WorldWideScience

Sample records for billet extrusion process

  1. Analysis and Prediction of the Billet Butt and Transverse Weld in the Continuous Extrusion Process of a Hollow Aluminum Profile

    Science.gov (United States)

    Lou, Shumei; Wang, Yongxiao; Liu, Chuanxi; Lu, Shuai; Liu, Sujun; Su, Chunjian

    2017-08-01

    In continuous extrusions of aluminum profiles, the thickness of the billet butt and the length of the discarded extrudate containing the transverse weld play key roles in reducing material loss and improving product quality. The formation and final distribution of the billet butt and transverse weld depend entirely on the flow behavior of the billet skin material. This study examined the flow behavior of the billet skin material as well as the formation and evolution of the billet butt and the transverse weld in detail through numerical simulation and a series of experiments. In practical extrusions, even if the billet skin is removed by lathe turning shortly before extrusion, billet skin impurities are still distributed around the transverse weld and in the billet butt. The thickness of the scrap billet butt and the length of the discarded extrudate containing the transverse weld can be exactly predicted via simulation.

  2. Effect of extrusion stem speed on extrusion process for a hollow aluminum profile

    International Nuclear Information System (INIS)

    Zhang, Cunsheng; Zhao, Guoqun; Chen, Zhiren; Chen, Hao; Kou, Fujun

    2012-01-01

    Highlights: ► Extrusion stem speed has significant effects on extrusion process. ► An optimum value of stem speed exists for uniform metal flow distribution. ► A higher stem speed leads to a higher required extrusion force. ► A high stem speed leads to an improved welding quality of aluminum profile. - Abstract: Extrusion stem speed is one of important process parameters during aluminum profile extrusion, which directly influences the profile quality and choice of extrusion equipments. In this paper, the extrusion process of a thin-walled hollow aluminum profile was simulated by means of the HyperXtrude commercial software. Through a serial of numerical simulation, the effects of stem speed on extrusion process, such as metal flow behavior at die exit, temperature distribution, extrusion force, and welding pressure, have been investigated. The numerical results showed that there existed an optimum value of stem speed for flow velocity distribution. With the increasing stem speed, the temperature of the extrudate and required extrusion force increased, and the welding quality of extrudate would be improved. Through comprehensive comparison and analysis, the appropriate stem speed could be determined for practical extrusion production. Thus, the research results could give effective guideline for determining initial billet and die temperature and choosing the proper extrusion press in aluminum profile industry.

  3. Optimal design of an extrusion process for a hinge bracket

    International Nuclear Information System (INIS)

    Na, Geum Ju; Jang, Myung Geun; Kim, Jong Bong

    2016-01-01

    This study considers process design in forming a hinge bracket. A thin hinge bracket is typically produced by bending a sheet panel or welding a hollow bar into a sheet panel. However, the hinge bracket made by bending or welding does not have sufficient durability in severe operating conditions because of the stress concentration in the bended region or the low corrosion resistance of the welded region. Therefore, this study uses forming to produce the hinge bracket part of a foldable container and to ensure durability in difficult operating conditions. An extrusion process for a T-shaped hinge bracket is studied using finite element analysis. Preliminary analysis shows that a very high forging load is required to form the bracket by forging. Therefore, extrusion is considered as a candidate process. Producing the part through the extrusion process enables many brackets to be made in a single extrusion and through successive cutting of the extruded part, thereby reducing the manufacturing cost. The design focuses on reducing the extrusion load and on ensuring shape accuracy. An initial billet is designed to reduce the extrusion load and to obtain a geometrically accurate part. The extruded part is bent frequently because of uneven material flow. Thus, extrusion die geometries are designed to obtain straight parts.

  4. Optimal design of an extrusion process for a hinge bracket

    Energy Technology Data Exchange (ETDEWEB)

    Na, Geum Ju; Jang, Myung Geun; Kim, Jong Bong [Seoul National University, Seoul (Korea, Republic of)

    2016-05-15

    This study considers process design in forming a hinge bracket. A thin hinge bracket is typically produced by bending a sheet panel or welding a hollow bar into a sheet panel. However, the hinge bracket made by bending or welding does not have sufficient durability in severe operating conditions because of the stress concentration in the bended region or the low corrosion resistance of the welded region. Therefore, this study uses forming to produce the hinge bracket part of a foldable container and to ensure durability in difficult operating conditions. An extrusion process for a T-shaped hinge bracket is studied using finite element analysis. Preliminary analysis shows that a very high forging load is required to form the bracket by forging. Therefore, extrusion is considered as a candidate process. Producing the part through the extrusion process enables many brackets to be made in a single extrusion and through successive cutting of the extruded part, thereby reducing the manufacturing cost. The design focuses on reducing the extrusion load and on ensuring shape accuracy. An initial billet is designed to reduce the extrusion load and to obtain a geometrically accurate part. The extruded part is bent frequently because of uneven material flow. Thus, extrusion die geometries are designed to obtain straight parts.

  5. How extrusion shapes food processing

    Science.gov (United States)

    This month's column will explore food extrusion. Extrusion is one of the most commonly used food manufacturing processes. Its versatility enables production of a diverse array of food products. This column will review the basic principles and provide an overview of applications. I would like to ...

  6. Extrusion processing : effects on dry canine diets

    NARCIS (Netherlands)

    Tran, Q.D.

    2008-01-01

    Keywords: Extrusion, Canine diet, Protein, Lysine, Starch gelatinization, Palatability, Drying.

    Extrusion cooking is a useful and economical tool for processing animal feed. This high temperature, short time processing technology causes chemical and physical changes that alter the

  7. Control of surface temperature of an aluminum alloy billet by air flow during a heating process at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young [KITECH, Cheonan (Korea, Republic of); Park, Joon Hong [Dong-A University, Busan (Korea, Republic of)

    2016-06-15

    The procedure of semi-solid forming is composed of heating a billet, forming, compression holding and ejecting step. There are several methods to heat a billet during semi-solid forming process such as electric heating and induction heating. Usually in semi-solid forming process, induction heating has been adopted to achieve more uniform temperature of semi-solid material. Although induction heating is better method than any others, however, there is still difference of temperature between internal part and surface part of semi-solid material. Worse yet, in case of high liquid fraction of semi-solid material, liquid of the billet will flow down though solid of the billet still remains, which is very difficult to handle. In the present study, induction heating of the billet during thixoforging process with forced surface cooling has been performed to obtain more uniform distribution of temperature, microstructure and shape of the billet. Distribution of temperature of the billets was measured and compared with that of conventional distribution of temperature. Microscopic and macroscopic aspects of the billets were discussed according to location of the measuring points. By this new induction heating method, not only temperature distributions over the whole billet become uniform, but also control of temperature distribution between inside and outside part of the billet is possible as user's experimental intentions,.

  8. Effects of electromagnetic field and lubricate condition on the surface quality of magnesium alloy billet during LFEC processing

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The microstructures of the magnesium billets could be improved markedly by low-frequency electro-magnetic casting (LFEC) processing. In fact, the low-frequency electromagnetic field (LFEF) also has favorite effect on the surface quality of billet. However, few public reports on the surface quality of LFEC magnesium billets could be found. Therefore, a new crystallizer with a metal internal sleeve to-gether with a kind of lubricant was designed aiming at lowing surface turning quantity, and the effects of casting velocity, electromagnetic condition and lubrication on the surface quality of magnesium billets were investigated. The results indicate that LFEF together with the lubricate condition would be responsible for the surface quality of the billets, and the high surface quality billets could be achieved by optimizing the casting conditions.

  9. Aluminum extrusion with a deformable die

    NARCIS (Netherlands)

    Assaad, W.

    2010-01-01

    Aluminum extrusion process is one of metal forming processes. In aluminum extrusion, a work-piece (billet) is pressed through a die with an opening that closely resembles a desired shape of a profile. By this process, long profiles with an enormous variety of cross-sections can be produced to

  10. IMPORTANT DEGRADATIONS IN POLYETHYLENE TERAPHTALATE EXTRUSION PROCESS

    Directory of Open Access Journals (Sweden)

    Şule ALTUN

    2003-01-01

    Full Text Available Polyethylene terephthalate (PET is one of the most used thermo-plastic polymers. The total consumption of PET has been about 30 million tons in the year 2000. Polyester fibers constitute about 60 % of total synthetic fibers consumption. During extrusion, PET polymer is faced to thermal, thermo-oxidative and hydrolytic degradation, which result in severe reduction in its molecular weight, thereby adversely affecting its subsequent melt processability. Therefore, it is essential to understand degradation processes of PET during melt extrusion.

  11. Physical and mathematical modelling of extrusion processes

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Gronostajski, Z.; Niechajowics, A.

    2000-01-01

    The main objective of the work is to study the extrusion process using physical modelling and to compare the findings of the study with finite element predictions. The possibilities and advantages of the simultaneous application of both of these methods for the analysis of metal forming processes...

  12. Optimized manufacture of nuclear fuel cladding tubes by FEA of hot extrusion and cold pilgering processes

    Science.gov (United States)

    Gaillac, Alexis; Ly, Céline

    2018-05-01

    Within the forming route of Zirconium alloy cladding tubes, hot extrusion is used to deform the forged billets into tube hollows, which are then cold rolled to produce the final tubes with the suitable properties for in-reactor use. The hot extrusion goals are to give the appropriate geometry for cold pilgering, without creating surface defects and microstructural heterogeneities which are detrimental for subsequent rolling. In order to ensure a good quality of the tube hollows, hot extrusion parameters have to be carefully chosen. For this purpose, finite element models are used in addition to experimental tests. These models can take into account the thermo-mechanical coupling conditions obtained in the tube and the tools during extrusion, and provide a good prediction of the extrusion load and the thermo-mechanical history of the extruded product. This last result can be used to calculate the fragmentation of the microstructure in the die and the meta-dynamic recrystallization after extrusion. To further optimize the manufacturing route, a numerical model of the cold pilgering process is also applied, taking into account the complex geometry of the tools and the pseudo-steady state rolling sequence of this incremental forming process. The strain and stress history of the tube during rolling can then be used to assess the damage risk thanks to the use of ductile damage models. Once validated vs. experimental data, both numerical models were used to optimize the manufacturing route and the quality of zirconium cladding tubes. This goal was achieved by selecting hot extrusion parameters giving better recrystallized microstructure that improves the subsequent formability. Cold pilgering parameters were also optimized in order to reduce the potential ductile damage in the cold rolled tubes.

  13. An investigation into the effect of equal channel angular extrusion process on mechanical and microstructural properties of middle layer in copper clad aluminum composite

    International Nuclear Information System (INIS)

    Tolaminejad, B.; Karimi Taheri, A.; Arabi, H.; Shahmiri, M.

    2009-01-01

    Equal channel angular extrusion is a promising technique for production of ultra fine-grain materials of few hundred nanometers size. In this research, the grain refinement of aluminium strip is accelerated by sandwiching it between two copper strips and then subjecting the three strips to Equal channel angular extrusion process simultaneously. The loosely packed copper-aluminium-copper laminated billet was passed through Equal channel angular extrusion die up to 8 passes using the Bc route. Then, tensile properties and some microstructural characteristics of the aluminium layer were evaluated. The scanning and transmission electron microscopes, and X-ray diffraction were used to characterize the microstructure. The results show that the yield stress of middle layer (Al) is increased significantly by about four times after application of Equal channel angular extrusion throughout the four consecutive passes and then it is slightly decreased when more Equal channel angular extrusion passes are applied. An ultra fine grain within the range of 500 to 600 nm was obtained in the Al layer by increasing the thickness of the copper layers. lt was observed that the reduction of grain size in the aluminium layer is nearly 55% more than that of a equal channel angular-extruded single layer aluminium billet, i.e. extruding a single aluminium strip or a billet without any clad for the same amount of deformation. This behaviour was attributed to the higher rates of dislocations interaction and cell formation and texture development during the Equal channel angular extrusion of the laminated composite compared to those of a single billet.

  14. Melting, casting, and alpha-phase extrusion of the uranium-2.4 weight percent niobium alloy

    International Nuclear Information System (INIS)

    Anderson, R.C.; Beck, D.E.; Kollie, T.G.; Zorinsky, E.J.; Jones, J.M.

    1981-10-01

    The experimental details of the melting, casting, homogenization, and alpha-phase extrusion process used to fabricate the uranium-2.4 wt % niobium alloy into 46-mm-diameter rods is described. Extrusion defects that were detected by an ultrasonic technique were eliminated by proper choice of extrusion parameters; namely, reduction ratio, ram speed, die angle, and billet preheat temperature

  15. Hydrodynamic modelling of hydrostatic magnesium extrusion

    NARCIS (Netherlands)

    Moodij, Ellen; de Rooij, Matthias B.; Schipper, Dirk J.

    2006-01-01

    Wilson’s hydrodynamic model of the hydrostatic extrusion process is extended to meet the geometry found on residual billets. The transition from inlet to work zone of the process is not considered sharp as in the model of Wilson but as a rounded edge, modelled by a parabolic function. It is shown

  16. Extrusion and Extruded Products: Changes in Quality Attributes as Affected by Extrusion Process Parameters: A Review.

    Science.gov (United States)

    Alam, M S; Kaur, Jasmeen; Khaira, Harjot; Gupta, Kalika

    2016-01-01

    Extrusion of foods is an emerging technology for the food industries to process and market a large number of products of varying size, shape, texture, and taste. Extrusion cooking technology has led to production of wide variety of products like pasta, breakfast cereals, bread crumbs, biscuits, crackers, croutons, baby foods, snack foods, confectionery items, chewing gum, texturized vegetable protein (TVP), modified starch, pet foods, dried soups, dry beverage mixes etc. The functional properties of extruded foods plays an important role for their acceptability which include water absorption, water solubility, oil absorption indexes, expansion index, bulk density and viscosity of the dough. The aim of this review is to give the detailed outlines about the potential of extrusion technology in development of different types of products and the role of extrusion-operating conditions and their effect on product development resulting in quality changes i.e physical, chemical, and nutritional, experienced during the extrusion process.

  17. A shuffler for uranium billets

    International Nuclear Information System (INIS)

    Rinard, P.M.; Kroncke, K.E.; Schneider, C.M.; Biddle, R.S.; Sadowski, E.T.; Studley, R.V.

    1991-01-01

    A shuffler has been designed, fabricated, and installed at the Westinghouse Savannah River Site to assay the 235 U content of uranium-aluminum billets. Assay results are part of the materials accountability and quality control information on the billets that are destined to be extruded into reactor fuel tubes. The shuffler alternately irradiates a billet with neutrons from 252 Cf and then counts delayed neutrons emitted from the billet. The neutrons from 252 Cf are sufficiently energetic to penetrate a large, dense billet and uniformly assay the 235 U throughout the billet's volume. An assay is completed in 8 min. A computer code controls the assay process and presents a limited menu of options to an operator and more expansive choices to supervisors. Each assay includes internal diagnostics that can warn an operator if an aspect of the measurement is outside normal bounds. Various measurement control assays can be taken in addition to the normal assay. During the acceptance test, the relative standard deviations of sets of repeated assays on billets were found to be 0.31% with 1050 g of 235 U and 0.23% with about 1400 g. The calibration curve generated for a set of billets was linear through the origin. 5 refs., 6 figs

  18. Rheologic behaviors of A356 aluminum alloy billet produced by semisolid continuous casting process

    Directory of Open Access Journals (Sweden)

    Shuming XING

    2004-08-01

    Full Text Available The experiments for rheologic behaviors of semisolid continous casting billets of A356 alloy in semisolid state has been carried out with a multifunctional rheometer. The results show that the deformation rate increases with loading time, the maximum strain reaches 120% (which is one time larger than that of traditional casting billet and the strain can be rapidly eliminated to 10% after unloading. Moreover, there is a critic stress for billet deformation even in semisolid state, which is named as critic shear stress. This stress increases with the decreasing of heating time. The rheologic behaviors can be expressed by five elements mechanical model and can be modified with the increasing of heating time.

  19. MODERNIZATION OF TECHNOLOGICAL LINE FOR CELLULAR EXTRUSION PROCESS

    Directory of Open Access Journals (Sweden)

    Tomasz Garbacz

    2014-06-01

    As part of the modernization of the cellular extrusion technology the extrusion head was designed and made. During the designing and modeling of the head the Auto CAD programe was used. After the prototyping the extrusion head was tested. In the article specification of cellular extrusion process of thermoplastics was presented. In the research, the endothermal chemical blowing agents in amount 1,0% by mass were used. The quantity of used blowing agent has a direct influence on density and structure of the extruded product of modified polymers. However, these properties have further influence on porosity, impact strength, hardness, tensile strength and another.

  20. Extrusion product defects: a statistical study

    International Nuclear Information System (INIS)

    Qamar, S.Z.; Arif, A.F.M.; Sheikh, A.K.

    2003-01-01

    In any manufacturing environment, defects resulting in rework or rejection are directly related to product cost and quality, and indirectly linked with process, tooling and product design. An analysis of product defects is therefore integral to any attempt at improving productivity, efficiency and quality. Commercial aluminum extrusion is generally a hot working process and consists of a series of different but integrated operations: billet preheating and sizing, die set and container preheating, billet loading and deformation, product sizing and stretching/roll-correction, age hardening, and painting/anodizing. Product defects can be traced back to problems in billet material and preparation, die and die set design and maintenance, process variable aberrations (ram speed, extrusion pressure, container temperature, etc), and post-extrusion treatment (age hardening, painting/anodizing, etc). The current paper attempts to analyze statistically the product defects commonly encountered in a commercial hot aluminum extrusion setup. Real-world rejection data, covering a period of nine years, has been researched and collected from a local structural aluminum extrusion facility. Rejection probabilities have been calculated for all the defects studied. The nine-year rejection data have been statistically analyzed on the basis of (i) an overall breakdown of defects, (ii) year-wise rejection behavior, (iii) breakdown of defects in each of three cost centers: press, anodizing, and painting. (author)

  1. FEM analysis of hollow hub forming in rolling extrusion process

    Directory of Open Access Journals (Sweden)

    J. Bartnicki

    2014-10-01

    Full Text Available In this paper are presented the results of numerical calculations of rolling extrusion process of a hollow hub. As the flanges manufacturing at both sides of the product is required, in the analyzed process of rolling extrusion, a rear bumper was implemented as additional tool limiting axial metal flow. Numerical calculations of the hub forming process were conducted basing on finite element method, applying software Deform3D and Simufact in conditions of three dimensional state of strain. The obtained satisfactory results show that it is possible to conduct the further research works of experimental character, with the application of a modernized aggregate for the rolling extrusion process PO-2.

  2. Towards Extrusion of Ionomers to Process Fuel Cell Membranes

    Directory of Open Access Journals (Sweden)

    Jean-Yves Sanchez

    2011-07-01

    Full Text Available While Proton Exchange Membrane Fuel Cell (PEMFC membranes are currently prepared by film casting, this paper demonstrates the feasibility of extrusion, a solvent-free alternative process. Thanks to water-soluble process-aid plasticizers, duly selected, it was possible to extrude acidic and alkaline polysulfone ionomers. Additionally, the feasibility to extrude composites was demonstrated. The impact of the plasticizers on the melt viscosity was investigated. Following the extrusion, the plasticizers were fully removed in water. The extrusion was found to impact neither on the ionomer chains, nor on the performances of the membrane. This environmentally friendly process was successfully validated for a variety of high performance ionomers.

  3. Extrusion: An environmentally friendly process for PEMFC membrane elaboration

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, J.-Y.; Iojoiu, C.; Marechal, M. [LEPMI, UMR 5631 CNRS-INPG-UJF, ENSEEG, BP 75, F-38402, Saint Martin d' Heres (France); Chabert, F.; El Kissi, N. [Rheologie, UMR 5520 CNRS-INPG-UJF, ENSHMG, BP 53, F-38041, Grenoble (France); Salomon, J.; Mercier, R. [LMOPS UMR CNRS 5041, BP 24, F-69390 Vernaison (France); Piffard, Y. [CNRS Universite de Nantes, Institut des Materiaux Jean Rouxel, UMR 6502, BP 32229, F-44322, Nantes Cedex 3 (France); Galiano, H. [CEA, Le Ripault Research Center, BP 16, F-37260, Monts (France)

    2007-12-31

    The paper deals with the use of extrusion to process PEMFC filled and unfilled membranes. Several routes including the sulfonation of filled and unfilled extruded membranes and the extrusion of filled and unfilled ionomers are reported. Thanks to the use of selected water-soluble aid process plasticizers, acid and alkaline forms of sulfonated polyethersulfone were, for the first time, successfully extruded. The extrusion process did not lead to any degradation of the ionomer performances. Decreasing the membrane cost while using environmentally friendly elaboration conditions, it should be helpful to an industrial production. In addition, avoiding filler sedimentation it should allow homogeneous composite membranes to be obtained. (author)

  4. Residence time modeling of hot melt extrusion processes.

    Science.gov (United States)

    Reitz, Elena; Podhaisky, Helmut; Ely, David; Thommes, Markus

    2013-11-01

    The hot melt extrusion process is a widespread technique to mix viscous melts. The residence time of material in the process frequently determines the product properties. An experimental setup and a corresponding mathematical model were developed to evaluate residence time and residence time distribution in twin screw extrusion processes. The extrusion process was modeled as the convolution of a mass transport process described by a Gaussian probability function, and a mixing process represented by an exponential function. The residence time of the extrusion process was determined by introducing a tracer at the extruder inlet and measuring the tracer concentration at the die. These concentrations were fitted to the residence time model, and an adequate correlation was found. Different parameters were derived to characterize the extrusion process including the dead time, the apparent mixing volume, and a transport related axial mixing. A 2(3) design of experiments was performed to evaluate the effect of powder feed rate, screw speed, and melt viscosity of the material on the residence time. All three parameters affect the residence time of material in the extruder. In conclusion, a residence time model was developed to interpret experimental data and to get insights into the hot melt extrusion process. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Adaptive Control of Freeze-Form Extrusion Fabrication Processes (Preprint)

    National Research Council Canada - National Science Library

    Zhao, Xiyue; Landers, Robert G; Leu, Ming C

    2008-01-01

    Freeze-form Extrusion Fabrication (FEF) is an additive manufacturing process that extrudes high solids loading aqueous ceramic pastes in a layer-by-layer fashion below the paste freezing temperature for component fabrication...

  6. Osmotic mechanism of the loop extrusion process

    Science.gov (United States)

    Yamamoto, Tetsuya; Schiessel, Helmut

    2017-09-01

    The loop extrusion theory assumes that protein factors, such as cohesin rings, act as molecular motors that extrude chromatin loops. However, recent single molecule experiments have shown that cohesin does not show motor activity. To predict the physical mechanism involved in loop extrusion, we here theoretically analyze the dynamics of cohesin rings on a loop, where a cohesin loader is in the middle and unloaders at the ends. Cohesin monomers bind to the loader rather frequently and cohesin dimers bind to this site only occasionally. Our theory predicts that a cohesin dimer extrudes loops by the osmotic pressure of cohesin monomers on the chromatin fiber between the two connected rings. With this mechanism, the frequency of the interactions between chromatin segments depends on the loading and unloading rates of dimers at the corresponding sites.

  7. Study on reactive extrusion processes of block copolymer

    International Nuclear Information System (INIS)

    Wu Lili; Jia Yuxi; Sun Sheng; Zhang Guofang; Zhao Guoqun; An Lijia

    2007-01-01

    The anionic copolymerization process of styrene-butadiene (S/B) block copolymer in a closely intermeshing co-rotating twin screw extruder with butyl-lithium initiator was studied. According to the anionic copolymerization mechanism and the reactive extrusion characteristics, the mathematical models of monomer conversion, average molecular weight and fluid viscosity during the anionic copolymerization of S/B were constructed, and then the reactive extrusion process was simulated by means of the finite volume method and the uncoupled semi-implicit iterative algorithm. Finally, the influence of the feeding mixture composition on conversion was discussed. The simulated results were nearly in agreement with the experimental results

  8. Effect of Thermo-extrusion Process Parameters on Selected Quality ...

    African Journals Online (AJOL)

    Effect of Thermo-extrusion Process Parameters on Selected Quality Attributes of Meat Analogue from Mucuna Bean Seed Flour. ... Nigerian Food Journal ... The product functional responses with coefficients of determination (R2) ranging between 0.658 and 0.894 were most affected by changes in barrel temperature and ...

  9. An improved billet on billet extrusion process of continuous aluminium alloy shapes for cryogenic applications in the Compact Muon Solenoid experiment

    CERN Document Server

    Tavares, S S

    2003-01-01

    The Compact Muon Solenoid (CMS) is one of the experiments being designed in the framework of the Large Hadron Collider accelerator at CERN. CMS will contain the largest and the most powerful superconducting solenoid magnet ever built in terms of stored energy. It will work at 4.2 K, will have a magnetic length of 12.5 m, with a free bore of 6m and will be manufactured as a layered and modular structure of NbTi cables embedded in a high purity (99.998%) Al- stabiliser. Each layer consists of a wound continuous length of 2.55 km. In order to withstand the high electromagnetic forces, two external aluminium alloy reinforcing sections are foreseen. These reinforcements, of 24 mm multiplied by 18 mm cross-section, will be continuously electron beam (EB) welded to the pure Al-stabiliser. The alloy EN AW-6082 has been selected for the reinforcements due to its excellent extrudability, high strength in the precipitation hardened state, high toughness and strength at cryogenic temperatures and ready EB weldability. Ea...

  10. Statistical reliability analyses of two wood plastic composite extrusion processes

    International Nuclear Information System (INIS)

    Crookston, Kevin A.; Mark Young, Timothy; Harper, David; Guess, Frank M.

    2011-01-01

    Estimates of the reliability of wood plastic composites (WPC) are explored for two industrial extrusion lines. The goal of the paper is to use parametric and non-parametric analyses to examine potential differences in the WPC metrics of reliability for the two extrusion lines that may be helpful for use by the practitioner. A parametric analysis of the extrusion lines reveals some similarities and disparities in the best models; however, a non-parametric analysis reveals unique and insightful differences between Kaplan-Meier survival curves for the modulus of elasticity (MOE) and modulus of rupture (MOR) of the WPC industrial data. The distinctive non-parametric comparisons indicate the source of the differences in strength between the 10.2% and 48.0% fractiles [3,183-3,517 MPa] for MOE and for MOR between the 2.0% and 95.1% fractiles [18.9-25.7 MPa]. Distribution fitting as related to selection of the proper statistical methods is discussed with relevance to estimating the reliability of WPC. The ability to detect statistical differences in the product reliability of WPC between extrusion processes may benefit WPC producers in improving product reliability and safety of this widely used house-decking product. The approach can be applied to many other safety and complex system lifetime comparisons.

  11. Pellet manufacturing by extrusion-spheronization using process analytical technology

    DEFF Research Database (Denmark)

    Sandler, Niklas; Rantanen, Jukka; Heinämäki, Jyrki

    2005-01-01

    The aim of this study was to investigate the phase transitions occurring in nitrofurantoin and theophylline formulations during pelletization by extrusion-spheronization. An at-line process analytical technology (PAT) approach was used to increase the understanding of the solid-state behavior...... of the active pharmaceutical ingredients (APIs) during pelletization. Raman spectroscopy, near-infrared (NIR) spectroscopy, and X-ray powder diffraction (XRPD) were used in the characterization of polymorphic changes during the process. Samples were collected at the end of each processing stage (blending......, granulation, extrusion, spheronization, and drying). Batches were dried at 3 temperature levels (60 degrees C, 100 degrees C, and 135 degrees C). Water induced a hydrate formation in both model formulations during processing. NIR spectroscopy gave valuable real-time data about the state of water in the system...

  12. Microstructure of Semi-Solid Billets Produced by Electromagnetic Stirring and Behavior of Primary Particles during the Indirect Forming Process

    Directory of Open Access Journals (Sweden)

    Chul Kyu Jin

    2018-04-01

    Full Text Available An A356 alloy semi-solid billet was fabricated using electromagnetic stirring. After inserting the semi-solid billet into an indirect die, a thin plate of 1.2 mm thickness was fabricated by applying compression. The microstructure of the semi-solid billets fabricated in various stirring conditions (solid fraction and stirring force were analyzed. The deformation and behavior of the primary α-Al particles were analyzed for various parameters (solid fraction, die friction, compression rate, and compression pressure. In the stirred billets, a globular structure was dominant, while a dendrite structure was dominant in the unstirred billets. As the solid fraction decreased and the stirring current increased, the equivalent diameter and roundness of the primary α-Al particles decreased. The primary α-Al particle sizes were reduced as the compressing velocity increased, while a greater number of particles could move as the compressing pressure increased. As the path over which the motion occurred became smoother, the fluidity of the particles improved. Under compression, bonded primary α-Al particles became separated into individual particles again, as the bonds were broken. As wearing caused by friction and collisions between the particles during this motion occurred, the particle sizes were reduced, and the particle shapes become increasingly spheroid.

  13. Role of lipids in the extrusion cooking processes

    Directory of Open Access Journals (Sweden)

    Berghofe, E.

    2000-04-01

    Full Text Available Extrusion is a versatile and very efficient technology that is widely used in food and feed processing. The cooking extruders have found many applications, which include: breakfast cereals, snack foods, other cereal based products, pet food and aquatic foods, texturized vegetable proteins, confectionery products, chemical and biochemical reactions, and oil extraction. Lipids are components that play an important role in most of the extrusion cooking processes. They can act as plastificizers or emulsifiers, and affect more significantly texture and stickiness of the extrudate. This paper reviews effect of oils and other lipids reactions during extrusion cooking as well as the effects of amylase-lipid complexation on extrudate quality.La extrusión es, en general, una tecnología versátil y muy eficiente, que se aplica ampliamente en la elaboración de alimentos y piensos. Los equipos de cocción-extrusión tienen numerosas aplicaciones, entre las que pueden incluirse: los cereales de desayuno listos para comer, los aperitivos, diferentes productos basados en cereales, los piensos para animales domésticos y peces, proteínas vegetales texturizadas, productos de pastelería, reacciones químicas y bioquímicas, y la extracción de aceites. Los lípidos son componentes que juegan un papel importante en la mayoría de los procesos de cocción-extrusión. Pueden actuar como plastificantes o como emulsionantes, suministrando lubricación. En este artículo se revisan con detalle los efectos de las reacciones de los aceites y otros lípidos durante el proceso de cocción-extrucción así como el efecto de la formación de complejos amilasa-lípidos sobre la calidad de los extrudados.

  14. Optimization of extrusion process for production of nutritious pellets

    Directory of Open Access Journals (Sweden)

    Ernesto Aguilar-Palazuelos

    2012-03-01

    Full Text Available A blend of 50% Potato Starch (PS, 35% Quality Protein Maize (QPM, and 15% Soybean Meal (SM were used in the preparation of expanded pellets utilizing a laboratory extruder with a 1.5 × 20.0 × 100.0 mm die-nozzle. The independent variables analyzed were Barrel Temperature (BT (75-140 °C and Feed Moisture (FM (16-30%. The effect of extrusion variables was investigated in terms of Expansion Index (EI, apparent density (ApD, Penetration Force (PF and Specific Mechanical Energy (SME, viscosity profiles, DSC, crystallinity by X-ray diffraction, and Scanning Electronic Microscopy (SEM. The PF decreased from 30 to 4 kgf with the increase of both independent variables (BT and FM. SME was affected only by FM, and decreased with the increase in this variable. The optimal region showed that the maximum EI was found for BT in the range of 123-140 °C and 27-31% for FM, respectively. The extruded pellets obtained from the optimal processing region were probably not completely degraded, as shown in the structural characterization. Acceptable expanded pellets could be produced using a blend of PS, QPM, and SM by extrusion cooking.

  15. Simulation of a combustion process of a billet reheating furnace; Simulacao do processo de combustao de um forno de reaquecimento de tarugos

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Eduardo Sergio da Silva; Barros, Jose Eduardo Mautone [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Mecanica; Ribeiro, Vicente Aleixo Pinheiro [ArcelorMittal Monlevade, Serra, ES (Brazil); Moura Junior, Jose dos Reis Vieira de [ArcelorMittal Long Carbon Americas (Luxembourg); Belisario, Leandro Pego [Universidade Federal de Ouro Preto (UFOP), MG (Brazil)

    2010-07-01

    Real data-based energy balances with few simplifications are a powerful tool for furnaces energy performance evaluation, helping technical people to guide efforts in energy consumption issues, and consequently, in a final product cost reduction. This paper presents a methodology to simulate the combustion process in several operational conditions of a walking-hearth reheat furnace for billets in rolling mill facilities. The computational model consists, basically, in a dynamical solution which measured input variables are supplied from the furnaces supervisory and compared to measures by instruments in the system. Finally, it is made a variability analysis of the furnace and heat exchangers efficiencies.. (author)

  16. Study on extrusion process of SiC ceramic matrix

    Science.gov (United States)

    Dai, Xiao-Yuan; Shen, Fan; Ji, Jia-You; Wang, Shu-Ling; Xu, Man

    2017-11-01

    In this thesis, the extrusion process of SiC ceramic matrix has been systematically studied.The effect of different cellulose content on the flexural strength and pore size distribution of SiC matrix was discussed.Reselts show that with the increase of cellulose content, the flexural strength decreased.The pore size distribution in the sample was 1um-4um, and the 1um-2um concentration was more concentrated. It is found that the cellulose content has little effect on the pore size distribution.When the cellulose content is 7%, the flexural strength of the sample is 40.9Mpa. At this time, the mechanical properties of the sample are the strongest.

  17. Fatigue Behaviors of Materials Processed by Planar Twist Extrusion

    Science.gov (United States)

    Ebrahimi, Mahmoud

    2017-12-01

    Since the last decade, the fabrication of ultrafine grain and nanostructure metals and alloys has attracted much attention in the field of materials engineering. The present study aimed at experimentally investigating the fatigue properties that are of great importance in dynamic structures before and after the planar twist extrusion process for both commercially pure copper and 6061 aluminum alloy. The results indicated that the yield strength, tensile strength, hardness, and fatigue endurance of copper increased by about 398, 122, 198, and 183 pct, respectively, while they improved by about 429, 212, 227, and 148 pct, respectively, in aluminum alloy as compared to the initial conditions. The stress-strain curves displayed sizable reduction of strain hardening. Furthermore, grain-size correction factors based on the empirical results were introduced to include the effect of the grain-size effect on both low and high-cycle fatigue strengths of the material.

  18. Raw material changes and their processing parameters in an extrusion cooking process

    DEFF Research Database (Denmark)

    Cheng, Hongyuan; Friis, Alan

    In this work, the effects of raw material and process parameters on product expansion in a fish feed extrusion process were investigated. Four different recipes were studied with a pilot-scale twin-screw co-rotating extruder according to a set of pre-defined processing conditions. In the four rec...

  19. Friction conditions in the bearing area of an aluminium extrusion process

    NARCIS (Netherlands)

    Ma, X.; de Rooij, Matthias B.; Schipper, Dirk J.

    2012-01-01

    In aluminium extrusion processes, friction inside the bearing channel is important for controlling the surface quality of the extrusion products. The contact materials show a large hardness difference, one being hot aluminium, and the other being hardened tool steel. Further, the contact pressure is

  20. Die design and process optimization of plastic gear extrusion

    Science.gov (United States)

    Zhang, Lei; Fu, Zhihong; Yao, Chen; Zang, Gongzheng; Wan, Yue

    2018-01-01

    The flow velocity of the melt in the extruder was simulated by using software Polyflow, and the size of the die channel with the best flow uniformity was obtained. The die profile shape is obtained by reverse design. The length of the shaping section is determined by Ansys transient thermal analysis. According to the simulation results, the design and manufacture of extrusion die of plastic gear and vacuum cooling setting were obtained. The influence of the five process parameters on the precision of the plastic gear were studied by the single factor analysis method, such as the die temperature T, the screw speed R, the die spacing S, the vacuum degree M and the hauling speed V. The optimal combination of process parameters was obtained by using the neural network particle swarm optimization algorithm(T = 197.05 °C, R = 9.04rpm, S = 67mm, M = -0.0194MPa). The tooth profile deviation of the extruded plastic gear can reach 9 level of accuracy.

  1. Fluid Structure Interaction Techniques For Extrusion And Mixing Processes

    Science.gov (United States)

    Valette, Rudy; Vergnes, Bruno; Coupez, Thierry

    2007-05-01

    This work focuses on the development of numerical techniques devoted to the simulation of mixing processes of complex fluids such as twin-screw extrusion or batch mixing. In mixing process simulation, the absence of symmetry of the moving boundaries (the screws or the rotors) implies that their rigid body motion has to be taken into account by using a special treatment We therefore use a mesh immersion technique (MIT), which consists in using a P1+/P1-based (MINI-element) mixed finite element method for solving the velocity-pressure problem and then solving the problem in the whole barrel cavity by imposing a rigid motion (rotation) to nodes found located inside the so called immersed domain, each sub-domain (screw, rotor) being represented by a surface CAD mesh (or its mathematical equation in simple cases). The independent meshes are immersed into a unique background computational mesh by computing the distance function to their boundaries. Intersections of meshes are accounted for, allowing to compute a fill factor usable as for the VOF methodology. This technique, combined with the use of parallel computing, allows to compute the time-dependent flow of generalized Newtonian fluids including yield stress fluids in a complex system such as a twin screw extruder, including moving free surfaces, which are treated by a "level set" and Hamilton-Jacobi method.

  2. Finite Element Analysis and Die Design of Non-specific Engineering Structure of Aluminum Alloy during Extrusion

    International Nuclear Information System (INIS)

    Chen, D.-C.; Lu, Y.-Y.

    2010-01-01

    Aluminum extension applies to industrial structure, light load, framework rolls and conveyer system platform. Many factors must be controlled in processing the non-specific engineering structure (hollow shape) of the aluminum alloy during extrusion, to obtain the required plastic strain and desired tolerance values. The major factors include the forming angle of the die and temperature of billet and various materials. This paper employs rigid-plastic finite element (FE) DEFORM 3D software to investigate the plastic deformation behavior of an aluminum alloy (A6061, A5052, A3003) workpiece during extrusion for the engineering structure of the aluminum alloy. This work analyzes effective strain, effective stress, damage and die radius load distribution of the billet under various conditions. The analytical results confirm the suitability of the current finite element software for the non-specific engineering structure of aluminum alloy extrusion.

  3. Investigation of the process energy demand in polymer extrusion: A brief review and an experimental study

    International Nuclear Information System (INIS)

    Abeykoon, Chamil; Kelly, Adrian L.; Brown, Elaine C.; Vera-Sorroche, Javier; Coates, Phil D.; Harkin-Jones, Eileen; Howell, Ken B.; Deng, Jing; Li, Kang; Price, Mark

    2014-01-01

    Highlights: • Energy consumption and losses in polymer extrusion are discussed. • This compares energy consumption in polymer extrusion at different conditions. • The role of power factor on energy efficiency in polymer extrusion is explored. • Empirical models on extruder energy consumption are provided. • Computer modelling of energy consumption of polymer extrusion is performed. - Abstract: Extrusion is one of the fundamental production methods in the polymer processing industry and is used in the production of a large number of commodities in a diverse industrial sector. Being an energy intensive production method, process energy efficiency is one of the major concerns and the selection of the most energy efficient processing conditions is a key to reducing operating costs. Usually, extruders consume energy through the drive motor, barrel heaters, cooling fans, cooling water pumps, gear pumps, etc. Typically the drive motor is the largest energy consuming device in an extruder while barrel/die heaters are responsible for the second largest energy demand. This study is focused on investigating the total energy demand of an extrusion plant under various processing conditions while identifying ways to optimise the energy efficiency. Initially, a review was carried out on the monitoring and modelling of the energy consumption in polymer extrusion. Also, the power factor, energy demand and losses of a typical extrusion plant were discussed in detail. The mass throughput, total energy consumption and power factor of an extruder were experimentally observed over different processing conditions and the total extruder energy demand was modelled empirically and also using a commercially available extrusion simulation software. The experimental results show that extruder energy demand is heavily coupled between the machine, material and process parameters. The total power predicted by the simulation software exhibits a lagging offset compared with the

  4. Analysis and modeling of hot extrusion die for its service life enhancement

    Science.gov (United States)

    Akhtar, Syed Sohail

    Aluminum extrusion finds extensive application in the construction, automobile and aerospace industries. High pressures, elevated temperatures, complex and intricate section geometries lead to repeated mechanical and thermal stresses in the die and affiliated tooling. Product rework and rejects can be traced back to various defects spread over the die life cycle: die design, die manufacture and heat treatment, process parameters, inprocess die maintenance/correction and, billet type and quality. Therefore, improved and efficient service life of die and related tooling used in the extrusion press is one the most important factors in maximizing productivity and minimizing cost for ensuring the economical efficiency of an aluminum extrusion plant. How often a die has to be scrapped and replaced with a new one directly contributes to the commercial viability of producing a certain profile. The focus of the current work is on three distinct yet inter-related studies pertaining to the improvement of aluminum extrusion die. Study-A (Die Failure Analysis) is an investigation of various modes and critical failure types based on industrial data (Chapter-2 ), examination of failed dies and finite element simulation for identification of critical process parameters and design features in die fatigue-life (Chapter-3). In Study-B (Die Surface Hardening Treatment), two-stage controlled gas nitriding process for H13 steel is evaluated, both experimentally and numerically, in terms of nitrided case morphology and properties (Chapter-4) followed by experimental and numerical investigation of the effects of repeated nitriding (Chapter-5), pre-nitriding surface preparation (Chapter-6) and die profile geometry (Chapter-7) on nitriding performance in regard to die service life. In Study-C (Effect of Billet Quality on Die Life), the effect of billet quality and related influencing extrusion parameters on the die service life is investigated based on industrial data and some regression

  5. The dimensional accuracy of the sintered billets

    Directory of Open Access Journals (Sweden)

    Чингиз Ариф оглы Алиев

    2016-01-01

    Full Text Available The article presents the results of assessing the impact of the behaviour stability of the components included in the compositions and process parameters of their production, on the dimensional accuracy of workpieces. It was found that by increasing the amount of oxide in the composition is greater compaction of the sintered billet in the process of heat treatment. This also increases the density of all components of the composition

  6. Generation and use of process maps for hot extrusion of seamless tubes for nuclear applications

    International Nuclear Information System (INIS)

    Vaibhaw, Kumar; Jha, S.K.; Saibaba, N.; Jayaraj, R.N.

    2009-01-01

    Full text: Hot extrusion is known as significant bulk deformation step in manufacturing of seamless tube production. Elevated temperature deformation carried out above the recrystallization temperature would enable imposition of large strains in single step. This deformation causes a significant change in the microstructure of the material and depends on extrusion process parameters such as temperature and strain rate (Ram speed). Basic microstructure developed at this deformation stage has significant bearing on the final properties of the material fabricated with subsequent cold working steps. Zirconium alloys and special nuclear grade austenitic stainless steels are two important groups of materials used as structural and core components in thermal and fast reactors world wide respectively. The properties of former alloy are very sensitive to the thermo mechanical fabrication steps initiated with hot extrusion due to their anisotropic deformation behaviour. However, nuclear grade austenitic stainless steels have many variants from their commercial grades in terms of micro and macro alloy chemistry. Factors such as these significantly affect the workability of the materials and require proper selection of extrusion parameters especially working temperature and extrusion speed plays a key role in the quality of the product. Modern developments in processing technology envisage the application of processing maps based on dynamic material model for selection of hot extrusion parameters. The present paper is aimed at bringing out significance of the map in selection of working domain with respect to the industrial process conditions for both groups of nuclear materials mentioned earlier. Developed process maps of certain alloys suggest use of extremely slow strain rate and low temperature extrusion which can not be achieved during bulk processing due to design of equipment and heat transfer constraints in industrial scale production. Attempts are made to highlight

  7. Finite element analysis of the combined fine blanking and extrusion process

    Science.gov (United States)

    Zheng, Peng-Fei

    The combined fine blanking and extrusion process is such a metal forming process that fine blanking and forward extrusion are carried out on sheet metal material at the same time. There are two typical characteristics in this process, one is the fine blanking whose deformation mechanism is different from conventional blanking; the other is the sheet metal extrusion, which is different from the conventional extrusion. Even though fine blanking has been used in industry for many years, only limited literature can be found which deals with the theoretical analysis of it. On the other hand, no publications on the theoretical analysis of the sheet metal extrusion have been found. Intensive work should be carried out to reveal the mechanism of both fine blanking process and sheet metal extrusion process, and further the combined fine blanking and extrusion process. The scope of this thesis is to study the mechanics of fine blanking, sheet metal extrusion, and combined fine blanking and extrusion process one by one with the rigid-plastic finite element method. All of above processes are typical unsteady ones, especially the fine blanking process in which extremely severe and localized deformation occurs. Therefore, commercial programs can not be used to solve these problems up till now. Owing to this reason, a rigid-plastic finite element program was developed for simulating these processes where remeshing and mesh tracing techniques as well as the golden section method were adopted according to the characteristics of these processes in this thesis. Moreover, a permissible kinematic velocity field was adopted as the initial velocity field for simulating extrusion process successfully. Results from the simulation included the distorted mesh, the field of material flow, the stress and the strain distributions at various moments of deformation. Results under different deformation conditions such as different blanking clearances, different diameters of the extrusion punch and

  8. Extrusion Process by Finite Volume Method Using OpenFoam Software

    International Nuclear Information System (INIS)

    Matos Martins, Marcelo; Tonini Button, Sergio; Divo Bressan, Jose; Ivankovic, Alojz

    2011-01-01

    The computational codes are very important tools to solve engineering problems. In the analysis of metal forming process, such as extrusion, this is not different because the computational codes allow analyzing the process with reduced cost. Traditionally, the Finite Element Method is used to solve solid mechanic problems, however, the Finite Volume Method (FVM) have been gaining force in this field of applications. This paper presents the velocity field and friction coefficient variation results, obtained by numerical simulation using the OpenFoam Software and the FVM to solve an aluminum direct cold extrusion process.

  9. Some physicochemical properties of dextrin produced by extrusion process

    Directory of Open Access Journals (Sweden)

    Achmat Sarifudin

    2014-06-01

    Full Text Available Dextrinization of corn starch by twin screw extruder was studied. The effect of extruder operating conditions (five different screw speeds: 35, 45, 55, 65, and 70; and three temperatures: 125, 130, and 135 °C on some physicochemical properties of dextrin (total soluble solid, water absorption index, water solubility index, and total color difference was investigated. Results showed that as the screw speed and temperature of extrusion were increased the water absorption index of dextrin tended to drop meanwhile the total soluble solid, water solubility index, and color were inclined to rise. The range of total soluble solid, water absorption index, water solubility index and total color difference was 2.1–4.6 Brix, 159–203%, 20–51%, 3.5–14.1, respectively.

  10. Jute fiber reinforced polypropylene produced by continuous extrusion compounding. Part 1. Processing and ageing properties

    NARCIS (Netherlands)

    Oever, van den M.J.A.; Snijder, M.H.B.

    2008-01-01

    This article addresses the processing and ageing properties of jute fiber reinforced polypropylene (PP) composites. The composite has been manufactured by a continuous extrusion process and results in free flowing composite granules, comprising up to 50 weight percent (wt %) jute fiber in PP. These

  11. Extrusion Processing of Raw Food Materials and by-products: A Review.

    Science.gov (United States)

    Offiah, Vivian; Kontogiorgos, Vassilis; Falade, Kolawole O

    2018-05-22

    Extrusion technology has rapidly transformed the food industry with its numerous advantages over other processing methods. It offers a platform for processing different products from various food groups by modifying minor or major ingredients and processing conditions. Although cereals occupy a large portion of the extruded foods market, several other types of raw materials have been used. Extrusion processing of various food groups, including cereals and pseudo cereals, roots and tubers, pulses and oilseeds, fruits and vegetables, and animal products, as well as structural and nutritional changes in these food matrices are reviewed. Value addition by extrusion to food processing wastes and by-products from fruits and vegetables, dairy, meat and seafood, cereals and residues from starch, syrup and alcohol production, and oilseed processing are also discussed. Extrusion presents an economical technology for incorporating food processing residues and by-products back into the food stream. In contemporary scenarios, rising demand for extruded products with functional ingredients, attributed to evolving lifestyles and preferences, have led to innovations in the form, texture, color and content of extruded products. Information presented in this review would be of importance to processors and researchers as they seek to enhance nutritional quality and delivery of extruded products.

  12. Kinds of initial billets in renovation technologies

    Directory of Open Access Journals (Sweden)

    V. M. Yaroslavtsev

    2014-01-01

    Full Text Available Nowadays, technologists in charge of repair, restoration, modernization, and utilization of engineering and other tangible objects widely use the concepts "renovation" and "renovation technologies" pioneered at BMSTU. In forming a new field of science these concepts, in the proper sense of the word, are of composite, generalized character. They concern all the activities and technologies aimed at increasing an object resource or its lifecycle extension, including object material recycling.In the cutting-edge renovation technologies an object (part, assembly, machine, etc. damaged in the operating process is considered to be an initial billet. In renovation, one of the most widespread kinds of initial billets is a damaged part.Such a part can be used again, if, for example, it has saved its material properties in full measure while only contact surfaces or parts of these surfaces have become damaged, and at a point of renovation they can be restored for recycling. If a part has lost its initial properties in full bulk of material, it may be reusable in the assemblies and machines with less rigid requirements for material properties.Or in case of properties loss below the permissible level a damaged part-billet is utilized. Thus, the part-billet state at the point of renovation defines the kind of renovation technology and the main (basic technological method to effect on the damaged part, as well as a set and a sequence of technological methods in general manufacturing process of renovation.However renovation technologies are used not only at the repair and restoration stages after operation-service. So, at the manufacturing stage of a new product to provide the quality to raise a resource are applied the same technological methods as renovation technologies for the objects damaged at the stage of operation. Besides, it is known that at the manufacturing stage a part quality depends not only on the last operation, but also on the features of

  13. Microstructure and properties of ultrafine grain nickel 200 after hydrostatic extrusion processes

    Science.gov (United States)

    Sitek, R.; Krajewski, C.; Kamiński, J.; Spychalski, M.; Garbacz, H.; Pachla, W.; Kurzydłowski, K. J.

    2012-09-01

    This paper presents the results of the studies of the structure and properties of ultrafine grained nickel 200 obtained by hydrostatic extrusion processes. Microstructure was characterized by means of optical microscopy and electron transmission microscopy. Corrosion resistance was studied by impedance and potentiodynamic methods using an AutoLab PGSTAT 100 potentiostat in 0.1 M Na2SO4 solution and in acidified (by addition of H2SO4) 0.1 M NaCl solution at pH = 4.2 at room temperature. Microhardness tests were also performed. The results showed that hydrostatic extrusion produces a heterogeneous, ultrafine-grained microstructure in nickel 200. The corrosive resistance tests showed that the grain refinement by hydrostatic extrusion is accompanied by a decreased corrosive resistance of nickel 200.

  14. Die Defects and Die Corrections in Metal Extrusion

    Directory of Open Access Journals (Sweden)

    Sayyad Zahid Qamar

    2018-05-01

    Full Text Available Extrusion is a very popular and multi-faceted manufacturing process. A large number of products for the automotive, aerospace, and construction sectors are produced through aluminum extrusion. Many defects in the extruded products occur because of the conditions of the dies and tooling. The problems in dies can be due to material issues, design and manufacturing, or severe usage. They can be avoided by maintaining the billet quality, by controlling the extrusion process parameters, and through routine maintenance. Die problems that occur on a day-to-day basis are mostly repairable and are rectified through various types of die correction operations. These defects and repair operations have not been reported in detail in the published literature. The current paper presents an in-depth description of repairable die defects and related die correction operations in metal extrusion. All major die defects are defined and classified, and their causes, preventive measures, and die correction operations are described. A brief frequency-based statistical study of die defects is also carried out to identify the most frequent die corrections. This work can be of direct benefit to plant engineers and operators and to researchers and academics in the field of metal extrusion.

  15. The Development and Numerical Analysis of the Conical Radiator Extrusion Process

    Directory of Open Access Journals (Sweden)

    Michalczyk J.

    2017-12-01

    Full Text Available The article presents a newly developed method for single-operation extrusion of conical radiators. This is the author’s radiator manufacturing method being the subject of a patent application. The proposed method enables the manufacture of radiators either with or without an inner opening and with an integral plate. Selected results of numerical computations made within Forge®3D, a finite element method (FEM-based software program, were presented during the analysis of the process. A comparative analysis of the proposed manufacturing method using the double-sided extrusion method was also made.

  16. Modelling extrudate expansion in a twin-screw food extrusion cooking process through dimensional analysis methodology

    DEFF Research Database (Denmark)

    Cheng, Hongyuan; Friis, Alan

    2010-01-01

    A new phenomenological model is proposed to correlate extrudate expansion and extruder operation parameters in a twin-screw food extrusion cooking process. Buckingham's pi dimensional analysis method is applied to establish the model. Three dimensionless groups, i.e. pump efficiency, water content...

  17. Integrated bottom up and top down approach to optimization of the extrusion process

    NARCIS (Netherlands)

    Vaneker, Thomas H.J.; Koenis, P.T.G.; van Ouwerkerk, Gijs; van Ouwerkerk, Gijs; Nilsen, K.E.; van Houten, Frederikus J.A.M.

    2008-01-01

    Boal BV and the University of Twente participate in research projects focused on improvement of die design methods for aluminum extrusion dies. Within this research empirical knowledge is combined with insights gained from numerical process simulations. Design rules for improvements to the geometry

  18. The influence of the space between the billets on the productivity of a continuous walking-beam furnace

    Energy Technology Data Exchange (ETDEWEB)

    Jaklic, A. [Institute of Metals and Technology, Ljubljana (Slovenia); Kolenko, T. [University of Ljubljana (Slovenia). Faculty of Natural Science and Technology; Zupancic, B. [University of Ljubljana (Slovenia). Faculty of Electrical Engineering

    2005-04-01

    This paper presents a study of the influence of the space between billets on the productivity of a continuous walking-beam furnace. The study was performed using a simulation model of a billet-reheating process for three different billet dimensions. The simulation model considered the exact geometry of the furnace enclosure, including the geometry of the billets inside the furnace. A view-factor matrix of the furnace enclosure was determined using the Monte Carlo method. The heat exchange between the furnace gas, the furnace wall and the billet's surface was calculated using a three-temperature model. The temperature of the furnace floor was determined using a heat-balance equation, and the heat conduction in the billets was calculated using the 3D finite-difference method. The model was validated using measurements from trailing thermocouples positioned in the test billet during the reheating process in the furnace. (author)

  19. FORMING TUBES AND RODS OF URANIUM METAL BY EXTRUSION

    Science.gov (United States)

    Creutz, E.C.

    1959-01-27

    A method and apparatus are presented for the extrusion of uranium metal. Since uranium is very brittle if worked in the beta phase, it is desirable to extrude it in the gamma phase. However, in the gamma temperature range thc uranium will alloy with the metal of the extrusion dic, and is readily oxidized to a great degree. According to this patent, uranium extrusion in thc ganmma phase may be safely carried out by preheating a billet of uranium in an inert atmosphere to a trmperature between 780 C and 1100 C. The heated billet is then placed in an extrusion apparatus having dies which have been maintained at an elevated temperature for a sufficient length of time to produce an oxide film, and placing a copper disc between the uranium billet and the die.

  20. Friction phenomena in hydrostatic extrusion of magnesium

    NARCIS (Netherlands)

    Moodij, Ellen

    2014-01-01

    When magnesium is hydrostatically extruded an inconsistent and sometimes bad surface quality is encountered. In hydrostatic extrusion the billet is surrounded by a lubricant, usually castor oil. The required pressure to deform the material is applied onto this lubricant and not directly to the

  1. Studies in reactive extrusion processing of biodegradable polymeric materials

    Science.gov (United States)

    Balakrishnan, Sunder

    Various reaction chemistries such as Polymerization, Polymer cross-linking and Reactive grafting were investigated in twin-screw extruders. Poly (1,4-dioxan-2-one) (PPDX) was manufactured in melt by the continuous polymerization of 1,4-dioxan-2-one (PDX) monomer in a twin-screw extruder using Aluminum tri-sec butoxide (ATSB) initiator. Good and accurate control over molecular weight was obtained by controlling the ratio of monomer to initiator. A screw configuration consisting of only conveying elements was used for the polymerization. The polymerization reaction was characterized by a monomer-polymer dynamic equilibrium, above the melting temperature of the polymer, limiting the equilibrium conversion to 78-percent. Near complete (˜100-percent) conversion was obtained on co-polymerizing PDX monomer with a few mol-percent (around 8-percent) Caprolactone (CL) monomer in a twin-screw extruder using ATSB initiator. The co-polymers exhibited improved thermal stability with reduction in glass transition temperature. The extruder was modeled as an Axial Dispersed Plug Flow Reactor for the polymerization of CL monomer using Residence Time Distribution (RTD) Analysis. The model provided a good fit to the experimental RTD and conversion data. Aliphatic and aliphatic-aromatic co-polyesters, namely Polycaprolactone (PCL) and Poly butylenes (adipate-co-terephthalate) (Ecoflex) were cross-linked in a twin-screw extruder using radical initiator to form micro-gel reinforced biodegradable polyesters. Cross-linked Ecoflex was further extrusion blended with talc to form blends suitable to be blown into films. A screw configuration consisting of conveying and kneading elements was found to be effective in dispersion of the talc particles (5--10 microns) in the polyester matrix. While the rates of crystallization increased for the talc filled polyester blends, overall crystallinity reduced. Mechanical, tear and puncture properties of films made using the talc filled polyester blends

  2. Analysis of Crystallographic Textures in Aluminum Plates Processed by Equal Channel Angular Extrusion

    DEFF Research Database (Denmark)

    Li, Saiyi; Mishin, Oleg

    2014-01-01

    A modeling and experimental investigation has been conducted to explore the effect of processing route on texture evolution during equal channel angular extrusion (ECAE) of aluminum plate samples. It is found that although the textures in the plates develop along orientation fibers previously ide...... identified for ECAE-processed rods and bars, the main components and strength of these textures vary significantly with processing route, which may lead to considerable differences in the plastic anisotropy of the plates....

  3. Extrusion of the uranium-0.75 weight percent titanium alloy

    International Nuclear Information System (INIS)

    Jackson, R.J.; Lundberg, M.R.; Boland, J.F.

    1975-01-01

    Procedures are described for extruding the U--0.75 wt percent Ti alloy in the high alpha region (600 to 640 0 C) , and in the upper gamma region (900 to 1000 0 C). The casting of sound extrusion billets has importance in the production of sound extrusions, and procedures are given for casting sound billets up to 1,100 kilograms . Also important in producing sound extrusions is the use of glass lubricants. Reduction ratios of greater than 50 to 1 were achieved on reasonably sized billets. Extrusion constants of 48,000 pounds per square inch (psi) [296 megapascals (MPa)] for alpha phase (630 0 C) and 8,000 psi (56 MPa) for gamma phase (950 0 C) were achieved. Gamma-phase extrusion has preference over alpha-phase extrusion in that larger billets can be used and temperature control is not as critical. However alpha-phase extrusion offers better surface finish, less die wear, and fewer oxidation problems. Billets up to 14 inches in diameter have been successfully gamma-extruded and plans exist for extruding billets up to 20 inches (508 millimetres) in diameter. (U.S.)

  4. Study on Hot Deformation Behavior of 7085 Aluminum Alloy during Backward Extrusion Process

    Directory of Open Access Journals (Sweden)

    R. B. Mei

    2015-01-01

    Full Text Available Compression test was carried out and the true stress-strain curves were obtained from the hot compression of 7085 alloy. A numerical simulation on the deformation behavior of 7085 aluminum alloy during the backward extrusion was also performed by finite element method. The results show that dynamic recrystallization occurs in the hot compression of 7085 alloy and the peak stress reaches higher values as the strain rate increases and deformation temperature decreases. The backward extrusion processes include contact deformation, initial deformation, and steady deformation. Severe plastic deformation of shear and compression occurs when the metal flowed into the channel between fillet of punch and wall of die so that the grain size can be refined by backward extrusion. The deformation in the region of top of wall is too small to meet the mechanical properties of requirements and the metal usually needs to be trimmed. The experiments with the same parameters as simulation had been carried out and the experimental cup after extrusion has better quality.

  5. Tribological investigations of the applicability of surface functionalization for dry extrusion processes

    Science.gov (United States)

    Teller, Marco; Prünte, Stephan; Ross, Ingo; Temmler, André; Schneider, Jochen M.; Hirt, Gerhard

    2017-10-01

    Cold extrusion processes are characterized by large relative contact stresses combined with a severe surface enlargement of the workpiece. Under these process conditions a high risk for galling of workpiece material to the tool steel occurs especially in processing of aluminum and aluminum alloys. In order to reduce adhesive wear lubricants for separation of workpiece and tool surfaces are used. As a consequence additional process steps (e.g. preparation and cleaning of workpieces) are necessary. Thus, the realization of a dry forming process is aspired from an environmental and economic perspective. In this paper a surface functionalization with self-assembled-monolayers (SAM) of the tool steels AISI D2 (DIN 1.2379) and AISI H11 (DIN 1.2343) is evaluated by a process-oriented tribological test. The tribological experiment is able to resemble and scale the process conditions of cold extrusion related to relative contact stress and surface enlargement for the forming of pure aluminum (Al99.5). The effect of reduced relative contact stress, surface enlargement and relative velocity on adhesive wear and tool lifetime is evaluated. Similar process conditions are achievable by different die designs with decreased extrusion ratios and adjusted die angles. The effect of surface functionalization critically depends on the substrate material. The different microstructure and the resulting differences in surface chemistry of the two tested tool steels appear to affect the performance of the tool surface functionalization with SAM.

  6. Investigation of cold extrusion process using coupled thermo-mechanical FEM analysis and adaptive friction modeling

    Science.gov (United States)

    Görtan, Mehmet Okan

    2017-10-01

    Cold extrusion processes are known for their excellent material usage as well as high efficiency in the production of large batches. Although the process starts at room temperature, workpiece temperatures may rise above 200°C. Moreover, contact normal stresses can exceed 2500 MPa, whereas surface enlargement values can reach up to 30. These changes affects friction coefficients in cold extrusion processes. In the current study, friction coefficients between a plain carbon steel C4C (1.0303) and a tool steel (1.2379) are determined dependent on temperature and contact pressure using the sliding compression test (SCT). In order to represent contact normal stress and temperature effects on friction coefficients, an empirical adaptive friction model has been proposed. The validity of the model has been tested with experiments and finite element simulations for a cold forward extrusion process. By using the proposed adaptive friction model together with thermo-mechanical analysis, the deviation in the process loads between numerical simulations and model experiments could be reduced from 18.6% to 3.3%.

  7. A Taguchi approach on optimal process control parameters for HDPE pipe extrusion process

    Science.gov (United States)

    Sharma, G. V. S. S.; Rao, R. Umamaheswara; Rao, P. Srinivasa

    2017-06-01

    High-density polyethylene (HDPE) pipes find versatile applicability for transportation of water, sewage and slurry from one place to another. Hence, these pipes undergo tremendous pressure by the fluid carried. The present work entails the optimization of the withstanding pressure of the HDPE pipes using Taguchi technique. The traditional heuristic methodology stresses on a trial and error approach and relies heavily upon the accumulated experience of the process engineers for determining the optimal process control parameters. This results in setting up of less-than-optimal values. Hence, there arouse a necessity to determine optimal process control parameters for the pipe extrusion process, which can ensure robust pipe quality and process reliability. In the proposed optimization strategy, the design of experiments (DoE) are conducted wherein different control parameter combinations are analyzed by considering multiple setting levels of each control parameter. The concept of signal-to-noise ratio ( S/ N ratio) is applied and ultimately optimum values of process control parameters are obtained as: pushing zone temperature of 166 °C, Dimmer speed at 08 rpm, and Die head temperature to be 192 °C. Confirmation experimental run is also conducted to verify the analysis and research result and values proved to be in synchronization with the main experimental findings and the withstanding pressure showed a significant improvement from 0.60 to 1.004 Mpa.

  8. A Novel Continuous Extrusion Process to Fabricate Wedge-Shaped Light Guide Plates

    Directory of Open Access Journals (Sweden)

    Wen-Tse Hsiao

    2013-01-01

    Full Text Available Backlight modules are key components in thin-film transistor liquid crystal displays (TFT-LCD. Among the components of a backlight module, the light guide plate (LGP plays the most important role controlling the light projected to the eyes of users. A wedge-shaped LGP, with its asymmetrical structure, is usually fabricated by an injection proces, but the fabrication time of this process is long. This study proposes a continuous extrusion process to fabricate wedge-shaped LGPs. This continuous process has advantages for mass production. Besides a T-die and rollers, this system also has an in situ monitor of the melt-bank that forms during the extrusion process, helping control the plate thickness. Results show that the melt bank has a close relationship with the plate thickness. The temperature of the bottom heater and roller was adjusted to reduce the surface deformation of the wedge-shaped plate. This continuous extrusion system can successfully manufacture wedge-shaped LGPs for mass production.

  9. An investigation on diffusion bonding of aluminum to copper using equal channel angular extrusion process

    OpenAIRE

    Eslami, P.; Taheri, A. Karimi

    2011-01-01

    A new method for production of bimetallic rods, utilizing the equal channel angular extrusion (ECAE) process has been introduced before by previous researchers, but no attempt has been made to assess the effect of different temperatures and holding times in order to achieve a diffusional bond between the mating surfaces. In present research copper sheathed aluminum rods have been ECAEed at room temperature and subsequently held at a constant ECAE pressure, at different temperatures and holdin...

  10. Reduction of cyanogenic glycosides by extrusion - influence of temperature and moisture content of the processed material

    Directory of Open Access Journals (Sweden)

    Čolović Dušica S.

    2015-01-01

    Full Text Available Тhe paper presents results of the investigation of the influence of extrusion temperature and moisture content of treated material on the reduction of cyanogenic glycosides (CGs in linseed-based co-extrudate. CGs are the major limitation of the effective usage of linseed in animal nutrition. Hence, some technological process must be applied for detoxification of linseed before its application as a nutrient. Extrusion process has demonstrated several advantages in reducing the present CGs, since it combines the influences of heating, shearing, high pressure, mixing, etc. According to obtained results, the increase in both temperature and moisture content of the starting mixture decreased the content of CGs in the processed material. HCN content, as a measurement of GCs presence, ranged from 25.42 mg/kg, recorded at the moisture content of 11.5%, to 126 mg/kg, detected at the lowest moisture content of 7%. It seems that moisture content and temperature had the impact on HCN content of equal importance. However, the influence of extrusion parameters other than temperature and moisture content could not be neglected. Therefore, the impact of individual factors has to be tested together. [Projekat Ministarstva nauke Republike Srbije, br. III 46012

  11. Impacts of Scarification and Degermination on the Expansion Characteristics of Select Quinoa Varieties during Extrusion Processing.

    Science.gov (United States)

    Aluwi, Nicole A; Gu, Bon-Jae; Dhumal, Gaurav S; Medina-Meza, Ilce G; Murphy, Kevin M; Ganjyal, Girish M

    2016-12-01

    Extrusion of 2 quinoa varieties, Cherry Vanilla and Black (scarified and unscarified) and a mixed quinoa variety, Bolivian Royal (scarified and degermed) were studied for their extrusion characteristics. A corotating twin-screw extruder with a 3 mm round die was used. Feed moisture contents of 15%, 20%, and 25% (wet basis) were studied. The extruder barrel temperature was kept constant at 140 °C and screw speeds were varied from 100, 150, and 200 revolutions per minutes. Process responses (specific mechanical energy, back pressure, and torque) and product responses (expansion ratio, unit density, and water absorption index/water solubility index) were evaluated. The degermed Bolivian Royal showed the highest expansion in comparison to all other varieties, attributed to its significantly low levels of fat, fiber, and protein. The scarified Cherry Vanilla resulted in the lowest expansion ratio. This was attributed to the increase in the protein content from the removal of the outer layer. The results indicate that all the varieties performed differently in the extrusion process due to their modification processes as well as the individual variety characteristics. © 2016 Institute of Food Technologists®.

