mercaptoethanesulfonate (MES)-stabilized Au nanoparticles. The electrostatic interaction between the negatively charged nanoparticles in the subphase and the positively charged PANI at the air-water interface assisted the deposition of the nanocomposite film onto a solid support. These PANI/Au-NPs films were characterized using cyclic voltammetry, copper under potential deposition, scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. We found that the nanocomposite layers were uniform and reproducible. The density of Au-NPs in the monolayer depended on the acidity of the subphase as well as on the nanoparticles concentration. Moreover, the Au-NPs extrude above the PANI and therefore could be used as nanoelectrodes for the underpotential deposition (UPD) of copper.

  13. Free-standing gold-nanoparticle monolayer film fabricated by protein self-assembly of α-synuclein.

    Science.gov (United States)

    Lee, Junghee; Bhak, Ghibom; Lee, Ji-Hye; Park, Woohyun; Lee, Minwoo; Lee, Daekyun; Jeon, Noo Li; Jeong, Dae H; Char, Kookheon; Paik, Seung R

    2015-04-07

    Free-standing nanoparticle films are of great importance for developing future nano-electronic devices. We introduce a protein-based fabrication strategy of free-standing nanoparticle monolayer films. α-Synuclein, an amyloidogenic protein, was utilized to yield a tightly packed gold-nanoparticle monolayer film interconnected by protein β-sheet interactions. Owing to the stable protein-protein interaction, the film was successfully expanded to a 4-inch diameter sheet, which has not been achieved with any other free-standing nanoparticle monolayers. The film was flexible in solution, so it formed a conformal contact, surrounding even microspheres. Additionally, the monolayer film was readily patterned at micrometer-scale and thus unprecedented double-component nanoparticle films were fabricated. Therefore, the free-floating gold-nanoparticle monolayer sheets with these properties could make the film useful for the development of bio-integrated nano-devices and high-performance sensors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Metal nanoparticle-doped coloured films on glass and ...

    Indian Academy of Sciences (India)

    visible spectra were recorded using a Cary 50 scan spectrophotometer. The pencil hardness values of the coated and uncoated polycarbonate surfaces were ... nanoparticles in the coating matrices is monitored using UV–visible spectroscopy.

  15. Zinc oxide nanoparticle-coated films: fabrication, characterization, and antibacterial properties

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yunhong, E-mail: y.jiang@leeds.ac.uk [University of Leeds, Institute of Particle Science and Engineering (United Kingdom); O’Neill, Alex J. [University of Leeds, School of Molecular and Cellular Biology (United Kingdom); Ding, Yulong [University of Leeds, Institute of Particle Science and Engineering (United Kingdom)

    2015-04-15

    In this article, novel antibacterial PVC-based films coated with ZnO nanoparticles (NPs) were fabricated, characterized, and studied for their antibacterial properties. It was shown that the ZnO NPs were coated on the surface of the PVC films uniformly and that the coating process did not affect the size and shape of the NPs on the surface of PVC films. Films coated with concentrations of either 0.2 or 0.075 g/L of ZnO NPs exhibited antibacterial activity against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, but exhibited no antifungal activity against Aspergillus flavus and Penicillium citrinum. Smaller particles (100 nm) exhibited more potent antibacterial activity than larger particles (1000 nm). All ZnO-coated films maintained antibacterial activity after 30 days in water.

  16. Controlled release of ketorolac through nanocomposite films of hydrogel and LDH nanoparticles

    International Nuclear Information System (INIS)

    Xu Zhiping; Gu Zi; Cheng Xiaoxi; Rasoul, Firas; Whittaker, Andrew K.; Lu Gaoqing Max

    2011-01-01

    A novel nanocomposite film for sustained release of anionic ophthalmic drugs through a double-control process has been examined in this study. The film, made as a drug-loaded contact lens, consists principally of a polymer hydrogel of 2-hydroxyethyl methacrylate (HEMA), in whose matrix MgAl-layered double hydroxide (MgAl-LDH) nanoparticles intercalated with the anionic drug are well dispersed. Such nanocomposite films (hydrogel-LDH-drug) contained 0.6–0.8 mg of MgAl-LDH and 0.08–0.09 mg of the ophthalmic drug (ketorolac) in 1.0 g of hydrogel. MgAl-drug-LDH nanoparticles were prepared with the hydrodynamic particle size of 40–200 nm. TEM images show that these nanoparticles are evenly dispersed in the hydrogel matrix. In vitro release tests of hydrogel-LDH-drug in pH 7.4 PBS solution at 32 °C indicate a sustained release profile of the loaded drug for 1 week. The drug release undergoes a rapid initial burst and then a monotonically decreasing rate up to 168 h. The initial burst release is determined by the film thickness and the polymerization conditions, but the following release rate is very similar, with the effective diffusion coefficient being nearly constant (3.0 × 10 −12 m 2 /s). The drug release from the films is mechanistically attributed to anionic exchange and the subsequent diffusion in the hydrogel matrix.

  17. Nanoparticle precursor route to low-temperature spray deposition of CdTe thin films

    International Nuclear Information System (INIS)

    Pehnt, M.; Schulz, D.L.; Curtis, C.J.; Jones, K.M.; Ginley, D.S.

    1995-01-01

    In this letter we report a nanoparticle-derived route to CdTe thin films. CdTe nanoparticles 39±8 A in diameter, prepared by an organometallic route, were characterized by x-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy, and energy dispersive x-ray spectroscopy. CdTe thin-film deposition was realized by spraying a nanoparticle/butanol colloid onto SnO 2 -coated glass substrates at variable susceptor temperatures. The resultant CdTe films were characterized by atomic force microscopy, x-ray diffraction, and UV-Vis spectroscopy. Smooth and dense CdTe thin films were obtained using growth temperatures ∼200 degree C less than conventional spray pyrolysis. A growth temperature dependence upon CdTe grain size formation and crystallinity was observed by atomic force microscopy and x-ray diffraction. UV-Vis characterization revealed a transformation in the optical properties of the CdTe thin films as a function of growth temperature. copyright 1995 American Institute of Physics

  18. Thin films of metal-organic compounds and metal nanoparticle ...

    Indian Academy of Sciences (India)

    Thin films based on two very different metal-organic systems are developed and some nonlinear optical applications are explored. A family of zinc complexes which form perfectly polar assemblies in their crystalline state are found to organize as uniaxially oriented crystallites in vapor deposited thin films on glass substrate.

  19. Guided assembly of nanoparticles on electrostatically charged nanocrystalline diamond thin films

    Directory of Open Access Journals (Sweden)

    Verveniotis Elisseos

    2011-01-01

    Full Text Available Abstract We apply atomic force microscope for local electrostatic charging of oxygen-terminated nanocrystalline diamond (NCD thin films deposited on silicon, to induce electrostatically driven self-assembly of colloidal alumina nanoparticles into micro-patterns. Considering possible capacitive, sp2 phase and spatial uniformity factors to charging, we employ films with sub-100 nm thickness and about 60% relative sp2 phase content, probe the spatial material uniformity by Raman and electron microscopy, and repeat experiments at various positions. We demonstrate that electrostatic potential contrast on the NCD films varies between 0.1 and 1.2 V and that the contrast of more than ±1 V (as detected by Kelvin force microscopy is able to induce self-assembly of the nanoparticles via coulombic and polarization forces. This opens prospects for applications of diamond and its unique set of properties in self-assembly of nano-devices and nano-systems.

  20. Increasing the optical absorption in a-Si thin films by embedding gold nanoparticles

    Science.gov (United States)

    Faraone, Gabriele; Modi, Ritika; Marom, Sarita; Podestà, Alessandro; Di Vece, Marcel

    2018-01-01

    The light conversion efficiency of traditional a-Si thin-film solar cells is limited by their low optical thicknesses, especially in the NIR. A possible approach to increase the light-trapping efficiency over the entire solar spectral range is to design solar-cell architectures which rely on the optical properties of plasmonic nanocomposite materials. We demonstrate that it is possible to have a controlled Gold nanoparticle optical absorption by varying the thickness of a covering a-Si thin-film. For thick a-Si films the Gold nanoparticle plasmon resonance vanishes likely due to the formation of a silicide. Optical absorption measurements as well as finite difference time-domain (FDTD) simulations were employed to determine the a-Si thickness-dependent optical absorption properties, which demonstrated a significantly increased optical absorption in a-Si.

  1. Characteristic time scales of coalescence of silver nanocomposite and nanoparticle films induced by continuous wave laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Paeng, Dongwoo; Grigoropoulos, Costas P., E-mail: cgrigoro@berkeley.edu [Department of Mechanical Engineering, University of California Berkeley, Berkeley, California 94720-1740 (United States); Lee, Daeho [Department of Mechanical Engineering, Gachon University, Seongnam-si, Gyeonggi-do 461-701 (Korea, Republic of)

    2014-08-18

    In-situ optical probing has been performed to analyze and compare the characteristic coalescence time scales of silver ion-doped polyvinylalcohol nanocomposite (Ag-PVA NC) and polyvinylpyrrolidone-capped silver nanoparticle (Ag-PVP NP) films subjected to continuous wave laser irradiation. The Ag-PVA NC yielded conductive metallic patterns by photothermal reduction of PVA, formation of nanoparticles from silver ions and their subsequent coalescence. On the other hand, Ag-PVP NP thin films produced conductive patterns through only coalescence of nanoparticles. Upon laser irradiation, Ag-PVA NC and Ag-PVP NP films exhibited different coalescence characteristics.

  2. Flux Pinning Enhancement in YBa2Cu3O7-x Films with BaSnO3 Nanoparticles

    Science.gov (United States)

    2008-10-01

    AFRL-RZ-WP-TP-2008-2231 FLUX PINNING ENHANCEMENT IN YBa2Cu3O7-x FILMS WITH BaSnO3 NANOPARTICLES (POSTPRINT) Chakrapani V. Varanasi, P.N...AND SUBTITLE FLUX PINNING ENHANCEMENT IN YBa2Cu3O7-x FILMS WITH BaSnO3 NANOPARTICLES (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER...Nanoparticles of BaSnO3 were incorporated into YBa2Cu3O7-x (YBCO) films on LaAlO3 substrates for magnetic flux pinning enhancements. More than an order of

  3. Fabrication of metallic nanoparticles by spinodal dewetting of thin films: A high-throughput approach

    International Nuclear Information System (INIS)

    Michalak, William D.; Miller, James B.; Yolcu, Cem; Gellman, Andrew J.

    2012-01-01

    Metal nanoparticles on structured supports are used in a variety of technological applications including biosensing, energy harvesting, and electronics. In every case, the functions and properties of the metallic nanostructures depend on both their composition and structure (i.e. size, shape, and spatial distribution). Among the challenges to the development of metal nanoparticles for these applications is the characterization of relationships between their structure and their functional properties over multiple structural degrees of freedom spanning a large range of values. In this work, a method for creating a morphological gradient of metal nanoparticles on a substrate is described. The approach, suited for high-throughput fabrication and characterization, is based on spinodal dewetting of a metallic thin film from its substrate. Through control of initial film thickness, anneal temperature, and anneal time, spinodal dewetting results in supported nanoparticles with well-defined and controlled structure. The approach is demonstrated through its application to preparation of Pd nanoparticles on a silicon nitride substrate. The morphologies of the particles were characterized by scanning electron and atomic force microscopies. Free energy-based stability and topological analyses were used to confirm the dewetting mechanism. In addition, the stability theory provides a connection to the thermophysical properties of the resulting nanoparticle array. The dewetting approach is general to any metal/support system and provides an alternative, inexpensive, and robust means to rapidly create metal nanostructures with control of morphology. It shows promise for large scale production of metal nanoparticles structures, as well as understanding basic stability properties of thin metal films. - Highlights: ► Pd dewetting from SiN occurs by a spinodal dewetting mechanism. ► Dewetting occurs at temperatures well below the melting point of Pd. ► Spinodal dewetting allows

  4. Luminescence enhancement of ZnO-poly(methylmethacrylate) nanocomposite films by incorporation of crystalline BaTiO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kanamori, Tsuyoshi; Han, Yu; Nagao, Daisuke, E-mail: dnagao@tohoku.ac.jp; Kamezawa, Nao; Ishii, Haruyuki; Konno, Mikio

    2016-09-15

    Highlights: • Dielectric barium titanate (BT) nanoparticles incorporated into luminescence films. • Luminescence intensities increased by the BT nanoparticle incorporation. • Incorporation of highly dielectric nanoparticles effective for luminescence enhancement. - Abstract: Incorporation of highly dielectric nanoparticles into luminescent ZnO-polymethylmethacrylate (PMMA) nanocomposite films was undertaken to examine the effect of nanoparticle incorporation on luminescence intensity of the nanocomposite films. ZnO nanoparticles were prepared as inorganic phosphors by a precipitation method. The ZnO nanoparticles were then surface-modified with 3-methacryloxypropyltrimethoxysilane (MPTMS) to be used for fabrication of the ZnO-PMMA nanocomposite film. Barium titanate (BT) nanoparticles were synthesized with a sol-gel method as the highly dielectric nanoparticles, which were also surface-modified with the MPTMS for the incorporation into the nanocomposite films. Luminescence intensity of the nanocomposite films was successfully increased by the nanoparticle incorporation up to a BT content around 15 vol%. The luminescence intensity higher than that measured for the nanocomposite films incorporating SiO{sub 2} nanoparticles indicated that the incorporation of highly dielectric nanoparticles was an effective approach to enhance the luminescence of ZnO nanoparticles in the polymer thin films.

  5. Adhesive forces at bimetallic interfaces

    International Nuclear Information System (INIS)

    Das, M.P.; Nafari, N.; Ziesche, P.; Kaschner, H.R.

    1987-03-01

    Force concepts in condensed systems have progressed significantly in recent years. In the context of bimetallic interfaces we consider the Pauli-Hellman-Feynman theorem, use it to check the variational calculations of interfacial energies and estimate the force constants. (author). 13 refs, 2 figs, 2 tabs

  6. Structure, electrical characteristics, and high-temperature stability of aerosol jet printed silver nanoparticle films

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Md Taibur; McCloy, John; Panat, Rahul, E-mail: rahul.panat@wsu.edu, E-mail: rvchintalapalle@utep.edu [School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99163 (United States); Ramana, C. V., E-mail: rahul.panat@wsu.edu, E-mail: rvchintalapalle@utep.edu [Department of Mechanical Engineering, University of Texas at El Paso, El Paso, Texas 79968 (United States)

    2016-08-21

    Printed electronics has emerged as a versatile eco-friendly fabrication technique to create sintered nanoparticle (NP) films on arbitrary surfaces with an excellent control over the film microstructure. While applicability of such films for high-temperature applications is not explored previously, herein we report the high-temperature electrical stability of silver (Ag) metal NP films fabricated using an Aerosol Jet based printing technique and demonstrate that this behavior is dictated by changes in the film microstructure. In-situ high temperature (24–500 °C) impedance spectroscopy measurements show that the real part of the impedance increases with increasing temperature up to 150 °C, at which point a decreasing trend prevails until 300 °C, followed again by an increase in impedance. The electrical behavior is correlated with the in-situ grain growth of the Ag NP films, as observed afterwards by scanning electron microscopy and X-ray diffraction (XRD), and could be tailored by controlling the initial microstructure through sintering conditions. Using combined diffraction and spectroscopic analytical methods, it is demonstrated the Aerosol Jet printed Ag NP films exhibit enhanced thermal stability and oxidation resistance. In addition to establishing the conditions for stability of Ag NP films, the results provide a fundamental understanding of the effect of grain growth and reduction in grain boundary area on the electrical stability of sintered NP films.

  7. Na-assisted grain growth in CZTS nanoparticle thin films for solar cell applications

    DEFF Research Database (Denmark)

    Engberg, Sara Lena Josefin; Crovetto, Andrea; Hansen, Ole

    2017-01-01

    We have studied the effect of Na in Cu2ZnSnS4 nanoparticle thin films [1]. The as-synthesized CZTS nanoparticles were inherently ligand-free [2], which allows us to use of polar solvents, such as water and ethanol. Another advantage of these particles is that the user- and environmentally......-friendly NaCl salt can be directly dissolved in controllable amounts. This further circumvents the need for later incorporation of dopants, or a ligand-exchange step to functionalize the surface of the nanoparticles. In addition, the homogeneous distribution of Na in the ink allows uniform grain growth within...... the deposited absorber layer. By including Na in the nanoparticle ink, micron-sized grains throughout the whole absorber are achieved after annealing in a sulfur atmosphere at 600°C. The absorber layer appeared to be of full density, and no closed porosity could be detected. In addition, the photoluminescence...

  8. Conduction and reversible memory phenomena in Au-nanoparticles-incorporated TeO{sub 2}–ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Bontempo, L., E-mail: bontempo@usp.br [Laboratório de Sistemas Integráveis, Escola Politécnica da Universidade de São Paulo, Av. Prof. Luciano Gualberto, 158, Travessa 3, 05508-900 São Paulo, SP (Brazil); Laboratório de Materiais Fotônicos e Optoeletrônicos, Faculdade de Tecnologia de São Paulo, Praça Cel. Fernando Prestes, 30, 01124-060 São Paulo, SP (Brazil); Santos Filho, S.G. dos, E-mail: sgsantos@usp.br [Laboratório de Sistemas Integráveis, Escola Politécnica da Universidade de São Paulo, Av. Prof. Luciano Gualberto, 158, Travessa 3, 05508-900 São Paulo, SP (Brazil); Kassab, L.R.P., E-mail: kassablm@osite.com.br [Laboratório de Materiais Fotônicos e Optoeletrônicos, Faculdade de Tecnologia de São Paulo, Praça Cel. Fernando Prestes, 30, 01124-060 São Paulo, SP (Brazil)

    2016-07-29

    A reversible memory behavior in TeO{sub 2}–ZnO thin films containing Au nanoparticles prepared using the sputtering technique has been observed. The current–voltage characteristics of the films, having Al and Si as electrodes, showed a switching behavior starting from an initial state of low conductivity to a high conductivity one. As a result, an abrupt increase of current (10{sup −7} to 10{sup −3} A) was observed for 6.5 V (100 nm thickness). Au nanoparticles provide a larger electron storage capability, and do not favor the transport through the insulator; they present a higher trapped charge concentration, which reduces the leakage current to lower levels. The influence of the Au nanoparticle diameter and volumetric concentration to reach the abrupt current transition and the value of the transition voltage was studied. These parameters were found to play an important role on reversible memory phenomena as they determine the facility/difficulty to fill and saturate the traps (Au nanoparticles) with electrons. - Highlights: • TeO{sub 2}–ZnO thin films with Au nanoparticles grown by magnetron co-sputtering for memory devices • Nucleation of gold nanoparticles by annealing process • Electrical properties of TeO{sub 2}–ZnO thin films with and without gold nanoparticles • Reversible memory phenomenum in Au-nanoparticles-incorporated TeO{sub 2}–ZnO thin films.

  9. Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles.

    Science.gov (United States)

    Oleyaei, Seyed Amir; Zahedi, Younes; Ghanbarzadeh, Babak; Moayedi, Ali Akbar

    2016-08-01

    In this research, potato starch and TiO2 nanoparticles (0.5, 1 and 2wt%) films were developed. Influences of different concentrations of TiO2 on the functional properties of nanocomposite films (water-related properties, mechanical characteristics, and UV transmittance) were investigated. XRD, FTIR, and DSC analyses were used to characterize the morphology and thermal properties of the films. The results revealed that TiO2 nanoparticles dramatically decreased the values of water-related properties (water vapor permeability: 11-34%; water solubility: 1.88-9.26%; moisture uptake: 2.15-11.18%). Incorporation of TiO2 led to a slight increment of contact angle and tensile strength, and a decrease in elongation at break of the films. TiO2 successfully blocked more than 90% of UV light, while opacity and white index of the films were enhanced. Glass transition temperature and melting point of the films were positively affected by the addition of TiO2 nanoparticles. The result of XRD study exhibited that due to a limited agglomeration of TiO2 nanoparticles, the mean crystal size of TiO2 increased. Formation of new hydrogen bonds between the hydroxyl groups of starch and nanoparticles was confirmed by FTIR spectroscopy. In conclusion, TiO2 nanoparticles improved the functional properties of potato starch film and extended the potential for food packaging applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Facile Assembly of Aligned Magnetic Nanoparticle Chains in Polymer Nanocomposite Films by Magnetic Flow Coating.

    Science.gov (United States)

    Yuan, Hongyi; Zvonkina, Irina J; Al-Enizi, Abdullah M; Elzatahry, Ahmed A; Pyun, Jeffrey; Karim, Alamgir

    2017-03-29

    Magnetic nanoparticle chains are found in biosystems, such as in the brain of migratory birds. Inspired by natural assemblies, in a novel approach, the facile assembly of magnetically aligned polymer grafted cobalt nanoparticle (MPGNP) chains in thin polymer films was accomplished by using low strength permanent magnets directly during the flow-casting process. Unlike previous studies of MPGNP chain alignment in the high viscosity melt phase, the high mobility of such dispersed MPGNPs during casting by magnetic flow coating of polystyrene (PS) nanocomposite thin films from a dispersion allowed for formation of well-aligned MPGNP chains at the PS film/air interface. Both spherical (symmetric) and cylindrical (asymmetric) MPGNP aligned chains were obtained with distinct properties. The average chain length and width, number of particles per chain, spacing between parallel chains, and chain alignment were quantified using surface probe and electron microscopy, and grazing incidence X-ray. The aligned chains did not randomize when annealed above the film glass temperature, apparently due to the high translational entropic barrier for macroscopic (GISAXS) chain realignment. The Young's bending modulus of the aligned MPGNP nanocomposite films as revealed by a thin film wrinkling metrology showed that the elastic modulus along the chain axis direction was higher for the film with the cylindrical but not the spherical MPGNP chains. This suggests that PGNP chain flexural properties depend on asymmetry of the local MPGNP unit, much like the persistence length "stiffness" effect of polymer chains. The ferromagnetic nature of the aligned PGMNP chains resulted in film rotation, as well as repulsive and attractive translation under an applied external magnetic field. Such magnetically responsive films can be useful for sensors and other applications.

  11. Gold nanoparticle plasmon resonance in near-field coupled Au NPs layer/Al film nanostructure: Dependence on metal film thickness

    Science.gov (United States)

    Yeshchenko, Oleg A.; Kozachenko, Viktor V.; Naumenko, Antonina P.; Berezovska, Nataliya I.; Kutsevol, Nataliya V.; Chumachenko, Vasyl A.; Haftel, Michael; Pinchuk, Anatoliy O.

    2018-05-01

    We study the effects of coupling between plasmonic metal nanoparticles and a thin metal film by using light extinction spectroscopy. A planar monolayer of gold nanoparticles located near an aluminum thin film (thicknesses within the range of 0-62 nm) was used to analyze the coupling between the monolayer and the thin metal film. SPR peak area increase for polymer coated Au NPs, non-monotonical behavior of the peak area for bare Au NPs, as well as red shift and broadening of SPR at the increase of the Al film thickness have been observed. These effects are rationalized as a result of coupling of the layer of Au NPs with Al film through the field of localized surface plasmons in Au NPs that causes the excitation of collective plasmonic gap mode in the nanostructure. An additional mechanism for bare Au NPs is the non-radiative damping of SPR that is caused by the electrical contact between metal NPs and film.

  12. Silver Nanoparticles Synthesized Using Mint Extract and their Application in Chitosan/Gelatin Composite Packaging Film

    Science.gov (United States)

    Bhoir, Shraddha A.; Chawla, S. P.

    The present study reports synthesis of silver nanoparticles (AgNPs) using mint extract (ME) in the presence of polyvinyl alcohol (PVA) as capping material. PVA, ME and silver nitrate at concentration of 1%, 0.01% and 0.02%, respectively were found to be optimum for the synthesis of nanoparticles. The formation of AgNPs was confirmed by measuring surface plasmon resonance (SPR) peak. The intensity of SPR peak remained unaltered thus suggesting stability of colloid without aggregation during storage. The nanoparticles inhibited the growth of food borne bacteria namely Escherichia coli, Pseudomonas aeruginosa and Bacillus cereus. The incorporation of these nanoparticles in chitosan and gelatin blend resulted in homogenous films. Mechanical properties and water vapor transmission rate of chitosan-gelatin films improved due to addition of AgNPs, whereas optical (opacity and UV light transmittance) and oxygen permeability properties remained unchanged. These films had the ability to inhibit growth of 5 log CFU of the above test organisms. These findings suggest that the AgNPs obtained by reduction of silver by ME can be effectively utilized to prepare antibacterial eco-friendly food packaging material.

  13. Transport properties of β-Ga2O3 nanoparticles embedded in Nb thin films

    Directory of Open Access Journals (Sweden)

    L.S. Vaidhyanathan

    2015-01-01

    Full Text Available The origin of ferromagnetism in nanoparticles of nonmagnetic oxides is an interesting area of research. In the present work, transport properties of niobium thin films, with β-Ga2O3 nanoparticles embedded within them, are presented. Nanoparticles of β-Ga2O3 embedded in a Nb matrix were prepared at room temperature by radio frequency co-sputtering technique on Si (100 and glass substrates held at room temperature. The thin films deposited on Si substrates were subjected to Ar annealing at a temperature range of 600-650 C for 1 hour. Films were characterized by X-ray diffraction (XRD, Micro-Raman and elemental identification was performed with an Energy Dispersive X-ray Spectroscopy (EDS. Transport measurements were performed down to liquid helium temperatures by four-probe contact technique, showed characteristics analogous to those observed in the context of a Kondo system. A comparison of the experimental data with the theoretical formalism of Kondo and Hamann is presented. It is suggested that this behavior arises from the existence of magnetic moments associated with the oxygen vacancy defects in the nanoparticles of the nonmagnetic oxide Ga2O3.

  14. Polypropylene film with silver nanoparticles and nanoclay aiming to action biocidal

    International Nuclear Information System (INIS)

    Oliani, W.L.; Lima, L.F.C.P.; Lugao, A.B.; Parra, D.F.; Fermino, D.M.; Diaz, F.R.V.

    2014-01-01

    This paper presents an initial study of films made of polypropylene nanoclay and silver nanoparticles. The nanocomposite of polypropylene (iPP), commercial organoclay - montmorillonite (MMT), Cloisite 20A at concentrations of 1.0% and silver nanoparticles (AgNPs) at a concentration of 0.1% were prepared in a twin-screw-extruder, using polypropylene with maleic anhydride (PP-g-MA) as coupling agent. The properties of nanocomposites of PP/MMT/AgNPs are closely related to the dispersion of silver particles and the distribution of sheets of MMT in the polymer matrix, which define its efficiency in the case of the particles and their interaction clay/polymer matrix. However, this combination of MMT and AgNPs that are polar, with the polymer matrix nonpolar in the molten state, presents a challenge. The characterization of the film was performed by analysis of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and reduction of colony forming unit (CFU %). The results indicate the formation of predominantly exfoliated microstructures and agglomeration of silver nanoparticles in the film. The effect of silver nanoparticles was evaluated against bacteria E.coli and S.aureus. (author)

  15. Controlled preparation of Ag nanoparticle films by a modified photocatalytic method on TiO{sub 2} films with Ag seeds for surface-enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Xin; Pan, Lujun, E-mail: lpan@dlut.edu.cn; Li, Shuai; Wang, Qiao; Qin, Jun; Huang, Yingying

    2016-02-15

    Graphical abstract: - Highlights: • Uniform Ag nanoparticle films were synthesized by a modified photocatalytic method on TiO{sub 2} films with Ag seeds for surface-enhanced Raman scattering. • This modified photocatalytic method combine the advantages of the spurting method (high nucleation density) and the traditional photocatalytic method (suitable particle size). • The Raman enhancement of as-prepared Ag NP films was calculated by finite-difference time-domain to validate the experiment data. - Abstract: Uniform Ag nanoparticle (NP) films were synthesized by a modified photocatalytic method on TiO{sub 2} films with Ag seeds for surface-enhanced Raman scattering, which combine the advantages of the spurting method (high nucleation density) and the traditional photocatalytic method (suitable particle size). The Ag seeds were prepared by magnetron sputtering with different time, which would adjust the distribution and transfer of electrons on the surface of TiO{sub 2} film in the process of photocatalytic reduction. The distribution and morphology of Ag NP films can be adjusted by the sputtering time and the UV irradiation time. The Raman enhancement of as-prepared Ag NP films was calculated by finite-difference time-domain to validate the experiment data. It is found that the Ag NP films synthesized on TiO{sub 2} films with suitable pre-deposited Ag seeds exhibit a much higher Raman enhancement activity than the optimum Ag NP film synthesized directly on the TiO{sub 2} film without Ag seeds.

  16. Gas-sensing properties of In2O3 films modified with gold nanoparticles

    International Nuclear Information System (INIS)

    Korotcenkov, G.; Brinzari, V.; Han, S.H.; Cho, B.K.

