WorldWideScience

Sample records for bilayer environments small

  1. Interaction of small peptides with lipid bilayers.

    OpenAIRE

    Damodaran, K. V.; Merz, K M; Gaber, B P

    1995-01-01

    Molecular dynamics simulations of the tripeptide Ala-Phe-Ala-O-tert-butyl interacting with dimyristoylphosphatidylcholine lipid bilayers have been carried out. The lipid and aqueous environments of the peptide, the alkyl chain order, and the lipid and peptide dynamics have been investigated with use of density profiles, radial distribution functions, alkyl chain order parameter profiles, and time correlation functions. It appears that the alkyl chain region accommodates the peptides in the bi...

  2. Intercalation of small hydrophobic molecules in lipid bilayers containing cholesterol

    Energy Technology Data Exchange (ETDEWEB)

    Worcester, D.L.; Hamacher, K.; Kaiser, H.; Kulasekere, R.; Torbet, J. [Univ. of Missouri, Columbia, MO (United States)

    1994-12-31

    Partitioning of small hydrophobic molecules into lipid bilayers containing cholesterol has been studied using the 2XC diffractometer at the University of Missouri Research Reactor. Locations of the compounds were determined by Fourier difference methods with data from both deuterated and undeuterated compounds introduced into the bilayers from the vapor phase. Data fitting procedures were developed for determining how well the compounds were localized. The compounds were found to be localized in a narrow region at the center of the hydrophobic layer, between the two halves of the bilayer. The structures are therefore intercalated structures with the long axis of the molecules in the plane of the bilayer.

  3. Predicting proton titration in cationic micelle and bilayer environments

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, Brian H.; Shen, Jana K. [Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201 (United States); Eike, David M.; Murch, Bruce P.; Koenig, Peter H. [Computational Chemistry, Modeling and Simulation GCO, Procter and Gamble, Cincinnati, Ohio 45201 (United States)

    2014-08-28

    Knowledge of the protonation behavior of pH-sensitive molecules in micelles and bilayers has significant implications in consumer product development and biomedical applications. However, the calculation of pK{sub a}’s in such environments proves challenging using traditional structure-based calculations. Here we apply all-atom constant pH molecular dynamics with explicit ions and titratable water to calculate the pK{sub a} of a fatty acid molecule in a micelle of dodecyl trimethylammonium chloride and liquid as well as gel-phase bilayers of diethyl ester dimethylammonium chloride. Interestingly, the pK{sub a} of the fatty acid in the gel bilayer is 5.4, 0.4 units lower than that in the analogous liquid bilayer or micelle, despite the fact that the protonated carboxylic group is significantly more desolvated in the gel bilayer. This work illustrates the capability of all-atom constant pH molecular dynamics in capturing the delicate balance in the free energies of desolvation and Coulombic interactions. It also shows the importance of the explicit treatment of ions in sampling the protonation states. The ability to model dynamics of pH-responsive substrates in a bilayer environment is useful for improving fabric care products as well as our understanding of the side effects of anti-inflammatory drugs.

  4. Predicting proton titration in cationic micelle and bilayer environments

    International Nuclear Information System (INIS)

    Knowledge of the protonation behavior of pH-sensitive molecules in micelles and bilayers has significant implications in consumer product development and biomedical applications. However, the calculation of pKa’s in such environments proves challenging using traditional structure-based calculations. Here we apply all-atom constant pH molecular dynamics with explicit ions and titratable water to calculate the pKa of a fatty acid molecule in a micelle of dodecyl trimethylammonium chloride and liquid as well as gel-phase bilayers of diethyl ester dimethylammonium chloride. Interestingly, the pKa of the fatty acid in the gel bilayer is 5.4, 0.4 units lower than that in the analogous liquid bilayer or micelle, despite the fact that the protonated carboxylic group is significantly more desolvated in the gel bilayer. This work illustrates the capability of all-atom constant pH molecular dynamics in capturing the delicate balance in the free energies of desolvation and Coulombic interactions. It also shows the importance of the explicit treatment of ions in sampling the protonation states. The ability to model dynamics of pH-responsive substrates in a bilayer environment is useful for improving fabric care products as well as our understanding of the side effects of anti-inflammatory drugs

  5. Predicting proton titration in cationic micelle and bilayer environments

    OpenAIRE

    Brian H. Morrow; Eike, David M.; Murch, Bruce P.; Koenig, Peter H.; Shen, Jana K.

    2014-01-01

    Knowledge of the protonation behavior of pH-sensitive molecules in micelles and bilayers has significant implications in consumer product development and biomedical applications. However, the calculation of pKa’s in such environments proves challenging using traditional structure-based calculations. Here we apply all-atom constant pH molecular dynamics with explicit ions and titratable water to calculate the pKa of a fatty acid molecule in a micelle of dodecyl trimethylammonium chloride and l...

  6. Gramicidin-based fluorescence assay; for determining small molecules potential for modifying lipid bilayer properties

    NARCIS (Netherlands)

    Ingólfsson, Helgi I; Sanford, R Lea; Kapoor, Ruchi; Andersen, Olaf S

    2010-01-01

    Many drugs and other small molecules used to modulate biological function are amphiphiles that adsorb at the bilayer/solution interface and thereby alter lipid bilayer properties. This is important because membrane proteins are energetically coupled to their host bilayer by hydrophobic interactions.

  7. Screening for small molecules' bilayer-modifying potential using a gramicidin-based fluorescence assay

    NARCIS (Netherlands)

    Ingólfsson, Helgi I; Andersen, Olaf S

    2010-01-01

    Many drugs and other small molecules used to modulate biological function are amphiphiles that adsorb at the bilayer/solution interface and thereby alter lipid bilayer properties. This is important because membrane proteins are energetically coupled to their host bilayer by hydrophobic interactions.

  8. Structural Effects of Small Molecules on Phospholipid Bilayers Investigated by Molecular Simulations

    CERN Document Server

    Lee, B W; Sum, A K; Vattulainen, I; Patra, M; Karttunen, M; Lee, Bryan W; Faller, Roland; Sum, Amadeu K; Vattulainen, Ilpo; Patra, Michael; Karttunen, Mikko

    2004-01-01

    We summarize and compare recent Molecular Dynamics simulations on the interactions of dipalmitoylphosphatidylcholine (DPPC) bilayers in the liquid crystalline phase with a number of small molecules including trehalose, a disaccharide of glucose, alcohols, and dimethylsulfoxide (DMSO). The sugar molecules tend to stabilize the structure of the bilayer as they bridge adjacent lipid headgroups. They do not strongly change the structure of the bilayer. Alcohols and DMSO destabilize the bilayer as they increase its area per molecule in the bilayer plane and decrease the order parameter. Alcohols have a stronger detrimental effect than DMSO. The observables which we compare are the area per molecule in the plane of the bilayer, the membrane thickness, and the NMR order parameter of DPPC hydrocarbon tails. The area per molecule and the order parameter are very well correlated whereas the bilayer thickness is not necessarily correlated with them.

  9. Peptide-induced Asymmetric Distribution of Charged Lipids in a Vesicle Bilayer Revealed by Small-Angle Neutron Scattering

    Science.gov (United States)

    Heller, William; Qian, Shuo

    2012-02-01

    Cellular membranes are complex mixtures of lipids, proteins and other small molecules that provide functional, dynamic barriers between the cell and its environment, as well as between environments within the cell. The lipid composition of the membrane is highly specific and controlled in terms of both content and lipid localization. Here, small-angle neutron scattering and selective deuterium labeling were used to probe the impact of the membrane-active peptides melittin and alamethicin on the structure of lipid bilayers composed of a mixture of the lipids dimyristoyl phosphatidylglycerol (DMPG) and chain-perdeuterated dimyristoyl phosphatidylcholine (DMPC). We found that both peptides enriched the outer leaflet of the bilayer with the negatively charged DMPG, creating an asymmetric distribution of lipids. The level of enrichment is peptide concentration-dependent and is stronger for melittin than alamethicin. The enrichment between the inner and outer bilayer leaflets occurs at very low peptide concentrations, and increases with peptide concentration, including when the peptide adopts a membrane-spanning, pore-forming state.

  10. Structure of Carbon Nanotube Porins in Lipid Bilayers: An in Situ Small-Angle X-ray Scattering (SAXS) Study.

    Science.gov (United States)

    Tran, Ich C; Tunuguntla, Ramya H; Kim, Kyunghoon; Lee, Jonathan R I; Willey, Trevor M; Weiss, Thomas M; Noy, Aleksandr; van Buuren, Tony

    2016-07-13

    Carbon nanotube porins (CNTPs), small segments of carbon nanotubes capable of forming defined pores in lipid membranes, are important future components for bionanoelectronic devices as they could provide a robust analog of biological membrane channels. In order to control the incorporation of these CNT channels into lipid bilayers, it is important to understand the structure of the CNTPs before and after insertion into the lipid bilayer as well as the impact of such insertion on the bilayer structure. Here we employed a noninvasive in situ probe, small-angle X-ray scattering, to study the integration of CNT porins into dioleoylphosphatidylcholine bilayers. Our results show that CNTPs in solution are stabilized by a monolayer of lipid molecules wrapped around their outer surface. We also demonstrate that insertion of CNTPs into the lipid bilayer results in decreased bilayer thickness with the magnitude of this effect increasing with the concentration of CNTPs. PMID:27322135

  11. Power losses in bilayer inverted small molecule organic solar cells

    KAUST Repository

    Trinh, Cong

    2012-01-01

    Inverted bilayer organic solar cells using copper phthalocyanine (CuPc) as a donor and C60 as an acceptor with the structure: glass/indium tin oxide (ITO)/ZnO/C60/CuPc/MoO3/Al, in which the zinc oxide (ZnO) was deposited by atomic layer deposition, are compared with a conventional device: glass/ITO/CuPc/C60/bathocuproine/Al. These inverted and conventional devices give short circuit currents of 3.7 and 4.8 mA/cm 2, respectively. However, the inverted device gives a reduced photoresponse from the CuPc donor compared to that of the conventional device. Optical field models show that the arrangement of organic layers in the inverted devices leads to lower absorption of long wavelengths by the CuPc donor; the low energy portion of the spectrum is concentrated near the metal oxide electrode in both devices. © 2012 American Institute of Physics.

  12. Comparative atomic-scale hydration of the ceramide and phosphocholine headgroup in solution and bilayer environments.

    Science.gov (United States)

    Gillams, Richard J; Lorenz, Christian D; McLain, Sylvia E

    2016-06-14

    Previous studies have used neutron diffraction to elucidate the hydration of the ceramide and the phosphatidylcholine headgroup in solution. These solution studies provide bond-length resolution information on the system, but are limited to liquid samples. The work presented here investigates how the hydration of ceramide and phosphatidylcholine headgroups in a solution compares with that found in a lipid bilayer. This work shows that the hydration patterns seen in the solution samples provide valuable insight into the preferential location of hydrating water molecules in the bilayer. There are certain subtle differences in the distribution, which result from a combination of the lipid conformation and the lipid-lipid interactions within the bilayer environment. The lipid-lipid interactions in the bilayer will be dependent on the composition of the bilayer, whereas the restricted exploration of conformational space is likely to be applicable in all membrane environments. The generalized description of hydration gathered from the neutron diffraction studies thus provides good initial estimation for the hydration pattern, but this can be further refined for specific systems. PMID:27306021

  13. Mechanical behavior of bilayered small-diameter nanofibrous structures as biomimetic vascular grafts.

    Science.gov (United States)

    Montini-Ballarin, Florencia; Calvo, Daniel; Caracciolo, Pablo C; Rojo, Francisco; Frontini, Patricia M; Abraham, Gustavo A; V Guinea, Gustavo

    2016-07-01

    To these days, the production of a small diameter vascular graft (electrospun bilayered small-diameter vascular grafts made of two different bioresorbable synthetic polymers, segmented poly(ester urethane) and poly(L-lactic acid), that mimic the biomechanical characteristics of elastin and collagen is investigated. A J-shaped response when subjected to internal pressure was observed as a cause of the nanofibrous layered structure, and the materials used. Compliance values were in the order of natural coronary arteries and very close to the bypass gold standard-saphenous vein. The suture retention strength and burst pressure values were also in the range of natural vessels. Therefore, the bilayered vascular grafts presented here are very promising for future application as small-diameter vessel replacements. PMID:26872337

  14. Delivery of Small Interfering RNA by Peptide-Targeted Mesoporous Silica Nanoparticle-Supported Lipid Bilayers

    OpenAIRE

    Ashley, Carlee E.; CARNES, ERIC C.; Epler, Katharine E.; Padilla, David P.; Phillips, Genevieve K.; Castillo, Robert E.; Wilkinson, Dan C.; Wilkinson, Brian S.; Burgard, Cameron A.; Sewell, Robin M.; Townson, Jason L.; Chackerian, Bryce; Willman, Cheryl L.; Peabody, David S; Wharton, Walker

    2012-01-01

    The therapeutic potential of small interfering RNAs (siRNAs) is severely limited by the availability of delivery platforms that protect siRNA from degradation, deliver it to the target cell with high specificity and efficiency, and promote its endosomal escape and cytosolic dispersion. Here we report that mesoporous silica nanoparticle-supported lipid bilayers (or ‘protocells’), exhibit multiple properties that overcome many of the limitations of existing delivery platforms. Protocells have a...

  15. The mechanical performance of weft-knitted/electrospun bilayer small diameter vascular prostheses.

    Science.gov (United States)

    Xie, Yu; Guan, Ying; Kim, Soo-Hyun; King, Martin W

    2016-08-01

    Cardiovascular disease (CVD) accounts for a significant mortality rate worldwide. Autologous vessels, such as the saphenous vein and the internal mammary artery, are currently the gold standard materials for by-pass surgery. However, they may not always be available due to aging, previous harvesting or the pre-existing arterial disease. Synthetic commercial ePTFE and polyester (PET) are not suitable for small diameter vascular grafts (electrospun bilayer graft made of biodegradable and biocompatible poly(lactic acid) (PLA) and poly(lactide-co-caprolactone) (PLCL) polymers to mimic the multilayer structure of native arteries. We also designed the prostheses to provide some of the required mechanical properties. While the bilayer structure had excellent circumferential tensile strength, bursting strength and suture retention resistance, the radial compliance did not show any observable improvement. PMID:27111627

  16. Small molecule interactions with lipid bilayers: a molecular dynamics study of chlorhexidine

    Science.gov (United States)

    van Oosten, Brad; Marquardt, Drew; Sternin, Edward; Harroun, Thad

    2013-03-01

    Chlorhexidine presents an interesting modelling challenge with a hydrophobic hexane connecting two biguanides (arginine analogues) and two aromatic rings. We conducted molecular dynamic simulations using the GROMACS simulation software to reproduce the experimental environment of chlorhexidine in a 1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine (DMPC) bilayer to produce atomic-level information. We constructed an all-atom force field of chlorhexidine from the CHARMM36 force field using well established parameters of certain amino acids. Partial charges were treated differently, which were calculated using GAUSSIAN software. We will compare and contrast the results of our model to that of our neutron scattering experiments previously done in our lab.

  17. NanoARPES of twisted bilayer graphene on SiC: absence of velocity renormalization for small angles.

    Science.gov (United States)

    Razado-Colambo, I; Avila, J; Nys, J-P; Chen, C; Wallart, X; Asensio, M-C; Vignaud, D

    2016-01-01

    The structural and electronic properties of twisted bilayer graphene (TBG) on SiC(000) grown by Si flux-assisted molecular beam epitaxy were investigated using scanning tunneling microscopy (STM) and angle-resolved photoelectron spectroscopy with nanometric spatial resolution. STM images revealed a wide distribution of twist angles between the two graphene layers. The electronic structure recorded in single TBG grains showed two closely-spaced Dirac π bands associated to the two stacked layers with respective twist angles in the range 1-3°. The renormalization of velocity predicted in previous theoretical calculations for small twist angles was not observed. PMID:27264791

  18. BALI development environment for small mobile robots

    Science.gov (United States)

    Lim, Willie Y.

    1995-12-01

    The design and prototyping of a development environment, called BALI, for a small robot, viz., the MIT 6.270 robot, is presented in this paper. BALI is being developed and used for research work using a 6.270-based robot. Building on the experience with IC (interactive-C) for programming the 6.270 robot and new technologies like Java, a more powerful and low cost robot development environment is possible. The goal of BALI is to provide a flexible, customizable, and extensible development environment so that robot researchers can quickly tailor BALI to their robots. Given that the 6.270 robot is really a building kit made up of LEGO blocks (or similar kinds of physical building blocks), the 68HC11-based motherboard, and a variety of sensors, BALI cannot be specially built for one 'instance' of the 6.270 robot. Rather the guiding principles for building BALI should be to provide the GUI (graphical user interface) 'primitives' from which one can assemble and build his or her development environment. Thus GUI primitives for displaying status information, sensor readings, robot orientation, and environment maps must be provided. Much of these primitives are already provided in Java. It is the robot-specific ones that have to be developed for BALI. The Java- like language that forms the core of BALI is the main focus of this paper.

  19. Bilayer-thickness-mediated interactions between integral membrane proteins.

    Science.gov (United States)

    Kahraman, Osman; Koch, Peter D; Klug, William S; Haselwandter, Christoph A

    2016-04-01

    Hydrophobic thickness mismatch between integral membrane proteins and the surrounding lipid bilayer can produce lipid bilayer thickness deformations. Experiment and theory have shown that protein-induced lipid bilayer thickness deformations can yield energetically favorable bilayer-mediated interactions between integral membrane proteins, and large-scale organization of integral membrane proteins into protein clusters in cell membranes. Within the continuum elasticity theory of membranes, the energy cost of protein-induced bilayer thickness deformations can be captured by considering compression and expansion of the bilayer hydrophobic core, membrane tension, and bilayer bending, resulting in biharmonic equilibrium equations describing the shape of lipid bilayers for a given set of bilayer-protein boundary conditions. Here we develop a combined analytic and numerical methodology for the solution of the equilibrium elastic equations associated with protein-induced lipid bilayer deformations. Our methodology allows accurate prediction of thickness-mediated protein interactions for arbitrary protein symmetries at arbitrary protein separations and relative orientations. We provide exact analytic solutions for cylindrical integral membrane proteins with constant and varying hydrophobic thickness, and develop perturbative analytic solutions for noncylindrical protein shapes. We complement these analytic solutions, and assess their accuracy, by developing both finite element and finite difference numerical solution schemes. We provide error estimates of our numerical solution schemes and systematically assess their convergence properties. Taken together, the work presented here puts into place an analytic and numerical framework which allows calculation of bilayer-mediated elastic interactions between integral membrane proteins for the complicated protein shapes suggested by structural biology and at the small protein separations most relevant for the crowded membrane

  20. Bilayer-thickness-mediated interactions between integral membrane proteins

    Science.gov (United States)

    Kahraman, Osman; Koch, Peter D.; Klug, William S.; Haselwandter, Christoph A.

    2016-04-01

    Hydrophobic thickness mismatch between integral membrane proteins and the surrounding lipid bilayer can produce lipid bilayer thickness deformations. Experiment and theory have shown that protein-induced lipid bilayer thickness deformations can yield energetically favorable bilayer-mediated interactions between integral membrane proteins, and large-scale organization of integral membrane proteins into protein clusters in cell membranes. Within the continuum elasticity theory of membranes, the energy cost of protein-induced bilayer thickness deformations can be captured by considering compression and expansion of the bilayer hydrophobic core, membrane tension, and bilayer bending, resulting in biharmonic equilibrium equations describing the shape of lipid bilayers for a given set of bilayer-protein boundary conditions. Here we develop a combined analytic and numerical methodology for the solution of the equilibrium elastic equations associated with protein-induced lipid bilayer deformations. Our methodology allows accurate prediction of thickness-mediated protein interactions for arbitrary protein symmetries at arbitrary protein separations and relative orientations. We provide exact analytic solutions for cylindrical integral membrane proteins with constant and varying hydrophobic thickness, and develop perturbative analytic solutions for noncylindrical protein shapes. We complement these analytic solutions, and assess their accuracy, by developing both finite element and finite difference numerical solution schemes. We provide error estimates of our numerical solution schemes and systematically assess their convergence properties. Taken together, the work presented here puts into place an analytic and numerical framework which allows calculation of bilayer-mediated elastic interactions between integral membrane proteins for the complicated protein shapes suggested by structural biology and at the small protein separations most relevant for the crowded membrane

  1. Solution NMR of membrane proteins in bilayer mimics: Small is beautiful, but sometimes bigger is better

    Science.gov (United States)

    Poget, Sébastien F.; Girvin, Mark E.

    2007-01-01

    Considerable progress has been made recently on solution NMR studies of multi-transmembrane helix membrane protein systems of increasing size. Careful correlation of structure with function has validated the physiological relevance of these studies in detergent micelles. However, larger micelle and bicelle systems are sometimes required to stabilize the active forms of dynamic membrane proteins, such as the bacterial small multidrug resistance transporters. Even in these systems with aggregate molecular weights well over 100 kDa, solution NMR structural studies are feasible – but challenging. PMID:17961504

  2. Business environment and Russian Small Business

    OpenAIRE

    Rubzova, O.

    2013-01-01

    The paper deals with factors hampering the development of small business in the monopoly-dominated Russian economy. It is suggested that more activism on the part of small business organizations is required to foresee the enforcement of the legislation promoting competition

  3. Corrosion resistance of the NdFeB coated with AlN/SiC bilayer thin films by magnetron sputtering under different environments

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Lei [School of Materials Science and Engineering, Hefei University of Technology, Anhui Hefei 230009 (China); Li, Heqin, E-mail: lhqjs@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Anhui Hefei 230009 (China); Shen, Jiong [Earth-Panda Advance Magnetic Material Co., Ltd., Anhui Lujiang 231500 (China); Qiao, Kai; Wang, Wei; Zhou, Chu [School of Materials Science and Engineering, Hefei University of Technology, Anhui Hefei 230009 (China); Zhang, Jing; Tang, Qiong [School of Materials Science and Engineering, Hefei University of Technology, Anhui Hefei 230009 (China); School of Electronic Science and Applied Physics, Hefei University of Technology, Anhui Hefei 230009 (China)

    2015-02-01

    The AlN/SiC bilayer and SiC monolayer thin films were deposited on sintered NdFeB by RF magnetron sputtering to improve the corrosion resistance. Their structures and morphologies were studied by XRD and AFM and SEM. The corrosion behaviors of AlN/SiC and SiC-coated NdFeB in 3.5 wt% NaCl, 20 wt% NaOH and 0.1 mol/L H{sub 2}SO{sub 4} solutions were characterized with potentiodynamic polarization curves. The results show that AlN/SiC and SiC thin films can evidently improve the corrosion resistance of NdFeB, and the AlN/SiC films have the better resistance than the SiC film. - Highlights: • SiC monolayer and AlN/SiC bilayer thin films have been prepared on NdFeB at room temperature by RF magnetron sputtering. • NdFeB coated with AlN/SiC bilayer films has more corrosion resistance than that coated with SiC monolayer film under different environments. • The grains of the AlN/SiC bilayer films are finer and the surface roughness is lower than that of SiC monolayer film.

  4. Graduate Education in a Small Business Environment

    Science.gov (United States)

    Bering, E. A., III; Longmier, B.; Giambusso, M.

    2015-12-01

    This paper reports on the issues that confront a professor when supervising graduate students and postdocs whose research work is done on site at a small business. The advantages include relative freedom from having to write proposals; the excitement of working on topics that have clear, direct uses; more extensive engineering support than many students get; and hands on day to day mentoring from the rest of the team. Students get direct instruction in technology transfer and small business processes. The disadvantages include isolation from the rest of the students in your Department and campus life, physical isolation from resources such as the seminar program, library, health center, and other student services. In addition, students who need "introduction to research" practicum instruction in electronics and computer skills will not do well. Finally, care must be taken to avoid including proprietary data in the core argument of the work.

  5. Competitiveness of Small Enterprises: Clusters, Business Environment and Local Development

    OpenAIRE

    Monica Romis

    2008-01-01

    This summary of the presentations and discussions of the participants in the meeting "Competitiveness of Small Enterprises: Clusters, Business Environment and Local Development", aims to find the common thread that ties the themes of the presentations together.

  6. A Learning Framework for the Small Business Environment

    Science.gov (United States)

    Kelliher, Felicity; Henderson, Joan Bernadette

    2006-01-01

    Purpose: The aim of this article is to offer insight into the factors affecting individual and organisational learning in a small business; specifically the identification of the learning relationships that are unique to the small business environment. Design/methodology/approach: The authors apply Crossan et al.'s (1997, 1999) Organisational…

  7. A LEARNING FRAMEWORK FOR THE SMALL BUSINESS ENVIRONMENT.

    OpenAIRE

    Kelliher, Felicity; Henderson, Joan Bernadette

    2006-01-01

    PURPOSE-The aim of this article is to offer insight into the factors affecting individual and organisational learning in small businesses; specifically the identification of the learning relationships that are unique to the small business environment. DESIGN/METHODOLOGY/APPROACH- The authors apply Crossan et al.'s (1997, 1999) Organisational Learning Framework. The proposed framework is supported by empirical evidence generated through a longitudinal case study carried out in a small busi...

  8. Small-angle and wide-angle X-ray scattering study on the bilayer structure of synthetic and bovine heart cardiolipins

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroshi [Biophysics Laboratory, Department of Chemistry and Chemical Biology, Gunma University, Maebashi, Gunma, 371-8510 (Japan); Hayakawa, Tomohiro [Life Science Laboratory, Advanced Materials Laboratories, Sony Corporation, Yushima, Bunkyo-ku, Tokyo, 113-8510 (Japan); Ito, Kazuki; Takata, Masaki [Structural Materials Science Laboratory, RIKEN SPring-8 Center, Sayo, Hyogo 679-5148 (Japan); Kobayashi, Toshihide, E-mail: htakahas@chem-bio.gunma-u.ac.j [Lipid Biology Laboratory, RIKEN, Wako, Saitama 351-0198 (Japan)

    2010-10-01

    Cardiolipin (CL) is a membrane phospholipid containing four fatty acid chains. CL plays an important role in energy transformation in mitochondria. The disorder of CL biosynthesis is involved in a genetic disease, Barth syndrome. Alteration of fatty acid composition of CLs has been found in Barth syndrome patients, i.e., the decrease of unsaturated fatty acid chains. In this study, we investigated how the degree of saturation alters the structure of CL bilayers by using X-ray scattering. Bovine heart CL and two synthetic CLs were compared. Fatty acid compositions of these three CLs have different saturation. Small-angle X-ray scattering data showed that the decrease of the number of double bonds in the unsaturated fatty acid chains causes to thicken the CL bilayers. In addition, wide-angle X-ray scattering data suggested that the decrease reduces the degree of disorder of the hydrophobic region in a liquid crystalline phase. These results may be related to the dysfunction of mitochondria in Barth syndrome.

  9. Small-angle and wide-angle X-ray scattering study on the bilayer structure of synthetic and bovine heart cardiolipins

    International Nuclear Information System (INIS)

    Cardiolipin (CL) is a membrane phospholipid containing four fatty acid chains. CL plays an important role in energy transformation in mitochondria. The disorder of CL biosynthesis is involved in a genetic disease, Barth syndrome. Alteration of fatty acid composition of CLs has been found in Barth syndrome patients, i.e., the decrease of unsaturated fatty acid chains. In this study, we investigated how the degree of saturation alters the structure of CL bilayers by using X-ray scattering. Bovine heart CL and two synthetic CLs were compared. Fatty acid compositions of these three CLs have different saturation. Small-angle X-ray scattering data showed that the decrease of the number of double bonds in the unsaturated fatty acid chains causes to thicken the CL bilayers. In addition, wide-angle X-ray scattering data suggested that the decrease reduces the degree of disorder of the hydrophobic region in a liquid crystalline phase. These results may be related to the dysfunction of mitochondria in Barth syndrome.

  10. Managerial perception of regional small business environment in southern Poland

    OpenAIRE

    Wach, Krzysztof

    2007-01-01

    The paper elaborates on managerial perception of regional business environment of small and medium-sized enterprises in southern Poland (i.e. two voivodeships: Małopolska and Śląsk). The paper is based on own empirical research, which was conducted in late-2004 year. The research was conducted on a random sample of 109 micro, small and medium-sized firms located in a studied region. The paper presents statistical verifications of the correlations between the eight regional environment factors...

  11. Sustainable Small-Scale Agriculture in Semi-Arid Environments

    Directory of Open Access Journals (Sweden)

    Scott Ingram

    2011-03-01

    Full Text Available For at least the past 8000 years, small-scale farmers in semi-arid environments have had to mitigate shortfalls in crop production due to variation in precipitation and stream flow. To reduce their vulnerability to a shortfall in their food supply, small-scale farmers developed short-term strategies, including storage and community-scale sharing, to mitigate inter-annual variation in crop production, and long-term strategies, such as migration, to mitigate the effects of sustained droughts. We use the archaeological and paleoclimatic records from A.D. 900-1600 in two regions of the American Southwest to explore the nature of variation in the availability of water for crops, and the strategies that enhanced the resilience of prehistoric agricultural production to climatic variation. Drawing on information concerning contemporary small-scale farming in semi-arid environments, we then suggest that the risk coping and mitigation strategies that have endured for millennia are relevant to enhancing the resilience of contemporary farmers' livelihoods to environmental and economic perturbations.

  12. URANIUM DETECTION USING SMALL SCINTILLATORS IN A MARITIME ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, K; Donna Beals, D; Ken Odell, K

    2006-05-12

    The performance of several commercially available portable radiation spectrometers containing small NaI(Tl) scintillation detectors has been studied at the Savannah River National Laboratory (SRNL). These hand-held radioisotope identifiers are used by field personnel to detect and identify the illegal transport of uranium as a deterrent to undeclared nuclear proliferation or nuclear terrorism. The detection of uranium in a variety of chemical forms and isotopic enrichments presents some unique challenges in the maritime environment. This study was conducted using a variety of shielded and unshielded uranium sources in a simulated maritime environment. The results include estimates of the detection sensitivity for various isotopic enrichments and configurations using the manufacturer's spectral analysis firmware. More sophisticated methods for analyzing the spectra off-line are also evaluated to determine the detection limits and enrichment sensitivities from the field measurements.

  13. Probing the structure of the mechanosensitive channel of small conductance in lipid bilayers with pulsed electron-electron double resonance

    OpenAIRE

    Ward, Richard; Pliotas, Christos; Branigan, Emma; Hacker, Christian; Rasmussen, Akiko; Hagelueken, Gregor; Booth, Ian R.; Miller, Samantha; Lucocq, John; Naismith, Jim; Schiemann, Olav

    2014-01-01

    Mechanosensitive channel proteins are important safety valves against osmotic shock in bacteria, and are involved in sensing touch and sound waves in higher organisms. The mechanosensitive channel of small conductance (MscS) has been extensively studied. Pulsed electron-electron double resonance (PELDOR or DEER) of detergent-solubilized protein confirms that as seen in the crystal structure, the outer ring of transmembrane helices do not pack against the pore- forming helices, creating an app...

  14. Scratch and wear behaviour of plasma sprayed nano ceramics bilayer Al2O3-13 wt%TiO2/hydroxyapatite coated on medical grade titanium substrates in SBF environment

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Hydroxyapatite was synthesized by sol–gel route. • Bilayer (AT13/HAP) coating improves wear resistance of CP-Ti implant surface. • The microhardness values of bilayer coating surface were increased 4 times compared to uncoated sample surface. - Abstract: Among the various coating techniques, plasma spray coating is an efficient technique to protect the metal surface from the various surface problems like wear and corrosion. The aim of this present work is to design and produce a bilayer coating on the non- toxic commercially pure titanium (denoted as CP-Ti) implant substrate in order to improve the biocompatibility and surface properties. To achieve that, Al2O3-13 wt%TiO2 (AT13) and hydroxyapatite (HAP) were coated on CP-Ti implant substrate using plasma spray coating technique. Further, the coated substrates were subjected to various characterization techniques. The crystallite size of coated HAP and its morphological studies were carried out using X-ray diffractometer (XRD) and scanning electron microscopy (SEM) respectively. The wear test on the bilayer (AT13/HAP) coated CP-Ti implant surface was conducted using ball-on-disc tester under SBF environment at 37 °C, in order to determine the wear rate and the coefficient of friction. The adhesion strength of the bilayer coated surface was evaluated by micro scratch tester under the ramp load conditions with load range of 14–20 N. The above said studies were repeated on the single layer coated HAP and AT13 implant surfaces. The results reveal that the bilayer (AT13/HAP) coated CP-Ti surface has the improved wear rate, coefficient of friction in compared to single layer coated HAP and AT13 surfaces

  15. Small RNA transcriptomes of mangroves evolve adaptively in extreme environments.

    Science.gov (United States)

    Wen, Ming; Lin, Xingqin; Xie, Munan; Wang, Yushuai; Shen, Xu; Liufu, Zhongqi; Wu, Chung-I; Shi, Suhua; Tang, Tian

    2016-01-01

    MicroRNAs (miRNAs) and endogenous small interfering RNAs (siRNAs) are key players in plant stress responses. Here, we present the sRNA transcriptomes of mangroves Bruguiera gymnorrhiza and Kandelia candel. Comparative computational analyses and target predictions revealed that mangroves exhibit distinct sRNA regulatory networks that differ from those of glycophytes. A total of 32 known and three novel miRNA families were identified. Conserved and mangrove-specific miRNA targets were predicted; the latter were widely involved in stress responses. The known miRNAs showed differential expression between the mangroves and glycophytes, reminiscent of the adaptive stress-responsive changes in Arabidopsis. B. gymnorrhiza possessed highly abundant but less conserved TAS3 trans-acting siRNAs (tasiRNAs) in addition to tasiR-ARFs, with expanded potential targets. Our results indicate that the evolutionary alteration of sRNA expression levels and the rewiring of sRNA-regulatory networks are important mechanisms underlying stress adaptation. We also identified sRNAs that are involved in salt and/or drought tolerance and nutrient homeostasis as possible contributors to mangrove success in stressful environments.

  16. Small RNA transcriptomes of mangroves evolve adaptively in extreme environments.

    Science.gov (United States)

    Wen, Ming; Lin, Xingqin; Xie, Munan; Wang, Yushuai; Shen, Xu; Liufu, Zhongqi; Wu, Chung-I; Shi, Suhua; Tang, Tian

    2016-01-01

    MicroRNAs (miRNAs) and endogenous small interfering RNAs (siRNAs) are key players in plant stress responses. Here, we present the sRNA transcriptomes of mangroves Bruguiera gymnorrhiza and Kandelia candel. Comparative computational analyses and target predictions revealed that mangroves exhibit distinct sRNA regulatory networks that differ from those of glycophytes. A total of 32 known and three novel miRNA families were identified. Conserved and mangrove-specific miRNA targets were predicted; the latter were widely involved in stress responses. The known miRNAs showed differential expression between the mangroves and glycophytes, reminiscent of the adaptive stress-responsive changes in Arabidopsis. B. gymnorrhiza possessed highly abundant but less conserved TAS3 trans-acting siRNAs (tasiRNAs) in addition to tasiR-ARFs, with expanded potential targets. Our results indicate that the evolutionary alteration of sRNA expression levels and the rewiring of sRNA-regulatory networks are important mechanisms underlying stress adaptation. We also identified sRNAs that are involved in salt and/or drought tolerance and nutrient homeostasis as possible contributors to mangrove success in stressful environments. PMID:27278626

  17. Biotechnology Applications of Tethered Lipid Bilayer Membranes

    Directory of Open Access Journals (Sweden)

    Joshua A. Jackman

    2012-12-01

    Full Text Available The importance of cell membranes in biological systems has prompted the development of model membrane platforms that recapitulate fundamental aspects of membrane biology, especially the lipid bilayer environment. Tethered lipid bilayers represent one of the most promising classes of model membranes and are based on the immobilization of a planar lipid bilayer on a solid support that enables characterization by a wide range of surface-sensitive analytical techniques. Moreover, as the result of molecular engineering inspired by biology, tethered bilayers are increasingly able to mimic fundamental properties of natural cell membranes, including fluidity, electrical sealing and hosting transmembrane proteins. At the same time, new methods have been employed to improve the durability of tethered bilayers, with shelf-lives now reaching the order of weeks and months. Taken together, the capabilities of tethered lipid bilayers have opened the door to biotechnology applications in healthcare, environmental monitoring and energy storage. In this review, several examples of such applications are presented. Beyond the particulars of each example, the focus of this review is on the emerging design and characterization strategies that made these applications possible. By drawing connections between these strategies and promising research results, future opportunities for tethered lipid bilayers within the biotechnology field are discussed.

  18. Using MEMS sensor arrays to measure temperature at small spatial scales in hot spring environments

    Science.gov (United States)

    Oiler, J.; Schliep, K.; Hartnett, H. E.; Shock, E.; Yu, H.

    2011-12-01

    In situ measurement of temperature across the transition zones between chemosynthetic and photosynthetic microbial communities, or between different photosynthetic microbial communities in hot springs, can be ambiguous using current robust bulk measurement techniques due to the small spatial scale at of the transitions. Outflow channels are often narrow and shallow as they transport water away from the source, creating additional constraints on the size of the instrument and measurement technique used. Micro-Electro-Mechanical Systems (MEMS) technology is well-suited to take measurements of temperature within hot spring environments or other chemical parameters such as conductivity or pH. With recent advances in materials and fabrication techniques, devices can be fabricated to be chemically and thermally tolerant to the conditions present in the hot springs. The small size of the sensing elements (micron scale) provides the high spatial resolution necessary to interrogate the sharp transition zones between chemotrophic and photosynthetic communities. Owing to the small size of each sensor and the ability to batch-fabricate many sensors at once, an array of sensors can be made to measure a particular parameter simultaneously at short spatial intervals. Arrays of MEMS sensors were fabricated to measure temperature changes at intervals of ~1 cm. Our sensors consist of thermistors fabricated from a bi-layer of titanium and platinum. When heated, the electrical resistance of the thermistors will increase, and through calibration the resistance value is paired to a temperature value. The sensors and wires are covered with an inert biocompatible water-resistant polymer, Parylene-C, that protects them from chemical attack in the hot spring water. Using the arrays, a two-dimensional map of depth and distance was created at the Geothermal Explosion site in Tengchong, China, by placing the array vertically into a channel at spatial intervals of ~2 cm. Vertical measurements

  19. Protection of the Space Environment: The First Small Steps

    Science.gov (United States)

    Williamson, M.

    The exploration of the space environment - by robotic and manned missions - is a natural extension of mankind's desire to explore his own planet. Likewise, the development of the space environment - for industry, commerce and tourism - is a natural extension of our current business and domestic environment. Unfortunately, it appears that our ability to pollute, degrade and even destroy aspects of the space environment is also an extension of an ability we have developed and practised here on Earth. This paper reviews the evidence of mankind's pollution of the space environment - which includes the planetary bodies - in the first 45 years of the Space Age, and extrapolates the potential for further degradation into its second half-century. It considers the future development of both scientific exploration and commercial exploitation - in orbit and on the surface of the planetary bodies - and the possible detrimental effects. In presenting the case for protection of the space environment, the paper makes recommendations concerning the first steps towards a solution to the problem. Among other things, it calls for the formation of an international consultative body, to consider the issues relevant to `Protection of the Space Environment' and to raise awareness of the subject among the growing body of space professionals and practitioners. It also recommends consideration of a `set of guidelines' or `code of practice' as a precursor to more formal policies or legislation. In doing so, however, it is careful to recognise the need to strike a balance between unbridled exploration and development, and a stifling regime of rules and regulations. The discussion of this subject requires a good deal more collective knowledge, understanding and maturity than has been evident in similar discussions regarding the Earth's environment. At present, that knowledge resides largely within the professional space community. Thus there is also a need for promulgation, both within and

  20. Internal And External Environment Analysis On The Performance Of Small And Medium Industries Smes In Indonesia

    OpenAIRE

    Sofyan Indris; Ina Primiana

    2015-01-01

    Abstract The purpose of this study was to determine the influence of internal and external environment analysis on the performance of small and medium industries SMEs in Indonesia. The theoretical results showed that internal and external environment analysis have a significant effect on the performance of small and medium industries SMEs in Indonesia.

  1. Handling financial management of a small company in virtual environment

    OpenAIRE

    Molkkari, Linda

    2015-01-01

    For this thesis the virtual methods of financial management were studied. Solutions were looked for the question how can financial management be done in any place and in any time. The efficiency of solutions was also considered important in the target company in order to simplify and streamline the process. A questionnaire was made for other small businesses to find out how in other similar-type of companies financial management is taken care of. As important questions were considered the...

  2. Coupled human-environment timelines of SWP small island societies

    DEFF Research Database (Denmark)

    Reenberg, Anette; Birch-Thomsen, Torben; Fog, Bjarne

    2007-01-01

    the temporal co-evolution of driving forces and resource management strategies. The case of Bellona Island will be characterized using a selected number of parameters of specific relevance in the present context. The key issues addressed concern climatic events, population dynamics, agricultural strategies....... shop keeping, private business, government employment). Group interviews have been employed to reveal how local farmers perceive cause-effect relationships between societal and ecological events and their individual and collective management of resources. The coupled human-environment timelines...... are used to discuss ways in which the local communities’ adaptive resource management strategies have been employed in the face of climatic changes in the recent past. Finally, we will discuss the perspectives for a sustainable future for the populations and civilizations of the Southwest (SW) Pacific...

  3. Small form factor optical fiber connector evaluation for harsh environments

    Science.gov (United States)

    Ott, Melanie N.; Thomes, W. Joe, Jr.; Chuska, Richard F.; Switzer, Robert; Blair, Diana E.

    2011-09-01

    For the past decade NASA programs have utilized the Diamond AVIM connector for optical fiber assemblies on space flight instrumentation. These connectors have been used in communications, sensing and LIDAR systems where repeatability and high performance are required. Recently Diamond has released a smaller form factor optical fiber connector called the "Mini-AVIM" which although more compact still includes the tight tolerances and the ratcheting feature of the heritage AVIM. NASA Goddard Space Flight Center Photonics Group in the Parts, Packaging and Assembly Technologies Office has been performing evaluations of this connector to determine how it compares to the performance of the AVIM connector and to assess its feasibility for harsh environmental applications. Vibration and thermal testing were performed on the Mini-AVIM with both multi-mode and single-mode optical fiber using insitu optical transmission monitoring. Random vibration testing was performed using typical launch condition profiles for most NASA missions but extended to 35 Grms, which is much higher than most requirements. Thermal testing was performed incrementally up to a range of -55°C to +125°C. The test results include both unjacketed fiber and cabled assembly evaluations. The data presented here indicate that the Mini-AVIM provides a viable option for small form factor applications that require a high performance optical fiber connector.

  4. What kind of knowledge do small companies need to improve their working environment?

    DEFF Research Database (Denmark)

    Antonsson, Ann-Beth; Hasle, Peter

    2015-01-01

    - and rule-based knowledge to small companies. Description of good practices is one way of doing this. The good practices should however focus on control measures in order to be helpful to small enterprises. In fact, small companies often ask for concrete advice on how to solve problems, rather than routines......Background One of the main obstacles identified for small companies´ improvement of the working environment is lack of knowledge. Aim To discuss what kind of knowledge is required by small companies if they are to be able to improve their working environment and the pros and cons of different kinds...... of knowledge from a small company perspective. Discussion There are several different ways of describing knowledge. From a working environment point of view, knowledge can be divided into knowledge about risks, risk assessment and control measures. Control measures can in turn be divided into knowledge about...

  5. Does the reconstitution of RC-LH1 complexes from Rhodopseudomonas acidophila strain 10050 into a phospholipid bilayer yield the optimum environment for optical spectroscopy?

    Science.gov (United States)

    Böhm, Paul S; Kunz, Ralf; Southall, June; Cogdell, Richard J; Köhler, Jürgen

    2013-12-01

    We have investigated reaction-center light-harvesting 1 (RC-LH1) complexes from Rhodopseudomonas (Rps.) acidophila in detergent buffer solution and reconstituted into a phospholipid bilayer and compared the results with the outcome of an earlier study conducted on RC-LH1 immobilized in polyvinyl alcohol (PVA). The aim of this study was to test whether the immobilization of the complexes in a PVA matrix might lead to a deterioration of the proteins and thereby limit the accessible information that can be obtained from optical spectroscopy. It has been found that the complexes dissolved in a detergent buffer solution are subject to fast spectral dynamics preventing any meaningful application of single-molecule spectroscopy. In contrast, for the bilayer samples it is revealed that the reconstitution process results in a significantly larger fraction of broken complexes with respect to the preparation of the complexes in a PVA film. Moreover, we find that for the intact complexes the statistics of the key spectral features, such as the spectral separations of the bands and the mutual orientation of their transition-dipole moments, show no variation dependent on using either a bilayer or PVA as a matrix. Given the additional effort involved in the reconstitution process, the lower amount of intact RC-LH1 complexes and, concerning the decisive spectral details, the identical results with respect to embedding the complexes in a PVA matrix, we come to the conclusion that the immobilization of these proteins in a PVA matrix is a good choice for conducting low-temperature experiments on individual light-harvesting complexes.

  6. Systematic Analysis on the Environment of Innovative Small and Medium Enterprises

    Science.gov (United States)

    Guo, Tao; Shi, Zhuqing

    Environment has great influence on the growth of Innovative SMEs(small and medium enterprises), and Such enterprises has special requirements to growth environment. The ecological factors of Innovative SMEs growth environment include policy and law, social culture, finance, science and technology, market, service, and nature which get together with interactive and interrelated. Innovative SMEs depend on the environment; at the same time react to the environment, so as to achieve sustained innovation and healthy growth in the process of interaction with ecological environment.

  7. The business environment and phases of development of small and medium-sized enterprises

    OpenAIRE

    Wach, Krzysztof

    2006-01-01

    The subject literature distinguishes several factors that determine the establishment, survival , operations and development of micro, small, and medium-sized enterprises in particular regions. In this article, the author presents a classification of these factors in terms of whether they are barriers or stimulators. On this basis, the author explains the influence of regional environment (meso-environment) factors on the development of small and medium-sized enterprises in various phases of ...

  8. Impact of EU Enlargement on Business Environment of Small and Medium-Sized Enterprises in Slovakia

    OpenAIRE

    Ján Vravec; Marián Gál; Tomás Sabol

    2005-01-01

    The paper discusses the impact of EU enlargement on business environment in the Slovak Republic. Integration of Slovakia into EU has significantly influenced operating conditions for small and medium enterprises. Prosperity of small and medium enterprises depends mainly on their ability to adapt themselves to these new conditions.

  9. How can context affect what strategies are effective in improving the working environment in small companies?

    DEFF Research Database (Denmark)

    Antonsson, Ann-Beth; Hasle, Peter

    2015-01-01

    enterprises and what factors that will influence their work environment. There are several examples of initiatives and tools that have been relying on specific contextual conditions. Some of these will be discussed e.g. what contextual factors hampered the implementation of control measures that reduce......Background Small companies include many different sectors and types of organisations. Additionally the small companies are affected by clients, authorities and other stakeholders. Some of these contextual factors have been proven to be of relevance to and affect the work environment management, e.......g. in cleaning companies, where many aspects of the working environment is decided by the client company, whose premises is cleaned by the cleaning company. Aim To discuss what factors in small companies´ context may affect the outcome of work environment interventions as a theoretical basis for evaluation...

  10. Imaging self-assembly dependent spatial distribution of small molecules in a cellular environment.

    Science.gov (United States)

    Gao, Yuan; Kuang, Yi; Du, Xuewen; Zhou, Jie; Chandran, Preethi; Horkay, Ferenc; Xu, Bing

    2013-12-10

    Self-assembly of small molecules, as a more common phenomenon than one previously thought, can be either beneficial or detrimental to cells. Despite its profound biological implications, how the self-assembly of small molecules behave in a cellular environment is largely unknown and barely explored. This work studies four fluorescent molecules that consist of the same peptidic backbone (e.g., Phe-Phe-Lys) and enzyme trigger (e.g., a phosphotyrosine residue), but bear different fluorophores on the side chain of the lysine residue of the peptidic motif. These molecules, however, exhibit a different ability of self-assembly before and after enzymatic transformation (e.g., dephosphorylation). Fluorescent imaging reveals that self-assembly directly affects the distribution of these small molecules in a cellular environment. Moreover, cell viability tests suggest that the states and the locations of the molecular assemblies in the cellular environment control the phenotypes of the cells. For example, the molecular nanofibers of one of the small molecules apparently stabilize actin filaments and alleviate the insult of an F-actin toxin (e.g., latrunculin A). Combining fluorescent imaging and enzyme-instructed self-assembly of small peptidic molecules, this work demonstrates self-assembly as a key factor for dictating the spatial distribution of small molecules in a cellular environment. In addition, it illustrates a useful approach, based on enzyme-instructed self-assembly of small molecules, to modulate spatiotemporal profiles of small molecules in a cellular environment, which allows the use of the emergent properties of small molecules to control the fate of cells. PMID:24266765

  11. Imaging Self-assembly Dependent Spatial Distribution of Small Molecules in Cellular Environment

    Science.gov (United States)

    Gao, Yuan; Kuang, Yi; Du, Xuewen; Zhou, Jie; Chandran, Preethi; Horkay, Ferenc; Xu, Bing

    2014-01-01

    Self-assembly of small molecules, as a more common phenomenon than one previously thought, can be either beneficial or detrimental to cells. Despite its profound biological implications, how the self-assembly of small molecules behave in cellular environment is largely unknown and barely explored. This work studies four fluorescent molecules that consist of the same peptidic backbone (e.g., Phe-Phe-Lys) and enzyme trigger (e.g., a phosphotyrosine residue), but bear different fluorophores on the side chain of the lysine residue of the peptidic motif. These molecules, however, exhibit different ability of self-assembly before and after enzymatic transformation (e.g., dephosphorylation). Fluorescent imaging reveals that self-assembly directly affects the distribution of these small molecules in cellular environment. Moreover, cell viability tests suggest that the states and the location of the molecular assemblies in the cellular environment control the phenotypes of the cells. For example, the molecular nanofibers of one of the small molecules apparently stabilize actin filaments and alleviate the insult of an F-actin toxin (e.g., latrunculin A). Combining fluorescent imaging and enzyme-instructed self-assembly of small peptidic molecules, this work not only demonstrates that self-assembly as a key factor for dictating the spatial distribution of small molecules in cellular environment. In addition, it illustrates a useful approach, based on enzyme-instructed self-assembly of small molecules, to modulate spatiotemporal profiles of small molecules in cellular environment, which allows the use of the emergent properties of small molecules to control the fate of cells. PMID:24266765

  12. Asymmetric distribution of charged lipids between the leaflets of a vesicle bilayer induced by melittin and alamethicin

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Shuo [ORNL; Heller, William T [ORNL

    2011-01-01

    Cellular membranes are complex mixtures of lipids, proteins, and other small molecules that provide functional, dynamic barriers between the cell and its environment, as well as between environments within the cell. The lipid composition of the membrane is highly specific and controlled in terms of both content and lipid localization. The membrane structure results from the complex interplay between the wide varieties of molecules present. Here, small-angle neutron scattering and selective deuterium labeling were used to probe the impact of the membrane-active peptides melittin and alamethicin on the structure of lipid bilayers composed of a mixture of the lipids dimyristoyl phosphatidylglycerol (DMPG) and chain-perdeuterated dimyristoyl phosphatidylcholine (DMPC). We found that both peptides enriched the outer leaflet of the bilayer with the negatively charged DMPG, creating an asymmetric distribution of lipids. The level of enrichment is peptide concentration-dependent and is stronger for melittin than it is for alamethicin. The enrichment between the inner and outer bilayer leaflets occurs at very low peptide concentrations and increases with peptide concentration, including when the peptide adopts a membrane-spanning, pore-forming state. The results suggest that these membrane-active peptides may have a secondary stressful effect on target cells at low concentrations that results from a disruption of the lipid distribution between the inner and outer leaflets of the bilayer that is independent of the formation of transmembrane pores.

  13. Asymmetric heat transfer from nanoparticles in lipid bilayers

    Science.gov (United States)

    Potdar, Dipti; Sammalkorpi, Maria

    2015-12-01

    Here, we use molecular dynamics simulations to characterize the heat transfer properties of lipid bilayer - gold nanoparticle systems in which the nanoparticle acts as a heat source. The focus is on dipalmitoylphosphatidylcholine (DPPC) lipid bilayers and thiolated alcohol and alkyl functionalized nanoparticles as prototype hydrophilic and hydrophobic nanoparticles. We find hydrophilic nanoparticles which are partly in contact with the surrounding water environment are more efficient in transferring heat to the system than hydrophobic ones which reside surrounded by the membrane. This is because of the hydrogen bonding capability of the hydroxy pentanethiol and the more efficient heat conductivity through water than the lipid bilayer. Additionally, we find the heat conductance is strongly asymmetric and has a discontinuity between the bilayer leaflets. In total, the findings provide understanding on heat transport from localized heat sources in lipid bilayers and could bear significance, e.g., in engineering and controlling photoactivated triggering of liposomal systems.

  14. Monolayer curvature stabilizes nanoscale raft domains in mixed lipid bilayers

    CERN Document Server

    Meinhardt, Sebastian; Schmid, Friederike

    2013-01-01

    According to the lipid raft hypothesis, biological lipid membranes are laterally heterogeneous and filled with nanoscale ordered "raft" domains, which are believed to play an important role for the organization of proteins in membranes. However, the mechanisms stabilizing such small rafts are not clear, and even their existence is sometimes questioned. Here we report the observation of raft-like structures in a coarse-grained molecular model for multicomponent lipid bilayers. On small scales, our membranes demix into a liquid ordered (lo) and a liquid disordered (ld) phase. On large scales, phase separation is suppressed and gives way to a microemulsion-type state that contains nanometer size lo domains in a ld environment. Furthermore, we introduce a mechanism that generates rafts of finite size by a coupling between monolayer curvature and local composition. We show that mismatch between the spontaneous curvatures of monolayers in the lo and ld phase induces elastic interactions, which reduce the line tensi...

  15. Exploring Pd adsorption, diffusion, permeation, and nucleation on bilayer SiO2/Ru as a function of hydroxylation and precursor environment: From UHV to catalyst preparation

    Science.gov (United States)

    Pomp, Sascha; Kaden, William E.; Sterrer, Martin; Freund, Hans-Joachim

    2016-10-01

    The hydroxylation-dependent permeability of bilayer SiO2 supported on Ru(0001) was investigated by XPS and TDS studies in a temperature range of 100 K to 600 K. For this, the thermal behavior of Pd evaporated at 100 K, which results in surface and sub-surface (Ru-supported) binding arrangements, was examined relative to the extent of pre-hydroxylation. Samples containing only defect-mediated hydroxyls showed no effect on Pd diffusion through the film at low temperature. If, instead, the concentration of strongly bound hydroxyl groups and associated weakly bound water molecules was enriched by an electron-assisted hydroxylation procedure, the probability for Pd diffusion through the film is decreased via a pore-blocking mechanism. Above room temperature, all samples showed similar behavior, reflective of particle nucleation above the film and eventual agglomeration with any metal atoms initially binding beneath the film. When depositing Pd onto the same SiO2/Ru model support via adsorption of [Pd(NH3)4]Cl2 from alkaline (pH 12) precursor solution, we observe notably different adsorption and nucleation mechanisms. The resultant Pd adsorption complexes follow established decomposition pathways to produce model catalyst systems compatible with those created exclusively within UHV despite lacking the ability to penetrate the film due to the increased size of the initial Pd precursor groups.

  16. Imaging Self-assembly Dependent Spatial Distribution of Small Molecules in Cellular Environment

    OpenAIRE

    Gao, Yuan; Kuang, Yi; Du, Xuewen; Zhou, Jie; Chandran, Preethi; Horkay, Ferenc; Xu, Bing

    2013-01-01

    Self-assembly of small molecules, as a more common phenomenon than one previously thought, can be either beneficial or detrimental to cells. Despite its profound biological implications, how the self-assembly of small molecules behave in cellular environment is largely unknown and barely explored. This work studies four fluorescent molecules that consist of the same peptidic backbone (e.g., Phe-Phe-Lys) and enzyme trigger (e.g., a phosphotyrosine residue), but bear different fluorophores on t...

  17. Increased concentration of Pseudomonas aeruginosa and Staphylococcus sp. in small animals exposed to aerospace environments

    Science.gov (United States)

    Guthrie, R. K.

    1976-01-01

    The effects of increased concentrations of PSEUDOMONAS AERUGINOSA AND STAPHYLOCOCCUS in the total bacterial flora of small animals exposed to simulated spacecraft environments were evaluated. Tests to detect changes in infectivity, effects of antibiotic treatments, immune responses to bacterial antigens, and effectiveness of immune responses in the experimental environment were conducted. The most significant results appear to be the differences in immune responses at simulated altitudes and the production of infection in the presence of a specific antibody.

  18. Adaptability of the internal business environment of small and medium-sized enterprises in Slovakia

    OpenAIRE

    Misunova Hudakova, Ivana; Misun, Juraj

    2014-01-01

    Companies that are exposed to an uncertain changing business environment must be able to adapt and change in order to achieve some compliance with the subject of business carried out and the objectives with the ambient conditions. Also these conditions can be a source of threats for small and medium-sized enterprises. In this context, we emphasize the adaptability of the enterprise. It is the active joining of resolving the conflict between the business entity and its environment. Signs of th...

  19. Extension of the GLYCAM06 Biomolecular Force Field to Lipids, Lipid Bilayers and Glycolipids.

    Science.gov (United States)

    Tessier, Matthew B; Demarco, Mari L; Yongye, Austin B; Woods, Robert J

    2008-01-01

    GLYCAM06 is a generalisable biomolecular force field that is extendible to diverse molecular classes in the spirit of a small-molecule force field. Here we report parameters for lipids, lipid bilayers and glycolipids for use with GLYCAM06. Only three lipid-specific atom types have been introduced, in keeping with the general philosophy of transferable parameter development. Bond stretching, angle bending, and torsional force constants were derived by fitting to quantum mechanical data for a collection of minimal molecular fragments and related small molecules. Partial atomic charges were computed by fitting to ensemble-averaged quantum-computed molecular electrostatic potentials.In addition to reproducing quantum mechanical internal rotational energies and experimental valence geometries for an array of small molecules, condensed-phase simulations employing the new parameters are shown to reproduce the bulk physical properties of a DMPC lipid bilayer. The new parameters allow for molecular dynamics simulations of complex systems containing lipids, lipid bilayers, glycolipids, and carbohydrates, using an internally consistent force field. By combining the AMBER parameters for proteins with the GLYCAM06 parameters, it is also possible to simulate protein-lipid complexes and proteins in biologically relevant membrane-like environments. PMID:22247593

  20. Electronic properties of asymmetrically doped twisted graphene bilayers

    Science.gov (United States)

    Trambly de Laissardière, Guy; Namarvar, Omid Faizy; Mayou, Didier; Magaud, Laurence

    2016-06-01

    Rotated graphene bilayers form an exotic class of nanomaterials with fascinating electronic properties governed by the rotation angle θ . For large rotation angles, the electron eigenstates are restricted to one layer and the bilayer behaves like two decoupled graphene layers. At intermediate angles, Dirac cones are preserved but with a lower velocity and van Hove singularities are induced at energies where the two Dirac cones intersect. At very small angles, eigenstates become localized in peculiar moiré zones. We analyze here the effect of an asymmetric doping for a series of commensurate rotated bilayers on the basis of tight-binding calculations of their band dispersions, density of states, participation ratio, and diffusive properties. While a small doping level preserves the θ dependence of the rotated bilayer electronic structure, larger doping induces a further reduction of the band velocity in the same way as a further reduction of the rotation angle.

  1. Capillary wrinkling of thin bilayer polymeric sheets

    Science.gov (United States)

    Chang, Jooyoung; Menon, Narayanan; Russell, Thomas

    We have investigated capillary force induced wrinkling on a floated polymeric bilayer thin sheet. The origin of the wrinkle pattern is compressional hoop stress caused by the capillary force of a water droplet placed on the floated polymeric thin sheet afore investigated. Herein, we study the effect of the differences of surface energy arising from the hydrophobicity of Polystyrene (PS Mw: 97 K, Contact Angle: 88 º) and the hydrophilicity of Poly(methylmethacrylate) (PMMA Mw: 99K, Contact Angle: 68 º) on two sides of a bilayer film. We measure the number and the length of the wrinkles by broadly varying the range of thicknesses of top (9 nm to 550 nm) and bottom layer (25 nm to 330 nm). At the same, there is only a small contrast in mechanical properties of the two layers (PS E = 3.4 GPa, and PMMA E = 3 GPa). The number of the wrinkles is not strongly affected by the composition (PS(Top)/PMMA(Bottom) or PMMA(Top)/PS(Bottom)) and the thickness of each and overall bilayer system. However, the length of the wrinkle is governed by the contact angle of the drop on the top layer of bilayer system. We also compare this to the wrinkle pattern obtained in monolayer systems over a wide range of thickness from PS and PMMA (7 nm to 1 μm). W.M. Keck Foundation.

  2. Comm for Small Sats: The Lunar Atmosphere and Dust Environment Explorer (LADEE) Communications Subsystem

    Science.gov (United States)

    Kuroda, Vanessa M.; Allard, Mark R.; Lewis, Brian; Lindsay, Michael

    2014-01-01

    September 6, 2013 through April 21, 2014 marked the mission lifecycle of the highly successful LADEE (Lunar Atmosphere and Dust Environment Explorer) mission that orbited the moon to gather detailed information about the thin lunar atmosphere. This paper will address the development, risks, and lessons learned regarding the specification, selection, and deployment of LADEE's unique Radio Frequency based communications subsystem and supporting tools. This includes the Electronic Ground Support Equipment (EGSE), test regimes, and RF dynamic link analysis environment developed to meet mission requirements for small, flexible, low cost, high performance, fast turnaround, and reusable spacecraft communication capabilities with easy and reliable application to future similar low cost small satellite missions over widely varying needs for communications and communications system complexity. LADEE communication subsystem key components, architecture, and mission performance will be reviewed toward applicability for future mission planning, design, and utilization.

  3. Significant attributes of the business environment in small and meduim-sized enterprises

    OpenAIRE

    Belás, Jaroslav; Bartoš, Přemysl; Habánik, Jozef; Novák, Petr

    2014-01-01

    Aim of following contribution is to define and quantify selected attributes of the business environment in Small and medium-sized enterprises (SME). In this context, our own research was prepared and gradually implemented, where the intensity of individual business risks, status, motivation, feelings of entrepreneurs in SME segment, relationship to the bank, state, society, and business optimism in the Czech Republic and Slovakia was analyzed. Due to the global financial crisis, conditions fo...

  4. Nanoparticle-lipid bilayer interactions studied with lipid bilayer arrays

    Science.gov (United States)

    Lu, Bin; Smith, Tyler; Schmidt, Jacob J.