  12. Study on the combustion behavior of high impact polystyrene nanocomposites produced by different extrusion processes

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available The combustion behavior of a blend made of high impact polystyrene (HIPS with sodium montmorillonite (MMT-Na+ and triphenyl phosphite (TPP, as a halogen-free flame retardant, is analyzed in detail in this work. The blend is processed through various extrusion methods aimed to improve clay dispersion. The UL94 method in vertical position, oxygen index and cone calorimetric measurements assess HIPS blend behavior in combustion. TGA, FTIR, SEM and X-ray measurements, together with mechanical and rheological tests evaluate the thermal degradation, morphology, intercalation and degree of dispersion of particles. The use of a static-mixing die placed at the extreme of a single screw extruder improves clay platelets distribution and reduces the peak heat release rate better than employing a twin screw extrusion process. In addition, mechanical and rheological properties are affected substantially by changing the extrusion process. A correlation between clay dispersion and HIPS fire retardant properties is found, as the peak heat release rate decreases with good clay dispersion in cone calorimetric tests.

  13. A method for manufacturing a tool part for an injection molding process, a hot embossing process, a nano-imprint process, or an extrusion process

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a method for manufacturing a tool part for an injection molding process, a hot embossing process, nano-imprint process or an extrusion process. First, there is provided a master structure (10) with a surface area comprising nanometre-sized protrusions (11...

  14. Reduction of Ochratoxin A in Oat Flakes by Twin-Screw Extrusion Processing.

    Science.gov (United States)

    Lee, Hyun Jung; Dahal, Samjhana; Perez, Enrique Garcia; Kowalski, Ryan Joseph; Ganjyal, Girish M; Ryu, Dojin

    2017-10-01

    Ochratoxin A (OTA) is one of the most important mycotoxins owing to its widespread occurrence and toxicity, including nephrotoxicity and potential carcinogenicity to humans. OTA has been detected in a wide range of agricultural commodities, including cereal grains and their processed products. In particular, oat-based products show a higher incidence and level of contamination. Extrusion cooking is widely used in the manufacturing of breakfast cereals and snacks and may reduce mycotoxins to varying degrees. Hence, the effects of extrusion cooking on the stability of OTA in spiked (100 μg/kg) oat flake was investigated by using a laboratory-scale twin-screw extruder with a central composite design. Factors examined were moisture content (20, 25, and 30% dry weight basis), temperature (140, 160, and 180°C), screw speed (150, 200, and 250 rpm), and die size (1.5, 2, and 3 mm). Both nonextruded and extruded samples were analyzed for reductions of OTA by high-performance liquid chromatography, coupled with fluorescence detection. The percentage of reductions in OTA in the contaminated oat flakes upon extrusion processing were in the range of 0 to 28%. OTA was partially stable during extrusion, with only screw speed and die size having significant effect on reduction (P < 0.005). The highest reduction of 28% was achieved at 180°C, 20% moisture, 250 rpm screw speed, and a 3-mm die with 193 kJ/kg specific mechanical energy. According to the central composite design analyses, up to 28% of OTA can be reduced by a combination of 162°C, 30% moisture, and 221 rpm, with a 3-mm die.

  15. Effect of extrusion processing on the microstructure, mechanical properties, biocorrosion properties and antibacterial properties of Ti-Cu sintered alloys

    International Nuclear Information System (INIS)

    Zhang, Erlin; Li, Shengyi; Ren, Jing; Zhang, Lan; Han, Yong

    2016-01-01

    Ti-Cu sintered alloys, Ti-Cu(S) alloy, have exhibited good anticorrosion resistance and strong antibacterial properties, but low ductility in previous study. In this paper, Ti-Cu(S) alloys were subjected to extrusion processing in order to improve the comprehensive property. The phase constitute, microstructure, mechanical property, biocorrosion property and antibacterial activity of the extruded alloys, Ti-Cu(E), were investigated in comparison with Ti-Cu(S) by X-ray diffraction (XRD), optical microscopy (OM), scanning electronic microscopy (SEM) with energy disperse spectroscopy (EDS), mechanical testing, electrochemical testing and plate-count method in order to reveal the effect of the extrusion process. XRD, OM and SEM results showed that the extrusion process did not change the phase constitute but refined the grain size and Ti 2 Cu particle significantly. Ti-Cu(E) alloys exhibited higher hardness and compressive yield strength than Ti-Cu(S) alloys due to the fine grain and Ti 2 Cu particles. With the consideration of the total compressive strain, it was suggested that the extrusion process could improve the ductility of Ti-Cu alloy(S) alloys. Electrochemical results have indicated that the extrusion process improved the corrosion resistance of Ti-Cu(S) alloys. Plate-count method displayed that both Ti-Cu(S) and Ti-Cu(E) exhibited strong antibacterial activity (> 99%) against S. aureus. All these results demonstrated that hot forming processing, such as the extrusion in this study, refined the microstructure and densified the alloy, in turn improved the ductility and strength as well as anticorrosion properties without reduction in antibacterial properties. - Highlights: • Hot extrusion refined the grain size and Ti 2 Cu phase significantly. • Hot extrusion increased the mechanical properties and the corrosion resistance. • The antibacterial properties was not affected by the hot process.

  16. THEORETICAL FLANGING PRINCIPLES IN ROUND BILLET WITH ITS LOCAL HEATING

    Directory of Open Access Journals (Sweden)

    L. A. Isaevich

    2010-01-01

    Full Text Available The paper considers wall thickness changes of a round billet in the pipe expansion process with subsequent flanging owing to thinning of this wall in the strain zone and bearing strain of an internal edge. Equations for calculation of thinning value are given in the paper. 

  17. Effects of extrusion, infrared and microwave processing on Maillard reaction products and phenolic compounds in soybean.

    Science.gov (United States)

    Zilić, Slađana; Mogol, Burçe Ataç; Akıllıoğlu, Gül; Serpen, Arda; Delić, Nenad; Gökmen, Vural

    2014-01-15

    The Maillard reaction indicators furosine, hydroxymethylfurfural (HMF), acrylamide and color were determined to evaluate heat effects induced during extrusion, infrared and microwave heating of soybean. In addition, the present paper aimed to study changes in the phenolic compounds, as well as in the overall antioxidant properties of different soybean products in relation to heating at 45-140 °C during the processes. Soybean proteins were highly sensible to Maillard reaction and furosine was rapidly formed under slight heating conditions during extrusion and infrared heating. Microwave heating at lower temperatures for a longer time yielded lower acrylamide levels in the final soybean products, as a result of its partial degradation. However, during infrared heating, acrylamide formation greatly increased with decreasing moisture content. After a short time of extrusion and infrared heating at 140 °C and microwave heating at 135 °C for 5 min, concentrations of HMF increased to 11.34, 26.21 and 34.97 µg g(-1), respectively. The heating conditions caused formation of acrylamide, HMF and furosine in high concentration. The results indicate that the complex structure of soybeans provides protection of phenolic compounds from thermal degradation, and that Maillard reaction products improved the antioxidant properties of heat-treated soybean. © 2013 Society of Chemical Industry.

  18. Procyanidin content of grape seed and pomace, and total anthocyanin content of grape pomace as affected by extrusion processing.

    Science.gov (United States)

    Khanal, R C; Howard, L R; Prior, R L

    2009-08-01

    Grape juice processing by-products, grape seed and pomace are a rich source of procyanidins, compounds that may afford protection against chronic disease. This study was undertaken to identify optimal extrusion conditions to enhance the contents of monomers and dimers at the expense of large molecular weight procyanidin oligomers and polymers in grape seed and pomace. Extrusion variables, temperature (160, 170, and 180 degrees C in grape seed, and 160, 170, 180, and 190 degrees C in pomace) and screw speed (100, 150, and 200 rpm in both) were tested using mixtures of grape seed as well as pomace with decorticated white sorghum flour at a ratio of 30 : 70 and moisture content of 45%. Samples of grape seed and pomace were analyzed for procyanidin composition before and after extrusion, and total anthocyanins were determined in pomace. Additionally, chromatograms from diol and normal phase high-performance liquid chromatography were compared for the separation of procyanidins. Extrusion of both grape by-products increased the biologically important monomer and dimers considerably across all temperature and screw speeds. Highest monomer content resulted when extruded at a temperature of 170 degrees C and screw speed of 200 rpm, which were 120% and 80% higher than the unextruded grape seed and pomace, respectively. Increases in monomer and dimer contents were apparently the result of reduced polymer contents, which declined by 27% to 54%, or enhanced extraction facilitated by disruption of the food matrix during extrusion. Extrusion processing reduced total anthocyanins in pomace by 18% to 53%. Extrusion processing can be used to increase procyanidin monomer and dimer contents in grape seed and pomace. Procyanidins in grape by-products have many health benefits, but most are present as large molecular weight compounds, which are poorly absorbed. Extrusion processing appears to be a promising technology to increase levels of the bioactive low molecular weight

  19. Meltlets(®) of soy isoflavones: process optimization and the effect of extrusion spheronization process parameters on antioxidant activity.

    Science.gov (United States)

    Deshmukh, Ketkee; Amin, Purnima

    2013-07-01

    In the current research work an attempt was made to develop "Melt in mouth pellets" (Meltlets(®)) containing 40% herbal extract of soy isoflavones that served to provide antioxidants activity in menopausal women. The process of extrusion-spheronization was optimized for extruder speed, extruder screen size, spheronization speed, and time. While doing so the herbal extract incorporated in the pellet matrix was subjected to various processing conditions such as the effect of the presence of other excipients, mixing or kneading to prepare wet mass, heat generated during the process of extrusion, spheronization, and drying. Thus, the work further investigates the effect of these processing parameters on the antioxidant activity of the soy isoflavone herbal extract incorporated in the formula. Thereby, the antioxidant activity of the soya bean herbal extract, Meltlets(®) and of the placebo pellets was evaluated using DPPH free radical scavenging assay and total reduction capacity.

  20. CHARACTERIZATION OF THE GRAINS IN 2014 ALUMINIUM ALLOY AFTER EQUAL CHANNEL ANGULAR EXTRUSION (ECAE PROCESS

    Directory of Open Access Journals (Sweden)

    Sonia Boczkal

    2011-05-01

    Full Text Available In 2014 alloy deformed by Equal Channel Angular Extrusion process (ECAE the changes in the size and shape of structural constituents were examined. The samples subjected after deformation to additional annealing at 300°C/10min were characterized by larger grains of nearly-equiaxial shapes. The microstructure after deformation was composed of a large number of the mutually crossing bands and microbands. The intersection of microbands resulted in formation of rectangular and rhombohedral grains. It was noted that the average grain size after ε = 4.6 (4 passes was 0.2 μm.

  1. Robotic extrusion processes for direct ink writing of 3D conductive polyaniline structures

    Science.gov (United States)

    Holness, F. Benjamin; Price, Aaron D.

    2016-04-01

    The intractable nature of intrinsically conductive polymers (ICP) leads to practical limitations in the fabrication of ICP-based transducers having complex three-dimensional geometries. Conventional ICP device fabrication processes have focused primarily on thin-film deposition techniques; therefore this study explores novel additive manufacturing processes specifically developed for ICP with the ultimate goal of increasing the functionality of ICP sensors and actuators. Herein we employ automated polymer paste extrusion processes for the direct ink writing of 3D conductive polyaniline (PANI) structures. Realization of these structures is enabled through a modified fused filament fabrication delta robot equipped with an integrated polymer paste extruder. This unique robot-controlled additive manufacturing platform is capable of fabricating high-resolution 3D conductive PANI and has been utilized to produce structures with a minimum feature size of 1.5 mm. The required processability of PANI is achieved by means of a counter-ion induced thermal doping method. Using this method, a viscous paste is formulated as the extrudate and a thermo-chemical treatment is applied post extrusion to finalize the complexation.

  2. The FEM simulation of continuous rotary extrusion (CRE) of aluminum alloy AA3003

    Science.gov (United States)

    Rajendran, Nijenthan; Valberg, Henry; Misiolek, Wojciech Z.

    2017-10-01

    Continuous Rotary Extrusion (CRE) process is also known in literature under Conform TM name and it is mainly used for the continuous extrusion of Aluminum and Copper alloys. CRE use a feedstock in the form of rod, powders and chips, which are fed into the groove of the rotating wheel. As the wheel rotates the feedstock moves along with it due to friction with the wheel. Once the feedstock reaches the abutment the material deforms plastically and it is extruded through the die. CRE has lot to offer when compared to other more conventional extrusion processes such as low energy input, no limit in billet length as it is a continuous process as well as improved material physical properties due to plastic deformation under constant parameters. In this work a FEM model has been developed using Deform TM 3D, to study the metal flow and state variables of AA3003 CRE extrusion. The effect of extrusion wheel velocity has been investigated. The results show that increase in wheel velocity will heat up the feedstock metal due to high shear deformation and higher friction, which significantly changes metal flow conditions at the die exit.

  3. The Influence of Segregation Phenomena on Quality of Product in Extrusion Process

    Directory of Open Access Journals (Sweden)

    G. Skorulski

    2010-07-01

    Full Text Available The segregation phenomena and formation of agglomerate have the basic influence on structure of the final product. The aim of this workis analyzing the phenomena of segregation in semi-solid extrusion process, using several kind of substitute materials, which can simulate the thixotrophic fluid behavior and displacement of solid particles. The experimental researches are made to investigation of segregation in the near-wall layers and the formation of agglomerate. Especially, the distribution of the solid particles at the end of extrusion process have been taken into consideration. Theoretical criteria describe the critical value of the energy liberated at the surfaces by the action of forces depends on the temperature, the pressure, the yield stress and the physical state and degree of intimacy of the contacting surfaces. The theory has been tested experimentally using a silicon polymer as a substitute material. Experimental stand with a Plexiglass die was prepared, such that the velocity fields at the surfaces could be observed and measured during plastic flow, allowing the empirical coefficients in the mathematical formulation to be estimated. On the basis of the theory and experiment an optimal die chamber was designed for a die with a complex shape.

  4. Final Technical Report - Advanced Optical Sensors to Minimize Energy Consumption in Polymer Extrusion Processes

    Energy Technology Data Exchange (ETDEWEB)

    Susan J. Foulk

    2012-07-24

    Project Objective: The objectives of this study are to develop an accurate and stable on-line sensor system to monitor color and composition on-line in polymer melts, to develop a scheme for using the output to control extruders to eliminate the energy, material and operational costs of off-specification product, and to combine or eliminate some extrusion processes. Background: Polymer extrusion processes are difficult to control because the quality achieved in the final product is complexly affected by the properties of the extruder screw, speed of extrusion, temperature, polymer composition, strength and dispersion properties of additives, and feeder system properties. Extruder systems are engineered to be highly reproducible so that when the correct settings to produce a particular product are found, that product can be reliably produced time after time. However market conditions often require changes in the final product, different products or grades may be processed in the same equipment, and feed materials vary from lot to lot. All of these changes require empirical adjustment of extruder settings to produce a product meeting specifications. Optical sensor systems that can continuously monitor the composition and color of the extruded polymer could detect process upsets, drift, blending oscillations, and changes in dispersion of additives. Development of an effective control algorithm using the output of the monitor would enable rapid corrections for changes in materials and operating conditions, thereby eliminating most of the scrap and recycle of current processing. This information could be used to identify extruder systems issues, diagnose problem sources, and suggest corrective actions in real-time to help keep extruder system settings within the optimum control region. Using these advanced optical sensor systems would give extruder operators real-time feedback from their process. They could reduce the amount of off-spec product produced and

  5. Effect of extrusion processing on the microstructure, mechanical properties, biocorrosion properties and antibacterial properties of Ti-Cu sintered alloys.

    Science.gov (United States)

    Zhang, Erlin; Li, Shengyi; Ren, Jing; Zhang, Lan; Han, Yong

    2016-12-01

    Ti-Cu sintered alloys, Ti-Cu(S) alloy, have exhibited good anticorrosion resistance and strong antibacterial properties, but low ductility in previous study. In this paper, Ti-Cu(S) alloys were subjected to extrusion processing in order to improve the comprehensive property. The phase constitute, microstructure, mechanical property, biocorrosion property and antibacterial activity of the extruded alloys, Ti-Cu(E), were investigated in comparison with Ti-Cu(S) by X-ray diffraction (XRD), optical microscopy (OM), scanning electronic microscopy (SEM) with energy disperse spectroscopy (EDS), mechanical testing, electrochemical testing and plate-count method in order to reveal the effect of the extrusion process. XRD, OM and SEM results showed that the extrusion process did not change the phase constitute but refined the grain size and Ti2Cu particle significantly. Ti-Cu(E) alloys exhibited higher hardness and compressive yield strength than Ti-Cu(S) alloys due to the fine grain and Ti2Cu particles. With the consideration of the total compressive strain, it was suggested that the extrusion process could improve the ductility of Ti-Cu alloy(S) alloys. Electrochemical results have indicated that the extrusion process improved the corrosion resistance of Ti-Cu(S) alloys. Plate-count method displayed that both Ti-Cu(S) and Ti-Cu(E) exhibited strong antibacterial activity (>99%) against S. aureus. All these results demonstrated that hot forming processing, such as the extrusion in this study, refined the microstructure and densified the alloy, in turn improved the ductility and strength as well as anticorrosion properties without reduction in antibacterial properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Development of a simulation tool to analyze the orientation of LCPs during extrusion process

    Science.gov (United States)

    Ahmadzadegan, Arash

    In this thesis, different aspects of the rheology and directionality of the liquid crystalline polymers (LCPs) are investigated. The rheology of LCPs are modeled with different rheological models in different die geometries. The final goal in modeling the rheology and directionality of LCPs is to have a better understanding of their rheology during extrusion processing methods inside extrusion dies and eventually produce more isotropic films of LCPs. An attempt to design a die geometry that produces more isotropic films was made and it was shown that it is possible to use the inertia of the polymer to generate a more isotropic velocity profile at the lip of the die. This isotropic velocity profile can lead to alignment of directors along the streamlines and produce an isotropic film of LCP. It is shown that the rheological properties of the LCP should be altered to have a very low viscosity for this type of die to work. To be able to investigate the effect of processing on directionality of LCPs, it is essential to develop a method to simulate the directionality based on processing conditions. As a result, a user defined function (UDF) code was added to ANSYSRTM ~FLUENTRTM~ to simulate the directionality of LCPs. The rheology of the LCP is modeled using power-law fluid model and the consistency index (K) and power-law index (n) were estimated based on the experimental measurements done with capillary rheometry. Three main phenomena that affect the directionality namely effects of Franks elastic energy, the effect of shear and the effect of movement of crystals with the bulk of polymer are investigated. The results of this simulation are close to physical phenomena seen in real LCPs. To quantify the directionality of the LCPs, the order parameter of the domain were calculated and compared for different flow and fluid conditions. All polymers including LCPs are viscoelastic fluids in molten state. To understand the rheology of LCPs, a die-swell experiment was carried

  7. A sustainable solid state recycling of pure aluminum by means of friction stir extrusion process (FSE)

    Science.gov (United States)

    Mehtedi, Mohamad El; Forcellese, Archimede; Simoncini, Michela; Spigarelli, Stefano

    2018-05-01

    In this research, the feasibility of solid-state recycling of pure aluminum AA1099 machining chips using FSE process is investigated. In the early stage, a FE simulation was conducted in order to optimize the die design and the process parameters in terms of plunge rotational speed and extrusion rate. The AA1099 aluminum chips were produced by turning of an as-received bar without lubrication. The chips were compacted on a MTS machine up to 150KN of load. The extruded samples were analyzed by optical and electron microscope in order to see the material flow and to characterize the microstructure. Finally, micro-hardness Vickers profiles were carried out, in both longitudinal and transversal direction of the obtained profiles, in order to investigate the homogeneity of the mechanical properties of the extrudate.

  8. Process Parameter Optimization of Extrusion-Based 3D Metal Printing Utilizing PW–LDPE–SA Binder System

    Directory of Open Access Journals (Sweden)

    Luquan Ren

    2017-03-01

    Full Text Available Recently, with a broadening range of available materials and alteration of feeding processes, several extrusion-based 3D printing processes for metal materials have been developed. An emerging process is applicable for the fabrication of metal parts into electronics and composites. In this paper, some critical parameters of extrusion-based 3D printing processes were optimized by a series of experiments with a melting extrusion printer. The raw materials were copper powder and a thermoplastic organic binder system and the system included paraffin wax, low density polyethylene, and stearic acid (PW–LDPE–SA. The homogeneity and rheological behaviour of the raw materials, the strength of the green samples, and the hardness of the sintered samples were investigated. Moreover, the printing and sintering parameters were optimized with an orthogonal design method. The influence factors in regard to the ultimate tensile strength of the green samples can be described as follows: infill degree > raster angle > layer thickness. As for the sintering process, the major factor on hardness is sintering temperature, followed by holding time and heating rate. The highest hardness of the sintered samples was very close to the average hardness of commercially pure copper material. Generally, the extrusion-based printing process for producing metal materials is a promising strategy because it has some advantages over traditional approaches for cost, efficiency, and simplicity.

  9. Process Parameter Optimization of Extrusion-Based 3D Metal Printing Utilizing PW–LDPE–SA Binder System

    Science.gov (United States)

    Ren, Luquan; Zhou, Xueli; Song, Zhengyi; Zhao, Che; Liu, Qingping; Xue, Jingze; Li, Xiujuan

    2017-01-01

    Recently, with a broadening range of available materials and alteration of feeding processes, several extrusion-based 3D printing processes for metal materials have been developed. An emerging process is applicable for the fabrication of metal parts into electronics and composites. In this paper, some critical parameters of extrusion-based 3D printing processes were optimized by a series of experiments with a melting extrusion printer. The raw materials were copper powder and a thermoplastic organic binder system and the system included paraffin wax, low density polyethylene, and stearic acid (PW–LDPE–SA). The homogeneity and rheological behaviour of the raw materials, the strength of the green samples, and the hardness of the sintered samples were investigated. Moreover, the printing and sintering parameters were optimized with an orthogonal design method. The influence factors in regard to the ultimate tensile strength of the green samples can be described as follows: infill degree > raster angle > layer thickness. As for the sintering process, the major factor on hardness is sintering temperature, followed by holding time and heating rate. The highest hardness of the sintered samples was very close to the average hardness of commercially pure copper material. Generally, the extrusion-based printing process for producing metal materials is a promising strategy because it has some advantages over traditional approaches for cost, efficiency, and simplicity. PMID:28772665

  10. Process Parameter Optimization of Extrusion-Based 3D Metal Printing Utilizing PW-LDPE-SA Binder System.

    Science.gov (United States)

    Ren, Luquan; Zhou, Xueli; Song, Zhengyi; Zhao, Che; Liu, Qingping; Xue, Jingze; Li, Xiujuan

    2017-03-16

    Recently, with a broadening range of available materials and alteration of feeding processes, several extrusion-based 3D printing processes for metal materials have been developed. An emerging process is applicable for the fabrication of metal parts into electronics and composites. In this paper, some critical parameters of extrusion-based 3D printing processes were optimized by a series of experiments with a melting extrusion printer. The raw materials were copper powder and a thermoplastic organic binder system and the system included paraffin wax, low density polyethylene, and stearic acid (PW-LDPE-SA). The homogeneity and rheological behaviour of the raw materials, the strength of the green samples, and the hardness of the sintered samples were investigated. Moreover, the printing and sintering parameters were optimized with an orthogonal design method. The influence factors in regard to the ultimate tensile strength of the green samples can be described as follows: infill degree > raster angle > layer thickness. As for the sintering process, the major factor on hardness is sintering temperature, followed by holding time and heating rate. The highest hardness of the sintered samples was very close to the average hardness of commercially pure copper material. Generally, the extrusion-based printing process for producing metal materials is a promising strategy because it has some advantages over traditional approaches for cost, efficiency, and simplicity.

  11. Processing of Polypropylene-Organic Montmorillonite Nanocomposite by Equal Channel Multiangular Extrusion

    Directory of Open Access Journals (Sweden)

    V. A. Beloshenko

    2016-01-01

    Full Text Available By the example of polypropylene-organic montmorillonite composite (PP-OMMT, the abilities of the method of equal channel multiangular extrusion have been studied with respect to the modification of the structure and the properties of polymeric nanocomposites. With using X-ray structure analysis, TEM, DSC, and dilatometry, it has been demonstrated that this kind of processing provides an additional intercalation of the polymer into OMMT tactoids with the succeeding exfoliation and facilitates an increase in the aspect ratio, the degree of platelet orientation, the crystalline lamellar thickness, and a decrease in the dispersion of the crystallite thickness, as well as the formation of biaxial orientation of the OMMT and PP crystals. The observed structure rearrangements determine enhanced microhardness, ductility, and the heat distortion temperature of the PP-OMMT composite.

  12. Numerical investigations on the lateral angular co-extrusion of aluminium and steel

    Science.gov (United States)

    Behrens, B.-A.; Klose, C.; Chugreev, A.; Thürer, S. E.; Uhe, J.

    2018-05-01

    In order to save weight and costs, different materials can be combined within one component. In the novel process chain being developed within the Collaborative Research Centre (CRC) 1153, joined semi-finished workpieces are used to produce hybrid solid components with locally adapted properties. Different materials are joined in an initial step before the forming process takes place. Hereby, the quality of the joining zone is improved by means of the thermo-mechanical treatment during the forming and machining processes. The lateral angular co-extrusion (LACE) approach is used to produce semi-finished workpieces because it allows for the production of coaxial semi-finished products consisting of aluminium and steel. In the further process chain, these semi-finished products are processed into hybrid bearing bushings with locally adapted properties by die forging. In the scope of this work, numerical investigations of the co-extrusion of aluminium-steel compounds were carried out using finite element (FE) simulation in order to examine the influence of the process parameters on the co-extrusion process. For this purpose, the relevant material properties of the aluminium alloy EN AW-6082 were determined experimentally and subsequently implemented in the numerical model. The obtained numerical model was used to study the impact of different ram speeds, press ratios and billet temperatures on the resulting extrusion forces and the material flow. The numerical results have been validated using force-time curves obtained from experimental extrusion tests carried out on a 2.5 MN laboratory extrusion press.

  13. Influence of processing conditions on apparent viscosity and system parameters during extrusion of distiller's dried grains-based snacks.

    Science.gov (United States)

    Singha, Poonam; Muthukumarappan, Kasiviswanathan; Krishnan, Padmanaban

    2018-01-01

    A combination of different levels of distillers dried grains processed for food application (FDDG), garbanzo flour and corn grits were chosen as a source of high-protein and high-fiber extruded snacks. A four-factor central composite rotatable design was adopted to study the effect of FDDG level, moisture content of blends, extrusion temperature, and screw speed on the apparent viscosity, mass flow rate or MFR, torque, and specific mechanical energy or SME during the extrusion process. With increase in the extrusion temperature from 100 to 140°C, apparent viscosity, specific mechanical energy, and torque value decreased. Increase in FDDG level resulted in increase in apparent viscosity, SME and torque. FDDG had no significant effect (p > .5) on mass flow rate. SME also increased with increase in the screw speed which could be due to the higher shear rates at higher screw speeds. Screw speed and moisture content had significant negative effect ( p  extruder and the system parameters were affected by the processing conditions. This study will be useful for control of extrusion process of blends containing these ingredients for the development of high-protein high-fiber extruded snacks.

  14. Density and superconducting properties of metal-sheathed YBa2Cu3Oy ceramic processed by hydrostatic extrusion

    International Nuclear Information System (INIS)

    Karpov, M.I.; Korzhov, V.P.; Artamoshin, A.V.; Prokopenko, V.M.

    1994-01-01

    Brittle materials can be deformed without cracking and rupturing using hydrostatic extrusion, which provides the greatest pore annihilation in powder-processed materials and allows large degrees of one-step deformation, which is favorable for texturing. Earlier, a casting slip prepared by mixing a starting powder of Y-based ceramic with an organic binder was conventionally extruded to produce a wire 150 μm in diameter. After special sintering, the critical-current density in the material attained a few hundred amperes per square centimeter at 77 K, and the wire could be rolled into a winding ≥0.3 m in diameter. Hydrostatic extrusion of an assembly composed of Y-based ceramic in a bimetallic Nb/Cu tube 30 mm in diameter was used to produce rods 6 mm in diameter; drawing of these rods yielded samples of wire 2 to 3 mm in diameter. It was shown that the extrusion pressure and strain substantially influence the yield of the rupture-free wire. No signs of rupturing, cracking, or necking were observed in wire extruded at pressures ≤700 MPa and degrees of deformation ≤50%. A pronounced instability of the hydrostatic extrusion, the appearance of defects, and even the rupture of the rods were caused by an increase in the pressure up to 2000 MPa and in the degree of one-step deformation up to 80%. In this work, the authors focus on the possibility of producing thin YBa 2 Cu 3 O y superconductors using only hydrostatic extrusion. They determined the parameters for the hydrostatic extrusion of the metal-sheathed YBa 2 Cu 3 O y ceramic to a diameter of 3 mm or to a rectangular cross section. Effects of the ceramic core, and of the reduction coefficient on superconducting-transition parameters and the critical-current density of the ceramic were examined

  15. Hardness and microstructure homogeneity of pure copper processed by accumulative back extrusion

    International Nuclear Information System (INIS)

    Bazaz, B.; Zarei-Hanzaki, A.; Fatemi-Varzaneh, S.M.

    2013-01-01

    The present work deals with the microstructure evolution of a pure copper processed by a new severe plastic deformation method. A set of pure copper (99.99%) work-pieces with coarse-grained microstructures was processed by accumulative back extrusion (ABE) method at room temperature. The optical and scanning electron microscopy (SEM) and hardness measurements were utilized to study the microstructural evolution and hardness homogeneity. The results indicated that ABE is a capable process to provide a homogenous grain refined microstructure in pure copper. The observed grain refinement was discussed relying on the occurrence of dynamic restoration processes. The analysis of microstructure and hardness showed outstanding homogeneity improvement throughout the work-pieces as the consecutive ABE passes were applied. The homogeneity improvement was attributed to the propagation of the shear bands and also the heavily deformed regions. A reversing route was also applied in the ABE processing to investigate its effect on the development of microstructural homogeneity. Comparing to the conventional route, the application of the reversing route was found to yield better homogeneity after less passes of the process.

  16. Polymorphic Transformation of Indomethacin during Hot Melt Extrusion Granulation: Process and Dissolution Control.

    Science.gov (United States)

    Xu, Ting; Nahar, Kajalajit; Dave, Rutesh; Bates, Simon; Morris, Kenneth

    2018-05-10

    To study and elucidate the effect of the intensity and duration of processing stresses on the possible solid-state changes during a hot melt extrusion granulation process. Blends of α-indomethacin and PEG 3350 (w/w 4:1) were granulated using various screw sizes/designs on the melt extruder under different temperature regimes. Differential Scanning Calorimetry and X-ray Powder Diffraction were employed for characterization. The dissolution behavior of the pure polymorphs and the resulting granules was determined using in-situ fiber optic UV testing system. An XRPD quantitation method using Excel full pattern fitting was developed to determine the concentration of each constituent (amorphous, α and γ indomethacin and PEG) in samples collected from each functioning zone and in granules. Analysis of in-process samples and granules revealed that higher temperature (≥130°C) and shear stress accelerated the process induced phase transitions from amorphous and/or the α form to γ indomethacin during heating stage. However, rapid cooling resulted in an increased percentage of the α form allowing isolation of the meta-stable form. By determining the conditions that either prevent or facilitate process induced transformations of IMC polymorphs during melt granulation, a design space was developed to control the polymorph present in the resulting granules. This represents the conditions necessary to balance the thermodynamic relationships between the polymorphs of the IMC system and the kinetics of the possible transformations as a function of the processing stresses.

  17. Influence of Extrusion Temperature on the Aging Behavior and Mechanical Properties of an AA6060 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Nadja Berndt

    2018-01-01

    Full Text Available Processing of AA6060 aluminum alloys for semi-products usually includes hot extrusion with subsequent artificial aging for several hours. Processing below the recrystallization temperature allows for an increased strength at a significantly reduced annealing time by combining strain hardening and precipitation hardening. In this study, we investigate the potential of cold and warm extrusion as alternative processing routes for high strength aluminum semi-products. Cast billets of the age hardening aluminum alloy AA6060 were solution annealed and then extruded at room temperature, 120 or 170 °C, followed by an aging treatment. Electron microscopy and mechanical testing were performed on the as-extruded as well as the annealed materials to characterize the resulting microstructural features and mechanical properties. All of the extruded profiles exhibit similar, strongly graded microstructures. The strain gradients and the varying extrusion temperatures lead to different stages of dynamic precipitation in the as-extruded materials, which significantly alter the subsequent aging behavior and mechanical properties. The experimental results demonstrate that extrusion below recrystallization temperature allows for high strength at a massively reduced aging time due to dynamic precipitation and/or accelerated precipitation kinetics. The highest strength and ductility were achieved by extrusion at 120 °C and subsequent short-time aging.

  18. Antioxidant activity and polyphenolic compound stability of lentil-orange peel powder blend in an extrusion process.

    Science.gov (United States)

    Rathod, Rahul P; Annapure, Uday S

    2017-03-01

    Lentil contains substantial amount of protein, carbohydrate, fibre and other nutrients and orange peels powder rich in carbohydrate and fiber content The present study was aimed to investigate the effects of extrusion processing parameter on the level of total phenolic content (TPC), total flavonoid content (TFC), total tannin content and antioxidant activity of lentil-orange peel powder blend, also to investigate the possibility of blend as a candidate for production of protein rich extruded product by using response surface methodology. It was observed that, the physicochemical properties and sensory characteristics of lentil-orange peel based extrudate were highly dependent on process variables. The blend of lentil and orange peel powder has a huge potential for extrusion to produce ready-to-eat extruded with good acceptance. The overall best quality product was optimized and obtained at 16% moisture, 150 °C die temperature and 200 rpm screw speed. Extrusion process increased nutritional value of extruded product with TPC and TFC of 70.4 and 67.62% respectively and antioxidant activity of 60.6%. It showed higher stability at 150 °C with intermediate feed moisture content and despite the use of high temperatures in the extrusion-cooking is possible to minimize the loss of bioactive compounds to achieve products. Thus, results indicated that blend of lentil and orange peel may be used as raw material for the production of extruded snacks with great nutritional value.

  19. Experimental study on combined cold forging process of backward cup extrusion and piercing

    Science.gov (United States)

    Henry, Robinson; Liewald, Mathias

    2018-05-01

    A reduction in material usage of cold forged components while maintaining the functional requirements can be achieved using hollow or tubular preforms. These preforms are used to meet lightweight requirements and to decrease production costs of cold formed components. To increase production efficiency in common multi-stage cold forming processes, manufacturing of hollow preforms by combining the processes backward cup extrusion and piercing was established and will be discussed in this paper. Corresponding investigations and experimental studies are reported in this article. The objectives of the experimental investigations have been the detection of significant process parameters, determination of process limits for the combined processes and validation of the numerical investigations. In addition, the general influence concerning surface quality and diameter tolerance of hollow performs are discussed in this paper. The final goal is to summarize a guideline for industrial application, moreover, to transfer the knowledge to industry, as regards what are required part geometries to reduce the number of forming stages as well as tool cost.

  20. Study on the Hot Extrusion Process of Advanced Radiation Resistant Oxide Dispersion Strengthened Steel Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byoungkwon; Noh, Sanghoon; Kim, Kibaik; Kang, Suk Hoon; Chun, Youngbum; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Ferritic/martensitic steel has a better thermal conductivity and swelling resistance than austenitic stainless steel. Unfortunately, the available temperature range of ferritic/martensitic steel is limited at up to 650 .deg. C. Oxide dispersion strengthened (ODS) steels have been developed as the most prospective core structural materials for next generation nuclear systems because of their excellent high strength and irradiation resistance. The material performances of this new alloy are attributed to the existence of uniformly distributed nano-oxide particles with a high density, which is extremely stable at high temperature in a ferritic/martensitic matrix. This microstructure can be very attractive in achieving superior mechanical properties at high temperatures, and thus, these favorable microstructures should be obtained through the controls of the fabrication process parameters during the mechanical alloying and hot consolidation procedures. In this study, a hot extrusion process for advanced radiation resistant ODS steel tube was investigated. ODS martensitic steel was designed to have high homogeneity, productivity, and reproducibility. Mechanical alloying and hot consolidation processes were employed to fabricate the ODS steels. A microstructure observation and creep rupture test were examined to investigate the effects of the optimized fabrication conditions. Advanced radiation resistant ODS steel has been designed to have homogeneity, productivity, and reproducibility. For these characteristics, modified mechanical alloying and hot consolidation processes were developed. Microstructure observation revealed that the ODS steel has uniformly distributed fine-grain nano-oxide particles. The fabrication process for the tubing is also being propelled in earnest.

  1. Study on the Hot Extrusion Process of Advanced Radiation Resistant Oxide Dispersion Strengthened Steel Tubes

    International Nuclear Information System (INIS)

    Choi, Byoungkwon; Noh, Sanghoon; Kim, Kibaik; Kang, Suk Hoon; Chun, Youngbum; Kim, Tae Kyu

    2014-01-01

    Ferritic/martensitic steel has a better thermal conductivity and swelling resistance than austenitic stainless steel. Unfortunately, the available temperature range of ferritic/martensitic steel is limited at up to 650 .deg. C. Oxide dispersion strengthened (ODS) steels have been developed as the most prospective core structural materials for next generation nuclear systems because of their excellent high strength and irradiation resistance. The material performances of this new alloy are attributed to the existence of uniformly distributed nano-oxide particles with a high density, which is extremely stable at high temperature in a ferritic/martensitic matrix. This microstructure can be very attractive in achieving superior mechanical properties at high temperatures, and thus, these favorable microstructures should be obtained through the controls of the fabrication process parameters during the mechanical alloying and hot consolidation procedures. In this study, a hot extrusion process for advanced radiation resistant ODS steel tube was investigated. ODS martensitic steel was designed to have high homogeneity, productivity, and reproducibility. Mechanical alloying and hot consolidation processes were employed to fabricate the ODS steels. A microstructure observation and creep rupture test were examined to investigate the effects of the optimized fabrication conditions. Advanced radiation resistant ODS steel has been designed to have homogeneity, productivity, and reproducibility. For these characteristics, modified mechanical alloying and hot consolidation processes were developed. Microstructure observation revealed that the ODS steel has uniformly distributed fine-grain nano-oxide particles. The fabrication process for the tubing is also being propelled in earnest

  2. Deformation behavior of commercial Mg-Al-Zn-Mn type alloys under a hydrostatic extrusion process at elevated temperatures

    International Nuclear Information System (INIS)

    Yoon, Duk Jae; Lee, Sang Mok; Lim, Seong Joo; Kim, Eung Zu

    2010-01-01

    This paper presents the deformation behavior of commercial Mg-Al-Zn-Mn type alloys during hydrostatic extrusion process at elevated temperatures. In the current study commercial Mg-Al-Zn-Mn type alloys with different Al contents were subjected to hydrostatic extrusion process at a range of temperatures and at ram speeds of 4.5, 10 and 17 mm/sec. Under the hydrostatic condition at 518K, the alloy with Al contents of 2.9 wt% was successfully extruded at all applied speeds. The alloys with Al content of 5.89 and 7.86 wt% were successful up to 10mm/sec, and finally extrusion of alloy with Al content 8.46wt% was successful only at 4.5 mm/sec. These results show that the deformation limit in the Mg alloys in terms of extrusion speed greatly extended to higher value in the proximity of lower Al content. It is presumed that deformation becomes harder as Al content increases because of strengthening mechanism by solute drag to increase of supersaturated Mg 17 Al 12 precipitates. Also, microstructures of cast and extruded Mg alloys were compared. Defect-wide microstructure of cast alloy completely evolved into dense and homogeneous microstructure with equiaxed grains

  3. Synthesis, extrusion processing and ionic conductivity measurements of sodium β-alumina tubes

    Directory of Open Access Journals (Sweden)

    Karanja Avinash

    2015-09-01

    Full Text Available Pure and Li-doped sodium β-alumina (NaMg0.67Al10.33O17 ceramics were prepared from the stoichiometric mixture of raw powders. Pellets and tubes were formed from the precursor (NBA-1S and preformed sodium β-alumina powder through compaction and extrusion processing, respectively. The obtained specimens were finally sintered to dense ceramics. The ceramics were comparatively evaluated for their density, microstructure, phase formation and electrical properties. Both tubes and pellets processed with the preformed sodium β-alumina powder (NBA-2S showed enhanced densification along with relatively better phase purity and crystallinity. The ceramics prepared from the preformed powder exhibited higher density of 94–95% TD (theoretical densities in comparison to the ceramics processed from the raw mixture (NBA-1S with a density of 85–87% TD, which are complemented well through fractographs and microstructures. The ceramics processed using the preformed sodium β-alumina (NBA-2S also exhibited high room temperature AC conductivity of 1.77×10-4 S/cm (1 MHz with an increasing trend with temperature. The higher ionic conductivity at all temperatures in NBA-2S than in NBA-1S ceramics can be attributed to the relatively high phase purity, crystallinity and higher density values of NBA-2S ceramics.

  4. Fabrication of High Strength Lightweight Metals for Armor and Structural Applications: Large Scale Equal Channel Angular Extrusion Processing of Aluminum 5083 Alloy

    Science.gov (United States)

    2017-06-01

    estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington...process. These issues include the need to maintain the tooling at isothermal conditions, reducing the time delay between successive passes, and...right side of the press is the blue-colored auxiliary hydraulic power control unit for the ejection of the billet from the Engineered Performance

  5. Microstructure and mechanical properties of commercially pure aluminum processed by accumulative back extrusion

    International Nuclear Information System (INIS)

    Haghdadi, N.; Zarei-Hanzaki, A.; Abou-Ras, D.

    2013-01-01

    Accumulative back extrusion (ABE), as a new severe plastic deformation (SPD) method, was applied on a commercially pure aluminum, resulting in an ultrafine microstructure. The grain refinement was attributed to the shearing and/or to the mechanical partitioning of the initial coarse grains as well as different dynamic recrystallization mechanisms (i.e., discontinues and continues ones). The effects of imposing several passes along with the strain reversal path method during consecutive ABE passes were discussed. Mechanical characterization revealed that the yield and ultimate strength of pure Al were significantly increased through applying ABE. This was related to grain boundary and dislocation strengthening, as well as to Orowan dislocation bowing mechanisms. The elongation, however, was deteriorated after ABE processing. This was interpreted through the lack of ability of the material to accommodate the ABE-induced strain, inhomogeneous distribution of strain across the ABE-processed workpieces, and the reduced work hardening capacity of the fine-grained aluminum. The formability index and static toughness were also considered to verify the overall mechanical performance of the ABE-processed pure Al

  6. Wear Behavior and Microstructure of Mg-Sn Alloy Processed by Equal Channel Angular Extrusion.

    Science.gov (United States)

    Chen, Jung-Hsuan; Shen, Yen-Chen; Chao, Chuen-Guang; Liu, Tzeng-Feng

    2017-11-16

    Mg-5wt.% Sn alloy is often used in portable electronic devices and automobiles. In this study, mechanical properties of Mg-5wt.% Sn alloy processed by Equal Channel Angular Extrusion (ECAE) were characterized. More precisely, its hardness and wear behavior were measured using Vickers hardness test and a pin-on-disc wear test. The microstructures of ECAE-processed Mg-Sn alloys were investigated by scanning electron microscope and X-ray diffraction. ECAE process refined the grain sizes of the Mg-Sn alloy from 117.6 μm (as-cast) to 88.0 μm (one pass), 49.5 μm (two passes) and 24.4 μm (four passes), respectively. Meanwhile, the hardness of the alloy improved significantly. The maximum wear resistance achieved in the present work was around 73.77 m/mm³, which was obtained from the Mg-Sn alloy treated with a one-pass ECAE process with a grain size of 88.0 μm. The wear resistance improvement was caused by the grain size refinement and the precipitate of the second phase, Mg₂Sn against the oxidation of the processed alloy. The as-cast Mg-Sn alloy with the larger grain size, i.e., 117.6 μm, underwent wear mechanisms, mainly adhesive wear and abrasive wear. In ECAE-processed Mg-Sn alloy, high internal energy occurred due to the high dislocation density and the stress field produced by the plastic deformation, which led to an increased oxidation rate of the processed alloy during sliding. Therefore, the oxidative wear and a three-body abrasive wear in which the oxide debris acted as the three-body abrasive components became the dominant factors in the wear behavior, and as a result, reduced the wear resistance in the multi-pass ECAE-processed alloy.

  7. Metal extrusion using hydrostatic pressures

    International Nuclear Information System (INIS)

    Sauve, Ch.

    1965-01-01

    The main problems connected with the deformation of metals due to extrusion are described. A method is put forward for calculating the rational rate of percentage deformation in the case of bar extrusion using a cylindrical container; reference is made to previous work on extrusion using a hydrostatic pressure with or without back-pressure. An extrusion process is described using hydrostatic pressure, without back-pressure, and using the lubricant for transmitting the thrust. This process has been used for eight years by the C.E.A. for the extrusion of a very wide range of metals, from beryllium to uranium and including steels; it leads to excellent surface textures. A very fine crystallization can be obtained on extruded products when the rate of extrusion is very low. There appears to be nothing against the use of high extrusion rates using this method. (author) [fr

  8. Domain Immersion Technique And Free Surface Computations Applied To Extrusion And Mixing Processes

    Science.gov (United States)

    Valette, Rudy; Vergnes, Bruno; Basset, Olivier; Coupez, Thierry

    2007-04-01

    This work focuses on the development of numerical techniques devoted to the simulation of mixing processes of complex fluids such as twin-screw extrusion or batch mixing. In mixing process simulation, the absence of symmetry of the moving boundaries (the screws or the rotors) implies that their rigid body motion has to be taken into account by using a special treatment. We therefore use a mesh immersion technique (MIT), which consists in using a P1+/P1-based (MINI-element) mixed finite element method for solving the velocity-pressure problem and then solving the problem in the whole barrel cavity by imposing a rigid motion (rotation) to nodes found located inside the so called immersed domain, each subdomain (screw, rotor) being represented by a surface CAD mesh (or its mathematical equation in simple cases). The independent meshes are immersed into a unique backgound computational mesh by computing the distance function to their boundaries. Intersections of meshes are accounted for, allowing to compute a fill factor usable as for the VOF methodology. This technique, combined with the use of parallel computing, allows to compute the time-dependent flow of generalized Newtonian fluids including yield stress fluids in a complex system such as a twin screw extruder, including moving free surfaces, which are treated by a "level set" and Hamilton-Jacobi method.

  9. Continuously graded extruded polymer composites for energetic applications fabricated using twin-screw extrusion processing technology

    Science.gov (United States)

    Gallant, Frederick M.

    A novel method of fabricating functionally graded extruded composite materials is proposed for propellant applications using the technology of continuous processing with a Twin-Screw Extruder. The method is applied to the manufacturing of grains for solid rocket motors in an end-burning configuration with an axial gradient in ammonium perchlorate volume fraction and relative coarse/fine particle size distributions. The fabrication of functionally graded extruded polymer composites with either inert or energetic ingredients has yet to be investigated. The lack of knowledge concerning the processing of these novel materials has necessitated that a number of research issues be addressed. Of primary concern is characterizing and modeling the relationship between the extruder screw geometry, transient processing conditions, and the gradient architecture that evolves in the extruder. Recent interpretations of the Residence Time Distributions (RTDs) and Residence Volume Distributions (RVDs) for polymer composites in the TSE are used to develop new process models for predicting gradient architectures in the direction of extrusion. An approach is developed for characterizing the sections of the extrudate using optical, mechanical, and compositional analysis to determine the gradient architectures. The effects of processing on the burning rate properties of extruded energetic polymer composites are characterized for homogeneous formulations over a range of compositions to determine realistic gradient architectures for solid rocket motor applications. The new process models and burning rate properties that have been characterized in this research effort will be the basis for an inverse design procedure that is capable of determining gradient architectures for grains in solid rocket motors that possess tailored burning rate distributions that conform to user-defined performance specifications.

  10. Microstructure and mechanical properties of Al-Mg-Si-Cu matrix composites reinforced with AINp. processed by extrusion of powders

    International Nuclear Information System (INIS)

    Ortiz, J. L.; Amigo, V.; Salvador, M. D.; Perz, C. R.

    2000-01-01

    This article presents an experimental investigation on the structure and mechanical properties of an Al-Mg-Si-Cu P/M alloy reinforced with 5%, 10% and 15% aluminum nitride, produced by extrusion of cold compacted powders mixtures. Mechanical properties in as extruded and T6 conditions are compared. Differential Scanning Calorimetry and Dilatometric analysis were conducted to gain further insight into the precipitation process of these materials. Low cost 6061 Al/AINp composites can be produced with rate and small porosity by extrusion of cold compacted shapes without canning. The mechanical properties of the MMCs obtained by this process have limitations for high particles fractions because of clustering effects. All materials are always harder than the matrix and shows a similar behavior during aging processes but kinetics is changed. Potential applications of dilatometric techniques in the aging investigations of aluminum alloys and aluminum matrix composites have been established. (Author) 23 refs

  11. Mechanical considerations in the processing of high Tc superconductors

    International Nuclear Information System (INIS)

    Wright, R.N.; German, R.M.; Knorr, D.B.; Maccrone, R.K.; Rajan, K.

    1990-01-01

    This paper presents a brief review of deformation processing concepts germane to high-Tc superconductor processing, and illustrates some available techniques with results from recent work. It is noted that YBa2Cu3O(7-x) powder/binder cold extrusion technique is quite sensitive to binder formulation and processing conditions. With appropriate technique, indefinite lengths of YBa2Cu3O(7-x) powder/binder composite can be extruded with sufficient workability to allow coiling and other forming operations. With heat treatment, the resulting prototype wire is electrically continuous and manifests critical current densities of a few hundred A/sq cm. The hot extrusion of YBa2Cu3O(7-x) powder results in a modest, but favorable, development of a texture involving preferential rotation of the c-axis toward the radial direction. Billet designs involving larger powder charge diameters, and thinner container walls, produce the favorable texture. Unfortunately, such billet designs reduce workability. 29 refs

  12. Reduced activation ODS ferritic steel - recent development in high speed hot extrusion processing

    Energy Technology Data Exchange (ETDEWEB)

    Oksiuta, Zbigniew [Faculty of Mechanical Engineering, Bialystok Technical University (Poland); Lewandowska, Malgorzata; Kurzydlowski, Krzysztof [Faculty of Materials Science and Engineering, Warsaw University of Technology (Poland); Baluc, Nadine [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, Villigen PSI (Switzerland)

    2010-05-15

    The paper presents the microstructure and mechanical properties of an oxide dispersion strengthened (ODS), reduced activation, ferritic steel, namely the Fe-14Cr-2W-0.3Ti-0.3Y{sub 2}O{sub 3} alloy, which was fabricated by hot isostatic pressing followed by high speed hydrostatic extrusion (HSHE) and heat treatment HT at 1050 C. Transmission electron microscopy (TEM) observations revealed significant differences in the grain size and dislocation density between the as-HIPped and as-HSHE materials. It was also found that the microstructure of the steel is stable after HT. The HSHE process improves significantly the tensile and Charpy impact properties of the as-HIPped steel. The ultimate tensile strength at room temperature increases from 950 up to 1350 MPa, while the upper shelf energy increases from 3.0 up to 6.0 J. However, the ductile-to-brittle transition temperature (DBTT) remains relatively high (about 75 C).These results indicate that HSHE is a promising method for achieving grain refinement and thus improving the mechanical properties of ODS ferritic steels. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  13. Interfacial reaction between SiC and aluminium due to extrusion and heat treatment process

    International Nuclear Information System (INIS)

    Junaidah Jai; Fauzi Ismail; Samsiah Sulaiman; Patthi Hussain, Azmi Idris; Yoichi Murakoshi

    1999-01-01

    Chemical interaction between aluminium (Al) and silicon carbide (SiC) produces aluminium carbide (Al 4 C 3 ) which presents potential problems in the production and application of Al/SiC Metal Matrix Composit (MMC). The Al 4 C 3 formed can reduce material properties such as strength in the MMC. This research work investigates the interface reaction in Al 7075/SiC MMC made through hot extrusion process. Mixed Al 7075/SiC MMC powders were pressed at 300 degree C and extruded at 500 degree C, with a reduction ratio of 20:1. The extruded MMC was then heat-treated in air at various temperatures from 560 degree C, 600 degree C, 640 degree C, 700 degree C to 800 degree C in order to observe the interface reaction of the MMC materials. The heat-treated MMCs were then analyzed under the optical microscope, X-ray Diffraction (XRD) Spectroscope and Scanning Electron Microscope (SEM) with Energy Dispersive X-ray (EDAZ) attachment to observe the interface reaction within the MMCs. This investigation confirms there was interface reaction between SiC and aluminium

  14. Co-extrusion of food grains-banana pulp for nutritious snacks: optimization of process variables.

    Science.gov (United States)

    Mridula, D; Sethi, Swati; Tushir, Surya; Bhadwal, Sheetal; Gupta, R K; Nanda, S K

    2017-08-01

    Present study was undertaken to optimize the process conditions for development of food grains (maize, defatted soy flour, sesame seed)-banana based nutritious expanded snacks using extrusion processing. Experiments were designed using Box-Behnken design with banana pulp (8-24 g), screw speed (300-350 rpm) and feed moisture (14-16% w.b.). Seven responses viz. expansion ratio (ER), bulk density (BD), water absorption index (WAI), protein, minerals, iron and sensory acceptability were considered for optimizing independent parameters. ER, BD, WAI, protein content, total minerals, iron content, and overall acceptability ranged 2.69-3.36, 153.43-238.83 kg/m 3 , 4.56-4.88 g/g, 15.19-15.52%, 2.06-2.27%, 4.39-4.67 mg/100 g (w.b.) and 6.76-7.36, respectively. ER was significantly affected by all three process variables while BD was influenced by banana pulp and screw speed only. Studied process variables did not affected colour quality except 'a' value with banana pulp and screw speed. Banana pulp had positive correlation with water solubility index, total minerals and iron content and negative with WAI, protein and overall acceptability. Based upon multiple response analysis, optimized conditions were 8 g banana pulp, 350 rpm screw speed and 14% feed moisture indicating the protein, calorie, iron content and overall sensory acceptability in sample as 15.46%, 401 kcal/100 g, 4.48 mg/100 g and 7.6 respectively.

  15. A hybrid twin screw extrusion/electrospinning method to process nanoparticle-incorporated electrospun nanofibres

    International Nuclear Information System (INIS)

    Erisken, Cevat; Kalyon, Dilhan M; Wang Hongjun

    2008-01-01

    A new hybrid methodology that fully integrates the processing capabilities of the twin screw extrusion process (conveying solids, melting, dispersive and distributive mixing, pressurization, temperature profiling, devolatilization) with electrospinning is described. The hybrid process is especially suited to the dispersion of nanoparticles into polymeric binders and the generation of nanoparticle-incorporated fibres and nanofibres. The new technology base is demonstrated with the dispersion of β-tricalcium phosphate (β-TCP) nanoparticles into poly(ε-caprolactone) (PCL) to generate biodegradable non-woven meshes that can be targeted as scaffolds for tissue engineering applications. The new hybrid method yielded fibre diameters in the range of 200-2000 nm for both PCL and β-TCP/PCL (35% by weight) composite scaffolds. The degree of crystallinity of polycaprolactone meshes could be manipulated in the 35.1-41% range, using the voltage strength as a parameter. The electrospinning process, integrated with dispersive kneading disc elements, facilitated the decrease of the cluster sizes and allowed the continuous compounding of the nanoparticles into the biodegradable polymer prior to electrospinning. Thermogravimetric analysis (TGA) of the non-woven meshes validated the continuous incorporation of 35 ± 1.5% (by weight) β-TCP nanoparticles for a targeted concentration of 35%. Uniaxial tensile testing of the meshes with and without the nanoparticles indicated that the ultimate tensile strength at break of the meshes increased from 0.47 ± 0.04 to 0.79 ± 0.08 MPa upon the incorporation of the β-TCP nanoparticles. This demonstration study suggests that the new technology base is particularly suitable for the concomitant dispersion and electrospinning of nanoparticles in the generation of myriad types of functional nanofibres

  16. The comparative study of pressing and extrusion like processes of construction ceramic products in the Metropolitan Area of Cucuta

    International Nuclear Information System (INIS)

    Gelves, J. F.; Monroy, R.; Sanchez, J.; Ramirez, R. P.

    2013-01-01

    The present work studies the principal variables of control in the manufacturing process of construction pieces of the Metropolitan Area of San Jose de Cucuta by extrusion and pressing techniques for its forming. The investigation was taken out using clayey samples of the two principal geological formations of the region where the raw material is taken for processing at an industrial level. The clayey samples milling was made by dry means as well as by moisture means and its particle size was measured. Subsequently the forming process was taken over by using an hydraulic press and extruder with vacuum system , both equipment s at laboratory scale, the pieces shaped were dry and firing between 980 degree centigrade and 1180 degree centigrade at the end of the process the tests were made to determine water absorption, contraction and mass loss at the pieces firing. The study results left to see that the extrusion technique allowed a faster vitrification for the region's clay in comparing with the pressing technique, the contractions of drying and firing are less marked on the pressing techniques with standard deviations much lower than in extrusion. (Author) 13 refs.

  17. Characterization of printed planar electromagnetic coils using digital extrusion and roll-to-roll flexographic processes

    Science.gov (United States)

    Rickard, Scott

    Electromagnets are a crucial component in a wide range of more complex electrical devices due to their ability to turn electrical energy into mechanical energy and vice versa. The trend for electronics becoming smaller and lighter has led to increased interest in using flat, planar electromagnetic coils, which have been shown to perform better at scaled down sizes. The two-dimensional geometry of a planar electromagnetic coil yields itself to be produced by a roll-to-roll additive manufacturing process. The emergence of the printed electronics field, which uses traditional printing processes to pattern functional inks, has led to new methods of mass-producing basic electrical components. The ability to print a planar electromagnetic coil using printed electronics could rival the traditional subtractive and semi-subtractive PCB process of manufacturing. The ability to print lightweight planar electromagnetic coils on flexible substrates could lead to their inclusion into intelligent packaging applications and could have specific use in actuating devices, transformers, and electromagnetic induction applications such as energy harvesting or wireless charging. In attempts to better understand the limitations of printing planar electromagnetic coils, the effect that the design parameters of the planar coils have on the achievable magnetic field strength were researched. A comparison between prototyping methods of digital extrusion and manufacturing scale flexographic printing are presented, discussing consistency in the printed coils and their performance in generating magnetic fields. A method to predict the performance of these planar coils is introduced to allow for design within required needs of an application. Results from the research include a demonstration of a printed coil being used in a flat speaker design, working off of actuating principles.

  18. Parallel assembling and equation solving via graph algorithms with an application to the FE simulation of metal extrusion processes

    CERN Document Server

    Unterkircher, A

    2005-01-01

    We propose methods for parallel assembling and iterative equation solving based on graph algorithms. The assembling technique is independent of dimension, element type and model shape. As a parallel solving technique we construct a multiplicative symmetric Schwarz preconditioner for the conjugate gradient method. Both methods have been incorporated into a non-linear FE code to simulate 3D metal extrusion processes. We illustrate the efficiency of these methods on shared memory computers by realistic examples.

  19. Consumer acceptance and aroma characterization of navy bean (Phaseolus vulgaris) powders prepared by extrusion and conventional processing methods.

    Science.gov (United States)

    Szczygiel, Edward J; Harte, Janice B; Strasburg, Gale M; Cho, Sungeun

    2017-09-01

    Food products produced with bean ingredients are gaining in popularity among consumers due to the reported health benefits. Navy bean (Phaseolus vulgaris) powder produced through extrusion can be considered as a resource-efficient alternative to conventional methods, which often involve high water inputs. Therefore, navy bean powders produced with extrusion and conventional methods were assessed for the impact of processing on consumer liking in end-use products and odor-active compounds. Consumer acceptance results reveal significant differences in flavor, texture and overall acceptance scores of several products produced with navy bean powder. Crackers produced with extruded navy bean powder received higher hedonic flavor ratings than those produced with commercial navy bean powder (P < 0.001). GC-O data showed that the commercial powder produced through conventional processing had much greater contents of several aliphatic aldehydes commonly formed via lipid oxidation, such as hexanal, octanal and nonanal with descriptors of 'grassy', 'nutty', 'fruity', 'dusty', and 'cleaner', compared to the extruded powder. Extrusion processed navy bean powders were preferred over commercial powders for certain navy bean powder applications. This is best explained by substantial differences in aroma profiles of the two powders that may have been caused by lipid oxidation. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Consensus Control Design for 360 MN Extrusion Machine Producing Process

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2014-01-01

    Full Text Available This paper mainly addresses the issue of 360 MN extrusion machine and focuses on the stabilization control of main table attitude. We will first introduce the problem and then model the extrusion machine. As the machine is a multi-input multioutput (MIMO and strong coupling system, it is challenging to apply existing control theory to design a controller to stabilize the main table attitude. Motivated by recent research in the field of multiagent systems, we design a consensus control protocol for our system and derive our convergence conditions based directly on Routh stability criterion. The advantages of the design are also demonstrated by numerical simulation.

  1. A simulation of heat transfer during billet transport

    Energy Technology Data Exchange (ETDEWEB)

    Jaklic, A.; Glogovac, B. [Institute of Metals and Technology, Ljubljana (Slovenia); Kolenko, T. [University of Ljubljana (Slovenia). Faculty of Natural Science and Technology; Zupancic, B. [University of Ljubljana (Slovenia). Faculty of Electrical Engineering; Zak, B. T. [Terming d.o.o., Ljubljana (Slovenia)

    2002-07-01

    This paper presents a simulation model for billet cooling during the billet's transport from the reheating furnace to the rolling mill. During the transport, the billet is exposed to radiation, convection and conduction. Due to the rectangular shape of the billet, the three-dimensional finite-difference model could be applied to calculate the heat conduction inside the billet. The billets are reheated in a gas-fired walking-beam furnace and are exposed to scaling. The model takes into account the effect of the thin oxide scale. We proved that the scale significantly affects the temperature distribution in the billet and should not be neglected. The model was verified by using a thermal camera. (author)

  2. Application of heat treatment and hot extrusion processes to improve mechanical properties of the AZ91 alloy

    Directory of Open Access Journals (Sweden)

    T. Reguła

    2010-04-01

    Full Text Available The main aim of this paper is to evaluate the effects of hot working (extrusion and hest treatment on room temperature mechanical properties of magnesium-based AZ91 alloy. The results were compared with as-cast condition. The examined material had been obtained by gravity casting to permanent moulds and subsequently subjected to heat treatment and/or processed by extrusion at 648 K. Microstructural and mechanical properties of properly prepared specimens were studied. Rm, Rp02 and A5 were determined from tensile tests. Brinell hardness tests were also conducted. The research has shown that hot working of AZ91 alloy provides high mechanical properties unattainable by cast material subjected to heat-treatment. The investigated alloy subjected to hot working and subsequently heat-treated has doubled its strength and considerably improved the elongation - compared with the as-cast material.

  3. Single screw extrusion of apple pomace-enriched blends: Extrudate characteristics and determination of optimum processing conditions.

    Science.gov (United States)

    Singha, Poonam; Muthukumarappan, Kasiviswanathan

    2018-07-01

    Response surface methodology was used to investigate the single screw extrusion of apple pomace-defatted soy flour-corn grits blends and the product properties. Five different blends at a level of 0-20% w/w apple pomace were extrusion cooked with varied barrel and die temperature (100-140℃), screw speed (100-200 rpm), and feed moisture content (14-20% wet basis). Increasing apple pomace content in the blends significantly ( P extrudates. The expansion ratio increased with pomace inclusion level of 5% but decreased significantly ( P extruded snack products were at 140℃ barrel and die temperature, 20% feed moisture content, and 200 rpm screw speed. The results indicated active interaction between apple pomace and starch during expansion process.

  4. An Ultimatum Game Approach to Billet Assignments

    Science.gov (United States)

    2015-09-01

    time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed , and completing and reviewing this...treatments are needed for this investigation. To conserve the subject pool and meet the budget, we elected to pursue treatments that covered salient...across billets can be partially offset through compensating wages ( hedonic wages) and/or the potential of future superior assignments. In the

  5. Hydrostatic extrusion of magnesium alloys

    NARCIS (Netherlands)

    Sillekens, W.H.; Bohlen, J.

    2012-01-01

    This chapter deals with the capabilities and limitations of the hydrostatic extrusion process for the manufacturing of magnesium alloy sections. Firstly, the process basics for the hydrostatic extrusion of materials in general and of magnesium in particular are introduced. Next, some recent research

  6. Microstructure evolution and mechanical properties of nano-SiCp/AZ91 composite processed by extrusion and equal channel angular pressing (ECAP)

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, X.G.; Ying, T. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zheng, M.Y., E-mail: zhenghe@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wei, E.D.; Wu, K.; Hu, X.S. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Gan, W.M.; Brokmeier, H.G. [Institute of Materials Research, Helmholtz-Centre Geesthacht, D-21502 Geesthacht (Germany); Golovin, I.S. [Department of Physical Metallurgy of Non-Ferrous Metals, National University of Science and Technology “MISiS”, Leninsky ave. 4, 119049 Moscow (Russian Federation)

    2016-11-15

    Nano-SiCp/AZ91 magnesium matrix composite was fabricated by stir casting. The as-cast ingots were extruded at 350 °C, then processed by equal channel angular pressing (ECAP) at various temperatures (250 °C, 300 °C and 350 °C). Grains are significantly refined after the extrusion and the ECAP. A basal fibre texture was detected by neutron diffraction after the extrusion, which inclines about 45° to the extrusion direction (ED) after the ECAP. Nano-scaled SiC particles agglomerate in the as-cast composite. After the extrusion, the agglomeration tends to form continuous or discontinuous strips along the extrusion direction. By application of the ECAP, the agglomerated SiC particles are partly dispersed and the strips formed during the extrusion tend to be thinner and broken with the increasing pass number. The yield tensile strength (YTS) and the ultimate tensile strength (UTS) of the composite are dramatically increased after the extrusion. ECAP for one pass at various temperatures further increases the strength, however, the YTS decreases with the increasing ECAP temperature and the pass number. The Orowan equations predict the maximum YTS of the composite may be up to 400 MPa providing SiC particles are homogenously distributed in the matrix. - Highlights: •Nano-scaled SiC particles were successfully added into AZ91 by stirring casting. •Agglomeration of nano-particles were improved by extrusion and ECAP. •Yield strength of the composite is 328 MPa after one pass of ECAP. •Further ECAP process with optimized parameters may fully disperse nano-particles. •Yield strength is predicted to up to 400 MPa when particles are fully dispersed.

  7. Advances in Thermal Spray Deposition of Billets for Particle Reinforced Light Metals

    International Nuclear Information System (INIS)

    Wenzelburger, Martin; Zimmermann, Christian; Gadow, Rainer

    2007-01-01

    Forming of light-metals in semi-solid state offers some advantages like low process temperatures, improved mould durability, good flow behavior and fine, globular microstructure of the final material. By the introduction of ceramic particles, increased elastic modulus and yield strength as well as wear resistance and creep behavior can be obtained. By semi-solid forging or semi-solid casting, particle reinforced metals (PRM) can be produced with improved matrix microstructure and beneficial forming process parameters compared to conventional MMC manufacturing techniques. The production of this kind of light metal matrix composites requires the supply of dense semi-finished parts with well defined volume fractions of homogeneously distributed particulate reinforcement. A manufacturing method for cylindrical light metal billets is described that applies thermal spraying as a build-up process for simultaneous deposition of matrix and reinforcement phase with cored wires as spraying material. Thermal spraying leads to small grain sizes and prevents dendrite formation. However, long process cycle times lead to billet heating and recrystallization of the matrix microstructure. In order to preserve small grain sizes that enable semi-solid forming, the thermal spraying process was analyzed by in-flight particle analysis and thermography. As a consequence, the deposition process was optimized by adaptation of the thermal spraying parameters and by application of additional cooling, leading to lower billet temperatures and finer PRM billet microstructure

  8. Precision analysis in billet preparation for micro bulk metal forming

    DEFF Research Database (Denmark)

    Mahshid, Rasoul; Hansen, Hans N.

    2015-01-01

    The purpose of this research is to fabricate billets for an automated transfer press for micro forming. High performance transfer presses are wellknown in conventional metal forming and distinguished from their automation and mass production. The press used in this research is a vertical mechanical...... press. When using a vertical mechanical press, the material is fed as billets into the forming zone. Therefore, a large number of highly uniform billets are required to run mass production in such a setup. Shearing technique was used for manufacturing the billets. The efficiency of the shearing tool...