    2016-01-01

    A study of the surface and gas–sensitive properties of In 2 O 3 films modified with gold nanoparticles and synthesized by the successive ionic layer deposition (SILD) method was conducted. In 2 O 3 films were prepared using the spray pyrolysis method. The gas-sensing characteristics were tested using CO, H 2 , and O 3 as target gases. It has been shown that the surface modification with gold nanoparticles gives the opportunity to optimize the response of In 2 O 3 -based gas sensors to both reducing (CO, H 2 ) and oxidizing (O 3 ) gases. It has been found that the sensitizing effect during ozone detection was significantly higher than the effect during CO and H 2 detection. It has been demonstrated that the sensitizing effect depended on the number of SILD cycles used for gold nanoparticle deposition and was maximal for the In 2 O 3 surface decorated with gold nanoparticles with the smallest size. The mechanism of the gold nanoparticles' influence on the gas-sensing properties of the In 2 O 3 films is also discussed. It is suggested that to explain the observed effects, we have to consider both the “electronic” and “chemical” mechanisms of sensitization. Suggestions for studies to be carried out to further improve both the understanding of the nature of the gas-sensitive effects and the parameters of In 2 O 3 :Au-based gas sensors are also formulated. - Highlights: • In 2 O 3 gas sensors modified with gold nanoparticles using SILD method are studied. • AuNPs exhibit activity during interaction with either reducing or oxidizing gases. • Maximal effect of optimization is observed during ozone detection. • Sensitizing effect depends on the number of SILD cycles. • Proposed mechanisms explain effects observed in the In 2 O 3 :Au based gas sensors.

  17. Synthesis by Microwaves of Bimetallic Nano-Rhodium-Palladium

    Directory of Open Access Journals (Sweden)

    M. Ugalde

    2013-01-01

    Full Text Available An improved acrylamide sol-gel technique using a microwave oven in order to synthesize bimetallic Rh-Pd particles is reported and discussed. The synthesis of Pd and Rh nanoparticles was carried out separately. The polymerization to form the gel of both Rh and Pd was carried out at 80°C under constant agitations. The method chosen to prepare the Rh and Pd xerogels involved the decomposition of both gels. The process begins by steadily increasing the temperature of the gel inside a microwave oven (from 80°C to 170°C. In order to eliminate the by-products generated during the sol-gel reaction, a heat treatment at a temperature of 1000°C for 2 h in inert atmosphere was carried out. After the heat treatment, the particle size increased from 50 nm to 200 nm, producing the bimetallic Rh-Pd clusters. It can be concluded that the reported microwave-assisted, sol-gel method was able to obtain nano-bimetallic Rh-Pd particles with an average size of 75 nm.

  18. Development of bioactive fish gelatin/chitosan nanoparticles composite films with antimicrobial properties.

    Science.gov (United States)

    Hosseini, Seyed Fakhreddin; Rezaei, Masoud; Zandi, Mojgan; Farahmandghavi, Farhid

    2016-03-01

    The objective of this work was to develop active bio-based nanocomposite films from fish gelatin (FG) and chitosan nanoparticles (CSNPs) incorporated with Origanum vulgare L. essential oil (OEO). CSNPs were obtained by ionic gelation of chitosan with sodium tripolyphosphate, which presented a spherical morphology with size range of 40-80nm. Remarkable differences in the surface morphology were observed between the control and bioactive nanocomposite films as revealed by SEM and AFM images. FTIR results confirmed that an interaction between polymer matrix and essential oil had occurred, as shown by an increase in the amplitude of peaks at wavenumbers 1242cm(-1) and 1451cm(-1). Meanwhile, XRD peaks of OEO-containing films were more intense, indicating that the introduction of essential oil into the film matrix induces an increase in crystallinity. TGA analysis demonstrated that the addition of OEO had no impact on thermal stability of the films. Inclusion of OEO in the film matrix resulted in less resistant and more flexible films, with a decrease in water vapor permeability (WVP). The FG/CSNPs bioactive films exhibited distinctive antimicrobial activity against four test food pathogens, namely Staphylococcus aureus, Listeria monocytogenes, Salmonella enteritidis and Escherichia coli. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Biodegradable starch/poly (vinyl alcohol) film reinforced with titanium dioxide nanoparticles

    Science.gov (United States)

    Hejri, Zahra; Seifkordi, Ali Akbar; Ahmadpour, Ali; Zebarjad, Seyed Mojtaba; Maskooki, Abdolmajid

    2013-10-01

    Biodegradable starch/poly (vinyl alcohol)/nano-titanium dioxide (ST/PVA/nano-TiO2) nanocomposite films were prepared via a solution casting method. Their biodegradability, mechanical properties, and thermal properties were also studied in this paper. A general full factorial experimental approach was used to determine effective parameters on the mechanical properties of the prepared films. ST/PVA/TiO2 nanocomposites were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results of mechanical analysis show that ST/PVA films with higher contents of PVA have much better mechanical properties. In thermal analysis, it is found that the addition of TiO2 nanoparticles improves the thermal stability of the films. SEM micrographs, taken from the fracture surface of samples, illustrate that the addition of PVA makes the film softer and more flexible. The results of soil burial biodegradation indicate that the biodegradability of ST/PVA/TiO2 films strongly depends on the starch proportion in the film matrix. The degradation rate is increased by the addition of starch in the films.

  20. Structure and properties of composite films formed by cellulose nanocrystals and charged latex nanoparticles.

    Science.gov (United States)

    Thérien-Aubin, Héloïse; Lukach, Ariella; Pitch, Natalie; Kumacheva, Eugenia

    2015-04-21

    We report the structural and optical properties of composite films formed from mixed suspensions of cellulose nanocrystals (CNCs) and fluorescent latex nanoparticles (NPs). We explored the effect of NP concentration, size, surface charge, glass transition temperature and film processing conditions on film structure and properties. The chiral nematic order, typical of CNC films, was preserved in films with up to 50 wt% of negatively-charged latex NPs. Composite films were characterized by macroscopically close-to-uniform fluorescence, birefringence, and circular dichroism properties. In contrast, addition of positively charged latex NPs led to gelation of CNC-latex suspensions and disruption of the chiral nematic order in the composite films. Large latex NPs disrupted the chiral nematic order to a larger extend than small NPs. Furthermore, the glass transition of latex NPs had a dramatic effect on the structure of CNC-latex films. Latex particles in the rubbery state were easily incorporated in the ordered CNC matrix and improved the structural integrity of its chiral nematic phase.

  1. Enhancing and quenching luminescence with gold nanoparticle films: the influence of substrate on the luminescent properties

    International Nuclear Information System (INIS)

    Guidelli, Eder José; Baffa, Oswaldo; Ramos, Ana Paula

    2016-01-01

    Gold nanoparticle (AuNP) films were sputtered over glass and aluminum substrates to enhance optically stimulated luminescence (OSL), a luminescent technique employed for radiation detection, from x-ray irradiated NaCl nanocrystals. The AuNP films deposited over glass led to enhanced-OSL emission, whereas the AuNP films deposited on aluminum substrates quenched the OSL emission. The enhanced-OSL intensity is proportional to the optical density of the film's plasmon resonance band at the stimulation wavelength. For the case of the AuNP/aluminum films, the luminescence quenching diminishes, and OSL intensity partially recovers upon increasing the distance between the AuNPs and the aluminum substrates, and between the luminescent nanocrystals and the AuNP films. These results suggest that plasmonic interactions between the emitter nanocrystals, the localized surface plasmons (LSP) of the AuNPs, and the substrate are responsible for the OSL enhancement and quenching. In this sense, the substrate dictates whether LSP relaxation occurs by radiative or non-radiative transisitions, leading to enhanced or quenched OSL, respectively. Therefore, besides showing that AuNP films can enhance and/or tune the sensitivity of luminescent radiation detectors, and demonstrating OSL as a new technique to investigate mechanisms of plasmon-enhanced luminescence, these results bring insights on how substrates strongly modify the optical properties of AuNP films. (paper)

  2. Spray-coated ligand-free Cu2ZnSnS4 nanoparticle thin films

    DEFF Research Database (Denmark)

    Engberg, Sara Lena Josefin; Murthy, Swathi; Kofod, Guggi

    We have fabricated Cu2ZnSnS4 (CZTS) thin films from spray-coating ligand-free nanoparticle inks. The as-synthesized CZTS nanoparticles were inherently ligand-free [1], which allows the use of polar solvents, such as water and ethanol. Another advantage of these particles is that user...... as an unquantifiable amount of ZnS. A Sono-tek spray-coating system is used which utilizes ultrasonic atomization. We investigate the effect of different binders, ink concentration, and spray-coating conditions, i.e. spray power, flow rate from syringe pump, distance between spray nozzle and the substrate, and time...

  3. Synthesis of embedded titanium dioxide nanoparticles by oxygen ion implantation in titanium films

    Science.gov (United States)

    Rukade, Deepti. A.; Desai, C. A.; Kulkarni, Nilesh; Tribedi, L. C.; Bhattacharyya, Varsha

    2013-02-01

    Thin films of titanium of 100nm thickness are deposited on fused silica substrates. These films are implanted by oxygen ions with implantation energy of 60keV obtained from ECR based highly charged ion accelerator. The implanted films are later annealed in a tube furnace to establish nanophase formation. The post implanted annealed films are characterized by UV-Visible Spectroscopy and Glancing Angle X-ray Diffraction technique (GAXRD). The phase formed and particle size is determined by GAXRD. Nanoparticle formation is confirmed by the UV-VIS spectroscopic analysis that shows quantum size effects in the form of a blue shift in the band-gap energy of titanium-oxide.

  4. MAPLE fabrication of thin films based on kanamycin functionalized magnetite nanoparticles with anti-pathogenic properties

    Science.gov (United States)

    Grumezescu, Valentina; Andronescu, Ecaterina; Holban, Alina Maria; Mogoantă, Laurenţiu; Mogoşanu, George Dan; Grumezescu, Alexandru Mihai; Stănculescu, Anca; Socol, Gabriel; Iordache, Florin; Maniu, Horia; Chifiriuc, Mariana Carmen

    2015-05-01

    In this study we aimed to evaluate the biocompatibility and antimicrobial activity of kanamycin functionalized 5 nm-magnetite (Fe3O4@KAN) nanoparticles thin films deposited by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. A laser deposition regime was established in order to stoichiometrically transfer Fe3O4@KAN thin films on silicone and glass substrates. Morphological and physico-chemical properties of powders and coatings were characterized by XRD, TEM, SEM, AFM and IR microscopy (IRM). Our nanostructured thin films have proved efficiency in the prevention of microbial adhesion and mature biofilms development as a result of antibiotic release in its active form. Furthermore, kanamycin functionalized nanostructures exhibit a good biocompatibility, both in vivo and in vitro, demonstrating their potential for implants application. This is the first study reporting the assessment of the in vivo biocompatibility of a magnetite-antimicrobial thin films produced by MAPLE technique.

  5. High-coercivity FePt nanoparticle assemblies embedded in silica thin films

    International Nuclear Information System (INIS)

    Yan, Q; Purkayastha, A; Singh, A P; Li, H; Ramanath, G; Li, A; Ramanujan, R V

    2009-01-01

    The ability to process assemblies using thin film techniques in a scalable fashion would be a key to transmuting the assemblies into manufacturable devices. Here, we embed FePt nanoparticle assemblies into a silica thin film by sol-gel processing. Annealing the thin film composite at 650 deg. C transforms the chemically disordered fcc FePt phase into the fct phase, yielding magnetic coercivity values H c >630 mT. The positional order of the particles is retained due to the protection offered by the silica host. Such films with assemblies of high-coercivity magnetic particles are attractive for realizing new types of ultra-high-density data storage devices and magneto-composites.

  6. Increasing light coupling in a photovoltaic film by tuning nanoparticle shape with substrate surface energy

    Science.gov (United States)

    Kataria, Devika; Krishnamoorthy, Kothandam; Iyer, S. Sundar Kumar

    2017-08-01

    Tuning metal nanoparticle (MNP) contact angle on the surface it is formed can help maximise the useful optical coupling in photovoltaic films by localized surface plasmon (LSP) resonance—opening up the possibility of building improved photovoltaic cells. In this work experimental demonstration of optical absorption increase in copper phthalocyanine (CuPc) films by tuning silver MNP shape by changing its contact angles with substrate has been reported. Thin films of poly3,4 ethylenedioxythiophene: sodium dodecycl sulphate (PEDOT:SDS) with different surface energies were formed on indium tin oxide (ITO) coated glass by electro-deposition. Silver MNPs thermally evaporated directly on ozonised ITO as well as on the PEDOT:SDS films showed contact angles ranging from 60° to 125°. The CuPc layer was deposited on top of the MNPs. For the samples studied, best optical absorption in the CuPc layer was for a contact angle of 110°.

  7. Plasmonic properties of silver nanoparticles embedded in diamond like carbon films: Influence of structure and composition

    Energy Technology Data Exchange (ETDEWEB)

    Meškinis, Š., E-mail: sarunas.meskinis@fei.lt [Kaunas University of Technology, Institute of Materials Science, Savanoriu Ave. 271, Kaunas LT-50131 (Lithuania); Čiegis, A.; Vasiliauskas, A.; Tamulevičienė, A.; Šlapikas, K. [Kaunas University of Technology, Institute of Materials Science, Savanoriu Ave. 271, Kaunas LT-50131 (Lithuania); Juškėnas, R.; Niaura, G. [Institute of Chemistry, Center for Physical Sciences and Technology, Goštauto Str. 9, Vilnius LT-01108 (Lithuania); Tamulevičius, S. [Kaunas University of Technology, Institute of Materials Science, Savanoriu Ave. 271, Kaunas LT-50131 (Lithuania)

    2014-10-30

    Highlights: • Optical properties of DLC films containing silver (DLC:Ag) depends on substrate bias. • Position of the plasmonic peak depends on composition of DLC:Ag films. • Position of the plasmonic peak depends on structure of Ag nanoclusters. • Influence of composition prevails influence of the structure of DLC matrix. - Abstract: In the present study optical properties of hydrogenated diamond like carbon nanocomposite films containing silver nanoparticles (DLC:Ag) deposited by direct current (DC) unbalanced reactive magnetron sputtering were studied in 180–1100 nm range. Different substrate bias was used during deposition of the films. Structure of the films was investigated by multiwavelength Raman scattering spectroscopy and X-ray diffractometry (XRD). Chemical composition of the samples was studied by X-ray photoelectron spectroscopy (XPS), surface morphology was investigated by atomic force microscopy (AFM). Red shift of the surface plasmon resonance peak of DLC:Ag films with the increase of Ag atomic concentration was observed. It was found that high atomic concentration of oxygen in DLC:Ag films results in some redshift of the plasmonic peak, too. Such a behavior is explained by increase of the refractive index of the dielectric medium surrounding silver nanoparticle due to possible presence of the silver oxide interlayer at the Ag nanocluster and diamond like carbon matrix interface. It was demonstrated that influence of the increased Ag atomic concentration on position of the surface plasmon resonance peak of DLC:Ag films clearly prevails influence of the increased sp{sup 3}/sp{sup 2} ratio of the diamond like carbon matrix. Correlation between the structure of Ag nanocrystallites studied by XRD and position of the surface plasmon resonance peak position was observed.

  8. Formation of electrically conducting, transparent films using silver nanoparticles connected by carbon nanotubes

    International Nuclear Information System (INIS)

    Hwang, Sunna; Noh, Sun Young; Kim, Heesuk; Park, Min; Lee, Hyunjung

    2014-01-01

    To achieve both optical transparency and electrical conductivity simultaneously, we fabricated a single-walled carbon nanotube (SWNT)/silver fiber-based transparent conductive film using silver fibers produced by the electrospinning method. Electrospun silver fibers provided a segregated structure with the silver nanoparticles within the fibrous microstructures as a framework. Additional deposition of SWNT/poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) layers resulted in a remarkable decrease in the surface resistance from very high value (> 3000 kΩ/sq) for the films of electrospun silver fibers, without affecting the optical transmittance at 550 nm. The surface resistance of the SWNT/silver film after the deposition of three layers decreased to 17 Ω/sq with 80% transmittance. Successive depositions of SWNT/PEDOT:PSS layers reduced the surface resistance to 2 Ω/sq without severe loss in optical transmittance (ca. 65%). The transparent conductive films exhibited a performance comparable to that of commercial indium tin oxide films. The individual silver nanoparticles within the electrospun fibers on the substrate were interconnected with SWNTs, which resulted in the efficient activation of a conductive network by bridging the gaps among separate silver nanoparticles. Such a construction of microscopically conductive networks with the minimum use of electrically conductive nanomaterials produced superior electrical conductivity, while maintaining the optical transparency. - Highlights: • Silver fibrous structures were produced by electrospinning method. • SWNTs/PEDOT:PSS was deposited on silver fibrous structures. • These films exhibited a low sheet resistance (∼ 17 Ω/sq) at ∼ 80% optical transparency. • Successive depositions of SWNT/PEDOT:PSS layers reduced the surface resistance to 2 Ω/sq

  9. Formation of electrically conducting, transparent films using silver nanoparticles connected by carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sunna; Noh, Sun Young; Kim, Heesuk; Park, Min [Polymer Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Lee, Hyunjung, E-mail: hyunjung@kookmin.ac.kr [School of Advanced Materials Engineering, Kookmin University, Jeongneung-dong, Seongbuk-gu, Seoul 136-702 (Korea, Republic of)

    2014-07-01

    To achieve both optical transparency and electrical conductivity simultaneously, we fabricated a single-walled carbon nanotube (SWNT)/silver fiber-based transparent conductive film using silver fibers produced by the electrospinning method. Electrospun silver fibers provided a segregated structure with the silver nanoparticles within the fibrous microstructures as a framework. Additional deposition of SWNT/poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) layers resulted in a remarkable decrease in the surface resistance from very high value (> 3000 kΩ/sq) for the films of electrospun silver fibers, without affecting the optical transmittance at 550 nm. The surface resistance of the SWNT/silver film after the deposition of three layers decreased to 17 Ω/sq with 80% transmittance. Successive depositions of SWNT/PEDOT:PSS layers reduced the surface resistance to 2 Ω/sq without severe loss in optical transmittance (ca. 65%). The transparent conductive films exhibited a performance comparable to that of commercial indium tin oxide films. The individual silver nanoparticles within the electrospun fibers on the substrate were interconnected with SWNTs, which resulted in the efficient activation of a conductive network by bridging the gaps among separate silver nanoparticles. Such a construction of microscopically conductive networks with the minimum use of electrically conductive nanomaterials produced superior electrical conductivity, while maintaining the optical transparency. - Highlights: • Silver fibrous structures were produced by electrospinning method. • SWNTs/PEDOT:PSS was deposited on silver fibrous structures. • These films exhibited a low sheet resistance (∼ 17 Ω/sq) at ∼ 80% optical transparency. • Successive depositions of SWNT/PEDOT:PSS layers reduced the surface resistance to 2 Ω/sq.

  10. Structural disordering of de-alloyed Pt bimetallic nanocatalysts

    DEFF Research Database (Denmark)

    Spanos, Ioannis; Dideriksen, Knud; Kirkensgaard, Jacob Judas Kain

    2015-01-01

    Platinum bimetallic alloys are well-known for their ability to catalyze the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). PtxCo1-x colloidal nanoparticles were synthesized with varying initial Pt : Co ratios, but constant size to investigate how the initial meta...... dependence on the initial metal composition. Our results suggest that not only the ORR activity, but also the corrosion resistance of the synthesized NPs, are dependent on the structural disorder resulting from the de-alloying process.......Platinum bimetallic alloys are well-known for their ability to catalyze the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). PtxCo1-x colloidal nanoparticles were synthesized with varying initial Pt : Co ratios, but constant size to investigate how the initial metal...... nanoparticles almost completely de-alloy during acid leaching, i.e. under reaction conditions in a fuel cell. To scrutinize the resulting particle structure after de-alloying we used pair distribution function (PDF) analysis and X-ray diffraction (XRD) gaining insight into the structural disorder and its...

  11. Fabrication of semi-transparent superoleophobic thin film from fabrics and nanoparticle-based hierarchical structure

    Directory of Open Access Journals (Sweden)

    Nishizawa S.

    2013-08-01

    Full Text Available Superoleophobic thin films have many potential applications including fluid transfer, fluid power systems, stain resistant and antifouling materials, and microfluidics among others. Transparency is also desired with superhydrophobicity for their numerous applications; however transparency and oleophobicity are almost incompatible relationship with each other in the point of surface structure. Because oleophobicity required rougher structure at nano-micro scale than hydrophobicity, and these rough structure brings light scattering. So far, there is very few report of the compatible of transparency and superoleophobicity. In this report, we proposed the see-through type fabrics using the nanoparticle-based hierarchical structure thin film for improving both of oleophobicity and transparency. The vacant space between fibrils of fabrics has two important roles: the one is to through the light, another one is to introduce air layer to realize Cassie state of liquid droplet on thin film. To realize the low surface energy and nanoscale rough structure surface on fibrils, we used the spray method with perfluoroalkyl methacrylic copolymer (PMC, silica nano particles and volatile solvent. From the SEM image, the hierarchical structures of nanoparticle were formed uniformly on the fabrics. The transparency of thin film obtained was approximately 61% and the change of transparency between pre-coated fabrics and coated was 11%. From investigation of the surface wettability, the contact angles of oils (rapeseed oil and hexadecane and water droplet on the fabricated film were over 150 degree.

  12. Microstrain and residual stress in thin-films made from silver nanoparticles deposited by inkjet-printing technology

    NARCIS (Netherlands)

    Cauchois, R.; Borbély, A.; Gergaud, P.; Saadaoui, M.; Inal, K.

    2014-01-01

    Colloidal suspensions of nanoparticles are increasingly employed in the fabrication process of electronic devices using inkjet-printing technology and a consecutive thermal treatment. The evolution of internal stresses during the conversion of silver nanoparticle-based ink into a metallic thin-film

  13. Use of Ultrasonic Force Microscopy to Image the Interior Nanoparticles in YBa2Cu3O7-x Films (Postprint)

    Science.gov (United States)

    2012-02-01

    using an ultrasonic force microscope (UFM), which can also operate as a conventional atomic force microscope (AFM). Nanoparticles of Y2BaCuO5 and BaSnO3 ...UFM), which can also operate as a conventional atomic force microscope (AFM). Nanoparticles of Y2BaCuO5 and BaSnO3 were introduced into YBCO films

  14. Stability, UV shielding properties, and light conversion behavior of Eu(BMDM)3@polysiloxane nanoparticles in water and polyurethane films

    International Nuclear Information System (INIS)

    Wang, Xiaolong; Zhou, Shuxue; Wu, Limin

    2012-01-01

    Bifunctional Eu(BMDM) 3 @polysiloxane nanoparticles were prepared through reprecipitation–encapsulation methods using 1-(4-tert-butylphenyl)-3-(4-methoxyphenyl)-1,3-propanedione (BMDM) ligand and octyltrimethoxysilane (OTS) precursor and embedded into waterborne polyurethane (PU) coatings to fabricate transparent optical composite films. The photostability and thermostability of the nanoparticles in water and their ability to block UV and convert light when embedded in PU films were investigated. In comparison with the control Eu(BMDM) 3 nanoparticles, the Eu(BMDM) 3 @polysiloxane nanoparticles, especially those prepared at a Eu(BMDM) 3 /OTS mole ratio of 1:2, exhibited far superior stability under storage conditions, UV irradiation, and heating. They also showed excellent UV-shielding and highly efficient light conversion properties because of the protective polysiloxane. -- Highlights: ► Eu(BMDM) 3 @polysiloxane nanoparticles were successfully prepared. ► The nanoparticles show excellent stability to storage, UV light, and heat. ► PU film with 0.3 wt% nanoparticles exhibited excellent UV shielding performance. ► The nanoparticles can be used as bifunctional additives for agriculture film.

  15. Multi-level switching in TiO x F y film with nanoparticles

    Science.gov (United States)

    Sun, Xiangyu; Wu, Chuangui; Shuai, Yao; Pan, Xinqiang; Luo, Wenbo; You, Tiangui; Du, Nan; Schmidt, Heidemarie

    2017-09-01

    A reliable bipolar resistive switching device was achieved with multi-level switching behavior in fluorine-doped titanium oxide (TiO x F y ) film. Different resistance states can be precisely controlled by different pulse voltages, which reveals the device’s high potential in neuromorphic research. The characteristics of I-V curves in each resistance state were analyzed. Nanoparticles were observed in the TiO x F y film by HR-TEM. The underlying physical mechanisms during resistance switching are discussed and a model of a meshy conducting path is proposed.

  16. Langmuir-Blodgett films of alkane chalcogenice (S, Se, Te) stabilized gold nanoparticles

    DEFF Research Database (Denmark)

    Brust, M.; Stuhr-Hansen, N.; Norgaard, K.

    2001-01-01

    Gold nanoparticles stabilized by alkanethiolates, alkaneselenides, and alkanetellurides have been prepared by analogous methods. Chloroform solutions of thiolate and selenide stabilized particles were spread and evaporated on the water/air interface where the particles formed well-defined Langmuir...... films. The films were transferred to solid supports of freshly cleaved mica and were studied by atomic force microscopy (AFM). The particles were found to have an average core diameter of 2 nm. The stability of the particles under ambient conditions increased in the order Te

  17. The Effects of SiO2 Nanoparticles on Mechanical and Physicochemical Properties of Potato Starch Films

    Directory of Open Access Journals (Sweden)

    Z. Torabi

    2013-06-01

    Full Text Available In this paper effect of SiO2 nanoparticles was investigated on potato starch films. Potato starch films were prepared by casting method with addition of nano-silicon dioxide and a mixture of sorbitol/glycerol (weight ratio of 3 to 1 as plasticizers. SiO2 nanoparticles incorporated to the potato starch films at different concentrations 0, 1, 2, 3, and 5% of total solid, and the films were dried under controlled conditions.  Physicochemical properties such as water absorption capacity (WAC, water vapor permeability (WVP and mechanical properties of the films were measured. Results show that by increasing the concentration of silicon dioxide nanoparticles, mechanical properties of films can be improved. Also incorporation of silicon dioxide nanoparticles in the structure of biopolymer decrease permeability of the gaseous molecules such as water vapor. In summary, addition of silicon dioxide nanoparticles improves functional properties of potato starch films and these bio Nano composites can be used in food packaging.

  18. Self-assembled thin films of Fe3O4-Ag composite nanoparticles for spintronic applications

    Science.gov (United States)

    Jiang, Chengpeng; Leung, Chi Wah; Pong, Philip W. T.

    2017-10-01

    Controlled self-assembly of multi-component magnetic nanoparticles could lead to nanomaterial-based magnetic devices with novel structures and intriguing properties. Herein, self-assembled thin films of Fe3O4-Ag composite nanoparticles (CNPs) with hetero-dimeric shapes were fabricated using interfacial assembly method. The CNP-assembled thin films were further transferred to patterned silicon substrates followed by vacuum annealing, producing CNP-based magnetoresistive (MR) devices. Due to the presence of intra-particle interfaces and inter-particle barriers, an enhanced MR ratio and a non-linear current-voltage relation were observed in the device. The results of this work can potentially pave the way to the future exploration and development of spintronic devices built from composite nanomaterials.

  19. Cassava starch films containing acetylated starch nanoparticles as reinforcement: Physical and mechanical characterization.

    Science.gov (United States)

    Teodoro, Ana Paula; Mali, Suzana; Romero, Natália; de Carvalho, Gizilene Maria

    2015-08-01

    This paper reports the use of acetylated starch nanoparticles (NPAac) as reinforcement in thermoplastic starch films. NPAac with an average size of approximately 500 nm were obtained by nanoprecipitation. Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) indicated that NPAac are more thermally stable and essentially amorphous when compared with acetylated starch. Thermoplastic starch films with different proportions of NPAac (0.5, 1.0, 1.5, 10.0%, w/w) were obtained and characterized by scanning electron microscopy (SEM), water vapor permeability (WVP), adsorption isotherms, TGA and mechanical tests. The inclusion of reinforcement caused changes in film properties: WVP was lowered by 41% for film with 1.5% (w/w) of NPAac and moisture adsorption by 33% for film with 10% (w/w) of NPAac; and the Young's modulus and thermal stability were increased by 162% and 15%, respectively, for film with 0.5% (w/w) of NPAac compared to the starch film without the addition of NPAac. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The role of polymer films on the oxidation of magnetite nanoparticles

    Science.gov (United States)

    Letti, C. J.; Paterno, L. G.; Pereira-da-Silva, M. A.; Morais, P. C.; Soler, M. A. G.

    2017-02-01

    A detailed investigation about the role of polymer films on the oxidation process of magnetite nanoparticles (∼7 nm diameter), under laser irradiation is performed employing micro Raman spectroscopy. To support this investigation, Fe3O4-np are synthesized by the co-precipitation method and assembled layer-by-layer with sodium sulfonated polystyrene (PSS). Polymer films (Fe3O4-np/PSS)n with n=2,3,5,7,10 and 25 bilayers are employed as a model system to study the oxidation process under laser irradiation. Raman data are further processed by principal component analysis. Our findings suggest that PSS protects Fe3O4-np from oxidation when compared to powder samples, even for the sample with the greater number of bilayers. Further, the oxidation of magnetite to maghemite occurs preferably for thinner films up to 7 bilayers, while the onset for the formation of the hematite phase depends on the laser intensity for thicker films. Water takes part on the oxidation processes of magnetite, the oxidation/phase transformation of Fe3O4-np is intensified in films with more bilayers, since more water is included in those films. Encapsulation of Fe3O4-np by PSS in layer-by-layer films showed to be very efficient to avoid the oxidation process in nanosized magnetite.

