WorldWideScience

Sample records for bifunctional protein extremely

  1. sCD4-17b bifunctional protein: Extremely broad and potent neutralization of HIV-1 Env pseudotyped viruses from genetically diverse primary isolates

    Directory of Open Access Journals (Sweden)

    Dey Barna

    2010-02-01

    recombinant forms AE and AG. The neutralization breadth and potency were superior to what have been reported for the broadly neutralizing monoclonal antibodies IgG b12, 2G12, 2F5, and 4E10. The activity of sCD4-17b was found to be similar against isogenic virus particles from infectious molecular clones derived either directly from the transfected producer cell line or after a single passage through PBMCs; this contrasted with the monoclonal antibodies, which were less potent against the PMBC-passaged viruses. Conclusions The results highlight the extremely potent and broad neutralizing activity of sCD4-17b against genetically diverse HIV-1 primary isolates. The bifunctional protein has potential applications for antiviral approaches to combat HIV infection.

  2. Characterization of Afb, a novel bifunctional protein in Streptococcus agalactiae

    Directory of Open Access Journals (Sweden)

    Sanaz Dehbashi

    2016-03-01

    Full Text Available Background and Objectives: Streptococcus agalactiae is the leading cause of bacterial sepsis and meningitis in newborns and results in pneumonia and bacteremia in adults. A number of S. agalactiae components are involved in colonization of target cells. Destruction of peptidoglycan and division of covalently linked daughter cells is mediated by autolysins. In this study, autolytic activity and plasma binding ability of AFb novel recombinant protein of S. agalactiae was investigated.Materials and Methods: The gbs1805 gene was cloned and expressed. E. coli strains DH5α and BL21 were used as cloning and expression hosts, respectively. After purification, antigenicity and binding ability to plasma proteins of the recombinant protein was evaluated.Results: AFb, the 18KDa protein was purified successfully. The insoluble mature protein revealed the ability to bind to fibrinogen and fibronectin. This insoluble mature protein revealed that it has the ability to bind to fibrinogen and fibronectin plasma proteins. Furthermore, in silico analysis demonstrated the AFb has an autolytic activity.Conclusions: AFb is a novel protein capable of binding to fibrinogen and fibronectin. This findings lay a ground work for further investigation of the role of the bacteria in adhesion and colonization to the host. Keywords: Streptococcus agalactiae, Fibrinogen, Fibronectin, Autolysin

  3. On the molecular basis of D-bifunctional protein deficiency type III.

    Directory of Open Access Journals (Sweden)

    Maija L Mehtälä

    Full Text Available Molecular basis of D-bifunctional protein (D-BP deficiency was studied with wild type and five disease-causing variants of 3R-hydroxyacyl-CoA dehydrogenase fragment of the human MFE-2 (multifunctional enzyme type 2 protein. Complementation analysis in vivo in yeast and in vitro enzyme kinetic and stability determinants as well as in silico stability and structural fluctuation calculations were correlated with clinical data of known patients. Despite variations not affecting the catalytic residues, enzyme kinetic performance (K(m, V(max and k(cat of the recombinant protein variants were compromised to a varying extent and this can be judged as the direct molecular cause for D-BP deficiency. Protein stability plays an additional role in producing non-functionality of MFE-2 in case structural variations affect cofactor or substrate binding sites. Structure-function considerations of the variant proteins matched well with the available data of the patients.

  4. Function and localization dynamics of bifunctional penicillin-binding proteins in Caulobacter crescentus.

    Science.gov (United States)

    Strobel, Wolfgang; Möll, Andrea; Kiekebusch, Daniela; Klein, Kathrin E; Thanbichler, Martin

    2014-04-01

    The peptidoglycan cell wall of bacteria is a complex macromolecule composed of glycan strands that are cross-linked by short peptide bridges. Its biosynthesis involves a conserved group of enzymes, the bifunctional penicillin-binding proteins (bPBPs), which contain both a transglycosylase and a transpeptidase domain, thus being able to elongate the glycan strands and, at the same time, generate the peptide cross-links. The stalked model bacterium Caulobacter crescentus possesses five bPBP paralogs, named Pbp1A, PbpC, PbpX, PbpY, and PbpZ, whose function is still incompletely understood. In this study, we show that any of these proteins except for PbpZ is sufficient for growth and normal morphogenesis when expressed at native or elevated levels, whereas inactivation of all five paralogs is lethal. Growth analyses indicate a central role of PbpX in the resistance of C. crescentus against the noncanonical amino acid d-alanine. Moreover, we show that PbpX and PbpY localize to the cell division site. Their recruitment to the divisome is dependent on the essential cell division protein FtsN and likely involves interactions with FtsL and the putative peptidoglycan hydrolase DipM. The same interaction pattern is observed for Pbp1A and PbpC, although these proteins do not accumulate at midcell. Our findings demonstrate that the bPBPs of C. crescentus are, to a large extent, redundant and have retained the ability to interact with the peptidoglycan biosynthetic machineries responsible for cell elongation, cytokinesis, and stalk growth. Nevertheless, they may preferentially act in specific peptidoglycan biosynthetic complexes, thereby facilitating the independent regulation of distinct growth processes.

  5. Azidopropylvinylsulfonamide as a New Bifunctional Click Reagent for Bioorthogonal Conjugations: Application for DNA-Protein Cross-Linking.

    Science.gov (United States)

    Dadová, Jitka; Vrábel, Milan; Adámik, Matej; Brázdová, Marie; Pohl, Radek; Fojta, Miroslav; Hocek, Michal

    2015-11-01

    N-(3-Azidopropyl)vinylsulfonamide was developed as a new bifunctional bioconjugation reagent suitable for the cross-linking of biomolecules through copper(I)-catalyzed azide-alkyne cycloaddition and thiol Michael addition reactions under biorthogonal conditions. The reagent is easily clicked to an acetylene-containing DNA or protein and then reacts with cysteine-containing peptides or proteins to form covalent cross-links. Several examples of bioconjugations of ethynyl- or octadiynyl-modified DNA with peptides, p53 protein, or alkyne-modified human carbonic anhydrase with peptides are given.

  6. Development of a spectroscopic assay for bifunctional ligand-protein conjugates based on copper

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Erik D. E-mail: bradye@mail.nih.gov; Chong, Hyun-Soon; Milenic, Diane E.; Brechbiel, Martin W

    2004-08-01

    A simple, non-radioactive method for the determination of ligand-to-protein ratio (L/P) for novel ligand-antibody conjugates has been developed based on an exchange equilibrium with the purple Cu(II) complex of arsenazo III. The method requires a UV/Vis spectrometer and has been verified for monoclonal antibody Herceptin conjugates of a variety of ligand modalities, including common macrocyclic compounds NOTA and TETA, and with a new bifunctional tachpyridine (1H-Pyrrole-1-butanamide,N-[4-[[(1{alpha},3{alpha},5{alpha})-3,5-bis[(2-pyridi= nylmethyl) amino]cyclohexyl](2-pyridinylmethyl)amino]butyl]-2,5-dihydro-2, 5-dioxo-(9CI)). The spectroscopically derived values for L/P were verified by titration of the ligand-antibody conjugate with {sup 64}Cu. In each case, the value obtained by UV/Vis spectroscopy matches that found by radiolabeling. The method is rapid, taking less than 30 minutes with each ligand in this study.

  7. Heterozygous mutations in HSD17B4 cause juvenile peroxisomal D-bifunctional protein deficiency

    Science.gov (United States)

    Amor, David J.; Marsh, Ashley P.L.; Storey, Elsdon; Tankard, Rick; Gillies, Greta; Delatycki, Martin B.; Pope, Kate; Bromhead, Catherine; Leventer, Richard J.; Bahlo, Melanie

    2016-01-01

    Objective: To determine the genetic cause of slowly progressive cerebellar ataxia, sensorineural deafness, and hypergonadotropic hypogonadism in 5 patients from 3 different families. Methods: The patients comprised 2 sib pairs and 1 sporadic patient. Clinical assessment included history, physical examination, and brain MRI. Linkage analysis was performed separately on the 2 sets of sib pairs using single nucleotide polymorphism microarrays, followed by analysis of the intersection of the regions. Exome sequencing was performed on 1 affected patient with variant filtering and prioritization undertaken using these intersected regions. Results: Using a combination of sequencing technologies, we identified compound heterozygous mutations in HSD17B4 in all 5 affected patients. In all 3 families, peroxisomal D-bifunctional protein (DBP) deficiency was caused by compound heterozygosity for 1 nonsense/deletion mutation and 1 missense mutation. Conclusions: We describe 5 patients with juvenile DBP deficiency from 3 different families, bringing the total number of reported patients to 14, from 8 families. This report broadens and consolidates the phenotype associated with juvenile DBP deficiency.

  8. The Expression and Characterization of a Bifunctional Protein in E. coli for Autologous Erythrocyte Agglutination Test

    Institute of Scientific and Technical Information of China (English)

    Changli Shao; Jingang Zhang

    2008-01-01

    H antigen, the precursor of A and B antigens, belongs to Hh blood system in which it is the only antigen. H antigen distributes on all the human RBC surface except for Bombay phenotype and the copy number of H antigen on the surface of an adult RBC is approximately 1.7 x 106. These characteristics made H antigen the potential target molecule for the immunoassay and immunotherapy. A monoclonal antibody 2E8 against H antigen on the surface of erythrocyte had been prepared in previous work. Based on this antibody, the variable region genes of heavy and light chains (VH and VL) from 2E8 had been cloned by 5' RACE. The two variable region genes were spliced by overlap extension and assembled ScFv (VH-linker-VL) gene encoding the anti-H antigen named ScFv2EB. According to the prediction of the three-dimension structure of ScFv2EB and CH1 fragment from 2E8 and HIV-1 gp41 antigen peptide, we further constructed the ScFv2EBCH1-gp41 fusion molecule. The recombinant ScFv2EB-CH1-gp41 gene was cloned into pET-his vector and expressed in BL21(DE3)plysS cells. The fusion protein was purified from the inclusion bodies. In a series of subsequent analyses, this fusion protein showed identical antigen binding site and activity with the parent antibody. Meanwhile, in mimic test, as the main ingredient of reagent for autologous erythrocyte agglutination test, the bifunctional protein could agglutinate the RBCs in the presence of HIV-1 gp41 antibodies using sera from HIV-infected individuals. Cellular & Molecular Immunology. 2008;5(4):299-306.

  9. The cation channel mucolipin-1 is a bifunctional protein that facilitates membrane remodeling via its serine lipase domain.

    Science.gov (United States)

    LaPlante, Janice M; Falardeau, John L; Brown, Edward M; Slaugenhaupt, Susan A; Vassilev, Peter M

    2011-04-01

    Phospholipase modulators have been shown to affect the topology of lipid bilayers and the formation of tubulo-vesicular structures, but the specific endogenous phospholipases involved have yet to be identified. Here we show that TRPML1 (MLN1), a Ca(2+)-permeable channel, contributes to membrane remodeling through a serine lipase consensus domain, and thus represents a novel type of bifunctional protein. Remarkably, this serine lipase active site determines the ability of MLN1 to generate tubulo-vesicular extensions in mucolipin-1-expressing oocytes, human fibroblasts and model membrane vesicles. Our demonstration that MLN1 is involved in membrane remodeling and the formation of extensions suggests that it may play a role in the formation of cellular processes linked to the late endosome/lysosome (LE/L) pathway. MLN1 is absent or mutated in patients with mucolipidosis IV (MLIV), a lysosomal disorder with devastating neurological and other consequences. This study provides potential insight into the pathophysiology of MLIV.

  10. Sinorhizobium meliloti flavin secretion and bacteria-host interaction: role of the bifunctional RibBA protein.

    Science.gov (United States)

    Yurgel, Svetlana N; Rice, Jennifer; Domreis, Elizabeth; Lynch, Joseph; Sa, Na; Qamar, Zeeshan; Rajamani, Sathish; Gao, Mengsheng; Roje, Sanja; Bauer, Wolfgang D

    2014-05-01

    Sinorhizobium meliloti, the nitrogen-fixing bacterial symbiont of Medicago spp. and other legumes, secretes a considerable amount of riboflavin. This precursor of the cofactors flavin mononucleotide and flavin adenine dinucleotide is a bioactive molecule that has a beneficial effect on plant growth. The ribBA gene of S. meliloti codes for a putative bifunctional enzyme with dihydroxybutanone phosphate synthase and guanosine triphosphate (GTP) cyclohydrolase II activities, catalyzing the initial steps of the riboflavin biosynthesis pathway. We show here that an in-frame deletion of ribBA does not cause riboflavin auxotrophy or affect the ability of S. meliloti to establish an effective symbiosis with the host plant but does affect the ability of the bacteria to secrete flavins, colonize host-plant roots, and compete for nodulation. A strain missing the RibBA protein retains considerable GTP cyclohydrolase II activity. Based on these results, we hypothesize that S. meliloti has two partly interchangeable modules for biosynthesis of riboflavin, one fulfilling the internal need for flavins in bacterial metabolism and the other producing riboflavin for secretion. Our data also indicate that bacteria-derived flavins play a role in communication between rhizobia and the legume host and that the RibBA protein is important in this communication process even though it is not essential for riboflavin biosynthesis and symbiosis.

  11. Conversion of β-carotene into astaxanthin: Two separate enzymes or a bifunctional hydroxylase-ketolase protein?

    Directory of Open Access Journals (Sweden)

    Gudiña Eduardo

    2008-02-01

    Full Text Available Abstract Astaxanthin is a xanthophyll of great interest in animal nutrition and human health. The market prospect in the nutraceutics industries for this health-protective molecule is very promising. Astaxanthin is synthesized by several bacteria, algae and plants from β-carotene by the sequential action of two enzymes: a β-carotene, 3,3'-hydroxylase that introduces an hydroxyl group at the 3 (and 3' positions of each of the two β-ionone rings of β-carotene, and a β-carotene ketolase that introduces keto groups at carbons 4 and 4' of the β-ionone rings. Astaxanthin is also produced by the yeast-like basidiomycete Xanthophyllomyces dendrorhous. A gene crtS involved in the conversion of β-carotene to astaxanthin has been cloned simultaneously by two research groups. Complementation studies of X. dendrorhous mutants and expression analysis in Mucor circinelloides reveals that the CrtS enzyme is a β-carotene hydroxylase of the P-450 monooxygenase family that converts β-carotene to the hydroxylated derivatives β-cryptoxanthin and zeaxanthin, but it does not form astaxanthin or the ketolated intermediates in this fungus. A bifunctional β-carotene hydroxylase-ketolase activity has been proposed for the CrtS protein. The evidence for and against this hypothesis is analyzed in detail in this review.

  12. Construction of bifunctional molecules specific to antigen and antibody’s Fc-fragment by fusion of scFv-antibodies with staphylococcal protein A

    Directory of Open Access Journals (Sweden)

    Kolibo D. V.

    2009-06-01

    Full Text Available Aim. To develop approach for detection of scFv and their complexes with antigens. Methods. The fusion proteins, which include sequences of scFv and staphylococcal protein A, were constructed and the obtained bifunctional molecules were immunochemically analysed. Results. It was shown, that scFv fused with protein A and their complexes with antigens are effectively recognized by labelled immunoglobulins with unrestricted antigenic specificity. Conclusions. The fusion of scFv with protein A fragment is a perspective approach to increase the efficiency of application in ELISA. The obtained scFv, fused with protein A, could be used for development of test-systems for the detection of diphtheria toxin.

  13. In situ labeling and imaging of cellular protein via a bi-functional anticancer aptamer and its fluorescent ligand.

    Science.gov (United States)

    Ai, Jun; Li, Tao; Li, Bingling; Xu, Yuanhong; Li, Dan; Liu, Zuojia; Wang, Erkang

    2012-09-05

    In this article, we reported a novel approach for in situ labeling and imaging HeLa cancer cells utilizing a bifunctional aptamer (AS1411) and its fluorescent ligand, protoporphyrin IX (PPIX). In the presence of potassium ion, AS1411 folded to G-quadruplex structure, binded fluorescent ligand (PPIX) with fluorescent enhancement, and targeted the nucleolin overexpressed by cancer cells. Consequently, bioimaging of cancer cells specifically were realized by laser scanning confocal microscope. The bioimaging strategy with AS1411-PPIX complex was capable to distinguish HeLa cancer cells from normal cells unambiguously, and fluorescence imaging of cancer cells was also realized in human serum. Moreover, the bioimaging method was very facile, effective and need not any covalent modification. These results illustrated that the useful approach can provide a novel clue for bioimaging based on non-covalent bifunctional aptamer in clinic diagnosis.

  14. Extreme sweetness: protein glycosylation in archaea.

    Science.gov (United States)

    Eichler, Jerry

    2013-03-01

    Although N-glycosylation was first reported in archaea almost 40 years ago, detailed insights into this process have become possible only recently, with the availability of complete genome sequences for almost 200 archaeal species and the development of appropriate molecular tools. As a result of these advances, recent efforts have not only succeeded in delineating the pathways involved in archaeal N-glycosylation, but also begun to reveal how such post-translational protein modification helps archaea to survive in some of the harshest environments on the planet.

  15. Protein glycosylation in Archaea: sweet and extreme.

    Science.gov (United States)

    Calo, Doron; Kaminski, Lina; Eichler, Jerry

    2010-09-01

    While each of the three domains of life on Earth possesses unique traits and relies on characteristic biological strategies, some processes are common to Eukarya, Bacteria and Archaea. Once believed to be restricted to Eukarya, it is now clear that Bacteria and Archaea are also capable of performing N-glycosylation. However, in contrast to Bacteria, where this posttranslational modification is still considered a rare event, numerous species of Archaea, isolated from a wide range of environments, have been reported to contain proteins bearing Asn-linked glycan moieties. Analysis of the chemical composition of the Asn-linked polysaccharides decorating archaeal proteins has, moreover, revealed the use of a wider variety of sugar subunits than seen in either eukaryal or bacterial glycoproteins. Still, although first reported some 30 years ago, little had been known of the steps or components involved in the archaeal version of this universal posttranslational modification. Now, with the availability of sufficient numbers of genome sequences and the development of appropriate experimental tools, molecular analysis of archaeal N-glycosylation pathways has become possible. Accordingly using halophilic, methanogenic and thermophilic model species, insight into the biosynthesis and attachment of N-linked glycans decorating archaeal glycoproteins is starting to amass. In this review, current understanding of N-glycosylation in Archaea is described.

  16. Bifunctional CYP81AA proteins catalyse identical hydroxylations but alternative regioselective phenol couplings in plant xanthone biosynthesis

    Science.gov (United States)

    El-Awaad, Islam; Bocola, Marco; Beuerle, Till; Liu, Benye; Beerhues, Ludger

    2016-01-01

    Xanthones are natural products present in plants and microorganisms. In plants, their biosynthesis starts with regioselective cyclization of 2,3′,4,6-tetrahydroxybenzophenone to either 1,3,5- or 1,3,7-trihydroxyxanthones, catalysed by cytochrome P450 (CYP) enzymes. Here we isolate and express CYP81AA-coding sequences from Hypericum calycinum and H. perforatum in yeast. Microsomes catalyse two consecutive reactions, that is, 3′-hydroxylation of 2,4,6-trihydroxybenzophenone and C–O phenol coupling of the resulting 2,3′,4,6-tetrahydroxybenzophenone. Relative to the inserted 3′-hydroxyl, the orthologues Hc/HpCYP81AA1 cyclize via the para position to form 1,3,7-trihydroxyxanthone, whereas the paralogue HpCYP81AA2 directs cyclization to the ortho position, yielding the isomeric 1,3,5-trihydroxyxanthone. Homology modelling and reciprocal mutagenesis reveal the impact of S375, L378 and A483 on controlling the regioselectivity of HpCYP81AA2, which is converted into HpCYP81AA1 by sextuple mutation. However, the reciprocal mutations in HpCYP81AA1 barely affect its regiospecificity. Product docking rationalizes the alternative C–O phenol coupling reactions. Our results help understand the machinery of bifunctional CYPs. PMID:27145837

  17. Extreme dryness and DNA-protein cross-links

    Science.gov (United States)

    Bieger-Dose, A.; Dose, K.; Meffert, R.; Mehler, M.; Risi, S.

    Exposure of fungal conidia (Aspergillus ochraceus) or spores of Bacillus subtilis to extreme dryness or vacuum induces DNA lesions, including strand breaks and the formation of DNA-protein cross-links. In wet cells only a small amount of protein is bound to DNA, but exposure to conditions of lowered water activity results in an increasing number of cross-links between DNA and proteins. In fungal conidia these cross-links are detected after selective iodination (125J) of the DNA-bound proteins followed by gel electrophoresis and subsequent autoradiography. Another approach is the labelling of DNA with 32p by means of nick translation and the detection of differences in the electrophoretic mobility of DNA before and after digestion with proteinase K of proteins bound to DNA.

  18. Protein sequence classification with improved extreme learning machine algorithms.

    Science.gov (United States)

    Cao, Jiuwen; Xiong, Lianglin

    2014-01-01

    Precisely classifying a protein sequence from a large biological protein sequences database plays an important role for developing competitive pharmacological products. Comparing the unseen sequence with all the identified protein sequences and returning the category index with the highest similarity scored protein, conventional methods are usually time-consuming. Therefore, it is urgent and necessary to build an efficient protein sequence classification system. In this paper, we study the performance of protein sequence classification using SLFNs. The recent efficient extreme learning machine (ELM) and its invariants are utilized as the training algorithms. The optimal pruned ELM is first employed for protein sequence classification in this paper. To further enhance the performance, the ensemble based SLFNs structure is constructed where multiple SLFNs with the same number of hidden nodes and the same activation function are used as ensembles. For each ensemble, the same training algorithm is adopted. The final category index is derived using the majority voting method. Two approaches, namely, the basic ELM and the OP-ELM, are adopted for the ensemble based SLFNs. The performance is analyzed and compared with several existing methods using datasets obtained from the Protein Information Resource center. The experimental results show the priority of the proposed algorithms.

  19. Bifunctional homodimeric triokinase/FMN cyclase: contribution of protein domains to the activities of the human enzyme and molecular dynamics simulation of domain movements.

    Science.gov (United States)

    Rodrigues, Joaquim Rui; Couto, Ana; Cabezas, Alicia; Pinto, Rosa María; Ribeiro, João Meireles; Canales, José; Costas, María Jesús; Cameselle, José Carlos

    2014-04-11

    Mammalian triokinase, which phosphorylates exogenous dihydroxyacetone and fructose-derived glyceraldehyde, is neither molecularly identified nor firmly associated to an encoding gene. Human FMN cyclase, which splits FAD and other ribonucleoside diphosphate-X compounds to ribonucleoside monophosphate and cyclic X-phosphodiester, is identical to a DAK-encoded dihydroxyacetone kinase. This bifunctional protein was identified as triokinase. It was modeled as a homodimer of two-domain (K and L) subunits. Active centers lie between K1 and L2 or K2 and L1: dihydroxyacetone binds K and ATP binds L in different subunits too distant (≈ 14 Å) for phosphoryl transfer. FAD docked to the ATP site with ribityl 4'-OH in a possible near-attack conformation for cyclase activity. Reciprocal inhibition between kinase and cyclase reactants confirmed substrate site locations. The differential roles of protein domains were supported by their individual expression: K was inactive, and L displayed cyclase but not kinase activity. The importance of domain mobility for the kinase activity of dimeric triokinase was highlighted by molecular dynamics simulations: ATP approached dihydroxyacetone at distances below 5 Å in near-attack conformation. Based upon structure, docking, and molecular dynamics simulations, relevant residues were mutated to alanine, and kcat and Km were assayed whenever kinase and/or cyclase activity was conserved. The results supported the roles of Thr(112) (hydrogen bonding of ATP adenine to K in the closed active center), His(221) (covalent anchoring of dihydroxyacetone to K), Asp(401) and Asp(403) (metal coordination to L), and Asp(556) (hydrogen bonding of ATP or FAD ribose to L domain). Interestingly, the His(221) point mutant acted specifically as a cyclase without kinase activity.

  20. Bifunctional xylanases and their potential use in biotechnology

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, R.; Numan, M.Th.

    is half as sweet as sucrose, can be applicable to foods as a sweetener that is capable of improving diabetic symptoms [37]. Concluding remarks This review provides the information on most of the aspects of bifunctional enzyme with special reference... of the bifunctional xylanases it is necessary in future to utilize such hybrid protein as an alternative to expensive and polluting chemical treatments or to improve already existing enzymatic processes for utilization of veg- etal by-products in the agro...

  1. A novel human immunoglobulin Fc gamma Fc epsilon bifunctional fusion protein inhibits Fc epsilon RI-mediated degranulation.

    Science.gov (United States)

    Zhu, Daocheng; Kepley, Christopher L; Zhang, Min; Zhang, Ke; Saxon, Andrew

    2002-05-01

    Human mast cells and basophils that express the high-affinity immunoglobulin E (IgE) receptor, Fc epsilon receptor 1 (Fc epsilon RI), have key roles in allergic diseases. Fc epsilon RI cross-linking stimulates the release of allergic mediators. Mast cells and basophils co-express Fc gamma RIIb, a low affinity receptor containing an immunoreceptor tyrosine-based inhibitory motif and whose co-aggregation with Fc epsilon RI can block Fc epsilon RI-mediated reactivity. Here we designed, expressed and tested the human basophil and mast-cell inhibitory function of a novel chimeric fusion protein, whose structure is gamma Hinge-CH gamma 2-CH gamma 3-15aa linker-CH epsilon 2-CH epsilon 3-CH epsilon 4. This Fc gamma Fc epsilon fusion protein was expressed as the predicted 140-kappa D dimer that reacted with anti-human epsilon- and gamma-chain specific antibodies. Fc gamma Fc epsilon bound to both human Fc epsilon RI and Fc gamma RII. It also showed dose- and time-dependent inhibition of antigen-driven IgE-mediated histamine release from fresh human basophils sensitized with IgE directed against NIP (4-hydroxy-3-iodo-5-nitrophenylacetyl). This was associated with altered Syk signaling. The fusion protein also showed increased inhibition of human anti-NP (4-hydroxy-3-nitrophenylacetyl) and anti-dansyl IgE-mediated passive cutaneous anaphylaxis in transgenic mice expressing human Fc epsilon RI alpha. Our results show that this chimeric protein is able to form complexes with both Fc epsilon RI and Fc gamma RII, and inhibit mast-cell and basophil function. This approach, using a Fc gamma Fc epsilon fusion protein to co-aggregate Fc epsilon RI with a receptor containing an immunoreceptor tyrosine-based inhibition motif, has therapeutic potential in IgE- and Fc epsilon RI-mediated diseases.

  2. Bifunctional anti-huntingtin proteasome-directed intrabodies mediate efficient degradation of mutant huntingtin exon 1 protein fragments.