  9. Resource-saving technology for manufacturing billets for piston’s rings

    Directory of Open Access Journals (Sweden)

    A. N. Krutilin

    2010-10-01

    Full Text Available Piston’s rings are one of the most critical parts of heavy-duty engines for wear-work in conditions of prolonged exposure of alternating loads and high temperatures. Currently in the world production of billets for piston’s rings is dominated by the two methods of casting: production of individual and oiling billets of gray and ductile cast iron in green-sand mold and shell mold and centrifugal casting method (intended primarily for oiling billets of ductile iron; the technology for individual production billets for piston’s rings with a diameter up to 250 mm, from 250 to 450 mm with individual and oiling ways, over 450 mm - preference of oiling billet. The best parameters of physical-mechanical and operational characteristics piston’s rings are in the case of manufacture of billets to the maximum extent approaching the configuration to the finished product. The rings made of shaped billets are characterized by uniform distribution of properties from the perimeter, provide a given diagram of pressures and full fit to the cylinder. Because of deficiencies of traditional methods of casting, continuous quality requirements for billets, the need for economy of material, fuel and energy resources, are finding new progressive technological processes of production of high-quality billets for piston’s rings. One of the most promising for piston rings billet is a method of casting consists of immersing the sand molds into the melt. It is interesting idea, expressed by A. Sutherland and subsequently patented in several countries in the way of casting method, called "immersion pouring technology" (ICT-Immersion Casting Technique [1]. Experiments, conducted in the laboratory of the Belarusian National Technical University, have identified significant shortcomings of immersion method of casting. When forms are immersing, have an intensive gassing in molten metal, and freezing of the metal on the out surface of the form. But despite some

  10. Residual Stresses in DC cast Aluminum Billet: Neutron Diffraction Measurements and Thermomechanical Modeling

    International Nuclear Information System (INIS)

    Drezet, J.-M.; Evans, A.; Pirling, T.

    2011-01-01

    Thermally-induced residual stresses, generated during the industrial Direct Chill casting process of aluminum alloys, can cause both significant safety concerns as well as the formation of defects during down-stream processing. Although these thermally induced strains can be partially relieved by permanent deformation, cracks will be generated either during solidification (hot tears) or post-solidification cooling (cold cracks) when stresses exceed the deformation limit of the alloy. Furthermore, the thermally induced strains result in the presence of large internal stresses within the billet before further processing steps. Although numerical models have been previously developed to compute these residual stresses, most of the computations have been validated only against measured surface distortions. In the present work, the variation in residual elastic strains and stresses in the steady state regime of casting has been measured as a function of radial position using neutron diffraction in an AA6063 grain-refined cylindrical billet. These measurements have been carried out on the same billet section at Poldi at PSI-Villigen and at Salsa at ILL-Grenoble and compare favorably. The results are used to validate a thermo-mechanical finite element casting model and to assess the level of stored elastic energy within the billet.

  11. Assessment of extrusion-sonication process on flame retardant polypropylene by rheological characterization

    Directory of Open Access Journals (Sweden)

    Guadalupe Sanchez-Olivares

    2016-05-01

    Full Text Available In this work, the rheological behavior of flame retardant polypropylene composites produced by two methods: 1 twin-screw extrusion and 2 ultrasound application combined with a static mixer die single-screw extrusion is analyzed in detail; results are related to the morphology of the composites. The flame retardant polymer composites are composed of a polypropylene matrix, an intumescent flame retardant system and functionalized clay. Scanning electron microscopy revealed that the combination of the static mixer die and on-line sonication reduced particle size and improved the dispersion and distribution of the intumescent additives in the polypropylene matrix at the micrometric level. From linear viscoelastic properties, the Han, Cole-Cole and van Gurp-Palmen diagrams characterized the improved particle dispersion of the flame retardant additives. Two well-defined rheological behaviors were observed in these diagrams. These behaviors are independent on clay presence and concentration. In fact, the ultrasound device generates a 3D highly interconnected structure similar to a co-continuous pattern observed in polymer blends as evidenced by rheological measurements. This improvement in the dispersion and distribution of the additives is attributed to the combined effect of the static mixer die and on-line sonication that allowed reducing the additive content while achieving the optimum classification UL94-V0.

  12. The reactive extrusion of thermoplastic polyurethane

    NARCIS (Netherlands)

    Verhoeven, Vincent Wilhelmus Andreas

    2006-01-01

    The objective of this thesis was to increase the understanding of the reactive extrusion of thermoplastic polyurethane. Overall, several issues were identified: • Using a relative simple extrusion model, the reactive extrusion process can be described. This model can be used to further investigate

  13. Process design and control of a twin screw hot melt extrusion for continuous pharmaceutical tamper-resistant tablet production.

    Science.gov (United States)

    Baronsky-Probst, J; Möltgen, C-V; Kessler, W; Kessler, R W

    2016-05-25

    Hot melt extrusion (HME) is a well-known process within the plastic and food industries that has been utilized for the past several decades and is increasingly accepted by the pharmaceutical industry for continuous manufacturing. For tamper-resistant formulations of e.g. opioids, HME is the most efficient production technique. The focus of this study is thus to evaluate the manufacturability of the HME process for tamper-resistant formulations. Parameters such as the specific mechanical energy (SME), as well as the melt pressure and its standard deviation, are important and will be discussed in this study. In the first step, the existing process data are analyzed by means of multivariate data analysis. Key critical process parameters such as feed rate, screw speed, and the concentration of the API in the polymers are identified, and critical quality parameters of the tablet are defined. In the second step, a relationship between the critical material, product and process quality attributes are established by means of Design of Experiments (DoEs). The resulting SME and the temperature at the die are essential data points needed to indirectly qualify the degradation of the API, which should be minimal. NIR-spectroscopy is used to monitor the material during the extrusion process. In contrast to most applications in which the probe is directly integrated into the die, the optical sensor is integrated into the cooling line of the strands. This saves costs in the probe design and maintenance and increases the robustness of the chemometric models. Finally, a process measurement system is installed to monitor and control all of the critical attributes in real-time by means of first principles, DoE models, soft sensor models, and spectroscopic information. Overall, the process is very robust as long as the screw speed is kept low. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Effect of Nano-clay on Rheological and Extrusion Foaming Process of a Block-Copolymerized Polypropylene

    Directory of Open Access Journals (Sweden)

    Wang Mingyi

    2016-01-01

    Full Text Available The effects of nano-clay and the corresponding coupling agent maleic anhydride grafted polypropylene (PP-g-MAH on thermal properties, rheological properties and extrusion foaming process of a block-copolymerized polypropylene (B-PP were studied. Supercritical CO2 (SC CO2 was used as the foaming agent with a concentration of 5wt%. Each step of foamed B-PP/ PP-g-MAH/ nano-clay composites processing is addressed, including mixing of the composites, manufacture of the composites, foaming process of the composites and characterization of the cell structure. The results showed that incorporation of nano-clay and PP-g-MAH caused reduced melt strength and complex viscosity of B-PP. However, the heterogeneous nucleation induced by nano-clay and PP-g-MAH improved the maximum foaming expansion ratio and cell-population density of B-PP foam.

  15. Microstructure and mechanical properties of Al-3Fe alloy processed by equal channel angular extrusion

    International Nuclear Information System (INIS)

    Fuxiao, Yu; Fang, Liu; Dazhi, Zhao; Toth, Laszlo S

    2014-01-01

    Al-Fe alloys are attractive for applications at temperatures beyond those normally associated with the conventional aluminum alloys. Under proper solidification condition, a full eutectic microstructure can be generated in Al-Fe alloys at Fe concentration well in excess of the eutectic composition of 1.8 wt.% Fe. The microstructure in this case is characterized by the metastable regular eutectic Al-Al 6 Fe fibers of nano-scale in diameter, instead of the equilibrium eutectic Al-Al 3 Fe phase. In this study, the microstructure and mechanical properties of the Al-3Fe alloy with metastable Al 6 Fe particles deformed by equal channel angular extrusion were investigated. Severe plastic deformation results in a microstructure consisting of submicron equiaxed Al grains with a uniform distribution of submicron Al 6 Fe particles on the grain boundaries. The room temperature tensile properties of the alloy with this microstructure will be presented

  16. Comparison of the Savannah River Site billet active well coincidence counter and two Californium Shufflers

    International Nuclear Information System (INIS)

    Sadowski, E.T.; Griffin, J.C.; Rinard, P.M.

    1991-01-01

    A Scrap Californium Shuffler at the Savannah River Site (SRS) was calibrated to assay the U-Al cores of billets (an intermediate step in the SRS reactor fuel fabrication cycle.) The precision of the Scrap Shuffler over several years has been approximately 0.50%. A typical total uncertainty for the assay of a core on the Scrap Shuffler is approximately 0.33% for a twelve minute assay. The precision over several months and a typical total uncertainty for the Billet Active Well (neutron) Coincidence Counter (BAWCC) are approximately 1.0% and 1.9%, respectively, for a fifteen minute assay. A new Billet Californium Shuffler specifically designed for assaying SRS billets has yielded precision (over one month) and total uncertainty results of 0.40% and 0.69%, respectively, for an eight minute assay. The introduction of a measurement point into the fuel fabrication cycle to replace estimates based upon material weight will greatly enhance material and process control in the Reactor Materials area of SRS. The use of all three instruments provides a comparison of the relative merits of Active Well (neutron) Coincidence Counters (AWCCs) and shufflers for assay of homogeneous and geometrically simple material containing 235 U. The measurement precisions, systematic and random uncertainties, as well as the procurement and operation of each instrument will be compared. 3 refs., 5 figs., 1 tab

  17. Complex deformation routes for direct recycling aluminium alloy scrap via industrial hot extrusion

    Science.gov (United States)

    Paraskevas, Dimos; Kellens, Karel; Kampen, Carlos; Mohammadi, Amirahmad; Duflou, Joost R.

    2018-05-01

    This paper presents the final results of an industrial project, aiming for direct hot extrusion of wrought aluminium alloy scrap at an industrial scale. Two types of complex deformation/extrusion routes were tested for the production of the same profile, starting from AA6060 scrap in form of machining chips. More specifically scrap-based billets were extruded through: a 2-porthole and a 4-porthole die-set, modified for enhanced scrap consolidation and grain refinement. For comparison reasons, cast billets of the same alloy were extruded through the modified 2-porthole die set. The tensile testing results as well as microstructural investigations show that the 4-porthole extrusion route further improves scrap consolidation compared to the 2-porthole die output. The successful implementation of solid state recycling, directly at industrial level, indicates the technological readiness level of this research.

  18. Influence of parameters controlling the extrusion step in fused filament fabrication (FFF) process applied to polymers using numerical simulation

    Science.gov (United States)

    Shahriar, Bakrani Balani; Arthur, Cantarel; France, Chabert; Valérie, Nassiet

    2018-05-01

    Extrusion is one of the oldest manufacturing processes; it is widely used for manufacturing finished and semi-finished products. Moreover, extrusion is also the main process in additive manufacturing technologies such as Fused Filament Fabrication (FFF). In FFF process, the parts are manufactured layer by layer using thermoplastic material. The latter in form of filament, is melted in the liquefier and then it is extruded and deposited on the previous layer. The mechanical properties of the printed parts rely on the coalescence of each extrudate with another one. The coalescence phenomenon is driven by the flow properties of the melted polymer when it comes out the nozzle just before the deposition step. This study aims to master the quality of the printed parts by controlling the effect of the parameters of the extruder on the flow properties in the FFF process. In the current study, numerical simulation of the polymer coming out of the extruder was carried out using Computational Fluid Dynamics (CFD) and two phase flow (TPF) simulation Level Set (LS) method by 2D axisymmetric module of COMSOL Multiphysics software. In order to pair the heat transfer with the flow simulation, an advection-diffusion equation was used. Advection-diffusion equation was implemented as a Partial Differential Equation (PDE) in the software. In order to define the variation of viscosity of the polymer with temperature, the rheological behaviors of two thermoplastics were measured by extensional rheometer and using a parallel-plate configuration of an oscillatory rheometer. The results highlight the influence of the environment temperature and the cooling rate on the temperature and viscosity of the extrudate exiting from the nozzle. Moreover, the temperature and its corresponding viscosity at different times have been determined using numerical simulation. At highest shear rates, the extrudate undergoes deformation from typical cylindrical shape. These results are required to predict the

  19. Melt extrusion vs. spray drying: The effect of processing methods on crystalline content of naproxen-povidone formulations.

    Science.gov (United States)

    Haser, Abbe; Cao, Tu; Lubach, Joe; Listro, Tony; Acquarulo, Larry; Zhang, Feng

    2017-05-01

    Our hypothesis is that melt extrusion is a more suitable processing method than spray drying to prepare amorphous solid dispersions of drugs with a high crystallization tendency. Naproxen-povidone K25 was used as the model system in this study. Naproxen-povidone K25 solid dispersions at 30% and 60% drug loadings were characterized by modulated DSC, powder X-ray diffraction, FT-IR, and solid-state 13 C NMR to identify phase separation and drug recrystallization during processing and storage. At 30% drug loading, hydrogen bond (H-bond) sites of povidone K25 were not saturated and the glass transition (T g ) temperature of the formulation was higher. As a result, both melt-extruded and spray-dried materials were amorphous initially and remained so after storage at 40°C. At 60% drug loading, H-bond sites were saturated, and T g was low. We were not able to prepare amorphous materials. The initial crystallinity of the formulations was 0.4%±0.2% and 5.6%±0.6%, and increased to 2.7%±0.3% and 21.6%±1.0% for melt-extruded and spray-dried materials, respectively. Spray-dried material was more susceptible to re-crystallization during processing, due to the high diffusivity of naproxen molecules in the formulation matrix and lack of kinetic stabilization from polymer solution. A larger number of crystalline nucleation sites and high surface area made the spray-dried material more susceptible to recrystallization during storage. This study demonstrated the unique advantages of melt extrusion over spray drying for the preparation of amorphous solid dispersions of naproxen at high drug level. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Investigation of multi-stage cold forward extrusion process using coupled thermo-mechanical finite element analysis

    Science.gov (United States)

    Görtan, Mehmet Okan

    2018-05-01

    Cold extrusion processes are distinguished by their low material usage as well as great efficiency in the production of mid-range and large component series. Although majority of the cold extruded parts are produced using die systems containing multiple forming stages, this subject has rarely been investigated so far. Therefore, the characteristics of multi-stage cold forward rod extrusion is studied in the current work using thermo-mechanically coupled finite element (FE) analysis. A case hardening steel, 16MnCr5 (1.7131) was used as experimental material. Its strain, strain rate and temperature dependent mechanical characteristics were determined using compression testing and modeled in FE simulations via a Johnson-Cook material model. Friction coefficients for the same material while in contact with a tool steel (1.2379) were determined dependent on temperature and contact pressure using sliding compression test (SCT) and modeled by an adaptive friction model developed by the author. In the first set of simulations, rod material with a diameter of 14.9 mm was extruded down to a diameter of 9.6 mm in a single step using three different die opening angles (2α); 20°, 40° and 60°. In the second set of investigations, the same rod was reduced first to 12 mm and then to 9.6 mm in two steps within the same forming die. Press forces, contact normal stresses between extruded material and forming die, material temperature and axial stresses are compared in these two set of simulations and the differences are discussed.

  1. Development and Performance of a Highly Sensitive Model Formulation Based on Torasemide to Enhance Hot-Melt Extrusion Process Understanding and Process Development.

    Science.gov (United States)

    Evans, Rachel C; Kyeremateng, Samuel O; Asmus, Lutz; Degenhardt, Matthias; Rosenberg, Joerg; Wagner, Karl G

    2018-02-27

    The aim of this work was to investigate the use of torasemide as a highly sensitive indicator substance and to develop a formulation thereof for establishing quantitative relationships between hot-melt extrusion process conditions and critical quality attributes (CQAs). Using solid-state characterization techniques and a 10 mm lab-scale co-rotating twin-screw extruder, we studied torasemide in a Soluplus® (SOL)-polyethylene glycol 1500 (PEG 1500) matrix, and developed and characterized a formulation which was used as a process indicator to study thermal- and hydrolysis-induced degradation, as well as residual crystallinity. We found that torasemide first dissolved into the matrix and then degraded. Based on this mechanism, extrudates with measurable levels of degradation and residual crystallinity were produced, depending strongly on the main barrel and die temperature and residence time applied. In addition, we found that 10% w/w PEG 1500 as plasticizer resulted in the widest operating space with the widest range of measurable residual crystallinity and degradant levels. Torasemide as an indicator substance behaves like a challenging-to-process API, only with higher sensitivity and more pronounced effects, e.g., degradation and residual crystallinity. Application of a model formulation containing torasemide will enhance the understanding of the dynamic environment inside an extruder and elucidate the cumulative thermal and hydrolysis effects of the extrusion process. The use of such a formulation will also facilitate rational process development and scaling by establishing clear links between process conditions and CQAs.

  2. Microstructures and mechanical properties evolution of an Al–Fe–Cu alloy processed by repetitive continuous extrusion forming

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Xiangxin [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Zhang, Hui, E-mail: zhanghui63hunu@163.com [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Hunan Province Key Laboratory for Spray Deposition Technology and Application, Hunan University, Changsha 410082 (China); Ji, Xiankun [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China)

    2014-08-26

    Repetitive continuous extrusion forming process (R-Conform process), as a continuous severe plastic deformation method, was performed on a horizontal continuous casting Al–0.74Fe–0.23Cu alloy. The microstructural evolution and mechanical properties were studied by optical microscope, X-ray diffraction, scanning electron microscope, transmission electron microscope, and tensile testing. The results show that tensile ductility of the Al–0.74Fe–0.23Cu alloy is greatly improved but tensile strength is gradually decreased after repetitive Conform processing. The necking is more intense and the size of dimples becomes bigger with increasing Conform passes. The first pass Conform process induces obviously grains refining, dissolution of AlFe, AlFeSi and AlSi primary phases, strain-induced precipitation and transformation of crystal orientation distributions, but further Conform deformation only changes the redistribution of precipitates. The changes of mechanical properties may be attributed to a complex progress of recovery, recrystallization and redistribution of precipitates during repetitive Conform process.

  3. Modeling, Prediction, and Control of Heating Temperature for Tube Billet

    Directory of Open Access Journals (Sweden)

    Yachun Mao

    2015-01-01

    Full Text Available Annular furnaces have multivariate, nonlinear, large time lag, and cross coupling characteristics. The prediction and control of the exit temperature of a tube billet are important but difficult. We establish a prediction model for the final temperature of a tube billet through OS-ELM-DRPLS method. We address the complex production characteristics, integrate the advantages of PLS and ELM algorithms in establishing linear and nonlinear models, and consider model update and data lag. Based on the proposed model, we design a prediction control algorithm for tube billet temperature. The algorithm is validated using the practical production data of Baosteel Co., Ltd. Results show that the model achieves the precision required in industrial applications. The temperature of the tube billet can be controlled within the required temperature range through compensation control method.

  4. Effect of extrusion process on the functional properties of high amylose corn starch edible films and its application in mango (Mangifera indica L.) cv. Tommy Atkins.

    Science.gov (United States)

    Calderón-Castro, Abraham; Vega-García, Misael Odín; de Jesús Zazueta-Morales, José; Fitch-Vargas, Perla Rosa; Carrillo-López, Armando; Gutiérrez-Dorado, Roberto; Limón-Valenzuela, Víctor; Aguilar-Palazuelos, Ernesto

    2018-03-01

    Starch is an attractive raw material as ingredient for edible film manufacture because of its low cost, abundant availability, renewability, and biodegradability. Nevertheless, starch based films exhibit several disadvantages such as brittleness and poor mechanical and barrier properties, which restrict its application for food packaging. The use of the extrusion technology as a pretreatment of the casting technique to change the starch structure in order to obtain edible films, may constitute an alternative to generate coatings with good functional properties and maintain longer the postharvest quality and shelf life of fruits. For this reason, the objective of this study was to optimize the conditions of an extrusion process to obtain a formulation of modified starch to elaborate edible films with good functional properties using the casting technique and assess the effect during the storage when applied on a model fruit. The best conditions of the extrusion process and concentration of plasticizers were obtained using response surface methodology. From optimization study, it was found that appropriate conditions to obtain starch edible films with the best mechanical and barrier properties were an extrusion temperature of 100 °C and a screw speed of 120 rpm, while the glycerol content was 16.73%. Also, once applied in fruit, the loss of quality attributes was diminished.

  5. Etching Behavior of Aluminum Alloy Extrusions

    Science.gov (United States)

    Zhu, Hanliang

    2014-11-01

    The etching treatment is an important process step in influencing the surface quality of anodized aluminum alloy extrusions. The aim of etching is to produce a homogeneously matte surface. However, in the etching process, further surface imperfections can be generated on the extrusion surface due to uneven materials loss from different microstructural components. These surface imperfections formed prior to anodizing can significantly influence the surface quality of the final anodized extrusion products. In this article, various factors that influence the materials loss during alkaline etching of aluminum alloy extrusions are investigated. The influencing variables considered include etching process parameters, Fe-rich particles, Mg-Si precipitates, and extrusion profiles. This study provides a basis for improving the surface quality in industrial extrusion products by optimizing various process parameters.

  6. A unified spray forming model for the prediction of billet shape geometry

    International Nuclear Information System (INIS)

    Hattel, J.H.; Pryds, N.H.

    2004-01-01

    In the present work a unified model for simulating the spray forming process has been developed. Models for the atomization and the deposition processes have been coupled together in order to obtain a new unified description of the spray forming process. The model is able to predict the shape and the temperatures of a spray-formed billet and takes into account the thermal coupling between the gas and the droplets, the change in droplet size distribution along the r-axis in the spray cone and the shading effect. The deposition describes the evolution of the preform with time. For this stage a novel 3D model, which allows the atomizer to be placed asymmetrically over the substrate and also includes the withdrawal of the deposit, was developed. This makes it possible to model not only the growth of a Gaussian shaped preform in which case the spray axis and the rotation axis coincide, but also the surface evolution during billet growth. For this purpose, shading must be taken into account as a core part of the surface evolution algorithm. The unified model involves coupling of three sub models for the atomization, the deposition and the shape of the billet. This coupling, which is a central part of the present work, is also described. Results from the integrated model are presented and the potential for better process understanding as well as process optimization is evident

  7. An integrated numerical model for the prediction of Gaussian and billet shapes

    International Nuclear Information System (INIS)

    Hattel, J.H.; Pryds, N.H.; Pedersen, T.B.

    2004-01-01

    Separate models for the atomisation and the deposition stages were recently integrated by the authors to form a unified model describing the entire spray-forming process. In the present paper, the focus is on describing the shape of the deposited material during the spray-forming process, obtained by this model. After a short review of the models and their coupling, the important factors which influence the resulting shape, i.e. Gaussian or billet, are addressed. The key parameters, which are utilized to predict the geometry and dimension of the deposited material, are the sticking efficiency and the shading effect for Gaussian and billet shape, respectively. From the obtained results, the effect of these parameters on the final shape is illustrated

  8. Experimental and numerical investigation of ram extrusion of bread dough

    Science.gov (United States)

    Mohammed, M. A. P.; Wanigasooriya, L.; Charalambides, M. N.

    2016-10-01

    An experimental and numerical study on ram extrusion of bread dough was conducted. A laboratory ram extrusion rig was designed and manufactured, where dies with different angles and exit radii were employed. Rate dependent behaviour was observed from tests conducted at different extrusion speeds, and higher extrusion pressure was reported for dies with decreasing exit radius. A finite element simulation of extrusion was performed using the adaptive meshing technique in Abaqus. Simulations using a frictionless contact between the billet and die wall showed that the model underestimates the response at high entry angles. On the other hand, when the coefficient of friction value was set to 0.09 as measured from friction experiments, the dough response was overestimated, i.e. the model extrusion pressure was much higher than the experimentally measured values. When a critical shear stress limit, τmax, was used, the accuracy of the model predictions improved. The results showed that higher die angles require higher τmax values for the model and the experiments to agree.

  9. Quasi-superplasticity of a banded-grained Al-Mg-Y alloy processed by continuous casting-extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Furong, E-mail: cfr-lff@163.com [School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); Zhu, Xiaotong [School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); Huaian Dekema Semiconductor Co., Ltd., Huaian 223300 (China); Wang, Shuncheng [Institute of Materials Processing and Forming Technology, Guangdong General Research Institute of Industrial Technology, Guangzhou 510650 (China); Shi, Lu [School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); Xu, Guangming [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Wen, Jinglin [School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China)

    2017-04-06

    The continuous casting-extrusion (CTE) process is a short-route technology for fabricating aluminum and aluminum alloy wires. A novel Al-1.44Mg-1.09Y alloy was prepared by CTE, and its mechanical properties and microstructure evolution were investigated at elevated temperatures to explore the hot tensile ductility of aluminum alloy wire. A true strain to failure of 1.159 was obtained at 773 K and 1.67×10{sup −2} s{sup −1}, and the present alloy exhibits high strain rate quasi-superplasticity. Microstructure observations reveal that it is difficult to realize the equiaxedness of elongated or textured grains through hot tensile deformation. A new deformation mechanism map (DMM) was constructed which predicts that dislocation climb at high stress dominates the high-temperature deformation process. This theoretical prediction using the DMM is in good agreement with experimental transmission-electron-microscopy results and with the estimated true stress exponent of 5 and the activation energy for deformation in the range 127.378―141.536 kJ mol{sup −1}. A new three-dimensional histogram containing a dynamic recovery (DRV) or dynamic recrystallization factor was constructed to demonstrate that the DRV mechanism dominates the deformation. Most experimental results are consistent with prediction using this histogram.

  10. Quasi-superplasticity of a banded-grained Al-Mg-Y alloy processed by continuous casting-extrusion

    International Nuclear Information System (INIS)

    Cao, Furong; Zhu, Xiaotong; Wang, Shuncheng; Shi, Lu; Xu, Guangming; Wen, Jinglin

    2017-01-01

    The continuous casting-extrusion (CTE) process is a short-route technology for fabricating aluminum and aluminum alloy wires. A novel Al-1.44Mg-1.09Y alloy was prepared by CTE, and its mechanical properties and microstructure evolution were investigated at elevated temperatures to explore the hot tensile ductility of aluminum alloy wire. A true strain to failure of 1.159 was obtained at 773 K and 1.67×10 −2 s −1 , and the present alloy exhibits high strain rate quasi-superplasticity. Microstructure observations reveal that it is difficult to realize the equiaxedness of elongated or textured grains through hot tensile deformation. A new deformation mechanism map (DMM) was constructed which predicts that dislocation climb at high stress dominates the high-temperature deformation process. This theoretical prediction using the DMM is in good agreement with experimental transmission-electron-microscopy results and with the estimated true stress exponent of 5 and the activation energy for deformation in the range 127.378―141.536 kJ mol −1 . A new three-dimensional histogram containing a dynamic recovery (DRV) or dynamic recrystallization factor was constructed to demonstrate that the DRV mechanism dominates the deformation. Most experimental results are consistent with prediction using this histogram.

  11. Replication of engine block cylinder bridge microstructure and mechanical properties with lab scale 319 Al alloy billet castings

    International Nuclear Information System (INIS)

    Lombardi, A.; D'Elia, F.; Ravindran, C.; MacKay, R.

    2014-01-01

    In recent years, aluminum alloy gasoline engine blocks have in large part successfully replaced nodular cast iron engine blocks, resulting in improved vehicle fuel efficiency. However, because of the inadequate wear resistance properties of hypoeutectic Al–Si alloys, gray iron cylinder liners are required. These liners cause the development of large tensile residual stress along the cylinder bores and necessitate the maximization of mechanical properties in this region to prevent premature engine failure. The aim of this study was to replicate the engine cylinder bridge microstructure and mechanical properties following TSR treatment (which removes the sand binder to enable easy casting retrieval) using lab scale billet castings of the same alloy composition with varying cooling rates. Comparisons in microstructure between the engine block and the billet castings were carried out using optical and scanning electron microscopy, while mechanical properties were assessed using tensile testing. The results suggest that the microstructure at the top and middle of the engine block cylinder bridge was successfully replicated by the billet castings. However, the microstructure at the bottom of the cylinder was not completely replicated due to variations in secondary phase morphology and distribution. The successful replication of engine block microstructure will enable the future optimization of heat treatment parameters. - Highlights: • A method to replicate engine block microstructure was developed. • Billet castings will allow cost effective optimization of heat treatment process. • The replication of microstructure in the cylinder region was mostly successful. • Porosity was more clustered in the billet castings compared to the engine block. • Mechanical properties were lower in billet castings due to porosity and inclusions

  12. Replication of engine block cylinder bridge microstructure and mechanical properties with lab scale 319 Al alloy billet castings

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, A., E-mail: a2lombar@ryerson.ca [Centre for Near-net-shape Processing of Materials, Ryerson University, 101 Gerrard Street East, Toronto, Ontario M5B2K3 (Canada); D' Elia, F.; Ravindran, C. [Centre for Near-net-shape Processing of Materials, Ryerson University, 101 Gerrard Street East, Toronto, Ontario M5B2K3 (Canada); MacKay, R. [Nemak of Canada Corporation, 4600 G.N. Booth Drive, Windsor, Ontario N9C4G8 (Canada)

    2014-01-15

    In recent years, aluminum alloy gasoline engine blocks have in large part successfully replaced nodular cast iron engine blocks, resulting in improved vehicle fuel efficiency. However, because of the inadequate wear resistance properties of hypoeutectic Al–Si alloys, gray iron cylinder liners are required. These liners cause the development of large tensile residual stress along the cylinder bores and necessitate the maximization of mechanical properties in this region to prevent premature engine failure. The aim of this study was to replicate the engine cylinder bridge microstructure and mechanical properties following TSR treatment (which removes the sand binder to enable easy casting retrieval) using lab scale billet castings of the same alloy composition with varying cooling rates. Comparisons in microstructure between the engine block and the billet castings were carried out using optical and scanning electron microscopy, while mechanical properties were assessed using tensile testing. The results suggest that the microstructure at the top and middle of the engine block cylinder bridge was successfully replicated by the billet castings. However, the microstructure at the bottom of the cylinder was not completely replicated due to variations in secondary phase morphology and distribution. The successful replication of engine block microstructure will enable the future optimization of heat treatment parameters. - Highlights: • A method to replicate engine block microstructure was developed. • Billet castings will allow cost effective optimization of heat treatment process. • The replication of microstructure in the cylinder region was mostly successful. • Porosity was more clustered in the billet castings compared to the engine block. • Mechanical properties were lower in billet castings due to porosity and inclusions.

  13. Response surface methodology for evaluation and optimization of process parameter and antioxidant capacity of rice flour modified by enzymatic extrusion.

    Science.gov (United States)

    Xu, Enbo; Pan, Xiaowei; Wu, Zhengzong; Long, Jie; Li, Jingpeng; Xu, Xueming; Jin, Zhengyu; Jiao, Aiquan

    2016-12-01

    For the purpose of investigating the effect of enzyme concentration (EC), barrel temperature (BT), moisture content (MC), and screw speed (SS) on processing parameters (product temperature, die pressure and special mechanical energy (SME)) and product responses (extent of gelatinization (GE), retention rate of total phenolic content (TPC-RR)), rice flour extruded with thermostable α-amylase was analyzed by response surface methodology. Stepwise regression models were computed to generate response surface and contour plots, revealing that both TPC-RR and GE increased as increasing MC while expressed different sensitivities to BT during enzymatic extrusion. Phenolics preservation was benefited from low SME. According to multiple-factor optimization, the conditions required to obtain the target SME (10kJ/kg), GE (100%) and TPC-RR (85%) were: EC=1.37‰, BT=93.01°C, MC=44.30%, and SS=171.66rpm, with the actual values (9.49kJ/kg, 99.96% and 87.10%, respectively) showing a good fit to the predicted values. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  14. Optimization of extrusion process for production of nutritious pellets Otimização do processo de extrusão para a produção de pellets nutricional

    Directory of Open Access Journals (Sweden)

    Ernesto Aguilar-Palazuelos

    2012-03-01

    Full Text Available A blend of 50% Potato Starch (PS, 35% Quality Protein Maize (QPM, and 15% Soybean Meal (SM were used in the preparation of expanded pellets utilizing a laboratory extruder with a 1.5 × 20.0 × 100.0 mm die-nozzle. The independent variables analyzed were Barrel Temperature (BT (75-140 °C and Feed Moisture (FM (16-30%. The effect of extrusion variables was investigated in terms of Expansion Index (EI, apparent density (ApD, Penetration Force (PF and Specific Mechanical Energy (SME, viscosity profiles, DSC, crystallinity by X-ray diffraction, and Scanning Electronic Microscopy (SEM. The PF decreased from 30 to 4 kgf with the increase of both independent variables (BT and FM. SME was affected only by FM, and decreased with the increase in this variable. The optimal region showed that the maximum EI was found for BT in the range of 123-140 °C and 27-31% for FM, respectively. The extruded pellets obtained from the optimal processing region were probably not completely degraded, as shown in the structural characterization. Acceptable expanded pellets could be produced using a blend of PS, QPM, and SM by extrusion cooking.Neste trabalho foram elaborados pellets expandidos a partir da mistura de 50% de Amido de Batata (AB, 35% de Milho de Qualidade Protéica (MQP e 15% de Farelo de Soja (FS, utilizando extrusor de laboratório com matriz de 1,5 × 20,0 × 100,0 mm. As variáveis independentes analisadas foram: Temperatura de Extrusão (TE (75-140 °C e Umidade da Mistura (UM (16-30%. O efeito das variáveis de extrusão foram estudadas quanto ao Índice de Expansão (IE, a densidade aparente (DA, força de penetração (FP, Energia Mecânica Específica (EME, perfil de viscosidade, DSC, cristalinidade através de difração de raio X e Microscopia Eletrônica de Varredura (MEV. A PF diminuiu de 30 para 4 kgf com o aumento de ambas as variáveis independentes (TE e UM. EME foi afetada somente pela UM, diminuindo com o aumento desta variável. A regi

  15. Gamma irradiating elm billets reduces their attractancy to the smaller elm bark beetle, Scolytus multistriatus (Marsham)

    International Nuclear Information System (INIS)

    French, J.R.J.; Robinson, P.J.

    1982-01-01

    Irradiating elm billets with gamma rays had a significant effect in reducing the attractancy of these billets to inflight adults of the smaller elm bark beetle Scolytus multistriatus (Marsham). The temperature at which the fresh billets were stored prior to the beetle exposure had little effect. Irradiated billets, irrespective of storage temperature, had significantly fewer holes than the freshly cut billets. There were significant differences associated with the location of the billets in the field, but these differences were smaller than those associated with irradiation. (orig.) [de

  16. Numerical simulation of hot-melt extrusion processes for amorphous solid dispersions using model-based melt viscosity.

    Science.gov (United States)

    Bochmann, Esther S; Steffens, Kristina E; Gryczke, Andreas; Wagner, Karl G

    2018-03-01

    Simulation of HME processes is a valuable tool for increased process understanding and ease of scale-up. However, the experimental determination of all required input parameters is tedious, namely the melt rheology of the amorphous solid dispersion (ASD) in question. Hence, a procedure to simplify the application of hot-melt extrusion (HME) simulation for forming amorphous solid dispersions (ASD) is presented. The commercial 1D simulation software Ludovic ® was used to conduct (i) simulations using a full experimental data set of all input variables including melt rheology and (ii) simulations using model-based melt viscosity data based on the ASDs glass transition and the physical properties of polymeric matrix only. Both types of HME computation were further compared to experimental HME results. Variation in physical properties (e.g. heat capacity, density) and several process characteristics of HME (residence time distribution, energy consumption) among the simulations and experiments were evaluated. The model-based melt viscosity was calculated by using the glass transition temperature (T g ) of the investigated blend and the melt viscosity of the polymeric matrix by means of a T g -viscosity correlation. The results of measured melt viscosity and model-based melt viscosity were similar with only few exceptions, leading to similar HME simulation outcomes. At the end, the experimental effort prior to HME simulation could be minimized and the procedure enables a good starting point for rational development of ASDs by means of HME. As model excipients, Vinylpyrrolidone-vinyl acetate copolymer (COP) in combination with various APIs (carbamazepine, dipyridamole, indomethacin, and ibuprofen) or polyethylene glycol (PEG 1500) as plasticizer were used to form the ASDs. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Rheology Guided Rational Selection of Processing Temperature To Prepare Copovidone-Nifedipine Amorphous Solid Dispersions via Hot Melt Extrusion (HME).

    Science.gov (United States)

    Yang, Fengyuan; Su, Yongchao; Zhang, Jingtao; DiNunzio, James; Leone, Anthony; Huang, Chengbin; Brown, Chad D

    2016-10-03

    The production of amorphous solid dispersions via hot melt extrusion (HME) relies on elevated temperature and prolonged residence time, which can result in potential degradation and decomposition of thermally sensitive components. Herein, the rheological properties of a physical mixture of polymer and an active pharmaceutical ingredient (API) were utilized to guide the selection of appropriate HME processing temperature. In the currently studied copovidone-nifedipine system, a critical temperature, which is substantially lower (∼13 °C) than the melting point of crystalline API, was captured during a temperature ramp examination and regarded as the critical point at which the API could molecularly dissolve into the polymer. Based on the identification of this critical point, various solid dispersions were prepared by HME processing below, at, and above the critical temperature (both below and above the melting temperature (T m ) of crystalline API). In addition, the resultant extrudates along with two control solid dispersions prepared by physical mixing and cryogenic milling were assessed by X-ray diffraction, differential scanning calorimetry, hot stage microscopy, rheology, and solid-state NMR. Physicochemical properties of resultant solid dispersions indicated that the identified critical temperature is sufficient for the polymer-API system to reach a molecular-level mixing, manifested by the transparent and smooth appearance of extrudates, the absence of API crystalline diffraction and melting peaks, dramatically decreased rheological properties, and significantly improved polymer-API miscibility. Once the critical temperature has been achieved, further raising the processing temperature only results in limited improvement of API dispersion, reflected by slightly reduced storage modulus and complex viscosity and limited improvement in miscibility.

  18. Strength analysis and optimization of writing mechanism of steel billet marking machine

    Directory of Open Access Journals (Sweden)

    Fu Min

    2017-01-01

    Full Text Available According to steel billet marking theory of plasma arc nicking, the paper designs a dual laser ranging marking machine against online marking of special steel billet and realizes multi-character marking of the end face of hot steel billet. Writing mechanism bases on the rectangular coordinates marking form, Z axis adopts cantilever structure. It completes the overall marking task utilizing the synergy of KK module in X axis, Y axis and Z axis. It makes modal analysis on the writing mechanism model established by Pro/Enginner utilizing ANSYS Workbench at the position of X1Y1Z1, and obtains the first six order modal frequency and analyzes the vibration in the writing process. Moreover, the paper analyzes the static structure of the cantilever of writing mechanism, computes its maximum stress and total deformation. To make the writing mechanism reach the target of light weight, the paper optimizes Z-axis cantilever of writing mechanism. According to the analysis, it is known that the optimized Z-axis cantilever of the writing mechanism still meets the strength and rigidity requirement and total mass declines approximately 30%.

  19. Textural characteristics of ready-to-eat breakfast cereals produced from different types of cereal and with varying water addition during extrusion process

    Directory of Open Access Journals (Sweden)

    Žaneta Ugarčić-Hardi

    2010-01-01

    Full Text Available Textural characteristics of ready-to-eat breakfast cereals were evaluated in order to determine the influence of wheat, corn and rice flour, as well as a varying water addition during the extrusion process. Extruded breakfast cereal balls were made of wheat semolina in combination with wheat, corn or rice flour. Three different levels of water addition (21 %, 23 % and 27 % were used during the extrusion process. Samples were prepared with and without surface sugar coating. Sensory and instrumental assessments (TA.XT Plus were used to evaluate textural attributes of dry samples and samples during immersion in milk. Weibull equation was used for nonlinear estimation of experimental data obtained for milk absorption and crispiness as a function of time. Crispiness of dry extruded balls without coating was much higher than for samples with coating. The highest values for crispness were observed for wheat extruded balls and the lowest for samples with corn flour addition. Increasing water addition during the extrusion process significantly increased crispness of ready-to-eat breakfast cereals. The rate of milk absorption and loss of crispiness were significantly higher for samples without coating than for samples with coating.

  20. Application of extrusion-cooking for processing of thermoplastic starch (TPS)

    NARCIS (Netherlands)

    Moscicki, Leszek; Mitrus, Marcin; Wojtowicz, Agnieszka; Oniszczuk, Tomasz; Rejak, Andrzej; Janssen, Leon; Mościcki, Leszek

    Thermoplastic starch (TPS) as fully biodegradable biopolymer appeared to be one of the most useful and promising materials for packaging purpose. To obtain TPS thermal and mechanical processing should disrupt semi-crystalline starch granules. As the melting temperature of pure starch is

  1. Optimising Drug Solubilisation in Amorphous Polymer Dispersions: Rational Selection of Hot-melt Extrusion Processing Parameters.

    Science.gov (United States)

    Li, Shu; Tian, Yiwei; Jones, David S; Andrews, Gavin P

    2016-02-01

    The aim of this article was to construct a T-ϕ phase diagram for a model drug (FD) and amorphous polymer (Eudragit® EPO) and to use this information to understand the impact of how temperature-composition coordinates influenced the final properties of the extrudate. Defining process boundaries and understanding drug solubility in polymeric carriers is of utmost importance and will help in the successful manufacture of new delivery platforms for BCS class II drugs. Physically mixed felodipine (FD)-Eudragit(®) EPO (EPO) binary mixtures with pre-determined weight fractions were analysed using DSC to measure the endset of melting and glass transition temperature. Extrudates of 10 wt% FD-EPO were processed using temperatures (110°C, 126°C, 140°C and 150°C) selected from the temperature-composition (T-ϕ) phase diagrams and processing screw speed of 20, 100 and 200rpm. Extrudates were characterised using powder X-ray diffraction (PXRD), optical, polarised light and Raman microscopy. To ensure formation of a binary amorphous drug dispersion (ADD) at a specific composition, HME processing temperatures should at least be equal to, or exceed, the corresponding temperature value on the liquid-solid curve in a F-H T-ϕ phase diagram. If extruded between the spinodal and liquid-solid curve, the lack of thermodynamic forces to attain complete drug amorphisation may be compensated for through the use of an increased screw speed. Constructing F-H T-ϕ phase diagrams are valuable not only in the understanding drug-polymer miscibility behaviour but also in rationalising the selection of important processing parameters for HME to ensure miscibility of drug and polymer.

  2. The influence of the structural characteristics of polyethylene on the release of gas mixtures for extrusion processing

    Directory of Open Access Journals (Sweden)

    V. I. Korchagin

    2017-01-01

    Full Text Available The study of thermal and mechano-thermal effects in the inert and air environment on the evolution of gas formations from high pressure polyethylene (LDPE was carried out on a Smart RHEO 1000 capillary rheometer with the CeastView 5.94.4D software, using capillaries 5 mm in length and 1 mm in diameter . Study of composition Gas formations during the deformation of polyethylenes of different grades through the channel of a capillary viscometer. Which were characterized by structural characteristics, were carried out at shear rates close to production in the range from 50 to 300 s-1 at temperatures of 160, 190 and 220 ° C. The objects of the study were domestic thermoplastics of the following brands: LDPE 10803-020; LDPE 15803020; LPVD F-03020-S; HDPE 293-285-D, characterized by structural characteristics. It is established that the gasification during extrusion processing is promoted by the branching of polyethylene, while the degree of destruction processes increases with increasing temperature and depends on the reaction medium of the working volume of the equipment. Emerging critical shear stresses in the absence of oxidants and impurities contribute to mechano-destruction, accompanied by the formation of free radicals, which recombine to form a more branched structure of the polymer. In turn, the high temperature promotes degradation in the side parts of the polymer to form volatile products that are released from the reaction volume. It should be noted that the gassing due to thermal exposure is promoted by the air environment, but to a lesser extent than with mechano-thermal action. A smaller measure of the impact in the inertial medium is apparently associated with a limited access of oxidants to the destruction centers.

  3. Systematic approach to optimal design of induction heating installations for aluminum extrusion process

    Science.gov (United States)

    Zimin, L. S.; Sorokin, A. G.; Egiazaryan, A. S.; Filimonova, O. V.

    2018-03-01

    An induction heating system has a number of inherent benefits compared to traditional heating systems due to a non-contact heating process. It is widely used in vehicle manufacture, cast-rolling, forging, preheating before rolling, heat treatment, galvanizing and so on. Compared to other heating technologies, induction heating has the advantages of high efficiency, fast heating rate and easy control. The paper presents a new systematic approach to the design and operation of induction heating installations (IHI) in aluminum alloys production. The heating temperature in industrial complexes “induction heating - deformation” is not fixed in advance, but is determined in accordance with the maximization or minimization of the total economic performance during the process of metal heating and deformation. It is indicated that the energy efficient technological complex “IHI – Metal Forming (MF)” can be designed only with regard to its power supply system (PSS). So the task of designing systems of induction heating is to provide, together with the power supply system and forming equipment, the minimum energy costs for the metal retreating.

  4. Bituminization of simulated waste, spent resins, evaporator concentrates and animal ashes by extrusion process

    International Nuclear Information System (INIS)

    Grosche Filho, C.E.; Chandra, U.

    1987-01-01

    The results of the study of bituminization of simulated radwaste - spennt ion-exchange resins, borate evaporator/concentrates and animal ashes, are presented and discussed. Distilled and oxidizer bitumen were used. Characterization of the crude material and simulated wastes-bitumen mixtures of varying weigt composition (30, 40, 50, 60% by weight of dry waste material) was carried out. The asphaltene and parafin contents in the bitumens were also determined. Some additives and were used with an aim to improve the characteristcs of solidified wastes. For leaching studies, granular ion-exchange resins were with Cs - 134 and mixtures of resin-bitumen were prepared. The leaching studies were executed using the IAEA recommendation and the ISO method. A conventional screw-extruder, common in plastic industry, was used determine operational parameters and process difficulties. Mixtures of resin-bitumen and evaporator concentrate-bitumen obtained from differents operational conditions were characterized. (Author) [pt

  5. Bituminization of simulated waste, spent resins, evaporator concentrates and animal ashes by extrusion process

    International Nuclear Information System (INIS)

    Grosche Filho, C.E.; Chandra, U.

    1986-01-01

    The results of the study of simulated radwaste, spent ion-exchange resins, borates/evaporator-concentrates and animal ashes, in bituminized form, are presented and discussed. Distilled and oxidized bitumen were used for characterizing the crude material and simulated wastes-bitumen mixtures of varying weight composition 30, 40, 50, 60% by weight the dry waste material. The asphaltine and parafin contents in the bitumens were determined. Some additives and clays were used aiming best characteristics of solidified wastes. For leaching studies, granular ion-exchange resins were loaded with Cs 134 and mixtures of resins-bitumens were prepared. The leaching studies were executed using the IAEA recommendation and the ISO method. It was used a conventional screw-extruder, used in plastic industry, to determine operational conditions and process difficulties. Mixtures resins-bitumen and concentrate-bitumen in differents operational condition were prepared and analysed. (Author) [pt

  6. MM98.43 Experimental determination of the heat transfer coefficient Under dynamic process conditions in backward can extrusion

    DEFF Research Database (Denmark)

    Henningsen, Poul; Hattel, Jesper Henri; Wanheim, Tarras

    1998-01-01

    The large deformations in backward can extrusion result in a rise of temperature of more than 200 oC. In the experiments, cans in low carbon steel are formed with a lubrication layer of phosphate soap. The temperature is measured by thermocouples in the die insert and the punch. The die insert...

  7. Development of medical tube fabrication process from RVNRL: optimization and extrusion device at low temperature

    International Nuclear Information System (INIS)

    Collantes, Hugo David Chirinos

    1999-01-01

    The natural rubber latex was formulated, irradiation vulcanized and stabilized (GAMATEX) to make rubber goods for medical purpose. When the latex was vulcanized by gamma rays the effectiveness crosslinking of GAMATEX relationship between the concentration ratio of sensitizer system (x 1 =[n-BA]/[KOH]) and the vulcanization dose (x 2 ), showing high interaction grade. The RVNRL process was optimized for low vulcanization doses and high concentrations of n-BA. The resistance to radiolytic oxidation of rubber obtained from GAMATEX was attained when one antioxidants mixture (45% BANOX S + 55% TNPP) was added. This mixture exhibited synergetic effect. The latex showed pseudoplastic rheological behavior and the yield stress occurrence. The irreversible destabilization rate of latex was direct proportional to [n-BA] and indirect proportional to [KOH]. The post-irradiation effects or reversible destabilization of latex occurred because there is a residual concentration of [n-BA] that it was not reacted. The colloidal stability of GAMATEX improved with irradiation, showing showing the increase of thixotropic behavior and the tendency to Newtonian behavior flow besides the relationship between the viscosity index (k) and the pseudoplastic index (n). This fact allows the higher storage time of GAMATEX. The relative viscosity of latex was relationship between the temperature and the total dry rubber content according to the mathematical model: log ηrel = 0,18+1,09r w , where r w is the ratio (BS/100-BS). The radiation vulcanized latex coagulated at -10 deg C into the projected freezing system. (author)

  8. Machine for extrusion under vacuum

    International Nuclear Information System (INIS)

    Gautier, A.

    1958-01-01

    In a study of the behaviour of easily oxidised metals during the extrusion process, it is first necessary to find an effective mean of fighting corrosion, since this, even when barely detectable, has an important influence on the validity of the results recorded. The neatest and also the most efficient of all the methods tried consists in creating a vacuum around the test piece. Working on this principle, and at the same time respecting the conventional rules for extrusion tests (loading the sample after stabilisation at the testing temperature, differential measurements of lengthening, etc.) we found it necessary to construct an original machine. (author) [fr

  9. Towards predictive control of extrusion weld seams: an integrated approach

    NARCIS (Netherlands)

    Bakker, A.J. den; Werkhoven, R.J.; Sillekens, W.H.; Katgerman, L.

    2010-01-01

    Longitudinal weld seams are an intrinsic feature in hollow extrusions produced with porthole dies. The formation of longitudinal weld seams is a solid bonding process, controlled by the local conditions in the extrusion die. Being the weakest areas within the extrusion cross section, it is desirable

  10. Development of rheological characterization and twin-screw extrusion/spiral winding processing methods for functionally-graded tissue engineering scaffolds and characterization of cell/biomaterial interactions

    Science.gov (United States)

    Ozkan, Seher

    Tissue engineering involves the fabrication of biodegradable scaffolds, on which various types of cells are grown, to provide tissue constructs for tissue repair/regeneration. Native tissues have complex structures, with functions and properties changing spatially and temporally, and require special tailoring of tissue engineering scaffolds to allow mimicking of their complex elegance. The understanding of the rheological behavior of the biodegradable polymer and the thermo-mechanical history that the polymer experiences during processing is critical in fabricating scaffolds with appropriate microstructural distributions. This study has first focused on the rheological material functions of various gel-like fluids including biofluids and hydrogels, which can emulate the viscoelastic behavior of biofluids. Viscoplasticity and wall slip were recognized as key attributes of such systems. Furthermore, a new technology base involving twin-screw extrusion/spiral winding (TSESW) process was developed for the shaping of functionally-graded scaffolds. This novel scaffold fabrication technology was applied to the development of polycaprolactone (PCL) scaffolds, incorporated with tricalcium phosphate nanoparticles and various porogens in graded fashion. The protein encapsulation and controlled release capabilities of the TSESW process was also demonstrated by dispersing bovine serum albumin (BSA) protein into the PCL matrix. Effects of processing conditions and porosity distributions on compressive properties, surface topography, encapsulation efficiency, release profiles and the secondary structure of BSA were investigated. The PCL scaffolds were determined to be biocompatible, with the proliferation rates of human fetal osteoblast cells (hFOB) increasing with increasing porosity and decreasing concentration of TCP. BSA proteins were determined to be denatured to a greater extent with melt extrusion in the 80-100°C range (in comparison to wet extrusion using organic

  11. Development of Maltodextrin-Based Immediate-Release Tablets Using an Integrated Twin-Screw Hot-Melt Extrusion and Injection-Molding Continuous Manufacturing Process.

    Science.gov (United States)

    Puri, Vibha; Brancazio, Dave; Desai, Parind M; Jensen, Keith D; Chun, Jung-Hoon; Myerson, Allan S; Trout, Bernhardt L

    2017-11-01

    The combination of hot-melt extrusion and injection molding (HME-IM) is a promising process technology for continuous manufacturing of tablets. However, there has been limited research on its application to formulate crystalline drug-containing immediate-release tablets. Furthermore, studies that have applied the HME-IM process to molded tablets have used a noncontinuous 2-step approach. The present study develops maltodextrin (MDX)-based extrusion-molded immediate-release tablets for a crystalline drug (griseofulvin) using an integrated twin-screw HME-IM continuous process. At 10% w/w drug loading, MDX was selected as the tablet matrix former based on a preliminary screen. Furthermore, liquid and solid polyols were evaluated for melt processing of MDX and for impact on tablet performance. Smooth-surfaced tablets, comprising crystalline griseofulvin solid suspension in the amorphous MDX-xylitol matrix, were produced by a continuous process on a twin-screw extruder coupled to a horizontally opening IM machine. Real-time HME process profiles were used to develop automated HME-IM cycles. Formulation adjustments overcame process challenges and improved tablet strength. The developed MDX tablets exhibited adequate strength and a fast-dissolving matrix (85% drug release in 20 min), and maintained performance on accelerated stability conditions. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. An integrated numerical model for the prediction of Gaussian and billet shapes

    DEFF Research Database (Denmark)

    Hattel, Jesper; Pryds, Nini; Pedersen, Trine Bjerre

    2004-01-01

    Separate models for the atomisation and the deposition stages were recently integrated by the authors to form a unified model describing the entire spray-forming process. In the present paper, the focus is on describing the shape of the deposited material during the spray-forming process, obtained...... by this model. After a short review of the models and their coupling, the important factors which influence the resulting shape, i.e. Gaussian or billet, are addressed. The key parameters, which are utilized to predict the geometry and dimension of the deposited material, are the sticking efficiency...

  13. Co-extrusion as a processing technique to manufacture a dual sustained release fixed-dose combination product.

    Science.gov (United States)

    Vynckier, An-Katrien; Voorspoels, Jody; Remon, Jean Paul; Vervaet, Chris

    2016-05-01

    This study aimed to design a fixed-dose combination dosage form which provides a sustained release profile for both the freely water-soluble metformin HCl and the poorly soluble gliclazide, two antidiabetic compounds used to treat diabetes mellitus. Hot-melt co-extrusion was used as an innovative manufacturing technique for a pharmaceutical fixed-dose combination product. In this way, a matrix formulation that sustained metformin release could be developed, despite the high drug load in the formulation and the freely soluble nature of the drug. It was clear that co-extrusion was perfectly suited to produce a fixed-dose combination product with adequate properties for each of the incorporated APIs. A coat layer, containing at least 30% CAPA(®) 6506 as a hydrophobic polymer, was necessary to adequately sustain the release of the highly dosed freely soluble drug from the 70% metformin HCl-loaded CAPA(®) 6506 core of the co-extrudate. To obtain a complete gliclazide release over 24-h solubilization in Kollidon(®) VA, added as a second polymer to the CAPA(®) 6506 in the coat, was needed. Both active pharmaceutical ingredients (APIs), which have different physicochemical characteristics, were formulated in a single dosage form, using co-extrusion. © 2016 Royal Pharmaceutical Society, Journal of Pharmacy and Pharmacology.

  14. Otimização do processo de extrusão termoplástica da mistura castanha do Brasil com farinha de mandioca Optimization of the process of thermoplastic extrusion of mixtures of Brazil nut with cassava flour

    Directory of Open Access Journals (Sweden)

    Maria Luzenira de Souza

    2008-09-01

    Full Text Available O objetivo deste trabalho foi otimizar as condições de processamento por extrusão termoplástica de misturas de torta de castanha do Brasil com farinha de mandioca, em função da aceitabilidade. Foi feito o delineamento fatorial completo 2³ para a produção dos extrudados e a avaliação dos ensaios extrusados em função das respostas de aceitação. No estudo de aceitação global aplicou-se o teste afetivo de escala hedônica com 9 pontos e no de intenção de compra o de 5 pontos. O resultado da metodologia de superfície de resposta indica que aumentos de castanha do Brasil, temperatura e umidade elevam as notas de aceitação global e intenção de compra do produto, com uma região de otimização do processamento nas seguintes condições: temperatura entre 120 a 160 °C, castanha entre 48 a 80% e umidade entre 20 a 25%. Na torta de castanha, a temperatura e a umidade da mistura muito alta ou muito baixa diminuem as notas de aceitação global e a intenção de compra. As maiores notas de aceitação global e a intenção de compra neste experimento estão nos pontos centrais e indicam a validade do modelo.The objective of this work was to optimize the conditions of processing mixtures of Brazil nut with cassava flour through thermoplastic extrusion as a function of acceptability. A 2³ full factorial design was used for the production of the extrudates and the evaluation of the products was according to acceptability responses. An affective hedonic scale of 9 points was applied to evaluate global acceptability and a 5-point scale was used to evaluate purchase intention. The results of the response surface methodology indicated that increases in Brazil nut percentage, temperature and moisture increased global acceptability and purchase intention of the product, with an optimized processing region in the following conditions: temperature between 120 and 160 °C, Brazil nut percentage between 48 and 80% and moisture between 20 and 25

  15. Quality by Design (QbD) Approach for Development of Co-Processed Excipient Pellets (MOMLETS) By Extrusion-Spheronization Technique.

    Science.gov (United States)

    Patel, Hetal; Patel, Kishan; Tiwari, Sanjay; Pandey, Sonia; Shah, Shailesh; Gohel, Mukesh

    2016-01-01

    Microcrystalline cellulose (MCC) is an excellent excipient for the production of pellets by extrusion spheronization. However, it causes slow release rate of poorly water soluble drugs from pellets. Co-processed excipient prepared by spray drying (US4744987; US5686107; WO2003051338) and coprecipitation technique (WO9517831) are patented. The objective of present study was to develop co-processed MCC pellets (MOMLETS) by extrusion-spheronization technique using the principle of Quality by Design (QbD). Co-processed excipient core pellets (MOMLETS) were developed by extrusion spheronization technique using Quality by Design (QbD) approach. BCS class II drug (telmisartan) was layered onto it in a fluidized bed processor. Quality Target Product Profile (QTPP) and Critical Quality Attributes (CQA) for pellets were identified. Risk assessment was reported using Ishikawa diagram. Plackett Burman design was used to check the effect of seven independent variables; superdisintegrant, extruder speed, ethanol: water, spheronizer speed, extruder screen, pore former and MCC: lactose; on percentage drug release at 30 min. Pareto chart and normal probability plot was constructed to identify the significant factors. Box-Behnken design (BBD) using three most significant factors (Extruder screen size, type of superdisintegrant and type of pore former) was used as an optimization design. The control space was identified in which desired quality of the pellets can be obtained. Co-processed excipient core pellets (MOMLETS) were successfully developed by QbD approach. Versatility, Industrial scalability and simplicity are the main features of the proposed research. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Embedded Multimaterial Extrusion Bioprinting.

    Science.gov (United States)

    Rocca, Marco; Fragasso, Alessio; Liu, Wanjun; Heinrich, Marcel A; Zhang, Yu Shrike

    2018-04-01

    Embedded extrusion bioprinting allows for the generation of complex structures that otherwise cannot be achieved with conventional layer-by-layer deposition from the bottom, by overcoming the limits imposed by gravitational force. By taking advantage of a hydrogel bath, serving as a sacrificial printing environment, it is feasible to extrude a bioink in freeform until the entire structure is deposited and crosslinked. The bioprinted structure can be subsequently released from the supporting hydrogel and used for further applications. Combining this advanced three-dimensional (3D) bioprinting technique with a multimaterial extrusion printhead setup enables the fabrication of complex volumetric structures built from multiple bioinks. The work described in this paper focuses on the optimization of the experimental setup and proposes a workflow to automate the bioprinting process, resulting in a fast and efficient conversion of a virtual 3D model into a physical, extruded structure in freeform using the multimaterial embedded bioprinting system. It is anticipated that further development of this technology will likely lead to widespread applications in areas such as tissue engineering, pharmaceutical testing, and organs-on-chips.

  17. Method of Determining the Filtration Properties of oil-Bearing Crops in the Process of Their Pressing by the Example of Rape-oil Extrusion

    Science.gov (United States)

    Slavnov, E. V.; Petrov, I. A.

    2014-07-01

    A method of determining the change in the fi ltration properties of oil-bearing crops in the process of their pressing by repeated dynamic loading is proposed. The use of this method is demonstrated by the example of rape-oil extrusion. It was established that the change in the mass concentration of the oil in a rape mix from 0.45 to 0.23 leads to a decrease in the permeability of the mix by 101.5-102 times depending on the pressure applied to it. It is shown that the dependence of the permeability of this mix on the pressure applied to it is nonmonotone in character.

  18. Modelling the influence of the gas to melt ratio on the fraction solid of the surface in spray formed billets

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri; Pryds, Nini

    2006-01-01

    the atomisation stage taking thermal coupling into consideration and the deposition of the droplets at the surface of the billet taking geometrical aspects such as shading into account. The coupling between these two models is accomplished by ensuring that the total droplet size distribution of the spray......In this paper, the relationship between the Gas to Melt Ratio (GMR) and the solid fraction of an evolving billet surface is investigated numerically. The basis for the analysis is a recently developed integrated procedure for modelling the entire spray forming process. This model includes...... is the summation of “local” droplet size distributions along the r-axis of the spray cone. The criterion for a successful process has been a predefined process window characterised by a desired solid fraction range at a certain distance from the atomizer. Inside this process window, the gas and melt flows have...

  19. Spray forming: A numerical investigation of the influence of the gas to melt ratio on the billet surface temperature

    DEFF Research Database (Denmark)

    Pryds, Nini; Hattel, Jesper

    2005-01-01

    atomisation taking thermal coupling into consideration and the deposition of material at the surface of the billet taking geometrical aspects such as shading into account. The coupling between these two models is accomplished by ensuring that the total droplet size distribution of the spray is the summation......The relationship between the Gas to Melt Ratio (GMR) and the surface temperature of an evolving billet surface in spray forming is investigated numerically. The basis for the analysis is an integrated approach for modelling the entire spray forming process. This model includes the droplet...... of "local" droplet size distributions along the r-axis of the spray cone. The criterion for a successful process has been a predefined process window characterised by a desired fraction solid range at a certain distance from the atomizer. Inside this process window, the gas and melt flows have been varied...

  20. Manufacturing and mechanical property test of the large-scale oxide dispersion strengthened martensitic mother tube by hot isostatic pressing and hot extrusion process

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Fujiwara, Masayuki

    2003-09-01

    Mass production capability of Oxide Dispersion Strengthened (ODS) ferritic steel cladding (9Cr) is evaluated in the Phase II of the Feasibility Studies on Commercialized Fast Reactor Cycle System. The cost for manufacturing mother tube is a dominant factor in the total cost for manufacturing ODS ferritic cladding. In this study, the large-scale 9Cr-ODS martensitic mother tube was produced by overseas supplier with mass production equipments for commercialized ODS steels. The process of manufacturing the ODS mother tube consists of raw material powder production, mechanical alloying by high energy ball mill, hot isostatic pressing(HIP), and hot extrusion. Following results were obtained in this study. (1) Micro structure of the ODS steels is equivalent to that of domestic products, and fine oxides are uniformly distributed. The mechanical alloying by large capacity (1 ton) ball mill can be satisfactorily carried out. (2) A large scale mother tube (65 mm OD x 48 mm ID x 10,000 mm L), which can produce about 60 pieces of 3 m length ODS ferritic claddings by four times cold rolling, have been successfully manufactured through HIP and Hot Extrusion process. (3) Rough surface of the mother tubes produced in this study can be improved by selecting the reasonable hot extrusion condition. (4) Hardness and tensile strength of the manufactured ODS steels are lower than domestic products with same chemical composition. This is owing to the high aluminum content in the product, and those properties could be improved by decreasing the aluminum content in the raw material powder. (author)

  1. Microcapsules loaded with the probiotic Lactobacillus paracasei BGP-1 produced by co-extrusion technology using alginate/shellac as wall material: Characterization and evaluation of drying processes.

    Science.gov (United States)

    Silva, Marluci P; Tulini, Fabricio L; Ribas, Marcela M; Penning, Manfred; Fávaro-Trindade, Carmen S; Poncelet, Denis

    2016-11-01

    Microcapsules containing Lactobacillus paracasei BGP-1 were produced by co-extrusion technology using alginate and alginate-shellac blend as wall materials. Sunflower oil and coconut fat were used as vehicles to incorporate BGP-1 into the microcapsules. The microcapsules were evaluated with regard the particle size, morphology, water activity and survival of probiotics after 60days of storage at room temperature. Fluidized bed and lyophilization were used to dry the microcapsules and the effect of these processes on probiotic viability was also evaluated. Next, dried microcapsules were exposed to simulated gastrointestinal fluids to verify the survival of BGP-1. Microcapsules dried by fluidized bed had spherical shape and robust structures, whereas lyophilized microcapsules had porous and fragile structures. Dried microcapsules presented a medium size of 0.71-0.86mm and a w ranging from 0.14 to 0.36, depending on the drying process. When comparing the effects of drying processes on BGP-1 viability, the fluidized bed was less aggressive than lyophilization. The alginate-shellac blend combined with coconut fat as core effectively protected the encapsulated probiotic under simulated gastrointestinal conditions. Thus, the production of microcapsules by co-extrusion followed by drying using the fluidized bed is a promising strategy for protection of probiotic cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Summary and evaluation of low-velocity impact tests of solid steel billet onto concrete pads

    International Nuclear Information System (INIS)

    Witte, M.C.; Hovingh, W.J.; Mok, G.C.; Murty, S.S.; Chen, T.F.; Fischer, L.E.

    1998-02-01

    Spent fuel storage casks intended for use at independent spent fuel storage installations are evaluated during the application and review process for low-velocity impacts representative of possible handling accidents. In the past, the analyses involved in these evaluations have assumed that the casks dropped or tipped onto an unyielding surface - a conservative and simplifying assumption. Since 10 CFR Part 72, the regulation imposed by the Nuclear Regulatory Commission (NRC), does not require this assumption, applicants are currently seeking a more realistic model for the analyses to predict the effect of a cask dropping onto a reinforced concrete pad, including energy absorbing aspects such as cracking and flexure. To develop data suitable for benchmarking these analyses, the NRC has conducted several series of drop-test studies of a solid steel billet and of a near-full-scale empty cask. This report contains a summary and evaluation of all steel billet testing conducted by Sandia National Laboratories and Lawrence Livermore National Laboratory. A series of finite element analyses of the billet testing is described and benchmarked against the test data. A method to apply the benchmarked finite element model of the soil and concrete pad to an analysis of a full-size storage cask is provided. In addition, an application to a open-quotes genericclose quotes full-size cask is presented for side and end drops, and tipover events. The primary purpose of this report is to provide applicants for an NRC license under 10 CFR Part 72 with a method for evaluating storage casks for low-velocity impact conditions

  3. Effects of selected process parameters in extrusion of yam flour (Dioscorea rotundata) on physicochemical properties of the extrudates.

    Science.gov (United States)

    Sebio, L; Chang, Y K

    2000-04-01

    Raw yam (Dioscorea rotundata) flour was cooked and extruded in a Brabender single-screw laboratory scale extruder. Response surface methodology using an incomplete factorial design was applied with various combinations of barrel temperature [100, 125, 150 degrees C], feed moisture content [18, 22, 26%] and screw speed [100, 150, 200 rpm]. Initial viscosity at 30 degrees C, water solubility index, expansion and hardness were determined. The highest values of initial viscosity were at the highest barrel temperatures and the highest moisture contents. At high feed moisture content and high barrel temperatures the yam extrudate flour showed the greatest values of water solubility index. The physical properties of the extruded product showed that at high temperature the lower the moisture content the greater the expansion index. Hardness was influenced directly by moisture content and inversely by extrusion temperature. The extrusion of yam flour led to the production of snacks and pre-gelatinized flours of diverse properties. Also extruded yam flour can be successfully used in the preparation of 'futu' (pre-cooked compact dough), a yam-based food, popular in Western Africa.