  1. In situ AFM analysis investigating disassembly of DNA nanoparticles and nano-films.

    Science.gov (United States)

    Zou, Yi; Wan, Lei; Blacklock, Jenifer; Oupicky, David; Mao, Guangzhao

    2013-01-01

    Synthetic vector-based gene delivery systems continue to gain strength as viable alternatives to viral vectors due to safety and other concerns. DNA release dynamics is key to the understanding and control of gene delivery from nano-systems. Here we describe atomic force microscope application to the understanding of DNA release dynamics from bioreducible polycation-based nano-systems. The two nano-systems are polyplex nanoparticles and layer-by-layer films.

  2. Locally formation of Ag nanoparticles in chalcogenide phase change thin films induced by nanosecond laser pulses

    International Nuclear Information System (INIS)

    Huang, Huan; Zhang, Lei; Wang, Yang; Han, Xiaodong; Wu, Yiqun; Zhang, Ze; Gan, Fuxi

    2012-01-01

    A simple method to optically synthesize Ag nanoparticles in Ge 2 Sb 2 Te 5 phase change matrix is described. The fine structures of the locally formed phase change chalcogenide nanocomposite are characterized by high-resolution transmission electron microscopy. The formation mechanism of the nanocomposite is discussed with temperature evolution and distribution simulations. This easy-prepared metal nano-particle-embedded phase change microstructure will have great potential in nanophotonics applications, such as for plasmonic functional structures. This also provides a generalized approach to the preparation of well-dispersed nanoparticle-embedded composite thin films in principle. -- Highlights: ► We describe a method to prepare chalcogenide microstructures with Ag nanoparticles. ► We give the fine structural images of phase change nanocomposites. ► We discuss the laser-induced fusion mechanism by temperature simulation. ► This microstructure will have great potential in nanophotonics applications.

  3. Brush-Coated Nanoparticle Polymer Thin Films: structure-mechanical-optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Green, Peter F. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Materials Science and Engineering

    2014-08-15

    Our work was devoted to understanding the structure and properties of a class of thin film polymer nanocomposites (PNCs). PNCs are composed of polymer hosts into which nanoparticles (metallic nanoparticles, quantum dots, nanorods, C60, nanotubes) are incorporated. PNCs exhibit a diverse range of functional properties (optical, electronic, mechanical, biomedical, structural), determined in part by the chemical composition of the polymer host and the type of nanoparticle. The properties PNCs rely not only on specific functional, size-dependent, behavior of the nanoparticles, but also on the dispersion, and organizational order in some cases, inter-nanoparticle separation distances, and on relative interactions between the nanoparticles and the host. Therefore the scientific challenges associated with understanding the interrelations between the structure and function/properties of PNCs are far more complex than may be understood based only on the knowledge of the compositions of the constituents. The challenges of understanding the structure-function behavior of PNCs are further compounded by the fact that control of the dispersion of the nanoparticles within the polymer hosts is difficult; one must learn how to disperse inorganic particles within an organic host. The goal of this proposal was to develop an understanding of the connection between the structure and the thermal (glass transition), mechanical and optical properties of a specific class of PNCs. Specifically PNCs composed of polymer chain grafted gold nanoparticles within polymer hosts. A major objective was to understand how to develop basic principles that enable the fabrication of functional materials possessing optimized morphologies and combinations of materials properties.

  4. Optical and photoelectrical studies of gold nanoparticle-decorated C{sub 60} films

    Energy Technology Data Exchange (ETDEWEB)

    Dmitruk, N.L., E-mail: dmitruk@isp.kiev.u [Institute for Physics of Semiconductors, National Academy of Sciences of Ukraine, 45 Nauki Prospect, Kyiv 03028 (Ukraine); Borkovskaya, O.Yu.; Mamykin, S.V.; Naumenko, D.O. [Institute for Physics of Semiconductors, National Academy of Sciences of Ukraine, 45 Nauki Prospect, Kyiv 03028 (Ukraine); Meza-Laguna, V. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior, Ciudad Universitaria, A. P. 70-186, C. P. 04510 Mexico D.F. (Mexico); Basiuk Golovataya-Dzhymbeeva, E.V. [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico (UNAM), Circuito exterior S/N Ciudad Universitaria, A. P. 70-186, C. P. 04510 Mexico D.F. (Mexico); Lee, I. Puente [Facultad de Quimica, UNAM, Circuito de la Investigacion Cientifica, Ciudad Universitaria, 04510 Mexico D.F. (Mexico)

    2010-01-01

    Optical and photoelectrical studies were performed on octane-1,8-dithiol cross-linked fullerene films, with supported gold nanoparticles (C{sub 60}-DT-Au). According to high-resolution transmission electron microscopy observations, the average size of obtained gold nanoparticles was about 5 nm, and the shape was spherical. The comparative investigation of optical properties of pristine and cross-linked with octane-1,8-dithiol C{sub 60} films, decorated with gold nanoparticles, found the difference in the extinction coefficient spectra, which was observed also in the photocurrent spectra of barrier heterostructure Au/C{sub 60}/Si. The analysis of dark current-voltage characteristics for Au/C{sub 60}/Si heterostructures showed that the model for them includes the barrier at the C{sub 60}/Si interface and internal barriers in the C{sub 60} layer, caused by the trapping centers. The hopping mechanism of the current transport in the C{sub 60} layer was supplemented with the Poole-Frenkel emission process on these centers, with the barrier height greater for the fullerene C{sub 60} film cross-linked with octane-1,8-dithiol.

  5. Tio2 Nanoparticles Coated With Porphyrin Dye Thin Film As Fluorescence Gas Sensor

    International Nuclear Information System (INIS)

    Nurul Huda Yusoff; Muhamad Mat Salleh; Muhammad Yahaya

    2008-01-01

    This research explores the possibility of using fluorescence technique to detect the presence of volatile organic compounds based on a single sensing material. The material used was TiO 2 nanoparticles coated with porphyrin dye. The TiO 2 nanoparticles colloid is in a sol-gel form synthesized from titanium (IV) ethoxide in ethanol with addition of potassium chloride (KCl) as stabilizer. TiO 2 nanoparticles were then coated with porphyrin dye, Manganese (III) 5,10,15,20 tetra (4-pyridyl)-21H, 23H porphine chloride tetrakis (meta chloride). The coated nanoparticles were deposited on quartz substrate using self-assembly through dip coating technique. The sensing properties of the thin film toward volatile organic compounds; ethanol, acetone, cyclohexane and 2-propanol were studied using luminescence spectrometer. It was found that the thin film produced different emission spectra peaks for different volatile organic compounds (VOCs). Hence, it eases chemical identification process and potentially be use as fluorescence gas sensor. (author)

  6. Annealing effects on electrical behavior of gold nanoparticle film: Conversion of ohmic to non-ohmic conductivity

    Science.gov (United States)

    Ebrahimpour, Zeinab; Mansour, Nastaran

    2017-02-01

    This paper reports on the electrical behavior of self-assembled gold nanoparticle films before and after high-temperature annealing in ambient environment. These films are made by depositing gold nanoparticles from a colloidal solution on glass substrates using centrifuge deposition technique. The current-voltage (I-V) characteristics of these films exhibits ohmic and non-ohmic properties for un-annealed and annealed films respectively. As the annealing time duration increases, the onset of non-ohmic behavior occurs at higher voltages. To understand the underlying mechanisms for the observed electrical conduction behavior in these films and how electrical conduction is effected by film morphology and structural properties before and after annealing, systematic comparative studies based on scanning electron microscopy (SEM), UV-vis absorption spectroscopy and X-ray photoelectron spectroscopy (XPS) have been performed. The morphology of the films shows that the assembled gold nanoparticles are distributed on the substrate in a random way before annealing. After 2 h annealing gold nanoparticles exhibit a higher filling fraction when examined by SEM, which means that they coalesce, upon annealing, with respect to un-annealed films. The UV-vis absorption spectra of the films show that there is a red-shift and broadening in the absorption band for the annealed films. The observed phenomenon is related to the plasmon near-field coupling effect and suggests that the nanoparticle ensembles interspacing has decreased. The structural and crystallinity of the films exhibit amorphous structure before annealing and pure crystalline phases with a preferential growth direction along the (111) plane after annealing. The XPS analysis further suggests the existence of the stable thin oxide layer in the phase of Au2O3 in the annealed films. The I-V characteristics have been described by Simmons' model for tunnel transport through metal-insulator-metal (MIM) junctions. The Fowler

  7. Synthesis and Characterization of BSA Conjugated Silver Nanoparticles (Ag/BSA Nanoparticles) and Evaluation of Biological Properties of Ag/BSA Nanoparticles and Ag/BSA Nanoparticles Loaded Poly(hydroxy butyrate valerate) PHBV Films

    Science.gov (United States)

    Ambaye, Almaz

    Ag/BSA nanoparticles was found to be in a range of 9-13 nm. X-ray photo electron spectroscopy measurements of argon sputtered Ag/BSA nanoparticles provided evidence that the outer and inner region of nanoparticles are mainly composed of BSA and silver, respectively. Having characterized the nanoparticles, the next phase of the study was to evaluate the antibacterial activity and cytotoxicity level of BSA stabilized silver nanoparticles. The antibacterial efficacy of Ag/BSA nanoparticles against E. coli and S. aureus was evaluated, and minimum lethal concentration was found to be 2ppm and 7ppm, respectively. E. coli showed a higher susceptibility to silver nanoparticles than S. aureus, which could be attributed to the difference in the cell wall structure. We have also investigated the cytotoxicity level of Ag/BSA nanoparticles towards MC3T3-E1 osteoblast cells. The minimum bactericidal concentration found for both strains is lower than the silver nanoparticles concentration that was toxic to the osteoblast cells. Preliminary studies of Ag/BSA nanoparticles loaded collagen immobilized PHBV film showed that the Ag/BSA nanoparticles loaded PHBV film inhibit bacterial growth. The findings of our study can be extremely useful in the design of novel scaffold to address the critical needs of bone tissue engineering community.

  8. A general approach for the synthesis of bimetallic M–Sn (M = Ru, Rh and Ir) catalysts for efficient hydrogenolysis of ester

    KAUST Repository

    Samal, Akshaya Kumar

    2016-11-24

    A versatile synthetic method was applied for the preparation of Sn containing bimetallic catalysts. The synthesis was performed by simply mixing the super hydride [LiB(C2H5)(3)H], with a metal (Ru, Rh or Ir) salt and an organotin complex in tetrahydrofuran solvent without using any surfactant. This leads to the formation of monodispersed M-Sn (M = Ru, Rh or Ir) bimetallic nanoparticles (NPs). These bimetallic catalysts show high performances in the hydrogenolysis of ester to the corresponding alcohol.

  9. High-performance flexible hydrogen sensor made of WS2 nanosheet–Pd nanoparticle composite film

    International Nuclear Information System (INIS)

    Kuru, Cihan; Choi, Duyoung; Liu, Chin Hung; Yavuz, Serdar; Jin, Sungho; Kargar, Alireza; Choi, Chulmin; Bandaru, Prabhakar R

    2016-01-01

    We report a flexible hydrogen sensor, composed of WS 2 nanosheet–Pd nanoparticle composite film, fabricated on a flexible polyimide substrate. The sensor offers the advantages of light-weight, mechanical durability, room temperature operation, and high sensitivity. The WS 2 –Pd composite film exhibits sensitivity (R 1 /R 2, the ratio of the initial resistance to final resistance of the sensor) of 7.8 to 50 000 ppm hydrogen. Moreover, the WS 2 –Pd composite film distinctly outperforms the graphene–Pd composite, whose sensitivity is only 1.14. Furthermore, the ease of fabrication holds great potential for scalable and low-cost manufacturing of hydrogen sensors. (paper)

  10. Current-dependent anisotropic conductivity of locally assembled silver nanoparticles in hybrid polymer films.

    Science.gov (United States)

    Goel, Pooja; Vinokur, Rostislav; Weichold, Oliver

    2010-12-15

    The electrical behaviour of hybrid poly(ethylene terephthalate) films containing localised, percolating networks of silver nanoparticles separated by pure polymer is studied. The films resemble an array of parallel wires in the submicron range and, thus, exhibit anisotropic conductivity. In the high-conductivity direction at low amplitudes, the films show Ohmic behaviour, while at moderate voltage, non-linearity and a decreasing resistance is observed. The samples were found to heat up during the measurements and the deviation from Ohm's law coincides with the Tg of the polymer. Microstructural analysis of the samples revealed an irreversible agglomeration of the particles at moderate voltages leading to the formation of filaments with higher metallic character than the random particle network. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. POLYMER COMPOSITE FILMS WITH SIZE-SELECTED METAL NANOPARTICLES FABRICATED BY CLUSTER BEAM TECHNIQUE

    DEFF Research Database (Denmark)

    Ceynowa, F. A.; Chirumamilla, Manohar; Popok, Vladimir

    2017-01-01

    Formation of polymer films with size-selected silver and copper nanoparticles (NPs) is studied. Polymers are prepared by spin coating while NPs are fabricated and deposited utilizing a magnetron sputtering cluster apparatus. The particle embedding into the films is provided by thermal annealing...... after the deposition. The degree of immersion can be controlled by the annealing temperature and time. Together with control of cluster coverage the described approach represents an efficient method for the synthesis of thin polymer composite layers with either partially or fully embedded metal NPs....... Combining electron beam lithography, cluster beam deposition and thermal annealing allows to form ordered arrays of metal NPs on polymer films. Plasticity and flexibility of polymer host and specific properties added by coinage metal NPs open a way for different applications of such composite materials...

  12. Photoconductivity studies on amorphous and crystalline TiO{sub 2} films doped with gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Valverde-Aguilar, G.; Garcia-Macedo, J.A. [Universidad Nacional Autonoma de Mexico, Departamento de Estado Solido, Instituto de Fisica, Mexico D.F. (Mexico); Renteria-Tapia, V. [Universidad de Guadalajara, Centro Universitario de los Valles, Departamento de Ciencias Naturales y Exactas, Ameca, Jalisco (Mexico); Aguilar-Franco, M. [Universidad Nacional Autonoma de Mexico, Departamento de Fisica Quimica, Instituto de Fisica, Mexico D.F. (Mexico)

    2011-06-15

    In this work, amorphous and crystalline TiO{sub 2} films were synthesized by the sol-gel process at room temperature. The TiO{sub 2} films were doped with gold nanoparticles. The films were spin-coated on glass wafers. The crystalline samples were annealed at 100 C for 30 minutes and sintered at 520 C for 2 h. All films were characterized using X-ray diffraction, transmission electronic microscopy and UV-Vis absorption spectroscopy. Two crystalline phases, anatase and rutile, were formed in the matrix TiO{sub 2} and TiO{sub 2}/Au. An absorption peak was located at 570 nm (amorphous) and 645 nm (anatase). Photoconductivity studies were performed on these films. The experimental data were fitted with straight lines at darkness and under illumination at 515 nm and 645 nm. This indicates an ohmic behavior. Crystalline TiO{sub 2}/Au films are more photoconductive than the amorphous ones. (orig.)

  13. PBAT/TPS Composite Films Reinforced with Starch Nanoparticles Produced by Ultrasound

    Directory of Open Access Journals (Sweden)

    Normane Mirele Chaves da Silva

    2017-01-01

    Full Text Available The objective of the present work was to study the incorporation of starch nanoparticles (SNP produced by ultrasound in blends of poly(butylene adipate-co-terephthalate (PBAT and thermoplastic starch (TPS. The films were produced by extrusion using varying percentages of SNP (1, 2, 3, 4, and 5% w/w. The SNP were prepared in water without the addition of any chemical reagent. The results revealed that ultrasound treatment results in the formation of SNP less than 100 nm in size and of an amorphous character and lower thermal stability and low gelatinization temperature when compared with cassava starch. Scanning electron microscopy (SEM showed that films presented some starch granules. The relative crystallinity (RC of films decreases with increasing concentration of SNP. The addition of SNP slightly affected the thermal degradation of the films. The DSC results showed that the addition did not modify the interaction between the different components of the films. Mechanical tests revealed an increase in Young’s modulus (36% and elongation-at-break (35% with the incorporation of 1% SNP and this concentration reduced the water vapor permeability (53% and significantly decreased the water absorption of the films, demonstrating that low concentrations of SNP can be used as reinforcement in a polymeric matrix.

  14. Hybrid chitosan–Pluronic F-127 films with BaTiO{sub 3}:Co nanoparticles: Synthesis and properties

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, S., E-mail: sfuentes@ucn.cl [Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago (Chile); Dubo, J. [Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Barraza, N. [Departamento de Física, Facultad de Ciencias, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); González, R. [Laboratorio de Magnetismo, Departamento de Ciencias Geológicas, Universidad Católica del Norte, Antofagasta (Chile); Veloso, E. [Dirección de Investigaciones Científicas y Tecnológicas, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago (Chile)

    2015-03-01

    In this study, magnetic BaTiO{sub 3}:Co (BT:Co) nanoparticles prepared using a combined sol–gel–hydrothermal technique were dispersed in a chitosan/Pluronic F-127 solution (QO/Pl) to obtain a nanocomposite hybrid films. Nanoparticles and hybrid films were characterized by X-ray powder diffraction, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and alternating gradient magnetometry (AGM). Experimental results indicated that the BT:Co nanoparticles were encapsulated in the QO/Pl hybrid films and that the magnetic properties of the QO/Pl/BT:Co nanocomposites are similar to the naked BT:Co nanoparticles. Results indicate that Co doping produces an enhancement in the ferromagnetic behavior of the BT nanoparticle. The coating restricts this enhancement only to low-fields, leaving the diamagnetic behavior of BT at high-fields. Magnetically stable sizes (PSD) were obtained at 3% Co doping for both naked nanoparticles and hybrid films. These show an increased magnetic memory capacity and a softer magnetic hardness with respect to non-doped BT nanoparticles. - Highlights: • We described the synthesis of magnetic BaTiO{sub 3}:Co dispersed in chitosan (QO)/Pluronic F-127 (Pl) solution by sonication to obtain nanocomposite hybrid films. • We describe the physical and magnetic properties of BaTiO{sub 3}:Co nanoparticles and QO/Pl/BT:Co hybrid films. • The magnetic properties are defines by the presence of magnetic domains. These magnetic domains are close related with the amount of Co in the host lattice. • The prepared phases could be considered as multifunctional materials, with magnetic and ferri-electrical properties, with potential uses in the design of devices.

  15. Growth of ordered silver nanoparticles in silica film mesostructured with a triblock copolymer PEO-PPO-PEO

    International Nuclear Information System (INIS)

    Bois, L.; Chassagneux, F.; Parola, S.; Bessueille, F.; Battie, Y.; Destouches, N.; Boukenter, A.; Moncoffre, N.; Toulhoat, N.

    2009-01-01

    Elaboration of mesostructured silica films with a triblock copolymer polyethylene oxide-polypropylene oxide-polyethylene oxide, (PEO-PPO-PEO) and controlled growth of silver nanoparticles in the mesostructure are described. The films are characterized using UV-visible optical absorption spectroscopy, TEM, AFM, SEM, X-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS). Organized arrays of spherical silver nanoparticles with diameter between 5 and 8 nm have been obtained by NaBH 4 reduction. The size and the repartition of silver nanoparticles are controlled by the film mesostructure. The localization of silver nanoparticles exclusively in the upper-side part of the silica-block copolymer film is evidenced by RBS experiment. On the other hand, by using a thermal method, 40 nm long silver sticks can be obtained, by diffusion and coalescence of spherical particles in the silica-block copolymer layer. In this case, migration of silver particles toward the glass substrate-film interface is shown by the RBS experiment. - Graphical abstract: Growth of silver nanoparticles in a mesostructured block copolymer F127-silica film is performed either by a chemical route involving NaBH 4 reduction or by a thermal method. An array of spherical silver nanoparticles with 10 nm diameter on the upper-side of the mesostructured film or silver sticks long of 40 nm with a preferential orientation are obtained according to the method used. a: TEM image of the Fag5SiNB sample illustrating the silver nanoparticles array obtained by the chemical process; b: HR-TEM image of the Fag20Sid2 sample illustrating the silver nanosticks obtained by the thermal process.

  16. Structure of thin film brush-coated nanoparticle/homopolymer systems

    Science.gov (United States)

    Green, Peter; Kim, Jenny; Chen, Chelsea

    2010-03-01

    Nanoparticles (NPs) are incorporated within polymer hosts in order to prepare nanocomposites with ``tailored'' properties. However, understanding and controlling particle aggregation, and the structure, in these polymer nanocomposites (PNCs) remains an important challenge. We examine the phase behavior of thin film mixtures of polystyrene (PS)-grafted gold nanoparticles with different polymer hosts: PS, polymethyl methacrylate (PMMA); tetramethyl bisphenol polycarbonate (TMPC) and poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV). We show that the phase behavior, and more importantly the nanoparticle distribution, is controlled by the enthalpic interaction parameter between the host chains and the grafted chains, the grafting density, g, the degrees of polymerization of the grafted chains and the host chains, N and P, respectively and the nanoparticle size, D. We illustrate conditions under which the entropic interactions have a more significant effect on the structure than the enthalpic interactions. Finally we illustrate conditions where the nanoparticles behave like ``hard'' spheres and conditions under which the mixture behaves like a linear chain/polymer micelle-like system.

  17. Fabrication of flexible superhydrophobic films by lift-up soft-lithography and decoration with Ag nanoparticles

    International Nuclear Information System (INIS)

    Yao Tongjie; Wang Chuanxi; Lin Quan; Li Xiao; Chen Xiaolu; Wu Jie; Zhang Junhu; Yang Bai; Yu Kui

    2009-01-01

    Superhydrophobic films with excellent flexibility have been fabricated by combining the lift-up soft-lithography technique and chemical reduction of [Ag(NH 3 ) 2 ] + ions to Ag nanoparticles (NPs) on the surface of silica spheres which are patterned on the polydimethylsiloxane (PDMS) films. Scanning electron microscopy (SEM) images reveal the presence of raspberry-like hierarchical structures on the PDMS films. The influence of the amount of Ag NPs and the size of the silica spheres on the wettability of the soft films is investigated carefully. Because PDMS films are elastomeric materials, our superhydrophobic films offer great flexibility. The resulting films can be easily transferred from one substrate surface to another without destroying their superhydrophobicity. These flexible and superhydrophobic films can be used repeatedly to satisfy a wide range of applications.

  18. Electrostatic accumulation and determination of triclosan in ultrathin carbon nanoparticle composite film electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Amiri, Mandana [Department of Chemistry, Sharif University of Technology, Teheran (Iran, Islamic Republic of); Shahrokhian, Saeed [Department of Chemistry, Sharif University of Technology, Teheran (Iran, Islamic Republic of); Psillakis, Elefteria [Laboratory of Aquatic Chemistry, Department of Environmental Engineering, Technical University of Crete, Polytechnioupolis, 73100 Chania-Crete (Greece); Marken, Frank [Department of Chemistry, University of Bath, Bath BA2 7AY (United Kingdom)]. E-mail: f.marken@bath.ac.uk

    2007-06-12

    A film composed of carbon nanoparticles and poly(diallyldimethylammonium chloride) or CNP-PDDAC is formed in a layer-by-layer deposition process at tin-doped indium oxide (ITO) substrates. Excess positive binding sites within this film in aqueous phosphate buffer at pH 9.5 are quantified by adsorption of iron(III)phthalocyanine tetrasulfonate and indigo carmine. Both anionic redox systems bind with Langmuirian characteristics (K {approx} 10{sup 5} mol{sup -1} dm{sup 3}) and show electrochemical reactivity throughout the film at different thicknesses. Therefore, the electrical conductivity in CNP-PDDAC films is good and the positive binding sites are approximately 140 pmol cm{sup -2} per layer. Structural instability of the CNP-PDDAC film in the presence of high concentrations of iron(III)phthalocyanine tetrasulfonate or indigo carmine is observed. Triclosan, a widely used anti-bacterial and anti-fungal agent, exists in aqueous media at pH 9.5 as a negatively charged chlorinated poly-aromatic phenol. Due to the negative charge, triclosan is readily accumulated into CNP-PDDAC films with an efficiency consistent with that expected for simple electrostatic interaction with the cationic binding sites. Oxidation of bound triclosan occurs at 0.6 V versus SCE in a chemically irreversible process. The CNP-PDDAC film electrode is renewed by rinsing in organic solvent and the triclosan oxidation response is shown to correlate with the triclosan concentration in solution from 0.5 to 50 {mu}M. Applications of the CNP-PDDAC film electrode (or improved versions of it) in analysis or in anodic extraction are proposed.

  19. Electrostatic accumulation and determination of triclosan in ultrathin carbon nanoparticle composite film electrodes

    International Nuclear Information System (INIS)

    Amiri, Mandana; Shahrokhian, Saeed; Psillakis, Elefteria; Marken, Frank

    2007-01-01

    A film composed of carbon nanoparticles and poly(diallyldimethylammonium chloride) or CNP-PDDAC is formed in a layer-by-layer deposition process at tin-doped indium oxide (ITO) substrates. Excess positive binding sites within this film in aqueous phosphate buffer at pH 9.5 are quantified by adsorption of iron(III)phthalocyanine tetrasulfonate and indigo carmine. Both anionic redox systems bind with Langmuirian characteristics (K ∼ 10 5 mol -1 dm 3 ) and show electrochemical reactivity throughout the film at different thicknesses. Therefore, the electrical conductivity in CNP-PDDAC films is good and the positive binding sites are approximately 140 pmol cm -2 per layer. Structural instability of the CNP-PDDAC film in the presence of high concentrations of iron(III)phthalocyanine tetrasulfonate or indigo carmine is observed. Triclosan, a widely used anti-bacterial and anti-fungal agent, exists in aqueous media at pH 9.5 as a negatively charged chlorinated poly-aromatic phenol. Due to the negative charge, triclosan is readily accumulated into CNP-PDDAC films with an efficiency consistent with that expected for simple electrostatic interaction with the cationic binding sites. Oxidation of bound triclosan occurs at 0.6 V versus SCE in a chemically irreversible process. The CNP-PDDAC film electrode is renewed by rinsing in organic solvent and the triclosan oxidation response is shown to correlate with the triclosan concentration in solution from 0.5 to 50 μM. Applications of the CNP-PDDAC film electrode (or improved versions of it) in analysis or in anodic extraction are proposed

  20. Implications of SPION and NBT nanoparticles upon in-vitro and in-situ biodegradation of LDPE film.

    Science.gov (United States)

    Kapri, Anil; Zaidi, M G H; Goel, Reeta

    2010-06-01

    Comparative influence of two nanoparticles viz. superparamagnetic iron oxide nanoparticles (SPION) and nanobarium titanate (NBT) was studied upon the in-vitro and in-situ low-density polyethylene (LDPE) biodegradation efficiency of a potential polymer-degrading microbial consortium. Supplementation of 0.01% concentration (w/v) of the nanoparticles in minimal broth significantly increased the bacterial growth, along with early onset of the exponential phase. Under in-vitro conditions, lambda-max shifts were quicker with nanoparticles and Fourier transform infrared spectroscopy (FTIR) illustrated significant changes in CH/CH2 vibrations, along with introduction of hydroxyl residues in the polymer backbone. Further, simultaneous thermogravimetric-differential thermogravimetry-differential thermal analysis (TG-DTG-DTA) reported multiple-step decomposition of LDPE degraded in the presence of nanoparticles. These findings were supported by scanning electron micrographs (SEM) which revealed greater dissolution of film surface in the presence of nanoparticles. Furthermore, progressive degradation of the film was greatly enhanced when it was incubated under soil conditions for 3 months with the nanoparticles. The study highlights the significance of bacteria-nanoparticle interactions which can dramatically influence key metabolic processes like biodegradation. The authors also propose the exploration of nanoparticles to influence various other microbial processes for commercial viabilities.