    2015-04-01

    The widespread environmental presence and commercial use of nanoparticles have raised significant health concerns as a result of many in vitro and in vivo assays indicating toxicity of a wide range of nanoparticle species. Many of these assays have identified the ability of nanoparticles to damage cell membranes. These interactions can be studied in detail using artificial lipid bilayers, which can provide insight into the nature of the particle-membrane interaction through variation of membrane and solution properties not possible with cell-based assays. However, the scope of these studies can be limited because of the low throughput characteristic of lipid bilayer platforms. We have recently described an easy to use, parallel lipid bilayer platform which we have used to electrically investigate the activity of 60 nm diameter amine and carboxyl modified polystyrene nanoparticles (NH2-NP and COOH-NP) with over 1000 lipid bilayers while varying lipid composition, bilayer charge, ionic strength, pH, voltage, serum, particle concentration, and particle charge. Our results confirm recent studies finding activity of NH2-NP but not COOH-NP. Detailed analysis shows that NH2-NP formed pores 0.3-2.3 nm in radius, dependent on bilayer and solution composition. These interactions appear to be electrostatic, as they are regulated by NH2-NP surface charge, solution ionic strength, and bilayer charge. The ability to rapidly measure a large number of nanoparticle and membrane parameters indicates strong potential of this bilayer array platform for additional nanoparticle bilayer studies.The widespread environmental presence and commercial use of nanoparticles have raised significant health concerns as a result of many in vitro and in vivo assays indicating toxicity of a wide range of nanoparticle species. Many of these assays have identified the ability of nanoparticles to damage cell membranes. These interactions can be studied in detail using artificial lipid bilayers, which

  5. Graphene Monoxide Bilayer As a High-Performance on/off Switching Media for Nanoelectronics.

    Science.gov (United States)

    Woo, Jungwook; Yun, Kyung-Han; Chung, Yong-Chae

    2016-04-27

    The geometries and electronic characteristics of the graphene monoxide (GMO) bilayer are predicted via density functional theory (DFT) calculations. All the possible sequences of the GMO bilayer show the typical interlayer bonding characteristics of two-dimensional bilayer systems with a weak van der Waals interaction. The band gap energies of the GMO bilayers are predicted to be adequate for electronic device application, indicating slightly smaller energy gaps (0.418-0.448 eV) compared to the energy gap of the monolayer (0.536 eV). Above all, in light of the band gap engineering, the band gap of the GMO bilayer responds to the external electric field sensitively. As a result, a semiconductor-metal transition occurs at a small critical electric field (EC = 0.22-0.30 V/Å). It is therefore confirmed that the GMO bilayer is a strong candidate for nanoelectronics.

  6. Graphene Monoxide Bilayer As a High-Performance on/off Switching Media for Nanoelectronics.

    Science.gov (United States)

    Woo, Jungwook; Yun, Kyung-Han; Chung, Yong-Chae

    2016-04-27

    The geometries and electronic characteristics of the graphene monoxide (GMO) bilayer are predicted via density functional theory (DFT) calculations. All the possible sequences of the GMO bilayer show the typical interlayer bonding characteristics of two-dimensional bilayer systems with a weak van der Waals interaction. The band gap energies of the GMO bilayers are predicted to be adequate for electronic device application, indicating slightly smaller energy gaps (0.418-0.448 eV) compared to the energy gap of the monolayer (0.536 eV). Above all, in light of the band gap engineering, the band gap of the GMO bilayer responds to the external electric field sensitively. As a result, a semiconductor-metal transition occurs at a small critical electric field (EC = 0.22-0.30 V/Å). It is therefore confirmed that the GMO bilayer is a strong candidate for nanoelectronics. PMID:27046262

  7. Resolving small signal measurements in experimental plasma environments using calibrated subtraction of noise signals

    Energy Technology Data Exchange (ETDEWEB)

    Fimognari, P. J., E-mail: PJFimognari@XanthoTechnologies.com; Demers, D. R. [Xantho Technologies, LLC, Madison, Wisconsin 53705 (United States); Chen, X. [Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830 (United States); Schoch, P. M. [Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2014-11-15

    The performance of many diagnostic and control systems within fusion and other fields of research are often detrimentally affected by spurious noise signals. This is particularly true for those (such as radiation or particle detectors) working with very small signals. Common sources of radiated and conducted noise in experimental fusion environments include the plasma itself and instrumentation. The noise complicates data analysis, as illustrated by noise on signals measured with the heavy ion beam probe (HIBP) installed on the Madison Symmetric Torus. The noise is time-varying and often exceeds the secondary ion beam current (in contrast with previous applications). Analysis of the noise identifies the dominant source as photoelectric emission from the detectors induced by ultraviolet light from the plasma. This has led to the development of a calibrated subtraction technique, which largely removes the undesired temporal noise signals from data. The advantages of the technique for small signal measurement applications are demonstrated through improvements realized on HIBP fluctuation measurements.

  8. SENVM: Server Environment Monitoring and Controlling System for a Small Data Center Using Wireless Sensor Network

    CERN Document Server

    Choochaisri, Supasate; Jenjaturong, Saran; Intanagonwiwat, Chalermek; Ratanamahatana, Chotirat Ann

    2011-01-01

    In recent years, efficient energy utilization becomes an essential requirement for data centers, especially in data centers of world-leading companies, where "Green Data Center" defines a new term for an environment-concerned data center. Solutions to change existing a data center to the green one may vary. In the big company, high-cost approaches including re-planning server rooms, changing air-conditioners, buying low-powered servers, and equipping sophisticating environmental control equipments are possible, but not for small to medium enterprises (SMEs) and academic sectors which have limited budget. In this paper, we propose a novel system, SENVM, used to monitor and control air temperature in a server room to be in appropriate condition, not too cold, where very unnecessary cooling leads to unnecessary extra electricity expenses, and also inefficient in energy utilization. With implementing on an emerging technology, Wireless Sensor Network (WSN), Green Data Center is feasible to every small data center...

  9. The Influence of the Business Environment on Small and Medium Enterprises

    Directory of Open Access Journals (Sweden)

    Iulian Viorel Brașoveanu

    2014-04-01

    Full Text Available The Small and Medium Enterprise sector in Romania has been significantly affected by the global recession in the years 2008-2009; currently it is making efforts to revive it, thanks to important role it occupies in the economy of any country. SMEs raise wide debates, especially on fiscal measures. In Romania, SMEs represent 99.7% of all businesses, generating two-thirds of jobs in the business and half of gross value added. This paper focuses on the development of SMEs and hence on business environment in Romania. The purpose of this paper is to present the influence which regulations and evolution of businesses environment have on the SME sector.

  10. Edge State Transport of Separately Contacted Bilayer Systems in the Fractional Quantum Hall Regime

    OpenAIRE

    Yoshioka, Daijiro; Nomura, Kentaro

    1999-01-01

    Hall and diagonal resistances of bilayer fractional quantum Hall systems are discussed theoretically. The bilayers have electrodes attached separately to each layer. They are assumed to be coupled weakly by interlayer tunneling, while the interlayer Coulomb interaction is negligibly small. It is shown that source-drain voltage dependence of the resistances reflects the Luttinger liquid parameter of the edge state.

  11. Electronic structure theory of weakly interacting bilayers

    Science.gov (United States)

    Fang, Shiang; Kaxiras, Efthimios

    2016-06-01

    We derive electronic structure models for weakly interacting bilayers such as graphene-graphene and graphene-hexagonal boron nitride, based on density functional theory calculations followed by Wannier transformation of electronic states. These transferable interlayer coupling models can be applied to investigate the physics of bilayers with arbitrary translations and twists. The functional form, in addition to the dependence on the distance, includes the angular dependence that results from higher angular momentum components in the Wannier pz orbitals. We demonstrate the capabilities of the method by applying it to a rotated graphene bilayer, which produces the analytically predicted renormalization of the Fermi velocity, Van Hove singularities in the density of states, and moiré pattern of the electronic localization at small twist angles. We further extend the theory to obtain the effective couplings by integrating out neighboring layers. This approach is instrumental for the design of van der Walls heterostructures with desirable electronic features and transport properties and for the derivation of low-energy theories for graphene stacks, including proximity effects from other layers.

  12. Advances in Small Remotely Piloted Aircraft Communications and Remote Sensing in Maritime Environments including the Arctic

    Science.gov (United States)

    McGillivary, P. A.; Borges de Sousa, J.; Wackowski, S.; Walker, G.

    2011-12-01

    Small remotely piloted aircraft have recently been used for maritime remote sensing, including launch and retrieval operations from land, ships and sea ice. Such aircraft can also function to collect and communicate data from other ocean observing system platforms including moorings, tagged animals, drifters, autonomous surface vessels (ASVs), and autonomous underwater vessels (AUVs). The use of small remotely piloted aircraft (or UASs, unmanned aerial systems) with a combination of these capabilities will be required to monitor the vast areas of the open ocean, as well as in harsh high-latitude ecosystems. Indeed, these aircraft are a key component of planned high latitude maritime domain awareness environmental data collection capabilities, including use of visible, IR and hyperspectral sensors, as well as lidar, meteorological sensors, and interferometric synthetic aperture radars (ISARs). We here first describe at-sea demonstrations of improved reliability and bandwidth of communications from ocean sensors on autonomous underwater vehicles to autonomous surface vessels, and then via remotely piloted aircraft to shore, ships and manned aircraft using Delay and Disruption Tolerant (DTN) communication protocols. DTN enables data exchange in communications-challenged environments, such as remote regions of the ocean including high latitudes where low satellite angles and auroral disturbances can be problematic. DTN provides a network architecture and application interface structured around optionally-reliable asynchronous message forwarding, with limited expectations of end-to-end connectivity and node resources. This communications method enables aircraft and surface vessels to function as data mules to move data between physically disparate nodes. We provide examples of the uses of this communication protocol for environmental data collection and data distribution with a variety of different remotely piloted aircraft in a coastal ocean environment. Next, we

  13. Reinforcement Learning with Autonomous Small Unmanned Aerial Vehicles in Cluttered Environments

    Science.gov (United States)

    Tran, Loc; Cross, Charles; Montague, Gilbert; Motter, Mark; Neilan, James; Qualls, Garry; Rothhaar, Paul; Trujillo, Anna; Allen, B. Danette

    2015-01-01

    We present ongoing work in the Autonomy Incubator at NASA Langley Research Center (LaRC) exploring the efficacy of a data set aggregation approach to reinforcement learning for small unmanned aerial vehicle (sUAV) flight in dense and cluttered environments with reactive obstacle avoidance. The goal is to learn an autonomous flight model using training experiences from a human piloting a sUAV around static obstacles. The training approach uses video data from a forward-facing camera that records the human pilot's flight. Various computer vision based features are extracted from the video relating to edge and gradient information. The recorded human-controlled inputs are used to train an autonomous control model that correlates the extracted feature vector to a yaw command. As part of the reinforcement learning approach, the autonomous control model is iteratively updated with feedback from a human agent who corrects undesired model output. This data driven approach to autonomous obstacle avoidance is explored for simulated forest environments furthering autonomous flight under the tree canopy research. This enables flight in previously inaccessible environments which are of interest to NASA researchers in Earth and Atmospheric sciences.

  14. Tracking small mountainous river derived terrestrial organic carbon across the active margin marine environment

    Science.gov (United States)

    Childress, L. B.; Blair, N. E.; Orpin, A. R.

    2015-12-01

    Active margins are particularly efficient in the burial of organic carbon due to the close proximity of highland sources to marine sediment sinks and high sediment transport rates. Compared with passive margins, active margins are dominated by small mountainous river systems, and play a unique role in marine and global carbon cycles. Small mountainous rivers drain only approximately 20% of land, but deliver approximately 40% of the fluvial sediment to the global ocean. Unlike large passive margin systems where riverine organic carbon is efficiently incinerated on continental shelves, small mountainous river dominated systems are highly effective in the burial and preservation of organic carbon due to the rapid and episodic delivery of organic carbon sourced from vegetation, soil, and rock. To investigate the erosion, transport, and burial of organic carbon in active margin small mountainous river systems we use the Waipaoa River, New Zealand. The Waipaoa River, and adjacent marine depositional environment, is a system of interest due to a large sediment yield (6800 tons km-2 yr-1) and extensive characterization. Previous studies have considered the biogeochemistry of the watershed and tracked the transport of terrestrially derived sediment and organics to the continental shelf and slope by biogeochemical proxies including stable carbon isotopes, lignin phenols, n-alkanes, and n-fatty acids. In this work we expand the spatial extent of investigation to include deep sea sediments of the Hikurangi Trough. Located in approximately 3000 m water depth 120 km from the mouth of the Waipaoa River, the Hikurangi Trough is the southern extension of the Tonga-Kermadec-Hikurangi subduction system. Piston core sediments collected by the National Institute of Water and Atmospheric Research (NIWA, NZ) in the Hikurangi Trough indicate the presence of terrestrially derived material (lignin phenols), and suggest a continuum of deposition, resuspension, and transport across the margin

  15. Small Project Rapid Integration and Test Environment (SPRITE) An Innovation Space for Small Projects Design, Development, Integration, and Test

    Science.gov (United States)

    Lee, Ashley; Rackoczy, John; Heater, Daniel; Sanders, Devon; Tashakkor, Scott

    2013-01-01

    Over the past few years interest in the development and use of small satellites has rapidly gained momentum with universities, commercial, and government organizations. In a few years we may see networked clusters of dozens or even hundreds of small, cheap, easily replaceable satellites working together in place of the large, expensive and difficult-to-replace satellites now in orbit. Standards based satellite buses and deployment mechanisms, such as the CubeSat and Poly Pico-satellite Orbital Deployer (P-POD), have stimulated growth in this area. The use of small satellites is also proving to be a cost effective capability in many areas traditionally dominated by large satellites, though many challenges remain. Currently many of these small satellites undergo very little testing prior to flight. As these small satellites move from technology demonstration and student projects toward more complex operational assets, it is expected that the standards for verification and validation will increase.

  16. Cholesterol's location in lipid bilayers.

    Science.gov (United States)

    Marquardt, Drew; Kučerka, Norbert; Wassall, Stephen R; Harroun, Thad A; Katsaras, John

    2016-09-01

    It is well known that cholesterol modifies the physical properties of lipid bilayers. For example, the much studied liquid-ordered Lo phase contains rapidly diffusing lipids with their acyl chains in the all trans configuration, similar to gel phase bilayers. Moreover, the Lo phase is commonly associated with cholesterol-enriched lipid rafts, which are thought to serve as platforms for signaling proteins in the plasma membrane. Cholesterol's location in lipid bilayers has been studied extensively, and it has been shown - at least in some bilayers - to align differently from its canonical upright orientation, where its hydroxyl group is in the vicinity of the lipid-water interface. In this article we review recent works describing cholesterol's location in different model membrane systems with emphasis on results obtained from scattering, spectroscopic and molecular dynamics studies. PMID:27056099

  17. Performance of a small and low-cost chamber to simulate lunar surface environment

    Science.gov (United States)

    Durga Prasad, K.; Murty, S. V. S.

    2013-08-01

    The performance of a small and low-cost metal chamber built to simulate the pressure and temperature conditions of lunar surface was assessed and the results are presented. This chamber is intended for studying the physical properties of lunar surface and subsurface (using soil simulants) and also to validate the technology readiness of certain newly developed payloads planned for future lunar surface missions (Lander/Rover). It is possible to reach down to ∼10-7 Pa under specific conditions and maintain the temperature of the sample under investigation to lunar day and night temperatures. The designed system has been subjected to various tests to evaluate its performance and suitability for carrying out experiments in a simulated lunar environment.

  18. Precision measurement of the half-life of $^{109}$In in large and small lattice environments

    CERN Multimedia

    We propose to undertake high precision measurements of the half-life of $^{109}$In in large and small lattice environments to study the effect of compression on the electron capture nuclear decay rate. Such studies are of general interest having implications in many areas ranging from astrophysics to geophysics. At present, very little data is available on the change of electron capture decay rate under compression and the available data seems to indicate that the observed increase of the electron capture decay rate under compression is much greater than the predictions of the best available density functional calculations as obtained from TB-LMTO or WIEN2K codes. The proposed experiment should generate more data thus clarifying the experimental situation.

  19. Plasmons in metallic monolayer and bilayer transition metal dichalcogenides

    DEFF Research Database (Denmark)

    Andersen, Kirsten; Thygesen, Kristian S.

    2013-01-01

    We study the collective electronic excitations in metallic single-layer and bilayer transition metal dichalcogenides (TMDCs) using time dependent density functional theory in the random phase approximation. For very small momentum transfers (below q≈0.02 Å−1), the plasmon dispersion follows the √q...

  20. Capitalizing on Community: the Small College Environment and the Development of Researchers

    Science.gov (United States)

    Stoneking, M. R.

    2014-03-01

    Liberal arts colleges constitute an important source of and training ground for future scientists. At Lawrence University, we take advantage of our small college environment to prepare physics students for research careers by complementing content acquisition with skill development and project experience distributed throughout the curriculum and with co-curricular elements that are tied to our close-knit supportive physics community. Small classes and frequent contact between physics majors and faculty members offer opportunities for regular and detailed feedback on the development of research relevant skills such as laboratory record-keeping, data analysis, electronic circuit design, computational programming, experimental design and modification, and scientific communication. Part of our approach is to balance collaborative group work on small projects (such as Arduino-based electronics projects and optical design challenges) with independent work (on, for example, advanced laboratory experimental extensions and senior capstone projects). Communal spaces and specialized facilities (experimental and computational) and active on-campus research programs attract eager students to the program, establish a community-based atmosphere, provide unique opportunities for the development of research aptitude, and offer opportunities for genuine contribution to a research program. Recently, we have also been encouraging innovativetendencies in physics majors through intentional efforts to develop personal characteristics, encouraging students to become more tolerant of ambiguity, risk-taking, initiative-seeking, and articulate. Indicators of the success of our approach include the roughly ten physics majors who graduate each year and our program's high ranking among institutions whose graduates go on to receive the Ph.D. in physics. Work supported in part by the National Science Foundation.

  1. Phospholipid bilayer formation at a bare Si surface

    DEFF Research Database (Denmark)

    Gutberlet, T.; Steitz, R.; Fragneto, G.;

    2004-01-01

    Neutron reflectivity was applied to monitor in situ the adsorption of small unilamellar phospholipid vesicles on a solid bare hydrophilic Si interface. The obtained reflectivity curves are consistent with the rupture and fusion model for the adsorption of phosphatidylcholine vesicles to solid...... interfaces. The results show details of the adsorbed bilayer system at ångström resolution and indicate the presence of a thin ∼6 Å thick water leaflet that separates the bilayer from the Si surface. The resolved structural details provide the basis for further investigation of processes such as adsorption...

  2. Prediction of superconductivity in Li-intercalated bilayer phosphorene

    Energy Technology Data Exchange (ETDEWEB)

    Huang, G. Q. [Department of Physics, Nanjing Normal University, Nanjing 210023 (China); National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Xing, Z. W., E-mail: zwxing@nju.edu.cn [National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Xing, D. Y. [National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Collaborative Innovation Center of Advanced Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China)

    2015-03-16

    It is shown that bilayer phosphorene can be transformed from a direct-gap semiconductor to a BCS superconductor by intercalating Li atoms. For the Li-intercalated bilayer phosphorene, we find that the electron occupation of Li-derived band is small and superconductivity is intrinsic. With increasing the intercalation of Li atoms, both increased metallicity and strong electron-phonon coupling are favorable for the enhancement of superconductivity. The obtained electron-phonon coupling λ can be larger than 1 and the superconducting temperature T{sub c} can be increased up to 16.5 K, suggesting that phosphorene may be a good candidate for a nanoscale superconductor.

  3. Electro-absorption of silicene and bilayer graphene quantum dots

    Science.gov (United States)

    Abdelsalam, Hazem; Talaat, Mohamed H.; Lukyanchuk, Igor; Portnoi, M. E.; Saroka, V. A.

    2016-07-01

    We study numerically the optical properties of low-buckled silicene and AB-stacked bilayer graphene quantum dots subjected to an external electric field, which is normal to their surface. Within the tight-binding model, the optical absorption is calculated for quantum dots, of triangular and hexagonal shapes, with zigzag and armchair edge terminations. We show that in triangular silicene clusters with zigzag edges a rich and widely tunable infrared absorption peak structure originates from transitions involving zero energy states. The edge of absorption in silicene quantum dots undergoes red shift in the external electric field for triangular clusters, whereas blue shift takes place for hexagonal ones. In small clusters of bilayer graphene with zigzag edges the edge of absorption undergoes blue/red shift for triangular/hexagonal geometry. In armchair clusters of silicene blue shift of the absorption edge takes place for both cluster shapes, while red shift is inherent for both shapes of the bilayer graphene quantum dots.

  4. Hydrogel-Stabilized Droplet Bilayers for High Speed Solution Exchange

    Science.gov (United States)

    Acharya, Shiv A.; Portman, Alexander; Salazar, Carl S.; Schmidt, Jacob J.

    2013-11-01

    Many applications utilizing artificial lipid bilayers require the ability to exchange the bilayer's solution environment. However, because of the instability of the bilayer, the rate of solution exchange is limited, which significantly hinders the measurement rate and throughput. We have developed an artificial bilayer system that can withstand high flow speeds, up to 2.1 m/s, by supporting the bilayer with a hydrogel. We demonstrated the ability to measure during flow by measuring the conductance of gramicidin-A channels while switching between solutions of two different compositions, recording a time to measure 90% change in current of approximately 2.7 seconds at a flow rate of 0.1 m/s. We also demonstrated a potential application of this system by measuring the conductance modulation of the rat TRPM8 ion channel by an agonist and antagonist at varying concentrations, obtaining 7-point IC50 and EC50 values in approximately 7 minutes and 4-point values within 4 minutes.

  5. A Portable Lipid Bilayer System for Environmental Sensing with a Transmembrane Protein

    OpenAIRE

    Ryuji Kawano; Yutaro Tsuji; Koki Kamiya; Taiga Kodama; Toshihisa Osaki; Norihisa Miki; Shoji Takeuchi

    2014-01-01

    This paper describes a portable measurement system for current signals of an ion channel that is composed of a planar lipid bilayer. A stable and reproducible lipid bilayer is formed in outdoor environments by using a droplet contact method with a micropipette. Using this system, we demonstrated that the single-channel recording of a transmembrane protein (alpha-hemolysin) was achieved in the field at a high-altitude (∼3623 m). This system would be broadly applicable for obtaining environment...

  6. Protein stability and conformational rearrangements in lipid bilayers: linear gramicidin, a model system.

    OpenAIRE

    Cotten, M; Xu, F.; Cross, T A

    1997-01-01

    The replacement of four tryptophans in gramicidin A by four phenylalanines (gramicidin M) causes no change in the molecular fold of this dimeric peptide in a low dielectric isotropic organic solvent, but the molecular folds are dramatically different in a lipid bilayer environment. The indoles of gramicidin A interact with the anisotropic bilayer environment to induce a change in the molecular fold. The double-helical fold of gramicidin M, as opposed to the single-stranded structure of gramic...

  7. Entropy Analyses of Droplet Combustion in Convective Environment with Small Reynolds Number

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiaobin; ZHANG Wei; ZHANG Xuejun

    2013-01-01

    This paper analyzes the entropy generation rate of simple pure droplet combustion in a temperature-elevated air convective environment based on the solutions of flow,and heat and mass transfer between the two phases.The flow-field calculations are carried out by solving the respective conservation equations for each phase,accounting for the droplet deformation with the axisymmetric model.The effects of the temperature,velocity and oxygen fraction of the free stream air on the total entropy generation rate in the process of the droplet combustion are investigated.Special attention is given to analyze the quantitative effects of droplet deformation.The results reveal that the entropy generation rate due to chemical reaction occupies a large fraction of the total entropy generated,as a result of the large areas covered by the flame.Although,the magnitude of the entropy generation rate per volume due to heat transfer and combined mass and heat transfer has a magnitude of one order greater than that due to chemical reaction,they cover a very limited area,leading to a small fraction of the total entropy generated.The entropy generation rate due to mass transfer is negligible.High temperature and high velocity of the free stream are advantageous to increase the exergy efficiency in the range of small Reynolds number (<1) from the viewpoint of the second-law analysis over the droplet lifetime.The effect of droplet deformation on the total entropy generation is the modest.

  8. Stochastic distribution of small soil eukaryotes resulting from high dispersal and drift in a local environment.

    Science.gov (United States)

    Bahram, Mohammad; Kohout, Petr; Anslan, Sten; Harend, Helery; Abarenkov, Kessy; Tedersoo, Leho

    2016-04-01

    A central challenge in ecology is to understand the relative importance of processes that shape diversity patterns. Compared with aboveground biota, little is known about spatial patterns and processes in soil organisms. Here we examine the spatial structure of communities of small soil eukaryotes to elucidate the underlying stochastic and deterministic processes in the absence of environmental gradients at a local scale. Specifically, we focus on the fine-scale spatial autocorrelation of prominent taxonomic and functional groups of eukaryotic microbes. We collected 123 soil samples in a nested design at distances ranging from 0.01 to 64 m from three boreal forest sites and used 454 pyrosequencing analysis of Internal Transcribed Spacer for detecting Operational Taxonomic Units of major eukaryotic groups simultaneously. Among the main taxonomic groups, we found significant but weak spatial variability only in the communities of Fungi and Rhizaria. Within Fungi, ectomycorrhizas and pathogens exhibited stronger spatial structure compared with saprotrophs and corresponded to vegetation. For the groups with significant spatial structure, autocorrelation occurred at a very fine scale (soil eukaryotes with respect to space and environment in the absence of environmental gradients at the local scale, reflecting the dominant role of drift and homogenizing dispersal. PMID:26394006

  9. Interventions in Small Food Stores to Change the Food Environment, Improve Diet, and Reduce Risk of Chronic Disease

    OpenAIRE

    Gittelsohn, Joel; Rowan, Megan; Gadhoke, Preety

    2012-01-01

    Introduction Many small-store intervention trials have been conducted in the United States and other countries to improve the food environment and dietary behaviors associated with chronic disease risk. However, no systematic reviews of the methods and outcomes of these trials have been published. The objective of this study was to identify small-store interventions and to determine their impact on food availability, dietary behaviors, and psychosocial factors that influence chronic disease r...

  10. Variable g- Mars environmental chamber: a small window of the martian environment for life science investigations

    Science.gov (United States)

    Sgambati, Antonella; Slenzka, Klaus; Schmeyers, Bernd; Di Capua, Massimiliano; Harting, Benjamin

    Human exploration and permanent settlement on the Martian surface is the one of the most attractive and ambitious endeavors mankind has ever faced. As technology and research progress, solutions and information that were before unavailable are slowly making the dream become everyday more feasible. In the past years a huge amount of knowledge was gathered by the Mars Exploration Rovers Spirit and Opportunity and now, even more insight is being gathered through the latest rover of the family, Curiosity. In this work, data from the various missions will be used to define and reproduce on Earth the characteristic Martian atmospheric conditions. A small Mars environmental chamber has been designed and built with the objective of studying the effects of the Martian environment on biological systems. The Variable gravity Mars Environmental Chamber (VgMEC) will allow researchers to replicate atmospheric pressure, gas composition, temperature and UVA/B exposure typical of the equatorial regions of Mars. By exposing biological systems to a controllable set of stressor it will be possible to identify both multi and single stressor effects on the system of interest. While several Mars environment simulation facilities exist, due to their size and mass, all are confined to floor-fixed laboratory settings. The VgMEC is an OHB funded project that wishes to bring together the scientific community and the industry. Collaborations will be enabled by granting low cost access to cutting-edge instrumentation and services. Developed at OHB System AG, VgMEC has been designed from the ground up to be a 28L, compact and lightweight test volume capable of being integrated in existing centrifuges (such as the ESA-ESTEC LCD), gimbal systems and parabolic flight aircraft. The VgMEC support systems were designed to accommodate continuous operations of virtually unlimited duration through the adoption of solutions such as: hot swappable gas/liquid consumables bottles, low power requirements, an

  11. Manipulating lipid bilayer material properties using biologically active amphipathic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Ashrafuzzaman, Md [Department of Physiology and Biophysics, Weill Medical College of University of Cornell, New York, NY 10021 (United States); Lampson, M A [Department of Physiology and Biophysics, Weill Medical College of University of Cornell, New York, NY 10021 (United States); Greathouse, D V [Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701 (United States); II, R E Koeppe [Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701 (United States); Andersen, O S [Department of Physiology and Biophysics, Weill Medical College of University of Cornell, New York, NY 10021 (United States)

    2006-07-19

    Lipid bilayers are elastic bodies with properties that can be manipulated/controlled by the adsorption of amphipathic molecules. The resulting changes in bilayer elasticity have been shown to regulate integral membrane protein function. To further understand the amphiphile-induced modulation of bilayer material properties (thickness, intrinsic monolayer curvature and elastic moduli), we examined how an enantiomeric pair of viral anti-fusion peptides (AFPs)-Z-Gly-D-Phe and Z-Gly-Phe, where Z denotes a benzyloxycarbonyl group, as well as Z-Phe-Tyr and Z-D-Phe-Phe-Gly-alters the function of enantiomeric pairs of gramicidin channels of different lengths in planar bilayers. For both short and long channels, the channel lifetimes and appearance frequencies increase as linear functions of the aqueous AFP concentration, with no apparent effect on the single-channel conductance. These changes in channel function do not depend on the chirality of the channels or the AFPs. At pH 7.0, the relative changes in channel lifetimes do not vary when the channel length is varied, indicating that these compounds exert their effects primarily by causing a positive-going change in the intrinsic monolayer curvature. At pH 4.0, the AFPs are more potent than at pH 7.0 and have greater effects on the shorter channels, indicating that these compounds now change the bilayer elastic moduli. When AFPs of different anti-fusion potencies are compared, the rank order of the anti-fusion activity and the channel-modifying activity is similar, but the relative changes in anti-fusion potency are larger than the changes in channel-modifying activity. We conclude that gramicidin channels are useful as molecular force transducers to probe the influence of small amphiphiles upon lipid bilayer material properties.

  12. Texture of lipid bilayer domains

    DEFF Research Database (Denmark)

    Jensen, Uffe Bernchou; Brewer, Jonathan R.; Midtiby, Henrik Skov;

    2009-01-01

    We investigate the texture of gel (g) domains in binary lipid membranes composed of the phospholipids DPPC and DOPC. Lateral organization of lipid bilayer membranes is a topic of fundamental and biological importance. Whereas questions related to size and composition of fluid membrane domain...

  13. Anomalous swelling of multilamellar lipid bilayers in the transition region by renormalization of curvature elasticity

    DEFF Research Database (Denmark)

    Callisen, Thomas Hønger; Mortensen, Kell; Ipsen, John Hjorth;

    1994-01-01

    Small-angle neutron scattering is used to determine the temperature dependence of the lamellar repeat distance in an aqueous multilamellar solution of phospholipid bilayers. A thermal anomaly in the swelling behavior is observed at the bilayer phase transition. The anomalous behavior can be...... suppressed by varying the lipid acyl-chain length or by alloying with a molecular stiffening agent. The experimental results are explained in terms of renormalization of the bilayer curvature elasticity and by using a theory of repulsive interlamellar undulation forces....

  14. Lipid-Bilayer Dynamics Probed by a Carbon Dot-Phospholipid Conjugate.

    Science.gov (United States)

    Nandi, Sukhendu; Malishev, Ravit; Bhunia, Susanta Kumar; Kolusheva, Sofiya; Jopp, Jürgen; Jelinek, Raz

    2016-05-10

    Elucidating the dynamic properties of membranes is important for understanding fundamental cellular processes and for shedding light on the interactions of proteins, drugs, and viruses with the cell surface. Dynamic studies of lipid bilayers have been constrained, however, by the relatively small number of pertinent molecular probes and the limited physicochemical properties of the probes. We show that a lipid conjugate comprised of a fluorescent carbon dot (C-dot) covalently attached to a phospholipid constitutes a versatile and effective vehicle for studying bilayer dynamics. The C-dot-modified phospholipids readily incorporated within biomimetic membranes, including solid-supported bilayers and small and giant vesicles, and inserted into actual cellular membranes. We employed the C-dot-phospholipid probe to elucidate the effects of polymyxin-B (a cytolytic peptide), valproic acid (a lipophilic drug), and amyloid-β (a peptide associated with Alzheimer's disease) upon bilayer fluidity and lipid dynamics through the application of various biophysical techniques.

  15. Melittin–Lipid interaction : A comparative study using liposomes, micelles and bilayer disks

    OpenAIRE

    Lundquist, Anna; Wessman, Per; Rennie, Adrian R.; Edwards, Katarina

    2008-01-01

    Comparison of melittin interaction with liposomes, bilayer disks and micelles showed that melittin binding to lipid aggregates is largely dictated by the amount of highly curved areas in the aggregates. The PEG-stabilised bilayer disks were characterised by a combination of small angle neutron scattering, cryo-transmission electron microscopy and dynamic light scattering. Importantly, the theoretically foreseen partial segregation of the lipid components, important for maintaining the structu...

  16. Detection of small targets in a marine environment using laser radar

    NARCIS (Netherlands)

    Kunz, G.J.; Bekman, H.H.P.T.; Benoist, K.W.; Cohen, L.H.; Heuvel, J.C. van den; Putten, F.J.M.

    2005-01-01

    Small maritime targets, e.g., periscope tubes, jet skies, swimmers and small boats, are potential threats for naval ships under many conditions, but are difficult to detect with current radar systems due to their limited radar cross section and the presence of sea clutter. On the other hand, applica

  17. The Bilayer Enhances Rhodopsin Kinetic Stability in Bovine Rod Outer Segment Disk Membranes

    OpenAIRE

    Corley, Scott C.; Sprangers, Peter; Albert, Arlene D.

    2011-01-01

    Rhodopsin is a kinetically stable protein constituting >90% of rod outer segment disk membrane protein. To investigate the bilayer contribution to rhodopsin kinetic stability, disk membranes were systematically disrupted by octyl-β-D-glucopyranoside. Rhodopsin kinetic stability was examined under subsolubilizing (rhodopsin in a bilayer environment perturbed by octyl-β-D-glucopyranoside) and under fully solubilizing conditions (rhodopsin in a micelle with cosolubilized phospholipids). As deter...

  18. Blended Environments: Learning Effectiveness and Student Satisfaction at a Small College in Transition

    Science.gov (United States)

    Banerjee, Gouri

    2011-01-01

    As higher education moves increasingly to blended and fully online environments, smaller institutions often ask whether this is a desirable trend. They face many challenges in transforming their largely face- to-face didactic teaching traditions to the technology mediated learning environments. Learning effectiveness and student satisfaction are…

  19. Formation and finite element analysis of tethered bilayer lipid structures.

    Science.gov (United States)

    Kwak, Kwang Joo; Valincius, Gintaras; Liao, Wei-Ching; Hu, Xin; Wen, Xuejin; Lee, Andrew; Yu, Bo; Vanderah, David J; Lu, Wu; Lee, L James

    2010-12-01

    Rapid solvent exchange of an ethanolic solution of diphytanoyl phosphatidylcholine (DPhyPC) in the presence of a mixed self-assembled monolayer (SAM) [thiolipid/β-mercaptoethanol (βME) (3/7 mol/mol) on Au] shows a transition from densely packed tethered bilayer lipid membranes [(dp)tBLMs], to loosely packed tethered bilayer lipid membranes [(lp)tBLMs], and tethered bilayer liposome nanoparticles (tBLNs) with decreasing DPhyPC concentration. The tethered lipidic constructs in the aqueous medium were analyzed by atomic force microscopy (AFM) and electrochemical impedance spectroscopy (EIS). Finite element analysis (FEA) was applied to interpret spectral EIS features without referring to equivalent circuit modeling. Using structural data obtained earlier from neutron reflectometry and dielectric constants of lipid bilayers, we reproduced experimentally observed features of the electrochemical impedance (EI) spectra of complex surface constructs involving small pinhole defects, large membrane-free patches, and bound liposomes. We demonstrated by FEA that highly insulating (dp)tBLMs with low-defect density exhibit EI spectra in the shape of a perfect semicircle with or without low-frequency upward "tails" in the Cole-Cole representation. Such EI spectra were observed at DPhyPC concentrations of >5 × 10(-3) mol L(-1). While AFM was not able to visualize very small lateral defects in such films, EI spectra unambiguously signaled their presence by increased low frequency "tails". Using FEA we demonstrate that films with large diameter visible defects (>25 nm by AFM) produce EI spectral features consisting of two semicircles of comparable size. Such films were typically obtained at DPhyPC concentrations of FEA revealed that, to account for these EI features for bound liposome systems (50-500 nm diameter), one needs to assume much lower tBLM conductivities of the submembrane space, which separates the electrode surface and the phospholipid bilayer. Alternatively, FEA

  20. Population inversion in monolayer and bilayer graphene

    International Nuclear Information System (INIS)

    The recent demonstration of saturable absorption and negative optical conductivity in the Terahertz range in graphene has opened up new opportunities for optoelectronic applications based on this and other low dimensional materials. Recently, population inversion across the Dirac point has been observed directly by time- and angle-resolved photoemission spectroscopy (tr-ARPES), revealing a relaxation time of only ∼130 femtoseconds. This severely limits the applicability of single layer graphene to, for example, Terahertz light amplification. Here we use tr-ARPES to demonstrate long-lived population inversion in bilayer graphene. The effect is attributed to the small band gap found in this compound. We propose a microscopic model for these observations and speculate that an enhancement of both the pump photon energy and the pump fluence may further increase this lifetime. (paper)

  1. Environment

    DEFF Research Database (Denmark)

    Valentini, Chiara

    2016-01-01

    The term environment refers to the internal and external context in which organizations operate. For some scholars, environment is defined as an arrangement of political, economic, social and cultural factors existing in a given context that have an impact on organizational processes and structures....... For others, environment is a generic term describing a large variety of stakeholders and how these interact and act upon organizations. Organizations and their environment are mutually interdependent and organizational communications are highly affected by the environment. This entry examines the origin...... and development of organization-environment interdependence, the nature of the concept of environment and its relevance for communication scholarships and activities....

  2. Business Incubators – Favorable Environment for Small and Medium Enterprises Development

    Directory of Open Access Journals (Sweden)

    Camelia MORARU

    2012-05-01

    Full Text Available The biggest problem for many small and medium enterprises (SMEs is not the idea or the product provided and neither its customers, but their needs. High prices of production and office space are critical to the survival of a small business. Incubators come as a response to the needs of small and medium enterprises in key steps of a business, such as initiation and market penetration. An incubator aims to have a positive effect on the economic health of an area, of a community.

  3. Business Incubators – Favorable Environment for Small and Medium Enterprises Development

    OpenAIRE

    Camelia MORARU; Alexandru RUSEI

    2012-01-01

    The biggest problem for many small and medium enterprises (SMEs) is not the idea or the product provided and neither its customers, but their needs. High prices of production and office space are critical to the survival of a small business. Incubators come as a response to the needs of small and medium enterprises in key steps of a business, such as initiation and market penetration. An incubator aims to have a positive effect on the economic health of an area, of a community.

  4. Role of substrate induced electron-phonon interactions in biased graphitic bilayers.

    Science.gov (United States)

    Davenport, A R; Hague, J P

    2016-08-17

    Bilayers of graphitic materials have potential applications in field effect transistors (FETs). A potential difference applied between certain ionic bilayers made from insulating graphitic materials such as BN, ZnO and AlN could reduce gap sizes, turning them into useful semiconductors. On the other hand, opening of a small semiconducting gap occurs in graphene bilayers under applied field. The aim here is to investigate to what extent substrate induced electron-phonon interactions (EPIs) modify this gap change. We examine EPIs in several lattice configurations of graphitic bilayers, using a perturbative approach. The typical effect of EPIs on the ionic bilayers is an undesirable gap widening. The size of this gap change varies considerably with lattice structure and the magnitude of the bias. When bias is larger than the non-interacting gap size, EPIs have the smallest effect on the bandgap, especially in configurations with [Formula: see text] and AB structures. Thus careful selection of substrate, lattice configuration and bias strength to minimise the effects of EPIs could be important for optimising the properties of electronic devices. We use parameters related to BN in this article. In practice, the results presented here are broadly applicable to other graphitic bilayers, and are likely to be qualitatively similar in metal dichalcogenide bilayers such as MoS2, which are already of high interest for their use in FETs. PMID:27346288

  5. Chain elongation of diacylphosphatidylcholine induces fully bilayer interdigitation under atmospheric pressure.

    Science.gov (United States)

    Goto, Masaki; Wilk, Agnieszka; Kazama, Akira; Chodankar, Shirish; Kohlbrecher, Joachim; Matsuki, Hitoshi

    2011-05-01

    The phase transitions of dibehenoylphosphatidylcholine (C22PC) bilayer membrane were observed by differential scanning calorimetry under atmospheric pressure and light-transmittance measurements under high pressure. The constructed temperature-pressure phase diagram suggests that the gel phase at low temperatures is the interdigitated gel phase. To confirm the phase state, we performed small-angle neutron scattering and fluorescence measurements using a polarity-sensitive probe Prodan for the C22PC bilayer membrane under atmospheric pressure. The peaks obtained in both measurements clearly showed the characteristic patterns of the fully interdigitated gel phase. Taking into account of previous studies on the gel phase for long-chain PC bilayers under atmospheric pressure and our studies on the pressure-induced bilayer interdigitaion of diacyl-PCs, it turned out that the interdigitation of diacyl-PC bilayer membranes occurs when the carbon number of acyl chain reaches at least 22. The present study revealed that the interdigitation of PC bilayer membranes occurs not only by weakening the attractive force of polar head groups but also by strengthening the cohesive force of acyl chains. When dominating the force of acyl chains, the interdigitation can be induced even in a diacyl-PC bilayer membrane by only hydration under atmospheric pressure.

  6. Role of substrate induced electron-phonon interactions in biased graphitic bilayers

    Science.gov (United States)

    Davenport, A. R.; Hague, J. P.

    2016-08-01

    Bilayers of graphitic materials have potential applications in field effect transistors (FETs). A potential difference applied between certain ionic bilayers made from insulating graphitic materials such as BN, ZnO and AlN could reduce gap sizes, turning them into useful semiconductors. On the other hand, opening of a small semiconducting gap occurs in graphene bilayers under applied field. The aim here is to investigate to what extent substrate induced electron-phonon interactions (EPIs) modify this gap change. We examine EPIs in several lattice configurations of graphitic bilayers, using a perturbative approach. The typical effect of EPIs on the ionic bilayers is an undesirable gap widening. The size of this gap change varies considerably with lattice structure and the magnitude of the bias. When bias is larger than the non-interacting gap size, EPIs have the smallest effect on the bandgap, especially in configurations with A{{A}\\prime} and AB structures. Thus careful selection of substrate, lattice configuration and bias strength to minimise the effects of EPIs could be important for optimising the properties of electronic devices. We use parameters related to BN in this article. In practice, the results presented here are broadly applicable to other graphitic bilayers, and are likely to be qualitatively similar in metal dichalcogenide bilayers such as MoS2, which are already of high interest for their use in FETs.

  7. Role of substrate induced electron–phonon interactions in biased graphitic bilayers

    Science.gov (United States)

    Davenport, A. R.; Hague, J. P.

    2016-08-01

    Bilayers of graphitic materials have potential applications in field effect transistors (FETs). A potential difference applied between certain ionic bilayers made from insulating graphitic materials such as BN, ZnO and AlN could reduce gap sizes, turning them into useful semiconductors. On the other hand, opening of a small semiconducting gap occurs in graphene bilayers under applied field. The aim here is to investigate to what extent substrate induced electron–phonon interactions (EPIs) modify this gap change. We examine EPIs in several lattice configurations of graphitic bilayers, using a perturbative approach. The typical effect of EPIs on the ionic bilayers is an undesirable gap widening. The size of this gap change varies considerably with lattice structure and the magnitude of the bias. When bias is larger than the non-interacting gap size, EPIs have the smallest effect on the bandgap, especially in configurations with A{{A}\\prime} and AB structures. Thus careful selection of substrate, lattice configuration and bias strength to minimise the effects of EPIs could be important for optimising the properties of electronic devices. We use parameters related to BN in this article. In practice, the results presented here are broadly applicable to other graphitic bilayers, and are likely to be qualitatively similar in metal dichalcogenide bilayers such as MoS2, which are already of high interest for their use in FETs.

  8. Investigating Hydrophilic Pores in Model Lipid Bilayers Using Molecular Simulations: Correlating Bilayer Properties with Pore-Formation Thermodynamics.

    Science.gov (United States)

    Hu, Yuan; Sinha, Sudipta Kumar; Patel, Sandeep

    2015-06-23

    Cell-penetrating and antimicrobial peptides show a remarkable ability to translocate across physiological membranes. Along with factors such as electric-potential-induced perturbations of membrane structure and surface tension effects, experiments invoke porelike membrane configurations during the solute transfer process into vesicles and cells. The initiation and formation of pores are associated with a nontrivial free-energy cost, thus necessitating a consideration of the factors associated with pore formation and the attendant free energies. Because of experimental and modeling challenges related to the long time scales of the translocation process, we use umbrella sampling molecular dynamics simulations with a lipid-density-based order parameter to investigate membrane-pore-formation free energy employing Martini coarse-grained models. We investigate structure and thermodynamic features of the pore in 18 lipids spanning a range of headgroups, charge states, acyl chain lengths, and saturation. We probe the dependence of pore-formation barriers on the area per lipid, lipid bilayer thickness, and membrane bending rigidities in three different lipid classes. The pore-formation free energy in pure bilayers and peptide translocating scenarios are significantly coupled with bilayer thickness. Thicker bilayers require more reversible work to create pores. The pore-formation free energy is higher in peptide-lipid systems than in peptide-free lipid systems due to penalties to maintain the solvation of charged hydrophilic solutes within the membrane environment.

  9. Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane.

    OpenAIRE

    Bernèche, S; Nina, M; Roux, B

    1998-01-01

    Molecular dynamics trajectories of melittin in an explicit dimyristoyl phosphatidylcholine (DMPC) bilayer are generated to study the details of lipid-protein interactions at the microscopic level. Melittin, a small amphipathic peptide found in bee venom, is known to have a pronounced effect on the lysis of membranes. The peptide is initially set parallel to the membrane-solution interfacial region in an alpha-helical conformation with unprotonated N-terminus. Solid-state nuclear magnetic reso...

  10. Virtual Environments and Interactive Tools to communicate Medical Culture in small museums

    Directory of Open Access Journals (Sweden)

    Alessandra Scucces

    2012-12-01

    Full Text Available EnVirtual Environment technologies are becoming increasingly important, carving out place in several sectors like training, learning, entertainment or industry, thanks to their adaptability for different contexts.In the Cultural Heritage field, they have been mostly used to reconstruct and represent lost archaeological patrimony, or to create virtual tours of ancient cities and sites. However, these technologies have now also entered museums and cultural institutions, contributing in changing the concept itself of Museum as institution and its relation with the public, supporting an approach more centered on engagement and participatory experiences.This is particularly true in the case of topics commonly intended as “specialistic”, difficult to approach and understand for general public, such as those related to scientific, anatomical and medical collections. The use of VEs and, in general, also of simpler but carefully designed ICT tools (such as institutional websites can become an important tool to raise awareness and knowledge about these matters.In the present work we describe our experience, focused on a small Anatomy Museum of the University of Pisa, in which we have conducted a study on visitors, and consequently developed asset of interactive tools, aiming at increasing engagement and improving the educational experience, attempting at reducing the gap between the general public and the communication of scientific and medical topics.ItLe nuove tecnologie di Ambienti Virtuali stanno acquisendo una importanza sempre crescente, conquistandosi un posto in ambiti quali training, istruzione, eduntainment e settori industriali, grazie alla loro adattabilità ai vari contesti. Nel campo dei Beni Culturali sono state spesso impiegate nella ricostruzione e rappresentazione del patrimonio archeologico perduto o nella creazione di tour virtuali di antichi siti e città. Attualmente, queste tecnologie hanno fatto il loro ingresso nei musei e

  11. Bilayer Effects of Antimalarial Compounds.

    Directory of Open Access Journals (Sweden)

    Nicole B Ramsey

    Full Text Available Because of the perpetual development of resistance to current therapies for malaria, the Medicines for Malaria Venture developed the Malaria Box to facilitate the drug development process. We tested the 80 most potent compounds from the box for bilayer-mediated effects on membrane protein conformational changes (a measure of likely toxicity in a gramicidin-based stopped flow fluorescence assay. Among the Malaria Box compounds tested, four compounds altered membrane properties (p< 0.05; MMV007384 stood out as a potent bilayer-perturbing compound that is toxic in many cell-based assays, suggesting that testing for membrane perturbation could help identify toxic compounds. In any case, MMV007384 should be approached with caution, if at all.

  12. Horizontal Bilayer for Electrical and Optical Recordings

    Directory of Open Access Journals (Sweden)

    Alf Honigmann

    2012-12-01

    Full Text Available Artificial bilayer containing reconstituted ion channels, transporters and pumps serve as a well-defined model system for electrophysiological investigations of membrane protein structure–function relationship. Appropriately constructed microchips containing horizontally oriented bilayers with easy solution access to both sides provide, in addition, the possibility to investigate these model bilayer membranes and the membrane proteins therein with high resolution fluorescence techniques up to the single-molecule level. Here, we describe a bilayer microchip system in which long-term stable horizontal free-standing and hydrogel-supported bilayers can be formed and demonstrate its prospects particularly for single-molecule fluorescence spectroscopy and high resolution fluorescence microscopy in probing the physicochemical properties like phase behavior of the bilayer-forming lipids, as well as in functional studies of membrane proteins.

  13. Reversibly formed bilayer vesicles: Energetics and polydispersity

    DEFF Research Database (Denmark)

    Bergstöm, M.

    1997-01-01

    statistical-mechanical factor that accounts for the fluctuations in composition, chain packing density and shape. We demonstrate that the free energy required to form a spherical vesicle is made up of two main contributions: the (size-independent) work of bending the constituent monolayers and the work of......Model calculations based on the multiple equilibrium approach indicate that the spontaneous formation of geometrically closed bilayer vesicles is geared primarily by the bilayer tension which in turn is largely determined by the work of bending the bilayer into a spherical vesicle. and a...... stretching the bilayer that is determined by the planar bilayer tension. A previously undiscovered contribution to the work of bending a vesicle bilayer, originating from geometrical packing constraints, is presented. On this basis we obtain vesicle size distributions with maxima located at radii several...

  14. Fish assemblage structure of the Ipanema River, a small lotic environment partially protected by a Conservation Unit in southeastern Brazil.

    Science.gov (United States)

    Oliveira, A K; Apone, F; Birindelli, J L O; Garavello, J C

    2013-05-01

    A study on the fish assemblage of the Ipanema River, a small affluent of the Tietê River basin in southeastern Brazil, was performed aiming to look for structural patterns of species diversity in small lowland lotic environments. Fish samplings were performed every two months from June 2003 to April 2004 at four sample sites located on the lower stretch of the river. Local assemblage showed to be species rich, with fifty-two species belonging to Characiformes (25 spp.), Siluriformes (19 spp.), Cyprinodontiformes (3 spp.), Gymnotiformes (2 spp.), Perciformes (2 spp.), and Synbranchiformes (1 sp.). Fish fauna was composed of small-sized species (oxbow lakes, main channel of great rivers). The importance of the Ipanema River basin for fish fauna conservation is also reinforced by the fact that it is located in a highly impacted region of southeastern Brazil, near the São Paulo metropolitan area. PMID:23917553

  15. Built Environment Factors Influencing Walking to School Behaviors: A Comparison between a Small and Large US City

    Directory of Open Access Journals (Sweden)

    Hyung Jin eKim

    2016-04-01

    Full Text Available A growing body of evidence supports the association between the built environment and children walking to school (WTS, but few studies have compared WTS behaviors in cities of different sizes. This case-comparison study utilized WTS data from 4th graders in the small city of Manhattan, KS (N=171, from all 8 schools and data from 4th graders in the large city of Austin, TX (N=671 from 19 stratified-sampled schools. The same survey instrument was used in both locations. After controlling for socioeconomic and demographic variables, built environment, neighborhood, and attitudinal differences were demonstrated by the odds ratios for WTS in the small city versus the large city. WTS in the small city was more likely to be associated with walking paths/trails and sidewalk landscape buffers en route to school despite lower perceived neighborhood social cohesion, school bus availability, and parental concerns about crime, compared to WTS in the large city. Also, the small city lacked key pedestrian infrastructure elements that were present in the large city. This study highlights important differences related to WTS behaviors and thus provides key insights for encouraging WTS in cities of different sizes.

  16. Influence of product phase separation on phospholipase A(2) hydrolysis of supported phospholipid bilayers studied by force microscopy

    DEFF Research Database (Denmark)

    Nielsen, Lars Kildemark; Balashev, K.; Callisen, Thomas Hønger;

    2002-01-01

    concentrations, made by Langmuir-Blodgett deposition, we show that small depressions enriched in products are efficiently promoting enzyme degradation of the bilayer. These small depressions, which are indicative of phase separation, are initially present in samples with 75% products. The kinetics of...... phospholipase A(2) exhibit under certain conditions an initial phase of slow hydrolysis, termed the latency phase, followed by a marked increase in the hydrolysis rate. The appearance of the phase-separated bilayer is strikingly similar to that of bilayers; at the end of the latency phase. By analysis of...

  17. Vapor deposition of water on graphitic surfaces: formation of amorphous ice, bilayer ice, ice I, and liquid water.

    Science.gov (United States)

    Lupi, Laura; Kastelowitz, Noah; Molinero, Valeria

    2014-11-14

    Carbonaceous surfaces are a major source of atmospheric particles and could play an important role in the formation of ice. Here we investigate through molecular simulations the stability, metastability, and molecular pathways of deposition of amorphous ice, bilayer ice, and ice I from water vapor on graphitic and atomless Lennard-Jones surfaces as a function of temperature. We find that bilayer ice is the most stable ice polymorph for small cluster sizes, nevertheless it can grow metastable well above its region of thermodynamic stability. In agreement with experiments, the simulations predict that on increasing temperature the outcome of water deposition is amorphous ice, bilayer ice, ice I, and liquid water. The deposition nucleation of bilayer ice and ice I is preceded by the formation of small liquid clusters, which have two wetting states: bilayer pancake-like (wetting) at small cluster size and droplet-like (non-wetting) at larger cluster size. The wetting state of liquid clusters determines which ice polymorph is nucleated: bilayer ice nucleates from wetting bilayer liquid clusters and ice I from non-wetting liquid clusters. The maximum temperature for nucleation of bilayer ice on flat surfaces, T(B)(max) is given by the maximum temperature for which liquid water clusters reach the equilibrium melting line of bilayer ice as wetting bilayer clusters. Increasing water-surface attraction stabilizes the pancake-like wetting state of liquid clusters leading to larger T(B)(max) for the flat non-hydrogen bonding surfaces of this study. The findings of this study should be of relevance for the understanding of ice formation by deposition mode on carbonaceous atmospheric particles, including soot. PMID:25399173

  18. Vapor deposition of water on graphitic surfaces: Formation of amorphous ice, bilayer ice, ice I, and liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Lupi, Laura; Kastelowitz, Noah; Molinero, Valeria, E-mail: Valeria.Molinero@utah.edu [Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850 (United States)

    2014-11-14

    Carbonaceous surfaces are a major source of atmospheric particles and could play an important role in the formation of ice. Here we investigate through molecular simulations the stability, metastability, and molecular pathways of deposition of amorphous ice, bilayer ice, and ice I from water vapor on graphitic and atomless Lennard-Jones surfaces as a function of temperature. We find that bilayer ice is the most stable ice polymorph for small cluster sizes, nevertheless it can grow metastable well above its region of thermodynamic stability. In agreement with experiments, the simulations predict that on increasing temperature the outcome of water deposition is amorphous ice, bilayer ice, ice I, and liquid water. The deposition nucleation of bilayer ice and ice I is preceded by the formation of small liquid clusters, which have two wetting states: bilayer pancake-like (wetting) at small cluster size and droplet-like (non-wetting) at larger cluster size. The wetting state of liquid clusters determines which ice polymorph is nucleated: bilayer ice nucleates from wetting bilayer liquid clusters and ice I from non-wetting liquid clusters. The maximum temperature for nucleation of bilayer ice on flat surfaces, T{sub B}{sup max} is given by the maximum temperature for which liquid water clusters reach the equilibrium melting line of bilayer ice as wetting bilayer clusters. Increasing water-surface attraction stabilizes the pancake-like wetting state of liquid clusters leading to larger T{sub B}{sup max} for the flat non-hydrogen bonding surfaces of this study. The findings of this study should be of relevance for the understanding of ice formation by deposition mode on carbonaceous atmospheric particles, including soot.

  19. An Alternative Model of Multimedia Development: Small Projects within an Academic Environment.

    Science.gov (United States)

    Stoney, Sue; McMahon, Mark

    This paper reports on a project at Edith Cowan University (Australia) in which a multidisciplinary team designed and created a self-paced learning environment for students to learn about share valuation and investment, with a focus on the inclusion of features that would motivate students to use and engage with the program. The resultant program,…

  20. Design and Implementation of a Space Environment Simulation Toolbox for Small Satellites

    DEFF Research Database (Denmark)

    Amini, Rouzbeh; Larsen, Jesper A.; Izadi-Zamanabadi, Roozbeh;

    This paper presents a developed toolbox for space environment model in SIMULINK that facilitates development and design of Attitude Determination and Control Systems (ADCS) for a Low Earth Orbit (LEO) spacecraft. The toolbox includes, among others, models of orbit propagators, disturbances, Earth...

  1. Small particles containing phthalic esters in the indoor environment - a pilot study

    DEFF Research Database (Denmark)

    Lundgren, B.; Bornehag, Carl-Gustaf; Cedhaim, L.;

    2002-01-01

    environments. Sedimented dust from the child´s bedroom in seventeen homes has been sampled using a Vacuu Mark sampler and a vacuum cleaner. The dust is collected on 90 millimetre cellulose filters, which are extracted and analysed by techniques such as HPLC and GCMS. First results have shown that phthalates...

  2. Design and Implementation of a Space Environment Simulation Toolbox for Small Satellites

    DEFF Research Database (Denmark)

    Amini, Rouzbeh; Larsen, Jesper A.; Izadi-Zamanabadi, Roozbeh;

    2005-01-01

    This paper presents a developed toolbox for space environment model in SIMULINK that facilitates development and design of Attitude Determination and Control Systems (ADCS) for a Low Earth Orbit (LEO) spacecraft. The toolbox includes, among others, models of orbit propagators, disturbances, Earth...

  3. Small Satellite Verification and Assessment Test Facility with Space Environments Effects Ground-testing Capabilities

    OpenAIRE

    Stromberg, Eric; Frazier, Crystal; Montierth Phillipps, Lisa; Souvall, Alex; Dennison, JR; Dyer, James S.

    2015-01-01

    The Utah State University Space Dynamics Laboratory (SDL) and Materials Physics Group (MPG) have developed an extensive versatile and cost-effective pre-launch test capability for verification and assessment of small satellites, system components, and spacecraft materials. The facilities can perform environmental testing, component characterization, system level hardware in-the-loop testing, and qualification testing to ensure that each element is functional, reliable, and working per its des...

  4. Localization of a small change in a multiple scattering environment without modeling of the actual medium

    OpenAIRE

    Rakotonarivo, Sandrine; Walker, S.C.; Kuperman, W. A.; ROUX, Philippe

    2011-01-01

    A method to actively localize a small perturbation in a multiple scattering medium using a collection of remote acoustic sensors is presented. The approach requires only minimal modeling and no knowledge of the scatterer distribution and properties of the scattering medium and the perturbation. The medium is ensonified before and after a perturbation is introduced. The coherent difference between the measured signals then reveals all field components that have interacted with the perturbation...

  5. Characterization of small mammal populations inhabiting the B-C cribs environs

    Energy Technology Data Exchange (ETDEWEB)

    Hedlund, J.D.; Rogers, L.E.

    1976-12-01

    The purpose of this study was to document the current status of small mammal populations inhibiting the 200 Area plateau near the B-C Crib management area and to compare them with populations inhabiting a protected (control) area within the confines of the Hanford ALE Reserve. Sampling sessions were conducted over two field seasons (1974 and 1975). A total of five species was detected within intensive study areas. These included the Great Basin pocket mouse (Perognathus parvus), deer mouse (Peromyscus maniculatus), northern grasshopper mouse (Onychomys leucogaster), sagebrush vole (Lagurus curtatus), and western harvest mouse (Reithrodontomys megalotis). These species are probably representative of those found throughout the area at this particular elevation. Townsends ground squirrel (Spermophilus townsendii) also occurs in this area but did not occur on the sampling plots during the study duration. The pocket mouse was the only species present in sufficient numbers to permit a detailed analysis of population parameters. A discussion concerning the role small mammals play in mineral cycling and energy transfer processes is included along with a diagram depicting food web interrelationships for consumers inhabiting the 200 Area plateau region. Estimates of small mammal density and biomass provided in this document are needed for an overall understanding of the role biota play in the transfer of waste nuclides.

  6. Characterization of small mammal populations inhabiting the B-C cribs environs

    International Nuclear Information System (INIS)

    The purpose of this study was to document the current status of small mammal populations inhibiting the 200 Area plateau near the B-C Crib management area and to compare them with populations inhabiting a protected (control) area within the confines of the Hanford ALE Reserve. Sampling sessions were conducted over two field seasons (1974 and 1975). A total of five species was detected within intensive study areas. These included the Great Basin pocket mouse (Perognathus parvus), deer mouse (Peromyscus maniculatus), northern grasshopper mouse (Onychomys leucogaster), sagebrush vole (Lagurus curtatus), and western harvest mouse (Reithrodontomys megalotis). These species are probably representative of those found throughout the area at this particular elevation. Townsends ground squirrel (Spermophilus townsendii) also occurs in this area but did not occur on the sampling plots during the study duration. The pocket mouse was the only species present in sufficient numbers to permit a detailed analysis of population parameters. A discussion concerning the role small mammals play in mineral cycling and energy transfer processes is included along with a diagram depicting food web interrelationships for consumers inhabiting the 200 Area plateau region. Estimates of small mammal density and biomass provided in this document are needed for an overall understanding of the role biota play in the transfer of waste nuclides

  7. Coral Reef environment reconstruction using small drones, new generation photogrammetry algorithms and satellite imagery

    Science.gov (United States)

    Elisa, Casella; Rovere, Alessio; Harris, Daniel; Parravicini, Valeriano

    2016-04-01

    Surveys based on Remotely Piloted Aircraft Systems (RPAS), together with new-generation Structure from Motion (SfM) and Multi-View Stereo (MVS) reconstruction algorithms have been employed to reconstruct the shallow bathymetry of the inner lagoon of a coral reef in Moorea, French Polinesia. This technique has already been used with a high rate of success on coastal environments (e.g. sandy beaches and rocky shorelines) reaching accuracy of the final Digital Elevation Model in the order of few centimeters. The application of such techniques to reconstruct shallow underwater environments is, though, still little reported. We then used the bathymetric dataset obtained from aerial pictures as ground-truth for relative bathymetry obtained from satellite imagery (WorldView-2) of a larger area within the same study site. The first results of our work suggest that RPAS coupled with SfM and MVS algorithms can be used to reconstruct shallow water environments with favorable weather conditions, and can be employed to ground-truth to satellite imagery.

  8. Particle-based simulations of bilayer membranes: self-assembly, structural analysis, and shock-wave damage

    Science.gov (United States)

    Steinhauser, Martin O.; Schindler, Tanja

    2016-08-01

    We report on the results of particle-based, coarse-grained molecular dynamics simulations of amphiphilic lipid molecules in aqueous environment where the membrane structures at equilibrium are subsequently exposed to strong shock waves, and their damage is analyzed. The lipid molecules self-assemble from unbiased random initial configurations to form stable bilayer membranes, including closed vesicles. During self-assembly of lipid molecules, we observe several stages of clustering, starting with many small clusters of lipids, gradually merging together to finally form one single bilayer membrane. We find that the clustering of lipids sensitively depends on the hydrophobic interaction h_c of the lipid tails in our model and on temperature T of the system. The self-assembled bilayer membranes are quantitatively analyzed at equilibrium with respect to their degree of order and their local structure. We also show that—by analyzing the membrane fluctuations and using a linearized theory— we obtain area compression moduli K_A and bending stiffnesses κ_B for our bilayer membranes which are within the experimental range of in vivo and in vitro measurements of biological membranes. We also discuss the density profile and the pair correlation function of our model membranes at equilibrium which has not been done in previous studies of particle-based membrane models. Furthermore, we present a detailed phase diagram of our lipid model that exhibits a sol-gel transition between quasi-solid and fluid domains, and domains where no self-assembly of lipids occurs. In addition, we present in the phase diagram the conditions for temperature T and hydrophobicity h_c of the lipid tails of our model to form closed vesicles. The stable bilayer membranes obtained at equilibrium are then subjected to strong shock waves in a shock tube setup, and we investigate the damage in the membranes due to their interaction with shock waves. Here, we find a transition from self

  9. Bilayer thickness mismatch controls domain size in biomimetic membranes

    Science.gov (United States)

    Heberle, Frederick A.; Petruzielo, Robin S.; Pan, Jianjun; Drazba, Paul; Kučerka, Norbert; Standaert, Robert F.; Feigenson, Gerald W.; Katsara, John

    2013-03-01

    In order to promote functionality, cells may alter the spatial organization of membrane lipids and proteins, including separation of liquid phases into distinct domains. In model membranes, domain size and morphology depend strongly on composition and temperature, but the physicochemical mechanisms controlling them are poorly understood. Theoretical work suggests a role for interfacial energy at domain boundaries, which may be driven in part by thickness mismatch between a domain and its surrounding bilayer. However, no direct evidence linking thickness mismatch to domain size in free-standing bilayers has been reported. We describe the use of Small Angle Neutron Scattering (SANS) to detect domains in simplified lipid-only models that mimic the composition of plasma membrane. We find that domain size is controlled by the degree of acyl chain unsaturation of low-melting temperature lipids, and that this size transition is correlated to changes in the thickness mismatch between coexisting liquid phases.