    Directory of Open Access Journals (Sweden)

    David C Butler

    Full Text Available Huntington's disease (HD is a fatal autosomal dominant neurodegenerative disorder caused by a trinucleotide (CAG(n repeat expansion in the coding sequence of the huntingtin gene, and an expanded polyglutamine (>37Q tract in the protein. This results in misfolding and accumulation of huntingtin protein (htt, formation of neuronal intranuclear and cytoplasmic inclusions, and neuronal dysfunction/degeneration. Single-chain Fv antibodies (scFvs, expressed as intrabodies that bind htt and prevent aggregation, show promise as immunotherapeutics for HD. Intrastriatal delivery of anti-N-terminal htt scFv-C4 using an adeno-associated virus vector (AAV2/1 significantly reduces the size and number of aggregates in HDR6/1 transgenic mice; however, this protective effect diminishes with age and time after injection. We therefore explored enhancing intrabody efficacy via fusions to heterologous functional domains. Proteins containing a PEST motif are often targeted for proteasomal degradation and generally have a short half life. In ST14A cells, fusion of the C-terminal PEST region of mouse ornithine decarboxylase (mODC to scFv-C4 reduces htt exon 1 protein fragments with 72 glutamine repeats (httex1-72Q by ~80-90% when compared to scFv-C4 alone. Proteasomal targeting was verified by either scrambling the mODC-PEST motif, or via proteasomal inhibition with epoxomicin. For these constructs, the proteasomal degradation of the scFv intrabody proteins themselves was reduced<25% by the addition of the mODC-PEST motif, with or without antigens. The remaining intrabody levels were amply sufficient to target N-terminal httex1-72Q protein fragment turnover. Critically, scFv-C4-PEST prevents aggregation and toxicity of httex1-72Q fragments at significantly lower doses than scFv-C4. Fusion of the mODC-PEST motif to intrabodies is a valuable general approach to specifically target toxic antigens to the proteasome for degradation.

  3. Specific combination of compound heterozygous mutations in 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4 defines a new subtype of D-bifunctional protein deficiency

    Directory of Open Access Journals (Sweden)

    McMillan Hugh J

    2012-11-01

    Full Text Available Abstract Background D-bifunctional protein (DBP deficiency is typically apparent within the first month of life with most infants demonstrating hypotonia, psychomotor delay and seizures. Few children survive beyond two years of age. Among patients with prolonged survival all demonstrate severe gross motor delay, absent language development, and severe hearing and visual impairment. DBP contains three catalytically active domains; an N-terminal dehydrogenase, a central hydratase and a C-terminal sterol carrier protein-2-like domain. Three subtypes of the disease are identified based upon the domain affected; DBP type I results from a combined deficiency of dehydrogenase and hydratase activity; DBP type II from isolated hydratase deficiency and DBP type III from isolated dehydrogenase deficiency. Here we report two brothers (16½ and 14 years old with DBP deficiency characterized by normal early childhood followed by sensorineural hearing loss, progressive cerebellar and sensory ataxia and subclinical retinitis pigmentosa. Methods and results Biochemical analysis revealed normal levels of plasma VLCFA, phytanic acid and pristanic acid, and normal bile acids in urine; based on these results no diagnosis was made. Exome analysis was performed using the Agilent SureSelect 50Mb All Exon Kit and the Illumina HiSeq 2000 next-generation-sequencing (NGS platform. Compound heterozygous mutations were identified by exome sequencing and confirmed by Sanger sequencing within the dehydrogenase domain (c.101C>T; p.Ala34Val and hydratase domain (c.1547T>C; p.Ile516Thr of the 17β-hydroxysteroid dehydrogenase type 4 gene (HSD17B4. These mutations have been previously reported in patients with severe-forms of DBP deficiency, however each mutation was reported in combination with another mutation affecting the same domain. Subsequent studies in fibroblasts revealed normal VLCFA levels, normal C26:0 but reduced pristanic acid beta-oxidation activity. Both DBP

  4. Identification of Antithrombin-Modulating Genes. Role of LARGE, a Gene Encoding a Bifunctional Glycosyltransferase, in the Secretion of Proteins?

    Science.gov (United States)

    de la Morena-Barrio, María Eugenia; Buil, Alfonso; Antón, Ana Isabel; Martínez-Martínez, Irene; Miñano, Antonia; Gutiérrez-Gallego, Ricardo; Navarro-Fernández, José; Aguila, Sonia; Souto, Juan Carlos; Vicente, Vicente; Soria, José Manuel; Corral, Javier

    2013-01-01

    The haemostatic relevance of antithrombin together with the low genetic variability of SERPINC1, and the high heritability of plasma levels encourage the search for modulating genes. We used a hypothesis-free approach to identify these genes, evaluating associations between plasma antithrombin and 307,984 polymorphisms in the GAIT study (352 individuals from 21 Spanish families). Despite no SNP reaching the genome wide significance threshold, we verified milder positive associations in 307 blood donors from a different cohort. This validation study suggested LARGE, a gene encoding a protein with xylosyltransferase and glucuronyltransferase activities that forms heparin-like linear polysaccharides, as a potential modulator of antithrombin based on the significant association of one SNPs, rs762057, with anti-FXa activity, particularly after adjustment for age, sex and SERPINC1 rs2227589 genotype, all factors influencing antithrombin levels (p = 0.02). Additional results sustained this association. LARGE silencing inHepG2 and HEK-EBNA cells did not affect SERPINC1 mRNA levels but significantly reduced the secretion of antithrombin with moderate intracellular retention. Milder effects were observed on α1-antitrypsin, prothrombin and transferrin. Our study suggests LARGE as the first known modifier of plasma antithrombin, and proposes a new role for LARGE in modulating extracellular secretion of certain glycoproteins. PMID:23705025

  5. Identification of antithrombin-modulating genes. Role of LARGE, a gene encoding a bifunctional glycosyltransferase, in the secretion of proteins?

    Directory of Open Access Journals (Sweden)

    María Eugenia de la Morena-Barrio

    Full Text Available The haemostatic relevance of antithrombin together with the low genetic variability of SERPINC1, and the high heritability of plasma levels encourage the search for modulating genes. We used a hypothesis-free approach to identify these genes, evaluating associations between plasma antithrombin and 307,984 polymorphisms in the GAIT study (352 individuals from 21 Spanish families. Despite no SNP reaching the genome wide significance threshold, we verified milder positive associations in 307 blood donors from a different cohort. This validation study suggested LARGE, a gene encoding a protein with xylosyltransferase and glucuronyltransferase activities that forms heparin-like linear polysaccharides, as a potential modulator of antithrombin based on the significant association of one SNPs, rs762057, with anti-FXa activity, particularly after adjustment for age, sex and SERPINC1 rs2227589 genotype, all factors influencing antithrombin levels (p = 0.02. Additional results sustained this association. LARGE silencing inHepG2 and HEK-EBNA cells did not affect SERPINC1 mRNA levels but significantly reduced the secretion of antithrombin with moderate intracellular retention. Milder effects were observed on α1-antitrypsin, prothrombin and transferrin. Our study suggests LARGE as the first known modifier of plasma antithrombin, and proposes a new role for LARGE in modulating extracellular secretion of certain glycoproteins.

  6. Thermal green protein, an extremely stable, nonaggregating fluorescent protein created by structure-guided surface engineering.

    Science.gov (United States)

    Close, Devin W; Paul, Craig Don; Langan, Patricia S; Wilce, Matthew C J; Traore, Daouda A K; Halfmann, Randal; Rocha, Reginaldo C; Waldo, Geoffery S; Payne, Riley J; Rucker, Joseph B; Prescott, Mark; Bradbury, Andrew R M

    2015-07-01

    In this article, we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP. The approach involved simultaneously eliminating crystal lattice contacts while increasing the overall negative charge of the protein. Despite intentional disruption of lattice contacts and introduction of high entropy glutamate side chains, TGP crystallized readily in a number of different conditions and the X-ray crystal structure of TGP was determined to 1.9 Å resolution. The structural reasons for the enhanced stability of TGP and eCGP123 are discussed. We demonstrate the utility of using TGP as a fusion partner in various assays and significantly, in amyloid assays in which the standard fluorescent protein, EGFP, is undesirable because of aberrant oligomerization.

  7. Bifunctional redox flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Y.H. [Research Institute of Chemical Defense, Beijing 100083 (China)], E-mail: wen_yuehua@126.com; Cheng, J. [Research Institute of Chemical Defense, Beijing 100083 (China); Beijing Science and Technology University, Beijing 100083 (China); Xun, Y. [Research Institute of Chemical Defense, Beijing 100083 (China); Ma, P.H. [Full Cell R and D Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Yang, Y.S. [Research Institute of Chemical Defense, Beijing 100083 (China); Beijing Science and Technology University, Beijing 100083 (China)

    2008-08-20

    A new bifunctional redox flow battery (BRFB) system, V(III)/V(II)-L-cystine(O{sub 2}), was systematically investigated by using different separators. It is shown that during charge, water transfer is significantly restricted with increasing the concentration of HBr when the Nafion 115 cation exchange membrane is employed. The same result can be obtained when the gas diffusion layer (GDL) hot-pressed separator is used. The organic electro-synthesis is directly correlated with the crossover of vanadium. When employing the anion exchange membrane, the electro-synthesis efficiency is over 96% due to a minimal crossover of vanadium. When the GDL hot-pressed separator is applied, the crossover of vanadium and water transfer are noticeably prevented and the electro-synthesis efficiency of over 99% is obtained. Those impurities such as vanadium ions and bromine can be eliminated through the purification of organic electro-synthesized products. The purified product is identified to be L-cysteic acid by IR spectrum. The BRFB shows a favorable discharge performance at a current density of 20 mA cm{sup -2}. Best discharge performance is achieved by using the GDL hot-pressed separator. The coulombic efficiency of 87% and energy efficiency of about 58% can be obtained. The cause of major energy losses is mainly associated with the cross-contamination of anodic and cathodic active electrolytes.

  8. The bacterial flagellar protein export apparatus processively transports flagellar proteins even with extremely infrequent ATP hydrolysis.

    Science.gov (United States)

    Minamino, Tohru; Morimoto, Yusuke V; Kinoshita, Miki; Aldridge, Phillip D; Namba, Keiichi

    2014-12-22

    For self-assembly of the bacterial flagellum, a specific protein export apparatus utilizes ATP and proton motive force (PMF) as the energy source to transport component proteins to the distal growing end. The export apparatus consists of a transmembrane PMF-driven export gate and a cytoplasmic ATPase complex composed of FliH, FliI and FliJ. The FliI(6)FliJ complex is structurally similar to the α(3)β(3)γ complex of F(O)F(1)-ATPase. FliJ allows the gate to efficiently utilize PMF to drive flagellar protein export but it remains unknown how. Here, we report the role of ATP hydrolysis by the FliI(6)FliJ complex. The export apparatus processively transported flagellar proteins to grow flagella even with extremely infrequent or no ATP hydrolysis by FliI mutation (E211D and E211Q, respectively). This indicates that the rate of ATP hydrolysis is not at all coupled with the export rate. Deletion of FliI residues 401 to 410 resulted in no flagellar formation although this FliI deletion mutant retained 40% of the ATPase activity, suggesting uncoupling between ATP hydrolysis and activation of the gate. We propose that infrequent ATP hydrolysis by the FliI6FliJ ring is sufficient for gate activation, allowing processive translocation of export substrates for efficient flagellar assembly.

  9. Behavior of whey protein concentrates under extreme storage conditions

    Science.gov (United States)

    The overseas demand for whey protein concentrates (WPC) has increased steadily in recent years. Emergency aid foods often include WPC, but shelf-life studies of whey proteins under different shipment and storage conditions have not been conducted in the last 50 yr. Microbial quality, compound form...

  10. Protein stability and enzyme activity at extreme biological temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Feller, Georges, E-mail: gfeller@ulg.ac.b [Laboratory of Biochemistry, Centre for Protein Engineering, Institute of Chemistry B6a, University of Liege, B-4000 Liege (Belgium)

    2010-08-18

    Psychrophilic microorganisms thrive in permanently cold environments, even at subzero temperatures. To maintain metabolic rates compatible with sustained life, they have improved the dynamics of their protein structures, thereby enabling appropriate molecular motions required for biological activity at low temperatures. As a consequence of this structural flexibility, psychrophilic proteins are unstable and heat-labile. In the upper range of biological temperatures, thermophiles and hyperthermophiles grow at temperatures > 100 {sup 0}C and synthesize ultra-stable proteins. However, thermophilic enzymes are nearly inactive at room temperature as a result of their compactness and rigidity. At the molecular level, both types of extremophilic proteins have adapted the same structural factors, but in opposite directions, to address either activity at low temperatures or stability in hot environments. A model based on folding funnels is proposed accounting for the stability-activity relationships in extremophilic proteins. (topical review)

  11. Sweet to the extreme: protein glycosylation in Archaea.

    Science.gov (United States)

    Yurist-Doutsch, Sophie; Chaban, Bonnie; VanDyke, David J; Jarrell, Ken F; Eichler, Jerry

    2008-06-01

    Post-translational modifications account for much of the biological diversity generated at the proteome level. Of these, glycosylation is the most prevalent. Long thought to be unique to Eukarya, it is now clear that both Bacteria and Archaea are also capable of N-glycosylation, namely the covalent linkage of oligosaccharides to select target asparagine residues. However, while the eukaryal and bacterial N-glycosylation pathways are relatively well defined, little is known of the parallel process in Archaea. Of late, however, major advances have been made in describing the process of archaeal N-glycosylation. Such efforts have shown, as is often the case in archaeal biology, that protein N-glycosylation in Archaea combines particular aspects of the eukaryal and bacterial pathways along with traits unique to this life form. For instance, while the oligosaccharides of archaeal glycoproteins include nucleotide-activated sugars formed by bacterial pathways, the lipid carrier on which such oligosaccharides are assembled is the same as used in eukaryal N-glycosylation. By contrast, transfer of assembled oligosaccharides to their protein targets shows Archaea-specific properties. Finally, addressing N-glycosylation from an archaeal perspective is providing new general insight into this event, as exemplified by the solution of the first crystal structure of an oligosaccharide transferase from an archaeal source.

  12. [The effect of extremely low doses of the novel regulatory plant proteins ].

    Science.gov (United States)

    Krasnov, M S; Margasiuk, D V; Iamskov, I A; Iamskova, V P

    2003-01-01

    Searching and study on regulatory proteins, which can keep under control the scope of important processes as like as cell adhesion, proliferation, differentiation and morphogenesis, is an actual aim of the current biochemistry. Recently we have identified S-100 proteins in plants of following species: plantain (Plantago major L.), aloe (Aloe arborescens L.), and bilberry (Vaccinum myrtillus L.). Extraction and purification of S-100 proteins gotten from these plants were performed by the method we developed earlier for adhesion proteins of animal tissues. Homogeneity of the studied plant proteins was evaluated and confirmed by HPLC and SDS-electrophoresis in PAAG. Both, plant and animal proteins have appeared to be biologically active at extremely low doses. The tests were performed by adhesiometrical method in short-term tissue culture of mouse's liver in vitro. As a result it was established that the plant proteins insert a membranotropic effect being added in extremely low doses, corresponding to 10(-10)-10(-13) mg/ml. Keeping in mind that the plantain is well known remedy for wound protection and healing, in several experiments we studied the biological effect of plant S-100 proteins on animal cells. It was found that S-100 proteins obtained from plantain influences proliferation of human fibroblasts in vitro. It was found that after the treatment with this protein in low doses the cell growth rate increases essentially.

  13. Eukaryotic evolutionary transitions are associated with extreme codon bias in functionally-related proteins.

    Directory of Open Access Journals (Sweden)

    Nicholas J Hudson

    Full Text Available Codon bias in the genome of an organism influences its phenome by changing the speed and efficiency of mRNA translation and hence protein abundance. We hypothesized that differences in codon bias, either between-species differences in orthologous genes, or within-species differences between genes, may play an evolutionary role. To explore this hypothesis, we compared the genome-wide codon bias in six species that occupy vital positions in the Eukaryotic Tree of Life. We acquired the entire protein coding sequences for these organisms, computed the codon bias for all genes in each organism and explored the output for relationships between codon bias and protein function, both within- and between-lineages. We discovered five notable coordinated patterns, with extreme codon bias most pronounced in traits considered highly characteristic of a given lineage. Firstly, the Homo sapiens genome had stronger codon bias for DNA-binding transcription factors than the Saccharomyces cerevisiae genome, whereas the opposite was true for ribosomal proteins--perhaps underscoring transcriptional regulation in the origin of complexity. Secondly, both mammalian species examined possessed extreme codon bias in genes relating to hair--a tissue unique to mammals. Thirdly, Arabidopsis thaliana showed extreme codon bias in genes implicated in cell wall formation and chloroplast function--which are unique to plants. Fourthly, Gallus gallus possessed strong codon bias in a subset of genes encoding mitochondrial proteins--perhaps reflecting the enhanced bioenergetic efficiency in birds that co-evolved with flight. And lastly, the G. gallus genome had extreme codon bias for the Ciliary Neurotrophic Factor--which may help to explain their spontaneous recovery from deafness. We propose that extreme codon bias in groups of genes that encode functionally related proteins has a pathway-level energetic explanation.

  14. Additional Protein Fortification Is Necessary in Extremely Low-Birth-Weight Infants Fed Human Milk.

    Science.gov (United States)

    Picaud, Jean-Charles; Houeto, Nellie; Buffin, Rachel; Loys, Claire-Marie; Godbert, Isabelle; Haÿs, Stephane

    2016-07-01

    In the present study, approximately one in three (49/152, 32.2%) extremely low-birth-weight infants were demonstrated to require additional protein intake to supplement the standard fortification to achieve satisfactory weight gain. This additional protein fortification also resulted in a rapid increase in length-for-age (P < 0.001) and head circumference-for-age (P = 0.02) z scores.

  15. A bifunctional archaeal protein that is a component of 30S ribosomal subunits and interacts with C/D box small RNAs

    Directory of Open Access Journals (Sweden)

    Andrea Ciammaruconi

    2008-01-01

    Full Text Available We have identified a novel archaeal protein that apparently plays two distinct roles in ribosome metabolism. It is a polypeptide of about 18 kDa (termed Rbp18 that binds free cytosolic C/D box sRNAs in vivo and in vitro and behaves as a structural ribosomal protein, specifically a component of the 30S ribosomal subunit. As Rbp18 is selectively present in Crenarcheota and highly thermophilic Euryarchaeota, we propose that it serves to protect C/D box sRNAs from degradation and perhaps to stabilize thermophilic 30S subunits.

  16. Targeted isolation of proteins from natural microbial communities living in an extreme environment.

    Science.gov (United States)

    Singer, Steven W

    2012-01-01

    Microorganisms from extreme environments are often very difficult to cultivate, precluding detailed study by biochemical and physiological techniques. Recent advances in genomic sequencing and proteomic measurements of samples obtained from natural communities have allowed new access to these uncultivated extremophiles and identified abundant proteins that can be isolated directly from natural samples. Here we report the isolation of two abundant heme proteins from low-diversity biofilm microbial communities that thrive in very acidic (pH ~ 1), metal-rich water in a subsurface mine. Purification and detailed characterization of these proteins has afforded new insight into the possible mechanism of Fe(II) oxidation by Leptospirillum Group II, the dominant population in most of these biofilms, and demonstrated that the abundance and posttranslational modifications of one of these proteins is dependent on the lifecycle of the biofilm.

  17. Design of stability at extreme alkaline pH in streptococcal protein G.

    Science.gov (United States)

    Palmer, Benjamin; Angus, Katy; Taylor, Linda; Warwicker, Jim; Derrick, Jeremy P

    2008-04-30

    Protein G (PrtG) is widely used as an affinity-based ligand for the purification of IgG. It would be desirable to improve the resistance of affinity chromatography ligands, such as PrtG, to commercial cleaning-in-place procedures using caustic alkali (0.5 M NaOH). It has been shown that Asn residues are the most susceptible at extreme alkaline pH: here, we show that replacement of all three Asn residues within the IgG-binding domain of PrtG only improves stability towards caustic alkali by about 8-fold. Study of the effects of increasing pH on PrtG by fluorescence and CD shows that the protein unfolds progressively between pH 11.5 and 13.0. Calculation of the variation in electrostatic free energy with pH indicated that deprotonation of Tyr, Lys and Arg side-chains at high pH would destabilize PrtG. Introduction of the triple mutation Y3F/T16I/T18I into PrtG stabilized it by an extra 6.8 kcal/mol and the unfolding of the protein occurred at a pH of about 13, or 1.5 pH units higher than wild type. The results show that strategies for the stabilization of proteins at extreme alkaline pH should consider thermodynamic stabilization that will retain the tertiary structure of the protein and modification of surface electrostatics, as well as mutation of alkali-susceptible residues.

  18. An extremely simple method for fabricating 3D protein microarrays with an anti-fouling background and high protein capacity.

    Science.gov (United States)

    Lin, Zhifeng; Ma, Yuhong; Zhao, Changwen; Chen, Ruichao; Zhu, Xing; Zhang, Lihua; Yan, Xu; Yang, Wantai

    2014-07-21

    Protein microarrays have become vital tools for various applications in biomedicine and bio-analysis during the past decade. The intense requirements for a lower detection limit and industrialization in this area have resulted in a persistent pursuit to fabricate protein microarrays with a low background and high signal intensity via simple methods. Here, we report on an extremely simple strategy to create three-dimensional (3D) protein microarrays with an anti-fouling background and a high protein capacity by photo-induced surface sequential controlled/living graft polymerization developed in our lab. According to this strategy, "dormant" groups of isopropyl thioxanthone semipinacol (ITXSP) were first introduced to a polymeric substrate through ultraviolet (UV)-induced surface abstraction of hydrogen, followed by a coupling reaction. Under visible light irradiation, the ITXSP groups were photolyzed to initiate surface living graft polymerization of poly(ethylene glycol) methyl methacrylate (PEGMMA), thus introducing PEG brushes to the substrate to generate a full anti-fouling background. Due to the living nature of this graft polymerization, there were still ITXSP groups on the chain ends of the PEG brushes. Therefore, by in situ secondary living graft cross-linking copolymerization of glycidyl methacrylate (GMA) and polyethylene glycol diacrylate (PEGDA), we could finally plant height-controllable cylinder microarrays of a 3D PEG network containing reactive epoxy groups onto the PEG brushes. Through a commonly used reaction of amine and epoxy groups, the proteins could readily be covalently immobilized onto the microarrays. This delicate design aims to overcome two universal limitations in protein microarrays: a full anti-fouling background can effectively eliminate noise caused by non-specific absorption and a 3D reactive network provides a larger protein-loading capacity to improve signal intensity. The results of non-specific protein absorption tests

  19. PETs: A Stable and Accurate Predictor of Protein-Protein Interacting Sites Based on Extremely-Randomized Trees.

    Science.gov (United States)

    Xia, Bin; Zhang, Hong; Li, Qianmu; Li, Tao

    2015-12-01

    Protein-protein interaction (PPI) plays crucial roles in the performance of various biological processes. A variety of methods are dedicated to identify whether proteins have interaction residues, but it is often more crucial to recognize each amino acid. In practical applications, the stability of a prediction model is as important as its accuracy. However, random sampling, which is widely used in previous prediction models, often brings large difference between each training model. In this paper, a Predictor of protein-protein interaction sites based on Extremely-randomized Trees (PETs) is proposed to improve the prediction accuracy while maintaining the prediction stability. In PETs, a cluster-based sampling strategy is proposed to ensure the model stability: first, the training dataset is divided into subsets using specific features; second, the subsets are clustered using K-means; and finally the samples are selected from each cluster. Using the proposed sampling strategy, samples which have different types of significant features could be selected independently from different clusters. The evaluation shows that PETs is able to achieve better accuracy while maintaining a good stability. The source code and toolkit are available at https://github.com/BinXia/PETs.

  20. TGP, an extremely stable, non-aggregating fluorescent protein created by structure-guided surface engineering

    Science.gov (United States)

    Close, Devin W.; Don Paul, Craig; Langan, Patricia S.; Wilce, Matthew C.J.; Traore, Daouda A.K.; Halfmann, Randal; Rocha, Reginaldo C.; Waldo, Geoffery S.; Payne, Riley J.; Rucker, Joseph B.; Prescott, Mark; Bradbury, Andrew R.M.

    2014-01-01

    In this paper we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP. The approach involved simultaneously eliminating crystal lattice contacts while increasing the overall negative charge of the protein. Despite intentional disruption of lattice contacts and introduction of high entropy glutamate side chains, TGP crystallized readily in a number of different conditions and the X-ray crystal structure of TGP was determined to 1.9 Å resolution. The structural reasons for the enhanced stability of TGP and eCGP123 are discussed. We demonstrate the utility of using TGP as a fusion partner in various assays and significantly, in amyloid assays in which the standard fluorescent protein, EGFP, is undesirable because of aberrant oligomerization. PMID:25287913

  1. Life in extreme environments: single molecule force spectroscopy as a tool to explore proteins from extremophilic organisms.

    Science.gov (United States)

    Tych, Katarzyna M; Hoffmann, Toni; Batchelor, Matthew; Hughes, Megan L; Kendrick, Katherine E; Walsh, Danielle L; Wilson, Michael; Brockwell, David J; Dougan, Lorna

    2015-04-01

    Extremophiles are organisms which survive and thrive in extreme environments. The proteins from extremophilic single-celled organisms have received considerable attention as they are structurally stable and functionally active under extreme physical and chemical conditions. In this short article, we provide an introduction to extremophiles, the structural adaptations of proteins from extremophilic organisms and the exploitation of these proteins in industrial applications. We provide a review of recent developments which have utilized single molecule force spectroscopy to mechanically manipulate proteins from extremophilic organisms and the information which has been gained about their stability, flexibility and underlying energy landscapes.

  2. Synthesis, Characterization, and in Vitro Evaluation of a New TSPO-Selective Bifunctional Chelate Ligand.

    Science.gov (United States)

    Denora, Nunzio; Margiotta, Nicola; Laquintana, Valentino; Lopedota, Angela; Cutrignelli, Annalisa; Losacco, Maurizio; Franco, Massimo; Natile, Giovanni

    2014-06-12

    The 18-kDa translocator protein (TSPO) is overexpressed in many types of cancers and is also abundant in activated microglial cells occurring in inflammatory neurodegenerative diseases. Thus, TSPO has become an extremely attractive subcellular target not only for imaging disease states overexpressing this protein, but also for a selective mitochondrial drug delivery. In this work we report the synthesis, the characterization, and the in vitro evaluation of a new TSPO-selective ligand, 2-(8-(2-(bis(pyridin-2-yl)methyl)amino)acetamido)-2-(4-chlorophenyl)H-imidazo[1,2-a]pyridin-3-yl)-N,N-dipropylacetamide (CB256), which fulfils the requirements for a bifunctional chelate approach. The goal was to provide a new TSPO ligand that could be used further to prepare coordination complexes of a metallo drug to be used in diagnosis and therapy. However, the ligand itself proved to be a potent tumor cell growth inhibitor and DNA double-strand breaker.