  1. Green synthesis of high conductivity silver nanoparticle-reduced graphene oxide composite films

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, D.A. [School of Materials Science and Engineering, Pusan National University, San 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Hui, K.S., E-mail: kshui@hanyang.ac.kr [Department of Mechanical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Hui, K.N., E-mail: bizhui@pusan.ac.kr [School of Materials Science and Engineering, Pusan National University, San 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Cho, Y.R. [School of Materials Science and Engineering, Pusan National University, San 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Zhou, Wei [Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361005 (China); Hong, Xiaoting [School of Chemistry and Environment, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006 (China); Chun, Ho-Hwan [Global Core Research Center for Ships and Offshore Plants (GCRC-SOP), Pusan National University, San 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of)

    2014-04-01

    Graphical abstract: - Highlights: • A green facile chemical approach to control the dimensions of Ag nanoparticles–graphene oxide (AgNPs/GO) composites was performed at room temperature. • With decreasing ultrasonication time, the size of the Ag nanoparticles decreased and became uniformly distributed over the surface of the GO nanosheets. • The as-prepared AgNPs/rGO composite films were then formed using a spin coating method and reduced at 500 °C under N{sub 2}/H{sub 2} gas flow for 1 h. • The lowest sheet resistance of 270 Ω/sq was obtained in the film corresponding to 1 min of ultrasonication, which showed a 40 times lower resistivity than the rGO film (10.93 kΩ/sq). - Abstract: A green facile chemical approach to control the dimensions of Ag nanoparticles–graphene oxide (AgNPs/GO) composites was performed by the in situ ultrasonication of a mixture of AgNO{sub 3} and graphene oxide solutions with the assistance of vitamin C acting as an environmentally friendly reducing agent at room temperature. With decreasing ultrasonication time, the size of the Ag nanoparticles decreased and became uniformly distributed over the surface of the GO nanosheets. The as-prepared AgNPs/rGO composite films were then formed using a spin coating method and reduced at 500 °C under N{sub 2}/H{sub 2} gas flow for 1 h. Four-point probe measurements showed that the sheet resistance of the AgNPs/rGO films decreased with decreasing AgNPs size. The lowest sheet resistance of 270 Ω/sq was obtained in the film corresponding to 1 min of ultrasonication, which showed a 40 times lower resistivity than the rGO film (10.93 kΩ/sq). The formation mechanisms of the as-prepared AgNPs/rGO films are proposed. This study provides a guide to controlling the dimensions of AgNPs/rGO films, which might hold promise as advanced materials for a range of analytical applications, such as catalysis, sensors and microchips.

  2. Scale effects of nanomechanical properties and deformation behavior of Au nanoparticle and thin film using depth sensing nanoindentation

    Directory of Open Access Journals (Sweden)

    Dave Maharaj

    2014-06-01

    Full Text Available Nanoscale research of bulk solid surfaces, thin films and micro- and nano-objects has shown that mechanical properties are enhanced at smaller scales. Experimental studies that directly compare local with global deformation are lacking. In this research, spherical Au nanoparticles, 500 nm in diameter and 100 nm thick Au films were selected. Nanoindentation (local deformation and compression tests (global deformation were performed with a nanoindenter using a sharp Berkovich tip and a flat punch, respectively. Data from nanoindentation studies were compared with bulk to study scale effects. Nanoscale hardness of the film was found to be higher than the nanoparticles with both being higher than bulk. Both nanoparticles and film showed increasing hardness for decreasing penetration depth. For the film, creep and strain rate effects were observed. In comparison of nanoindentation and compression tests, more pop-ins during loading were observed during the nanoindentation of nanoparticles. Repeated compression tests of nanoparticles were performed that showed a strain hardening effect and increased pop-ins during subsequent loads.

  3. Scale effects of nanomechanical properties and deformation behavior of Au nanoparticle and thin film using depth sensing nanoindentation.

    Science.gov (United States)

    Maharaj, Dave; Bhushan, Bharat

    2014-01-01

    Nanoscale research of bulk solid surfaces, thin films and micro- and nano-objects has shown that mechanical properties are enhanced at smaller scales. Experimental studies that directly compare local with global deformation are lacking. In this research, spherical Au nanoparticles, 500 nm in diameter and 100 nm thick Au films were selected. Nanoindentation (local deformation) and compression tests (global deformation) were performed with a nanoindenter using a sharp Berkovich tip and a flat punch, respectively. Data from nanoindentation studies were compared with bulk to study scale effects. Nanoscale hardness of the film was found to be higher than the nanoparticles with both being higher than bulk. Both nanoparticles and film showed increasing hardness for decreasing penetration depth. For the film, creep and strain rate effects were observed. In comparison of nanoindentation and compression tests, more pop-ins during loading were observed during the nanoindentation of nanoparticles. Repeated compression tests of nanoparticles were performed that showed a strain hardening effect and increased pop-ins during subsequent loads.

  4. Magnetic Composite Thin Films of Fe{sub x}O{sub y} Nanoparticles and Photocrosslinked Dextran Hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Brunsen, Annette, E-mail: brunsen@mpip-mainz.mpg.de [Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany); Department of Chemistry, Technical University Darmstadt, Petersenstr. 22, 64287 Darmstadt (Germany); Utech, Stefanie, E-mail: utech@uni-mainz.de [Johannes Gutenberg University Mainz, Institute of Physical Chemistry, Jakob-Welder-Weg 11, 55099 Mainz (Germany); Institut fuer Mikrotechnik Mainz GmbH (IMM), Carl-Zeiss-Str. 18-20, 55129 Mainz, German (Germany); Maskos, Michael, E-mail: maskos@uni-mainz.de [Institut fuer Mikrotechnik Mainz GmbH (IMM), Carl-Zeiss-Str. 18-20, 55129 Mainz, German (Germany); Knoll, Wolfgang, E-mail: Wolfgang.Knoll@ait.ac.at [Austrian Institute of Technology, Tech Gate Vienna, Donau-City-Str. 1, 1220 Wien (Austria); Jonas, Ulrich, E-mail: jonas@mpip-mainz.mpg.de [Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany) and Macromolecular Chemistry, Department Chemistry - Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen (Germany) and Foundation for Research and Technology - Hellas - FORTH, Institute of Electronic Structure and Laser (IESL), Bio-Organic Materials Chemistry Laboratory - BOMCLab, Nikolaou Plastira 100, Vassilika Vouton, 71110 Heraklion, Crete (Greece)

    2012-04-15

    Magnetic hydrogel composites are promising candidates for a broad field of applications from medicine to mechanical engineering. Here, surface-attached composite films of magnetic nanoparticles (MNP) and a polymeric hydrogel (HG) were prepared from magnetic iron oxide nanoparticles and a carboxymethylated dextran with photoreactive benzophenone substituents. A blend of the MNP and the dextran polymer was prepared by mixing in solution, and after spin-coating and drying the blend film was converted into a stable MNP-HG composite by photocrosslinking through irradiation with UV light. The bulk composite material shows strong mobility in a magnetic field, imparted by the MNPs. By utilizing a surface layer of a photoreactive adhesion promoter on the substrates, the MNP-HG films were covalently immobilized during photocrosslinking. The high stability of the composite was documented by rinsing experiments with UV-Vis spectroscopy, while surface plasmon resonance and optical waveguide mode spectroscopy was employed to investigate the swelling behavior in dependence of the nanoparticle concentration, the particle type, and salt concentration. - Highlights: Black-Right-Pointing-Pointer blending of iron oxide nanoparticles with photocrosslinkable carboxymethyldextran. Black-Right-Pointing-Pointer UV irradiation of blend yields surface-attached, magnetic hydrogel films. Black-Right-Pointing-Pointer film characterization by surface plasmon resonance/optical waveguide spectroscopy. Black-Right-Pointing-Pointer swelling decreases with increasing nanoparticle content. Black-Right-Pointing-Pointer swelling decreases with increasing NaCl salt concentration in the aqueous medium.

  5. Effect of Ag-Nanoparticles Doped in Polyvinyl Alcohol on the Structural and Optical Properties of PVA Films

    Directory of Open Access Journals (Sweden)

    Mahshad Ghanipour

    2013-01-01

    Full Text Available The effect of silver nanoparticles doped in PVA on the structural and optical properties of composite films is studied experimentally. Samples are PVA films of 0.14 mm thickness doped with different sizes and concentrations of silver nanoparticles. Structural properties are studied using X-ray diffraction and FTIR spectrum. Using the reflectance and transmittance of samples, the effect of doped nanoparticles and their concentration on optical parameters of PVA films include absorption coefficient, optical bandgap energy, complex refractive index, complex dielectric function, complex optical conductivity, and relaxation time is extracted and discussed. The dispersion of the refractive index of films in terms of the single oscillator Wemple-DiDomenico (WD model is investigated and the dispersion parameters are calculated. Results show that by doping silver nanoparticles in PVA, number of Bragg’s planes in the structure of polymer and its crystallinity are increased noticeably. Ag–O bonds are formed in the films and the bandgap energy of samples is decreased. Calculations based on WD model confirm that by doping nanoparticles, the anion strength of PVA as a dielectric medium is decreased.

  6. Thin films of silver nanoparticles deposited in vacuum by pulsed laser ablation using a YAG:Nd laser

    International Nuclear Information System (INIS)

    Alonso, J.C.; Diamant, R.; Castillo, P.; Acosta-Garcia, M.C.; Batina, N.; Haro-Poniatowski, E.

    2009-01-01

    We report the deposition of thin films of silver (Ag) nanoparticles by pulsed laser ablation in vacuum using the third line (355 nm) of a YAG:Nd laser. The nanostructure and/or morphology of the films was investigated as a function of the number of ablation pulses, by means of transmission electron microscopy and atomic force microscopy. Our results show that films deposited with a small number of ablation pulses (500 or less), are not continuous, but formed of isolated nearly spherical Ag nanoparticles with diameters in the range from 1 nm to 8 nm. The effect of increasing the number of pulses by one order of magnitude (5000) is to increase the mean diameter of the globular nanoparticles and also the Ag areal density. Further increase of the number of pulses, up to 10,000, produces the formation of larger and anisotropic nanoparticles, and for 15,000 pulses, quasi-percolated Ag films are obtained. The presence of Ag nanoparticles in the films was also evidenced from the appearance of a strong optical absorption band associated with surface plasmon resonance. This band was widened and its peak shifted from 425 nm to 700 nm as the number of laser pulses was increased from 500 to 15,000.

  7. Nanoparticle and nanorod films deposited by matrix assisted pulsed laser evaporation

    Science.gov (United States)

    Caricato, A. P.; Cesaria, M.; Luches, A.; Martino, M.

    2012-07-01

    The promising results obtained with the MAPLE-deposition of nanostructured thin films, to be used in different fields, are reviewed. Nanoparticles (TiO2, SnO2, CdS) and nanorods (TiO2) with well defined dimensions were suspended in appropriate solvents (distilled water, toluene) with low concentration (1wt% or less). The solutions were flash frozen at the liquid nitrogen temperature to form the targets to be laser irradiated. The MAPLE process allowed a successful transfer from the target to rough and flat substrates, preserving the starting composition and crystalline phase of the nanostructures in a wide range of experimental conditions. In contrast, a careful choice of the laser fluence is mandatory to avoid shape modifications. Growth of metal nanoparticles with a low dispersion in size was also obtained by the MAPLE technique, starting from target solutions of a metallorganic element (AcPd) diluted in different solvents (acetone, diethyl ether). It seems that selecting the solvent with appropriate values of viscosity and boiling temperatures, it is possible to modulate the nanoparticles size. Most of the deposited nanostructured films were tested as sensing elements for gas sensors.

  8. Nanocomposite films based on CMC, okra mucilage and ZnO nanoparticles: Physico mechanical and antibacterial properties.

    Science.gov (United States)

    Mohammadi, Hamid; Kamkar, Abolfazl; Misaghi, Ali

    2018-02-01

    This work examined the physico mechanical parameters and antibacterial activity of CMC/okra mucilage (OM) blend films containing ZnO nanoparticles (NPs). Different proportions of CMC and okra mucilage (100/0; 70/30; 60/40 and 50/50 respectively), were mixed and casted to posterior analysis of formed films. The more colored films were obtained by higher contents of okra mucilage and adding ZnO nanoparticles. The incorporation of ZnO NPs into CMC film decreased the elongation at the break (EB) value of the films and increased the tensile strength (TS) value of the film. With increase in CMC concentration in the films, higher water vapor permeability and higher solubility in water were achieved. Microstructure analysis using SEM showed a smooth and compact surface morphology, homogeneous structure, and a rough surface for CMC, CMC+ZnO, and CMC/OM30%+ZnO, respectively. Nanocomposite films presented antibacterial activity against tested bacteria. Films contained okra mucilage showed more antibacterial activity. The inhibitory activities of resultant films were stronger against S. aureus than E. coli. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Preparation and characterization of bio-nanocomposite films of agar and silver nanoparticles: laser ablation method.

    Science.gov (United States)

    Rhim, Jong-Whan; Wang, Long-Feng; Lee, Yonghoon; Hong, Seok-In

    2014-03-15

    Silver nanoparticles (AgNPs) were prepared by a laser ablation method and composite films with the AgNPs and agar were prepared by solvent casting method. UV-vis absorbance test and transmission electron microscopy (TEM) analysis results revealed that non-agglomerated spherical AgNPs were formed by the laser ablation method. The surface color of the resulting agar/AgNPs films exhibited the characteristic plasmonic effect of the AgNPs with the maximum absorption peaks of 400-407 nm. X-ray diffraction (XRD) test results also exhibited characteristic AgNPs crystals with diffraction peaks observed at 2θ values of 38.39°, 44.49°, and 64.45°, which were corresponding to (111), (200), and (220) crystallographic planes of face-centered cubic (fcc) silver crystals, respectively. Thermogravimetric analysis (TGA) results showed that thermal stability of the agar/AgNPs composite films was increased by the inclusion of metallic silver. Water vapor barrier properties and surface hydrophobicity of the agar/AgNPs films increased slightly with the increase in AgNPs content but they were not statistically significant (p>0.05), while mechanical strength and stiffness of the composite films decreased slightly (pfilms exhibited distinctive antimicrobial activity against both Gram-positive (Listeria monocytogenes) and Gram-negative (Escherichia coli O157:H7) bacterial pathogens. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Fabrication of TiO2/PU Superhydrophobic Film by Nanoparticle Assisted Cast Micromolding Process.

    Science.gov (United States)

    Li, Jie; Zheng, Jianyong; Zhang, Jing; Feng, Jie

    2016-06-01

    Lotus-like surfaces have attracted great attentions in recent years for their wide applications in water repellency, anti-fog and self-cleaning. This paper introduced a novel process, nanoparticle assisted cast micromolding, to create polymer film with superhydrophobic surface. Briefly, waterborne polyurethane (WPU) sol and nano TiO2/WPU sol were each cast onto the featured surfaces of the poly(dimethylsiloxane) (PDMS) stamps replicated from fresh lotus leaves. After being dried and peeled off from the stamps, PU and TiO2/WPU replica films were created respectively. To the former, only high hydrophobic property was observed with static water contact angle (WCA) at 142.5 degrees. While to the later, superhydrophobic property was obtained with WCA more than 150 degrees and slide angle less than 3 degrees. Scanning electron microscopy (SEM) imaging showed that the PU replica film only had the micro-papillas and the TiO2/PU replica film not only had micro papillas but also had a large number of nano structures distributed on and between the micro-papillas. Such nano and micro hierarchical structures were very similar with those on the natural lotus leaf surface, thus was the main reason for causing superhydrophobic property. Although an elastic PDMS stamp from lotus leaf was used in herein process, hard molds may also be used in theory. This study supplied an alternative technique for large scale production of polymeric films with superhydrophobic.

  11. Co nanoparticles induced resistive switching and magnetism for the electrochemically deposited polypyrrole composite films.

    Science.gov (United States)

    Xu, Zedong; Gao, Min; Yu, Lina; Lu, Liying; Xu, Xiaoguang; Jiang, Yong

    2014-10-22

    The resistive switching behavior of Co-nanoparticle-dispersed polypyrrole (PPy) composite films is studied. A novel design method for resistive random access memory (ReRAM) is proposed. The conducting polymer films with metal nanocrystal (NC)-dispersed carbon chains induce the spontaneous oxidization of the conducting polymer at the surface. The resistive switching behavior is achieved by an electric field controlling the oxygen ion mobility between the metal electrode and the conducting polymer film to realize the mutual transition between intrinsic conduction (low resistive state) and oxidized layer conduction (high resistive state). Furthermore, the formation process of intrinsic conductive paths can be effectively controlled in the conducting polymer ReRAM using metal NCs in films because the inner metal NCs induce electric field lines converging around them and the intensity of the electric field at the tip of NCs can greatly exceed that of the other region. Metal NCs can also bring new characteristics for ReRAM, such as magnetism by dispersing magnetic metal NCs in polymer, to obtain multifunctional electronic devices or meet some special purpose in future applications. Our works will enrich the application fields of the electromagnetic PPy composite films and present a novel material for ReRAM devices.

  12. Motion of Adsorbed Nano-Particles on Azobenzene Containing Polymer Films

    Directory of Open Access Journals (Sweden)

    Sarah Loebner

    2016-12-01

    Full Text Available We demonstrate in situ recorded motion of nano-objects adsorbed on a photosensitive polymer film. The motion is induced by a mass transport of the underlying photoresponsive polymer material occurring during irradiation with interference pattern. The polymer film contains azobenzene molecules that undergo reversible photoisomerization reaction from trans- to cis-conformation. Through a multi-scale chain of physico-chemical processes, this finally results in the macro-deformations of the film due to the changing elastic properties of polymer. The topographical deformation of the polymer surface is sensitive to a local distribution of the electrical field vector that allows for the generation of dynamic changes in the surface topography during irradiation with different light interference patterns. Polymer film deformation together with the motion of the adsorbed nano-particles are recorded using a homemade set-up combining an optical part for the generation of interference patterns and an atomic force microscope for acquiring the surface deformation. The particles undergo either translational or rotational motion. The direction of particle motion is towards the topography minima and opposite to the mass transport within the polymer film. The ability to relocate particles by photo-induced dynamic topography fluctuation offers a way for a non-contact simultaneous manipulation of a large number of adsorbed particles just in air at ambient conditions.

  13. An effective substrate surface decoration to YBCO films by multiphase nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yan; Liu, Min, E-mail: lm@bjut.edu.cn; Suo, Hong-Li; Ye, Shuai; Wu, Zi-Ping; Mao, Lei

    2013-12-15

    Highlights: •We find a new way to solve particles agglomeration ---Multiphase codeposition. •Ce{sub 0.15}/Zr{sub 0.85}O{sub 2} can form high quality multiphase nanoparticles. •Single phase particles ZrO{sub 2} and YSZ have the same pinning performance to YBCO. •A high pinning property in YBCO films are observed from CZO decorated sample. -- Abstract: Three types of nanodots were deposited on the surface of single crystal LaAlO{sub 3}(LAO) substrates before preparing YBCO films. By comparing with different interfacial nanodots, it was found that ZrO{sub 2} and Y{sub 0.15}Zr{sub 0.85}O{sub 2} (YSZ) interfacial nanodots have a similar size, shape, and density as well as distribution so that they have a same and weaker effect on the pinning ability of the YBCO film. However, CeO{sub 2}/ZrO{sub 2} = 0.15/0.85 (CZO) has a different character with a small size, large density and uniform distribution. Especially, CZO interfacial nanodots are the most effective to enhance J{sub c} values of YBCO films in applied magnetic field. At 77 K and 3 T, the J{sub c} value of YBCO film with CZO interfacial nanodots decorating is 12 times of that of pure YBCO. A further research indicated that the high performance was due to multiphase. Besides, the advantages of multiphase nanoparticles are more prominent as increasing the applied magnetic field and temperature.

  14. A Monte Carlo and continuum study of mechanical properties of nanoparticle based films

    Energy Technology Data Exchange (ETDEWEB)

    Ogunsola, Oluwatosin; Ehrman, Sheryl [University of Maryland, Department of Chemical and Biomolecular Engineering, Chemical and Nuclear Engineering Building (United States)], E-mail: sehrman@eng.umd.edu

    2008-01-15

    A combination Monte Carlo and equivalent-continuum simulation approach was used to investigate the structure-mechanical property relationships of titania nanoparticle deposits. Films of titania composed of nanoparticle aggregates were simulated using a Monte Carlo approach with diffusion-limited aggregation. Each aggregate in the simulation is fractal-like and random in structure. In the film structure, it is assumed that bond strength is a function of distance with two limiting values for the bond strengths: one representing the strong chemical bond between the particles at closest proximity in the aggregate and the other representing the weak van der Waals bond between particles from different aggregates. The Young's modulus of the film is estimated using an equivalent-continuum modeling approach, and the influences of particle diameter (5-100 nm) and aggregate size (3-400 particles per aggregate) on predicted Young's modulus are investigated. The Young's modulus is observed to increase with a decrease in primary particle size and is independent of the size of the aggregates deposited. Decreasing porosity resulted in an increase in Young's modulus as expected from results reported previously in the literature.

  15. A Monte Carlo and continuum study of mechanical properties of nanoparticle based films

    International Nuclear Information System (INIS)

    Ogunsola, Oluwatosin; Ehrman, Sheryl

    2008-01-01

    A combination Monte Carlo and equivalent-continuum simulation approach was used to investigate the structure-mechanical property relationships of titania nanoparticle deposits. Films of titania composed of nanoparticle aggregates were simulated using a Monte Carlo approach with diffusion-limited aggregation. Each aggregate in the simulation is fractal-like and random in structure. In the film structure, it is assumed that bond strength is a function of distance with two limiting values for the bond strengths: one representing the strong chemical bond between the particles at closest proximity in the aggregate and the other representing the weak van der Waals bond between particles from different aggregates. The Young's modulus of the film is estimated using an equivalent-continuum modeling approach, and the influences of particle diameter (5-100 nm) and aggregate size (3-400 particles per aggregate) on predicted Young's modulus are investigated. The Young's modulus is observed to increase with a decrease in primary particle size and is independent of the size of the aggregates deposited. Decreasing porosity resulted in an increase in Young's modulus as expected from results reported previously in the literature

  16. Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light

    Science.gov (United States)

    Wong, Ming-Show; Chen, Chun-Wei; Hsieh, Chia-Chun; Hung, Shih-Che; Sun, Der-Shan; Chang, Hsin-Hou

    2015-07-01

    Photocatalysts produce free radicals upon receiving light energy; thus, they possess antibacterial properties. Silver (Ag) is an antibacterial material that disrupts bacterial physiology. Our previous study reported that the high antibacterial property of silver nanoparticles on the surfaces of visible light-responsive nitrogen-doped TiO2 photocatalysts [TiO2(N)] could be further enhanced by visible light illumination. However, the major limitation of this Ag-TiO2 composite material is its durability; the antibacterial property decreased markedly after repeated use. To overcome this limitation, we developed TiO2(N)/Ag/TiO2(N) sandwich films in which the silver is embedded between two TiO2(N) layers. Various characteristics, including silver and nitrogen amounts, were examined in the composite materials. Various analyses, including electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and ultraviolet-visible absorption spectrum and methylene blue degradation rate analyses, were performed. The antibacterial properties of the composite materials were investigated. Here we revealed that the antibacterial durability of these thin films is substantially improved in both the dark and visible light, by which bacteria, such as Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus, and Acinetobacter baumannii, could be efficiently eliminated. This study demonstrated a feasible approach to improve the visible-light responsiveness and durability of antibacterial materials that contain silver nanoparticles impregnated in TiO2(N) films.

  17. Highly Conductive, Transparent Flexible Films Based on Metal Nanoparticle-Carbon Nanotube Composites

    Directory of Open Access Journals (Sweden)

    Wen-Yin Ko

    2013-01-01

    Full Text Available Metallic nanoparticles decorated on MWCNTs based transparent conducting thin films (TCFs show a cheap and efficient option for the applications in touch screens and the replacement of the ITO film because of their interesting properties of electrical conductivity, mechanical property, chemical inertness, and other unique properties, which may not be accessible by their individual components. However, a great challenge that always remains is to develop effective ways to prepare junctions between metallic nanoparticles and MWCNTs for the improvement of high-energy barriers, high contact resistances, and weak interactions which could lead to the formation of poor conducting pathways and result in the CNT-based devices with low mechanical flexibility. Herein, we not only discuss recent progress in the preparation of MNP-CNT flexible TCFs but also describe our research studies in the relevant areas. Our result demonstrated that the MNP-CNT flexible TCFs we prepared could achieve a highly electrical conductivity with the sheet resistance of ~100 ohm/sq with ~80% transmittance at 550 nm even after being bent 500 times. This electrical conductivity is much superior to the performances of other MWCNT-based transparent flexible films, making it favorable for next-generation flexible touch screens and optoelectronic devices.

  18. Photoluminescent characteristics of ion beam synthesized Ge nanoparticles in thermally grown SiO2 films

    International Nuclear Information System (INIS)

    Yu, C.F.; Chao, D.S.; Chen, Y.-F.; Liang, J.H.

    2013-01-01

    Prospects of developing into numerous silicon-based optoelectronic applications have prompted many studies on the optical properties of Ge nanoparticles within a silicon oxide (SiO 2 ) matrix. Even with such abundant studies, the fundamental mechanism underlying the Ge nanoparticle-induced photoluminescence (PL) is still an open question. In order to elucidate the mechanism, we dedicate this study to investigating the correlation between the PL properties and microstructure of the Ge nanoparticles synthesized in thermally grown SiO 2 films. Our spectral data show that the peak position, at ∼3.1 eV or 400 nm, of the PL band arising from the Ge nanoparticles was essentially unchanged under different Ge implantation fluences and the temperatures of the following annealing process, whereas the sample preparation parameters modified or even fluctuated (in the case of the annealing temperature) the peak intensity considerably. Given the microscopically observed correlation between the nanoparticle structure and the sample preparation parameters, this phenomenon is consistent with the mechanism in which the oxygen-deficiency-related defects in the Ge/SiO 2 interface act as the major luminescence centers; this mechanism also successfully explains the peak intensity fluctuation with the annealing temperature. Moreover, our FTIR data indicate the formation of GeO x upon ion implantation. Since decreasing of the oxygen-related defects by the GeO x formation is expected to be correlated with the annealing temperature, presence of the GeO x renders further experimental support to the oxygen defect mechanism. This understanding may assist the designing of the manufacturing process to optimize the Ge nanoparticle-based PL materials for different technological applications

  19. Optimized Packing Density of Large CZTS Nanoparticles Synthesized by Hot-injection for Thin Film Solar Cells

    DEFF Research Database (Denmark)

    Engberg, Sara Lena Josefin; Lam, Yeng Ming; Schou, Jørgen

    processing to be a feasible fabrication route in the future, the amount of carbon in the film has to be limited. Today, several methods are employed in order to surpass this barrier, for example ligand exchange. A successful ligand exchange was carried out by Carrete et al. [1], where they replace...... to image the faceted/hexagonal nanoparticles and determine their individual composition. Densification of the film will also improve the film-quality. The optimal packing density will be calculated, and size-selective methods can be carried out in order to try to isolate the desired particle sizes. Films...

  20. Stabilization of metal nanoparticle films on glass surfaces using ultrathin silica coating.

    Science.gov (United States)

    Chaikin, Yulia; Kedem, Ofer; Raz, Jennifer; Vaskevich, Alexander; Rubinstein, Israel

    2013-11-05

    Metal nanoparticle (NP) films, prepared by adsorption of NPs from a colloidal solution onto a preconditioned solid substrate, usually form well-dispersed random NP monolayers on the surface. For certain metals (e.g., Au, Ag, Cu), the NP films display a characteristic localized surface plasmon resonance (LSPR) extinction band, conveniently measured using transmission or reflection ultraviolet-visible light (UV-vis) spectroscopy. The surface plasmon band wavelength, intensity, and shape are affected by (among other parameters) the NP spatial distribution on the surface and the effective refractive index (RI) of the surrounding medium. A major concern in the formation of such NP assemblies on surfaces is a commonly observed instability, i.e., a strong tendency of the NPs to undergo aggregation upon removal from the solution and drying, expressed as a drastic change in the LSPR band. Since various imaging modes and applications require dried NP films, preservation of the film initial (wet) morphology and optical properties upon drying are highly desirable. The latter is achieved in the present work by introducing a convenient and generally applicable method for preventing NP aggregation upon drying while preserving the original film morphology and optical response. Stabilization of Au and Ag NP monolayers toward drying is accomplished by coating the immobilized NPs with an ultrathin (3.0-3.5 nm) silica layer, deposited using a sol-gel reaction performed on an intermediate self-assembled aminosilane layer. The thin silica coating prevents NP aggregation and maintains the initial NP film morphology and LSPR response during several cycles of drying and immersion in water. It is shown that the silica-coated NP films retain their properties as effective LSPR transducers.

  1. Highly Hydrophilic Thin-Film Composite Forward Osmosis Membranes Functionalized with Surface-Tailored Nanoparticles

    KAUST Repository

    Tiraferri, Alberto

    2012-09-26

    Thin-film composite polyamide membranes are state-of-the-art materials for membrane-based water purification and desalination processes, which require both high rejection of contaminants and high water permeabilities. However, these membranes are prone to fouling when processing natural waters and wastewaters, because of the inherent surface physicochemical properties of polyamides. The present work demonstrates the fabrication of forward osmosis polyamide membranes with optimized surface properties via facile and scalable functionalization with fine-tuned nanoparticles. Silica nanoparticles are coated with superhydrophilic ligands possessing functional groups that impart stability to the nanoparticles and bind irreversibly to the native carboxyl moieties on the membrane selective layer. The tightly tethered layer of nanoparticles tailors the surface chemistry of the novel composite membrane without altering the morphology or water/solute permeabilities of the membrane selective layer. Surface characterization and interfacial energy analysis confirm that highly hydrophilic and wettable membrane surfaces are successfully attained. Lower intermolecular adhesion forces are measured between the new membrane materials and model organic foulants, indicating the presence of a bound hydration layer at the polyamide membrane surface that creates a barrier for foulant adhesion. © 2012 American Chemical Society.