  10. Superdiffusion in supported lipid bilayers

    CERN Document Server

    Campagnola, Grace; Schroder, Bryce W; Peersen, Olve B; Krapf, Diego

    2015-01-01

    We study the diffusion of membrane-targeting C2 domains using single-molecule tracking in supported lipid bilayers. The ensemble-averaged mean square displacement (MSD) exhibits superdiffusive behavior. However, the time-averaged MSD of individual trajectories is found to be linear with respect to lag time, as in Brownian diffusion. These observations are explained in terms of bulk excursions that introduce jumps with a heavy-tail distribution. Our experimental results are shown to agree with analytical models of bulk-mediated diffusion and with numerical simulations.

  11. The Influence of the Business Environment on Small and Medium Enterprises

    OpenAIRE

    Iulian Viorel Brașoveanu; Petronela – Evelina Bălu

    2014-01-01

    The Small and Medium Enterprise sector in Romania has been significantly affected by the global recession in the years 2008-2009; currently it is making efforts to revive it, thanks to important role it occupies in the economy of any country. SMEs raise wide debates, especially on fiscal measures. In Romania, SMEs represent 99.7% of all businesses, generating two-thirds of jobs in the business and half of gross value added. This paper focuses on the development of SMEs and hence on business e...

  12. Multivariate characterization of spawning and larval environment of small pelagic fishes in the Gulf of California

    OpenAIRE

    Saldierna Martínez, Ricardo Javier; Robinson, Carlos Jorge; Gómez Gutiérrez, Jaime; Palomares García, José Ricardo; Aceves Medina, Gerardo

    2009-01-01

    Spawning and nursery areas of Sardinops sagax (Pacific sardine) and Engraulis mordax (northern anchovy) were characterized during early winter in the Gulf of California, using near-surface horizontal and oblique Bongo tows. The main spawning area for anchovy was located near the islands of Tiburón and Angel de la Guarda and for sardine near both coasts on either side of the central region of the gulf. A hydroacoustic survey showed a close spatial overlap between the distribution of small pela...

  13. HJ-1A And HJ-1B Small Satellite Constellation For Environment And Disaster Monitoring

    Institute of Scientific and Technical Information of China (English)

    Bai Zhaoguang

    2009-01-01

    @@ HJ-1A and HJ-1B small satellites were launched atop a LM-2C/SMA on September 6, 2008 from Taiyuan Satellite Launch Center. The satellites began to transmit back images from September 8 and the constellation formed on October 13. After 5 months of orbit testing and operationevaluation, China's first optical satelliteconstellation passed its performancereview and was delivered to the Ministryof Civil Affairs and the Ministry ofEnvironmental Protection by ChinaAerospace Science and Technology Corporation and China Satellite Launch6 Tracking Control General.

  14. Last glacial maximum environments in northwestern Patagonia revealed by fossil small mammals

    Science.gov (United States)

    Tammone, Mauro N.; Hajduk, Adan; Arias, Pablo; Teta, Pablo; Lacey, Eileen A.; Pardiñas, Ulyses F. J.

    2014-07-01

    Comparisons of historical and modern assemblages of mammals can yield important insights into patterns and processes of environmental change. Here, we present the first analyses of small mammal assemblages present in northern Patagonia during the last glacial maximum (LGM). Using remains obtained from owl pellets excavated from an archeological cave site (Arroyo Corral I, levels VII-V, carbon dates of 22,400-21,530 cal yr BP), we generate estimates of the minimum number of individuals for all species detected; these estimates, in turn are used to determine relative species abundances. Comparisons of these data with similar analyses of small mammal remains obtained from a second archeological site (ACoII, levels IV-V, carbon dates of 10,010-9220 cal yr BP) as well as from modern owl pellets reveal pronounced changes in relative species abundance since the LGM. In particular, Euneomys chinchilloides and Ctenomys sociabilis - the predominant species during the LGM - declined markedly, suggesting a change from open, bare habitat punctuated by patches of wet meadows and shrubs to the more densely vegetated mosaic of ecotone habitats found in this region today. These data provide important new insights into the environmental changes that have occurred in northern Patagonia over the last 20,000 years.

  15. Annular bilayer magnetoelectric composites: theoretical analysis.

    Science.gov (United States)

    Guo, Mingsen; Dong, Shuxiang

    2010-01-01

    The laminated bilayer magnetoelectric (ME) composites consist of magnetostrictive and piezoelectric layers are known to have giant ME coefficient due to the high coupling efficiency in bending mode. In our previous report, the bar-shaped bilayer composite has been investigated by using a magnetoelectric-coupling equivalent circuit. Here, we propose an annular bilayer ME composite, which consists of magnetostrictive and piezoelectric rings. This composite has a much lower resonance frequency of bending mode compared with its radial mode. In addition, the annular bilayer ME composite is expected to respond to vortex magnetic field as well as unidirectional magnetic field. In this paper, we investigate the annular bilayer ME composite by using impedance-matrix method and predict the ME coefficients as a function of geometric parameters of the composites. PMID:20178914

  16. Optimizing the triple-axis spectrometer PANDA at the MLZ for small samples and complex sample environment conditions

    Science.gov (United States)

    Utschick, C.; Skoulatos, M.; Schneidewind, A.; Böni, P.

    2016-11-01

    The cold-neutron triple-axis spectrometer PANDA at the neutron source FRM II has been serving an international user community studying condensed matter physics problems. We report on a new setup, improving the signal-to-noise ratio for small samples and pressure cell setups. Analytical and numerical Monte Carlo methods are used for the optimization of elliptic and parabolic focusing guides. They are placed between the monochromator and sample positions, and the flux at the sample is compared to the one achieved by standard monochromator focusing techniques. A 25 times smaller spot size is achieved, associated with a factor of 2 increased intensity, within the same divergence limits, ± 2 ° . This optional neutron focusing guide shall establish a top-class spectrometer for studying novel exotic properties of matter in combination with more stringent sample environment conditions such as extreme pressures associated with small sample sizes.

  17. Beyond simple small-angle X-ray scattering: developments in online complementary techniques and sample environments

    Directory of Open Access Journals (Sweden)

    Wim Bras

    2014-11-01

    Full Text Available Small- and wide-angle X-ray scattering (SAXS, WAXS are standard tools in materials research. The simultaneous measurement of SAXS and WAXS data in time-resolved studies has gained popularity due to the complementary information obtained. Furthermore, the combination of these data with non X-ray based techniques, via either simultaneous or independent measurements, has advanced understanding of the driving forces that lead to the structures and morphologies of materials, which in turn give rise to their properties. The simultaneous measurement of different data regimes and types, using either X-rays or neutrons, and the desire to control parameters that initiate and control structural changes have led to greater demands on sample environments. Examples of developments in technique combinations and sample environment design are discussed, together with a brief speculation about promising future developments.

  18. Application of the modified Wheeler cap method for radiation efficiency measurement of balanced electrically small antennas in complex environment

    DEFF Research Database (Denmark)

    Zhang, Jiaying; Pivnenko, Sergey; Breinbjerg, Olav

    2010-01-01

    In this paper, application of a modified Wheeler cap method for the radiation efficiency measurement of balanced electrically small antennas is presented. It is shown that the limitations on the cavity dimension can be overcome and thus measurement in a large cavity is possible. The cavity loss...... is investigated, and a modified radiation efficiency formula that includes the cavity loss is introduced. Moreover, a modification of the technique is proposed that involves the antenna working complex environment inside the Wheeler Cap and thus makes possible measurement of an antenna close to a hand or head...

  19. Catching up with the Past: A Small Contribution to a Long History of Interactive Environments

    Directory of Open Access Journals (Sweden)

    Michael Fox

    2014-07-01

    Full Text Available This paper documents the evolution of my thinking in the area of interactive architecture over the past 15 years with students and my office. The work is framed within an overview of a long history of work in the area by others. My personal development has taken a number of clear steps in a relatively logical progression.In summary, the work began with kinetics as a means to facilitate adaptation. Work in this area led to integrating computation as a means of controlling the kinetics. The combination of these two areas led to the use of discrete mechanical assemblies as a systems approach to interaction design, which led to the thinking of control as bottom-up and emergent. Consequently I became fascinated with modular autonomous robotics and the notion that actual architectural space could be made of such systems. This in turn led to the exploration of biomimetics in terms of the processes, which eventually led to the idea that the parts in a system should get smaller to the point that they make up the matter itself.The paper concludes with an explanation of how technical advancements in manufacturing, fabrication and computational control will continue to expand the parameters of what is possible in robotics, and consequently influence the scale by which we understand and construct our environments. The future of interactive environments will most certainly involve re-examining the scale by which things operate to the extent that much of the operations happen within the materials themselves. This scaling down is beginning to force a reinterpretation of the mechanical paradigm of adaptation.

  20. "Nanocrystal bilayer for tandem catalysis"

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yusuke; Tsung, Chia Kuang; Huang, Wenyu; Huo, Ziyang; E.Habas, Susan E; Soejima, Tetsuro; Aliaga, Cesar E; Samorjai, Gabor A; Yang, Peidong

    2011-01-24

    Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO2-Pt and Pt-SiO2, can be used to catalyse two distinct sequential reactions. The CeO2-Pt interface catalysed methanol decomposition to produce CO and H2, which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO2 interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts

  1. Formation of individual protein channels in lipid bilayers suspended in nanopores.

    Science.gov (United States)

    Studer, André; Han, Xiaojun; Winkler, Fritz K; Tiefenauer, Louis X

    2009-10-15

    Free-standing lipid bilayers are formed in regularly arranged nanopores of 200, 400 and 800 nm in a 300 nm thin hydrophobic silicon nitride membrane separating two fluid compartments. The extraordinary stability of the lipid bilayers allows us to monitor channel formation of the model peptide melittin and alpha-hemolysin from Staphylococcus aureus using electrochemical impedance spectroscopy and chronoamperometry. We observed that melittin channel formation is voltage-dependent and transient, whereas transmembrane heptameric alpha-hemolysin channels in nano-BLMs persist for hours. The onset of alpha-hemolysin-mediated conduction depends on the applied protein concentration and strongly on the diameter of the nanopores. Heptameric channel formation from adsorbed alpha-hemolysin monomers needs more time in bilayers suspended in 200 nm pores compared to bilayers in pores of 400 and 800 nm diameters. Diffusion of sodium ions across alpha-hemolysin channels present in a sufficiently high number in the bilayers was quantitatively and specifically determined using ion selective electrodes. The results demonstrate that relatively small variations of nano-dimensions have a tremendous effect on observable dynamic biomolecular processes. Such nanopore chips are potentially useful as supports for stable lipid bilayers to establish functional assays of membrane proteins needed in basic research and drug discovery.

  2. Storable droplet interface lipid bilayers for cell-free ion channel studies.

    Science.gov (United States)

    Jung, Sung-Ho; Choi, Sangbaek; Kim, Young-Rok; Jeon, Tae-Joon

    2012-01-01

    An artificially created lipid bilayer is an important platform in studying ion channels and engineered biosensor applications. However, a lipid bilayer created using conventional techniques is fragile and short-lived, and the measurement of ion channels requires expertise and laborious procedures, precluding practical applications. Here, we demonstrate a storable droplet lipid bilayer precursor frozen with ion channels, resulting in a droplet interface bilayer upon thawing. A small vial with an aqueous droplet in organic solution was flash frozen in -80 °C methanol immediately after an aqueous droplet was introduced into the organic solution and gravity draws the droplet down to the interface upon thawing. A lipid bilayer created along the interface using this method had giga-ohm resistance and typical specific capacitance values. The noise level of this system is favorably comparable to the conventional system. The subsequent incorporation of ion channels, alpha-hemolysin and gramicidin A, showed typical conductance values consistent with those in previous literatures. This novel system to create a lipid bilayer as a whole can be automated from its manufacture to use and indefinitely stored when frozen. As a result, ion channel measurements can be carried out in any place, increasing the accessibility of ion channel studies as well as a number of applications, such as biosensors, ion channel drug screening, and biophysical studies. PMID:21909672

  3. Initial studies of Bremsstrahlung energy deposition in small-bore superconducting undulator structures in linac environments

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, T.; Tatchyn, R. [Stanford Univ., CA (United States)

    1995-12-31

    One of the more promising technologies for developing minimal-length insertion devices for linac-driven, single-pass Free Electron Lasers (FELs) operating in the x-ray range is based on the use of superconducting (SC) materials. In recent FEL simulations, for example, a bifilar helical SC device with a 2 cm period and 1.8 T field was found to require a 30 m saturation length for operation at 1.5{Angstrom} on a 15 GeV linac, more than 40% shorter than an alternative hybrid/permanent magnet (hybrid/PM) undulator. AT the same time, however, SC technology is known to present characteristic difficulties for insertion device design, both in engineering detail and in operation. Perhaps the most critical problem, as observed, e.g., by Madey and co-workers in their initial FEL experiments, was the frequent quenching induced by scattered electrons upstream of their (bifilar) device. Postulating that this quenching was precipitated by directly-scattered or bremsstrahlung-induced particle energy deposited into the SC material or into material contiguous with it, the importance of numerical and experimental characterizations of this phenomenon for linac-based, user-facility SC undulator design becomes evident. In this paper we discuss selected prior experimental results and report on initial EGS4 code studies of scattered and bremsstrahlung induced particle energy deposition into SC structures with geometries comparable to a small-bore bifilar helical undulator.

  4. Small Vocabulary Recognition Using Surface Electromyography in an Acoustically Harsh Environment

    Science.gov (United States)

    Betts, Bradley J.; Jorgensen, Charles

    2005-01-01

    This paper presents results of electromyographic-based (EMG-based) speech recognition on a small vocabulary of 15 English words. The work was motivated in part by a desire to mitigate the effects of high acoustic noise on speech intelligibility in communication systems used by first responders. Both an off-line and a real-time system were constructed. Data were collected from a single male subject wearing a fireghter's self-contained breathing apparatus. A single channel of EMG data was used, collected via surface sensors at a rate of 104 samples/s. The signal processing core consisted of an activity detector, a feature extractor, and a neural network classifier. In the off-line phase, 150 examples of each word were collected from the subject. Generalization testing, conducted using bootstrapping, produced an overall average correct classification rate on the 15 words of 74%, with a 95% confidence interval of [71%, 77%]. Once the classifier was trained, the subject used the real-time system to communicate and to control a robotic device. The real-time system was tested with the subject exposed to an ambient noise level of approximately 95 decibels.

  5. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light.

    Science.gov (United States)

    Qin, Fei; Ding, Lu; Zhang, Lei; Monticone, Francesco; Chum, Chan Choy; Deng, Jie; Mei, Shengtao; Li, Ying; Teng, Jinghua; Hong, Minghui; Zhang, Shuang; Alù, Andrea; Qiu, Cheng-Wei

    2016-01-01

    Metasurfaces operating in the cross-polarization scheme have shown an interesting degree of control over the wavefront of transmitted light. Nevertheless, their inherently low efficiency in visible light raises certain concerns for practical applications. Without sacrificing the ultrathin flat design, we propose a bilayer plasmonic metasurface operating at visible frequencies, obtained by coupling a nanoantenna-based metasurface with its complementary Babinet-inverted copy. By breaking the radiation symmetry because of the finite, yet small, thickness of the proposed structure and benefitting from properly tailored intra- and interlayer couplings, such coupled bilayer metasurface experimentally yields a conversion efficiency of 17%, significantly larger than that of earlier single-layer designs, as well as an extinction ratio larger than 0 dB, meaning that anomalous refraction dominates the transmission response. Our finding shows that metallic metasurface can counterintuitively manipulate the visible light as efficiently as dielectric metasurface (~20% in conversion efficiency in Lin et al.'s study), although the metal's ohmic loss is much higher than dielectrics. Our hybrid bilayer design, still being ultrathin (~λ/6), is found to obey generalized Snell's law even in the presence of strong couplings. It is capable of efficiently manipulating visible light over a broad bandwidth and can be realized with a facile one-step nanofabrication process. PMID:26767195

  6. Spatial arrangement of selected fluorescence labels in lipid bilayer.

    Science.gov (United States)

    Zawada, Zygmunt H

    2013-08-01

    The method for the determination the orientation factor κ(2), spatial arrangement and depth position of fluorescence labels located in hydrophilic layers of vesicles bilayer from resonance energy transfer (RET) data is presented. The method is based on the broadened Wolber and Hudson RET model in two dimensions (Biophys J. 1979). The vesicles were labeled with N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (NBD-PE) as the donor and N-(Lissamine rhodamine B sulfonyl) 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (NRh-PE) as the acceptor. It was found that in basic environment sodium dithionite quenches fluorescence of both labels located in outer leaflet of bilayer. Therefore, RET data prior to and following dithionite treatment were compared and the donor-acceptor cis and trans distances of the closest approach as well as cis and trans Förster radii R0, and orientation factors κ(2) for cis RET equal to 0.61±0.06 and for trans RET equal to 0.17±0.01 were assigned. Knowing the κ(2) data, the spatial arrangement of NBD and NRh labels as dipoles in dipalmitoylphosphatidylcholine bilayer were described. PMID:23727616

  7. Bilayer Thickness Mismatch Controls Domain Size in Model Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Heberle, Frederick A [ORNL; Petruzielo, Robin S [ORNL; Pan, Jianjun [ORNL; Drazba, Paul [ORNL; Kucerka, Norbert [Canadian Neutron Beam Centre and Comelius University (Slovakia); Feigenson, Gerald [Cornell University; Katsaras, John [ORNL

    2013-01-01

    The observation of lateral phase separation in lipid bilayers has received considerable attention, especially in connection to lipid raft phenomena in cells. It is widely accepted that rafts play a central role in cellular processes, notably signal transduction. While micrometer-sized domains are observed with some model membrane mixtures, rafts much smaller than 100 nm beyond the reach of optical microscopy are now thought to exist, both in vitro and in vivo. We have used small-angle neutron scattering, a probe free technique, to measure the size of nanoscopic membrane domains in unilamellar vesicles with unprecedented accuracy. These experiments were performed using a four-component model system containing fixed proportions of cholesterol and the saturated phospholipid 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), mixed with varying amounts of the unsaturated phospholipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dioleoylsn- glycero-3-phosphocholine (DOPC). We find that liquid domain size increases with the extent of acyl chain unsaturation (DOPC:POPC ratio). Furthermore, we find a direct correlation between domain size and the mismatch in bilayer thickness of the coexisting liquid-ordered and liquid-disordered phases, suggesting a dominant role for line tension in controlling domain size. While this result is expected from line tension theories, we provide the first experimental verification in free-floating bilayers. Importantly, we also find that changes in bilayer thickness, which accompany changes in the degree of lipid chain unsaturation, are entirely confined to the disordered phase. Together, these results suggest how the size of functional domains in homeothermic cells may be regulated through changes in lipid composition.

  8. A Big Bang or small bangs? Effects of biotic environment on hatching

    Directory of Open Access Journals (Sweden)

    Marina MANCA

    2008-08-01

    Full Text Available The beginning and end of diapause are two important transition points in cladoceran life history. The influence of environmental variables on the dynamics of these processes still deserves attention, especially as concerns the role of biotic factors. In this paper we focus on emergence from diapause, testing (1 whether ephippia of Daphnia obtusa Kurz can assess the presence in the water of typical planktivorous fish or ostracods, and (2 whether such an assessment results in changes in hatching strategy. Total number of hatchlings from D. obtusa ephippial eggs did not differ between the control and the treatments in which the presence of fish or ostracods could be detected (ANOVA, P = 0.884. However, hatching dynamics were different: most of the eggs hatched synchronously at day 4 (83.3% of the total hatchlings number in the control, while only a low proportion of eggs hatched on day 4 in the fish (38.3%, and ostracod treatments (24.0% of the total. Mean hatching time was longer, and variability larger, in the treatments than in the control; differences resulted statistically significant (ANOVA, P = 0.005. With respect to the control, representing a simple microcosm controlled by abiotic variables only, the treatments may be regarded as relatively complex environments, in which Daphnia is also exposed to biotic cues. Under these more complex conditions, the same number of hatchlings is obtained through different hatching dynamics. In the treatments, the first hatchlings appeared later and the hatching rate was more variable than in the control. These observations confirm previously observed patterns from laboratory experiments which tested the effect of competition and fluctuating environmental conditions (light:dark, temperature regimes on D. obtusa reproductive and demographic parameters. They are also in agreement with recently obtained evidence concerning the importance of biotic cues for hatching of ephippial eggs. Overall, the evidence

  9. Fusion and fission of fluid amphiphilic bilayers.

    Science.gov (United States)

    Gotter, Martin; Strey, Reinhard; Olsson, Ulf; Wennerström, Håkan

    2005-01-01

    The system water-oil (n-decane)-nonionic surfactant (C12E5) forms bilayer phases in a large concentration region, but, for a given oil-to-surfactant ratio, only in a narrow temperature range. In addition to the anisotropic lamellar phase (Lalpha) there is also, at slightly higher temperature, a sponge or L3-phase where the bilayers build up an isotropic structure extending macroscopically in three dimensions. In this phase the bilayer mid-surface has a mean curvature close to zero and a negative Euler characteristic. In this paper we study how the bilayers in the lamellar and the sponge phase respond dynamically to sudden temperature changes. The monolayer spontaneous curvature depends sensitively on temperature and a change of temperature thus provides a driving force for a change in bilayer topology. The equilibration therefore involves kinetic steps of fusion/fission of bilayers. Such dynamic processes have previously been monitored by temperature jump experiments using light scattering in the sponge phase. These experiments revealed an extraordinarily strong dependence of the relaxation time on the bilayer volume fraction phi. At phi magnetic resonance (2H-NMR) appear feasible. We here report on the first experiments concerned with the dynamics of the macroscopic phase transition sponge-lamellae by 2H-NMR. We find that the sponge-to-lamellae transition occurs through a nucleation process followed by domain growth involving bilayer fission at domain boundaries. In contrast, the lamellae-to-sponge transformation apparently occurs through a succession of uncorrelated bilayer fusion events. PMID:15715316

  10. Monolithic multiscale bilayer inverse opal electrodes for dye-sensitized solar cell applications.

    Science.gov (United States)

    Lee, Jung Woo; Moon, Jun Hyuk

    2015-03-12

    Multilayer structures in which the layers are both electrically and physically connected are critical to be used as high-performance electrodes for photovoltaic devices. We present the first multiscale bilayer inverse opal (IO) structures for application as electrodes in dye-sensitized solar cells (DSCs). A bilayer of a mesoscopic IO layer (70 nm pore diameter) and a top macroporous IO layer (215 nm and 250 nm pore diameters) was fabricated as the high-specific-area electrode and the light-harvesting enhancing layer, respectively. The mesoscopic IO layer exhibits a dye-adsorption density, which is approximately 4 times greater than that of the macroporous IO structure because of its small pore size. The macroporous IO layer exhibits a photonic bandgap reflection in the visible-light wavelength range. We incorporated the bilayer IO electrodes into DSCs and compared the effects of the pore sizes of the macroporous layers on the photocurrent densities of the DSCs. We observed that the bilayer IO electrode DSCs that contained a 250 nm IO layer exhibited photocurrent densities greater than those of 215 nm IO DSCs. This enhanced photocurrent density was achieved because the photonic bandgap (PBG) reflection wavelength matches the wavelength range in which the N719 dye has a small light-absorption coefficient. The fabrication of this structurally homogeneous IO bilayer allows a strong contact between the layers, and the resulting bilayer, therefore, exhibits a high photovoltaic performance. We believe that this bilayer structure provides an alternative approach to the development of optimized electrode structures for various devices.

  11. Spin dynamics of bilayer manganites

    Indian Academy of Sciences (India)

    Tapan Chatterji

    2004-07-01

    The results of inelastic and quasi-elastic neutron scattering investigations on the 40% hole-doped quasi-2D bilayer manganites La1.2Sr1.8Mn2O7 have been reviewed. The complete set of exchange interactions have been determined on the basis of a localized Heisenberg model. However, the spin wave dispersion in La1.2Sr1.8Mn2O7 shows softening close to the zone boundary and are also heavily damped especially close to the zone boundary and deviate from that expected for a simple Heisenberg model. A minimal double exchange model including quantum corrections can reproduce these effects qualitatively but falls short of quantitative agreement.

  12. Bilayer-thickness-mediated interactions between integral membrane proteins

    CERN Document Server

    Kahraman, Osman; Klug, William S; Haselwandter, Christoph A

    2016-01-01

    Hydrophobic thickness mismatch between integral membrane proteins and the surrounding lipid bilayer can produce lipid bilayer thickness deformations. Experiment and theory have shown that protein-induced lipid bilayer thickness deformations can yield energetically favorable bilayer-mediated interactions between integral membrane proteins, and large-scale organization of integral membrane proteins into protein clusters in cell membranes. Within the continuum elasticity theory of membranes, the energy cost of protein-induced bilayer thickness deformations can be captured by considering compression and expansion of the bilayer hydrophobic core, membrane tension, and bilayer bending, resulting in biharmonic equilibrium equations describing the shape of lipid bilayers for a given set of bilayer-protein boundary conditions. Here we develop a combined analytic and numerical methodology for the solution of the equilibrium elastic equations associated with protein-induced lipid bilayer deformations. Our methodology al...

  13. Berry phase transition in twisted bilayer graphene

    Science.gov (United States)

    Rode, Johannes C.; Smirnov, Dmitri; Schmidt, Hennrik; Haug, Rolf J.

    2016-09-01

    The electronic dispersion of a graphene bilayer is highly dependent on rotational mismatch between layers and can be further manipulated by electrical gating. This allows for an unprecedented control over electronic properties and opens up the possibility of flexible band structure engineering. Here we present novel magnetotransport data in a twisted bilayer, crossing the energetic border between decoupled monolayers and coupled bilayer. In addition a transition in Berry phase between π and 2π is observed at intermediate magnetic fields. Analysis of Fermi velocities and gate induced charge carrier densities suggests an important role of strong layer asymmetry for the observed phenomena.

  14. Fragmented state of lipid bilayers in water

    DEFF Research Database (Denmark)

    Helfrich, W.; Thimmel, J.; Klösgen, Beate Maria

    1999-01-01

    The bilayers of some typical biological membrane lipids such as PC and DGDG disintegrate in a large excess of water to form an optically invisible dispersive bilayer phase. `Dark bodies' can be reversibly precipitated from it by raising the temperature. The dispersive phase probably consists...... of `knotted sticks', i.e. very thin nodular tubes of bilayer. After reviewing pertinent experimental and theoretical work we report on the discovery of a lower consolute point near room temperature in DGDG/water systems. Its existence shows that the dispersive phase and the dark bodies belong to the same...

  15. Impact of Work Environment, Salary Package and Employees’ Perception on Organizational Commitment: A study of Small & Medium Enterprises (SMEs) of Pakistan

    OpenAIRE

    Jawad Akhtar

    2014-01-01

    The chief purpose of this research paper is to investigate how factors like (1) work environment; (2) salary Package and (3) Employees’ perception have an effect on the employees’ organizational commitment in the Small and Medium Enterprises (SMEs) of Pakistan.

  16. THE INFLUENCE OF IMPLEMENTING THE STRATEGIC POLICY IN CREATING BUSINESS CLIMATE, BUSINESS ENVIRONMENT AND PROVIDING SUPPORT FACILITIES TOWARDS BUSINESS EMPOWERMENT ON SMALL MEDIUM CRAFT ENTERPRISES IN AMBON INDONESIA

    OpenAIRE

    Josef Papilaya; Thereesje Roza Soisa; Haedar Akib

    2015-01-01

    This study aims at analyzing and explaining whether there was the influence of implementing the strategic policy in creating business climate, business environment and providing support facilities towards empowerment on small and medium enterprises as well as whether there is synchronously influence of implementing the strategic policy in creating business climate, business environment and providing support facilities for business empowerment on small and medium scale enterprises through a s...

  17. Natural disaster reduction applications of the Chinese small satellite constellation for environment and disaster monitoring and forecasting

    Science.gov (United States)

    Liu, Sanchao; Fan, Yida; Gao, Maofang

    2013-10-01

    The Small Satellite Constellation for Environment and Disaster Monitoring and Forecasting (SSCEDMF) is an important component of Chinese satellites earth observation system. The first stage of SSCEDMF is composed by "2+1" satellites. The 2 optical satellites (HJ-1-A and HJ-1-B) and 1 S band microwave satellite (HJ-1-C) were successful launched on September 6, 2008 and November 19, 2012 respectively. This article introduced SSCEDMF characteristic and the disaster reduction application system and satellites on-orbit test works, and also analyzed the application capacity in natural disasters included flood, ice flooding, wild fire, severely drought, snow disasters, large area landslide and debris flow, sea ice, earthquake recovering, desertification and plant diseases and insect pests. Furthermore, we show some cases of China's and other countries' new natural disasters forecasting, monitoring, assessment and recovery construction.

  18. Physical processes and landforms on beaches in short fetch environments in estuaries, small lakes and reservoirs: A review

    Science.gov (United States)

    Nordstrom, Karl F.; Jackson, Nancy L.

    2012-02-01

    This review is intended to identify differences between beaches in short-fetch environments and beaches on exposed coasts, while also distinguishing between the different subcategories of fetch-limited beaches. Subcategories are discussed largely in terms of estuaries, lakes and reservoirs. The term fetch-limited refers to basins that are small enough that distance rather than wind duration is always a limitation to wave generation. Attention is focused on basins where fetch distances are exchanges result in beach sediments that closely resemble local source materials. The absence of high-energy waves causes beaches and bar forms to be smaller, and the absence of swell waves following storms and the relatively calm conditions reduces the speed of recovery of post-storm profiles and the cyclic nature of beach response. The beaches are often fronted by flat shallow platforms that undergo little morphologic change and help dissipate waves at low water levels. The narrow beaches are poor sources of sediment for wind-blown sand and dunes are small or frequently absent. The narrow beaches and reduced wave energies allow upland vegetation and algae and seagrass to grow close to the active foreshore. This vegetation, the wrack deposited on the beach, and driftwood logs are better able to resist the low-energy waves and are more effective in resisting beach change. Erosion rates of 2-3 m yr- 1 are common in some estuaries and can be > 7 m yr- 1. Rates of up to 1.5 m yr- 1 can occur in small lakes and reservoirs. Shore parallel protection structures are common and have greater survivability in low-energy environments than high-energy environments; they are cheaper to build; and they have been implemented more frequently to control erosion. Their effect has been to reduce the extent of beach in small water bodies. Beach nourishment projects have been fewer than on exposed shores and the quantities smaller. Many nourishment projects have been implemented for amenity value and

  19. Self healing nature of bilayer graphene

    Science.gov (United States)

    Debroy, Sanghamitra; Pavan Kumar Miriyala, V.; Vijaya Sekhar, K.; Acharyya, Swati Ghosh; Acharyya, Amit

    2016-08-01

    The phenomenon of self healing of cracks in bilayer graphene sheet has been studied using molecular dynamics simulations. The bilayer graphene sheet was subjected to uniaxial tensile load resulting in initiation and propagation of cracks on exceeding the ultimate tensile strength. Subsequently, all forces acting on the sheet were removed and sheet was relaxed. The cracks formed in the graphene sheet healed without any external aid within 0.4 ps The phenomenon of self healing of the cracks in graphene sheet was found to be independent of the length of the crack, but occurred for critical crack opening distance less than 5 Å for AA stacked sheet and 13 Å for AB stacked bilayer graphene sheet. Self healing was observed for both AB (mixed stacking of armchair and zigzag graphene sheet) and AA (both sheets of similar orientation i.e. either armchair-armchair or zigzag-zigzag) stacking of bilayer graphene sheet.

  20. Computer Simulations of Lipid Bilayers and Proteins

    DEFF Research Database (Denmark)

    Sonne, Jacob

    2006-01-01

    The importance of computer simulations in lipid bilayer research has become more prominent for the last couple of decades and as computers get even faster, simulations will play an increasingly important part of understanding the processes that take place in and across cell membranes. This thesis...... entitled Computer simulations of lipid bilayers and proteins describes two molecular dynamics (MD) simulation studies of pure lipid bilayers as well as a study of a transmembrane protein embedded in a lipid bilayer matrix. Below follows a brief overview of the thesis. Chapter 1. This chapter is a short...... rearrangements in BtuCD we employed perturbed elastic network calculations and biased MD simulations. Comparing the results of these calculations with two transport models proposed in the literature, we are able to favor one over the other. Our observations for BtuCD may be relevant for all ABC transporters...

  1. Proximity induced superconductivity in bilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Bordaz, Julien; Wu, Fan [Institute of Nanotechnology, Karlsruhe Institute of Technology (Germany); Wolf, Michael; Beckmann, Detlef [Institute of Nanotechnology, Karlsruhe Institute of Technology (Germany); DFG Center for Functional Nanostructures, Karlsruhe Institute of Technology (Germany); Loehneysen, Hilbert von [Institute of Nanotechnology, Karlsruhe Institute of Technology (Germany); DFG Center for Functional Nanostructures, Karlsruhe Institute of Technology (Germany); Institute of Physics, Karlsruhe Institute of Technology (Germany); Institute for Solid-State Physics, Karlsruhe Institute of Technology (Germany); Watanabe, Kenji; Taniguchi, Takashi [Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba (Japan); Danneau, Romain [Institute of Nanotechnology, Karlsruhe Institute of Technology (Germany); Institute of Physics, Karlsruhe Institute of Technology (Germany)

    2013-07-01

    Proximity induced superconductivity effect occurs when graphene is connected with close enough superconducting electrodes. Observations of Andreev reflection and induced supercurrents flowing through graphene sheets have already been reported in graphene. However, these effects have not been explored in bilayer graphene so far. By applying a perpendicular electric field, it is possible to open a gap in a bilayer graphene. This can be achieved in practice by designing a top gate in addition to the usual back gate. Our devices are produced on top of sapphire wafers by using transfer techniques and standard electron-beam lithography. The bilayers are sandwiched between two atomically flat hexagonal boron nitride multilayers which are both used as gate dielectric. By inducing a band gap into a bilayer graphene connected by two superconducting leads, the supercurrent could be switched off inducing a superconductor-insulator transition.

  2. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment

    Science.gov (United States)

    Santamaría, Luis

    2002-06-01

    Non-marine aquatic vascular plants generally show broad distributional ranges. Climatic factors seem to have limited effects on their distributions, besides the determination of major disjunctions (tropical-temperate-subarctic). Dispersal should have been frequent enough to assure the quick colonisation of extensive areas following glacial retreat, but dispersal limitation is still apparent in areas separated by geographic barriers. Aquatic vascular plants also show limited taxonomic differentiation and low within-species genetic variation. Variation within populations is particularly low, but variation among populations seems to be relatively high, mainly due to the persistence of long-lived clones. Ecotypic differentiation is often related to factors that constrain clonal reproduction (salinity and ephemeral inundation). Inland aquatic habitats are heterogeneous environments, but this heterogeneity largely occurs at relatively small scales (within waterbodies and among neighbouring ones). They also represent a stressful environment for plants, characterised by low carbon availability, shaded conditions, sediment anoxia, mechanical damage by currents and waves, significant restrictions to sexual reproduction, and sometimes also osmotic stress and limited nutrient supply. I propose that the generality of broad distributions and low differentiation among the inland aquatic flora is best explained by a combination of: (1) selection for stress-tolerant taxa with broad tolerance ranges. (2) The selective advantages provided by clonal growth and multiplication, which increases plant tolerance to stress, genet survivorship and population viability. (3) Long-distance dispersal of sexual propagules and high local dispersal of asexual clones. (4) The generality of broad plastic responses, promoted by the combination of clonal growth, high local dispersal, small-scale spatial heterogeneity and temporal variability.

  3. Lipid bilayers decorated with photosensitive ruthenium complexes

    OpenAIRE

    Bahreman, Azadeh

    2013-01-01

    In this thesis the thermal- and photo-substitution behavior of polypyridyl ruthenium complexes is described at the surface of lipid bilayers and in homogeneous solutions. It is shown that the successive thermal binding and light-induced unbinding of the cationic ruthenium complex at the surface of the lipid bilayer requires negatively charged liposomes and ruthenium complexes containing moderately hindered N-N bidentate ligands. Our results in homogeneous solution show that changing the steri...

  4. Bilayers merge even when exocytosis is transient

    OpenAIRE

    Taraska, Justin W; Almers, Wolfhard

    2004-01-01

    During exocytosis, the lumen of secretory vesicles connects with the extracellular space. In some vesicles, this connection closes again, causing the vesicle to be recaptured mostly intact. The degree to which the bilayers of such vesicles mix with the plasma membrane is unknown. Work supporting the kiss-and-run model of transient exocytosis implies that synaptic vesicles allow neither lipid nor protein to escape into the plasma membrane, suggesting that the two bilayers never merge. Here, we...

  5. Topological transformation of a surfactant bilayer

    DEFF Research Database (Denmark)

    Le, T.D.; Olsson, U.; Mortensen, K.

    2000-01-01

    Surfactant lamellar phases are often complicated by the formation of multilamellar (onions) under shear, which can originate simply by shaking the sample. A systematic study has been performed on the C10E3-D2O system in which different bilayer structures under a steady shear flow were investigate......>(b), in the transformation from onion to plane to multiply connected bilayer structure as a function of temperature. (C) 2000 Elsevier Science B.V. All rights reserved....

  6. Twisted bi-layer graphene: microscopic rainbows

    OpenAIRE

    Campos-Delgado, J.; Algara-Siller, G.; Santos, C. N.; Kaiser, U.; Raskin, J.-P.

    2013-01-01

    Twisted bi-layer graphene (tBLG) has recently attracted interest due to the peculiar electrical properties that arise from its random rotational configurations. Our experiments on CVD-grown graphene from Cu foil and transferred onto Si substrates, with an oxide layer of 100 nm, reveal naturally-produced bi-layer graphene patches which present different colorations when shined with white light. In particular yellow-, pink- and blue- colored areas are evidenced. Combining optical microscopy, Ra...

  7. Silica-based cationic bilayers as immunoadjuvants

    OpenAIRE

    Carmona-Ribeiro Ana M; da Costa Maria; Faquim-Mauro Eliana; Santana Mariana RA; Lincopan Nilton

    2009-01-01

    Abstract Background Silica particles cationized by dioctadecyldimethylammonium bromide (DODAB) bilayer were previously described. This work shows the efficiency of these particulates for antigen adsorption and presentation to the immune system and proves the concept that silica-based cationic bilayers exhibit better performance than alum regarding colloid stability and cellular immune responses for vaccine design. Results Firstly, the silica/DODAB assembly was characterized at 1 mM NaCl, pH 6...

  8. Saliency detection and model-based tracking: a two part vision system for small robot navigation in forested environment

    Science.gov (United States)

    Roberts, Richard; Ta, Duy-Nguyen; Straub, Julian; Ok, Kyel; Dellaert, Frank

    2012-06-01

    Towards the goal of fast, vision-based autonomous flight, localization, and map building to support local planning and control in unstructured outdoor environments, we present a method for incrementally building a map of salient tree trunks while simultaneously estimating the trajectory of a quadrotor flying through a forest. We make significant progress in a class of visual perception methods that produce low-dimensional, geometric information that is ideal for planning and navigation on aerial robots, while directing computational resources using motion saliency, which selects objects that are important to navigation and planning. By low-dimensional geometric information, we mean coarse geometric primitives, which for the purposes of motion planning and navigation are suitable proxies for real-world objects. Additionally, we develop a method for summarizing past image measurements that avoids expensive computations on a history of images while maintaining the key non-linearities that make full map and trajectory smoothing possible. We demonstrate results with data from a small, commercially-available quad-rotor flying in a challenging, forested environment.

  9. Analysis of Thermal Environment over a Small-Scale Landscape in a Densely Built-Up Asian Megacity

    Directory of Open Access Journals (Sweden)

    Younha Kim

    2016-04-01

    Full Text Available Many studies have found that larger parks might be needed to counteract the Urban Heat Island effects typical in densely populated Asian megacities. However, it is not easy to establish large parks to serve as urban cool islands in Asian megacities, where little space exists for large urban neighborhood parks. Officials in these cities would rather use small areas by replacing heat-absorbing artificial land cover with natural cover. The main objective of this study was to understand the cooling effect of changes in land cover on surface and air temperatures in urban micro-scale environments for supporting sustainable green-space planning and policy in densely built-up areas. This was achieved using measurements at different heights (ground surface, 0.1 m, and 1.5 m for five land cover types (LCTs and modeling with the micro-scale climate model ENVI-met. At all vertical measuring points, the average temperature over the entire measurement period had the same hot-to-cold order: asphalt > soil > grass > water > forest. However, the value dramatically decreased as the measuring points became higher. The intensity of hot and cool spots showed the highest value at surface by 18.2 °C, and declined with the height, showing 4.1 °C at 0.1 m and 3.1 °C at 1.5 m. The modeling results indicated that the well-known diurnal variation in surface insolation also occurred in our small domain, among the various LCTs. Based on these findings, providing small-scale green infrastructure in densely built-up areas could be an effective way to improve urban micro-scale thermal conditions.

  10. Increased adhesion between neutral lipid bilayers: interbilayer bridges formed by tannic acid.

    Science.gov (United States)

    Simon, S A; Disalvo, E A; Gawrisch, K; Borovyagin, V; Toone, E; Schiffman, S S; Needham, D; McIntosh, T J

    1994-06-01

    Tannic acid (TA) is a naturally occurring polyphenolic compound that aggregates membranes and neutral phosolipid vesicles and precipitates many proteins. This study analyzes TA binding to lipid membranes and the ensuing aggregation. The optical density of dispersions of phosphatidylcholine (PC) vesicles increased upon the addition of TA and electron micrographs showed that TA caused the vesicles to aggregate and form stacks of tightly packed disks. Solution calorimetry showed that TA bound to PC bilayers with a molar binding enthalpy of -8.3 kcal/mol and zeta potential measurements revealed that TA imparted a small negative charge to PC vesicles. Monolayer studies showed that TA bound to PC with a dissociation constant of 1.5 microM and reduced the dipole potential by up to 250 mV. Both the increase in optical density and decrease in dipole potential produced by TA could be reversed by the addition of polyvinylpyrrolidone, a compound that chelates TA by providing H-bond acceptor groups. NMR, micropipette aspiration, and x-ray diffraction experiments showed that TA incorporated into liquid crystalline PC membranes, increasing the area per lipid molecule and decreasing the bilayer thickness by 2 to 4%. 2H-NMR quadrupole splitting measurements also showed that TA associated with a PC molecule for times much less than 10(-4) s. In gel phase bilayers, TA caused the hydrocarbon chains from apposing monolayers to fully interdigitate. X-ray diffraction measurements of both gel and liquid crystalline dispersions showed that TA, at a critical concentration of about 1 mM, reduced the fluid spacing between adjacent bilayers by 8-10 A. These data place severe constraints on how TA can pack between adjacent bilayers and cause vesicles to adhere. We conclude that TA promotes vesicle aggregation by reducing the fluid spacing between bilayers by the formation of transient interbilayer bridges by inserting its digallic acid residues into the interfacial regions of adjacent bilayers

  11. Theory of phase equilibria and critical mixing points in binary lipid bilayers

    DEFF Research Database (Denmark)

    Risbo, Jens; Sperotto, Maria Maddalena; Mouritsen, Ole G.

    1995-01-01

    that a phase transition in a strict thermodynamic sense may be absent in some of the short-chain one-component Lipid bilayers, but a transition can be induced when small amounts of another species are mixed in, leading to a closed phase separation loop with critical points. The physical mechanism of inducing...

  12. Molecular dynamics simulations of the interactions of medicinal plant extracts and drugs with lipid bilayer membranes

    DEFF Research Database (Denmark)

    Kopec, Wojciech; Telenius, Jelena; Khandelia, Himanshu

    2013-01-01

    Several small drugs and medicinal plant extracts, such as the Indian spice extract curcumin, have a wide range of useful pharmacological properties that cannot be ascribed to binding to a single protein target alone. The lipid bilayer membrane is thought to mediate the effects of many...

  13. Lipid bilayer-assisted release of an enediyne antibiotic from neocarzinostatin chromoprotein.

    Science.gov (United States)

    Hariharan, Parameswaran; Sudhahar, Christopher Gunasekaran; Chou, Shan-Ho; Chin, Der-Hang

    2010-09-01

    The nine-membered enediyne class has drawn extensive interest because of extremely high antitumor potency and intricate interactions with its carrier protein. While the drug-induced DNA cleavage reactions have been mostly elucidated, the critical release-transport process of the labile enediyne molecule in cellular environment remained obscure. Using neocarzinostatin chromoprotein as a model, we demonstrated a lipid bilayer-assisted release mechanism. The in vitro enediyne release rate under aqueous conditions was found to be too slow to account for its efficient DNA cleavage action. Via the presence of lipid bilayers, chaotropic agents, or organic solvents, we found the release was substantially enhanced. The increased rate was linearly dependent on the lipid bilayer concentration and the dielectric value of the binary organic solvent mixtures. While lipid bilayers provided a low surrounding dielectricity to assist in drug release, there were no major conformational changes in the apo and holo forms of the carrier protein. In addition, the lifespan of the released enediyne chromophore was markedly extended through partitioning of the chromophore in the hydrophobic bilayer phase, and the lipid bilayer-stabilized enediyne chromophore significantly enhanced DNA cleavage in vitro. Collectively, we depicted how a lipid bilayer membrane efficiently enhanced dissociation of the enediyne chromophore through a hydrophobic sensing release mechanism and then acted as a protector of the released enediyne molecule until its delivery to the target DNA. The proposed membrane-assisted antibiotic release-transport model might signify a new dimension to our understanding of the modus operandi of the antitumor enediyne drugs. PMID:20712297

  14. A portable lipid bilayer system for environmental sensing with a transmembrane protein.

    Directory of Open Access Journals (Sweden)

    Ryuji Kawano

    Full Text Available This paper describes a portable measurement system for current signals of an ion channel that is composed of a planar lipid bilayer. A stable and reproducible lipid bilayer is formed in outdoor environments by using a droplet contact method with a micropipette. Using this system, we demonstrated that the single-channel recording of a transmembrane protein (alpha-hemolysin was achieved in the field at a high-altitude (∼3623 m. This system would be broadly applicable for obtaining environmental measurements using membrane proteins as a highly sensitive sensor.

  15. RKKY interaction in bilayer graphene

    Science.gov (United States)

    Mohammadi, Yawar; Moradian, Rostam

    2015-12-01

    We study the RKKY interaction between two magnetic impurities located on the same layer (intralayer case) or on different layers (interlayer case) in undoped bilayer graphene (BLG) in the four-bands model, by directly calculating the Green functions in the eigenvalues and eigenvectors representation. Our results show that both intra- and interlayer RKKY interactions between two magnetic impurities located on the same (opposite) sublattice are always ferromagnetic (antiferromagnetic). Furthermore we find unusual long-distance decay of the RKKY interaction in BLG. The intralyer RKKY interactions between two magnetic impurities located on the same sublattice, J AnAn(R) and J BnBn(R), decay closely as 1 /R6 and 1 /R2 at large impurity distances respectively, but when they are located on opposite sublattices the RKKY interactions exhibit 1 /R4 decays approximately. In the interlayer case, the RKKY interactions between two magnetic impurities located on the same sublattice show a decay close to 1 /R4 at large impurity distances, but if two magnetic impurities be on opposite sublattices the RKKY interactions, J A1B2(R) and J B1A2(R), decay closely as 1 /R6 and 1 /R2 respectively. Both intra- and interlayer RKKY interactions have anisotropic oscillatory factors which for intralayer case is equal to that for single layer graphene (SLG). Our results at weak and strong interlayer coupling limits reduce to the RKKY interaction of SLG and that of BLG in the two-bands approximation respectively.

  16. Hydrophobic matching between melittin and phosphocholine lipid bilayers having different thicknesses

    Science.gov (United States)

    Heller, William; Qian, Shuo

    2014-03-01

    The lipid bilayer of the cellular membrane is more than a simple medium that houses proteins with specific function. Instead, it is an elastic medium that plays an active role in the function of the membrane and that both drives the function of membrane proteins and alters its properties in response to their presence. The conceptual simplicity of membrane active peptides makes them attractive model systems for studying membrane-protein interactions. Melittin, a 27 amino acid cationic peptide having a helix-hinge-helix motif, is one of the most extensively studied examples. Small-angle neutron scattering (SANS) measurements of melittin associated with lipid bilayer vesicles having different hydrocarbon thicknesses showed that the bilayer thickness stretches to match the thickness of the peptide in a manner consistent with a rigid, extended melittin having its helical axis oriented parallel to the bilayer normal. This behavior is surprising considering the helix-hinge-helix motif of the peptide and in contrast to studies indicating that transmembrane helices tilt with respect to the bilayer normal to accommodate differences in hydrophobic thicknesses. Possible sources of the discrepancy will be discussed and explored. This research at SNS and HFIR of ORNL was supported by the US Department of Energy Office of Basic Energy Sciences and the Office of Biological and Environmental Research (ERKP291).

  17. Coexisting massive and massless Dirac fermions in symmetry-broken bilayer graphene

    Science.gov (United States)

    Bostwick, Aaron

    2014-03-01

    Charge carriers in bilayer graphene are widely believed to be massive Dirac fermions that have a bandgap tunable by a transverse electric field. However, a full transport gap, despite its importance for device applications, has not been clearly observed in gated bilayer graphene, a long-standing puzzle. Moreover, the low-energy electronic structure of bilayer graphene is widely held to be unstable towards symmetry breaking either by structural distortions, such as twist, strain, or electronic interactions that can lead to various ground states. Which effect dominates the physics at low energies is hotly debated. We find by direct band-structure measurements and by calculations that a native imperfection of bilayer graphene, a distribution of twists whose size is as small as ~ 0.1°, is sufficient to generate a completely new electronic spectrum consisting of massive and massless Dirac fermions. The massless spectrum is robust against strong electric fields, and has a unusual topology in momentum space consisting of closed arcs having an exotic chiral pseudospin texture, which can be tuned by varying the charge density. The discovery of this unusual Dirac spectrum may be widely relevant to charge transport in bilayer graphene.

  18. Experimental verification of lipid bilayer structure through multi-scale modeling.

    Science.gov (United States)

    Perlmutter, Jason D; Sachs, Jonathan N

    2009-10-01

    Great progress has been made in applying coarse-grain molecular dynamics (CGMD) simulations to the investigation of membrane biophysics. In order to validate the accuracy of CGMD simulations of membranes, atomistic scale detail is necessary for direct comparison to structural experiments. Here, we present our strategy for verifying CGMD lipid bilayer simulations. Through reverse coarse graining and subsequent calculation of the bilayer electron density profile, we are able to compare the simulations to our experimental low angle X-ray scattering (LAXS) data. In order to determine the best match to the experimental data, atomistic simulations are run at a range of areas (in the NP(N)AT ensemble), starting from distinct configurations extracted from the CGMD simulation (run in the NPT ensemble). We demonstrate the effectiveness of this procedure with two small, single-component bilayers, and suggest that the greater utility of our algorithm will be for CGMD simulations of more complex structures. PMID:19616507

  19. Dynamics, Surface Electrostatics and Phase Properties of Nanoscale Curved Lipid Bilayers

    Science.gov (United States)

    Koolivand, Amir

    Surface electrostatic potential of a lipid bilayer governs many vital functions of living cells. Several classes of proteins are known of exhibiting strong binding preferences to curved lipid bilayer surfaces. In this project we employed electron paramagnetic resonance (EPR) of a recently introduced phospholipid (IMTSL-PTE) bearing a pH-sensitive nitroxide covalently attached to the lipid head group to measure the surface electrostatics of the lipid membrane and nanopore-confined lipid bilayers as a function of the bilayer curvature. The pKa of the ionizable group of this lipid-based spin probe is reporting on the bilayer surface electrostatics potential by changes in the EPR spectra. Specifically, both rotational dynamics and magnetic parameters of the nitroxide are affected by the probe protonation. Effect of curvature on the surface electrostatic potential and dynamics of lipid bilayer was studied for POPG and DMPG unilamellar vesicles (ULVs). It was found that the magnitude of the negative surface electrostatic potential increased upon decrease in the vesicle diameter for the bilayers in the fluid phase; however, no significant changes were observed for DMPG ULVs in a gel phase. We speculate that biologically relevant fluid bilayer phase allows for a larger variability in the lipid packing density in the lipid polar head group region than a more ordered gel phase and it is likely that the lipid flip-flop is responsible for pH equilibration of IMTSL-PTE. The kinetic EPR study of nitroxide reduction showed that the rate of flip-flop is in the order of 10-5 s-1. The flip-flop rate constant increases when vesicle size deceases. Oxygen permeability measured by X-ban EPR decreases in higher curved vesicles---an observation that is consistent with a tighter packing in smaller vesicles. Partitioning of a small nitroxide molecule TEMPO into ULVs was measured by X-band (9 GHz) and W-band (95 GHz) EPR spectroscopy. The partitioning coefficient of this probe in the lipid

  20. Ferromagnetic Interfacial Interaction and the Proximity Effect in a Co2FeAl/(Ga,Mn)As Bilayer

    Science.gov (United States)

    Nie, S. H.; Chin, Y. Y.; Liu, W. Q.; Tung, J. C.; Lu, J.; Lin, H. J.; Guo, G. Y.; Meng, K. K.; Chen, L.; Zhu, L. J.; Pan, D.; Chen, C. T.; Xu, Y. B.; Yan, W. S.; Zhao, J. H.

    2013-07-01

    The magnetic properties of a Co2FeAl/(Ga,Mn)As bilayer epitaxied on GaAs (001) are studied both experimentally and theoretically. Unlike the common antiferromagnetic interfacial interaction existing in most ferromagnet-magnetic semiconductor bilayers, a ferromagnetic interfacial interaction in the Co2FeAl/(Ga,Mn)As bilayer is observed from measurements of magnetic hysteresis and x-ray magnetic circular dichroism. The Mn ions in a 1.36 nm thick (Ga,Mn)As layer remain spin polarized up to 400 K due to the magnetic proximity effect. The minor loops of the Co2FeAl/(Ga,Mn)As bilayer shift with a small ferromagnetic interaction field of +24Oe and -23Oe at 15 K. The observed ferromagnetic interfacial coupling is supported by ab initio density functional calculations. These findings may provide a viable pathway for designing room-temperature semiconductor spintronic devices through magnetic proximity effect.

  1. Advances in the use of nanoscale bilayers to study membrane protein structure and function.

    Science.gov (United States)

    Malhotra, Ketan; Alder, Nathan N

    2014-10-01

    Within the last decade, nanoscale lipid bilayers have emerged as powerful experimental systems in the analysis of membrane proteins (MPs) for both basic and applied research. These discoidal lipid lamellae are stabilized by annuli of specially engineered amphipathic polypeptides (nanodiscs) or polymers (SMALPs/Lipodisqs®). As biomembrane mimetics, they are well suited for the reconstitution of MPs within a controlled lipid environment. Moreover, because they are water-soluble, they are amenable to solution-based biochemical and biophysical experimentation. Hence, due to their solubility, size, stability, and monodispersity, nanoscale lipid bilayers offer technical advantages over more traditional MP analytic approaches such as detergent solubilization and reconstitution into lipid vesicles. In this article, we review some of the most recent advances in the synthesis of polypeptide- and polymer-bound nanoscale lipid bilayers and their application in the study of MP structure and function. PMID:25023464

  2. Contrasting patterns in the small-scale heterogeneity of human helminth infections in urban and rural environments in Brazil.

    Science.gov (United States)

    Brooker, Simon; Alexander, Neal; Geiger, Stefan; Moyeed, Rana A; Stander, Julian; Fleming, Fiona; Hotez, Peter J; Correa-Oliveira, Rodrigo; Bethony, Jeffrey

    2006-09-01

    Marked heterogeneity exists in the patterns of parasitic infection between individuals, households and communities. Analysis of parasite distributions within populations is complicated by the fact that parasite distributions are highly aggregated and few studies have explicitly incorporated this distribution when investigating small-scale spatial heterogeneities. This study aimed to quantify the small-scale (within- and between-household) heterogeneity of helminth infection in an area of Minas Gerais State, Brazil, with rural and urban sectors. Parasitological data from a cross-sectional survey of 1,249 individuals aged 0-86 years from 242 households were analysed. Within-household clustering of infection was assessed using random effect logistic regression models and between-household spatial heterogeneity was assessed using a Bayesian negative binomial spatial model. The overall prevalence of hookworm (Necator americanus) was 66.9%, the prevalence of Schistosoma mansoni was 44.9% and the prevalence of Ascaris lumbricoides was 48.8%. Statistical analysis indicated significant (within) household and (between household) spatial clustering of hookworm in both rural and urban areas and of S. mansoni in rural areas. There was no evidence of either household or spatial clustering of S. mansoni in urban areas. The spatial correlation of S. mansoni was estimated to reduce by half over a distance of 700 m in the rural area. Rural hookworm had a much smaller half-distance (28 m) and urban hookworm showed an even smaller half-distance (12 m). We suggest that such species-specific differences in patterns of infection by environment are primarily due to variation in exposure and parasite life cycle, although host genetic factors cannot be ruled out.

  3. Examples of Small-scale Urban Area. Experiment Energy Leap Built Environment; Voorbeeldenboek Kleinschalige Binnenstedelijke Gebieden. Experiment Energiesprong Gebouwde Omgeving

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-03-15

    The Dutch government considers the transition process to be necessary and stimulates investments in energy innovations in the built environment. This innovation effort is the programme 'Energy Leap' (Energiesprong), which is being carried out by the Steering Group Experimental Housing (SEV) on behalf of the Dutch Ministry of the Interior and Kingdom Relations (BZK). The programme is derived from the Innovation Agenda for Energy in the Built Environment. The examples in this book are intended to inspire (potential) participants in the Experiment Energy Leap for Small-scale Urban Areas. The examples focus explicitly on the reduction of CO2 emissions in urban areas, and thus, in addition to CO2 reduction on a building level, the aspects of energy supply, (local) energy production and the energy infrastructure [Dutch] Het SEV-programma Energiesprong (SEV is Stuurgroep Experimenten Volkshuisvesting) beoogt een substantiele bijdrage te leveren aan de condities waaronder de energietransitie effectief tot stand kan komen. In dit basisplan wordt uiteengezet hoe de markt daartoe moet kunnen komen en welke activiteiten daarvoor worden ondersteund, opgezet en/of uitgevoerd vanuit Energiesprong. Het SEV-programma Energiesprong wordt in opdracht van het Ministerie van Binnenlandse Zaken en Koninkrijksrelaties (BZK) uitgevoerd. Het programma is afgeleid van de Innovatie Agenda energie Gebouwde Omgeving. Dit voorbeeldenboek dient ter inspiratie van (potentiele) deelnemers aan het Experiment Energiesprong kleinschalige Binnenstedelijke Gebieden. De voorbeelden richten zich expliciet op de CO2-reductie van binnenstedelijke gebieden en daarmee, naast de CO2-reductie op woning- en gebouwniveau, op de aspecten energievoorziening, (locale) energieopwekking en energie-infrastructuur.

  4. Piezoelectricity in asymmetrically strained bilayer graphene

    Science.gov (United States)

    Van der Donck, M.; De Beule, C.; Partoens, B.; Peeters, F. M.; Van Duppen, B.

    2016-09-01

    We study the electronic properties of commensurate faulted bilayer graphene by diagonalizing the one-particle Hamiltonian of the bilayer system in a complete basis of Bloch states of the individual graphene layers. Our novel approach is very general and can be easily extended to any commensurate graphene-based heterostructure. Here, we consider three cases: (i) twisted bilayer graphene, (ii) bilayer graphene where triaxial stress is applied to one layer and (iii) bilayer graphene where uniaxial stress is applied to one layer. We show that the resulting superstructures can be divided into distinct classes, depending on the twist angle or the magnitude of the induced strain. The different classes are distinguished from each other by the interlayer coupling mechanism, resulting in fundamentally different low-energy physics. For the cases of triaxial and uniaxial stress, the individual graphene layers tend to decouple and we find significant charge transfer between the layers. In addition, this piezoelectric effect can be tuned by applying a perpendicular electric field. Finally, we show how our approach can be generalized to multilayer systems.

  5. Magnetoacoustic resonance in magnetoelectric bilayers

    Science.gov (United States)

    Filippov, D. A.; Bichurin, M. I.; Petrov, V. M.; Srinivasan, G.

    2004-03-01

    Layered composites of ferrite and ferroelectric single crystal thin films are of interest for studies on magnetoelectric interactions [1,2]. Such interactions result in unique and novel effects that are absent in single phase materials. For example, in a single crystal composite it is possible to control the ferromagnetic resonance (FMR) parameters for the ferrite by means of hypersonic oscillations induced in the ferroelectric phase. The absorption of acoustic oscillations by the ferrite results in variation in FMR line shape and power absorbed. One anticipates resonance absorption of elastic waves when the frequency of elastic waves coincides with the precession frequency of magnetization vector. This work is concerned with the nature of FMR under the influence of acoustic oscillations with the same frequency as FMR. Bilayers of ferrite and piezoelectric single crystals are considered. Hypersonic waves induced in the piezoelectric phase transmit acoustic power into ferrite due to mechanical connectivity between the phases. That transmission depends strongly on interface coupling [3]. We estimate the resulting variations in ferromagnetic resonance line shape. Estimates of magnetoelectric effect at magnetoacoustic resonance are also given. In addition, dependence of absorption of acoustic power on sample dimensions and compliances, electric and magnetic susceptibilities, piezoelectric and magnetostriction coefficients is discussed. The theory provided here is important for an understanding of interface coupling and the nature of magnetoelastic interactions in the composites. 1. M. I. Bichurin and V. M. Petrov, Zh. Tekh. Fiz. 58, 2277 (1988) [Sov. Phys. Tech. Phys. 33, 1389 (1988)]. 2. M.I. Bichurin, I. A. Kornev, V. M. Petrov, A. S. Tatarenko, Yu. V. Kiliba, and G. Srinivasan. Phys. Rev. B 64, 094409 (2001). 3. M. I. Bichurin, V. M. Petrov, and G. Srinivasan, J. Appl. Phys. 92, 7681 (2002). This work was supported by grants from the Russian Ministry of Education (

  6. Internal structure and current evolution of very small debris-covered glacier systems located in alpine permafrost environments

    Science.gov (United States)

    Bosson, Jean-Baptiste; Lambiel, Christophe

    2016-04-01

    This contribution explores the internal structure of very small debris-covered glacier systems located in permafrost environments and their current dynamical responses to short-term climatic variations. Three systems were investigated with electrical resistivity tomography and dGPS monitoring over a 3-year period. Five distinct sectors are highlighted in each system: firn and bare-ice glacier, debris-covered glacier, heavily debris-covered glacier of low activity, rock glacier and ice-free debris. Decimetric to metric movements, related to ice ablation, internal deformation and basal sliding affect the glacial zones, which are mainly active in summer. Conversely, surface lowering is close to zero (-0.04 m yr-1) in the rock glaciers. Here, a constant and slow internal deformation was observed (c. 0.2 m yr-1). Thus, these systems are affected by both direct and high magnitude responses and delayed and attenuated responses to climatic variations. This differential evolution appears mainly controlled by (1) the proportion of ice, debris and the presence of water in the ground, and (2) the thickness of the superficial debris layer.