  4. Deformational Features and Microstructure Evolution of Copper Fabricated by a Single Pass of the Elliptical Cross-Section Spiral Equal-Channel Extrusion (ECSEE) Process

    Science.gov (United States)

    Wang, Chengpeng; Li, Fuguo; Liu, Juncheng

    2018-04-01

    The objectives of this work are to study the deformational feature, textures, microstructures, and dislocation configurations of ultrafine-grained copper processed by the process of elliptical cross-section spiral equal-channel extrusion (ECSEE). The deformation patterns of simple shear and pure shear in the ECSEE process were evaluated with the analytical method of geometric strain. The influence of the main technical parameters of ECSEE die on the effective strain distribution on the surface of ECSEE-fabricated samples was examined by the finite element simulation. The high friction factor could improve the effective strain accumulation of material deformation. Moreover, the pure copper sample fabricated by ECSEE ion shows a strong rotated cube shear texture. The refining mechanism of the dislocation deformation is dominant in copper processed by a single pass of ECSEE. The inhomogeneity of the micro-hardness distribution on the longitudinal section of the ECSEE-fabricated sample is consistent with the strain and microstructure distribution features.

  5. Automation of ultrasonic testing of turbine disk billets

    International Nuclear Information System (INIS)

    Gorodkov, V.E.; Domashevskij, B.N.; Pron', N.I.; Tkachenko, V.A.

    1984-01-01

    cations of ultrasonic facility for automation of testing turbine disk billets of 25Kh2PMFA and 34KhM1A steels are considered. The operating principle and the design of ''Disk-1'' facility are described, its test results are presented. It is shown that the facility increases the test efficiency five times, enables to estimate dimensions of revealed defect with regard to the quality of acoustic contact, thus facilitating the work of personnel and improving the test quality

  6. Hot rolled composite billet for nuclear control rods

    International Nuclear Information System (INIS)

    Miller, G.E.

    1976-01-01

    This invention relates to a composite plate shaped billet, useful in the fabrication of nuclear control rods, which comprises a core of stainless steel containing about 2 percent boron 10, a thin coating of zirconia on the surfaces of said core, and said zirconia coating being completely encased in a jacket of mild steel, said composite having been hot rolled between about 1075 0 and about 1165 0 C. 1 claim, 8 figures

  7. Effects of Texture and Grain Size on the Yield Strength of ZK61 Alloy Rods Processed by Cyclic Extrusion and Compression.

    Science.gov (United States)

    Zhang, Lixin; Zhang, Wencong; Cao, Biao; Chen, Wenzhen; Duan, Junpeng; Cui, Guorong

    2017-10-26

    The ZK61 alloy rods with different grain sizes and crystallographic texture were successfully fabricated by cyclic extrusion and compression (CEC). Their room-temperature tension & compression yield strength displayed a significant dependence on grain size and texture, essentially attributed to {10-12} twinning. The texture variations were characterized by the angle θ between the c-axis of the grain and the extrusion direction (ED) during the process. The contour map of room-temperature yield strength as a function of grain size and the angle θ was obtained. It showed that both the tension yield strength and the compression yield strength of ZK61 alloy were fully consistent with the Hall-Patch relationship at a certain texture, but the change trends of the tension yield strength and the compression yield strength were completely opposite at the same grain size while texture altered. The friction stresses of different deformation modes calculated based on the texture confirmed the tension yield strength of the CECed ZK61 alloy rods, which was determined by both the basal slip and the tension twinning slip during the tension deformation at room temperature, while the compression yield strength was mainly determined by the basal slip during the compression deformation.

  8. Optimization of Extrusion Process of Directly Expanded Snacks Based on Potato Starch in a Single Step for the Formation of Type IV Resistant Starch.

    Science.gov (United States)

    Calvo-López, Amira Daniela; Martínez-Bustos, Fernando

    2017-09-01

    Resistant starch type IV (RSIV) can be produced by chemical modifications (etherized or esterified) such as conversion, substitution, or cross-linking, which can prevent its digestion by blocking enzyme access and forming atypical linkages. In this research, the effects of barrel temperature (145.86-174.14 °C), the screw speed (42.93-57.07 Hz) and derivatization (esterification) in the formation of RSIV content of directly expanded snacks (second generation snacks) were studied. Potato starch was chemically modified by phosphorylation and succinylation, and expanded by using the extrusion cooking process. Snacks with phosphorylated starch showed expansion index from 2.57 to 3.23, bulk density from 306.19 to 479.00 kg/m 3 and RSIV from 43.27 to 55.81%. Snacks with succinylated starch had expansion index from 3.52 to 3.82, bulk density from 99.85 to 134.51 kg/m 3 and RSIV from 23.17 to 35.01%. The results found in this work showed that it is possible to manufacture extruded directly expanded snacks (second-generation snacks) such as a ready-to-eat (RTE) with good physicochemical properties and without substantial loss of extrusion functionality, which could bring a healthy benefit due to the presence of RSIV.

  9. The extrusion of AZ-series magnesium alloys - extending the processing limits by hydrostatic extrusion; Erweiterung der Prozessgrenzen beim Strangpressen von Magnesiumknetlegierungen der AZ-Reihe durch das hydrostatische Strangpressverfahren

    Energy Technology Data Exchange (ETDEWEB)

    Swiostek, J. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    2008-12-04

    The present study is concerned with the analysis of the influence of hydrostatic extrusion on the microstructural development and mechanical properties of extruded profiles of the AZ-series magnesium alloys. This work also deals with the correlation between the microstructure and resulting mechanical properties for the case extruded profiles. (orig.)

  10. Evaluation of Extrusion Technique for Nanosizing Liposomes

    Directory of Open Access Journals (Sweden)

    Sandy Gim Ming Ong

    2016-12-01

    Full Text Available The aim of the present study was to study the efficiency of different techniques used for nanosizing liposomes. Further, the aim was also to evaluate the effect of process parameters of extrusion techniques used for nanosizing liposomes on the size and size distribution of the resultant liposomes. To compare the efficiency of different nanosizing techniques, the following techniques were used to nanosize the liposomes: extrusion, ultrasonication, freeze-thaw sonication (FTS, sonication and homogenization. The extrusion technique was found to be the most efficient, followed by FTS, ultrasonication, sonication and homogenization. The extruder used in the present study was fabricated using readily available and relatively inexpensive apparatus. Process parameters were varied in extrusion technique to study their effect on the size and size distribution of extruded liposomes. The results obtained indicated that increase in the flow rate of the extrusion process decreased the size of extruded liposomes however the size homogeneity was negatively impacted. Furthermore, the liposome size and distribution was found to decline with decreasing membrane pore size. It was found that by extruding through a filter with a pore size of 0.2 µm and above, the liposomes produced were smaller than the pore size, whereas, when they were extruded through a filter with a pore size of less than 0.2 µm the resultant liposomes were slightly bigger than the nominal pore size. Besides that, increment of extrusion temperature above transition temperature of the pro-liposome had no effect on the size and size distribution of the extruded liposomes. In conclusion, the extrusion technique was reproducible and effective among all the methods evaluated. Furthermore, processing parameters used in extrusion technique would affect the size and size distribution of liposomes. Therefore, the process parameters need to be optimized to obtain a desirable size range and homogeneity

  11. Software libre de reconocimiento de billetes para personas en situación de discapacidad visual

    OpenAIRE

    Moretti, Ignacio Luis; Jorge, Javier; Amado, José; Puntillo, Daniel; Caniglia, Cristian

    2015-01-01

    Los sistemas de reconocimiento de billetes para asistencia a personas con discapacidad visual presentan un alto grado de complejidad debido a la gran variedad de situaciones por resolver. El sistema descripto en el presente proyecto puede distinguir las denominaciones de billetes argentinos en diferentes posiciones, escalas y incluso en forma parcial. Los objetivos son: desarrollar un programa de software capaz de identificar billetes argentinos, su denominación y comunicar por medios auditiv...

  12. Zr Extrusion – Direct Input for Models & Validation

    Energy Technology Data Exchange (ETDEWEB)

    Cerreta, Ellen Kathleen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-07

    As we examine differences in the high strain rate, high strain tensile response of high purity, highly textured Zr as a function of loading direction, temperature and extrusion velocity with primarily post mortem characterization techniques, we have also developed a technique for characterizing the in-situ extrusion process. This particular measurement is useful for partitioning energy of the system during the extrusion process: friction, kinetic energy, and temperature

  13. Processing of Mo-Si-B intermetallics by extrusion and oxidation properties of the extruded Tl-MoSi2-MoB Systems

    International Nuclear Information System (INIS)

    Summers, Eric

    1999-01-01

    An extrusion process was developed that is able to consistently produce large quantities of Mo-Si-B rods without the presence of defects. Binder removal from the extruded rods was studied in detail and it was determined that heating rates on the order of 0.02degree/minute (1.2degree/hour) are necessary to remove the binder without the formation of defects. This low heating rate resulted in debinding times in excess of 70 hours (∼ 3 days). Wicking was investigated as a means to decrease the time necessary for binder removal. Using 0.05microm alumina powder as a wicking agent, binder removal times were reduced to 10 hours with heating rates up to 1degree/minute employed without defect formation. Once the extrusion process was complete the oxidation properties of the Tl-MoSi 2 -MoB extruded phase assemblage was investigated. It was determined that this composition exhibits catastrophic oxidation or pesting in the temperature range of 660--760 C, resulting in the material turning to dust. Outside of this temperature range the composition is oxidatively stable. Continuous mass measurements were taken at 1,300, 1,450, and 1,600 C to determine the oxidation rate constants of this material. Parabolic rate constants of 6.9 x 10 -3 , 1.3 x 10 -3 , and 9.1 x 10 -3 mg 2 /cm 4 /hr were determined for 1,300, 1,450, and 1,600 C respectively

  14. Comparison of the amount of apical debris extrusion associated with different retreatment systems and supplementary file application during retreatment process.

    Science.gov (United States)

    Çiçek, Ersan; Koçak, Mustafa Murat; Koçak, Sibel; Sağlam, Baran Can

    2016-01-01

    The type of instrument affects the amount of debris extruded. The aim of this study was to compare the effect of retreatment systems and supplementary file application on the amount of apical debris extrusion. Forty-eight extracted mandibular premolars with a single canal and similar length were selected. The root canals were prepared with the ProTaper Universal system with a torque-controlled engine. The root canals were dried and were obturated using Gutta-percha and sealer. The specimens were randomly divided into four equal groups according to the retreatment procedures (Group 1, Mtwo retreatment files; Group 2, Mtwo retreatment files + Mtwo rotary file #30 supplementary file; Group 3, ProTaper Universal retreatment (PTUR) files; and Group 4, PTUR files + ProTaper F3 supplementary file). The extruded debris during instrumentation were collected into preweighed Eppendorf tubes. The amount of apically extruded debris was calculated by subtracting the initial weight of the tube from the final weight. Three consecutive weights were obtained for each tube. No statistically significant difference was found in the amount of apically extruded debris between Groups 1 and 3 (P = 0.590). A significant difference was observed between Groups 1 and 2 (P file significantly increased the amount of apically extruded debris.

  15. Polysaccharides and lignin based hydrogels with potential pharmaceutical use as a drug delivery system produced by a reactive extrusion process.

    Science.gov (United States)

    Farhat, Wissam; Venditti, Richard; Mignard, Nathalie; Taha, Mohamed; Becquart, Frederic; Ayoub, Ali

    2017-11-01

    Currently, there is very strong interest to replace synthetic polymers with biological macromolecules of natural source for applications that interact with humans or the environment. This research describes the development of drug delivery hydrogels from natural polymers, starch, lignin and hemicelluloses by means of reactive extrusion. The hydrogels show a strong swelling ability dependent on pH which may be used to control diffusion rates of water and small molecules in and out of the gel. Also the hydrogels degradation rates were studied in a physiological solution (pH 7.4) for 15days. The results indicated that for all three macromolecules, lower molecular weight and higher level of plasticizer both increase the rate of weight loss of the hydrogels. The degradation was extremely reduced when the polymers were extruded in the presence of a catalyst. Finally the dynamic mechanical analysis revealed that the degradation of the hydrogels induce a significant reduction in the compressive modulus. This study demonstrates the characteristics and potential of natural polymers as a drug release system. Published by Elsevier B.V.

  16. Microstructure and mechanical properties of Al-Si-X alloys fabricated by gas atomization and extrusion process

    International Nuclear Information System (INIS)

    Lee, T.H.; Hong, S.J.

    2009-01-01

    In order to develop good wear resistant and high-strength alloys, Al 81 Si 19 alloy was reinforced with transition elements such as Ni and Ce. The solubility of Si in aluminum was amplified, with increasing the Ni and Ce content in the rapidly solidified powders. The extruded bars consist of homogeneously dispersed fine Si particles along with Al 3 Ni and Al 3 Ce compounds (30-120 nm) in aluminum matrix (grain size below 500 nm). The tensile strength at room temperature for Al 81 Si 19 , Al 78 Si 19 Ni 2 Ce 0.5 and Al 76 Si 19 Ni 4 Ce 1 bars extruded at 400 deg. C was estimated as 281, 521, and 668 MPa, respectively. In addition, the maximum tensile strength of 730 MPa was attained in Al 73 Si 19 Ni 7 Ce 1 bulk alloy. The uniform dispersion of precipitates (Si, Al 3 Ni and Al 3 Ce particles) from the supersaturated Al matrix of ternary and quaternary alloys after extrusion was effective for enhanced mechanical properties.

  17. A unified spray forming model for the prediction of billet shape geometry

    DEFF Research Database (Denmark)

    Hattel, Jesper; Pryds, Nini

    2004-01-01

    In the present work a unified model for simulating the spray forming process has been developed. Models for the atomization and the deposition processes have been coupled together in order to obtain a new unified description of the spray forming process. The model is able to predict the shape...... and the temperatures of a spray-formed billet and takes into account the thermal coupling between the gas and the droplets, the change in droplet size distribution along the r-axis in the spray cone and the shading effect. The deposition describes the evolution of the preform with time. For this stage a novel 3D model......, which allows the atomizer to be placed asymmetrically over the substrate and also includes the withdrawal of the deposit, was developed. This makes it possible to model not only the growth of a Gaussian shaped preform in which case the spray axis and the rotation axis coincide, but also the surface...

  18. The comparative study of pressing and extrusion like processes of construction ceramic products in the Metropolitan Area of Cucuta; Estudio comparativo de las tecnicas de extrusion y prensado como procesos de conformado de productos ceramicos de construccion en el Area Metropolitana de Cucuta

    Energy Technology Data Exchange (ETDEWEB)

    Gelves, J. F.; Monroy, R.; Sanchez, J.; Ramirez, R. P.

    2013-02-01

    The present work studies the principal variables of control in the manufacturing process of construction pieces of the Metropolitan Area of San Jose de Cucuta by extrusion and pressing techniques for its forming. The investigation was taken out using clayey samples of the two principal geological formations of the region where the raw material is taken for processing at an industrial level. The clayey samples milling was made by dry means as well as by moisture means and its particle size was measured. Subsequently the forming process was taken over by using an hydraulic press and extruder with vacuum system , both equipment s at laboratory scale, the pieces shaped were dry and firing between 980 degree centigrade and 1180 degree centigrade at the end of the process the tests were made to determine water absorption, contraction and mass loss at the pieces firing. The study results left to see that the extrusion technique allowed a faster vitrification for the region's clay in comparing with the pressing technique, the contractions of drying and firing are less marked on the pressing techniques with standard deviations much lower than in extrusion. (Author) 13 refs.

  19. Preliminary evaluation of the immobilization of simulated evaporator concentrate waste in low density polyethylene by extrusion process

    International Nuclear Information System (INIS)

    Cota, Stela; Oliveira, Tania Valeria S. de; Senne Junior, Murillo; Pacheco, Graziella

    2007-01-01

    Simulated evaporator concentrate was prepared by pre-treating sodium borate with calcium hydroxide to produce an insoluble borate salt. The resultant solid waste was blended by extrusion with virgin low density polyethylene (LDPE) in the proportion of 30 wt%. Samples were prepared to evaluate homogeneity, mechanical strength and leaching behavior. The homogeneity of each sample individually and in consecutive samples was indirectly estimated by sectioning each sample in four pieces and submitting each piece to density determination (ASTM standard D-792). Mechanical strength was evaluated through determination of compressive strength (ASTM standard D-695), and the results were compared to the value for the pure polymer and with the limit established by CNEN standard NN-6.09 for cement waste products. Samples were also tested for leaching by accelerated leaching test (ASTM standard C1308). Results showed a good homogeneity. Standard deviations of the density measurements were less than 1% for a single sample and less than 6% considering 3 samples. Polymer compressive strength at yield point and at 5% and 10% strain have increased after the mixture with the simulated waste, indicating an increase on the material strength. Estimated compressive strength was above CNEN standard limit for cement waste products if 5% strain could be considered a reasonable limit to assure structural integrity of the material. Cumulated leaching fraction after 11 days of accelerated leaching test was found to be below 10%, and diffusion coefficient was estimated as 9.06 x 10 -10 cm 2 /s, with deviation of 8.3%. (author)

  20. Preliminary evaluation of the immobilization of simulated evaporator concentrate waste in low density polyethylene by extrusion process

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Stela; Oliveira, Tania Valeria S. de; Senne Junior, Murillo; Pacheco, Graziella [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mail: sdsc@cdtn.br

    2007-07-01

    Simulated evaporator concentrate was prepared by pre-treating sodium borate with calcium hydroxide to produce an insoluble borate salt. The resultant solid waste was blended by extrusion with virgin low density polyethylene (LDPE) in the proportion of 30 wt%. Samples were prepared to evaluate homogeneity, mechanical strength and leaching behavior. The homogeneity of each sample individually and in consecutive samples was indirectly estimated by sectioning each sample in four pieces and submitting each piece to density determination (ASTM standard D-792). Mechanical strength was evaluated through determination of compressive strength (ASTM standard D-695), and the results were compared to the value for the pure polymer and with the limit established by CNEN standard NN-6.09 for cement waste products. Samples were also tested for leaching by accelerated leaching test (ASTM standard C1308). Results showed a good homogeneity. Standard deviations of the density measurements were less than 1% for a single sample and less than 6% considering 3 samples. Polymer compressive strength at yield point and at 5% and 10% strain have increased after the mixture with the simulated waste, indicating an increase on the material strength. Estimated compressive strength was above CNEN standard limit for cement waste products if 5% strain could be considered a reasonable limit to assure structural integrity of the material. Cumulated leaching fraction after 11 days of accelerated leaching test was found to be below 10%, and diffusion coefficient was estimated as 9.06 x 10{sup -10} cm{sup 2}/s, with deviation of 8.3%. (author)

  1. Steel billet reheat simulation with growth of oxide layer and investigation on zone temperature sensitivity

    International Nuclear Information System (INIS)

    Dubey, Satish Kumar; Srinivasan, P.

    2014-01-01

    This paper presents a three-dimensional heat conduction numerical model and simulation of steel billet reheating in a reheat furnace. The model considers the growth of oxide scale on the billet surfaces. Control-volume approach and implicit scheme of finite difference method are used to discretize the transient heat conduction equation. The model is validated with analytical results subject to limited conditions. Simulations are carried out for predictions of three-dimensional temperature filed in the billet and oxide scale growth on the billet surfaces. The model predictions are in agreement with expected trends. It was found that the effect of oxide scale on billet heating is considerable. In order to investigate the effect of zone temperatures on the responses, a parametric sensitivity subject to six responses of interest are carried out using analysis of mean approach. The simulation approach and parametric study presented will be useful and applicable to the steel industry.

  2. Friction measurement and modelling in forward rod extrusion

    DEFF Research Database (Denmark)

    Tan, Xincai; Bay, Niels; Zhang, Wenqi

    2003-01-01

    Forward extrusion is one of the important processes in bulk metal forming. Friction stress can be estimated from the slope of the load±displacement curve at the steady state after the maximum load in a forward extrusion test. In this paper, forward rod extrusion tests are carried out to determine...... as the lubricant. Friction stresses are obtained from measurements of slopes of extrusion pressure±punch travel curves at the steady state stage. Normal pressures are evaluated by using Mohr’s circle, in which shear ¯ow stresses are estimated at the maximum elastic deformation points from the same extrusion...... pressure±punch travel curves. It is found that the relationship between normal pressure and friction stress appears linear, and therefore Coulomb’s friction model ®ts the experimental data very well. Extrusion pressure±punch travel curves before the steady state can be divided into four stages: elastic...

  3. Physical modelling and numerical simulation of the round-to-square forward extrusion

    DEFF Research Database (Denmark)

    Gouveia, B.P.P.A.; Rodrigues, J.M.C.; Martins, P.A.F.

    2001-01-01

    , and comparisons are made between the numerical predictions and experimental data obtained through the utilisation of physical modelling. Assessment is made in terms of flow pattern and strain distribution for two different cross-sections corresponding to the axial symmetry planes of the three......-dimensional extrusion part. The experimental distribution of strain is determined from the shape change of quadrilateral grids previously printed on the surface of the axial cross-sections of the undeformed billets by means of large deformation square-grid analysis. Good agreement is obtained between physical...

  4. Optimization of the uniformity of a metal flow during continuous extrusion by the Conform method

    Science.gov (United States)

    Lyubanova, A. Sh.; Gorokhov, Yu. V.; Solopko, I. V.; Ziborov, A. Yu.

    2010-03-01

    The scheme of plastic deformation of a billet in a container is considered as part of continuous extrusion by the Conform method. A mathematical model of the motion of a viscoplastic Bingham liquid is used to determine the metal velocity distribution in the plastic-deformation zone. As a result, the optimum angle between the longitudinal axes of the die and container is estimated. This angle is found to be one of the main factors affecting the nonuniformity of deformation when a metal flows into the die. The calculated results are compared to experimental data.

  5. Integrated hot-melt extrusion - injection molding continuous tablet manufacturing platform: Effects of critical process parameters and formulation attributes on product robustness and dimensional stability.

    Science.gov (United States)

    Desai, Parind M; Hogan, Rachael C; Brancazio, David; Puri, Vibha; Jensen, Keith D; Chun, Jung-Hoon; Myerson, Allan S; Trout, Bernhardt L

    2017-10-05

    This study provides a framework for robust tablet development using an integrated hot-melt extrusion-injection molding (IM) continuous manufacturing platform. Griseofulvin, maltodextrin, xylitol and lactose were employed as drug, carrier, plasticizer and reinforcing agent respectively. A pre-blended drug-excipient mixture was fed from a loss-in-weight feeder to a twin-screw extruder. The extrudate was subsequently injected directly into the integrated IM unit and molded into tablets. Tablets were stored in different storage conditions up to 20 weeks to monitor physical stability and were evaluated by polarized light microscopy, DSC, SEM, XRD and dissolution analysis. Optimized injection pressure provided robust tablet formulations. Tablets manufactured at low and high injection pressures exhibited the flaws of sink marks and flashing respectively. Higher solidification temperature during IM process reduced the thermal induced residual stress and prevented chipping and cracking issues. Polarized light microscopy revealed a homogeneous dispersion of crystalline griseofulvin in an amorphous matrix. DSC underpinned the effect of high tablet residual moisture on maltodextrin-xylitol phase separation that resulted in dimensional instability. Tablets with low residual moisture demonstrated long term dimensional stability. This study serves as a model for IM tablet formulations for mechanistic understanding of critical process parameters and formulation attributes required for optimal product performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Downstream processing of a ternary amorphous solid dispersion: The impacts of spray drying and hot melt extrusion on powder flow, compression and dissolution.

    Science.gov (United States)

    Davis, Mark T; Potter, Catherine B; Walker, Gavin M

    2018-06-10

    Downstream processing aspects of a stable form of amorphous itraconazole exhibiting enhanced dissolution properties were studied. Preparation of this ternary amorphous solid dispersion by either spray drying or hot melt extrusion led to significantly different powder processing properties. Particle size and morphology was analysed using scanning electron microscopy. Flow, compression, blending and dissolution were studied using rheometry, compaction simulation and a dissolution kit. The spray dried material exhibited poorer flow and reduced sensitivity to aeration relative to the milled extrudate. Good agreement was observed between differing forms of flow measurement, such as Flow Function, Relative flow function, Flow rate index, Aeration rate, the Hausner ratio and the Carr index. The stability index indicated that both powders were stable with respect to agglomeration, de-agglomeration and attrition. Tablet ability and compressibility studies showed that spray dried material could be compressed into stronger compacts than extruded material. Blending of the powders with low moisture, freely-flowing excipients was shown to influence both flow and compression. Porosity studies revealed that blending could influence the mechanism of densification in extrudate and blended extrudate formulations. Following blending, the powders were compressed into four 500 mg tablets, each containing a 100 mg dose of amorphous itraconazole. Dissolution studies revealed that the spray dried material released drug faster and more completely and that blending excipients could further influence the dissolution rate. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Micro-scale prediction method for API-solubility in polymeric matrices and process model for forming amorphous solid dispersion by hot-melt extrusion.

    Science.gov (United States)

    Bochmann, Esther S; Neumann, Dirk; Gryczke, Andreas; Wagner, Karl G

    2016-10-01

    A new predictive micro-scale solubility and process model for amorphous solid dispersions (ASDs) by hot-melt extrusion (HME) is presented. It is based on DSC measurements consisting of an annealing step and a subsequent analysis of the glass transition temperature (Tg). The application of a complex mathematical model (BCKV-equation) to describe the dependency of Tg on the active pharmaceutical ingredient (API)/polymer ratio, enables the prediction of API solubility at ambient conditions (25°C). Furthermore, estimation of the minimal processing temperature for forming ASDs during HME trials could be defined and was additionally confirmed by X-ray powder diffraction data. The suitability of the DSC method was confirmed with melt rheological trials (small amplitude oscillatory system). As an example, ball milled physical mixtures of dipyridamole, indomethacin, itraconazole and nifedipine in poly(vinylpyrrolidone-co-vinylacetate) (copovidone) and polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus®) were used. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Embedded Multimaterial Extrusion Bioprinting

    NARCIS (Netherlands)

    Rocca, Marco; Fragasso, Alessio; Liu, Wanjun; Heinrich, Marcel A.; Zhang, Yu Shrike

    Embedded extrusion bioprinting allows for the generation of complex structures that otherwise cannot be achieved with conventional layer-by-layer deposition from the bottom, by overcoming the limits imposed by gravitational force. By taking advantage of a hydrogel bath, serving as a sacrificial

  9. High-temperature extrusion behavior of a superplastic zirconia-based ceramic

    International Nuclear Information System (INIS)

    Kellett, B.J.; Carry, C.; Mocellin, A.

    1990-01-01

    Workability of 3-mol%-yttria-stabilized tetragonal ZrO 2 has been gauged through a series of extrusion experiments performed under vacuum with graphite dies at 1500 degrees C and 35 MPa piston stress. It is shown that dense and smooth extrustions can be obtained from solid billets when graphite paper is used as a lubricant. Sigmoidal dies and conical dies with cone angles of 18.4 degrees, 26.6 degrees, and 45 degrees and diameter ratios of 1.5, 2, and 3 were used to explore extrusion behavior. Observed piston velocities correspond to what may be predicted from the experimental uniaxial constitutive creep equation and a simple slab analysis. A precise analysis, however, is not attempted because of lack of steady-state behavior of the material itself

  10. Phenolic Acids Profiles and Cellular Antioxidant Activity in Tortillas Produced from Mexican Maize Landrace Processed by Nixtamalization and Lime Extrusion Cooking.

    Science.gov (United States)

    Gaxiola-Cuevas, Nallely; Mora-Rochín, Saraid; Cuevas-Rodriguez, Edith Oliva; León-López, Liliana; Reyes-Moreno, Cuauhtémoc; Montoya-Rodríguez, Alvaro; Milán-Carrillo, Jorge

    2017-09-01

    Phenolic acids profiles, chemical antioxidant activities (ABTS and ORAC), as well as cellular antioxidant activity (CAA) of tortilla of Mexican native maize landraces elaborated from nixtamalization and lime cooking extrusion processes were studied. Both cooking procedures decreased total phenolics, chemicals antioxidant activity when compared to raw grains. Extruded tortillas retained 79.6-83.5%, 74.1-77.6% and 79.8-80.5% of total phenolics, ABTS and ORAC values, respectively, compared to 47.8-49.8%, 41.3-42.3% and 43.7-44.4% assayed in traditional tortillas, respectively. Approximately 72.5-88.2% of ferulic acid in raw grains and their tortillas were in the bound form. Regarding of the CAA initially found in raw grains, the retained percentage for traditional and extruded tortillas ranged from 47.4 to 48.7% and 72.8 to 77.5%, respectively. These results suggest that Mexican maize landrace used in this study could be considered for the elaboration of nixtamalized and extruded food products with nutraceutical potential.

  11. Extrusion and drawing of zircaloy 2. Production of pressure tubes for EL-4

    International Nuclear Information System (INIS)

    Thevenet, J.

    1964-01-01

    The authors give briefly the physical mechanical and chemical properties of zircaloy 2, as far as the transformation of this alloy is concerned. Extrusion: After a few general remarks concerning the extrusion and co-extrusion, including a comparison of the deformation resistance of canning metals and of zircaloy 2, the following points are considered: - the difficulties occurring because of the use of this alloy: - atmosphere protection - adjustment on to the machine tools - low thermal conductivity - economy of the metal (price) - the factors affecting the quality of the extruded products extrusion under a copper can and under lubricant glass - fine grain structure - temperature homogeneity - working temperature The transformation cycle - '550 kg ingot - preliminary shape 'for drawing of EL-4 tubes (112 x 120 L 12 m)' - is described in detail (extrusion or forging of the φ = 340 ingot into φ = 220 billets, cutting into lengths and hot drilling at φ = 125, fixing into a copper can and rough extrusion). Drawing: The main difficulties are due to seizing of the tools and to the necessity of protecting the alloy from the atmosphere during annealings. A brief description is given of drawing out on a short mandrel, on a long mandrel, of laminating on a reducing machine and of the carrying out of an annealing, as well as of the production of EL-4 tubes (φ =107 x 113 L 430 m) by drawing out shapes having a size of 112 x 120 on long mandrels. Conclusion: It is possible by extrusion and drawing to produce zircaloy 2 tubes similar to those which may be obtained normally using stainless steel. (authors) [fr

  12. Design and performance of the Savannah River Site Billet Active Well Coincidence Counter

    International Nuclear Information System (INIS)

    Griffin, J.C.; Sadowski, E.T.

    1991-01-01

    The Savannah River Site (SRS) has acquired, installed, and tested a custom-built Billet Active Well (neutron) Coincidence Counter (BAWCC). The BAWCC is used to make accountability measurements of the 235 U content of U-Al coextrusion billets in the SRS fuel fabrication facility. The instrument design incorporates a unique center-source configuration, with two moderated americium-lithium (AmLi) neutron sources located in a central spindle that inserts through the center hole of the U-Al billets. This configuration, a result of earlier experimental studies at SRS, yields improved response and precision for billet assay when compared to the standard AWCC source arrangement. Initial tests of the BAWCC at SRS have yielded one-sigma uncertainties of 0.8--1.0% for a fifteen-minute assay. This paper will describe the design, testing program and performance characteristics of the BAWCC

  13. Semisolid casting with ultrasonically melt-treated billets of Al-7mass%Si alloys

    Directory of Open Access Journals (Sweden)

    Yoshiki Tsunekawa

    2012-02-01

    Full Text Available The demand for high performance cast aluminum alloy components is often disturbed by increasing impurity elements, such as iron accumulated from recycled scraps. It is strongly required that coarse plate-like iron compound of モ-Al5FeSi turns into harmless form without the need for applying refining additives or expensive virgin ingots. The microstructural modification of Al-7mass%Si alloy billets with different iron contents was examined by applying ultrasonic vibration during the solidification. Ultrasonically melt-treated billets were thixocast right after induction heating up to the semisolid temperature of 583 ìC, the microstructure and tensile properties were evaluated in the thixocast components. Globular primary メ-Al is required to fill up a thin cavity in thixocasting, so that the microstructural modification by ultrasonic melt-treatment was firstly confirmed in the billets. With ultrasonic melt-treatment in the temperature range of 630 ìC to 605 ìC, the primary メ-Al transforms itself from dendrite into fine globular in morphology. The coarse plate-like モ-Al5FeSi compound becomes markedly finer compared with those in non-treated billets. Semisolid soaking up to 583 ìC, does not appreciably affect the size of モ-Al5FeSi compounds; however, it affects the solid primary メ-Al morphology to be more globular, which is convenient for thixocasting. After thixocasting with preheated billets, eutectic silicon plates are extremely refined due to the rapid solidification arising from low casting temperature. The tensile strength of thixocast samples with different iron contents does not change much even at 2mass% of iron, when thixocast with ultrasonically melt-treated billets. However, thixocast Al-7mass%Si-2mass%Fe alloy with non-treated billets exhibits an inferior strength of 80 MPa, compared with 180 MPa with ultrasonically melt-treated billets. The elongation is also improved by about a factor of two in thixocastings with

  14. Extrusion of ECC: Recent Developments and Applications

    DEFF Research Database (Denmark)

    Stang, Henrik; Fredslund-Hansen, Helge; Puclin, Tony

    2008-01-01

    process. Extrusion of cementitious (fiber reinforced) materials has proven particularly difficult due to the high inter-particle friction combined with the disastrous effect of static zones in the flow pattern, and to the ease of phase migration or separation. In order to deal with these conflicting...

  15. Effect of Humidity of Poly-Cereal Flour Mixture and Screw Rotation Rate on Efficiency of Extrusion Process

    Science.gov (United States)

    Ospanov, ?bdymanap ?.; Muslimov, Nurzhan Zh.; Timurbekova, ?igul ?.; Jumabekova, Gulnar? B.

    2016-01-01

    The food industry is an important constituent of a country's economy, which provides the population with food. The development of the food industry and the supply of food products to the entire population requires improving food-manufacturing technologies, such as the process for production of extruded poly-cereal food products using…

  16. Two-Layer Linear MPC Approach Aimed at Walking Beam Billets Reheating Furnace Optimization

    Directory of Open Access Journals (Sweden)

    Silvia Maria Zanoli

    2017-01-01

    Full Text Available In this paper, the problem of the control and optimization of a walking beam billets reheating furnace located in an Italian steel plant is analyzed. An ad hoc Advanced Process Control framework has been developed, based on a two-layer linear Model Predictive Control architecture. This control block optimizes the steady and transient states of the considered process. Two main problems have been addressed. First, in order to manage all process conditions, a tailored module defines the process variables set to be included in the control problem. In particular, a unified approach for the selection on the control inputs to be used for control objectives related to the process outputs is guaranteed. The impact of the proposed method on the controller formulation is also detailed. Second, an innovative mathematical approach for stoichiometric ratios constraints handling has been proposed, together with their introduction in the controller optimization problems. The designed control system has been installed on a real plant, replacing operators’ mental model in the conduction of local PID controllers. After two years from the first startup, a strong energy efficiency improvement has been observed.

  17. Application of the Billet Casting Method to Determine the Onset of Incipient Melting of 319 Al Alloy Engine Blocks

    Science.gov (United States)

    Lombardi, A.; Ravindran, C.; MacKay, R.

    2015-06-01

    The increased use of Al for automotive applications has resulted from the need to improve vehicle fuel efficiency. Aluminum alloy engine blocks fulfil the need of lightweighting. However, there are many challenges associated with thermo-mechanical mismatch between Al and the gray cast iron cylinder liners, which result in large tensile residual stress along the cylinder bores. This requires improced mechanical properties in this region to prevent premature engine failure. In this study, replicating billet castings were used to simulate the engine block solution heat treatment process and determine the onset of incipient melting. Microstructural changes during heat treatment were assessed with SEM and EDX, while thermal analysis was carried out using differential scanning calorimetry. The results suggest that solution heat treatment at 500 °C was effective in dissolving secondary phase particles, while solutionizing at 515 or 530 °C caused incipient melting of Al2Cu and Al5Mg8Cu2Si6. Incipient melting caused the formation ultra-fine eutectic clusters consisting of Al, Al2Cu, and Al5Mg8Cu2Si6 on quenching. In addition, DSC analysis found that incipient melting initiated at 507 °C for all billets, although the quantity of local melting reduced with microstructural refinement as evidenced by smaller endothermic peaks and energy absorption. The results from this study will assist in improving engine block casting integrity and process efficiency.

  18. Functionality of extrusion--texturized whey proteins.

    Science.gov (United States)

    Onwulata, C I; Konstance, R P; Cooke, P H; Farrell, H M

    2003-11-01

    Whey, a byproduct of the cheesemaking process, is concentrated by processors to make whey protein concentrates (WPC) and isolates (WPI). Only 50% of whey proteins are used in foods. In order to increase their usage, texturizing WPC, WPI, and whey albumin is proposed to create ingredients with new functionality. Extrusion processing texturizes globular proteins by shearing and stretching them into aligned or entangled fibrous bundles. In this study, WPC, WPI, and whey albumin were extruded in a twin screw extruder at approximately 38% moisture content (15.2 ml/min, feed rate 25 g/min) and, at different extrusion cook temperatures, at the same temperature for the last four zones before the die (35, 50, 75, and 100 degrees C, respectively). Protein solubility, gelation, foaming, and digestibility were determined in extrudates. Degree of extrusion-induced insolubility (denaturation) or texturization, determined by lack of solubility at pH 7 for WPI, increased from 30 to 60, 85, and 95% for the four temperature conditions 35, 50, 75, and 100 degrees C, respectively. Gel strength of extruded isolates increased initially 115% (35 degrees C) and 145% (50 degrees C), but gel strength was lost at 75 and 100 degrees C. Denaturation at these melt temperatures had minimal effect on foaming and digestibility. Varying extrusion cook temperature allowed a new controlled rate of denaturation, indicating that a texturized ingredient with a predetermined functionality based on degree of denaturation can be created.

  19. Dynamic Consolidation and Investigation of Nanostructural W-Cu / W-Y Cylindrical Billets

    Science.gov (United States)

    Godibadze, B.; Dgebuadze, A.; Chagelishvili, E.; Mamniashvili, G.; Peikrishvili, A.

    2018-03-01

    The main purpose of presented work is to obtain W-Cu & W-Y cylindrical bulk nanostructured billets by explosive consolidation technology (ECT) in hot condition, with low porosity near to theoretical densities and improved physical / mechanical properties. Nanocomposites were subjected to densification into cylindrical steel tube containers using hot explosive consolidation (HEC) technology to fabricate high dense cylindrical billets. The first stage : Preliminary explosive densification of the precursor powder blend is carried out at room temperature with a loading intensity up to 10GPa to increase the initial density and to activate the particle surfaces in the blend. The second stage investigation were carried out for the same already predensified billets, but consolidation were conducted in hot conditions, after heating of samples in between 940-11000C, the intensity of loading was equal to 10GPa. Consolidated different type of W-Cu composition containing 10-40% of nanoscale W, during investigation showed that the combination of high temperatures (above 940°C) and two-stage shock wave compression was beneficial to the consolidation of the incompatible pair W-Cu composites, resulting in high densities, good integrity and good electronic properties. The structure and property of the samples obtained, depended on the sizes of tungsten particles. It was established that in comparison with W-Cu composites with coarse tungsten the application of nanoscale W precursors and depending of content of W gives different result. Tungsten is a prime material candidate for the first wall of a future fusion reactor. In this study, the microstructure and microhardness of tungsten-yttrium (W-Y) composites were investigated as a function of Y doping content (0.5÷2 wt. %). It was found that the crystallite sizes and the powder particle sizes were increased as a result of the increase of Y content. Nearly fully dense materials were obtained for W-Y alloys when the Y content was

  20. Design and Evaluation of Topical Diclofenac Sodium Gel Using Hot Melt Extrusion Technology as a Continuous Manufacturing Process with Kolliphor® P407.

    Science.gov (United States)

    Pawar, Jaywant; Narkhede, Rajkiran; Amin, Purnima; Tawde, Vaishali

    2017-08-01

    The aim of the present context was to develop and evaluate a Kolliphor® P407-based transdermal gel formulation of diclofenac sodium by hot melt extrusion (HME) technology; central composite design was used to optimize the formulation process. In this study, we have explored first time ever HME as an industrially feasible and continuous manufacturing technology for the manufacturing of gel formulation using Kolliphor® P407 and Kollisolv® PEG400 as a gel base. Diclofenac sodium was used as a model drug. The HME parameters such as feeding rate, screw speed, and barrel temperature were crucial for the semisolid product development, and were optimized after preliminary trials. For the processing of the gel formulation by HME, a modified screw design was used to obtain a uniform product. The obtained product was evaluated for physicochemical characterization such as differential scanning calorimetry (DSC), X-ray diffraction (XRD), pH measurement, rheology, surface tension, and texture profile analysis. Moreover, it was analyzed for general appearance, spreadibility, surface morphology, and drug content. The optimized gel formulation showed homogeneity and transparent film when applied on a glass slide under microscope, pH was 7.02 and uniform drug content of 100.04 ± 2.74 (SD = 3). The DSC and XRD analysis of the HME gel formulation showed complete melting of crystalline API into an amorphous form. The Kolliphor® P407 and Kollisolv® PEG400 formed excellent gel formulation using HME with consistent viscoelastic properties of the product. An improved drug release was found for the HME gel, which showed a 100% drug release than that of a marketed product which showed only 88% of drug release at the end of 12 h. The Flux value of the HME gel was 106 than that of a marketed formulation, which showed only about 60 value, inferring a significant difference (P process for manufacturing of topical semisolid products.

  1. Extrusion and properties of lead zirconate titanate piezoelectric ceramics

    DEFF Research Database (Denmark)

    Cai, S.; Millar, C.E.; Pedersen, L.

    1997-01-01

    The purpose of this work was to develop a procedure for fabricating electroceramic actuators with good piezoelectric properties. The preparation of lead zirconate titanate (PZT) piezoelectric ceramic rods and tubes by extrusion processing is described. The microstructure of extrudates was investi......The purpose of this work was to develop a procedure for fabricating electroceramic actuators with good piezoelectric properties. The preparation of lead zirconate titanate (PZT) piezoelectric ceramic rods and tubes by extrusion processing is described. The microstructure of extrudates...

  2. Influence of ECAP process on mechanical and corrosion properties of pure Mg and ZK60 magnesium alloy for biodegradable stent applications

    Science.gov (United States)

    Mostaed, Ehsan; Vedani, Maurizio; Hashempour, Mazdak; Bestetti, Massimiliano

    2014-01-01

    Equal channel angular pressing (ECAP) was performed on ZK60 alloy and pure Mg in the temperature range 150–250 °C. A significant grain refinement was detected after ECAP, leading to an ultrafine grain size (UFG) and enhanced formability during extrusion process. Comparing to conventional coarse grained samples, fracture elongation of pure Mg and ZK60 alloy were significantly improved by 130% and 100%, respectively, while the tensile strength remained at high level. Extrusion was performed on ECAP processed billets to produce small tubes (with outer/inner diameter of 4/2.5 mm) as precursors for biodegradable stents. Studies on extruded tubes revealed that even after extrusion the microstructure and microhardness of the UFG ZK60 alloy were almost stable. Furthermore, pure Mg tubes showed an additional improvement in terms of grain refining and mechanical properties after extrusion. Electrochemical analyses and microstructural assessments after corrosion tests demonstrated two major influential factors in corrosion behavior of the investigated materials. The presence of Zn and Zr as alloying elements simultaneously increases the nobility by formation of a protective film and increase the local corrosion damage by amplifying the pitting development. ECAP treatment decreases the size of the second phase particles thus improving microstructure homogeneity, thereby decreasing the localized corrosion effects. PMID:25482411

  3. Extrusion Cooking Systems and Textured Vegetable Proteins

    Directory of Open Access Journals (Sweden)

    2015-02-01

    Full Text Available Many fabricated foods are cooked industrially and are given desired textures, shapes, density and rehydration characteristics by an extrusion cooking process. This relatively new process is used in the preparation of “engineered” convenience foods: textured vegetable proteins, breakfast cereals, snacks, infant foods, dry soup mixes, breading, poultry stuffing, croutons, pasta products, beverage powders, hot breakfast gruels, and in the gelatinization of starch or the starchy component of foods.

  4. Determination of the duration of heating and cooling of titanium alloy billets for swaging

    International Nuclear Information System (INIS)

    Kushakevich, S.A.; Konovalov, M.A.; Chistyakov, N.I.

    1978-01-01

    An attempt was made to establish a connection between the duration of heat and the decrease in metal temperature during deformation to determine the beginning and duration of heating titanium alloy billets for hot stamping. The investigations were made on the VT3-1 alloy billets with chromel-alumel thermocouples inside. The results of measurements of billet surface and center temperatures during the heating in a resistance surface up to 960-1050deg C and during the cooling in the air. It is shown that heating and cooling increase with the billet cross-section. The heating duration up to 1050deg C for all cross-sections is 4 or 5 min less than up to 960deg C. The cooling duration from 960 and 1050deg C to 200deg C depends weakly on the heating temperature and varies for various cross-sections within the limits of 1-2 min. It is proposed to determine roughly the metal temperature on complection of stamping through the time elapsed after the heated billet has left the furnace

  5. Deformations in micro extrusion of metals

    Directory of Open Access Journals (Sweden)

    J. Piwnik

    2010-07-01

    Full Text Available Production technologies of small dimensions metallic elements are known for a long time. They are produced by machining methods:turning, milling, polishing. Recently, methods for manufacturing small details by forming are developed – microforming. This process ischaracterized by the high dimensions accuracy and the surface smoothness of received items and the high production rate. When a forming process is scaled down to micro dimensions, the microstructure of the workpiece, the surface topology of the workpiece and that of the tooling remain unchanged. Size effect is appearing. This paper analyses specifications of a metal extrusion in micro scale. To determine the impact of the tool surface roughness on deformation process the numerical model of roughness as triangle wave were developed. In paper the influence of the wave presence on the material flow is described. Impact of the forming conditions on extrusion forces there is also characterized.

  6. Three dimensions thermal-mechanical model of the billet in continuous casting petal-like mould

    International Nuclear Information System (INIS)

    Li Jing; Wu Li; Cao Zhiqiang; Tingju, L; Wang Tongmin

    2012-01-01

    Petal-like mould is a novel mould which has been applied to the steel industry in recent years. The behavior of the petal-like billet in continuous casting mould plays an important role in designing mould. It is hard to be in situ measured during continuous casting, however, can be worked out by the way of numerical simulation. But the research about the model of the billet in petal-like mould is very little. A 3D finite-element model has been built to simulate the thermal and stress fields of the molten steel in petal-like mould in this paper. The dynamic thermal boundary condition and the effect of ferrostatic pressure have been considered in the model. The temperature and stress in the billet have been predicted by this model.

  7. Heating characteristics of billet in a walking hearth type reheating furnace

    International Nuclear Information System (INIS)

    Emadi, Ali; Saboonchi, Ahmad; Taheri, Mahdi; Hassanpour, Saeid

    2014-01-01

    The heating characteristics of billet in a walking hearth type reheating furnace were studied by developing a mathematical heat transfer model. Radiation calculations were conducted by means of zone method and considering all radiation exchange paths. The weighted-sum-of-gray-gas-model was used for better accuracy of gas radiation prediction. Convective heat flux was calculated by considering suitable value of convective heat transfer coefficient at any location of the furnace. The model was substantiated through its comparison to experimental data. A comparison was drawn to evaluate the effect of constant and variable convective coefficient on convective flux distribution and billet thermal behavior. The effect of furnace wall's emissivity of each zone and whole of the furnace on the billet thermal behavior was investigated. The obtained results revealed that by increasing furnace wall's emissivity for a determined residence time, billet's temperature in primary zones rises but it has no significant effect on its final temperature. However, by increasing wall's emissivity from 0.7 to 0.95, the residence time can be declined by about 5%. Moreover, emissivity increase in non-firing and preheating zones as compared to heating and soaking zones has greater impact on the billet thermal behavior. -- Highlights: • 3D radiation modeling by considering all possible paths of radiation exchange. • Using WSGG model for better prediction of gas radiation. • Using non-constant convection coefficient to consider variation of gas mass flow. • Investigation of effect of convection coefficient on billet temperature behavior. • Investigation of wall emissivity of furnace zones

  8. Induction heating of rotating nonmagnetic billet in magnetic field produced by high-parameter permanent magnets

    Directory of Open Access Journals (Sweden)

    Ivo Doležel

    2014-04-01

    Full Text Available An advanced way of induction heating of nonmagnetic billets is discussed and modeled. The billet rotates in a stationary magnetic field produced by unmoving high-parameter permanent magnets fixed on magnetic circuit of an appropriate shape. The mathematical model of the problem consisting of two coupled partial differential equations is solved numerically, in the monolithic formulation. Computations are carried out using our own code Agros2D based on a fully adaptive higher-order finite element method. The most important results are verified experimentally on our own laboratory device.

  9. The friction influence on stress in micro extrusion

    Directory of Open Access Journals (Sweden)

    J. Piwnik

    2010-01-01

    Full Text Available Manufacturing of metallic parts by forming methods is industrially widespread due to high production rate, high accuracy, dimension’s and shape’s repeatability and good surface quality. The application of metal extrusion methods for the production of micro parts is possible, but there are some technological problems caused by small dimensions. Size effect is appearing. One of size effect symptom in micro extrusion, is a significant influence of rough contact between workpiece and tool while processing. In the case of rough contact without friction, material flows in the vicinity of the die surface. In order to explain more accurately a friction distribution in this area, the plastic wave friction model is proposed. This paper analyses specifications of a metal extrusion in micro scale. Using the friction model, a substitute friction shear factor mz and its influence on extrusion loading curves is determined in relationship to size of asperities.

  10. Rapid Continuous Multimaterial Extrusion Bioprinting

    NARCIS (Netherlands)

    Liu, Wanjun; Zhang, Yu Shrike; Heinrich, Marcel A.; De Ferrari, F; Jang, HL; Bakht, SM; Alvarez, MM; Yang, J; Li, YC; Trujillo-de Stantiago, G; Miri, AK; Zhu, K; Khoshakhlagh, P; Prakash, G; Cheng, H; Guan, X; Zhong, Z; Ju, J; Zhu, GH; Jin, X; Ryon Shin, Su; Dokmeci, M.R.; Khademhosseini, Ali

    The development of a multimaterial extrusion bioprinting platform is reported. This platform is capable of depositing multiple coded bioinks in a continuous manner with fast and smooth switching among different reservoirs for rapid fabrication of complex constructs, through digitally controlled

  11. Use of a high temperature hydrostatic extrusion technique for powders strengthening

    International Nuclear Information System (INIS)

    Decours, J.; Gavinet, J.; Weisz, M.

    1975-01-01

    A conventional 575 tonnes extrusion press has been modified by a device permitting the extrusion process by hydrostatic pression through a leakless mechanical set (13,000 bars maximum), from room temperature to 1,200 deg C. This new device allows: the high temperature hydrostatic extrusion for strengthening of powders, the isostatic compression of powders. Examples of realisations obtained by this process are described, including the influence of different parameters: pressure, temperature, extrusion ratio and for different materials: pure metals (iron, nickel, niobium, etc...) and alloys (stainless steel, molybdenum, niobium nickel alloys, etc...). Then, the advantages of the process are emphasized [fr

  12. Microstructure development and texture evolution of aluminum multi-port extrusion tube during the porthole die extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Fan, X.H. [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240 (China); School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Tang, D., E-mail: tangding@sjtu.edu.cn [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240 (China); School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Fang, W.L.; Li, D.Y.; Peng, Y.H. [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240 (China); School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2016-08-15

    Aluminum multi-port extrusion tube is processed by the porthole die extrusion and the internal tube walls are welded through the solid state metallurgical bonding. In order to observe the development of grains and their orientations under severe plastic deformation and solid state welding, the extrusion butt together with the die is quenched immediately after extrusion to preserve the grain structure in the processing. The forming histories of selected material points are obtained by analyzing the optical microscopy graph. The evolution of the microstructure along the forming path is characterized by electro backscattered diffraction. It is found that geometrical dynamic recrystallization happens in the process. Grains are elongated, scattered at the transition zone and shear intensive zone, and then pinched off when they are pushed out from the die orifice. The shear-type orientations are predominant at the surface layer on the longitudinal section of the tube web and have penetrated into the intermediate layer. The rolling-type orientations are formed at the central layer. Texture gradient through the thickness of the tube web is observed. And cube orientated grains are found at the seam weld region. - Highlights: •Microstructure of extrusion butt is preserved after the micro scale porthole die extrusion. •Grain morphology history along forming path is investigated. •Texture evolutions on three material flows are present. •Texture gradient exists on the longitudinal section of the internal wall of profile. •Rolling-type and cube textures are found at the solid state welding region.

  13. Optical Measurement Technology For Aluminium Extrusions

    International Nuclear Information System (INIS)

    Moe, Per Thomas; Willa-Hansen, Arnfinn; Stoeren, Sigurd

    2007-01-01

    Optical measurement techniques such as laser scanning, structured light scanning and photogrammetry can be used for accurate shape control for aluminum extrusion and downstream processes. The paper presents the fundamentals of optical shape measurement. Furthermore, it focuses on how full-field in- and off-line shape measurement during pure-bending of aluminum extrusions has been performed with stripe projection (structured light) using white light. Full field shape measurement is difficult to implement industrially, but is very useful as a laboratory tool. For example, it has been clearly shown how moderate internal air pressure (less than 5 bars) can significantly reduce undesirable cross-sectional shape distortions during pure bending, and how buckling of the compressive flange occurs at an early stage. Finally, a stretch-bending set-up with adaptive shape control using internal gas pressure and optical techniques is presented

  14. MODELING OF QUALITY FORMATION OF PIG IRON BILLET SURFACE AT WIRE BRUSH MILLING

    Directory of Open Access Journals (Sweden)

    I. L. Barshaj

    2009-01-01

    Full Text Available Formation of topography, geometrical structure and micro-hardness of pig iron billet surface is considered in the paper. Mathematical models pertaining to formation of the above-mentioned characteristics of surface quality according to parameters of machining regime have been developed on the basis of the executed investigations.

  15. Simulation model for planning metallurgical treatment of large-size billets

    International Nuclear Information System (INIS)

    Timofeev, M.A.; Echeistova, L.A.; Kuznetsov, V.G.; Semakin, S.V.; Krivonogov, A.B.

    1989-01-01

    The computerized simulation system ''Ritm'' for planning metallurgical treatment of billets is developed. Three principles, specifying the organization structure of the treatment cycle are formulated as follows: a cycling principle, a priority principle and a principle of group treatment. The ''Ritm'' software consists of three independent operating systems: preparation of source data, simulation, data output

  16. CALCULATION OF DEFORMATION FORCE AT PLASTIC FORM-SHAPING OF FLANGE IN ROUND BILLET

    Directory of Open Access Journals (Sweden)

    L. A. Isaevich

    2007-01-01

    Full Text Available The paper introduces results concerning calculation of deformation force at plastic form-shaping of a flange in a round billet, having a preset extent of the transition zone from an internal pipe wall to a flange, that makes it possible to select a press of corresponding nominal force. 

  17. Features of energy impact on a billet material when cutting with outstripping plastic deformation

    Directory of Open Access Journals (Sweden)

    V. M. Yaroslavtsev

    2014-01-01

    Full Text Available In the last decades the so-called combined machining methods based on parallel, serial or parallelserial combination of different types of energy impacts on the billet are designed and developed. Combination of two or more sources of external energy in one method of machining can be directed to the solution of different technological tasks, such as: improvement of a basic method to enhance technicaland-economic and technological indicators of machining, expansion of technological capabilities of the method, increase of reliability and stability of technological process to produce details, etc. Besides, the combined methods of machining are considered as one of the means, which enables reducing the number of operations in technological process, allows the growth of workforce productivity.When developing the combined technologies, one of the main scientific tasks is to define the general regularities of interaction and mutual influence of the energy fluxes brought to the zone of machining. The result of such mutual influence becomes apparent from the forming technological parameters of machining and determines the most rational operating conditions of technological process.In the context of conducted in BMSTU researches on the combined cutting method with outstripping plastic deformation (OPD the mutual influence of the energetic components of machining has been quantitatively assessed. The paper shows a direct relationship between the rational ratio of the two types of the mechanical energy brought in the machining zone, the machining conditions, and the optimum operating conditions.The paper offers a physical model of chip formation when machining with OPD. The essence of model is that specific works spent on material deformation of a cut-off layer are quantitatively compared at usual cutting and at cutting with OPD. It is experimentally confirmed that the final strain-deformed material states of a cut-off layer, essentially, coincide in both

  18. Limits of Lubrication in Backward Can Extrusion

    DEFF Research Database (Denmark)

    Bennani, B; Bay, Niels

    1996-01-01

    The increasing demand in industry to produce cans at low reduction by the backward extrusion process involves better understanding of this process. To analyse the process, numerical simulations by the finite-element method and experimental simulations by physical modelling using wax as a model...... on the reduction, the punch geometry, the workpiece material and the friction factor, in order to avoid the risk of damage caused by stiction of the workpiece material to the punch face. The influence of these different parameters on the distribution of the surface expansion along the inner can wall and bottom...... is determined. The numerical and experimental simulations showed good accordance....

  19. Cleanliness distribution of high-carbon chromium bearing steel billets and growth behavior of inclusions during solidification

    International Nuclear Information System (INIS)

    Gu, C.; Bao, Y.; Lin, L.

    2017-01-01

    Variation of cleanliness and distribution of inclusions in thickness and width direction of highcarbon chromium bearing steel billets has been studied using total oxygen and nitrogen analysis and SEM/EDS, and the growth behavior of inclusions during solidification was studied with the help of solidification model. The region wit h relatively high total oxygen contents in the cross profile of billets is between inner arc side 3/16 and outer arc side 1/4; between left edge side 5/16 and right edge side 5/16. The formation sequence of inclusions is MgO-Al2O3 > TiN > MnS. MnS could wrap MgO-Al2O3 and reduces the damage to steel matrix caused by the latter, but generally could not effectively wrap TiN. Besides, TiN could wrap MgO-Al2O3 before MnS, which would weaken the protective capacity of MnS. Moreover, compared with MgO-Al2O3 inclusions, the sizes of TiN inclusions are generally larger. Thus the control of TiN inclusions should be strengthened. In hickness direction, the maximum size regions of TiN and MnS inclusions are inner arc side 1/3 and outer arc side 1/3; in width direction, the regions are edge side 1/3. During bearing processing, these regions and the regions with high total oxygen content should be avoided. [es

  20. ANÁLISIS BACTERIOLÓGICO DE BILLETES CIRCULANTES EN LA UNIVERSIDAD DEL PACÍFICO PARAGUAY. 2013

    OpenAIRE

    Nathalia Aguilera –Benítez; Amanda Fretes– Gómez; Janira Medina– Meza

    2016-01-01

    Introducción: Los billetes de algodón poseen una estructura porosa que le permite alojar diferentes tipos de detritus y que posibilitaría la colonización microbiana de dicho papel. Objetivos: Describir la presencia y tipo de contaminación bacteriana en dos variedades de billetes circulantes en Paraguay, en el año 2013. Materiales y métodos: Se recolectaron 50 billetes de cinco mil guaraníes (25 de polímero y 25 de algodón) proveídos por estudiantes mediante un muestreo por conveniencia. El an...

  1. Physical simulation method for the investigation of weld seam formation during the extrusion of aluminum alloys

    NARCIS (Netherlands)

    Fang, G; Zhou, J.

    2017-01-01

    Extrusion through the porthole die is a predominant forming process used in the production of hollow aluminum alloy profiles across the aluminum extrusion industry. Longitudinal weld seams formed during the process may negatively influence the quality of extruded profiles. It is therefore of

  2. Extrusion-cooking to improve the animal feed quality of broad beans

    NARCIS (Netherlands)

    Moscicki, L.; Wojcik, S.; Plaur, K.; Zuilichem, van D.J.

    1984-01-01

    Extrusion-cooking of broad beans with a single-screw extruder has been investigated. Attention was focused on process requirements as well as on the nutritional effects of extrusion-cooked broad beans in a chicken feed formulation. The optimal thermal process conditions required for a product of

  3. Expansion of the whole wheat flour extrusion

    DEFF Research Database (Denmark)

    Cheng, Hongyuan; Friis, Alan

    2008-01-01

    A new model framework is proposed to describe the expansion of extrudates with extruder operating conditions based on dimensional analysis principle. The Buckingham pi dimensional analysis method is applied to form the basic structure of the model from extrusion process operational parameters. Us....... Using the Central Composite Design (CCD) method, whole wheat flour was processed in a twin-screw extruder with 16 trials. The proposed model can well correlate the expansion of the 16 trials using 3 regression parameters. The average deviation of the correlation is 5.9%....

  4. Experimental and numerical analyses of pure copper during ECFE process as a novel severe plastic deformation method

    Directory of Open Access Journals (Sweden)

    M. Ebrahimi

    2014-02-01

    Full Text Available In this paper, a new severe plastic deformation method called equal channel forward extrusion (ECFE process has been proposed and investigated by experimental and numerical approaches on the commercial pure copper billets. The experimental results indicated that the magnitudes of yield strength, ultimate tensile strength and Vickers micro-hardness have been markedly improved from 114 MPa, 204 MPa and 68 HV as the annealed condition to 269 MPa, 285 MPa and 126 HV after the fourth pass of ECFE process, respectively. In addition, scanning electron microscopy observation of the samples showed that the average grain size of the as-received state which is about 22 μm has been reduced to 1.4 μm after the final pass. The numerical investigation suggested that although one pass ECFE process fabricates material with the mean effective strain magnitude of about 1, the level of imposed effective plastic strain gradually diminishes from the circumference to the center of the deformed billet.

  5. Analysis of Material Flow in Screw Extrusion of Aluminum

    International Nuclear Information System (INIS)

    Haugen, Bjoern; Oernskar, Magnus; Welo, Torgeir; Wideroee, Fredrik

    2010-01-01

    Screw extrusion of aluminum is a new process for production of aluminum profiles. The commercial potential could be large. Little experimental and numerical work has been done with respect to this process.The material flow of hot aluminum in a screw extruder has been analyzed using finite element formulations for the non-Newtonian Navier-Stokes equations. Aluminum material properties are modeled using the Zener-Holloman material model. Effects of stick-slip conditions are investigated with respect to pressure build up and mixing quality of the extrusion process.The numerical results are compared with physical experiments using an experimental screw extruder.

  6. Unequal-thickness billet optimization in transitional region during isothermal local loading forming of Ti-alloy rib-web component using response surface method

    Directory of Open Access Journals (Sweden)

    Ke WEI

    2018-04-01

    Full Text Available Avoiding the folding defect and improving the die filling capability in the transitional region are desired in isothermal local loading forming of a large-scale Ti-alloy rib-web component (LTRC. To achieve a high-precision LTRC, the folding evolution and die filling process in the transitional region were investigated by 3D finite element simulation and experiment using an equal-thickness billet (ETB. It is found that the initial volume distribution in the second-loading region can greatly affect the amount of material transferred into the first-loading region during the second-loading step, and thus lead to the folding defect. Besides, an improper initial volume distribution results in non-concurrent die filling in the cavities of ribs after the second-loading step, and then causes die underfilling. To this end, an unequal-thickness billet (UTB was employed with the initial volume distribution optimized by the response surface method (RSM. For a certain eigenstructure, the critical value of the percentage of transferred material determined by the ETB was taken as a constraint condition for avoiding the folding defect in the UTB optimization process, and the die underfilling rate was considered as the optimization objective. Then, based on the RSM models of the percentage of transferred material and the die underfilling rate, non-folding parameter combinations and optimum die filling were achieved. Lastly, an optimized UTB was obtained and verified by the simulation and experiment. Keywords: Die filling, Folding defect, Isothermal local loading forming, Transitional region, Unequal-thickness billet optimization

  7. Análise do desenvolvimento morfológico da blenda polimérica PBT/ABS durante as etapas de mistura por extrusão e moldagem por injeção Analysis of the morphological development of PBT/ABS blends during the extrusion and injection molding processes

    Directory of Open Access Journals (Sweden)

    Edson N. Ito

    2004-06-01

    Full Text Available O enfoque principal deste trabalho foi observar o desenvolvimento da morfologia de fases da blenda binária PBT/ABS e desta blenda compatibilizada pela adição de um copolímero acrílico reativo, durante a etapa de mistura por extrusão e de moldagem por injeção. A evolução da morfologia das blendas, durante a etapa de mistura, foi analisada através do uso de amostras coletadas de uma extrusora de rosca dupla co-rotacional, com acessório especialmente projetado para coleta in line. A morfologia observada nas amostras obtidas por injeção foi realizada utilizando amostras retiradas de corpos de prova moldados. As amostras obtidas por extrusão e por moldagem por injeção foram posteriormente preparadas através de crio-ultramicrotomia e observadas através de microscopia eletrônica de transmissão (TEM. Uma "Função Dispersão" foi desenvolvida neste trabalho para comparar as diversas morfologias sob diferentes condições de processamento e de compatibilização. A adição de compatibilizante favorece a formação de uma morfologia de domínios de ABS dispersos em PBT, ao longo do canhão da extrusora, e previne satisfatoriamente o fenômeno de coalescência destes domínios durante o processo de moldagem por injeção. A função dispersão foi utilizada principalmente para mostrar a tendência da evolução morfológica e mostrou um bom desempenho para tal.The aim of this work was to observe the development of the phase morphology of the PBT/ABS blends during their extrusion mixing and injection molding steps. The evolution of the blend morphology during the mixing stage was analyzed using a specially designed co-rotational twin-screw extruder with a collecting device located along the barrel. Blend samples were collected in-line along the length of the extruder barrel during the blending process. Blend morphology was also observed from specimens molded through injection molding. All the samples were observed by transmission

  8. 75 FR 80527 - Aluminum Extrusions From China

    Science.gov (United States)

    2010-12-22

    ...)] Aluminum Extrusions From China AGENCY: United States International Trade Commission. ACTION: Scheduling of... of subsidized and less-than-fair-value imports from China of aluminum extrusions, primarily provided... contained in Aluminum Extrusions From the People's Republic of China: Notice of Preliminary Determination of...

  9. 75 FR 22109 - Aluminum Extrusions from the People's Republic of China: Initiation of Antidumping Duty...

    Science.gov (United States)

    2010-04-27

    ... Aluminium, Ltd., a producer of aluminum extrusions, for the 2008 2009 fiscal year. See Volume II of the..., produced by an extrusion process, made from aluminum alloys having metallic elements corresponding to the alloy series designations published by The Aluminum Association commencing with the numbers 1, 3, and 6...

  10. Physical properties, molecular structures and protein quality of texturized whey protein isolate: effect of extrusion temperature

    Science.gov (United States)

    Extrusion is a powerful food processing operation, which utilizes high temperature and high shear force to produce a product with unique physical and chemical characteristics. Texturization of whey protein isolate (WPI) through extrusion for the production of protein fortified snack foods has provid...

  11. Chemical, physical and nutritional changes in soybean meal as a result of toasting and extrusion cooking

    NARCIS (Netherlands)

    Marsman, G.J.P.

    1998-01-01

    The effect of soybean meal extrusion and the development of shear forces during single-screw extrusion was compared with the toasting process of soybean meal. Attention was focused on chemical, physical and nutritional changes during these thermo-mechanical

  12. Coupled analysis of material flow and die deflection in direct aluminum extrusion

    NARCIS (Netherlands)

    Assaad, W.; Geijselaers, Hubertus J.M.

    2010-01-01

    The design of extrusion dies depends on the experience of the designer. After the die has been manufactured, it is tested during an extrusion trial and machined several times until it works properly. The die is designed by a trial and error method which is an expensive process in terms of time and

  13. ABOUT RATIONING MAXIMUM ALLOWABLE DEFECT DEPTH ON THE SURFACE OF STEEL BILLETS IN PRODUCTION OF HOT-ROLLED STEEL

    Directory of Open Access Journals (Sweden)

    PARUSOV E. V.