  2. Fluorescence enhancement of the conjugated polymer films based on well-ordered Au nanoparticle arrays

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Benbin; Zu, Xihong, E-mail: zxhong329@126.com; Yi, Guobin, E-mail: ygb702@163.com; Huang, Hailiang; Zhang, Minghai; Luo, Hongsheng [Guangdong University of Technology, School of Chemical Engineering and Light Industry (China)

    2016-09-15

    In this paper, well-ordered Au nanoparticle arrays on silicon substrates were employed as efficient metal-enhanced fluorescence (MEF) substrates for investigating the fluorescence properties of the conjugated polymer poly(3-hexylthiophene) (P3HT). The ordered Au nanoparticle arrays were fabricated by block copolymer self-assembly technology, and the particle sizes were controlled by adjusting the molar ratios of HAuCl{sub 4} precursor to vinyl pyridine units. The approach is economical and suitable to fabricate large-area MEF substrates. The results about fluorescence properties of P3HT showed that the fluorescence intensities of the P3HT films were improved on ordered Au nanoparticle arrays compared to those on bare silicon substrate and were significantly enhanced with the Au nanoparticle sizes increasing. The mechanism is based on localized surface plasmon resonances, coupling and propagating surface plasmons, and the emission enhancement mainly resulted from the increase of the excitation rate. This work provides a new way to prepare efficient MEF substrates for high-performance fluorescence-based devices.

  3. Fluorescence enhancement of the conjugated polymer films based on well-ordered Au nanoparticle arrays

    International Nuclear Information System (INIS)

    Zhong, Benbin; Zu, Xihong; Yi, Guobin; Huang, Hailiang; Zhang, Minghai; Luo, Hongsheng

    2016-01-01

    In this paper, well-ordered Au nanoparticle arrays on silicon substrates were employed as efficient metal-enhanced fluorescence (MEF) substrates for investigating the fluorescence properties of the conjugated polymer poly(3-hexylthiophene) (P3HT). The ordered Au nanoparticle arrays were fabricated by block copolymer self-assembly technology, and the particle sizes were controlled by adjusting the molar ratios of HAuCl 4 precursor to vinyl pyridine units. The approach is economical and suitable to fabricate large-area MEF substrates. The results about fluorescence properties of P3HT showed that the fluorescence intensities of the P3HT films were improved on ordered Au nanoparticle arrays compared to those on bare silicon substrate and were significantly enhanced with the Au nanoparticle sizes increasing. The mechanism is based on localized surface plasmon resonances, coupling and propagating surface plasmons, and the emission enhancement mainly resulted from the increase of the excitation rate. This work provides a new way to prepare efficient MEF substrates for high-performance fluorescence-based devices.

  4. Scalable production of microbially mediated zinc sulfide nanoparticles and application to functional thin films.

    Science.gov (United States)

    Moon, Ji-Won; Ivanov, Ilia N; Joshi, Pooran C; Armstrong, Beth L; Wang, Wei; Jung, Hyunsung; Rondinone, Adam J; Jellison, Gerald E; Meyer, Harry M; Jang, Gyoung Gug; Meisner, Roberta A; Duty, Chad E; Phelps, Tommy J

    2014-10-01

    A series of semiconducting zinc sulfide (ZnS) nanoparticles were scalably, reproducibly, controllably and economically synthesized with anaerobic metal-reducing Thermoanaerobacter species. These bacteria reduced partially oxidized sulfur sources to sulfides that extracellularly and thermodynamically incorporated with zinc ions to produce sparingly soluble ZnS nanoparticles with ∼5nm crystallites at yields of ∼5gl(-1)month(-1). A predominant sphalerite formation was facilitated by rapid precipitation kinetics, a low cation/anion ratio and a higher zinc concentration compared to background to produce a naturally occurring hexagonal form at the low temperature, and/or water adsorption in aqueous conditions. The sphalerite ZnS nanoparticles exhibited narrow size distribution, high emission intensity and few native defects. Scale-up and emission tunability using copper doping were confirmed spectroscopically. Surface characterization was determined using Fourier transform infrared and X-ray photoelectron spectroscopies, which confirmed amino acid as proteins and bacterial fermentation end products not only maintaining a nano-dimensional average crystallite size, but also increasing aggregation. The application of ZnS nanoparticle ink to a functional thin film was successfully tested for potential future applications. Copyright © 2014 Acta Materialia Inc. All rights reserved.

  5. Deposition of gold nanoparticle films using spray pyrolysis technique: Tunability of SPR band by electric field

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Neetesh; Komarala, Vamsi K.; Dutta, Viresh [Photovoltaic Laboratory, Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016 (India)

    2012-10-15

    Gold nanoparticle films are prepared using a simple inexpensive spray pyrolysis technique. X-ray as well as TEM diffraction patterns revealed pure cubic structure. The effect of gold nanoparticle concentration on surface plasmon resonance (SPR) band position and bandwidth are investigated for varying spray solution volume. The tunability of SPR band position and bandwidth using an electric field, by applying a voltage (up to 2000 V) to the nozzle, has been demonstrated. The reduced full width at half maximum and blue shift in the SPR band position are observed with {Delta}{lambda}{sub FW} {proportional_to} 55 nm and {Delta}{lambda}{sub P} {proportional_to} 40 nm for the applied voltage of 2 kV. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Hot-Electron Intraband Luminescence from Single Hot Spots in Noble-Metal Nanoparticle Films

    Science.gov (United States)

    Haug, Tobias; Klemm, Philippe; Bange, Sebastian; Lupton, John M.

    2015-08-01

    Disordered noble-metal nanoparticle films exhibit highly localized and stable nonlinear light emission from subdiffraction regions upon illumination by near-infrared femtosecond pulses. Such hot spot emission spans a continuum in the visible and near-infrared spectral range. Strong plasmonic enhancement of light-matter interaction and the resulting complexity of experimental observations have prevented the development of a universal understanding of the origin of light emission. Here, we study the dependence of emission spectra on excitation irradiance and provide the most direct evidence yet that the continuum emission observed from both silver and gold nanoparticle aggregate surfaces is caused by recombination of hot electrons within the conduction band. The electron gas in the emitting particles, which is effectively decoupled from the lattice temperature for the duration of emission, reaches temperatures of several thousand Kelvin and acts as a subdiffraction incandescent light source on subpicosecond time scales.

  7. Hydroxylation of Benzene via C-H Activation Using Bimetallic CuAg@g-C3N4

    Science.gov (United States)

    A photoactive bimetallic CuAg@g-C3N4 catalyst system has been designed and synthesized by impregnating copper and silver nanoparticles over the graphitic carbon nitride surface. Its application has been demonstrated in the hydroxylation of benzene under visible light.

  8. Developing a Thermal- and Coking-Resistant Cobalt-Tungsten Bimetallic Anode Catalyst for Solid Oxide Fuel Cells

    NARCIS (Netherlands)

    Yan, N.; Pandey, J.; Zeng, Y.; Amirkhiz, B.S.; Hua, B.; Geels, N.J.; Luo, J.L.; Rothenberg, G.

    2016-01-01

    We report the development of a novel Co–W bimetallic anode catalyst for solid oxide fuel cells (SOFCs) via a facile infiltration-annealing process. Using various microscopic and spectroscopic measurements, we find that the formed intermetallic nanoparticles are highly thermally stable up to 900 °C

  9. Photoluminescence and electrical properties of polyvinyl alcohol films doped with CdS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Z.I.; Hosni, H.M.; Saleh, H.H.; Ghazy, O.A. [Atomic Energy Authority, National Center for Radiation Research and Technology, P.O. Box 29, Nasr City, Cairo (Egypt)

    2016-05-15

    In situ preparation of polyvinyl alcohol (PVA) films doped with cadmium sulfide (CdS) nanoparticles was conducted by gamma radiation. The films were characterized in terms of photoluminescence and electrical conductivity. The photoluminescence results indicated the existence of two emission peaks around 470 and 530 nm, which are due to electron-hole recombination of CdS nanoparticles and surface trapped emission due to the PVA capping, respectively. DC electrical conductivity (σ {sub DC}) measurement in the temperature range from 303 up to 373 K reveals an increase in its value with increasing both Cd{sup 2+} ion molar concentration and irradiation dose. AC electrical conductivity (σ {sub AC}) measurement over the same temperature range at an applied field frequency of 10, 100, 500 and 1000 kHz shows an increase behavior with increasing temperature, frequency, Cd{sup 2+} ion molar concentration and irradiation dose. Dielectric constant (ε {sub 1}) exhibits an increase with temperature, whereas it shows reduced values with increasing frequency, Cd{sup 2+} ion molar concentration and irradiation dose. Also, the dielectric loss tangent (tan δ) follows an increasing trend with increasing temperature, Cd{sup 2+} ion molar concentration and irradiation dose while it has an opposite trend with increasing frequency. The CdS/PVA nanocomposite films behavior could be explained on the basis of formation of charge-transfer complexes (CTCs) by the CdS nanoparticles doped into the PVA matrix and the role of radiation in enhancing the charge carrier mobility of such CTCs. (orig.)

  10. Optical and AFM study of electrostatically assembled films of CdS and ZnS colloid nanoparticles

    International Nuclear Information System (INIS)

    Suryajaya; Nabok, A.; Davis, F.; Hassan, A.; Higson, S.P.J.; Evans-Freeman, J.

    2008-01-01

    CdS and ZnS semiconducting colloid nanoparticles coated with the organic shell, containing either SO 3 - or NH 2 + groups, were prepared using the aqueous phase synthesis. The multilayer films of CdS (or ZnS) were deposited onto glass, quartz and silicon substrates using the technique of electrostatic self-assembly. The films produced were characterized with UV-vis spectroscopy, spectroscopic ellipsometry and atomic force microscopy. A substantial blue shift of the main absorption band with respect to the bulk materials was found for both CdS and ZnS films. The Efros equation in the effective mass approximation (EMA) theoretical model allowed the evaluation of the nanoparticle radius of 1.8 nm, which corresponds well to the ellipsometry results. AFM shows the formation of larger aggregates of nanoparticles on solid surfaces

  11. Controlled fabrication of gold nanoparticles biomediated by glucose oxidase immobilized on chitosan layer-by-layer films

    International Nuclear Information System (INIS)

    Caseli, Luciano; Santos, David S. dos; Aroca, Ricardo F.; Oliveira, Osvaldo N.

    2009-01-01

    The control of size and shape of metallic nanoparticles is a fundamental goal in nanochemistry, and crucial for applications exploiting nanoscale properties of materials. We present here an approach to the synthesis of gold nanoparticles mediated by glucose oxidase (GOD) immobilized on solid substrates using the Layer-by-Layer (LbL) technique. The LbL films contained four alternated layers of chitosan and poly(styrene sulfonate) (PSS), with GOD in the uppermost bilayer adsorbed on a fifth chitosan layer: (chitosan/PSS) 4 /(chitosan/GOD). The films were inserted into a solution containing gold salt and glucose, at various pHs. Optimum conditions were achieved at pH 9, producing gold nanoparticles of ca. 30 nm according to transmission electron microscopy. A comparative study with the enzyme in solution demonstrated that the synthesis of gold nanoparticles is more efficient using immobilized GOD.

  12. Preparation of ordered silver angular nanoparticles array in block copolymer film for surface-enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Svanda, J.; Gromov, M. V.; Kalachyova, Y.; Postnikov, P. S.; Svorcik, V.; Lyutakov, O.

    2016-01-01

    We report a single-step method of preparation of ordered silver nanoparticles array through template-assisted nanoparticles synthesis in the semidried block copolymer film. Ordered nanoparticles were prepared on different substrates by the proper choice of solvents combination and preparation procedure. In particular, block copolymer and silver nitrate were dissolved in the mix of tetrahydrofuran, toluene, and n-methylpyrolidone. During short spin-coating procedure ordering of block copolymer, evaporation of toluene and preferential silver redistribution into poly(4-vinylpyridine) block occurred. Rapid heating of semidry film initiated silver reduction, removing of residual solvent and creation of ordered silver array. After polymer removing silver nanoparticles array was tested as a suitable candidate for subdiffraction plasmonic application–surface-enhanced Raman scattering. Enhancement factor was calculated and compared with the literature data.

  13. Preparation of ordered silver angular nanoparticles array in block copolymer film for surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Svanda, J.; Gromov, M. V.; Kalachyova, Y.; Postnikov, P. S.; Svorcik, V.; Lyutakov, O.

    2016-10-01

    We report a single-step method of preparation of ordered silver nanoparticles array through template-assisted nanoparticles synthesis in the semidried block copolymer film. Ordered nanoparticles were prepared on different substrates by the proper choice of solvents combination and preparation procedure. In particular, block copolymer and silver nitrate were dissolved in the mix of tetrahydrofuran, toluene, and n-methylpyrolidone. During short spin-coating procedure ordering of block copolymer, evaporation of toluene and preferential silver redistribution into poly(4-vinylpyridine) block occurred. Rapid heating of semidry film initiated silver reduction, removing of residual solvent and creation of ordered silver array. After polymer removing silver nanoparticles array was tested as a suitable candidate for subdiffraction plasmonic application-surface-enhanced Raman scattering. Enhancement factor was calculated and compared with the literature data.

  14. Enhancement of antioxidant and antibacterial properties for tannin acid/chitosan/tripolyphosphate nanoparticles filled electrospinning films: Surface modification of sliver nanoparticles.

    Science.gov (United States)

    Zhan, Fuchao; Sheng, Feng; Yan, Xiangxing; Zhu, Yingrui; Jin, Weiping; Li, Jing; Li, Bin

    2017-11-01

    The tannin acid/chitosan/tripolyphosphate nanoparticles were encapsulated in polyvinyl alcohol (PVA)/poly-acrylic acid (PAA) electrospinning films by electrostatic spinning technology. To optimize the prepared condition, properties and morphology of nanoparticles were characterized by dynamic light scattering (DLS) and transmission electron microscope (TEM). The optimized initial concentration of tannin, chitosan and tripolyphosphate solutions were 1, 1, 0.5mg/ml, respectively, with adding proportion for 5:5:1. The average diameter of tannin acid/chitosan/tripolyphosphate nanoparticles was ∼80nm. The electrospinning films showed an excellent water-resistant property with 0.5wt%N,N'-Methylenebisacrylamide (MBA). Due to the antioxidant and antibacterial of tannic acid, the films possessed these properties. The antioxidant and antibacterial of these fibers significantly improved after in situ formation of silver nanoparticles (AgNPs). Electrospun films were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Electrochemistry and current control in surface films based on silica-azure redox nanoparticles, carbon nanotubes, enzymes, and polyelectrolytes.

    Science.gov (United States)

    Karra, Sushma; Zhang, Maogen; Gorski, Waldemar

    2013-01-15

    The redox active nanoparticles were developed by covalently attaching redox dye Azure C (AZU) to commercial silica nanoparticles (SN) via the silylated amine and glutaric dialdehyde links. The SN-AZU nanoparticles were studied as redox mediators for the oxidation of reduced β-nicotinamide adenine dinucleotide (NADH) in two polymeric films. The first film (F1) was composed of SN-AZU, carbon nanotubes, and cationic polyelectrolyte chitosan. The second film (F2) contained also added enzyme glucose dehydrogenase and its cofactor β-nicotinamide adenine dinucleotide (NAD(+)). The films F1 and F2 were cast on the glassy carbon electrodes, covered with an anionic polyelectrolyte Nafion, and their electrochemical properties were probed with NADH and glucose, respectively, using voltammetry, amperometry, and potentiometry. The Nafion overcoat reduced the sensitivity of F1/Nafion film electrodes to NADH by >98%. In contrast, depending on the concentration of Nafion, the sensitivity of the F2/Nafion film electrodes (reagentless biosensors) to glucose increased by up to 340%. The amplification of glucose signal was ascribed to the Donnan exclusion and ensuing Nafion-gated ionic fluxes, which enhanced enzyme activity in films F2. The proposed model predicts that such signal amplification should be also feasible in the case of other enzyme-based biosensors.

  16. Structure and Physical Properties of Polymer Composite Films Doped with Fullerene Nanoparticles

    Directory of Open Access Journals (Sweden)

    R. M. Ahmed

    2011-01-01

    Full Text Available Fullerene C60 has stimulated intense interest for scientific, industrial, and medical community because of its unique structure and properties. In the present study we prepared fullerene-doped nanocomposite films based on PMMA, PVAc, and PMMA/PVAc blend. Observations made by transmission electron microscope (TEM showed the uniform dispersion of C60 nanoparticles in the polymer matrices. Also, X-ray diffraction measurements indicated that C60 has a tendency to form crystallites in the polymer matrices. In addition, the concentration effect of fullerene C60 was investigated using optical absorption and photoluminescence spectroscopy. The spectroscopic properties of such films recommended their application in photonics and solar energy conversion.

  17. Chemically controlled interfacial nanoparticle assembly into nanoporous gold films for electrochemical applications

    DEFF Research Database (Denmark)

    Christiansen, Mikkel U. -B.; Seselj, Nedjeljko; Engelbrekt, Christian

    2018-01-01

    at the liquid/air interface starting from gold nanoparticles (AuNPs) in an aqueous solution, providing silver-free gold films. Chloroauric acid is reduced to AuNP building blocks by 2-(N-morpholino)ethanesulfonic acid, which also acts as a protecting agent and pH buffer. By adding potassium chloride before Au......Nanoporous gold (NPG) is an effective material for electrocatalysis and can be made via a dealloy method such as etching of silver–gold alloys. Dealloyed NPG may contain residual silver that affects its catalytic performance. Herein, a different approach has been reported for the formation of NPG......NP synthesis and hydrochloric acid to the resultant AuNP solutions, we can reproducibly obtain continuous gold networks. The sintered AuNPs produced by this method result in chemically synthesized nanoporous gold films (cNPGFs) that resemble dealloyed NPG in terms of morphology and porosity; additionally...

  18. Biomimetic Cationic Nanoparticles Based on Silica: Optimizing Bilayer Deposition from Lipid Films

    Directory of Open Access Journals (Sweden)

    Rodrigo T. Ribeiro

    2017-10-01

    Full Text Available The optimization of bilayer coverage on particles is important for a variety of biomedical applications, such as drug, vaccine, and genetic material delivery. This work aims at optimizing the deposition of cationic bilayers on silica over a range of experimental conditions for the intervening medium and two different assemblies for the cationic lipid, namely, lipid films or pre-formed lipid bilayer fragments. The lipid adsorption on silica in situ over a range of added lipid concentrations was determined from elemental analysis of carbon, hydrogen, and nitrogen and related to the colloidal stability, sizing, zeta potential, and polydispersity of the silica/lipid nanoparticles. Superior bilayer deposition took place from lipid films, whereas adsorption from pre-formed bilayer fragments yielded limiting adsorption below the levels expected for bilayer adsorption.

  19. Synthesis of Ag and Au nanoparticles embedded in carbon film: Optical, crystalline and topography analysis

    Science.gov (United States)

    Gholamali, Hediyeh; Shafiekhani, Azizollah; Darabi, Elham; Elahi, Seyed Mohammad

    2018-03-01

    Atomic force microscopy (AFM) images give valuable information about surface roughness of thin films based on the results of power spectral density (PSD) through the fast Fourier transform (FFT) algorithms. In the present work, AFM data are studied for silver and gold nanoparticles (Ag NPs a-C: H and Au NPs a-C: H) embedded in amorphous hydrogenated carbon films and co-deposited on glass substrate via of RF-Sputtering and RF-Plasma Enhanced Chemical Vapor Deposition methods. Here, the working gas is acetylene and the targets are Ag and Au. While time and power are constant, the only variable parameter in this study is initial pressure. In addition, the crystalline structure of Ag NPs a-C: H and Au NPs a-C: H are studied using X-ray diffraction (XRD). UV-visible spectrophotometry will also investigate optical properties and localized surface plasmon resonance (LSPR) of samples.

  20. Transformation of silver nanowires into nanoparticles by Rayleigh instability: Comparison between laser irradiation and heat treatment

    Science.gov (United States)

    Oh, Harim; Lee, Jeeyoung; Lee, Myeongkyu

    2018-01-01

    We comparatively study the morphological evolutions of silver nanowires under nanosecond-pulsed laser irradiation and thermal treatment in ambient air. While single-crystalline, pure Ag nanospheres could be produced by laser-driven Rayleigh instability, the particles produced by heat treatment were subject to oxidation and exhibited polyhedron shapes. The different results are attributed to the significantly different time scales of the two processes. In this article, we also show that bimetallic Ag-Au nanospheres can be synthesized by irradiating Ag nanowires coated with a thin Au film using a pulsed laser beam. This may provide a facile route to tune the plasmonic behavior of metal nanoparticles.

  1. Photocatalytic activity of erbium-doped TiO{sub 2} nanoparticles immobilized in macro-porous silica films

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda-Contreras, J., E-mail: jcc050769@yahoo.com.mx [C.U. de los Lagos, Universidad de Guadalajara, Lagos de Moreno, Jalisco (Mexico); Maranon-Ruiz, V.F.; Chiu-Zarate, R.; Perez-Ladron de Guevara, H.; Rodriguez, R. [C.U. de los Lagos, Universidad de Guadalajara, Lagos de Moreno, Jalisco (Mexico); Michel-Uribe, C. [C. U. de Ciencias Exactas e Ingenieria, Universidad de Guadalajara, Guadalajara, Jalisco (Mexico)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Erbium-doped TiO{sub 2} nanoparticles were immobilized on macro-porous silica films. Black-Right-Pointing-Pointer The films were obtained by a phase separation process. Black-Right-Pointing-Pointer The samples exhibited photo-catalytic activity under visible light. Black-Right-Pointing-Pointer The sensitization of TiO{sub 2} was attributed to a red shift in the TiO{sub 2} band-gap. -- Abstract: A macro-porous silica film served as mechanical support to immobilize TiO{sub 2} nanoparticles, which were doped with erbium. The films and the nanoparticles were prepared by sol-gel route. The nanoparticles exhibited photocatalytic activity under visible light. We obtained a degradation rate of methylene blue that followed first order kinetics. The sensitization of the nanoparticles to visible light was attributed to a red shift in the band-gap of the TiO{sub 2} due to the addition of erbium ions.

  2. ToF-SIMS study of growth behavior in all-nanoparticle multilayer films using a novel indicator layer

    International Nuclear Information System (INIS)

    Chen, B.-J.; Yin, Y.-S.; Ling, Y.-C.

    2008-01-01

    All-nanoparticle multilayer films found novel applications in the areas of photonics, catalysis, sensors, and biomaterials. The assembly of nanoparticles into conformal and uniform films with precise control over chemical and physical properties poses a significant challenge. Using time-of-flight secondary ion mass spectrometry (ToF-SIMS), we have investigated the growth behavior in all-nanoparticle multilayer films using a novel indicator layer. The all-nanoparticle multilayer films were prepared by dipping the polyester substrate with electrostatic charges alternatively into solutions containing three different types of nanoparticles (TiO 2 , Al 2 O 3 , and SiO 2 ). Upon the deposition of each layer, ToF-SIMS was employed to determine the surface chemical composition of intermediate products. The intermixing extent of TiO 2 indicator layer was used to reveal the stratification of each layer. Combining with zeta-potential measurements, the solvation and deposition of the under-layer species in the aqueous environment during fresh layer formation was proposed as a plausible cause for mutilayers not stratified into well-defined layers but displaying a nonlinear growth behavior.

  3. Hyaluronate nanoparticles included in polymer films for the prolonged release of vitamin E for the management of skin wounds.

    Science.gov (United States)

    Pereira, Gabriela Garrastazu; Detoni, Cassia Britto; Balducci, Anna Giulia; Rondelli, Valeria; Colombo, Paolo; Guterres, Silvia Stanisçuaski; Sonvico, Fabio

    2016-02-15

    Lecithin and hyaluronic acid were used for the preparation of polysaccharide decorated nanoparticles loaded with vitamin E using the cationic lipid dioctadecyldimethylammonium bromide (DODMA). Nanoparticles showed mean particle size in the range 130-350 nm and narrow size distribution. Vitamin E encapsulation efficiency was higher than 99%. These nanoparticles were incorporated in polymeric films containing Aloe vera extract, hyaluronic acid, sodium alginate, polyethyleneoxide (PEO) and polyvinylalcohol (PVA) as an innovative treatment in skin wounds. Films were thin, flexible, resistant and suitable for application on burn wounds. Additionally, in vitro occlusion study highlighted the dependence of the occlusive effect on the presence of nanoparticles. The results obtained show that the bioadhesive films containing vitamin E acetate and Aloe vera could be an innovative therapeutic system for the treatment of skin wounds, such as burns. The controlled release of the vitamin along with a reduction in water loss through damaged skin provided by the nanoparticle-loaded polymer film are considered important features for an improvement in wound healing and skin regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Thermochromic Oxide-Based Thin Films and Nanoparticle Composites for Energy-Efficient Glazings

    Directory of Open Access Journals (Sweden)

    Claes G. Granqvist

    2016-12-01

    Full Text Available Today’s advances in materials science and technology can lead to better buildings with improved energy efficiency and indoor conditions. Particular attention should be directed towards windows and glass facades—jointly known as “glazings”—since current practices often lead to huge energy expenditures related to excessive inflow or outflow of energy which need to be balanced by energy-intensive cooling or heating. This review article outlines recent progress in thermochromics, i.e., it deals with materials whose optical properties are strongly dependent on temperature. In particular, we discuss oxide-based thin surface coatings (thin films and nanoparticle composites which can be deposited onto glass and are able to regulate the throughput of solar energy while the luminous (visible properties remain more or less unaltered. Another implementation embodies lamination materials incorporating thermochromic (TC nanoparticles. The thin films and nanocomposites are based on vanadium dioxide (VO2, which is able to change its properties within a narrow temperature range in the vicinity of room temperature and either reflects or absorbs infrared light at elevated temperatures, whereas the reflectance or absorptance is much smaller at lower temperatures. The review outlines the state of the art for these thin films and nanocomposites with particular attention to recent developments that have taken place in laboratories worldwide. Specifically, we first set the scene by discussing environmental challenges and their relationship with TC glazings. Then enters VO2 and we present its key properties in thin-film form and as nanoparticles. The next part of the article gives perspectives on the manufacturing of these films and particles. We point out that the properties of pure VO2 may not be fully adequate for buildings and we elaborate how additives, antireflection layers, nanostructuring and protective over-coatings can be employed to yield improved

  5. Gold nanoparticle-polydimethylsiloxane films reflect light internally by optical diffraction and Mie scattering

    Science.gov (United States)

    Dunklin, Jeremy R.; Forcherio, Gregory T.; Roper, D. Keith

    2015-08-01

    Optical properties of polymer films embedded with plasmonic nanoparticles (NPs) are important in many implementations. In this work, optical extinction by polydimethylsiloxane (PDMS) films containing gold (Au) NPs was enhanced at resonance compared to AuNPs in suspensions, Beer-Lambert law, or Mie theory by internal reflection due to optical diffraction in 16 nm AuNP-PDMS films and Mie scattering in 76 nm AuNP-PDMS films. Resonant extinction per AuNP for 16 nm AuNPs with negligible resonant Mie scattering was enhanced up to 1.5-fold at interparticle separation (i.e., Wigner-Seitz radii) comparable to incident wavelength. It was attributable to diffraction through apertures formed by overlapping electric fields of adjacent, resonantly excited AuNPs at Wigner-Seitz radii equal to or less than incident wavelengths. Resonant extinction per AuNP for strongly Mie scattering 76 nm AuNPs was enhanced up to 1.3-fold at Wigner-Seitz radii four or more times greater than incident wavelength. Enhanced light trapping from diffraction and/or scattering is relevant to optoelectronic, biomedical, and catalytic activity of substrates embedded with NPs.

  6. Modifying the thermal conductivity of small molecule organic semiconductor thin films with metal nanoparticles.

    Science.gov (United States)

    Wang, Xinyu; Parrish, Kevin D; Malen, Jonathan A; Chan, Paddy K L

    2015-11-04

    Thermal properties of organic semiconductors play a significant role in the performance and lifetime of organic electronic devices, especially for scaled-up large area applications. Here we employ silver nanoparticles (Ag NPs) to modify the thermal conductivity of the small molecule organic semiconductor, dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT). The differential 3-ω method was used to measure the thermal conductivity of Ag-DNTT hybrid thin films. We find that the thermal conductivity of pure DNTT thin films do not vary with the deposition temperature over a range spanning 24 °C to 80 °C. The thermal conductivity of the Ag-DNTT hybrid thin film initially decreases and then increases when the Ag volume fraction increases from 0% to 32%. By applying the effective medium approximation to fit the experimental results of thermal conductivity, the extracted thermal boundary resistance of the Ag-DNTT interface is 1.14 ± 0.98 × 10(-7) m(2)-K/W. Finite element simulations of thermal conductivity for realistic film morphologies show good agreement with experimental results and effective medium approximations.