  7. Effects of fabrication on the mechanics, microstructure and micromechanical environment of small intestinal submucosa scaffolds for vascular tissue engineering.

    Science.gov (United States)

    Sánchez-Palencia, Diana M; D'Amore, Antonio; González-Mancera, Andrés; Wagner, William R; Briceño, Juan C

    2014-08-22

    In small intestinal submucosa scaffolds for functional tissue engineering, the impact of scaffold fabrication parameters on success rate may be related to the mechanotransductory properties of the final microstructural organization of collagen fibers. We hypothesized that two fabrication parameters, 1) preservation (P) or removal (R) of a dense collagen layer present in SIS and 2) SIS in a final dehydrated (D) or hydrated (H) state, have an effect on scaffold void area, microstructural anisotropy (fiber alignment) and mechanical anisotropy (global mechanical compliance). We further integrated our experimental measurements in a constitutive model to explore final effects on the micromechanical environment inside the scaffold volume. Our results indicated that PH scaffolds might exhibit recurrent and large force fluctuations between layers (up to 195 pN), while fluctuations in RH scaffolds might be larger (up to 256 pN) but not as recurrent. In contrast, both PD and RD groups were estimated to produce scarcer and smaller fluctuations (not larger than 50 pN). We concluded that the hydration parameter strongly affects the micromechanics of SIS and that an adequate choice of fabrication parameters, assisted by the herein developed method, might leverage the use of SIS for functional tissue engineering applications, where forces at the cellular level are of concern in the guidance of new tissue formation.

  8. Surface deformation detected by the space-observed small baseline SAR interferometry over permafrost environment in Tibet Plateau, China

    Directory of Open Access Journals (Sweden)

    F. Chen

    2012-09-01

    Full Text Available The evolution of permafrost and the active layer is highly related to climate change because of its feedback effects involving water and carbon storage. In this study, we firstly examined the relationship of regional water balance, geomorphological process and anthropogenic activities by means of Small Baseline Synthetic Aperture Radar Interferometry (SB-InSAR to monitor the surface movements overlaid on the permafrost of Tibet Plateau (TP, China, using 3.5-yr observation span of L-band ALOS PALSAR data (June, 2007 to December, 2010. The estimated displacements (primarily in the range of −30 mm yr−1 to 30 mm yr−1 and time-series implied evolutions of the active layer and permafrost beneath. The motion trend along slopes was complicated, and thus interdisciplinary interpretations were required. Water level variations of inland lakes were then detected, although further investigations were required for validation. Anthropogenic influences on this frail permafrost environment were significant, proved by the remarkable surface settlement along the embankment of Qinghai-Tibet Railway. Consequently, it is crucial and necessary to monitor this arid and cold plateau owing to the combination of climate change, geo-hazards prediction as well as the regional sustainable development.

  9. Adsorption of Au and Pd on Ruthenium-Supported Bilayer Silica

    OpenAIRE

    Büchner, C.; L. Lichtenstein; Stuckenholz, S.; Heyde, M; Ringleb, F.; Sterrer, M.; Kaden, W.; Giordano, L; G. Pacchioni; H. Freund

    2014-01-01

    Adsorption of Au and Pd over bilayer SiO2/Ru has been investigated using scanning-probe microscopy, X-ray photoemission spectroscopy (XPS), and density functional theory (DFT). Low temperature (∼5 K) atomic force (AFM) and scanning tunneling microscopy (STM) measurements reveal the presence of small adsorption features after exposing the samples to small doses of either metal. In the case of Pd, we note a homogeneous distribution of adsorbates across the entire surface, which consists of both...

  10. Design of Asymmetric Peptide Bilayer Membranes.

    Science.gov (United States)

    Li, Sha; Mehta, Anil K; Sidorov, Anton N; Orlando, Thomas M; Jiang, Zhigang; Anthony, Neil R; Lynn, David G

    2016-03-16

    Energetic insights emerging from the structural characterization of peptide cross-β assemblies have enabled the design and construction of robust asymmetric bilayer peptide membranes. Two peptides differing only in their N-terminal residue, phosphotyrosine vs lysine, coassemble as stacks of antiparallel β-sheets with precisely patterned charged lattices stabilizing the bilayer leaflet interface. Either homogeneous or mixed leaflet composition is possible, and both create nanotubes with dense negative external and positive internal solvent exposed surfaces. Cross-seeding peptide solutions with a preassembled peptide nanotube seed leads to domains of different leaflet architecture within single nanotubes. Architectural control over these cross-β assemblies, both across the bilayer membrane and along the nanotube length, provides access to highly ordered asymmetric membranes for the further construction of functional mesoscale assemblies.

  11. Droplet Microfluidics for Artificial Lipid Bilayers

    Science.gov (United States)

    Punnamaraju, Srikoundinya; Steckl, Andrew

    2012-02-01

    Droplet interface bilayer is a versatile approach that allows formation of artificial lipid bilayer membrane at the interface of two lipid monolayer coated aqueous droplets in a lipid filled oil medium. Versatility exists in the form of voltage control of DIB area, ability of forming networks of DIBs, volume control of droplets and lipid-oil, and ease of reformation. Significant effect of voltage on the area and capacitance of DIB as well as DIB networks are characterized using simultaneous optical and electrical recordings. Mechanisms behind voltage-induced effects on DIBs are investigated. Photo induced effect on the DIB membrane porosity is obtained by incorporating UVC-sensitive photo-polymerizable lipids in DIB. Photo-induced effects can be extended for in-vitro studies of triggered release of encapsulated contents across membranes. A droplet based low voltage digital microfluidic platform is developed to automate DIB formation, which could potentially be used for forming arrays of lipid bilayer membranes.

  12. Layer resolved capacitive probing of graphene bilayers

    Science.gov (United States)

    Zibrov, Alexander; Parmentier, François; Li, Jia; Wang, Lei; Hunt, Benjamin; Dean, Cory; Hone, James; Taniguchi, Takashi; Watanabe, Kenji; Young, Andrea

    Compared to single layer graphene, graphene bilayers have an additional ``which-layer'' degree of freedom that can be controlled by an external electric field in a dual-gated device geometry. We describe capacitance measurements capable of directly probing this degree of freedom. By performing top gate, bottom gate, and penetration field capacitance measurements, we directly extract layer polarization of both Bernal and twisted bilayers. We will present measurements of hBN encapsulated bilayers at both zero and high magnetic field, focusing on the physics of the highly degenerate zero-energy Landau level in the high magnetic field limit where spin, valley, and layer degeneracy are all lifted by electronic interactions.

  13. Antimicrobial Resistance in Generic Escherichia coli Isolates from Wild Small Mammals Living in Swine Farm, Residential, Landfill, and Natural Environments in Southern Ontario, Canada▿

    OpenAIRE

    Allen, Samantha E.; Boerlin, Patrick; Janecko, Nicol; Lumsden, John S; Barker, Ian K; Pearl, David L; Reid-Smith, Richard J.; Jardine, Claire

    2010-01-01

    To assess the impacts of different types of human activity on the development of resistant bacteria in the feces of wild small mammals, we compared the prevalences and patterns of antimicrobial resistance and resistance genes in generic Escherichia coli and Salmonella enterica isolates from fecal samples collected from wild small mammals living in four environments: swine farms, residential areas, landfills, and natural habitats. Resistance to antimicrobials was observed in E. coli isolates f...

  14. Presence, Distribution, and Molecular Epidemiology of Methicillin-Resistant Staphylococcus aureus in a Small Animal Teaching Hospital: A Year-Long Active Surveillance Targeting Dogs and Their Environment

    OpenAIRE

    van Balen, Joany; Kelley, Christina; Nava-Hoet, Rocio C; Bateman, Shane; Hillier, Andrew; Dyce, Jonathan; Wittum, Thomas E.; Hoet, Armando E

    2013-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is known to be present in small animal veterinary clinical environments. However, a better understanding of the ecology and dynamics of MRSA in these environments is necessary for the development of effective infectious disease prevention and control programs. To achieve this goal, a yearlong active MRSA surveillance program was established at The Ohio State University (OSU) Veterinary Medical Center to describe the spatial and molecular epid...

  15. Supported lipid bilayers as templates to design manganese oxide nanoparticles

    Indian Academy of Sciences (India)

    J Maheshkumar; B Sreedhar; B U Nair; A Dhathathreyan

    2012-09-01

    This work reports on the preparation of nanoclusters of manganese oxide using biotemplating techniques. Supported lipid bilayers (SLBs) on quartz using cationic lipid [Dioctadecyldimethylammonium bromide (DOMA)] and mixed systems with neutral phospholipids dipalmitoyl phosphatidylcholine (DPPC) and dioleoyl phosphatidylcholine (DOPC) have been used as templates to synthesize these nanoparticles in a waterbased medium at room temperature. The Transmission electron microscopy (TEM) and Scanning electron microscopy (SEM) show manganese oxide nanostructures that are composed of crystals or small clusters in the size range of 20-50 nm in diameter. Small angle XRD showed that template removal through calcining process results in nanostructures of the manganese oxide in sizes from 30 to 50 nm. Using these organized assemblies it is possible to control the nano and mesoscopic morphologies of particles and both rod-like and spherical particles can be synthesized.

  16. Confocal Raman Microscopy of Hybrid-Supported Phospholipid Bilayers within Individual C18-Functionalized Chromatographic Particles.

    Science.gov (United States)

    Kitt, Jay P; Harris, Joel M

    2016-09-01

    Measuring lipid-membrane partitioning of small molecules is critical to predicting bioavailability and investigating molecule-membrane interactions. A stable model membrane for such studies has been developed through assembly of a phospholipid monolayer on n-alkane-modified surfaces. These hybrid bilayers have recently been generated within n-alkyl-chain (C18)-modified porous silica and used in chromatographic retention studies of small molecules. Despite their successful application, determining the structure of hybrid bilayers within chromatographic silica is challenging because they reside at buried interfaces within the porous structure. In this work, we employ confocal Raman microscopy to investigate the formation and temperature-dependent structure of hybrid-phospholipid bilayers in C18-modified, porous-silica chromatographic particles. Porous silica provides sufficient surface area within a confocal probe volume centered in an individual particle to readily measure, with Raman microscopy, the formation of an ordered hybrid bilayer of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) with the surface C18 chains. The DMPC surface density was quantified from the relative Raman scattering intensities of C18 and phospholipid acyl chains and found to be ∼40% of a DMPC vesicle membrane. By monitoring Raman spectra acquired versus temperature, the bilayer main phase transition was observed to be broadened and shifted to higher temperature compared to a DMPC vesicle, in agreement with differential scanning calorimetry (DSC) results. Raman scattering of deuterated phospholipid was resolved from protonated C18 chain scattering, showing that the lipid acyl and C18 chains melt simultaneously in a single phase transition. The surface density of lipid in the hybrid bilayer, the ordering of both C18 and lipid acyl chains upon bilayer formation, and decoupling of C18 methylene C-H vibrations by deuterated lipid acyl chains all suggest an interdigitated acyl chain

  17. Thermally activated conductivity in gapped bilayer graphene

    Science.gov (United States)

    Trushin, Maxim

    2012-05-01

    This is a theoretical study of electron transport in gated bilayer graphene —a novel semiconducting material with a tunable band gap. It is shown that the which-layer pseudospin coherence enhances the subgap conductivity and facilitates the thermally activated transport. The mechanism proposed can also lead to the non-monotonic conductivity vs. temperature dependence at a band gap size of the order of 10 meV. The effect can be observed in gapped bilayer graphene sandwiched in boron nitride where the electron-hole puddles and flexural phonons are strongly suppressed.

  18. Temperature effect on plasmons in bilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Digish K., E-mail: jdiggish@gmail.com; Sharma, A. C. [Physics Department, Faculty of Science, The M.S. University of Baroda, Vadodara-390002, Gujarat (India); Ashraf, S. S. Z. [Physics Department, Faculty of Science, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh (India); Ambavale, S. K. [Vishwakarma Government Engineering College Chandkheda, Ahmedabad-382424, Gujarat (India)

    2015-06-24

    We have theoretically investigated the plasmon dispersion and damping rate of doped bilayer graphene (BLG) at finite temperatures within the random phase approximation. Our computed results on plasmon dispersion show that plasmon frequency enhances with increasing temperatures in contrast to single layer graphene where it is suppressed. This can be attributed to the fact that the dynamic response of the electron gas or screening in bilayer graphene is different from that of single layer graphene. Further the temperature effect on damping rate is also discussed.

  19. In situ atomic force microscope imaging of supported lipid bilayers

    DEFF Research Database (Denmark)

    Kaasgaard, Thomas; Leidy, Chad; Ipsen, John Hjorth;

    2001-01-01

    In situ AFM images of phospholipase A/sub 2/ (PLA/sub 2/) hydrolysis of mica-supported one- and two-component lipid bilayers are presented. For one-component DPPC bilayers an enhanced enzymatic activity is observed towards preexisting defects in the bilayer. Phase separation is observed in two-co...

  20. Tailored sequential drug release from bilayered calcium sulfate composites

    International Nuclear Information System (INIS)

    The current standard for treating infected bony defects, such as those caused by periodontal disease, requires multiple time-consuming steps and often multiple procedures to fight the infection and recover lost tissue. Releasing an antibiotic followed by an osteogenic agent from a synthetic bone graft substitute could allow for a streamlined treatment, reducing the need for multiple surgeries and thereby shortening recovery time. Tailorable bilayered calcium sulfate (CS) bone graft substitutes were developed with the ability to sequentially release multiple therapeutic agents. Bilayered composite samples having a shell and core geometry were fabricated with varying amounts (1 or 10 wt.%) of metronidazole-loaded poly(lactic-co-glycolic acid) (PLGA) particles embedded in the shell and simvastatin directly loaded into either the shell, core, or both. Microcomputed tomography showed the overall layered geometry as well as the uniform distribution of PLGA within the shells. Dissolution studies demonstrated that the amount of PLGA particles (i.e., 1 vs. 10 wt.%) had a small but significant effect on the erosion rate (3% vs. 3.4%/d). Mechanical testing determined that introducing a layered geometry had a significant effect on the compressive strength, with an average reduction of 35%, but properties were comparable to those of mandibular trabecular bone. Sustained release of simvastatin directly loaded into CS demonstrated that changing the shell to core volume ratio dictates the duration of drug release from each layer. When loaded together in the shell or in separate layers, sequential release of metronidazole and simvastatin was achieved. By introducing a tunable, layered geometry capable of releasing multiple drugs, CS-based bone graft substitutes could be tailored in order to help streamline the multiple steps needed to regenerate tissue in infected defects. - Highlights: • Bilayered CS composites were fabricated as potential bone graft substitutes. • The shell

  1. Tailored sequential drug release from bilayered calcium sulfate composites

    Energy Technology Data Exchange (ETDEWEB)

    Orellana, Bryan R.; Puleo, David A., E-mail: puleo@uky.edu

    2014-10-01

    The current standard for treating infected bony defects, such as those caused by periodontal disease, requires multiple time-consuming steps and often multiple procedures to fight the infection and recover lost tissue. Releasing an antibiotic followed by an osteogenic agent from a synthetic bone graft substitute could allow for a streamlined treatment, reducing the need for multiple surgeries and thereby shortening recovery time. Tailorable bilayered calcium sulfate (CS) bone graft substitutes were developed with the ability to sequentially release multiple therapeutic agents. Bilayered composite samples having a shell and core geometry were fabricated with varying amounts (1 or 10 wt.%) of metronidazole-loaded poly(lactic-co-glycolic acid) (PLGA) particles embedded in the shell and simvastatin directly loaded into either the shell, core, or both. Microcomputed tomography showed the overall layered geometry as well as the uniform distribution of PLGA within the shells. Dissolution studies demonstrated that the amount of PLGA particles (i.e., 1 vs. 10 wt.%) had a small but significant effect on the erosion rate (3% vs. 3.4%/d). Mechanical testing determined that introducing a layered geometry had a significant effect on the compressive strength, with an average reduction of 35%, but properties were comparable to those of mandibular trabecular bone. Sustained release of simvastatin directly loaded into CS demonstrated that changing the shell to core volume ratio dictates the duration of drug release from each layer. When loaded together in the shell or in separate layers, sequential release of metronidazole and simvastatin was achieved. By introducing a tunable, layered geometry capable of releasing multiple drugs, CS-based bone graft substitutes could be tailored in order to help streamline the multiple steps needed to regenerate tissue in infected defects. - Highlights: • Bilayered CS composites were fabricated as potential bone graft substitutes. • The shell

  2. Membrane Protein Mobility and Orientation Preserved in Supported Bilayers Created Directly from Cell Plasma Membrane Blebs.

    Science.gov (United States)

    Richards, Mark J; Hsia, Chih-Yun; Singh, Rohit R; Haider, Huma; Kumpf, Julia; Kawate, Toshimitsu; Daniel, Susan

    2016-03-29

    Membrane protein interactions with lipids are crucial for their native biological behavior, yet traditional characterization methods are often carried out on purified protein in the absence of lipids. We present a simple method to transfer membrane proteins expressed in mammalian cells to an assay-friendly, cushioned, supported lipid bilayer platform using cell blebs as an intermediate. Cell blebs, expressing either GPI-linked yellow fluorescent proteins or neon-green fused transmembrane P2X2 receptors, were induced to rupture on glass surfaces using PEGylated lipid vesicles, which resulted in planar supported membranes with over 50% mobility for multipass transmembrane proteins and over 90% for GPI-linked proteins. Fluorescent proteins were tracked, and their diffusion in supported bilayers characterized, using single molecule tracking and moment scaling spectrum (MSS) analysis. Diffusion was characterized for individual proteins as either free or confined, revealing details of the local lipid membrane heterogeneity surrounding the protein. A particularly useful result of our bilayer formation process is the protein orientation in the supported planar bilayer. For both the GPI-linked and transmembrane proteins used here, an enzymatic assay revealed that protein orientation in the planar bilayer results in the extracellular domains facing toward the bulk, and that the dominant mode of bleb rupture is via the "parachute" mechanism. Mobility, orientation, and preservation of the native lipid environment of the proteins using cell blebs offers advantages over proteoliposome reconstitution or disrupted cell membrane preparations, which necessarily result in significant scrambling of protein orientation and typically immobilized membrane proteins in SLBs. The bleb-based bilayer platform presented here is an important step toward integrating membrane proteomic studies on chip, especially for future studies aimed at understanding fundamental effects of lipid interactions

  3. Melittin-induced cholesterol reorganization in lipid bilayer membranes.

    Science.gov (United States)

    Qian, Shuo; Heller, William T

    2015-10-01

    The peptide melittin, a 26 amino acid, cationic peptide from honey bee (Apis mellifera) venom, disrupts lipid bilayer membranes in a concentration-dependent manner. Rather than interacting with a specific receptor, the peptide interacts directly with the lipid matrix of the membrane in a manner dependent on the lipid composition. Here, a small-angle neutron scattering study of the interaction of melittin with lipid bilayers made of mixtures of dimyristoylphosphatidylcholine (DMPC) and cholesterol (Chol) is presented. Through the use of deuterium-labeled DMPC, changes in the distribution of the lipid and cholesterol in unilamellar vesicles were observed for peptide concentrations below those that cause pores to form. In addition to disrupting the in-plane organization of Chol, melittin produces vesicles having inner and outer leaflet compositions that depend on the lipid-Chol molar ratio and on the peptide concentration. The changes seen at high cholesterol and low peptide concentration are similar to those produced by alamethicin (Qian, S. et al., J. Phys. Chem. B 2014, 118, 11200-11208), which points to an underlying physical mechanism driving the redistribution of Chol, but melittin displays an additional effect not seen with alamethicin. A model for how the peptide drives the redistribution of Chol is proposed. The results suggest that redistribution of the lipids in a target cell membrane by membrane active peptides takes places as a prelude to the lysis of the cell. PMID:26074009

  4. Surface and interfacial creases in a bilayer tubular soft tissue

    Science.gov (United States)

    Razavi, Mir Jalil; Pidaparti, Ramana; Wang, Xianqiao

    2016-08-01

    Surface and interfacial creases induced by biological growth are common types of instability in soft biological tissues. This study focuses on the criteria for the onset of surface and interfacial creases as well as their morphological evolution in a growing bilayer soft tube within a confined environment. Critical growth ratios for triggering surface and interfacial creases are investigated both analytically and numerically. Analytical interpretations provide preliminary insights into critical stretches and growth ratios for the onset of instability and formation of both surface and interfacial creases. However, the analytical approach cannot predict the evolution pattern of the model after instability; therefore nonlinear finite element simulations are carried out to replicate the poststability morphological patterns of the structure. Analytical and computational simulation results demonstrate that the initial geometry, growth ratio, and shear modulus ratio of the layers are the most influential factors to control surface and interfacial crease formation in this soft tubular bilayer. The competition between the stretch ratios in the free and interfacial surfaces is one of the key driving factors to determine the location of the first crease initiation. These findings may provide some fundamental understanding in the growth modeling of tubular biological tissues such as esophagi and airways as well as offering useful clues into normal and pathological functions of these tissues.

  5. Electronic properties of graphene-based bilayer systems

    Science.gov (United States)

    Rozhkov, A. V.; Sboychakov, A. O.; Rakhmanov, A. L.; Nori, Franco

    2016-08-01

    This article reviews the theoretical and experimental work related to the electronic properties of bilayer graphene systems. Three types of bilayer stackings are discussed: the AA, AB, and twisted bilayer graphene. This review covers single-electron properties, effects of static electric and magnetic fields, bilayer-based mesoscopic systems, spin-orbit coupling, dc transport and optical response, as well as spontaneous symmetry violation and other interaction effects. The selection of the material aims to introduce the reader to the most commonly studied topics of theoretical and experimental research in bilayer graphene.

  6. Lipid bilayers decorated with photosensitive ruthenium complexes

    NARCIS (Netherlands)

    Bahreman, Azadeh

    2013-01-01

    In this thesis the thermal- and photo-substitution behavior of polypyridyl ruthenium complexes is described at the surface of lipid bilayers and in homogeneous solutions. It is shown that the successive thermal binding and light-induced unbinding of the cationic ruthenium complex at the surface of t

  7. Bilayer Tablet via Microsphere: A Review

    Directory of Open Access Journals (Sweden)

    Piyushkumar Vinubhai Gundaraniya

    2013-01-01

    Full Text Available The aim of the present work is to develop bilayer tablets containing sustained release microspheres as one layer and immediate release as another layer. The proposed dosage form is intended to decrease the dosing frequency and the combined administration of an anti-diabetic agent. Several pharmaceutical companies are currently developing bi-layer tablets, for a variety of reasons: patent extension, therapeutic, marketing to name a few. To reduce capital investment, quite often existing but modified tablet presses are used to develop and produce such tablets. One such approach is using microspheres as carriers for drugs also known as micro particles. It is the reliable means to deliver the drug to the target site with specificity, if modified, and to maintain the desired concentration at the site of interest. Microspheres received much attention not only for prolonged release, but also for targeting of anti-diabetic drugs. Bilayer tablet via microsphere is new era for the successful development of controlled release formulation along with various features to provide a way of successful drug delivery system. Especially when in addition high production output is required. An attempt has been made in this review article to introduce the society to the current technological developments in bilayer and floating drug delivery system.

  8. Electronic properties of a biased graphene bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Eduardo V; Lopes dos Santos, J M B [CFP and Departamento de Fisica, Faculdade de Ciencias Universidade do Porto, P-4169-007 Porto (Portugal); Novoselov, K S; Morozov, S V; Geim, A K [Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Peres, N M R [Centre of Physics and Departamento de Fisica, Universidade do Minho, P-4710-057 Braga (Portugal); Nilsson, Johan; Castro Neto, A H [Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02215 (United States); Guinea, F [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain)

    2010-05-05

    We study, within the tight-binding approximation, the electronic properties of a graphene bilayer in the presence of an external electric field applied perpendicular to the system-a biased bilayer. The effect of the perpendicular electric field is included through a parallel plate capacitor model, with screening correction at the Hartree level. The full tight-binding description is compared with its four-band and two-band continuum approximations, and the four-band model is shown to always be a suitable approximation for the conditions realized in experiments. The model is applied to real biased bilayer devices, made out of either SiC or exfoliated graphene, and good agreement with experimental results is found, indicating that the model is capturing the key ingredients, and that a finite gap is effectively being controlled externally. Analysis of experimental results regarding the electrical noise and cyclotron resonance further suggests that the model can be seen as a good starting point for understanding the electronic properties of graphene bilayer. Also, we study the effect of electron-hole asymmetry terms, such as the second-nearest-neighbour hopping energies t' (in-plane) and {gamma}{sub 4} (inter-layer), and the on-site energy {Delta}.

  9. Electronic properties of a biased graphene bilayer.

    Science.gov (United States)

    Castro, Eduardo V; Novoselov, K S; Morozov, S V; Peres, N M R; Lopes dos Santos, J M B; Nilsson, Johan; Guinea, F; Geim, A K; Castro Neto, A H

    2010-05-01

    We study, within the tight-binding approximation, the electronic properties of a graphene bilayer in the presence of an external electric field applied perpendicular to the system-a biased bilayer. The effect of the perpendicular electric field is included through a parallel plate capacitor model, with screening correction at the Hartree level. The full tight-binding description is compared with its four-band and two-band continuum approximations, and the four-band model is shown to always be a suitable approximation for the conditions realized in experiments. The model is applied to real biased bilayer devices, made out of either SiC or exfoliated graphene, and good agreement with experimental results is found, indicating that the model is capturing the key ingredients, and that a finite gap is effectively being controlled externally. Analysis of experimental results regarding the electrical noise and cyclotron resonance further suggests that the model can be seen as a good starting point for understanding the electronic properties of graphene bilayer. Also, we study the effect of electron-hole asymmetry terms, such as the second-nearest-neighbour hopping energies t' (in-plane) and γ(4) (inter-layer), and the on-site energy Δ.

  10. Localized plasmons in bilayer graphene nanodisks

    DEFF Research Database (Denmark)

    Wang, Weihua; Xiao, Sanshui; Mortensen, N. Asger

    2016-01-01

    We study localized plasmonic excitations in bilayer graphene (BLG) nanodisks, comparing AA-stacked and AB-stacked BLG and contrasting the results to the case of two monolayers without electronic hybridization. The electrodynamic response of the BLG electron gas is described in terms of a spatially...

  11. Chiral electron transport in CVD bilayer graphene

    Science.gov (United States)

    Lee, Kyunghoon; Eo, Yun Suk; Kurdak, Cagliyan; Zhong, Zhaohui

    2014-03-01

    Charge carriers in bilayer graphene have a parabolic energy spectrum. Due to this band structure they are massive quasiparticles having a finite density of state at zero energy like other non-relativistic charge carriers in conventional two dimensional materials. However, they are massive Dirac fermions which have a chiral nature similar to the case of massless Dirac fermions in single layer graphene. Coupling of pseudospin and motion of charge carrier via chirality can result in dramatic consequence for transport in bipolar regime like Klein tunneling, Fabry-Perot interference, collimation of charge carrier, Veslago lens, etc. However, little attention has been paid to chiral dependent electron transport in bilayer graphene. Here we study these properties by probing phase coherent transport behavior in CVD bilayer graphene devices with sub-200nm channel length. Complex Fabry-Perot interference patterns are observed in resonant cavities defined by local gating. By applying Fourier analysis technique, we successfully analyze and identify the origin of each individual interference pattern in bipolar and monopolar regime. Our initial results also hint at the observation of cloaking of electronic states against chiral electrons in bilayer graphene.

  12. Dibenzo[f,h]thieno[3,4-b] quinoxaline-fullerene heterojunction bilayer solar cells with complementary spectrum coverage

    Energy Technology Data Exchange (ETDEWEB)

    Kekuda, Dhananjaya [Research Center for Applied Sciences, Academia Sinica, Nankang, Taipei (China); Huang, Jen-Shien [Department of Chemical Engineering, National Taiwan University (China); Velusamy, Marappan; Lin, Jiann T. [Institute of Chemistry, Academia Sinica, Nankang, Taipei (China); Chu, Chih-Wei [Research Center for Applied Sciences, Academia Sinica, Nankang, Taipei (China); Department of Photonics, National Chio-Tung University, Hsinchu 30013 (China)

    2010-10-15

    In the present article, potential of a bilayer organic solar cell has been investigated. We utilize newly synthesized small molecules, namely dibenzo[f,h]thieno[3,4-b]quinoxaline as electron donors for solar cells in heterojunction bilayer configuration. These small molecules with a narrow absorption band in the range 400-450 nm provide a complementary spectrum for the fullerene C{sub 70}, thereby leading to an overall power conversion efficiency of 2.6{+-}0.2% under 100 mW/cm{sup 2} incident radiation. Thermal annealing seems to impact the charge separation at the donor-acceptor interface, which eventually affects device performance. This work demonstrates that carefully optimized bilayer devices are comparable to the bulk heterojunction counterparts. (author)

  13. Describing an Environment for a Self-Sustaining Technology Transfer Service in a Small Research Budget University: A Case Study

    Science.gov (United States)

    Nieb, Sharon Lynn

    2014-01-01

    This single-site qualitative study sought to identify the characteristics that contribute to the self sustainability of technology transfer services at universities with small research budgets through a case study analysis of a small research budget university that has been operating a financially self-sustainable technology transfer service for…

  14. Bilayer Approaches for Nanoparticle Phase Transfer

    Science.gov (United States)

    Kini, Gautam Chandrakanth

    Nanoparticles (NPs) are often synthesized in organic solvents due to advantages of superior size and shape control obtainable in a non-polar environment. However, many applications featuring NPs require them to be in aqueous media. To transfer NPs from oil to water, surfactants with amphiphilic (hydrophobic and hydrophilic) groups have been widely used. A popular phase-transfer approach involves formation of oil-in-water emulsions upon which the oil storing the NPs is boiled off. In the process, surfactants form bilayers with hydrophobic groups on the NPs rendering them water-dispersible. This transfer route however is limited in that NPs aggregate to form clusters which results in poor colloidal stability and for the specific case of quantum dots (QDs), adversely impacts optical properties. It has ever since remained a challenge to devise approaches that transfer NPs from oil to water as single particles without compromising NP stability and properties. We have discovered that by simple addition of salt to water during the step of emulsion formation, NP transfer efficiency can be greatly enhanced in "salty-micelles" of surfactants. The strength of this approach lies in its simplicity and generic nature in that the transfer scheme is valid for different NP, surfactant and salt types. Using a model system with cadmium selenide (CdSe) QDs as NPs, Aerosol-OT (AOT) as the surfactant and NaCl as the salt in water, we found >90% of CdSe QDs transferred in salty-micelles of AOT which was significantly higher than the 45-55% QDs that transferred in deionized-water (DI-water) micelles of AOT. In the salty-micelle environment, QDs were found to exist predominantly as single NPs with narrow size distribution, as established by light scattering, analytical ultracentrifugation and electron microscopy. The effects of salt were in lowering aqueous solubility of AOT through "salting-out" action and in screening repulsions between like-charged head groups of AOT molecules

  15. Dual-gated bilayer graphene hot-electron bolometer.

    Science.gov (United States)

    Yan, Jun; Kim, M-H; Elle, J A; Sushkov, A B; Jenkins, G S; Milchberg, H M; Fuhrer, M S; Drew, H D

    2012-07-01

    Graphene is an attractive material for use in optical detectors because it absorbs light from mid-infrared to ultraviolet wavelengths with nearly equal strength. Graphene is particularly well suited for bolometers-devices that detect temperature-induced changes in electrical conductivity caused by the absorption of light-because its small electron heat capacity and weak electron-phonon coupling lead to large light-induced changes in electron temperature. Here, we demonstrate a hot-electron bolometer made of bilayer graphene that is dual-gated to create a tunable bandgap and electron-temperature-dependent conductivity. The bolometer exhibits a noise-equivalent power (33 fW Hz(-1/2) at 5 K) that is several times lower, and intrinsic speed (>1 GHz at 10 K) three to five orders of magnitude higher than commercial silicon bolometers and superconducting transition-edge sensors at similar temperatures. PMID:22659611

  16. Bilayer fractal structure with multiband left-handed characteristics.

    Science.gov (United States)

    Du, Qiujiao; Liu, Jinsong; Yang, Hongwu; Yi, Xunong

    2011-08-20

    We present a bilayer fractal structure for the realization of multiband left-handed metamaterial at terahertz frequencies. The structure is composed of metallic H-fractal pairs separated by a dielectric layer. The electromagnetic properties of periodic H-fractal pairs have been investigated by numerical simulation. The period in the propagation direction is extremely small as compared to the wavelength at the operational frequency. Under the electromagnetic wave normal incidence, the material exhibits negative refraction simultaneously around the frequencies of 0.10 and 0.15 THz for parallel polarization, and around the frequencies of 0.19 and 0.38 THz for perpendicular polarization. The design provides a left-handed metamaterial suitable for multiband and compact devices at terahertz frequencies.

  17. Nonlinear optical properties of nitrogen-doped bilayer graphene

    Science.gov (United States)

    Anand, Benoy; Podila, Ramakrishna; Rao, Apparao M.; Philip, Reji; Sai, S. Siva Sankara

    2013-06-01

    The electronic properties of graphene can be controlled by substitutional doping to obtain p-type or n-type characteristics. To this end, bilayer graphene films are synthesized using CVD method and substitutionally doped with Nitrogen (N). Previously, XPS measurements done in tandem with Raman spectroscopy revealed that the rich chemistry between carbon and nitrogen can result in pyridinic, pyrrolic, or graphitic configurations. The nonlinear optical properties (NLO) of both pristine and N-doped graphene samples are studied in both nanosecond and femtosecond excitation regimes using open aperture Z-scan method. Similar to the previous observations with Raman spectroscopy, we see that the NLO properties are more sensitive to the local bonding environments which determine the defect density in the graphene lattice, rather than just the dopant percentage. Our results give more insights into the effect of defects on the NLO properties of doped graphene which help in tailor making graphene samples for applications like modelocking and optical switching.

  18. A tethered bilayer sensor containing alamethicin channels and its detection of amiloride based inhibitors.

    Science.gov (United States)

    Yin, Ping; Burns, Christopher J; Osman, Peter D J; Cornell, Bruce A

    2003-04-01

    Alamethicin, a small transmembrane peptide, inserts into a tethered bilayer membrane (tBLM) to form ion channels, which we have investigated using electrical impedance spectroscopy. The number of channels formed is dependent on the incubation time, concentration of the alamethicin and the application of DC voltage. The properties of the ion channels when formed in tethered bilayers are similar to those for such channels assembled into black lipid membranes (BLMs). Furthermore, amiloride and certain analogs can inhibit the channel pores, formed in the tBLMs. The potency and concentration of the inhibitors can be determined by measuring the change of impedance. Our work illustrates the possibility of using a synthetic tBLM for the study of small peptide voltage dependent ion channels. A potential application of such a device is as a screening tool in drug discovery processes.

  19. Negative Capacitance in BaTiO3/BiFeO3 Bilayer Capacitors.

    Science.gov (United States)

    Hou, Ya-Fei; Li, Wei-Li; Zhang, Tian-Dong; Yu, Yang; Han, Ren-Lu; Fei, Wei-Dong

    2016-08-31

    Negative capacitances provide an approach to reduce heat generations in field-effect transistors during the switch processes, which contributes to further miniaturization of the conventional integrated circuits. Although there are many studies about negative capacitances using ferroelectric materials, the direct observation of stable ferroelectric negative capacitances has rarely been reported. Here, we put forward a dc bias assistant model in bilayer capacitors, where one ferroelectric layer with large dielectric constant and the other ferroelectric layer with small dielectric constant are needed. Negative capacitances can be obtained when external dc bias electric fields are larger than a critical value. Based on the model, BaTiO3/BiFeO3 bilayer capacitors are chosen as study objects, and negative capacitances are observed directly. Additionally, the upward self-polarization effect in the ferroelectric layer reduces the critical electric field, which may provide a method for realizing zero and/or small dc bias assistant negative capacitances. PMID:27502999

  20. Good Practices Preceding the Implementation of the System of Management of Environment, on Small and Medium Enterprises

    OpenAIRE

    Anca Atanase; Ion Schileru; Smaranda Vişan

    2011-01-01

    The current and future economic context compel to ample reconsiderations related to the volume and content of the demarches carried out by organisations, in order to face the competition sharper and sharper and the more and more numerous rigors, among which the issue of environment is more than imperative. The good practices in environment management become more and more necessary and, fortunately, are supplied more and more often by organisations in SMEs category, which encounter highly valu...

  1. Mesoporous silica-supported lipid bilayers (protocells) for DNA cargo delivery to the spinal cord

    OpenAIRE

    Dengler, Ellen C.; Liu, Juewen; Kerwin, Audra; Torres, Sergio; Olcott, Clara M.; Bowman, Brandi N; Armijo, Leisha; Gentry, Katherine; Wilkerson, Jenny; Wallace, James; Jiang, Xingmao; CARNES, ERIC C.; Brinker, C. Jeffrey; Milligan, Erin D.

    2013-01-01

    Amorphous mesoporous silica nanoparticles (‘protocells’) that support surface lipid bilayers recently characterized in vitro as carrier constructs for small drug and DNA delivery are reported here as highly biocompatible both in vitro and in vivo, involving the brain and spinal cord following spinal delivery into the lumbosacral subarachnoid space (intrathecal; i.t.). Specifically, positively charged, 1, 2-Dioleoyl-3-Trimethylammonium-Propane (DOTAP) -cholesterol (DOTAP:Chol) liposome-formula...

  2. Extension of the GLYCAM06 Biomolecular Force Field to Lipids, Lipid Bilayers and Glycolipids

    OpenAIRE

    Tessier, Matthew B; DeMarco, Mari L.; Yongye, Austin B.; Woods, Robert J.

    2008-01-01

    GLYCAM06 is a generalisable biomolecular force field that is extendible to diverse molecular classes in the spirit of a small-molecule force field. Here we report parameters for lipids, lipid bilayers and glycolipids for use with GLYCAM06. Only three lipid-specific atom types have been introduced, in keeping with the general philosophy of transferable parameter development. Bond stretching, angle bending, and torsional force constants were derived by fitting to quantum mechanical data for a c...

  3. Polymer bilayer structure via inkjet printing

    Science.gov (United States)

    Xia, Yajun; Friend, Richard H.

    2006-04-01

    We report the formation of a polymer bilayer structure by inkjet printing poly(9,9'-dioctylfluorene-co-benzothiadiazole) (F8BT) from p-xylene solution onto a poly(9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine (TFB) thin film. Despite the compatibility of both polymers with the same organic solvent, a TFB layer under the later-deposited F8BT was directly observed through fluorescence microscopy. Micro-Raman spectroscopy reveals that this bottom layer is ˜10nm thick for a film made by inkjet printing F8BT onto a TFB film of ˜20nm thickness. The bilayer structure leads to enhanced efficiency for light-emitting diodes in comparison with devices made from spin-coated TFB:F8BT blend films.

  4. The surface layer of cleaved bilayer manganites

    International Nuclear Information System (INIS)

    Recently, several informative reports have been published on spectroscopy experiments performed on cleaved surfaces of the bilayered colossal magnetoresistive manganite La2-2xSr1+2xMn2O7 (Konoto et al 2004 Phys. Rev. Lett. 93 107201, Freeland et al 2005 Nat. Mater. 4 62, Mannella et al 2005 Nature 438 474, Roennow et al 2006 Nature 440 1025). For the detailed interpretation of these results, it is of importance to know exactly which layer within the crystal structure is exposed to the surface upon cleavage. Here we combine crystal structure arguments, scanning tunnelling microscopy and x-ray photoelectron spectroscopy measurements to demonstrate that the crystals cleave between the rare-earth rock-salt oxide layers, leaving one outermost rare-earth oxide layer before the first electronically active MnO bilayer

  5. Fluctuations in lipid bilayers: Are they understood?

    CERN Document Server

    Schmid, Friederike

    2013-01-01

    We review recent computer simulation studies of undulating lipid bilayers. Theoretical interpretations of such fluctuating membranes are most commonly based on generalized Helfrich-type elastic models, with additional contributions of local "protrusions" and/or density fluctuations. Such models provide an excellent basis for describing the fluctuations of tensionless bilayers in the fluid phase at a quantitative level. However, this description is found to fail for membranes in the gel phase and for membranes subject to high tensions. The fluctuations of tilted gel membranes show a signature of the modulated ripple structure, which is a nearby phase observed in the pretransition regime between the fluid and tilted gel state. This complicates a quantitative analysis on mesoscopic length scales. In the case of fluid membranes under tension, the large-wavelength fluctuation modes are found to be significantly softer than predicted by theory. In the latter context, we also address the general problem of the relat...

  6. Bilayer Graphene: An Electrically Tunable Semiconductor

    Science.gov (United States)

    Min, Hongki; Sahu, Bhagawan; Banerjee, Sanjay; MacDonald, Allan

    2007-03-01

    Using ab initio density functional theory calculations, we verify [1,2] that the energy band structure of bilayer graphene can be tuned by applying an external electric field. As the strength of the external electric field increases, the electronic spectrum of bilayer graphene changes from a that of a zero-gap semiconductor to that of a gapped semiconductor. From the ab initio calculations the external field dependence of the screened interlayer potential difference and tunneling amplitudes are extracted by fitting to a tight-binding model. We discuss the role of interlayer correlations in determining the size of the gap and the accuracy of local density approximation. [1] Edward McCann and Vladimir I. Fal'ko, Phys. Rev. Lett. 96, 086805 (2006). [2] Taisuke Ohta, Aaron Bostwick,, Thomas Seyller, Karsten Horn, and Eli Rotenberg, Science 313, 951 (2006).

  7. Vortex Physics in the Quantum Hall Bilayer

    Science.gov (United States)

    Fertig, H. A.; Murthy, Ganpathy

    2013-06-01

    There exists a strong analogy between the quantum Hall bilayer system at total filling factor ν = 1 and a thin film superfluid, in which the groundstate is described as a condensate of particle-hole pairs. The analogy draws support from experiments which display near dissipationless transport properties at low temperatures. However dissipation is always present at any accessible temperature, suggesting that in a proper description, unpaired vortex-like excitations must be present. The mechanism by which this happens remains poorly understood. A key difference between the quantum Hall bilayer and simpler thin-film superfluids is that the vortices, more properly called merons in the former context, are charged objects. We demonstrate that a model in which disorder induces merons in the groundstate, through coupling to this charge, can naturally explain many of the observed imperfect superfluid properties...

  8. Driving skyrmions in a composite bilayer

    Science.gov (United States)

    Wang, Zidong; Grimson, Malcolm J.

    2016-07-01

    Magnetic skyrmions and multiferroics are the most interesting objects in nanostructure science that have great potential in future spin-electronic technology. The study of multiferroic skyrmions has attracted much interest in recent years. This article reports magnetic Bloch skyrmions induced by an electric driving field in a composite bilayer (chiral-magnetic/ferroelectric bilayer) lattice. By using the spin dynamics method, we use a classical magnetic spin model and an electric pseudospin model, which are coupled by a strong magnetoelectric coupling in the dynamical simulations. Interestingly, we observe some skyrmionlike objects in the electric component either during the switching process or by applying a magnetic field, which is due to the connection between the electric and the magnetic structures.

  9. Negative differential resistance in bilayer graphene nanoribbons

    OpenAIRE

    Zahid, F.; Habib, KMM; Lake, RK

    2011-01-01

    Lack of a bandgap is one of the significant challenges for application of graphene as the active element of an electronic device. A bandgap can be induced in bilayer graphene by application of a potential difference between the two layers. The simplest geometry for creating such a potential difference is two overlayed graphene nanoribbons independently contacted. Calculations, based on density functional theory and the nonequilibrium Green's function formalism, show that transmission through ...

  10. Edge states of zigzag bilayer graphite nanoribbons

    OpenAIRE

    Rhim, Jun-Won; Moon, Kyungsun

    2008-01-01

    Electronic structures of the zigzag bilayer graphite nanoribbons(Z-BGNR) with various ribbon width $N$ are studied within the tight binding approximation. Neglecting the inter-layer hopping amplitude $\\gamma_4$, which is an order of magnitude smaller than the other inter-layer hopping parameters $\\gamma_1$ and $\\gamma_3$, there exist two fixed Fermi points $\\pm k^*$ independent of the ribbon width with the peculiar energy dispersion near $k^*$ as $\\ve (k) \\sim \\pm (k-k^*)^N$. By investigating...

  11. Sub-diffraction imaging with compensating bilayers

    International Nuclear Information System (INIS)

    We derive a general expression for the material properties of a compensating bilayer, which is a pair of material layers which transfer the field distribution from one side of the bilayer to the other with resolution limited only by the deviation of the material properties from specified values. One of the layers can be free space, a special case of which is the perfect lens, but the layers need not have equal thickness. Compensating a thick layer of free space with a thin layer creates a focusing device with increased working distance, and employs an anisotropic material. It is also possible to achieve compensation of materials with property tensors that are neither positive nor negative definite. In this case, we refer to such media as indefinite, and we analyse, in detail, bilayers of these media which support coupling of internal propagating waves to incident waves of any transverse wave vector. In this case, we find that the enhanced spatial resolution provided by large transverse wave vectors is far less sensitive to loss than that of the perfect lens

  12. Lipid bilayer vesicle generation using microfluidic jetting.

    Science.gov (United States)

    Coyne, Christopher W; Patel, Karan; Heureaux, Johanna; Stachowiak, Jeanne; Fletcher, Daniel A; Liu, Allen P

    2014-01-01

    Bottom-up synthetic biology presents a novel approach for investigating and reconstituting biochemical systems and, potentially, minimal organisms. This emerging field engages engineers, chemists, biologists, and physicists to design and assemble basic biological components into complex, functioning systems from the bottom up. Such bottom-up systems could lead to the development of artificial cells for fundamental biological inquiries and innovative therapies(1,2). Giant unilamellar vesicles (GUVs) can serve as a model platform for synthetic biology due to their cell-like membrane structure and size. Microfluidic jetting, or microjetting, is a technique that allows for the generation of GUVs with controlled size, membrane composition, transmembrane protein incorporation, and encapsulation(3). The basic principle of this method is the use of multiple, high-frequency fluid pulses generated by a piezo-actuated inkjet device to deform a suspended lipid bilayer into a GUV. The process is akin to blowing soap bubbles from a soap film. By varying the composition of the jetted solution, the composition of the encompassing solution, and/or the components included in the bilayer, researchers can apply this technique to create customized vesicles. This paper describes the procedure to generate simple vesicles from a droplet interface bilayer by microjetting. PMID:24637415

  13. Self-folding graphene-polymer bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Tao [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China); Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Yoon, ChangKyu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Jin, Qianru [Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Li, Mingen [Department of Physics, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Liu, Zewen [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China); Gracias, David H., E-mail: dgracias@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2015-05-18

    In order to incorporate the extraordinary intrinsic thermal, electrical, mechanical, and optical properties of graphene with three dimensional (3D) flexible substrates, we introduce a solvent-driven self-folding approach using graphene-polymer bilayers. A polymer (SU-8) film was spin coated atop chemically vapor deposited graphene films on wafer substrates and graphene-polymer bilayers were patterned with or without metal electrodes using photolithography, thin film deposition, and etching. After patterning, the bilayers were released from the substrates and they self-folded to form fully integrated, curved, and folded structures. In contrast to planar graphene sensors on rigid substrates, we assembled curved and folded sensors that are flexible and they feature smaller form factors due to their 3D geometry and large surface areas due to their multiple rolled architectures. We believe that this approach could be used to assemble a range of high performance 3D electronic and optical devices of relevance to sensing, diagnostics, wearables, and energy harvesting.

  14. Self-folding graphene-polymer bilayers

    Science.gov (United States)

    Deng, Tao; Yoon, ChangKyu; Jin, Qianru; Li, Mingen; Liu, Zewen; Gracias, David H.

    2015-05-01

    In order to incorporate the extraordinary intrinsic thermal, electrical, mechanical, and optical properties of graphene with three dimensional (3D) flexible substrates, we introduce a solvent-driven self-folding approach using graphene-polymer bilayers. A polymer (SU-8) film was spin coated atop chemically vapor deposited graphene films on wafer substrates and graphene-polymer bilayers were patterned with or without metal electrodes using photolithography, thin film deposition, and etching. After patterning, the bilayers were released from the substrates and they self-folded to form fully integrated, curved, and folded structures. In contrast to planar graphene sensors on rigid substrates, we assembled curved and folded sensors that are flexible and they feature smaller form factors due to their 3D geometry and large surface areas due to their multiple rolled architectures. We believe that this approach could be used to assemble a range of high performance 3D electronic and optical devices of relevance to sensing, diagnostics, wearables, and energy harvesting.

  15. Ion beam mixing isotopic metal bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Fell, C.J. [Newcastle Univ., NSW (Australia). Dept. of Physics; Kenny, M.J. [CSIRO, Lindfield, NSW (Australia). Div. of Applied Physics

    1993-12-31

    In order to obtain an insight into the mechanisms of ion-solid interactions, bilayer targets can be prepared from two different isotopes. A mixing study SIMS is to be carried out using specially grown monocrystalline bilayers of {sup 58}Ni / {sup 60}Ni. An important aspect of the work is the preparation of high quality single-crystal thin films. The Ni layers will be grown on the (110) surface of pure Ni and verified for crystallinity using Reflection High-Energy Electron Diffraction and Rutherford Backscattering channelling analysis. The Pd bilayers will be grown on a Pd (100) surface. RHEED will be used to confirm the two-dimensional crystallinity of the surface before and after deposition of each layer, and channelling used to confirm bulk film crystallinity. Single crystal substrates are currently being prepared. Analysis of the Ni (110) surface using RHEED at 9 kV shows a streak spacing which corresponds to a lattice spacing of 2.47 {+-} 0.09 Angstroms. 9 refs., 1 fig.

  16. Stability analysis of the pulmonary liquid bilayer.

    Science.gov (United States)

    Halpern, David; Grotberg, James

    2010-11-01

    The lung consists of liquid-lined compliant airways that convey air to and from the alveoli where gas exchange takes place. Because the airways are coated with a bilayer consisting of a mucus layer on top of a periciliary fluid layer, a surface tension instability can generate flows within the bilayer and induce the formation of liquid plugs that block the passage of air. This is a problem for example with premature neonates whose lungs do not produce sufficient quantities of surfactant and suffer from respiratory distress syndrome. To study this instability a system of coupled nonlinear evolution equations are derived using lubrication theory for the thicknesses of the two liquid layers which are assumed to be Newtonian. A normal mode analysis is used to investigate the initial growth of the disturbances, and reveals how the grow rate is affected by the ratio of viscosities λ, film thicknesses η and surface tensions δ of the two layers which can change by disease. Numerical solutions of the evolution equations show that there is a critical bilayer thickness ɛc above which closure occurs, and that a more viscous and thicker layer compared to the periciliary layer closes more slowly. However, ɛcis weakly dependent on λ, η and δ. We also examine the potential impact of wall shear stress and normal stress on cell damage. This work is funded by NIH HL85156.

  17. Molecular dynamics modelling of EGCG clusters on ceramide bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Yeo, Jingjie; Cheng, Yuan; Li, Weifeng; Zhang, Yong-Wei [Institute of High Performance Computing, A*STAR, 138632 (Singapore)

    2015-12-31

    A novel method of atomistic modelling and characterization of both pure ceramide and mixed lipid bilayers is being developed, using only the General Amber ForceField. Lipid bilayers modelled as pure ceramides adopt hexagonal packing after equilibration, and the area per lipid and bilayer thickness are consistent with previously reported theoretical results. Mixed lipid bilayers are modelled as a combination of ceramides, cholesterol, and free fatty acids. This model is shown to be stable after equilibration. Green tea extract, also known as epigallocatechin-3-gallate, is introduced as a spherical cluster on the surface of the mixed lipid bilayer. It is demonstrated that the cluster is able to bind to the bilayers as a cluster without diffusing into the surrounding water.

  18. Method of fabricating lipid bilayer membranes on solid supports

    Science.gov (United States)

    Cho, Nam-Joon (Inventor); Frank, Curtis W. (Inventor); Glenn, Jeffrey S. (Inventor); Cheong, Kwang Ho (Inventor)

    2012-01-01

    The present invention provides a method of producing a planar lipid bilayer on a solid support. With this method, a solution of lipid vesicles is first deposited on the solid support. Next, the lipid vesicles are destabilized by adding an amphipathic peptide solution to the lipid vesicle solution. This destabilization leads to production of a planar lipid bilayer on the solid support. The present invention also provides a supported planar lipid bilayer, where the planar lipid bilayer is made of naturally occurring lipids and the solid support is made of unmodified gold or titanium oxide. Preferably, the supported planar lipid bilayer is continuous. The planar lipid bilayer may be made of any naturally occurring lipid or mixture of lipids, including, but not limited to phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinsitol, cardiolipin, cholesterol, and sphingomyelin.

  19. Automatable lipid bilayer formation for ion channel studies

    Science.gov (United States)

    Poulos, Jason L.; Bang, Hyunwoo; Jeon, Tae-Joon; Schmidt, Jacob J.

    2008-08-01

    Transmembrane proteins and ion channels are important drug targets and have been explored as single molecule sensors. For these proteins to function normally they must be integrated within lipid bilayers; however, the labor and skill required to create artificial lipid bilayers have the limited the possible applications utilizing these proteins. In order to reduce the complexity and cost of lipid bilayer formation and measurement, we have modified a previously published lipid bilayer formation technique using mechanically contacted monolayers so that the process is automatable, requiring minimal operator input. Measurement electronics are integrated with the fluid handling system, greatly reducing the time and operator feedback characteristically required of traditional bilayer experiments. To demonstrate the biological functionality of the resultant bilayers and the system's capabilities as a membrane platform, the ion channel gramicidin A was incorporated and measured with this system.

  20. Bilayer splitting and c-axis coupling in bilayer manganites showing colossal magnetoresistance.

    Energy Technology Data Exchange (ETDEWEB)

    Jozwiak, C.; Graf, J.; Zhou, S. Y.; Bostwick, A.; Rotenberg, E.; Zheng, H.; Mitchell, J. F.; Lanzara, A.; Materials Science Division; Univ. of California at Berkeley; LBNL

    2009-12-07

    By performing angle-resolved photoemission spectroscopy of the bilayer colossal magnetoresistive (CMR) manganite, La{sub 2-2x}Sr{sub 1+2x}Mn{sub 2}O{sub 7}, we provide the complete mapping of the Fermi-level spectral weight topology. Clear and unambiguous bilayer splitting of the in-plane 3d{sub x{sup 2}-y{sup 2}} band, mapped throughout the Brillouin zone, and the full mapping of the 3d{sub 3z{sup 2}-r{sup 2}} band are reported. Peculiar doping and temperature dependencies of these bands imply that as transition from the ferromagnetic metallic phase approaches, either as a function of doping or temperature, coherence along the c-axis between planes within the bilayer is lost, resulting in reduced interplane coupling. These results suggest that interplane coupling plays a large role in the CMR transition.

  1. Bilayer splitting and c-axis coupling in CMR bilayer manganites

    Energy Technology Data Exchange (ETDEWEB)

    Jozwiak, Chris; Graf, Jeff; Zhou, Shuyun; Bostwick, Aaron; Rotenberg, Eli; Zheng, Hong; Mitchell, John; Lanzara, Alessandra

    2009-09-03

    By performing angle-resolved photoemission spectroscopy of the bilayer colossal magnetoresistive (CMR) manganite, La2-2xSr1+2xMn2O7, we provide the complete mapping of the Fermi-level spectral weight topology. Clear and unambiguous bilayer splitting of the in-plane 3dx2-y2 band, mapped throughout the Brillouin zone, and the full mapping of the 3d3z2-r2 band are reported. Peculiar doping and temperature dependencies of these bands imply that as transition from the ferromagnetic metallic phase approaches, either as a function of doping or temperature, coherence along the c-axis between planes within the bilayer is lost, resulting in reduced interplane coupling. These results suggest that interplane coupling plays a large role in the CMR transition.

  2. Ionic motion in PEDOT and PPy conducting polymer bilayers

    DEFF Research Database (Denmark)

    Zainudeen, Umer L.; Careem, M.A.; Skaarup, Steen

    2006-01-01

    Conducting polymer bilayers with poly(3,4-ethylenedioxythiophene) (PEDOT) and polypyrrole (PPy), each containing dodecyl benzenesulfonate (DBS) as immobile dopant species, were synthesized galvanostatically. The electrochemical behaviour of the bilayers was investigated using cyclic voltammetry......, optical absorption spectroscopy and electrochemical quartz crystal microbalance (EQCM) techniques. Two important conclusions of relevance for actuator performance were reached: It is possible to make a bilayer film that does not delaminate – the two polymers are compatible; and both polymers are active in...

  3. Conformational study of the protegrin-1 (PG-1 dimer interaction with lipid bilayers and its effect

    Directory of Open Access Journals (Sweden)

    Nussinov Ruth

    2007-04-01

    Full Text Available Abstract Background Protegrin-1 (PG-1 is known as a potent antibiotic peptide; it prevents infection via an attack on the membrane surface of invading microorganisms. In the membrane, the peptide forms a pore/channel through oligomerization of multiple subunits. Recent experimental and computational studies have increasingly unraveled the molecular-level mechanisms underlying the interactions of the PG-1 β-sheet motifs with the membrane. The PG-1 dimer is important for the formation of oligomers, ordered aggregates, and for membrane damaging effects. Yet, experimentally, different dimeric behavior has been observed depending on the environment: antiparallel in the micelle environment, and parallel in the POPC bilayer. The experimental structure of the PG-1 dimer is currently unavailable. Results Although the β-sheet structures of the PG-1 dimer are less stable in the bulk water environment, the dimer interface is retained by two intermolecular hydrogen bonds. The formation of the dimer in the water environment implies that the pathway of the dimer invasion into the membrane can originate from the bulk region. In the initial contact with the membrane, both the antiparallel and parallel β-sheet conformations of the PG-1 dimer are well preserved at the amphipathic interface of the lipid bilayer. These β-sheet structures illustrate the conformations of PG-1 dimer in the early stage of the membrane attack. Here we observed that the activity of PG-1 β-sheets on the bilayer surface is strongly correlated with the dimer conformation. Our long-term goal is to provide a detailed mechanism of the membrane-disrupting effects by PG-1 β-sheets which are able to attack the membrane and eventually assemble into the ordered aggregates. Conclusion In order to understand the dimeric effects leading to membrane damage, extensive molecular dynamics (MD simulations were performed for the β-sheets of the PG-1 dimer in explicit water, salt, and lipid bilayers

  4. A Model of Small-Group Problem-Based Learning in Pharmacy Education: Teaching in the Clinical Environment

    Science.gov (United States)

    Khumsikiew, Jeerisuda; Donsamak, Sisira; Saeteaw, Manit

    2015-01-01

    Problem-based Learning (PBL) is an alternate method of instruction that incorporates basic elements of cognitive learning theory. Colleges of pharmacy use PBL to aid anticipated learning outcomes and practice competencies for pharmacy student. The purpose of this study were to implement and evaluate a model of small group PBL for 5th year pharmacy…

  5. Low-cost small scale processing technologies for production applications in various environments-Mass produced factories

    NARCIS (Netherlands)

    Bramsiepe, C.; Sievers, S.; Seifert, T.; Stefanidis, G.D.; Vlachos, D.G.; Schnitzer, H.; Muster, B.; Brunner, C.; Sanders, J.P.M.; Bruins, M.E.; Schembecker, G.

    2012-01-01

    The requirements for chemical and food production technologies will change in the future as a result of shorter time to market and increasing market volatility. Especially the rising use of renewable resources will require the implementation of flexible and fast to install small-scale production tec

  6. Comparative evaluation of several small mammal species as monitors of heavy metals, radionuclides, and selected organic compounds in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Talmage, S.S. (Tennessee Univ., Knoxville, TN (USA) Oak Ridge National Lab., TN (USA)); Walton, B.T. (Oak Ridge National Lab., TN (USA))

    1990-08-01

    The primary purpose of this study was to evaluate which small mammal species are the best monitors of specific environmental contaminants. The evaluation is based on the published literature and on an analysis of small mammals trapped at several sites on the Oak Ridge National Laboratory (ORNL) Reservation in Oak Ridge, Tennessee. Studies on the uptake of heavy metals, radionuclides, and organic chemicals are reviewed in Chapter II to evaluate several small mammal species for their capacity to serve as sentinels for the presence, accumulation, and effects of various contaminants. Where several species were present at a site, a comparative evaluation was made and species are ranked for their capacity to serve as monitors of specific contaminants. Food chain accumulation and food habits of the species are used to establish a relationship with suitability as a biomonitor. Tissue-specific concentration factors were noted in order to establish target tissues. Life histories, habitat, and food habits are reviewed in order to make generalizations concerning the ability of similar taxa to serve as biomonitor. Finally, the usefulness of several small mammal species as monitors of three contaminants -- benzo(a)pyrene, mercury, and strontium-90 -- present on or near the ORNL facilities was investigated. 133 refs., 5 figs., 20 tabs.

  7. Comparative evaluation of several small mammal species as monitors of heavy metals, radionuclides, and selected organic compounds in the environment

    International Nuclear Information System (INIS)

    The primary purpose of this study was to evaluate which small mammal species are the best monitors of specific environmental contaminants. The evaluation is based on the published literature and on an analysis of small mammals trapped at several sites on the Oak Ridge National Laboratory (ORNL) Reservation in Oak Ridge, Tennessee. Studies on the uptake of heavy metals, radionuclides, and organic chemicals are reviewed in Chapter II to evaluate several small mammal species for their capacity to serve as sentinels for the presence, accumulation, and effects of various contaminants. Where several species were present at a site, a comparative evaluation was made and species are ranked for their capacity to serve as monitors of specific contaminants. Food chain accumulation and food habits of the species are used to establish a relationship with suitability as a biomonitor. Tissue-specific concentration factors were noted in order to establish target tissues. Life histories, habitat, and food habits are reviewed in order to make generalizations concerning the ability of similar taxa to serve as biomonitor. Finally, the usefulness of several small mammal species as monitors of three contaminants -- benzo[a]pyrene, mercury, and strontium-90 -- present on or near the ORNL facilities was investigated. 133 refs., 5 figs., 20 tabs

  8. Synthesis and sensing application of large scale bilayer graphene

    Science.gov (United States)

    Hong, Sung Ju; Yoo, Jung Hoon; Baek, Seung Jae; Park, Yung Woo

    2012-02-01

    We have synthesized large scale bilayer graphene by using Chemical Vapor Deposition (CVD) in atmospheric pressure. Bilayer graphene was grown by using CH4, H2 and Ar gases. The growth temperature was 1050^o. Conventional FET measurement shows ambipolar transfer characteristics. Results of Raman spectroscopy, Atomic Force microscope (AFM) and Transmission Electron Microscope (TEM) indicate the film is bilayer graphene. Especially, adlayer structure which interrupt uniformity was reduced in low methane flow condition. Furthermore, large size CVD bilayer graphene film can be investigated to apply sensor devices. By using conventional photolithography process, we have fabricated device array structure and studied sensing behavior.