    2017-01-01

    Full Text Available Formulation of the problem. Significant influence on the quality of rolled steel have various defects on its surface, which in its turn inherited from surface defects of billet and possible damage to the surface of rolled steel in the rolling mill line. One of the criteria for assessing the quality indicators of rolled steel is rationing of surface defects [1; 2; 3; 6; 7]. Current status of the issue. Analyzing the different requirements of regulations to the surface quality of the rolled high-carbon steels, we can conclude that the maximum allowable depth of defects on the surface of billet should be in the range of 2.0...5.0 mm (depending on the section of the billet, method of its production and further the destination Purpose. Develop a methodology for calculating the maximum allowable depth of defects on the steel billet surface depending on the requirements placed on the surface quality of hot-rolled steel. Results. A simplified method of calculation, allowing at the rated depth of defects on the surface of the hot-rolled steel to make operatively calculation of the maximum allowable depth of surface defects of steel billets before heating the metal in the heat deformation was developed. The findings shows that the maximum allowable depth of surface defects is reduced with increasing diameter rolled steel, reducing the initial section steel billet and degrees of oxidation of the metal in the heating furnace.

  14. Manufacture of tube billets for fuel cans by vacuum centrifugal casting

    International Nuclear Information System (INIS)

    Zelenskij, V.F.; Neklyudov, I.M.; Chernyj, B.P.

    1989-01-01

    Vacuum device for induction melting with centrifugal casting in the ingot mold with rotation vertical or horisontal axis is presented. Removing and grinding of nonmetallic inclusions are realized by selection of casting conditions and of chemically active reducer, sound metal with high ductility is obtained. Data on micro- and macrostructure of casted tube billets made of 08Kh18N10T and 06Kh16H15M3B stainless steels, designed for manufacture of fuel cans are presented

  15. Three-Dimensional Numerical Modeling of Macrosegregation in Continuously Cast Billets

    Directory of Open Access Journals (Sweden)

    Qipeng Dong

    2017-06-01

    Full Text Available Macrosegregation, serving as a major defect in billets, can severely degrade material homogeneity. Better understanding of the physical characteristics of macrosegregation through numerical simulation could significantly contribute to the segregation control. The main purpose of this study was to predict macrosegregation in continuously cast billets with a newly developed three-dimensional macrosegregation model. The fluid flow, solidification, and solute transport in the entire billet region were solved and analyzed. Flow patterns, revealing a typical melt recirculation at the upper region of mold and thermosolutal convection at the secondary cooling zone, significantly affect the solidification and solute distribution. The solute redistribution occurring with thermosolutal convection at the solidification front contributes significantly to continued macrosegregation as solidification proceeds. The results of this study show that the equilibrium partition coefficient is mostly responsible for the magnitude of macrosegregation, while comparison between solute P and S indicated that diffusion coefficients also have some amount of influence. Typical macrosegregation patterns containing a positively segregated peak at the centerline and negatively segregated minima at either side were obtained via the proposed three-dimensional macrosegregation model, which validated by the measured surface temperatures and segregation degree.

  16. Compact multipurpose sub-sampling and processing of in-situ cores with press (pressurized core sub-sampling and extrusion system)

    Energy Technology Data Exchange (ETDEWEB)

    Anders, E.; Muller, W.H. [Technical Univ. of Berlin, Berlin (Germany). Chair of Continuum Mechanics and Material Theory

    2008-07-01

    Climate change, declining resources and over-consumption result in a need for sustainable resource allocation, habitat conservation and claim for new technologies and prospects for damage-containment. In order to increase knowledge of the environment and to define potential hazards, it is necessary to get an understanding of the deep biosphere. In addition, the benthic conditions of sediment structure and gas hydrates, temperature, pressure and bio-geochemistry must be maintained during the sequences of sampling, retrieval, transfer, storage and downstream analysis. In order to investigate highly instable gas hydrates, which decomposes under pressure and temperature change, a suite of research technologies have been developed by the Technische Universitat Berlin (TUB), Germany. This includes the pressurized core sub-sampling and extrusion system (PRESS) that was developed in the European Union project called HYACE/HYACINTH. The project enabled well-defined sectioning and transfer of drilled pressure-cores obtained by a rotary corer and fugro pressure corer into transportation and investigation chambers. This paper described HYACINTH pressure coring and the HYACINTH core transfer. Autoclave coring tools and HYACINTH core logging, coring tools, and sub-sampling were also discussed. It was concluded that possible future applications include, but were not limited to, research in shales and other tight formations, carbon dioxide sequestration, oil and gas exploration, coalbed methane, and microbiology of the deep biosphere. To meet the corresponding requirements and to incorporate the experiences from previous expeditions, the pressure coring system would need to be redesigned to adapt it to the new applications. 3 refs., 5 figs.

  17. Development of a novel cold forging process to manufacture eccentric shafts

    Science.gov (United States)

    Pasler, Lukas; Liewald, Mathias

    2018-05-01

    Since the commercial usage of compact combustion engines, eccentric shafts have been used to transform translational into rotational motion. Over the years, several processes to manufacture these eccentric shafts or crankshafts have been developed. Especially for single-cylinder engines manufactured in small quantities, built crankshafts disclose advantages regarding tooling costs and performance. Those manufacturing processes do have one thing in common: They are all executed at elevated temperatures to enable the material to be formed to high forming degree. In this paper, a newly developed cold forging process is presented, which combines lateral extrusion and shifting for manufacturing a crank in one forming operation at room temperature. In comparison to the established upsetting and shifting methods to manufacture such components, the tool cavity or crank web thickness remains constant. Therefore, the developed new process presented in this paper consists of a combination of shifting and extrusion of the billet, which allows pushing material into the forming zone during shifting. In order to reduce the tensile stresses induced by the shifting process, compressive stresses are superimposed. It is expected that the process limits will be expanded regarding the horizontal displacement and form filling. In the following report, the simulation and design of the tooling concept are presented. Experiments were conducted and compared with corresponding simulation results afterwards.

  18. Densification of powder metallurgy billets by a roll consolidation technique

    Science.gov (United States)

    Sellman, W. H.; Weinberger, W. R.

    1973-01-01

    Container design is used to convert partially densified powder metallurgy compacts into fully densified slabs in one processing step. Technique improves product yield, lowers costs and yields great flexibility in process scale-up. Technique is applicable to all types of fabricable metallic materials that are produced from powder metallurgy process.

  19. Extrusion-formed uranium-2.4 wt. % article with decreased linear thermal expansion and method for making the same

    International Nuclear Information System (INIS)

    Anderson, R.C.; Jones, J.M.; Kollie, T.G.

    1982-01-01

    The present invention is directed to the fabrication of an article of uranium-2.4 wt. % niobium alloy in which the linear thermal expansion in the direction transverse to the extrusion direction is less than about 0.98% between 22 0 C and 600 0 C which corresponds to a value greater than the 1.04% provided by previous extrusion operations over the same temperature range. The article with the improved thermal expansion possesses a yield strength at 0.2% offset of at least 400 mpa, an ultimate tensile strength of 1050 mpa, a compressive yield strength of at least 2% offset of at least 675 mpa, and an elongation of at lea 25% over 25.4 mm/sec. To provide this article with the improv thermal expansion, the uranium alloy billet is heated to 630 0 C and extruded in the alpha phase through a die with a reduction ratio of at least 8.4:1 at a ram speed no greater than 6.8 mm/sec. These critical extrusion parameters provide the article with the desired decrease in the linear thermal expansion while maintaining the selected mechanical properties without encountering crystal disruption in the article

  20. Environmental assessment: Transfer of normal and low-enriched uranium billets to the United Kingdom, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1995-11-01

    Under the auspices of an agreement between the U.S. and the United Kingdom, the U.S. Department of Energy (DOE) has an opportunity to transfer approximately 710,000 kilograms (1,562,000 pounds) of unneeded normal and low-enriched uranium (LEU) to the United Kingdom; thus, reducing long-term surveillance and maintenance burdens at the Hanford Site. The material, in the form of billets, is controlled by DOE's Defense Programs, and is presently stored as surplus material in the 300 Area of the Hanford Site. The United Kingdom has expressed a need for the billets. The surplus uranium billets are currently stored in wooden shipping containers in secured facilities in the 300 Area at the Hanford Site (the 303-B and 303-G storage facilities). There are 482 billets at an enrichment level (based on uranium-235 content) of 0.71 weight-percent. This enrichment level is normal uranium; that is, uranium having 0.711 as the percentage by weight of uranium-235 as occurring in nature. There are 3,242 billets at an enrichment level of 0.95 weight-percent (i.e., low-enriched uranium). This inventory represents a total of approximately 532 curies. The facilities are routinely monitored. The dose rate on contact of a uranium billet is approximately 8 millirem per hour. The dose rate on contact of a wooden shipping container containing 4 billets is approximately 4 millirem per hour. The dose rate at the exterior of the storage facilities is indistinguishable from background levels

  1. MM98.36 Strain Paths in Extrusion

    DEFF Research Database (Denmark)

    Lindegren, Maria; Wiwe, Birgitte; Wanheim, Tarras

    1998-01-01

    The extrusion process has been investigated for different geometries, in order to study the strain path of different material elements during their movements through the plastic zone. This is done by using the FEM code DEFORM and physical simulation with wax togehter with the coefficient method. ....... Calculations of strain paths have also been performed by ABAQUS....

  2. The Interface Structure of High-Temperature Oxidation-Resistant Aluminum-Based Coatings on Titanium Billet Surface

    Science.gov (United States)

    Xu, Zhefeng; Rong, Ju; Yu, Xiaohua; Kun, Meng; Zhan, Zhaolin; Wang, Xiao; Zhang, Yannan

    2017-10-01

    A new type of high-temperature oxidation-resistant aluminum-based coating, on a titanium billet surface, was fabricated by the cold spray method, at a high temperature of 1050°C, for 8 h, under atmospheric pressure. The microstructure of the exposed surface was analyzed via optical microscopy, the microstructure of the coating and elemental diffusion was analyzed via field emission scanning electron microscopy, and the interfacial phases were identified via x-ray diffraction. The Ti-Al binary phase diagram and Gibbs free energy of the stable phase were calculated by Thermo-calc. The results revealed that good oxidation resistant 50-μm-thick coatings were successfully obtained after 8 h at 1050°C. Two layers were obtained after the coating process: an Al2O3 oxidation layer and a TiAl3 transition layer on the Ti-based substrate. The large and brittle Al2O3 grains on the surface, which can be easily spalled off from the surface after thermal processing, protected the substrate against oxidation during processing. In addition, the thermodynamic calculation results were in good agreement with the experimental data.

  3. The Influence of Chemical Composition of Steels on the Numerical Simulation of a Continuesly Cast of Billet

    Directory of Open Access Journals (Sweden)

    František KAVIČKA

    2010-12-01

    Full Text Available The chemical composition of steels has significant influence on the actual concasting process, and on the accuracy of its numerical simulation and optimization. The chemical composition of steel affects the thermophysical properties (heat conductivity, specific heat capacity and density in the solid and liquid states often requires more time than the actual numerical calculation of the temperature fields of a continuously cast steel billet. Therefore, an analysis study of these thermophysical properties was conducted. The order of importance within the actual process and the accuracy of simulation were also determined. The order of significance of the chemical composition on thermophysical properties was determined with respect to the metallurgical length. The analysis was performed by means of a so-called calculation experiment, i.e. by means of the original numerical concasting model developed by the authors of this paper. It is convenient to conduct such an analysis in order to facilitate the simulation of each individual case of concasting, thus enhancing the process of optimization.

  4. Global approach for the validation of an in-line Raman spectroscopic method to determine the API content in real-time during a hot-melt extrusion process.

    Science.gov (United States)

    Netchacovitch, L; Thiry, J; De Bleye, C; Dumont, E; Cailletaud, J; Sacré, P-Y; Evrard, B; Hubert, Ph; Ziemons, E

    2017-08-15

    Since the Food and Drug Administration (FDA) published a guidance based on the Process Analytical Technology (PAT) approach, real-time analyses during manufacturing processes are in real expansion. In this study, in-line Raman spectroscopic analyses were performed during a Hot-Melt Extrusion (HME) process to determine the Active Pharmaceutical Ingredient (API) content in real-time. The method was validated based on a univariate and a multivariate approach and the analytical performances of the obtained models were compared. Moreover, on one hand, in-line data were correlated with the real API concentration present in the sample quantified by a previously validated off-line confocal Raman microspectroscopic method. On the other hand, in-line data were also treated in function of the concentration based on the weighing of the components in the prepared mixture. The importance of developing quantitative methods based on the use of a reference method was thus highlighted. The method was validated according to the total error approach fixing the acceptance limits at ±15% and the α risk at ±5%. This method reaches the requirements of the European Pharmacopeia norms for the uniformity of content of single-dose preparations. The validation proves that future results will be in the acceptance limits with a previously defined probability. Finally, the in-line validated method was compared with the off-line one to demonstrate its ability to be used in routine analyses. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Turbine airfoil fabricated from tapered extrusions

    Science.gov (United States)

    Marra, John J

    2013-07-16

    An airfoil (30) and fabrication process for turbine blades with cooling channels (26). Tapered tubes (32A-32D) are bonded together in a parallel sequence, forming a leading edge (21), a trailing edge (22), and pressure and suction side walls (23, 24) connected by internal ribs (25). The tapered tubes may be extruded without camber to simplify the extrusion process, then bonded along matching surfaces (34), forming a non-cambered airfoil (28), which may be cambered in a hot forming process and cut (48) to length. The tubes may have tapered walls that are thinner at the blade tip (T1) than at the base (T2), reducing mass. A cap (50) may be attached to the blade tip. A mounting lug (58) may be forged (60) on the airfoil base and then machined, completing the blade for mounting in a turbine rotor disk.

  6. High strength Al–Al2O3p composites: Optimization of extrusion parameters

    DEFF Research Database (Denmark)

    Luan, B.F.; Hansen, Niels; Godfrey, A.

    2011-01-01

    Composite aluminium alloys reinforced with Al2O3p particles have been produced by squeeze casting followed by hot extrusion and a precipitation hardening treatment. Good mechanical properties can be achieved, and in this paper we describe an optimization of the key processing parameters...... on an investigation of their mechanical properties and microstructure, as well as on the surface quality of the extruded samples. The evaluation shows that material with good strength, though with limited ductility, can be reliably obtained using a production route of squeeze casting, followed by hot extrusion....... The parameters investigated are the extrusion temperature, the extrusion rate and the extrusion ratio. The materials chosen are AA 2024 and AA 6061, each reinforced with 30vol.% Al2O3 particles of diameter typically in the range from 0.15 to 0.3μm. The extruded composites have been evaluated based...

  7. A Model for Forecasting Enlisted Student IA Billet Requirements

    Science.gov (United States)

    2016-03-01

    IA execution ........................................... 4   Figure 2.   Learning center to resource sponsor alignment...initial entry training” [3]. 4 Figure 1. Training that counts as student IA execution The second type of chargeable training is the...Reference [ 4 ] describes the process the Navy uses to build the student IA program. It comprises three steps. The first is to forecast student IA E

  8. Inductive ingot heating for extrusion press applications; Induktive Bolzenerwaermung fuer Strangpressanwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Stefan [I.A.S. Induktions-Anlagen + Service GmbH und Co. KG, Iserlohn (Germany)

    2013-03-15

    Inductive heating of large-format aluminium ingots on modern extrusion press lines generates significant process-engineering benefits. In addition, the proportion of special alloys processed is continuously increasing, accompanied simultaneously by ever smaller production batches, both of which are factors necessitating improvement of and greater flexibility in process-cycle control. This report examines a system concept recently commissioned on one of the world's largest aluminium extrusion presses. (orig.)

  9. Effect of inlet geometry on macrosegregation during the direct chill casting of 7050 alloy billets: experiments and computer modelling

    International Nuclear Information System (INIS)

    Zhang, L; Miroux, A; Subroto, T; Katgerman, L; Eskin, D G

    2012-01-01

    Controlling macrosegregation is one of the major challenges in direct-chill (DC) casting of aluminium alloys. In this paper, the effect of the inlet geometry (which influences the melt distribution) on macrosegregation during the DC casting of 7050 alloy billets was studied experimentally and by using 2D computer modelling. The ALSIM model was used to determine the temperature and flow patterns during DC casting. The results from the computer simulations show that the sump profiles and flow patterns in the billet are strongly influenced by the melt flow distribution determined by the inlet geometry. These observations were correlated to the actual macrosegregation patterns found in the as-cast billets produced by having two different inlet geometries. The macrosegregation analysis presented here may assist in determining the critical parameters to consider for improving the casting of 7XXX aluminium alloys.

  10. Effect of inlet geometry on macrosegregation during the direct chill casting of 7050 alloy billets: experiments and computer modelling

    Science.gov (United States)

    Zhang, L.; Eskin, D. G.; Miroux, A.; Subroto, T.; Katgerman, L.

    2012-07-01

    Controlling macrosegregation is one of the major challenges in direct-chill (DC) casting of aluminium alloys. In this paper, the effect of the inlet geometry (which influences the melt distribution) on macrosegregation during the DC casting of 7050 alloy billets was studied experimentally and by using 2D computer modelling. The ALSIM model was used to determine the temperature and flow patterns during DC casting. The results from the computer simulations show that the sump profiles and flow patterns in the billet are strongly influenced by the melt flow distribution determined by the inlet geometry. These observations were correlated to the actual macrosegregation patterns found in the as-cast billets produced by having two different inlet geometries. The macrosegregation analysis presented here may assist in determining the critical parameters to consider for improving the casting of 7XXX aluminium alloys.

  11. Extrusion Pretreatment of Lignocellulosic Biomass: A Review

    Directory of Open Access Journals (Sweden)

    Jun Zheng

    2014-10-01

    Full Text Available Bioconversion of lignocellulosic biomass to bioethanol has shown environmental, economic and energetic advantages in comparison to bioethanol produced from sugar or starch. However, the pretreatment process for increasing the enzymatic accessibility and improving the digestibility of cellulose is hindered by many physical-chemical, structural and compositional factors, which make these materials difficult to be used as feedstocks for ethanol production. A wide range of pretreatment methods has been developed to alter or remove structural and compositional impediments to (enzymatic hydrolysis over the last few decades; however, only a few of them can be used at commercial scale due to economic feasibility. This paper will give an overview of extrusion pretreatment for bioethanol production with a special focus on twin-screw extruders. An economic assessment of this pretreatment is also discussed to determine its feasibility for future industrial cellulosic ethanol plant designs.

  12. On the hydrogen saturation of titanium alloys during heating billets for plastic working in gas-fired flame furnaces

    International Nuclear Information System (INIS)

    Kushakevich, S.A.; Romanova, L.A.; Bullo, P.M.

    1978-01-01

    Presented are the results of comparative investigations into titanium alloy hydridation during billet heating in gasflame and electric furnaces for forging and hot stamping. It is shown, that titanium alloys are slightly saturated with hydrogen at the temperature lower than that of polymorphic transformation. Hydrogen absorption is decelerated by a dense scale up to the moment of its loosening and peeling off. The application of protective vitreous enamels reduces the danger of impermissible hydridation. It is established, that the usage of gas-flame furnaces for billet heating is possible in the case of corresponding temperature and holding restrictions proper machining allowances and the use of protective coatings

  13. Elucidation and visualization of solid-state transformation and mixing in a pharmaceutical mini hot melt extrusion process using in-line Raman spectroscopy.

    Science.gov (United States)

    Van Renterghem, Jeroen; Kumar, Ashish; Vervaet, Chris; Remon, Jean Paul; Nopens, Ingmar; Vander Heyden, Yvan; De Beer, Thomas

    2017-01-30

    Mixing of raw materials (drug+polymer) in the investigated mini pharma melt extruder is achieved by using co-rotating conical twin screws and an internal recirculation channel. In-line Raman spectroscopy was implemented in the barrels, allowing monitoring of the melt during processing. The aim of this study was twofold: to investigate (I) the influence of key process parameters (screw speed - barrel temperature) upon the product solid-state transformation during processing of a sustained release formulation in recirculation mode; (II) the influence of process parameters (screw speed - barrel temperature - recirculation time) upon mixing of a crystalline drug (tracer) in an amorphous polymer carrier by means of residence time distribution (RTD) measurements. The results indicated a faster mixing endpoint with increasing screw speed. Processing a high drug load formulation above the drug melting temperature resulted in the production of amorphous drug whereas processing below the drug melting point produced solid dispersions with partially amorphous/crystalline drug. Furthermore, increasing the screw speed resulted in lower drug crystallinity of the solid dispersion. RTD measurements elucidated the improved mixing capacity when using the recirculation channel. In-line Raman spectroscopy has shown to be an adequate PAT-tool for product solid-state monitoring and elucidation of the mixing behavior during processing in a mini extruder. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Mejoramiento de la eficiencia energética en los procesos de extrusión de tuberías plásticas; Improve of the energy efficiency in the processes of plastic pipe extrusion

    Directory of Open Access Journals (Sweden)

    Antonio Jiménez Ramos

    2015-06-01

    Full Text Available El presente trabajo, muestra el desarrollo de una herramienta, para el mejoramiento energético, de los procesos de extrusión de tuberías plásticas, mediante la modelación del proceso de transferencia de calor, en estado transitorio, empleando para la solución el software Wolfram Mathematica 8.0. La herramienta desarrollada, posibilita en breve tiempo, la toma de decisiones para mantener un proceso optimizado, en función de las propiedades físicas, de las materias primas utilizadas, aumentando las producciones, con la consiguiente reducción de los índices de consumo, sin afectar la calidad del producto terminado. Esta herramienta posibilita además, conocer el comportamiento del equipamiento que procesa estas producciones ya que se definen los tiempos óptimos de enfriamiento, a partir de la temperatura, lo que posibilita ajustes rápidos y eficaces, por lo cual, se ahorran materias primas y puede actuarse, sobre posibles defectos técnicos del equipamiento, en los cuales intervienen las distintas especialidades destinadas a estas misiones.This paper shows the development of a tool for energetic improve of plastic pipes extrusion processes by heat transference processes transients using the Wolfram Mathematica7 software. With this tool may take decisions quickly to keep an optimized process in function of the material properties used to increasing the productions and to reduce the consumption without quality affectations of end product. Further, with this tool is possible to know the equipment behavior because it is defined that the optimal cooling time from temperature what enables rapid adjustment and effective, saving materials and enable the actions before technical faults of the equipment, in which there are interventions of different technicians.

  15. Comparisons of microstructures and texture and mechanical properties of magnesium alloy fabricated by compound extrusion and direct extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Hu, H.-J., E-mail: hhj@cqut.edu.cn [Chongqing University of Technology, Chongqing 400050 (China); PLA Chongqing Logistics Engineering College, 401311 (China); Ying, Y.-L. [Chongqing University of Technology, Chongqing 400050 (China); Ou, Z.-W. [PLA Chongqing Logistics Engineering College, 401311 (China); Wang, X.-Q. [The University of Alabama, Tuscaloosa, AL 35487 (United States)

    2017-05-17

    In this study, microstructure evolution, textures and mechanical properties of AZ61 magnesium alloy were investigated by optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and tensile tests. The samples were processed by a new compound extrusion (CE) which combines direct extrusion (DE) and two steps of equal channel anger extrusion (ECAE). The results show that CE process can refine the microstructure more effectively than the DE process. The CE-fabricated samples have a weaker texture (0002), and a more fine and homogeneous microstructures, which attributes to the additional two steps of ECAE in CE process. In CE process, twin dynamic recrystallization and rotational dynamic recrystallization occurred, which enhances the refinement of the grains and weakening of the texture. In addition, the samples fabricated by CE process display a higher tensile properties (yield strength, tensile strength and elongation) with an excellent balance of strength and tensile ductility. Based on this study, severe plastic deformation (SPD) techniques combining conventional DE and two steps ECAE into a single process are feasibility to improve the mechanical properties of AZ61 Mg alloy.

  16. Effect of Processing Steps on the Mechanical Properties and Surface Appearance of 6063 Aluminium Extruded Products

    Science.gov (United States)

    Asensio-Lozano, Juan; Suárez-Peña, Beatriz; Vander Voort, George F.

    2014-01-01

    6063 aluminum anodized extrusions may exhibit a common surface defect known as streaking, characterized by the formation of narrow bands with a surface gloss different from the surrounding material. The origin of this banding lies in the differential surface topography produced after etching during the anodizing stage, shown to be connected to certain microstructural characteristics. The present study has attempted to determine the origin of these defects and measure the mechanical properties in these zones, properties which were either barely acceptable or did not meet the specification’s requirements. Quantitative metallography and mechanical testing, both tensile and microhardness, were used for materials assessment at the different steps of the process of manufacturing 6063 anodized extrusions. The results of this research show that nonequilibrium solidification rates during billet casting could lead to the formation of coarse eutectic Mg2Si particles which have a deleterious effect on both mechanical properties and surface appearance in the anodized condition. However, differences in the size and density of the coarse Mg2Si particles have been found to exist in the streak profile compared to the surrounding zones. The study revealed the importance of these particles in explaining the origin of the marginal or sub-marginal properties and anodizing surface defects found. PMID:28788673

  17. Effect of Processing Steps on the Mechanical Properties and Surface Appearance of 6063 Aluminium Extruded Products

    Directory of Open Access Journals (Sweden)

    Juan Asensio-Lozano

    2014-05-01

    Full Text Available 6063 aluminum anodized extrusions may exhibit a common surface defect known as streaking, characterized by the formation of narrow bands with a surface gloss different from the surrounding material. The origin of this banding lies in the differential surface topography produced after etching during the anodizing stage, shown to be connected to certain microstructural characteristics. The present study has attempted to determine the origin of these defects and measure the mechanical properties in these zones, properties which were either barely acceptable or did not meet the specification’s requirements. Quantitative metallography and mechanical testing, both tensile and microhardness, were used for materials assessment at the different steps of the process of manufacturing 6063 anodized extrusions. The results of this research show that nonequilibrium solidification rates during billet casting could lead to the formation of coarse eutectic Mg2Si particles which have a deleterious effect on both mechanical properties and surface appearance in the anodized condition. However, differences in the size and density of the coarse Mg2Si particles have been found to exist in the streak profile compared to the surrounding zones. The study revealed the importance of these particles in explaining the origin of the marginal or sub-marginal properties and anodizing surface defects found.

  18. FEM simulation of friction testing method based on combined forward rod-backward can extrusion

    DEFF Research Database (Denmark)

    Nakamura, T; Bay, Niels; Zhang, Z. L

    1997-01-01

    A new friction testing method by combined forward rod-backward can extrusion is proposed in order to evaluate frictional characteristics of lubricants in forging processes. By this method the friction coefficient mu and the friction factor m can be estimated along the container wall and the conical...... curves are obtained by rigid-plastic FEM simulations in a combined forward rod-backward can extrusion process for a reduction in area R-b = 25, 50 and 70 percent in the backward can extrusion. It is confirmed that the friction factor m(p) on the punch nose in the backward cart extrusion has almost...... in a mechanical press with aluminium alloy A6061 as the workpiece material and different kinds of lubricants. They confirm the analysis resulting in reasonable values for the friction coefficient and the friction factor....

  19. ANÁLISIS BACTERIOLÓGICO DE BILLETES CIRCULANTES EN LA UNIVERSIDAD DEL PACÍFICO PARAGUAY. 2013

    Directory of Open Access Journals (Sweden)

    Nathalia Aguilera –Benítez

    2016-07-01

    Full Text Available Introducción: Los billetes de algodón poseen una estructura porosa que le permite alojar diferentes tipos de detritus y que posibilitaría la colonización microbiana de dicho papel. Objetivos: Describir la presencia y tipo de contaminación bacteriana en dos variedades de billetes circulantes en Paraguay, en el año 2013. Materiales y métodos: Se recolectaron 50 billetes de cinco mil guaraníes (25 de polímero y 25 de algodón proveídos por estudiantes mediante un muestreo por conveniencia. El análisis consistió en el aislamiento bacteriológico presente en superficies de billetes. Fueron sumergidos e incubados a 37° durante 24 hs. en caldo de infusión cerebro corazón (BHI y posteriormente sembrados en placas de agar Sangre y MacConkey. Finalmente se procedió a la tipificación de los aislamientos obtenidos. Resultados: El 74%(37/50 de los billetes evaluados presentaron contaminación bacteriana; las frecuencias fueron del 100%(25/25 y 48%(12/25 respectivamente para los de algo­dón y polímero. En el primer grupo se aislaron con mayor frecuencia bacterias de la familia Enterobacteriaceae en el 61%(17/28 y del género Staphylococcus spp. en el 39%(11/28. En el segundo grupo se aislaron Staphylococcus spp. en el 44%(11/25 y Escherichia coli en 4 %(1/25. Conclusión: El estudio ha permitido evidenciar que los billetes contribuyen a la proliferación y transmisión de microorganismos al ser humano, pudiendo causar daños a la salud según estado inmunológico de la persona. Se evidenció que billetes de algodón presentan mayor frecuencia y variabilidad de contaminación por bacterias. Palabras Clave: Microbiología, Dinero, Bacterias, aislamiento & purificación.

  20. Dimensional accuracy of aluminium extrusions in mechanical calibration

    Science.gov (United States)

    Raknes, Christian Arne; Welo, Torgeir; Paulsen, Frode

    2018-05-01

    Reducing dimensional variations in the extrusion process without increasing cost is challenging due to the nature of the process itself. An alternative approach—also from a cost perspective—is using extruded profiles with standard tolerances and utilize downstream processes, and thus calibrate the part within tolerance limits that are not achievable directly from the extrusion process. In this paper, two mechanical calibration strategies for the extruded product are investigated, utilizing the forming lines of the manufacturer. The first calibration strategy is based on global, longitudinal stretching in combination with local bending, while the second strategy utilizes the principle of transversal stretching and local bending of the cross-section. An extruded U-profile is used to make a comparison between the two methods using numerical analyses. To provide response surfaces with the FEA program, ABAQUS is used in combination with Design of Experiment (DOE). DOE is conducted with a two-level fractional factorial design to collect the appropriate data. The aim is to find the main factors affecting the dimension accuracy of the final part obtained by the two calibration methods. The results show that both calibration strategies have proven to reduce cross-sectional variations effectively form standard extrusion tolerances. It is concluded that mechanical calibration is a viable, low-cost alternative for aluminium parts that demand high dimensional accuracy, e.g. due to fit-up or welding requirements.

  1. Improvement of mechanical properties and corrosion resistance of biodegradable Mg-Nd-Zn-Zr alloys by double extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaobo, E-mail: xbxbzhang2003@163.com [School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167 (China); Wang, Zhangzhong [School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167 (China); Yuan, Guangyin [National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, Shanghai, 200240 (China); Xue, Yajun [School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167 (China)

    2012-08-01

    Highlights: Black-Right-Pointing-Pointer Microstructure of Mg-Nd-Zn-Zr alloys was refined and homogenized by double extrusion process. Black-Right-Pointing-Pointer The mechanical properties of the alloys were significantly enhanced by double extrusion. Black-Right-Pointing-Pointer The biocorrosion resistance of the alloys was improved by double extrusion. - Abstract: Mg-Nd-Zn-Zr alloy is a novel and promising biodegradable magnesium alloy due to good biocompatibility, desired uniform corrosion mode and outstanding corrosion resistance in simulated body fluid (SBF). However, the corrosion resistance and mechanical properties should be improved to meet the requirement of the biodegradable implants, such as plates, screws and cardiovascular stents. In the present study, double extrusion process was adopted to refine microstructure and improve mechanical properties of Mg-2.25Nd-0.11Zn-0.43Zr and Mg-2.70Nd-0.20Zn-0.41Zr alloys. The corrosion resistance of the alloys after double extrusion was also studied. The results show that the microstructure of the alloys under double extrusion becomes much finer and more homogeneous than those under once extrusion. The yield strength, ultimate tensile strength and elongation of the alloys under double extrusion are over 270 MPa, 300 MPa and 32%, respectively, indicating that outstanding mechanical properties of Mg-Nd-Zn-Zr alloy can be obtained by double extrusion. The results of immersion experiment and electrochemical measurements in SBF show that the corrosion resistance of Alloy 1 and Alloy 2 under double extrusion was increased by 7% and 8% respectively compared with those under just once extrusion.

  2. Improvement of mechanical properties and corrosion resistance of biodegradable Mg–Nd–Zn–Zr alloys by double extrusion

    International Nuclear Information System (INIS)

    Zhang, Xiaobo; Wang, Zhangzhong; Yuan, Guangyin; Xue, Yajun

    2012-01-01

    Highlights: ► Microstructure of Mg–Nd–Zn–Zr alloys was refined and homogenized by double extrusion process. ► The mechanical properties of the alloys were significantly enhanced by double extrusion. ► The biocorrosion resistance of the alloys was improved by double extrusion. - Abstract: Mg–Nd–Zn–Zr alloy is a novel and promising biodegradable magnesium alloy due to good biocompatibility, desired uniform corrosion mode and outstanding corrosion resistance in simulated body fluid (SBF). However, the corrosion resistance and mechanical properties should be improved to meet the requirement of the biodegradable implants, such as plates, screws and cardiovascular stents. In the present study, double extrusion process was adopted to refine microstructure and improve mechanical properties of Mg–2.25Nd–0.11Zn–0.43Zr and Mg–2.70Nd–0.20Zn–0.41Zr alloys. The corrosion resistance of the alloys after double extrusion was also studied. The results show that the microstructure of the alloys under double extrusion becomes much finer and more homogeneous than those under once extrusion. The yield strength, ultimate tensile strength and elongation of the alloys under double extrusion are over 270 MPa, 300 MPa and 32%, respectively, indicating that outstanding mechanical properties of Mg–Nd–Zn–Zr alloy can be obtained by double extrusion. The results of immersion experiment and electrochemical measurements in SBF show that the corrosion resistance of Alloy 1 and Alloy 2 under double extrusion was increased by 7% and 8% respectively compared with those under just once extrusion.

  3. Application of Electrostatic Extrusion – Flavour Encapsulation and Controlled Release

    OpenAIRE

    Manojlovic, Verica; Rajic, Nevenka; Djonlagic, Jasna; Obradovic, Bojana; Nedovic, Viktor; Bugarski, Branko

    2008-01-01

    The subject of this study was the development of flavour alginate formulations aimed for thermally processed foods. Ethyl vanilline was used as the model flavour compound. Electrostatic extrusion was applied for the encapsulation of ethyl vanilline in alginate gel microbeads. The obtained microbeads with approx. 10 % w/w of ethyl vanilline encapsulated in about 2 % w/w alginate were uniformly sized spheres of about 450 ?m. Chemical characterization by H-NMR spectroscopy revealed that the algi...

  4. Investigations on the influence of the shape factor and friction in compression processes of cylindrical billets of AA 6082-T6 aluminum alloy by numerical and experimental techniques; Investigaciones sobre la influencia del factor de forma y del rozamiento en procesos de compresion de piezas cilindricas de aleacion de aluminio AA 6082-T6 mediante tecnicas numericas y experimentales

    Energy Technology Data Exchange (ETDEWEB)

    Marin, M. M.; Camacho, A. M.; Bernal, C.; Sebastian, M. A.

    2013-09-01

    The material characterization under similar load conditions to those applied during manufacturing is important in order to analyse Bulk Forming Compression Processes from a more realistic point of view. Open die forging of AA 6082-T6 aluminum alloy has been analysed by using experimental techniques and Finite Elements Method (FEM). The influence of the work piece geometry on the effects that friction produces in typical process variables such as applied forces, contact pressures and stresses and strains in work pieces has been analysed by FEM simulation. It has been shown that higher shape factors of the initial work piece geometry are recommended in such a way that friction effect is minimised. These results are interesting in order to decrease the required energy of the process and the tool wear, and could be used in further analysis of stamping processes. (Author)

  5. Functionalization of whey proteins by reactive supercritical fluid extrusion

    Directory of Open Access Journals (Sweden)

    Khanitta Ruttarattanamongkol

    2012-09-01

    Full Text Available Whey protein, a by-product from cheese-making, is often used in a variety of food formulations due to its unsurpassednutritional quality and inherent functional properties. However, the possibilities for the improvement and upgrading of wheyprotein utilization still need to be explored. Reactive supercritical fluid extrusion (SCFX is a novel technique that has beenrecently reported to successfully functionalize commercially available whey proteins into a product with enhanced functionalproperties. The specific goal of this review is to provide fundamental understanding of the reinforcement mechanism andprocessing of protein functionalization by reactive SCFX process. The superimposed extrusion variables and their interactionmechanism affect the physico-chemical properties of whey proteins. By understanding the structure, functional properties andprocessing relationships of such materials, the rational design criteria for novel functionalized proteins could be developedand effectively utilized in food systems.

  6. Extrusion-formed uranium-2. 4 wt % article with decreased linear thermal expansion and method for making the same. [Patent application

    Science.gov (United States)

    Anderson, R.C.; Jones, J.M.; Kollie, T.G.

    1982-05-24

    The present invention is directed to the fabrication of an article of uranium-2.4 wt % niobium alloy in which the linear thermal expansion in the direction transverse to the extrusion direction is less than about 0.98% between 22 and 600/sup 0/C which corresponds to a value greater than the 1.04% provided by previous extrusion operations over the same temperature range. The article with the improved thermal expansion possesses a yield strength at 0.2% offset of at least 400 MPa, an ultimate tensile strength of 1050 MPa, a compressive yield strength of at least 0.2% offset of at least 675 MPa, and an elongation of at least 25% over 25.4 mm/s. To provide this article with the improved thermal expansion, the uranium alloy billet is heated to 630/sup 0/C and extruded in the alpha phase through a die with a reduction ratio of at least 8.4:1 at a ram speed no greater than 6.8 mm/s. These critical extrusion parameters provide the article with a desired decrease in the linear thermal expansion while maintaining the selected mechanical properties without encountering crystal disruption in the article.

  7. Suitability of the Yield Criterion in Numerical Simulation of Stretch Bending of Aluminum Extrusions

    International Nuclear Information System (INIS)

    Li, X.Q.; Zhou, X.B.; Wu, X.D.; Gao, H.Z.

    2005-01-01

    Stretch bending is commonly used to shape thin-walled extrusions in aerospace and automotive industries. The extrusions are pre-stretched and bent over rigid curved dies. Effective application of this process demands sufficient knowledge of how different parameters influence the final shape of the product. Numerical simulation is an effective approach to investigate these issues presently. However, the validity of simulation result depends strongly on a precise description of the mechanical behavior of the material. Due to crystallographic texture caused by the extrusion process, aluminium extrusions exhibit significant plastic anisotropy which need be described by advanced constitutive model. In this work stretch bending of aluminum extrusions is simulated by using different anisotropic criteria (Hill quadratic, Barlat three-parameter). The influence of two yield criteria on predicting maximum die force immediately before unloading, permanent sagging and vertical springback displacement in the middle section of extrusion are compared. Maximum die force and springback calculated by two yield criteria are found to be almost same. Permanent sagging is obviously underestimated by two yield criteria, however, prediction by Barlat three-parameter is closer to experiment than one of Hill quadratic yield criterion

  8. Hot-melt extrusion of sugar-starch-pellets.

    Science.gov (United States)

    Yeung, Chi-Wah; Rein, Hubert

    2015-09-30

    Sugar-starch-pellets (syn. sugar spheres) are usually manufactured through fluidized bed granulation or wet extrusion techniques. This paper introduces hot-melt extrusion (HME) as an alternative method to manufacture sugar-starch-pellets. A twin-screw extruder coupled with a Leistritz Micro Pelletizer (LMP) cutting machine was utilized for the extrusion of different types (normal-, waxy-, and high-amlyose) of corn starch, blended with varying amounts of sucrose. Pellets were characterized for their physicochemical properties including crystallinity, particle size distribution, tensile strength, and swelling expansion. Furthermore, the influence of sugar content and humidity on the product was investigated. Both sucrose and water lowered the Tg of the starch system allowing a convenient extrusion process. Mechanical strength and swelling behavior could be associated with varying amylose and amylopectin. X-ray powder diffractometric (XRPD) peaks of increasing sucrose contents appeared above 30%. This signified the oversaturation of the extruded starch matrix system with sucrose. Otherwise, had the dissolved sucrose been embedded into the molten starch matrix, no crystalline peak could have been recognized. The replacement of starch with sucrose reduced the starch pellets' swelling effect, which resulted in less sectional expansion (SEI) and changed the surface appearance. Further, a nearly equal tensile strength could be detected for sugar spheres with more than 40% sucrose. This observation stands in good relation with the analyzed values of the commercial pellets. Both techniques (fluidized bed and HME) allowed a high yield of spherical pellets (less friability) for further layering processes. Thermal influence on the sugar-starch system is still an obstacle to be controlled. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Multi-channel Spiral Twist Extrusion (MCSTE): A Novel Severe Plastic Deformation Technique for Grain Refinement

    Science.gov (United States)

    El-Garaihy, W. H.; Fouad, D. M.; Salem, H. G.

    2018-04-01

    Multi-channel Spiral Twist Extrusion (MCSTE) is introduced as a novel severe plastic deformation (SPD) technique for producing superior mechanical properties associated with ultrafine grained structure in bulk metals and alloys. The MCSTE design is based on inserting a uniform square cross-sectioned billet within stacked disks that guarantee shear strain accumulation. In an attempt to validate the technique and evaluate its plastic deformation characteristics, a series of experiments were conducted. The influence of the number of MCSTE passes on the mechanical properties and microstructural evolution of AA1100 alloy were investigated. Four passes of MCSTE, at a relatively low twisting angle of 30 deg, resulted in increasing the strength and hardness coupled with retention of ductility. Metallographic observations indicated a significant grain size reduction of 72 pct after 4 passes of MCSTE compared with the as-received (AR) condition. Moreover, the structural uniformity increased with the number of passes, which was reflected in the hardness distribution from the peripheries to the center of the extrudates. The current study showed that the MCSTE technique could be an effective, adaptable SPD die design with a promising potential for industrial applications compared to its counterparts.

  10. Hot melt extrusion versus spray drying: hot melt extrusion degrades albendazole.

    Science.gov (United States)

    Hengsawas Surasarang, Soraya; Keen, Justin M; Huang, Siyuan; Zhang, Feng; McGinity, James W; Williams, Robert O

    2017-05-01

    The purpose of this study was to enhance the dissolution properties of albendazole (ABZ) by the use of amorphous solid dispersions. Phase diagrams of ABZ-polymer binary mixtures generated from Flory-Huggins theory were used to assess miscibility and processability. Forced degradation studies showed that ABZ degraded upon exposure to hydrogen peroxide and 1 N NaOH at 80 °C for 5 min, and the degradants were albendazole sulfoxide (ABZSX), and ABZ impurity A, respectively. ABZ was chemically stable following exposure to 1 N HCl at 80 °C for one hour. Thermal degradation profiles show that ABZ, with and without Kollidon ® VA 64, degraded at 180 °C and 140 °C, respectively, which indicated that ABZ could likely be processed by thermal processing. Following hot melt extrusion, ABZ degraded up to 97.4%, while the amorphous ABZ solid dispersion was successfully prepared by spray drying. Spray-dried ABZ formulations using various types of acids (methanesulfonic acid, sulfuric acid and hydrochloric acid) and polymers (Kollidon ® VA 64, Soluplus ® and Eudragit ® E PO) were studied. The spray-dried ABZ with methanesulfonic acid and Kollidon ® VA 64 substantially improved non-sink dissolution in acidic media as compared to bulk ABZ (8-fold), physical mixture of ABZ:Kollidon ® VA 64 (5.6-fold) and ABZ mesylate salt (1.6-fold). No degradation was observed in the spray-dried product for up to six months and less than 5% after one-year storage. In conclusion, amorphous ABZ solid dispersions in combination with an acid and polymer can be prepared by spray drying to enhance dissolution and shelf-stability, whereas those made by melt extrusion are degraded.

  11. Concept Feasibility Report for Using Co-Extrusion to Bond Metals to Complex Shapes of U-10Mo

    Energy Technology Data Exchange (ETDEWEB)

    Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Paxton, Dean M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Mark T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Soulami, Ayoub [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-12-01

    In support of the Convert Program of the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA) Global Threat Reduction Initiative (GTRI), Pacific Northwest National Laboratory (PNNL) has been investigating manufacturing processes for the uranium-10% molybdenum (U-10Mo) alloy plate fuel for the U.S. high-performance research reactors (USHPRR). This report documents the results of PNNL’s efforts to develop the extrusion process for this concept. The approach to the development of a co-extruded complex-shaped fuel has been described and an extrusion of DU-10Mo was made. The initial findings suggest that given the extrusion forces required for processing U-10Mo, the co-extrusion process can meet the production demands of the USHPRR fuel and may be a viable production method. The development activity is in the early stages and has just begun to identify technical challenges to address details such as dimensional tolerances and shape control. New extrusion dies and roll groove profiles have been developed and will be assessed by extrusion and rolling of U-10Mo during the next fiscal year. Progress on the development and demonstration of the co-extrusion process for flat and shaped fuel is reported in this document

  12. Analysis, Design, and Implementation of a Logical Proof-of-Concept Prototype for Streamlining the Advertisement of Billets for the U.S. Marine Corps Reserve

    National Research Council Canada - National Science Library

    Mohler, Jon D; Thorpe, John M

    2008-01-01

    The primary objective of this thesis is to provide the Marine Corps with a thorough bottom up System Analysis of the next generation billet advertisement system that will replace Reserve Duty Online (RDOL...

  13. Microstructural modelling and lubrication study during zirconium alloy hot extrusion

    International Nuclear Information System (INIS)

    Gaudout, B.

    2009-01-01

    Using torsion tests (with strain rate jumps) and an experimental hot mini-extrusion apparatus, several samples zirconium alloy have been deformed: Zircaloy-4 (high α range) and Zr-1Nb (α + β domain). The fragmentation of the microstructure and post-dynamic grain growth have been examined. The main difference between these two alloys is that Zr-1Nb does not show grain growth during a heat treatment within the α + β domain after hot deformation. The recrystallization volume fraction has been measured on extruded samples with or without heat treatment. These rheological and microstructural data have been used to determine the parameters of a microstructural model including: a work-hardening model (Laaasraoui/Jonas), a continuous dynamic recrystallization model (Gourdet/Montheillet) and a grain growth model. This model leads to a good prediction of recrystallization volume fraction for Zircaloy-4 extrusion. However, the Zr-1Nb model cannot be validated because of the difficulty to observe deformed microstructures. Extrusion process is lubricated with a solid film. Trapping tests show that this lubricant is thermoviscoplastic. Friction along the container and several observations show the lubrication is not realized by a continuous film. Indeed, the heterogeneousness of deformation of these alloys causes a rupture of the lubricant film. Experiments and numerical simulations show that the radial gradient of axial displacement is affected by friction but also by stress softening of the alloys. (author)

  14. The Energetics and Physiological Impact of Cohesin Extrusion.

    Science.gov (United States)

    Vian, Laura; Pękowska, Aleksandra; Rao, Suhas S P; Kieffer-Kwon, Kyong-Rim; Jung, Seolkyoung; Baranello, Laura; Huang, Su-Chen; El Khattabi, Laila; Dose, Marei; Pruett, Nathanael; Sanborn, Adrian L; Canela, Andres; Maman, Yaakov; Oksanen, Anna; Resch, Wolfgang; Li, Xingwang; Lee, Byoungkoo; Kovalchuk, Alexander L; Tang, Zhonghui; Nelson, Steevenson; Di Pierro, Michele; Cheng, Ryan R; Machol, Ido; St Hilaire, Brian Glenn; Durand, Neva C; Shamim, Muhammad S; Stamenova, Elena K; Onuchic, José N; Ruan, Yijun; Nussenzweig, Andre; Levens, David; Aiden, Erez Lieberman; Casellas, Rafael

    2018-05-17

    Cohesin extrusion is thought to play a central role in establishing the architecture of mammalian genomes. However, extrusion has not been visualized in vivo, and thus, its functional impact and energetics are unknown. Using ultra-deep Hi-C, we show that loop domains form by a process that requires cohesin ATPases. Once formed, however, loops and compartments are maintained for hours without energy input. Strikingly, without ATP, we observe the emergence of hundreds of CTCF-independent loops that link regulatory DNA. We also identify architectural "stripes," where a loop anchor interacts with entire domains at high frequency. Stripes often tether super-enhancers to cognate promoters, and in B cells, they facilitate Igh transcription and recombination. Stripe anchors represent major hotspots for topoisomerase-mediated lesions, which promote chromosomal translocations and cancer. In plasmacytomas, stripes can deregulate Igh-translocated oncogenes. We propose that higher organisms have coopted cohesin extrusion to enhance transcription and recombination, with implications for tumor development. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Multidrug and toxin extrusion proteins as transporters of antimicrobial drugs.

    Science.gov (United States)

    Nies, Anne T; Damme, Katja; Schaeffeler, Elke; Schwab, Matthias

    2012-12-01

    Antimicrobial drugs are essential in the treatment of infectious diseases. A better understanding of transport processes involved in drug disposition will improve the predictability of drug-drug interactions with consequences for drug response. Multidrug And Toxin Extrusion (MATE; SLC47A) proteins are efflux transporters mediating the excretion of several antimicrobial drugs as well as other organic compounds into bile and urine, thereby contributing to drug disposition. This review summarizes current knowledge of the structural and molecular features of human MATE transporters including their functional role in drug transport with a specific focus on antimicrobial drugs. The PubMed database was searched using the terms "MATE1," "MATE-2K," "MATE2," "SLC47A1," "SLC47A2," and "toxin extrusion protein" (up to June 2012). MATE proteins have been recognized as important transporters mediating the final excretion step of cationic drugs into bile and urine. These include the antiviral drugs acyclovir, amprenavir, and ganciclovir, the antibiotics cephalexin, cephradine and levofloxacin, as well as the antimalarial agents chloroquine and quinine. It is therefore important to enhance our understanding of the role of MATEs in drug extrusion with particular emphasis on the functional consequences of genetic variants on disposition of these antimicrobial drugs.

  16. Robust optimization of the billet for isothermal local loading transitional region of a Ti-alloy rib-web component based on dual-response surface method

    Science.gov (United States)

    Wei, Ke; Fan, Xiaoguang; Zhan, Mei; Meng, Miao

    2018-03-01

    Billet optimization can greatly improve the forming quality of the transitional region in the isothermal local loading forming (ILLF) of large-scale Ti-alloy ribweb components. However, the final quality of the transitional region may be deteriorated by uncontrollable factors, such as the manufacturing tolerance of the preforming billet, fluctuation of the stroke length, and friction factor. Thus, a dual-response surface method (RSM)-based robust optimization of the billet was proposed to address the uncontrollable factors in transitional region of the ILLF. Given that the die underfilling and folding defect are two key factors that influence the forming quality of the transitional region, minimizing the mean and standard deviation of the die underfilling rate and avoiding folding defect were defined as the objective function and constraint condition in robust optimization. Then, the cross array design was constructed, a dual-RSM model was established for the mean and standard deviation of the die underfilling rate by considering the size parameters of the billet and uncontrollable factors. Subsequently, an optimum solution was derived to achieve the robust optimization of the billet. A case study on robust optimization was conducted. Good results were attained for improving the die filling and avoiding folding defect, suggesting that the robust optimization of the billet in the transitional region of the ILLF was efficient and reliable.

  17. Environmental Assessment for the shipment of low enriched uranium billets to the United Kingdom from the Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1992-08-01

    This Environmental Assessment provides the necessary information so that a decision can be made on whether a Finding of No Significant Impact Environmental Impact Statement should be prepared for the proposed action. The proposed action is to transfer 2,592 low enriched uranium billets to the United Kingdom. The billets are currently stored in the 300 Area of the Hanford Site, Richland, Washington. The proposed action would consist of two types of activities: loading and transportation. The loading activities would include placing the billets into the appropriate containers for transportation. The transportation activities would include the tasks required to transport the containers 215 miles (344 km) via highway to the Port of Seattle, Washington, and transfer the containers aboard an ocean cargo vessel for transportation to the United Kingdom. The Department of Energy would only be responsible for conducting the loading activities. The United Kingdom would be responsible for conducting the transportation activities in compliance with all applicable United States and international transportation laws. The tasks associated with the proposed action activities have been performed before and are well defined in terms of requirements and consequences. A risk assessment and a nuclear safety evaluation were performed to address safety issues associated with the proposed action. The risk assessment determined the exposure risk from normal operation and from the maximum credible accident that involves a truck or ship collision followed by a fire that engulfs all the billets in the shipment and the release of the radiological contents of the shipment to the environment. The criticality assessment determined the nuclear safety limits for handling, transporting and storing the shipment under incident-free and accident transport conditions

  18. Prediction of extrusion die wear by use of an artificial neural network

    International Nuclear Information System (INIS)

    Naidim, O.; Epureanu, A.; Tabacaru, V.

    2000-01-01

    In its vision of designing a technology, the process of optimisation of a material extrusion is an on-line process. The tool life is an important factor in selecting the objective function that represents the cost of the extruded product. This work is intended to realise the prediction of die wear evolution within the extrusion process, based on information obtained from numerical modelling. In order to reduce the number of experiments and to realise a flexible process of designing the necessary tools for an extrusion process, finite element (FE) modelling was used to determine designing space against the shape of the extruded product, the work conditions, the material and wear conditions. The information generated using FE was then used to train a neural network using backpropagation algorithm. Parameters considered in constructing neural networks include error tolerance, the factor of estimation of the 'best solution', the number of training cycles and the number of hidden layers. A general formula of calculus applicable in any extrusion process can be determined by establishing a relation between the stress state obtained within the extrusion process, deformation speed and friction on one hand, and wear on the other hand. The (1/W) parameter, where W is the tool wear in the active zone of the extrusion die, is a measure taken into account in calculating the die life as written in (1); this is the reason why it is important to make prediction of W value for geometries used in designing process or to optimise the die shape in order to reduce wear. (author)

  19. Effect of extrusion conditions on the physico-chemical properties and in vitro protein digestibility of canola meal.

    Science.gov (United States)

    Zhang, Bo; Liu, Guo; Ying, Danyang; Sanguansri, Luz; Augustin, Mary Ann

    2017-10-01

    Canola meal has potential as a high protein food ingredient. The extrusion-induced changes in color, pH, extractable protein and in vitro protein digestibility of canola meal under different extrusion conditions was assessed. The extrusion barrel moisture (24%, 30% or 36%) and screw kneading block length (0, 30 or 60mm) were used as independent process parameters. Extrusion at high barrel moisture (36%) favored protein aggregation resulting in lower extractable protein compared to extrusion at the lowest barrel moisture (24%). At lower barrel moisture contents (24% and 30%), a longer kneading block length increased extractable protein but this was not the case at 36% barrel moisture. Canola protein digestibility was improved upon extrusion at 30% barrel moisture but there was no significant change at lower (24%) or higher (36%) barrel moisture. The kneading block length of the screw had no significant effect on the canola protein digestibility within the same barrel moisture level. The relationship between the physico-chemical parameters and in vitro digestibility was examined. This study highlighted the complex interplay of extrusion processing variables that affect protein degradation and the interaction of components, with consequent effects on protein digestibility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Metal extrusion using hydrostatic pressures; Le filage des metaux sous pression hydrostatique

    Energy Technology Data Exchange (ETDEWEB)

    Sauve, Ch [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    The main problems connected with the deformation of metals due to extrusion are described. A method is put forward for calculating the rational rate of percentage deformation in the case of bar extrusion using a cylindrical container; reference is made to previous work on extrusion using a hydrostatic pressure with or without back-pressure. An extrusion process is described using hydrostatic pressure, without back-pressure, and using the lubricant for transmitting the thrust. This process has been used for eight years by the C.E.A. for the extrusion of a very wide range of metals, from beryllium to uranium and including steels; it leads to excellent surface textures. A very fine crystallization can be obtained on extruded products when the rate of extrusion is very low. There appears to be nothing against the use of high extrusion rates using this method. (author) [French] On expose les problemes generaux lies a la deformation des metaux par filage. On propose un calcul de la vitesse rationnelle de deformation pour cent dans le cas du filage de barres a partir d'un conteneur cylindrique, et l'on cite les travaux anterieurs sur le filage par faction d'une pression hydrostatique sans ou avec une contre-pression. On decrit un procede de filage par l'action d'une pression hydrostatique, sans contre-pression, utilisant le lubrifiant pour transmettre la poussee. Ce procede employe depuis 8 ans au C.E.A. pour filer les metaux les plus divers, depuis le beryllium jusqu'a l'uranium en passant par les aciers, permet d'obtenir d'excellents etats de surface. Une cristallisation tres fine peut etre obtenue sur les produits files lorsque le filage est tres lent. Rien ne parait s'opposer a ce que des filages rapides soient effectues avec cette methode. (auteur)

  1. Preparation and investigation of novel gastro-floating tablets with 3D extrusion-based printing.

    Science.gov (United States)

    Li, Qijun; Guan, Xiaoying; Cui, Mengsuo; Zhu, Zhihong; Chen, Kai; Wen, Haoyang; Jia, Danyang; Hou, Jian; Xu, Wenting; Yang, Xinggang; Pan, Weisan

    2018-01-15

    Three dimensional (3D) extrusion-based printing is a paste-based rapid prototyping process, which is capable of building complex 3D structures. The aim of this study was to explore the feasibility of 3D extrusion-based printing as a pharmaceutical manufacture technique for the fabrication of gastro-floating tablets. Novel low-density lattice internal structure gastro-floating tablets of dipyridamole were developed to prolong the gastric residence time in order to improve drug release rate and consequently, improve bioavailability and therapeutic efficacy. Excipients commonly employed in the pharmaceutical study could be efficiently applied in the room temperature 3D extrusion-based printing process. The tablets were designed with three kinds of infill percentage and prepared by hydroxypropyl methylcellulose (HPMC K4M) and hydroxypropyl methylcellulose (HPMC E15) as hydrophilic matrices and microcrystalline cellulose (MCC PH101) as extrusion molding agent. In vitro evaluation of the 3D printed gastro-floating tablets was performed by determining mechanical properties, content uniformity, and weight variation. Furthermore, re-floating ability, floating duration time, and drug release behavior were also evaluated. Dissolution profiles revealed the relationship between infill percentage and drug release behavior. The results of this study revealed the potential of 3D extrusion-based printing to fabricate gastro-floating tablets with more than 8h floating process with traditional pharmaceutical excipients and lattice internal structure design. Copyright © 2017. Published by Elsevier B.V.

  2. [Effect of extrusion on protein and starch bioavailability in corn and lima bean flour blends].

    Science.gov (United States)

    Pérez-Navarrete, Cecilia; Betancur-Ancona, David; Casotto, Meris; Carmona, Andrés; Tovar, Juscelino

    2007-09-01

    Extrusion is used to produce crunchy expanded foods, such as snacks. The nutritional impact of this process has not been studied sufficiently. In this study, in vitro and in vivo protein and starch bioavailability was evaluated in both raw and extruded corn (Zea mays)(C) and lima bean (Phaseolus lunatus)(B) flour blends, prepared in 75C/25B and 50C/ 50B (p/p) proportions. These were processed with a Brabender extruder at 160 degrees C, 100 rpm and 15.5% moisture content. Proximate composition showed that in the extruded products protein and ash contents increased whereas the fat level decreased. In vitro protein digestibility was higher in the extrudates (82%) than in the raw flours (77%). Potentially available starch and resistant starch contents decreased with extrusion. The in vitro assays indicated that extrusion improved protein and starch availability in the studied blends. In vivo bioavailability was evaluated using the rice weevil (Sithophilus oryzae) as a biological model. The most descriptive biomarkers of the changes suggested by the in vivo tests were body protein content (increased by extrusion) and intestinal a-amylase activity (decreased by processing). Overall, results suggest that extrusion notably increases the nutritional quality of corn and lima bean flour blends.

  3. Experimental and finite element analyses of plastic deformation behavior in vortex extrusion

    International Nuclear Information System (INIS)

    Shahbaz, M.; Pardis, N.; Kim, J.G.; Ebrahimi, R.; Kim, H.S.

    2016-01-01

    Vortex extrusion (VE) is a single pass severe plastic deformation (SPD) technique which can impose high strain values with almost uniform distribution within cross section of the processed material. This technique needs no additional facilities for installation on any conventional extrusion equipment. In this study the deformation behavior of material during VE is investigated and the results are compared with those of conventional extrusion (CE). These investigations include finite element analysis, visioplasticity, and microstructural characterization of the processed samples. The results indicate that the VE process can accumulate a higher strain value by applying an additional torsional deformation. The role of this additional deformation mode on the microstructural evolution of the VE sample is discussed and compared with the results obtained on the CE samples.

  4. Hydrostatic extrusion of Cu-Ag melt spun ribbon

    Science.gov (United States)

    Hill, Mary Ann; Bingert, John F.; Bingert, Sherri A.; Thoma, Dan J.

    1998-01-01

    The present invention provides a method of producing high-strength and high-conductance copper and silver materials comprising the steps of combining a predetermined ratio of the copper with the silver to produce a composite material, and melt spinning the composite material to produce a ribbon of copper and silver. The ribbon of copper and silver is heated in a hydrogen atmosphere, and thereafter die pressed into a slug. The slug then is placed into a high-purity copper vessel and the vessel is sealed with an electron beam. The vessel and slug then are extruded into wire form using a cold hydrostatic extrusion process.

  5. Root resorption after orthodontic intrusion and extrusion:.

    NARCIS (Netherlands)

    Han, G.; Huang, S.; Hoff, J.W. Von den; Zeng, X.; Kuijpers-Jagtman, A.M.

    2005-01-01

    The aim of this investigation was to compare root resorption in the same individual after application of continuous intrusive and extrusive forces. In nine patients (mean age 15.3 years), the maxillary first premolars were randomly intruded or extruded with a continuous force of 100 cN for eight

  6. Modelling of anisotropy for Al-Li 2099 T83 extrusions and effect of precipitate density

    International Nuclear Information System (INIS)

    Bois-Brochu, Alexandre; Blais, Carl; Tchitembo Goma, Franck Armel; Larouche, Daniel

    2016-01-01

    The development of aluminum-lithium alloys for aerospace applications requires a thorough understanding of how processing and product geometry impact their microstructure, texture and mechanical properties. The anisotropy of the mechanical properties is in part related to the deformation texture formed during thermo-mechanical processing. In this study, two different extrusions of Al-Li 2099 T83 were characterized, a cylindrical extrusion and an integrally stiffened panel (ISP). A model is proposed to predict mechanical properties and their anisotropy as a function of the <111> fiber texture. Furthermore, the volume fraction of precipitates was measured in zones of high anisotropy (cylindrical extrusion) and low anisotropy (ISP). Results show that there is no significant difference between the two parts concerning volume fraction of precipitates.

  7. Modelling of anisotropy for Al-Li 2099 T83 extrusions and effect of precipitate density

    Energy Technology Data Exchange (ETDEWEB)

    Bois-Brochu, Alexandre, E-mail: Alexandre.Bois-Brochu.1@ulaval.ca; Blais, Carl, E-mail: Carl.Blais@gmn.ulaval.ca; Tchitembo Goma, Franck Armel, E-mail: Franck-Armel.Tchitembo-Goma.1@ulaval.ca; Larouche, Daniel, E-mail: Daniel.Larouche@gmn.ulaval.ca

    2016-09-15

    The development of aluminum-lithium alloys for aerospace applications requires a thorough understanding of how processing and product geometry impact their microstructure, texture and mechanical properties. The anisotropy of the mechanical properties is in part related to the deformation texture formed during thermo-mechanical processing. In this study, two different extrusions of Al-Li 2099 T83 were characterized, a cylindrical extrusion and an integrally stiffened panel (ISP). A model is proposed to predict mechanical properties and their anisotropy as a function of the <111> fiber texture. Furthermore, the volume fraction of precipitates was measured in zones of high anisotropy (cylindrical extrusion) and low anisotropy (ISP). Results show that there is no significant difference between the two parts concerning volume fraction of precipitates.

  8. Simulation and analysis of hot forging process for industrial locking gear elevators

    Science.gov (United States)

    Maarefdoust, M.; Kadkhodayan, M.

    2010-06-01

    In this paper hot forging process for industrial locking gear elevators is simulated and analyzed. An increase in demand of industrial locking gear elevators with better quality and lower price caused the machining process to be replaced by hot forging process. Production of industrial locking gear elevators by means of hot forging process is affected by many parameters such as billet temperature, geometry of die and geometry of pre-formatted billet. In this study the influences of billet temperature on effective plastic strain, radius of die corners on internal stress of billet and thickness of flash on required force of press are investigated by means of computer simulation. Three-dimensional modeling of initial material and die are performed by Solid Edge, while simulation and analysis of forging are performed by Super Forge. Based on the computer simulation the required dies are designed and the workpieces are formed. Comparison of simulation results with experimental data demonstrates great compatibility.

  9. Control of material flow in a combined backward can - forward rod extrusion

    DEFF Research Database (Denmark)

    Kuzman, K; Pfeifer, E; Bay, Niels

    1996-01-01

    of tool geometry, friction and lubrication as well as workpiece properties on balanced material flow in a combined extrusion process. The FEM analysis applying the DEFORM code has been used in order to predict the process parameters and to estimate its stability. The subsequent experimental verification...

  10. Development of poloxamer gel formulations via hot-melt extrusion technology.

    Science.gov (United States)

    Mendonsa, Nicole S; Murthy, S Narasimha; Hashemnejad, Seyed Meysam; Kundu, Santanu; Zhang, Feng; Repka, Michael A

    2018-02-15

    Poloxamer gels are conventionally prepared by the "hot" or the "cold" process. But these techniques have some disadvantages such as high energy consumption, requires expensive equipment and often have scale up issues. Therefore, the objective of this work was to develop poloxamer gels by hot-melt extrusion technology. The model drug selected was ketoprofen. The formulations developed were 30% and 40% poloxamer gels. Of these formulations, the 30% poloxamer gels were selected as ideal gels. DSC and XRD studies showed an amorphous nature of the drug after extrusion. It was observed from the permeation studies that with increasing poloxamer concentration, a decrease in drug permeation was obtained. Other studies conducted for the formulations included in-vitro release studies, texture analysis, rheological studies and pH measurements. In conclusion, the hot-melt extrusion technology could be successfully employed to develop poloxamer gels by overcoming the drawbacks associated with the conventional techniques. Published by Elsevier B.V.

  11. Oscillatory Shear Rheology in Examining the Drug-Polymer Interactions Relevant in Hot Melt Extrusion

    DEFF Research Database (Denmark)

    Aho, Johanna; Edinger, Magnus; Botker, Johan

    2016-01-01

    The flow properties of drug-polymer mixtures have a significant influence on their processability when using techniques such as hot melt extrusion (HME). Suitable extrusion temperature and screw speed to be used in laboratory scale HME were evaluated for mixtures containing 30% of paracetamol (PRC...... of the drug substances. Consecutively, the mixtures were extruded, and the maximum plasticizing weight fraction of each drug was determined by means of rheological measurements. IBU was found to have an efficient plasticizing functionality, decreasing the viscosity of the mixtures even above its apparent...

  12. Effect of Multiple Extrusions on the Impact Properties of Polypropylene/Clay Nanocomposites

    DEFF Research Database (Denmark)

    Klitkou, Rasmus; Jensen, Erik Appel; Christiansen, Jesper de Claville

    2012-01-01

    Polypropylene (PP)-based polymer nanocomposites containing organically modified montmorillonite (OMMT) with and without maleic anhydride grafted PP, were compounded by twin-screw extrusion. The extrusion process was repeated various numbers of times to increase the extruder residence time (TR) and......) increased monotonically with increased TR by 70% from least dispersed to best dispersed, which was still 20% below the level for neat PP. Both the fracture initiation energy and propagation energy increased with TR, but the primary effect on ri came from the fracture propagation energy, which delivered 80...

  13. Incorporation of ladle furnace slag in ceramic formulations: study of extrusion zones

    International Nuclear Information System (INIS)

    Feitosa, E.F.; Santana, C.M.; Luna, D.S.; Santos, D.M.S.; Silva, G.S.; Noleto, L.T.; Almeida, N.C.; Rabelo, A.A.; Fagury Neto, E.