  3. Synthesis of bifunctional antibodies for immunoassays.

    Science.gov (United States)

    DeSilva, B S; Wilson, G S

    2000-09-01

    The synthesis of bifunctional antibodies using the principle of solid-phase synthesis is described. Two Fab' fragments were chemically linked together via a bismaleimide crosslinking reagent. The F(ab')(2) fragments from intact immunoglobulin G (IgG) were prepared using an immobilized pepsin column. Goat, mouse, and human antibodies were digested completely within 4 h. The F(ab')(2) fragments thus produced did not contain any IgG impurities. Fab' fragments were produced by reducing the heavy interchain disulfide bonds using 2-mercaptoethylamine. Use of the solid-phase reactor in the preparation of the bifunctional antibodies eliminated many of the time-consuming separation steps between the fragmentation and conjugation steps. This procedure facilitates the automation of bifunctional antibody preparation and the rapid optimization of reaction conditions.

  4. Solid phase synthesis of bifunctional antibodies.

    Science.gov (United States)

    DeSilva, B S; Wilson, G S

    1995-12-15

    Bifunctional antibodies were prepared using the principle of solid-phase synthesis. The two Fab' fragments were chemically linked together via a bismaleimide crosslinking reagent. The F(ab')2 fragments from intact IgG were prepared using an immobilized pepsin column. Goat, mouse and human antibodies were digested completely within 4 h. The F(ab')2 fragments thus produced did not contain any IgG impurities. The Fab' fragments were produced by reducing the inter-heavy chain disulfide bonds using 2-mercaptoethylamine. The use of the solid-phase reactor in the preparation of the bifunctional antibodies eliminated many of the time-consuming separation steps between the fragmentation and conjugation steps. This procedure facilitates the automation of the bifunctional antibody preparation and the rapid optimization of reaction conditions.

  5. Handheld Chem/Biosensor Using Extreme Conformational Changes in Designed Binding Proteins to Enhance Surface Plasmon Resonance (SPR)

    Science.gov (United States)

    2016-04-01

    AFCEC-CX-TY-TR-2016-0007 HANDHELD CHEM/ BIOSENSOR USING EXTREME CONFORMATIONAL CHANGES IN DESIGNED BINDING PROTEINS TO ENHANCE SURFACE PLASMON...Include area code) 03/24/2016 Abstract 08/14/2015--03/31/2016 Handheld chem/ biosensor using extreme conformational changes in designed binding...Baltimore, Maryland on 17-21 April 2016. We propose the development of a highly sensitive handheld chem/ biosensor device using a novel class of engineered

  6. Greater Mortality and Morbidity in Extremely Preterm Infants Fed a Diet Containing Cow Milk Protein Products

    Science.gov (United States)

    Schanler, Richard J.; Lee, Martin L.; Rechtman, David J.

    2014-01-01

    Abstract Background: Provision of human milk has important implications for the health and outcomes of extremely preterm (EP) infants. This study evaluated the effects of an exclusive human milk diet on the health of EP infants during their stay in the neonatal intensive care unit. Subjects and Methods: EP infants <1,250 g birth weight received a diet consisting of either human milk fortified with a human milk protein-based fortifier (HM) (n=167) or a diet containing variable amounts of milk containing cow milk-based protein (CM) (n=93). Principal outcomes were mortality, necrotizing enterocolitis (NEC), growth, and duration of parenteral nutrition (PN). Results: Mortality (2% versus 8%, p=0.004) and NEC (5% versus 17%, p=0.002) differed significantly between the HM and CM groups, respectively. For every 10% increase in the volume of milk containing CM, the risk of sepsis increased by 17.9% (p<0.001). Growth rates were similar between groups. The duration of PN was 8 days less in the subgroup of infants receiving a diet containing <10% CM versus ≥10% CM (p<0.02). Conclusions: An exclusive human milk diet, devoid of CM-containing products, was associated with lower mortality and morbidity in EP infants without compromising growth and should be considered as an approach to nutritional care of these infants. PMID:24867268

  7. The ProVIDe study: the impact of protein intravenous nutrition on development in extremely low birthweight babies

    OpenAIRE

    Bloomfield, Frank H.; Crowther, Caroline A; Harding, Jane E; Cathryn A. Conlon; Jiang, Yannan; Cormack, Barbara E.

    2015-01-01

    Background Preterm birth and very small size at birth have long-term effects on neurodevelopment and growth. A relatively small percentage of extremely low birthweight babies suffer from severe neurological disability; however, up to 50 % experience some neurodevelopmental or learning disability in childhood. Current international consensus is that increased protein intake in the neonatal period improves both neurodevelopment and growth, but the quantum of protein required is not known. This ...

  8. Ribonucleic acid-protein cross-linking within the intact Escherichia coli ribosome, utilizing ethylene glycol bis[3-(2-ketobutyraldehyde) ether], a reversible, bifunctional reagent: identification of 30S proteins.

    Science.gov (United States)

    Brewer, L A; Noller, H F

    1983-08-30

    To obtain detailed topographical information concerning the spatial arrangement of the multitude of ribosomal proteins with respect to specific sequences in the three RNA chains of intact ribosomes, a reagent capable of covalently and reversibly joining RNA to protein has been synthesized [Brewer, L.A., Goelz, S., & Noller, H. F. (1983) Biochemistry (preceding paper in this issue)]. This compound, ethylene glycol bis[3-(2-ketobutyraldehyde) ether] which we term "bikethoxal", possesses two reactive ends similar to kethoxal. Accordingly, it reacts selectively with guanine in single-stranded regions of nucleic acid and with arginine in protein. The cross-linking is reversible in that the arginine- and guanine-bikethoxal linkage can be disrupted by treatment with mild base, allowing identification of the linked RNA and protein components by standard techniques. Further, since the sites of kethoxal modification within the RNA sequences of intact subunits are known, the task of identifying the components of individual ribonucleoprotein complexes should be considerably simplified. About 15% of the ribosomal protein was covalently cross-linked to 16S RNA by bikethoxal under our standard reaction conditions, as monitored by comigration of 35S-labeled protein with RNA on Sepharose 4B in urea. Cross-linked 30S proteins were subsequently removed from 16S RNA by treatment with T1 ribonuclease and/or mild base cleavage of the reagent and were identified by two-dimensional polyacrylamide gel electrophoresis. The major 30S proteins found in cross-linked complexes are S4, S5, S6, S7, S8, S9 (S11), S16, and S18. The minor ones are S2, S3, S12, S13, S14, S15, and S17.

  9. Joint Influence of Protein Supplements, Soft Drinks and Extreme Physical Activity on the Development of Acute Renal Failure and Hypokalaemia.

    Science.gov (United States)

    Djordjevic, S; Kitic, D; Kostic, M; Apostolovic, B; Brankovic, S; Ciric, I M; Velickovic-Radovanovic, R

    2015-11-13

    We present a case of a 33-year old man who complained of weakness, fever and decreased urinating. A personal history revealed a consumption of creatine, protein supplements, soft drinks containing caffeine and stevia, and extreme physical activity which included lifting of heavy weights. The patient developed anuria, uraemia, fatigue, rhabdomyolysis and paradoxical hypokalaemia. After the patient had seven successive dialysis treatments, normal kidney function was restored. The report presents the first case of acute renal failure followed by hypokalaemia due to the combined action of the excessive consumption of supplements, soft drinks with stevia and caffeine, and extreme physical activity.

  10. The bi-functional organization of human basement membranes.

    Science.gov (United States)

    Halfter, Willi; Monnier, Christophe; Müller, David; Oertle, Philipp; Uechi, Guy; Balasubramani, Manimalha; Safi, Farhad; Lim, Roderick; Loparic, Marko; Henrich, Paul Bernhard

    2013-01-01

    The current basement membrane (BM) model proposes a single-layered extracellular matrix (ECM) sheet that is predominantly composed of laminins, collagen IVs and proteoglycans. The present data show that BM proteins and their domains are asymmetrically organized providing human BMs with side-specific properties: A) isolated human BMs roll up in a side-specific pattern, with the epithelial side facing outward and the stromal side inward. The rolling is independent of the curvature of the tissue from which the BMs were isolated. B) The epithelial side of BMs is twice as stiff as the stromal side, and C) epithelial cells adhere to the epithelial side of BMs only. Side-selective cell adhesion was also confirmed for BMs from mice and from chick embryos. We propose that the bi-functional organization of BMs is an inherent property of BMs and helps build the basic tissue architecture of metazoans with alternating epithelial and connective tissue layers.

  11. The bi-functional organization of human basement membranes.

    Directory of Open Access Journals (Sweden)

    Willi Halfter

    Full Text Available The current basement membrane (BM model proposes a single-layered extracellular matrix (ECM sheet that is predominantly composed of laminins, collagen IVs and proteoglycans. The present data show that BM proteins and their domains are asymmetrically organized providing human BMs with side-specific properties: A isolated human BMs roll up in a side-specific pattern, with the epithelial side facing outward and the stromal side inward. The rolling is independent of the curvature of the tissue from which the BMs were isolated. B The epithelial side of BMs is twice as stiff as the stromal side, and C epithelial cells adhere to the epithelial side of BMs only. Side-selective cell adhesion was also confirmed for BMs from mice and from chick embryos. We propose that the bi-functional organization of BMs is an inherent property of BMs and helps build the basic tissue architecture of metazoans with alternating epithelial and connective tissue layers.

  12. Synthesis and evaluation of novel bifunctional chelating agents based on 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid for radiolabeling proteins

    Energy Technology Data Exchange (ETDEWEB)

    Chappell, L.L.; Ma, D.; Milenic, D.E.; Garmestani, K.; Venditto, V.; Beitzel, M.P.; Brechbiel, M.W. E-mail: martinwb@mail.nih.gov

    2003-08-01

    Detailed synthesis of the bifunctional chelating agents 2-methyl-6-(p-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane-1,4,7,10 -tetraacetic acid (1B4M-DOTA) and 2-(p-isothiocyanatobenzyl)-5, 6-cyclohexano-1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetate (CHX-DOTA) are reported. These chelating agents were compared to 2-(p-isothiocyanatobenzyl)-1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid (C-DOTA) and 1, 4, 7, 10-Tetraaza-N-(1-carboxy-3-(4-nitrophenyl)propyl)-N', N'', N'''-tris(acetic acid) cyclododecane (PA-DOTA) as their {sup 177}Lu radiolabeled conjugates with Herceptin{sup TM}. In vitro stability of the immunoconjugates radiolabeled with {sup 177}Lu was assessed by serum stability studies. The in vivo stability of the radiolabeled immunoconjugates and their targeting characteristics were determined by biodistribution studies in LS-174T xenograft tumor-bearing mice. Relative radiolabeling rates and efficiencies were determined for all four immunoconjugates. Insertion of the 1B4M moiety into the DOTA backbone increases radiometal chelation rate and provides complex stability comparable to C-DOTA and PA-DOTA while the CHX-DOTA appears to not form as stable a {sup 177}Lu complex while exhibiting a substantial increase in formation rate. The 1B4M-DOTAmay have potential for radioimmunotherapy applications. Published by Elsevier Inc. All rights reserved.

  13. Improving stability and biocompatibility of alginate/chitosan microcapsule by fabricating bi-functional membrane.

    Science.gov (United States)

    Zheng, Guoshuang; Liu, Xiudong; Wang, Xiuli; Chen, Li; Xie, Hongguo; Wang, Feng; Zheng, Huizhen; Yu, Weiting; Ma, Xiaojun

    2014-05-01

    Cell encapsulation technology holds promise for the cell-based therapy. But poor mechanical strength and biocompatibility of microcapsule membrane are still obstacles for the clinical applications. A novel strategy is presented to prepare AC₁ C₂ A microcapsules with bi-functional membrane (that is, both desirable biocompatibility and membrane stability) by sequentially complexing chitosans with higher deacetylation degree (C₁) and lower deacetylation degree (C₂) on alginate (A) gel beads. Both in vitro and in vivo evaluation of AC₁C₂ A microcapsules demonstrate higher membrane stability and less cell adhesion, because the introduction of C₂ increases membrane strength and decreases surface roughness. Moreover, diffusion test of AC₁C₂ A microcapsules displays no inward permeation of IgG protein suggesting good immunoisolation function. The results demonstrate that AC₁C₂ A microcapsules with bi-functional membrane could be a promising candidate for microencapsulated cell implantation with cost effective usage of naturally biocompatible polysaccharides.

  14. Astaxanthin diferulate as a bifunctional antioxidant

    DEFF Research Database (Denmark)

    Papa, T.B.R.; Pinho, V.D.; Nascimento, E.P. do;

    2015-01-01

    Abstract Astaxanthin when esterified with ferulic acid is better singlet oxygen quencher with k2 = (1.58 ± 0.1) 10(10) L mol(- 1)s(- 1) in ethanol at 25°C compared with astaxanthin with k2 = (1.12 ± 0.01) 10(9) L mol(- 1)s(- 1). The ferulate moiety in the astaxanthin diester is a better radical s....... The mutual enhancement of antioxidant activity for the newly synthetized astaxanthin diferulate becoming a bifunctional antioxidant is rationalized according to a two-dimensional classification plot for electron donation and electron acceptance capability....

  15. Reciprocal regulation as a source of ultrasensitivity in two-component systems with a bifunctional sensor kinase.

    Directory of Open Access Journals (Sweden)

    Ronny Straube

    2014-05-01

    Full Text Available Two-component signal transduction systems, where the phosphorylation state of a regulator protein is modulated by a sensor kinase, are common in bacteria and other microbes. In many of these systems, the sensor kinase is bifunctional catalyzing both, the phosphorylation and the dephosphorylation of the regulator protein in response to input signals. Previous studies have shown that systems with a bifunctional enzyme can adjust the phosphorylation level of the regulator protein independently of the total protein concentrations--a property known as concentration robustness. Here, I argue that two-component systems with a bifunctional enzyme may also exhibit ultrasensitivity if the input signal reciprocally affects multiple activities of the sensor kinase. To this end, I consider the case where an allosteric effector inhibits autophosphorylation and, concomitantly, activates the enzyme's phosphatase activity, as observed experimentally in the PhoQ/PhoP and NRII/NRI systems. A theoretical analysis reveals two operating regimes under steady state conditions depending on the effector affinity: If the affinity is low the system produces a graded response with respect to input signals and exhibits stimulus-dependent concentration robustness--consistent with previous experiments. In contrast, a high-affinity effector may generate ultrasensitivity by a similar mechanism as phosphorylation-dephosphorylation cycles with distinct converter enzymes. The occurrence of ultrasensitivity requires saturation of the sensor kinase's phosphatase activity, but is restricted to low effector concentrations, which suggests that this mode of operation might be employed for the detection and amplification of low abundant input signals. Interestingly, the same mechanism also applies to covalent modification cycles with a bifunctional converter enzyme, which suggests that reciprocal regulation, as a mechanism to generate ultrasensitivity, is not restricted to two

  16. Greater mortality and mordidity in extremely preterm infants fed a diet containing cow milk protein products

    Science.gov (United States)

    Provision of human milk has important implications for the health and outcomes of extremely preterm (EP) infants. This study evaluated the effects of an exclusive human milk diet on the health of EP infants during their stay in the neonatal intensive care unit. EP infants <1,250 g birth weight recei...

  17. Acid-base bifunctional catalytic surfaces for nucleophilic addition reactions.

    Science.gov (United States)

    Motokura, Ken; Tada, Mizuki; Iwasawa, Yasuhiro

    2008-09-01

    This article illustrates the modification of oxide surfaces with organic amine functional groups to create acid-base bifunctional catalysts, summarizing our previous reports and also presenting new data. Immobilization of organic amines as bases on inorganic solid-acid surfaces afforded highly active acid-base bifunctional catalysts, which enabled various organic transformations including C--C coupling reactions, though these reactions did not proceed with either the homogeneous amine precursors or the acidic supports alone. Spectroscopic characterization, such as by solid-state MAS NMR and FTIR, revealed not only the interactions between acidic and basic sites but also bifunctional catalytic reaction mechanisms.

  18. A novel bifunctional transcriptional regulator of riboflavin metabolism in Archaea.

    Science.gov (United States)

    Rodionova, Irina A; Vetting, Matthew W; Li, Xiaoqing; Almo, Steven C; Osterman, Andrei L; Rodionov, Dmitry A

    2017-01-09

    Riboflavin (vitamin B2) is the precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide, which are essential coenzymes in all free-living organisms. Riboflavin biosynthesis in many Bacteria but not in Archaea is controlled by FMN-responsive riboswitches. We identified a novel bifunctional riboflavin kinase/regulator (RbkR), which controls riboflavin biosynthesis and transport genes in major lineages of Crenarchaeota, Euryarchaeota and Thaumarchaeota. RbkR proteins are composed of the riboflavin kinase domain and a DNA-binding winged helix-turn-helix-like domain. Using comparative genomics, we predicted RbkR operator sites and reconstructed RbkR regulons in 94 archaeal genomes. While the identified RbkR operators showed significant variability between archaeal lineages, the conserved core of RbkR regulons includes riboflavin biosynthesis genes, known/predicted vitamin uptake transporters and the rbkR gene. The DNA motifs and CTP-dependent riboflavin kinase activity of two RbkR proteins were experimentally validated in vitro The DNA binding activity of RbkR was stimulated by CTP and suppressed by FMN, a product of riboflavin kinase. The crystallographic structure of RbkR from Thermoplasma acidophilum was determined in complex with CTP and its DNA operator revealing key residues for operator and ligand recognition. Overall, this study contributes to our understanding of metabolic and regulatory networks for vitamin homeostasis in Archaea.

  19. A bifunctional spin label reports the structural topology of phospholamban in magnetically-aligned bicelles.

    Science.gov (United States)

    McCaffrey, Jesse E; James, Zachary M; Svensson, Bengt; Binder, Benjamin P; Thomas, David D

    2016-01-01

    We have applied a bifunctional spin label and EPR spectroscopy to determine membrane protein structural topology in magnetically-aligned bicelles, using monomeric phospholamban (PLB) as a model system. Bicelles are a powerful tool for studying membrane proteins by NMR and EPR spectroscopies, where magnetic alignment yields topological constraints by resolving the anisotropic spectral properties of nuclear and electron spins. However, EPR bicelle studies are often hindered by the rotational mobility of monofunctional Cys-linked spin labels, which obscures their orientation relative to the protein backbone. The rigid and stereospecific TOAC label provides high orientational sensitivity but must be introduced via solid-phase peptide synthesis, precluding its use in large proteins. Here we show that a bifunctional methanethiosulfonate spin label attaches rigidly and stereospecifically to Cys residues at i and i+4 positions along PLB's transmembrane helix, thus providing orientational resolution similar to that of TOAC, while being applicable to larger membrane proteins for which synthesis is impractical. Computational modeling and comparison with NMR data shows that these EPR experiments provide accurate information about helix tilt relative to the membrane normal, thus establishing a robust method for determining structural topology in large membrane proteins with a substantial advantage in sensitivity over NMR.

  20. Iron Group Hydrides in Noyori Bifunctional Catalysis.

    Science.gov (United States)

    Morris, Robert H

    2016-12-01

    This is an overview of the hydride-containing catalysts prepared in the Morris group for the efficient hydrogenation of simple ketones, imines, nitriles and esters and the asymmetric hydrogenation and transfer hydrogenation of prochiral ketones and imines. The work was inspired by and makes use of Noyori metal-ligand bifunctional concepts involving the hydride-ruthenium amine-hydrogen HRuNH design. It describes the synthesis and some catalytic properties of hydridochloro, dihydride and amide complexes of ruthenium and in one case, osmium, with monodentate, bidentate and tetradentate phosphorus and nitrogen donor ligands. The iron hydride that has been identified in a very effective asymmetric transfer hydrogenation process is also mentioned. The link between the HMNH structure and the sense of enantioinduction is demonstrated by use of simple transition state models.

  1. Rheology of reconstituted silk fibroin protein gels: the epitome of extreme mechanics.

    Science.gov (United States)

    Tabatabai, A Pasha; Kaplan, David L; Blair, Daniel L

    2015-01-28

    In nature, silk fibroin proteins assemble into hierarchical structures with dramatic mechanical properties. With the hope of creating new classes of on demand silk-based biomaterials, Bombyx mori silk is reconstituted back into stable aqueous solutions that can be reassembled into functionalized materials; one strategy for reassembly is electrogelation. Electrogels (e-gels) are particularly versatile and can be produced using electrolysis with small DC electric fields. We characterize the linear and nonlinear rheological behavior of e-gels to provide fundamental insights into these distinct protein-based materials. We observe that e-gels form robust biopolymer networks that exhibit distinctive strain hardening and are recoverable from strains as large as γ=27, i.e. 2700%. We propose a simple microscopic model that is consistent with local restructuring of single proteins within the e-gel network.

  2. Targeting Prostate Cancer with Bifunctional Modulators of the Androgen Receptor

    Science.gov (United States)

    2013-10-01

    element of immunosuppressive regimens for organ transplantation (1). Despite these 24 Bifunctional Ligand Control of Nuclear Receptors 3 well...Gerez J, Paez-Pereda M, Rein T, Iniguez-Lluhi JA, Holsboer F, Arzt E 2013 RSUME enhances glucocorticoid receptor SUMOylation and transcriptional... transplant recipients. Transpl Immunol 27:12-18 42. Marinec PS, Lancia JK, Gestwicki JE 2008 Bifunctional molecules evade cytochrome P(450) metabolism

  3. Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface

    Directory of Open Access Journals (Sweden)

    Siglioccolo Alessandro

    2011-12-01

    Full Text Available Abstract Background Halophiles are extremophilic microorganisms growing optimally at high salt concentrations. There are two strategies used by halophiles to maintain proper osmotic pressure in their cytoplasm: accumulation of molar concentrations of potassium and chloride with extensive adaptation of the intracellular macromolecules ("salt-in" strategy or biosynthesis and/or accumulation of organic osmotic solutes ("osmolyte" strategy. Our work was aimed at contributing to the understanding of the shared molecular mechanisms of protein haloadaptation through a detailed and systematic comparison of a sample of several three-dimensional structures of halophilic and non-halophilic proteins. Structural differences observed between the "salt-in" and the mesophilic homologous proteins were contrasted to those observed between the "osmolyte" and mesophilic pairs. Results The results suggest that haloadaptation strategy in the presence of molar salt concentration, but not of osmolytes, necessitates a weakening of the hydrophobic interactions, in particular at the level of conserved hydrophobic contacts. Weakening of these interactions counterbalances their strengthening by the presence of salts in solution and may help the structure preventing aggregation and/or loss of function in hypersaline environments. Conclusions Considering the significant increase of biotechnology applications of halophiles, the understanding of halophilicity can provide the theoretical basis for the engineering of proteins of great interest because stable at concentrations of salts that cause the denaturation or aggregation of the majority of macromolecules.

  4. Deformation and Failure of Protein Materials in Physiologically Extreme Conditions and Disease

    Science.gov (United States)

    2009-03-01

    T. E., Oberhauser, A. F., Carrion -Vazquez, M., Marszalek, P. E. & Fernandez, J. M. The study of protein mechanics with the atomic force microscope...Trends Biochem. Sci. 24, 379–384 (1999). 66. Oberhauser, A. F., Badilla-Fernandez, C., Carrion -Vazquez, M. & Fernandez, J. M. The mechanical

  5. Activation of mitogen-activated protein kinase pathway by extremely low-dose ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Keiji; Kodama, Seiji; Watanabe, Masami [Nagasaki Univ., Graduate School of Biomedical Sciences, Nagasaki (Japan)

    2003-07-01

    We demonstrated here that X-ray irradiation at very low doses of between 2 and 5 cGy stimulated activity of a member of mitogen-activated protein (MAP) kinase, the extracellular signal-regulated kinase (ERK) 1/2, in normal human diploid cells. Higher doses of irradiation at more than 1 Gy induced phosphorylation of ERK1/2 and accumulated p53 protein. Phosphorylation of ERK1/2 decreased with dose down to 50 cGy, however, doses of between 5 cGy and 2 cGy phosphorylated ERK1/2 as efficiently as higher doses of X-rays, while the p53 protein level was no longer changed by doses below 50 cGy. ATM-dependent phosphorylation of p53 protein at Ser15 and histone H2AX at Ser139 was only observed at higher doses at more than 10 cGy of X-rays. We found that MEK1 was phosphorylated with both 2 cGy and 6 Gy of X-rays, and that the MEK1 inhibitor, PD98059 decreased phosphorylation of the ERK1/2 proteins induced by 2 cGy or 6 Gy of X-rays. Similar suppressive effect was observed with the specific epidermal growth factor (EGF) receptor tyrosine kinase inhibitor, AG1478. These results indicate that a limited range of low dose ionizing radiation differentially activate ERK1/2 kinases via activation of EGF receptor and MEK, which mediates various effects of cells receiving very low doses of ionizing radiation. (author)

  6. Dynamics of salivary proteins and metabolites during extreme endurance sports - a case study.

    Science.gov (United States)

    Zauber, Henrik; Mosler, Stephan; von Heßberg, Andreas; Schulze, Waltraud X

    2012-07-01

    As noninvasively accessible body fluid, saliva is of growing interest in diagnostics. To exemplify the diagnostic potential of saliva, we used a mass spectrometry-based approach to gain insights into adaptive physiological processes underlying long-lasting endurance work load in a case study. Saliva was collected from male and female athlete at four diurnal time points throughout a 1060 km nonstop cycling event. Total sampling time covered 180 h comprising 62 h of endurance cycling as well as reference samples taken over 3 days before the event, and over 2 days after. Altogether, 1405 proteins and 62 metabolites were identified in these saliva samples, of which 203 could be quantified across the majority of the sampling time points. Many proteins show clear diurnal abundance patterns in saliva. In many cases, these patterns were disturbed and altered by the long-term endurance stress. During the stress phase, metabolites of energy mobilization, such as creatinine and glucose were of high abundance, as well as metabolites with antioxidant functions. Lysozyme, amylase, and proteins with redox-regulatory function showed significant increase in average abundance during work phase compared to rest or recovery phase. The recovery phase was characterized by an increased abundance of immunoglobulins. Our work exemplifies the application of high-throughput technologies to understand adaptive processes in human physiology.

  7. Bifunctional avidin with covalently modifiable ligand binding site.

    Directory of Open Access Journals (Sweden)

    Jenni Leppiniemi

    Full Text Available The extensive use of avidin and streptavidin in life sciences originates from the extraordinary tight biotin-binding affinity of these tetrameric proteins. Numerous studies have been performed to modify the biotin-binding affinity of (streptavidin to improve the existing applications. Even so, (streptavidin greatly favours its natural ligand, biotin. Here we engineered the biotin-binding pocket of avidin with a single point mutation S16C and thus introduced a chemically active thiol group, which could be covalently coupled with thiol-reactive molecules. This approach was applied to the previously reported bivalent dual chain avidin by modifying one binding site while preserving the other one intact. Maleimide was then coupled to the modified binding site resulting in a decrease in biotin affinity. Furthermore, we showed that this thiol could be covalently coupled to other maleimide derivatives, for instance fluorescent labels, allowing intratetrameric FRET. The bifunctional avidins described here provide improved and novel tools for applications such as the biofunctionalization of surfaces.