  9. Small for gestational age and exposure to particulate air pollution in the early-life environment of twins.

    Science.gov (United States)

    Bijnens, Esmée M; Derom, Catherine; Gielen, Marij; Winckelmans, Ellen; Fierens, Frans; Vlietinck, Robert; Zeegers, Maurice P; Nawrot, Tim S

    2016-07-01

    Several studies in singletons have shown that maternal exposure to ambient air pollutants is associated with restricted fetal growth. About half of twins have low birth weight compared with six percent in singletons. So far, no studies have investigated maternal air pollution exposure in association with birth weight and small for gestational age in twins. We examined 4760 twins of the East Flanders Prospective Twins Survey (2002-2013), to study the association between in utero exposure to air pollution with birth weight and small for gestational age. Maternal particulate air pollution (PM10) and nitric dioxide (NO2) exposure was estimated using a spatial temporal interpolation method over various time windows during pregnancy. In the total group of twins, we observed that higher PM10 and NO2 exposure during the third trimester was significantly associated with a lower birth weight and higher risk of small for gestational age. However, the association was driven by moderate to late preterm twins (32-36 weeks of gestation). In these twins born between 32 and 36 weeks of gestation, birth weight decreased by 40.2g (95% CI: -69.0 to -11.3; p=0.006) and by 27.3g (95% CI: -52.9 to -1.7; p=0.04) in association for each 10µg/m³ increment in PM10 and NO2 concentration during the third trimester. The corresponding odds ratio for small for gestational age were 1.68 (95% CI: 1.27-2.33; p=0.0003) and 1.51 (95% CI: 1.18-1.95; p=0.001) for PM10 or NO2, respectively. No associations between air pollution and birth weight or small for gestational age were observed among term born twins. Finally, in all twins, we found that for each 10µg/m³ increase in PM10 during the last month of pregnancy the within-pair birth weight difference increased by 19.6g (95% CI: 3.7-35.4; p=0.02). Assuming causality, an achievement of a 10µg/m³ decrease of particulate air pollution may account for a reduction by 40% in small for gestational age, in twins born moderate to late preterm.

  10. Among friends: the role of academic-preparedness diversity in individual performance within a small-group STEM learning environment

    Science.gov (United States)

    Micari, Marina; Van Winkle, Zachary; Pazos, Pilar

    2016-08-01

    In this study, we investigate the relationship between academic-preparedness diversity within small learning groups and individual academic performance in science, technology, engineering, and mathematics (STEM) university courses. We further examine whether academic-preparedness diversity impacts academically more- and less-prepared students differently. We use data from 5367 university students nested within 1141 science, engineering, and mathematics learning groups and use a regression analysis to estimate the effect of group diversity, measured in two ways, on course performance. Our results indicate that academic-preparedness diversity is generally associated with positive learning outcomes, that academically less-prepared students derive greater benefit, and that less-prepared students fare best when they are not alone in a group of highly prepared students. Implications for teaching and small-group facilitation are addressed.

  11. Evaluation of Sled Tests for Spacecraft Dynamic Environments using the Small Female and Large Male Hybrid III Anthropomorphic Test Devices

    Science.gov (United States)

    Wells, Jessica A.; Somers, Jeffrey T.; Newby, Nathaniel J.; Putnam, Jacob F.; Currie-Gregg, Nancy J.; Lawrence, Charles

    2016-01-01

    Anthropomorphic test devices (ATD) are widely used for military and automotive applications. These ATDs have been correlated to certain types of human injuries largely involving automotive-type energetics and directions of impact. Spacecraft dynamic events involve very different impact characteristics and, in the case of landings, require lower levels of acceptable injury risk due to the certainty of impact occurrence. This test series evaluated the small female and large male Hybrid IIII ATDs for spacecraft dynamic events.

  12. Implementation of a personnel database system for crew allocation and reports production in a small battle ship's environment.

    OpenAIRE

    Anastasatos, Constantinos

    1986-01-01

    Approved for public release; distribution is unlimited Crucial to the Naval mission, but administrative in nature, is the assignment of ship's company to temporary and permanent duty assignments. This study implements a personnel database system for personnel management on a small battle ship. dBASE III is used as a "Database Management Software" and the "System" is implemented as a collection of algorithms providing intelligent decisions about these assignments. It ca...

  13. MyVLE: A case study in building a universal telematic education environment for a small university

    OpenAIRE

    Ward, Tomas; Monaghan, Karl; Villing, Rudi

    2007-01-01

    Here we report on the design, building and testing of MyVLE, an internet-based e-learning system that provides a universal telematic education environment for educators. The system was designed from first principles with strong support for numerical disciplines integrated at the outset. From a pedagogical aspect the system is unrestricted in so far as possible to allow various theories of learning to be explored as different disciplines may demand. We consider it a universal system in that...

  14. Small-footprint, waveform-resolving lidar estimation of submerged and sub-canopy topography in coastal environments

    Science.gov (United States)

    Nayegandhi, A.; Brock, J.C.; Wright, C.W.

    2009-01-01

    The experimental advanced airborne research lidar (EAARL) is an airborne lidar instrument designed to map near-shore submerged topography and adjacent land elevations simultaneously. This study evaluated data acquired by the EAARL system in February 2003 and March 2004 along the margins of Tampa Bay, Florida, USA, to map bare-earth elevations under a variety of vegetation types and submerged topography in shallow, turbid water conditions. A spatial filtering algorithm, known as the iterative random consensus filter (IRCF), was used to extract ground elevations from a point cloud of processed last-surface EAARL returns. Filtered data were compared with acoustic and field measurements acquired in shallow submerged (0-2.5 m water depth) and sub-canopy environments. Root mean square elevation errors (RMSEs) ranged from 10-14 cm for submerged topography to 16-20 cm for sub-canopy topography under a variety of vegetation communities. The effect of lidar sampling angles and global positioning system (GPS) satellite configuration on accuracy was investigated. Results show high RMSEs for data acquired during periods of poor satellite configuration and at large sampling angles along the edges of the lidar scan. The results presented in this study confirm the cross-environment capability of a green-wavelength, waveform-resolving lidar system, making it an ideal tool for mapping coastal environments.

  15. Effect of monoglycerides and fatty acids on a ceramide bilayer.

    Science.gov (United States)

    Akinshina, Anna; Das, Chinmay; Noro, Massimo G

    2016-07-14

    Monoglycerides and unsaturated fatty acids, naturally present in trace amounts in the stratum corneum (top layer of skin) lipid matrix, are commonly used in pharmaceutical, cosmetic and health care formulations. However, a detailed molecular understanding of how the oil additives get incorporated into the skin lipids from topical application and, once incorporated, how they affect the properties and integrity of the lipid matrix remains unexplored. Using ceramide 2 bilayers as skin lipid surrogates, we use a series of molecular dynamics simulations with six different natural oil ingredients at multiple concentrations to investigate the effect of the oils on the properties and stability of the bilayers. The six oils: monoolein, monostearin, monoelaidin, oleic acid, stearic acid and linoleic acid - all having the same length of the alkyl chain, C18, but a varying degree of saturation, allow us to systematically address the effect of unsaturation in the additives. Our results show that at low oil concentration (∼5%) the mixed bilayers containing any of the oils and ceramide 2 (CER2) become more rigid than pure CER2 bilayers due to more efficient lipid packing. Better packing also results in the formation of larger numbers of hydrogen bonds between the lipids, which occurs at the expense of the hydrogen bonds between lipids and water. The mixed bilayers with saturated or trans-unsaturated oils remain stable over the whole range of oil concentration. In contrast, the presence of the oils with at least one cis-double bond leads to bilayer instability and complete loss of bilayer structure at the oil content of about 50-65%. Two cis-double bonds in the lipid tail induce bilayer disruption at even lower concentration (∼30%). The mixed bilayers remain in the gel phase (without melting to a fluid phase) until the phase transition to a non-bilayer phase occurs. We also demonstrate that the stability of the bilayer strongly correlates with the order parameter of the lipid

  16. Cantilever bending based on humidity-actuated mesoporous silica/silicon bilayers.

    Science.gov (United States)

    Ganser, Christian; Fritz-Popovski, Gerhard; Morak, Roland; Sharifi, Parvin; Marmiroli, Benedetta; Sartori, Barbara; Amenitsch, Heinz; Griesser, Thomas; Teichert, Christian; Paris, Oskar

    2016-01-01

    We use a soft templating approach in combination with evaporation induced self-assembly to prepare mesoporous films containing cylindrical pores with elliptical cross-section on an ordered pore lattice. The film is deposited on silicon-based commercial atomic force microscope (AFM) cantilevers using dip coating. This bilayer cantilever is mounted in a humidity controlled AFM, and its deflection is measured as a function of relative humidity. We also investigate a similar film on bulk silicon substrate using grazing-incidence small-angle X-ray scattering (GISAXS), in order to determine nanostructural parameters of the film as well as the water-sorption-induced deformation of the ordered mesopore lattice. The strain of the mesoporous layer is related to the cantilever deflection using simple bilayer bending theory. We also develop a simple quantitative model for cantilever deflection which only requires cantilever geometry and nanostructural parameters of the porous layer as input parameters. PMID:27335753

  17. SANS study of the unilamellar DMPC vesicles. The fluctuation model of lipid bilayer

    International Nuclear Information System (INIS)

    On the basis of the separated form-factors model, parameters of the polydispersed unilamellar DMPC vesicle population are analyzed. The neutron scattering length density across the membrane is simulated on the basis of fluctuated model of lipid bilayer. The hydration of vesicle is described by sigmoid distribution function of the water molecules. The results of fitting of the experimental data obtained at the small angle spectrometer SANS-I, PSI (Switzerland) are: average vesicle radius 272±0.4 Armstrong, polydispersity of the radius 27 %, membrane thickness 50.6± Armstrong, thickness of hydrocarbon chain region 21.4±2.8 Armstrong, number of water molecules located per lipid molecule 13±1, and DMPC surface area 59±2 Armstrong2. The calculated water distribution function across the bilayer directly explains why lipid membrane is easy penetrated by water molecules

  18. Decoupled electron and phonon transports in hexagonal boron nitride-silicene bilayer heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yongqing; Pei, Qing-Xiang, E-mail: peiqx@ihpc.a-star.edu.sg, E-mail: zhangg@ihpc.a-star.edu.sg; Zhang, Gang, E-mail: peiqx@ihpc.a-star.edu.sg, E-mail: zhangg@ihpc.a-star.edu.sg; Zhang, Yong-Wei [Institute of High Performance Computing, A*STAR, Singapore 138632 (Singapore)

    2016-02-14

    Calculations based on the density functional theory and empirical molecular dynamics are performed to investigate interlayer interaction, electronic structure and thermal transport of a bilayer heterostructure consisting of silicene and hexagonal boron nitride (h-BN). In this heterostructure, the two layers are found to interact weakly via a non-covalent binding. As a result, the Dirac cone of silicene is preserved with the Dirac cone point being located exactly at the Fermi level, and only a small amount of electrons are transferred from h-BN to silicene, suggesting that silicene dominates the electronic transport. Molecular dynamics calculation results demonstrate that the heat current along h-BN is six times of that along silicene, suggesting that h-BN dominates the thermal transport. This decoupled role of h-BN and silicene in thermal and electronic transport suggests that the BN-silicene bilayer heterostructure is promising for thermoelectric applications.

  19. Sans Study of the Unilamellar DMPC Vesicles. the Fluctuation Model of Lipid Bilayer

    CERN Document Server

    Kiselev, M A; Vinod, A

    2004-01-01

    On the basis of the separated form-factors model, parameters of the polydispersed unilamellar DMPC vesicle population are analyzed. The neutron scattering length density across the membrane is simulated on the basis of fluctuated model of lipid bilayer. The hydration of vesicle is described by sigmoid distribution function of the water molecules. The results of fitting of the experimental data obtained at the small angle spectrometer SANS-I, PSI (Switzerland) are: average vesicle radius 272 angstrom, polydispersity of the radius 27%, membrane thickness 50.6 angstrom, thickness of hydrocarbon chain region 21.4 angstrom, number of water molecules located per lipid molecule 13, and DMPC surface area 59. The calculated water distribution function across the bilayer directly explains why lipid membrane is easy penetrated by water molecules.

  20. Rich Polymorphic Behavior of Wigner Bilayers

    Science.gov (United States)

    Antlanger, Moritz; Kahl, Gerhard; Mazars, Martial; Šamaj, Ladislav; Trizac, Emmanuel

    2016-09-01

    Self-assembly into target structures is an efficient material design strategy. Combining analytical calculations and computational techniques of evolutionary and Monte Carlo types, we report about a remarkable structural variability of Wigner bilayer ground states, when charges are confined between parallel charged plates. Changing the interlayer separation, or the plate charge asymmetry, a cascade of ordered patterns emerges. At variance with the symmetric case phenomenology, the competition between commensurability features and charge neutralization leads to long range attraction, appearance of macroscopic charges, exotic phases, and nonconventional phase transitions with distinct critical indices, offering the possibility of a subtle, but precise and convenient control over patterns.

  1. DNA nanostructures interacting with lipid bilayer membranes.

    Science.gov (United States)

    Langecker, Martin; Arnaut, Vera; List, Jonathan; Simmel, Friedrich C

    2014-06-17

    CONSPECTUS: DNA has been previously shown to be useful as a material for the fabrication of static nanoscale objects, and also for the realization of dynamic molecular devices and machines. In many cases, nucleic acid assemblies directly mimic biological structures, for example, cytoskeletal filaments, enzyme scaffolds, or molecular motors, and many of the applications envisioned for such structures involve the study or imitation of biological processes, and even the interaction with living cells and organisms. An essential feature of biological systems is their elaborate structural organization and compartmentalization, and this most often involves membranous structures that are formed by dynamic assemblies of lipid molecules. Imitation of or interaction with biological systems using the tools of DNA nanotechnology thus ultimately and necessarily also involves interactions with lipid membrane structures, and thus the creation of DNA-lipid hybrid assemblies. Due to their differing chemical nature, however, highly charged nucleic acids and amphiphilic lipids do not seem the best match for the construction of such systems, and in fact they are rarely found in nature. In recent years, however, a large variety of lipid-interacting DNA conjugates were developed, which are now increasingly being applied also for the realization of DNA nanostructures interacting with lipid bilayer membranes. In this Account, we will present the current state of this emerging class of nanosystems. After a brief overview of the basic biophysical and biochemical properties of lipids and lipid bilayer membranes, we will discuss how DNA molecules can interact with lipid membranes through electrostatic interactions or via covalent modification with hydrophobic moieties. We will then show how such DNA-lipid interactions have been utilized for the realization of DNA nanostructures attached to or embedded within lipid bilayer membranes. Under certain conditions, DNA nanostructures remain mobile on

  2. Twisted CFT and bilayer Quantum Hall systems

    CERN Document Server

    Cristofano, G; Naddeo, A

    2003-01-01

    We identify the impurity interactions of the recently proposed CFT description of a bilayer Quantum Hall system at filling nu =m/(pm+2) in Mod. Phys. Lett. A 15 (2000) 1679. Such a CFT is obtained by m-reduction on the one layer system, with a resulting pairing symmetry and presence of quasi-holes. For the m=2 case boundary terms are shown to describe an impurity interaction which allows for a localized tunnel of the Kondo problem type. The presence of an anomalous fixed point is evidenced at finite coupling which is unstable with respect to unbalance and flows to a vacuum state with no quasi-holes.

  3. Bilayer avalanche spin-diode logic

    International Nuclear Information System (INIS)

    A novel spintronic computing paradigm is proposed and analyzed in which InSb p-n bilayer avalanche spin-diodes are cascaded to efficiently perform complex logic operations. This spin-diode logic family uses control wires to generate magnetic fields that modulate the resistance of the spin-diodes, and currents through these devices control the resistance of cascaded devices. Electromagnetic simulations are performed to demonstrate the cascading mechanism, and guidelines are provided for the development of this innovative computing technology. This cascading scheme permits compact logic circuits with switching speeds determined by electromagnetic wave propagation rather than electron motion, enabling high-performance spintronic computing

  4. Giant magnetoresistance in bilayer graphene nanoflakes

    Science.gov (United States)

    Farghadan, Rouhollah; Farekiyan, Marzieh

    2016-09-01

    Coherent spin transport through bilayer graphene (BLG) nanoflakes sandwiched between two electrodes made of single-layer zigzag graphene nanoribbon was investigated by means of Landauer-Buttiker formalism. Application of a magnetic field only on BLG structure as a channel produces a perfect spin polarization in a large energy region. Moreover, the conductance could be strongly modulated by magnetization of the zigzag edge of AB-stacked BLG, and the junction, entirely made of carbon, produces a giant magnetoresistance (GMR) up to 100%. Intestinally, GMR and spin polarization could be tuned by varying BLG width and length. Generally, MR in a AB-stacked BLG strongly increases (decreases) with length (width).

  5. Reversible Polarization Rotation in Epitaxial Ferroelectric Bilayers

    DEFF Research Database (Denmark)

    Liu, Guangqing; Zhang, Qi; Huang, Hsin-Hui;

    2016-01-01

    Polarization rotation engineering is a promising path to giant dielectric and electromechanical responses in ferroelectric materials and devices. This work demonstrates robust and reversible in- to out-of-plane polarization rotation in ultrathin (nanoscale) epitaxial (001) tetragonal PbZr0.3Ti0.7O3...... large-scale polarization rotation switching (≈60 μC cm−2) and an effective d 33 response 500% (≈250 pm V−1) larger than the PZT-R layer alone. Furthermore, this enhancement is stable for more than 107 electrical switching cycles. These bilayers present a simple and highly controllable means to design...

  6. Deformation of giant lipid bilayer vesicles in shear flow

    NARCIS (Netherlands)

    Haas, de K.H.; Blom, C.; Ende, van den D.; Duits, M.H.G.; Mellema, J.

    1997-01-01

    We describe experimental studies of the deformation of giant lipid bilayer vesicles in shear flow. The experiments are carried out with a counterrotating Couette apparatus. The deformation depends on the mechanical properties of the lipid bilayer, the vesicle radius, and the viscosity of the surroun

  7. Tetracycline diffusion through phospholipid bilayers and binding to phospholipids.

    OpenAIRE

    Argast, M; Beck, C.F.

    1984-01-01

    The ability of tetracycline to pass through phospholipid bilayers by diffusion was investigated. Liposomes did not retain enclosed tetracycline. Accumulation of tetracycline was observed with liposomes containing entrapped Tet repressor protein. These results indicate that the drug can pass through lipid bilayers. The antibiotic was also shown to bind to liposomes and isolated phospholipids.

  8. Fluid lipid bilayers: Intermonolayer coupling and its thermodynamic manifestations

    DEFF Research Database (Denmark)

    Hansen, Per Lyngs; Miao, Ling; Ipsen, John Hjorth

    1998-01-01

    A fluid membrane of lipid bilayer consists of two individual molecular monolayers physically opposed to each other. This unique molecular architecture naturally necessitates the need to treat a lipid-bilayer membrane as one entity of two coupled two-dimensional systems (monolayers), each of which...

  9. Validation of Canopy Height Profile methodology for small-footprint full-waveform airborne LiDAR data in a discontinuous canopy environment

    OpenAIRE

    Fieber, Karolina D.; Davenport, Ian J.; Tanase, Mihai A.; Ferryman, James M.; Gurney, Robert J.; Victor M. Becerra; Walker, Jeffrey P.; Hackerf, Jorg M.

    2015-01-01

    A Canopy Height Profile (CHP) procedure presented in Harding et al. (2001) for large footprint LiDAR data was tested in a closed canopy environment as a way of extracting vertical foliage profiles from LiDAR raw-waveform. In this study, an adaptation of this method to small-footprint data has been shown, tested and validated in an Australian sparse canopy forest at plot- and site-level. Further, the methodology itself has been enhanced by implementing a dataset-adjusted reflectance ratio calc...

  10. Description of the physical environment an coal-mining history of West-Central Indiana, with emphasis on six small watersheds

    Science.gov (United States)

    Martin, Jeffrey D.; Crawford, Charles G.; Duwelius, Richard F.; Renn, Danny E.

    1990-01-01

    This report describes the physical and human environment and coal-mining history of west-central Indiana, with emphasis on six small watersheds selected for study of the hydrologic effects of surface coal mining. The report summarizes information on the geology, geomorphology, soils, climate, hydrology, water use, land use, population, and coal-mining history of Clay, Owen, Sullivan, and Vigo Counties in Indiana. Site-specific information is given on the morphology, geology, soils, land use, coal-mining history, and hydrologic instrumentation of the six watersheds, which are each less than 3 square miles in area.

  11. Modeling constrained sintering of bi-layered tubular structures

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Kothanda Ramachandran, Dhavanesan; Ni, De Wei;

    2015-01-01

    Constrained sintering of tubular bi-layered structures is being used in the development of various technologies. Densification mismatch between the layers making the tubular bi-layer can generate stresses, which may create processing defects. An analytical model is presented to describe...... the densification and stress developments during sintering of tubular bi-layered samples. The correspondence between linear elastic and linear viscous theories is used as a basis for derivation of the model. The developed model is first verified by finite element simulation for sintering of tubular bi-layer system....... Furthermore, the model is validated using densification results from sintering of bi-layered tubular ceramic oxygen membrane based on porous MgO and Ce0.9Gd0.1O1.95-d layers. Model input parameters, such as the shrinkage kinetics and viscous parameters are obtained experimentally using optical dilatometry...

  12. Regulation of sodium channel function by bilayer elasticity

    DEFF Research Database (Denmark)

    Lundbaek, Jens A; Birn, Pia; Hansen, Anker J;

    2004-01-01

    kinetics of the protein conformational changes therefore will be regulated by the bilayer elasticity, which is determined by the lipid composition. This hydrophobic coupling mechanism has been studied extensively in gramicidin channels, where the channel-bilayer hydrophobic interactions link a...... "conformational" change (the monomerdimer transition) to an elastic bilayer deformation. Gramicidin channels thus are regulated by the lipid bilayer elastic properties (thickness, monolayer equilibrium curvature, and compression and bending moduli). To investigate whether this hydrophobic coupling mechanism could...... be a general mechanism regulating membrane protein function, we examined whether voltage-dependent skeletal-muscle sodium channels, expressed in HEK293 cells, are regulated by bilayer elasticity, as monitored using gramicidin A (gA) channels. Nonphysiological amphiphiles (beta...

  13. Coulomb drag and tunneling studies in quantum Hall bilayers

    Science.gov (United States)

    Nandi, Debaleena

    The bilayer quantum Hall state at total filling factor νT=1, where the total electron density matches the degeneracy of the lowest Landau level, is a prominent example of Bose-Einstein condensation of excitons. A macroscopically ordered state is realized where an electron in one layer is tightly bound to a "hole" in the other layer. If exciton transport were the only bulk transportmechanism, a current driven in one layer would spontaneously generate a current of equal magnitude and opposite sign in the other layer. The Corbino Coulomb drag measurements presented in this thesis demonstrate precisely this phenomenon. Excitonic superfluidity has been long sought in the νT=1 state. The tunneling between the two electron gas layers exihibit a dc Josephson-like effect. A simple model of an over-damped voltage biased Josephson junction is in reasonable agreement with the observed tunneling I -- V. At small tunneling biases, it exhibits a tunneling "supercurrent". The dissipation is carefully studied in this tunneling "supercurrent" and found to remain small but finite.

  14. Theoretical study on stability of hybrid bilayers

    Science.gov (United States)

    Silva, Thiago S.; de Lima Bernardo, Bertúlio; Azevedo, Sèrgio

    2015-04-01

    Motivated by the recent experimental realization of the hybrid nanostructure of graphene and boron nitride (h-BN) sheet, and studies of gap modulation by strain, we use first principles calculations based on density functional theory to investigate the effects of strain in hybrid bilayers composed of two monolayers of graphene with a nanodomain of {{B}3}{{N}3}. The calculations were made with two different approximations for the functional exchange-correlation, GGA and VDW-DF. We investigate the modification in the electronic structure and structural properties of various configurations of the hybrid bilayers. Among the configurations, those with Bernal stacking are found to be more stable when compared to the others. Studies of the compressive strain influence were made only in the structure that has been shown to be the most stable. We have found that the two approximations used in the calculations exhibit the same results for the electronic properties of all structures. The opening of the energy gap due to strain was possible in the calculations by using the GGA approximation, but the same does not happen in the calculations using the VDW-DF approximation. Our analysis shows that the VDW-DF approximation is better suited for studies involving surfaces.

  15. Edge states of zigzag bilayer graphite nanoribbons

    Science.gov (United States)

    Rhim, Jun-Won; Moon, Kyungsun

    2008-09-01

    The electronic structures of zigzag bilayer graphite nanoribbons (Z-BGNRs) with various ribbon widths N are studied within the tight binding approximation. Neglecting the inter-layer hopping amplitude γ4, which is an order of magnitude smaller than the other inter-layer hopping parameters, there exist two fixed Fermi points ± k* independent of the ribbon width with a peculiar energy dispersion near k* as ɛ(k)~ ± (k-k*)N. By investigating the edge states of Z-BGNRs, we notice that the trigonal warping of the bilayer graphene sheets is reflected in the edge state structure. With the inclusion of γ4, the above two Fermi points are not fixed but drift toward the vicinity of the Dirac point with increasing width N, as shown by the finite scaling method, and the peculiar dispersions change to parabolic ones. The edge magnetism of Z-BGNRs is also examined by solving the half-filled Hubbard Hamiltonian for the ribbon using the Hartree-Fock approximation. We have shown that within the same side of the edges, the edge spins are aligned ferromagnetically for the experimentally relevant set of parameters.

  16. Edge states of zigzag bilayer graphite nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Rhim, Jun-Won; Moon, Kyungsun [Department of Physics and Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749 (Korea, Republic of)], E-mail: kmoon@yonsei.ac.kr

    2008-09-10

    The electronic structures of zigzag bilayer graphite nanoribbons (Z-BGNRs) with various ribbon widths N are studied within the tight binding approximation. Neglecting the inter-layer hopping amplitude {gamma}{sub 4}, which is an order of magnitude smaller than the other inter-layer hopping parameters, there exist two fixed Fermi points {+-} k{sup *} independent of the ribbon width with a peculiar energy dispersion near k{sup *} as {epsilon}(k){approx} {+-} (k-k{sup *}){sup N}. By investigating the edge states of Z-BGNRs, we notice that the trigonal warping of the bilayer graphene sheets is reflected in the edge state structure. With the inclusion of {gamma}{sub 4}, the above two Fermi points are not fixed but drift toward the vicinity of the Dirac point with increasing width N, as shown by the finite scaling method, and the peculiar dispersions change to parabolic ones. The edge magnetism of Z-BGNRs is also examined by solving the half-filled Hubbard Hamiltonian for the ribbon using the Hartree-Fock approximation. We have shown that within the same side of the edges, the edge spins are aligned ferromagnetically for the experimentally relevant set of parameters.

  17. Controlling the Electronic Structure of Bilayer Graphene

    Science.gov (United States)

    Ohta, Taisuke; Bostwick, Aaron; McChesney, Jessica; Seyller, Thomas; Horn, Karsten; Rotenberg, Eli

    2007-03-01

    Carbon-based materials such as carbon nanotubes, graphite intercalation compounds, fullerenes, and ultrathin graphite films exhibit many exotic phenomena such as superconductivity and an anomalous quantum Hall effect. These findings have caused renewed interest in the electronic structure of ultrathin layers of graphene: a single honeycomb carbon layer that is the building block for these materials. There is a strong motivation to incorporate graphene multilayers into atomic-scale devices, spurred on by rapid progress in their fabrication and manipulation. We have synthesized bilayer graphene thin films deposited on insulating silicon carbide and characterized their electronic band structure using angle-resolved photoemission. By selectively adjusting the carrier concentration in each layer, changes in the Coulomb potential led to control of the gap between valence and conduction bands [1]. This control over the band structure suggests the potential application of bilayer graphene to switching functions in atomic scale electronic devices. [1] T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Science, 313, 951 (2006).

  18. Small Scale Motions Observed by Aircraft in the Tropical Tropopause Layer - Convective and Non-Convective Environments

    Science.gov (United States)

    Pfister, Leonhard; Bui, T. P.; Dean-Day, J.

    2016-01-01

    Indirect evidence indicates a role for vertical mixing in the Tropical Tropopause Layer (TTL). In particular, detailed model studies suggest that such vertical mixing may be required to explain the value of the water vapor minimum in the TTL. There have been previous observations during the STEP Tropical aircraft campaign (1987) of bursts of high frequency activity associated with convectively generated gravity waves in the tropical western Pacific. Higher frequency, higher quality measurements from NASA high altitude aircraft (ER-2, WB-57, and Global Hawk) have been made available in the last 20 years. These include measurements of vertical velocity and other meteorological parameters. Most recently, during the ATTREX Global Hawk aircraft mission (Airborne Tropical TRopopause EXperiment), there have been extensive measurements at all altitudes of the TTL in both convective (winter western Pacific) and less convective (winter eastern Pacific) regions. This presentation represents an initial analysis of high frequency small scale (a few km max) meteorological measurements from the ATTREX dataset. We obtain some basic information about the distribution and character of high frequency activity in vertical velocity in the TTL. In particular, we focus on relating the high frequency activity to nearby tropical convection and to vertical shears associated with gravity and inertia-gravity waves.

  19. Contribution to the integration methodology of environment in the small and medium enterprises or industries: evaluation of environmental performances

    International Nuclear Information System (INIS)

    The integration of environmental criteria into industrial plants working is nowadays an obligation for companies. Implementation of an Environmental Management System (EMS) is a mean to integrate these criteria, and the system registration (by ISO 14001 or EMAS standards) enables companies to demonstrate the validity of their environmental behaviour to interested parties. Our experience in Small and Medium Enterprises (SMEs) has allowed us to note the inadequacy between their environmental integration level and EMS requirements. In addition to that, we have observed that environmental assessment methods, which could enable SMEs to make up for lost time, were not adapted to their specificities. However, two recent approaches are innovative: the first one is based on a progressive processes, the second one on an environmental information system, based on indicators construction. On the basis of existing methods study, improved with our SMEs experience, our approach consists of developing an environmental integration method, joining the progressive aspect (construction of a 'multi-phases' method) and the information treatment (exploitation of environmental data by indicators construction). We propose a four phases method, - environmental performance evaluation, internal and external results exploitation, process perpetuation -, setting up an information treatment system, by means of compliance, progress and monitoring indicators. Leading to implementation of an environmental performance continuous improvement cycle, this process enables companies to step forward EMS implementation. (author)

  20. Wealth geography, environment and hunger: small critic contribution to the current agrarian/agricultural model of the natural resources usage

    Directory of Open Access Journals (Sweden)

    Carlos Walter Porto Gonçalves

    2004-01-01

    Full Text Available The text questions the geopolitical issue implied in the argument about hunger and the environment. It criticizes the current agrarian / agricultural model of the natural resources usage, stating it is a model of economic development of mild regions that has been imposed all over the world at a very high ecological, cultural and political cost. This model has faced the patrimonial, collective and community knowledge, characteristic of populations with distinct rationality from the occidental atomistic-individualistic one, with severe risks to the feeding safety. It analyzes the social-environmental consequences of the current agrarian / agricultural model, the contradictory results of the increase of the world capacity of food production, hunger in the world, the meanings of the Green Revolution from the seventies on, the social-environmental impacts of the agrarian business in the Brazilian cerrado and the complexity of the use of transgenic products. It criticizes the restricted ecological sustentation based on a political realism, and proposes a reflection upon a new rationality for the environmental challenge. It concludes that hunger is not a technical problem, for it does not happen because of the lack of food, but because of the way the food is produced and distributed. Today hunger lives with the provisions necessary to overcome itself.

  1. Characteristics of fishing operations, environment and life history contributing to small cetacean bycatch in the northeast Atlantic.

    Directory of Open Access Journals (Sweden)

    Susie Brown

    restrictions alone may not be sufficient to eradicate bycatch in areas where driftnets and small cetaceans co-occur.

  2. Interfacing 2D and 3D Topological Insulators: Bi(111) Bilayer on Bi2Te3

    Science.gov (United States)

    Hirahara, Toru; Bihlmayer, Gustav; Sakamoto, Yusuke; Yamada, Manabu; Miyazaki, Hidetoshi; Kimura, Shin-Ichi; Blügel, Stefan; Hasegawa, Shuji

    2012-02-01

    Topological insulators (TI) are insulating materials but have metallic edge states that carry spin currents and are robust against nonmagnetic impurities [1]. While there have been a large number of reports on three-dimensional (3D) TI, only few works have been done in terms of two-dimensional (2D) TI. In the present paper, we report the successful formation of bilayer Bi, which was theoretically predicted to be a 2D TI [2]. We deposited bilayer Bi on a 3D TI Bi2Te3, which the lattice mismatch is very small. From angle-resolved photoemission spectroscopy measurements and ab initio calculations, the electronic structure of the system can be understood as an overlap of the band dispersions of bilayer Bi and Bi2Te3. Our results show that the Dirac cone is actually robust against nonmagnetic perturbations and imply a unique situation where the topologically protected one- and two-dimensional edge states are coexisting at the surface [3]. [0pt] [1] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).[0pt] [2] S. Murakami, Phys. Rev. Lett. 97, 236805 (2006).[0pt] [3] T. Hirahara et al., Phys. Rev. Lett. 107, 166801 (2011).

  3. Self-Assembly of Bilayer Vesicles Made of Saturated Long Chain Fatty Acids.

    Science.gov (United States)

    Douliez, Jean-Paul; Houssou, Bérénice Houinsou; Fameau, A-Laure; Navailles, Laurence; Nallet, Frédéric; Grélard, Axelle; Dufourc, Erick J; Gaillard, Cédric

    2016-01-19

    Saturated long chain fatty acids (sLCFA, e.g., C14:0, C16:0, and C18:0) are potentially the greenest and cheapest surfactants naturally available. However, because aqueous sodium soaps of sLCFA are known to crystallize, the self-assembly of stable bilayer vesicles has not been reported yet. Here, by using such soaps in combination with guanidine hydrochloride (GuHCl), which has been shown recently to prevent crystallization, we were capable of producing stable bilayer vesicles made of sLCFA. The phase diagrams were established for a variety of systems showing that vesicles can form in a broad range of composition and pH. Both solid state NMR and small-angle neutron scattering allowed demonstrating that in such vesicles sLCFA are arranged in a bilayer structure which exhibits similar dynamic and structural properties as those of phospholipid membranes. We expect these vesicles to be of interest as model systems of protocells and minimal cells but also for various applications since fatty acids are potentially substitutes to phospholipids, synthetic surfactants, and polymers. PMID:26700689

  4. Interplay between intrinsic and stacking-fault magnetic domains in bi-layered manganites

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, M.A; Burkhardt, Mark H.; Sarkar, S.; Ohldag, H.; Chuang, Y.-D.; Scholl, A.; Young, A.T.; Doran, A.; Dessau, D.S.; Zheng, H.; Mitchell, J.F.; Durr, H.A.; Stohr, J.

    2012-09-11

    We present a low temperature X-ray photoemission electron microscopy study of the bi-layered manganite compound La{sub 1.2}Sr{sub 1.8}Mn{sub 2}O{sub 7} (BL-LSMO) to investigate the influence of stacking faults, which are structurally and magnetically different from the bi-layered host. In BL-LSMO small magnetic moment persists to T* = 300K, well above the Curie temperature of 120K (T{sub C}). Our magnetic images show that 3D stacking faults are responsible for the T* transition. Furthermore, close to the T{sub C}, stacking faults are well coupled to the bi-layered host with latter magnetic domains controlling the spin direction of the stacking faults. Contrary to recent reports, we find that stacking faults do not seed magnetic domains in the host via an exchange spring mechanism and the intrinsic T{sub C} of the BL-LSMO is not lower than 120K.

  5. Formation of supported lipid bilayers containing phase-segregated domains and their interaction with gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Melby, Eric S.; Mensch, Arielle C.; Lohse, Samuel E.; Hu, Dehong; Orr, Galya; Murphy, Catherine; Hamers, Robert J.; Pedersen, Joel A.

    2016-02-01

    The cell membrane represents an important biological interface that nanoparticles may encounter after being released into the environment. Interaction of nanoparticles with cellular membranes may alter membrane structure and function, lead to their uptake into cells, and elicit adverse biological responses. Supported lipid bilayers have proven to be valuable ex vivo models for biological membranes, allowing investigation of their mechanisms of interaction with nanoparticles with a degree of control impossible in living cells. To date, the majority of research on nanoparticle interaction with supported lipid bilayers has employed membranes composed of single or binary mixtures of phospholipids. Cellular membranes contain a wide variety of lipids and exhibit lateral organization. Ordered membrane domains enriched in specific membrane components are referred to as lipid rafts and have not been explored with respect to their interaction with nanoparticles. Here we develop model lipid raft-containing membranes amenable to investigation by a variety of surface-sensitive analytical techniques and demonstrate that lipid rafts influence the extent of nanoparticle attachment to model membranes. We determined conditions that allow reliable formation of bilayers containing rafts enriched in sphingomyelin and cholesterol and confirmed their morphology by structured illumination and atomic force microscopies. We demonstrate that lipid rafts increase attachment of cationic gold nanoparticles to model membranes under near physiological ionic strength conditions (0.1 M NaCl) at pH 7.4. We anticipate that these results will serve as the foundation for and motivate further study of nanoparticle interaction with compositionally varied lipid rafts.

  6. The Urban Environment Can Modify Drought Stress of Small-Leaved Lime (Tilia cordata Mill. and Black Locust (Robinia pseudoacacia L.

    Directory of Open Access Journals (Sweden)

    Astrid Moser

    2016-03-01

    Full Text Available The urban environment characterized by various stresses poses challenges to trees. In particular, water deficits and high temperatures can cause immense drought stress to urban trees, resulting in reduced growth and die-off. Drought-tolerant species are expected to be resilient to these conditions and are therefore advantageous over other, more susceptible species. However, the drought tolerance of urban trees in relation to the specific growth conditions in urban areas remains poorly researched. This study aimed to analyze the annual growth and drought tolerance of two common urban tree species, namely small-leaved lime (Tilia cordata Mill. (T. cordata and black locust (Robinia pseudoacacia L. (R. pseudoacacia, in two cities in southern Germany in relation to their urban growing conditions. Marked growth reductions during drought periods and subsequent fast recovery were found for R. pseudoacacia, whereas T. cordata exhibited continued reduced growth after a drought event, although these results were highly specific to the analyzed city. We further show that individual tree characteristics and environmental conditions significantly influence the growth of urban trees. Canopy openness and other aspects of the surrounding environment (water supply and open surface area of the tree pit, tree size, and tree species significantly affect urban tree growth and can modify the ability of trees to tolerate the drought stress in urban areas. Sustainable tree planting of well adapted tree species to their urban environment ensures healthy trees providing ecosystem services for a high quality of life in cities.

  7. On the interaction of the anthraquinone barbaloin with negatively charged DMPG bilayers.

    Science.gov (United States)

    Duarte, Evandro L; Oliveira, Tiago R; Alves, Daiane S; Micol, Vicente; Lamy, M Teresa

    2008-04-15

    Barbaloin is a bioactive glycosilated 1,8-dihydroxyanthraquinone present in several exudates from plants, such as Aloe vera, which are used for cosmetic or food purposes. It has been shown that barbaloin interacts with DMPG (dimyristoylphosphatidylglycerol) model membranes, altering the bilayer structure (Alves, D. S.; Pérez-Fons, L.; Estepa, A.; Micol, V. Biochem. Pharm. 2004, 68, 549). Considering that ESR (electron spin resonance) of spin labels is one of the best techniques to monitor structural properties at the molecular level, the alterations caused by the anthraquinone barbaloin on phospholipid bilayers will be discussed here via the ESR signal of phospholipid spin probes intercalated into the membranes. In DMPG at high ionic strength (10 mM Hepes pH 7.4 + 100 mM NaCl), a system that presents a gel-fluid transition around 23 degrees C, 20 mol % barbaloin turns the gel phase more rigid, does not alter much the fluid phase packing, but makes the lipid thermal transition less sharp. However, in a low-salt DMPG dispersion (10 mM Hepes pH 7.4 + 2 mM NaCl), which presents a rather complex gel-fluid thermal transition (Lamy-Freund, M. T.; Riske, K. A. Chem. Phys. Lipids 2003, 122, 19), barbaloin strongly affects bilayer structural properties, both in the gel and fluid phases, extending the transition region to much higher temperature values. The position of barbaloin in DMPG bilayers will be discussed on the basis of ESR results, in parallel with data from sample viscosity, DSC (differential scanning calorimetry), and SAXS (small-angle X-ray scattering). PMID:18318556

  8. Space charge and screening in bilayer graphene

    Science.gov (United States)

    Kolomeisky, Eugene B.; Straley, Joseph P.; Abrams, Daniel L.

    2016-11-01

    Undoped bilayer graphene is a two-dimensional semimetal with a low-energy excitation spectrum that is parabolic in the momentum. As a result, the screening of an arbitrary external charge Ze is accompanied by a reconstruction of the ground state: valence band electrons (for Z  >  0) are promoted to form a space charge around the charge while the holes leave the physical picture. The outcome is a flat neutral object resembling the regular atom except that for Z\\gg 1 it is described by a strictly linear Thomas-Fermi theory. This theory also predicts that the bilayer’s static dielectric constant is the same as that of a two-dimensional electron gas in the long-wavelength limit.

  9. Graphene-Templated Supported Lipid Bilayer Nanochannels.

    Science.gov (United States)

    Li, Wan; Chung, Jean K; Lee, Young Kwang; Groves, Jay T

    2016-08-10

    The use of patterned substrates to impose geometrical restriction on the lateral mobility of molecules in supported lipid membranes has found widespread utility in studies of cell membranes. Here, we template-pattern supported lipid membranes with nanopatterned graphene. We utilize focused ion beam milling to pattern graphene on its growth substrate, then transfer the patterned graphene to fresh glass substrates for subsequent supported membrane formation. We observe that graphene functions as an excellent lateral diffusion barrier for supported lipid bilayers. Additionally, the observed diffusion dynamics of lipids in nanoscale graphene channels reveal extremely low boundary effects, a common problem with other materials. We suggest this is attributable to the ultimate thinness of graphene. PMID:27362914

  10. Combinatorics of giant hexagonal bilayer hemoglobins.

    Science.gov (United States)

    Hanin, L G; Vinogradov, S N

    2000-01-01

    The paper discusses combinatorial and probabilistic models allowing to characterize various aspects of spacial symmetry and structural heterogeneity of the giant hexagonal bilayer hemoglobins (HBL Hb). Linker-dodecamer configurations of HBL are described for two and four linker types (occurring in the two most studied HBL Hb of Arenicola and Lumbricus, respectively), and the most probable configurations are found. It is shown that, for HBL with marked dodecamers, the number of 'normal-marked' pairs of dodecamers in homological position follows a binomial distribution. The group of symmetries of the dodecamer substructure of HBL is identified with the dihedral group D6. Under natural symmetry assumptions, the total dipole moment of the dodecamer substructure of HBL is shown to be zero. Biological implications of the mathematical findings are discussed.

  11. Oxygen diffusion in bilayer polymer films

    DEFF Research Database (Denmark)

    Poulsen, Lars; Zebger, Ingo; Tofte, Jannik Pentti;

    2004-01-01

    Experiments to quantify oxygen diffusion have been performed on polymer samples in which a film of poly(ethylene-co-norbornene) was cast onto a film of polystyrene which, in turn, was cast onto an oxygen-impermeable substrate. In the technique employed, the time evolution of oxygen transport...... through the film of poly(ethylene-co-norbornene) and into the polystyrene film was monitored using the phosphorescence of singlet oxygen as a spectroscopic probe. To analyze the data, it was necessary to solve Fick's second law of diffusion for both polymer films. Tractable analytical and numerical...... solutions were obtained for the problem. Moreover, the numerical solution is sufficiently general that it can be used to simulate oxygen concentration profiles in films consisting of more than two layers. Data obtained from the bilayer films yield a diffusion coefficient for oxygen in poly...

  12. Fractional quantum Hall states in charge-imbalanced bilayer systems

    OpenAIRE

    Thiebaut, N.; Regnault, N.; Goerbig, M. O.

    2013-01-01

    We study the fractional quantum Hall effect in a bilayer with charge-distribution imbalance induced, for instance, by a bias gate voltage. The bilayer can either be intrinsic or it can be formed spontaneously in wide quantum wells, due to the Coulomb repulsion between electrons. We focus on fractional quantum Hall effect in asymmetric bilayer systems at filling factor nu=4/11 and show that an asymmetric Halperin-like trial wavefunction gives a valid description of the ground state of the system.

  13. Modeling liquid crystal bilayer structures with minimal surfaces.

    Science.gov (United States)

    Enlow, J D; Enlow, R L; McGrath, K M; Tate, M W

    2004-01-22

    This paper describes a new convenient and accurate method of calculating x-ray diffraction integrated intensities from detailed cubic bilayer structures. The method is employed to investigate the structure of a particular surfactant system (didodecyldimethylammonium bromide in a solution of oil and heavy water), for which single-crystal experimental data have recently been collected. The diffracted peak intensities correlate well with theoretical structures based on mathematical minimal surfaces. Optimized electron density profiles of the bilayer are presented, providing new insight into key features of the bilayer structure.

  14. Lipid bilayer-bound conformation of an integral membrane beta barrel protein by multidimensional MAS NMR

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, Matthew T. [The Scripps Research Institute, Department of Integrative Structural and Computational Biology (United States); Su, Yongchao; Silvers, Robert; Andreas, Loren; Clark, Lindsay [Massachusetts Institute of Technology, Department of Chemistry (United States); Wagner, Gerhard [Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology (United States); Pintacuda, Guido; Emsley, Lyndon [Université de Lyon, Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (CNRS, ENS Lyon, UCB Lyon 1) (France); Griffin, Robert G., E-mail: rgg@mit.edu [Massachusetts Institute of Technology, Department of Chemistry (United States)

    2015-04-15

    The human voltage dependent anion channel 1 (VDAC) is a 32 kDa β-barrel integral membrane protein that controls the transport of ions across the outer mitochondrial membrane. Despite the determination of VDAC solution and diffraction structures, a structural basis for the mechanism of its function is not yet fully understood. Biophysical studies suggest VDAC requires a lipid bilayer to achieve full function, motivating the need for atomic resolution structural information of VDAC in a membrane environment. Here we report an essential step toward that goal: extensive assignments of backbone and side chain resonances for VDAC in DMPC lipid bilayers via magic angle spinning nuclear magnetic resonance (MAS NMR). VDAC reconstituted into DMPC lipid bilayers spontaneously forms two-dimensional lipid crystals, showing remarkable spectral resolution (0.5–0.3 ppm for {sup 13}C line widths and <0.5 ppm {sup 15}N line widths at 750 MHz). In addition to the benefits of working in a lipid bilayer, several distinct advantages are observed with the lipid crystalline preparation. First, the strong signals and sharp line widths facilitated extensive NMR resonance assignments for an integral membrane β-barrel protein in lipid bilayers by MAS NMR. Second, a large number of residues in loop regions were readily observed and assigned, which can be challenging in detergent-solubilized membrane proteins where loop regions are often not detected due to line broadening from conformational exchange. Third, complete backbone and side chain chemical shift assignments could be obtained for the first 25 residues, which comprise the functionally important N-terminus. The reported assignments allow us to compare predicted torsion angles for VDAC prepared in DMPC 2D lipid crystals, DMPC liposomes, and LDAO-solubilized samples to address the possible effects of the membrane mimetic environment on the conformation of the protein. Concluding, we discuss the strengths and weaknesses of the

  15. Lipid bilayer-bound conformation of an integral membrane beta barrel protein by multidimensional MAS NMR

    International Nuclear Information System (INIS)

    The human voltage dependent anion channel 1 (VDAC) is a 32 kDa β-barrel integral membrane protein that controls the transport of ions across the outer mitochondrial membrane. Despite the determination of VDAC solution and diffraction structures, a structural basis for the mechanism of its function is not yet fully understood. Biophysical studies suggest VDAC requires a lipid bilayer to achieve full function, motivating the need for atomic resolution structural information of VDAC in a membrane environment. Here we report an essential step toward that goal: extensive assignments of backbone and side chain resonances for VDAC in DMPC lipid bilayers via magic angle spinning nuclear magnetic resonance (MAS NMR). VDAC reconstituted into DMPC lipid bilayers spontaneously forms two-dimensional lipid crystals, showing remarkable spectral resolution (0.5–0.3 ppm for 13C line widths and <0.5 ppm 15N line widths at 750 MHz). In addition to the benefits of working in a lipid bilayer, several distinct advantages are observed with the lipid crystalline preparation. First, the strong signals and sharp line widths facilitated extensive NMR resonance assignments for an integral membrane β-barrel protein in lipid bilayers by MAS NMR. Second, a large number of residues in loop regions were readily observed and assigned, which can be challenging in detergent-solubilized membrane proteins where loop regions are often not detected due to line broadening from conformational exchange. Third, complete backbone and side chain chemical shift assignments could be obtained for the first 25 residues, which comprise the functionally important N-terminus. The reported assignments allow us to compare predicted torsion angles for VDAC prepared in DMPC 2D lipid crystals, DMPC liposomes, and LDAO-solubilized samples to address the possible effects of the membrane mimetic environment on the conformation of the protein. Concluding, we discuss the strengths and weaknesses of the reported

  16. Pressure effects on the equilibrium configurations of bilayer lipid membranes

    Science.gov (United States)

    DeVita, Raffaella; Stewart, Iain W.; Leo, Donald J.

    2007-10-01

    Planar bilayer lipid membranes (BLMs) are currently employed to construct many bio-inspired material systems and structures. In order to characterize the pressure effects on the equilibrium configurations of these biological membranes, a novel continuum model is proposed. The BLM is assumed to be a two-layer smectic A liquid crystal. The mean orientation of the amphiphilic molecules comprising the membrane is postulated to be perpendicular to the layers and each layer is idealized as a two-dimensional liquid. Moreover, the BLM is modeled as a simply supported plate undergoing small deformations. It is subjected to a pressure load that acts perpendicularly to the layers. The equilibrium equations and boundary conditions are derived from the bulk elastic energy for smectic A liquid crystals as described by de Gennes and Prost (1993 The Physics of Liquid Crystals 2nd edn (Oxford Science Publications)) by using variational methods. The resulting fourth-order linear partial differential equation is solved by employing cylindrical functions and the series solution is proved to be convergent. The solution is numerically computed for values of the model parameters that are reported in the literature. This paper is dedicated to the memory of our colleagues, Professors Kevin P Granata and Liviu Librescv, who lost their lives during the sensless tragedy on 16 April, 2007 at Virginia Tech.

  17. Millimeter microwave effect on ion transport across lipid bilayer membranes

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, S.I. [Russian Academy of Sciences, Pushchino (Russian Federation). Inst. of Cell Biophysics; Ziskin, M.C. [Temple Univ. Medical School, Philadelphia, PA (United States). Center for Biomedical Physics

    1995-06-01

    The effects of millimeter microwaves in the frequency range of 54--76 GHz on capacitance and conductance of lipid bilayer membranes (BLM) were studied. Some of the membranes were modified by gramicidin A and amphotericin B or by tetraphenylboron anions (TPhB{sup {minus}}). The millimeter microwaves were pulse-modulated (PW) at repetition rates ranging from 1 to 100 pps, PW at 1,000 pps, or unmodulated continuous waves (CW). The maximum output power at the waveguide outlet was 20 mW. It was found that CW irradiation decreased the unmodified BLM capacitance by 1.2% {+-} 0.5%. At the same time, membrane current induced by TPhB{sup {minus}} transport increased by 5% {+-} 1%. The changes in conductance of ionic channels formed by gramicidin A and amphotericin B were small (0.6% {+-} 0.4%). No resonance-like effects of mm-wave irradiation on membrane capacitance, ionic channel currents, or TPhB{sup {minus}} transport were detected. All changes in membrane capacitance and currents were independent of the modulation employed and were equivalent to heating by approximately 1.1 C.

  18. -Ti-Based Homogeneous and Bi-layered Composites

    Science.gov (United States)

    Gupta, Neha; Parameswaran, Venkitanarayanan; Basu, Bikramjit

    2014-09-01

    The growing threats due to increased use of small-caliber armor piercing projectiles demand the development of new light-weight body armor materials. In this context, TiB2 appears to be a promising ceramic material. However, poor sinterability and low fracture toughness remain two major issues for TiB2. In order to address these issues together, Ti as a sinter-aid is used to develop TiB2-( x wt pct Ti), ( x = 10, 20) homogeneous composites and a bi-layered composite (BLC) with each layer having Ti content of 10 and 20 wt pct. The present study uniquely demonstrates the efficacy of two-stage spark plasma sintering route to develop dense TiB2-Ti composites with an excellent combination of nanoscale hardness (~36 GPa) and indentation fracture toughness (~12 MPa m1/2). In case of BLC, these properties are not compromised w.r.t. homogeneous composites, suggesting the retention of baseline material properties even in the bi-layer design due to optimal relief of residual stresses. The better indentation toughness of TiB2-(10 wt pct Ti) and TiB2-(20 wt pct Ti) composites can be attributed to the observed crack deflection/arrest, indicating better damage tolerance. Transmission electron microscope investigation reveals the presence of dense dislocation networks and deformation twins in α-Ti at the grain boundaries and triple pockets, surrounded by TiB2 grains. The dynamic strength of around 4 GPa has been measured using Split Hopkinson Pressure Bar tests in a reproducible manner at strain rates of the order of 600 s-1. The damage progression under high strain rate has been investigated by acquiring real time images for the entire test duration using ultra-high speed imaging. An attempt has been made to establish microstructure-property correlation and a simple analysis based on Mohr-Coulomb theory is used to rationalize the measured strength properties.

  19. What influences Latino grocery shopping behavior? Perspectives on the small food store environment from managers and employees in San Diego, California.

    Science.gov (United States)

    Sanchez-Flack, Jennifer C; Baquero, Barbara; Linnan, Laura A; Gittelsohn, Joel; Pickrel, Julie L; Ayala, Guadalupe X

    2016-01-01

    To inform the design of a multilevel in-store intervention, this qualitative study utilized in-depth semistructured interviews with 28 managers and 10 employees of small-to-medium-sized Latino food stores (tiendas) in San Diego, California, to identify factors within the tienda that may influence Latino customers' grocery-shopping experiences and behaviors. Qualitative data analysis, guided by grounded theory, was performed using open coding. Results suggest that future interventions should focus on the physical (i.e., built structures) and social (i.e., economic and sociocultural) dimensions of store environments, including areas where the two dimensions interact, to promote the purchase of healthy food among customers. PMID:26800243

  20. Measures of material and social circumstances to adjust for deprivation in small-area studies of environment and health: review and perspectives

    Directory of Open Access Journals (Sweden)

    Roberto Pasetto

    2010-06-01

    Full Text Available The present review describes and critically analyzes the main characteristics of deprivation indices (DIs, meant as measures of material and social circumstances at a population level, used to adjust for deprivation in small-area studies of environment and health. A systematic search strategy in the period 1990-2009 was run on PubMed/Medline and Embase databases, and 41 articles were selected. In most of the reviewed studies DIs appear to be pragmatically applied and information is not adequate to evaluate whether the use of DIs is efficient. Suggestions for the use of DIs are given foreseeing that more data on exposure, outcomes and other predictive factors will be acquired, and information will be growingly available to disentangle the complex interplay between exposure, health and deprivation.

  1. Simulated microgravity impacts the plant plasmalemma lipid bilayer

    Science.gov (United States)

    Nedukha, Olena; Berkovich, Yuliy A.; Vorobyeva, Tamara; Grakhov, Volodimir; Klimenko, Elena; Zhupanov, Ivan; Jadko, Sergiy

    Biological membranes, especially the plasmalemma, and their properties and functions can be considered one of the most sensitive indicators of gravity interaction or alteration of gravity, respectively. Studies on the molecular basis of cellular signal perception and transduction are very important in order to understand signal responses at the cellular and organism level. The plasmalemma lipid bilayer is the boundary between the cell internal and external environment and mediates communication between them. Therefore, we studied the content and composition of lipids, saturated and unsaturated fatty acids, sterols, and microviscosity in the plasmalemma isolated from pea seedling roots and epicotyls grown in the stationary conditions and under slow horizontal clinorotation. In addition, lipid peroxidation intensity of intact roots was also identified. The plasmalemma fraction was isolated by the two-phase aquatic-polymer system optimized for pea using a centrifuge Optima L-90K. Lipid bilayer components were determined by using highly effective liquid chromatography with a system Angilent 1100 (Germany). Spontaneous chemiluminescence intensity was measured with a chemiluminometer ChLMTS-01. The obtained data showed that plasmalemma investigated parameters are sensitive to clinorotation, namely: increasing or decreasing the different lipids content, among which, phospho- and glycolipids were dominated, as well as changes in the content of saturated and unsaturated fatty acids and sterols. A degree of plasmalemma sensitivity to clinorotation was higher for the root plasmalemma than epicocotyl ones. This distinguish may be naturally explained by the differences in the structure, cell types, growth, and specific functions of a root and an epicotyl, those are the most complicated in roots. An index of unsaturation under clinorotation was similar to that in the stationary conditions as a result of the certain balance between changes in the content of saturated and

  2. Tethered and Polymer Supported Bilayer Lipid Membranes: Structure and Function.

    Science.gov (United States)

    Andersson, Jakob; Köper, Ingo

    2016-01-01

    Solid supported bilayer lipid membranes are model systems to mimic natural cell membranes in order to understand structural and functional properties of such systems. The use of a model system allows for the use of a wide variety of analytical tools including atomic force microscopy, impedance spectroscopy, neutron reflectometry, and surface plasmon resonance spectroscopy. Among the large number of different types of model membranes polymer-supported and tethered lipid bilayers have been shown to be versatile and useful systems. Both systems consist of a lipid bilayer, which is de-coupled from an underlying support by a spacer cushion. Both systems will be reviewed, with an emphasis on the effect that the spacer moiety has on the bilayer properties. PMID:27249006

  3. Sub-wavelength antenna enhanced bilayer graphene tunable photodetector

    Science.gov (United States)

    Beechem, III, Thomas Edwin; Howell, Stephen W.; Peters, David W.; Davids, Paul; Ohta, Taisuke

    2016-03-22

    The integration of bilayer graphene with an absorption enhancing sub-wavelength antenna provides an infrared photodetector capable of real-time spectral tuning without filters at nanosecond timescales.

  4. Capacitance Variation of Electrolyte-Gated Bilayer Graphene Based Transistors

    Directory of Open Access Journals (Sweden)

    Hediyeh Karimi

    2013-01-01

    Full Text Available Quantum capacitance of electrolyte-gated bilayer graphene field-effect transistors is investigated in this paper. Bilayer graphene has received huge attention due to the fact that an energy gap could be opened by chemical doping or by applying external perpendicular electric field. So, this extraordinary property can be exploited to use bilayer graphene as a channel in electrolyte-gated field-effect transistors. The quantum capacitance of bi-layer graphene with an equivalent circuit is presented, and also based on the analytical model a numerical solution is reported. We begin by modeling the DOS, followed by carrier concentration as a function V in degenerate and nondegenerate regimes. To further confirm this viewpoint, the presented analytical model is compared with experimental data, and acceptable agreement is reported.

  5. Energy levels of hybrid monolayer-bilayer graphene quantum dots

    Science.gov (United States)

    Mirzakhani, M.; Zarenia, M.; Ketabi, S. A.; da Costa, D. R.; Peeters, F. M.

    2016-04-01

    Often real samples of graphene consist of islands of both monolayer and bilayer graphene. Bound states in such hybrid quantum dots are investigated for (i) a circular single-layer graphene quantum dot surrounded by an infinite bilayer graphene sheet and (ii) a circular bilayer graphene quantum dot surrounded by an infinite single-layer graphene. Using the continuum model and applying zigzag boundary conditions at the single-layer-bilayer graphene interface, we obtain analytical results for the energy levels and the corresponding wave spinors. Their dependence on perpendicular magnetic and electric fields are studied for both types of quantum dots. The energy levels exhibit characteristics of interface states, and we find anticrossings and closing of the energy gap in the presence of a bias potential.

  6. Tethered and Polymer Supported Bilayer Lipid Membranes: Structure and Function

    Directory of Open Access Journals (Sweden)

    Jakob Andersson

    2016-05-01

    Full Text Available Solid supported bilayer lipid membranes are model systems to mimic natural cell membranes in order to understand structural and functional properties of such systems. The use of a model system allows for the use of a wide variety of analytical tools including atomic force microscopy, impedance spectroscopy, neutron reflectometry, and surface plasmon resonance spectroscopy. Among the large number of different types of model membranes polymer-supported and tethered lipid bilayers have been shown to be versatile and useful systems. Both systems consist of a lipid bilayer, which is de-coupled from an underlying support by a spacer cushion. Both systems will be reviewed, with an emphasis on the effect that the spacer moiety has on the bilayer properties.

  7. Thermal stability of Mo/Au bilayers for TES applications

    International Nuclear Information System (INIS)

    Mo/Au bilayers are among the most suitable materials to be used as transition-edge sensors (TES) in cryogenic microcalorimeters and bolometers, developed, among other fields, for space missions. For this purpose the thermal stability of TES at temperatures below 150 °C is a critical issue. We report on the dependence of functional properties (superconducting critical temperature, residual resistance and α) as well as on microstructure, chemical composition and interface quality for optimized high quality Mo/Au bilayers on annealing temperature and time. Data show that the functional properties of the bilayers remain stable at T C at T ≥ 200 °C are mainly due to an increase in the average Au grain size and to Au migration along the Mo grain boundaries at the Au/Mo interface. A way to stabilize the functional properties of the Mo/Au bilayers against temperature enhancements is proposed. (paper)

  8. PREVALENCE AND ANTIMICROBIAL RESISTANCE OF SALMONELLA ISOLATED FROM CARCASSES, PROCESSING FACILITIES AND THE ENVIRONMENT SURROUNDING SMALL SCALE POULTRY SLAUGHTERHOUSES IN THAILAND.

    Science.gov (United States)

    Chotinun, Suwit; Rojanasthien, Suvichai; Unger, Fred; Tadee, Pakpoom; Patchanee, Prapas

    2014-11-01

    Salmonella is a major food-borne pathogen worldwide, including Thai- land, and poultry meat plays a role as a vehicle for the spread of the disease from animals to humans. The prevalence and characteristics of Salmonella isolated from 41 small scale poultry slaughterhouses in Chiang Mai, Thailand were determined during July 2011 through May 2012. Salmonella's prevalence in live poultry, car- casses, waste water, and soil around processing plants were 3.2%, 7.3%, 22.0% and 29.0%, respectively. Eighteen different serotypes were identified, the most common being Corvallis (15.2%), followed by Rissen (13.9%), Hadar (12.7%), Enteritidis (10.1%), [I. 4,5,12:i:-] (8.8%), Stanley (8.8%), and Weltevreden (8.8%). Antimicrobial susceptibility tests revealed that 68.4% of the Salmonella spp were resistant to at least one antimicrobial while 50.6% showed multiple drug resis- tance (MDR). Specifically, 44.3% of Salmonella were resistant to nalidixic acid, followed by streptomycin (41.8%), ampicillin (34.2%), tetracycline (34.2%), and sulfamethoxazole/trimethoprim (20.3%). Salmonella contamination was found in processing lines, carcasses, and in the environment around the processing sta- tions. These findings indicate that improving hygiene management in small scale poultry slaughterhouses as well as prudent use of antimicrobial drugs is urgently needed if Salmonella contamination is to be reduced.

  9. PROSPECTS FOR DEPLOYMENT OF DECISION SUPPORT SYSTEM FOR THE ADEQUACY OF THE LEVEL OF LENDING TO SMALL AGRICULTURAL COMPANIES IN THE CLOUD ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Baranovskaya T. P.