  7. A multiscale structural study of nanoparticle films prepared by the Langmuir-Blodgett technique

    Science.gov (United States)

    Dochter, Alexandre; Pichon, Benoit P.; Fleutot, Solenne; Medard, Nicolas; Begin-Colin, Sylvie

    2013-02-01

    Arrays of magnetic nanoparticles (NPs) represent a very interesting challenge toward the development of new devices for magnetic applications such as data storage and spintronic. The final properties of such assemblies depending essentially on the spatial arrangement of NPs, it is of first importance to investigate precisely their structure. Here, the structure of monolayer and multilayer films of magnetic iron oxide NPs assembled by the Langmuir-Blodgett (LB) technique has been studied by usual techniques such as SEM, AFM and ellipsometry and by a new and an easy to process enhanced optical technique: the Surface Enhancement Ellipsometry Contrast (SEEC) microscopy. This technique is based on the use of a new generation of microscope slides used as substrates which allow the strong enhancement of the sample contrast to a point where it becomes possible to visualize the structure of monolayer and multilayer films at the nanoscale with a conventional optical microscope. The SEEC microscopy is demonstrated to be complementary to usual characterization techniques to study the structure of NPs films, especially for films containing very small nanosized NPs which are more difficult to analyze by usual techniques. While the film structure is investigated with lateral resolution of microns, the layer thickness is analyzed at the nanoscale (with a precision of 0.3 nm) with a close fit to the experimental measurements on local (AFM) and on larger (ellipsometry) areas. This technique presents the advantage to visualize directly the topography of NPs assemblies on very large areas by extracting information such as the height profile, the film roughness and generating 3D images.

  8. Large third-order optical nonlinearity in vertically oriented mesoporous silica thin films embedded with Ag nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Min; Liu, Qiming, E-mail: qmliu@whu.edu.cn [Wuhan University, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology (China)

    2016-12-15

    Taking advantage of the channel confinement of mesoporous films to prevent the agglomeration of Ag nanoparticles to achieve large third-order optical nonlinearity in amorphous materials, Ag-loaded composite mesoporous silica film was prepared by the electrochemical deposition method on ITO substrate. Ag ions were firstly transported into the channels of mesoporous film by the diffusion and binding force of channels, which were reduced to nanoparticles by applying suitable voltage. The existence and uniform distribution of Ag nanoparticles ranging in 1–10 nm in the mesoporous silica thin films were exhibited by UV spectrophotometer, X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) measurements. The third-order optical nonlinearity induced by Ag nanoparticles was studied by the Z-scan technique. Due to the local field surface plasmon resonance, the maximum third-order nonlinear optical susceptibility of Ag-loaded composite mesoporous silica film is 1.53×10{sup −10} esu, which is 1000 times larger than that of the Ag-contained chalcogenide glasses which showed large nonlinearity in amorphous materials.

  9. Magnetic core/shell nanoparticle thin films deposited by MAPLE: Investigation by chemical, morphological and in vitro biological assays

    Energy Technology Data Exchange (ETDEWEB)

    Cristescu, R., E-mail: rodica.cristescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele (Romania); Popescu, C.; Socol, G.; Iordache, I.; Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele (Romania); Mihaiescu, D.E.; Grumezescu, A.M. [Faculty of Applied Chemistry and Materials Science, ' Politehnica' University of Bucharest, 1-7 Polizu Street, 011061 Bucharest (Romania); Balan, A.; Stamatin, I. [University of Bucharest, 3Nano-SAE Research Center, PO Box MG-38, Bucharest-Magurele (Romania); Chifiriuc, C. [Faculty of Biology, University of Bucharest, Microbiology Immunology Department, Aleea Portocalilor 1-3, Sector 5, 77206 Bucharest (Romania); Bleotu, C. [Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu, 030304 Bucharest (Romania); Saviuc, C.; Popa, M. [Faculty of Biology, University of Bucharest, Microbiology Immunology Department, Aleea Portocalilor 1-3, Sector 5, 77206 Bucharest (Romania); Chrisey, D.B. [Rensselaer Polytechnic Institute, School of Engineering, Departments of Materials Science and Biomedical Engineering, Troy, 12180-3590, NY (United States)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer We deposit magnetic Fe{sub 3}O{sub 4}/oleic acid/cephalosporin nanoparticle thin films by MAPLE. Black-Right-Pointing-Pointer Thin films have a chemical structure similar to the starting material. Black-Right-Pointing-Pointer Cephalosporins have an additive effect on the grain size and induce changes in grain shape. Black-Right-Pointing-Pointer MAPLE can be used to develop novel strategies for fighting medical biofilms associated with chronic infections. - Abstract: We report on thin film deposition of nanostructured Fe{sub 3}O{sub 4}/oleic acid/ceftriaxone and Fe{sub 3}O{sub 4}/oleic acid/cefepime nanoparticles (core/shell/adsorption-shell) were fabricated by matrix assisted pulsed laser evaporation (MAPLE) onto inert substrates. The thin films were characterized by profilometry, Fourier transform infrared spectroscopy, atomic force microscopy, and investigated by in vitro biological assays. The biological properties tested included the investigation of the microbial viability and the microbial adherence to the glass coverslip nanoparticle film, using Gram-negative and Gram-positive bacterial strains with known antibiotic susceptibility behavior, the microbial adherence to the HeLa cells monolayer grown on the nanoparticle pellicle, and the cytotoxicity on eukaryotic cells. The proposed system, based on MAPLE, could be used for the development of novel anti-microbial materials or strategies for fighting pathogenic biofilms frequently implicated in the etiology of biofilm associated chronic infections.

  10. Transparent Conducting Film Fabricated by Metal Mesh Method with Ag and Cu@Ag Mixture Nanoparticle Pastes

    Directory of Open Access Journals (Sweden)

    Hyun Min Nam

    2017-05-01

    Full Text Available Transparent conducting electrode film is highly desirable for application in touch screen panels (TSPs, flexible and wearable displays, sensors, and actuators. A sputtered film of indium tin oxide (ITO shows high transmittance (90% at low sheet resistance (50 Ω/cm2. However, ITO films lack mechanical flexibility, especially under bending stress, and have limitation in application to large-area TSPs (over 15 inches due to the trade-off in high transmittance and low sheet resistance properties. One promising solution is to use metal mesh-type transparent conducting film, especially for touch panel application. In this work, we investigated such inter-related issues as UV imprinting process to make a trench layer pattern, the synthesis of core-shell-type Ag and Cu@Ag composite nanoparticles and their paste formulation, the filling of Ag and Cu@Ag mixture nanoparticle paste to the trench layer, and touch panel fabrication processes.

  11. The role of polymer films on the oxidation of magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Letti, C.J. [Universidade de Brasilia, Instituto de Fisica, 70910-000 Brasilia, DF (Brazil); Paterno, L.G. [Universidade de Brasilia, Instituto de Quimica, 70910-000 Brasilia, DF (Brazil); Pereira-da-Silva, M.A. [Instituto de Fisica de São Carlos, USP, 13560-9700 São Carlos, SP (Brazil); Centro Universitario Central Paulista – UNICEP, 13563-470 São Carlos, SP (Brazil); Morais, P.C. [Universidade de Brasilia, Instituto de Fisica, 70910-000 Brasilia, DF (Brazil); Soler, M.A.G., E-mail: soler@unb.br [Universidade de Brasilia, Instituto de Fisica, 70910-000 Brasilia, DF (Brazil)

    2017-02-15

    A detailed investigation about the role of polymer films on the oxidation process of magnetite nanoparticles (∼7 nm diameter), under laser irradiation is performed employing micro Raman spectroscopy. To support this investigation, Fe{sub 3}O{sub 4}-np are synthesized by the co-precipitation method and assembled layer-by-layer with sodium sulfonated polystyrene (PSS). Polymer films (Fe{sub 3}O{sub 4}-np/PSS){sub n} with n=2,3,5,7,10 and 25 bilayers are employed as a model system to study the oxidation process under laser irradiation. Raman data are further processed by principal component analysis. Our findings suggest that PSS protects Fe{sub 3}O{sub 4}-np from oxidation when compared to powder samples, even for the sample with the greater number of bilayers. Further, the oxidation of magnetite to maghemite occurs preferably for thinner films up to 7 bilayers, while the onset for the formation of the hematite phase depends on the laser intensity for thicker films. Water takes part on the oxidation processes of magnetite, the oxidation/phase transformation of Fe{sub 3}O{sub 4}-np is intensified in films with more bilayers, since more water is included in those films. Encapsulation of Fe{sub 3}O{sub 4}-np by PSS in layer-by-layer films showed to be very efficient to avoid the oxidation process in nanosized magnetite. - Graphical abstract: Encapsulation of Fe{sub 3}O{sub 4}-np by PSS in layer-by-layer films avoids the oxidation and phase transformation of nanosized magnetite. - Highlights: • (Fe{sub 3}O{sub 4}-np/PSS){sub n} nanofilms, with n=2 up to 25, where layer-by-layer assembled. • The influence of film architecture on the Fe{sub 3}O{sub 4}-np oxidation was investigated through Raman spectroscopy. • Encapsulation of Fe{sub 3}O{sub 4}-np by PSS showed to be very efficient to avoid the Fe{sub 3}O{sub 4}-np oxidation.

  12. Growth of tin oxide thin films composed of nanoparticles on hydrophilic and hydrophobic glass substrates by spray pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Paloly, Abdul Rasheed; Satheesh, M. [Nano Functional Materials Lab, Department of Physics, Cochin University of Science and Technology, Kochi 682022, Kerala (India); Martínez-Tomás, M. Carmen; Muñoz-Sanjosé, Vicente [Departamento de Física Aplicada y Electromagnetismo, Universitat de Valencia, c/Dr Moliner 50, Burjassot, Valencia 46100 (Spain); Rajappan Achary, Sreekumar [Nano Functional Materials Lab, Department of Physics, Cochin University of Science and Technology, Kochi 682022, Kerala (India); Bushiri, M. Junaid, E-mail: junaidbushiri@gmail.com [Nano Functional Materials Lab, Department of Physics, Cochin University of Science and Technology, Kochi 682022, Kerala (India)

    2015-12-01

    Highlights: • SnO{sub 2} thin films were grown on hydrophilic and hydrophobic glass substrates. • Samples on hydrophobic substrates are having comparatively larger lattice volume. • Films on hydrophobic substrates have larger particles and low density distribution. • Substrate dependent photoluminescence emission is observed and studied. • SnO{sub 2} thin films grown over hydrophobic substrates may find potential applications. - Abstract: In this paper, we have demonstrated the growth of tin oxide (SnO{sub 2}) thin films composed of nanoparticles on hydrophobic (siliconized) and hydrophilic (non-siliconized) glass substrates by using the spray pyrolysis technique. X-ray diffraction (XRD) analysis confirmed the formation of SnO{sub 2} thin films with tetragonal rutile-phase structure. Average particle size of nanoparticles was determined to be in the range of 3–4 nm measured from the front view images obtained by a field emission gun scanning electron microscope (FESEM), while the size of nanoparticle clusters, when present, were in the range of 11–20 nm. Surface morphology of SnO{sub 2} films grown over hydrophobic substrates revealed larger isolated particles which are less crowded compared to the highly crowded and agglomerated smaller particles in films on hydrophilic substrates. Blue shift in the band gap is observed in samples in which the average particle size is slightly larger than the exciton Bohr radius. Photoluminescence (PL) analysis of samples grown over hydrophobic substrates exhibited an intense defect level emission and a weak near band edge emission. The enhanced visible emission from these SnO{sub 2} thin films is attributed to lattice defects formed during the film growth due to the mismatch between the film and the hydrophobic substrate surface.

  13. Silver release and antimicrobial properties of PMMA films doped with silver ions, nano-particles and complexes

    Energy Technology Data Exchange (ETDEWEB)

    Lyutakov, O., E-mail: lyutakoo@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology, Prague (Czech Republic); Goncharova, I. [Department of Analytical Chemistry, Institute of Chemical Technology, Prague (Czech Republic); Rimpelova, S. [Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague (Czech Republic); Kolarova, K.; Svanda, J.; Svorcik, V. [Department of Solid State Engineering, Institute of Chemical Technology, Prague (Czech Republic)

    2015-04-01

    Materials prepared on the base of bioactive silver compounds have become more and more popular due to low microbial resistance to silver. In the present work, the efficiency of polymethylmethacrylate (PMMA) thin films doped with silver ions, nanoparticles and silver–imidazole polymer complex was studied by a combination of AAS, XPS and AFM techniques. The biological activities of the proposed materials were discussed in view of the rate of silver releasing from the polymer matrix. Concentrations of Ag active form were estimated by its ability to interact with L-cysteine using electronic circular dichroism spectroscopy. Rates of the released silver were compared with the biological activity in dependence on the form of embedded silver. Antimicrobial properties of doped polymer films were studied using two bacterial strains: Staphylococcus epidermidis and Escherichia coli. It was found that PMMA films doped with Ag{sup +} had greater activity than those doped with nanoparticles and silver–imidazole polymeric complexes. However, the antimicrobial efficiency of Ag{sup +} doped films was only short-term. Contrary, the antimicrobial activity of silver–imidazole/PMMA films increased in time of sample soaking. - Highlights: • PMMA thin films doped with silver ions, nanoparticles (AgNPs) and silver–imidazole helical complexes (AgIm) were studied. • Silver release from doped polymer films and its biological activity were estimated. • Antimicrobial properties of doped polymer films were also studied. • Ag ions doped films showed the strongest antimicrobial activity, which quickly disappeared. • AgIm and AgNPs doped films showed more stable antimicrobial properties. • AgIm complexes conserve their structure after addition into polymer and after leaching.

  14. Silver release and antimicrobial properties of PMMA films doped with silver ions, nano-particles and complexes

    International Nuclear Information System (INIS)

    Lyutakov, O.; Goncharova, I.; Rimpelova, S.; Kolarova, K.; Svanda, J.; Svorcik, V.

    2015-01-01

    Materials prepared on the base of bioactive silver compounds have become more and more popular due to low microbial resistance to silver. In the present work, the efficiency of polymethylmethacrylate (PMMA) thin films doped with silver ions, nanoparticles and silver–imidazole polymer complex was studied by a combination of AAS, XPS and AFM techniques. The biological activities of the proposed materials were discussed in view of the rate of silver releasing from the polymer matrix. Concentrations of Ag active form were estimated by its ability to interact with L-cysteine using electronic circular dichroism spectroscopy. Rates of the released silver were compared with the biological activity in dependence on the form of embedded silver. Antimicrobial properties of doped polymer films were studied using two bacterial strains: Staphylococcus epidermidis and Escherichia coli. It was found that PMMA films doped with Ag + had greater activity than those doped with nanoparticles and silver–imidazole polymeric complexes. However, the antimicrobial efficiency of Ag + doped films was only short-term. Contrary, the antimicrobial activity of silver–imidazole/PMMA films increased in time of sample soaking. - Highlights: • PMMA thin films doped with silver ions, nanoparticles (AgNPs) and silver–imidazole helical complexes (AgIm) were studied. • Silver release from doped polymer films and its biological activity were estimated. • Antimicrobial properties of doped polymer films were also studied. • Ag ions doped films showed the strongest antimicrobial activity, which quickly disappeared. • AgIm and AgNPs doped films showed more stable antimicrobial properties. • AgIm complexes conserve their structure after addition into polymer and after leaching

  15. A study on the optical and electrical properties of direct-patternable ZnO films incorporated various contents of Pt nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong-June; Wang, Seok-Joo; Kim, Hyuncheol [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Koo, Kyoung-Hoe [Sam Young Fil-Tech Co., Ltd., Seoul 153-768 (Korea, Republic of); Park, Hyung-Ho, E-mail: hhpark@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2009-11-30

    Platinum nanoparticles were synthesized by the methanol reduction method, and their size was controlled to 3 nm on average using PVP [poly(N-vinyl-2-pyrrolidon)] as a protecting unit. Various contents of Pt nanoparticles were incorporated into ZnO solutions which were synthesized by a sol-gel process. ZnO films with Pt nanoparticles of various content were annealed at 500 deg. C and 600 deg. C for 1 h. The crystallinity increased with the annealing temperature and also slightly with the content of Pt nanoparticles. The sheet resistance of ZnO films decreased with the incorporation of Pt nanoparticles, however the decreasing behavior was not maintained with increasing content of Pt nanoparticles. A shift of valence band maximum energy of ZnO film with Pt nanoparticles to higher energy was also observed due to electron transfer from Pt nanoparticles to ZnO film. The optical transmittance was 88 {+-} 2% in the visible region for all the ZnO films. Well-defined 60 {mu}m wide direct-patterned ZnO films containing Pt nanoparticles of 0.5 atomic percent could be formed without using dry etching process.

  16. Influence of silver nanoparticles on titanium oxide and nitrogen doped titanium oxide thin films for sun light photocatalysis

    Science.gov (United States)

    Madhavi, V.; Kondaiah, P.; Mohan Rao, G.

    2018-04-01

    Decreasing recombination of photogenerated charge carriers in photocatalysts is a critical issue for enhancing the efficiency of dye degradation. It is one of the greatest challenges to reduce the recombination of photo generated charge carriers in semiconductor. In this paper, we report that there is an enhancement of photocatalytic activity in presence of Sun light, by introducing Plasmon (silver nanoparticles (Ag)) onto the titanium oxide (TiO2) and nitrogen incorporated titanium oxide (N-TiO2) films. These silver nanoparticles facilitate the charge transport and separation of charge carriers. In this paper we find that the phase transformation accurse from rutile to anatase with increase of nitrogen flow rates. The FE-SEM analysis showed the micro structure changes to dense columnar growth with increase of nitrogen flow rates. XPS studies of the N-TiO2 thin films revealed that the substitution of N atoms within the O sites plays a crucial role in narrowing the band gap of the TiO2. This enables the absorption of visible light radiation and leads to operation of the film as a highly reactive and effective photocatalysis. The synergetic effect of silver nanoparticles on TiO2 and N-TiO2 films tailored the photocatalytic acitivity, charge transfer mechanism, and photocurrent studies. The silver nanoparticle loaded N-TiO2 films showed highest degradation of 95% compare to the N-TiO2 films. The photo degradation rate constant of Ag/N-TiO2 film was larger than the N-TiO2 films.

  17. Synergetic effects leading to coke-resistant NiCo bimetallic catalysts for dry reforming of methane

    KAUST Repository

    Li, Lidong

    2015-01-08

    A new dry reforming of methane catalyst comprised of NiCo bimetallic nanoparticles and a Mgx(Al)O support that exhibits high coke resistance and long-term on-stream stability is reported. The structural characterization by XRD, TEM, temperature-programmed reduction, and BET analysis demonstrates that the excellent performance of this catalyst is ascribed to the synergy of various parameters, including metal-nanoparticle size, metal-support interaction, catalyst structure, ensemble size, and alloy effects.

  18. Highly Conductive Cu 2– x S Nanoparticle Films through Room-Temperature Processing and an Order of Magnitude Enhancement of Conductivity via Electrophoretic Deposition

    KAUST Repository

    Otelaja, Obafemi O.

    2014-11-12

    © 2014 American Chemical Society. A facile room-temperature method for assembling colloidal copper sulfide (Cu2-xS) nanoparticles into highly electrically conducting films is presented. Ammonium sulfide is utilized for connecting the nanoparticles via ligand removal, which transforms the as-deposited insulating films into highly conducting films. Electronic properties of the treated films are characterized with a combination of Hall effect measurements, field-effect transistor measurements, temperature-dependent conductivity measurements, and capacitance-voltage measurements, revealing their highly doped p-type semiconducting nature. The spin-cast nanoparticle films have carrier concentration of ∼1019 cm-3, Hall mobilities of ∼3 to 4 cm2 V-1 s-1, and electrical conductivities of ∼5 to 6 S·cm-1. Our films have hole mobilities that are 1-4 orders of magnitude higher than hole mobilities previously reported for heat-treated nanoparticle films of HgTe, InSb, PbS, PbTe, and PbSe. We show that electrophoretic deposition (EPD) as a method for nanoparticle film assembly leads to an order of magnitude enhancement in film conductivity (∼75 S·cm-1) over conventional spin-casting, creating copper sulfide nanoparticle films with conductivities comparable to bulk films formed through physical deposition methods. The X-ray diffraction patterns of the Cu2-xS films, with and without ligand removal, match the Djurleite phase (Cu1.94S) of copper sulfide and show that the nanoparticles maintain finite size after the ammonium sulfide processing. The high conductivities reported are attributed to better interparticle coupling through the ammonium sulfide treatment. This approach presents a scalable room-temperature route for fabricating highly conducting nanoparticle assemblies for large-area electronic and optoelectronic applications.

  19. Synthesis of Highly Dispersed and Highly Stable Supported Au–Pt Bimetallic Catalysts by a Two-Step Method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaofeng; Zhao, Haiyan; Wu, Tianpin; Liu, Yuzi; Liang, Xinhua

    2016-11-01

    Highly dispersed and highly stable supported bimetallic catalysts were prepared using a two-step process. Pt nanoparticles (NPs) were first deposited on porous γ-Al2O3 particles by atomic layer deposition (ALD). Au NPs were synthesized by using gold(III) chloride as the Au precursor, and then immobilized on ALD Pt/γ-Al2O3 particles. The Au–Pt bimetallic catalysts were highly active and highly stable in a vigorously stirred liquid phase reaction of glucose oxidation.

  20. Flow and heat transfer in water based liquid film fluids dispensed with graphene nanoparticles

    Science.gov (United States)

    Zuhra, Samina; Khan, Noor Saeed; Khan, Muhammad Altaf; Islam, Saeed; Khan, Waris; Bonyah, Ebenezer

    2018-03-01

    The unsteady flow and heat transfer characteristics of electrically conducting water based thin liquid film non-Newtonian (Casson and Williamson) nanofluids dispensed with graphene nanoparticles past a stretching sheet are considered in the presence of transverse magnetic field and non-uniform heat source/sink. Embedding the graphene nanoparticles effectively amplifies the thermal conductivity of Casson and Williamson nanofluids. Ordinary differential equations together with the boundary conditions are obtained through similarity variables from the governing equations of the problem, which are solved by the HAM (Homotopy Analysis Method). The solution is expressed through graphs and illustrated which show the influences of all the parameters. The convergence of the HAM solution for the linear operators is obtained. Favorable comparison with previously published research paper is performed to show the correlation for the present work. Skin friction coefficient and Nusselt number are presented through Tables and graphs which show the validation for the achieved results demonstrating that the thin liquid films results from this study are in close agreement with the results reported in the literature. Results achieved by HAM and residual errors are evaluated numerically, given in Tables and also depicted graphically which show the accuracy of the present work.

  1. Reflectometric measurement of n-hexane adsorption on ZnO2 nanohybrid film modified by hydrophobic gold nanoparticles

    Science.gov (United States)

    Sebők, Dániel; Csapó, Edit; Ábrahám, Nóra; Dékány, Imre

    2015-04-01

    Zinc-peroxide/poly(styrenesulfonate) nanohybrid thin films (containing 20 bilayers: [ZnO2/PSS]20, d ∼ 500 nm) were prepared using layer-by-layer (LbL) method. The thin film surface was functionalized by different surface modifying agents (silanes, alkylthiols and hydrophobized nanoparticles). Based on the experimental results of quartz crystal microbalance (QCM) and contact angle measurements (as prequalifications) the octanethiol covered gold nanoparticles (OT-AuNPs) were selected for further vapour adsorption studies. Reflectometric interference spectroscopy (RIfS) was used to measure n-hexane vapour adsorption on the original and modified nanohybrid films in a gas flow platform. The thin film provides only the principle of the measurement (by interference phenomenon), the selectivity and hydrophobicity is controlled and enhanced by surface functionalization (by dispersion interaction between the alkyl chains). The interference pattern shift (Δλ) caused by the increase of the optical thickness of the thin film due to vapour adsorption was investigated. It was found that due to the surface functionalization by hydrophobic nanoparticles the effect of water vapour adsorption decreased significantly, while for n-hexane opposite tendency was observed (the effective refractive index and thus the interference pattern shift increased drastically). The correlation between QCM technique and optical method (RIfS) was specified: linear specific adsorbed amount vs. wavelength shift calibration curves were determined in the pr = 0-0.4 relative vapour pressure range. The thin film is suitable for sensorial application (e.g. volatile organic compound/VOC sensor).

  2. Bimetallic Catalysts Containing Gold and Palladium for Environmentally Important Reactions

    Directory of Open Access Journals (Sweden)

    Ahmad Alshammari

    2016-07-01

    Full Text Available Supported bimetallic nanoparticles (SBN are extensively used as efficient redox catalysts. This kind of catalysis particularly using SBN has attracted immense research interest compared to their parent metals due to their unique physico-chemical properties. The primary objective of this contribution is to provide comprehensive overview about SBN and their application as promising catalysts. The present review contains four sections in total. Section 1 starts with a general introduction, recent progress, and brief summary of the application of SBN as promising catalysts for different applications. Section 2 reviews the preparation and characterization methods of SBN for a wide range of catalytic reactions. Section 3 concentrates on our own results related to the application of SBN in heterogeneous catalysis. In this section, the oxidation of cyclohexane to adipic acid (an eco-friendly and novel approach will be discussed. In addition, the application of bimetallic Pd catalysts for vapor phase toluene acetoxylation in a fixed bed reactor will also be highlighted. Acetoxylation of toluene to benzyl acetate is another green route to synthesize benzyl acetate in one step. Finally, Section 4 describes the summary of the main points and also presents an outlook on the application of SBN as promising catalysts for the production of valuable products.

  3. Copper Affects the Location of Zinc in Bimetallic Ion-Exchanged Mordenite.

    Science.gov (United States)

    Reule, Allen A C; Shen, Jing; Semagina, Natalia

    2018-03-25

    Bimetallic ion exchange on a zeolite often impacts its catalytic properties compared to its monometallic counterparts. Here, we address the synergistic effect of simultaneous copper and zinc ion exchange on mordenite (MOR), as found earlier for dimethyl ether (DME) carbonylation. Samples with various Cu/Zn ratios were characterized by diffuse-reflectance infrared Fourier-transform spectroscopy (DRIFTS) in the 3600 and 720 cm -1 regions, pore distribution analysis through Ar physisorption, X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR), and transmission electron microscopy (TEM). When ion-exchanged alone, copper preferentially occupies 12-membered rings, whereas zinc occupies 8-membered rings. In bimetallic combinations, the zinc addition was found to prevent the copper from sintering into nanoparticles and to increase its coordination strength to the zeolite. At a Cu/Zn ratio of 0.25 (for MOR with Si/Al=6.5), copper promotes zinc ion exchange into 12-membered rings, more specifically, into T4 sites that are known for the formation of the coke precursor in DME carbonylation on a MOR. The sites became blocked during the bimetallic ion exchange, leading to suppressed catalyst deactivation. The study contributes to the understanding of mutual ion effects in bimetallic exchanged zeolites and highlights the major role of copper as a governing factor in determining the location of co-exchanged zinc on a MOR. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effect of sulfurization temperature on the property of Cu2ZnSnS4 thin film by eco-friendly nanoparticle ink method

    Science.gov (United States)

    Wang, Wei; Shen, Honglie; Yao, Hanyu; Shang, Huirong; Tang, ZhengXia; Li, Yufang

    2017-09-01

    Cu2ZnSnS4 (CZTS) thin films were fabricated by a low-cost nanoparticle ink method. The eco-friendly hydrophilic CZTS nanoparticles were mixed with low-cost n-propanol to form nanoparticle ink. To improve crystallinity and remove oxygen element, the CZTS thin films were sulfurized further. The effects of sulfurization temperature on the structure, morphologies, and photovoltaic performances of CZTS thin films were investigated. The results showed that the crystallinity of CZTS thin film was improved with increasing sulfurization temperature. The surface morphology studies demonstrated the formation of compact and homogenous CZTS thin film at a sulfurization temperature of 600 °C. By optimizing thickness of CZTS thin film, the CZTS thin-film solar cell with an optimal efficiency of 2.1% was obtained.