  8. 50Hz Extremely Low Frequency Electromagnetic Fields Enhance Protein Carbonyl Groups Content in Cancer Cells: Effects on Proteasomal Systems

    Directory of Open Access Journals (Sweden)

    A. M. Eleuteri

    2009-01-01

    Full Text Available Electromagnetic fields are an assessed cause of prolonging free radicals lifespan. This study was carried out to investigate the influence of extremely low frequency electromagnetic fields on protein oxidation and on the 20S proteasome functionality, the complex responsible for the degradation of oxidized proteins. Caco 2 cells were exposed, for 24–72 hours, to 1 mT, 50 Hz electromagnetic fields. The treatment induced a time-dependent increase both in cell growth and in protein oxidation, more evident in the presence of TPA, while no changes in cell viability were detected. Exposing the cells to 50 Hz electromagnetic fields caused a global activation of the 20S proteasome catalytic components, particularly evident at 72 hours exposure and in the presence of TPA. The finding that EGCG, a natural antioxidant compound, counteracted the field-related pro-oxidant effects demonstrates that the increased proteasome activity was due to an enhancement in intracellular free radicals.

  9. Using extremely halophilic bacteria to understand the role of surface charge and surface hydration in protein evolution, folding, and function

    Science.gov (United States)

    Hoff, Wouter; Deole, Ratnakar; Osu Collaboration

    2013-03-01

    Halophilic Archaea accumulate molar concentrations of KCl in their cytoplasm as an osmoprotectant, and have evolved highly acidic proteomes that only function at high salinity. We examine osmoprotection in the photosynthetic Proteobacteria Halorhodospira halophila. We find that H. halophila has an acidic proteome and accumulates molar concentrations of KCl when grown in high salt media. Upon growth of H. halophila in low salt media, its cytoplasmic K + content matches that of Escherichia coli, revealing an acidic proteome that can function in the absence of high cytoplasmic salt concentrations. These findings necessitate a reassessment of two central aspects of theories for understanding extreme halophiles. We conclude that proteome acidity is not driven by stabilizing interactions between K + ions and acidic side chains, but by the need for maintaining sufficient solvation and hydration of the protein surface at high salinity through strongly hydrated carboxylates. We propose that obligate protein halophilicity is a non-adaptive property resulting from genetic drift in which constructive neutral evolution progressively incorporates weakly stabilizing K + binding sites on an increasingly acidic protein surface.

  10. Purification, crystallization and preliminary X-ray analysis of bifunctional isocitrate dehydrogenase kinase/phosphatase in complex with its substrate, isocitrate dehydrogenase, from Escherichia coli

    OpenAIRE

    2009-01-01

    The protein complex of bifunctional isocitrate dehydrogenase kinase/phosphatase with its substrate, isocitrate dehydrogenase, has been crystallized for structural analysis. A complete data set was collected from the complex crystal and processed to 2.9 Å resolution.

  11. Characterization of a bifunctional enzyme with (p)ppGpp-hydrolase/synthase activity in Leptospira interrogans.

    Science.gov (United States)

    He, Ping; Deng, Cong; Liu, Boyu; Zeng, LingBing; Zhao, Wei; Zhang, Yan; Jiang, XuCheng; Guo, XiaoKui; Qin, JinHong

    2013-11-01

    Alarmone Guanosine 5'-diphosphate (or 5'-triphosphate) 3'-diphosphate [(p)ppGpp] is the key component that globally regulates stringent control in bacteria. There are two homologous enzymes, RelA and SpoT in Escherichia coli, which are responsible for fluctuations in (p)ppGpp concentration inside the cell, whereas there exists only a single RelA/SpoT enzyme in Gram-positive bacteria. We have identified a bifunctional enzyme with (p)ppGpp-hydrolase/synthase activity in Leptospira interrogans. We show that the relLin gene (LA_3085) encodes a protein that fully complements the relA/spoT double mutants in E. coli. The protein functions as a (p)ppGpp degradase as well as a (p)ppGpp synthase when the cells encounter amino acid stress and deprivation of carbon sources. N-terminus HD and RSD domains of relLin (relLinN ) were observed to restore growth of double mutants of E. coli. Finally, We demonstrate that purified RelLin and RelLinN show high (p)ppGpp synthesis activity in vitro. Taken together, our results suggest that L. interrogans contain a single Rel-like bifunctional protein, RelLin , which plays an important role in maintaining the basal level of (p)ppGpp in the cell potentially contributing to the regulation of bacterial stress response.

  12. Astaxanthin diferulate as a bifunctional antioxidant.

    Science.gov (United States)

    Papa, T B R; Pinho, V D; do Nascimento, E S P; Santos, W G; Burtoloso, A C B; Skibsted, L H; Cardoso, D R

    2015-01-01

    Astaxanthin when esterified with ferulic acid is better singlet oxygen quencher with k2 = (1.58 ± 0.1) 10(10) L mol(-1)s(-1) in ethanol at 25°C compared with astaxanthin with k2 = (1.12 ± 0.01) 10(9) L mol(-1)s(-1). The ferulate moiety in the astaxanthin diester is a better radical scavenger than free ferulic acid as seen from the rate constant of scavenging of 1-hydroxyethyl radicals in ethanol at 25°C with a second-order rate constant of (1.68 ± 0.1) 10(8) L mol(-1)s(-1) compared with (1.60 ± 0.03) 10(7) L mol(-1)s(-1) for the astaxanthin:ferulic acid mixture, 1:2 equivalents. The mutual enhancement of antioxidant activity for the newly synthetized astaxanthin diferulate becoming a bifunctional antioxidant is rationalized according to a two-dimensional classification plot for electron donation and electron acceptance capability.

  13. Ternary NiCoP nanosheet arrays: An excellent bifunctional catalyst for alkaline overall water splitting

    Institute of Scientific and Technical Information of China (English)

    Yingjie Li; Haichuan Zhang; Ming Jiang; Yun Kuang; Xiaoming Sun; Xue Duan

    2016-01-01

    Exploring bifunctional catalysts for the hydrogen and oxygen evolution reactions (HER and OER) with high efficiency,low cost,and easy integration is extremely crucial for future renewable energy systems.Herein,ternary NiCoP nanosheet arrays (NSAs) were fabricated on 3D Ni foam by a facile hydrothermal method followed by phosphorization.These arrays serve as bifunctional alkaline catalysts,exhibiting excellent electrocatalytic performance and good working stability for both the HER and OER.The overpotentials of the NiCoP NSA electrode required to drive a current density of 50 mA/cm2 for the HER and OER are as low as 133 and 308 mV,respectively,which is ascribed to excellent intrinsic electrocatalytic activity,fast electron transport,and a unique superaerophobic structure.When NiCoP was integrated as both anodic and cathodic material,the electrolyzer required a potential as low as ~1.77 V to drive a current density of 50 mA/cm2 for overall water splitting,which is much smaller than a reported electrolyzer using the same kind of phosphide-based material and is even better than the combination of Pt/C and Ir/C,the best known noble metal-based electrodes.Combining satisfactory working stability and high activity,this NiCoP electrode paves the way for exploring overall water splitting catalysts.

  14. Exposure to extremely low frequency electromagnetic fields alters the behaviour, physiology and stress protein levels of desert locusts.

    Science.gov (United States)

    Wyszkowska, Joanna; Shepherd, Sebastian; Sharkh, Suleiman; Jackson, Christopher W; Newland, Philip L

    2016-11-03

    Electromagnetic fields (EMFs) are present throughout the modern world and are derived from many man-made sources including overhead transmission lines. The risks of extremely-low frequency (ELF) electromagnetic fields are particularly poorly understood especially at high field strengths as they are rarely encountered at ground level. Flying insects, however, can approach close to high field strength transmission lines prompting the question as to how these high levels of exposure affect behaviour and physiology. Here we utilise the accessible nervous system of the locust to ask how exposure to high levels of ELF EMF impact at multiple levels. We show that exposure to ELF EMFs above 4 mT leads to reduced walking. Moreover, intracellular recordings from an identified motor neuron, the fast extensor tibiae motor neuron, show increased spike latency and a broadening of its spike in exposed animals. In addition, hind leg kick force, produced by stimulating the extensor tibiae muscle, was reduced following exposure, while stress-protein levels (Hsp70) increased. Together these results suggest that ELF EMF exposure has the capacity to cause dramatic effects from behaviour to physiology and protein expression, and this study lays the foundation to explore the ecological significance of these effects in other flying insects.

  15. Transcriptional profiling of mammary gland in Holstein cows with extremely different milk protein and fat percentage using RNA sequencing

    Science.gov (United States)

    2014-01-01

    Background Recently, RNA sequencing (RNA-seq) has rapidly emerged as a major transcriptome profiling system. Elucidation of the bovine mammary gland transcriptome by RNA-seq is essential for identifying candidate genes that contribute to milk composition traits in dairy cattle. Results We used massive, parallel, high-throughput, RNA-seq to generate the bovine transcriptome from the mammary glands of four lactating Holstein cows with extremely high and low phenotypic values of milk protein and fat percentage. In total, we obtained 48,967,376–75,572,578 uniquely mapped reads that covered 82.25% of the current annotated transcripts, which represented 15549 mRNA transcripts, across all the four mammary gland samples. Among them, 31 differentially expressed genes (p < 0.05, false discovery rate q < 0.05) between the high and low groups of cows were revealed. Gene ontology and pathway analysis demonstrated that the 31 differently expressed genes were enriched in specific biological processes with regard to protein metabolism, fat metabolism, and mammary gland development (p < 0.05). Integrated analysis of differential gene expression, previously reported quantitative trait loci, and genome-wide association studies indicated that TRIB3, SAA (SAA1, SAA3, and M-SAA3.2), VEGFA, PTHLH, and RPL23A were the most promising candidate genes affecting milk protein and fat percentage. Conclusions This study investigated the complexity of the mammary gland transcriptome in dairy cattle using RNA-seq. Integrated analysis of differential gene expression and the reported quantitative trait loci and genome-wide association study data permitted the identification of candidate key genes for milk composition traits. PMID:24655368

  16. Influence of extremely low frequency magnetic field on total protein and –SH groups concentrations in liver homogenates

    Directory of Open Access Journals (Sweden)

    Elżbieta Ciejka

    2014-10-01

    Full Text Available Background: Free radicals are atoms, molecules or their fragments, whose excess leads to the development of oxidative stress, the cause of many neoplastic, neurodegenerative and inflammatory diseases, as well as aging of organisms. Industrial pollution, tobacco smoke, ionizing radiation, ultrasound and magnetic fields are the major exogenous sources of free radicals. The low frequency magnetic field is commonly applied in physiotherapy. The aim of the present study was to evaluate the effect of extremely low frequency magnetic field (ELF-MF on the concentration of sulfhydryl groups (–SH and proteins in liver tissues of experimental animals depending on the time of exposure to the field. Material and Methods: Twenty one Sprague-Dawley male rats, aged 3–4 months were randomly divided into 3 experimental groups (each containing 7 animals: controls (group I, the rats exposed to ELF-MF of 40 Hz, 7 mT (this kind of the ELF-MF is mostly used in magnetotherapy, 30 min/day for 2 weeks (group II and the rats exposed to 40 Hz, 7 mT for 60 min/day for 2 weeks (group III. The concentrations of proteins and sulfhydryl groups in the liver tissues were determined after exposure to magnetic fields. Results: Exposure to low magnetic field: 40 Hz, 7 mT for 30 min/day and 60 min/day for 2 weeks caused a significant increase in the concentration of –SH groups and total protein levels in the liver tissues. Conclusions: The study results suggest that exposure to magnetic fields leads to the development of adaptive mechanisms to maintain the balance in the body oxidation-reduction and in the case of the studied parameters does not depend on the time of exposure. Med Pr 2014;65(5:639–644

  17. Conversion of the bifunctional 8-oxoguanine/beta-delta apurinic/apyrimidinic DNA repair activities of Drosophila ribosomal protein S3 into the human S3 monofunctional beta-elimination catalyst through a single amino acid change.

    Science.gov (United States)

    Hegde, V; Kelley, M R; Xu, Y; Mian, I S; Deutsch, W A

    2001-07-20

    The Drosophila S3 ribosomal protein has important roles in both protein translation and DNA repair. In regards to the latter activity, it has been shown that S3 contains vigorous N-glycosylase activity for the removal of 8-oxoguanine residues in DNA that leaves baseless sites in their places. Drosophila S3 also possesses an apurinic/apyrimidinic (AP) lyase activity in which the enzyme catalyzes a beta-elimination reaction that cleaves phosphodiester bonds 3' and adjacent to an AP lesion in DNA. In certain situations, this is followed by a delta-elimination reaction that ultimately leads to the formation of a single nucleotide gap in DNA bordered by 5'- and 3'-phosphate groups. The human S3 protein, although 80% identical to its Drosophila homolog and shorter by only two amino acids, has only marginal N-glycosylase activity. Its lyase activity only cleaves AP DNA by a beta-elimination reaction, thus further distinguishing itself from the Drosophila S3 protein in lacking a delta-elimination activity. Using a hidden Markov model analysis based on the crystal structures of several DNA repair proteins, the enzymatic differences between Drosophila and human S3 were suggested by the absence of a conserved glutamine residue in human S3 that usually resides at the cleft of the deduced active site pocket of DNA glycosylases. Here we show that the replacement of the Drosophila glutamine by an alanine residue leads to the complete loss of glycosylase activity. Unexpectedly, the delta-elimination reaction at AP sites was also abrogated by a change in the Drosophila glutamine residue. Thus, a single amino acid change converted the Drosophila activity into one that is similar to that possessed by the human S3 protein. In support of this were experiments executed in vivo that showed that human S3 and the Drosophila site-directed glutamine-changed S3 performed poorly when compared with Drosophila wild-type S3 and its ability to protect a bacterial mutant from the harmful effects of

  18. Shadow enhancers enable Hunchback bifunctionality in the Drosophila embryo.

    Science.gov (United States)

    Staller, Max V; Vincent, Ben J; Bragdon, Meghan D J; Lydiard-Martin, Tara; Wunderlich, Zeba; Estrada, Javier; DePace, Angela H

    2015-01-20

    Hunchback (Hb) is a bifunctional transcription factor that activates and represses distinct enhancers. Here, we investigate the hypothesis that Hb can activate and repress the same enhancer. Computational models predicted that Hb bifunctionally regulates the even-skipped (eve) stripe 3+7 enhancer (eve3+7) in Drosophila blastoderm embryos. We measured and modeled eve expression at cellular resolution under multiple genetic perturbations and found that the eve3+7 enhancer could not explain endogenous eve stripe 7 behavior. Instead, we found that eve stripe 7 is controlled by two enhancers: the canonical eve3+7 and a sequence encompassing the minimal eve stripe 2 enhancer (eve2+7). Hb bifunctionally regulates eve stripe 7, but it executes these two activities on different pieces of regulatory DNA--it activates the eve2+7 enhancer and represses the eve3+7 enhancer. These two "shadow enhancers" use different regulatory logic to create the same pattern.

  19. How extreme are extremes?

    Science.gov (United States)

    Cucchi, Marco; Petitta, Marcello; Calmanti, Sandro

    2016-04-01

    High temperatures have an impact on the energy balance of any living organism and on the operational capabilities of critical infrastructures. Heat-wave indicators have been mainly developed with the aim of capturing the potential impacts on specific sectors (agriculture, health, wildfires, transport, power generation and distribution). However, the ability to capture the occurrence of extreme temperature events is an essential property of a multi-hazard extreme climate indicator. Aim of this study is to develop a standardized heat-wave indicator, that can be combined with other indices in order to describe multiple hazards in a single indicator. The proposed approach can be used in order to have a quantified indicator of the strenght of a certain extreme. As a matter of fact, extremes are usually distributed in exponential or exponential-exponential functions and it is difficult to quickly asses how strong was an extreme events considering only its magnitude. The proposed approach simplify the quantitative and qualitative communication of extreme magnitude

  20. Stable expression of a bifunctional diterpene synthase in the chloroplast of Chlamydomonas reinhardtii

    DEFF Research Database (Denmark)

    Zedler, Julie A Z; Gangl, Doris; Hamberger, Björn Robert;

    2015-01-01

    Chlamydomonas reinhardtii has been shown to hold significant promise as a production platform for recombinant proteins, but transformation of the nuclear genome is still a non-trivial process due to random gene insertion and frequent silencing. Insertion of transgenes into the chloroplasts...... is an alternative strategy, and we report here the stable expression of a large (91 kDa) protein in the chloroplast using a recently developed low-cost transformation protocol. Moreover, selection of transformants is based on restoration of prototrophy using an endogenous gene (psbH) as the marker, thereby allowing...... the generation of transgenic lines without the use of antibiotic-resistance genes. Here, we have expressed a bifunctional diterpene synthase in C. reinhardtii chloroplasts. Homoplasmic transformants were obtained with the expressed enzyme accounting for 3.7 % of total soluble protein. The enzyme was purified...

  1. Development and computational modeling of novel bifunctional organophosphorus extractants for lanthanoid separation

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Masahiro; Matsumoto, Satoshi; Uezu, Kazuya; Nakashio, Fumiyuki [Kyushu Univ., Hakozaki, Fukuoka (Japan). Dept. of Chemical Science and Technology; Yoshizuka, Kazuharu; Inoue, Katsutoshi [Saga Univ., Honjyo, Saga (Japan). Dept. of Applied Chemistry

    1999-08-01

    Novel organophosphorus extractants, which have two functional groups in the molecular structure, have been developed for the separation of lanthanoids using the liquid-liquid extraction technique. The separation efficiency and extractability of the novel extractants were investigated for nine lanthanoids. These bifunctional extractants have an extremely high extractability to all the lanthanoids compared to those of commercially available organophosphorus extractants. Two isomers having an identical chemical formulation show significantly different behaviors in lanthanoid extraction. This means that the extraction and separation abilities are quite sensitive to the structure of the spacer connecting the two functional groups. The authors also discuss the experimental results with a computational modeling by means of molecular mechanics and semiempirical molecular orbital methods. The novel molecular mechanics (MM) calculation program MOMEC enables them to analyze the stable conformation of a series of lanthanoid complexes. The calculation suggests that the structural effect of the spacer is one of the decisive factors for enhancing selectivity and extractability in lanthanoid extraction.

  2. Robust Control of PEP Formation Rate in the Carbon Fixation Pathway of C4 Plants by a Bi-functional Enzyme

    Directory of Open Access Journals (Sweden)

    Hart Yuval

    2011-10-01

    Full Text Available Abstract Background C4 plants such as corn and sugarcane assimilate atmospheric CO2 into biomass by means of the C4 carbon fixation pathway. We asked how PEP formation rate, a key step in the carbon fixation pathway, might work at a precise rate, regulated by light, despite fluctuations in substrate and enzyme levels constituting and regulating this process. Results We present a putative mechanism for robustness in C4 carbon fixation, involving a key enzyme in the pathway, pyruvate orthophosphate dikinase (PPDK, which is regulated by a bifunctional enzyme, Regulatory Protein (RP. The robust mechanism is based on avidity of the bifunctional enzyme RP to its multimeric substrate PPDK, and on a product-inhibition feedback loop that couples the system output to the activity of the bifunctional regulator. The model provides an explanation for several unusual biochemical characteristics of the system and predicts that the system's output, phosphoenolpyruvate (PEP formation rate, is insensitive to fluctuations in enzyme levels (PPDK and RP, substrate levels (ATP and pyruvate and the catalytic rate of PPDK, while remaining sensitive to the system's input (light levels. Conclusions The presented PPDK mechanism is a new way to achieve robustness using product inhibition as a feedback loop on a bifunctional regulatory enzyme. This mechanism exhibits robustness to protein and metabolite levels as well as to catalytic rate changes. At the same time, the output of the system remains tuned to input levels.

  3. A highly conserved glycine within linker I and the extreme C terminus of G protein alpha subunits interact cooperatively in switching G protein-coupled receptor-to-effector specificity

    DEFF Research Database (Denmark)

    Kostenis, Evi; Martini, Lene; Ellis, James;

    2004-01-01

    Numerous studies have attested to the importance of the extreme C terminus of G protein alpha subunits in determining their selectivity of receptor recognition. We have previously reported that a highly conserved glycine residue within linker I is important for constraining the fidelity of receptor...... recognition by Galpha(q) proteins. Herein, we explored whether both modules (linker I and extreme C terminus) interact cooperatively in switching G protein-coupled receptor (GPCR)-to-effector specificity and created as models mutant Galpha(q) proteins in which glycine was replaced with various amino acids...... and the C-terminal five Galpha(q) residues with the corresponding Galpha(i) or Galpha(s) sequence. Coupling properties of the mutated Galpha(q) proteins were determined after coexpression with a panel of 13 G(i)-and G(s) -selective receptors and compared with those of Galpha proteins modified in only one...

  4. Single flexible nanofiber to simultaneously realize electricity-magnetism bifunctionality

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ming; Sheng, Shujuan; Ma, Qianli; Lv, Nan; Yu, Wensheng; Wang, Jinxian; Dong, Xiangting; Liu, Guixia, E-mail: wenshengyu2009@sina.com, E-mail: dongxiangting888@163.com [Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun (China)

    2016-03-15

    In order to develop new-typed multifunctional composite nanofibers, PANI/Fe{sub 3}O{sub 4}/PVP flexible bifunctional composite nanofibers with simultaneous electrical conduction and magnetism have been successfully fabricated via a facile electrospinning technology. Polyvinyl pyrrolidone (PVP) is used as a matrix to construct composite nanofibers containing different amounts of polyaniline (PANI) and Fe{sub 3}O{sub 4} nanoparticles (NPs). The bifunctional composite nanofibers simultaneously possess excellent electrical conductivity and magnetic properties. The electrical conductivity reaches up to the order of 10{sup -3} S·cm{sup -1}. The electrical conductivity and saturation magnetization of the composite nanofibers can be respectively tuned by adding various amounts of PANI and Fe{sub 3}O{sub 4} NPs. The obtained electricity-magnetism bifunctional composite nanofibers are expected to possess many potential applications in areas such as electromagnetic interference shielding, special coating, microwave absorption, molecular electronics and future nanomechanics. More importantly, the design concept and construct technique are of universal significance to fabricate other bifunctional one-dimensional nanostructures. (author)

  5. Use of Bifunctional Immunotherapeutic Agents to Target Breast Cancer

    Science.gov (United States)

    2007-07-01

    Selective Tumor Cell Targeting Using Low-Affinity, Multivalent Interactions Coby B. Carlson†,‡, Patricia Mowery‡, Robert M. Owen†, Emily C. Dykhuizen†, and...washed cells and immediately analyzed for fluorescence using a FACSCalibur flow cytometer (Becton Dickinson ). Data were ana- lyzed using CellQuest...software (Becton Dickinson ). An identical assay omitting the bifunctional conjugate assessed background fluorescence. The relative fluorescence is

  6. Environmentally Benign Bifunctional Solid Acid and Base Catalysts

    NARCIS (Netherlands)

    Elmekawy, A.; Shiju, N.R.; Rothenberg, G.; Brown, D.R.

    2014-01-01

    Solid bifunctional acid-​base catalysts were prepd. in two ways on an amorphous silica support: (1) by grafting mercaptopropyl units (followed by oxidn. to propylsulfonic acid) and aminopropyl groups to the silica surface (NH2-​SiO2-​SO3H)​, and (2) by grafting only aminopropyl groups and then parti

  7. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons

    NARCIS (Netherlands)

    Zecevic, Jovana; Vanbutsele, Gina; de Jong, Krijn P.; Martens, Johan A.

    2015-01-01

    The ability to control nanoscale features precisely is increasingly being exploited to develop and improve monofunctional catalysts(1-4). Striking effects might also be expected in the case of bifunctional catalysts, which are important in the hydrocracking of fossil and renewable hydrocarbon source

  8. pH-Sensitive, N-ethoxybenzylimidazole (NEBI) bifunctional crosslinkers enable triggered release of therapeutics from drug delivery carriers.

    Science.gov (United States)

    Luong, Alice; Issarapanichkit, Tawny; Kong, Seong Deok; Fong, Rina; Yang, Jerry

    2010-11-21

    This paper presents a pH-sensitive bifunctional crosslinker that enables facile conjugation of small molecule therapeutics to macromolecular carriers for use in drug delivery systems. This N-ethoxybenzylimidazole (NEBI) bifunctional crosslinker was designed to exploit mildly acidic, subcellular environments to trigger the release of therapeutics upon internalization in cells. We demonstrate that an analog of doxorubicin (a representative example of an anticancer therapeutic) conjugated to human serum albumin (HSA, a representative example of a macromolecular carrier) via this NEBI crosslinker can internalize and localize into acidic lysosomes of ovarian cancer cells. Fluorescence imaging and cell viability studies demonstrate that the HSA-NEBI-doxorubicin conjugate exhibited improved uptake and cytotoxic activity compared to the unconjugated doxorubicin analog. The pH-sensitive NEBI group was also shown to be relatively stable to biologically-relevant metal Lewis acids and to serum proteins, supporting that these bifunctional crosslinkers may be useful for constructing drug delivery systems that will be stable in biological fluids such as blood.

  9. Energetic methods to study bifunctional biotin operon repressor.

    Science.gov (United States)

    Beckett, D

    1998-01-01

    measurements. The results of quantitative studies of the biotin regulatory system can be interpreted in the context of the biological function of the system. The biotin holoenzyme ligases are a class of enzymes found across the evolutionary spectrum. Only a subset of these enzymes, including BirA, also function as transcriptional repressors. The tight binding of the allosteric effector may be understood in light of the bifunctional nature of the BirA-bio-5'-AMP complex. It is possible that the unusually high thermodynamic and kinetic stability of the complex ensures that the most probable state of the protein in vivo is the adenylate-bound form. This complex, not the unliganded protein, is active in both enzymatic transfer of biotin and site-specific DNA binding. This ensures that on depletion of the intracellular pool of apoBCCP, BirA-bio-5'-AMP accumulates and binds to bioO to repress transcription of the biotin biosynthesis operon. The intracellular demand for and synthesis of biotin are, consequently, tightly coupled in the system. The dimerization that accompanies adenylate binding to BirA appears to be significant for site-specific binding of the protein to bioO. Functionally, the simultaneous binding of the two monomers to the two operator half-sites, regardless of the kinetic mechanism by which it occurs, ensures coordinate regulation of transcription initiation from both biotin operon promoters. The multifaceted approach utilized in studies of the biotin regulatory system can serve as a model for studies of any complex transcriptional regulatory system. It is critical in elucidating the functional energetics of any of these systems that the assembly first be dissected into the constituent interactions and that each of these interactions be studied in isolation. This is not only critical for understanding the physicochemical properties of each individual contributing interaction, but is also a necessary precursor to studies of thermodynamic linkage in the system. (AB

  10. AmpH, a bifunctional DD-endopeptidase and DD-carboxypeptidase of Escherichia coli.

    Science.gov (United States)

    González-Leiza, Silvia M; de Pedro, Miguel A; Ayala, Juan A

    2011-12-01

    In Escherichia coli, low-molecular-mass penicillin-binding proteins (LMM PBPs) are important for correct cell morphogenesis. These enzymes display DD-carboxypeptidase and/or dd-endopeptidase activities associated with maturation and remodeling of peptidoglycan (PG). AmpH has been classified as an AmpH-type class C LMM PBP, a group closely related to AmpC β-lactamases. AmpH has been associated with PG recycling, although its enzymatic activity remained uncharacterized until now. Construction and purification of His-tagged AmpH from E. coli permitted a detailed study of its enzymatic properties. The N-terminal export signal of AmpH is processed, but the protein remains membrane associated. The PBP nature of AmpH was demonstrated by its ability to bind the β-lactams Bocillin FL (a fluorescent penicillin) and cefmetazole. In vitro assays with AmpH and specific muropeptides demonstrated that AmpH is a bifunctional DD-endopeptidase and DD-carboxypeptidase. Indeed, the enzyme cleaved the cross-linked dimers tetrapentapeptide (D45) and tetratetrapeptide (D44) with efficiencies (k(cat)/K(m)) of 1,200 M(-1) s(-1) and 670 M(-1) s(-1), respectively, and removed the terminal D-alanine from muropeptides with a C-terminal D-Ala-D-Ala dipeptide. Both DD-peptidase activities were inhibited by 40 μM cefmetazole. AmpH also displayed a weak β-lactamase activity for nitrocefin of 1.4 × 10(-3) nmol/μg protein/min, 1/1,000 the rate obtained for AmpC under the same conditions. AmpH was also active on purified sacculi, exhibiting the bifunctional character that was seen with pure muropeptides. The wide substrate spectrum of the DD-peptidase activities associated with AmpH supports a role for this protein in PG remodeling or recycling.