    2015-10-01

    Full Text Available This article describes the opportunities and prospects for the deployment of decision support system for the adequacy of the level of lending to small agricultural enterprises in the cloud environment. It reveals the shortcomings in the existing automation of small businesses, and therefore the necessity of developing a system to enable managers to quickly and correctly calculate the amount of required loan funds. The developed system has the ability to work remotely due to the lack of binding the user to a specific personal computer. It is implemented through the development of a DSS using cloud computing, in which computer resources are provided to the Internet users in the form of "online service". The article describes the architecture of popular models and cloud Webapplications; after that, it was concluded to use the Saas model with Multi-Tenant-mode support in the model development. The study provides an overview of the DSS functioning in the cloud. It has noted the main features of the software implementation of the system relating to the use of cloud technologies. We have calculated the cost of placing an application in the cloud via the online cost calculator called Microsoft Azure. We have also performed a preliminary assessment of the payback period of the project implementation of DSS. It is concluded, that this technology would be competitive at the software market

  10. Superlattice-Induced Insulating States and Valley-Protected Orbits in Twisted Bilayer Graphene

    Science.gov (United States)

    Cao, Y.; Luo, J. Y.; Fatemi, V.; Fang, S.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P.

    2016-09-01

    Twisted bilayer graphene (TBLG) is one of the simplest van der Waals heterostructures, yet it yields a complex electronic system with intricate interplay between moiré physics and interlayer hybridization effects. We report on electronic transport measurements of high mobility small angle TBLG devices showing clear evidence for insulating states at the superlattice band edges, with thermal activation gaps several times larger than theoretically predicted. Moreover, Shubnikov-de Haas oscillations and tight binding calculations reveal that the band structure consists of two intersecting Fermi contours whose crossing points are effectively unhybridized. We attribute this to exponentially suppressed interlayer hopping amplitudes for momentum transfers larger than the moiré wave vector.

  11. Interfacial exchange coupling induced anomalous anisotropic magnetoresistance in epitaxial γ'-Fe₄N/CoN bilayers.

    Science.gov (United States)

    Li, Zirun; Mi, Wenbo; Wang, Xiaocha; Zhang, Xixiang

    2015-02-18

    Anisotropic magnetoresistance (AMR) of the facing-target reactively sputtered epitaxial γ'-Fe4N/CoN bilayers is investigated. The phase shift and rectangular-like AMR appears at low temperatures, which can be ascribed to the interfacial exchange coupling. The phase shift comes from the exchange bias (EB) that makes the magnetization lag behind a small field. When the γ'-Fe4N thickness increases, the rectangular-like AMR appears. The rectangular-like AMR should be from the combined contributions including the EB-induced unidirectional anisotropy, intrinsic AMR of γ'-Fe4N layer and interfacial spin scattering.

  12. Ferromagnetic resonance study of MnAs /(Ga,Mn)As bilayers

    Science.gov (United States)

    Cubukcu, M.; von Bardeleben, H. J.; Khazen, Kh.; Cantin, J. L.; Zhu, M.; Wilson, M. J.; Schiffer, P.; Samarth, N.

    2009-04-01

    We report the investigation of the static and dynamic magnetic properties of type-A MnAs /Ga0.945Mn0.055As (001) bilayers. Static magnetization measurements show them to be ferromagnetically coupled with an exchange bias field of ˜340Oe. The magnetocrystalline anisotropy constants of the (Ga,Mn)As layer were determined by X-band ferromagnetic resonance (FMR) spectroscopy. The (Ga,Mn)As layers are magnetically inhomogeneous as evidenced by a strong broadening of the (Ga,Mn)As uniform mode linewidth. The MnAs FMR spectra reveal the presence of a small MnAs fraction with a different orientation.

  13. Structure and Dynamics of Glycosphingolipids in Lipid Bilayers: Insights from Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Ronak Y. Patel

    2011-01-01

    Full Text Available Glycolipids are important constituents of biological membranes, and understanding their structure and dynamics in lipid bilayers provides insights into their physiological and pathological roles. Experimental techniques have provided details into their behavior at model and biological membranes; however, computer simulations are needed to gain atomic level insights. This paper summarizes the insights obtained from MD simulations into the conformational and orientational dynamics of glycosphingolipids and their exposure, hydration, and hydrogen-bonding interactions in membrane environment. The organization of glycosphingolipids in raft-like membranes and their modulation of lipid membrane structure are also reviewed.

  14. Influence of trigonal warping on interference effects in bilayer graphene

    OpenAIRE

    Kechedzhi, K.; Falko, Vladimir I; McCann, E.; Altshuler, B.L.

    2007-01-01

    Bilayer graphene (two coupled graphitic monolayers arranged according to Bernal stacking) is a two-dimensional gapless semiconductor with a peculiar electronic spectrum different from the Dirac spectrum in the monolayer material. In particular, the electronic Fermi line in each of its valleys has a strong p -> -p asymmetry due to a trigonal warping, which suppresses the weak localization effect. We show that weak localisation in bilayer graphene may be present only in devices with pronounced ...

  15. Deformation of giant lipid bilayer vesicles in shear flow

    OpenAIRE

    Haas,; Blom, C.; Ende, van den, D.; Duits, M. H. G.; Mellema, J.

    1997-01-01

    We describe experimental studies of the deformation of giant lipid bilayer vesicles in shear flow. The experiments are carried out with a counterrotating Couette apparatus. The deformation depends on the mechanical properties of the lipid bilayer, the vesicle radius, and the viscosity of the surrounding Newtonian liquid. We show that the relevant mechanical parameter is the bending rigidity. A simple model has been developed that describes the deformation of a vesicle. This model takes therma...

  16. Atomistic Simulations of Pore Formation and Closure in Lipid Bilayers

    OpenAIRE

    Bennett, W. F. Drew; Sapay, Nicolas; Tieleman, D. Peter

    2014-01-01

    Cellular membranes separate distinct aqueous compartments, but can be breached by transient hydrophilic pores. A large energetic cost prevents pore formation, which is largely dependent on the composition and structure of the lipid bilayer. The softness of bilayers and the disordered structure of pores make their characterization difficult. We use molecular-dynamics simulations with atomistic detail to study the thermodynamics, kinetics, and mechanism of pore formation and closure in DLPC, DM...

  17. Constant helical pitch of the gramicidin channel in phospholipid bilayers.

    OpenAIRE

    Katsaras, J.; Prosser, R S; Stinson, R H; Davis, J H

    1992-01-01

    X-ray diffraction has been applied in measuring the helical pitch of the gramicidin channel in oriented bilayers of dilauroylphosphatidylcholine (DLPC) and dimyristoylphosphatidylcholine (DMPC) at a polypeptide concentration of 9.1 mol %. The diffraction data show the helical pitch of gramicidin to be 4.7 +/- 0.2 A in both gel and liquid-crystalline phase bilayers, with and without monovalent cations. In addition, the width of the reflection due to the pitch of the helical gramicidin channel ...

  18. Formation of supported lipid bilayers by vesicle fusion

    DEFF Research Database (Denmark)

    Lind, Tania Kjellerup; Cardenas Gomez, Marite; Wacklin, Hanna

    2014-01-01

    We have investigated the effect of deposition temperature on supported lipid bilayer formation via vesicle fusion. By using several complementary surface-sensitive techniques, we demonstrate that despite contradicting literature on the subject, high-quality bilayers can be formed below the main p...... observed during the deposition process by QCM-D correspond to vesicles absorbed on top of a continuous bilayer and not to a surface-supported vesicular layer as previously reported. © 2014 American Chemical Society.......We have investigated the effect of deposition temperature on supported lipid bilayer formation via vesicle fusion. By using several complementary surface-sensitive techniques, we demonstrate that despite contradicting literature on the subject, high-quality bilayers can be formed below the main...... phase-transition temperature of the lipid. We have carefully studied the formation mechanism of supported DPPC bilayers below and above the lipid melting temperature (Tm) by quartz crystal microbalance and atomic force microscopy under continuous flow conditions. We also measured the structure of lipid...

  19. Robustly Engineering Thermal Conductivity of Bilayer Graphene by Interlayer Bonding

    Science.gov (United States)

    Zhang, Xiaoliang; Gao, Yufei; Chen, Yuli; Hu, Ming

    2016-01-01

    Graphene and its bilayer structure are the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. Their realistic applications in emerging nanoelectronics usually call for thermal transport manipulation in a controllable and precise manner. In this paper we systematically studied the effect of interlayer covalent bonding, in particular different interlay bonding arrangement, on the thermal conductivity of bilayer graphene using equilibrium molecular dynamics simulations. It is revealed that, the thermal conductivity of randomly bonded bilayer graphene decreases monotonically with the increase of interlayer bonding density, however, for the regularly bonded bilayer graphene structure the thermal conductivity possesses unexpectedly non-monotonic dependence on the interlayer bonding density. The results suggest that the thermal conductivity of bilayer graphene depends not only on the interlayer bonding density, but also on the detailed topological configuration of the interlayer bonding. The underlying mechanism for this abnormal phenomenon is identified by means of phonon spectral energy density, participation ratio and mode weight factor analysis. The large tunability of thermal conductivity of bilayer graphene through rational interlayer bonding arrangement paves the way to achieve other desired properties for potential nanoelectronics applications involving graphene layers. PMID:26911859

  20. Robustly Engineering Thermal Conductivity of Bilayer Graphene by Interlayer Bonding

    Science.gov (United States)

    Zhang, Xiaoliang; Gao, Yufei; Chen, Yuli; Hu, Ming

    2016-02-01

    Graphene and its bilayer structure are the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. Their realistic applications in emerging nanoelectronics usually call for thermal transport manipulation in a controllable and precise manner. In this paper we systematically studied the effect of interlayer covalent bonding, in particular different interlay bonding arrangement, on the thermal conductivity of bilayer graphene using equilibrium molecular dynamics simulations. It is revealed that, the thermal conductivity of randomly bonded bilayer graphene decreases monotonically with the increase of interlayer bonding density, however, for the regularly bonded bilayer graphene structure the thermal conductivity possesses unexpectedly non-monotonic dependence on the interlayer bonding density. The results suggest that the thermal conductivity of bilayer graphene depends not only on the interlayer bonding density, but also on the detailed topological configuration of the interlayer bonding. The underlying mechanism for this abnormal phenomenon is identified by means of phonon spectral energy density, participation ratio and mode weight factor analysis. The large tunability of thermal conductivity of bilayer graphene through rational interlayer bonding arrangement paves the way to achieve other desired properties for potential nanoelectronics applications involving graphene layers.

  1. Mechanism of unassisted ion transport across membrane bilayers

    Science.gov (United States)

    Wilson, M. A.; Pohorille, A.

    1996-01-01

    To establish how charged species move from water to the nonpolar membrane interior and to determine the energetic and structural effects accompanying this process, we performed molecular dynamics simulations of the transport of Na+ and Cl- across a lipid bilayer located between two water lamellae. The total length of molecular dynamics trajectories generated for each ion was 10 ns. Our simulations demonstrate that permeation of ions into the membrane is accompanied by the formation of deep, asymmetric thinning defects in the bilayer, whereby polar lipid head groups and water penetrate the nonpolar membrane interior. Once the ion crosses the midplane of the bilayer the deformation "switches sides"; the initial defect slowly relaxes, and a defect forms in the outgoing side of the bilayer. As a result, the ion remains well solvated during the process; the total number of oxygen atoms from water and lipid head groups in the first solvation shell remains constant. A similar membrane deformation is formed when the ion is instantaneously inserted into the interior of the bilayer. The formation of defects considerably lowers the free energy barrier to transfer of the ion across the bilayer and, consequently, increases the permeabilities of the membrane to ions, compared to the rigid, planar structure, by approximately 14 orders of magnitude. Our results have implications for drug delivery using liposomes and peptide insertion into membranes.

  2. Microporous device for local electric recordings on model lipid bilayers

    Science.gov (United States)

    Kaufeld, Theresa; Steinem, Claudia; Schmidt, Christoph F.

    2015-01-01

    A powerful approach for characterizing lipid membranes and embedded proteins is the reconstitution of model lipid bilayers. The extreme fragility of 5 nm thick bilayers is a challenge for device design and requires a trade off of stability against accessibility. We here present a microporous lab-on-chip device that allows us to form stable, solvent-free lipid bilayers from giant unilamellar vesicles (GUVs) in a geometry that provides a unique set of access possibilities. The device is constructed around a micro-fabricated silicon chip with clusters of 1 µm-diameter pores and provides optical access to the lipid bilayers for high-NA epifluorescence imaging. At the same time, solvent exchange is possible on both sides of the lipid bilayer. Complete coverage can be achieved with GUVs, so that voltages can be applied across the lipid bilayer and single-channel currents can be measured using external or integrated silver/silver chloride electrodes. We describe the micro-fabrication by standard cleanroom techniques and the characterization of the device by atomic force microscopy, scanning electron microscopy and impedance spectroscopy. In proof-of-concept experiments we demonstrate that the device is capable of low-noise, single-ion-channel recordings. Electronic Supplementary Information (ESI) available: See DOI: 10.1039/b000000x/

  3. General hydrophobic interaction potential for surfactant/lipid bilayers from direct force measurements between light-modulated bilayers

    OpenAIRE

    Donaldson, Stephen H., Jr.; Lee, C. Ted; Chmelka, Bradley F.; Israelachvili, Jacob N.

    2011-01-01

    We establish and quantify correlations among the molecular structures, interaction forces, and physical processes associated with light-responsive self-assembled surfactant monolayers or bilayers at interfaces. Using the surface forces apparatus (SFA), the interaction forces between adsorbed monolayers and bilayers of an azobenzene-functionalized surfactant can be drastically and controllably altered by light-induced conversion of trans and cis molecular conformations. These reversible confor...

  4. Determining the orientation of protegrin-1 in DLPC bilayers using an implicit solvent-membrane model.

    Directory of Open Access Journals (Sweden)

    Abdallah Sayyed-Ahmad

    Full Text Available Continuum models that describe the effects of solvent and biological membrane molecules on the structure and behavior of antimicrobial peptides, holds a promise to improve our understanding of the mechanisms of antimicrobial action of these peptides. In such methods, a lipid bilayer model membrane is implicitly represented by multiple layers of relatively low dielectric constant embedded in a high dielectric aqueous solvent, while an antimicrobial peptide is accounted for by a dielectric cavity with fixed partial charge at the center of each one of its atoms. In the present work, we investigate the ability of continuum approaches to predict the most probable orientation of the beta-hairpin antimicrobial peptide Protegrin-1 (PG-1 in DLPC lipid bilayers by calculating the difference in the transfer free energy from an aqueous environment to a membrane-water environment for multiple orientations. The transfer free energy is computed as a sum of two terms; polar/electrostatic and non-polar. They both include energetic and entropic contributions to the free energy. We numerically solve the Poisson-Boltzmann equation to calculate the electrostatic contribution to the transfer free energy, while the non-polar contribution to the free energy is approximated using a linear solvent accessible surface area relationships. The most probable orientation of PG-1 is that with the lowest relative transfer free energy. Our simulation results indicate that PG-1 assumes an oblique orientation in DLPC lipid bilayers. The predicted most favorable orientation was with a tilt angle of 19 degrees, which is in qualitative agreement with the experimentally observed orientations derived from solid-state NMR data.

  5. Monitoring the organizational environment in small businesses: case studies in the metalworking sector and technology-based companies in the central region of the state of São Paulo

    Directory of Open Access Journals (Sweden)

    Tiago Fernando Musetti

    2016-06-01

    Full Text Available This study aims to describe how small businesses monitor competitive environments as an initial step toward the formulation of business strategies. In today’s increasingly volatile and uncertain competitive climate, it is essential to know and monitor the competitive environment in which an organization operates, as a way to reduce uncertainty and ensure long-term survival. Do small enterprises known for their lack of financial resources and qualified personnel fail to monitor their environment? Do they not use the “best practices” used by big enterprises and widely disseminated through academic studies? Such issues led the research. In this article the research method used case studies, in which four owner-managers were interviewed. The data was collected through semi-structured interviews and analyzed using the Content Analyze Method. The results show that the main General Environment variables are Economic and Legal-political, and the main Specific Environment variables are competitors, costumers and substitute products.

  6. Condensation energy of the superconducting bilayer cuprates

    Indian Academy of Sciences (India)

    Govind; Ajay; S K Joshi

    2002-05-01

    In the present work, we report the interplay of single particle and Cooper pair tunnelings on the superconducting state of layered high-c cuprate superconductors. For this we have considered a model Hamiltonian incorporating the intra-planar interactions and the contributions arising due to the coupling between the planes. The interplanar interactions include the single particle tunneling as well as the Josephson tunneling of Cooper pairs between the two layers. The expression of the out-of-plane correlation parameter which describes the hopping of a particle from one layer to another layer in the superconducting state is obtained within a Bardeen–Cooper–Schriefer (BCS) formalism using the Green’s function technique. This correlation is found to be sensitive to the various parameter of the model Hamiltonian. We have calculated the out-of-plane contribution to the superconducting condensation energy. The calculated values of condensation energy are in agreement with those obtained from the specific heat and the -axis penetration depth measurements on bilayer cuprates.

  7. Magnetic Irreversibility in VO2/Ni Bilayers

    Science.gov (United States)

    de La Venta, Jose; Lauzier, Josh; Sutton, Logan

    The temperature dependence of the coercivity and magnetization of VO2/Ni bilayers was studied. VO2 exhibits a well-known Structural Phase Transition (SPT) at 330-340 K, from a low temperature monoclinic (M) to a high temperature rutile (R) structure. The SPT of VO2 induces an inverse magnetoelastic effect that strongly modifies the coercivity and magnetization of the Ni films. In addition, the growth conditions allow tuning of the magnetic properties. Ni films deposited on top of VO2 (M) show an irreversible change in the coercivity after the first cycle through the high temperature phase, with a corresponding change in the surface morphology of VO2. On the other hand, the Ni films grown on top of VO2 (R) do not show this irreversibility. These results indicate that properties of magnetic films are strongly affected by the strain induced by materials that undergo SPT and that it is possible to control the magnetic properties by tuning the growth conditions.

  8. Detection of bilayer lipid with graphene nanoribbon

    Science.gov (United States)

    Akbari, Elnaz; Buntat, Zolkafle; Afroozeh, Abdolkarim; Zeinalinezhad, Alireza; Nilashi, Mehrbakhsh

    2015-09-01

    Single-layer graphene consists of sp 2-bonded carbon atoms arranged in a two-dimensional (2D) hexagonal lattice comprising a thin layer of single carbon atoms. Owing to its special characteristics including electrical, physical, and optical properties, graphene is considered more suitable for sensor applications than other materials. Moreover, it is possible to produce biosensors using electrolyte-gated field-effect transistors based on graphene (GFETs) to identify the alterations in charged lipid membrane properties. This paper illustrates how membrane thickness and electrical charge can result in a monolayer GFET, with emphasis on conductance variation. It is proposed that the thickness and electrical charge of the lipid bilayer are functions of carrier density, and equations relating these suitable control parameters were derived. Adaptive neuro fuzzy inference system (ANFIS) has been incorporated to obtain other model for conductance characteristic. The comparison between the analytical models and ANFIS with the experimental data extracted from previous work show an acceptable agreement. [Figure not available: see fulltext.

  9. Bilayer splitting versus Fermi-surface warping as an origin of slow oscillations of in-plane magnetoresistance in rare-earth tritellurides

    Science.gov (United States)

    Grigoriev, Pavel D.; Sinchenko, Alexander A.; Lejay, Pascal; Hadj-Azzem, Abdellali; Balay, Joël; Leynaud, Olivier; Zverev, Vladimir N.; Monceau, Pierre

    2016-06-01

    Slow oscillations (SlO) of the in-plane magnetoresistance with a frequency less than 4 T are observed in the rare-earth tritellurides and proposed as an effective tool to explore the electronic structure in various strongly anisotropic quasi-two-dimensional compounds. Contrary to the usual Shubnikov-de-Haas oscillations, SlO originate not from small Fermi-surface pockets, but from the entanglement of close frequencies due to a finite interlayer transfer integral, either between the two Te planes forming a bilayer or between two adjacent bilayers. From the observed angular dependence of the frequency and the phase of SlO we argue that they originate from the bilayer splitting rather than from the Fermi-surface warping. The SlO frequency gives the value of the interlayer transfer integral ≈1 meV for TbTe3 and GdTe3.

  10. An in situ sample environment reaction cell for spatially resolved x-ray absorption spectroscopy studies of powders and small structured reactors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chu; Gustafson, Johan; Merte, Lindsay R.; Evertsson, Jonas [Division of Synchrotron Radiation Research, Lund University, Box 118, SE-221 00 Lund (Sweden); Norén, Katarina; Carlson, Stefan; Svensson, Håkan [MAX IV Laboratory, Lund University, Box 118, SE-221 00 Lund (Sweden); Carlsson, Per-Anders [Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96 Göteborg (Sweden)

    2015-03-15

    An easy-to-use sample environment reaction cell for X-ray based in situ studies of powders and small structured samples, e.g., powder, pellet, and monolith catalysts, is described. The design of the cell allows for flexible use of appropriate X-ray transparent windows, shielding the sample from ambient conditions, such that incident X-ray energies as low as 3 keV can be used. Thus, in situ X-ray absorption spectroscopy (XAS) measurements in either transmission or fluorescence mode are facilitated. Total gas flows up to about 500 ml{sub n}/min can be fed while the sample temperature is accurately controlled (at least) in the range of 25–500 °C. The gas feed is composed by a versatile gas-mixing system and the effluent gas flow composition is monitored with mass spectrometry (MS). These systems are described briefly. Results from simultaneous XAS/MS measurements during oxidation of carbon monoxide over a 4% Pt/Al{sub 2}O{sub 3} powder catalyst are used to illustrate the system performance in terms of transmission XAS. Also, 2.2% Pd/Al{sub 2}O{sub 3} and 2% Ag − Al{sub 2}O{sub 3} powder catalysts have been used to demonstrate X-ray absorption near-edge structure (XANES) spectroscopy in fluorescence mode. Further, a 2% Pt/Al{sub 2}O{sub 3} monolith catalyst was used ex situ for transmission XANES. The reaction cell opens for facile studies of structure-function relationships for model as well as realistic catalysts both in the form of powders, small pellets, and coated or extruded monoliths at near realistic conditions. The applicability of the cell for X-ray diffraction measurements is discussed.

  11. Preparation of mica supported lipid bilayers for high resolution optical microscopy imaging.

    Science.gov (United States)

    Matysik, Artur; Kraut, Rachel S

    2014-01-01

    Supported lipid bilayers (SLBs) are widely used as a model for studying membrane properties (phase separation, clustering, dynamics) and its interaction with other compounds, such as drugs or peptides. However SLB characteristics differ depending on the support used. Commonly used techniques for SLB imaging and measurements are single molecule fluorescence microscopy, FCS and atomic force microscopy (AFM). Because most optical imaging studies are carried out on a glass support, while AFM requires an extremely flat surface (generally mica), results from these techniques cannot be compared directly, since the charge and smoothness properties of these materials strongly influence diffusion. Unfortunately, the high level of manual dexterity required for the cutting and gluing thin slices of mica to the glass slide presents a hurdle to routine use of mica for SLB preparation. Although this would be the method of choice, such prepared mica surfaces often end up being uneven (wavy) and difficult to image, especially with small working distance, high numerical aperture lenses. Here we present a simple and reproducible method for preparing thin, flat mica surfaces for lipid vesicle deposition and SLB preparation. Additionally, our custom made chamber requires only very small volumes of vesicles for SLB formation. The overall procedure results in the efficient, simple and inexpensive production of high quality lipid bilayer surfaces that are directly comparable to those used in AFM studies.

  12. Analysis of the engine fragment threat and the crush environment for small packages carried on U.S. commercial jet aircraft

    International Nuclear Information System (INIS)

    The results of two separate analyses are reported. The engine fragment analysis determined the probability of a small package being in the path of a fragment from a failure in a gas turbine engine. The calculated values show that, depending on aircraft type, the incidence rate varies by approximately an order of magnitude from a high of about once per 5 million flights to a low of nearly once every 40 million package flights for a flight of five hours' duration. The analysis of the crush environment consisted of an examination of two principal crush modes, i.e., vertical and longitudinal crush. The vertical crush mode was examined by formulating a structural model of the cargo deck beams of the aircraft. The longitudinal crush mode was studied by using dynamic models of the aircraft cargo and the radioactive material package (RAM). The results of the analysis of these crush modes provided the basis for the formulation of a 310 kN/(70,000 lb) crush test to simulate vertical crush. The longitudinal crush analysis indicated that it was possible, under infrequently occurring conditions, to produce extremely large crush forces and hence it was recommended that RAM packages be located in the aft end of aircraft cargo compartments to minimize the effects of longitudinal crush

  13. The Spitzer Spectroscopic Survey of the Small Magellanic Cloud (S4MC): Probing the Physical State of Polycyclic Aromatic Hydrocarbons in a Low-Metallicity Environment

    CERN Document Server

    Sandstrom, Karin M; Bot, Caroline; Draine, B T; Ingalls, James G; Israel, Frank P; Jackson, James M; Leroy, Adam K; Li, Aigen; Rubio, Mónica; Simon, Joshua D; Smith, J D T; Stanimirović, Snežana; Tielens, A G G M; van Loon, Jacco Th

    2011-01-01

    We present results of mid-infrared spectroscopic mapping observations of six star-forming regions in the Small Magellanic Cloud from the Spitzer Spectroscopic Survey of the SMC (S4MC). We detect the mid-IR emission from polycyclic aromatic hydrocarbons (PAHs) in all of the mapped regions, greatly increasing the range of environments where PAHs have been spectroscopically detected in the SMC. We investigate the variations of the mid-IR bands in each region and compare our results to studies of the PAH bands in the SINGS sample and in a sample of low-metallicity starburst galaxies. PAH emission in the SMC is characterized by low ratios of the 6-9 micron features relative to the 11.3 micron feature and weak 8.6 and 17.0 micron features. Interpreting these band ratios in the light of laboratory and theoretical studies, we find that PAHs in the SMC tend to be smaller and less ionized than those in higher metallicity galaxies. Based on studies of PAH destruction, we argue that a size distribution shifted towards sm...

  14. Impacts of Artisanal and Small-Scale Gold Mining (ASGM on Environment and Human Health of Gorontalo Utara Regency, Gorontalo Province, Indonesia

    Directory of Open Access Journals (Sweden)

    Yayu Indriati Arifin

    2015-04-01

    Full Text Available Mercury concentrations in the environment (river sediments and fish and in the hair of artisanal gold miners and inhabitants of the Gorontalo Utara Regency were determined in order to understand the status of contamination, sources and their impacts on human health. Mercury concentrations in the sediments along the Wubudu and Anggrek rivers are already above the tolerable level declared safe by the World Health Organization (WHO. Meanwhile, commonly consumed fish, such as snapper, have mercury levels above the threshold limit (0.5 μg/g. The mean mercury concentrations in the hair of a group of inhabitants from Anggrek and Sumalata are higher than those in hair from control group (the inhabitants of Monano, Tolinggula and Kwandang. The mean mercury concentration in the hair of female inhabitants is higher than that in the hair of male inhabitants in each group. Neurological examinations were performed on 44 participants of artisanal and small-scale gold mining (ASGM miners and inhabitants of Anggrek and Sumalata. From the 12 investigated symptoms, four common symptoms were already observed among the participants, namely, bluish gums, Babinski reflex, labial reflex and tremor.

  15. Investigations of active interrogation techniques to detect special nuclear material in maritime environments: Standoff interrogation of small- and medium-sized cargo ships

    International Nuclear Information System (INIS)

    In this work, several active interrogation (AI) sources are evaluated to determine their usefulness in detecting the presence of special nuclear material (SNM) in fishing trawlers, small cargo transport ships, and luxury yachts at large standoff distances from the AI source and detector. This evaluation is performed via computational analysis applying Monte Carlo methods with advanced variance reduction techniques. The goal is to determine the AI source strength required to detect the presence of SNM. The general conclusion of this study is that AI is not reliable when SNM is heavily shielded and not tightly coupled geometrically with the source and detector, to the point that AI should not be considered a via interrogation option in these scenarios. More specifically, when SNM is shielded by hydrogenous material large AI source strengths are required if detection is based on neutrons, which is not surprising. However, if the SNM is shielded by high-Z material the required AI source strengths are not significantly different if detection is based on neutrons or photons, which is somewhat surprising. Furthermore, some of the required AI source strengths that were calculated are very large. These results coupled with the realities of two ships moving independently at sea and other assumptions made during this analysis make the use of standoff AI in the maritime environment impractical

  16. Antibacterial copper-nickel bilayers and multilayer coatings by pulsed laser deposition on titanium.

    Science.gov (United States)

    Vishwakarma, Vinita; Josephine, J; George, R P; Krishnan, R; Dash, S; Kamruddin, M; Kalavathi, S; Manoharan, N; Tyagi, A K; Dayal, R K

    2009-11-01

    Biofouling, especially microfouling, is a major concern with the use of titanium (Ti) in the marine environment as a condenser material in cooling water systems. Earlier, copper-nickel (Cu/Ni) alloys were extensively used in marine environments due to their high corrosion and biofouling resistance. However, the choice of condenser material for the new fast breeder reactor in Kalpakkam is Ti to avoid steam side corrosion problems, which may pose a threat to steam generator parts having sodium as the secondary coolant. This study evaluates the surface modification of Ti using nano films of copper (Cu) and nickel (Ni) to utilize the antibacterial property of copper ions in reducing microfouling. The surface modification of Ti was carried out by the deposition of a Cu/Ni bilayer and (Cu/Ni)(10) multilayer films using a pulsed laser deposition technique. Various surface characterization studies revealed that the deposited Cu/Ni films were thin and nanocrystalline in nature. The antibacterial properties were evaluated using total viable count and epifluorescence microscopic techniques. The results showed an apparent decrease in bacterial attachment on multilayered and bilayered Cu/Ni thin films on Ti surfaces. Comparative studies between the two types of films showed a bigger reduction in numbers of microorganisms on the multilayers. PMID:20183129

  17. Droplet immobilization within a polymeric organogel improves lipid bilayer durability and portability.

    Science.gov (United States)

    Venkatesan, Guru A; Sarles, Stephen A

    2016-05-24

    The droplet interface bilayer (DIB) is a promising technique for assembling lipid membrane-based materials and devices using water droplets in oil, but it has largely been limited to laboratory environments due to its liquid construction. With a vision to transform this lab-based technique into a more-durable embodiment, we investigate the use of a polymer-based organogel to encapsulate DIBs within a more-solid material matrix to improve their handling and portability. Specifically, a temperature-sensitive organogel formed from hexadecane and poly[styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) triblock copolymer is used to replace the liquid solvent that surrounds the lipid-coated droplets to establish a novel liquid-in-gel DIB system. Through specific capacitance measurements and single-channel recordings of the pore forming peptide alamethicin, we verify that the structural and functional membrane properties are retained when DIBs are assembled within SEBS organogel. In addition, we demonstrate that organogel encapsulation offers improved handling of droplets and yields DIBs with a near 3× higher bilayer durability, as quantified by the lateral acceleration required to rupture the membrane, compared to liquid-in-liquid DIBs in oil. This encapsulated DIB system provides a barrier against contamination from the environment and offers a new material platform for supporting multilayered DIB-based devices as well as other digital microfluidic systems that feature water droplets in oil. PMID:27164314

  18. Interleaflet mixing and coupling in liquid-disordered phospholipid bilayers.

    Science.gov (United States)

    Capponi, Sara; Freites, J Alfredo; Tobias, Douglas J; White, Stephen H

    2016-02-01

    Organized as bilayers, phospholipids are the fundamental building blocks of cellular membranes and determine many of their biological functions. Interactions between the two leaflets of the bilayer (interleaflet coupling) have been implicated in the passage of information through membranes. However, physically, the meaning of interleaflet coupling is ill defined and lacks a structural basis. Using all-atom molecular dynamics simulations of fluid phospholipid bilayers of five different lipids with differing degrees of acyl-chain asymmetry, we have examined interleaflet mixing to gain insights into coupling. Reasoning that the transbilayer distribution of terminal methyl groups is an appropriate measure of interleaflet mixing, we calculated the transbilayer distributions of the acyl chain terminal methyl groups for five lipids: dioleoylphosphatidylcholine (DOPC), palmitoyloleoylphosphatidylcholine (POPC), stearoyloleoylphosphatidylcholine (SOPC), oleoylmyristoylphosphatidylcholine (OMPC), and dimyristoylphosphatidylcholine (DMPC). We observed in all cases very strong mixing across the bilayer midplane that diminished somewhat with increasing acyl-chain ordering defined by methylene order parameters. A hallmark of the interleaflet coupling idea is complementarity, which postulates that lipids with short alkyl chains in one leaflet will preferentially associate with lipids with long alkyl chains in the other leaflet. Our results suggest a much more complicated picture for thermally disordered bilayers that we call distributed complementarity, as measured by the difference in the peak positions of the sn-1 and sn-2 methyl distributions in the same leaflet. PMID:26657692

  19. Protein-lipid interactions in bilayer membranes: a lattice model.

    Science.gov (United States)

    Pink, D A; Chapman, D

    1979-04-01

    A lattice model has been developed to study the effects of intrinsic membrane proteins upon the thermodynamic properties of a lipid bilayer membrane. We assume that only nearest-neighbor van der Waals and steric interactions are important and that the polar group interactions can be represented by effective pressure-area terms. Phase diagrams, the temperature T(0), which locates the gel-fluid melting, the transition enthalpy, and correlations were calculated by mean field and cluster approximations. Average lipid chain areas and chain areas when the lipid is in a given protein environment were obtained. Proteins that have a "smooth" homogeneous surface ("cholesterol-like") and those that have inhomogeneous surfaces or that bind lipids specifically were considered. We find that T(0) can vary depending upon the interactions and that another peak can appear upon the shoulder of the main peak which reflects the melting of a eutectic mixture. The transition enthalpy decreases generally, as was found before, but when a second peak appears departures from this behavior reflect aspects of the eutectic mixture. We find that proteins have significant nonzero probabilities for being adjacent to one another so that no unbroken "annulus" of lipid necessarily exists around a protein. If T(0) does not increase much, or decreases, with increasing c, then lipids adjacent to a protein cannot all be all-trans on the time scale (10(-7) sec) of our system. Around a protein the lipid correlation depth is about one lipid layer, and this increases with c. Possible consequences of ignoring changes in polar group interactions due to clustering of proteins are discussed.

  20. Engineering a bilayered hydrogel to control ASC differentiation.

    Science.gov (United States)

    Natesan, Shanmugasundaram; Zamora, David O; Suggs, Laura J; Christy, Robert J

    2012-05-25

    Natural polymers over the years have gained more importance because of their host biocompatibility and ability to interact with cells in vitro and in vivo. An area of research that holds promise in regenerative medicine is the combinatorial use of novel biomaterials and stem cells. A fundamental strategy in the field of tissue engineering is the use of three-dimensional scaffold (e.g., decellularized extracellular matrix, hydrogels, micro/nano particles) for directing cell function. This technology has evolved from the discovery that cells need a substrate upon which they can adhere, proliferate, and express their differentiated cellular phenotype and function. More recently, it has also been determined that cells not only use these substrates for adherence, but also interact and take cues from the matrix substrate (e.g., extracellular matrix, ECM). Therefore, the cells and scaffolds have a reciprocal connection that serves to control tissue development, organization, and ultimate function. Adipose-derived stem cells (ASCs) are mesenchymal, non-hematopoetic stem cells present in adipose tissue that can exhibit multi-lineage differentiation and serve as a readily available source of cells (i.e. pre-vascular endothelia and pericytes). Our hypothesis is that adipose-derived stem cells can be directed toward differing phenotypes simultaneously by simply co-culturing them in bilayered matrices. Our laboratory is focused on dermal wound healing. To this end, we created a single composite matrix from the natural biomaterials, fibrin, collagen, and chitosan that can mimic the characteristics and functions of a dermal-specific wound healing ECM environment.

  1. 论新信息环境下中小型图书馆信息资源建设%Discussion on Information Resources Construction of Small and Medium-sized Libraries in the New Information Environment

    Institute of Scientific and Technical Information of China (English)

    叶菁

    2015-01-01

    论述了新信息环境下中小型图书馆信息资源建设的定位,探讨了新信息环境下中小型图书馆信息资源建设的有效对策.%This paper discusses the positioning of information resources construction of small and medium-sized libraries in the new information environment, and probes into some effective countermeasures for small and medium-sized libraries to carry out the information resources construction in new information environment.

  2. 论新信息环境下中小型图书馆信息资源建设%Discussion on Information Resources Construction of Small and Medium-sized Libraries in the New Information Environment

    Institute of Scientific and Technical Information of China (English)

    叶菁

    2015-01-01

    This paper discusses the positioning of information resources construction of small and medium-sized libraries in the new information environment, and probes into some effective countermeasures for small and medium-sized libraries to carry out the information resources construction in new information environment.%论述了新信息环境下中小型图书馆信息资源建设的定位,探讨了新信息环境下中小型图书馆信息资源建设的有效对策.

  3. Ionizable Nitroxides for Studying Local Electrostatic Properties of Lipid Bilayers and Protein Systems by EPR

    Science.gov (United States)

    Voinov, Maxim A.; Smirnov, Alex I.

    2016-01-01

    Electrostatic interactions are known to play one of the major roles in the myriad of biochemical and biophysical processes. In this Chapter we describe biophysical methods to probe local electrostatic potentials of proteins and lipid bilayer systems that is based on an observation of reversible protonation of nitroxides by EPR. Two types of the electrostatic probes are discussed. The first one includes methanethiosulfonate derivatives of protonatable nitroxides that could be used for highly specific covalent modification of the cysteine’s sulfhydryl groups. Such spin labels are very similar in magnetic parameters and chemical properties to conventional MTSL making them suitable for studying local electrostatic properties of protein-lipid interfaces. The second type of EPR probes is designed as spin-labeled phospholipids having a protonatable nitroxide tethered to the polar head group. The probes of both types report on their ionization state through changes in magnetic parameters and a degree of rotational averaging, thus, allowing one to determine the electrostatic contribution to the interfacial pKa of the nitroxide, and, therefore, determining the local electrostatic potential. Due to their small molecular volume these probes cause a minimal perturbation to the protein or lipid system while covalent attachment secure the position of the reporter nitroxides. Experimental procedures to characterize and calibrate these probes by EPR and also the methods to analyze the EPR spectra by least-squares simulations are also outlined. The ionizable nitroxide labels and the nitroxide-labeled phospholipids described so far cover an exceptionally wide pH range from ca. 2.5 to 7.0 pH units making them suitable to study a broad range of biophysical phenomena especially at the negatively charged lipid bilayer surfaces. The rationale for selecting proper electrostatically neutral interface for calibrating such probes and example of studying surface potential of lipid bilayer is

  4. Assessment of pseudo-bilayer structures in the heterogate germanium electron-hole bilayer tunnel field-effect transistor

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, J. L., E-mail: jose.padilladelatorre@epfl.ch; Alper, C.; Ionescu, A. M. [Nanoelectronic Devices Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015 (Switzerland); Medina-Bailón, C.; Gámiz, F. [Departamento de Electrónica y Tecnología de los Computadores, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada (Spain)

    2015-06-29

    We investigate the effect of pseudo-bilayer configurations at low operating voltages (≤0.5 V) in the heterogate germanium electron-hole bilayer tunnel field-effect transistor (HG-EHBTFET) compared to the traditional bilayer structures of EHBTFETs arising from semiclassical simulations where the inversion layers for electrons and holes featured very symmetric profiles with similar concentration levels at the ON-state. Pseudo-bilayer layouts are attained by inducing a certain asymmetry between the top and the bottom gates so that even though the hole inversion layer is formed at the bottom of the channel, the top gate voltage remains below the required value to trigger the formation of the inversion layer for electrons. Resulting benefits from this setup are improved electrostatic control on the channel, enhanced gate-to-gate efficiency, and higher I{sub ON} levels. Furthermore, pseudo-bilayer configurations alleviate the difficulties derived from confining very high opposite carrier concentrations in very thin structures.

  5. Assessment of pseudo-bilayer structures in the heterogate germanium electron-hole bilayer tunnel field-effect transistor

    International Nuclear Information System (INIS)

    We investigate the effect of pseudo-bilayer configurations at low operating voltages (≤0.5 V) in the heterogate germanium electron-hole bilayer tunnel field-effect transistor (HG-EHBTFET) compared to the traditional bilayer structures of EHBTFETs arising from semiclassical simulations where the inversion layers for electrons and holes featured very symmetric profiles with similar concentration levels at the ON-state. Pseudo-bilayer layouts are attained by inducing a certain asymmetry between the top and the bottom gates so that even though the hole inversion layer is formed at the bottom of the channel, the top gate voltage remains below the required value to trigger the formation of the inversion layer for electrons. Resulting benefits from this setup are improved electrostatic control on the channel, enhanced gate-to-gate efficiency, and higher ION levels. Furthermore, pseudo-bilayer configurations alleviate the difficulties derived from confining very high opposite carrier concentrations in very thin structures

  6. Preisach analysis of epitaxial hard/soft bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Cornejo, D.R.; Rhen, F.M.; Missell, F.P. E-mail: fmissell@macbeth.if.usp.br; Fullerton, E.E

    2001-05-01

    We used the moving Preisach model to study the magnetization-reversal process in epitaxial SmCo (1 1 =macron 0 0)/Fe bilayers prepared by magnetron sputtering. The SmCo(20 nm)/Fe(t nm) (t=0, 5, 10, 20) bilayers were grown onto single-crystal (1 1 0)MgO substrates with an epitaxial 20 nm Cr(2 1 1) buffer layer. The second-quadrant magnetization curves were strictly reversible up to a field H{sub 0}, close to the field H{sub c} at which the magnetization switched irreversibly. Henkel plots for these bilayers indicated very strong magnetizing interactions for all films. Magnetization reversal in these films reflects their epitaxial structure.

  7. Lipid peroxidation and water penetration in lipid bilayers

    DEFF Research Database (Denmark)

    Conte, Elena; Megli, Francesco Maria; Khandelia, Himanshu;

    2012-01-01

    Lipid peroxidation plays a key role in the alteration of cell membrane's properties. Here we used as model systems multilamellar vesicles (MLVs) made of the first two products in the oxidative cascade of linoleoyl lecithin, namely 1-palmitoyl-2-(13-hydroperoxy-9,11-octadecanedienoyl)-lecithin (Hp......(zz) parameters revealed that OHPLPC, but mostly HpPLPC, induced a measurable increase in polarity and H-bonding propensity in the central region of the bilayer. Molecular dynamics simulation performed on 16-DSA in the PLPC-HpPLPC bilayer revealed that water molecules are statistically favored with respect to the...... hydroperoxide groups to interact with the nitroxide at the methyl-terminal, confirming that the H-bonds experimentally observed are due to increased water penetration in the bilayer. The EPR and MD data on model membranes demonstrate that cell membrane damage by oxidative stress cause alteration of water...

  8. Lipid bilayer microarray for parallel recording of transmembrane ion currents.

    Science.gov (United States)

    Le Pioufle, Bruno; Suzuki, Hiroaki; Tabata, Kazuhito V; Noji, Hiroyuki; Takeuchi, Shoji

    2008-01-01

    This paper describes a multiwell biochip for simultaneous parallel recording of ion current through transmembrane pores reconstituted in planar lipid bilayer arrays. Use of a thin poly(p-xylylene) (parylene) film having micrometer-sized apertures (phi=15-50 microm, t=20 microm) led to formation of highly stable bilayer lipid membranes (BLMs) for incorporation of transmembrane pores; thus, a large number of BLMs could be arrayed without any skillful technique. We optically confirmed the simultaneous formation of BLMs in a 5x5 matrix, and in our durability test, the BLM lasted more than 15 h. Simultaneous parallel recording of alamethicin and gramicidin transmembrane pores in multiple contiguous recording sites demonstrated the feasibility of high-throughput screening of transmembrane ion currents in artificial lipid bilayers.

  9. Neutron diffraction studies of amphipathic helices in phospholipid bilayers

    International Nuclear Information System (INIS)

    The structural feature which is thought to facilitate the interaction of many peptides with phospholipid bilayers is the ability to fold into an amphipathic helix. In most cases the exact location and orientation of this helix with respect to the membrane is not known, and may vary with factors such as pH and phospholipid content of the bilayer. The growing interest in this area is stimulated by indications that similar interactions can contribute to the binding of certain hormones to their cell-surface receptors. We have been using the techniques of neutron diffraction from stacked phospholipid bilayers in an attempt to investigate this phenomenon with a number of membrane-active peptides. Here we report some of our findings with three of these: the bee venom melittin; the hormone calcitonin; and a synthetic peptide representing the ion channel fragment of influenza A M2 protein

  10. Sodium chloride's effect on self-assembly of diphenylalanine bilayer.

    Science.gov (United States)

    Kwon, Junpyo; Lee, Myeongsang; Na, Sungsoo

    2016-07-15

    Understanding self-assembling peptides becomes essential in nanotechnology, thereby providing a bottom-up method for fabrication of nanostructures. Diphenylalanine constitutes an outstanding building block that can be assembled into various nanostructures, including two-dimensional bilayers or nanotubes, exhibiting superb mechanical properties. It is known that the effect of the ions is critical in conformational and chemical interactions of bilayers or membranes. In this study, we analyzed the effect of sodium chloride on diphenylalanine bilayer using coarse-grained molecular dynamics simulations, and calculated the bending Young's modulus and the torsional modulus by applying normal modal analysis using an elastic network model. The results showed that sodium chloride dramatically increases the assembling efficiency and stability, thereby promising to allow the precise design and control of the fabrication process and properties of bio-inspired materials. © 2016 Wiley Periodicals, Inc. PMID:27241039

  11. Equilibrium Configurations of Lipid Bilayer Membranes and Carbon Nanostructures

    Institute of Scientific and Technical Information of China (English)

    Iva(i)lo M.Mladenov; Peter A.Djondjorov; Mariana Ts.Hadzhilazova; Vassil M.Vassilev

    2013-01-01

    The present article concerns the continuum modelling of the mechanical behaviour and equilibrium shapes of two types of nano-scale objects:fluid lipid bilayer membranes and carbon nanostructures.A unified continuum model is used to handle four different case studies.Two of them consist in representing in analytic form cylindrical and axisymmetric equilibrium configurations of single-wall carbon nanotubes and fluid lipid bilayer membranes subjected to uniform hydrostatic pressure.The third one is concerned with determination of possible shapes of junctions between a single-wall carbon nanotube and a fiat graphene sheet or another single-wall carbon nanotube.The last one deals with the mechanical behaviour of closed fluid lipid bilayer membranes (vesicles) adhering onto a fiat homogeneous rigid substrate subjected to micro-injection and uniform hydrostatic pressure.

  12. Methodological problems in pressure profile calculations for lipid bilayers

    DEFF Research Database (Denmark)

    Sonne, Jacob; Hansen, Flemming Yssing; Peters, Günther H.J.

    2005-01-01

    From molecular dynamics simulations of a dipalmitoyl-phosphatidyl-choline (DPPC) lipid bilayer in the liquid crystalline phase, pressure profiles through the bilayer are calculated by different methods. These profiles allow us to address two central and unresolved problems in pressure profile...... calculations: The first problem is that the pressure profile is not uniquely defined since the expression for the local pressure involves an arbitrary choice of an integration contour. We have investigated two different choices leading to the Irving-Kirkwood (IK) and Harasima (H) expressions for the local...... pressure tensor. For these choices we find that the pressure profile is almost independent of the contour used, which indicates that the local pressure is well defined for a DPPC bilayer in the liquid crystalline phase. This may not be the case for other systems and we therefore suggest that both the IK...

  13. Neutron diffraction studies of amphipathic helices in phospholipid bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, J.P.; Gilchrist, P.J. [Univ. of Edinburgh (United Kingdom); Duff, K.C. [Univ. of Edinburgh Medical School (United Kingdom); Saxena, A.M. [Brookhaven National Laboratory, Upton, NY (United States)

    1994-12-31

    The structural feature which is thought to facilitate the interaction of many peptides with phospholipid bilayers is the ability to fold into an amphipathic helix. In most cases the exact location and orientation of this helix with respect to the membrane is not known, and may vary with factors such as pH and phospholipid content of the bilayer. The growing interest in this area is stimulated by indications that similar interactions can contribute to the binding of certain hormones to their cell-surface receptors. We have been using the techniques of neutron diffraction from stacked phospholipid bilayers in an attempt to investigate this phenomenon with a number of membrane-active peptides. Here we report some of our findings with three of these: the bee venom melittin; the hormone calcitonin; and a synthetic peptide representing the ion channel fragment of influenza A M2 protein.

  14. Self-assembly of azobenzene bilayer membranes in binary ionic liquid-water nanostructured media.

    Science.gov (United States)

    Kang, Tejwant Singh; Ishiba, Keita; Morikawa, Masa-aki; Kimizuka, Nobuo

    2014-03-11

    Anionic azobenzene-containing amphiphile 1 (sodium 4-[4-(N-methyl-N-dodecylamino)phenylazo]benzenesulfonate) forms ordered bilayer membranes in binary ionic liquid (1-ethyl-3-methylimidazolium ethyl sulfate, [C2mim][C2OSO3])-water mixtures. The binary [C2mim][C2OSO3]-water mixture is macroscopically homogeneous at any mixing ratio; however, it possesses fluctuating nanodomains of [C2mim][C2OSO3] molecules as observed by dynamic light scattering (DLS). These nanodomains show reversible heat-induced mixing behavior with water. Although the amphiphile 1 is substantially insoluble in pure water, it is dispersible in the [C2mim][C2OSO3]-water mixtures. The concentration of [C2mim][C2OSO3] and temperature exert significant influences on the self-assembling characteristics of 1 in the binary media, as shown by DLS, transmission electron microscopy (TEM), UV-vis spectroscopy, and zeta-potential measurements. Bilayer membranes with rod- or dotlike nanostructures were formed at a lower content of [C2mim][C2OSO3] (2-30 v/v %), in which azobenzene chromophores adopt parallel molecular orientation regardless of temperature. In contrast, when the content of [C2mim][C2OSO3] is increased above 60 v/v %, azobenzene bilayers showed thermally reversible gel-to-liquid crystalline phase transition. The self-assembly of azobenzene amphiphiles is tunable depending on the volume fraction of [C2mim][C2OSO3] and temperature, which are associated with the solvation by nanoclusters in the binary [C2mim][C2OSO3]-water media. These observations clearly indicate that mixtures of water-soluble ionic liquids and water provide unique and valiant environments for ordered molecular self-assembly. PMID:24528277

  15. The abiotic environment of the interstitial of a small Swiss river in the foothills of the Alps and its influence on gravel spawning brown trout (Salmo trutta L.)

    Science.gov (United States)

    Schindler, Yael; Michel, Christian; Holm, Patricia; Alewell, Christine

    2010-05-01

    The hyporheic zone can be characterized by multiple abiotic parameters (e.g. bulk density, texture, temperature, oxygen, ammonium, nitrate) which are all influenced directly or indirectly by the exchange processes between surface water and groundwater. These processes can vary both in time and space and are mainly driven by river discharge, ground water level and flow patterns. The input of fine sediment particles can change water-riverbed interactions through river bed clogging potentially affecting the embryonal development and survival of gravel spawning fish, such as brown trout (Salmo trutta L.). With our investigations we aim to understand these complex interactions spatially and temporally on a relevant small scale, i.e. within individual artificial brown trout redds. We designed an experimental field setup to directly investigate i) the influence of the abiotic river and redd environment on brown trout embryo development and ii) the hydrological dynamics affecting the abiotic environment in artificial brown trout. Additionally, our setup allows investigating the temporal dynamics of i) fine-sediment infiltration into the artificial redds and ii) embryo survival to two distinct developmental stages (i.e. eyed stage and hatch) The experiment was conducted in three sites of a typical Swiss river (Enziwigger, Canton of Luzern) with a strongly modified morphology. Individual sites represented a high, medium and low fine-sediment load. In each site, six artificial redds (18 in total) were built and data were collected during the entire incubation phase. Redds were located in places where natural spawning of brown trout is present. We adapted multiple established methods to the smaller scale of our river to study the dynamics of the most relevant abiotic parameters potentially affecting embryo development: Oxygen content and temperature was monitored continuously in different depths, fine sediment (bedload, suspended sediment load and its input in the river bed

  16. Small cetaceans found stranded or accidentally captured in southeastern Brazil: bioindicators of essential and non-essential trace elements in the environment.

    Science.gov (United States)

    Lemos, Leila Soledade; de Moura, Jailson Fulgencio; Hauser-Davis, Rachel Ann; de Campos, Reinaldo Calixto; Siciliano, Salvatore

    2013-11-01

    Essential (Cu, Mn, Se and Zn) and non-essential (Cd and Hg) elements were analyzed in the hepatic tissue of 22 individuals of seven different species of small cetaceans (Feresa attenuata; Orcinus orca; Pontoporia blainvillei; Sotalia guianensis; Stenella frontalis; Steno bredanensis; Tursiops truncatus) accidentally caught in fishing nets or found stranded along the northern coast of the state of Rio de Janeiro, Brazil, between 2001 and 2010. Atlantic spotted dolphin (S. frontalis) showed the highest levels of Cd (20.23μgg(-1), dry weight), while rough-toothed dolphin (S. bredanensis) showed the highest levels of Hg (825.9μgg(-1)dw) and Se (221.9μgg(-1)dw). Killer whale (O. orca) presented the highest levels of Cu (64.80μgg(-1)dw) and Zn (2220μgg(-1)dw), and Guiana dolphin (S. guianensis), the highest level of Mn (13.05μgg(-1)dw). Cu, Hg, Mn and Zn in the hepatic tissue of killer whale (O. orca), Cu, Hg, Mn, Se and Zn in the hepatic tissue of rough-toothed dolphin (S. bredanensis) and Cd and Zn in the hepatic tissue of Guiana dolphin (S. guianensis) were significantly higher when compared to other studies with these species around the world. No significant correlations were observed between element accumulation and sex, sexual maturity and body length. An analysis of the interelemental relationships in the Guiana dolphin specimens showed strong positive correlations between Cd and Se, Cu and Zn, and Hg and Se. Differences were observed in the bioaccumulation of elements between the analyzed species, probably related to each species feeding habit, and differences between different element concentrations in the different dolphin species were probably due to the preference for certain preys and their bioavailability in the environment. Thus, the bioavailability of the analyzed elements in the marine environment should also be taken in consideration. This study also presents the first data ever reported for pygmy killer whale (F. attenuata) regarding trace

  17. Optical and electrical properties of Mg/Co bilayer thin film metal hydrides

    OpenAIRE

    M. K. JANGID,; S.P. Nehra; M Singh

    2010-01-01

    Bilayer Mg/Co thin films have been prepared using thermal evaporation method at pressure 10-5 torr. Annealing of bilayer thin films have been performed for 1 hour at different temperature. Hydrogenation of pristine and annealed bilayer structure has been performed at different hydrogen pressure for half an hour. The optical transmission increased with hydrogen pressure and also the band gap of thin films found to be increase with hydrogen pressure. Pristine Mg/Co bilayers show ohmic behavior ...

  18. Efficient Organic Photovoltaics Utilizing Nanoscale Heterojunctions in Sequentially Deposited Polymer/fullerene Bilayer

    OpenAIRE

    Seok, Jeesoo; Shin, Tae Joo; Park, Sungmin; Cho, Changsoon; Lee, Jung-Yong; Yeol Ryu, Du; Kim, Myung Hwa; Kim, Kyungkon

    2015-01-01

    A highly efficient sequentially deposited bilayer (SD-bilayer) of polymer/fullerene organic photovoltaic (OPV) device is developed via the solution process. Herein, we resolve two essential problems regarding the construction of an efficient SD-bilayer OPV. First, the solution process fabrication of the SD-bilayer is resolved by incorporating an ordering agent (OA) to the polymer solution, which improves the ordering of the polymer chain and prevents the bottom-layer from dissolving into the ...

  19. Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes

    DEFF Research Database (Denmark)

    Lundbæk, Jens August; Collingwood, S.A.; Ingolfsson, H.I.;

    2010-01-01

    Membrane protein function is regulated by the host lipid bilayer composition. This regulation may depend on specific chemical interactions between proteins and individual molecules in the bilayer, as well as on non-specific interactions between proteins and the bilayer behaving as a physical enti...... use of gramicidin channels as molecular force probes for studying this mechanism, with a unique ability to discriminate between consequences of changes in monolayer curvature and bilayer elastic moduli....

  20. X-Ray Kinematography of Temperature-Jump Relaxation Probes the Elastic Properties of Fluid Bilayers

    OpenAIRE

    Pabst, Georg; Rappolt, Michael; Amenitsch, Heinz; Bernstorff, Sigrid; Laggner, Peter

    2000-01-01

    The response kinetics of liquid crystalline phosphatidylcholine bilayer stacks to rapid, IR-laser induced temperature jumps has been studied by millisecond time-resolved x-ray diffraction. The system reacts on the fast temperature change by a discrete bilayer compression normal to its surface and a lateral bilayer expansion. Since water cannot diffuse from the excess phase into the interbilayer water region within the 2 ms duration of the laser pulse, the water layer has to follow the bilayer...

  1. Thai indigenous cattle production provided a sustainable alternative for the benefit of small-scale farmers, healthy food and the environment

    International Nuclear Information System (INIS)

    In Thailand, there were 5.66 million indigenous cattle and 1.76 million of their crosses. Farmers raised these cattle integrated with crop and fish in livestock-crop-fish integrated farming systems. These farming systems are in small scales for efficient utilization of available resources and for maximisation of production of diversified products per unit area to increase the income of the farmers and enhance food production. Thai indigenous cattle meat have more specific nutrient that are beneficial for consumers, such as omega 3, omega 6, and CLA. Furthermore, farmers use cattle manures as fertilizer for crop production, production of plankton for the fish and biogas/electric power used in the household. Additionally, Thai indigenous cattle are used for draught power. Consequently, Thai indigenous cattle increased food production and there was minimal cattle waste on farms thus, we could keep the environment clean and green. Performance data, meat quality, compost production, biogas production, and draught animal and reference were collected from 103 smallholder farmers in the northern part of Thailand, northeastern, central and southern parts of Thailand during October 2005 to September 2007. Growth and reproductive performance: Thai indigenous cattle had various skin and hair colour such as red, light brown, black, piebald, and only Kow-Lamphun cattle in northern part of Thailand, orange-pink skin and white hair colour. Their navels were not slackened but attached to the belly. Their dewlaps were also not slacken. The average birth weight was 19.6 kg and the weaning weight at 200 d of age was 137.96 kg. They had good characteristics of heat tolerance, disease resistance, and high fertility traits. They were the main red-meat source for consumers. Thai indigenous cattle were main source of red meat for consumption in Thailand. They produced high Omega 3 and Omega 6 in red meat, so their meat was the main source of protein and healthy food.Other utility of Thai

  2. Anomalous Hall effect in Fe/Gd bilayers

    KAUST Repository

    Xu, W. J.

    2010-04-01

    Non-monotonic dependence of anomalous Hall resistivity on temperature and magnetization, including a sign change, was observed in Fe/Gd bilayers. To understand the intriguing observations, we fabricated the Fe/Gd bilayers and single layers of Fe and Gd simultaneously. The temperature and field dependences of longitudinal resistivity, Hall resistivity and magnetization in these films have also been carefully measured. The analysis of these data reveals that these intriguing features are due to the opposite signs of Hall resistivity/or spin polarization and different Curie temperatures of Fe and Gd single-layer films. Copyright (C) EPLA, 2010

  3. Bilayer polymer/oxide coating for electroluminescent organic semiconductors

    DEFF Research Database (Denmark)

    Tavares, Luciana

    Organic materials have been given much attention due to their intriguing properties that can be tailored via synthetic chemistry for specific applications combined with their low price and fairly straight-forward large-scale synthesis. Para-hexaphenylene (p6P) nanofibers emit polarized light...... of the fibers with oxygen. We have developed a bilayer coating that does not change significantly the p6P spectrum but strongly reduces bleaching. This bilayer coating consists of a first layer of a stable polymer (PMMA) on top of the organic nanofibers as a protecting layer for avoiding modifications of the p6...

  4. hERG drug response measured in droplet bilayers.

    Science.gov (United States)

    Portonovo, Shiva A; Salazar, Carl S; Schmidt, Jacob J

    2013-04-01

    We show measurements of the human cardiac potassium ion channel Kv11.1 (hERG) in droplet bilayers incorporated directly from commercial membrane preparations of HEK293 cells. Although we do not obtain ensemble conductance kinetics and rectification observed in patch clamp measurements of hERG, ensemble currents measured in our system showed inhibition dependent on astemizole and E-4031 concentration, with IC50 values similar to those found with patch clamp. The availability of engineered HEK cells expressing a variety of ion channels, combined with the simplicity of the inhibition measurement, suggest that droplet bilayers may have considerable technological potential for determination of ion channel drug potency. PMID:23160842

  5. Bilayer graphene Hall bar with a pn-junction

    OpenAIRE

    Milovanovic, S. P.; Masir, M. Ramezani; Peeters, F. M.

    2013-01-01

    We investigate the magnetic field dependence of the Hall and the bend resistances for a ballistic Hall bar structure containing a pn-junction sculptured from a bilayer of graphene. The electric response is obtained using the billiard model and we investigate the cases of bilayer graphene with and without a band gap. Two different conduction regimes are possible: $i$) both sides of the junction have the same carrier type, and $ii$) one side of the junction is n-type while the other one is p-ty...

  6. Energy output estimation for a small wind turbine positioned on a rooftop in the urban environment with and without a duct

    Energy Technology Data Exchange (ETDEWEB)

    Beller, C.

    2011-05-15

    Nowadays, wind turbines in general, but also urban wind turbines attained acceptance to a certain extend. Conceptual designs and some examples in reality exist, where small-scale wind turbines have been implemented close to buildings or even integrated in the building structure. This work is aiming to estimate how much energy a wind turbine could produce in the built environment, depending on its integration and configuration. On the basis of measurements taken on the rooftop of H.C. Orsted Institut in Copenhagen, which is located in an urban area, a comparison of fictive free standing turbines with ducted turbines of the same type was carried out. First, a prevailing wind energy direction was detected with rough mean velocity and frequency calculations. Next, a duct was aligned with the direction, where the highest energy potential was found. Further calculations were conducted with more detailed wind velocity distributions, depending on the wind direction sectors. The duct's wind velocity amplification capability was set to 14%, while a total opening angle of 30. was assumed to be accessible from both sides. With the simplifying assumptions and the uncertainties at the location of measurement, the free standing turbines had an energy potential of 300kWh/m2/a for the horizontal axis wind turbine (HAWT) and for the vertical axis wind turbine (VAWT) 180kWh/m2/a. For the ducted turbines an energy output of 180kWh/m2/a was found for the HAWT configuration, while the VAWT configuration reached an output of 110kWh/m2/a. The available wind had an energy potential of 730kWh/m2/a. Evaluating these results it seems a free standing turbine is preferable, when only considering the power output, whereas the ducted version comprises properties, which are important considering the requirements needed in the inhabited area such as safety and noise issues. (Author)

  7. Linking lipid architecture to bilayer structure and mechanics using self-consistent field modelling

    Energy Technology Data Exchange (ETDEWEB)

    Pera, H.; Kleijn, J. M.; Leermakers, F. A. M., E-mail: Frans.leermakers@wur.nl [Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6307 HB Wageningen (Netherlands)

    2014-02-14

    To understand how lipid architecture determines the lipid bilayer structure and its mechanics, we implement a molecularly detailed model that uses the self-consistent field theory. This numerical model accurately predicts parameters such as Helfrichs mean and Gaussian bending modulus k{sub c} and k{sup ¯} and the preferred monolayer curvature J{sub 0}{sup m}, and also delivers structural membrane properties like the core thickness, and head group position and orientation. We studied how these mechanical parameters vary with system variations, such as lipid tail length, membrane composition, and those parameters that control the lipid tail and head group solvent quality. For the membrane composition, negatively charged phosphatidylglycerol (PG) or zwitterionic, phosphatidylcholine (PC), and -ethanolamine (PE) lipids were used. In line with experimental findings, we find that the values of k{sub c} and the area compression modulus k{sub A} are always positive. They respond similarly to parameters that affect the core thickness, but differently to parameters that affect the head group properties. We found that the trends for k{sup ¯} and J{sub 0}{sup m} can be rationalised by the concept of Israelachivili's surfactant packing parameter, and that both k{sup ¯} and J{sub 0}{sup m} change sign with relevant parameter changes. Although typically k{sup ¯}<0, membranes can form stable cubic phases when the Gaussian bending modulus becomes positive, which occurs with membranes composed of PC lipids with long tails. Similarly, negative monolayer curvatures appear when a small head group such as PE is combined with long lipid tails, which hints towards the stability of inverse hexagonal phases at the cost of the bilayer topology. To prevent the destabilisation of bilayers, PG lipids can be mixed into these PC or PE lipid membranes. Progressive loading of bilayers with PG lipids lead to highly charged membranes, resulting in J{sub 0}{sup m}≫0, especially at low ionic

  8. Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes

    Science.gov (United States)

    Rønnest, A. K.; Peters, G. H.; Hansen, F. Y.; Taub, H.; Miskowiec, A.