    2016-01-01

    This study aimed to investigate the effect of incorporation of ladle furnace slag (LFS) in two clays with higher and lower plasticity, used for the manufacture of structural ceramics. The LFS from a local steel making plant was added to ceramic compositions in proportions of 8 %, 14 % and 16 %. The formulations were tested in appropriate equipment that measures the liquid limit and plastic limit. The property examined was the plasticity index, in order to make a study of the extrusion zones. Results showed that the addition of slag into clay mixtures alters the plasticity; however, the extrusion process was not hampered. (author)

  14. THE IMPACT OF EXTRUSION ON THE BIOGAS AND BIOMETHANE YIELD OF PLANT SUBSTRATES

    Directory of Open Access Journals (Sweden)

    Krzysztof Pilarski

    2016-09-01

    Full Text Available The objective of the present work was to determine the effect of pretreatment by extrusion on the biogas and biomethane yield of lignocellulosic substrates such as maize silage and maize straw silage. The biogas yields of the substrates before and after treatment were compared. Moreover, energy efficiency of pretreatment by extrusion was analyzed in order to assess the applicability of the process in an agricultural biogas plant. Extrusion tests were carried out in a short single-screw extruder KZM-2 in which the length-to-diameter ratio of the screw was 6:1 and rotational speed was 200 rpm. The biogas yield tests of the plant substrates after extrusion were carried out in a laboratory scale, using 15 biofermenters operated in a periodic manner, at a constant temperature of 39°C (mesophilic digestion and controlled pH conditions. The gas-emission analysis was performed using a certified gas analyzer from Geotech GA5000. Pretreatment by extrusion was observed to improve the quantity of methane generated: in terms of fresh matter for maize silage subjected to extrusion, the methane yield was 16.48% higher than that of the non-extruded silage. On the other hand, maize straw silage after extrusion gave 35.30% more methane than did the same, non-extruded, material. Differences in yields relative to dry organic matter are also described in this paper. Taking into account the amount of energy that is spent on pretreatment and the generated amount of methane, the energy balance for the process gives an idea of the economics of the operation. For maize silage, energy efficiency was lower by 13.21% (-553.2 kWh/Mg, in contrast to maize straw silage, where the increase in energy was 33.49% (678.4 kWh/Mg. The obtained results indicate that more studies on the pretreatment and digestion of maize silage are required in order to improve the efficiency of its use for making biogas. To fully utilize its potential, it is necessary to know thoroughly the effect of

  15. Back extrusion of vocadlo-type fluids

    Czech Academy of Sciences Publication Activity Database

    David, Jiří; Filip, Petr; Kharlamov, Alexander

    2013-01-01

    Roč. 23, č. 4 (2013), , 45366-1-45366-8 ISSN 1430-6395 R&D Projects: GA ČR GA103/09/2066 Institutional support: RVO:67985874 Keywords : viscosity * back extrusion * annular pumping * vocadlo model * Robertson-stiff model Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.592, year: 2013 http://www.ar.ethz.ch/TMPPDF/23840225602.368/ApplRheol_23_45366.pdf

  16. Bibliography of ceramic extrusion and plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Janney, M.A.; Vance, M.C.; Jordan, A.C.; Kertesz, M.P.

    1987-03-01

    A comprehensive bibliography of ceramic extrusion and plasticity has been compiled. Over 670 abstracts are included covering the period 1932 to 1984. Citations cover a wide range of interests from basic science investigations to engineering ''tips'' and include references to brick and tile, whitewares, technical ceramics, theoretical models, engineering analyses, forming, drying, and raw materials. In addition to the citations, there are numerous indices to make the bibliography easy to use.

  17. Definition of a JA2 equivalent propellant to be produced by continuous solvent-less extrusion

    NARCIS (Netherlands)

    Manning, T.G.; Leone, J.; Zebregs, M.; Ramlal, D.R.; Driel, C.A. van

    2013-01-01

    The aim of this work is to demonstrate the manufacturing of a propellant by solvent-less continuous twin screw extrusion processing while maintaining gun performance characteristics of conventional JA-2 propellant. This is elucidated by explicitly researching the relationship between interior

  18. Modeling And Simulation Of Combined Extrusion For Spark Plug Body Parts

    Science.gov (United States)

    Canta, T.; Noveanu, D.; Frunza, D.

    2004-06-01

    The paper presents the modeling and simulation for the extrusion technology of a new type of spark plug body for Dacia Supernova car. This technology was simulated using the finite elements modeling and analysis SuperForm software, designed for the simulation of plastic deformation processes. There is also presented a comparison between the results of the simulation and the industrial results.

  19. Influence of structure and properties of tubular billets of the 12 Kh 18N10T steel on deformability of tubes at cold-rolling mills

    International Nuclear Information System (INIS)

    Vil'yams, O.S.; Bol'shova, N.M.; Olejnik, O.V.; Velikotnaya, E.S.

    1979-01-01

    Metallographic analysis of the defects of the ''oblique cracks'' type on the surface of hot-rolled tubes of the 12Kh18N10T steel has been carried out. Recommended is the complex of mechanical properties and the structure factors (grain size) of conversion hot-rolled tubes, providing the combination of ductility and high rapture strength during rolling at pilger mills. At a grain size not coarser than number 5, a billet must have σsub(T) 5 >=40 %. Hot-rolled coarse-grained billet is not recommended for warm rolng because of high strain hardening

  20. A brief review of extrusion-based tissue scaffold bio-printing.

    Science.gov (United States)

    Ning, Liqun; Chen, Xiongbiao

    2017-08-01

    Extrusion-based bio-printing has great potential as a technique for manipulating biomaterials and living cells to create three-dimensional (3D) scaffolds for damaged tissue repair and function restoration. Over the last two decades, advances in both engineering techniques and life sciences have evolved extrusion-based bio-printing from a simple technique to one able to create diverse tissue scaffolds from a wide range of biomaterials and cell types. However, the complexities associated with synthesis of materials for bio-printing and manipulation of multiple materials and cells in bio-printing pose many challenges for scaffold fabrication. This paper presents an overview of extrusion-based bio-printing for scaffold fabrication, focusing on the prior-printing considerations (such as scaffold design and materials/cell synthesis), working principles, comparison to other techniques, and to-date achievements. This paper also briefly reviews the recent development of strategies with regard to hydrogel synthesis, multi-materials/cells manipulation, and process-induced cell damage in extrusion-based bio-printing. The key issue and challenges for extrusion-based bio-printing are also identified and discussed along with recommendations for future, aimed at developing novel biomaterials and bio-printing systems, creating patterned vascular networks within scaffolds, and preserving the cell viability and functions in scaffold bio-printing. The address of these challenges will significantly enhance the capability of extrusion-based bio-printing. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Improved Titanium Billet Inspection Sensitivity through Optimized Phased Array Design, Part II: Experimental Validation and Comparative Study with Multizone

    International Nuclear Information System (INIS)

    Hassan, W.; Vensel, F.; Knowles, B.; Lupien, V.

    2006-01-01

    The inspection of critical rotating components of aircraft engines has made important advances over the last decade. The development of Phased Array (PA) inspection capability for billet and forging materials used in the manufacturing of critical engine rotating components has been a priority for Honeywell Aerospace. The demonstration of improved PA inspection system sensitivity over what is currently used at the inspection houses is a critical step in the development of this technology and its introduction to the supply base as a production inspection. As described in Part I (in these proceedings), a new phased array transducer was designed and manufactured for optimal inspection of eight inch diameter Ti-6Al-4V billets. After confirming that the transducer was manufactured in accordance with the design specifications a validation study was conducted to assess the sensitivity improvement of the PAI over the current capability of Multi-zone (MZ) inspection. The results of this study confirm the significant (≅ 6 dB in FBH number sign sensitivity) improvement of the PAI sensitivity over that of MZI

  2. Improved Titanium Billet Inspection Sensitivity through Optimized Phased Array Design, Part I: Design Technique, Modeling and Simulation

    International Nuclear Information System (INIS)

    Lupien, Vincent; Hassan, Waled; Dumas, Philippe

    2006-01-01

    Reductions in the beam diameter and pulse duration of focused ultrasound for titanium inspections are believed to result in a signal-to-noise ratio improvement for embedded defect detection. It has been inferred from this result that detection limits could be extended to smaller defects through a larger diameter, higher frequency transducer resulting in a reduced beamwidth and pulse duration. Using Continuum Probe Designer TM (Pat. Pending), a transducer array was developed for full coverage inspection of 8 inch titanium billets. The main challenge in realizing a large aperture phased array transducer for billet inspection is ensuring that the number of elements remains within the budget allotted by the driving electronics. The optimization technique implemented by Continuum Probe Designer TM yields an array with twice the aperture but the same number of elements as existing phased arrays for the same application. The unequal area element design was successfully manufactured and validated both numerically and experimentally. Part I of this two-part series presents the design, simulation and modeling steps, while Part II presents the experimental validation and comparative study to multizone

  3. Learning through Plastic Filament Extrusion

    Science.gov (United States)

    Orr, Taylor; Flowers, Jim

    2015-01-01

    3D printing is becoming ever more popular in both the manufacturing world as well as in technology and engineering education classrooms all over the United States. 3D printing is an additive manufacturing process in which successive layers of material are built up to produce three-dimensional objects from computer-aided design (CAD) files, making…

  4. Extrusion Bioprinting of Shear-Thinning Gelatin Methacryloyl Bioinks.

    Science.gov (United States)

    Liu, Wanjun; Heinrich, Marcel A; Zhou, Yixiao; Akpek, Ali; Hu, Ning; Liu, Xiao; Guan, Xiaofei; Zhong, Zhe; Jin, Xiangyu; Khademhosseini, Ali; Zhang, Yu Shrike

    2017-06-01

    Bioprinting is an emerging technique for the fabrication of 3D cell-laden constructs. However, the progress for generating a 3D complex physiological microenvironment has been hampered by a lack of advanced cell-responsive bioinks that enable bioprinting with high structural fidelity, particularly in the case of extrusion-based bioprinting. Herein, this paper reports a novel strategy to directly bioprint cell-laden gelatin methacryloyl (GelMA) constructs using bioinks of GelMA physical gels (GPGs) achieved through a simple cooling process. Attributed to their shear-thinning and self-healing properties, the GPG bioinks can retain the shape and form integral structures after deposition, allowing for subsequent UV crosslinking for permanent stabilization. This paper shows the structural fidelity by bioprinting various 3D structures that are typically challenging to fabricate using conventional bioinks under extrusion modes. Moreover, the use of the GPG bioinks enables direct bioprinting of highly porous and soft constructs at relatively low concentrations (down to 3%) of GelMA. It is also demonstrated that the bioprinted constructs not only permit cell survival but also enhance cell proliferation as well as spreading at lower concentrations of the GPG bioinks. It is believed that such a strategy of bioprinting will provide many opportunities in convenient fabrication of 3D cell-laden constructs for applications in tissue engineering, regenerative medicine, and pharmaceutical screening. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Machine for extrusion under vacuum; Machine de fluage sous vide

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    In a study of the behaviour of easily oxidised metals during the extrusion process, it is first necessary to find an effective mean of fighting corrosion, since this, even when barely detectable, has an important influence on the validity of the results recorded. The neatest and also the most efficient of all the methods tried consists in creating a vacuum around the test piece. Working on this principle, and at the same time respecting the conventional rules for extrusion tests (loading the sample after stabilisation at the testing temperature, differential measurements of lengthening, etc.) we found it necessary to construct an original machine. (author) [French] L'etude du comportement au fluage des materiaux facilement oxydables exige, en premier lieu, une lutte efficace contre la corrosion qui, meme a peine decelable, prend une part preponderante quant a la validite des resultats enregistres. La solution la plus elegante, et, a vrai dire, la plus energique parmi toutes les methodes essayees, consiste a realiser le vide autour de l'eprouvette d'essai. Partant de ce principe, et pour sauvegarder les regles classiques de l'essai de fluage (mise en charge de l'eprouvette apres stabilisation en temperature d'essai, mesures differentielles des allongements, etc.) nous nous sommes trouves dans la necessite de construire une machine inedite. (auteur)

  6. Machine for extrusion under vacuum; Machine de fluage sous vide

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, A. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    In a study of the behaviour of easily oxidised metals during the extrusion process, it is first necessary to find an effective mean of fighting corrosion, since this, even when barely detectable, has an important influence on the validity of the results recorded. The neatest and also the most efficient of all the methods tried consists in creating a vacuum around the test piece. Working on this principle, and at the same time respecting the conventional rules for extrusion tests (loading the sample after stabilisation at the testing temperature, differential measurements of lengthening, etc.) we found it necessary to construct an original machine. (author) [French] L'etude du comportement au fluage des materiaux facilement oxydables exige, en premier lieu, une lutte efficace contre la corrosion qui, meme a peine decelable, prend une part preponderante quant a la validite des resultats enregistres. La solution la plus elegante, et, a vrai dire, la plus energique parmi toutes les methodes essayees, consiste a realiser le vide autour de l'eprouvette d'essai. Partant de ce principe, et pour sauvegarder les regles classiques de l'essai de fluage (mise en charge de l'eprouvette apres stabilisation en temperature d'essai, mesures differentielles des allongements, etc.) nous nous sommes trouves dans la necessite de construire une machine inedite. (auteur)

  7. Plasticized chitosan/polyolefin films produced by extrusion.

    Science.gov (United States)

    Matet, Marie; Heuzey, Marie-Claude; Ajji, Abdellah; Sarazin, Pierre

    2015-03-06

    Plasticized chitosan and polyethylene blends were produced through a single-pass extrusion process. Using a twin-screw extruder, chitosan plasticization was achieved in the presence of an acetic acid solution and glycerol, and directly mixed with metallocene polyethylene, mPE, to produce a masterbatch. Different dilutions of the masterbatch (2, 5 and 10 wt% of plasticized chitosan), in the presence of ethylene vinyl acetate, EVA, were subsequently achieved in single screw film extrusion. Very small plasticized chitosan domains (number average diameter <5 μm) were visible in the polymeric matrix. The resulting films presented a brown color and increasing haze with chitosan plasticized content. Mechanical properties of the mPE films were affected by the presence of plasticized chitosan, but improvement was observed as a result of some compatibility between mPE and chitosan in the presence of EVA. Finally the incorporation of plasticized chitosan affected mPE water vapor permeability while oxygen permeability remained constant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. CHARACTERIZATION OF NEW TOOL STEEL FOR ALUMINUM EXTRUSION DIES

    OpenAIRE

    José Britti Bacalhau; Fernanda Moreno Rodrigues; Rafael Agnelli Mesquita

    2014-01-01

    Aluminum extrusion dies are an important segment of application on industrial tools steels, which are manufactured in steels based on AISI H13 steel. The main properties of steels applied to extrusion dies are: wear resistance, impact resistance and tempering resistance. The present work discusses the characteristics of a newly developed hot work steel to be used on aluminum extrusion dies. The effects of Cr and Mo contents with respect to tempering resistance and the Al addition ...

  9. Design of an extrusion screw and solid fuel produced from coconut shell

    Directory of Open Access Journals (Sweden)

    Madhiyanon, T

    2006-03-01

    Full Text Available The objectives were to design an extrusion screw to produce biomass solid fuel in a cold extrusion process, and investigate the effects of molasses used as a selected adhesive on the physical properties of extruded products. The material employed consisted of crushed coconut shell char and coconut fiber char mixed at a ratio of 40:60. The ratios of molasses in the mixture were 10:100, 15:100 and 20:100 (by weight and the extrusion die angles were 1.0, 1.1, 1.2, and 1.3 degrees gradation per experiment. The experimental results showed that the newly designed screw could function properly in the output range 0.75-0.90 kg/min, which is close to the design value. Regarding the molasses's effect on solid fuel properties, increasing the share of molasses was positive for both output and strength of the resulting briquettes, whereas the results of increasing die angle showed decreases in both output and strength. The compressive strength varied between 2.49-2.87 MPa in all circumstances, which was considerably higher than acceptable industrial level. Furthermore, the extruded solid fuel showed excellent resistance to impact force. Regarding energy consumption, the amount of electrical energy used in the extrusion process was insignificant, ranging between 0.040-0.079 kWh/kg.

  10. Effect of Different Extrusion Parameters on Dietary Fiber in Wheat Bran and Rye Bran.

    Science.gov (United States)

    Andersson, Annica A M; Andersson, R; Jonsäll, Anette; Andersson, Jörgen; Fredriksson, Helena

    2017-06-01

    Wheat bran and rye bran are mostly used as animal feed today, but their high content of dietary fiber and bioactive components are beneficial to human health. Increased use of bran as food raw material could therefore be desirable. However, bran mainly contains unextractable dietary fiber and deteriorates the sensory properties of products. Processing by extrusion could increase the extractability of dietary fiber and increase the sensory qualities of bran products. Wheat bran and rye bran were therefore extruded at different levels of moisture content, screw speed and temperature, in order to find the optimal setting for increased extractability of dietary fiber and positive sensory properties. A water content of 24% for wheat bran and 30% for rye bran, a screw speed of 400 rpm, and a temperature of 130 °C resulted in the highest extractability of total dietary fiber and arabinoxylan. Arabinoxylan extractability increased from 5.8% in wheat bran to 9.0% in extruded wheat bran at those settings, and from 14.6% to 19.2% for rye bran. Total contents of dietary fiber and arabinoxylan were not affected by extrusion. Content of β-glucan was also maintained during extrusion, while its molecular weight decreased slightly and extractability increased slightly. Extrusion at these settings is therefore a suitable process for increasing the use of wheat bran and rye bran as a food raw material. © 2017 Institute of Food Technologists®.

  11. Effect of extrusion, espansion and toasting on the nutritional value of peas, faba beans and lupins

    Directory of Open Access Journals (Sweden)

    Filippo Rossi

    2010-01-01

    Full Text Available An assessment was made of the effect that different treatments (toasting, expansion, extrusion have on the nutritionalvalue of protein plants (pea, faba bean, lupin. In a randomized block design, feeds were screened for enzymaticdigestibility of starch and protein, N solubility and in vitro protein degradability. Expansion and extrusion cause increasedstarch enzymatic degradability while toasting produced virtually no effects. In peas this value increased from 11.80% inmeal to 39.70% in the extruded product; 85.37% is the percentage for the expanded product, while 10.90% is the starchdigestibility value for toasted peas. In faba beans the extrusion process increased starch digestibility from 11.39% to85.05%, while in extruded lupins a complete starch hydrolysis was obtained, while in the meal the polysaccharide digestionwas 54.48%.The expansion and extrusion processes significantly decreased rumen degradability during the first 8 hours of incubation.Toasted peas had lower degradability if compared with controls but not with the other treatments. The onlypotentially alternative source to soybean is the extruded faba bean. In spite of its lower protein content, this feed ischaracterized by a considerably lower in vitro protein degradability than soybean. This implies that the digestible foodprotein content is comparable (124.90 g/kg DM to that of soybean (109.78 g/kg DM and definitely higher than thatof all other protein plants.

  12. Fate of Fusarium mycotoxins in maize flour and grits during extrusion cooking.

    Science.gov (United States)

    Scudamore, Keith A; Guy, Robin C E; Kelleher, Brian; MacDonald, Susan J

    2008-11-01

    Extrusion technology is used widely in the manufacture of a range of breakfast cereals and snacks for human consumption and animal feeds. To minimise consumer exposure to mycotoxins, the levels of deoxynivalenol (DON) and zearalenone (ZON) in cereals/cereal products and fumonisins B(1) and B(2) (FB(1) and FB(2)) in maize are controlled by European Union legislation. Relatively few studies, however, have examined the loss of Fusarium mycotoxins during processing. The behaviour of FB(1), FB(2) and fumonisin B(3) (FB(3)), DON and ZON during extrusion of naturally contaminated maize flour and maize grits is examined using pilot-scale equipment. DON and ZON are relatively stable during extrusion cooking but the fumonisins are lost to varying degrees. There is some loss of ZON when present in low concentrations and extruded at higher moisture contents. The presence of additives, such as reducing sugars and sodium chloride, can also affect mycotoxin levels. Moisture content of the cereal feed during extrusion is important and has a greater effect than temperature, particularly on the loss of fumonisins at the lower moistures. The effects are complex and not easy to explain, although more energy input to the extruder is required for drier materials. However, on the basis of these studies, the relationship between the concentration of Fusarium toxins in the raw and finished product is toxin- and process-dependent.

  13. Extrusão de misturas de castanha do Brasil com mandioca Extrusion of Brazil nut and cassava flour mixtures

    Directory of Open Access Journals (Sweden)

    Maria Luzenira de Souza

    2008-06-01

    Full Text Available Considerando-se que a castanha do Brasil apresenta elevado potencial nutritivo, baixo consumo no Brasil, baixo valor agregado e é um produto orgânico, além da alta produtividade, do baixo custo da mandioca e da tecnologia de extrusão termoplástica apresentarem ampla aplicabilidade e vantagens, este trabalho teve como objetivo empregar estas três variáveis, para formular misturas com castanha do Brasil e farinha de mandioca e processá-las por extrusão, visando à obtenção de produtos extrusados ricos em proteína vegetal e prontos para o consumo. Foram utilizadas torta de amêndoa de castanha do Brasil semidesengordurada e farinha de mandioca para formulações das misturas para extrusão. Aplicou-se o delineamento fatorial completo composto central (2³, com 3 variáveis independentes e a metodologia de superfície de resposta foi usada para avaliar os resultados da composição centesimal e o valor calórico, frente às variações de castanha, umidade e temperatura. Os resultados indicam que as formulações com maiores quantidades de castanha apresentam quantidades de proteínas, lipídios e cinzas mais elevadas, já as formulações com menores teores de castanha apresentam maiores percentuais de carboidratos. Os coeficientes de regressão médios do modelo estatístico para as respostas são: umidade 7,40; carboidratos 51,09; proteínas 15,34; lipídios 11,77; fibra total 9,92 e kcal 371,65. Os ensaios com menores teores de castanha e maiores de farinha apresentam-se mais expandidos e de cor clara, enquanto que aqueles com maiores teores de castanha não se expandem e têm a cor acinzentada. Conclui-se que a adição de castanha semidesengordurada à farinha de mandioca pode ser submetida à extrusão, originando um produto extrusado fonte de proteína vegetal, pronto para o consumo e que pode atender à exigência de consumidores que não utilizam proteínas de origem animal.Considering that Brazil nut presents high nutritional

  14. Solid State Bonding Mechanics In Extrusion And FSW: Experimental Tests And Numerical Analyses

    International Nuclear Information System (INIS)

    Buffa, G.; Fratini, L.; Donati, L.; Tomesani, L.

    2007-01-01

    In the paper the authors compare the different solid state bonding mechanics for both the processes of hollow profiles extrusion and Friction Stir Welding (FSW), through the results obtained from a wide experimental campaign on AA6082-T6 aluminum alloys. Microstructure evaluation, tensile tests and micro-hardness measurements realized on specimens extracted by samples of the two processes are discussed also by means of the results obtained from coupled FEM simulation of the processes

  15. Effect of Grain Refinement on Structure Evolution, “Floating” Grains, and Centerline Macrosegregation in Direct-Chill Cast AA2024 Alloy Billets

    NARCIS (Netherlands)

    Nadella, R.; Eskin, D.G.; Katgerman, L.

    2007-01-01

    Direct-chill (DC) cast billets 192 mm in diameter of an Al-Cu-Mg alloy were examined in detail with the aim to reveal the effects of grain refining (GR) and casting speed on structure, “floating” grains, and centerline macrosegregation. Experimental results show that grain size and dendrite arm

  16. Animales notables: la percepción de los brasileños sobre la fauna en el billete del Real

    Directory of Open Access Journals (Sweden)

    Graziele Scalfi

    2016-01-01

    Full Text Available Brasil es considerada una nación mega diversa, poseedora de algunos de los grupos de especies animales más numerosos del mundo. El billete del Real, la moneda brasileña, homenajea esta rica fauna desde 1994. Cerca de 190 millones de billetes circulan todos los días en las manos de los brasileños, pero ¿será que esa enorme exposición es suficiente para que la población reconozca esa fauna? Este artículo, evalúa la percepción de los brasileños con relación a la divulgación de los animales de la fauna brasileña en los billetes del Real. El análisis, se basa en las actividades realizadas durante la 10org.siir.client.entities.Sup@3ccd9945 Semana Nacional de Ciencia y Tecnología, en octubre de 2013, en el campus de la Universidad Estatal de Campinas (Unicamp y en el Parque Taquaral, en Campinas, en el estado de San Pablo. Los participantes fueron invitados a escoger especies que ilustraban cada uno de los seis billetes del Real y responder un cuestionario relativo a los hábitos de los animales brasileños retratados. Participaron en dicha actividad 159 personas, 86 de ellas individualmente y 73 en pareja o en grupo. Aunque los billetes son parte de su día a día, los participantes recordaban vagamente a los animales impresos en los billetes, aun mostrando 16 imágenes de animales, seis de los cuales, aparecen impresos en los billetes. El resultado indica que la divulgación científica tiene un gran reto por delante, una vez que la información habitual como lo es la fauna en el Real, no es suficiente para que la población identifique las especies nativas de Brasil.

  17. Effects of raw material extrusion and steam conditioning on feed pellet quality and nutrient digestibility of growing meat rabbits.

    Science.gov (United States)

    Liao, Kuoyao; Cai, Jingyi; Shi, Zhujun; Tian, Gang; Yan, Dong; Chen, Delin

    2017-06-01

    This study was conducted to investigate the effects of raw material extrusion and steam conditioning on feed pellet quality and nutrient digestibility of growing meat rabbits, in order to determine appropriate rabbit feed processing methods and processing parameters. In Exp. 1, an orthogonal design was adopted. Barrel temperature, material moisture content and feed rate were selected as test factors, and acid detergent fiber (ADF) content was selected as an evaluation index to research the optimum extrusion parameters. In Exp. 2, a two-factor design was adopted. Four kinds of rabbit feeds were processed and raw material extrusion adopted optimum extrusion parameters of Exp. 1. A total of 40 healthy and 42-day-old rabbits with similar weight were used in a randomized design, which consisted of 4 groups and 10 replicates in each group (1 rabbits in each replicate). The adaptation period lasted for 7 d, and the digestion trial lasted for 4 d. The results showed as follows: 1) ADF was significantly affected by barrel temperature ( P  digestibility of dry matter and total energy ( P  digestibility of crude fiber (CF), ADF and NDF ( P  digestibility of rabbit feed. Thus, using extrusion and steam conditioning technology at the same time in the weaning rabbits feed processing can improve the pellet quality and nutrient apparent digestibility of rabbit feed.

  18. Effects of Hot-Hydrostatic Canned Extrusion on the Stock Utilization, Microstructure and Mechanical Properties of TiBw/TC4 Composites with Quasi-Continuous Network.

    Science.gov (United States)

    Feng, Yangju; Li, Bing; Cui, Guorong; Zhang, Wencong

    2017-10-25

    In-situ TiB whisker-reinforced Ti-6Al-4V (TC4) titanium matrix composites (TiBw/TC4) with quasi-continuous networks were successfully fabricated by vacuum hot-pressing sintering. The effects of the hot-hydrostatic canned extrusion on stock utilization, microstructure and mechanical properties of the TiBw/TC4 composites were investigated. It was satisfactory that the utilization of composites could be obviously improved by canned extrusion compared to that extruded without canned extrusion. The microstructure results showed that after canned extrusion the grain was refined and the TiB whiskers were distributed from a random array state to a state in which the whiskers were distributed along the extrusion direction. The properties testing results revealed that the tensile strength, the hardness and the ductility of the composites all significantly improved after extrusion due to the grain refinement and orientation of the TiB whisker caused by extrusion. Tensile fracture results showed that when the TiB whiskers were randomly distributed only part of them played a role in strengthening the matrix during the deformation process (as-sintered composites), while when the TiB whiskers were oriented all whiskers could strengthen the matrix during the tensile testing process (as-extruded composites).

  19. Reduction of fumonisin B₁ in corn grits by twin-screw extrusion.

    Science.gov (United States)

    Jackson, Lauren S; Jablonski, Joseph; Bullerman, Lloyd B; Bianchini, Andreia; Hanna, Milford A; Voss, Kenneth A; Hollub, April D; Ryu, Dojin

    2011-08-01

    This study was designed to investigate the fate of fumonisins in flaking corn grits during twin-screw extrusion by measuring fumonisin B₁ (FB₁) and its analogs with a mass balance approach. Food grade corn grits and 2 batches of grits contaminated with FB₁ at 10 and 50 μg/g by Fusarium verticillioides M-2552 were processed with or without glucose supplementation (10%, w/w) with a twin-screw extruder. Extrusion reduced FB₁ in contaminated grits by 64% to 72% without glucose and 89% to 94% with added glucose. In addition, extrusion alone resulted in 26% to 73% reduction in the levels of fumonisin B₂ and fumonisin B₃, while levels of both mycotoxins were reduced by >89% in extruded corn grits containing 10% glucose. Mass balance analysis showed that 38% to 46% of the FB₁ species detected in corn extruded with glucose was N-(deoxy-D-fructos-1-yl)-FB₁, while 23% to 37% of FB₁ species detected in extruded corn grits with and without added glucose was bound to the matrix. It was also found that the hydrolyzed form of FB₁ was a minor species in extruded corn grits with or without added glucose, representing fumonisin analogues measured in this study. Research is needed to identify the reaction products resulting from extrusion processing of fumonisin-contaminated corn products. Twin-screw extrusion is widely used in food industry for its versatility. This technology may reduce the level of fumonisins in corn particularly with added glucose. Journal of Food Science © 2011 Institute of Food Technologists® No claim to original US government works.

  20. Acid-extrusion from tissue: the interplay between membrane transporters and pH buffers.

    Science.gov (United States)

    Hulikova, Alzbeta; Harris, Adrian L; Vaughan-Jones, Richard D; Swietach, Pawel

    2012-01-01

    The acid-base balance of cells is related to the concentration of free H⁺ ions. These are highly reactive, and their intracellular concentration must be regulated to avoid detrimental effects to the cell. H⁺ ion dynamics are influenced by binding to chelator substances ('buffering'), and by the production, diffusion and membrane-transport of free H⁺ ions or of the H⁺-bound chelators. Intracellular pH (pHi) regulation aims to balance this system of diffusion-reaction-transport processes at a favourable steady-state pHi. The ability of cells to regulate pHi may set a limit to tissue growth and can be subject to selection pressures. Cancer cells have been postulated to respond favourably to such selection pressures by evolving a better means of pHi regulation. A particularly important feature of tumour pHi regulation is acid-extrusion, which involves H⁺-extrusion and HCO₃⁻-uptake by membrane-bound transporter-proteins. Extracellular CO₂/HCO₃⁻ buffer facilitates these membrane-transport processes. As a mobile pH-buffer, CO₂/HCO₃⁻ protects the extracellular space from excessive acidification that could otherwise inhibit further acid-extrusion. CO₂/HCO₃⁻ also provides substrate for HCO₃⁻-transporters. However, the inherently slow reaction kinetics of CO₂/HCO₃⁻ can be rate-limiting for acid-extrusion. To circumvent this, cells can express extracellular-facing carbonic anhydrase enzymes to accelerate the attainment of equilibrium between CO₂, HCO₃⁻ and H⁺. The acid-extrusion apparatus has been proposed as a target for anti-cancer therapy. The major targets include H⁺ pumps, Na⁺/H⁺ exchangers and carbonic anhydrases. The effectiveness of such therapy will depend on the correct identification of rate-limiting steps in pHi regulation in a specific type of cancer.

  1. Material testing of copper by extrusion-cutting

    DEFF Research Database (Denmark)

    Segalina, F.; De Chiffre, Leonardo

    2017-01-01

    was developed and implemented on a CNC lathe. An investigation was carried out extrusion-cutting copper discs using high-speed-steel cutting tools at 100 m/min cutting speed. Flow stress values for copper under machining-relevant conditions were obtained from measurement of the extrusion-cutting force...

  2. Poly(lactic acid) (PLA) Based Tear Resistant and Biodegradable Flexible Films by Blown Film Extrusion

    OpenAIRE

    Norma Mallegni; Thanh Vu Phuong; Maria-Beatrice Coltelli; Patrizia Cinelli; Andrea Lazzeri

    2018-01-01

    Poly(lactic acid) (PLA) was melt mixed in a laboratory extruder with poly(butylene adipate-co-terephthalate) (PBAT) and poly(butylene succinate) (PBS) in the presence of polypropylene glycol di glycidyl ether (EJ400) that acted as both plasticizer and compatibilizer. The process was then scaled up in a semi-industrial extruder preparing pellets having different content of a nucleating agent (LAK). All of the formulations could be processed by blowing extrusion and the obtained films showed me...

  3. Characterization of Al–Li 2099 extrusions and the influence of fiber texture on the anisotropy of static mechanical properties

    International Nuclear Information System (INIS)

    Bois-Brochu, Alexandre; Blais, Carl; Goma, Franck Armel Tchitembo; Larouche, Daniel; Boselli, Julien; Brochu, Mathieu

    2014-01-01

    The development of aluminum–lithium alloys for aerospace applications requires a thorough understanding of how processing and product geometry impact their microstructure, texture and mechanical properties. The anisotropy of the mechanical properties is in part related to the deformation texture formed during thermo-mechanical processing. In this study, two different extrusions of Al–Li 2099 T83 were characterized, a cylindrical extrusion and an integrally stiffened panel (ISP). A decrease of tensile properties was observed from the longitudinal direction to the transverse direction with a minimum in the 45° direction, the magnitude of which depends on the location in the extrusions. The 〈111〉 fiber texture is prominent in most locations of the extrusion with a smaller intensity of the 〈100〉 component. Rolling textures were observed in two locations of the ISP that have a larger cross sectional aspect ratio. Variations of strength and anisotropy as a function of location in the extrusion correlate well with the intensity of the 〈111〉 fiber texture. On the other hand, our findings show an absence of correlation between the Taylor factor and the anisotropy. These results suggest that strength anisotropy may be controlled by the volume fraction of T 1 precipitates that could itself be related to the intensity of the 〈111〉 fiber texture

  4. Characterization of Al–Li 2099 extrusions and the influence of fiber texture on the anisotropy of static mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Bois-Brochu, Alexandre, E-mail: Alexandre.Bois-Brochu.1@ulaval.ca [Department of Mining and Metallurgy, Adrien-Pouliot Building, Université Laval, 1065 Rue de la medicine, Québec, Québec G1V 0A6 (Canada); Blais, Carl, E-mail: Carl.Blais@gmn.ulaval.ca [Department of Mining and Metallurgy, Adrien-Pouliot Building, Université Laval, 1065 Rue de la medicine, Québec, Québec G1V 0A6 (Canada); Goma, Franck Armel Tchitembo, E-mail: Franck-Armel.Tchitembo-Goma.1@ulaval.ca [Department of Mining and Metallurgy, Adrien-Pouliot Building, Université Laval, 1065 Rue de la medicine, Québec, Québec G1V 0A6 (Canada); Larouche, Daniel, E-mail: Daniel.Larouche@gmn.ulaval.ca [Department of Mining and Metallurgy, Adrien-Pouliot Building, Université Laval, 1065 Rue de la medicine, Québec, Québec G1V 0A6 (Canada); Boselli, Julien, E-mail: Julien.Boselli@alcoa.com [Alcoa Technical Center, Alcoa, PA 15069 (United States); Brochu, Mathieu, E-mail: Mathieu.Brochu@mcgill.ca [Department of Mining and Materials Engineering, Wong Building, McGill University, 3610 University Street, Montréal, Québec H3A 2B2 (Canada)

    2014-03-01

    The development of aluminum–lithium alloys for aerospace applications requires a thorough understanding of how processing and product geometry impact their microstructure, texture and mechanical properties. The anisotropy of the mechanical properties is in part related to the deformation texture formed during thermo-mechanical processing. In this study, two different extrusions of Al–Li 2099 T83 were characterized, a cylindrical extrusion and an integrally stiffened panel (ISP). A decrease of tensile properties was observed from the longitudinal direction to the transverse direction with a minimum in the 45° direction, the magnitude of which depends on the location in the extrusions. The 〈111〉 fiber texture is prominent in most locations of the extrusion with a smaller intensity of the 〈100〉 component. Rolling textures were observed in two locations of the ISP that have a larger cross sectional aspect ratio. Variations of strength and anisotropy as a function of location in the extrusion correlate well with the intensity of the 〈111〉 fiber texture. On the other hand, our findings show an absence of correlation between the Taylor factor and the anisotropy. These results suggest that strength anisotropy may be controlled by the volume fraction of T{sub 1} precipitates that could itself be related to the intensity of the 〈111〉 fiber texture.

  5. Effects of extrusion variables on the properties of waxy hulless barley extrudates.

    Science.gov (United States)

    Köksel, Hamit; Ryu, Gy-Hyung; Başman, Arzu; Demiralp, Hande; Ng, Perry K W

    2004-02-01

    The objective of this research was to investigate the extrudability of waxy hulless barley flour under various extrusion conditions. Waxy hulless barley flour was processed in a laboratory-scale corotating twin-screw extruder with different levels of feed moisture content (22.3, 26.8, and 30.7%) and die temperature (130, 150, and 170 degrees C) to develop a snack food with high beta-glucan content. The effects of extrusion condition variables (screw configuration, moisture, and temperature) on the system variables (pressure and specific mechanical energy), the extrudate physical properties (sectional expansion index, bulk density), starch gelatinization, pasting properties (cold peak viscosity, trough viscosity, and final viscosity), and beta-glucan contents were determined. Results were evaluated by using response surface methodology. Increased extrusion temperature and feed moisture content resulted in decreases in exit die pressure and specific mechanical energy values. For extrudates extruded under low shear screw configuration (LS), increased barrel temperature decreased sectional expansion index (SEI) values at both low and high moisture contents. The feed moisture seems to have an inverse relationship with SEI over the range studied. Bulk density was higher at higher moisture contents, for both low and high barrel temperatures, for samples extruded under high shear screw configuration (HS) and LS. Cold peak viscosities (CV) were observed in all samples. The CV increased with the increase in extrusion temperature and feed moisture content. Although beta-glucan contents of the LS extrudates were comparable to that of barley flour sample, HS samples had generally lower beta-glucan contents. The extrusion cooking technique seems to be promising for the production of snack foods with high beta-glucan content, especially using LS conditions.

  6. A statistical rationale for establishing process quality control limits using fixed sample size, for critical current verification of SSC superconducting wire

    International Nuclear Information System (INIS)

    Pollock, D.A.; Brown, G.; Capone, D.W. II; Christopherson, D.; Seuntjens, J.M.; Woltz, J.

    1992-01-01

    This work has demonstrated the statistical concepts behind the XBAR R method for determining sample limits to verify billet I c performance and process uniformity. Using a preliminary population estimate for μ and σ from a stable production lot of only 5 billets, we have shown that reasonable sensitivity to systematic process drift and random within billet variation may be achieved, by using per billet subgroup sizes of moderate proportions. The effects of subgroup size (n) and sampling risk (α and β) on the calculated control limits have been shown to be important factors that need to be carefully considered when selecting an actual number of measurements to be used per billet, for each supplier process. Given the present method of testing in which individual wire samples are ramped to I c only once, with measurement uncertainty due to repeatability and reproducibility (typically > 1.4%), large subgroups (i.e. >30 per billet) appear to be unnecessary, except as an inspection tool to confirm wire process history for each spool. The introduction of the XBAR R method or a similar Statistical Quality Control procedure is recommend for use in the superconducing wire production program, particularly when the program transitions from requiring tests for all pieces of wire to sampling each production unit

  7. Thermal Stabilization study of polyacrylonitrile fiber obtained by extrusion

    Directory of Open Access Journals (Sweden)

    Robson Fleming Ribeiro

    2015-12-01

    Full Text Available A low cost and environmental friendly extrusion process of the Polyacrylonitrile (PAN polymer was viabilized by using the 1,2,3-propanetriol (glycerol as a plasticizer. The characterization of the fibers obtained by this process was the object of study in the present work. The PAN fibers were heat treated in the range of 200 °C to 300 °C, which is the temperature range related to the stabilization/oxidation step. This is a limiting phase during the carbon fiber processing. The characterization of the fibers was made using infrared spectroscopy, thermal analysis and microscopy. TGA revealed that the degradation of the extruded PAN co-VA fibers between 250 °C and 350 °C, corresponded to a 9% weight loss to samples analyzed under oxidizing atmosphere and 18% when the samples were analyzed under inert atmosphere. DSC showed that the exothermic reactions on the extruded PAN co-VA fibers under oxidizing synthetic air was broader and the cyclization started at a lower temperature compared under inert atmosphere. Furthermore, FT-IR analysis correlated with thermal anlysis showed that the stabilization/oxidation process of the extruded PAN fiber were coherent with other works that used PAN fibers obtained by other spinning processes.

  8. Polymer Processing and Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to process and evaluate polymers for use in nonlinear optical, conductive and structural Air Force applications. Primary capabilities are extrusion of...

  9. Rotary compression process for producing toothed hollow shafts

    Directory of Open Access Journals (Sweden)

    J. Tomczak

    2014-10-01

    Full Text Available The paper presents the results of numerical analyses of the rotary compression process for hollow stepped shafts with herringbone teeth. The numerical simulations were performed by Finite Element Method (FEM, using commercial software package DEFORM-3D. The results of numerical modelling aimed at determining the effect of billet wall thickness on product shape and the rotary compression process are presented. The distributions of strains, temperatures, damage criterion and force parameters of the process determined in the simulations are given, too. The numerical results obtained confirm the possibility of producing hollow toothed shafts from tube billet by rotary compression methods.

  10. Fabricating tungsten crucibles by drawing and extrusion spinning

    International Nuclear Information System (INIS)

    Edstrom, C.M.

    1981-01-01

    The fabrication of seamless tungsten crucibles 127-mm ID x 265-mm high x 6.25-mm wall thickness (5 in. x 10 1/2 in. x 1/4 in.) involved three drawing operations and extrusion spinning. The success of the drawing operations came from a combination of low draw reduction percentage, generous draw radii, large punch-to-die clearance, and attention to drawing temperature. The extrusion spinning success related to good drawn-cup-to-spinning-mandrel fit prior to making the extrusion passes, removal of stress risers in the part prior to spinning, and special attention to part and mandrel temperature

  11. Orthodontic extrusion in the transitional dentition: a simple technique.

    LENUS (Irish Health Repository)

    Darby, Laura J

    2009-11-01

    Extrusion of teeth may be necessary in cases of delayed eruption, primary retention, traumatically intruded teeth, or subgingivally fractured teeth. Removable appliances are advantageous, as anchorage is not as tooth-dependant as in the case of fixed appliances. They are cost-effective, operator friendly, and a valuable treatment option to consider in cases where extrusion of anterior teeth in the transitional dentition is necessary. The purpose of this paper was to describe a simple, cost-effective technique using a removable appliance for extrusion of incisors in the transitional dentition.

  12. 75 FR 57441 - Aluminum Extrusions From the People's Republic of China: Alignment of Final Countervailing Duty...

    Science.gov (United States)

    2010-09-21

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-968] Aluminum Extrusions From the... countervailing duty investigation of aluminum extrusions from the People's Republic of China (PRC) with the final... antidumping duty investigations on aluminum extrusions from the PRC. See Aluminum Extrusions from the People's...

  13. 75 FR 69403 - Aluminum Extrusions From the People's Republic of China: Notice of Preliminary Determination of...

    Science.gov (United States)

    2010-11-12

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-967] Aluminum Extrusions From the... Commerce (``Department'') preliminarily determines that aluminum extrusions from the People's Republic of... of aluminum extrusions from the PRC filed in proper form by the Aluminum Extrusions Fair Trade...

  14. Application of Electrostatic Extrusion – Flavour Encapsulation and Controlled Release

    OpenAIRE

    Branko Bugarski; Viktor Nedovic; Bojana Obradovic; Jasna Djonlagic; Nevenka Rajic; Verica Manojlovic

    2008-01-01

    The subject of this study was the development of flavour alginate formulationsaimed for thermally processed foods. Ethyl vanilline was used as the model flavourcompound. Electrostatic extrusion was applied for the encapsulation of ethyl vanilline inalginate gel microbeads. The obtained microbeads with approx. 10 % w/w of ethylvanilline encapsulated in about 2 % w/w alginate were uniformly sized spheres of about450 μm. Chemical characterization by H-NMR spectroscopy revealed that the algina...

  15. Influence of extrusion parameters on sic distribution and properties of AA6061/SiC composites produced by kobo method

    Energy Technology Data Exchange (ETDEWEB)

    WoĨniak, Jarosáaw; Kostecki, Marek; Broniszewski, Kamil; Olszyna, Andrzej [Faculty of Material Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Bochniak, Wáodzimierz [Faculty of Non-Ferrous Metals, AGH University of Science and Technology, Cracow (Poland)

    2013-07-01

    The influence of extrusion parameters on reinforcements distribution and properties of AA6061+x% vol. SiC p (x=0; 2.5; 5; 7.5; 10) composites was discussed in this paper The averages size of AA6061 and SiC particles were 10.6 μ m and 0.42 μ m, respectively. The composites were consolidated via powder metallurgy processing (without the sintering) and extruded by KoBo method. The microstructure was examined on each steps of production. High values of density for all produced composites were achieved. Additionally, hardness and Young’s modulus were investigated. The best reinforcement distribution and mechanical properties were obtained for composites extruded with the highest extrusion ratio. Key words: aluminum alloy, extrusion, aged hardening, metal matrix composites, microstructure.

  16. Effect of conventional and extrusion pelleting on in situ ruminal degradability of starch, protein, and fibre in cattle

    DEFF Research Database (Denmark)

    Razzaghi, Ali; Larsen, Mogens; Lund, Peter

    2016-01-01

    +50% sugar beet pulp (SBP), or 50% maize+50% SBP. Meals were pelleted by either conventional pelleting, or by cooking extrusion using two distinct settings giving pellets with either high density (HD) or low density (LD). Ruminal degradation of starch, crude protein (CP) and NDF, and intestinal...... affected ruminal degradability of starch, protein, and NDF differently depending on both type of cereal and composition of the concentrate mixture.......>Pelleting>Meal). In contradiction, ESD for pure wheat and wheat mixtures was reduced, though differences were minor. Conventional pelleting reduced the effective protein degradability (EPD) for pure wheat, but extrusion did not further affect the EPD. In contrast, the most intense processing with extrusion LD increased EPD...

  17. Application of a powder sintering-extrusion process to the fabrication of U-Al and UO{sub 2}-stainless steel dispersed fuel elements; Application de frittage-filage de poudres a la fabrication d'elements combustibles disperses U-Al et UO{sub 2} inox

    Energy Technology Data Exchange (ETDEWEB)

    Meny, L.; Buffet, J.; Sauve, Ch.

    1962-07-01

    Within the scope of an investigation of dispersion-type fuel elements, the fabrication by extrusion and sintering of cladded bars and tubes with core of either uranium-aluminum or uranium oxide-stainless steel fuel was investigated. The powder mixtures are first pre-densified in a 'pot', whereupon the sheathed compact is degassed and sealed in a vacuum by electron-beam welding. The subsequent co-extrusion is performed at low temperature and with slow pressure application in the case of U-Al dispersions; and at high temperature with rapid pressure application, using the Ugine-Sejournet process, in the case of UO{sub 2}-stainless steel dispersions. The procedure permits the production of practically fully dense bars and tubes more than 1 m. in length and 10-30 mm in diameter, the wall thickness of the tubes ranging from 2-5 mm. The physical and mechanical characteristics of the dispersion, as well as the mechanical characteristics of the cladded elements, were investigated as a function of the uranium content and the temperature. (authors) [French] Dans le cadre de l'etude des elements combustibles disperses, nous avons etudie la fabrication par frittage-filage de barreaux et de tubes gaines renfermant un noyau combustible soit en uranium-aluminium, soit en UO{sub 2}-inox. Les melanges de poudres sont comprimes dans un 'pot'. La billette composite ainsi obtenue est degazee, fermee et soudee sous vide par bombardement electronique. Le cofilage est ensuite effectue, a basse temperature et sur presse lente pour les disperses U-Al, a haute temperature et sur presse rapide par le procede Ugine-Sejournet pour les disperses UO{sub 2}-inox. Nous avons ainsi obtenu des barres et des tubes de porosite pratiquement nulle de plus de 1 metre de longueur et de 10 a 30 mm de diametre; les epaisseurs des tubes sont comprises entre 2 et 5 mm. Les proprietes physiques et mecaniques des disperses ainsi que les proprietes mecaniques des ensembles gaines, ont ete etudiees en fonction de

  18. Rapid production of hollow SS316 profiles by extrusion based additive manufacturing

    Science.gov (United States)

    Rane, Kedarnath; Cataldo, Salvatore; Parenti, Paolo; Sbaglia, Luca; Mussi, Valerio; Annoni, Massimiliano; Giberti, Hermes; Strano, Matteo

    2018-05-01

    Complex shaped stainless steel tubes are often required for special purpose biomedical equipment. Nevertheless, traditional manufacturing technologies, such as extrusion, lack the ability to compete in a market of customized complex components because of associated expenses towards tooling and extrusion presses. To rapid manufacture few of such components with low cost and high precision, a new Extrusion based Additive Manufacturing (EAM) process, is proposed in this paper, and as an example, short stainless steel 316L complex shaped and sectioned tubes were prepared by EAM. Several sample parts were produced using this process; the dimensional stability, surface roughness and chemical composition of sintered samples were investigated to prove process competence. The results indicate that feedstock with a 316L particle content of 92.5 wt. % can be prepared with a sigma blade mixing, whose rheological behavior is fit for EAM. The green samples have sufficient strength to handle them for subsequent treatments. The sintered samples considerably shrunk to designed dimensions and have a homogeneous microstructure to impart mechanical strength. Whereas, maintaining comparable dimensional accuracy and chemical composition which are required for biomedical equipment still need iterations, a kinematic correction and modification in debinding cycle was proposed.

  19. Extrusion and drawing of zircaloy 2. Production of pressure tubes for EL-4; Filage et etirage du zircaloy 2. Realisation des tubes de force pour EL-4

    Energy Technology Data Exchange (ETDEWEB)

    Thevenet, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Buffet, J [Cefilac (France)

    1964-07-01

    The authors give briefly the physical mechanical and chemical properties of zircaloy 2, as far as the transformation of this alloy is concerned. Extrusion: After a few general remarks concerning the extrusion and co-extrusion, including a comparison of the deformation resistance of canning metals and of zircaloy 2, the following points are considered: - the difficulties occurring because of the use of this alloy: - atmosphere protection - adjustment on to the machine tools - low thermal conductivity - economy of the metal (price) - the factors affecting the quality of the extruded products extrusion under a copper can and under lubricant glass - fine grain structure - temperature homogeneity - working temperature The transformation cycle - '550 kg ingot - preliminary shape 'for drawing of EL-4 tubes (112 x 120 L 12 m)' - is described in detail (extrusion or forging of the {phi} = 340 ingot into {phi} = 220 billets, cutting into lengths and hot drilling at {phi} = 125, fixing into a copper can and rough extrusion). Drawing: The main difficulties are due to seizing of the tools and to the necessity of protecting the alloy from the atmosphere during annealings. A brief description is given of drawing out on a short mandrel, on a long mandrel, of laminating on a reducing machine and of the carrying out of an annealing, as well as of the production of EL-4 tubes ({phi} =107 x 113 L 430 m) by drawing out shapes having a size of 112 x 120 on long mandrels. Conclusion: It is possible by extrusion and drawing to produce zircaloy 2 tubes similar to those which may be obtained normally using stainless steel. (authors) [French] Les auteurs donnent un resume succint des proprietes physiques mecaniques et chimiques du zircaloy 2 en ce qui concerne la transformation de cet alliage. Filage: Apres quelques generalites sur le filage et le cofilage, dont une comparaison entre les resistances a la deformation des metaux de gainage et du zircaloy 2, on etudie successivement: - les

  20. Powder metallurgy processing of high strength turbine disk alloys

    Science.gov (United States)

    Evans, D. J.

    1976-01-01

    Using vacuum-atomized AF2-1DA and Mar-M432 powders, full-scale gas turbine engine disks were fabricated by hot isostatically pressing (HIP) billets which were then isothermally forged using the Pratt & Whitney Aircraft GATORIZING forging process. While a sound forging was produced in the AF2-1DA, a container leak had occurred in the Mar-M432 billet during HIP. This resulted in billet cracking during forging. In-process control procedures were developed to identify such leaks. The AF2-1DA forging was heat treated and metallographic and mechanical property evaluation was performed. Mechanical properties exceeded those of Astroloy, one of the highest temperature capability turbine disk alloys presently used.

  1. Study of an industrial process for the synthesis of high molar mass ethylene oxide-propylene oxide copolymers usable as extrusible electrolyte; Etude d`un procede industriel de synthese de copolymeres oxyde d`ethylene-oxyde de propylene de hautes masses molaires utilisables comme electrolyte extrudable

    Energy Technology Data Exchange (ETDEWEB)

    Gramain, Ph. [Ecole Nationale Superieure de Chimie de Montpellier, 34 (France); Caselles, E. [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France)

    1996-12-31

    The aim of this work is to develop an industrial process for the synthesis of an extrusible electrolyte polymer for lithium batteries. From literature data and precise specifications the high molar mass EO/OP copolymers synthesis by coordinative catalysis has been studied in order to reach a high productivity and to minimize the treatment steps. Two catalytic systems have been studied: the aluminium alkoxide-based Vandenberg-type catalysis and the calcium alcoholate amides catalysis. The first catalysis performed in solution gives excellent results. Its adaptation to silicon supported catalysis leads to a directly usable polymer in suspension but the productivity falls down and remains to be optimized. The calcium amide catalysis in heptane suspension generates acceptable productivities but also a too high proportion of low molar masses. Various approaches have been studied to minimize this proportion due to the presence of secondary sites that generate a cationic mechanism. The two synthesis ways explored are promising but remain to be optimized in order to increase the productivity of the efficient catalytic site and to reduce the formation of low molar masses generated by parasite catalytic sites. (J.S.) 9 refs.

  2. Study of an industrial process for the synthesis of high molar mass ethylene oxide-propylene oxide copolymers usable as extrusible electrolyte; Etude d`un procede industriel de synthese de copolymeres oxyde d`ethylene-oxyde de propylene de hautes masses molaires utilisables comme electrolyte extrudable

    Energy Technology Data Exchange (ETDEWEB)

    Gramain, Ph [Ecole Nationale Superieure de Chimie de Montpellier, 34 (France); Caselles, E [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France)

    1997-12-31

    The aim of this work is to develop an industrial process for the synthesis of an extrusible electrolyte polymer for lithium batteries. From literature data and precise specifications the high molar mass EO/OP copolymers synthesis by coordinative catalysis has been studied in order to reach a high productivity and to minimize the treatment steps. Two catalytic systems have been studied: the aluminium alkoxide-based Vandenberg-type catalysis and the calcium alcoholate amides catalysis. The first catalysis performed in solution gives excellent results. Its adaptation to silicon supported catalysis leads to a directly usable polymer in suspension but the productivity falls down and remains to be optimized. The calcium amide catalysis in heptane suspension generates acceptable productivities but also a too high proportion of low molar masses. Various approaches have been studied to minimize this proportion due to the presence of secondary sites that generate a cationic mechanism. The two synthesis ways explored are promising but remain to be optimized in order to increase the productivity of the efficient catalytic site and to reduce the formation of low molar masses generated by parasite catalytic sites. (J.S.) 9 refs.

  3. CHARACTERIZATION OF NEW TOOL STEEL FOR ALUMINUM EXTRUSION DIES

    Directory of Open Access Journals (Sweden)

    José Britti Bacalhau

    2014-06-01

    Full Text Available Aluminum extrusion dies are an important segment of application on industrial tools steels, which are manufactured in steels based on AISI H13 steel. The main properties of steels applied to extrusion dies are: wear resistance, impact resistance and tempering resistance. The present work discusses the characteristics of a newly developed hot work steel to be used on aluminum extrusion dies. The effects of Cr and Mo contents with respect to tempering resistance and the Al addition on the nitriding response have been evaluated. From forged steel bars, Charpy impact test and characterization via EPMA have been conducted. The proposed contents of Cr, Mo, and Al have attributed to the new VEX grade a much better tempering resistance than H13, as well as a deeper and harder nitrided layer. Due to the unique characteristics, this new steel provides an interesting alternative to the aluminum extrusion companies to increase their competitiveness.

  4. Instant blend from cassava derivatives produced by extrusion

    OpenAIRE

    Trombini, Fernanda Rossi Moretti; Mischan, Martha Maria; Leonel, Magali

    2016-01-01

    ABSTRACT: The current research aimed to evaluate the effects of extrusion parameters on the physical characteristics of extruded blends of cassava leaf flour and starch. A factorial central composite design with four independent variables and the response surface methodology were used to evaluate the results of color parameters (L*, a*, b*), water absorption index, water solubility index and paste properties, according to the variations in the leaf flour percentage (1.5 to 7.5%), extrusion te...

  5. A novel plastification agent for cemented carbides extrusion molding

    International Nuclear Information System (INIS)

    Ji-Cheng Zhou; Bai-Yun Huang

    2001-01-01

    A type of novel plastification agent for plasticizing powder extrusion molding of cemented carbides has been developed. By optimizing their formulation and fabrication method, the novel plastification agent, with excellent properties and uniform distribution characters, were manufactured. The thermal debinding mechanism has been studied, the extruding rheological characteristics and debinding behaviors have been investigated. Using the newly developed plastification agent, the cemented carbides extrusion rods, with diameter up to 25 mm, have been manufactured. (author)

  6. A Mathematical Model on the Resolution of Extrusion Bioprinting for the Development of New Bioinks

    Directory of Open Access Journals (Sweden)

    Ratima Suntornnond

    2016-09-01

    Full Text Available Pneumatic extrusion-based bioprinting is a recent and interesting technology that is very useful for biomedical applications. However, many process parameters in the bioprinter need to be fully understood in order to print at an adequate resolution. In this paper, a simple yet accurate mathematical model to predict the printed width of a continuous hydrogel line is proposed, in which the resolution is expressed as a function of nozzle size, pressure, and printing speed. A thermo-responsive hydrogel, pluronic F127, is used to validate the model predictions. This model could provide a platform for future correlation studies on pneumatic extrusion-based bioprinting as well as for developing new bioink formulations.

  7. Reprocessability of PHB in extrusion: ATR-FTIR, tensile tests and thermal studies

    Directory of Open Access Journals (Sweden)

    Leonardo Fábio Rivas

    Full Text Available Abstract Mechanical recycling of biodegradable plastics has to be encouraged, since the consumption of energy and raw materials can be reduced towards a sustainable development in plastics materials. In this study, the evolution of thermal and mechanical properties, as well as structural changes of poly(hydroxybutyrate (PHB up to three extrusion cycles were investigated. Results indicated a significant reduction in mechanical properties already at the second extrusion cycle, with a reduction above 50% in the third cycle. An increase in the crystallinity index was observed due to chemicrystallization process during degradation by chain scission. On the other hand, significant changes in the chemical structure or in thermal stability of PHB cannot be detected by Fourier transform infrared spectroscopy (FTIR and thermogravimetric analyses (TGA, respectively.

  8. Extrusion of blends of cassava leaves and cassava flour: physical characteristics of extrudates

    Directory of Open Access Journals (Sweden)

    Cristiane da Cunha Salata

    2014-09-01

    Full Text Available A cassava-based puffed snack was produced using a single screw extruder to determine the effect of the raw material composition (cassava leaf flour and moisture and the process parameters (extrusion temperature and screw speed on the physical characteristics of an extruded-expanded snack. A central composite rotational design, including four factors with 30 treatments, was used with the following as dependent variables: expansion index, specific volume, water solubility index, water absorption index, color (L*, a*, b*, and hardness. Under conditions of low moisture content (12 to 14%, low percentage of cassava leaf flour (2 to 4%, and intermediate conditions of extrusion temperature (100°C and screw speed (230rpm, it was possible to obtain puffed snack products with desirable characteristics.

  9. Efeito de parâmetros de extrusão na cor E propriedades de pasta da farinha de mandioquinha-salsa (Arracacia xanthorrhiza Effect of extrusion parameters on color and pasting properties of peruvian carrot flour (Arracacia xanthorrhiza

    Directory of Open Access Journals (Sweden)

    Bruna Menegassi

    2007-12-01

    Full Text Available Processou-se neste trabalho a farinha de mandioquinha-salsa (Arracacia xanthorrhiza Bancr. em uma linha de extrusão (mono rosca variando as condições operacionais: umidade da farinha (11-19%, temperatura de extrusão (86-154ºC e taxa de rotação da rosca (136-272rpm. Os parâmetros de cor analisados foram luminosidade (L* e os componentes de cromaticidade a* e b*. Os parâmetros de propriedade de pasta analisados foram viscosidade inicial, pico de viscosidade, quebra de viscosidade, tendência a retrogradação e viscosidade final. Os resultados obtidos mostraram que a umidade da matéria-prima interferiu nos componentes de cor das farinhas com efeito significativo sobre a luminosidade e croma a*, e a temperatura interferiu no croma b* . Quanto ao efeito dos parâmetros de processo sobre as propriedades de pasta, a umidade interferiu nas viscosidades inicial e final dos produtos, pico e quebra de viscosidade, enquanto a temperatura de extrusão e a rotação da rosca tiveram influência sobre a tendência a retrogradação e viscosidade final dos produtos.In this work peruvian carrot flour (Arracacia xanthorrhiza Bancr. was processed in a single screw extruder at different moisture contents (11-19%, extrusion temperature (86-154ºC and screw speed (136-272rpm. The parameters L*, a* and b* of color were analyzed in extruded flours. The viscosity related parameters determined include initial viscosity, viscosity peak, breakdown, setback and final viscosity. The results showed effect of feed moisture on flour color (L* and a* and the extrusion temperature influenced b*. Moisture content of the feed had effect on initial and final viscosity, viscosity peak and breakdown. Extrusion temperature and screw speed had effect on final viscosity and setback.

  10. Inline monitoring and a PAT strategy for pharmaceutical hot melt extrusion.

    Science.gov (United States)

    Wahl, Patrick R; Treffer, Daniel; Mohr, Stefan; Roblegg, Eva; Koscher, Gerold; Khinast, Johannes G

    2013-10-15

    Implementation of continuous manufacturing in the pharmaceutical industry requires tight process control. This study focuses on a PAT strategy for hot melt extrusion of vegetable calcium stearate (CaSt) as matrix carrier and paracetamol as active pharmaceutical ingredient (API). The extrusion was monitored using in-line near-infrared (NIR) spectroscopy. A NIR probe was located in the section between the extrusion screws and the die, using a novel design of the die channel. A chemometric model was developed based on premixes at defined concentrations and was implemented in SIPAT for real time API concentration monitoring. Subsequently, step experiments were performed for different API concentrations, screw speeds and screw designs. The predicted API concentration was in good agreement with the pre-set concentrations. The transition from one API plateau to another was a smooth curve due to the mixing behaviour of the extruder. The accuracy of the model was confirmed via offline HPLC analysis. The screw design was determined as the main influential factor on content uniformity (CU). Additionally the influence of multiple feeders had a significant impact on CU. The results demonstrate that in-line NIR measurements is a powerful tool for process development (e.g., mixing characterization), monitoring and further control strategies. Copyright © 2013. Published by Elsevier B.V.

  11. An upper bound solution for the spread extrusion of elliptical sections

    International Nuclear Information System (INIS)

    Abrinia, K.; Makaremi, M.

    2007-01-01

    The three dimensional problem of extrusion of elliptical sections with side material flow or spread has been formulated using the upper bound theory. The shape of the die for such a process is such that it could allow the material to flow sideways as well as in the forward direction. When flat faced dies are used a deforming region is developed with dead metal zones. Therefore this deforming region has been represented in the formulation based on the definitions of streamlines and stream surfaces. A generalized kinematically admissible velocity field was then derived for this formulation and strain rate components obtained for the upper bound solution. The general formulation for the deforming region and the velocity and strain rate fields allow for the optimization of the upper bound solution so that the nearest geometry of the deforming region and dead metal zone to the actual one was obtained.Using this geometry a die with similar surfaces to those of the dead metal zone is designed having converging and diverging surfaces to lead the material flow. The analysis was also carried out for this die and results were obtained showing a reduction in the extrusion pressure compared to the flat faced die. Effects of reduction of area, shape complexity, spread ratio and friction on the extrusion process were also investigated

  12. Hot Melt Extrusion and Spray Drying of Co-amorphous Indomethacin-Arginine With Polymers.

    Science.gov (United States)

    Lenz, Elisabeth; Löbmann, Korbinian; Rades, Thomas; Knop, Klaus; Kleinebudde, Peter

    2017-01-01

    Co-amorphous drug-amino acid systems have gained growing interest as an alternative to common amorphous formulations which contain polymers as stabilizers. Several preparation methods have recently been investigated, including vibrational ball milling on a laboratory scale or spray drying in a larger scale. In this study, the feasibility of hot melt extrusion for continuous manufacturing of co-amorphous drug-amino acid formulations was examined, challenging the fact that amino acids melt with degradation at high temperatures. Furthermore, the need for an addition of a polymer in this process was evaluated. After a polymer screening via the solvent evaporation method, co-amorphous indomethacin-arginine was prepared by a melting-solvent extrusion process without and with copovidone. The obtained products were characterized with respect to their solid-state properties, non-sink dissolution behavior, and stability. Results were compared to those of spray-dried formulations with the same compositions and to spray-dried indomethacin-copovidone. Overall, stable co-amorphous systems could be prepared by extrusion without or with copovidone, which exhibited comparable molecular interaction properties to the respective spray-dried products, while phase separation was detected by differential scanning calorimetry in several cases. The formulations containing indomethacin in combination with arginine and copovidone showed enhanced dissolution behavior over the formulations with only copovidone or arginine. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. Modelling the Thermo-Mechanical Behavior of Magnesium Alloys during Indirect Extrusion

    International Nuclear Information System (INIS)

    Steglich, D.; Ertuerk, S.; Bohlen, J.; Letzig, D.; Brocks, W.

    2010-01-01

    One of the basic metal forming process for semi-finished products is extrusion. Since extrusion involves complex thermo-mechanical and multiaxial loading conditions resulting in large strains, high strain rates and an increase in temperature due to deformation, a proper yield criterion and hardening law should be used in the numerical modelling of the process. A phenomenological model based on a plastic potential has been proposed that takes strain, strain rate and temperature dependency on flow behaviour into consideration. A hybrid methodology of experiment and finite element simulation has been adopted in order to obtain necessary model parameters. The anisotropy/asymmetry in yielding was quantified by tensile and compression tests of specimens prepared from different directions. The identification of the corresponding model parameters was performed by a genetic algorithm. A fully coupled thermo-mechanical analysis has been used in extrusion simulations for calculation of the temperature field by considering heat fluxes and heat generated due to plastic deformation. The results of the approach adopted in this study appeared to be successful showing promising predictions of the experiments and thus may be extended to be applicable to other magnesium alloys or even other hcp metals.

  14. MM98.04 Measurement of temperature and determination of heat transfer coefficient in backward can extrusion

    DEFF Research Database (Denmark)

    Henningsen, Poul; Hattel, Jesper Henri; Wanheim, Tarras

    1998-01-01

    Temperature is measured during backward can extrusion of steel. The process is characterised by large deformations and very high surface pressure. In the experiments, a can in low carbon steel with a lubrication layer of phosphate soap is formed. The temperature is measured by thermocouples...

  15. The interplay between subduction and lateral extrusion : A case study for the European Eastern Alps based on analogue models

    NARCIS (Netherlands)

    van Gelder, I. E.; Willingshofer, E.; Sokoutis, D.; Cloetingh, S. A.P.L.

    2017-01-01

    A series of analogue experiments simulating intra-continental subduction contemporaneous with lateral extrusion of the upper plate are performed to study the interference between these two processes at crustal levels and in the lithospheric mantle. The models demonstrate that intra-continental

  16. Elasto-viscoplastic FEM simulations of the aluminium flow in the bearing area for extrusion of thin-walled sections

    NARCIS (Netherlands)

    Lof, J.