  11. A Brassica cDNA clone encoding a bifunctional hydroxymethylpyrimidine kinase/thiamin-phosphate pyrophosphorylase involved in thiamin biosynthesis.

    Science.gov (United States)

    Kim, Y S; Nosaka, K; Downs, D M; Kwak, J M; Park, D; Chung, I K; Nam, H G

    1998-08-01

    We report the characterization of a Brassica napus cDNA clone (pBTHI) encoding a protein (BTHI) with two enzymatic activities in the thiamin biosynthetic pathway, thiamin-phosphate pyrophosphorylase (TMP-PPase) and 2-methyl-4-amino-5-hydroxymethylpyrimidine-monophosphate kinase (HMP-P kinase). The cDNA clone was isolated by a novel functional complementation strategy employing an Escherichia coli mutant deficient in the TMP-PPase activity. A biochemical assay showed the clone to confer recovery of TMP-PPase activity in the E. coli mutant strain. The cDNA clone is 1746 bp long and contains an open reading frame encoding a peptide of 524 amino acids. The C-terminal part of BTH1 showed 53% and 59% sequence similarity to the N-terminal TMP-PPase region of the bifunctional yeast proteins Saccharomyces THI6 and Schizosaccharomyces pombe THI4, respectively. The N-terminal part of BTH1 showed 58% sequence similarity to HMP-P kinase of Salmonella typhimurium. The cDNA clone functionally complemented the S. typhimurium and E. coli thiD mutants deficient in the HMP-P kinase activity. These results show that the clone encodes a bifunctional protein with TMP-PPase at the C-terminus and HMP-P kinase at the N-terminus. This is in contrast to the yeast bifunctional proteins that encode TMP-PPase at the N-terminus and 4-methyl-5-(2-hydroxyethyl)thiazole kinase at the C-terminus. Expression of the BTH1 gene is negatively regulated by thiamin, as in the cases for the thiamin biosynthetic genes of microorganisms. This is the first report of a plant thiamin biosynthetic gene on which a specific biochemical activity is assigned. The Brassica BTH1 gene may correspond to the Arabidopsis TH-1 gene.

  12. The critical role of N- and C-terminal contact in protein stability and folding of a family 10 xylanase under extreme conditions.

    Directory of Open Access Journals (Sweden)

    Amit Bhardwaj

    Full Text Available BACKGROUND: Stabilization strategies adopted by proteins under extreme conditions are very complex and involve various kinds of interactions. Recent studies have shown that a large proportion of proteins have their N- and C-terminal elements in close contact and suggested they play a role in protein folding and stability. However, the biological significance of this contact remains elusive. METHODOLOGY: In the present study, we investigate the role of N- and C-terminal residue interaction using a family 10 xylanase (BSX with a TIM-barrel structure that shows stability under high temperature, alkali pH, and protease and SDS treatment. Based on crystal structure, an aromatic cluster was identified that involves Phe4, Trp6 and Tyr343 holding the N- and C-terminus together; this is a unique and important feature of this protein that might be crucial for folding and stability under poly-extreme conditions. CONCLUSION: A series of mutants was created to disrupt this aromatic cluster formation and study the loss of stability and function under given conditions. While the deletions of Phe4 resulted in loss of stability, removal of Trp6 and Tyr343 affected in vivo folding and activity. Alanine substitution with Phe4, Trp6 and Tyr343 drastically decreased stability under all parameters studied. Importantly, substitution of Phe4 with Trp increased stability in SDS treatment. Mass spectrometry results of limited proteolysis further demonstrated that the Arg344 residue is highly susceptible to trypsin digestion in sensitive mutants such as DeltaF4, W6A and Y343A, suggesting again that disruption of the Phe4-Trp6-Tyr343 (F-W-Y cluster destabilizes the N- and C-terminal interaction. Our results underscore the importance of N- and C-terminal contact through aromatic interactions in protein folding and stability under extreme conditions, and these results may be useful to improve the stability of other proteins under suboptimal conditions.

  13. The aminoindanol core as a key scaffold in bifunctional organocatalysts

    Directory of Open Access Journals (Sweden)

    Isaac G. Sonsona

    2016-03-01

    Full Text Available The 1,2-aminoindanol scaffold has been found to be very efficient, enhancing the enantioselectivity when present in organocatalysts. This may be explained by its ability to induce a bifunctional activation of the substrates involved in the reaction. Thus, it is easy to find hydrogen-bonding organocatalysts ((thioureas, squaramides, quinolinium thioamide, etc. in the literature containing this favored structural core. They have been successfully employed in reactions such as Friedel–Crafts alkylation, Michael addition, Diels–Alder and aza-Henry reactions. However, the 1,2-aminoindanol core incorporated into proline derivatives has been scarcely explored. Herein, the most representative and illustrative examples are compiled and this review will be mainly focused on the cases where the aminoindanol moiety confers bifunctionality to the organocatalysts.

  14. Experimental verifications on chemical carcinogenesis, a bifunctional alkylation between DNA interstrands

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    It is evidenced by the filter elution method that two carcinogenic aromatic hydrocarbons, benzo[a]pyrene and dibenzo[a,h]anthracene, two carcinogenic metal salts, beryllium chloride and cadmium chloride, four carcinogenic aromatic amines, 2-aminofluorene, β-naphthylamine, 4-aminobiphenyl and benzidine, can all induce DNA interstrand and DNA-protein cross-link in L1210 culture. However, under the same condition, the corresponding non-carcinogenic compounds, including benzo[k]fluorancene, anthracene, magnesium chloride, zinc chloride, a -naphthylamine, 2-aminobiphenyl and m-toluidine, cannot produce any cross-link adducts. All these results are consistent with the di-region theory that carcinogens are bio-bifunctional alkylation agents. This method can also be used to discriminate carcinogens and non-carcinogens.

  15. Self-assembly of cobalt-centered metal organic framework and multiwalled carbon nanotubes hybrids as a highly active and corrosion-resistant bifunctional oxygen catalyst

    Science.gov (United States)

    Fang, Yiyun; Li, Xinzhe; Li, Feng; Lin, Xiaoqing; Tian, Min; Long, Xuefeng; An, Xingcai; Fu, Yan; Jin, Jun; Ma, Jiantai

    2016-09-01

    Metal organic frameworks (MOF) derived carbonaceous materials have emerged as promising bifunctional oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) catalysts for electrochemical energy conversion and storage. But previous attempts to overcome the poor electrical conductivity of MOFs hybrids involve a harsh high-template pyrolytic process to in situ form carbon, which suffer from extremely complex operation and inevitable carbon corrosion at high positive potentials when OER is operated. Herein, a self-assembly approach is presented to synthesize a non-precious metal-based, high active and strong durable Co-MOF@CNTs bifunctional catalyst for OER and ORR. CNTs not only improve the transportation of the electrons but also can sustain the harsh oxidative environment of OER without carbon corrosion. Meanwhile, the unique 3D hierarchical structure offers a large surface area and stable anchoring sites for active centers and CNTs, which enables the superior durability of hybrid. Moreover, a synergistic catalysis of Co(II), organic ligands and CNTs will enhance the bifunctional electrocatalytic performance. Impressively, the hybrid exhibits comparable OER and ORR catalytic activity to RuO2 and 20 wt% Pt/C catalysts and superior stability. This facile and versatile strategy to fabricating MOF-based hybrids may be extended to other electrode materials for fuel cell and water splitting applications.

  16. Extreme Heat

    Science.gov (United States)

    ... Landslides & Debris Flow Nuclear Blast Nuclear Power Plants Power Outages Pandemic Radiological Dispersion Device Severe Weather Snowstorms & Extreme ... Landslides & Debris Flow Nuclear Blast Nuclear Power Plants Power Outages Pandemic Radiological Dispersion Device Severe Weather Snowstorms & Extreme ...

  17. Gβγ Binds to the Extreme C Terminus of SNAP25 to Mediate the Action of Gi/o-Coupled G Protein-Coupled Receptors.

    Science.gov (United States)

    Zurawski, Zack; Rodriguez, Shelagh; Hyde, Karren; Alford, Simon; Hamm, Heidi E

    2016-01-01

    Gi/o-coupled G protein-coupled receptors can exert an inhibitory effect on vesicle release through several G protein-driven mechanisms, more than one of which may be concurrently present in individual presynaptic terminals. The synaptosomal-associated protein of 25 kDa (SNAP25) is a key downstream effector of Gβγ subunits. It has previously been shown that proteolytic cleavage of SNAP25 by botulinum toxin A reduces the ability of Gβγ to compete with the calcium sensor synaptotagmin 1 (Syt1) for binding to SNAP25 in a calcium-dependent manner. These truncated SNAP25 proteins sustain a low level of exocytosis but are unable to support serotonin-mediated inhibition of exocytosis in lamprey spinal neurons. Here, we generate a SNAP25 extreme C-terminal mutant that is deficient in its ability to bind Gβγ while retaining normal calcium-dependent Syt1 binding to soluble N-ethylmaleimide attachment protein receptor (SNARE) and vesicle release. The SNAP25Δ3 mutant, in which residue G204 is replaced by a stop codon, features a partial reduction in Gβ1γ2 binding in vitro as well as a partial reduction in the ability of the lamprey 5-hydroxytryptamine1b-type serotonin receptor to reduce excitatory postsynaptic current amplitudes, an effect previously shown to be mediated through the interaction of Gβγ with SNAP25. Syt1 calcium-dependent binding to SNAP25Δ3 was reduced by a small extent compared with the wild type. We conclude that the extreme C terminus of SNAP25 is a critical region for the Gβγ-SNARE interaction.

  18. Bifunctional apoptosis inhibitor (BAR) protects neurons from diverse cell death pathways.

    Science.gov (United States)

    Roth, W; Kermer, P; Krajewska, M; Welsh, K; Davis, S; Krajewski, S; Reed, J C

    2003-10-01

    The bifunctional apoptosis regulator (BAR) is a multidomain protein that was originally identified as an inhibitor of Bax-induced apoptosis. Immunoblot analysis of normal human tissues demonstrated high BAR expression in the brain, compared to low or absent expression in other organs. Immunohistochemical staining of human adult tissues revealed that the BAR protein is predominantly expressed by neurons in the central nervous system. Immunofluorescence microscopy indicated that BAR localizes mainly to the endoplasmic reticulum (ER) of cells. Overexpression of BAR in CSM 14.1 neuronal cells resulted in significant protection from a broad range of cell death stimuli, including agents that activate apoptotic pathways involving mitochondria, TNF-family death receptors, and ER stress. Downregulation of BAR by antisense oligonucleotides sensitized neuronal cells to induction of apoptosis. Moreover, the search for novel interaction partners of BAR identified several candidate proteins that might contribute to the regulation of neuronal apoptosis (HIP1, Hippi, and Bap31). Taken together, the expression pattern and functional data suggest that the BAR protein is involved in the regulation of neuronal survival.

  19. Bi-functionality of Opisthorchis viverrini aquaporins.

    Science.gov (United States)

    Geadkaew, Amornrat; von Bülow, Julia; Beitz, Eric; Tesana, Smarn; Vichasri Grams, Suksiri; Grams, Rudi

    2015-01-01

    Aquaporins (AQP) are essential mediators of water regulation in all living organisms and members of the major intrinsic protein (MIP) superfamily of integral membrane proteins. They are potential vehicles or targets for chemotherapy, e.g. in Trypanosoma brucei melarsoprol and pentamidine uptake is facilitated by TbAQP-2. Transcriptome data suggests that there are at least three active aquaporins in the human liver fluke, Opisthorchis viverrini, OvAQP-1, 2 and 3, and crude RNA silencing of OvAQP-1 and 2 has recently been shown to affect parasite swelling in destilled water. In the present work we demonstrate that OvAQP-3 is a major water-conducting channel of the parasite, that it can be detected from the newly excysted juvenile to the adult stage and that it is present in major tissues of the parasite. Furthermore, a comparative functional characterization of the three parasite AQPs was performed by using Xenopus oocyte swelling and yeast phenotypic assays. OvAQP-1, OvAQP-2, and OvAQP-3 were found to conduct water and glycerol while only the latter two were also able to conduct urea. In addition, all OvAQPs were found to transport ammonia and methylamine. Our findings demonstrate that the sequence-based classification into orthodox aquaporins and glycerol-conducting aquaglyceroporins is not functionally conserved in the parasite and implicate a broder range of functions for these channels.

  20. Early cirrhosis in a young female with protein C deficiency: An extremely unusual case report with review

    Directory of Open Access Journals (Sweden)

    Nalini Bansal

    2016-01-01

    Full Text Available Protein C deficiency is a well recognized risk factor for development of venous thromboembolism but has never been reported to be associated with development of liver cirrhosis .We report a case of a 26 years old female who presented with multiple thrombosis involving superior mesenteric vein ,main portal vein and multiple cerebral veins. Liver biopsy done was reported as cirrhosis possibly due to Wilson's disease. However no improvement was seen with D penicillamine and patient's condition detiorated. Further, work up of patient revealed absence of Protein C levels in the plasma. So finally the case was diagnosed as Cirrhosis liver with Protein C deficiency as the likely etiology. We conclude that Protein C deficiency should be investigated in patients with cirrhosis with thrombotic lesions of unknown etiology.

  1. Extreme diversity of scorpion venom peptides and proteins revealed by transcriptomic analysis: implication for proteome evolution of scorpion venom arsenal.

    Science.gov (United States)

    Ma, Yibao; He, Yawen; Zhao, Ruiming; Wu, Yingliang; Li, Wenxin; Cao, Zhijian

    2012-02-16

    Venom is an important genetic development crucial to the survival of scorpions for over 400 million years. We studied the evolution of the scorpion venom arsenal by means of comparative transcriptome analysis of venom glands and phylogenetic analysis of shared types of venom peptides and proteins between buthids and euscorpiids. Fifteen types of venom peptides and proteins were sequenced during the venom gland transcriptome analyses of two Buthidae species (Lychas mucronatus and Isometrus maculatus) and one Euscorpiidae species (Scorpiops margerisonae). Great diversity has been observed in translated amino acid sequences of these transcripts for venom peptides and proteins. Seven types of venom peptides and proteins were shared between buthids and euscorpiids. Molecular phylogenetic analysis revealed that at least five of the seven common types of venom peptides and proteins were likely recruited into the scorpion venom proteome before the lineage split between Buthidae and Euscorpiidae with their corresponding genes undergoing individual or multiple gene duplication events. These are α-KTxs, βKSPNs (β-KTxs and scorpines), anionic peptides, La1-like peptides, and SPSVs (serine proteases from scorpion venom). Multiple types of venom peptides and proteins were demonstrated to be continuously recruited into the venom proteome during the evolution process of individual scorpion lineages. Our results provide an insight into the recruitment pattern of the scorpion venom arsenal for the first time.

  2. Charge transfer to a semi-esterified bifunctional phenol

    Energy Technology Data Exchange (ETDEWEB)

    Brede, O.; Hermann, R.; Orthner, H. [Leipzig Univ. (Germany)

    1996-03-01

    The charge transfer from solvent radical cations of n-butyl chloride and cyclohexane to 2-butyl-6(3`-t-butyl-2`-hydroxy-5`-methylbenzyl)-4-methyl-phenylac rylate (GM) yields in the first step phenoxyl radicals as well as acrylate radical cations of this semi-acrylated bifunctional phenol. Subsequently an intramolecular charge transfer from the acrylate radical cation to the phenol group takes place. Because of the instability of phenol radical cations, under our experimental conditions (nanosecond pulse radiolysis, non-polar solvents, room temperature) phenoxyl radicals are the only observable products of phenol ionization. (author).

  3. A bifunctional perovskite catalyst for oxygen reduction and evolution.

    Science.gov (United States)

    Jung, Jae-Il; Jeong, Hu Young; Lee, Jang-Soo; Kim, Min Gyu; Cho, Jaephil

    2014-04-25

    La0.3(Ba0.5Sr0.5)0.7Co0.8Fe0.2O3d is a promising bifunctional perovskite catalyst for the oxygen reduction reaction and the oxygen evolution reaction. This catalyst has circa 10 nm-scale rhombohedral LaCoO3 cobaltite particles distributed on the surface. The dynamic microstructure phenomena are attributed to the charge imbalance from the replacement of A-site cations with La3+ and local stress on Cosite sub-lattice with the cubic perovskite structure.

  4. Bifunctional activation of a direct methanol fuel cell

    Science.gov (United States)

    Kulikovsky, A. A.; Schmitz, H.; Wippermann, K.; Mergel, J.; Fricke, B.; Sanders, T.; Sauer, D. U.

    We report a novel method for performance recovery of direct methanol fuel cells. Lowering of air flow rate below a critical value turns the cell into bifunctional regime, when the oxygen-rich part of the cell generates current while the rest part works in electrolysis mode (electrolytic domain). Upon restoring the normal (super-critical) air flow rate, the galvanic performance of the electrolytic domain increases. This recovery effect is presumably attributed to Pt surface cleaning on the cathode with the simultaneous increase in catalyst utilization on the anode.

  5. Expression, purification, crystallization and preliminary X-ray analysis of eCGP123, an extremely stable monomeric green fluorescent protein with reversible photoswitching properties.

    Science.gov (United States)

    Don Paul, Craig; Traore, Daouda A K; Byres, Emma; Rossjohn, Jamie; Devenish, Rodney J; Kiss, Csaba; Bradbury, Andrew; Wilce, Matthew C J; Prescott, Mark

    2011-10-01

    Enhanced consensus green protein variant 123 (eCGP123) is an extremely thermostable green fluorescent protein (GFP) that exhibits useful negative reversible photoswitching properties. eCGP123 was derived by the application of both a consensus engineering approach and a recursive evolutionary process. Diffraction-quality crystals of recombinant eCGP123 were obtained by the hanging-drop vapour-diffusion method using PEG 3350 as the precipitant. The eCGP123 crystal diffracted X-rays to 2.10 Å resolution. The data were indexed in space group P1, with unit-cell parameters a = 74.63, b = 75.38, c = 84.51 Å, α = 90.96, β = 89.92, γ = 104.03°. The Matthews coefficient (V(M) = 2.26 Å(3) Da(-1)) and a solvent content of 46% indicated that the asymmetric unit contained eight eCGP123 molecules.

  6. Structure of a bifunctional alcohol dehydrogenase involved in bioethanol generation in Geobacillus thermoglucosidasius.

    Science.gov (United States)

    Extance, Jonathan; Crennell, Susan J; Eley, Kirstin; Cripps, Roger; Hough, David W; Danson, Michael J

    2013-10-01

    Bifunctional alcohol/aldehyde dehydrogenase (ADHE) enzymes are found within many fermentative microorganisms. They catalyse the conversion of an acyl-coenzyme A to an alcohol via an aldehyde intermediate; this is coupled to the oxidation of two NADH molecules to maintain the NAD(+) pool during fermentative metabolism. The structure of the alcohol dehydrogenase (ADH) domain of an ADHE protein from the ethanol-producing thermophile Geobacillus thermoglucosidasius has been determined to 2.5 Å resolution. This is the first structure to be reported for such a domain. In silico modelling has been carried out to generate a homology model of the aldehyde dehydrogenase domain, and this was subsequently docked with the ADH-domain structure to model the structure of the complete ADHE protein. This model suggests, for the first time, a structural mechanism for the formation of the large multimeric assemblies or `spirosomes' that are observed for this ADHE protein and which have previously been reported for ADHEs from other organisms.

  7. Photovoltachromic device with a micropatterned bifunctional counter electrode.

    Science.gov (United States)

    Cannavale, Alessandro; Manca, Michele; De Marco, Luisa; Grisorio, Roberto; Carallo, Sonia; Suranna, Gian Paolo; Gigli, Giuseppe

    2014-02-26

    A photovoltachromic window can potentially act as a smart glass skin which generates electric energy as a common dye-sensitized solar cell and, at the same time, control the incoming energy flux by reacting to even small modifications in the solar radiation intensity. We report here the successful implementation of a novel architecture of a photovoltachromic cell based on an engineered bifunctional counter electrode consisting of two physically separated platinum and tungsten oxide regions, which are arranged to form complementary comb-like patterns. Solar light is partially harvested by a dye-sensitized photoelectrode made on the front glass of the cell which fully overlaps a bifunctional counter electrode made on the back glass. When the cell is illuminated, the photovoltage drives electrons into the electrochromic stripes through the photoelectrochromic circuit and promotes the Li(+) diffusion towards the WO3 film, which thus turns into its colored state: a photocoloration efficiency of 17 cm(2) min(-1) W(-1) at a wavelength of 650 nm under 1.0 sun was reported along with fast response (coloration time photovoltaic functionality was also retained due to the copresence of the independently switchable micropatterned platinum electrode.

  8. Stability and kinetics of a bifunctional amylase/trypsin inhibitor.

    Science.gov (United States)

    Alagiri, S; Singh, T P

    1993-11-10

    The stability of the bifunctional amylase/trypsin inhibitor from ragi (Indian finger millet, Eleusine coracana) has been studied by methods of circular dichroism, UV absorption and intrinsic fluorescence. The inhibitor is stable in 8 M urea and 6 M guanidine-HCl. In 150 mM NaCl, thermal denaturation does not occur up to 90 degrees C. However, it is irreversibly denatured in 5 mM NaCl if heated over 73 degrees C. The acidic denaturation is reversible in both high and low salt conditions, but it shows different behavior below pH 1.65 under similar salt conditions. The helical content is about 2-4% in the pH range of 7-9 at which the inhibitor is active maximally. The NaCl concentration does not have a significant effect on the secondary structure elements. The beta-strand form does not show much variation under various conditions. Arg34-Leu35 is the reactive peptide bond in the trypsin-binding site. Trp and Tyr are involved in the binding with amylase. The bifunctional inhibitor represents the sum of individual inhibitors of trypsin and amylase.

  9. Protein oxidation under extremely low frequency electric field in guinea pigs. Effect of N-acetyl-L-cysteine treatment.

    Science.gov (United States)

    Güler, Göknur; Türközer, Zerrin; Ozgur, Elcin; Tomruk, Arin; Seyhan, Nesrin; Karasu, Cimen

    2009-03-01

    Modern age exposes humans to an increasing level of electromagnetic activity in their environment due to overhead power lines and transformers around residential areas. Studies have shown that treatment with antioxidants can suppress the oxidative damage induced by electromagnetic fields in various frequencies of the non-ionizing radiation band. In this study, we detected protein carbonyl content (PCO), advanced oxidation protein products (AOPP) in liver and 3-nitrotyrosine (3-NT) levels in plasma of guinea pigs in order to investigate the effects of N-acetyl-L-cysteine (NAC) administration on oxidative protein damage induced by power frequency electric (E) field (50 Hz, 12 kV/m, 7 days/8 h/day). We also analyzed hepatic hydroxyproline level to study protein synthesis. According to the findings of the present study, no statistically significant changes occurred in PCO, AOPP and 3-NT levels of the guinea pigs that were exposed to the E field with respect to the control group. However, liver hydroxyproline level was significantly diminished in the E field exposure group compared to the control and PCO, hydroxyproline and 3-NT levels changed significantly in the NAC-administrated groups.

  10. A PerR-like protein involved in response to oxidative stress in the extreme bacterium Deinococcus radiodurans

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chengzhi; Wang, Liangyan; Li, Tao; Lin, Lin; Dai, Shang; Tian, Bing, E-mail: tianbing@zju.edu.cn; Hua, Yuejin, E-mail: yjhua@zju.edu.cn

    2014-07-18

    Highlights: • We report a novel PerR-like protein of Fur family in D. radiodurans that is not annotated in the current database. • drperR responses to H{sub 2}O{sub 2} and functions as a negative regulator of katE and dps. • We provided implications on how to utilize sequenced genome data and the importance of genome data mining. • This study adds knowledge to complicated regulatory network that responds to ROS stress in D. radiodurans. - Abstract: Response and defense systems against reactive oxygen species (ROS) contribute to the remarkable resistance of Deinococcus radiodurans to oxidative stress induced by oxidants or radiation. However, mechanisms involved in ROS response and defense systems of D. radiodurans are not well understood. Fur family proteins are important in ROS response. Only a single Fur homolog is predicted by sequence similarity in the current D. radiodurans genome database. Our bioinformatics analysis demonstrated an additional guanine nucleotide in the genome of D. radiodurans that is not in the database, leading to the discovery of another Fur homolog DrPerR. Gene disruption mutant of DrPerR showed enhanced resistance to hydrogen peroxide (H{sub 2}O{sub 2}) and increased catalase activity in cell extracts. Real-time PCR results indicated that DrPerR functions as a repressor of the catalase gene katE. Meanwhile, derepression of dps (DNA-binding proteins from starved cells) gene under H{sub 2}O{sub 2} stress by DrPerR point to its regulatory role in metal ions hemostasis. Thus, DrPerR might function as a Fur homolog protein which is involved in ROS response and defense. These results help clarify the complicated regulatory network that responds to ROS stress in D. radiodurans.