    2016-04-01

    Molecular dynamics simulations have been used to investigate the influence of the valency of counter-ions on the structure of freestanding bilayer membranes of the anionic 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) lipid at 310 K and 1 atm. At this temperature, the membrane is in the fluid phase with a monovalent counter-ion and in the gel phase with a divalent counter-ion. The diffusion constant of water as a function of its depth in the membrane has been determined from mean-square-displacement calculations. Also, calculated incoherent quasielastic neutron scattering functions have been compared to experimental results and used to determine an average diffusion constant for all water molecules in the system. On extrapolating the diffusion constants inferred experimentally to a temperature of 310 K, reasonable agreement with the simulations is obtained. However, the experiments do not have the sensitivity to confirm the diffusion of a small component of water bound to the lipids as found in the simulations. In addition, the orientation of the dipole moment of the water molecules has been determined as a function of their depth in the membrane. Previous indirect estimates of the electrostatic potential within phospholipid membranes imply an enormous electric field of 108-109 V m-1, which is likely to have great significance in controlling the conformation of translocating membrane proteins and in the transfer of ions and molecules across the membrane. We have calculated the membrane potential for DMPG bilayers and found ˜1 V (˜2 ṡ 108 V m-1) when in the fluid phase with a monovalent counter-ion and ˜1.4 V (˜2.8 ṡ 108 V m-1) when in the gel phase with a divalent counter-ion. The number of water molecules for a fully hydrated DMPG membrane has been estimated to be 9.7 molecules per lipid in the gel phase and 17.5 molecules in the fluid phase, considerably smaller than inferred experimentally for 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC

  9. [Study on the Effects of Ginsenoside Rb1 on DPPC Bilayers by Using Thermo-Raman Spectrum and DSC].

    Science.gov (United States)

    Hui, Ge; Liu, Wei; Zhang, Jing-zhou; Zhou, Tie-li; Wang, Si-ming; Zhao, Yu; Zhao, Bing

    2015-08-01

    concentration of ginsenoside Rb1, the pre-transition temperature of DPPC bilayers dropped immediately with small amount of the Rb1 drug when the containtion was only 5 mol% and the whole system has been destructed at the same time, the main phase transition peak showed as a new little shoulder seam, however, both pre- and main transition peak disappeared completely until the drug concentration increased to 20 mol%, the phase transition temperature of DPPC has been reduced significantly, and the fluidity of bilayers has been increased. Both experiments indicated that the strong effects of ginsenoside Rb1 on DPPC.

  10. Interaction of water with melittin inserted in a single-supported lipid bilayer

    Science.gov (United States)

    Buck, Zachary; Bai, Mengjun; Torres, James; Kaiser, Helmut; Taub, Haskell; Hansen, Flemming Y.; Miskowiec, Andrew; Tyagi, Madhusudan

    The insertion mechanism, conformation, and the function of transmembrane proteins are strongly influenced by both the lipid molecules and the hydration water of a cell membrane. Previously, we have fabricated samples of single-supported lipid bilayers of zwitterionic DMPC and studied extensively their influence on the freezing behavior and diffusion of water in their vicinity. We have recently extended these studies to a more biologically relevant system by depositing melittin proteins onto single-supported DMPC bilayers. By monitoring the elastically-scattered neutron intensity as a function of temperature from such samples, we observe an abrupt freezing transition of the associated water not seen in the bare membrane case. Moreover, the change in elastic intensity of this freezing step increases proportionally with melittin concentration. For a particular peptide concentration, a small increase of the elastically-scattered neutron intensity is measured while annealing the sample at 328 K. We tentatively interpret this increase of the elastic intensity to anchoring and/or insertion of the melittin peptides within the membrane. Supported by NSF Grant Nos. DMR-0944772 and DGE-1069091.

  11. The effect of tail-length mismatch in binary DMPC/DSPC lipid bilayers

    Science.gov (United States)

    Ashkar, Rana; Nagao, Michihiro; Butler, Paul

    2014-03-01

    Bilayer heterogeneity has been long hypothesized to drive raft formation and promote complex functionality in lipid membranes. The highly dynamic nature of the membrane however is thought to play a critical role in this delicate balance between structure and performance. To probe the effect of lateral heterogeneity on membrane dynamics, we investigate the thermal response of unilamellar-vesicle systems of mixed dimyristoylphosphatidylcholine (DMPC) and distearoylphosphatidylcholine (DSPC) with DMPC/DSPC ratios of 50/50 and 70/30. Both lipids experience a transition from an ordered gel phase, with stiff stretched tails, to a melted fluid phase, with more coiled flexible tails, as they are heated through their melting temperature, Tm(DMPC) ~ 21 °C and Tm(DSPC) ~ 51 °C. The distinct Tm's of the two lipids provide a broad gel-fluid phase with a significant mismatch (~ 20 Å) between the tail-lengths of the DMPC and DSPC molecules. The structural properties of the vesicles were determined by small-angle neutron and x-ray scattering and the collective lipid dynamics in the bilayer were investigated by neutron spin-echo (NSE) spectroscopy on selectively deuterated samples. The NSE results indicate a slowdown of thickness fluctuations in the gel-fluid coexistence phase and an intriguingly strong enhancement in the thickness fluctuation amplitude for T >Tm(DSPC) compared to our previous work on single component vesicles.

  12. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers

    Science.gov (United States)

    Ashley, Carlee E.; Carnes, Eric C.; Phillips, Genevieve K.; Padilla, David; Durfee, Paul N.; Brown, Page A.; Hanna, Tracey N.; Liu, Juewen; Phillips, Brandy; Carter, Mark B.; Carroll, Nick J.; Jiang, Xingmao; Dunphy, Darren R.; Willman, Cheryl L.; Petsev, Dimiter N.; Evans, Deborah G.; Parikh, Atul N.; Chackerian, Bryce; Wharton, Walker; Peabody, David S.; Brinker, C. Jeffrey

    2011-05-01

    Encapsulation of drugs within nanocarriers that selectively target malignant cells promises to mitigate side effects of conventional chemotherapy and to enable delivery of the unique drug combinations needed for personalized medicine. To realize this potential, however, targeted nanocarriers must simultaneously overcome multiple challenges, including specificity, stability and a high capacity for disparate cargos. Here we report porous nanoparticle-supported lipid bilayers (protocells) that synergistically combine properties of liposomes and nanoporous particles. Protocells modified with a targeting peptide that binds to human hepatocellular carcinoma exhibit a 10,000-fold greater affinity for human hepatocellular carcinoma than for hepatocytes, endothelial cells or immune cells. Furthermore, protocells can be loaded with combinations of therapeutic (drugs, small interfering RNA and toxins) and diagnostic (quantum dots) agents and modified to promote endosomal escape and nuclear accumulation of selected cargos. The enormous capacity of the high-surface-area nanoporous core combined with the enhanced targeting efficacy enabled by the fluid supported lipid bilayer enable a single protocell loaded with a drug cocktail to kill a drug-resistant human hepatocellular carcinoma cell, representing a 106-fold improvement over comparable liposomes.

  13. Bilayer graphene spectral function in the random phase approximation and self-consistent GW approximation

    Science.gov (United States)

    Sabashvili, Andro; Östlund, Stellan; Granath, Mats

    2013-08-01

    We calculate the single-particle spectral function for doped bilayer graphene in the low energy limit, described by two parabolic bands with zero band gap and long range Coulomb interaction. Calculations are done using thermal Green's functions in both the random phase approximation (RPA) and the fully self-consistent GW approximation. Consistent with previous studies RPA yields a spectral function which, apart from the Landau quasiparticle peaks, shows additional coherent features interpreted as plasmarons, i.e., composite electron-plasmon excitations. In the GW approximation the plasmaron becomes incoherent and peaks are replaced by much broader features. The deviation of the quasiparticle weight and mass renormalization from their noninteracting values is small which indicates that bilayer graphene is a weakly interacting system. The electron energy loss function, Im[-ɛq-1(ω)] shows a sharp plasmon mode in RPA which in the GW approximation becomes less coherent and thus consistent with the weaker plasmaron features in the corresponding single-particle spectral function.

  14. Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes

    Science.gov (United States)

    Geng, Jia; Kim, Kyunghoon; Zhang, Jianfei; Escalada, Artur; Tunuguntla, Ramya; Comolli, Luis R.; Allen, Frances I.; Shnyrova, Anna V.; Cho, Kang Rae; Munoz, Dayannara; Wang, Y. Morris; Grigoropoulos, Costas P.; Ajo-Franklin, Caroline M.; Frolov, Vadim A.; Noy, Aleksandr

    2014-10-01

    There is much interest in developing synthetic analogues of biological membrane channels with high efficiency and exquisite selectivity for transporting ions and molecules. Bottom-up and top-down methods can produce nanopores of a size comparable to that of endogenous protein channels, but replicating their affinity and transport properties remains challenging. In principle, carbon nanotubes (CNTs) should be an ideal membrane channel platform: they exhibit excellent transport properties and their narrow hydrophobic inner pores mimic structural motifs typical of biological channels. Moreover, simulations predict that CNTs with a length comparable to the thickness of a lipid bilayer membrane can self-insert into the membrane. Functionalized CNTs have indeed been found to penetrate lipid membranes and cell walls, and short tubes have been forced into membranes to create sensors, yet membrane transport applications of short CNTs remain underexplored. Here we show that short CNTs spontaneously insert into lipid bilayers and live cell membranes to form channels that exhibit a unitary conductance of 70-100 picosiemens under physiological conditions. Despite their structural simplicity, these `CNT porins' transport water, protons, small ions and DNA, stochastically switch between metastable conductance substates, and display characteristic macromolecule-induced ionic current blockades. We also show that local channel and membrane charges can control the conductance and ion selectivity of the CNT porins, thereby establishing these nanopores as a promising biomimetic platform for developing cell interfaces, studying transport in biological channels, and creating stochastic sensors.

  15. Lateral organization, bilayer asymmetry, and inter-leaflet coupling of biological membranes.

    Science.gov (United States)

    Nickels, Jonathan D; Smith, Jeremy C; Cheng, Xiaolin

    2015-11-01

    Understanding of cell membrane organization has evolved significantly from the classic fluid mosaic model. It is now recognized that biological membranes are highly organized structures, with differences in lipid compositions between inner and outer leaflets and in lateral structures within the bilayer plane, known as lipid rafts. These organizing principles are important for protein localization and function as well as cellular signaling. However, the mechanisms and biophysical basis of lipid raft formation, structure, dynamics and function are not clearly understood. One key question, which we focus on in this review, is how lateral organization and leaflet compositional asymmetry are coupled. Detailed information elucidating this question has been sparse because of the small size and transient nature of rafts and the experimental challenges in constructing asymmetric bilayers. Resolving this mystery will require advances in both experimentation and modeling. We discuss here the preparation of model systems along with experimental and computational approaches that have been applied in efforts to address this key question in membrane biology. We seek to place recent and future advances in experimental and computational techniques in context, providing insight into in-plane and transverse organization of biological membranes.

  16. Solution-Based Single-Molecule FRET Studies of K(+) Channel Gating in a Lipid Bilayer.

    Science.gov (United States)

    Sadler, Emma E; Kapanidis, Achillefs N; Tucker, Stephen J

    2016-06-21

    Ion channels are dynamic multimeric proteins that often undergo multiple unsynchronized structural movements as they switch between their open and closed states. Such structural changes are difficult to measure within the context of a native lipid bilayer and have often been monitored via macroscopic changes in Förster resonance energy transfer (FRET) between probes attached to different parts of the protein. However, the resolution of this approach is limited by ensemble averaging of structurally heterogeneous subpopulations. These problems can be overcome by measurement of FRET in single molecules, but this presents many challenges, in particular the ability to control labeling of subunits within a multimeric protein with acceptor and donor fluorophores, as well as the requirement to image large numbers of individual molecules in a membrane environment. To address these challenges, we randomly labeled tetrameric KirBac1.1 potassium channels, reconstituted them into lipid nanodiscs, and performed single-molecule FRET confocal microscopy with alternating-laser excitation as the channels diffused in solution. These solution-based single-molecule FRET measurements of a multimeric ion channel in a lipid bilayer have allowed us to probe the structural changes that occur upon channel activation and inhibition. Our results provide direct evidence of the twist-to-shrink movement of the helix bundle crossing during channel gating and demonstrate how this method might be applied to real-time structural studies of ion channel gating. PMID:27332124

  17. Neutron reflectivity studies of single lipid bilayers supported on planar substrates

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, S.; Orts, W.J.; Berk, N.F.; Majkrzak, C.F. [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Koenig, B.W. [National Inst. of Health, Bethesda, MD (United States)

    1994-12-31

    Neutron reflectivity was used to probe the structure of single phosphatidylcholine (PC) lipid bilayers adsorbed onto a planar silicon surface in an aqueous environment. Fluctuations in the neutron scattering length density profiles perpendicular to the silicon/water interface were determined for different lipids as a function of the hydrocarbon chain length. The lipids were studied in both the gel and liquid crystalline phases by monitoring changes in the specularly-reflected neutron intensity as a function of temperature. Contrast variation of the neutron scattering length density was applied to both the lipid and the solvent. Scattering length density profiles were determined using both model-independent and model-dependent fitting methods. During the reflectivity measurements, a novel experimental set-up was implemented to decrease the incoherent background scattering due to the solvent. Thus, the reflectivity was measured to Q {approx} 0.3{Angstrom}{sup -1}, covering up to seven orders of magnitude in reflected intensity, for PC bilayers in D{sub 2}O and silicon-matched (38% D{sub 2}O/62% H{sub 2}O) water. The kinetics of lipid adsorption at the silicon/water interface were also explored by observing changes in the reflectivity at low Q values under silicon-matched water conditions.

  18. Melittin-Induced Bilayer Leakage Depends on Lipid Material Properties: Evidence for Toroidal Pores

    OpenAIRE

    Allende, Daniel; Simon, S. A.; McIntosh, Thomas J.

    2004-01-01

    The membrane-lytic peptide melittin has previously been shown to form pores in lipid bilayers that have been described in terms of two different structural models. In the “barrel stave” model the bilayer remains more or less flat, with the peptides penetrating across the bilayer hydrocarbon region and aggregating to form a pore, whereas in the “toroidal pore” melittin induces defects in the bilayer such that the bilayer bends sharply inward to form a pore lined by both peptides and lipid head...

  19. Efficient tunable generic model for self-assembling fluid bilayer membranes

    Science.gov (United States)

    Deserno, Markus

    2005-03-01

    We present a new model for the simulation of generic lipid bilayers in the mesoscopic regime (between a few nanometers and many tens of nanometers), which is very robust, versatile, and extremely efficient, since it avoids the need for an embedding solvent. Based entirely on simple pair potentials, it features a wide region of unassisted self assembly into fluid bilayers without the need for careful parameter tuning. The resulting membranes display the correct continuum elastic behavior with bending constants in the experimentally relevant range. It can be readily used to study events like bilayer fusion, bilayer melting, lipid mixtures, rafts, and protein-bilayer interactions.

  20. Characterization of the Prokaryotic Sodium Channel NavSp Pore with a Microfluidic Bilayer Platform.

    Directory of Open Access Journals (Sweden)

    Shimul Chandra Saha

    Full Text Available This paper describes the use of a newly-developed micro-chip bilayer platform to examine the electrophysiological properties of the prokaryotic voltage-gated sodium channel pore (Na(vSp from Silicibacter pomeroyi. The platform allows up to 6 bilayers to be analysed simultaneously. Proteoliposomes were incorporated into suspended lipid bilayers formed within the microfluidic bilayer chips. The chips provide access to bilayers from either side, enabling the fast and controlled titration of compounds. Dose-dependent modulation of the opening probability by the channel blocking drug nifedipine was measured and its IC50 determined.

  1. Statistical mechanics and dynamics of two supported stacked lipid bilayers.

    Science.gov (United States)

    Manghi, Manoel; Destainville, Nicolas

    2010-03-16

    The statistical physics and dynamics of double supported bilayers are studied theoretically. The main goal in designing double supported lipid bilayers is to obtain model systems of biomembranes: the upper bilayer is meant to be almost freely floating, the substrate being screened by the lower bilayer. The fluctuation-induced repulsion between membranes and between the lower membrane and the wall are explicitly taken into account using a Gaussian variational approach. It is shown that the variational parameters, the "effective" adsorption strength, and the average distance to the substrate, depend strongly on temperature and membrane elastic moduli, the bending rigidity, and the microscopic surface tension, which is a signature of the crucial role played by membrane fluctuations. The range of stability of these supported membranes is studied, showing a complex dependence on bare adsorption strengths. In particular, the experimental conditions of having an upper membrane slightly perturbed by the lower one and still bound to the surface are found. Included in the theoretical calculation of the damping rates associated with membrane normal modes are hydrodynamic friction by the wall and hydrodynamic interactions between both membranes. PMID:20000797

  2. Normal and Frictional Interactions between Liposome-Bearing Biomacromolecular Bilayers.

    Science.gov (United States)

    Gaisinskaya-Kipnis, Anastasia; Klein, Jacob

    2016-08-01

    Highly efficient lubricating boundary layers at biosurfaces such as cartilage have been proposed to comprise phospholipids complexed with biomacromolecules exposed at the surfaces. To gain insight into this, a systematic study on the normal and frictional forces between surfaces bearing a sequentially deposited model alginate-on-chitosan bilayer, bearing different adsorbed phosphatidylcholine (PC) liposomes, was carried out using a surface force balance. Structures of the resulting surface complexes were determined using atomic force microscopy (AFM) and cryo-scanning electron microscopy (cryo-SEM). The liposome/lipid-polymer complexes could maintain their integrity up to high pressures in terms of both normal and shear interactions between the surfaces, which were repeatable, reproducible, and revealed very low friction (coefficient of friction μ down to 10(-3)-10(-4), depending on the PC used) up to pressures of hundreds of atm. We attribute this remarkable lubrication capability ultimately to hydration lubrication acting at the hydrated phosphocholine headgroups of the PC lipids, either exposed at the liposome surfaces or through complexation with the polyelectrolyte bilayer. Values of μ, while low, were roughly an order of magnitude higher than for the same PC vesicles adsorbed on bare mica, a difference attributed to their lower density on the bilayer; the bilayer, however, stabilized the PC-vesicles far better than bare mica against rupture and shear at high compressions and sliding. PMID:27409248

  3. New dielectric relaxation in a bilayered fluid smectic phase

    OpenAIRE

    Benguigui, L.; Hardouin, F.

    1984-01-01

    We present dielectric measurements of the « DB8Cl » cyano compound which exhibits a Smectic A2 → Smectic C2 → Smectic ? sequence of bilayered fluid smectic phases. In particular a new perpendicular relaxation is observed in the S? which we interpret as indicative of a dipole ordering. A simplified model taking this result into account is proposed.

  4. Pedot and PPy Conducting Polymer Bilayer and Trilayer Actuators

    DEFF Research Database (Denmark)

    Zainudeen, Umer Lebbe; Careem, Mohamed Abdul; Skaarup, Steen

    2008-01-01

    attempts have been made to improve the actuator performance. We report electromechanical measurements on actuators of bilayer and trilayer free standing films prepared with polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymers. Both types of conducting polymer are pre...

  5. Anthrax toxin-induced rupture of artificial lipid bilayer membranes

    Science.gov (United States)

    Nablo, Brian J.; Panchal, Rekha G.; Bavari, Sina; Nguyen, Tam L.; Gussio, Rick; Ribot, Wil; Friedlander, Art; Chabot, Donald; Reiner, Joseph E.; Robertson, Joseph W. F.; Balijepalli, Arvind; Halverson, Kelly M.; Kasianowicz, John J.

    2013-08-01

    We demonstrate experimentally that anthrax toxin complexes rupture artificial lipid bilayer membranes when isolated from the blood of infected animals. When the solution pH is temporally acidified to mimic that process in endosomes, recombinant anthrax toxin forms an irreversibly bound complex, which also destabilizes membranes. The results suggest an alternative mechanism for the translocation of anthrax toxin into the cytoplasm.

  6. Polydimethylsiloxane bilayer films with an embedded spontaneous curvature.

    Science.gov (United States)

    Egunov, A I; Korvink, J G; Luchnikov, V A

    2016-01-01

    Elastomer polydimethylsiloxane (PDMS) films with embedded in-plane gradient stress are created by making PDMS/(PDMS + silicone oil) crosslinked bilayers and extracting the oil in a suitable organic solvent bath. The collapse of the elastomer after oil extraction generates differential stress in the films that is manifested through their out-of-plane deformation. The curvature κ of narrow stripes of the bilayer, which is composed of layers of approximately equal thicknesses and elasticity moduli, is satisfactorily described by the simple relationship κ = 1.5δH(-1), where δ is the mechanical strain, and H is the total thickness of the bilayer. Curvature mapping of triangular PDMS plates reveals the existence of spherical and cylindrical types of deformation at different locations of the plates. Various 3D-shaped objects can be formed by the self-folding of appropriately designed 2D patterns that are cut from the films, or by nonuniform distribution of the collapsing layer. Thin PDMS bilayers with embedded stress roll up into microtubes of almost perfect cylindrical shape when released in a controlled manner from a substrate. PMID:26539638

  7. Topological entanglement entropy in bilayer quantum Hall systems

    OpenAIRE

    Chung, Myung-Hoon

    2013-01-01

    We calculate the topological entanglement entropy in bilayer quantum Hall systems, dividing the set of quantum numbers into four parts. This topological entanglement entropy allows us to draw a phase diagram in the parameter space of layer separation and tunneling amplitude. We perform the finite size scaling analysis of the topological entanglement entropy in order to see the quantum phase transition clearly.

  8. The lipid bilayer membrane and its interactions with additives.

    NARCIS (Netherlands)

    Meijer, L.A.

    1994-01-01

    The aim of this study was to make accurate predictions on the interaction of biologically relevant molecules with lipid bilayer membranes. We emphasised on the partitioning of these molecules between the membrane phase, and the aqueous phase quantified by the partition coefficient. To make detailed

  9. Interaction of gramicidin with DPPC/DODAB bilayer fragments.

    Science.gov (United States)

    Carvalho, Camilla A; Olivares-Ortega, Constanza; Soto-Arriaza, Marco A; Carmona-Ribeiro, Ana M

    2012-12-01

    The interaction between the antimicrobial peptide gramicidin (Gr) and dipalmitoylphosphatidylcholine (DPPC)/dioctadecyldimethylammonium bromide (DODAB) 1:1 large unilamellar vesicles (LVs) or bilayer fragments (BFs) was evaluated by means of several techniques. The major methods were: 1) Gr intrinsic fluorescence and circular dichroism (CD) spectroscopy; 2) dynamic light scattering for sizing and zeta-potential analysis; 3) determination of the bilayer phase transition from extrinsic fluorescence of bilayer probes; 4) pictures of the dispersions for evaluation of coloidal stability over a range of time and NaCl concentration. For Gr in LVs, the Gr dimeric channel conformation is suggested from: 1) CD and intrinsic fluorescence spectra similar to those in trifluoroethanol (TFE); 2) KCl or glucose permeation through the LVs/Gr bilayer. For Gr in BFs, the intertwined dimeric, non-channel Gr conformation is evidenced by CD and intrinsic fluorescence spectra similar to those in ethanol. Both LVs and BFs shield Gr tryptophans against quenching by acrylamide but the Stern-Volmer quenching constant was slightly higher for Gr in BFs confirming that the peptide is more exposed to the water phase in BFs than in LVs. The DPPC/DODAB/Gr supramolecular assemblies may predict the behavior of other antimicrobial peptides in assemblies with lipids. PMID:22960286

  10. Kinetics of domain registration in multicomponent lipid bilayer membranes

    DEFF Research Database (Denmark)

    Sornbundit, K.; Modchang, C.; Triampo, W.;

    2014-01-01

    The kinetics of registration of lipid domains in the apposing leaflets of symmetric bilayer membranes is investigated via systematic dissipative particle dynamics simulations. The decay of the distance between the centres of mass of the domains in the apposing leaflets is almost linear during early...

  11. Phase behavior of pure lipid bilayers with mismatch interactions

    DEFF Research Database (Denmark)

    Zhang, Zhengping; Laradji, Mohamed; Guo, Hong;

    1992-01-01

    Recently Corvera, Laradji, and Zuckermann (unpublished) showed that the multistate lattice model due to Pink, Green, and Chapman [Biochemistry 20, 6692 (1981)] with parameters obtained from fitting to thermodynamic data for saturated phospholipid bilayers does not exhibit a phase transition but c...

  12. Pairing of cholesterol with oxidized phospholipid species in lipid bilayers

    DEFF Research Database (Denmark)

    Khandelia, Himanshu; Loubet, Bastien; Olzynska, Agnieszka;

    2014-01-01

    . The additivity of the packing parameters of cholesterol and PZPC explains their cohabitation in a planar bilayer. Oxidized lipids are ubiquitously present in significant amounts in high- and low-density lipoprotein (HDL and LDL) particles, diseased tissues, and in model phospholipid mixtures containing...

  13. Super-Sensitive and Robust Biosensors from Supported Polymer Bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Paxton, Walter F. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Biological organisms are potentially the most sensitive and selective biological detection systems known, yet we are currently severely limited in our ability to exploit biological interactions in sensory devices, due in part to the limited stability of biological systems and derived materials. This proposal addresses an important aspect of integrating biological sensory materials in a solid state device. If successful, such technology could enable entirely new classes of robust biosensors that could be miniaturized and deployed in the field. The critical aims of the proposed work were 1) the calibration of a more versatile approach to measuring pH, 2) the use of this method to monitor pH changes caused by the light-induced pumping of protons across vesicles with bacteriorhodopsin integrated into the membranes (either polymer or lipid); 3) the preparation of bilayer assemblies on platinum surfaces; 4) the enhanced detection of lightinduced pH changes driven by bR-loaded supported bilayers. I have developed a methodology that may enable that at interfaces and developed a methodology to characterize the functionality of bilayer membranes with reconstituted membrane proteins. The integrity of the supported bilayer films however must be optimized prior to the full realization of the work originally envisioned in the original proposal. Nevertheless, the work performed on this project and the encouraging results it has produced has demonstrated that these goals are challenging yet within reach.

  14. The Empirical Research about the Impact of Regional Financial Ecological Environment on Small Businesses Financing%区域金融生态环境对小企业融资影响的实证研究

    Institute of Scientific and Technical Information of China (English)

    李文新; 郭露

    2014-01-01

    从经济基础、地方金融发展、信用环境、政府行为和法制环境五要素中选取18个指标,构建区域金融生态环境评价指标体系。通过因子分析法,筛选出具有代表性的5个指标作为实证考察变量,探讨区域金融生态环境对小企业融资的影响程度。实证结果表明:企业诚信和区域金融发展对小企业融资的影响最大。最后结合理论分析和实证结果,对优化区域金融生态环境、缓解小企业融资困难提供建议。%This paper analyzes the impact of the financial environment for small businesses finan-cing,by selecting 1 8 indicators from the five aspects of the economic base,local financial develop-ment,credit environment,government behavior and legal environment,to build a regional finan-cial ecological environment evaluation system,and selecting five representative indicators as em-pirical study variables through factor analysis,to explore how the regional financial environment impact of small businesses financing.The empirical results show that the most important factors are credit environment and regional financial development on small businesses financing.The pa-per also provides suggestions to small businesses financing from five aspects.

  15. [Study on the types and water pollution driving forces of the typical and medium-small-sized cities in the southern China based on the analysis of water environment].

    Science.gov (United States)

    Jiao, Shi-Xing; Wang, La-Chun; Huo, Yu; Chen, Chang-Chun; Teng, Juan

    2009-07-15

    According to the major pollution sources of urban water environment, 10 indexes such as industrial sewage quantity were closen to establish evaluation indexes system about the types and influencing factors of the typical and medium-small-sized cities in the southern China. Case studies of 16 typical and medium-small-sized cities were taken in Jiangsu, Zhejiang, Hubei and Anhui provinces. Combined with SPSS 11.0 cluster analysis results, city types were divided in reference to the values of water resources comprehensive pollution indexes and economical development indexes. The driving forces about city water environment pollution were studied by principal component analysis method. The result indicates that the 16 cities belong to two categories and four sub-categories, which are rich economy as well as light pollution of water environment and poor economy as well as heavy pollution of water environment. The influencing factors of water environment pollution are in sequence of industrial water pollution, agricultural no-point source pollution and urban domestic water pollution. The main factors of water environment pollution influenced I category cities, II as well as IV category cities and III category cities are industrial water pollution, urban domestic pollution and agricultural no-point source pollution respectively.

  16. Crowding-Induced Mixing Behavior of Lipid Bilayers: Examination of Mixing Energy, Phase, Packing Geometry, and Reversibility.

    Science.gov (United States)

    Zeno, Wade F; Rystov, Alice; Sasaki, Darryl Y; Risbud, Subhash H; Longo, Marjorie L

    2016-05-10

    In an effort to develop a general thermodynamic model from first-principles to describe the mixing behavior of lipid membranes, we examined lipid mixing induced by targeted binding of small (Green Fluorescent Protein (GFP)) and large (nanolipoprotein particles (NLPs)) structures to specific phases of phase-separated lipid bilayers. Phases were targeted by incorporation of phase-partitioning iminodiacetic acid (IDA)-functionalized lipids into ternary lipid mixtures consisting of DPPC, DOPC, and cholesterol. GFP and NLPs, containing histidine tags, bound the IDA portion of these lipids via a metal, Cu(2+), chelating mechanism. In giant unilamellar vesicles (GUVs), GFP and NLPs bound to the Lo domains of bilayers containing DPIDA, and bound to the Ld region of bilayers containing DOIDA. At sufficiently large concentrations of DPIDA or DOIDA, lipid mixing was induced by bound GFP and NLPs. The validity of the thermodynamic model was confirmed when it was found that the statistical mixing distribution as a function of crowding energy for smaller GFP and larger NLPs collapsed to the same trend line for each GUV composition. Moreover, results of this analysis show that the free energy of mixing for a ternary lipid bilayer consisting of DOPC, DPPC, and cholesterol varied from 7.9 × 10(-22) to 1.5 × 10(-20) J/lipid at the compositions observed, decreasing as the relative cholesterol concentration was increased. It was discovered that there appears to be a maximum packing density, and associated maximum crowding pressure, of the NLPs, suggestive of circular packing. A similarity in mixing induced by NLP1 and NLP3 despite large difference in projected areas was analytically consistent with monovalent (one histidine tag) versus divalent (two histidine tags) surface interactions, respectively. In addition to GUVs, binding and induced mixing behavior of NLPs was also observed on planar, supported lipid multibilayers. The mixing process was reversible, with Lo domains

  17. Cholesterol enhances surface water diffusion of phospholipid bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chi-Yuan; Kausik, Ravinath; Han, Songi, E-mail: songi@chem.ucsb.edu [Department of Chemistry and Biochemistry and Materials Research Laboratory, University of California, Santa Barbara, California 93106 (United States); Olijve, Luuk L. C. [Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven (Netherlands)

    2014-12-14

    Elucidating the physical effect of cholesterol (Chol) on biological membranes is necessary towards rationalizing their structural and functional role in cell membranes. One of the debated questions is the role of hydration water in Chol-embedding lipid membranes, for which only little direct experimental data are available. Here, we study the hydration dynamics in a series of Chol-rich and depleted bilayer systems using an approach termed {sup 1}H Overhauser dynamic nuclear polarization (ODNP) NMR relaxometry that enables the sensitive and selective determination of water diffusion within 5–10 Å of a nitroxide-based spin label, positioned off the surface of the polar headgroups or within the nonpolar core of lipid membranes. The Chol-rich membrane systems were prepared from mixtures of Chol, dipalmitoyl phosphatidylcholine and/or dioctadecyl phosphatidylcholine lipid that are known to form liquid-ordered, raft-like, domains. Our data reveal that the translational diffusion of local water on the surface and within the hydrocarbon volume of the bilayer is significantly altered, but in opposite directions: accelerated on the membrane surface and dramatically slowed in the bilayer interior with increasing Chol content. Electron paramagnetic resonance (EPR) lineshape analysis shows looser packing of lipid headgroups and concurrently tighter packing in the bilayer core with increasing Chol content, with the effects peaking at lipid compositions reported to form lipid rafts. The complementary capability of ODNP and EPR to site-specifically probe the hydration dynamics and lipid ordering in lipid membrane systems extends the current understanding of how Chol may regulate biological processes. One possible role of Chol is the facilitation of interactions between biological constituents and the lipid membrane through the weakening or disruption of strong hydrogen-bond networks of the surface hydration layers that otherwise exert stronger repulsive forces, as reflected in

  18. Cholesterol enhances surface water diffusion of phospholipid bilayers

    Science.gov (United States)

    Cheng, Chi-Yuan; Olijve, Luuk L. C.; Kausik, Ravinath; Han, Songi

    2014-12-01

    Elucidating the physical effect of cholesterol (Chol) on biological membranes is necessary towards rationalizing their structural and functional role in cell membranes. One of the debated questions is the role of hydration water in Chol-embedding lipid membranes, for which only little direct experimental data are available. Here, we study the hydration dynamics in a series of Chol-rich and depleted bilayer systems using an approach termed 1H Overhauser dynamic nuclear polarization (ODNP) NMR relaxometry that enables the sensitive and selective determination of water diffusion within 5-10 Å of a nitroxide-based spin label, positioned off the surface of the polar headgroups or within the nonpolar core of lipid membranes. The Chol-rich membrane systems were prepared from mixtures of Chol, dipalmitoyl phosphatidylcholine and/or dioctadecyl phosphatidylcholine lipid that are known to form liquid-ordered, raft-like, domains. Our data reveal that the translational diffusion of local water on the surface and within the hydrocarbon volume of the bilayer is significantly altered, but in opposite directions: accelerated on the membrane surface and dramatically slowed in the bilayer interior with increasing Chol content. Electron paramagnetic resonance (EPR) lineshape analysis shows looser packing of lipid headgroups and concurrently tighter packing in the bilayer core with increasing Chol content, with the effects peaking at lipid compositions reported to form lipid rafts. The complementary capability of ODNP and EPR to site-specifically probe the hydration dynamics and lipid ordering in lipid membrane systems extends the current understanding of how Chol may regulate biological processes. One possible role of Chol is the facilitation of interactions between biological constituents and the lipid membrane through the weakening or disruption of strong hydrogen-bond networks of the surface hydration layers that otherwise exert stronger repulsive forces, as reflected in faster

  19. Amphiphile regulation of ion channel function by changes in the bilayer spring constant

    DEFF Research Database (Denmark)

    Lundbæk, Jens August; Koeppe, R.E.; Andersen, Oluf Sten

    2010-01-01

    effect of amphiphiles, at concentrations often used in biological research, on the bilayer elastic response to a change in the hydrophobic length of an embedded protein. The effects of structurally diverse amphiphiles can be described by changes in a phenomenological bilayer spring constant (H......Many drugs are amphiphiles that, in addition to binding to a particular target protein, adsorb to cell membrane lipid bilayers and alter intrinsic bilayer physical properties (e. g., bilayer thickness, monolayer curvature, and elastic moduli). Such changes can modulate membrane protein function......-B) that summarizes the bilayer elastic properties, as sensed by a bilayer-spanning protein. Amphiphile-induced changes in H-B, measured using gA channels of a particular length, quantitatively predict changes in lifetime for channels of a different length-as well as changes in the inactivation of voltage...

  20. 小城镇生态环境规划研究进展综述%A Summary of Progress of Planning on Eco-environment in Small Towns

    Institute of Scientific and Technical Information of China (English)

    黄慧琼; 李巧云; 关欣; 廖莎; 刘乙玄

    2011-01-01

    Urbanization process is accelerating with the rapid development of economy in our country.The construction of small towns has already entered a stage of fast developing.However,ecological environment has been damaged seriously.Strengthening the planning of eco-environment in small towns is the necessary channel to realize sustainable development of small town.Progress of related studies both at home and abroad were described in the paper.Planning on eco-environment in small towns was reviewed from harness of pollution,evaluation index system and method,theory and practice.%随着经济的发展,我国城镇化建设不断加快,小城镇建设进入了快速发展阶段,但同时也导致了生态环境的严重破坏。因此,加强小城镇生态环境规划是实现小城镇可持续发展的必由之路。文章概述了国外相关研究进展,并从小城镇污染治理、评价指标体系及评价方法、理论和实践三个方面来综述国内小城镇生态环境规划。

  1. Location of two antioxidants in oriented model membranes. Small-angle x-ray diffraction study.

    OpenAIRE

    Katsaras, J.; Stinson, R H; Davis, J H; Kendall, E J

    1991-01-01

    Small-angle x-ray diffraction has been applied in locating either butylated hydroxytoluene (BHT) or delta-tocopherol and their brominated analogues at a concentration of 40 mol% in oriented bilayers of dipalmitoylphosphatidylcholine (DPPC) or DPPC + 15 mol% cholesterol at 20 degrees C. Phases were determined using swelling experiments with structure factors plotted in reciprocal space, creating a relatively smooth curve as the amount of water between the bilayers was changed. Continuous Fouri...

  2. Quantitative analysis of the proximity effect in Nb/ Co60 Fe40 , Nb/Ni , and Nb/ Cu40 Ni60 bilayers

    Science.gov (United States)

    Kim, Jinho; Kwon, Jun Hyung; Char, K.; Doh, Hyeonjin; Choi, Han-Yong

    2005-07-01

    We have studied the behavior of the superconducting critical temperature Tc in Nb/Co60Fe40 , Nb/Ni , and Nb/Cu40Ni60 bilayers as a function of the thickness of each ferromagnetic metal layer. The Tc ’s of three sets of bilayers exhibit nonmonotonic behavior as a function of each ferromagnetic metal thickness. Employing the quantitative analysis based on Usadel formalism of the effect of the exchange energy, we observed that the Tc behavior of Nb/Co60Fe40 bilayers is in good agreement with the theoretical values over the entire range of the data. On the other hand, the Tc ’s of Nb/Ni and Nb/Cu40Ni60 bilayers show a higher value in the small thickness regime than the theoretical prediction obtained from the calculation, which matches the dip position and the saturation value of Tc in the large thickness limit. This discrepancy is probably due to the weakened magnetic properties of Ni and Cu40Ni60 when they are thin. We discuss the values of our fitting parameters and their implication for the validity of the current Usadel formalism of the effect of the exchange energy.

  3. Enhanced resistive switching and multilevel behavior in bilayered HfAlO/HfAlO{sub x} structures for non-volatile memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Faita, F. L., E-mail: fabriciofaita@gmail.com [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Departamento de Física, Universidade Federal de Santa Catarina, Campus Trindade, 88040-900 Florianópolis, SC (Brazil); Silva, J. P. B., E-mail: josesilva@fisica.uminho.pt [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); IFIMUP and IN-Institute of Nanoscience and Nanotechnology, Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto (Portugal); Pereira, M.; Gomes, M. J. M. [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2015-12-14

    In this work, hafnium aluminum oxide (HfAlO) thin films were deposited by ion beam sputtering deposition technique on Si substrate. The presence of oxygen vacancies in the HfAlO{sub x} layer deposited in oxygen deficient environment is evidenced from the photoluminescence spectra. Furthermore, HfAlO(oxygen rich)/HfAlO{sub x}(oxygen poor) bilayer structures exhibit multilevel resistive switching (RS), and the switching ratio becomes more prominent with increasing the HfAlO layer thickness. The bilayer structure with HfAlO/HfAlO{sub x} thickness of 30/40 nm displays the enhanced multilevel resistive switching characteristics, where the high resistance state/intermediate resistance state (IRS) and IRS/low resistance state resistance ratios are ≈10{sup 2} and ≈5 × 10{sup 5}, respectively. The switching mechanisms in the bilayer structures were investigated by the temperature dependence of the three resistance states. This study revealed that the multilevel RS is attributed to the coupling of ionic conduction and the metallic conduction, being the first associated to the formation and rupture of conductive filaments related to oxygen vacancies and the second with the formation of a metallic filament. Moreover, the bilayer structures exhibit good endurance and stability in time.

  4. Periodic Landau gauge and quantum Hall effect in twisted bilayer graphene

    Science.gov (United States)

    Hasegawa, Yasumasa; Kohmoto, Mahito

    2013-09-01

    Energy versus magnetic field (Hofstadter butterfly diagram) in twisted bilayer graphene is studied theoretically. If we take the usual Landau gauge, we cannot take a finite periodicity even when the magnetic flux through a supercell is a rational number. We show that the periodic Landau gauge, which has the periodicity in one direction, makes it possible to obtain the Hofstadter butterfly diagram. Since a supercell can be large, magnetic flux through a supercell normalized by the flux quantum can be a fractional number with a small denominator, even when a magnetic field is not extremely strong. As a result, quantized Hall conductance can be a solution of the Diophantine equation which cannot be obtained by the approximation of the linearized energy dispersion near the Dirac points.

  5. Collective dynamics in fully hydrated phospholipid bilayers studied by inelastic x-ray scattering.

    Science.gov (United States)

    Chen, S H; Liao, C Y; Huang, H W; Weiss, T M; Bellisent-Funel, M C; Sette, F

    2001-01-22

    The short wavelength density fluctuation of DLPC (dilaurylphosphatidylcholine) bilayers close to full hydration has been studied by the inelastic x-ray scattering technique below and above the main transition temperature. The analysis based on a generalized three effective eigenmode theory allows us to construct the dispersion relation of the high frequency sound mode for the first time. The marked softening of the excitation near k = 14 nm(-1), corresponding to the lipid chain-chain correlation peak in the structure factor, in the L(alpha) phase implies prevalent occurrences of short-wavelength in-plane motions of lipid chains that might be of importance for transportation of small molecules across membranes. PMID:11177926

  6. Electrocaloric Effect of P(VDF-TrFE)/SrTiO3 Bilayer Thin Films

    Institute of Scientific and Technical Information of China (English)

    QIU Jian-Hua; DING Jian-Ning; YUAN Ning-Yi; WANG Xiu-Qin

    2013-01-01

    A phenomenological thermodynamic theory is applied to investigate the effect of misfit strain and electric field on the electrocaloric effect of P(VDF-TrFE)/SrTiO3 bilayer thin films.Theoretical results indicate that the low electric field results in the decrease of the average polarization with the increase of the relative thickness of SrTiO3 layer,and the high electric field has an opposite effect on it.Moreover,the electrocaloric effect strongly depends on the electric field.The low electric field and the small field change can lead to a maximum of the electrocaloric effect,meanwhile the high electric field or the large field change results in the opposite trend.

  7. Probing Dynamics at Interfaces: Molecular Motions in Lipid Bilayers studied by Neutron Backscattering

    CERN Document Server

    Rheinstädter, M C; Salditt, T; Rheinst\\"adter, Maikel C.; Seydel, Tilo; Salditt, Tim

    2004-01-01

    Lipid membranes in a physiological context cannot be understood without taking into account their mobile environment. Here, we report on a high energy-resolution neutron backscattering study to investigate slow motions on nanosecond time scales in highly oriented solid supported phospholipid bilayers of the model system DMPC -d54 (deuterated 1,2-dimyristoyl-sn-glycero-3-phoshatidylcholine). This technique allows discriminating the Q-dependent onset of mobility and provides a benchmark test regarding the feasibility of dynamical neutron scattering investigations on these sample systems. Apart from freezing of the lipid acyl-chains, we could observe a second freezing temperature that we attribute to the hydration water in between the membrane stacks. The freezing is lowered several degrees as compared to (heavy) bulk water.

  8. Undulation instability in a bilayer lipid membrane due to electric field interaction with lipid dipoles

    CERN Document Server

    Bingham, Richard J; Smye, Stephen W

    2010-01-01

    Bilayer lipid membranes [BLMs] are an essential component of all biological systems, forming a functional barrier for cells and organelles from the surrounding environment. The lipid molecules that form membranes contain both permanent and induced dipoles, and an electric field can induce the formation of pores when the transverse field is sufficiently strong (electroporation). Here, a phenomenological free energy is constructed to model the response of a BLM to a transverse static electric field. The model contains a continuum description of the membrane dipoles and a coupling between the headgroup dipoles and the membrane tilt. The membrane is found to become unstable through buckling modes, which are weakly coupled to thickness fluctuations in the membrane. The thickness fluctuations, along with the increase in interfacial area produced by membrane buckling, increase the probability of localized membrane breakdown, which may lead to pore formation. The instability is found to depend strongly on the strengt...

  9. Organization and Structure of Branched Amphipathic Oligopeptide Bilayers.

    Science.gov (United States)

    Jia, Zhiguang; Whitaker, Susan K; Tomich, John M; Chen, Jianhan

    2016-09-27

    A class of self-assembling branched amphiphilic peptide capsules (BAPCs) was recently developed that could serve as a new drug delivery vehicle. BAPCs can encapsulate solutes up to ∼12 kDa during assembly, are unusually stable, and are readily taken up by cells with low cytotoxicity. Coarse-grained simulations have supported that BAPCs are defined by bilayers that resemble those formed by diacyl phospholipids. Here, atomistic simulations were performed to characterize the structure and organization of bilayers formed by three branched amphiphilic peptides (BAPs): bis(Ac-FLIVIGSII)-K-K4-CO-NH2, bis(Ac-CHA-LIVIGSII)-K-K4-CO-NH2, and bis(Ac-FLIVI)-K-K4-CO-NH2. The results show BAPs form a network of intra- and intermolecular backbone hydrogen bonds within the same leaflet in addition to hydrophobic side-chain interactions. The terminal residues of two leaflets form an interdigitation region locking two leaflets together. The phenyl groups in bis(Ac-FLIVIGSII)-K-K4-CO-NH2 and bis(Ac-FLIVI)-K-K4-CO-NH2 are tightly packed near the bilayer center but do not formed ordered structures with specific π-π stacking. Replacing phenyl groups with the cyclohexane side chain only slightly increases the level of disorder in bilayer structures and thus should not significantly affect the stability, consistent with experimental results on bis(Ac-CHA-LIVIGSII)-K-K4-CO-NH2 BAPCs. Self-assembly simulations further suggest that leaflet interdigitation likely occurs at early stages of BAPC formation. Atomistic simulations also reveal that the BAPC bilayers are highly permeable to water. This prediction was validated using fluorescence measurements of encapsulated self-quenching dye upon transferring BAPCs to buffers with different salt concentrations. Improved understanding of the organization and structure of BAPC bilayers at the atomic level will provide a basis for future rational modifications of BAP sequence to improve BAPC properties as a new class of delivery vehicle. PMID

  10. The Relationship between Distinctive Capabilities, Strategy Types, Environment and the Export Performance of Small and Medium-Sized Enterprises of the Malaysian Manufacturing Sector

    OpenAIRE

    Man, Mandy Mok Kim

    2009-01-01

    This study was conducted to investigate the relationship between distinctive capabilities, strategy types, environment and the export performance of SMES in the Malaysian manufacturing sectors. The conceptual framework is developed based on the distinctive capabilities, strategy types, environment and export performance. This study is based on a sample survey consisting of 121 SMES in the manufacturing sector. Using structured questionnaires, the data were collected by mail as well as by inte...

  11. The roles of bulk and interfacial molecular orientations in determining the performance of organic bilayer solar cells

    KAUST Repository

    Ngongang Ndjawa, Guy O.

    2014-09-09

    Molecular orientation plays a significant role in determining the performance of small molecule solar cells. Key photovoltaic processes in these cells are strongly dependent on how the molecules are oriented in the active layer. We isolate contributions arising from the bulk molecular orientations vs. those from interfacial orientations in ZnPc/C60 bilayer systems and we probe these contributions by comparing device pairs in which only the bulk or the interface differ. By controlling the orientation in the bulk the current can be strongly modulated, whereas controlling the interfacial molecular orientation and degree of intermixing mediate the voltage.

  12. Training Effect and Hysteretic Behaviour of Angular Dependence of Exchange Bias in Co/IrMn Bilayers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jing; DU Jun; BAI Xiao-Jun; YOU Biao; ZHANG Wei; HU An

    2009-01-01

    @@ The training effect and the hysteresis behaviour of the angular dependence of exchange bias are extensively investigated upon the variation of the IrMn layer thickness tIrMn in a series of Co/IrMn bilayers. When tIrMn is very small, both of them are negligible. Then they increase very sharply with increasing tIrMn and then reach maxima at almost the same value of tIrMn. Finally they both decrease when tIrMn is further increased. The similar variation trends suggest that these phenomena arise from irreversible change of antiferromagnet spin orientations, according to the thermal activation model.

  13. Interfacial Exchange Coupling Induced Anomalous Anisotropic Magnetoresistance in Epitaxial γ′-Fe 4 N/CoN Bilayers

    KAUST Repository

    Li, Zirun

    2015-02-02

    Anisotropic magnetoresistance (AMR) of the facing-target reactively sputtered epitaxial γ′-Fe4N/CoN bilayers is investigated. The phase shift and rectangular-like AMR appears at low temperatures, which can be ascribed to the interfacial exchange coupling. The phase shift comes from the exchange bias (EB) that makes the magnetization lag behind a small field. When the γ′-Fe4N thickness increases, the rectangular-like AMR appears. The rectangular-like AMR should be from the combined contributions including the EB-induced unidirectional anisotropy, intrinsic AMR of γ′-Fe4N layer and interfacial spin scattering.

  14. The Mechanical Aspects of Formation and Application of PDMS Bilayers Rolled into a Cylindrical Structure

    Directory of Open Access Journals (Sweden)

    Dongwon Kang

    2015-01-01

    Full Text Available A polydimethylsiloxane (PDMS film with its surface being oxidized by a plasma treatment or a UV-ozone (UVO treatment, that is, a bilayer made of PDMS and its oxidized surface layer, is known to roll into a cylindrical structure upon exposure to the chloroform vapor due to the mismatch in the swelling ratio between PDMS and the oxidized layer by the chloroform vapor. Here we analyzed the formation of the rolled bilayer with the mechanical aspects: how the mismatch in the swelling ratio of the bilayer induces rolling of the bilayer, why any form of trigger that breaks the symmetry in the in-plane stress level is needed to roll the bilayer uniaxially, why the rolled bilayer does not unroll in the dry state when there is no more mismatch in the swelling ratio, and how the measured curvature of rolled bilayer matches well with the prediction by the theory. Moreover, for the use of the rolled bilayer as the channel of the microfluidic device, we examined whether the rolled bilayer deforms or unrolls by the flow of the aqueous solution that exerts the circumferential stress on the rolled bilayer.

  15. A Molecular Dynamics Study of the Structural and Dynamical Properties of Putative Arsenic Substituted Lipid Bilayers

    Directory of Open Access Journals (Sweden)

    Ratna Juwita

    2013-04-01

    Full Text Available Cell membranes are composed mainly of phospholipids which are in turn, composed of five major chemical elements: carbon, hydrogen, nitrogen, oxygen, and phosphorus. Recent studies have suggested the possibility of sustaining life if the phosphorus is substituted by arsenic. Although this issue is still controversial, it is of interest to investigate the properties of arsenated-lipid bilayers to evaluate this possibility. In this study, we simulated arsenated-lipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-arsenocholine (POAC, lipid bilayers using all-atom molecular dynamics to understand basic structural and dynamical properties, in particular, the differences from analogous 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, (POPC lipid bilayers. Our simulations showed that POAC lipid bilayers have distinct structural and dynamical properties from those of native POPC lipid bilayers. Relative to POPC lipid bilayers, POAC lipid bilayers have a more compact structure with smaller lateral areas and greater order. The compact structure of POAC lipid bilayers is due to the fact that more inter-lipid salt bridges are formed with arsenate-choline compared to the phosphate-choline of POPC lipid bilayers. These inter-lipid salt bridges bind POAC lipids together and also slow down the head group rotation and lateral diffusion of POAC lipids. Thus, it would be anticipated that POAC and POPC lipid bilayers would have different biological implications.

  16. 从艺术角度打造林区特色小城镇环境%To build the forest characteristics of small town environment from the perspective of Art

    Institute of Scientific and Technical Information of China (English)

    姚雪峰

    2015-01-01

    Environmental art design is an applied discipline, in line with the principle of learn in order to practise, this article emphatically studied by now means to build a feasible way to Yichun town environment construction, considering the political, economic, cultural and other aspects, to create the image of a small town beautiful environment, realize the sustainable development of small towns.%环境艺术设计专业是一门应用性学科,本着学以致用的原则,文章着重研究了通过现在手段打造伊春小镇环境建设的可行方式,从政治、经济、文化等方面考虑,打造美好的小城镇形象与环境,实现小城镇健康可持续发展。

  17. On the stability of foams made with surfactant bilayer phases.

    Science.gov (United States)

    Briceño-Ahumada, Zenaida; Maldonado, Amir; Impéror-Clerc, Marianne; Langevin, Dominique

    2016-02-01

    The stability of foams made with sponge phases (L3 phases) and lamellar phases (L(α) phases), both containing surfactant bilayers, has been investigated. The extreme stability of foams made with lamellar phases seems essentially due to the high viscosity of the foaming solution, which slows down gravity drainage. Moreover, the foams start draining only when the buoyancy stress overcomes the yield stress of the L(α) phase. The bubble growth associated with gas transfer is unusual: it follows a power law with an exponent smaller than those corresponding to Ostwald ripening (wet foams) and to coarsening (dry foams). The foams made with sponge phases are in turn very unstable, even less stable than pure surfactant foams made with glycerol solutions having the same viscosity. The fact that the surfactant bilayers in the sponge phase have a negative Gaussian curvature could facilitate bubble coalescence. PMID:26647140

  18. Formation of droplet interface bilayers in a Teflon tube

    Science.gov (United States)

    Walsh, Edmond; Feuerborn, Alexander; Cook, Peter R.

    2016-01-01

    Droplet-interface bilayers (DIBs) have applications in disciplines ranging from biology to computing. We present a method for forming them manually using a Teflon tube attached to a syringe pump; this method is simple enough it should be accessible to those without expertise in microfluidics. It exploits the properties of interfaces between three immiscible liquids, and uses fluid flow through the tube to pack together drops coated with lipid monolayers to create bilayers at points of contact. It is used to create functional nanopores in DIBs composed of phosphocholine using the protein α-hemolysin (αHL), to demonstrate osmotically-driven mass transfer of fluid across surfactant-based DIBs, and to create arrays of DIBs. The approach is scalable, and thousands of DIBs can be prepared using a robot in one hour; therefore, it is feasible to use it for high throughput applications. PMID:27681313

  19. Exchange bias in diluted-antiferromagnet/antiferromagnet bilayers

    International Nuclear Information System (INIS)

    The hysteresis-loop properties of a diluted-antiferromagnetic (DAF) layer exchange coupling to an antiferromagnetic (AF) layer are investigated by means of numerical simulations. Remarkable loop shift and coercivity enhancement are observed in such DAF/AF bilayers, while they are absent in the uncoupled DAF single layer. The influences of pinned domains, dilution, cooling field and DAF layer thickness on the loop shift are investigated systematically. The result unambiguously confirms an exchange bias (EB) effect in the DAF/AF bilayers. It also reveals that the EB effect originates from the pinned AF domains within the DAF layer. In contrast to conventional EB systems, frozen uncompensated spins are not found at the interface of the AF pinning layer. (paper)

  20. Effect of PEGylation on Drug Entry into Lipid Bilayer

    DEFF Research Database (Denmark)

    Rissanen, S.; Kumorek, M.; Martinez-Seara, H.;

    2014-01-01

    dynamics (MD) simulations to consider the behavior of two drug molecules functionalized with PEG (tetraphenylporphyrin used in cancer phototherapy and biochanin A belonging to the isoflavone family) in the presence of a lipid bilayer. The commonly held view is that functionalization of a drug molecule with......Poly(ethylene glycol) (PEG) is a polymer commonly used for functionalization of drug molecules to increase their bloodstream lifetime, hence efficacy. However, the interactions between the PEGylated drugs and biomembranes are not clearly understood. In this study, we employed atomic-scale molecular...... a polymer acts as an entropic barrier, inhibiting the penetration of the drug molecule through a cell membrane. Our results indicate that in the bloodstream there is an additional source of electrostatic repulsive interactions between the PEGylated drugs and the lipid bilayer. Both the PEG chain and...

  1. Wrinkled bilayer graphene with wafer scale mechanical strain

    Science.gov (United States)

    Mikael, Solomon; Seo, Jung-Hun; Javadi, Alireza; Gong, Shaoqin; Ma, Zhenqiang

    2016-05-01

    Wafer-scale strained bilayer graphene is demonstrated by employing a silicon nitride (Si3N4) stressor layer. Different magnitudes of compressive stress up to 840 MPa were engineered by adjusting the Si3N4 deposition recipes, and different strain conditions were analyzed using Raman spectroscopy. The strained graphene displayed significant G peak shifts and G peak splitting with 16.2 cm-1 and 23.0 cm-1 of the G band and two-dimensional band shift, which corresponds to 0.26% of strain. Raman mapping of large regions of the graphene films found that the largest shifts/splitting occurred near the bilayer regions of the graphene films. The significance of our approach lies in the fact that it can be performed in a conventional microfabrication process, i.e., the plasma enhanced chemical vapor deposition system, and thus easily implemented for large scale production.

  2. Quantum Monte Carlo study of bilayer ionic Hubbard model

    Science.gov (United States)

    Jiang, M.; Schulthess, T. C.

    2016-04-01

    The interaction-driven insulator-to-metal transition has been reported in the ionic Hubbard model (IHM) for moderate interaction U , while its metallic phase only occupies a narrow region in the phase diagram. To explore the enlargement of the metallic regime, we extend the ionic Hubbard model to two coupled layers and study the interplay of interlayer hybridization V and two types of intralayer staggered potentials Δ : one with the same (in-phase) and the other with a π -phase shift (antiphase) potential between layers. Our determinant quantum Monte Carlo (DQMC) simulations at lowest accessible temperatures demonstrate that the interaction-driven metallic phase between Mott and band insulators expands in the Δ -V phase diagram of bilayer IHM only for in-phase ionic potentials; while antiphase potential always induces an insulator with charge density order. This implies possible further extension of the ionic Hubbard model from the bilayer case here to a realistic three-dimensional model.

  3. Electrical oscillation in Pt/VO2 bilayer strips

    International Nuclear Information System (INIS)

    We report on the observation of stable electrical oscillation in Pt/vanadium dioxide (VO2) bilayer strips, in which the Pt overlayer serves the dual purposes of heating up the VO2 and weakening the electric field in the VO2 layer. Systematic measurements in an ultrahigh vacuum nanoprobe system show that the oscillation frequency increases with the bias current and/or with decreasing device dimension. In contrast to most VO2-based oscillators reported to date, which are electrically triggered, current-induced Joule heating in the Pt overlayer is found to play a dominant role in the generation of oscillation in Pt/VO2 bilayers. A simple model involving thermally triggered transition of VO2 on a heat sink is able to account for the experimental observations. The results in this work provide an alternative view of the triggering mechanism in VO2-based oscillators

  4. Model for magnetostrictive performance in soft/hard coupled bilayers

    International Nuclear Information System (INIS)

    A model is set up to investigate the magnetostrictive performance and spin response in soft/hard magnetostrictive coupled bilayers. Direct coupling between soft ferromagnet and hard TbFe2 at the interface is assumed. The magnetostriction results from the rotation of ferromagnetic vector and TbFe2 vectors from the easy axis driven by applied magnetic field. Dependence of magnetostriction on TbFe2 layer thickness and interfacial exchange interaction is studied. The simulated results reveal the compromise between interfacial exchange interaction and anisotropy of TbFe2 hard layer. - Highlights: • A model for magnetostrictive performance in soft/hard coupled bilayers. • Simulated magnetostriction loop and corresponding spin response. • Competition and compromise between interfacial interaction and TbFe2 anisotropy. • Dependence of saturated magnetostriction on different parameters

  5. Phase-separation transitions in asymmetric lipid bilayers

    CERN Document Server

    Shimobayashi, Shunsuke F; Taniguchi, Takashi

    2015-01-01

    Morphological transitions of phase separation associated with the asymmetry of lipid composition were investigated using micrometer-sized vesicles of lipid bilayers made from a lipid mixture. The complete macro-phase-separated morphology undergoes a transition to a micro-phase-separation-like morphology via a lorate morphology as a metastable state. The transition leads to the emergence of monodisperse nanosized domains through repeated domain scission events. Moreover, we have numerically confirmed the transitions using the time-dependent Ginzburg-Landau model describing phase separation and the bending elastic membrane, which is quantitatively consistent with experimental results by fixing one free parameter. Our findings suggest that the local spontaneous curvature due to the asymmetric composition plays an essential role in the thermodynamic stabilization of micro-phase separation in lipid bilayers.

  6. Physisorbed Polymer-Tethered Lipid Bilayer with Lipopolymer Gradient

    Directory of Open Access Journals (Sweden)

    Christoph A. Naumann

    2012-11-01

    Full Text Available Physisorbed polymer-tethered lipid bilayers consisting of phospholipids and lipopolymers represent an attractive planar model membrane platform, in which bilayer fluidity and membrane elastic properties can be regulated through lipopolymer molar concentration. Herein we report a method for the fabrication of such a planar model membrane system with a lateral gradient of lipopolymer density. In addition, a procedure is described, which leads to a sharp boundary between regions of low and high lipopolymer molar concentrations. Resulting gradients and sharp boundaries are visualized on the basis of membrane buckling structures at elevated lipopolymer concentrations using epifluorescence microscopy and atomic force microscopy. Furthermore, results from spot photobleaching experiments are presented, which provide insight into the lipid lateral fluidity in these model membrane architectures. The presented experimental data highlight a planar, solid-supported membrane characterized by fascinating length scale-dependent dynamics and elastic properties with remarkable parallels to those observed in cellular membranes.

  7. Bilayer graphene: physics and application outlook in photonics

    Directory of Open Access Journals (Sweden)

    Yan Hugen

    2015-05-01

    Full Text Available Layered materials, such as graphene, transition metal dichacogenides and black phosphorus have attracted lots of attention recently. They are emerging novel materials in electronics and photonics, with tremendous potential in revolutionizing the traditional electronics and photonics industry. Marrying layered material to the nanophotonics is being proved fruitful. With the recent emphasis and development of metasurfaces in nanophotonics, atomically thin materials can find their unique position and strength in this field. In this article, I will focus on one specific two dimensional material: bilayer graphene. Basic physics will be reviewed, such as band-gap opening, electron-phonon interaction, phonon-plasmon interaction and Fano resonances in the optical response. Moreover, I will review the application of bilayer graphene as a sensitive and fast photodetector. An outlook will be given in the final part of the paper.