  5. Polypropylene film with silver nanoparticles and nanoclay aiming to action biocidal; Filme de polipropileno com nanoargila e nanoparticulas de prata visando a acao biocida

    Energy Technology Data Exchange (ETDEWEB)

    Oliani, W.L.; Lima, L.F.C.P.; Lugao, A.B.; Parra, D.F., E-mail: washoliani@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Fermino, D.M.; Diaz, F.R.V. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Departamento de Engenharia Metalurgica e de Materiais; Santos, P.M. dos [Universidade de Sao Paulo (USP), SP (Brazil)

    2014-07-01

    This paper presents an initial study of films made of polypropylene nanoclay and silver nanoparticles. The nanocomposite of polypropylene (iPP), commercial organoclay - montmorillonite (MMT), Cloisite 20A at concentrations of 1.0% and silver nanoparticles (AgNPs) at a concentration of 0.1% were prepared in a twin-screw-extruder, using polypropylene with maleic anhydride (PP-g-MA) as coupling agent. The properties of nanocomposites of PP/MMT/AgNPs are closely related to the dispersion of silver particles and the distribution of sheets of MMT in the polymer matrix, which define its efficiency in the case of the particles and their interaction clay/polymer matrix. However, this combination of MMT and AgNPs that are polar, with the polymer matrix nonpolar in the molten state, presents a challenge. The characterization of the film was performed by analysis of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and reduction of colony forming unit (CFU %). The results indicate the formation of predominantly exfoliated microstructures and agglomeration of silver nanoparticles in the film. The effect of silver nanoparticles was evaluated against bacteria E.coli and S.aureus. (author)

  6. Inkjet-printed gold nanoparticle chemiresistors: Influence of film morphology and ionic strength on the detection of organics dissolved in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Edith [CSIRO Materials Science and Engineering, PO Box 218, Lindfield, NSW 2070 (Australia)], E-mail: Edith.Chow@csiro.au; Herrmann, Jan; Barton, Christopher S.; Raguse, Burkhard; Wieczorek, Lech [CSIRO Materials Science and Engineering, PO Box 218, Lindfield, NSW 2070 (Australia)

    2009-01-19

    The influence of film morphology on the performance of inkjet-printed gold nanoparticle chemiresistors has been investigated. Nanoparticles deposited from a single-solvent system resulted in a 'coffee ring'-like structure with most of the materials deposited at the edge. It was shown that the uniformity of the film could be improved if the nanoparticles were deposited from a mixture of solvents comprising N-methyl-2-pyrrolidone and water. Electrical conductivity measurements showed that both 'coffee ring' and 'flat' films were qualitatively similar suggesting that the films have similar nanoscale structures. To form the functional chemiresistor device, the 4-(dimethylamino)pyridine coating on the nanoparticle was exchanged with 1-hexanethiol to provide a hydrophobic sensing layer. The performance of 1-hexanethiol coated gold nanoparticle chemiresistors to small organic molecules, toluene, dichloromethane and ethanol dissolved in 1 M KCl in regard to changes in impedance and response times was unaffected by the film morphology. For larger hydrocarbons such as octane, the rate of uptake of the analyte into the film was significantly faster when the flatter nanoparticle film was used as opposed to the 'coffee ring' film which has a thicker edge. Furthermore, the presence of potassium and chloride ions in the solution media does not significantly affect the impedance of the nanoparticle film at 1 Hz (<2% variation in film impedance over more than four orders of magnitude change in ionic strength). However, the ionic strength of the media affected the partitioning of the analyte into the hydrophobic nanoparticle film. The response of the sensor was found to increase with an increased salt concentration due to a salting-out of the analyte from the solution.

  7. Conductive films of silver nanoparticles as novel susceptors for induction welding of thermoplastic composites

    Science.gov (United States)

    Dermanaki Farahani, Rouhollah; Janier, Mathieu; Dubé, Martine

    2018-03-01

    In the present work, a conductive film of silver nanoparticles (nAg) as a novel heating element type, called susceptor, was developed and tested for induction welding of carbon fiber/polyphenylene sulfide (CF/PPS) thermoplastic composites, i.e., unidirectional pre-impregnated 16 plies of CF/PPS compression-molded in a quasi-isotropic stacking sequence. The nAg were synthesized, dispersed in deionized (DI) water and casted onto a pure PPS film, resulting in a conductive film upon the evaporation of DI water and thermal post-annealing. The thermal annealing at 250 °C significantly (by 7 orders) decreased the film’s electrical resistivity from 9.4 × 103 down to 3.1 × 10‑4 Ω cm. The new susceptors led to fast heating rates in induction welding when compared to the standard stainless steel mesh susceptors under similar welding conditions. Lap shear mechanical testing revealed that the apparent lap shear strength (LSS) is sensitive to the susceptors’ resistivity and the input current. A relatively high LSS value was achieved for the specimens welded using the new susceptors which exceeded the value of those welded using stainless steel mesh susceptors (28.3 MPa compared to 20 MPa). The weld interface and specimens’ cross-section observation revealed that the nAg were dispersed and embedded into the resin upon welding. This study contains preliminary results that show high potential of nanoparticles as effective susceptors to further improve the mechanical performance of the joints in welding of thermoplastic composites.

  8. Incorporation of essential oils and nanoparticles in pullulan films to control foodborne pathogens on meat and poultry products.

    Science.gov (United States)

    Morsy, Mohamed K; Khalaf, Hassan H; Sharoba, Ashraf M; El-Tanahi, Hassan H; Cutter, Catherine N

    2014-04-01

    The incorporation of essential oils and nanotechnology into edible films has the potential to improve the microbiological safety of foods. The aim of this study was to evaluate the effectiveness of pullulan films containing essential oils and nanoparticles against 4 foodborne pathogens. Initial experiments using plate overlay assays demonstrated that 2% oregano essential oil was active against Staphylococcus aureus and Salmonella Typhimurium, whereas Listeria monocytogenes and Escherichia coli O157:H7 were not inhibited. Two percent rosemary essential oil was active against S. aureus, L. monocytogenes, E. coli O157:H7, and S. Typhimurium, when compared with 1%. Zinc oxide nanoparticles at 110 nm were active against S. aureus, L. monocytogenes, E. coli O157:H7, and S. Typhimurium, when compared with 100 or 130 nm. Conversely, 100 nm silver (Ag) nanoparticles were more active against S. aureus than L. monocytogenes. Using the results from these experiments, the compounds exhibiting the greatest activity were incorporated into pullulan films and found to inhibit all or some of the 4 pathogens in plate overlay assays. In challenge studies, pullulan films containing the compounds effectively inhibited the pathogens associated with vacuum packaged meat and poultry products stored at 4 °C for up to 3 wk, as compared to control films. Additionally, the structure and cross-section of the films were evaluated using electron microscopy. The results from this study demonstrate that edible films made from pullulan and incorporated with essential oils or nanoparticles may improve the safety of refrigerated, fresh or further processed meat and poultry products. © 2014 Institute of Food Technologists®

  9. Characterization of gold nanoparticle films: Rutherford backscattering spectroscopy, scanning electron microscopy with image analysis, and atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Pia C. Lansåker

    2014-10-01

    Full Text Available Gold nanoparticle films are of interest in several branches of science and technology, and accurate sample characterization is needed but technically demanding. We prepared such films by DC magnetron sputtering and recorded their mass thickness by Rutherford backscattering spectroscopy. The geometric thickness dg—from the substrate to the tops of the nanoparticles—was obtained by scanning electron microscopy (SEM combined with image analysis as well as by atomic force microscopy (AFM. The various techniques yielded an internally consistent characterization of the films. In particular, very similar results for dg were obtained by SEM with image analysis and by AFM.

  10. Investigation of Cu2ZnSnS4 nanoparticles for thin-film solar cell applications

    DEFF Research Database (Denmark)

    Engberg, Sara Lena Josefin; Agersted, Karsten; Crovetto, Andrea

    2017-01-01

    We study the effect of the annealing atmosphere on grain growth of ligand-free and ligand-coated Cu2ZnSnS4 (CZTS) nanoparticle-based thin films by thermal analysis. We use thermogravimetric analysis (TGA) coupled with mass spectrometry (MS) to simultaneously monitor mass changes and evolved gases...

  11. Thin-film transistors with a channel composed of semiconducting metal oxide nanoparticles deposited from the gas phase

    International Nuclear Information System (INIS)

    Busch, C.; Schierning, G.; Theissmann, R.; Nedic, A.; Kruis, F. E.; Schmechel, R.

    2012-01-01

    The fabrication of semiconducting functional layers using low-temperature processes is of high interest for flexible printable electronics applications. Here, the one-step deposition of semiconducting nanoparticles from the gas phase for an active layer within a thin-film transistor is described. Layers of semiconducting nanoparticles with a particle size between 10 and 25 nm were prepared by the use of a simple aerosol deposition system, excluding potentially unwanted technological procedures like substrate heating or the use of solvents. The nanoparticles were deposited directly onto standard thin-film transistor test devices, using thermally grown silicon oxide as gate dielectric. Proof-of-principle experiments were done deploying two different wide-band gap semiconducting oxides, tin oxide, SnO x , and indium oxide, In 2 O 3 . The tin oxide spots prepared from the gas phase were too conducting to be used as channel material in thin-film transistors, most probably due to a high concentration of oxygen defects. Using indium oxide nanoparticles, thin-film transistor devices with significant field effect were obtained. Even though the electron mobility of the investigated devices was only in the range of 10 −6 cm 2V−1s−1 , the operability of this method for the fabrication of transistors was demonstrated. With respect to the possibilities to control the particle size and layer morphology in situ during deposition, improvements are expected.

  12. Photovoltaic Properties and Ultrafast Plasmon Relaxation Dynamics of Diamond-Like Carbon Nanocomposite Films with Embedded Ag Nanoparticles.

    Science.gov (United States)

    Meškinis, Šarūnas; Peckus, Domantas; Vasiliauskas, Andrius; Čiegis, Arvydas; Gudaitis, Rimantas; Tamulevičius, Tomas; Yaremchuk, Iryna; Tamulevičius, Sigitas

    2017-12-01

    Ultrafast relaxation dynamics of diamond-like carbon (DLC) films with embedded Ag nanoparticles (DLC:Ag) and photovoltaic properties of heterojunctions consisting of DLC:Ag and crystalline silicon (DLC:Ag/Si) were investigated by means of transient absorption (TAS) spectroscopy and photovoltaic measurements. The heterojunctions using both p type and n type silicon were studied. It was found that TAS spectra of DLC:Ag films were dependent on the used excitation wavelength. At wavelengths where Ag nanoparticles absorbed light most intensively, only DLC signal was registered. This result is in good accordance with an increase of the DLC:Ag/Si heterojunction short circuit current and open circuit voltage with the excitation wavelength in the photovoltaic measurements. The dependence of the TAS spectra of DLC:Ag films and photovoltaic properties of DLC:Ag/Si heterostructures on the excitation wavelength was explained as a result of trapping of the photoexcited hot charge carriers in DLC matrix. The negative photovoltaic effect was observed for DLC:Ag/p-Si heterostructures and positive ("conventional") for DLC:Ag/n-Si ones. It was explained by the excitation of hot plasmonic holes in the Ag nanoparticles embedded into DLC matrix. Some decrease of DLC:Ag/Si heterostructures photovoltage as well as photocurrent with DLC:Ag film thickness was observed, indicating role of the interface in the charge transfer process of photocarriers excited in Ag nanoparticles.

  13. Structural Properties of Nanoparticles TiO2/PVA Polymeric Films

    Directory of Open Access Journals (Sweden)

    Samara A. Madhloom

    2018-04-01

    Full Text Available In this research, X-ray diffraction of the powder (PVA polymer, titanium dioxide with two parti-cle sizes and (TiO2 (15.7 nm/PVA and TiO2 (45.7 nm/PVA films have been studied,the amount of polymer is (0.5 g and (0.01g from each particle sizes of nanoparticles will be used. Casting method is used to prepare homogeneous films on glass petri dishes. All parameters ac-counted for the X-ray diffraction; full width half maximum (FWHM, Miller indices (hkl, size of crystalline (D, Specific Surface Area (S and Dislocation Density (δ. The nature of the structural of materials and films will be investigated. The XRD pattern of PVA polymer has semi-crystalline nature and the titanium dioxide with two particle sizes have crystalline structure; ana-tase type. While the mixture between these materials led to appearing some crystalline peaks into XRD pattern of PVA polymer

  14. Graphene oxide/carbon nanoparticle thin film based IR detector: Surface properties and device characterization

    Directory of Open Access Journals (Sweden)

    Farzana Aktar Chowdhury

    2015-10-01

    Full Text Available This work deals with the synthesis, characterization, and application of carbon nanoparticles (CNP adorned graphene oxide (GO nanocomposite materials. Here we mainly focus on an emerging topic in modern research field presenting GO-CNP nanocomposite as a infrared (IR radiation detector device. GO-CNP thin film devices were fabricated from liquid phase at ambient condition where no modifying treatments were necessary. It works with no cooling treatment and also for stationary objects. A sharp response of human body IR radiation was detected with time constants of 3 and 36 sec and radiation responsivity was 3 mAW−1. The current also rises for quite a long time before saturation. This work discusses state-of-the-art material developing technique based on near-infrared photon absorption and their use in field deployable instrument for real-world applications. GO-CNP-based thin solid composite films also offer its potentiality to be utilized as p-type absorber material in thin film solar cell, as well.

  15. Characterization of physical structure of silica nanoparticles encapsulated in polymeric structure of polyamide films.

    Science.gov (United States)

    Singh, Puyam S; Aswal, Vinod K

    2008-10-01

    Polyamide nanocomposite films were prepared from nanometer sized silica particles and trimesoyl chloride-m-phenylene diamine based polyamides. The type of silica nanoparticles used is commercial LUDOX HS-40 and the particle size characterized by the radius of gyration (R(g)) is about 66 A. The immediately prepared films were easily broken into particles to form colloidal-like dilute suspension of the silica-polyamide composite particles in D(2)O-H(2)O solutions for SANS measurements, that in this dilute system SANS data the complication of scattering data from the interacting particles is minimized. At about 60% D(2)O of the sample solution, the silica is contrasted out, therefore the SANS profiles are predominantly from the organic polyamide scattering. The SANS profile of the sample solutions measured at 90% D(2)O clearly indicates scattering from both silica and polymer. The scattering heterogeneities for two-phase system were evident from the validity of the Debye-Bueche expression in case of the nanocomposite with high silica loading. At limited silica loading of the nanocomposite, interaction between the silica and polymer chains forming core-shell morphology was observed. The transport properties of the membranes made from the nanocomposite films were measured on a batch type test kit with an aqueous solution of 500 ppm dioxane concentration at pressures ranging from 50 to 200 psig, and correlated to their composite structure.

  16. Nickel nanoparticles effect on the electrochemical energy storage properties of carbon nanocomposite films.

    Science.gov (United States)

    Bettini, Luca Giacomo; Divitini, Giorgio; Ducati, Caterina; Milani, Paolo; Piseri, Paolo

    2014-10-31

    The growth of nanostructured nickel : carbon (Ni : C) nanocomposite thin films by the supersonic cluster beam deposition of nickel and carbon clusters co-deposited from two separate beam sources has been demonstrated. Ni : C films retain the typical highly disordered structure with predominant sp(2) hybridization, low density, high surface roughness and granular nanoscale morphology of cluster assembled nanostructured carbon, but display enhanced electric conductivity. The electric double layer (EDL) capacitance of Ni : C films featuring the same thickness (200 nm) and different nickel volumetric concentrations (0-35%) has been investigated by electrochemical impedance spectroscopy employing an aqueous solution of potassium hydroxide (KOH 1 M) as electrolyte solution. Evidence of increased electric conductivity, facilitated EDL formation and negligible porous structure modification was found as consequence of Ni embedding. This results in the ability to synthesize electrodes with tailored specific power and energy density by the accurate control of the amount of deposited Ni and C clusters. Moreover, nickel nanoparticles were shown to catalyze the formation of tubular onion-like carbon structures upon mild thermal treatment in inert atmosphere. Electrochemical characterization of the heated nanocomposite electrodes revealed that the presence of long range ordered sp(2) structures further improves the power density and energy storage properties.

  17. Graphene oxide/carbon nanoparticle thin film based IR detector: Surface properties and device characterization

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Farzana Aktar [Experimental Physics Division, Atomic Energy Centre, 4, Kazi Nazrul Islam Avenue, Dhaka-1000 (Bangladesh); Hossain, Mohammad Abul [Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka-1000 (Bangladesh); Uchida, Koji; Tamura, Takahiro; Sugawa, Kosuke; Mochida, Tomoaki; Otsuki, Joe [College of Science and Technology, Nihon University, 1-8-14 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Mohiuddin, Tariq [Department of Physics, College of Science, Sultan Qaboos University, Muscat (Oman); Boby, Monny Akter [Department of Physics, Faculty of Science, University of Dhaka, Dhaka-1000 (Bangladesh); Alam, Mohammad Sahabul, E-mail: msalam@ksu.edu.sa [Department of Physics, Faculty of Science, University of Dhaka, Dhaka-1000 (Bangladesh); Department of Chemical Engineering, College of Engineering & King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)

    2015-10-15

    This work deals with the synthesis, characterization, and application of carbon nanoparticles (CNP) adorned graphene oxide (GO) nanocomposite materials. Here we mainly focus on an emerging topic in modern research field presenting GO-CNP nanocomposite as a infrared (IR) radiation detector device. GO-CNP thin film devices were fabricated from liquid phase at ambient condition where no modifying treatments were necessary. It works with no cooling treatment and also for stationary objects. A sharp response of human body IR radiation was detected with time constants of 3 and 36 sec and radiation responsivity was 3 mAW{sup −1}. The current also rises for quite a long time before saturation. This work discusses state-of-the-art material developing technique based on near-infrared photon absorption and their use in field deployable instrument for real-world applications. GO-CNP-based thin solid composite films also offer its potentiality to be utilized as p-type absorber material in thin film solar cell, as well.

  18. Mechanical and solubility properties of bio-nanocomposite film of semi refined kappa carrageenan/ZnO nanoparticles

    Science.gov (United States)

    Saputri, Apriliana Eka; Praseptiangga, Danar; Rochima, Emma; Panatarani, Camellia; Joni, I. Made

    2018-02-01

    The aim of this present work is to develop semi refined kappa carrageenan based bio-nanocomposite film as an alternative to synthetic petroleum based food packaging materials. Among natural polymers, carrageenan is one of the most promising material, since it is a renewable bioresource. The ZnO nanoparticles (0.5%; 1.0%; 1.5% w/w carrageenan) was incorporated into carrageenan polymer to prepare bio-nanocomposite films, where ZnO acts as reinforcement for carrageenan matrix. The mechanical and solubility properties of the prepared films were investigated as a function of ZnO concentration. The results indicated that the addition of ZnO exhibits greater solubility compared to the neat film. The elongation at break is insignificantly different on the films with and without addition ZnO. The tensile strength of the film was highest for the sample with 0.5% ZnO. These mechanical and solubility properties suggest that bio-nanocomposite film of semi refined kappa carrageenan and nanoparticle ZnO can be effectively used as food packaging material.

  19. Plasmon TiO2 nanotube arrays doped with silver nanoparticles act as photo-anode film in solar cells

    Science.gov (United States)

    Guli, Mina; Deng, Minghan; Bimenyimana, Theogene; Hu, Zhe; Dai, Songyuan

    2018-03-01

    A simple strategy to improve the performance of a TiO2 nanotube film by use of metal nanoparticles is presented in dye-sensitized solar cells (DSSCs). Metal nanoparticles modified TiO2 nanotubes through a simple soaking method. An excellent enhancement in the optical property has been observed from the TiO2 nanotube film modified with Ag nanoparticles, which is owing to the surface plasmon resonance. The plasmon effects of Ag, together with the straight pathway and porous structure of TiO2 nanotubes have been used to significantly enhance the photo-electric performance of DSSCs. The efficiency of the DSSCs increased significantly from 3.89 to 5.18%, together with corresponding enhancements in current density from 12.30 to 12.55 mA/cm2, open circuit voltage from 0.66 to 0.71 V, respectively.

  20. Photovoltaic Properties and Ultrafast Plasmon Relaxation Dynamics of Diamond-Like Carbon Nanocomposite Films with Embedded Ag Nanoparticles

    DEFF Research Database (Denmark)

    Tamulevičius, Sigitas; Meškinis, Šarūnas; Peckus, Domantas

    2017-01-01

    accordance with an increase of the DLC:Ag/Si heterojunction short circuit current and open circuit voltage with the excitation wavelength in the photovoltaic measurements. The dependence of the TAS spectra of DLC:Ag films and photovoltaic properties of DLC:Ag/Si heterostructures on the excitation wavelength......Ultrafast relaxation dynamics of diamond-like carbon (DLC) films with embedded Ag nanoparticles (DLC:Ag) and photovoltaic properties of heterojunctions consisting of DLC:Ag and crystalline silicon (DLC:Ag/Si) were investigated by means of transient absorption (TAS) spectroscopy and photovoltaic...... measurements. The heterojunctions using both p type and n type silicon were studied. It was found that TAS spectra of DLC:Ag films were dependent on the used excitation wavelength. At wavelengths where Ag nanoparticles absorbed light most intensively, only DLC signal was registered. This result is in good...

  1. Microwave-assisted synthesis of TiO2 nanoparticles: photocatalytic activity of powders and thin films

    Science.gov (United States)

    Falk, G. S.; Borlaf, M.; López-Muñoz, M. J.; Fariñas, J. C.; Rodrigues Neto, J. B.; Moreno, R.

    2018-02-01

    A simple, rapid, and effective synthesis methodology for the preparation of high-performance TiO2 nanoparticles and thin films by combining colloidal sol-gel and microwave-assisted hydrothermal synthesis was developed. The obtained results indicate that the heating with microwaves at 180 °C for 20 min was enough to synthesize crystalline TiO2 nanoparticles, presenting anatase as a major phase with a crystal size of 7 nm and a specific surface area of 220 m2 g-1. A secondary thermal treatment improved the crystallinity and induced the anatase-to-rutile transformation. The highest photocatalytic activity was found for the as-synthesized powder without any additional thermal treatment. Thin films were also prepared by dip-coating and its high photocatalytic activity showed a kinetic curve comparable to that of a thin film of commercial TiO2 powder prepared under similar conditions.

  2. Microwave-assisted synthesis and characterization of poly(acrylic)/SiO2-TiO2 core-shell nanoparticle hybrid thin films

    International Nuclear Information System (INIS)

    Chien, Wen-Chen; Yu, Yang-Yen; Chen, Po-Kan; Yu, Hui-Huan

    2011-01-01

    In this study, poly(acrylic)/SiO 2 -TiO 2 core-shell nanoparticle hybrid thin films were successfully synthesized by microwave-assisted polymerization. The coupling agent 3-(trimethoxysilyl) propyl methacrylate (MSMA) was hydrolyzed with colloidal SiO 2 -TiO 2 core-shell nanoparticles, and then polymerized with two acrylic monomers and initiator to form a precursor solution. The results of this study showed that the spin-coated hybrid films had relatively good surface planarity, high thermal stability, a tunable refractive index (1.525 2 -TiO 2 core-shell nanoparticle hybrid thin films, for potential use in optical applications.

  3. Horseradish peroxidase immobilized in TiO2 nanoparticle films on pyrolytic graphite electrodes: direct electrochemistry and bioelectrocatalysis

    International Nuclear Information System (INIS)

    Zhang Yan; He Pingli; Hu Naifei

    2004-01-01

    Horseradish peroxidase (HRP)-TiO 2 film electrodes were fabricated by casting the mixture of HRP solution and aqueous titania nanoparticle dispersion onto pyrolytic graphite (PG) electrodes and letting the solvent evaporate. The HRP incorporated in TiO 2 films exhibited a pair of well-defined and quasi-reversible cyclic voltammetric peaks at about -0.35 V versus saturated calomel electrode (SCE) in pH 7.0 buffers, characteristic of HRP-Fe(III)/Fe(II) redox couple. The electron exchange between the enzyme and PG electrodes was greatly enhanced in the TiO 2 nanoparticle film microenvironment. The electrochemical parameters such as apparent heterogeneous electron transfer rate constant (k s ) and formal potential (E deg. ') were estimated by fitting the data of square wave voltammetry with nonlinear regression analysis. The HRP-TiO 2 film electrodes were quite stable and amenable to long-time voltammetric experiments. The UV-Vis spectroscopy showed that the position and shape of Soret absorption band of HRP in TiO 2 films kept nearly unchanged and were different from those of hemin or hemin-TiO 2 films, suggesting that HRP retains its native-like tertiary structure in TiO 2 films. The electrocatalytic activity of HRP embedded in TiO 2 films toward O 2 and H 2 O 2 was studied. Possible mechanism of catalytic reduction of H 2 O 2 with HRP-TiO 2 films was discussed. The HRP-TiO 2 films may have a potential perspective in fabricating the third-generation biosensors based on direct electrochemistry of enzymes

  4. Synthesis and characterization of bimetallic Cu-Ni/ZrO{sub 2} nanocatalysts: H{sub 2} production by oxidative steam reforming of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Hernandez, R.; Mondragon Galicia, G.; Mendoza Anaya, D.; Palacios, J. [Instituto Nacional de Investigaciones Nucleares; Carretera Mexico-Toluca S/N La Marquesa, Ocoyoacac, Estado de Mexico C.P. 52750 (Mexico); Angeles-Chavez, C. [Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas, No. 152, C.P. 07730, Mexico D.F. (Mexico); Arenas-Alatorre, J. [Instituto de Fisica-UNAM, Apartado Postal 20-364, C.P. 01000, Mexico D.F. (Mexico)

    2008-09-15

    Cu/ZrO{sub 2}, Ni/ZrO{sub 2} and bimetallic Cu-Ni/ZrO{sub 2} catalysts were prepared by deposition-precipitation method to produce hydrogen by oxidative steam reforming of methanol (OSRM) reaction in the range of 250-360 C. TPR analysis of the Cu-Ni/ZrO{sub 2} catalyst showed that the presence of Cu facilitates the reduction of the Ni at lower temperatures. In addition, this sample showed two reduction peaks, the former peak was attributed to the reduction of the adjacent Cu and Ni atoms which could be forming a bimetallic Cu-rich phase, and the second was assigned to the remaining Ni atoms forming bimetallic Ni-rich nanoparticles. Transmission Electron Microscopy revealed Cu or Ni nanoparticles on the monometallic samples, while bimetallic nanoparticles were identified on the Cu-Ni/ZrO{sub 2} catalyst. On the other hand, Cu-Ni/ZrO{sub 2} catalyst exhibited better catalytic activity than the monometallic samples. The difference between them was related to the Cu-Ni nanoparticles present on the former catalyst, as well as the bifunctional role of the bimetallic phase and the support that improve the catalytic activity. All the catalysts showed the same selectivity toward H{sub 2} at the maximum reaction temperature and it was {proportional_to}60%. The high selectivity toward CO is associated to the presence of the bimetallic Ni-rich nanoparticles, as evidenced by TEM-EDX analysis, since this behavior is similar to the one showed by the monometallic Ni-catalyst. (author)

  5. Effect of Bi{sub 4}Ti{sub 3}O{sub 12} nanoparticles on the electroactive phase content of poly (vinylidene-difluoride) composite films

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, Sumit, E-mail: sumit.bhardwaj4@gmail.com [Centre for Materials Science and Engineering, National Institute of Technology, Hamirpur, H.P. 177005 India (India); Department of Materials and Metallurgical Engineering, PEC University of Technology, Chandigarh – 160012 (India); Chand, Subhash [Department of Physics, National Institute of Technology, Hamirpur, H.P. 177005 (India); Raina, K. K. [School of Physics and Materials Science, Thapar University, Patiala, Punjab -147004 (India); Kumar, Ravi [Centre for Materials Science and Engineering, National Institute of Technology, Hamirpur, H.P. 177005 India (India)

    2015-08-28

    Poly (vinylidene-difluoride) (PVDF) composite films with homogeneously dispersed Bi{sub 4}Ti{sub 3}O{sub 12} nanoparticles were synthesized by spin coating method from mixed solvent solutions. The effects of ferroelectric nanoparticles loading on the formation of α, β and γ phases of PVDF were studied using X-ray diffraction, infrared and Raman spectroscopy. The amount of the ferroelectric β and γ phases present in the composite films was found to increase with increased nanoparticles loading. We have shown that the formation of electroactive phases of PVDF with extended chain conformations can be enhanced by the addition of a well-dispersed nanoparticles loading.

  6. Syntheses and characterization of thin films of Te94Se6 nanoparticles for semiconducting and optical devices

    International Nuclear Information System (INIS)

    Salah, Numan; Habib, Sami S.; Memic, Adnan; Alharbi, Najlaa D.; Babkair, Saeed S.; Khan, Zishan H.

    2013-01-01

    Thin films of Te 94 Se 6 nanoparticles were synthesized using the physical vapor condensation technique at different argon (Ar) pressures. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy, absorption spectrum, photoluminescence (PL) and Raman spectroscopy. XRD results show that the as-grown films have a polycrystalline structure. SEM images display uniform nanoparticles in these films where the size increases from ∼ 12 to about 60 nm by decreasing Ar pressure from 667 to 267 Pa. These as-grown thin films were found to have direct band gaps, whose value decreases with increasing particle size. The absorption and extinction coefficients for these films were also investigated. PL emission spectra exhibit three bands peaking at 666, 718 and 760 nm, while Raman spectra displayed three bands located at 123, 143 and 169 cm −1 . No significant changes are observed in positions or intensities of these bands by decreasing the Ar pressure, except that of the last band of PL; where the intensity increases. The obtained results on this Te 94 Se 6 nanomaterial especially its controlled direct bandgap might be useful for development of optical disks and other semiconducting devices. - Highlights: ► Thin films of Te 94 Se 6 nanoparticles were grown at different argon (Ar) pressures. ► Size of the nanoparticles increased by decreasing Ar pressure. ► They have direct band gap, whose value decreases by increasing the particle size. ► These nanomaterials might be useful for development of semiconducting devices

  7. The effect of dopants on grain growth and PL in CZTS nanoparticle thin films for solar cell applications

    DEFF Research Database (Denmark)

    Engberg, Sara Lena Josefin; Crovetto, Andrea; Hansen, Ole

    We have studied the effect of dopants such as Na, Sb, and Li in Cu2ZnSnS4 nanoparticle thin films [1]. The as-synthesized CZTS nanoparticles were inherently ligand-free [2], which allows the use of polar solvents, such as water and ethanol. Another advantage of these particles is that the user......- and environmentally-friendly chloride salts can be directly dissolved in controllable amounts. This further circumvents the need for later incorporation of dopants, or a ligand-exchange step to functionalize the surface of the nanoparticles. In addition, the homogeneous distribution of additives in the ink allows...... uniform grain growth within the deposited absorber layer. By including Na in the nanoparticle ink, micron-sized grains throughout the whole absorber are achieved after annealing in a sulfur atmosphere at 600°C. The absorber layer appeared to be of full density, and no closed porosity could be detected...