  11. Therapeutic potential of a non-steroidal bifunctional anti-inflammatory and anti-cholinergic agent against skin injury induced by sulfur mustard

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yoke-Chen; Wang, James D.; Hahn, Rita A.; Gordon, Marion K.; Joseph, Laurie B. [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Heck, Diane E. [Department of Environmental Science, New York Medical College, Valhalla, NY (United States); Heindel, Ned D. [Department of Chemistry, Lehigh University, Bethlehem, PA (United States); Young, Sherri C. [Department of Chemistry, Muhlenberg College, Allentown, PA (United States); Sinko, Patrick J. [Department of Pharmaceutics, Rutgers University, Piscataway, NJ (United States); Casillas, Robert P. [MRIGlobal, Kansas City, MO (United States); Laskin, Jeffrey D. [Environmental and Occupational Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Gerecke, Donald R., E-mail: gerecke@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States)

    2014-10-15

    Sulfur mustard (bis(2-chloroethyl) sulfide, SM) is a highly reactive bifunctional alkylating agent inducing edema, inflammation, and the formation of fluid-filled blisters in the skin. Medical countermeasures against SM-induced cutaneous injury have yet to be established. In the present studies, we tested a novel, bifunctional anti-inflammatory prodrug (NDH 4338) designed to target cyclooxygenase 2 (COX2), an enzyme that generates inflammatory eicosanoids, and acetylcholinesterase, an enzyme mediating activation of cholinergic inflammatory pathways in a model of SM-induced skin injury. Adult SKH-1 hairless male mice were exposed to SM using a dorsal skin vapor cup model. NDH 4338 was applied topically to the skin 24, 48, and 72 h post-SM exposure. After 96 h, SM was found to induce skin injury characterized by edema, epidermal hyperplasia, loss of the differentiation marker, keratin 10 (K10), upregulation of the skin wound marker keratin 6 (K6), disruption of the basement membrane anchoring protein laminin 322, and increased expression of epidermal COX2. NDH 4338 post-treatment reduced SM-induced dermal edema and enhanced skin re-epithelialization. This was associated with a reduction in COX2 expression, increased K10 expression in the suprabasal epidermis, and reduced expression of K6. NDH 4338 also restored basement membrane integrity, as evidenced by continuous expression of laminin 332 at the dermal–epidermal junction. Taken together, these data indicate that a bifunctional anti-inflammatory prodrug stimulates repair of SM induced skin injury and may be useful as a medical countermeasure. - Highlights: • Bifunctional anti-inflammatory prodrug (NDH4338) tested on SM exposed mouse skin • The prodrug NDH4338 was designed to target COX2 and acetylcholinesterase. • The application of NDH4338 improved cutaneous wound repair after SM induced injury. • NDH4338 treatment demonstrated a reduction in COX2 expression on SM injured skin. • Changes of skin repair

  12. Synthesis and Characterization of a New Bifunctional Dye Containing Spirobenzopyran and Cinnamoyl Moiety

    Institute of Scientific and Technical Information of China (English)

    申凯华; 崔东熏

    2005-01-01

    A novel bifunctional dye containing spirobenzopyran and cinnaznoyl moiety has been prepared and its photochromic behavior following irradiation at different wavelengths of monochrome UV light was investigated.The colourless bifunctional dye in film or solution exhibits unusual photochromism through structural and geometrical transformation from spirobenzopyran to merocyanine accompanying with photocrosslinking reaction in cinnamoyl moieties. Two kinds of photochemical reaction were achieved by irradiation at the different wavelengths of monochrome UV light (275 nm, 365 nm) selectively. The photochromic process of the bifunctional dye was discussed and the dynamic behaviors of the decolorization process were investigated.

  13. Xpf and not the Fanconi anaemia proteins or Rev3 accounts for the extreme resistance to cisplatin in Dictyostelium discoideum.

    Directory of Open Access Journals (Sweden)

    Xiao-Yin Zhang

    2009-09-01

    Full Text Available Organisms like Dictyostelium discoideum, often referred to as DNA damage "extremophiles", can survive exposure to extremely high doses of radiation and DNA crosslinking agents. These agents form highly toxic DNA crosslinks that cause extensive DNA damage. However, little is known about how Dictyostelium and the other "extremophiles" can tolerate and repair such large numbers of DNA crosslinks. Here we describe a comprehensive genetic analysis of crosslink repair in Dictyostelium discoideum. We analyse three gene groups that are crucial for a replication-coupled repair process that removes DNA crosslinks in higher eukarya: The Fanconi anaemia pathway (FA, translesion synthesis (TLS, and nucleotide excision repair. Gene disruption studies unexpectedly reveal that the FA genes and the TLS enzyme Rev3 play minor roles in tolerance to crosslinks in Dictyostelium. However, disruption of the Xpf nuclease subcomponent results in striking hypersensitivity to crosslinks. Genetic interaction studies reveal that although Xpf functions with FA and TLS gene products, most Xpf mediated repair is independent of these two gene groups. These results suggest that Dictyostelium utilises a distinct Xpf nuclease-mediated repair process to remove crosslinked DNA. Other DNA damage-resistant organisms and chemoresistant cancer cells might adopt a similar strategy to develop resistance to DNA crosslinking agents.

  14. RNA Secondary Structure Modulates FMRP’s Bi-Functional Role in the MicroRNA Pathway

    Directory of Open Access Journals (Sweden)

    Phillip Kenny

    2016-06-01

    Full Text Available MicroRNAs act by post-transcriptionally regulating the gene expression of 30%–60% of mammalian genomes. MicroRNAs are key regulators in all cellular processes, though the mechanism by which the cell activates or represses microRNA-mediated translational regulation is poorly understood. In this review, we discuss the RNA binding protein Fragile X Mental Retardation Protein (FMRP and its role in microRNA-mediated translational regulation. Historically, FMRP is known to function as a translational suppressor. However, emerging data suggests that FMRP has both an agonistic and antagonistic role in regulating microRNA-mediated translational suppression. This bi-functional role is dependent on FMRP’s interaction with the RNA helicase Moloney leukemia virus 10 (MOV10, which modifies the structural landscape of bound mRNA, therefore facilitating or inhibiting its association with the RNA-Induced Silencing Complex.

  15. Extreme cosmos

    CERN Document Server

    Gaensler, Bryan

    2011-01-01

    The universe is all about extremes. Space has a temperature 270°C below freezing. Stars die in catastrophic supernova explosions a billion times brighter than the Sun. A black hole can generate 10 million trillion volts of electricity. And hypergiants are stars 2 billion kilometres across, larger than the orbit of Jupiter. Extreme Cosmos provides a stunning new view of the way the Universe works, seen through the lens of extremes: the fastest, hottest, heaviest, brightest, oldest, densest and even the loudest. This is an astronomy book that not only offers amazing facts and figures but also re

  16. The Mycobacterium tuberculosis Rv2540c DNA sequence encodes a bifunctional chorismate synthase

    Directory of Open Access Journals (Sweden)

    Santos Diógenes S

    2008-04-01

    Full Text Available Abstract Background The emergence of multi- and extensively-drug resistant Mycobacterium tuberculosis strains has created an urgent need for new agents to treat tuberculosis (TB. The enzymes of shikimate pathway are attractive targets to the development of antitubercular agents because it is essential for M. tuberculosis and is absent from humans. Chorismate synthase (CS is the seventh enzyme of this route and catalyzes the NADH- and FMN-dependent synthesis of chorismate, a precursor of aromatic amino acids, naphthoquinones, menaquinones, and mycobactins. Although the M. tuberculosis Rv2540c (aroF sequence has been annotated to encode a chorismate synthase, there has been no report on its correct assignment and functional characterization of its protein product. Results In the present work, we describe DNA amplification of aroF-encoded CS from M. tuberculosis (MtCS, molecular cloning, protein expression, and purification to homogeneity. N-terminal amino acid sequencing, mass spectrometry and gel filtration chromatography were employed to determine identity, subunit molecular weight and oligomeric state in solution of homogeneous recombinant MtCS. The bifunctionality of MtCS was determined by measurements of both chorismate synthase and NADH:FMN oxidoreductase activities. The flavin reductase activity was characterized, showing the existence of a complex between FMNox and MtCS. FMNox and NADH equilibrium binding was measured. Primary deuterium, solvent and multiple kinetic isotope effects are described and suggest distinct steps for hydride and proton transfers, with the former being more rate-limiting. Conclusion This is the first report showing that a bacterial CS is bifunctional. Primary deuterium kinetic isotope effects show that C4-proS hydrogen is being transferred during the reduction of FMNox by NADH and that hydride transfer contributes significantly to the rate-limiting step of FMN reduction reaction. Solvent kinetic isotope effects and

  17. Bifunctional chelates of RH-105 and AU199 as potential radiotherapeutic agents

    Energy Technology Data Exchange (ETDEWEB)

    Droege, P.

    1997-03-01

    Research is presented on new bifunctional chelating ligand systems with stability on the macroscopic and radiochemical levels. The synthesis of the following complexes are described: rhodium 105, palladium 109, and gold 198.

  18. Bifunctional chelating agent for the design and development of site specific radiopharmaceuticals and biomolecule conjugation strategy

    Science.gov (United States)

    Katti, Kattesh V.; Prabhu, Kandikere R.; Gali, Hariprasad; Pillarsetty, Nagavara Kishore; Volkert, Wynn A.

    2003-10-21

    There is provided a method of labeling a biomolecule with a transition metal or radiometal in a site specific manner to produce a diagnostic or therapeutic pharmaceutical compound by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radio metal or a transition metal, and covalently linking the resulting metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. Also provided is a method of synthesizing the --PR.sub.2 containing biomolecules by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radiometal or a transition metal, and covalently linking the resulting radio metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. There is provided a therapeutic or diagnostic agent comprising a --PR.sub.2 containing biomolecule.

  19. Chemoselective Reactivity of Bifunctional Cyclooctynes on Si(001)

    CERN Document Server

    Reutzel, Marcel; Lipponer, Marcus A; Länger, Christian; Höfer, Ulrich; Koert, Ulrich; Dürr, Michael

    2016-01-01

    Controlled organic functionalization of silicon surfaces as integral part of semiconductor technology offers new perspectives for a wide range of applications. The high reactivity of the silicon dangling bonds, however, presents a major hindrance for the first basic reaction step of such a functionalization, i.e., the chemoselective attachment of bifunctional organic molecules on the pristine silicon surface. We overcome this problem by employing cyclooctyne as the major building block of our strategy. Functionalized cyclooctynes are shown to react on Si(001) selectively via the strained cyclooctyne triple bond while leaving the side groups intact. The achieved selectivity originates from the distinctly different adsorption dynamics of the separate functionalities: A direct adsorption pathway is demonstrated for cyclooctyne as opposed to the vast majority of other organic functional groups. The latter ones react on Si(001) via a metastable intermediate which makes them effectively unreactive in competition wi...

  20. GSK-3: A Bifunctional Role in Cell Death Pathways

    Directory of Open Access Journals (Sweden)

    Keith M. Jacobs

    2012-01-01

    Full Text Available Although glycogen synthase kinase-3 beta (GSK-3β was originally named for its ability to phosphorylate glycogen synthase and regulate glucose metabolism, this multifunctional kinase is presently known to be a key regulator of a wide range of cellular functions. GSK-3β is involved in modulating a variety of functions including cell signaling, growth metabolism, and various transcription factors that determine the survival or death of the organism. Secondary to the role of GSK-3β in various diseases including Alzheimer’s disease, inflammation, diabetes, and cancer, small molecule inhibitors of GSK-3β are gaining significant attention. This paper is primarily focused on addressing the bifunctional or conflicting roles of GSK-3β in both the promotion of cell survival and of apoptosis. GSK-3β has emerged as an important molecular target for drug development.

  1. GSK-3β: A Bifunctional Role in Cell Death Pathways

    Science.gov (United States)

    Jacobs, Keith M.; Bhave, Sandeep R.; Ferraro, Daniel J.; Jaboin, Jerry J.; Hallahan, Dennis E.; Thotala, Dinesh

    2012-01-01

    Although glycogen synthase kinase-3 beta (GSK-3β) was originally named for its ability to phosphorylate glycogen synthase and regulate glucose metabolism, this multifunctional kinase is presently known to be a key regulator of a wide range of cellular functions. GSK-3β is involved in modulating a variety of functions including cell signaling, growth metabolism, and various transcription factors that determine the survival or death of the organism. Secondary to the role of GSK-3β in various diseases including Alzheimer's disease, inflammation, diabetes, and cancer, small molecule inhibitors of GSK-3β are gaining significant attention. This paper is primarily focused on addressing the bifunctional or conflicting roles of GSK-3β in both the promotion of cell survival and of apoptosis. GSK-3β has emerged as an important molecular target for drug development. PMID:22675363

  2. [Bifunctional inhibitor of alpha-amylase/trypsin from wheat grain].

    Science.gov (United States)

    Islamov, R A; Furusov, O V

    2007-01-01

    A trypsin inhibitor, isolated from whole-wheat grain (Triticum aestivum L.) by the method of bio-specific chromatography on trypsin-Sepharose, was potent in inhibiting human salivary alpha-amylase. The bi-functional alpha-amylase/trypsin inhibitor was characterized by a narrow specificity for other alpha-amylases and proteinases. The high thermostability of the inhibitor was lost in the presence of SH group-reducing agents. The inhibitor-trypsin complex retained its activity against alpha-amylase. The inhibitor-alpha-amylase complex was active against trypsin. Studies of the enzyme kinetics demonstrated that the inhibition of alpha-amylase and trypsin was noncompetitive. Our results suggest the existence of two independent active sites responsible for the interaction with the enzymes.

  3. S-layer homology domain proteins Csac_0678 and Csac_2722 are implicated in plant polysaccharide deconstruction by the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus.

    Science.gov (United States)

    Ozdemir, Inci; Blumer-Schuette, Sara E; Kelly, Robert M

    2012-02-01

    The genus Caldicellulosiruptor contains extremely thermophilic bacteria that grow on plant polysaccharides. The genomes of Caldicellulosiruptor species reveal certain surface layer homology (SLH) domain proteins that have distinguishing features, pointing to a role in lignocellulose deconstruction. Two of these proteins in Caldicellulosiruptor saccharolyticus (Csac_0678 and Csac_2722) were examined from this perspective. In addition to three contiguous SLH domains, the Csac_0678 gene encodes a glycoside hydrolase family 5 (GH5) catalytic domain and a family 28 carbohydrate-binding module (CBM); orthologs to Csac_0678 could be identified in all genome-sequenced Caldicellulosiruptor species. Recombinant Csac_0678 was optimally active at 75°C and pH 5.0, exhibiting both endoglucanase and xylanase activities. SLH domain removal did not impact Csac_0678 GH activity, but deletion of the CBM28 domain eliminated binding to crystalline cellulose and rendered the enzyme inactive on this substrate. Csac_2722 is the largest open reading frame (ORF) in the C. saccharolyticus genome (predicted molecular mass of 286,516 kDa) and contains two putative sugar-binding domains, two Big4 domains (bacterial domains with an immunoglobulin [Ig]-like fold), and a cadherin-like (Cd) domain. Recombinant Csac_2722, lacking the SLH and Cd domains, bound to cellulose and had detectable carboxymethylcellulose (CMC) hydrolytic activity. Antibodies directed against Csac_0678 and Csac_2722 confirmed that these proteins bound to the C. saccharolyticus S-layer. Their cellular localization and functional biochemical properties indicate roles for Csac_0678 and Csac_2722 in recruitment and hydrolysis of complex polysaccharides and the deconstruction of lignocellulosic biomass. Furthermore, these results suggest that related SLH domain proteins in other Caldicellulosiruptor genomes may also be important contributors to plant biomass utilization.

  4. Opioid bifunctional ligands from morphine and the opioid pharmacophore Dmt-Tic.

    Science.gov (United States)

    Balboni, Gianfranco; Salvadori, Severo; Marczak, Ewa D; Knapp, Brian I; Bidlack, Jean M; Lazarus, Lawrence H; Peng, Xuemei; Si, Yu Gui; Neumeyer, John L

    2011-02-01

    Bifunctional ligands containing an ester linkage between morphine and the δ-selective pharmacophore Dmt-Tic were synthesized, and their binding affinity and functional bioactivity at the μ, δ and κ opioid receptors determined. Bifunctional ligands containing or not a spacer of β-alanine between the two pharmacophores lose the μ agonism deriving from morphine becoming partial μ agonists 4 or μ antagonists 5. Partial κ agonism is evidenced only for compound 4. Finally, both compounds showed potent δ antagonism.

  5. Acid/base bifunctional carbonaceous nanomaterial with large surface area: Preparation, characterization, and adsorption properties for cationic and anionic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kai; Ma, Chun–Fang; Ling, Yuan; Li, Meng [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Gao, Qiang, E-mail: gaoqiang@cug.edu.cn [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan 430074 (China); Luo, Wen–Jun, E-mail: heartnohome@yahoo.com.cn [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China)

    2015-07-15

    Nanostructured carbonaceous materials are extremely important in the nano field, yet developing simple, mild, and “green” methods that can make such materials possess large surface area and rich functional groups on their surfaces still remains a considerable challenge. Herein, a one-pot and environment-friendly method, i.e., thermal treatment (180 °C; 18 h) of water mixed with glucose and chitosan (CTS), has been proposed. The resultant carbonaceous nanomaterials were characterized by field emitting scanning electron microscope, N{sub 2} adsorption/desorption, Fourier transform infrared spectroscope, X-ray photoelectron spectroscopy, and zeta-potential analysis. It was found that, in contrast to the conventional hydrothermally carbonized product from pure glucose, with low surface area (9.3 m{sup 2} g{sup −1}) and pore volume (0.016 cm{sup 3} g{sup −1}), the CTS-added carbonaceous products showed satisfactory textural parameters (surface area and pore volume up to 254 m{sup 2} g{sup −1} and 0.701 cm{sup 3} g{sup −1}, respectively). Moreover, it was also interestingly found that these CTS-added carbonaceous products possessed both acidic (–COOH) and basic (–NH{sub 2}) groups on their surfaces. Taking the advantages of large surface area and –COOH/–NH{sub 2} bifunctional surface, the carbonaceous nanomaterials exhibited excellent performance for adsorptions of cationic compound (i.e., methylene blue) at pH 10 and anionic compound (i.e., acid red 18) at pH 2, respectively. This work not only provides a simple and green route to prepare acid/base bifunctional carbonaceous nanomaterials with large surface area but also well demonstrates their potential for application in adsorption. - Highlights: • A simple and green method was proposed to prepare carbon nanomaterials. • The carbon product showed acid/base bifunctional surface with large surface area. • The carbon material could efficiently adsorb both cationic and anionic compounds.

  6. Mutations of photosystem II D1 protein that empower efficient phenotypes of Chlamydomonas reinhardtii under extreme environment in space.

    Science.gov (United States)

    Giardi, Maria Teresa; Rea, Giuseppina; Lambreva, Maya D; Antonacci, Amina; Pastorelli, Sandro; Bertalan, Ivo; Johanningmeier, Udo; Mattoo, Autar K

    2013-01-01

    Space missions have enabled testing how microorganisms, animals and plants respond to extra-terrestrial, complex and hazardous environment in space. Photosynthetic organisms are thought to be relatively more prone to microgravity, weak magnetic field and cosmic radiation because oxygenic photosynthesis is intimately associated with capture and conversion of light energy into chemical energy, a process that has adapted to relatively less complex and contained environment on Earth. To study the direct effect of the space environment on the fundamental process of photosynthesis, we sent into low Earth orbit space engineered and mutated strains of the unicellular green alga, Chlamydomonas reinhardtii, which has been widely used as a model of photosynthetic organisms. The algal mutants contained specific amino acid substitutions in the functionally important regions of the pivotal Photosystem II (PSII) reaction centre D1 protein near the QB binding pocket and in the environment surrounding Tyr-161 (YZ) electron acceptor of the oxygen-evolving complex. Using real-time measurements of PSII photochemistry, here we show that during the space flight while the control strain and two D1 mutants (A250L and V160A) were inefficient in carrying out PSII activity, two other D1 mutants, I163N and A251C, performed efficient photosynthesis, and actively re-grew upon return to Earth. Mimicking the neutron irradiation component of cosmic rays on Earth yielded similar results. Experiments with I163N and A251C D1 mutants performed on ground showed that they are better able to modulate PSII excitation pressure and have higher capacity to reoxidize the QA (-) state of the primary electron acceptor. These results highlight the contribution of D1 conformation in relation to photosynthesis and oxygen production in space.

  7. Protein expression and genetic structure of the coral Porites lobata in an environmentally extreme Samoan back reef: Does host genotype limit phenotypic plasticity?

    Science.gov (United States)

    Barshis, D.J.; Stillman, J.H.; Gates, R.D.; Toonen, R.J.; Smith, L.W.; Birkeland, C.

    2010-01-01

    The degree to which coral reef ecosystems will be impacted by global climate change depends on regional and local differences in corals' susceptibility and resilience to environmental stressors. Here, we present data from a reciprocal transplant experiment using the common reef building coral Porites lobata between a highly fluctuating back reef environment that reaches stressful daily extremes, and a more stable, neighbouring forereef. Protein biomarker analyses assessing physiological contributions to stress resistance showed evidence for both fixed and environmental influence on biomarker response. Fixed influences were strongest for ubiquitin-conjugated proteins with consistently higher levels found in back reef source colonies both pre and post-transplant when compared with their forereef conspecifics. Additionally, genetic comparisons of back reef and forereef populations revealed significant population structure of both the nuclear ribosomal and mitochondrial genomes of the coral host (FST = 0.146 P < 0.0001, FST = 0.335 P < 0.0001 for rDNA and mtDNA, respectively), whereas algal endosymbiont populations were genetically indistinguishable between the two sites. We propose that the genotype of the coral host may drive limitations to the physiological responses of these corals when faced with new environmental conditions. This result is important in understanding genotypic and environmental interactions in the coral algal symbiosis and how corals may respond to future environmental changes. ?? 2010 Blackwell Publishing Ltd.

  8. The structure of Aquifex aeolicus ribosomal protein S8 reveals a unique subdomain that contributes to an extremely tight association with 16S rRNA.

    Science.gov (United States)

    Menichelli, Elena; Edgcomb, Stephen P; Recht, Michael I; Williamson, James R

    2012-01-20

    The assembly of ribonucleoprotein complexes occurs under a broad range of conditions, but the principles that promote assembly and allow function at high temperature are poorly understood. The ribosomal protein S8 from Aquifex aeolicus (AS8) is unique in that there is a 41-residue insertion in the consensus S8 sequence. In addition, AS8 exhibits an unusually high affinity for the 16S ribosomal RNA, characterized by a picomolar dissociation constant that is approximately 26,000-fold tighter than the equivalent interaction from Escherichia coli. Deletion analysis demonstrated that binding to the minimal site on helix 21 occurred at the same nanomolar affinity found for other bacterial species. The additional affinity required the presence of a three-helix junction between helices 20, 21, and 22. The crystal structure of AS8 was solved, revealing the helix-loop-helix geometry of the unique AS8 insertion region, while the core of the molecule is conserved with known S8 structures. The AS8 structure was modeled onto the structure of the 30S ribosomal subunit from E. coli, suggesting the possibility that the unique subdomain provides additional backbone and side-chain contacts between the protein and an unpaired base within the three-way junction of helices 20, 21, and 22. Point mutations in the protein insertion subdomain resulted in a significantly reduced RNA binding affinity with respect to wild-type AS8. These results indicate that the AS8-specific subdomain provides additional interactions with the three-way junction that contribute to the extremely tight binding to ribosomal RNA.

  9. Characterization of a bifunctional glyoxylate cycle enzyme, malate synthase/isocitrate lyase, of Euglena gracilis.

    Science.gov (United States)

    Nakazawa, Masami; Nishimura, Masaaki; Inoue, Kengo; Ueda, Mitsuhiro; Inui, Hiroshi; Nakano, Yoshihisa; Miyatake, Kazutaka

    2011-01-01

    The glyoxylate cycle is a modified form of the tricarboxylic acid cycle, which enables organisms to synthesize carbohydrates from C2 compounds. In the protozoan Euglena gracilis, the key enzyme activities of the glyoxylate cycle, isocitrate lyase (ICL) and malate synthase (MS), are conferred by a single bifunctional protein named glyoxylate cycle enzyme (Euglena gracilis glyoxylate cycle enzyme [EgGCE]). We analyzed the enzymatic properties of recombinant EgGCE to determine the functions of its different domains. The 62-kDa N-terminal domain of EgGCE was sufficient to provide the MS activity as expected from an analysis of the deduced amino acid sequence. In contrast, expression of the 67-kDa C-terminal domain of EgGCE failed to yield ICL activity even though this domain was structurally similar to ICL family enzymes. Analyses of truncation mutants suggested that the N-terminal residues of EgGCE are critical for both the ICL and MS activities. The ICL activity of EgGCE increased in the presence of micro-molar concentrations of acetyl-coenzyme A (CoA). Acetyl-CoA also increased the activity in a mutant type EgGCE with a mutation at the acetyl-CoA binding site in the MS domain of EgGCE. This suggests that acetyl-CoA regulates the ICL reaction by binding to a site other than the catalytic center of the MS reaction.

  10. Chrysanthemyl diphosphate synthase operates in planta as a bifunctional enzyme with chrysanthemol synthase activity.

    Science.gov (United States)

    Yang, Ting; Gao, Liping; Hu, Hao; Stoopen, Geert; Wang, Caiyun; Jongsma, Maarten A

    2014-12-26

    Chrysanthemyl diphosphate synthase (CDS) is the first pathway-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1'-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate (CPP). Three proteins are known to catalyze this cyclopropanation reaction of terpene precursors. Two of them, phytoene and squalene synthase, are bifunctional enzymes with both prenyltransferase and terpene synthase activity. CDS, the other member, has been reported to perform only the prenyltransferase step. Here we show that the NDXXD catalytic motif of CDS, under the lower substrate conditions prevalent in plants, also catalyzes the next step, converting CPP into chrysanthemol by hydrolyzing the diphosphate moiety. The enzymatic hydrolysis reaction followed conventional Michaelis-Menten kinetics, with a Km value for CPP of 196 μm. For the chrysanthemol synthase activity, DMAPP competed with CPP as substrate. The DMAPP concentration required for half-maximal activity to produce chrysanthemol was ∼100 μm, and significant substrate inhibition was observed at elevated DMAPP concentrations. The N-terminal peptide of CDS was identified as a plastid-targeting peptide. Transgenic tobacco plants overexpressing CDS emitted chrysanthemol at a rate of 0.12-0.16 μg h(-1) g(-1) fresh weight. We propose that CDS should be renamed a chrysanthemol synthase utilizing DMAPP as substrate.

  11. The bifunctional dihydrofolate reductase thymidylate synthase of Tetrahymena thermophila provides a tool for molecular and biotechnology applications

    Directory of Open Access Journals (Sweden)

    Tiedtke Arno

    2006-03-01

    Full Text Available Abstract Background Dihydrofolate reductase (DHFR and thymidylate synthase (TS are crucial enzymes in DNA synthesis. In alveolata both enzymes are expressed as one bifunctional enzyme. Results Loss of this essential enzyme activities after successful allelic assortment of knock out alleles yields an auxotrophic marker in ciliates. Here the cloning, characterisation and functional analysis of Tetrahymena thermophila's DHFR-TS is presented. A first aspect of the presented work relates to destruction of DHFR-TS enzyme function in an alveolate thereby causing an auxotrophy for thymidine. A second aspect is to knock in an expression cassette encoding for a foreign gene with subsequent expression of the target protein. Conclusion This system avoids the use of antibiotics or other drugs and therefore is of high interest for biotechnological applications.