    2001-01-01

    The use of the finite element method (FEM) is getting increasingly important in the understanding of processes that occur during aluminium extrusion. The bearing area is one of the most difficult areas to model in a numerical simulation. To investigate the phenomena that occur in the bearing,

  17. Influence of material and solution composition on the extrusion/erosion behaviour of compacted bentonite

    International Nuclear Information System (INIS)

    Schatz, Timothy; Martikainen, Jari; Koskinen, Kari

    2010-01-01

    Document available in extended abstract form only. In principle, in a KBS-3 type repository, the volume of a deposition hole is fixed and the bentonite buffer mass accordingly balanced to lead to the development of a suitable swelling pressure upon saturation. However, fractures intersecting the deposition holes give rise to the possibility that volume constrained conditions do not universally exist. Such fractures may provide pathways for the continued, localised, free swelling of bentonite buffer material. Loss of mass from the deposition hole by extrusion into intersecting fractures may compromise the long-term safety and performance of the buffer component of the engineered barrier system. Furthermore, the continued hydration and expansion of extruded bentonite in these fracture environments could lead to the separation of colloid-sized (or larger) particles by diffusion or shear which may have to be accounted for in possible radionuclide migration scenarios. Geochemical conditions, with respect to both solution and material composition, are considered to play important roles regarding the fracture extrusion/erosion of bentonite buffer material. For example, calcium-montmorillonite exhibits limited free swelling relative to sodium-montmorillonite and the colloidal and rheological properties of montmorillonite dispersions are sensitive to the presence of electrolytes. Insofar as both the buffer material composition (due to ion exchange) and groundwater composition (dilution resulting from infiltration of glacial melt water) are expected to evolve with time, so too might the potential for fracture extrusion/erosion of buffer material vary over time. The hydraulic characteristics of the intersecting fracture are expected to influence the extrusion/erosion process as well. To evaluate the effect of material and solution composition on the potential for extrusion of buffer mass into intersecting fractures, a series of batch experiments were performed. In these

  18. Application of Electrostatic Extrusion - Flavour Encapsulation and Controlled Release.

    Science.gov (United States)

    Manojlovic, Verica; Rajic, Nevenka; Djonlagic, Jasna; Obradovic, Bojana; Nedovic, Viktor; Bugarski, Branko

    2008-03-03

    The subject of this study was the development of flavour alginate formulationsaimed for thermally processed foods. Ethyl vanilline was used as the model flavourcompound. Electrostatic extrusion was applied for the encapsulation of ethyl vanilline inalginate gel microbeads. The obtained microbeads with approx. 10 % w/w of ethylvanilline encapsulated in about 2 % w/w alginate were uniformly sized spheres of about450 μm. Chemical characterization by H-NMR spectroscopy revealed that the alginateused in this study had a high content (67 %) of guluronic residues and was rich in GG diadblocks (FGG = 55%) and thus presented a high-quality immobilisation matrix. The thermalbehaviour of alginate beads encapsulating ethyl vanilline was investigated bythermogravimetric (TG) and differential scanning calorimetry measurements (TG-DSC)under heating conditions which mimicked usual food processing to provide informationabout thermal decomposition of alginate matrix and kinetics of aroma release. Two wellresolved weight losses were observed. The first one was in the 50-150 °C temperaturerange with the maximum at approx. 112 °C, corresponding to the dehydration of thepolymer network. The second loss in the 220-325 °C temperature range, with a maximumat ~ 247 °C corresponded to the release of vanilline. The obtained results indicate that up to230 °C most of the vanilline remained intacta, while prolonged heating at elevatedtemperatures led to the entire loss of the aroma compound.

  19. Application of Electrostatic Extrusion – Flavour Encapsulation and Controlled Release

    Science.gov (United States)

    Manojlovic, Verica; Rajic, Nevenka; Djonlagic, Jasna; Obradovic, Bojana; Nedovic, Viktor; Bugarski, Branko

    2008-01-01

    The subject of this study was the development of flavour alginate formulations aimed for thermally processed foods. Ethyl vanilline was used as the model flavour compound. Electrostatic extrusion was applied for the encapsulation of ethyl vanilline in alginate gel microbeads. The obtained microbeads with approx. 10 % w/w of ethyl vanilline encapsulated in about 2 % w/w alginate were uniformly sized spheres of about 450 μm. Chemical characterization by H-NMR spectroscopy revealed that the alginate used in this study had a high content (67 %) of guluronic residues and was rich in GG diad blocks (FGG = 55%) and thus presented a high-quality immobilisation matrix. The thermal behaviour of alginate beads encapsulating ethyl vanilline was investigated by thermogravimetric (TG) and differential scanning calorimetry measurements (TG-DSC) under heating conditions which mimicked usual food processing to provide information about thermal decomposition of alginate matrix and kinetics of aroma release. Two well resolved weight losses were observed. The first one was in the 50-150 °C temperature range with the maximum at approx. 112 °C, corresponding to the dehydration of the polymer network. The second loss in the 220-325 °C temperature range, with a maximum at ∼ 247 °C corresponded to the release of vanilline. The obtained results indicate that up to 230 °C most of the vanilline remained intacta, while prolonged heating at elevated temperatures led to the entire loss of the aroma compound. PMID:27879775

  20. Effect of materials and temperature on the forward extrusion of magnesium alloys

    International Nuclear Information System (INIS)

    Chandrasekaran, Margam; John, Yong Ming Shyan

    2004-01-01

    Magnesium alloys are being extensively used in weight-saving applications and as a potential replacement for plastics in electronic and computer applications. However, processing of magnesium has always been a challenge for manufacturing industries owing to their high brittleness despite their good EMI shielding property and high specific strength. Despite these advantages, they are limited by their processability. The present work aims to evaluate lower temperature formability of magnesium alloys. Three different materials were selected for axisymmetric extrusion tests, namely AZ31, AZ61 and the forging alloy, ZK 60. To establish the size and capacity of the press required to perform these forming trials and to know the formability, simulation using finite element analysis was carried on a representative material AZ31 using the properties established based on earlier work. A die set with a die shoe was designed to perform the forward extrusion trials. The area reduction ratio for forward extrusion was fixed at 41% for the die design and simulation. The maximum strain is given as ln(A o /A f ) ∼ 0.88 in the case of forward extrusion. The temperature was varied with a temperature controller built in-house from room temperature (RT) to 300 deg.C. However, the results provided below only include the tests carried out at RT, 100, 150, 175 and 200 deg.C. Although the forming trials were successful above 200 deg.C, there was difficulty in removing the specimens from the die cavity. Secondly, the process of removing the samples in the case of AZ31 and ZK 60 resulted in cracking, so it was difficult to evaluate the samples and the process. However, AZ61 samples did not show any evidence of crack formation during ejection of the formed sample. Simulation results and experimental trials showed that magnesium (AZ31) could be easily formed at elevated temperatures of 300 deg.C. Though there was a good correlation on the yield point prediction between simulation and

  1. Study and automatic control of the ceramic tile extrusion operation; Estudio y control automatico de la operacion de extrusion de baldosas ceramicas

    Energy Technology Data Exchange (ETDEWEB)

    Aguilella, M.; Foucard, L.; Mallol, G.; Sanchez, M. J.; Lopez, M.; Benasges, R.

    2012-07-01

    The ever-larger tile sizes demanded by the market, the higher quality requirements, and the increasingly similar installation to that of pressed products make it necessary to narrow the tolerance limits of final extruded tile size in order to maintain the products competitiveness. The results of this study show that, though mixing water has a great influence on drying shrinkage, it hardly affects extruded tile firing shrinkage. This indicates that control of the water added in the extrusion process is indispensable in order avoid variations in drying shrinkage and, thus, to assure good dimensional stability of the end product. (Author)

  2. Pellets de trigo e soja produzidos por extrusão Wheat and soybean pellets produced by extrusion-cooking

    Directory of Open Access Journals (Sweden)

    Sin Huei Wang

    2008-09-01

    Full Text Available A mistura de trigo e soja representa uma importante fonte calórico-protéica com proteínas de boa qualidade. Apesar disso, a utilização da soja como ingrediente tem sido limitada pelo seu sabor de feijão cru (beany flavor, o qual é melhorado pelo processo de extrusão. Foram estudados os efeitos de umidade da mistura, Temperatura de Barril (TB e Velocidade de Rotação de Parafuso (VRP, Nº 5 do extrusor no Índice de Expansão (IE, no Índice de Solubilidade em Água (ISA e nas características sensoriais de pellets produzidos com mistura de trigo e soja (90:10, objetivando a otimização deste processo para a obtenção de pellets fritos com melhores qualidades sensoriais. A farinha mista crua foi extrusada em 2 umidades (32 e 35%, 4 TB (60 a 90 °C e 4 VRP (60 a 150 rpm, totalizando 32 tratamentos. O pellet frito, preparado com a farinha mista com 32% de umidade e extrusada em 60 rpm a 80 °C, apresentou o maior IE e as melhores qualidades sensoriais (aparência, sabor e textura, sendo preferido pela equipe de provadores não treinados, tanto com sabor de bacon como com sabor de queijo.The mixture of wheat with soybean represents an important calorie-protein source with good protein quality. In spite of this, the use of soybeans as an ingredient has been limited by their beany flavor, which is improved by the extrusion process. Effects of mixture moisture, Barrel Temperature (BT and Screw-Speed (SS, Nº 5 on Expansion Index (EI, Water Solubility Index (WSI and sensory characteristics of pellets produced with a wheat-soybean (90:10 mixture were studied, in order to optimize this process for obtaining fried pellets with better sensory qualities. Raw mixed flour was extruded at two moisture contents (32 and 35%, four BT (60 to 90 °C and four SS (60 to 150 rpm, totalizing 32 treatments. The fried pellets, prepared with the mixed flour with 32% moisture and extruded at 60 rpm and 80 °C, presented the greatest EI and the best sensory

  3. The Coupling of Back-arc Extension, Extrusion and Subduction Dynamics in the Eastern Mediterranean

    Science.gov (United States)

    Capitanio, Fabio A.

    2017-04-01

    Extension in the Aegean Sea and lateral Anatolian extrusion are contrasting and seemingly unrelated examples of continental tectonics In the Eastern Mediterranean. It is acknowledged that these must reconcile with the dynamics of Tethys closure and following continental collision along the convergent margin, however the underlying mechanisms have been difficult to pinpoint, thus far. Three-dimensional numerical modelling of the dynamics of subduction and coupling with the mantle and upper plates allows probing the evolution of similar areas, supporting inferences on the ultimate causes for the continental tectonics. I will present models that reproduce the force balance of subducting slabs' buoyancy, mantle flow and upper plate interiors, and emphasise the role of perturbations in the force balance that may have followed slab breakoff, collision and trench land-locking reconstructed during the oceanic closure in the Eastern Mediterranean. These perturbations lead to a range of different margin motions and strain regimes in the upper plate, from rollback and back-arc spreading, to indentation and extrusion along the collisional margin. Different spatial and temporal fingerprints are illustrated for these processes, and while the trench rollback and back-arc spreading are rather stable features, extrusion is transient. When these regimes overlap, rapid and complex rearrangements of the tectonics in the upper plate are the result. The remarkable similarity between the models' and the Eastern Mediterranean tectonic regimes and geophysical observable allows proposing viable driving mechanisms and support inferences on the Miocene-to-Pliocene evolution of this puzzling area.

  4. Extrusion enhances metabolizable energy and ileal amino acids digestibility of canola meal for broiler chickens

    Directory of Open Access Journals (Sweden)

    Aljuobori Ahmed

    2014-01-01

    Full Text Available The aim of the current study was to determine the effect of extrusion process on apparent metabolizable energy (AME, crude protein (CP and amino acid (AA digestibility of canola meal (CM in broiler chickens. A total of 36, 42-day-old broilers were randomly assigned into adaptation diets (no CM or 30% CM with six replicates. After 4 days of adaptation period, on day 47, birds were allowed to consume the assay diets that contain CM or extruded canola meal (ECM as the sole source of energy and protein. Following 4 h after feeding, the birds were killed and ileal contents were collected. The results showed that ECM had greater (P<0.001 AME (10.87 vs 9.39 MJ/kg compared to CM. The extrusion also significantly enhanced apparent ileal digestibility of CP and some of AA such as Asp, Glu, Ser, Thr and Trp. In conclusion, the extrusion treatment appeared to be a practical and effective approach in enhancing the digestibility of AME, CP and some AA of CM in broiler chickens.

  5. A Miniaturized Extruder to Prototype Amorphous Solid Dispersions: Selection of Plasticizers for Hot Melt Extrusion.

    Science.gov (United States)

    Lauer, Matthias E; Maurer, Reto; Paepe, Anne T De; Stillhart, Cordula; Jacob, Laurence; James, Rajesh; Kojima, Yuki; Rietmann, Rene; Kissling, Tom; van den Ende, Joost A; Schwarz, Sabine; Grassmann, Olaf; Page, Susanne

    2018-05-19

    Hot-melt extrusion is an option to fabricate amorphous solid dispersions and to enhance oral bioavailability of poorly soluble compounds. The selection of suitable polymer carriers and processing aids determines the dissolution, homogeneity and stability performance of this solid dosage form. A miniaturized extrusion device (MinEx) was developed and Hypromellose acetate succinate type L (HPMCAS-L) based extrudates containing the model drugs neurokinin-1 (NK1) and cholesterylester transfer protein (CETP) were manufactured, plasticizers were added and their impact on dissolution and solid-state properties were assessed. Similar mixtures were manufactured with a lab-scale extruder, for face to face comparison. The properties of MinEx extrudates widely translated to those manufactured with a lab-scale extruder. Plasticizers, Polyethyleneglycol 4000 (PEG4000) and Poloxamer 188, were homogenously distributed but decreased the storage stability of the extrudates. Stearic acid was found condensed in ultrathin nanoplatelets which did not impact the storage stability of the system. Depending on their distribution and physicochemical properties, plasticizers can modulate storage stability and dissolution performance of extrudates. MinEx is a valuable prototyping-screening method and enables rational selection of plasticizers in a time and material sparing manner. In eight out of eight cases the properties of the extrudates translated to products manufactured in lab-scale extrusion trials.

  6. Extrusion cooking technology: Principal mechanism and effect on direct expanded snacks – An overview

    Directory of Open Access Journals (Sweden)

    Ajita Tiwari

    2017-04-01

    Full Text Available The snack industry is one of the fastest growing food sectors and is an important contributor within the global convenience food market. Nowadays snacks and convenience foods are also consumed regularly in India. Properly designed convenience foods can make an important contribution to nutrition in societies where social changes are altering traditional patterns of food preparation. Extrusion cooking as a popular means of preparing snack foods based on cereals and plant protein foodstuff has elicited considerable interest and attention over the past 30 years. Several studies on the extrusion of cereals and pulses, using various proportions, have been conducted because blends of cereals and pulses produce protein enriched products. Special importance is placed on the physicochemical and chemical modifications of protein, starch and dietary fibre. Extruded products can be categorized for a particular application based on their functional properties such as water absorption and water solubility index, expansion ratio, bulk density and viscosity of the dough.Therefore, the literature was reviewed for effect of extrusion processing on product parameters, and nutritional and anti-nutritional properties of extruded products.

  7. Desenvolvimento de Eurytrema coelomaticum (Giard & Billet (Digenea, Dicrocoeliidae em Bradybaena similaris (Férussac (Gastropoda, Xanthonychidae Development of Eurytrema coelomaticum (Giard & Billet (Digenea, Dicrocoeliidae in Bradybaena similaris (Férussac (Gastropoda, Xanthonychidae

    Directory of Open Access Journals (Sweden)

    Solange Viana Paschoal Blanco Brandolini

    2001-06-01

    Full Text Available To follow the larval developmenl of Eurytrema coelomaticum (Giard & Billet, 1892 in Bradybaena similaris (Férussac, 1821 snails were separated in three classes using the shell diameter: Class A (14.5-10.2 mm, Class B (10.1-6.9 mm and Class C (6.8-2.6 mm. Only snails belonging to classes A and B acquired the infection. Specimens of E. coelomaticum removed from the pancreatic ducts were exposed to three physiological solutions: Earle, Locke and saline 0.85%, to obtain eggs for the experimental infections, The Locke solution induced the best egg release. The route of migration the intramolluscan development of E. coelomaticum was studied with the aid of histology. The minimal period of intramolluscan developmenl, ending at the expelling of daughter sporocysts, was 107 days for the snails infected in March, and 79 days for the snails infected in November. The Student "t" test and the Chi-square test showed a significant difference (α = 5% between the two periods, although the mean temperature registered during the experiments did not significantly differed (α = 5%. The elimination of daughter sporocysts occurred through the snail's pneumostome, and always at night. Most sporocysts were eliminated at intervals that varied between one to three days, without regularity. The time of elimination of the daughter sporocysts was different for the two infection period studied: 12 weeks for the snails infected in March, and three weeks for those infected in November. Positive correlation between the number of sporocysts expelled by the snail host and higher temperatures registered in the laboratory was observed. This correlation was more evident in November infection.

  8. Preparation of High Modulus Poly(Ethylene Terephthalate: Influence of Molecular Weight, Extrusion, and Drawing Parameters

    Directory of Open Access Journals (Sweden)

    Jian Min Zhang

    2017-01-01

    Full Text Available Poly(ethylene terephthalate (PET which is one of the most commercially important polymers, has for many years been an interesting candidate for the production of high performance fibres and tapes. In current study, we focus on investigating the effects of the various processing variables on the mechanical properties of PET produced by a distinctive process of melt spinning and uniaxial two-stage solid-state drawing (SSD. These processing variables include screw rotation speed during extrusion, fibre take-up speed, molecular weight, draw-ratio, and drawing temperature. As-spun PET production using a single-screw extrusion process was first optimized to induce an optimal polymer microstructure for subsequent drawing processes. It was found that less crystallization which occurred during this process would lead to better drawability, higher draw-ratio, and mechanical properties in the subsequent SSD process. Then the effect of drawing temperature (DT in uniaxial two-stage SSD process was studied to understand how DT (process in current work is simulated to an industrial production process for PET fibres; therefore, results and analysis in this paper have significant importance for industrial production.

  9. Effect of extrusion temperature and moisture content of corn flour on crystallinity and hardness of rice analogues

    Science.gov (United States)

    Budi, Faleh Setia; Hariyadi, Purwiyatno; Budijanto, Slamet; Syah, Dahrul

    2015-12-01

    Rice analogues are food products made of broken rice and/or any other carbohydrate sources to have similar texture and shape as rice. They are usually made by hot extrusion processing. The hot extrusion process may change the crystallinity of starch and influence the characteristic of rice analogues. Therefore, this research aimed to study the effect of moisture content of incoming dough and temperature of extrusion process on the crystallinity and hardness of resulting rice analogues. The dough's were prepared by mixing of corn starch-flour with ratio 10/90 (w/w) and moisture content of 35%, 40% and 45% (w/w) and extrusion process were done at temperature of 70, 80, 90°C by using of twin screw extruder BEX-DS-2256 Berto. The analyses were done to determine the type of crystal, degree of crystallinity, and hardness of the resulting rice analogues. Our result showed that the enhancement of extrusion temperature from 70 - 90°C increased degree of crystallinity from 5.86 - 15.00% to 10.70 - 18.87% and hardness from 1.71 - 4.36 kg to 2.05 - 5.70 kg. The raising of dough moisture content from 35 - 45% decreased degree of crystallinity from 15.00 - 18.87% to 5.86 - 10.70% and hardness from 4.36 - 5.70 kg to 1.71 - 2.05 kg. The increase of degree of crystallinity correlated positively with the increase of hardness of rice analogues (r = 0.746, p = 0.05).

  10. ECAE-processed Cu-Nb and Cu-Ag nanocomposite wires for pulse magnet applications

    International Nuclear Information System (INIS)

    Edgecumbe Summers, T.S.; Walsh, R.P.; Pernambuco-Wise, P.

    1997-01-01

    Cu-Nb and Cu-Ag nanocomposites have recently become of interest to pulse magnet designers because of their unusual combination of high strength with reasonable conductivity. In the as-cast condition, these conductors consist of two phases, one of almost pure Nb (or Ag) and the other almost pure Cu. When these castings are cold worked as in a wire-drawing operation for example, the two phases are drawn into very fine filaments which produce considerable strengthening without an unacceptable decrease in conductivity. Unfortunately, any increase in strength with operations such as wire drawing is accompanied by a reduction in the cross section of the billet, and thus far, no wires with strengths on the order of 1.5 GPa or more have been produced with cross sections large enough to be useful in magnet applications. Equal Channel Angular Extrusion (ECAE) is an innovative technique which allows for the refinement of the as-cast ingot structure without a reduction in the cross sectional dimensions. Samples processed by the ECAE technique prior to wire drawing should be stronger at a given wire diameter than those processed by wire drawing alone. The tensile properties of wire-drawn Cu-18%Nb and Cu-25%Ag both with and without prior ECAE processing were tested and compared at both room temperature and 77K. All samples were found to have resistivities consistent with their strengths, and the strengths of the ECAE-processed wires were significantly higher than their as-cast and drawn counterparts. Therefore, with ECAE processing prior to wire drawing, it appears to be possible to make high-strength conductors with adequately large cross sections for pulse magnets

  11. Novel fiber-rich lentil flours as snack-type functional foods: an extrusion cooking effect on bioactive compounds.

    Science.gov (United States)

    Morales, P; Berrios, J De J; Varela, A; Burbano, C; Cuadrado, C; Muzquiz, M; Pedrosa, M M

    2015-09-01

    Novel snack-type functional foods based on extruded lentil flours could convey the related health benefit of their bioactive compounds, provide a gluten-free alternative to consumers, and potentially increase the consumption of pulses. Extrusion treatment promoted an increase in galactopinitol, ciceritol, raffinose, stachyose and total α-galactoside content, in most lentil flours. As α-galactosides may act as prebiotics, they could convey beneficial effects to human and monogastric animals. Conversely, extrusion significantly (p < 0.05) reduced the inositol hexaphosphate content to less phosphorylated phytates (inositol pentaphosphate and inositol tetraphosphate), which provide health effects. The gluten-free formulation (control formulation #3) presented the highest significant (p < 0.05) drop in the inositol hexaphosphate of 14.7-fold decrease, but had a large increase in inositol pentaphosphate, due to extrusion processing. These two results are desirable in the finished product. Extrusion also caused a significant (p < 0.05) reduction in the trypsin content and completely inactivated lectin, in all processed samples.

  12. Large forging manufacturing process

    Science.gov (United States)

    Thamboo, Samuel V.; Yang, Ling

    2002-01-01

    A process for forging large components of Alloy 718 material so that the components do not exhibit abnormal grain growth includes the steps of: a) providing a billet with an average grain size between ASTM 0 and ASTM 3; b) heating the billet to a temperature of between 1750.degree. F. and 1800.degree. F.; c) upsetting the billet to obtain a component part with a minimum strain of 0.125 in at least selected areas of the part; d) reheating the component part to a temperature between 1750.degree. F. and 1800.degree. F.; e) upsetting the component part to a final configuration such that said selected areas receive no strains between 0.01 and 0.125; f) solution treating the component part at a temperature of between 1725.degree. F. and 1750.degree. F.; and g) aging the component part over predetermined times at different temperatures. A modified process achieves abnormal grain growth in selected areas of a component where desirable.

  13. Development of non-dendritic microstructures in AA6061 cast billets

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.-D.; Chadwick, T.A.; Bryant, J.D. [Reynolds Metals Co., Chester, VA (United States)

    2000-07-01

    Non-dendritic structures have been shown to have many advantages over conventional, dendritic structures in castable aluminum alloys. Examples include high structural integrity, reduced porosity, excellent formability and enhanced near net-shape forming capability. Non-dendritic materials are characterized by an equiaxed, globularized grain structure. Previous work has focused on the application of these structures in traditional casting alloys such as A356 and A357, and on the processing of these alloys during semi-solid forming and squeeze casting. There is considerably less information on the impact of non-dendritic microstructures upon solid state deformation, and the use of such microstructures in the processing of traditional wrought aluminum alloys. In this paper, we will present our recent work in casting non-dendritic AA6061 alloy using different techniques, and discuss the effects of cast structure on deformation behavior during solid state processing at elevated temperatures. Cast microstructures were modified during direct chill casting using three different methods: magneto-hydrodynamic (MHD) agitation, mechanical stirring, and high loadings of grain refiner. A detailed microstructure characterization will be presented and discussed in terms of structural integrity, grain morphology, and their effects on deformation in the solid state. (orig.)

  14. Exploring the potential of polacrilin potassium as a novel superdisintegrant in microcrystalline cellulose based pellets prepared by extrusion-spheronization

    Directory of Open Access Journals (Sweden)

    Amita K Joshi

    2011-01-01

    Full Text Available Polacrilin potassium (PP, an ion exchange resin, was used as a superdisintegrant to improve the dissolution of rifampicin, from microcrystalline cellulose (MCC based pellets prepared by extrusion-spheronization. Production of fast release pellets by extrusion-spheronization using MCC is a complicated process. In the present study, pellets were prepared containing 50% w/w rifampicin (BCS class II drug and 40% w/w MCC as extrusion-spheronization aid. Different levels of PP and lactose ratio investigated were 0:10, 2:8, 4:6, 6:4, 8:2, and 10:0. Pellets were evaluated for yield, size, size distribution, shape, porosity, friability, residual moisture, and dissolution efficiency (DE at 30 minutes. Incorporation of this novel superdisintegrant had no adverse effect on the mechanical and micromeritic characteristics of pellets. All the batches of pellets showed high yields′, ~90%; narrow particle size distribution; aspect ratio, 1.0-1.1; friability, <1%; and porosity, 45.51-49.84%. Dissolution profiles were compared using model-independent approaches; DE and similarity factor, f 2 . Addition of Polacrilin results in significant improvement in the DE of rifampicin. The dissolution profiles were significantly different from the dissolution profile of pellets formulated without PP. This preliminary study indicates that PP can serve as an effective superdisintegrant in MCC pellets prepared by extrusion-spheronization.

  15. Intra-continental subduction and contemporaneous lateral extrusion of the upper plate: insights into Alps-Adria interactions

    Science.gov (United States)

    van Gelder, Inge; Willingshofer, Ernst; Sokoutis, Dimitrios; Cloetingh, Sierd

    2017-04-01

    A series of physical analogue experiments were performed to simulate intra-continental subduction contemporaneous with lateral extrusion of the upper plate to study the interferences between these two processes at crustal levels and in the lithospheric mantle. The lithospheric-scale models are specifically designed to represent the collision of the Adriatic microplate with the Eastern Alps, simulated by an intra-continental weak zone to initiate subduction and a weak confined margin perpendicular to the direction of convergence in order to allow for extrusion of the lithosphere. The weak confined margin is the analog for the opening of the Pannonian back-arc basin adjacent to the Eastern Alps with the direction of extension perpendicular to the strike of the orogen. The models show that intra-continental subduction and coeval lateral extrusion of the upper plate are compatible processes. The obtained deformation structures within the extruding region are similar compared to the classical setup where lateral extrusion is provoked by lithosphere-scale indentation. In the models a strong coupling across the subduction boundary allows for the transfer of abundant stresses to the upper plate, leading to laterally varying strain regimes that are characterized by crustal thickening near a confined margin and dominated by lateral displacement of material near a weak lateral confinement. During ongoing convergence the strain regimes propagate laterally, thereby creating an area of overlap characterized by transpression. In models with oblique subduction, with respect to the convergence direction, less deformation of the upper plate is observed and as a consequence the amount of lateral extrusion decreases. Additionally, strain is partitioned along the oblique plate boundary leading to less subduction in expense of right lateral displacement close to the weak lateral confinement. Both oblique and orthogonal subduction models have a strong resemblance to lateral extrusion

  16. The interplay between subduction and lateral extrusion: A case study for the European Eastern Alps based on analogue models

    Science.gov (United States)

    van Gelder, I. E.; Willingshofer, E.; Sokoutis, D.; Cloetingh, S. A. P. L.

    2017-08-01

    A series of analogue experiments simulating intra-continental subduction contemporaneous with lateral extrusion of the upper plate are performed to study the interference between these two processes at crustal levels and in the lithospheric mantle. The models demonstrate that intra-continental subduction and coeval lateral extrusion of the upper plate are compatible processes leading to similar deformation structures within the extruding region as compared to the classical setup, lithosphere-scale indentation. Strong coupling across the subduction boundary allows for the transfer of stresses to the upper plate, where strain regimes are characterized by crustal thickening near a confined margin and dominated by lateral displacement of material near a weak lateral confinement. The strain regimes propagate laterally during ongoing convergence creating an area of overlap characterized by transpression. When subduction is oblique to the convergence direction, the upper plate is less deformed and as a consequence the amount of lateral extrusion decreases. In addition, strain is partitioned along the oblique plate boundary resulting in less subduction in expense of right lateral displacement close to the weak lateral confinement. Both oblique and orthogonal subduction models have a strong resemblance to lateral extrusion tectonics of the Eastern Alps (Europe), where subduction of the adjacent Adriatic plate beneath the Eastern Alps is debated. Our results imply that subduction of Adria is a valid mechanisms to induce extrusion-type deformation within the Eastern Alps lithosphere. Furthermore, our findings suggest that the Oligocene to Late Miocene structural evolution of the Eastern Alps reflects a phase of oblique subduction followed by a later stage of orthogonal subduction conform a Miocene shift in the plate motion of Adria. Oblique subduction also provides a viable mechanism to explain the rapid decrease in slab length of the Adriatic plate beneath the Eastern Alps

  17. The impact of extrusion on the nutritional composition, dietary fiber and in vitro digestibility of gluten-free snacks based on rice, pea and carob flour blends.

    Science.gov (United States)

    Arribas, C; Cabellos, B; Sánchez, C; Cuadrado, C; Guillamón, E; Pedrosa, M M

    2017-10-18

    Consumers and the food industry are demanding healthier products. Expanded snacks with a high nutritional value were developed from different rice, pea and carob flour blends. The proximate composition, starch (total and resistant), amylose and amylopectin, dietary fiber (soluble and insoluble) contents, and the in vitro protein digestibility of different rice-legume formulations, were evaluated before and after the extrusion process. Compared with the corresponding non-extruded blends (control), the extrusion treatment did not change the total protein content, however, it reduced the soluble protein (61-86%), the fat (69-92%) and the resistant starch contents (100%). The total starch content of all studied blends increased (2-19%) after extrusion. The processing increased the in vitro protein digestibility, reaching values around 88-95% after extrusion. Total dietary fiber was reduced around 30%, and the insoluble fraction was affected to a larger extent than the soluble fraction by the extrusion process. Because of its balanced nutritional composition, high dietary fiber content, as well as low energy density, these novel gluten-free snack-like foods could be considered as functional foods and a healthier alternative to commercially available gluten-containing or gluten-free and low nutritional value snacks.

  18. Estimation of shell thickness in a continuously cast steel billet using radiotracers

    International Nuclear Information System (INIS)

    Prasad, A.S.; Pandey, J.C.; Kaur, G.

    1994-01-01

    In the continuous casting of steel, one of the factors which limits the rate of faster withdrawal of the casting from the mould is the thickness of the solid shell below the mould. If the shell can not contain the liquid pool, breakouts occur and process of casting disrupts. Estimates of shell thickness have been made on the basis of heat- transfer considerations. The shell thickness could also be delineated, to some extent, by adding radiotracers during casting and subsequently determining the dispersion of radioactivity by autoradiography. The paper presents the results of the estimation of shell thickness based on the heat-transfer model and validation of the model by plant trials using radiotracers. (author). 11 refs., 5 figs., 1 tab

  19. Study on lead extrusion damper as a seismic support

    International Nuclear Information System (INIS)

    Nomura, T.; Kojima, N.; Fujita, K.; Ito, T.

    1989-01-01

    The fundamental characteristics of two types of lead extrusion dampers (cylinder type, rotary type) for use as the nuclear power plant piping support of the elasto-plastic of damper are clarified. As a result, these lead extrusion dampers are found to have the following dynamic characteristics: hysteresis loop is both rectangular shape and bi-linear shape; maximum reaction force is independent of velocity and frequency but it increases as displacement exceeds the specified value; and the dissipated energy is very large and is independent of velocity, frequency and initial displacement (i.e., thermal expansion of pipings) in the range of test

  20. 75 FR 51243 - Aluminum Extrusions from the People's Republic of China: Postponement of Preliminary...

    Science.gov (United States)

    2010-08-19

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-967] Aluminum Extrusions from the... Department of Commerce (``the Department'') initiated an antidumping duty investigation on Aluminum... Aluminum Extrusions from the People's Republic of China: Initiation of Antidumping Duty Investigation, 75...

  1. 76 FR 30650 - Aluminum Extrusions from the People's Republic of China: Antidumping Duty Order

    Science.gov (United States)

    2011-05-26

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-967] Aluminum Extrusions from the...''), the Department is issuing an antidumping duty order on aluminum extrusions from the People's Republic... of material injury by reason of imports of certain aluminum extrusions from the PRC, and its negative...

  2. 75 FR 73041 - Aluminum Extrusions From the People's Republic of China: Postponement of Final Determination of...

    Science.gov (United States)

    2010-11-29

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-967] Aluminum Extrusions From the... investigation of aluminum extrusions from the People's Republic of China (``PRC'') on April 27, 2010.\\1\\ On..., 2011. \\1\\ See Aluminum Extrusions from the People's Republic of China: Initiation of Antidumping Duty...

  3. 75 FR 34982 - Aluminum Extrusions from the People's Republic of China: Notice of Postponement of Preliminary...

    Science.gov (United States)

    2010-06-21

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-968] Aluminum Extrusions from the... in the Federal Register a notice of initiation of the countervailing duty investigation of aluminum extrusions from the People's Republic of China. See Aluminum Extrusions From the People's Republic of China...

  4. Extrusion of polysaccharide nanocrystal reinforced polymer nanocomposites through compatibilization with poly(ethylene oxide).

    Science.gov (United States)

    Pereda, Mariana; El Kissi, Nadia; Dufresne, Alain

    2014-06-25

    Polysaccharide nanocrystals with a rodlike shape but with different dimensions and specific surface area were prepared from cotton and capim dourado cellulose, and with a plateletlike morphology from waxy maize starch granules. The rheological behavior of aqueous solutions of poly(ethylene oxide) (PEO) with different molecular weights when adding these nanoparticles was investigated evidencing specific interactions between PEO chains and nanocrystals. Because PEO also bears hydrophobic moieties, it was employed as a compatibilizing agent for the melt processing of polymer nanocomposites. The freeze-dried mixtures were used to prepare nanocomposite materials with a low density polyethylene matrix by extrusion. The thermal and mechanical behavior of ensuing nanocomposites was studied.

  5. The theoretical and experimental researches of Pb-Al composite materials extrusion

    Directory of Open Access Journals (Sweden)

    G. Ryzińska

    2012-07-01

    Full Text Available The work presents the analysis of the character of a simultaneous plastic flow of composite material of a hard core-soft sleeve structure. Experimental research work using model composite material Aluminium-Lead and theoretical analysis allowed to identify the initial cracking conditions, its character and localization, depending on geometrical parameters of the composite materials and the extrusion ratio value. It has been shown that the higher the parameters’ values are, the longer the flawless extruded product is (cracking appears in the further stages of the process.

  6. Track with overlapping links for dry coal extrusion pumps

    Science.gov (United States)

    Saunders, Timothy; Brady, John D

    2014-01-21

    A chain for a particulate material extrusion pump includes a plurality of links, each of the plurality of links having a link body and a link ledge, wherein each link ledge of the plurality of links at least partially overlaps the link body of an adjacent one of the plurality of links.

  7. 75 FR 17436 - Certain Aluminum Extrusions From China

    Science.gov (United States)

    2010-04-06

    ... States at less than fair value and alleged to be subsidized by the Government of China. Unless the... response to a petition filed on March 31, 2010, by the Aluminum Extrusions Fair Trade Committee... presentation at the conference. A nonparty who has testimony that may aid the Commission's deliberations may...

  8. Main and interaction effects of extrusion temperature and usage ...

    African Journals Online (AJOL)

    The extruded full fat soybean (EFFSB) may be used in diet to satisfy the energy and protein requirements of fast growing broiler chickens. The main and interaction effects of three extrusion temperatures and two dietary levels of FFSB were studied on the performance, physiological enzymes and blood metabolites of broiler ...

  9. Load beam unit replaceable inserts for dry coal extrusion pumps

    Science.gov (United States)

    Saunders, Timothy; Brady, John D.

    2012-11-13

    A track assembly for a particulate material extrusion pump according to an exemplary aspect of the present disclosure includes a link assembly with a roller bearing. An insert mounted to a load beam located such that the roller bearing contacts the insert.

  10. Main and interaction effects of extrusion temperature and usage ...

    African Journals Online (AJOL)

    ali

    2012-10-30

    Oct 30, 2012 ... The main and interaction effects of three extrusion ... oil extraction and allow the use of a homegrown protein supplement in the .... Statistical analysis. The main and .... acceptable level of antitrypsin factor is 4 mg/g; this level.

  11. Growth of extrusions in localized cyclic plastic straining

    Czech Academy of Sciences Publication Activity Database

    Polák, Jaroslav; Sauzay, M.

    2009-01-01

    Roč. 500, č. 1-2 (2009), s. 122-129 ISSN 0921-5093 R&D Projects: GA ČR GA101/07/1500 Institutional research plan: CEZ:AV0Z20410507 Keywords : extrusion * strain localization * persistent slip band * vacancy Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.901, year: 2009

  12. Effects of fermentation and extrusion on the proximate composition ...

    African Journals Online (AJOL)

    The effect of extrusion and fermentation on the proximate composition and organoleptic properties of six combinations (100:0, 90:10, 80:20, 70:30, 60:40 and 50:50) of sorghum - soya blend were investigated. A total number of 19 microorganisms were isolated during the fermentation of sorghum-soya extrudates; these ...

  13. Rheology and extrusion of low-grade paper and sludge

    Science.gov (United States)

    C. Tim Scott; Stefan Zauscher; Daniel J. Klingenberg

    1999-01-01

    This paper discusses efforts to characterize the rheological properties of pulps that include low-grade wastepapers and papermill sludges to determine their potential for extrusion and conversion into useful products. We investigated apparent changes in viscosity associated with the addition of typical inorganic paper fillers (calcium carbonate, kaolin clay, and...

  14. Effects of dope extrusion rate on the morphology and gas separation performance of asymmetric polysulfone hollow fiber membranes for O2/N2 separation

    Directory of Open Access Journals (Sweden)

    Ahmad Fausi Ismail

    2002-11-01

    Full Text Available The objective of this study was to investigate the influence of dope extrusion rates on morphology and gas separation performance of asymmetric polysulfone hollow fiber membranes. Asymmetric polysulfone hollow fiber membranes for gas separation were prepared from a solution consisting of 26.0 wt. % of polysulfone, 30.4 wt. % of N, N-dimethylacetamide, 30.4 wt. % of tetrahydrofuran and 13.2 wt. % ethanol. The dry/wet phase separation process was applied to a dry/wet spinning process. Fibers were spun at various dope extrusion rates (DER ranging from 1.5 - 3.0 cm3/min and hence at different levels of shear. The results suggest that as the dope extrusion rate is increased, the selectivity will increase until a critical level of shear is reached, beyond which the membrane performance deteriorates. Pressure-normalized-fluxes and selectivities were evaluated by using pure oxygen and nitrogen as test gases.

  15. Fabrication of an eyeball-like spherical micro-lens array using extrusion for optical fiber coupling

    International Nuclear Information System (INIS)

    Shen, S C; Huang, J C; Pan, C T; Chao, C H; Liu, K H

    2009-01-01

    Batch fabrication of an eyeball-like spherical micro-lens array (ESMA) not only can reduce micro assembly cost, but also can replace conventional ball lenses or costly gradient refractive index without sacrificing performance. Compared to the conventional half-spherical micro-lenses, the ESMA is an eyeball-like spherical lens which can focus light in all directions, thus providing application flexibility for optical purposes. The current ESMA is made of photoresist SU-8 using the extrusion process instead of the traditional thermal reflow process. For the process of an ESMA, this research develops a new process at ambient temperature by spin-coating SU-8 on a surface of a silicon wafer which serves as an extrusion plate and extruding it through a nozzle to form an ESMA. This nozzle consists of a nozzle orifice and nozzle cavity. The nozzle orifice is defined and made of SU-8 photoresist using ultra-violet lithography, which exhibits good mechanical property. The fabrication process of a nozzle cavity employs bulk micromachining to fabricate the cavities. Next, viscous SU-8 spun on the extrusion plate is extruded through the nozzle orifice to form an ESMA. Based on the effect of surface tension, by varying the amount of SU-8 on the plate extruded through different nozzle orifices, various diameters of ESMA can be fabricated. In this paper, a 4 × 4 ESMA with a numerical aperture of about 0.38 and diameters ranging from 60 to 550 µm is fabricated. Optical measurements indicate a diameter variance within 3% and the maximum coupling efficiency is approximately 62% when the single mode fiber is placed at a distance of 10 µm from the ESMA. The research has proved that the extrusion fabrication process of an ESMA is capable of enhancing the coupling efficiency

  16. Application of extrusion-cooking technique for foamed starch-based materials

    Directory of Open Access Journals (Sweden)

    Combrzyński Maciej

    2018-01-01

    Full Text Available Foamed materials are widely used, mainly as a protection objects during transport of various products. Traditionally foams are produced from plastics so they are very difficult for waste management. It is the challenge for many scientific centres to develop a technology for the production of bio-based materials which can be rapidly decomposed. The task for the researcher is to obtain a relatively cheap, easy to use and completely biodegradable materials. The aim of this work was the selection of the main raw materials, functional additives and process parameters to obtain the most effective parameters of extrusion-cooking process for foamed starch-based materials. Properties of the products and processing costs were taken into account. During the study, the extrusion-cooking process was performed under various conditions: temperature, humidity, type of the die, screw rotational speed, various raw materials and additives blends. The best results were obtained for mixtures based on potato starch and with addition the foaming agent Plastron foam PDE and poly(vinyl alcohol PVA.

  17. Cell Extrusion: A Stress-Responsive Force for Good or Evil in Epithelial Homeostasis.

    Science.gov (United States)

    Ohsawa, Shizue; Vaughen, John; Igaki, Tatsushi

    2018-02-05

    Epithelial tissues robustly respond to internal and external stressors via dynamic cellular rearrangements. Cell extrusion acts as a key regulator of epithelial homeostasis by removing apoptotic cells, orchestrating morphogenesis, and mediating competitive cellular battles during tumorigenesis. Here, we delineate the diverse functions of cell extrusion during development and disease. We emphasize the expanding role for apoptotic cell extrusion in exerting morphogenetic forces, as well as the strong intersection of cell extrusion with cell competition, a homeostatic mechanism that eliminates aberrant or unfit cells. While cell competition and extrusion can exert potent, tumor-suppressive effects, dysregulation of either critical homeostatic program can fuel cancer progression. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Co-Extrusion: Advanced Manufacturing for Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, Corie Lynn [PARC, Palo Alto, CA (United States)

    2016-11-18

    The development of mass markets for large-format batteries, including electric vehicles (EVs) and grid support, depends on both cost reductions and performance enhancements to improve their economic viability. Palo Alto Research Center (PARC) has developed a multi-material, advanced manufacturing process called co-extrusion (CoEx) to remove multiple steps in a conventional battery coating process with the potential to simultaneously increase battery energy and power density. CoEx can revolutionize battery manufacturing across most chemistries, significantly lowering end-product cost and shifting the underlying economics to make EVs and other battery applications a reality. PARC’s scale-up of CoEx for electric vehicle (EV) batteries builds on a solid base of experience in applying CoEx to solar cell manufacturing, deposition of viscous ceramic pastes, and Li-ion battery chemistries. In the solar application, CoEx has been deployed commercially at production scale where multi-channel CoEx printheads are used to print viscous silver gridline pastes at full production speeds (>40 ft/min). This operational scale-up provided invaluable experience with the nuances of speed, yield, and maintenance inherent in taking a new technology to the factory floor. PARC has leveraged this experience, adapting the CoEx process for Lithium-ion (Li-ion) battery manufacturing. To date, PARC has worked with Li-ion battery materials and structured cathodes with high-density Li-ion regions and low-density conduction regions, documenting both energy and power performance. Modeling results for a CoEx cathode show a path towards a 10-20% improvement in capacity for an EV pouch cell. Experimentally, we have realized a co-extruded battery structure with a Lithium Nickel Manganese Cobalt (NMC) cathode at print speeds equivalent to conventional roll coating processes. The heterogeneous CoEx cathode enables improved capacity in thick electrodes at higher C-rates. The proof-of-principle coin cells

  19. Microstructure quantification of ultrafine grained pure copper fabricated by simple shear extrusion (SSE) technique

    International Nuclear Information System (INIS)

    Bagherpour, E.; Qods, F.; Ebrahimi, R.; Miyamoto, H.

    2016-01-01

    In the present paper commercially pure copper was processed by simple shear extrusion (SSE) technique up to 12 passes using the so-called route C. For SSE processing an appropriate die with a linear die profile was designed and constructed. Effect of SSE passes on isotropy and uniformity of microstructures are focused. Electron back-scattering diffraction (EBSD) was used to evaluate the microstructure of the deformed samples in three orthogonal planes. To investigate the microstructural uniformity EBSD maps were taken from center to periphery of the extrusion direction plane (ED-plane) samples. Significant evolution in grain refinement was achieved down to sub-micron grain size in all planes. Hardness measurements show a considerable increase in hardness of the material after the processing, which confirms the microstructural evolutions. EBSD scans revealed a homogeneous ultrafine grained microstructure after 12 passes. Micro-shear bands were found as potential sites for accelerating the formation of new grains by fragmentation of the initial grains. The total frequency of coincidence site lattice (CSL) boundaries including Σ3 boundaries increased by the increasing of SSE passes. The higher fraction of low to high angle grain boundaries of SSE compared to equal channel angular pressing is an evidence for the cyclic behavior of SSE technique.

  20. Moisture sorption characteristics of extrusion-cooked starch protective loose-fill cushioning foams

    Science.gov (United States)

    Combrzyński, Maciej; Mościcki, Leszek; Kwaśniewska, Anita; Oniszczuk, Tomasz; Wójtowicz, Agnieszka; Sołowiej, Bartosz; Gładyszewska, Bożena; Muszyński, Siemowit

    2017-10-01

    The aim of this work was to determine the water vapour sorption properties of thermoplastic starch filling foams processed by extrusion-cooking technique from various combinations of potato starch and two foaming agents: poly(vinyl) alcohol and Plastronfoam, in amount of 1, 2 and 3% each. Foams were processed with the single screw extruder-cooker at two different screw rotational speeds 100 and 130 r.p.m. The sorption isotherms of samples were determined and described using the Guggenheim-Anderson-de Boer model. Also, the kinetics of water vapour adsorption by foams, as a function of time, was measured and fitted with Peleg model. On the basis of the analysis the influence of the applied foaming agents, as well as the technological parameters of extrusion-cooking process in relation to water vapour adsorption by thermoplastic starch foams was demonstrated. There was no difference between the shapes of the isotherms for poly(vinyl) alcohol foams while for Plastronfoam foams a notable difference among foams extruded at 100 r.p.m. was observed in the regions of low and high humidity content. The analysis of the Guggenheim-Anderson-de Boer model parameters showed that the water molecules were less strongly bound with the foam surface when extruded at a lower screw speed.

  1. Microstructure quantification of ultrafine grained pure copper fabricated by simple shear extrusion (SSE) technique

    Energy Technology Data Exchange (ETDEWEB)

    Bagherpour, E., E-mail: e.bagherpour@semnan.ac.ir [Faculty of Metallurgical and Materials Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Department of Mechanical Engineering, Doshisha University, Kyotanabe, Kyoto 610-0394 (Japan); Qods, F., E-mail: qods@semnan.ac.ir [Faculty of Metallurgical and Materials Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Ebrahimi, R., E-mail: ebrahimy@shirazu.ac.ir [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Miyamoto, H., E-mail: hmiyamot@mail.doshisha.ac.jp [Department of Mechanical Engineering, Doshisha University, Kyotanabe, Kyoto 610-0394 (Japan)

    2016-09-30

    In the present paper commercially pure copper was processed by simple shear extrusion (SSE) technique up to 12 passes using the so-called route C. For SSE processing an appropriate die with a linear die profile was designed and constructed. Effect of SSE passes on isotropy and uniformity of microstructures are focused. Electron back-scattering diffraction (EBSD) was used to evaluate the microstructure of the deformed samples in three orthogonal planes. To investigate the microstructural uniformity EBSD maps were taken from center to periphery of the extrusion direction plane (ED-plane) samples. Significant evolution in grain refinement was achieved down to sub-micron grain size in all planes. Hardness measurements show a considerable increase in hardness of the material after the processing, which confirms the microstructural evolutions. EBSD scans revealed a homogeneous ultrafine grained microstructure after 12 passes. Micro-shear bands were found as potential sites for accelerating the formation of new grains by fragmentation of the initial grains. The total frequency of coincidence site lattice (CSL) boundaries including Σ3 boundaries increased by the increasing of SSE passes. The higher fraction of low to high angle grain boundaries of SSE compared to equal channel angular pressing is an evidence for the cyclic behavior of SSE technique.

  2. Apical extrusion of debris: a literature review of an inherent occurrence during root canal treatment.

    Science.gov (United States)

    Tanalp, J; Güngör, T

    2014-03-01

    Extrusion of intracanal debris as well as irrigants is a common occurrence during root canal treatment, and no instrument or technique has thoroughly solved this problem. Because flare-ups may arise with any irritation directed towards periapical tissues, a shaping or irrigation technique should minimize the risk of apical extrusion, even though it may not be prevented. There has been a rapid evolution of root canal instruments and irrigation systems through the last decade, and many have been assessed for their debris extrusion potential. The purpose of this review was to identify publications regarding the evaluation of debris, bacteria and irrigant extrusion during root canal treatment. A PubMed, Ovid and MEDLINE search was conducted using the keywords "apical extrusion", "debris extrusion" and "endodontic treatment". The literature search extended over a period of more than 30 years up to 2012. Content of the review was limited to apical extrusion of debris and irrigants, extrusion of liquid by irrigation methods and bacterial extrusion. Issues relevant to apical extrusion were obtained by further search in the reference sections of the retrieved articles. The review provides an update on the current status of apical extrusion. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  3. DÉVELOPPEMENT D'UN OUTIL POLYMÈRE D'EXTRUSION UTILISÉ DANS UNE IMPRIMANTE 3D FDM

    OpenAIRE

    Leon-Medina , Jersson Xavier; Torres-Barahona , Edgar ,; Torres-Diaz , Edwin

    2013-01-01

    International audience; Rapid prototyping technology FDM manufactures a piece designed on the computer in real scale, through the use of technologies such as the extrusion of plastic layers and the positioning of a tool in three dimensions. The proposed methodology explains the process of design and construction of a polymer extruder tool, taking into account the variables necessary for the optimal response of a 3D printer in terms of printing time, surface finish and mechanical strength of t...

  4. Extrusion Conditions and Amylose Content Affect Physicochemical Properties of Extrudates Obtained from Brown Rice Grains

    Directory of Open Access Journals (Sweden)

    Rolando José González

    2013-01-01

    Full Text Available The utilization of whole grains in food formulations is nowadays recommended. Extrusion cooking allows obtaining precooked cereal products and a wide range of ready-to-eat foods. Two rice varieties having different amylose content (Fortuna 16% and Paso 144, 27% were extruded using a Brabender single screw extruder. Factorial experimental design was used to study the effects of extrusion temperature (160, 175, and 190°C and grits moisture content (14%, 16.5%, and 19% on extrudate properties. Specific mechanical energy consumption (SMEC, radial expansion (E, specific volume (SV, water absorption (WA, and solubility (S were determined on each extrudate sample. In general, Fortuna variety showed higher values of SMEC and S (703–409 versus 637–407 J/g; 33.0–21.0 versus 20.1–11.0%, resp. than those of Paso 144; on the contrary SV (8.64–3.47 versus 8.27–4.53 mL/g and WA tended to be lower (7.7–5.1 versus 8.4–6.6 mL/g. Both varieties showed similar values of expansion rate (3.60–2.18. Physical characteristics depended on extrusion conditions and rice variety used. The degree of cooking reached by Paso rice samples was lower than that obtained for Fortuna. It is suggested that the presence of germ and bran interfered with the cooking process, decreasing friction level and broadening residence time distribution.

  5. Numerical Modeling of Induction Heating Process using Inductors with Circular Shape Turns

    Directory of Open Access Journals (Sweden)

    Mihaela Novac

    2008-05-01

    Full Text Available This paper is focused on the problemof numerical modeling of electromagneticfield coupled with the thermal one in theheating process of the steel billets, usinginductors with circular shape turns. As resultswe have: electromagnetic field lines evolutionand map temperatures in piece at the endingof heating process.

  6. Distribution of E-cadherin and ß-catenin in relation to cell maturation and cell extrusion in rat and mouse small intestines

    DEFF Research Database (Denmark)

    Larsson, Lars-Inge

    2006-01-01

    of programmed cell death (PCD) in mouse small intestinal epithelium. We have studied if this also occurs in the intact rodent small intestine. Our results confirm that extruded cells are negatie for E-cadherin. However, loss of the E-cadherin-interacting protein ß-cetenin preceded both extrusion and loss of E......-cadherin. Thus, all extruded cells as well as all cells in the process of extrusion lacked staining for ß-catenin. Moreover, almost 80% of all cells undergoing programmed cell death, as detected by the TUNEL reaction, lacked ß-catenin whereas over 70% of such cells were positive for E-cadherin. However, most...... ells lacking ß-catenin did not display signs of PCD as detected by the TUNEL method or by staining for active caspase-3. Therefore, these results suggest that loss of ß-catenin precedes the onset of programmed cell death, loss of E-cadherin and extrusion from the villi....

  7. Incorporation of ladle furnace slag in ceramic formulations: study of extrusion zones; Incorporacao da escoria do forno panela em formulacao ceramica: estudo das zonas de extrusao

    Energy Technology Data Exchange (ETDEWEB)

    Feitosa, E.F.; Santana, C.M.; Luna, D.S.; Santos, D.M.S.; Silva, G.S.; Noleto, L.T.; Almeida, N.C.; Rabelo, A.A.; Fagury Neto, E., E-mail: edna.fernandes48@gmail.com, E-mail: fagury@unifesspa.edu.br [Universidade Federal do Sul e Sudeste do Para (UNIFESSPA), Maraba, PA (Brazil). Instituto de Geociencias e Engenharias

    2016-07-01

    This study aimed to investigate the effect of incorporation of ladle furnace slag (LFS) in two clays with higher and lower plasticity, used for the manufacture of structural ceramics. The LFS from a local steel making plant was added to ceramic compositions in proportions of 8 %, 14 % and 16 %. The formulations were tested in appropriate equipment that measures the liquid limit and plastic limit. The property examined was the plasticity index, in order to make a study of the extrusion zones. Results showed that the addition of slag into clay mixtures alters the plasticity; however, the extrusion process was not hampered. (author)

  8. Microstructure history effect during sequential thermomechanical processing

    International Nuclear Information System (INIS)

    Yassar, Reza S.; Murphy, John; Burton, Christina; Horstemeyer, Mark F.; El kadiri, Haitham; Shokuhfar, Tolou

    2008-01-01

    The key to modeling the material processing behavior is the linking of the microstructure evolution to its processing history. This paper quantifies various microstructural features of an aluminum automotive alloy that undergoes sequential thermomechanical processing which is comprised hot rolling of a 150-mm billet to a 75-mm billet, rolling to 3 mm, annealing, and then cold rolling to a 0.8-mm thickness sheet. The microstructural content was characterized by means of electron backscatter diffraction, scanning electron microscopy, and transmission electron microscopy. The results clearly demonstrate the evolution of precipitate morphologies, dislocation structures, and grain orientation distributions. These data can be used to improve material models that claim to capture the history effects of the processing materials

  9. Hot-Melt Extrusion: from Theory to Application in Pharmaceutical Formulation.

    Science.gov (United States)

    Patil, Hemlata; Tiwari, Roshan V; Repka, Michael A

    2016-02-01

    Hot-melt extrusion (HME) is a promising technology for the production of new chemical entities in the developmental pipeline and for improving products already on the market. In drug discovery and development, industry estimates that more than 50% of active pharmaceutical ingredients currently used belong to the biopharmaceutical classification system II (BCS class II), which are characterized as poorly water-soluble compounds and result in formulations with low bioavailability. Therefore, there is a critical need for the pharmaceutical industry to develop formulations that will enhance the solubility and ultimately the bioavailability of these compounds. HME technology also offers an opportunity to earn intellectual property, which is evident from an increasing number of patents and publications that have included it as a novel pharmaceutical formulation technology over the past decades. This review had a threefold objective. First, it sought to provide an overview of HME principles and present detailed engineered extrusion equipment designs. Second, it included a number of published reports on the application of HME techniques that covered the fields of solid dispersions, microencapsulation, taste masking, targeted drug delivery systems, sustained release, films, nanotechnology, floating drug delivery systems, implants, and continuous manufacturing using the wet granulation process. Lastly, this review discussed the importance of using the quality by design approach in drug development, evaluated the process analytical technology used in pharmaceutical HME monitoring and control, discussed techniques used in HME, and emphasized the potential for monitoring and controlling hot-melt technology.

  10. Inline UV/Vis spectroscopy as PAT tool for hot-melt extrusion.

    Science.gov (United States)

    Wesholowski, Jens; Prill, Sebastian; Berghaus, Andreas; Thommes, Markus

    2018-01-11

    Hot-melt extrusion on co-rotating twin screw extruders is a focused technology for the production of pharmaceuticals in the context of Quality by Design. Since it is a continuous process, the potential for minimizing product quality fluctuation is enhanced. A typical application of hot-melt extrusion is the production of solid dispersions, where an active pharmaceutical ingredient (API) is distributed within a polymer matrix carrier. For this dosage form, the product quality is related amongst others to the drug content. This can be monitored on- or inline as critical quality attribute by a process analytical technology (PAT) in order to meet the specific requirements of Quality by Design. In this study, an inline UV/Vis spectrometer from ColVisTec was implemented in an early development twin screw extruder and the performance tested in accordance to the ICH Q2 guideline. Therefore, two API (carbamazepine and theophylline) and one polymer matrix (copovidone) were considered with the main focus on the quantification of the drug load. The obtained results revealed the suitability of the implemented PAT tool to quantify the drug load in a typical range for pharmaceutical applications. The effort for data evaluation was minimal due to univariate data analysis, and in combination with a measurement frequency of 1 Hz, the system is sufficient for real-time data acquisition.

  11. Development of Nutritious Snack from rice industry waste using twin screw extrusion

    Directory of Open Access Journals (Sweden)

    Sharma Renu

    2016-01-01

    Full Text Available Deoiled rice bran, a byproduct of rice milling industry was transformed into highly nutritious snack by the application of twin screw extrusion process. Response Surface Methodology (RSM with four- factor- five level central composite rotatable design (CCRD was employed to investigate the effects of extrusion conditions including moisture content of different raw flours, feed composition, barrel temperature and screw speed of extruder on properties of extrudates was studied. Second order quadratic regression model fitted adequately in the variation. The significance was established at P ≤ 0.05. The regression models can be used to interpret the effect of feed composition, moisture content, screw speed and barrel temperature on the properties of the final product. It was shown that higher rice bran in feed composition showed in minimum water absorption index and maximum water solubility index. Numerical optimization technique resulted in 123.83°C of barrel temperature, 294.68 rpm of screw speed, 13.94 % of feed moisture and 17.73 % of deoiled rice bran. The responses predicted for these optimum process conditions resulted water absorption index, 5.91468 g/g and water solubility index of 18.5553 % for the development of value added product with health benefits.

  12. In Situ Wire Drawing of Phosphate Glass in Polymer Matrices for Material Extrusion 3D Printing

    Directory of Open Access Journals (Sweden)

    J. Gilberto Siqueiros

    2017-01-01

    Full Text Available A strategy to increase the amount of materials available for additive manufacturing platforms such as material extrusion 3D printing (ME3DP is the creation of printable thermoplastic composites. Potential limiters to the incorporation of filler materials into a thermoplastic resin include agglomeration of the filler materials, which can compromise the mechanical properties of the material system and a static morphology of the filler material. A potential solution to these issues is the use of filler materials with low glass transition temperatures allowing for a change in morphology during the extrusion process. Here, we successfully demonstrate the drawing of phosphate glass particles into a wire-like morphology within two polymeric systems: (1 a rubberized acrylonitrile butadiene styrene (ABS blend and (2 polylactic acid (PLA. After applying a normalization process to account for the effect of air gap within the 3D printed test specimens, an enhancement in the mechanical properties was demonstrated where an increase in strength was as high as 21% over baseline specimens. Scanning electron microanalysis was used to characterize the fracture surface and wire drawing efficacy. Factors affecting the ability to achieve wire drawing such as polymer viscosity and print temperature are also highlighted.

  13. Hot-melt extrusion for enhanced delivery of drug particles.

    Science.gov (United States)

    Miller, Dave A; McConville, Jason T; Yang, Wei; Williams, Robert O; McGinity, James W

    2007-02-01

    With the recent advent of nanotechnology for pharmaceutical applications, drug particle engineering is the focus of increasing interest as a viable approach for overcoming solubility limitations of poorly water-soluble drugs. Although these particle engineering techniques have been proven successful for enhancing the dissolution properties of many poorly water-soluble drugs, there are limitations associated with them such as particle aggregation, morphological instability, and poor wettability. The aim of this study was to demonstrate a processing technique in which hot-melt extrusion (HME) is utilized to overcome these limitations. Micronized particles of amorphous itraconazole (ITZ) stabilized with PVP or HPMC were produced and subsequently melt extruded with poloxamer 407 and PEO 200 M to deaggregate and disperse the particles into the hydrophilic polymer matrix. Differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy were used to demonstrate that the HME process did not alter the properties of the micronized particles. Dissolution testing conducted at sink conditions revealed that the dissolution rate of the micronized particles was improved by HME due to particle deaggregation and enhanced wetting. Supersaturation dissolution testing demonstrated that the ITZ-HPMC micronized particle extrudates provided superior supersaturation of ITZ compared to the ITZ-PVP micronized particle extrudates. Supersaturation dissolution testing incorporating a pH change (from pH 1.2 to 6.8 at 2 h) revealed that neither micronized particle extrudate formulation significantly reduced the rate of ITZ precipitation from supersaturated solution once pH was increased. Moreover, the two extrudate formulations performed very similarly when only considering dissolution testing from just before pH adjustment through the duration of testing at neutral pH. From oral dosing of rats, it was determined that the two extrudate formulations performed similarly in

  14. Kit ligand promotes first polar body extrusion of mouse preovulatory oocytes

    Directory of Open Access Journals (Sweden)

    Ye Yinghui

    2009-04-01

    Full Text Available Abstract Background Shortly after stimulation by the preovulatory surge of luteinizing hormone (LH, oocytes arrested at the late prophase I resume meiosis characterized by germinal vesicle breakdown (GVBD, chromosome condensation, and extrusion of the first polar body in preparation for fertilization and early embryonic development. However, oocytes express few or no LH receptors and are insensitive to direct LH stimulation. Thus, factors released by granulosa or theca cells expect to convey the LH stimuli to oocytes. To identify candidate ligand-receptor pairs potentially involved in the process of oocyte maturation, we performed DNA microarray analyses of ovarian transcripts in mice and identified Kit ligand (Kitl as an ovarian factor stimulated by the LH/hCG surge. The purpose of this study is to investigate the roles of KITL in the nuclear and cytoplasmic maturation of preovulatory mouse oocytes. Methods The levels of Kitl and c-kit transcripts in mouse ovaries and isolated ovarian cells were determined by real-time RT-PCR, while expression of KITL protein was examined by immunohistochemistry. Follicle culture, cumulus-oocyte complexes (COC and denuded oocytes culture were used to evaluate the effect of KITL on mouse oocyte nuclear maturation. To assess the effect of KITL treatment on the cytoplasmic maturation of preovulatory oocytes, we performed in vitro maturation of oocytes followed by in vitro fertilization. Results Major increase of Kitl transcripts in granulosa cells and mouse ovaries, and predominant expression of c-kit in preovulatory oocytes were identified by real-time RT-PCR. Predominant expression of KITL protein was found in granulosa cells of preovulatory and small antral follicles at 4 h after hCG treatment. In vitro cultures demonstrated that treatment with KITL enhanced first polar body extrusion in a dose-dependent manner. Moreover, treatment of COC with KITL enhanced first polar body extrusion with increase in cyclin B1

  15. Smart Materials by Extrusion Solid Freeform Fabrication

    National Research Council Canada - National Science Library

    Calvert, Paul

    2000-01-01

    .... For fiber-reinforced composites it has been shown that orientation can be controlled by the writing process, allowing stiffness and strength to be varied from point to point within a component...

  16. Numerical Studies of Low Cycle Fatigue in Forward Extrusion Dies

    DEFF Research Database (Denmark)

    Pedersen, Thomas Ø

    2000-01-01

    of describing the elastic-plastic material behaviour under cyclic loadings is used to study the effects of different pre-stressing concepts on the accumulation of plastic strain and the development of fatigue damage. The results show, that the accumulation of plastic strain in the critical region can......Forward extrusion dies typically fail due to transverse fatigue cracks or wear. Fatigue cracks are initiated in regions where the material is subjected to repeated plastic deformations, e.g. the transition radius in a forward extrusion die, in the present work, a material model capable...... be controlled by means of the pre-stressing system or the geometry of the die insert. (C) 2000 Elsevier Science B.V. All rights reserved....

  17. The effect of grain size on dynamic tensile extrusion behaviour

    Directory of Open Access Journals (Sweden)

    Park Leeju

    2015-01-01

    Full Text Available Dynamic tensile extrusion (DTE tests were conducted on coarse grained and ultrafine grained (UFG OFHC Cu, Interstitial free (IF Steel, and pure Ta. Equal channel angular pressing (ECAP of 16passes with Bc for Cu, IF Steel and 4 passes for Ta was employed to fabricated UFG materials. DTE tests were carried out by launching the sphere samples (Dia. 7.62 mm to the conical extrusion die at a speed of ∼500 m/sec. The fragmentation behavior of the soft-recovered fragments were examined and compared with each other. The DTE fragmentation behavior of CG and UFG was numerically simulated by the LS-DYNA FEM code.

  18. Replication of nanopits and nanopillars by roll-to-roll extrusion coating using a structured cooling roll

    DEFF Research Database (Denmark)

    Murthy, Swathi; Pranov, Henrik; Pedersen, Henrik Chresten

    2016-01-01

    This paper investigates a novel, very high throughput, roll-to-roll (R2R) process for nanostructuring of polymer foils, called R2R extrusion coating. It has the potential to accelerate the integration of nanostructured materials in consumer products for a variety of applications, including optical....../height of 100 nm. The best replication was achieved in polypropylene, by running at high roller line-speed of 60 m/min, and high cooling roller temperature of 70°C. Replication in other common polymers like polyethylene and polystyrene was not possible for the parameter range used for the investigation......., technical, and functional surfaces and devices. In roll-to-roll extrusion coating, a molten polymer film is extruded through a flat die forming a melt curtain, and then laminated onto a carrier foil. The lamination occurs as the melt curtain is pressed between a cooling roller and a counter roller...

  19. Hot Melt Extrusion as Solvent-Free Technique for a Continuous Manufacturing of Drug-Loaded Mesoporous Silica

    DEFF Research Database (Denmark)

    Genina, Natalja; Hadi, Batol; Löbmann, Korbinian

    2018-01-01

    The aim of this study is to explore hot melt extrusion (HME) as a solvent-free drug loading technique for preparation of stable amorphous solid dispersions using mesoporous silica (PSi). Ibuprofen and carvedilol were used as poorly soluble active pharmaceutical ingredients (APIs). Due to the high...... friction of an API:PSi mixture below the loading limit of the API, it was necessary to add the polymer Soluplus(®) (SOL) in order to enable the extrusion process. As a result, the APIs were distributed between the PSi and SOL phase after HME. Due to its higher affinity to PSi, ibuprofen was mainly adsorbed...... into the PSi, whereas carvedilol was mainly found in the SOL phase. Intrinsic dissolution rate was highest for HME formulations, containing PSi, compared to pure crystalline (amorphous) APIs and HME formulations without PSi. HME is a feasible solvent-free drug loading technique for preparation of PSi...

  20. FDM 3D printing of modified drug-delivery systems using hot melt extrusion: a new approach for individualized therapy.