  8. Synthesis and hydrogenation application of Pt-Pd bimetallic nanocatalysts stabilized by macrocycle-modified dendrimer

    Science.gov (United States)

    Jin, Zhijun; Xiao, Haiyan; Zhou, Wei; Zhang, Dongqiao; Peng, Xiaohong

    2017-12-01

    Different generations of poly(propylene imine) (Gn-PPI) terminated with N-containing 15-membered triolefinic macrocycle (GnM) (n = 2, 3, 4, 5) were prepared. The bimetallic nanoparticle catalysts GnM-(Ptx/Pd10-x) (x = 0, 3, 5, 7, 10) were prepared by the synchronous ligand-exchange reaction between GnM and the complexes of Pt(PPh3)4 and Pd(PPh3)4. The structure and catalytic properties of GnM-(Ptx/Pd10-x) were characterized via Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, energy-dispersive spectroscopy and inductively coupled plasma atomic emission spectroscopy. The novel bimetallic Pd-Pt nanoparticle catalysts stabilized by dendrimers (DSNs) present higher catalytic activities for the hydrogenation of dimeric acid (DA) than that of nitrile butadiene rubber (NBR). It can be concluded that bimetallic Pd-Pt DSNs possess alloying and synergistic electronic effects on account of the hydrogenation degree (HD) of DA and NBR. Furthermore, the HD of DA and NBR shows a remarkable decrease with the incremental generations (n) of GnM-(Pt3/Pd7) (n = 2, 3, 4, 5).

  9. Spin Coated Plasmonic Nanoparticle Interfaces for Photocurrent Enhancement in Thin Film Si Solar Cells

    Directory of Open Access Journals (Sweden)

    Miriam Israelowitz

    2014-01-01

    Full Text Available Nanoparticle (NP arrays of noble metals strongly absorb light in the visible to infrared wavelengths through resonant interactions between the incident electromagnetic field and the metal’s free electron plasma. Such plasmonic interfaces enhance light absorption and photocurrent in solar cells. We report a cost-effective and scalable room temperature/pressure spin-coating route to fabricate broadband plasmonic interfaces consisting of silver NPs. The NP interface yields photocurrent enhancement (PE in thin film silicon devices by up to 200% which is significantly greater than previously reported values. For coatings produced from Ag nanoink containing particles with average diameter of 40 nm, an optimal NP surface coverage ϕ of 7% is observed. Scanning electron microscopy of interface morphologies revealed that for low ϕ, particles are well separated, resulting in broadband PE. At higher ϕ, formation of particle strings and clusters causes red-shifting of the PE peak and a narrower spectral response.

  10. Electric Field Effects on Photoluminescence of CdSe Nanoparticles in a PMMA Film

    Directory of Open Access Journals (Sweden)

    Takakazu Nakabayashi

    2014-06-01

    Full Text Available External electric field effects on spectra and decay of photoluminescence (PL as well as on absorption spectra were measured for CdSe nanoparticles in a poly(methyl methacrylate (PMMA film. Electrophotoluminescence (E-PL spectra as well as electroabsorption spectra show a remarkable Stark shift which depends on the particle size, indicating a large electric dipole moment in the first exciton state. The E-PL spectra also show that PL of CdSe is quenched by application of electric fields, and the magnitude of the field-induced quenching becomes larger with increasing size. The PL decay profiles observed in the absence and presence of electric field show that the field-induced quenching of PL mainly originates from the field-induced decrease in population of the emitting state prepared through the relaxation from the photoexcited state.

  11. Percolation of Carbon Nanoparticles in Poly(3-Hexylthiophene Enhancing Carrier Mobility in Organic Thin Film Transistors

    Directory of Open Access Journals (Sweden)

    Chang-Hung Lee

    2014-01-01

    Full Text Available To improve the field-effect mobility of all-inkjet-printed organic thin film transistors (OTFTs, a composite material consisted of carbon nanoparticles (CNPs and poly(3-hexylthiophene (P3HT was reported by using homemade inkjet-printing system. These all-inkjet-printed composite OTFTs represented superior characteristics compared to the all-inkjet-printed pristine P3HT OTFTs. To investigate the enhancement mechanism of the blended materials, the percolation model was established and experimentally verified to illustrate the enhancement of the electrical properties with different blending concentrations. In addition, experimental results of OTFT contact resistances showed that both contact resistance and channel resistance were halved. At the same time, X-ray diffraction measurements, Fourier transform infrared spectra, ultraviolet-visible light, and photoluminescence spectra were also accomplished to clarify the material blending effects. Therefore, this study demonstrates the potential and guideline of carbon-based nanocomposite materials in all-inkjet-printed organic electronics.

  12. Photoluminescence enhancement in few-layer WS2 films via Au nanoparticles

    Directory of Open Access Journals (Sweden)

    Sin Yuk Choi

    2015-06-01

    Full Text Available Nano-composites of two-dimensional atomic layered WS2 and Au nanoparticles (AuNPs have been fabricated by sulfurization of sputtered W films followed by immersing into HAuCl4 aqueous solution. The morphology, structure and AuNPs distribution have been characterized by electron microscopy. The decorated AuNPs can be more densely formed on the edge and defective sites of triangle WS2. We have compared the optical absorption and photoluminescence of bare WS2 and Au-decorated WS2 layers. Enhancement in the photoluminescence is observed in the Au-WS2 nano-composites, attributed to localized surface plasmonic effect. This work provides the possibility to develop photonic application in two-dimensional materials.

  13. Peculiarities of the initial stages of carbonization processes in polyimide-based nanocomposite films containing carbon nanoparticles

    Directory of Open Access Journals (Sweden)

    I.V. Gofman

    2015-12-01

    Full Text Available Carbonization of the polyimide-based composite films containing carbon nanoparticles, namely nanofibers and nanocones/disks, in the temperature range 500–550°C was studied and the kinetics of the initial stage of carbonization and the effect of the filler on the mechanical properties of the carbonized films were evaluated. Two polyimides (PIs characterized by different macrochains’ rigidity and different degrees of ordering of the intermolecular structure were used. The character of the nanofiller’s action on the kinetics of the carbonization process depends on the heating rate. In this work, the intensity of the destruction of the PI matrix of the composite films was shown to be slightly higher than that of films of the same polymers with no filler. The introduction of the carbon nanoparticles into both PIs provokes the increase in the ultimate deformation values of the partially carbonized films, while the carbonization of the unfilled PI films yields the brittle materials. The Young’s modulus values of the materials based on the rigid-rod PI do not increase after carbonization, while those for compositions based on the PI with semi-rigid chains increase substantially. Carbon nanocones/disks are characterized by the best compatibility with matrix PIs in comparison with carbon nanofibers.

  14. Preparation and properties of cellulose nanocomposite films with in situ generated copper nanoparticles using Terminalia catappa leaf extract.

    Science.gov (United States)

    Muthulakshmi, L; Rajini, N; Nellaiah, H; Kathiresan, T; Jawaid, M; Rajulu, A Varada

    2017-02-01

    In the present work, copper nanoparticles (CuNPs) were in situ generated inside cellulose matrix using Terminalia catappa leaf extract as a reducing agent. During this process, some CuNPs were also formed outside the matrix. The CuNPs formed outside the matrix were observed with transmission electron microscope (TEM) and scanning electron microscope (SEM). Majority of the CuNPs formed outside the matrix were in the size range of 21-30nm. The cellulose/CuNP composite films were characterized by Fourier transform infrared spectroscopic, X-Ray diffraction and thermogravimetric techniques. The crystallinity of the cellulose/CuNP composite films was found to be lower than that of the matrix indicating rearrangement of cellulose molecules by in situ generated CuNPs. Further, the expanded diffractogram of the composite films indicated the presence of a mixture of Cu, CuO and Cu 2 O nanoparticles. The thermal stability of the composites was found to be lower than that of the composites upto 350°C beyond which a reverse trend was observed. This was attributed to the catalytic behaviour of CuNPs for early degradation of the composites. The composite films possessed sufficient tensile strength which can replace polymer packaging films like polyethylene. Further, the cellulose/CuNP composite films exhibited good antibacterial activity against E.coli bacteria. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A novel formulation for controlled release of heparin-DOCA conjugate dispersed as nanoparticles in polyurethane film.

    Science.gov (United States)

    Moon, H T; Lee, Y K; Han, J K; Byu, Y

    2001-02-01

    Heparin is a potent anticoagulant agent that interacts strongly with antithrombin III to prevent the formation of fibrin clot. In this study, we propose a new method for preparing a heparin-releasing system using a simple solvent casting. The heparin-DOCA conjugate, having an amphiphilic property, was homogeneously mixed with polyurethane in the co-solvent of dioxane, propanol and water. After casting the film, heparin-DOCA was homogeneously dispersed as nanoparticles in a polyurethane film. As the loading amount of heparin-DOCA in the film was increased, nanoparticle size, water uptake, and release rate were increased. Moreover, the percentage of released amount of heparin-DOCA was increased with the increase in the loading amount of heparin-DOCA. This was because the size of heparin-DOCA particles increases with the increase in the loading amount of heparin-DOCA, thereby decreasing the distance between particles and the total diffusion length to the surface. The release rate of heparin-DOCA can be controlled by the amount of the drug being loaded and the film thickness. When the heparin-DOCA loaded on the polyurethane films was above 7.5%, the released heparin-DOCA prevented the formation of fibrin clot and the platelet adhesion on the film surface.

  16. Rationally Designed, Multifunctional Self-Assembled Nanoparticles for Covalently Networked, Flexible and Self-Healable Superhydrophobic Composite Films.

    Science.gov (United States)

    Lee, Yujin; You, Eun-Ah; Ha, Young-Geun

    2018-03-21

    For constructing bioinspired functional films with various superhydrophobic functions, including self-cleaning, anticorrosion, antibioadhesion, and oil-water separation, hydrophobic nanomaterials have been widely used as crucial structural components. In general, hydrophobic nanomaterials, however, cannot form strong chemical bond networks in organic-inorganic hybrid composite films because of the absence of chemically compatible binding components. Herein, we report the rationally designed, multifunctional self-assembled nanoparticles with tunable functionalities of covalent cross-linking and hydrophobicity for constructing three-dimensionally interconnected superhydrophobic composite films via a facile solution-based fabrication at room temperature. The multifunctional self-assembled nanoparticles allow the systematic control of functionalities of composite films, as well as the stable formation of covalently linked superhydrophobic composite films with excellent flexibility (bending radii of 6.5 and 3.0 mm, 1000 cycles) and self-healing ability (water contact angle > 150°, ≥10 cycles). The presented strategy can be a versatile and effective route to generating other advanced functional films with covalently interconnected composite networks.

  17. Study of the electrical and nanosecond third order nonlinear optical properties of ZnO films doped with Au and Pt nanoparticles

    International Nuclear Information System (INIS)

    Trejo-Valdez, Martin; Sobral, Hugo; Martínez-Gutiérrez, Hugo; Torres-Torres, Carlos

    2016-01-01

    Zinc oxide films doped with platinum and gold nanoparticles were deposited by the spray pyrolysis technique on glass substrates. A titanium dioxide sol–gel solution containing gold and platinum aqueous ions was employed for synthesizing the nanoparticles by ultraviolet-light irradiation. The conductive properties of the samples were characterized by the electrochemical impedance spectroscopy technique. Our results showed that the impedance of zinc oxide films doped with metallic nanoparticles was, by far, lower than typical measurements in zinc oxide films. A strong enhancement in the nanosecond nonlinear optical response was also obtained in the studied metallic doped films. A vectorial two-mixing experiment performed at 532 nm and 4 ns allowed us to evaluate the sample with a third order optical nonlinearity described by approximately | χ 1111 (3) | = 2.6 × 10 −8 esu. - Highlights: • ZnO films doped with Pt and Au nanoparticles were synthetized. • The inclusion of metallic nanoparticles in the film improves optical nonlinearities. • Conductivity of the films was enhanced by the contribution of the nanoparticles.

  18. Highly Crystalline Nanoparticle Suspensions for Low-Temperature Processing of TiO2 Thin Films.

    Science.gov (United States)

    Watté, Jonathan; Lommens, Petra; Pollefeyt, Glenn; Meire, Mieke; De Buysser, Klaartje; Van Driessche, Isabel

    2016-05-25

    In this work, we present preparation and stabilization methods for highly crystalline TiO2 nanoparticle suspensions for the successful deposition of transparent, photocatalytically active TiO2 thin films toward the degradation of organic pollutants by a low temperature deposition method. A proof-of-concept is provided wherein stable, aqueous TiO2 suspensions are deposited on glass substrates. Even if the processing temperature is lowered to 150-200 °C, the subsequent heat treatment provides transparent and photocatalytically active titania thin layers. Because all precursor solutions are water-based, this method provides an energy-efficient, sustainable, and environmentally friendly synthesis route. The high load in crystalline titania particles obtained after microwave heating opens up the possibility to produce thin coatings by low temperature processing, as a conventional crystallization procedure is in this case superfluous. The impact of the precursor chemistry in Ti(4+)-peroxo solutions, containing imino-diacetic acid as a complexing ligand and different bases to promote complexation was studied as a function of pH, reaction time and temperature. The nanocrystal formation was followed in terms of colloidal stability, crystallinity and particle size. Combined data from Raman and infrared spectroscopy, confirmed that stable titanium precursors could be obtained at pH levels ranging from 2 to 11. A maximum amount of 50.7% crystallinity was achieved, which is one of the highest reported amounts of anatase nanoparticles that are suspendable in stable aqueous titania suspensions. Decoloring of methylene blue solutions by precipitated nanosized powders from the TiO2 suspensions proves their photocatalytic properties toward degradation of organic materials, a key requisite for further processing. This synthesis method proves that the deposition of highly crystalline anatase suspensions is a valid route for the production of photocatalytically active, transparent

  19. A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection

    Science.gov (United States)

    Lee, Jaehwan; Kim, Sanghyeok; Lee, Jinjae; Yang, Daejong; Park, Byong Chon; Ryu, Seunghwa; Park, Inkyu

    2014-09-01

    Wearable strain sensors for human motion detection are being highlighted in various fields such as medical, entertainment and sports industry. In this paper, we propose a new type of stretchable strain sensor that can detect both tensile and compressive strains and can be fabricated by a very simple process. A silver nanoparticle (Ag NP) thin film patterned on the polydimethylsiloxane (PDMS) stamp by a single-step direct transfer process is used as the strain sensing material. The working principle is the change in the electrical resistance caused by the opening/closure of micro-cracks under mechanical deformation. The fabricated stretchable strain sensor shows highly sensitive and durable sensing performances in various tensile/compressive strains, long-term cyclic loading and relaxation tests. We demonstrate the applications of our stretchable strain sensors such as flexible pressure sensors and wearable human motion detection devices with high sensitivity, response speed and mechanical robustness.Wearable strain sensors for human motion detection are being highlighted in various fields such as medical, entertainment and sports industry. In this paper, we propose a new type of stretchable strain sensor that can detect both tensile and compressive strains and can be fabricated by a very simple process. A silver nanoparticle (Ag NP) thin film patterned on the polydimethylsiloxane (PDMS) stamp by a single-step direct transfer process is used as the strain sensing material. The working principle is the change in the electrical resistance caused by the opening/closure of micro-cracks under mechanical deformation. The fabricated stretchable strain sensor shows highly sensitive and durable sensing performances in various tensile/compressive strains, long-term cyclic loading and relaxation tests. We demonstrate the applications of our stretchable strain sensors such as flexible pressure sensors and wearable human motion detection devices with high sensitivity, response

  20. Laser desorption/ionization from nanostructured surfaces: nanowires, nanoparticle films and silicon microcolumn arrays

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yong [Department of Chemistry, George Washington University, Washington, DC 20052 (United States); Luo Guanghong [Department of Chemistry, George Washington University, Washington, DC 20052 (United States); Diao Jiajie [Department of Physics, George Washington University, Washington, DC 20052 (United States); Chornoguz, Olesya [Department of Chemistry, George Washington University, Washington, DC 20052 (United States); Reeves, Mark [Department of Physics, George Washington University, Washington, DC 20052 (United States); Vertes, Akos [Department of Chemistry, George Washington University, Washington, DC 20052 (United States)

    2007-04-15

    Due to their optical properties and morphology, thin films formed of nanoparticles are potentially new platforms for soft laser desorption/ionization (SLDI) mass spectrometry. Thin films of gold nanoparticles (with 12{+-}1 nm particle size) were prepared by evaporation-driven vertical colloidal deposition and used to analyze a series of directly deposited polypeptide samples. In this new SLDI method, the required laser fluence for ion detection was equal or less than what was needed for matrix-assisted laser desorption/ionization (MALDI) but the resulting spectra were free of matrix interferences. A silicon microcolumn array-based substrate (a.k.a. black silicon) was developed as a new matrix-free laser desorption ionization surface. When low-resistivity silicon wafers were processed with a 22 ps pulse length 3x{omega} Nd:YAG laser in air, SF{sub 6} or water environment, regularly arranged conical spikes emerged. The radii of the spike tips varied with the processing environment, ranging from approximately 500 nm in water, to {approx}2 {mu}m in SF{sub 6} gas and to {approx}5 {mu}m in air. Peptide mass spectra directly induced by a nitrogen laser showed the formation of protonated ions of angiotensin I and II, substance P, bradykinin fragment 1-7, synthetic peptide, pro14-arg, and insulin from the processed silicon surfaces but not from the unprocessed areas. Threshold fluences for desorption/ionization were similar to those used in MALDI. Although compared to silicon nanowires the threshold laser pulse energy for ionization is significantly ({approx}10x) higher, the ease of production and robustness of microcolumn arrays offer complementary benefits.

  1. Antimicrobial activity of biopolymeric thin films containing flavonoid natural compounds and silver nanoparticles fabricated by MAPLE: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Cristescu, R., E-mail: rodica.cristescu@inflpr.ro [National Institute for Lasers, Plasma & Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele (Romania); Visan, A.; Socol, G. [National Institute for Lasers, Plasma & Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele (Romania); Surdu, A.V.; Oprea, A.E.; Grumezescu, A.M. [Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 1–7 Polizu Street, Bucharest, 011061 Romania (Romania); Chifiriuc, M.C. [Microbiology Immunology Department, Faculty of Biology, Research Institute of the University of Bucharest - ICUB, Bucharest, 77206 (Romania); Boehm, R.D.; Yamaleyeva, D.; Taylor, M.; Narayan, R.J. [Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC (United States); Chrisey, D.B. [Department of Physics and Engineering Physics, Tulane University, New Orleans, LA (United States)

    2016-06-30

    Highlights: • We successfully deposited composite quercetin dehydrate-, resveratrol- and silver nanoparticle-polyvinylpyrrolidone thin coatings with chemical structure close to that of the starting materials by MAPLE. • Thin film morphology studies revealed a uniform surface without aggregates or grains on the top of the surface. • MAPLE-deposited thin films exhibited antibacterial activity against Gram-positive and Gram-negative bacterial strains. • We demonstrated the potential use of these hybrid systems and MAPLE deposition method for the development of new harmless, ecological antimicrobial strategies. - Abstract: The purpose of this study was to investigate the interactions between microorganisms, including the planktonic and adherent organisms, and biopolymer (polyvinylpyrrolidone), flavonoid (quercetin dihydrate and resveratrol)-biopolymer, and silver nanoparticles-biopolymer composite thin films that were deposited using matrix assisted pulsed laser evaporation (MAPLE). A pulsed KrF{sup *} excimer laser source was used to deposit the aforementioned composite thin films, which were characterized using Fourier transform infrared spectroscopy (FT-IR), infrared microscopy (IRM), scanning electron microscopy (SEM), Grazing incidence X-ray diffraction (GIXRD) and atomic force microscopy (AFM). The antimicrobial activity of thin films was quantified using an adapted disk diffusion assay against Gram-positive and Gram-negative bacteria strains. FT-IR, AFM and SEM studies confirmed that MAPLE may be used to fabricate thin films with chemical properties corresponding to the input materials as well as surface properties that are appropriate for medical use. The silver nanoparticles and flavonoid-containing films exhibited an antimicrobial activity both against Gram-positive and Gram-negative bacterial strains demonstrating the potential use of these hybrid systems for the development of novel antimicrobial strategies.

  2. Effects of PLA Film Incorporated with ZnO Nanoparticle on the Quality Attributes of Fresh-Cut Apple.

    Science.gov (United States)

    Li, Wenhui; Li, Lin; Cao, Yun; Lan, Tianqing; Chen, Haiyan; Qin, Yuyue

    2017-07-31

    A novel nanopackaging film was synthesized by incorporating ZnO nanoparticles into a poly-lactic acid (PLA) matrix, and its effect on the quality of fresh-cut apple during the period of preservation was investigated at 4 ± 1 °C for 14 days. Six wt % cinnamaldehyde was added into the nano-blend film. Scanning electron microscope (SEM) analysis showed a rougher cross-section of the nano-blend films and an X-ray diffraction (XRD) was carried out to determine the structure of the ZnO nanoparticles. Compared to the pure PLA film, the nano-blend film had a higher water vapor permeability (WVP) and lower oxygen permeability. With the increase of the nanoparticles (NPs) in the PLA, the elongation at break (ε) and elastic modulus (EM) increased, while tensile strength (TS) decreased. Thermogravimetric analysis (TGA) presented a relatively good thermostability. Most importantly, the physical and biochemical properties of the fresh-cut apple were also measured, such as weight loss, firmness, polyphenol oxidase (PPO), total phenolic content, browning index (BI), sensory quality, and microbiological level. The results indicated that nano-blend packaging films had the highest weight loss at the end of storage compared to the pure PLA film; however, nanopackaging provided a better retention of firmness, total phenolic countent, color, and sensory quality. It also had a remarkable inhibition on the growth of microorganisms. Therefore, Nano-ZnO active packaging could be used to improve the shelf-life of fresh-cut produce.

  3. Annealing temperature effect on structure and electrical properties of films formed of Ge nanoparticles in SiO2

    International Nuclear Information System (INIS)

    Stavarache, Ionel; Lepadatu, Ana-Maria; Stoica, Toma; Ciurea, Magdalena Lidia

    2013-01-01

    Ge–SiO 2 films with high Ge/Si atomic ratio of about 1.86 were obtained by co-sputtering of Ge and SiO 2 targets and subsequently annealed at different temperatures between 600 and 1000 °C in a conventional furnace in order to show how the annealing process influences the film morphology concerning the Ge nanocrystal and/or amorphous nanoparticle formation and to study their electrical behaviour. Atomic force microscopy (AFM) imaging, Raman spectroscopy and electrical conductance measurements were performed in order to find out the annealing effect on the film surface morphology, as well as the Ge nanoparticle formation in correlation with the hopping conductivity of the films. AFM images show that the films annealed at 600 and 700 °C present a granular surface with particle height of about 15 nm, while those annealed at higher temperatures have smoother surface. The Raman investigations evidence Ge nanocrystals (including small ones) coexisting with amorphous Ge in the films annealed at 600 °C and show that almost all Ge is crystallized in the films annealed at 700 °C. The annealing at 800 °C disadvantages the Ge nanocrystal formation due to the strong Ge diffusion. This transition in Ge nanocrystals formation process by annealing temperature increase from 700 to 800 °C revealed by AFM and Raman spectroscopy measurements corresponds to a change in the electrical transport mechanism. Thus, in the 700 °C annealed films, the current depends on temperature according to a T −1/2 law which is typical for a tunnelling mechanism between neighbour Ge nanocrystals. In the 800 °C annealed films, the current–temperature characteristic has a T −1/4 dependence showing a hopping mechanism within an electronic band of localized states related to diffused Ge in SiO 2 .

  4. TiO2 nanoparticle thin film deposition by matrix assisted pulsed laser evaporation for sensing applications

    International Nuclear Information System (INIS)

    Caricato, A.P.; Capone, S.; Ciccarella, G.; Martino, M.; Rella, R.; Romano, F.; Spadavecchia, J.; Taurino, A.; Tunno, T.; Valerini, D.

    2007-01-01

    The MAPLE technique has been used for the deposition of nanostructured titania (TiO 2 ) nanoparticles thin films to be used for gas sensors applications. An aqueous solution of TiO 2 nanoparticles, synthesised by a novel chemical route, was frozen at liquid nitrogen temperature and irradiated with a pulsed ArF excimer laser in a vacuum chamber. A uniform distribution of TiO 2 nanoparticles with an average size of about 10 nm was deposited on Si and interdigitated Al 2 O 3 substrates as demonstrated by high resolution scanning electron microscopy-field emission gun inspection (SEM-FEG). Energy dispersive X-ray (EDX) analysis revealed the presence of only the titanium and oxygen signals and FTIR (Fourier transform infra-red) revealed the TiO 2 characteristic composition and bond. A comparison with a spin coated thin film obtained from the same solution of TiO 2 nanoparticles is reported. The sensing properties of the films deposited on interdigitated substrates were investigated, too

  5. Catechol Biosensor Based on Gold Nanoparticle Modified Tetrabutylammoniumtetrafluoroborate Doped Polythiophene Films

    Directory of Open Access Journals (Sweden)

    Suman SINGH

    2010-11-01

    Full Text Available Tetra butyl ammonium tetra fluoroborate (TBATFB doped polythiophene films have been polymerized galvano-statically which were then modified with soium citrate capped gold nanoparticles (AuNPs using dip coating method. Catechol biosensor was fabricated using laccase enzyme. ITO/Pth and ITO/Pth/AuNPs/Lac bioelectrodes were characterized using scanning electron microscopy (SEM, UV-Visible spectroscopy and electrochemical techniques. Absorbance for ITO/Pth/AuNPs/Lac bioelectrodes was monitored at 410 nm as a function of catechol concentration and pH. Cyclic voltammetric studies of ITO/Pth electrodes showed quasi-reversible behavior when recorded in sodium acetate buffer, which later turned into reversible behavior on modification with gold nanoparticles. ITO/Pth/AuNPs/Lac bioelectrodes showed maximum oxidation potential for enzymatic reaction of catechol at -0.2 V, with linear range upto 0.8 mM and regression coefficient (R2 of 0.988. Sensitivity and Km values were found to be 3.7 x 10-5 mA/mM and 0.22 mM respectively, with response time of about 6-8 s.

  6. Two-photon absorption cross section of magnetite nanoparticles in magnetic colloids and thin films

    Science.gov (United States)

    Espinosa, D.; Gonçalves, E. S.; Figueiredo Neto, A. M.

    2017-01-01

    We present z-scan measurements of magnetic nanoparticles made from magnetite in both thin film form and colloidal solutions. In order to avoid heating and, thus, spurious effects that could lead to misinterpretation of the z-scan results, an electro-mechanical shutter was added along the beam path in order to guarantee samples thermal relaxation. Two photon absorption coefficient β and nonlinear refractive index n2 were measured as a function of concentration N of absorbing units (Fe3O4). Our magnetite samples presented n 2 ≈ - 1.5 × 10 - 14 cm 2 / W , similar to that of the liquid carrier, for concentrations below 2 × 10 20 cm - 3 . n2 increases, in absolute value, to about - 10 × 10 - 14 cm 2 / W for a sample three times more concentrated and then decreases with N until about - 7 × 10 - 14 cm 2 / W for the most concentrated sample. β presented a linear dependence with N and the two-photon absorption cross section σ 2 PA was calculated, resulting in σ 2 PA = 50 ( 2 ) GM for magnetite nanoparticles.

  7. Oxidation and sensing of ascorbic acid and dopamine on self-assembled gold nanoparticles incorporated within polyaniline film

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Wenya [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); Zhou, Qun, E-mail: zhq@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); Li, Shuangshuang [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006 (China); Zhao, Wei; Li, Na [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); Zheng, Junwei, E-mail: jwzheng@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006 (China)

    2015-10-30

    Highlights: • Gold nanoparticles assembled on electrodes are incorporated into polyaniline film. • Composite film electrodes exhibit synergistic effect on electrocatalytic oxidation. • Ascorbic acid and dopamine can be detected simultaneously on composite electrodes. - Abstract: Electrochemical biosensors based on conducting polymers incorporated with metallic nanoparticles can greatly enhance sensitivity and selectivity. Herein, we report a facile fabrication approach for polyaniline (PAN) incorporated with a gold nanoparticle (AuNP) composite electrode by electrodeposition of PAN on a self-assembled AuNP layer on the surface of an indium tin oxide electrode. The resulting AuNP/PAN composite electrode exhibits a remarkable synergistic effect on the electrocatalytic oxidation of ascorbic acid (AA) and dopamine (DA). It is demonstrated that the oxidation reaction of AA mainly occurs at AuNPs inside the PAN film as the ascorbate anions are doped into the polymer during the oxidation of the PAN film. Conversely, the oxidation of positively