  12. Fast and reliable production, purification and characterization of heat-stable, bifunctional enzyme chimeras.

    Science.gov (United States)

    Neddersen, Mara; Elleuche, Skander

    2015-12-01

    Degradation of complex plant biomass demands a fine-regulated portfolio of glycoside hydrolases. The LE (LguI/Eco81I)-cloning approach was used to produce two enzyme chimeras CB and BC composed of an endoglucanase Cel5A (C) from the extreme thermophilic bacterium Fervidobacterium gondwanense and an archaeal β-glucosidase Bgl1 (B) derived from a hydrothermal spring metagenome. Recombinant chimeras and parental enzymes were produced in Escherichia coli and purified using a two-step affinity chromatography approach. Enzymatic properties revealed that both chimeras closely resemble the parental enzymes and physical mixtures, but Cel5A displayed lower temperature tolerance at 100°C when fused to Bgl1 independent of the conformational order. Moreover, the determination of enzymatic performances resulted in the detection of additive effects in case of BC fusion chimera. Kinetic measurements in combination with HPLC-mediated product analyses and site-directed mutation constructs indicated that Cel5A was strongly impaired when fused at the N-terminus, while activity was reduced to a slighter extend as C-terminal fusion partner. In contrast to these results, catalytic activity of Bgl1 at the N-terminus was improved 1.2-fold, effectively counteracting the slightly reduced activity of Cel5A by converting cellobiose into glucose. In addition, cellobiose exhibited inhibitory effects on Cel5A, resulting in a higher yield of cellobiose and glucose by application of an enzyme mixture (53.1%) compared to cellobiose produced from endoglucanase alone (10.9%). However, the overall release of cellobiose and glucose was even increased by catalytic action of BC (59.2%). These results indicate possible advantages of easily produced bifunctional fusion enzymes for the improved conversion of complex polysaccharide plant materials.

  13. The onset of the progression of acute phase response mechanisms induced by extreme impacts can be followed by the decrease in blood levels of positive acute phase proteins.

    Science.gov (United States)

    Larina, Olga; Bekker, Anna

    Studies performed at space flights and earth-based simulation models detected the plasma indices of acute phase reaction (APR), i.e. the increase of APR cytokine mediators and alterations in the production of blood acute phase proteins (APP) at the initial stages of adaptation to altered gravity conditions. Acute phase response is the principal constituent of the functional activity of innate immunity system. Changes in plasma APPs contents are considered to serve the restoration of homeostasis state. According to trends of their concentration shifts at the evolving of acute phase reaction APPs are denoted as positive, neutral, or negative. Plasma concentrations of positive acute phase proteins α1-acid glycoprotein (α1-AGP), α1-antitrypsin (α1-AT), and neutral α2-macroglobulin (α2-M) were measured in human study at 12-hour antiorthostatic position (AOP) with 15° head down tilt and hypoxia experiments at 14% oxygen in pressure chamber. Both of these impacts were shown to produce alterations in the APP levels indicative for acute phase response. Nevertheless, in AOP experiment noticeable decrease in α1-AGP concentration occurred by hour 12, and even more pronounced decline of α1-AGP and α1-AT were found on hypoxia hours 12 and 36. Acute phase proteins α1-AGP and α2-M possess the features of proteinase inhibitors. This function is implemented by the formation of complexes with the molecules of proteolytic enzymes which subsequently are removed from the blood flow. Transient decrease in plasma concentrations of protease inhibitors on early phases of APR development was reported to result from the growth of plasma protease activity due to cathepsin release from activated leukocytes, which had not yet been compensated by enhanced APP synthesis. Being a carrier protein for positively charged and neutral substances, α1-AGP shows pronounced elevation in its blood content during APR development. As assumed, it is required for the transportation of the increased

  14. Responses of the bed bug, Cimex lectularius, to temperature extremes and dehydration: levels of tolerance, rapid cold hardening and expression of heat shock proteins.

    Science.gov (United States)

    Benoit, J B; Lopez-Martinez, G; Teets, N M; Phillips, S A; Denlinger, D L

    2009-12-01

    This study of the bed bug, Cimex lectularius, examines tolerance of adult females to extremes in temperature and loss of body water. Although the supercooling point (SCP) of the bed bugs was approximately -20 degrees C, all were killed by a direct 1 h exposure to -16 degrees C. Thus, this species cannot tolerate freezing and is killed at temperatures well above its SCP. Neither cold acclimation at 4 degrees C for 2 weeks nor dehydration (15% loss of water content) enhanced cold tolerance. However, bed bugs have the capacity for rapid cold hardening, i.e. a 1-h exposure to 0 degrees C improved their subsequent tolerance of -14 and -16 degrees C. In response to heat stress, fewer than 20% of the bugs survived a 1-h exposure to 46 degrees C, and nearly all were killed at 48 degrees C. Dehydration, heat acclimation at 30 degrees C for 2 weeks and rapid heat hardening at 37 degrees C for 1 h all failed to improve heat tolerance. Expression of the mRNAs encoding two heat shock proteins (Hsps), Hsp70 and Hsp90, was elevated in response to heat stress, cold stress and during dehydration and rehydration. The response of Hsp90 was more pronounced than that of Hsp70 during dehydration and rehydration. Our results define the tolerance limits for bed bugs to these commonly encountered stresses of temperature and low humidity and indicate a role for Hsps in responding to these stresses.

  15. Induction of cAMP-dependent protein kinase A activity in human skin fibroblasts and rat osteoblasts by extremely low-frequency electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Thumm, S.; Glock, S.; Haemmerle, H. [Natural and Medical Sciences Institute Reutlingen, University of Tuebingen (NMI), Markwiesenstrasse 55, D-72770 Reutlingen (Germany); Loeschinger, M.; Rodemann, H.P. [Section of Radiobiology and Molecular Environmental Research, University of Tuebingen, Roentgenweg 11, D-72076 Tuebingen (Germany)

    1999-09-01

    Sinusoidal extremely low-frequency electromagnetic fields (ELF-EMF; 7-8 mT, 20 Hz) have already been shown to inhibit proliferation and to accelerate terminal differentiation of human skin fibroblasts in vitro. In order to elucidate the underlying processes of signal transduction, we analysed the activity of cAMP-dependent protein kinase (PKA). EMF exposure for 60 min resulted in an increased PKA activity in human skin fibroblasts (2-fold) and rat embryonic osteoblasts (1.7-fold). Long-term exposure for up to 7 days with a constant 1 h-on/1 h-off EMF exposure rhythm indicated a transient stimulation of PKA activity during the first two exposure rhythms followed by a decrease to the baseline levels of sham-exposed controls. Based on these results, we postulate that a modulation of proliferation and differentiation processes in cells of mesenchymal origin is triggered by an immediate and transient EMF-induced increase in PKA activity. (orig.)

  16. Bifunctional alkyl nitrates - trace constituents of the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Kastler, J. [Department of Analytical and Environmental Chemistry, University of Ulm (Germany); Ballschmiter, K. [Center of Technology Assessment in Baden-Wuerttemberg, Stuttgart (Germany)

    1998-04-01

    Mono- and multifunctional esters of nitric acid (alkyl nitrates or organonitrates) form very complex mixtures of organic trace constituents in air. An analytical method was developed which combines selectivity in separation and detection in order to simplify this complexity in analytical terms. Mononitrates, dinitrates, keto nitrates, hydroxy nitrates of alkanes and alkenes, respecitvely, and bifunctional terpene nitrates were synthesized as reference substances. A specially developed new HPLC stationary phase (organonitrate phase) allows a group separation of mono-, di-, and hydroxy nitrates. After the HPLC preseparation the single components were finally separated by capillary HRGC-ECD and HRGC-MSD on polar and non-polar stationary phases. Mass spectrometric detection in the selected-ion-mode using the highly selective NO{sub 2}{sup +} fragment (m/z = 46 amu) led to very good selectivities for the nitric acid ester moiety. The analysis of a 100 m{sup 3} ambient air sample using this new analytical protocol allowed the identification of seven hydroxy nitrates and 24 dinitrates ranging from C2 to C7, 22 of them for the first time ever. (orig.) With 3 figs., 3 tabs., 20 refs.

  17. Bioinspired Bifunctional Membrane for Efficient Clean Water Generation.

    Science.gov (United States)

    Liu, Yang; Lou, Jinwei; Ni, Mengtian; Song, Chengyi; Wu, Jianbo; Dasgupta, Neil P; Tao, Peng; Shang, Wen; Deng, Tao

    2016-01-13

    Solving the problems of water pollution and water shortage is an urgent need for the sustainable development of modern society. Different approaches, including distillation, filtration, and photocatalytic degradation, have been developed for the purification of contaminated water and the generation of clean water. In this study, we explored a new approach that uses solar light for both water purification and clean water generation. A bifunctional membrane consisting of a top layer of TiO2 nanoparticles (NPs), a middle layer of Au NPs, and a bottom layer of anodized aluminum oxide (AAO) was designed and fabricated through multiple filtration processes. Such a design enables both TiO2 NP-based photocatalytic function and Au NP-based solar-driven plasmonic evaporation. With the integration of these two functions into a single membrane, both the purification of contaminated water through photocatalytic degradation and the generation of clean water through evaporation were demonstrated using simulated solar illumination. Such a demonstration should also help open up a new strategy for maximizing solar energy conversion and utilization.

  18. Bifunctional drugs for the treatment of asthma and chronic obstructive pulmonary disease.

    Science.gov (United States)

    Page, Clive; Cazzola, Mario

    2014-08-01

    Over the last decade, there has been a steady increase in the use of fixed-dose combinations of drugs for the treatment of a range of diseases, including hypertension, cancer, AIDS, tuberculosis and other infectious diseases. It is now evident that patients with asthma or chronic obstructive pulmonary disease (COPD) can also benefit from the use of fixed-dose combinations, including combinations of a long-acting β2-agonist and an inhaled corticosteroid, and combinations of long-acting β2-agonists and long-acting muscarinic receptor antagonists. In fact, there are now a number of "triple-inhaler" fixed-dose combinations under development, with the first such triple combination having been approved in India. This use of combinations containing drugs with complementary pharmacological actions in the treatment of patients with asthma or COPD has also led to the discovery and development of drugs having two different primary pharmacological actions in the same molecule, which we have called "bifunctional drugs". In this review, we discuss the state of the art of these new bifunctional drugs as novel treatments for asthma and COPD that can be categorised as bifunctional bronchodilators, bifunctional bronchodilator/anti-inflammatory drugs and bifunctional anti-inflammatory drugs.

  19. Single flexible nanofiber to achieve simultaneous photoluminescence-electrical conductivity bifunctionality.

    Science.gov (United States)

    Sheng, Shujuan; Ma, Qianli; Dong, Xiangting; Lv, Nan; Wang, Jinxian; Yu, Wensheng; Liu, Guixia

    2015-02-01

    In order to develop new-type multifunctional composite nanofibers, Eu(BA)3 phen/PANI/PVP bifunctional composite nanofibers with simultaneous photoluminescence and electrical conductivity have been successfully fabricated via electrospinning technology. Polyvinyl pyrrolidone (PVP) is used as a matrix to construct composite nanofibers containing different amounts of Eu(BA)3 phen and polyaniline (PANI). X-Ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), fluorescence spectroscopy and a Hall effect measurement system are used to characterize the morphology and properties of the composite nanofibers. The results indicate that the bifunctional composite nanofibers simultaneously possess excellent photoluminescence and electrical conductivity. Fluorescence emission peaks of Eu(3+) ions are observed in the Eu(BA)3 phen/PANI/PVP photoluminescence-electrical conductivity bifunctional composite nanofibers. The electrical conductivity reaches up to the order of 10(-3)  S/cm. The luminescent intensity and electrical conductivity of the composite nanofibers can be tuned by adjusting the amounts of Eu(BA)3 phen and PANI. The obtained photoluminescence-electrical conductivity bifunctional composite nanofibers are expected to possess many potential applications in areas such as microwave absorption, molecular electronics, biomedicine and future nanomechanics. More importantly, the design concept and construction technique are of universal significance to fabricate other bifunctional one-dimensional naonomaterials.

  20. Electrochemical Investigation of Interaction between a Bifunctional Probe and GG Mismatch Duplex.

    Science.gov (United States)

    Li, Jiao; He, Hanping; Peng, Xiaoqian; Huang, Min; Zhang, Xiuhua; Wang, Shengfu

    2015-01-01

    A bifunctional probe (FecNC), containing a recognition part and an electrochemical active center, was applied to electrochemical detection of GG mismatch duplexes. The preparation of gold electrodes modified by mismatch and complementatry duplexes was characterized by electrochemical impedance spectroscopy (EIS) and optimized for better detection in terms of self-assembly time, hybridization time, and incubation time. The interaction between FecNC and DNA duplexes modified on the surface of a gold electrode was explored by square wave voltammetry (SWV) and EIS. The results showed that the DNA duplexes with GG mismatch on the surface of a gold electrode was easily detected by the largest electrochemical signal of the bifunctional probe because of its selective binding to GG mismatches. The bifunctional probe could offer a simple, effective electrochemical detection of GG mismatches, and theoretical bases for development of electrochemical biosensors. Further, the method would be favorable for diagnosis of genetic diseases.

  1. Enhanced Bifunctional Oxygen Catalysis in Strained LaNiO3 Perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Petrie, Jonathan R.; Cooper, Valentino R.; Freeland, John W.; Meyer, Tricia L.; Zhang, Zhiyong; Lutterman, Daniel A.; Lee, Ho Nyung

    2016-03-02

    Strain is known to greatly influence low temperature oxygen electro catalysis on noble metal films, leading to significant enhancements in bifunctional activity essential for fuel cells and Metal-air batteries. However, its catalytic impact on transition-metal oxide thin films, such as perovskites, is not widely understood. Here, we epitaxially strain the conducting perovskite LaNiO3 to systematically determine its influence on both the oxygen reduction and oxygen evolution reaction. Uniquely, we found that compressive strain could significantly enhance both reactions, yielding a bifunctional catalyst that surpasses the performance of noble metals' such as Pt. We attribute the improved bifunctionality to strain induced splitting of the e(g) Orbitals, which can customize orbital asymmetry at the surface. Analogous to strain induced shifts in the d-band center of noble metals relative to the Fermi level, :such splitting can dramatically affect catalytic activity in this perovskite and other potentially more active Oxides.

  2. Laccase-mediated oxidation of small organics: bifunctional roles for versatile applications.

    Science.gov (United States)

    Jeon, Jong-Rok; Chang, Yoon-Seok

    2013-06-01

    Laccases have been widely used in several biotechnological areas, including organic synthesis, bioremediation, and pulp/textile bleaching. In most applications, the enzymatic actions start with single-electron oxidation of small organics followed by formation of the corresponding radicals. These radicals are subsequently involved in either oxidative coupling (i.e., bond formation) or bond cleavage of target organics. These bifunctional actions--catabolic versus anabolic--are readily identifiable in in vivo metabolic processes involving laccases. Here, we characterize the bifunctionality of laccase-mediated oxidation of small organics and present the view that knowledge of the biological functions of these metabolic processes in vivo can illuminate potential biotechnological applications of this bifunctionality.

  3. A novel bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1.

    Science.gov (United States)

    Kalscheuer, Rainer; Steinbüchel, Alexander

    2003-03-07

    Triacylglycerols (TAGs) and wax esters are neutral lipids with considerable importance for dietetic, technical, cosmetic, and pharmaceutical applications. Acinetobacter calcoaceticus ADP1 accumulates wax esters and TAGs as intracellular storage lipids. We describe here the identification of a bifunctional enzyme from this bacterium exhibiting acyl-CoA:fatty alcohol acyltransferase (wax ester synthase, WS) as well as acyl-CoA:diacylglycerol acyltransferase (DGAT) activity. Experiments with a knock-out mutant demonstrated the key role of the bifunctional WS/DGAT for biosynthesis of both storage lipids in A. calcoaceticus. This novel type of long-chain acyl-CoA acyltransferase is not related to known acyltransferases including the WS from jojoba (Simmondsia chinensis), the DGAT1 or DGAT2 families present in yeast, plants, and animals, and the phospholipid:diacylglycerol acyltransferase catalyzing TAG formation in yeast and plants. A large number of WS/DGAT-related proteins were identified in Mycobacterium and Arabidopsis thaliana indicating an important function of these proteins. WS and DGAT activity was demonstrated for the translational product of one WS/DGAT homologous gene from M. smegmatis mc(2)155. The potential of WS/DGAT to establish novel processes for biotechnological production of jojoba-like wax esters was demonstrated by heterologous expression in recombinant Pseudomonas citronellolis. The potential of WS/DGAT as a selective therapeutic target of mycobacterial infections is discussed.

  4. Energy Storage in Bifunctional TiO2 Composite Materials under UV and Visible Light

    Directory of Open Access Journals (Sweden)

    Jialin Li

    2009-11-01

    Full Text Available This paper provides an overview of recent studies on energy storage in bifunctional TiO2 composite materials under UV and visible light. The working mechanism, property improvements and applications of these bifunctional TiO2 composite systems are introduced, respectively. The latest results obtained in our laboratory, especially a new process for photoelectric conversion and energy storage in TiO2/Cu2O bilayer films under visible light, are also presented. Hopefully this review will stimulate more fundamental and applied research on this subject in the future.

  5. Hydroconversion of n-alkanes on bifunctional zeolites with unusual pore architecture

    Energy Technology Data Exchange (ETDEWEB)

    Doerr, G.; Tontisirin, S.; Ernst, S. [Technische Univ. Kaiserslautern (Germany). Dept. of Chemistry, Chemical Technology

    2010-12-30

    Zeolites MCM-68 and ZSM-18, both possessing unusual pore architectures, were synthesized via hydrothermal synthesis using optimized methods. X-ray powder diffraction and scanning electron microscopy revealed that the obtained zeolites are well crystallized and do not contain visible amounts of amorphous material. The bifunctional forms of MCM- 68 and ZSM-18 (viz. the acid form loaded with small amounts of palladium) were characterized using the hydroconversion of n-decane as catalytic test reaction. In this reaction, both catalysts showed the typical behaviour known from other bifunctional large pore zeolites. (orig.)

  6. CIA, a novel estrogen receptor coactivator with a bifunctional nuclear receptor interacting determinant.

    Science.gov (United States)

    Sauvé, F; McBroom, L D; Gallant, J; Moraitis, A N; Labrie, F; Giguère, V

    2001-01-01

    Coregulators for nuclear receptors (NR) are factors that either enhance or repress their transcriptional activity. Both coactivators and corepressors have been shown to use similar but functionally distinct NR interacting determinants containing the core motifs LxxLL and PhixxPhiPhi, respectively. These interactions occur through a hydrophobic cleft located on the surface of the ligand-binding domain (LBD) of the NR and are regulated by ligand-dependent activation function 2 (AF-2). In an effort to identify novel coregulators that function independently of AF-2, we used the LBD of the orphan receptor RVR (which lacks AF-2) as bait in a yeast two-hybrid screen. This strategy led to the cloning of a nuclear protein referred to as CIA (coactivator independent of AF-2 function) that possesses both repressor and activator functions. Strikingly, we observed that CIA not only interacts with RVR and Rev-ErbAalpha in a ligand-independent manner but can also form complexes with estrogen receptor alpha (ERalpha) and ERbeta in vitro and enhances ERalpha transcriptional activity in the presence of estradiol (E(2)). CIA-ERalpha interactions were found to be independent of AF-2 and enhanced by the antiestrogens EM-652 and ICI 182,780 but not by 4-hydroxytamoxifen and raloxifene. We further demonstrate that CIA-ERalpha interactions require the presence within CIA of a novel bifunctional NR recognition determinant containing overlapping LxxLL and PhixxPhiPhi motifs. The identification and functional characterization of CIA suggest that hormone binding can create a functional coactivator interaction interface in the absence of AF-2.

  7. Cloning and Functional Analysis of the Bifunctional Agglutinin/Trypsin Inhibitor from Helianthus tuberosus L.

    Institute of Scientific and Technical Information of China (English)

    Tuanjie Chang; Hongli Zhai; Songbiao Chen; Guisheng Song; Honglin Xu; Xiaoli Wei; Zhen Zhu

    2006-01-01

    In order to find new insect resistance genes, four homologous cDNAs, hta-a, hta-b, hta-c and hta-d with lengths of 775, 718, 784 and 752 bp, respectively (GenBank accession numbers AF477031-AF477034), were isolated from a tuber cDNA expression library of Helianthus tuberosus L. Sequence analysis revealed that all four cDNAs contain an open reading frame of 444 bp, coding a polypeptide of 147 amino acid residues, and that the sequences of the cDNAs are very similar to those of the mannose-binding agglutinin genes of the jacalin-related family. In hemagglutination reactions and hapten inhibition assays, affinity-purified HTA (Helianthus tuberosus agglutinin) from induced Escherichia coli BL21(DE3) expressing GST-HTA shows hemagglutination ability and a higher carbohydrate-binding ability for mannose than other tested sugars.Trypsin inhibitory activity was detected in the crude extracts of induced E. coli BL21(DE3)expressing HTA,and was further verified by trypsin inhibitory activity staining on native polyacrylamide gel. The mechanism of interaction between HTA and trypsin was studied by molecular modeling. We found that plenty of hydrogen bonds and electrostatic interactions can be formed between the supposed binding sites of HTA-b and the active site of trypsin, and that a stable HTA/trypsin complex can be formed. The results above imply that HTA might be a bifunctional protein with carbohydrate-binding activity and trypsin inhibitory activity. Moreover,Northern blotting analysis demonstrated that hta is predominantly expressed in tubers of H. tuberosus, very weakly expressed in stems, but not expressed at all in other tissues. Southern blotting analysis indicated that hta is encoded by a multi-gene family. The insect resistance traits have been described in another paper.

  8. Bifunctional bioceramics stimulating osteogenic differentiation of a gingival fibroblast and inhibiting plaque biofilm formation.

    Science.gov (United States)

    Shen, Ya; Wang, Zhejun; Wang, Jiao; Zhou, Yinghong; Chen, Hui; Wu, Chengtie; Haapasalo, Markus

    2016-04-01

    Gingival recession is a common clinical problem that results in esthetic deficiencies and poor plaque control and predominantly occurs in aged patients. In order to restore the cervical region, ideal biomaterials should possess the ability to stimulate proliferation and osteogenesis/cementogenesis of human gingival fibroblasts (HGF) and have a strong antibiofilm effect. The aim of the present study was to investigate the interactions of HGF and oral multispecies biofilms with Ca, Mg and Si-containing bredigite (BRT, Ca7MgSi4O16) bioceramics. BRT extract induced osteogenic/cementogenic differentiation of HGF and its inhibition of plaque biofilm formation were systematically studied. BRT extract in concentrations lower than <200 mg mL(-1) presented high biocompatibility to HGF cells in 3 days. Ion extracts from BRT also stimulated a series of bone-related gene and protein expressions in HGF cells. Furthermore, BRT extract significantly inhibited oral multispecies plaque biofilm growth on its surface and contributed to over 30% bacterial cell death without additional antibacterial agents in two weeks. A planktonic killing test showed that BRT suppressed 98% plaque bacterial growth compared to blank control in 3 days. The results also revealed that BRT extract has an osteostimulation effect on HGF. The suppression effect on plaque biofilms suggested that BRT might be used as a bioactive material for cervical restoration and that the synergistic effect of bioactive ions, such as Ca, Mg and Si ions, played an important role in the design and construction of bifunctional biomaterials in combination with tissue regeneration and antibiofilm activity.

  9. Phosphoglucose isomerase genotype affects running speed and heat shock protein expression after exposure to extreme temperatures in a montane willow beetle.

    Science.gov (United States)

    Rank, Nathan E; Bruce, Douglas A; McMillan, David M; Barclay, Colleen; Dahlhoff, Elizabeth P

    2007-03-01

    Eastern Sierra Nevada populations of the willow beetle Chrysomela aeneicollis commonly experience stressfully high and low environmental temperatures that may influence survival and reproduction. Allele frequencies at the enzyme locus phosphoglucose isomerase (PGI) vary across a climatic latitudinal gradient in these populations, with PGI allele 1 being most common in cooler regions and PGI allele 4 in warmer ones. PGI genotypes differ in heat and cold tolerance and in expression of a 70 kDa heat shock protein. Here we examine genetic, behavioral and environmental factors affecting a performance character, running speed, for willow beetles, and assess effects of consecutive cold and heat exposure on running speed and expression of Hsp70 in the laboratory. In nature, running speed depends on air temperature and is higher for males than females. Mating beetles ran faster than single beetles, and differences among PGI genotypes in male running speed depended on the presence of females. In the laboratory, exposure to cold reduced subsequent running speed, but the amount of this reduction depended on PGI genotype and previous thermal history. Effects of exposure to heat also depended on life history stage and PGI genotype. Adults possessing allele 1 ran fastest after a single exposure to stressful temperature, whereas those possessing allele 4 ran faster after repeated exposure. Larvae possessing allele 4 ran fastest after a single stressful exposure, but running speed generally declined after a second exposure to stressful temperature. The ranking of PGI genotypes after the second exposure depended on whether a larva had been exposed to cold or heat. Effects of temperature on Hsp70 expression also varied among PGI genotypes and depended on type of exposure, especially for adults (single heat exposure, two cold exposures: PGI 1-1>1-4>4-4; other multiple extreme exposures: 4-4>1-4>1-1). There was no consistent association between alleles at other polymorphic enzyme loci

  10. Crystal structure of the karyopherin Kap121p bound to the extreme C-terminus of the protein phosphatase Cdc14p

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Junya [Division of Biological Science, Graduate School of Science, Nagoya University (Japan); Hirano, Hidemi [Division of Biological Science, Graduate School of Science, Nagoya University (Japan); Structural Biology Research Center, Graduate School of Science, Nagoya University (Japan); Matsuura, Yoshiyuki, E-mail: matsuura.yoshiyuki@d.mbox.nagoya-u.ac.jp [Division of Biological Science, Graduate School of Science, Nagoya University (Japan); Structural Biology Research Center, Graduate School of Science, Nagoya University (Japan)

    2015-07-31

    In Saccharomyces cerevisiae, the protein phosphatase Cdc14p is an antagonist of mitotic cyclin-dependent kinases and is a key regulator of late mitotic events such as chromosome segregation, spindle disassembly and cytokinesis. The activity of Cdc14p is controlled by cell-cycle dependent changes in its association with its competitive inhibitor Net1p (also known as Cfi1p) in the nucleolus. For most of the cell cycle up to metaphase, Cdc14p is sequestered in the nucleolus in an inactive state. During anaphase, Cdc14p is released from Net1p, spreads into the nucleus and cytoplasm, and dephosphorylates key mitotic targets. Although regulated nucleocytoplasmic shuttling of Cdc14p has been suggested to be important for exit from mitosis, the mechanism underlying Cdc14p nuclear trafficking remains poorly understood. Here we show that the C-terminal region (residues 517–551) of Cdc14p can function as a nuclear localization signal (NLS) in vivo and also binds to Kap121p (also known as Pse1p), an essential nuclear import carrier in yeast, in a Gsp1p-GTP-dependent manner in vitro. Moreover we report a crystal structure, at 2.4 Å resolution, of Kap121p bound to the C-terminal region of Cdc14p. The structure and structure-based mutational analyses suggest that either the last five residues at the extreme C-terminus of Cdc14p (residues 547–551; Gly-Ser-Ile-Lys-Lys) or adjacent residues with similar sequence (residues 540–544; Gly-Gly-Ile-Arg-Lys) can bind to the NLS-binding site of Kap121p, with two residues (Ile in the middle and Lys at the end of the five residues) of Cdc14p making key contributions to the binding specificity. Based on comparison with other structures of Kap121p-ligand complexes, we propose “IK-NLS” as an appropriate term to refer to the Kap121p-specific NLS. - Highlights: • The C-terminus of Cdc14p binds to Kap121p in a Gsp1p-GTP-dependent manner. • The crystal structure of Kap121p-Cdc14p complex is determined. • The structure reveals how

  11. Extreme Folding

    Science.gov (United States)

    Demaine, Erik

    2012-02-01

    Our understanding of the mathematics and algorithms behind paper folding, and geometric folding in general, has increased dramatically over the past several years. These developments have found a surprisingly broad range of applications. In the art of origami, it has helped spur the technical origami revolution. In engineering and science, it has helped solve problems in areas such as manufacturing, robotics, graphics, and protein folding. On the recreational side, it has led to new kinds of folding puzzles and magic. I will give an overview of the mathematics and algorithms of folding, with a focus on new mathematics and sculpture.