    Science.gov (United States)

    Cunha-Filho, Marcilio; Araújo, Maísa Rp; Gelfuso, Guilherme M; Gratieri, Tais

    2017-11-01

    The production process of 3D-printed drugs offers unique advantages such as the possibility of individualizing the drug therapy and easily associating different drugs and release technologies in the same pharmaceutical unit. Fused deposition modeling, a 3D printing technique, seems especially interesting for pharmaceutical applications, due to its low cost, precise and reproducible control of the printed structures, and versatility for industrial and laboratory scale. This technique combined with another technology already adapted for the pharmaceutical industry, the hot melt extrusion, is able to incorporate various mechanisms of modified drug release. This special report aims to bring together data of the experimental progress achieved using the fused deposition modeling 3D printing combined with hot melt extrusion technique and its potential in drug delivery. [Formula: see text].

  1. Effects Of Thermal Exchange On Material Flow During Steel Thixoextrusion Process

    International Nuclear Information System (INIS)

    Becker, Eric; Gu Guochao; Langlois, Laurent; Bigot, Regis; Pesci, Raphael

    2011-01-01

    Semisolid processing is an innovative technology for near net-shape production of components, where the metallic alloys are processed in the semisolid state. Taking advantage of the thixotropic behavior of alloys in the semisolid state, significant progress has been made in semisolid processing. However, the consequences of such behavior on the flow during thixoforming are still not completely understood. To explore and better understand the influence of the different parameters on material flow during thixoextrusion process, thixoextrusion experiments were performed using the low carbon steel C38. The billet was partially melted at high solid fraction. Effects of various process parameters including the initial billet temperature, the temperature of die, the punch speed during process and the presence of a Ceraspray layer at the interface of tool and billet were investigated through experiments and simulation. After analyzing the results thus obtained, it was identified that the aforementioned parameters mainly affect thermal exchanges between die and part. The Ceraspray layer not only plays a lubricant role, but also acts as a thermal barrier at the interface of tool and billet. Furthermore, the thermal effects can affect the material flow which is composed of various distinct zones.

  2. Cervical artificial disc extrusion after a paragliding accident

    OpenAIRE

    Niu, Tianyi; Hoffman, Haydn; Lu, Daniel C.

    2017-01-01

    Background: Cervical total disc replacement (TDR) is an established alternative to anterior cervical discectomy and fusion (ACDF) with excellent long-term outcomes and low failure rates. Cases of implant failure and migration are scarce and primarily limited to several years postoperatively. The authors report a case of anterior extrusion of a C4-C5 ProDisc-C (DePuy Synthes, West Chester, PA, USA) cervical artificial disc (CAD) 14 months after placement due to minor trauma. Case Description: ...

  3. A bandage contact lens prevents extrusion of ocular contents.

    Science.gov (United States)

    Ramjiani, Vipul; Fearnley, Thomas; Tan, Jennifer

    2016-02-01

    A 76 year old male presents with a corneal perforation in a phthisical eye. Definitive treatment in the form of an evisceration was delayed by 38 days. During this period a bandage contact lens prevented extrusion of ocular contents through an enlarging corneal perforation. This case demonstrates that a bandage contact lens can be effective in the immediate management of large corneal perforations whilst awaiting urgent definitive treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Moisture content during extrusion of oats impacts the initial fermentation metabolites and probiotic bacteria during extended fermentation by human fecal microbiota.

    Science.gov (United States)

    Brahma, Sandrayee; Weier, Steven A; Rose, Devin J

    2017-07-01

    Extrusion exposes flour components to high pressure and shear during processing, which may affect the dietary fiber fermentability by human fecal microbiota. The objective of this study was to determine the effect of flour moisture content during extrusion on in vitro fermentation properties of whole grain oats. Extrudates were processed at three moisture levels (15%, 18%, and 21%) at fixed screw speed (300rpm) and temperature (130°C). The extrudates were then subjected to in vitro digestion and fermentation. Extrusion moisture significantly affected water-extractable β-glucan (WE-BG) in the extrudates, with samples processed at 15% moisture (lowest) and 21% moisture (highest) having the highest concentration of WE-BG. After the first 8h of fermentation, more WE-BG remained in fermentation media in samples processed at 15% moisture compared with the other conditions. Also, extrusion moisture significantly affected the production of acetate, butyrate, and total SCFA by the microbiota during the first 8h of fermentation. Microbiota grown on extrudates processed at 18% moisture had the highest production of acetate and total SCFA, whereas bacteria grown on extrudates processed at 15% and 18% moisture had the highest butyrate production. After 24h of fermentation, samples processed at 15% moisture supported lower Bifidobacterium counts than those produced at other conditions, but had among the highest Lactobacillus counts. Thus, moisture content during extrusion significantly affects production of fermentation metabolites by the gut microbiota during the initial stages of fermentation, while also affecting probiotic bacteria counts during extended fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Cervical artificial disc extrusion after a paragliding accident.

    Science.gov (United States)

    Niu, Tianyi; Hoffman, Haydn; Lu, Daniel C

    2017-01-01

    Cervical total disc replacement (TDR) is an established alternative to anterior cervical discectomy and fusion (ACDF) with excellent long-term outcomes and low failure rates. Cases of implant failure and migration are scarce and primarily limited to several years postoperatively. The authors report a case of anterior extrusion of a C4-C5 ProDisc-C (DePuy Synthes, West Chester, PA, USA) cervical artificial disc (CAD) 14 months after placement due to minor trauma. A 33-year-old female who had undergone C4-C5 CAD implantation presented with neck pain and spasm after experiencing a paragliding accident. A 4 mm anterior protrusion of the CAD was seen on x-ray. She underwent removal of the CAD followed by anterior fusion. Other cases of CAD extrusion in the literature are discussed and the device's durability and testing are considered. Overall, CAD extrusion is a rare event. This case is likely the result of insufficient osseous integration. Patients undergoing cervical TDR should avoid high-risk activities to prevent trauma that could compromise the disc's placement, and future design/research should focus on how to enhance osseous integration at the interface while minimizing excessive heterotopic ossification.

  6. Reduction of Fumonisin Toxicity by Extrusion and Nixtamalization (Alkaline Cooking).

    Science.gov (United States)

    Voss, Kenneth; Ryu, Dojin; Jackson, Lauren; Riley, Ronald; Gelineau-van Waes, Janee

    2017-08-23

    Fumonisins are mycotoxins found in corn. They are toxic to animals and cause cancer in rodents and neural tube defects in LM/Bc mice. Reducing their concentrations in corn-based foods is therefore desirable. Chemical analysis or in vitro bioassays of food extracts might not detect toxic fumonisin reaction products that are unknown or unextractable from food matrices, thus potentially underestimating in vivo toxicity. The effectiveness of two common cooking methods, extrusion and nixtamalization (alkaline cooking), to reduce the toxicity of fumonisin-contaminated corn grits (extrusion) and whole kernel corn (nixtamalization) was shown by means of rat feeding bioassays using fumonisin-specific kidney effects as indicators of potential toxicity. A third bioassay showed that in contrast to fumonisin B 1 (FB 1 ), hydrolyzed fumonisin B 1 (HFB 1 ; formed from FB 1 during nixtamalization) did not cause neural tube defects in LM/Bc mice. The findings indicate that extrusion and nixtamalization reduce the potential toxicity of FB 1 -contaminated corn.

  7. Preventing Silicone Tube Extrusion after Nasolacrimal Duct Intubation in Children

    Directory of Open Access Journals (Sweden)

    Ali-Akbar Sabermoghaddam

    2010-01-01

    Full Text Available Herein we report our experience with a simple technique for reducing the rate of silicone tube extrusion after nasolacrimal duct (NLD intubation for congenital NLD obstruction. Medical records of children older than 2 years, with or without history of failed probing, who had undergone NLD intubation with a Crawford silicone tube over a period of 4 years were reviewed. In all subjects, one end of the Crawford tube was passed through a piece of scalp vein tubing followed by applying one or two knots. All Crawford tubes were removed after 3 months. Main outcome measures included complications such as tube extrusion, nasal discharge, crust formation and pyogenic granuloma formation. Fifty-seven patients, including 49 unilateral and 8 bilateral cases with mean age of 3.8΁1.6 (range, 2 to 11.5 years were operated. No complications such as tube dislodgement, significant nasal discharge, crust or pyogenic granuloma formation occurred prior to Crawford tube removal. All silicone tubes were successfully removed from the nasal cavity. In conclusion, passing one end of the Crawford tube through a small piece of scalp vein tubing before knotting it in the nasal cavity seems to decrease the rate of tube extrusion which is the most common complication following NLD intubation in children.

  8. Study of mechanical properties on powdermetalurgy aluminium matrix composites fabricated by stamping or extrusion

    International Nuclear Information System (INIS)

    Busquets, D.; Gomez, L.; Amigo, V.; Salvador-Moya, M. D.

    2005-01-01

    We have developed composite materials from AA6061 aluminium alloy powders used as matrix and ceramics powders of boron carbide, silicon carbide and boron nitride, used as reinforcements in 2.5, 5.0, 7.5 and 10% vol. by mechanical mixing and milling in planetary mill at 360 rpm vial velocity for 4 h followed of hot stamping and extrusion process on green compacts. Mechanical properties obtained from tensile tests are influenced by the heat treatment, reinforcement fractions and nature. Moreover, these mechanical characteristic are dependent from the processing route. Optical and Scanning Electron Microscopy analysis revealed the microstructure of materials and let describe the tripartite relation; structure-processing-properties, of the developed materials. (Author) 20 refs

  9. Influence of twin-screw hot extrusion on linolenic acid retention in flaxseed meal

    International Nuclear Information System (INIS)

    Imran, M.

    2014-01-01

    flaxseed (linum usitatissimum l.) provides multiple nutritional benefits including high quality protein, dietary fiber and is the most abundant source of alpha-linolenic acid (c18:3). This study focuses on the effect of twin-screw hot extrusion on alpha-linolenic acid retention in full-fat flaxseed meal. the ranges of processing variables selected using box-behnken design were barrel exit temperature (bet) of 120-140 degree c; screw speed (ss) of 200-400 rpm; feed rate (fr) of 1-2 kg/h and feed moisture (fm) of 20-30%. The amount of alpha-linolenic acid retention in extruded samples ranged from 89.2% to 99.3%. Optimal operating conditions were stablished; bet (121degree c), ss (388 rpm), fr (1 kg/h) and fm (22.2%) for maximum (99.9%) retention of degree-linolenic acid. This effect was mainly dependent on bet and fm (p degree 0.01), whereas ss and fr imparted a lesser effect (p=0.05). The results of this study demonstrated that the twin-screw hot extrusion can be successfully explored to produce fatty meals with significant fatty acids retention for commercially food or feed purposes. (author)

  10. Lansoprazole induces apoptosis of breast cancer cells through inhibition of intracellular proton extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shangrong; Wang, Yifan; Li, Shu Jie, E-mail: shujieli@nankai.edu.cn

    2014-06-13

    Highlights: • Lansoprazole (LPZ) induces cell apoptosis in breast cancer cells. • LPZ markedly inhibits intracellular proton extrusion. • LPZ induces an increase in intracellular ATP level, lysosomal alkalinization and ROS accumulation. - Abstract: The increased glycolysis and proton secretion in tumors is proposed to contribute to the proliferation and invasion of cancer cells during the process of tumorigenesis and metastasis. Here, treatment of human breast cancer cells with proton pump inhibitor (PPI) lansoprazole (LPZ) induces cell apoptosis in a dose-dependent manner. In the implantation of the MDA-MB-231 xenografts in nude mice, administration of LPZ significantly inhibits tumorigenesis and induces large-scale apopotosis of tumor cells. LPZ markedly inhibits intracellular proton extrusion, induces an increase in intracellular ATP level, lysosomal alkalinization and accumulation of reactive oxygen species (ROS) in breast cancer cells. The ROS scavenger N-acetyl-L-cysteine (NAC) and diphenyleneiodonium (DPI), a specific pharmacological inhibitor of NADPH oxidases (NOX), significantly abolish LPZ-induced ROS accumulation in breast cancer cells. Our results suggested that LPZ may be used as a new therapeutic drug for breast tumor.

  11. Lansoprazole induces apoptosis of breast cancer cells through inhibition of intracellular proton extrusion

    International Nuclear Information System (INIS)

    Zhang, Shangrong; Wang, Yifan; Li, Shu Jie

    2014-01-01

    Highlights: • Lansoprazole (LPZ) induces cell apoptosis in breast cancer cells. • LPZ markedly inhibits intracellular proton extrusion. • LPZ induces an increase in intracellular ATP level, lysosomal alkalinization and ROS accumulation. - Abstract: The increased glycolysis and proton secretion in tumors is proposed to contribute to the proliferation and invasion of cancer cells during the process of tumorigenesis and metastasis. Here, treatment of human breast cancer cells with proton pump inhibitor (PPI) lansoprazole (LPZ) induces cell apoptosis in a dose-dependent manner. In the implantation of the MDA-MB-231 xenografts in nude mice, administration of LPZ significantly inhibits tumorigenesis and induces large-scale apopotosis of tumor cells. LPZ markedly inhibits intracellular proton extrusion, induces an increase in intracellular ATP level, lysosomal alkalinization and accumulation of reactive oxygen species (ROS) in breast cancer cells. The ROS scavenger N-acetyl-L-cysteine (NAC) and diphenyleneiodonium (DPI), a specific pharmacological inhibitor of NADPH oxidases (NOX), significantly abolish LPZ-induced ROS accumulation in breast cancer cells. Our results suggested that LPZ may be used as a new therapeutic drug for breast tumor

  12. A Covering Type Extrusion Die with Twin Cavities for Semi-Hollow Al-Profiles

    Science.gov (United States)

    Deng, Rurong; Huang, Xuemei

    2018-03-01

    A new structure named covering type with twin cavities in a die for the semi-hollow aluminum profiles was present. The determination of structure parameters was introduced in detail. Mainly including the selection of the machine, the arrangement of portholes, the structure design of chamber and the selection of bearing. The method of checking the die strength was introduced. According to the extrusion results, the structure of the traditional solid die, the porthole die with single cavity and the covering type structure with twin cavities were compared. The characteristics of the latter structure were simple and easy to process. The practical application shows that the new die structure can enhance the die life, improve the production efficiency and reduce the cost. The high precision and the surface brightness of the profiles were obtained. The structure is worth promoting. The aim is to provide reliable data and reference for the further research and development of this technology on the extrusion die with multi-cavities in a die.

  13. Numerical studies of temperature effect on the extrusion fracture and swell of plastic micro-pipe

    Science.gov (United States)

    Ren, Zhong; Huang, Xingyuan; Xiong, Zhihua

    2018-03-01

    Temperature is a key factor that impacts extrusion forming quality of plastic micro-pipe. In this study, the effect of temperature on extrusion fracture and swell of plastic micro-pipe was investigated by numerical method. Under a certain of the melt’s flow volume, the extrusion pattern, extrusion swelling ratio of melt are obtained under different temperatures. Results show that the extrusion swelling ratio of plastic micro-pipe decreases with increasing of temperature. In order to study the reason of temperature effect, the physical distributions of plastic micro-pipe are gotten. Numerical results show that the viscosity, pressure, stress value of melt are all decreased with the increasing of temperature, which leads to decrease the extrusion swell and fracture phenomenon for the plastic micro-pipe.

  14. Influence of Extrusion Cooking on In Vitro Digestibility, Physical and Sensory Properties of Brazilian Pine Seeds Flour (Araucaria Angustifolia).

    Science.gov (United States)

    Boff Zortéa-Guidolin, Manoela Estefânea; Piler de Carvalho, Carlos Wanderlei; Bueno de Godoy, Rossana Catie; Mottin Demiate, Ivo; Paula Scheer, Agnes

    2017-04-01

    Brazilian pine seeds (pinhão) are gluten-free products derived from Araucaria angustifolia. The commercialization of these seeds is essentially associated with a low level of industrialization. In this context, extrusion cooking is a potential alternative for preparing extrudates of pinhão as a food product, which can be easily digested and is ready for human consumption. Brazilian pine seeds flour was processed in a single-screw extruder following a central composite rotatable design. Three factors (independent parameters) were considered: moisture content (14 to 22 g/100 g), screw speed (100 to 250 rpm), and temperature in the 3rd heating zone (120 to 200 °C). The structural characteristics, in vitro digestibility and sensory acceptance were also evaluated. The resistant starch contents is almost reduced to zero after extrusion cooking while the slowly digestible starch content is increased. An increase in moisture positively affected the hardness and the luminosity (L * ), although it negatively affected the volumetric expansion index, crispness, and color parameters (a * , b * , and ΔE). The experimental conditions of this study allowed the production of expanded extrudates from Brazilian pine seeds with good expansion, texture properties, and acceptance qualities. Thus, extrusion cooking was found to be a potential method for the industrialization of Brazilian pine seeds as a food product. © 2017 Institute of Food Technologists®.

  15. CFD-based optimization in plastics extrusion

    Science.gov (United States)

    Eusterholz, Sebastian; Elgeti, Stefanie

    2018-05-01

    This paper presents novel ideas in numerical design of mixing elements in single-screw extruders. The actual design process is reformulated as a shape optimization problem, given some functional, but possibly inefficient initial design. Thereby automatic optimization can be incorporated and the design process is advanced, beyond the simulation-supported, but still experience-based approach. This paper proposes concepts to extend a method which has been developed and validated for die design to the design of mixing-elements. For simplicity, it focuses on single-phase flows only. The developed method conducts forward-simulations to predict the quasi-steady melt behavior in the relevant part of the extruder. The result of each simulation is used in a black-box optimization procedure based on an efficient low-order parameterization of the geometry. To minimize user interaction, an objective function is formulated that quantifies the products' quality based on the forward simulation. This paper covers two aspects: (1) It reviews the set-up of the optimization framework as discussed in [1], and (2) it details the necessary extensions for the optimization of mixing elements in single-screw extruders. It concludes with a presentation of first advances in the unsteady flow simulation of a metering and mixing section with the SSMUM [2] using the Carreau material model.

  16. Poly(lactic acid (PLA Based Tear Resistant and Biodegradable Flexible Films by Blown Film Extrusion

    Directory of Open Access Journals (Sweden)

    Norma Mallegni

    2018-01-01

    Full Text Available Poly(lactic acid (PLA was melt mixed in a laboratory extruder with poly(butylene adipate-co-terephthalate (PBAT and poly(butylene succinate (PBS in the presence of polypropylene glycol di glycidyl ether (EJ400 that acted as both plasticizer and compatibilizer. The process was then scaled up in a semi-industrial extruder preparing pellets having different content of a nucleating agent (LAK. All of the formulations could be processed by blowing extrusion and the obtained films showed mechanical properties dependent on the LAK content. In particular the tearing strength showed a maximum like trend in the investigated composition range. The films prepared with both kinds of blends showed a tensile strength in the range 12–24 MPa, an elongation at break in the range 150–260% and a significant crystallinity.

  17. Effect of PVA and PDE on selected structural characteristics of extrusion-cooked starch foams

    Directory of Open Access Journals (Sweden)

    Maciej Combrzyński

    2018-03-01

    Full Text Available Abstract The aim of this work was to determine selected physical properties of biodegradable thermoplastic starch (TPS filling foams manufactured by extrusion-cooking technique from different combinations of potato starch and two additives: poly(vinyl alcohol PVA and Plastronfoam PDE. Foams were processed with seven starch/additives combinations at two different extruder-cooker’s screw rotational speeds. The densities of starch foams depended significantly on the additive type and content. The linear relationship between the Young modulus and the ultimate compression force and apparent density was found. The foams processed with the addition of PVA had low density, porosity and lower values of the Young modulus than the foams prepared with PDE.

  18. Study of the formation of polyethylene composites and lignocellulose materials by means of irradiation and extrusion

    International Nuclear Information System (INIS)

    Azevedo, Marcos Bertrand de; Romero, Guillermo R.; Gonzalez, Maria Elisa; Smolko, Eduardo E.

    2000-01-01

    One of the greatest opportunities for using of biomass as a precursor in the production of polymeric materials is the lignocellulose composites that can combine high performance with low costs. This work is a initial study on the production of a lignocellulose reinforced polyethylene composite. A compatibilization made by a induced gamma radiation grafting reaction was used to increase the adhesion between the matrix and the reinforced or filled fibers. The lignocellulose materials were exposed to gamma radiation in order to promote a molecular degradation and increase its reactivity. The polymer, the lignocellulose material and the compatibilization were processed by extrusion and the composite produced by this process were characterized by mechanical tests. (author)

  19. Analysis of Large-Strain Extrusion Machining with Different Chip Compression Ratios

    Directory of Open Access Journals (Sweden)

    Wen Jun Deng

    2012-01-01

    Full Text Available Large-Strain Extrusion Machining (LSEM is a novel-introduced process for deforming materials to very high plastic strains to produce ultra-fine nanostructured materials. Before the technique can be exploited, it is important to understand the deformation behavior of the workpiece and its relationship to the machining parameters and friction conditions. This paper reports finite-element method (FEM analysis of the LSEM process to understand the evolution of temperature field, effective strain, and strain rate under different chip compression ratios. The cutting and thrust forces are also analyzed with respect to time. The results show that LSEM can produce very high strains by changing in the value of chip compression ratio, thereby enabling the production of nanostructured materials. The shape of the chip produced by LSEM can also be geometrically well constrained.

  20. A Method to Increase Current Density in a Mono Element Internal Tin Processed Superconductor Utilizing Zr Oxide to Refine Grain Size; Final Report Phase 2

    International Nuclear Information System (INIS)

    Zeitlin, Bruce A.; Gregory, Eric

    2008-01-01

    The effect of Oxygen on (Nb1Zr)3Sn multifilament conductors manufactured by the Mono Element Internal Tin (MEIT) process was explored to improve the current density by refining the grain size. This followed work first done by General Electric on the Nb3Sn tape process. Techniques to fabricate the more difficult Nb1Zr composites are described and allowed fabrication of long lengths of .254 mm diameter wire from an 88.9 mm diameter billet. Oxygen was incorporated through the use of SnO2 mixed with tin powder and incorporated into the core. These were compared to samples with Ti+Sn and Cu+Sn cores. Heat treatments covered the range of 700 C to 1000 C. Current density vs. H, grain size, and reaction percentages are provided for the materials tested. The Oxygen gave superior results in the temperature range of 815-1000 C. It also stabilized the filament geometry of the array in comparison to the other additions at the higher temperatures. At 815 C a peak in layer Jc yielded values of 2537 A/mm2 at 12 T and 1353 A/mm2 at 15T, 8-22% and 30-73% greater respectively than 700 C values. Results with Oxygen at high temperature show the possibility of high speed continuous reaction of the composite versus the current batch or react in place methods. In general the Ti additions gave superior results at the lower reaction temperature. Future work is suggested to determine if the 815 C reaction temperature can lead to higher current density in high tin (Nb1Zr+Ox)3Sn conductors. A second technique incorporated oxygen directly into the Nb1Zr rods through heat treatment with Nb2O5 at 1100 C for 100 hours in vacuum prior to extrusion. The majority of the filaments reduced properly in the composite but some local variations in hardness led to breakage at smaller diameters.

  1. Microemulsion extrusion technique: a new method to produce lipid nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, Marcelo Bispo de, E-mail: dejesusmb@gmail.com; Radaic, Allan [University of Campinas-UNICAMP, Department of Biochemistry, Institute of Biology (Brazil); Zuhorn, Inge S. [University of Groningen, Department of Membrane Cell Biology, University Medical Center (Netherlands); Paula, Eneida de [University of Campinas-UNICAMP, Department of Biochemistry, Institute of Biology (Brazil)

    2013-10-15

    Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) have been intensively investigated for different applications, including their use as drug and gene delivery systems. Different techniques have been employed to produce lipid nanoparticles, of which high pressure homogenization is the standard technique that is adopted nowadays. Although this method has a high efficiency, does not require the use of organic solvents, and allows large-scale production, some limitations impede its application at laboratory scale: the equipment is expensive, there is a need of huge amounts of surfactants and co-surfactants during the preparation, and the operating conditions are energy intensive. Here, we present the microemulsion extrusion technique as an alternative method to prepare lipid nanoparticles. The parameters to produce lipid nanoparticles using microemulsion extrusion were established, and the lipid particles produced (SLN, NLC, and liposomes) were characterized with regard to size (from 130 to 190 nm), zeta potential, and drug (mitoxantrone) and gene (pDNA) delivery properties. In addition, the particles' in vitro co-delivery capacity (to carry mitoxantrone plus pDNA encoding the phosphatase and tensin homologue, PTEN) was tested in normal (BALB 3T3 fibroblast) and cancer (PC3 prostate and MCF-7 breast) cell lines. The results show that the microemulsion extrusion technique is fast, inexpensive, reproducible, free of organic solvents, and suitable for small volume preparations of lipid nanoparticles. Its application is particularly interesting when using rare and/or costly drugs or ingredients (e.g., cationic lipids for gene delivery or labeled lipids for nanoparticle tracking/diagnosis)

  2. Distal corporoplasty for distal cylinders extrusion after penile prosthesis implantation.

    Science.gov (United States)

    Carrino, Maurizio; Chiancone, Francesco; Battaglia, Gaetano; Pucci, Luigi; Fedelini, Paolo

    2017-02-03

    Distal extrusion of cylinders is a potential complication of the penile prosthesis implantation. Several methods have been proposed for repairing a distal penile erosion. We present our preliminary experience in "Distal corporoplasty" technique. We enrolled 18 consecutive patients whose underwent a distal corporoplasty with simultaneous reimplantation of an "AMS 700 inflatable penile prosthesis (LGX)" from January 2013 to November 2015 at our hospital. All procedures were performed by a single surgical team. Intraoperative and postoperative complications have been classified and reported according to Satava6 and Clavien-Dindo (CD) system.7 Mean values with standard deviations (±SD) were computed and reported for all items. Mean age of the patients was 53.61 (±11.90) years. Mean body max index (BMI) was 24.22 (±2.51). Mean operative time was 85.2 (±13.1) minutes. Blood losses were minimal. No intraoperative complications are reported according to Satava classification. Four out of 18 patients (22.22%) experienced postoperative complications according to CD system. All patients had sexual intercourse for the first time postsurgery after a mean of 59.11 ± 2.08 days. Mean follow-up was 22.11 (±9.95). Distal extrusion of cylinders is a potential complication of the penile prosthesis implantation. Distal corporoplasty was first described by Mulcahy. He reported a series of 14 patients with a follow-up of about 2 years with optimal functional outcomes. Moreover, distal corporoplasty resulted in shorter operative time, better function, less pain, and fewer recurrences than Gortex windsock repair.10 In our experience, distal corporoplasty is a simple and safe procedure in the treatment of distal cylinders extrusion when the prosthetic material is not exposed to the exterior.

  3. Microemulsion extrusion technique: a new method to produce lipid nanoparticles

    International Nuclear Information System (INIS)

    Jesus, Marcelo Bispo de; Radaic, Allan; Zuhorn, Inge S.; Paula, Eneida de

    2013-01-01

    Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) have been intensively investigated for different applications, including their use as drug and gene delivery systems. Different techniques have been employed to produce lipid nanoparticles, of which high pressure homogenization is the standard technique that is adopted nowadays. Although this method has a high efficiency, does not require the use of organic solvents, and allows large-scale production, some limitations impede its application at laboratory scale: the equipment is expensive, there is a need of huge amounts of surfactants and co-surfactants during the preparation, and the operating conditions are energy intensive. Here, we present the microemulsion extrusion technique as an alternative method to prepare lipid nanoparticles. The parameters to produce lipid nanoparticles using microemulsion extrusion were established, and the lipid particles produced (SLN, NLC, and liposomes) were characterized with regard to size (from 130 to 190 nm), zeta potential, and drug (mitoxantrone) and gene (pDNA) delivery properties. In addition, the particles’ in vitro co-delivery capacity (to carry mitoxantrone plus pDNA encoding the phosphatase and tensin homologue, PTEN) was tested in normal (BALB 3T3 fibroblast) and cancer (PC3 prostate and MCF-7 breast) cell lines. The results show that the microemulsion extrusion technique is fast, inexpensive, reproducible, free of organic solvents, and suitable for small volume preparations of lipid nanoparticles. Its application is particularly interesting when using rare and/or costly drugs or ingredients (e.g., cationic lipids for gene delivery or labeled lipids for nanoparticle tracking/diagnosis)

  4. Desenvolvimento de misturas instantâneas de mandioca e caseína: efeito do teor de proteína e parâmetros de extrusão sobre a viscosidade Development of instant blends of cassava flour and casein: effect of protein contents and extrusion parameters on viscosity

    Directory of Open Access Journals (Sweden)

    Beatriz Helena Borges Lustosa

    2010-09-01

    Full Text Available O interesse da indústria de alimentos por produtos desenvolvidos a partir de farinhas acrescidas de proteína não se deve somente às suas características nutricionais, senão também às suas propriedades funcionais e reológicas, as quais definem as suas aplicações comerciais. Este trabalho teve por objetivo avaliar o efeito de parâmetros operacionais do processo de extrusão sobre as propriedades de pasta de misturas de farinha de mandioca e caseína. O processo de extrusão seguiu o delineamento 'central composto rotacional' para três fatores: teor de proteína (2,5 a 9,5%, umidade (14,5 a 19,5% e temperatura de extrusão (65 a 135 ºC. As misturas antes e após a extrusão foram analisadas no Rapid Visco Analyser (RVA quanto a: viscosidade inicial, pico de viscosidade, quebra de viscosidade, viscosidade final e tendência à retrogradação. Os resultados obtidos nas misturas antes da extrusão mostraram aumento dos valores de viscosidade com o aumento da concentração de proteína até o ponto central (6% e, nos teores mais elevados de proteína, ocorreu redução destes. Após a extrusão, observou-se que o teor de proteína foi a variável de maior efeito sobre as propriedades de pasta, seguida pela umidade das misturas.The interest of the food industry in products developed from flours added with protein is not due only to their nutritional characteristics, but also due to their functional and rheological properties, which define their commercial applications. This study aimed to evaluate the effect of operational parameters of the extrusion process on the paste properties of cassava flour and casein blends. The process of extrusion followed the central composed rotational design with three factors: protein content (2.5 to 9.5%, moisture (14.5 to 19.5%, and extrusion temperature (65 to 135 ºC. Before and after extrusion, the blends were analyzed on a Rapid Visco Analyser using the following parameters: initial viscosity, peak

  5. [Technique for removing donor sclera by eyeball extrusion].

    Science.gov (United States)

    González Del Valle, F; Álvarez Portela, M; Lara Medina, J; Celis Sánchez, J; Barrajón Rodríguez, A

    2012-09-01

    To describe a surgery technique for removing donor sclera tissue after corneo-scleral button excision. The extrusion technique is easy to perform. It allows the complete scleral extraction its total clean up to be performed, as well as making easier to isolate the retina and uveal tissue. This technique could have an important role in the anatomical and morphological study of ocular structures. Copyright © 2011 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  6. The role of extrusions and intrusions in fatigue crack initiation

    Czech Academy of Sciences Publication Activity Database

    Polák, Jaroslav; Mazánová, Veronika; Heczko, Milan; Petráš, Roman; Kuběna, Ivo; Casalena, L.; Man, Jiří

    2017-01-01

    Roč. 185, NOV (2017), s. 46-60 ISSN 0013-7944 R&D Projects: GA MŠk(CZ) LQ1601; GA MŠk LM2015069; GA ČR(CZ) GA13-23652S; GA ČR GA15-08826S Institutional support: RVO:68081723 Keywords : Extrusion * Fatigue crack initiation * Intrusion * Persistent slip marking * Stainless steel Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis Impact factor: 2.151, year: 2016

  7. Características tecnológicas de farinhas de arroz pré-gelatinizadas obtidas por extrusão termoplástica Technological properties of pre-gelatinized rice flour obtained by thermoplastic extrusion

    Directory of Open Access Journals (Sweden)

    Maria Teresa Pedrosa Silva Clerici

    2008-10-01

    for thermoplastic extrusion. The GRF was extruded using a Brabender single screw extruder, varying moisture (19.2 - 24.8% and extrusion temperature (108 - 192ºC. Torque, expansion index (EI, viscographic properties, water absorption index (WAI, and water solubility index (WSI characteristics of GRF were analyzed using response surface methodology (RSM and main component analysis (PCA. The results, analyzed by MRS and PCA, indicated that during the process, the values of torque and EI increased when lower moisture was used. Considering viscographic properties, GRF presented a higher initial viscosity of the starch paste when in higher temperatures, while viscosities at 95ºC and at 50ºC increased when temperature and moisture were at extreme opposites. WAI decreased when lower temperatures and higher moisture were used. WSI was not influenced by temperature and moisture when analyzed using MRS, but with PCA, there was an increase when temperatures ranged between 120 - 150ºC and moisture between 19.2 - 22%. In conclusion, both MRS and PCA analysis showed that a variation in the technological properties of GRF were related to the use of opposite extremes of temperature and/or moisture during the extrusion process, and the PCA was able to complete the analysis done using MRS.

  8. Fatigue Crack Growth Behavior of 2099-T83 Extrusions in two Different Environments

    Science.gov (United States)

    Goma, Franck Armel Tchitembo; Larouche, Daniel; Bois-Brochu, Alexandre; Blais, Carls; Boselli, Julien; Brochu, Mathieu

    Aluminum-lithium alloy 2099-T83 is an advanced material with superior mechanical properties, as compared to traditional alloys used in structural applications, and has been selected for use in the latest generation of airplanes. While this alloy exhibits improved fatigue crack growth (FCG) performance over non-Li alloys, it is of interest to simulate the impact of fluctuating loads under variable temperature during airplane service, particularly in terms of the potential effects of material processing history. In the present paper, the FCG behavior in an Integrally Stiffened Panel (ISP) has been investigated both at room temperature and at 243 K. It has been shown that the resistance to crack growth in a cold environment was higher than in ambient laboratory air. Results of this investigation are discussed from the microfractographic point of view, with regard to the variation of the local extrusion aspect ratio, a parameter which correlates with both the crystallographic texture and the grain structure.

  9. Evolution of microstructure and texture in copper during repetitive extrusion-upsetting and subsequent annealing

    DEFF Research Database (Denmark)

    Chen, Q.; Shu, D. Y.; Lin, J.

    2017-01-01

    The evolution of the microstructure and texture in copper has been studied during repetitive extrusion-upsetting (REU) to a total von Mises strain of 4.7 and during subsequent annealing at different temperatures. It is found that the texture is significantly altered by each deformation pass...... strain of 4.7 is measured to be ∼0.3μm. This refined microstructure is unstable at room temperature as is evident from the presence of a small number of recrystallized grains in the deformed matrix. Pronounced recrystallization took place during annealing at 200 °C for 1 h with recrystallized grains...... developing predominantly in high misorientation regions. At 350 ºC the microstructure is fully recrystallized with an average grain size of only 2.3 μm and a very weak crystallographic texture. This REU-processed and subsequently annealed material is considered to be potentially suitable for using...

  10. Scale up and application of equal-channel angular extrusion for the electronics and aerospace industries

    International Nuclear Information System (INIS)

    Ferrasse, Stephane; Segal, V.M.; Alford, Frank; Kardokus, Janine; Strothers, Susan

    2008-01-01

    Two areas are critical to promote equal-channel angular extrusion beyond the stage of a laboratory curiosity: (i) tool/processing design and scale up; (ii) development of new submicrometer-grained products. Both goals are pursued at Honeywell. The first case is the successful commercialization of ECAE for the production of sputtering targets from single phase alloys in the electronic industry. Blank dimensions are significantly larger than those reported in the literature. Other described applications are targeted to the increase of tensile strength, high-cycle fatigue and toughness in medium-to-heavily alloyed Al materials used in aerospace. In these alloys, the optimal properties can be reached with better understanding of the interplay between plastic deformation and precipitation mechanisms

  11. Accidental periapical extrusion of non-setting calcium hydroxide: Unusual bone response and management

    Directory of Open Access Journals (Sweden)

    Divya S Sharma

    2014-01-01

    Full Text Available Premixed non-setting calcium hydroxide is frequently used as interim root canal dressing in endodontically involved permanent teeth and as obturating paste in deciduous teeth in pediatric dentistry. Wide apex in both cases makes it more prone for deliberate extrusion especially when applied with pressure delivery systems. Contrary to common belief the mix was not resorbed in two years with the complaint of insufficiency in mastication. Large mass of calcium hydroxide in bone delayed healing process even after its removal. The present case report intends to demonstrate unusual behavior of bone in response to oily non-setting preparation of calcium hydroxide. Therefore its application with pressure syringe should be reconsidered in pediatric dentistry.

  12. Atomic force microscopy investigation of Turnip Yellow Mosaic Virus capsid disruption and RNA extrusion

    International Nuclear Information System (INIS)

    Kuznetsov, Yu. G.; McPherson, Alexander

    2006-01-01

    Turnip Yellow Mosaic Virus (TYMV) was subjected to a variety of procedures which disrupted the protein capsids and produced exposure of the ssRNA genome. The results of the treatments were visualized by atomic force microscopy (AFM). Both in situ and ex situ freeze-thawing produced RNA emission, though at low efficiency. The RNA lost from such particles was evident, in some cases in the process of exiting the virions. More severe disruption of TYMV and extrusion of intact RNA onto the substrate were produced by drying the virus and rehydrating with neutral buffer. Similar products were also obtained by heating TYMV to 70-75 deg. C and by exposure to alkaline pH. Experiments showed the nucleic acid to have an elaborate secondary structure distributed linearly along its length

  13. On Parameters Affecting Metal Flow and Friction in the Double Cup Extrusion Test

    DEFF Research Database (Denmark)

    Tan, Xincai; Bay, Niels; Zhang, Wenqi

    1998-01-01

    in numerical simulations often involve strain hardening because friction is expressed as a function of the flow stress or the flow shear stress. The double cup extrusion test is considered to be one of the process tests for determination of friction. In this test, varying heights of the upper and lower cups...... model with constant absolute value excluding the influence of strain hardening on friction was adopted in FEM simulations, in order to more clearly study the individual influence of strain hardening and friction on the metal flow (upper and lower cup height ratio) without interference between the two...... parameters. The predicted results show a good agreement with the experimental data. The influence of material strain hardening. friction and tool geometry on the metal flow in the test has been investigated. By comparisons of the cup height ratio as a function of the punch travel estimated by experiments...

  14. Automation of extrusion of porous cable products based on a digital controller

    Science.gov (United States)

    Chostkovskii, B. K.; Mitroshin, V. N.

    2017-07-01

    This paper presents a new approach to designing an automated system for monitoring and controlling the process of applying porous insulation material on a conductive cable core, which is based on using structurally and parametrically optimized digital controllers of an arbitrary order instead of calculating typical PID controllers using known methods. The digital controller is clocked by signals from the clock length sensor of a measuring wheel, instead of a timer signal, and this provides the robust properties of the system with respect to the changing insulation speed. Digital controller parameters are tuned to provide the operating parameters of the manufactured cable using a simulation model of stochastic extrusion and are minimized by moving a regular simplex in the parameter space of the tuned controller.

  15. Oriented Structure of Pentablock Copolymers Induced by Solution Extrusion

    Science.gov (United States)

    Harada, Tamotsu; Bates, Frank S.; Lodge, Timothy P.

    2002-03-01

    Highly oriented structure of a poly(styrene-co-butadiene) pentablock copolymer (Mw; 104,700 g/mol, weight percentage of polybutadiene blocks; 29 wt of concentrated solutions. The pentablock copolymer was dissolved into mixtures of toluene and heptane, and the polymer concentration ranged from 40 wt extrusion, the pentablock copolymer was solidified either by coagulation in methanol or by evaporation of the solvent. Interestingly, a highly oriented lamellar structure was confirmed through the small angle X-ray scattering over a specific range of heptane composition, which is a good solvent for polybutadiene, although the hexagonal cylinder morphology was identified for the melt sample. The transition from the oriented lamellar to highly oriented cylinder structure was observed by annealing the samples at temperatures above the glass transition temperature of polystyrene. Moreover, a transition from parallel to perpendicular orientation in the lamellar state was observed with an increase of the extrusion shear rate. A comparison between pentablock and triblock copolymers will be also discussed.

  16. Analysis on dynamic tensile extrusion behavior of UFG OFHC Cu

    Science.gov (United States)

    Park, Kyung-Tae; Park, Leeju; Kim, Hak Jun; Kim, Seok Bong; Lee, Chong Soo

    2014-08-01

    Dynamic tensile extrusion (DTE) tests with the strain rate order of ~105 s-1 were conducted on coarse grained (CG) Cu and ultrafine grained (UFG) Cu. ECAP of 16 passes with route Bc was employed to fabricate UFG Cu. DTE tests were carried out by launching the sphere samples to the conical extrusion die at a speed of ~475 m/sec in a vacuumed gas gun system. UFG Cu was fragmented into 3 pieces and showed a DTE elongation of ~340%. CG Cu exhibited a larger DTE elongation of ~490% with fragmentation of 4 pieces. During DTE tests, dynamic recrystallization occurred in UFG Cu, but not in CG Cu. In order to examine the DTE behavior of CG Cu and UFG Cu under very high strain rates, a numerical analysis was undertaken by using a commercial finite element code (LS-DYNA 2D axis-symmetric model) with the Johnson - Cook model. The numerical analysis correctly predicted fragmentation and DTE elongation of CG Cu. But, the experimental DTE elongation of UFG Cu was much smaller than that predicted by the numerical analysis. This difference is discussed in terms of microstructural evolution of UFG Cu during DTE tests.

  17. Zn-Li alloy after extrusion and drawing: Structural, mechanical characterization, and biodegradation in abdominal aorta of rat.

    Science.gov (United States)

    Zhao, Shan; Seitz, Jan-M; Eifler, Rainer; Maier, Hans J; Guillory, Roger J; Earley, Elisha J; Drelich, Adam; Goldman, Jeremy; Drelich, Jaroslaw W

    2017-07-01

    Zinc shows great promise as a bio-degradable metal. Our early in vivo investigations implanting pure zinc wires into the abdominal aorta of Sprague-Dawley rats revealed that metallic zinc does not promote restenotic responses and may suppress the activities of inflammatory and smooth muscle cells. However, the low tensile strength of zinc remains a major concern. A cast billet of the Zn-Li alloy was produced in a vacuum induction caster under argon atmosphere, followed by a wire drawing process. Two phases of the binary alloy identified by x-ray diffraction include the zinc phase and intermetallic LiZn 4 phase. Mechanical testing proved that incorporating 0.1wt% of Li into Zn increased its ultimate tensile strength from 116±13MPa (pure Zn) to 274±61MPa while the ductility was held at 17±7%. Implantation of 10mm Zn-Li wire segments into abdominal aorta of rats revealed an excellent biocompatibility of this material in the arterial environment. The biodegradation rate for Zn-Li was found to be about 0.008mm/yr and 0.045mm/yr at 2 and 12months, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Periodontal healing complications following extrusive and lateral luxation in the permanent dentition: a longitudinal cohort study

    DEFF Research Database (Denmark)

    Hermann, Nuno Vibe; Lauridsen, Eva Fejerskov; Christensen, Søren Steno Ahrensburg

    2012-01-01

    To analyze the risk of tooth loss and complications in periodontal ligament (PDL) healing following extrusive and lateral luxation in the permanent dentition.......To analyze the risk of tooth loss and complications in periodontal ligament (PDL) healing following extrusive and lateral luxation in the permanent dentition....

  19. Factors affecting irrigant extrusion during root canal irrigation: a systematic review

    NARCIS (Netherlands)

    Boutsioukis, C.; Psimma, Z.; van der Sluis, L.W.M.

    2013-01-01

    The aim of the present study was to conduct a systematic review and critical analysis of published data on irrigant extrusion to identify factors causing, affecting or predisposing to irrigant extrusion during root canal irrigation of human mature permanent teeth. An electronic search was conducted

  20. 78 FR 67115 - Aluminum Extrusions From the People's Republic of China: Intent To Rescind 2012 Countervailing...

    Science.gov (United States)

    2013-11-08

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-968] Aluminum Extrusions From the People's Republic of China: Intent To Rescind 2012 Countervailing Duty Administrative Review, in Part... administrative review of the countervailing duty (CVD) order on aluminum extrusions from the People's Republic of...

  1. Extrusion conditions affect chemical composition and in vitro digestion of select food ingredients.

    Science.gov (United States)

    Dust, Jolene M; Gajda, Angela M; Flickinger, Elizabeth A; Burkhalter, Toni M; Merchen, Neal R; Fahey, George C

    2004-05-19

    An experiment was conducted to determine the effects of extrusion conditions on chemical composition and in vitro hydrolytic and fermentative digestion of barley grits, cornmeal, oat bran, soybean flour, soybean hulls, and wheat bran. Extrusion conditions altered crude protein, fiber, and starch concentrations of ingredients. Organic matter disappearance (OMD) increased for extruded versus unprocessed samples of barley grits, cornmeal, and soybean flour that had been hydrolytically digested. After 8 h of fermentative digestion, OMD decreased as extrusion conditions intensified for barley grits and cornmeal but increased for oat bran, soybean hulls, and wheat bran. Total short-chain fatty acid production decreased as extrusion conditions intensified for barley grits, soybean hulls, and soybean flour. These data suggest that the effects of extrusion conditions on ingredient composition and digestion are influenced by the unique chemical characteristics of individual substrates.

  2. Production of multifilamentary Nb3Sn composites incorporating a high tin bronze

    International Nuclear Information System (INIS)

    Petrovich, A.; Zeithlin, B.A.; Walker, M.S.

    1977-01-01

    The economics and processing methods have been examined for the fabrication of multifilamentary Nb 3 Sn using a high tin bronze reactive matrix. Four conductor configurations utilizing the high tin bronze were compared with a conventional Cu-13 wt % Sn bronze. The most promising of these designs is potentially 40% lower in cost per ampere meter than the conventional composite. Large hydrostatic extrusion facilities, which are required for the high tin processing, are not presently available in this country but can be made by conversion of conventional presses. They exist in Europe. Experiments were conducted to investigate the applicability of hydrostatic extrusion, and billet components were successfully prepared using the hydrostatic extrusion technique. We have concluded that the economics, availability of facilities and initial fabrication results are favorable for this type of conductor and that the next stage in this program of scale up to extrusion and drawing of 2'' to 3'' diameter composite billets should be undertaken

  3. Evaluation of Enterococcus faecium NRRL B-2354 as a Surrogate for Salmonella During Extrusion of Low-Moisture Food.

    Science.gov (United States)

    Verma, Tushar; Wei, Xinyao; Lau, Soon Kiat; Bianchini, Andreia; Eskridge, Kent M; Subbiah, Jeyamkondan

    2018-04-01

    Salmonella in low-moisture foods is an emerging challenge due to numerous food product recalls and foodborne illness outbreaks. Identification of suitable surrogate is critical for process validation at industry level due to implementation of new Food Safety Modernization Act of 2011. The objective of this study was to evaluate Enterococcus faecium NRRL B-2354 as a surrogate for Salmonella during the extrusion of low-moisture food. Oat flour, a low-moisture food, was adjusted to different moisture (14% to 26% wet basis) and fat (5% to 15% w/w) contents and was inoculated with E. faecium NRRL B-2354. Inoculated material was then extruded in a lab-scale single-screw extruder running at different screw speeds (75 to 225 rpm) and different temperatures (75, 85, and 95 °C). A split-plot central composite 2nd order response surface design was used, with the central point replicated six times. The data from the selective media (m-Enterococcus agar) was used to build the response surface model for inactivation of E. faecium NRRL B-2354. Results indicated that E. faecium NRRL B-2354 always had higher heat resistance compared to Salmonella at all conditions evaluated in this study. However, the patterns of contour plots showing the effect of various product and process parameters on inactivation of E. faecium NRRL B-2354 was different from that of Salmonella. Although E. faecium NRRL B-2354 may be an acceptable surrogate for extrusion of low-moisture products due to higher resistance than Salmonella, another surrogate with similar inactivation behavior may be preferred and needs to be identified. Food Safety Modernization Act requires the food industry to validate processing interventions. This study validated extrusion processing and demonstrated that E. faecium NRRL B-2354 is an acceptable surrogate for extrusion of low-moisture products. The developed response surface model allows the industry to identify process conditions to achieve a desired lethality for their

  4. 77 FR 74466 - Aluminum Extrusions From the People's Republic of China: Notice of Court Decision Not in Harmony...

    Science.gov (United States)

    2012-12-14

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-968] Aluminum Extrusions From the... countervailing duty (CVD) investigation of aluminum extrusions from the People's Republic of China (PRC) \\1... Aluminum Extrusions From the People's Republic of China: Final Affirmative Countervailing Duty...

  5. Investigation of Thermal and Viscoelastic Properties of Polymers Relevant to Hot Melt Extrusion, IV: Affinisol™ HPMC HME Polymers.

    Science.gov (United States)

    Gupta, Simerdeep Singh; Solanki, Nayan; Serajuddin, Abu T M

    2016-02-01

    Most cellulosic polymers cannot be used as carriers for preparing solid dispersion of drugs by hot melt extrusion (HME) due to their high melt viscosity and thermal degradation at high processing temperatures. Three HME-grade hydroxypropyl methylcelluloses, namely Affinisol™ HPMC HME 15 cP, Affinisol™ HPMC HME 100 cP, and Affinisol™ HPMC HME 4 M, have recently been introduced by The Dow Chemical Co. to enable the preparation of solid dispersion at lower and more acceptable processing temperatures. In the present investigation, physicochemical properties of the new polymers relevant to HME were determined and compared with that of Kollidon(®) VA 64. Powder X-ray diffraction (PXRD), modulated differential scanning calorimetry (mDSC), thermogravimetric analysis (TGA), moisture sorption, rheology, and torque analysis by melt extrusion were applied. PXRD and mDSC showed that the Affinisol™ polymers were amorphous in nature. According to TGA, the onset of degradation for all polymers was >220°C. The Affinisol™ polymers exhibited less hygroscopicity than Kollidon(®) VA 64 and another HPMC polymer, Methocel™ K100LV. The complex viscosity profiles of the Affinisol™ polymers as a function of temperature were similar. The viscosity of the Affinisol™ polymers was highly sensitive to the shear rate applied, and unlike Kollidon(®) VA 64, the viscosity decreased drastically when the angular frequency was increased. Because of the very high shear rate encountered during melt extrusion, Affinisol™ polymers showed capability of being extruded at larger windows of processing temperatures as compared to that of Kollidon(®) VA 64.

  6. Equal channel angular extrusion of ultra-high molecular weight polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Reinitz, Steven D., E-mail: Steven.D.Reinitz.TH@Dartmouth.edu; Engler, Alexander J.; Carlson, Evan M.; Van Citters, Douglas W.

    2016-10-01

    Ultra-high molecular weight polyethylene (UHMWPE), a common bearing surface in total joint arthroplasty, is subject to material property tradeoffs associated with conventional processing techniques. For orthopaedic applications, radiation-induced cross-linking is used to enhance the wear resistance of the material, but cross-linking also restricts relative chain movement in the amorphous regions and hence decreases toughness. Equal Channel Angular Extrusion (ECAE) is proposed as a novel mechanism by which entanglements can be introduced to the polymer bulk during consolidation, with the aim of imparting the same tribological benefits of conventional processing without complete inhibition of chain motion. ECAE processing at temperatures near the crystalline melt for UHMWPE produces (1) increased entanglements compared to control materials; (2) increasing entanglements with increasing temperature; and (3) mechanical properties between values for untreated polyethylene and for cross-linked polyethylene. These results support additional research in ECAE-processed UHMWPE for joint arthroplasty applications. - Highlights: • A new processing method for ultra-high molecular weight polyethylene is introduced. • The process produces a highly entangled polyethylene material. • Entanglements are hypothesized to enhance the wear resistance of polyethylene. • This process eliminates the trade-off between mechanical and wear properties.

  7. Genetic Architecture of Anther Extrusion in Spring and Winter Wheat

    Directory of Open Access Journals (Sweden)

    Quddoos H. Muqaddasi

    2017-05-01

    Full Text Available Hybrid wheat breeding is gaining prominence worldwide because it ensures higher and more static yield than conventionally bred varieties. The cleistogamous floral architecture of wheat (Triticum aestivum L. impedes anthers inside the floret, making it largely an inbreeder. For hybrid seed production, high anther extrusion is needed to promote cross pollination and to ensure a high level of pollen availability for the seed plant. This study, therefore, aimed at the genetic dissection of anther extrusion (AE in panels of spring (SP, and winter wheat (WP accessions by genome wide association studies (GWAS. We performed GWAS to identify the SNP markers potentially linked with AE in each panel separately. Phenotypic data were collected for 3 years for each panel. The average levels of Pearson's correlation (r among all years and their best linear unbiased estimates (BLUEs within both panels were high (r(SP = 0.75, P < 0.0001;r(WP = 0.72, P < 0.0001. Genotypic data (with minimum of 0.05 minor allele frequency applied included 12,066 and 12,191 SNP markers for SP and WP, respectively. Both genotypes and environment influenced the magnitude of AE. In total, 23 significant (|log10(P| > 3.0 marker trait associations (MTAs were detected (SP = 11; WP = 12. Anther extrusion behaved as a complex trait with significant markers having either favorable or unfavorable additive effects and imparting minor to moderate levels of phenotypic variance (R2(SP = 9.75−14.24%; R2 (WP = 9.44−16.98%. All mapped significant markers as well as the markers within their significant linkage disequilibrium (r2 ≥ 0.30 regions were blasted against wheat genome assembly (IWGSC1+popseq to find the corresponding genes and their high confidence descriptions were retrieved. These genes and their orthologs in Hordeum vulgare, Brachypodium distachyon, Oryza sativa, and Sorghum bicolor revealed syntenic genomic regions potentially involved in flowering-related traits. Moreover, the

  8. In situ production of tantalum carbide nanodispersoids in a copper matrix by reactive milling and hot extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Manotas-Albor, Milton, E-mail: manotasm@uninorte.edu.co [Grupo de Investigación en Física Aplicada, Departamento de Física, Universidad del Norte, Km. 5 vía a Puerto Colombia, Barranquilla (Colombia); Departamento de Ingeniería Mecánica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Beauchef 850, Santiago (Chile); Vargas-Uscategui, Alejandro [Laboratorio de Materiales a Nanoescala, Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Tupper Av. 2069, Santiago (Chile); Palma, Rodrigo [Departamento de Ingeniería Mecánica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Beauchef 850, Santiago (Chile); Mosquera, Edgar [Laboratorio de Materiales a Nanoescala, Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Tupper Av. 2069, Santiago (Chile)

    2014-06-15

    Highlights: • Tantalum carbide nanodispersoids were obtained in a copper matrix. • Nanodispersoids were obtained by means of reactive milling followed by hot extrusion. • Hexane was used as the liquid medium for the reactive mechanical alloying process. • Hexane provides the carbon (C) needed for the process. • The reaction of tantalum carbide formation takes place in the hot extrusion. - Abstract: This paper presents a study of the in situ production of tantalum carbide nanodispersoids in a copper matrix. The copper matrix composites were produced by means of reactive milling in hexane (C{sub 6}H{sub 14}) followed by hot extrusion. The composite materials were characterized by means of optical emission spectroscopy (OES), X-ray fluorescence (XRF), scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and Vickers micro-hardness. The effect of milling time was analyzed in 10, 20 and 30 h in a composite with a nominal composition Cu–5 vol.% TaC. A systematic increase of the dislocations density and the carbon concentration were observed when the milling time was increased, whereas the crystallite size of the composite matrix decreased. The material milled for 30 h and hot-extruded showed a density of 9037 kg m{sup −3} (98.2% densification) and a softening resistance of 204 HV; however the latter value showed an abrupt drop after an annealing treatment at 923 K for 1 h. Finally, the TEM analysis showed the presence of tantalum carbide (Ta{sub 4}C{sub 3}) nanodispersoids.

  9. Binder extrusion of sliding wear of WC-Co alloys

    International Nuclear Information System (INIS)

    Larsen-Basse, J.

    1985-01-01

    It has previously been proposed that preferential removal of the cobalt binder is an important mechanism in the abrasive wear of cemented carbides in the WC-Co family. It is here demonstrated that binder extrusion occurs also in metal-to-metal sliding wear contacts. The wear scar generated by sliding a hardened steel ball repeatedly over a polished WC-Co surface was studied by SEM. The extruded cobalt fragments accumulate by surface defects, such as cracks caused by the sliding loaded ball, and gradual microfragmentation of the carbide grains follows. The energy required to extrude the cobalt and cause the gradual change in surface layer microstructure is provided by the frictional forces

  10. Characterization of extrusion flow using particle image velocimetry

    Directory of Open Access Journals (Sweden)

    2009-09-01

    Full Text Available The aim of this study was the characterization of polymer flows within an extrusion die using particle image velocimetry (PIV in very constraining conditions (high temperature, pressure and velocity. Measurements were realized on semi-industrial equipments in order to have test conditions close to the industrial ones. Simple flows as well as disrupted ones were studied in order to determine the capabilities and the limits of the method. The analysis of the velocity profiles pointed out significant wall slip, which was confirmed by rheological measurements based on Mooney's method. Numerical simulations were used to connect the two sets of measurements and to simulate complex velocity profiles for comparison to the experimental ones. A good agreement was found between simulations and experiments providing wall slip is taken into account in the simulation.

  11. Using Flory-Huggins phase diagrams as a pre-formulation tool for the production of amorphous solid dispersions: a comparison between hot-melt extrusion and spray drying.

    Science.gov (United States)

    Tian, Yiwei; Caron, Vincent; Jones, David S; Healy, Anne-Marie; Andrews, Gavin P

    2014-02-01

    Amorphous drug forms provide a useful method of enhancing the dissolution performance of poorly water-soluble drugs; however, they are inherently unstable. In this article, we have used Flory-Huggins theory to predict drug solubility and miscibility in polymer candidates, and used this information to compare spray drying and melt extrusion as processes to manufacture solid dispersions. Solid dispersions were prepared using two different techniques (hot-melt extrusion and spray drying), and characterised using a combination of thermal (thermogravimetric analysis and differential scanning calorimetry), spectroscopic (Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction methods. Spray drying permitted generation of amorphous solid dispersions across a wider drug concentration than melt extrusion. Melt extrusion provided sufficient energy for more intimate mixing to be achieved between drug and polymer, which may improve physical stability. It was also confirmed that stronger drug-polymer interactions might be generated through melt extrusion. Remixing and dissolution of recrystallised felodipine into the polymeric matrices did occur during the modulated differential scanning calorimetry analysis, but the complementary information provided from FTIR confirms that all freshly prepared spray-dried samples were amorphous with the existence of amorphous drug domains within high drug-loaded samples. Using temperature-composition phase diagrams to probe the relevance of temperature and drug composition in specific polymer candidates facilitates polymer screening for the purpose of formulating solid dispersions. © 2013 Royal Pharmaceutical Society.

  12. Equal-channel angular sheet extrusion of interstitial-free (IF) steel: Microstructural evolution and mechanical properties

    International Nuclear Information System (INIS)

    Saray, O.; Purcek, G.; Karaman, I.; Neindorf, T.; Maier, H.J.

    2011-01-01

    Highlights: → IF-steel sheets can successfully be processed in the continuous manner using the equal-channel angular sheet extrusion (ECASE). → The ECASE produces the microstructures including dislocation cell and micro-shear bands inside the grains with mainly low-angle grain boundaries. → The ECASE results in a considerable increase in the strength but limited ductility. → A good strength-ductility balance in the ECASE-processed IF-steel sheets can be managed with a suitable annealing parameters. - Abstract: Interstitial-free steel (IF-steel) sheets were processed at room temperature using a continuous severe plastic deformation (SPD) technique called equal-channel angular sheet extrusion (ECASE). After processing, the microstructural evolution and mechanical properties have been systematically investigated. To be able to directly compare the results with those from the same material processed using discontinuous equal channel angular extrusion, the sheets were ECASE processed up to eight passes. The microstructural investigations revealed that the processed sheets exhibited a dislocation cell and/or subgrain structures with mostly low angle grain boundaries. The grains after processing have relatively high dislocation density and intense micro-shear band formation. The electron backscattering diffraction (EBSD) examination showed that the processed microstructure is not fully homogeneous along the sheet thickness due probably to the corner angle of 120 deg. in the ECASE die. It was also observed that the strengths of the processed sheets increase with the number of ECASE passes, and after eight passes following route-A and route-C, the yield strengths reach 463 MPa and 459 MPa, respectively, which is almost 2.5 times higher than that of the initial material. However, the tensile ductility considerably dropped after the ECASE. The limited ductility was attributed to the early plastic instability in the tensile samples due to the inhomogeneous

  13. Cisão de cadeia na degradação termo-mecânica do poliestireno sob múltiplas extrusões Scission in the thermo mechanical degradation of polystyrene under multiple extrusions

    Directory of Open Access Journals (Sweden)

    Carlos A. Cáceres

    2008-01-01

    Full Text Available Determinou-se o número de cisões de cadeia gerado pela degradação termo-mecânica do poliestireno quando submetido a múltiplas extrusões. A degradação foi acompanhada pelas mudanças nas curvas de distribuição de massa molar. Seguindo-se o significado físico das massas molares médias de uma curva de MWD mostrou-se que a massa molar numérica media Mn é a única que pode ser relacionada diretamente com o número de moléculas do sistema. A partir desta calculou-se o número de cadeias clivadas (ns como uma relação entre a Mn da amostra degradada e a virgem. A função de distribuição de cisão de cadeia (CSDF mostra que o processo de degradação termo-mecânica do poliestireno submetido a múltiplas extrusões à 240 °C é do tipo aleatório, independente da massa molar inicial.The number of chain scissions during thermo-degradation of polystyrene under multiple extrusions was calculated. The degradation produces changes in the molecular weight distribution MWD curves. Following the physical meaning of the average molecular weights of a MWD curve it was shown that the number average molecular weight Mn is the only average that can be directly related to the number of molecules in the system. From that it was calculated the number of sectioned chains (ns as a ratio between the number of chains in the degraded and original polymers. The chain scission distribution function (CSDF shows that the thermo-mechanical degradation process of polystyrene under multiple extrusions at 240 °C is of a random type, independent of the initial molecular weight.

  14. A new experimental apparatus for emissivity measurements of steel and the application of multi-wavelength thermometry to continuous casting billets

    Science.gov (United States)

    Wang, Peng; Hu, Zhenwei; Xie, Zhi; Yan, Ming

    2018-05-01

    An experimental apparatus has been designed for measuring the emissivity of a steel surface in both vacuum and oxidation atmosphere. The sample is heated with the method of electromagnetic induction in order to ensure the temperature uniformity. The radiance emitted from a sample is measured using a fiber-optic Fourier transform infrared spectrometer. Using this unique apparatus, we investigated the spectral (2-6 μm) and directional (0°-86°) emissivity of stainless steel 304 with different degrees of surface oxidation at temperatures ranging from 800 to 1100 °C. The experimental results show that the emissivity increases slightly with increasing temperature, which accords with the Hagen-Rubens relation. The emissivity increases rapidly at the initial stage of oxidation, but gradually reaches to a constant value after 20 min. In addition, the directional emissivity has a maximum value at the measuring angle of about 75°. The maximum uncertainty of emissivity is only 3.0% over all the measuring ranges, indicating that this experimental apparatus has a high reliability. In order to measure the surface temperature of casting billets based on multi-wavelength thermometry, the bivariate emissivity function with the two variables, wavelength and temperature, is determined. Temperature measurement results based on our technique are compared with those from common dual-wavelength radiation thermometry. Our approach reduces the measured temperature fluctuation from ±20.7 °C to ±2.8 °C and reflects the temperature variation with the changes of production parameters in real time.

  15. Reprint of: Effects of cold deformation, electron irradiation and extrusion on deuterium desorption behavior in Zr-1%Nb alloy

    Science.gov (United States)

    Morozov, O.; Mats, O.; Mats, V.; Zhurba, V.; Khaimovich, P.

    2018-01-01

    The present article introduces the data of analysis of ranges of ion-implanted deuterium desorption from Zr-1% Nb alloy. The samples studied underwent plastic deformation, low temperature extrusion and electron irradiation. Plastic rolling of the samples at temperature ∼300 K resulted in plastic deformation with the degree of ε = 3.9 and the formation of nanostructural state with the average grain size of d = 61 nm. The high degree of defectiveness is shown in thermodesorption spectrum as an additional area of the deuterium desorption in the temperature ranges 650-850 K. The further processing of the sample (that had undergone plastic deformation by plastic rolling) with electron irradiation resulted in the reduction of the average grain size (58 nm) and an increase in borders concentration. As a result the amount of deuterium desorpted increased in the temperature ranges 650-900 K. In case of Zr-1% Nb samples deformed by extrusion the extension of desorption area is observed towards the temperature reduction down to 420 K. The formation of the phase state of deuterium solid solution in zirconium was not observed. The structural state behavior is a control factor in the process of deuterium thermodesorption spectrum structure formation with a fixed implanted deuterium dose (hydrogen diagnostics). It appears as additional temperature ranges of deuterium desorption depending on the type, character and defect content.

  16. The preparation by extrusion/spheronization and the properties of pellets containing drugs, microcrystalline cellulose and glyceryl monostearate.

    Science.gov (United States)

    Chatchawalsaisin, Jittima; Podczeck, Fridrun; Newton, J Michael

    2005-01-01

    Pellets have been prepared by extrusion and spheronization containing microcrystalline cellulose (MCC) and four model drugs with decreasing order of solubility, paracetamol (P), diclofenac sodium (D), ibuprofen (IB) and indomethacin (IN) at a 10% level with and without the addition of a range of levels of glyceryl monostearate (GMS). The drugs differed in their response to extrusion in that all formulations containing the drug D had a 'steady state' extrusion profile whereas the other three drugs exhibited 'forced flow' indicating the possibility of water migration during the process of ram extrusion. The presence of GMS did not influence this effect. The drug D also required consistently less water to function than the other three drugs. In spite of these differences in extrusion performance, it was possible to prepare satisfactory pellets from formulations of all the drugs with 0, 30 and 60% GMS combined with 90, 60 or 30% of MCC at a range of water levels. It was also possible to prepare pellets containing the drug D with 70, 80 and 90% GMS, with corresponding quantities of 20, 10 and 0% of MCC. It was also possible to prepare the pellet formulations by dispersing the drugs in molten GMS, grinding and processing this with MCC and water. Such systems retained the processing characteristics of the composition made by the blending of the powder. The presence of GMS in all cases reduced the quantity of water required for the process to function. The steady state or the mean of the range of the forces observed during forced flow, were dependent on the composition and the quantity of water added. The surface of the extrudate appeared smooth and measurements of surface roughness established that the value of the rugosity R(a) for any of the extrudates did not exceed 6 microm. The extrudate diameter was found to increase with the quantity of GMS in the formulation. The pellets produced were all within a relatively narrow size range (three sieve fractions of a root two

  17. Design and Optimization of Die Preforming Process for Long Last-stage Blade of Nuclear Power

    Directory of Open Access Journals (Sweden)

    He Xiaomao

    2017-01-01

    Full Text Available The long last-stage blade is a key component of the steam turbine of nuclear conventional island. The die preforming process for a new technology that provides billets for near-net-shape roll-forging process was designed, the effects of the forging temperature, friction coefficient, flash land’s height and die’s outer fillet radius on the die forging force and forging energy were studied by using the orthogonal experiment method, the primary and secondary order of the four factors were analysed by using range analysis method, and the optimal combination of the factors was obtained. By means of numerical simulation and physical experiment, the die preforming process that can provide qualified billets for the subsequent roll-forging process was verified, and the PZS1120f electric screw press can meet the requirements of the die preforming process.

  18. effectof extrusion conditions on aflatoxin content of corn–peanut flakes

    African Journals Online (AJOL)

    Aynadis

    metabolites which can be observed on food stuffs or ... Extrusion cooking technologies are used to ..... effective interaction to reduce aflatoxin B1in the ..... Drug. Administration, “Guidance for industry: Action levels for poisonous or deleterious.

  19. 76 FR 323 - Aluminum Extrusions From the People's Republic of China: Notice of Amended Preliminary...

    Science.gov (United States)

    2011-01-04

    ... finished good. The scope also excludes aluminum alloy sheet or plates produced by other than the extrusion... calculation program by coding the decimal point in the wrong place. The Department agrees, and finds that this...

  20. AFSC/RACE/SAP/Swiney: Primiparous and multiparous Tanner crab egg extrusion, embryo development and hatching

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study compares timing of egg extrusion, embryo development, timing and duration of eclosion, and incubation periods of Kodiak, Alaska primiparous and...