  8. Electron diffraction studies on CVD grown bi-layered graphene

    Science.gov (United States)

    Lingam, Kiran; Karakaya, Mehmet; Podila, Ramakrishna; Quin, Haijun; Rao, Apparao; Dept. of Physics and Astronomy, Clemson University, Clemson, SC USA 29634. Team; Advanced Materials Research Laboratories, Clemson University, Anderson, SC USA 29625 Collaboration

    2013-03-01

    Graphene has generated enormous interest in the scientific community due to its peculiar properties like electron mobility, thermal conductivity etc. Several recent reports on exfoliated graphene emphasized the role of layer stacking on the electronic and optical properties of graphene in case of bi-layered and few layered graphene and several synthesis techniques like chemical vapor deposition (CVD) on Copper foils are employed to prepare graphene for applications at a large scale. However, a correlated study pertinent to the stacking order in CVD grown graphene is still unclear. In this work, using a combination of Raman spectroscopy and selected area electron diffraction analysis we analyzed the preferred misorientation angles in a CVD grown bi-layered graphene and also the role of Cu crystal facets on the graphene stacking order will be presented.

  9. Model for magnetostrictive performance in soft/hard coupled bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Jianjun, Li, E-mail: ljj8081@gmail.com [National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080 (China); Laboratoire de Magnétisme de Bretagne, Université de Bretagne Occidentale, 29238 Brest Cedex 3 (France); Beibei, Duan; Minglun, Li [National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080 (China)

    2015-11-01

    A model is set up to investigate the magnetostrictive performance and spin response in soft/hard magnetostrictive coupled bilayers. Direct coupling between soft ferromagnet and hard TbFe{sub 2} at the interface is assumed. The magnetostriction results from the rotation of ferromagnetic vector and TbFe{sub 2} vectors from the easy axis driven by applied magnetic field. Dependence of magnetostriction on TbFe{sub 2} layer thickness and interfacial exchange interaction is studied. The simulated results reveal the compromise between interfacial exchange interaction and anisotropy of TbFe{sub 2} hard layer. - Highlights: • A model for magnetostrictive performance in soft/hard coupled bilayers. • Simulated magnetostriction loop and corresponding spin response. • Competition and compromise between interfacial interaction and TbFe{sub 2} anisotropy. • Dependence of saturated magnetostriction on different parameters.

  10. Asymmetric bilayer graphene nanoribbon MOSFETs for analog and digital electronics

    Science.gov (United States)

    Dinarvand, A.; Ahmadi, V.; Darvish, Gh.

    2016-05-01

    In this paper, a new structure was proposed for bilayer graphene nanoribbon field-effect transistor (BGNFET) mainly to enhance the electrical characteristics in analog and digital applications. The proposed device uses two metallic gates on the top and bottom of a bilayer graphene nanoribbon, which is surrounded by SiO2 and connected to heavily doped source/drain contacts. Electrical properties of the proposed device were explored using fully self-consistent solution of Poisson and Schrödinger equations based on the nonequilibrium Green's function (NEGF) formalism. Significant improvements in the electrical behavior was seen in the simulation results for gates asymmetrically biased. The comparison with graphene nanoribbon FET showed that the proposed structure benefited from higher intrinsic voltage gain and cut-off frequency and improved switching characteristics such as delay and Ion/Ioff ratio.

  11. A large scale molecular dynamics calculation of a lipid bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Okazaki, Susumu [Tokyo Inst. of Tech. (Japan)

    1998-03-01

    Long time molecular dynamics simulations for the dipalmitoylphosphatidylcholine lipid bilayer in the liquid crystal phase could successfully be performed in the isothermal-isobaric ensemble using the Nose-Parrinello-Rahman extended system method. Three independent 2 ns calculations show excellent convergence to the same equilibrium state of the system in about 0.5 ns. Various structural properties such a atomic distribution, order parameter, gauche fraction in the alkyl chains, and bent structure of the head group and sn-2 chain were satisfactorily reproduced. Dynamic quantities such as trans-gauche transition were qualitatively in good correspondence the experiment. The calculations presented a microscopic picture of the whole molecular conformations, including the finding that there is not a collective tilt in bilayer. Some interesting dynamical observations concerning large structural fluctuations and pendulum motion of the alkyl chains were also made. (author)

  12. Unassisted translocation of large polypeptide domains across phospholipid bilayers

    OpenAIRE

    Brambillasca, Silvia; Yabal, Monica; Makarow, Marja; Borgese, Nica

    2006-01-01

    Although transmembrane proteins generally require membrane-embedded machinery for integration, a few can insert spontaneously into liposomes. Previously, we established that the tail-anchored (TA) protein cytochrome b(5) (b5) can posttranslationally translocate 28 residues downstream to its transmembrane domain (TMD) across protein-free bilayers (Brambillasca, S., M. Yabal, P. Soffientini, S. Stefanovic, M. Makarow, R.S. Hegde, and N. Borgese. 2005. EMBO J. 24:2533–2542). In the present study...

  13. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light

    OpenAIRE

    Qin, Fei; Ding, Lu; Zhang, Lei; Monticone, Francesco; Chum, Chan Choy; Deng, Jie.; Mei, Shengtao; Ying LI; Teng, Jinghua; Hong, Minghui; Shuang ZHANG; Alù, Andrea; Qiu, Cheng-Wei

    2016-01-01

    Metasurfaces operating in the cross-polarization scheme have shown an interesting degree of control over the wavefront of transmitted light. Nevertheless, their inherently low efficiency in visible light raises certain concerns for practical applications. Without sacrificing the ultrathin flat design, we propose a bilayer plasmonic metasurface operating at visible frequencies, obtained by coupling a nanoantenna-based metasurface with its complementary Babinet-inverted copy. By breaking the ra...

  14. The Stability and Charge Carriers in Bilayer Silicene

    OpenAIRE

    Rui, Wang; Shaofeng, Wang; Xiaozhi, Wu

    2013-01-01

    The structure optimization, phonon, and ab initio ?nite temperature molecular dynamics calculations have been performed to predict that bilayer silicene has stable structure with AB stacking geometry and is more favorable energetically to synthesize than monolayer silicene, a two-dimensional honeycomb lattice with buckled geometry. Marvellously, its electronic bands show that the charge carriers behave like relativistic Dirac fermions with linear energy dispersions near the K points. An insig...

  15. Robustly Engineering Thermal Conductivity of Bilayer Graphene by Interlayer Bonding

    OpenAIRE

    Xiaoliang Zhang; Yufei Gao; Yuli Chen; Ming Hu

    2016-01-01

    Graphene and its bilayer structure are the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. Their realistic applications in emerging nanoelectronics usually call for thermal transport manipulation in a controllable and precise manner. In this paper we systematically studied the effect of interlayer covalent bonding, in particular different interlay bonding arrangement, on the...

  16. Atomic force microscopic study on lipid bilayer nanoscale phase separation

    OpenAIRE

    Liu, Rui

    2014-01-01

    Phase separation of copolymers or lipid membranes in nanoscale has attracted increasing interests for their applications in the synthesis of inorganic nanomaterial. The nanoscale phase separation of liquid bilayer as a supported membrane is systematically investigated by atomic force microscope (AFM). Moreover, the position of the fluorescence indicator, which is commonly used in the phase separation study in optical microscope, is also probed in this study to complete the knowledge of tradit...

  17. Phase-separation transitions in asymmetric lipid bilayers

    OpenAIRE

    Shimobayashi, Shunsuke F.; Ichikawa, Masatoshi; Taniguchi, Takashi

    2015-01-01

    Morphological transitions of phase separation associated with the asymmetry of lipid composition were investigated using micrometer-sized vesicles of lipid bilayers made from a lipid mixture. The complete macro-phase-separated morphology undergoes a transition to a micro-phase-separation-like morphology via a lorate morphology as a metastable state. The transition leads to the emergence of monodisperse nanosized domains through repeated domain scission events. Moreover, we have numerically co...

  18. Quantum Hall effect in bilayer system with array of antidots

    Science.gov (United States)

    Pagnossin, I. R.; Gusev, G. M.; Sotomayor, N. M.; Seabra, A. C.; Quivy, A. A.; Lamas, T. E.; Portal, J. C.

    2007-04-01

    We have studied the Quantum Hall effect in a bilayer system modulated by gate-controlled antidot lattice potential. The Hall resistance shows plateaus which are quantized to anomalous multiplies of h/e2. We suggest that this complex behavior is due to the nature of the edge-states in double quantum well (DQW) structures coupled to an array of antidots: these plateaus may be originated from the coexistence of normal and counter-rotating edge-states in different layers.

  19. Porous Nanoparticle Supported Lipid Bilayers (Protocells) as Delivery Vehicles

    OpenAIRE

    Liu, Juewen; Stace-Naughton, Alison; Jiang, Xingmao; Brinker, C. Jeffrey

    2009-01-01

    Mixing liposomes with hydrophilic particles will induce fusion of the liposome onto the particle surface. Such supported bilayers have been extensively studied as a model for the cell membrane, while its application in drug delivery has not been pursued. In this communication, we report the use of phospholipids to achieve synergistic loading and encapsulating of a fluorescent dye (calcein) in mesoporous silica nanoparticles, and its delivery into mammalian cells. We found that cationic lipid ...

  20. Twisted bilayer blue phosphorene: A direct band gap semiconductor

    Science.gov (United States)

    Ospina, D. A.; Duque, C. A.; Correa, J. D.; Suárez Morell, Eric

    2016-09-01

    We report that two rotated layers of blue phosphorene behave as a direct band gap semiconductor. The optical spectrum shows absorption peaks in the visible region of the spectrum and in addition the energy of these peaks can be tuned with the rotational angle. These findings makes twisted bilayer blue phosphorene a strong candidate as a solar cell or photodetection device. Our results are based on ab initio calculations of several rotated blue phosphorene layers.

  1. Mucoadhesive bilayered tablets for buccal sustained release of flurbiprofen

    OpenAIRE

    Perioli, Luana; Ambrogi, Valeria; Giovagnoli, Stefano; Ricci, Maurizio; Blasi, Paolo; Rossi, Carlo

    2007-01-01

    The aim of this work was the design of sustained-release mucoadhesive bilayered tablets, using mixtures of mucoadhesive polymers and an inorganic matrix (hydrotalcite), for the topical administration of flurbiprofen in the oral cavity. The first layer, responsible for the tablet retention on the mucosa, was prepared by compression of a cellulose derivative and polyacrylic derivative blend. The second layer, responsible for buccal drug delivery, was obtained by compression of a mixture of the ...

  2. Comparison of thermal fluctuations in foam films and bilayer structures

    OpenAIRE

    Ivanova, N. G.; Tsekov, R.

    2013-01-01

    In the frames of the DLVO theory the root mean square amplitude and correlation length of capillary waves in thin liquid films are calculated. Their dependencies on some important physical parameters are studied. Two models are considered: films with classical interfaces and films between lipid bilayers. The performed numerical analysis demonstrates essential difference in their behavior, which is due to the different elastic properties of the film surfaces in the models.

  3. Supported lipid bilayer membranes for water purification by reverse osmosis.

    Science.gov (United States)

    Kaufman, Yair; Berman, Amir; Freger, Viatcheslav

    2010-05-18

    Some biological plasma membranes pass water with a permeability and selectivity largely exceeding those of commercial membranes for water desalination using specialized trans-membrane proteins aquaporins. However, highly selective transport of water through aquaporins is usually driven by an osmotic rather mechanical pressure, which is not as attractive from the engineering point of view. The feasibility of adopting biomimetic membranes for water purification driven by a mechanical pressure, i.e., filtration is explored in this paper. Toward this goal, it is proposed to use a commercial nanofiltration (NF) membrane as a support for biomimetic lipid bilayer membranes to render them robust enough to withstand the required pressures. It is shown in this paper for the first time that by properly tuning molecular interactions supported phospholipid bilayers (SPB) can be prepared on a commercial NF membrane. The presence of SPB on the surface was verified and quantified by several spectroscopic and microscopic techniques, which showed morphology close to the desired one with very few defects. As an ultimate test it is shown that hydraulic permeability of the SPB supported on the NF membrane (NTR-7450) approaches the values deduced from the typical osmotic permeabilities of intact continuous bilayers. This permeability was unaffected by the trans-membrane flow of water and by repeatedly releasing and reapplying a 10 bar pressure. Along with a parallel demonstration that aquaporins could be incorporated in a similar bilayer on mica, this demonstrates the feasibility of the proposed approach. The prepared SPB structure may be used as a platform for preparing biomimetic filtration membranes with superior performance based on aquaporins. The concept of SPBs on permeable substrates of the present type may also be useful in the future for studying transport of various molecules through trans-membrane proteins. PMID:20099798

  4. Persistent Currents and Dissipation in Narrow Bilayer Quantum Hall Bars

    OpenAIRE

    Kyriakidis, Jordan; Radzihovsky, Leo

    2000-01-01

    Bilayer quantum Hall states support a flow of nearly dissipationless staggered current which can only decay through collective channels. We study the dominant finite-temperature dissipation mechanism which in narrow bars is driven by thermal nucleation of pseudospin solitons. We find the finite-temperature resistivity, predict the resulting staggered current-voltage characteristics, and calculate the associated zero-temperature critical staggered current and gate voltage.

  5. A defect mediated lamellar to isotropic transition of amphiphile bilayers

    OpenAIRE

    Pal, Antara; Pabst, Georg; Raghunathan, V. A.

    2011-01-01

    We report the observation of a novel isotropic phase of amphiphile bilayers in a mixed system consisting of the ionic surfactant, sodium docecylsulphate (SDS), and the organic salt p-toludine hydrochloride (PTHC). This system forms a collapsed lamellar ($L_\\alpha$) phase over a wide range of water content, which transforms into an isotropic phase on heating. This transition is not observed in samples without excess water, where the $L_\\alpha$ phase is stable at higher temperatures. Our observ...

  6. Electronic spin transport in bilayer and single layer graphene

    OpenAIRE

    Yang, Tsung-Yeh

    2011-01-01

    Graphene has drawn plenty of attention since its discovery in 2004. Due to its excellent properties, such as long spin relaxation length and gate-tunable spin transport, graphene is expected to be a potential candidate for spintronics applications. In this thesis, the systematic study of the spin relaxation mechanisms in bilayer and single layer graphene is presented. Graphene-based spin valve devices in four-terminal non-local geometry are fabricated for the investigation of the charge and s...

  7. Capacitance of Graphene Bilayer as a Which-Layer Probe

    OpenAIRE

    Young, Andrea F.; Levitov, Leonid S.

    2011-01-01

    The unique capabilities of capacitance measurements in bilayer graphene enable probing of layer-specific properties that are normally out of reach in transport measurements. Furthermore, capacitance measurements in the top-gate and penetration field geometries are sensitive to different physical quantities: the penetration field capacitance probes the two layers equally, whereas the top gate capacitance preferentially samples the near layer, resulting in the "near-layer capacitance enhancemen...

  8. Effect of monoglycerides and fatty acids on a ceramide bilayer

    OpenAIRE

    Akinshina, Anna; Das, Chinmay; Noro, Massimo G.

    2016-01-01

    Monoglycerides and unsaturated fatty acids, naturally present in trace amounts in the stratum corneum (top layer of skin) lipid matrix, are commonly used in pharmaceutical, cosmetic and health care formulations. However, a detailed molecular understanding of how the oil additives get incorporated into the skin lipids from topical application and, once incorporated, how they affect the properties and integrity of the lipid matrix remains unexplored. Using ceramide 2 bilayers as skin lipid surr...

  9. Theory of integer quantum Hall effect in insulating bilayer graphene

    OpenAIRE

    Roy, Bitan

    2012-01-01

    A variational ground state for insulating bilayer graphene (BLG), subject to quantizing magnetic fields, is proposed. Due to the Zeeman coupling, the layer anti-ferromagnet (LAF) order parameter in fully gapped BLG gets projected onto the spin easy plane, and simultaneously a ferromagnet order, which can further be enhanced by exchange interaction, develops in the direction of the magnetic field. The activation gap for the $\

  10. Enhanced Thermoelectric Power in Dual-Gated Bilayer Graphene

    OpenAIRE

    Wang, Chang-Ran; Lu, Wen-Sen; Hao, Lei; Lee, Wei-Li; Lee, Ting-Kuo; Lin, Feng; Cheng, I-Chun; Chen, Jian-Zhang

    2011-01-01

    Thermoelectric power of a material, typically governed by its band structure and carrier density, can be varied by chemical doping that is often restricted by solubility of the dopant. Materials showing large thermoelectric power are useful for many industrial applications, such as the heat-to-electricity conversion and the thermoelectric cooling device. Here we show a full electric field tuning of thermoelectric power in a dual-gated bilayer graphene device resulting from the opening of a ba...

  11. Elastic deformation and failure of lipid bilayer membranes containing cholesterol.

    OpenAIRE

    Needham, D; Nunn, R. S.

    1990-01-01

    Giant bilayer vesicles were reconstituted from several lipids and lipid/cholesterol (CHOL) mixtures: stearolyloleoylphosphatidylcholine (SOPC), bovine sphingomyelin (BSM), diarachidonylphosphatidylcholine (DAPC), SOPC/CHOL, BSM/CHOL, DAPC/CHOL, and extracted red blood cell (RBC) lipids with native cholesterol. Single-walled vesicles were manipulated by micropipette suction and several membrane material properties were determined. The properties measured were the elastic area compressibility m...

  12. Cooperative Multiscale Aging in a Ferromagnet/Antiferromagnet Bilayer

    OpenAIRE

    Urazhdin, Sergei

    2015-01-01

    We utilize anisotropic magnetoresistance to study temporal evolution of the magnetization state in epitaxial Ni$_{80}$Fe$_{20}$/Fe$_{50}$Mn$_{50}$ ferromagnet/antiferromagnet bilayers. The resistance exhibits power-law evolution over a wide range of temperatures and magnetic fields, indicating that aging is characterized by a wide range of activation time scales. We show that aging is a cooperative process, i.e. the magnetic system is not a superposition of weakly interacting subsystems chara...

  13. Self-assembling bilayers of palladiumthiolates in organic media

    Indian Academy of Sciences (India)

    P John Thomas; A Lavanya; V Sabareesh; G U Kulkarni

    2001-10-01

    Alkylthiolates of palladium forming a homologous series (butyl to octadecyl) have been prepared and characterized using X-ray diffraction and STM. The thiolates adopt an unusual bilayered lamellar structure, whose thickness is governed by the length of the alkyl chain. These mesophases melt in the temperature range, 60° to 100°C, with the melting point increasing linearly with the thiol chain length. There is evidence to suggest that the alkyl chains are orientationally disordered especially prior to melting.

  14. Local membrane mechanics of pore-spanning bilayers.

    Science.gov (United States)

    Mey, Ingo; Stephan, Milena; Schmitt, Eva K; Müller, Martin Michael; Ben Amar, Martine; Steinem, Claudia; Janshoff, Andreas

    2009-05-27

    The mechanical behavior of lipid bilayers spanning the pores of highly ordered porous silicon substrates was scrutinized by local indentation experiments as a function of surface functionalization, lipid composition, solvent content, indentation velocity, and pore radius. Solvent-containing nano black lipid membranes (nano-BLMs) as well as solvent-free pore-spanning bilayers were imaged by fluorescence and atomic force microscopy prior to force curve acquisition, which allows distinguishing between membrane-covered and uncovered pores. Force indentation curves on pore-spanning bilayers attached to functionalized hydrophobic porous silicon substrates reveal a predominately linear response that is mainly attributed to prestress in the membranes. This is in agreement with the observation that indentation leads to membrane lysis well below 5% area dilatation. However, membrane bending and lateral tension dominate over prestress and stretching if solvent-free supported membranes obtained from spreading giant liposomes on hydrophilic porous silicon are indented. An elastic regime diagram is presented that readily allows determining the dominant contribution to the mechanical response upon indentation as a function of load and pore radius. PMID:19453196

  15. Thermoelectric Power in Bilayer Graphene Device with Ionic Liquid Gating.

    Science.gov (United States)

    Chien, Yung-Yu; Yuan, Hongtao; Wang, Chang-Ran; Lee, Wei-Li

    2016-01-01

    The quest for materials showing large thermoelectric power has long been one of the important subjects in material science and technology. Such materials have great potential for thermoelectric cooling and also high figure of merit ZT thermoelectric applications. We have fabricated bilayer graphene devices with ionic-liquid gating in order to tune its band gap via application of a perpendicular electric field on a bilayer graphene. By keeping the Fermi level at charge neutral point during the cool-down, we found that the charge puddles effect can be greatly reduced and thus largely improve the transport properties at low T in graphene-based devices using ionic liquid gating. At (Vig, Vbg) = (-1 V, +23 V), a band gap of about 36.6 ± 3 meV forms, and a nearly 40% enhancement of thermoelectric power at T = 120 K is clearly observed. Our works demonstrate the feasibility of band gap tuning in a bilayer graphene using ionic liquid gating. We also remark on the significant influence of the charge puddles effect in ionic-liquid-based devices.

  16. Amphotericin B induced interdigitation of apolipoprotein stabilized nanodisk bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, T; Weers, P M; Sulchek, T; Hoeprich, P D; Ryan, R O

    2006-12-07

    Amphotericin B nanodisks (AMB-ND) are ternary complexes of AMB, phospholipid (PL) and apolipoprotein organized as discrete nanometer scale disk-shaped bilayers. In gel filtration chromatography experiments, empty ND lacking AMB elute as a single population of particles with a molecular weight in the range of 200 kDa. AMB-ND formulated at a 4:1 PL:AMB weight ratio, separated into two peaks. Peak 1 eluted at the position of control ND lacking AMB while the second peak, containing all of the AMB present in the original sample, eluted in the void volume. When ND prepared with increased AMB (1:1 phospholipid:AMB molar ratio) were subjected to gel filtration chromatography, an increased proportion of phospholipid and apolipoprotein were recovered in the void volume with the AMB. Prior to gel filtration the AMB-ND sample could be passed through a 0.22 {micro}m filter without loss of AMB while the voided material was lost. Native gel electrophoresis studies corroborated the gel permeation chromatography data. Far UV circular dichroism analyses revealed that apoA-I associated with AMB-ND denatures at a lower guanidine HCl concentration than apoA-I associated with ND lacking AMB. Atomic force microscopy revealed that AMB induces compression of the ND bilayer thickness consistent with bilayer interdigitation, a phenomenon that is likely related to the ability of AMB to induce pore formation in susceptible membranes.

  17. Viscoelastic changes measured in partially suspended single bilayer membranes.

    Science.gov (United States)

    Hasan, Imad Younus; Mechler, Adam

    2015-07-21

    For studies involving biomimetic phospholipid membrane systems, such as membrane-protein interactions, it is crucial that the supported membrane is biomimetic in its physical properties as well as in its composition. Two often overlooked aspects of biomimicry are the need for unrestrained lipid mobility, reflected in the viscoelastic properties of the membrane, and sufficient space between the membrane and the support for the insertion of transmembrane proteins. Here we show for a series of DMPC-based membranes that a partially suspended single bilayer membrane can be formed on functionalized gold surface without tethering. These membranes exhibit sufficient freedom of motion to represent the viscoelastic properties of a free lamellar bilayer membrane as demonstrated by determining the phase transition temperatures of these single bilayer membranes from the viscosity change upon chain melting using the dissipation signal of a quartz crystal microbalance (QCM-D). Atomic force microscopy imaging confirmed confluent, smooth membrane coverage of the QCM-D sensor that completely obscured the roughness of the sputtered gold surface. High-force AFM imaging was able to push membrane patches into the valleys of the gold morphology, confirming the inherently suspended nature of the MPA supported membrane. We show that the correlation between frequency and dissipation changes in the QCM-D sensograms is a sensitive indicator of the morphology of the membrane. PMID:26073288

  18. Soliton-dependent plasmon reflection at bilayer graphene domain walls

    Science.gov (United States)

    Jiang, Lili; Shi, Zhiwen; Zeng, Bo; Wang, Sheng; Kang, Ji-Hun; Joshi, Trinity; Jin, Chenhao; Ju, Long; Kim, Jonghwan; Lyu, Tairu; Shen, Yuen-Ron; Crommie, Michael; Gao, Hong-Jun; Wang, Feng

    2016-08-01

    Layer-stacking domain walls in bilayer graphene are emerging as a fascinating one-dimensional system that features stacking solitons structurally and quantum valley Hall boundary states electronically. The interactions between electrons in the 2D graphene domains and the one-dimensional domain-wall solitons can lead to further new quantum phenomena. Domain-wall solitons of varied local structures exist along different crystallographic orientations, which can exhibit distinct electrical, mechanical and optical properties. Here we report soliton-dependent 2D graphene plasmon reflection at different 1D domain-wall solitons in bilayer graphene using near-field infrared nanoscopy. We observe various domain-wall structures in mechanically exfoliated graphene bilayers, including network-forming triangular lattices, individual straight or bent lines, and even closed circles. The near-field infrared contrast of domain-wall solitons arises from plasmon reflection at domain walls, and exhibits markedly different behaviours at the tensile- and shear-type domain-wall solitons. In addition, the plasmon reflection at domain walls exhibits a peculiar dependence on electrostatic gating. Our study demonstrates the unusual and tunable coupling between 2D graphene plasmons and domain-wall solitons.

  19. Optical and electrical properties of Mg/Co bilayer thin film metal hydrides

    Directory of Open Access Journals (Sweden)

    M. K. JANGID,

    2010-12-01

    Full Text Available Bilayer Mg/Co thin films have been prepared using thermal evaporation method at pressure 10-5 torr. Annealing of bilayer thin films have been performed for 1 hour at different temperature. Hydrogenation of pristine and annealed bilayer structure has been performed at different hydrogen pressure for half an hour. The optical transmission increased with hydrogen pressure and also the band gap of thin films found to be increase with hydrogen pressure. Pristine Mg/Co bilayers show ohmic behavior and conductivity increase with hydrogen pressure. After annealing bilayers show semiconductor nature and conductivity has been found to be increased with annealing temperature and decreased with hydrogenation. Raman spectra of these sample shows decreasing intensity of peaks with annealing and hydrogenation. The relative resistivity varies nonlinearly withtime and increases with hydrogen pressure. Surface morphology of annealed and annealed hydrogenated bilayer structure has been confirmed by optical microscopy.

  20. Energy Output Estimation for a Small Wind Turbine Positioned on a Rooftop in the Urban Environment with and without a Duct

    DEFF Research Database (Denmark)

    Beller, Christina

    Nowadays, wind turbines in general, but also urban wind turbines attained acceptance to a certain extend. Conceptual designs and some examples in reality exist, where small-scale wind turbines have been implemented close to buildings or even integrated in the building structure. This work is aiming...

  1. Growth and energetics of a small shorebird species in a cold environment: the little stint Calidris minuta on the Taimyr Peninsulam Siberia

    NARCIS (Netherlands)

    Tjorve, K.M.C.; Schekkerman, H.; Tulp, I.Y.M.; Underhill, L.G.; Leeuw, de J.J.; Visser, G.H.

    2007-01-01

    The little stint Calidris minuta is one of the smallest shorebird species breeding in the Arctic (weighing 4.3 g on hatching). Their chicks are small and have a high surface area-to-volume ratio. We determined prefledging growth, energy expenditure and time budgets for little stint chicks in northwe

  2. Growth and energetics of a small shorebird species in a cold environment : the little stint Calidris minuta on the Taimyr Peninsula, Siberia

    NARCIS (Netherlands)

    Tjorve, Kathleen M. C.; Schekkerman, Hans; Tulp, Ingrid; Underhill, Leslie G.; de Leeuw, Joep J.; Visser, G. Henk

    2007-01-01

    The little stint Calidris minuta is one of the smallest shorebird species breeding in the Arctic (weighing 4.3 g on hatching). Their chicks are small and have a high surface area-to-volume ratio. We determined prefledging growth, energy expenditure and time budgets for little stint chicks in northwe

  3. Single DNA molecules on freestanding and supported cationic lipid bilayers: diverse conformational dynamics controlled by the local bilayer properties

    Science.gov (United States)

    Herold, Christoph; Schwille, Petra; Petrov, Eugene P.

    2016-02-01

    We present experimental results on the interaction of DNA macromolecules with cationic lipid membranes with different properties, including freestanding membranes in the fluid and gel state, and supported lipid membranes in the fluid state and under conditions of fluid-gel phase coexistence. We observe diverse conformational dynamics of membrane-bound DNA molecules controlled by the local properties of the lipid bilayer. In case of fluid-state freestanding lipid membranes, the behaviour of DNA on the membrane is controlled by the membrane charge density: whereas DNA bound to weakly charged membranes predominantly behaves as a 2D random coil, an increase in the membrane charge density leads to membrane-driven irreversible DNA collapse and formation of subresolution-sized DNA globules. On the other hand, electrostatic binding of DNA macromolecules to gel-state freestanding membranes leads to completely arrested diffusion and conformational dynamics of membrane-adsorbed DNA. A drastically different picture is observed in case of DNA interaction with supported cationic lipid bilayers: When the supported bilayer is in the fluid state, membrane-bound DNA molecules undergo 2D translational Brownian motion and conformational fluctuations, irrespectively of the charge density of the supported bilayer. At the same time, when the supported cationic membrane shows fluid-gel phase coexistence, membrane-bound DNA molecules are strongly attracted to micrometre-sized gel-phase domains enriched with the cationic lipid, which results in 2D compaction of the membrane-bound macromolecules. This DNA compaction, however, is fully reversible, and disappears as soon as the membrane is heated above the fluid-gel coexistence. We also discuss possible biological implications of our experimental findings.

  4. Study of annealing effects in Al–Sb bilayer thin films

    Indian Academy of Sciences (India)

    R K Mangal; B Tripathi; M Singh; Y K Vijay

    2007-02-01

    In this paper, we present preparation and characterization of Al–Sb bilayer thin films. Thin films of thicknesses, 3000/1000 Å and 3000/1500 Å, were obtained by the thermal evaporation (resistive heating) method. Vacuum annealing and rapid thermal annealing methods were used to mix bilayer thin film structure. Results obtained from optical band gap data and Rutherford back scattering spectrometry showed mixing of Al–Sb bilayer system.

  5. Time-resolved photoresponse of nanometer-thick Nb/NiCu bilayers

    Science.gov (United States)

    Parlato, L.; Pepe, G. P.; Latempa, R.; De Lisio, C.; Altucci, C.; D'Acunto, P.; Peluso, G.; Barone, A.; Taneda, T.; Sobolewski, R.

    2005-07-01

    We present femtosecond optical time-resolved pump-probe investigations of superconducting hybrids structures consisting of Nb/NiCu bilayers with various thickness. Measurements performed on pure Nb and NiCu films are also given. The photoresponse experiments provide the quasiparticle relaxation times in bilayers of different thickness ratios. The study of the photoresponse as a function of the temperature reveals the spatial evolution of the superconductor order parameter across the bilayers.

  6. High Yield Chemical Vapor Deposition Growth of High Quality Large-Area AB Stacked Bilayer Graphene

    OpenAIRE

    Liu, Lixin; Zhou, Hailong; Cheng, Rui; Yu, Woo Jong; Liu, Yuan; Chen, Yu; Shaw, Jonathan; Zhong, Xing; Huang, Yu; Duan, Xiangfeng

    2012-01-01

    Bernal stacked (AB stacked) bilayer graphene is of significant interest for functional electronic and photonic devices due to the feasibility to continuously tune its band gap with a vertical electrical field. Mechanical exfoliation can be used to produce AB stacked bilayer graphene flakes but typically with the sizes limited to a few micrometers. Chemical vapor deposition (CVD) has been recently explored for the synthesis of bilayer graphene but usually with limited coverage and a mixture of...

  7. Electrowetting on dielectric-based microfluidics for integrated lipid bilayer formation and measurement

    Science.gov (United States)

    Poulos, Jason L.; Nelson, Wyatt C.; Jeon, Tae-Joon; Kim, Chang-Jin ``Cj''; Schmidt, Jacob J.

    2009-07-01

    We present a microfluidic platform for the formation and electrical measurement of lipid bilayer membranes. Using electrowetting on dielectric (EWOD), two or more aqueous droplets surrounded by a lipid-containing organic phase were manipulated into contact to form a lipid bilayer at their interface. Thin-film Ag/AgCl electrodes integrated into the device enabled electrical measurement of membrane formation and the incorporation of gramicidin channels of two bilayers in parallel.

  8. Effects of cholesterol or gramicidin on slow and fast motions of phospholipids in oriented bilayers.

    OpenAIRE

    Peng, Z. Y.; Simplaceanu, V; Dowd, S R; Ho, C.

    1989-01-01

    Nuclear spin-lattice relaxation both in the rotating frame and in the laboratory frame is used to investigate the slow and fast molecular motions of phospholipids in oriented bilayers in the liquid crystalline phase. The bilayers are prepared from a perdeuterated phospholipid labeled with a pair of 19F atoms at the 7 position of the 2-sn acyl chain. Phospholipid-cholesterol or phospholipid-gramicidin interactions are characterized by measuring the relaxation rates as a function of the bilayer...

  9. Lindane Suppresses the Lipid-bilayer Permeability in Main Transition Region

    DEFF Research Database (Denmark)

    Sabra, Mads Christian; Jørgensen, Kent; Mouritsen, Ole G.

    1996-01-01

    the transition and lower the transition temperature, without changing the transition enthalpy significantly. Lindane therefore enhances the thermal fluctuations of the bilayer. The calorimetric data furthermore suggest that the bilayer structure is intact and not disrupted by even high concentrations (32 mol......%) of lindane. Fluorescence spectroscopy was used to measure the passive permeability of unilamellar DMPC bilayers to Co2+ ions. The data show that lindane seals the bilayer for Co2+ penetration and that this effect increases with increasing lindane concentration. The results are discussed in relation...

  10. The confluence of theory, practice, and geography: leadership of the small, rural college within the diverse environment of northern British Columbia

    OpenAIRE

    Jacques, Lynn Rosemary

    2009-01-01

    This study examines college leadership in Northern British Columbia and uncovers a unique leadership requirement and skill set called resourcefulness. This research is substantiated by the narratives of educational leaders from the College of New Caledonia, Northern Lights College, and Northwest Community College as they serve their communities and interact with global perspectives and knowledge systems. Like other Canadian rural communities, the small, resource-based communities within North...

  11. Resident cats in small animal veterinary hospitals carry multi-drug resistant enterococci and are likely involved in cross-contamination of the hospital environment

    OpenAIRE

    LudekZurek; KateKuKanich

    2012-01-01

    In the USA, small animal veterinary hospitals (SAVHs) commonly keep resident cats living permanently as pets within their facilities. Previously, multi-drug resistant (MDR) enterococci were found as a contaminant of multiple surfaces within such veterinary hospitals, and nosocomial infections are a concern. The objectives of this study were to determine whether resident cats carry MDR enterococci and to compare the feline isolates genotypically to those obtained from SAVH surfaces in a previo...

  12. From seasonal patterns to a reference situation in an estuarine environment: Example of the small fish and shrimp fauna of the Gironde estuary (SW France)

    OpenAIRE

    2006-01-01

    Detecting changes in animal communities suggests that a reference situation exists. It is a particularly difficult task in estuarine environments that are complex and fluctuate with time. Effects of human pressures are difficult to assess due to the scarcity or even the lack of evaluation and monitoring systems. In order to detect anomalies in the functioning of the system and to identify effects of perturbations upon populations and communities, it is necessary to analyse the dynamics in ord...

  13. The Urban Environment Can Modify Drought Stress of Small-Leaved Lime (Tilia cordata Mill.) and Black Locust (Robinia pseudoacacia L.)

    OpenAIRE

    Astrid Moser; Thomas Rötzer; Stephan Pauleit; Hans Pretzsch

    2016-01-01

    The urban environment characterized by various stresses poses challenges to trees. In particular, water deficits and high temperatures can cause immense drought stress to urban trees, resulting in reduced growth and die-off. Drought-tolerant species are expected to be resilient to these conditions and are therefore advantageous over other, more susceptible species. However, the drought tolerance of urban trees in relation to the specific growth conditions in urban areas remains poorly researc...

  14. Mechanics of lipid bilayer junctions affecting the size of a connecting lipid nanotube

    Science.gov (United States)

    Karlsson, Roger; Kurczy, Michael; Grzhibovskis, Richards; Adams, Kelly L.; Ewing, Andrew G.; Cans, Ann-Sofie; Voinova, Marina V.

    2011-06-01

    In this study we report a physical analysis of the membrane mechanics affecting the size of the highly curved region of a lipid nanotube (LNT) that is either connected between a lipid bilayer vesicle and the tip of a glass microinjection pipette (tube-only) or between a lipid bilayer vesicle and a vesicle that is attached to the tip of a glass microinjection pipette (two-vesicle). For the tube-only configuration (TOC), a micropipette is used to pull a LNT into the interior of a surface-immobilized vesicle, where the length of the tube L is determined by the distance of the micropipette to the vesicle wall. For the two-vesicle configuration (TVC), a small vesicle is inflated at the tip of the micropipette tip and the length of the tube L is in this case determined by the distance between the two interconnected vesicles. An electrochemical method monitoring diffusion of electroactive molecules through the nanotube has been used to determine the radius of the nanotube R as a function of nanotube length L for the two configurations. The data show that the LNT connected in the TVC constricts to a smaller radius in comparison to the tube-only mode and that tube radius shrinks at shorter tube lengths. To explain these electrochemical data, we developed a theoretical model taking into account the free energy of the membrane regions of the vesicles, the LNT and the high curvature junctions. In particular, this model allows us to estimate the surface tension coefficients from R( L) measurements.

  15. Mechanics of lipid bilayer junctions affecting the size of a connecting lipid nanotube

    Directory of Open Access Journals (Sweden)

    Voinova Marina

    2011-01-01

    Full Text Available Abstract In this study we report a physical analysis of the membrane mechanics affecting the size of the highly curved region of a lipid nanotube (LNT that is either connected between a lipid bilayer vesicle and the tip of a glass microinjection pipette (tube-only or between a lipid bilayer vesicle and a vesicle that is attached to the tip of a glass microinjection pipette (two-vesicle. For the tube-only configuration (TOC, a micropipette is used to pull a LNT into the interior of a surface-immobilized vesicle, where the length of the tube L is determined by the distance of the micropipette to the vesicle wall. For the two-vesicle configuration (TVC, a small vesicle is inflated at the tip of the micropipette tip and the length of the tube L is in this case determined by the distance between the two interconnected vesicles. An electrochemical method monitoring diffusion of electroactive molecules through the nanotube has been used to determine the radius of the nanotube R as a function of nanotube length L for the two configurations. The data show that the LNT connected in the TVC constricts to a smaller radius in comparison to the tube-only mode and that tube radius shrinks at shorter tube lengths. To explain these electrochemical data, we developed a theoretical model taking into account the free energy of the membrane regions of the vesicles, the LNT and the high curvature junctions. In particular, this model allows us to estimate the surface tension coefficients from R(L measurements.

  16. Tethered bilayer lipid membranes studied by simultaneous attenuated total reflectance infrared spectroscopy and electrochemical impedance spectroscopy

    Science.gov (United States)

    Erbe, Andreas; Bushby, Richard J.; Evans, Stephen D.; Jeuken, Lars J. C.

    2013-01-01

    The formation of tethered lipid bilayer membranes (tBLMs) from unilamelar vesicles of egg yolk phosphatidylcholine (EggPC) on mixed self–assembled monolayers (SAMs) from varying ratios of 6-mercaptohexanol and EO3Cholesteryl on gold has been monitored by simultaneous attenuated total reflectance fourier transform infrared (ATR–FTIR) spectroscopy and electrochemical impedance spectroscopy (EIS). The influence of the lipid orientation (and hence the anisotropy) of lipids on a gold film on the dichroic ratio was studied by simulations of spectra with a matrix method for anisotropic layers. It is shown that for certain tilt angles of the dielectric tensor of the adsorbed anisotropic layer dispersive and negative absorption bands are possible. The experimental data indicates that the structure of the assemblies obtained varies with varying SAM composition. On SAMs with a high content of EO3Cholesteryl, tBLMs with reduced fluidity are formed. For SAMs with high content of 6-mercaptohexanol, the results are consistent with the adsorption of flattened vesicles, while spherical vesicles have been found in a small range of surface compositions. The kinetics of the adsorption process is consistent with the assumption of spherical vesicles as long–living intermediates for surfaces of high 6-mercaptohexanol content. No long–living spherical vesicles have been detected for surfaces with large fraction of EO3Cholesteryl tethers. The observed differences between the surfaces suggest that for the formation of tBLMs (unlike supported BLMs) no critical surface coverage of vesicles is needed prior to lipid bilayer formation. PMID:17388505

  17. Myeloid clusters are associated with a pro-metastatic environment and poor prognosis in smoking-related early stage non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Wang Zhang

    Full Text Available BACKGROUND: This study aimed to understand the role of myeloid cell clusters in uninvolved regional lymph nodes from early stage non-small cell lung cancer patients. METHODS: Uninvolved regional lymph node sections from 67 patients with stage I-III resected non-small cell lung cancer were immunostained to detect myeloid clusters, STAT3 activity and occult metastasis. Anthracosis intensity, myeloid cluster infiltration associated with anthracosis and pSTAT3 level were scored and correlated with patient survival. Multivariate Cox regression analysis was performed with prognostic variables. Human macrophages were used for in vitro nicotine treatment. RESULTS: CD68+ myeloid clusters associated with anthracosis and with an immunosuppressive and metastasis-promoting phenotype and elevated overall STAT3 activity were observed in uninvolved lymph nodes. In patients with a smoking history, myeloid cluster score significantly correlated with anthracosis intensity and pSTAT3 level (P<0.01. Nicotine activated STAT3 in macrophages in long-term culture. CD68+ myeloid clusters correlated and colocalized with occult metastasis. Myeloid cluster score was an independent prognostic factor (P = 0.049 and was associated with survival by Kaplan-Maier estimate in patients with a history of smoking (P = 0.055. The combination of myeloid cluster score with either lymph node stage or pSTAT3 level defined two populations with a significant difference in survival (P = 0.024 and P = 0.004, respectively. CONCLUSIONS: Myeloid clusters facilitate a pro-metastatic microenvironment in uninvolved regional lymph nodes and associate with occult metastasis in early stage non-small cell lung cancer. Myeloid cluster score is an independent prognostic factor for survival in patients with a history of smoking, and may present a novel method to inform therapy choices in the adjuvant setting. Further validation studies are warranted.

  18. Effects of Dipole Potential Modifiers on Heterogenic Lipid Bilayers.

    Science.gov (United States)

    Efimova, Svetlana S; Malev, Valery V; Ostroumova, Olga S

    2016-04-01

    In this work, we examine the ability of dipole modifiers, flavonoids, and RH dyes to affect the dipole potential (φ d) and phase separation in membranes composed of ternary mixtures of POPC with different sphingolipids and sterols. Changes in the steady-state conductance induced by cation-ionophore complexes have been measured to evaluate the changes in dipole potential of planar lipid bilayers. Confocal fluorescence microscopy has been employed to investigate lipid segregation in giant unilamellar vesicles. The effects of flavonoids on φ d depend on lipid composition and dipole modifier type. The effectiveness of RH dyes to increase φ d depends on sphingolipid type but is not influenced by sterol content. Tested modifiers lead to partial or complete disruption of gel domains in bilayers composed of POPC, sphingomyelin, and cholesterol. Substitution of cholesterol to ergosterol or 7-dehydrocholesterol leads to a loss of fluidizing effects of modifiers except phloretin. This may be due to various compositions of gel domains. The lack of influence of modifiers on phase scenario in vesicles composed of ternary mixtures of POPC, cholesterol, and phytosphingosine or sphinganine is related to an absence of gel-like phase. It was concluded that the membrane lateral heterogeneity affects the dipole-modifying abilities of the agents that influence the magnitude of φ d by intercalation into the bilayer and orientation of its own large dipole moments (phloretin and RH dyes). The efficacy of modifiers that do not penetrate deeply and affect φ d through water adsorption (phlorizin, quercetin, and myricetin) is not influenced by lateral heterogeneity of membrane. PMID:26454655

  19. Interaction of curcumin with lipid monolayers and liposomal bilayers.

    Science.gov (United States)

    Karewicz, Anna; Bielska, Dorota; Gzyl-Malcher, Barbara; Kepczynski, Mariusz; Lach, Radosław; Nowakowska, Maria

    2011-11-01

    Curcumin shows huge potential as an anticancer and anti-inflammatory agent. However, to achieve a satisfactory bioavailability and stability of this compound, its liposomal form is preferable. Our detailed studies on the curcumin interaction with lipid membranes are aimed to obtain better understanding of the mechanism and eventually to improve the efficiency of curcumin delivery to cells. Egg yolk phosphatidylcholine (EYPC) one-component monolayers and bilayers, as well as mixed systems containing additionally dihexadecyl phosphate (DHP) and cholesterol, were studied. Curcumin binding constant to EYPC liposomes was determined based on two different methods: UV/Vis absorption and fluorescence measurements to be 4.26×10(4)M(-1) and 3.79×10(4)M(-1), respectively. The fluorescence quenching experiment revealed that curcumin locates in the hydrophobic region of EYPC liposomal bilayer. It was shown that curcumin impacts the size and stability of the liposomal carriers significantly. Loaded into the EYPC/DPH/cholesterol liposomal bilayer curcumin stabilizes the system proportionally to its content, while the EYPC/DPH system is destabilized upon drug loading. The three-component lipid composition of the liposome seems to be the most promising system for curcumin delivery. An interaction of free and liposomal curcumin with EYPC and mixed monolayers was also studied using Langmuir balance measurements. Monolayer systems were treated as a simple model of cell membrane. Condensing effect of curcumin on EYPC and EYPC/DHP monolayers and loosening influence on EYPC/DHP/chol ones were observed. It was also demonstrated that curcumin-loaded EYPC liposomes are more stable upon interaction with the model lipid membrane than the unloaded ones.

  20. Triglyceride Blisters in Lipid Bilayers: Implications for Lipid Droplet Biogenesis and the Mobile Lipid Signal in Cancer Cell Membranes

    DEFF Research Database (Denmark)

    Khandelia, Himanshu; Duelund, Lars; Pakkanen, Kirsi Inkeri;

    2010-01-01

    Triglycerides have a limited solubility, around 3%, in phosphatidylcholine lipid bilayers. Using millisecond-scale course grained molecular dynamics simulations, we show that the model lipid bilayer can accommodate a higher concentration of triolein (TO) than earlier anticipated, by sequestering...

  1. Thinking on Managing Corporate Financial Statements Distortion and Optimizing Financing Environment of Small and Medium Enterprises%治理企业财务报表失真优化中小企业融资环境的思考

    Institute of Scientific and Technical Information of China (English)

    朴春泽

    2013-01-01

    The ifnancing problem has become the biggest bottleneck in the development of small and medium-sized enterprises. One of the main reason is small and medium-sized enterprises widespread ifnancial statements distortion as leading to commercial banks credit crunch. Based on the analysis of the impact on commercial bank loans to small and medium sized enterprises of small and medium-sized enterprise financial statements distortion, put forward the governance way of managing corporate ifnancial statements distortion and optimizing the environment for SME ifnancing.%我国中小企业融资难已经成为制约中小企业发展的最大的瓶颈。中小企业融资难,其中主要原因之一是中小企业普遍存在财务报表失真,导致商业银行“惧贷”。本文在分析中小企业财务报表失真,给商业银行中小企业贷款业务所带来影响的基础上,针对中小企业财务报表失真成因,提出治理企业财务报表失真,优化中小企业融资环境的思路。

  2. The effects of globotriaosylceramide tail saturation level on bilayer phases

    DEFF Research Database (Denmark)

    Pezeshkian, Weria; Chaban, Vitaly V; Johannes, Ludger;

    2015-01-01

    Globotriaosylceramide (Gb3) is a glycosphingolipid present in the plasma membrane that is the natural receptor of the bacterial Shiga toxin. The unsaturation level of Gb3 acyl chains has a drastic impact on lipid bilayer properties and phase behaviour, and on many Gb3-related cellular processes....... For example: the Shiga toxin B subunit forms tubular invaginations in the presence of Gb3 with an unsaturated acyl chain (U-Gb3), while in the presence of Gb3 with a saturated acyl chain (S-Gb3) such invagination does not occur. We have used all-atom molecular dynamics simulations to investigate the effects...

  3. Molecular dynamics simulation of DPPC bilayer in DMSO.

    OpenAIRE

    Smondyrev, A M; Berkowitz, M L

    1999-01-01

    We performed molecular dynamics simulations on dipalmitoylphosphatidylcholine (DPPC)/dimethylsulfoxide (DMSO) system that has the same lipid:solvent weight ratio as in our previous simulation done on DPPC/water. We did not observe a large change in the size of DPPC membrane when the solvent was changed from water to DMSO. Also, we did not observe that a large number of DMSO molecules is permeating into the membrane, as it was suggested to explain the observed change in the bilayer repeat peri...

  4. Photoinduced electron transfer of chlorophyll in lipid bilayer system

    Indian Academy of Sciences (India)

    D K Lee; K W Seo; Y S Kang

    2002-12-01

    Photoinduced electron transfer from chlorophyll- through the interface of dipalmitoylphosphatidylcholine (DPPC) headgroup of the lipid bilayers was studied with electron magnetic resonance (EMR). The photoproduced radicals were identified with electron spin resonance (ESR) and radical yields of chlorophyll- were determined by double integration ESR spectra. The formation of vesicles was identified by changes in measured max values from diethyl ether solutions to vesicles solutions indirectly, and observed directly with SEM and TEM images. The efficiency of photosynthesis in model system was determined by measuring the amount of chlorophyll-a radical yields which were obtained from integration of ESR spectra.

  5. The sting. Melittin forms channels in lipid bilayers.

    OpenAIRE

    Tosteson, M T; Tosteson, D. C.

    1981-01-01

    Melittin, a toxin of bee venom, is a cationic polypeptide composed of 26 amino acids. The six residues of the C-terminal end are polar and 19 of the 20 residues of the N-terminal end are hydrophobic. Exposure of the lecithin bilayer to melittin results in the formation of channels that are more permeable to anions that to cations. Unilateral addition of melittin produces a voltage-dependent increase in membrane conductance when the side where the polypeptide is present in made positive but no...

  6. Phase Diagram of Antiferromagnetically Exchange-Coupled Bilayer

    Institute of Scientific and Technical Information of China (English)

    GUO Guang-Hua; ZHANG Guang-Fu; SUN Li-Yuan; Peter A. J. de Groot

    2008-01-01

    Magnetic hysteresis properties of antiferromagnetically exchange-coupled bilayer structures, in which the two magnetic layers have different magnetic parameters and thicknesses, are studied within the framework of the Stoner-Wohifarth model. Analytical expressions for the switching fields corresponding to the linear magnetic states are obtained. By adjusting the magnetic parameters or thicknesses of layers, nine different types of easyaxis hysteresis loops may exist. The phase diagram of easy-axis hysteresis loops is mapped in the k,1 and k,2 plane, where k,1 and k,2 are the ratios of magnetic anisotropy to the interlayer exchange coupling of the two magnetic layers, respectively.

  7. Giant Frictional Drag in Double Bilayer Graphene Heterostructures

    Science.gov (United States)

    Lee, Kayoung; Xue, Jiamin; Dillen, David C.; Watanabe, Kenji; Taniguchi, Takashi; Tutuc, Emanuel

    2016-07-01

    We study the frictional drag between carriers in two bilayer graphene flakes separated by a 2-5 nm thick hexagonal boron nitride dielectric. At temperatures (T ) lower than ˜10 K , we observe a large anomalous negative drag emerging predominantly near the drag layer charge neutrality. The anomalous drag resistivity increases dramatically with reducing T , and becomes comparable to the layer resistivity at the lowest T =1.5 K . At low T the drag resistivity exhibits a breakdown of layer reciprocity. A comparison of the drag resistivity and the drag layer Peltier coefficient suggests a thermoelectric origin of this anomalous drag.

  8. Application of pressure perturbation calorimetry to lipid bilayers.

    OpenAIRE

    Heerklotz, Heiko; Seelig, Joachim

    2002-01-01

    Pressure perturbation calorimetry (PPC) is a new method that measures the heat consumed or released by a sample after a sudden pressure jump. The heat change can be used to derive the thermal volume expansion coefficient, alpha(V), as a function of temperature and, in the case of phase transitions, the volume change, DeltaV, occurring at the phase transition. Here we present the first report on the application of PPC to determine these quantities for lipid bilayers. We measure the volume chan...

  9. Negative terahertz conductivity in remotely doped graphene bilayer heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhii, V. [Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Institute of Ultra High Frequency Semiconductor Electronics of RAS, and Center for Photonics and Infrared Engineering, Bauman Moscow State Technical University, Moscow 111005 (Russian Federation); Ryzhii, M. [Department of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu 965-8580 (Japan); Mitin, V. [Department of Electrical Engineering, University at Buffalo, SUNY, Buffalo, New York 1460-1920 (United States); Shur, M. S. [Departments of Electrical, Electronics, and Systems Engineering and Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Otsuji, T. [Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577 (Japan)

    2015-11-14

    Injection or optical generation of electrons and holes in graphene bilayers (GBLs) can result in the interband population inversion enabling the terahertz (THz) radiation lasing. The intraband radiative processes compete with the interband transitions. We demonstrate that remote doping enhances the indirect interband generation of photons in the proposed GBL heterostructures. Therefore, such remote doping helps to surpass the intraband (Drude) absorption, and results in large absolute values of the negative dynamic THz conductivity in a wide range of frequencies at elevated (including room) temperatures. The remotely doped GBL heterostructure THz lasers are expected to achieve higher THz gain compared with previously proposed GBL-based THz lasers.

  10. Inverse Proximity Effect in Superconductor-ferromagnet Bilayer Structures

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Jing

    2010-04-05

    Measurements of the polar Kerr effect using a zero-area-loop Sagnac magnetometer on Pb/Ni and Al/(Co-Pd) proximity-effect bilayers show unambiguous evidence for the 'inverse proximity effect,' in which the ferromagnet (F) induces a finite magnetization in the superconducting (S) layer. To avoid probing the magnetic effects in the ferromagnet, the superconducting layer was prepared much thicker than the light's optical penetration depth. The sign and size of the effect, as well as its temperature dependence agree with recent predictions by Bergeret et al.[1].

  11. Electronic Bloch oscillation in bilayer graphene gradient superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hemeng; Li, Changan; Song, Yun [Department of Physics, Beijing Normal University, Beijing 100875 (China); Ma, Tianxing, E-mail: txma@bnu.edu.cn [Department of Physics, Beijing Normal University, Beijing 100875 (China); Beijing Computational Science Research Center, Beijing 100084 (China); Wang, Li-Gang, E-mail: sxwlg@yahoo.com [Department of Physics, Zhejiang University, Hangzhou 310027 (China); Lin, Hai-Qing [Beijing Computational Science Research Center, Beijing 100084 (China)

    2014-08-18

    We investigate the electronic Bloch oscillation in bilayer graphene gradient superlattices using transfer matrix method. By introducing two kinds of gradient potentials of square barriers along electrons propagation direction, we find that Bloch oscillations up to terahertz can occur. Wannier-Stark ladders, as the counterpart of Bloch oscillation, are obtained as a series of equidistant transmission peaks, and the localization of the electronic wave function is also signature of Bloch oscillation. Furthermore, the period of Bloch oscillation decreases linearly with increasing gradient of barrier potentials.

  12. Superior thermal conductivity in suspended bilayer hexagonal boron nitride

    Science.gov (United States)

    Wang, Chengru; Guo, Jie; Dong, Lan; Aiyiti, Adili; Xu, Xiangfan; Li, Baowen

    2016-05-01

    We reported the basal-plane thermal conductivity in exfoliated bilayer hexagonal boron nitride h-BN that was measured using suspended prepatterned microstructures. The h-BN sample suitable for thermal measurements was fabricated by dry-transfer method, whose sample quality, due to less polymer residues on surfaces, is believed to be superior to that of PMMA-mediated samples. The measured room temperature thermal conductivity is around 484 Wm‑1K‑1(+141 Wm‑1K‑1/ ‑24 Wm‑1K‑1) which exceeds that in bulk h-BN, providing experimental observation of the thickness-dependent thermal conductivity in suspended few-layer h-BN.

  13. Van der Waals interaction in a boron nitride bilayer

    International Nuclear Information System (INIS)

    We have carried out quantum Monte Carlo (QMC) calculations to study the interlayer interaction in a boron nitride (BN) bilayer. The binding energy, 81 meV/2BN after finite-size corrections, was found to be larger than that obtained by density functional theory (DFT) with local density approximation, and smaller than those using van der Waals density functionals, both by considerable amounts. The QMC calculated interaction beyond the equilibrium interlayer separation was found to have a longer-range behavior than all the available DFT schemes. (paper)

  14. Lipid bilayer array for simultaneous recording of ion channel activities

    Science.gov (United States)

    Hirano-Iwata, Ayumi; Nasu, Tomohiro; Oshima, Azusa; Kimura, Yasuo; Niwano, Michio

    2012-07-01

    This paper describes an array of stable and reduced-solvent bilayer lipid membranes (BLMs) formed in microfabricated silicon chips. BLMs were first vertically formed simultaneously and then turned 90° in order to realize a horizontal BLM array. Since the present BLMs are mechanically stable and robust, the BLMs survive this relatively tough process. Typically, a ˜60% yield in simultaneous BLM formation over 9 sites was obtained. Parallel recordings of gramicidin channel activities from different BLMs were demonstrated. The present system has great potential as a platform of BLM-based high throughput drug screening for ion channel proteins.

  15. Reconstitution of Cholesterol-Dependent Vaginolysin into Tethered Phospholipid Bilayers

    DEFF Research Database (Denmark)

    Budvytyte, Rima; Pleckaityte, M.; Zvirbliene, A.;

    2013-01-01

    Functional reconstitution of the cholesterol-dependent cytolysin vaginolysin (VLY) from Gardnerella vaginalis into artificial tethered bilayer membranes (tBLMs) has been accomplished. The reconstitution of VLY was followed in real-time by electrochemical impedance spectroscopy (EIS). Changes of the...... EIS parameters of the tBLMs upon exposure to VLY solutions were consistent with the formation of water-filled pores in the membranes. It was found that reconstitution of VLY is a strictly cholesterol-dependent, irreversible process. At a constant cholesterol concentration reconstitution of VLY...... platform for the detection of the activity of VLY and possibly other cholesterol-dependent cytolysins....

  16. Monte Carlo simulation of charge mediated magnetoelectricity in multiferroic bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Álvarez, H.H. [Universidad de Caldas, Manizales (Colombia); Universidad Nacional de Colombia Sede Manizales, Manizales, Caldas (Colombia); Bedoya-Hincapié, C.M. [Universidad Nacional de Colombia Sede Manizales, Manizales, Caldas (Colombia); Universidad Santo Tomás, Bogotá (Colombia); Restrepo-Parra, E., E-mail: erestrepopa@unal.edu.co [Universidad Nacional de Colombia Sede Manizales, Manizales, Caldas (Colombia)

    2014-12-01

    Simulations of a bilayer ferroelectric/ferromagnetic multiferroic system were carried out, based on the Monte Carlo method and Metropolis dynamics. A generic model was implemented with a Janssen-like Hamiltonian, taking into account magnetoelectric interactions due to charge accumulation at the interface. Two different magnetic exchange constants were considered for accumulation and depletion states. Several screening lengths were also included. Simulations exhibit considerable magnetoelectric effects not only at low temperature, but also at temperature near to the transition point of the ferromagnetic layer. The results match experimental observations for this kind of structure and mechanism.

  17. A transverse Ising bilayer film with an antiferromagnetic spin configuration

    Science.gov (United States)

    Kaneyoshi, T.

    2015-10-01

    The phase diagrams and temperature dependences of magnetizations in a transverse Ising bilayer film with an antiferromagnetic spin configuration are studied by the uses of the effective-field theory (EFT) with correlations, in order to clarify whether the appearance of a compensation point is possible below the transition temperature in the system. From these investigations, we have found a lot of characteristic phenomena in these properties, when the value of an interlayer coupling takes a large value, such as the reentrant phenomenon free from the disorder-induced frustration and the novel types of magnetization curve with a compensation point.

  18. Fluid motion and solute distribution around sinking aggregates I : Small-scale fluxes and heterogeneity of nutrients in the pelagic environment

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Ploug, H.; Thygesen, Uffe Høgsbro

    2001-01-01

    in its wake, where solute concentration is either elevated (leaking substances) or depressed (consumed substances) relative to ambient concentration. Such plumes may impact the nutrition of osmotrophs. For example, based on published solubilization rates of aggregates we describe the amino acid plume......Marine snow aggregates are sites of elevated biological activity. This activity depends on the exchange of solutes (O- 2, CO2, mineral nutrients, dissolved organic material, etc.) between the aggregate and the environment and causes heterogeneity in the distribution of dissolved substances...... in the ambient water. We described the fluid flow and solute distribution around a sinking aggregate by solving the Navier- Stokes' equations and the advection-diffusion equations numerically. The model is valid for Reynolds numbers characteristic of marine snow, up to Re = 20. The model demonstrates...

  19. New insight into probe-location dependent polarity and hydration at lipid/water interfaces: comparison between gel- and fluid-phases of lipid bilayers.

    Science.gov (United States)

    Singh, Moirangthem Kiran; Shweta, Him; Khan, Mohammad Firoz; Sen, Sobhan

    2016-09-21

    Environment polarity and hydration at lipid/water interfaces play important roles in membrane biology, which are investigated here using a new homologous series of 4-aminophthalimide-based fluorescent molecules (4AP-Cn; n = 2-10, 12) having different lipophilicities (octanol/water partition coefficient - log P). We show that 4AP-Cn molecules probe a peculiar stepwise polarity (E) profile at the lipid/water interface of the gel-phase (Lβ') DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) bilayer at room temperature, which was not anticipated in earlier studies. However, the same molecules probe only a subtle but continuous polarity change at the interface of water and the fluid-phase (Lα) DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) bilayer at room temperature. Fluorescence quenching experiments indicate that solutes with different log P values adsorb at different depths across DPPC/water and DOPC/water interfaces, which correlate with the polarity profiles observed at the interfaces. Molecular dynamics simulations performed on eight probe-lipid systems (four in each of the DPPC and DOPC bilayers - a total run of 2.6 μs) support experimental results, providing further information on the relative position and angle distributions as well as hydration of probes at the interfaces. Simulation results indicate that besides positions, probe orientations also play an important role in defining the local dielectric environment by controlling the probes' exposure to water at the interfaces especially of the gel-phase DPPC bilayer. The results suggest that 4AP-Cn probes are well suited for studying solvation properties at lipid/water interfaces of gel- and fluid-phases simultaneously. PMID:27147404

  20. Molecular dynamics simulations and free energy profile of Paracetamol in DPPC and DMPC lipid bilayers

    Indian Academy of Sciences (India)

    Yousef Nademi; Sepideh Amjad Iranagh; Abbas Yousefpour; Seyedeh Zahra Mousavi; Hamid Modarress

    2014-05-01

    Molecular dynamics (MD) simulations and biased MD simulation were carried out for the neutral form of Paracetamol inserted in fully hydrated dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) lipid bilayers. For comparison, fully hydrated DMPC and DPPC lipid bilayers were also simulated separately without Paracetamol. The simulation time for each system was 50 ns. At two concentrations of Paracetamol, various properties of the lipid bilayer such as area per lipid, order parameter, diffusion coefficient, radial distribution function, electrostatic potential, mass density and hydrogen bonds have been calculated. Also, the convergence in time of the free energy profile of the Paracetamol along a DPPC bilayer normal was calculated by umbrella sampling method. From the obtained results, it can be concluded that neutral form of Paracetamol shows a generally similar behaviour in DPPC and DMPC lipid bilayers. It was shown that the addition of Paracetamol causes a decrease in tail order parameter of both DPPC and DMPC lipid bilayers and the tail of Paracetamol adopts an inward orientation in the lipid bilayers. Also from the free energy profile, the high penetration barrier in the bilayer centre was determined.