  12. Bifunctional catalysts for the direct production of liquid fuels from syngas

    NARCIS (Netherlands)

    Sartipi, S.

    2014-01-01

    Design and development of catalyst formulations that maximize the direct production of liquid fuels by combining Fischer-Tropsch synthesis (FTS), hydrocarbon cracking, and isomerization into one single catalyst particle (bifunctional FTS catalyst) have been investigated in this thesis. To achieve th

  13. Oxidations of amines with molecular oxygen using bifunctional gold–titania catalysts

    DEFF Research Database (Denmark)

    Klitgaard, Søren Kegnæs; Egeblad, Kresten; Mentzel, Uffe Vie

    2008-01-01

    Over the past decades it has become clear that supported gold nanoparticles are surprisingly active and selective catalysts for several green oxidation reactions of oxygen-containing hydrocarbons using molecular oxygen as the stoichiometric oxidant. We here report that bifunctional gold–titania c...... new and environmentally benign routes to caprolactam and cyclohexanone oxime, both of which are precursors for nylon-6....

  14. Purification, characterization, and cloning of a bifunctional molybdoenzyme with hydratase and alcohol dehydrogenase activity

    NARCIS (Netherlands)

    Jin, J.; Straathof, A.J.J.; Pinkse, M.W.H.; Hanefeld, U.

    2010-01-01

    A bifunctional hydratase/alcohol dehydrogenase was isolated from the cyclohexanol degrading bacterium Alicycliphilus denitrificans DSMZ 14773. The enzyme catalyzes the addition of water to α,β-unsaturated carbonyl compounds and the subsequent alcohol oxidation. The purified enzyme showed three subun

  15. Direct catalytic transformation of carbohydrates into 5-ethoxymethylfurfural with acid–base bifunctional hybrid nanospheres

    DEFF Research Database (Denmark)

    Li, Hu; Khokarale, Santosh Govind; Kotni, Ramakrishna;

    2014-01-01

    carbohydrates. A high EMF yield of 76.6%, 58.5%, 42.4%, and 36.5% could be achieved, when fructose, inulin, sorbose, and sucrose were used as starting materials, respectively. Although, the acid–base bifunctional nanocatalysts were inert for synthesis of EMF from glucose based carbohydrates, ethyl...

  16. Design and Synthesis of Bifunctional Oxime Reactivators of OP- inhibited Cholinesterase

    Science.gov (United States)

    2013-08-01

    military and civilian personnel. Reactivators of OP inhibited cholinesterases can serve as OP agent antidotes but can be limited by their poor...assisted bifunctional catalytic mechanism 46 O N O N OH 11 REPORTABLE OUTCOMES: None CONCLUSION: We have successfully evaluated the synthetic

  17. High surface area carbon for bifunctional air electrodes applied in zinc-air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Arai, H. [on leave from NTT Laboratories (Japan); Mueller, S.; Haas, O. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Bifunctional air electrodes with high surface area carbon substrates showed low reduction overpotential, thus are promising for enhancing the energy efficiency and power capability of zinc-air batteries. The improved performance is attributed to lower overpotential due to diffusion of the reaction intermediate, namely the peroxide ion. (author) 1 fig., 2 refs.

  18. Novel bifunctional double-layer catalysts for application in microreactors for direct DME synthesis

    OpenAIRE

    Lee, Seungcheol

    2016-01-01

    This thesis describes experimental research toward the selective and efficient DME production from syngas in microstructured reactors using bifunctional catalysts. Two catalysts, Cu/ZnO/Al2O3 and ZSM-5, catalyze syngas conversion to methanol and methanol conversion to DME, respectively. The catalysts were prepared and successfully introduced in microchannel reactor for direct DME synthesis.

  19. Enantioselective α-Chlorination of Aldehydes with Recyclable Fluorous (S)-Pyrrolidine-Thiourea Bifunctional Organocatalyst.

    Science.gov (United States)

    Wang, Liang; Cai, Chun; Curran, Dennis P; Zhang, Wei

    2010-01-01

    A novel fluorous (S)-pyrrolidine-thiourea bifunctional organocatalyst is prepared. The catalyst shows good activity and enantioselectivity for direct α-chlorination of aldehydes using N-chlorosuccinimide (NCS) as the chlorine source. It can be recovered from the reaction mixture by fluorous solid-phase extraction with excellent purity for direct reuse.

  20. Comparison of bifunctional chelates for {sup 64}Cu antibody imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Cara L.; Crisp, Sarah; Bensimon, Corinne [MDS Nordion, Vancouver, BC (Canada); Yapp, Donald T.T.; Ng, Sylvia S.W. [British Columbia Cancer Agency Research Centre, Vancouver, BC (Canada); University of British Columba, The Faculty of Pharmaceutical Sciences, Vancouver, BC (Canada); Sutherland, Brent W. [British Columbia Cancer Agency Research Centre, Vancouver, BC (Canada); Gleave, Martin [Prostate Centre at Vancouver General Hospital, Vancouver, BC (Canada); Jurek, Paul; Kiefer, Garry E. [Macrocyclics Inc., Dallas, TX (United States)

    2010-11-15

    Improved bifunctional chelates (BFCs) are needed to facilitate efficient {sup 64}Cu radiolabeling of monoclonal antibodies (mAbs) under mild conditions and to yield stable, target-specific agents. The utility of two novel BFCs, 1-Oxa-4,7,10-triazacyclododecane-5-S-(4-isothiocyanatobenzyl)-4,7,10-triacetic acid (p-SCN-Bn-Oxo-DO3A) and 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-4-S-(4-isothiocyanatobenzyl)-3,6,9-triacetic acid (p-SCN-Bn-PCTA), for mAb imaging with {sup 64}Cu were compared to the commonly used S-2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane-tetraacetic acid (p-SCN-Bn-DOTA). The BFCs were conjugated to trastuzumab, which targets the HER2/neu receptor. {sup 64}Cu radiolabeling of the conjugates was optimized. Receptor binding was analyzed using flow cytometry and radioassays. Finally, PET imaging and biodistribution studies were done in mice bearing either HER2/neu-positive or HER2/neu-negative tumors. {sup 64}Cu-Oxo-DO3A- and PCTA-trastuzumab were prepared at room temperature in >95% radiochemical yield (RCY) in <30 min, compared to only 88% RCY after 2 h for the preparation of {sup 64}Cu-DOTA-trastuzumab under the same conditions. Cell studies confirmed that the immunoreactivity of the mAb was retained for each of the bioconjugates. In vivo studies showed that {sup 64}Cu-Oxo-DO3A- and PCTA-trastuzumab had higher uptake than the {sup 64}Cu-DOTA-trastuzumab at 24 h in HER2/neu-positive tumors, resulting in higher tumor to background ratios and better tumor images. By 40 h all three of the {sup 64}Cu-BFC-trastuzumab conjugates allowed for clear visualization of the HER2/neu-positive tumors but not the negative control tumor. The antibody conjugates of PCTA and Oxo-DO3A were shown to have superior {sup 64}Cu radiolabeling efficiency and stability compared to the analogous DOTA conjugate. In addition, {sup 64}Cu-PCTA and Oxo-DO3A antibody conjugates may facilitate earlier imaging with greater target to background ratios than

  1. Interaction between wheat alpha-amylase/trypsin bi-functional inhibitor and mammalian digestive enzymes: Kinetic, equilibrium and structural characterization of binding.

    Science.gov (United States)

    Cuccioloni, Massimiliano; Mozzicafreddo, Matteo; Ali, Ishtiaq; Bonfili, Laura; Cecarini, Valentina; Eleuteri, Anna Maria; Angeletti, Mauro

    2016-12-15

    Alpha-amylase/trypsin bi-functional inhibitors (ATIs) are non-gluten protein components of wheat and other cereals that can hypersensitise the human gastrointestinal tract, eventually causing enteropathies in predisposed individuals. These inhibitory proteins can act both directly by targeting specific pro-inflammatory receptors, and indirectly by impairing the activity of digestive enzymes, the latter event causing the accumulation of undigested peptides with potential immunogenic properties. Herein, according to a concerted approach based on in vitro and in silico methods we characterized kinetics, equilibrium parameters and modes of binding of the complexes formed between wheat ATI and two representative mammalian digestive enzymes, namely trypsin and alpha-amylase. Interestingly, we demonstrated ATI to target both enzymes with independent binding sites and with moderately high affinity.

  2. Molecular cloning and characterization of a novel bi-functional α-amylase/subtilisin inhibitor from Hevea brasiliensis.

    Science.gov (United States)

    Bunyatang, Orawan; Chirapongsatonkul, Nion; Bangrak, Phuwadol; Henry, Robert; Churngchow, Nunta

    2016-04-01

    A novel cDNA encoding a bi-functional α-amylase/subtilisin inhibitor (HbASI) was isolated from rubber (Hevea brasiliensis) leaves cultivar RRIM600. The HbASI had strong homology with the soybean trypsin inhibitor (Kunitz) family of protease inhibitors. Its putative amino acid sequence was similar to that of the α-amylase/subtilisin inhibitor from Ricinus communis (72% identity). Genomic sequencing indicated that the HbASI gene contained no introns. The messenger RNA of HbASI was detected in leaf, hypocotyl and root. The recombinant HbASI expressed extracellularly in Pichia pastoris exhibited inhibitory activity against α-amylase from Aspergillus oryzae, trypsin and subtilisin A. The HbASI gene was induced in the rubber leaves infected with a rubber tree pathogen, Phytophthora palmivora. It was also enhanced by salicylic acid (SA) treatment and mechanical wounding. In addition, the biological activity of the HbASI protein involving in the plant defence responses was also investigated. The HbASI at a concentration of 0.16 mg mL(-1) could inhibit the mycelium growth of P. palmivora. These data suggested that the HbASI protein might play a crucial role in defence against pathogen of rubber trees.

  3. A Metal-Amino Acid Complex-Derived Bifunctional Oxygen Electrocatalyst for Rechargeable Zinc-Air Batteries.

    Science.gov (United States)

    Ding, Yanjun; Niu, Yuchen; Yang, Jia; Ma, Liang; Liu, Jianguo; Xiong, Yujie; Xu, Hangxun

    2016-10-01

    Bifunctional oxygen electrocatalyst: A metal-amino acid complex is developed to prepare high-performance mesoporous carbon electrocatalyst for both oxygen reduction and oxygen evolution reactions. Such prepared catalyst can be used to assemble rechargeable zinc-air batteries with excellent durability. This work represents a new route toward low-cost, highly active, and durable bifunctional electrocatalysts for cutting-edge energy conversion devices.

  4. Protein

    Science.gov (United States)

    ... Food Service Resources Additional Resources About FAQ Contact Protein Protein is found throughout the body—in muscle, ... the heart and respiratory system, and death. All Protein Isn’t Alike Protein is built from building ...

  5. Two-dimensional Electrophoresis Analysis of Proteins in Response to Cold Stress in Extremely Cold-resistant Winter Wheat Dongnongdongmai 1 Tillering Nodes

    Institute of Scientific and Technical Information of China (English)

    Cang Jing; Yu Jing; Liu Li-jie; Yang Yang; Cui Hong; Hao Zai-bin; Li Zhuo-fu

    2012-01-01

    The overwintering survival ratio of the cultivar Dongnongdongmai 1 with strong cold-resistance in paramos of Heilongjiang Province in China are over 85%. The tillering nodes are the most important organs for overwintering survival of winter wheat, because there are more substances associated with cold resistance in tillering nodes than those in leaves and roots. Proteins in the tillering nodes of the cold-resistant cultivar Dongnongdongmai 1 grown under field conditions with or without any lowtemperature stress were analyzed by 2-dimensional electrophoresis and identified by mass spectrometry. In the range of pH 4-7, the expression of 37 proteins showed obvious difference (±more than two fold) in the proteomic maps of cold-stressed and non-stressed tillering nodes, including a new protein spot. All proteins exhibiting the difference in expression were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, followed by a database search for protein identification and function prediction. Five groups of proteins were confirmed, namely stress-related proteins (22%), metabolism-associated proteins (35%), and signaling molecules (24%), cell wall-binding proteins (5%), unclear proteins (14%). This indicated that tillering node cells supported the energy requirements of plant growth and stress resistance by signal transduction adapting to metabolism and structure.

  6. Study of Protein Fold Recognition Using Optimization Method Extreme Learning Machine for Classification%极限学习机优化方法在蛋白质折叠类型识别中的应用

    Institute of Scientific and Technical Information of China (English)

    张志锋; 范乃梅

    2013-01-01

    传统的机器学习方法在处理蛋白质折叠类型识别问题时需要花费大量的时间来调节最佳的参数.利用一种新的极限学习机(Extreme Learning Machine,ELM)分类优化方法(Extreme Learning Machine for Classification,ELMC)对蛋白质折叠进行识别,仅需调节很少的参数值就可达到很好的测试精度.与支持向量机(Support Vector Machine,SVM)和推荐相关向量机(Relevance Vector Machine,RVM)相比,ELMC能获得更好的泛化性能,而且在寻找最优解的训练时间比较上,ELMC比SVM平均要快35倍,比RVM要快12倍.%With traditional machine learning methods, one may spends a lot of time adjusting the optimal parameters in tackling the problem of protein fold recognition. A new optimization method of extreme learning machine for classification ( ELMC ) is used to recognize the protein fold, one can only adjusts few parameters to achieve good enough testing accuracy. Compared to support vector machine (SVM)and relevance vector machine (RVM) , better generalization performance can be obtained by extreme earning machine for classification. In the comparison of training time in finding the optimal solution, ELMC is 35 times faster than SVM averagely and is 12 times faster than RVM averagely.

  7. 极端嗜盐古菌蛋白类抗生素——嗜盐菌素%Halocin:Protein Antibiotics Produced by Extremely Halophilic Archaea

    Institute of Scientific and Technical Information of China (English)

    厉云; 向华; 谭华荣

    2002-01-01

    @@ 古菌(Archaea)是一类与细菌及真核生物显著不同的生命的第三种形式[1],大多生活在极端或特殊环境,主要包括产甲烷古菌(Methanogenic Achaea)、极端嗜盐古菌(Extremely Halophilic Archaea)和极端嗜热古菌(Extremely Thermophilic Archaea)等三大类.极端古菌是极端环境微生物的重要成员,也是极端环境微生物资源开发的重要领域.其中,嗜盐古菌可产生一类蛋白类抗生素,称为嗜盐菌素(halocin).

  8. Molecular characterization of the thi3 gene involved in thiamine biosynthesis in Zea mays: cDNA sequence and enzymatic and structural properties of the recombinant bifunctional protein with 4-amino-5-hydroxymethyl-2-methylpyrimidine (phosphate) kinase and thiamine monophosphate synthase activities.

    Science.gov (United States)

    Rapala-Kozik, Maria; Olczak, Mariusz; Ostrowska, Katarzyna; Starosta, Agata; Kozik, Andrzej

    2007-12-01

    A thiamine biosynthesis gene, thi3, from maize Zea mays has been identified through cloning and sequencing of cDNA and heterologous overexpression of the encoded protein, THI3, in Escherichia coli. The recombinant THI3 protein was purified to homogeneity and shown to possess two essentially different enzymatic activities of HMP(-P) [4-amino-5-hydroxymethyl-2-methylpyrimidine (phosphate)] kinase and TMP (thiamine monophosphate) synthase. Both activities were characterized in terms of basic kinetic constants, with interesting findings that TMP synthase is uncompetitively inhibited by excess of one of the substrates [HMP-PP (HMP diphosphate)] and ATP. A bioinformatic analysis of the THI3 sequence suggested that these activities were located in two distinct, N-terminal kinase and C-terminal synthase, domains. Models of the overall folds of THI3 domains and the arrangements of active centre residues were obtained with the SWISS-MODEL protein modelling server, on the basis of the known three-dimensional structures of Salmonella enterica serotype Typhimurium HMP(-P) kinase and Bacillus subtilis TMP synthase. The essential roles of Gln98 and Met134 residues for HMP kinase activity and of Ser444 for TMP synthase activity were experimentally confirmed by site-directed mutagenesis.

  9. CXCL10 Acts as a Bifunctional Antimicrobial Molecule against Bacillus anthracis

    Directory of Open Access Journals (Sweden)

    Katie R. Margulieux

    2016-05-01

    Full Text Available Bacillus anthracis is killed by the interferon-inducible, ELR(− CXC chemokine CXCL10. Previous studies showed that disruption of the gene encoding FtsX, a conserved membrane component of the ATP-binding cassette transporter-like complex FtsE/X, resulted in resistance to CXCL10. FtsX exhibits some sequence similarity to the mammalian CXCL10 receptor, CXCR3, suggesting that the CXCL10 N-terminal region that interacts with CXCR3 may also interact with FtsX. A C-terminal truncated CXCL10 was tested to determine if the FtsX-dependent antimicrobial activity is associated with the CXCR3-interacting N terminus. The truncated CXCL10 exhibited antimicrobial activity against the B. anthracis parent strain but not the ΔftsX mutant, which supports a key role for the CXCL10 N terminus. Mutations in FtsE, the conserved ATP-binding protein of the FtsE/X complex, resulted in resistance to both CXCL10 and truncated CXCL10, indicating that both FtsX and FtsE are important. Higher concentrations of CXCL10 overcame the resistance of the ΔftsX mutant to CXCL10, suggesting an FtsX-independent killing mechanism, likely involving its C-terminal α-helix, which resembles a cationic antimicrobial peptide. Membrane depolarization studies revealed that CXCL10 disrupted membranes of the B. anthracis parent strain and the ΔftsX mutant, but only the parent strain underwent depolarization with truncated CXCL10. These findings suggest that CXCL10 is a bifunctional molecule that kills B. anthracis by two mechanisms. FtsE/X-dependent killing is mediated through an N-terminal portion of CXCL10 and is not reliant upon the C-terminal α-helix. The FtsE/X-independent mechanism involves membrane depolarization by CXCL10, likely because of its α-helix. These findings present a new paradigm for understanding mechanisms by which CXCL10 and related chemokines kill bacteria.

  10. Bifunctional metamaterials with simultaneous and independent manipulation of thermal and electric fields.

    Science.gov (United States)

    Lan, Chuwen; Bi, Ke; Fu, Xiaojian; Li, Bo; Zhou, Ji

    2016-10-03

    Metamaterials offer a powerful way to manipulate a variety of physical fields ranging from wave fields (electromagnetic field, acoustic field, elastic wave, etc.), static fields (static magnetic field, static electric field) to diffusive fields (thermal field, diffusive mass). However, the relevant reports and studies are usually limited to a single physical field or functionality. In this study, we proposed and experimentally demonstrated a bifunctional metamaterial which could manipulate thermal and electric fields simultaneously and independently. Specifically, a composite with independently controllable thermal and electric conductivity was introduced, on the basis of which a bifunctional device capable of shielding thermal flux and concentrating electric current simultaneously was designed, fabricated and characterized. This work provides an encouraging example of metamaterials transcending their natural limitations, which offers a promising future in building a broad platform for the manipulation of multi-physics fields.

  11. Bifunctional Pt-Si Alloys for Small Organic Molecule Electro-oxidation

    DEFF Research Database (Denmark)

    Permyakova, Anastasia Aleksandrovna; Suntivich, Jin; Han, Binghong

    Designing highly active catalysts for electro-oxidation of small organic molecules can help to reduce the anodic overpotential for more efficient utilization of hydrocarbon fuels. The challenge in developing more active electrocatalysts for electro-oxidation reactions is to satisfy the stringent...... bifunctional requirement, which demands both adsorption and water oxidation sites. In this contribution, we explore the possibility of using Pt-Si alloys to fulfill this bifunctional requirement. Silicon, a highly oxophillic element, is alloyed into Pt as a site for water oxidation, while Pt serves as a CO...... adsorption site. We will discuss the enhanced activity of Pt-Si alloys for small organic molecule oxidation, which can be attributed to the improved CO electro-oxidation kinetics on Pt-Si....

  12. Tethering metal ions to photocatalyst particulate surfaces by bifunctional molecular linkers for efficient hydrogen evolution

    KAUST Repository

    Yu, Weili

    2014-08-19

    A simple and versatile method for the preparation of photocatalyst particulates modified with effective cocatalysts is presented; the method involves the sequential soaking of photocatalyst particulates in solutions containing bifunctional organic linkers and metal ions. The modification of the particulate surfaces is a universal and reproducible method because the molecular linkers utilize strong covalent bonds, which in turn result in modified monolayer with a small but controlled quantity of metals. The photocatalysis results indicated that the CdS with likely photochemically reduced Pd and Ni, which were initially immobilized via ethanedithiol (EDT) as a linker, were highly efficient for photocatalytic hydrogen evolution from Na2S-Na2SO3-containing aqueous solutions. The method developed in this study opens a new synthesis route for the preparation of effective photocatalysts with various combinations of bifunctional linkers, metals, and photocatalyst particulate materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Increasing round trip efficiency of hybrid Li-air battery with bifunctional catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Huang, K; Li, YF; Xing, YC

    2013-07-30

    Previously it was shown that Pt as cathode catalyst ha's a large overpotential during charge in rechargeable hybrid Li-air battery with sulfuric acid catholyte. This article demonstrates that a bifunctional catalyst composed of Pt and IrO2 supported on carbon nanotubes can address this problem. The specially designed and synthesized bifunctional catalyst showed significant overpotential reduction and achieved a round trip energy efficiency of 81% after 10 cycles, higher than many achieved in aprotic Li-O-2 batteries. The hybrid Li-air battery was discharged and recharged for 20 cycles at 0.2 mA/cm(2), showing a fairly stable cell performance. A specific capacity of 306 mAh/g and a specific energy of 1110 Wh/kg were obtained for the hybrid Li-air battery in terms of acid weight. (c) 2013 Elsevier Ltd. All rights reserved.

  14. Bifunctional metamaterials with simultaneous and independent manipulation of thermal and electric fields

    Science.gov (United States)

    Lan, Chuwen; Bi, Ke; Fu, Xiaojian; Li, Bo; Zhou, Ji

    2016-10-01

    Metamaterials offer a powerful way to manipulate a variety of physical fields ranging from wave fields (electromagnetic field, acoustic field, elastic wave, etc.), static fields (static magnetic field, static electric field) to diffusive fields (thermal field, diffusive mass). However, the relevant reports and studies are usually conducted on a single physical field or functionality. In this study, we proposed and experimentally demonstrated a bifunctional metamaterial which can manipulate thermal and electric fields simultaneously and independently. Specifically, a composite with independently controllable thermal and electric conductivity was introduced, on the basis of which a bifunctional device capable of shielding thermal flux and concentrating electric current simultaneously was designed, fabricated and characterized. This work provides an encouraging example of metamaterials transcending their natural limitations, which offers a promising future in building a broad platform for manipulation of multi-physics field.

  15. First-Principles Study of Structure Property Relationships of Monolayer (Hydroxy)Oxide-Metal Bifunctional Electrocatalysts

    DEFF Research Database (Denmark)

    Zeng, Zhenhua; Kubal, Joseph; Greeley, Jeffrey Philip

    2015-01-01

    In the present study, on the basis of detailed density functional theory (DFT) calculations, and using Ni hydroxy(oxide) films on Pt(111) and Au(111) electrodes as model systems, we describe a detailed structural and electrocatalytic analysis of hydrogen evolution (HER) at three-phase boundaries...... of information that is inaccessible by purely experimental means, and these structures, in turn, strongly suggest that a bifunctional reaction mechanism for alkaline HER will be operative at the interface between the films, the metal substrates, and the surrounding aqueous medium. This bifunctionality produces...... important changes in the calculated barriers of key elementary reaction steps, including water activation and dissociation, as compared to traditional monofunctional Pt surfaces. The successful identification of the structures of thin metal films and three-phase boundary catalysts is not only an important...

  16. Generating bifunctional fusion enzymes composed of heat-active endoglucanase (Cel5A) and endoxylanase (XylT).

    Science.gov (United States)

    Rizk, Mazen; Elleuche, Skander; Antranikian, Garabed

    2015-01-01

    Bifunctional enzyme constructs were generated comprising two genes encoding heat-active endoglucanase (cel5A) and endoxylanase (xylT). The fused proteins Cel5A-XylT and XylT-Cel5A were active on both β-glucan and beechwood xylan. An improvement in endoglucanase and endoxylanase catalytic activities was observed. The specific activity of the fusion towards xylan was significantly raised when compared to XylT. The fusion constructs were active from 40 to 100 °C for endoglucanase and from 40 to 90 °C for endoxylanase, but the temperature optima were lowered from 90 to 80 °C for the endoglucanase and from 80 to 70 °C for the endoxylanase. XylT in the construct XylT-Cel5A was less stable at higher temperatures compared to Cel5A-XylT. Due to the enzymatic performance, these fusion enzymes are attractive candidates for applications in biorefineries based on plant waste.

  17. Biochemical characterization of a bifunctional acetaldehyde-alcohol dehydrogenase purified from a facultative anaerobic bacterium Citrobacter sp. S-77.

    Science.gov (United States)

    Tsuji, Kohsei; Yoon, Ki-Seok; Ogo, Seiji

    2016-03-01

    Acetaldehyde-alcohol dehydrogenase (ADHE) is a bifunctional enzyme consisting of two domains of an N-terminal acetaldehyde dehydrogenase (ALDH) and a C-terminal alcohol dehydrogenase (ADH). The enzyme is known to be important in the cellular alcohol metabolism. However, the role of coenzyme A-acylating ADHE responsible for ethanol production from acetyl-CoA remains uncertain. Here, we present the purification and biochemical characterization of an ADHE from Citrobacter sp. S-77 (ADHE(S77)). Interestingly, the ADHE(S77) was unable to be solubilized from membrane with detergents either 1% Triton X-100 or 1% Sulfobetaine 3-12. However, the enzyme was easily dissociated from membrane by high-salt buffers containing either 1.0 M NaCl or (NH(4))(2)SO(4) without detergents. The molecular weight of a native protein was estimated as approximately 400 kDa, consisting of four identical subunits of 96.3 kDa. Based on the specific activity and kinetic analysis, the ADHES77 tended to have catalytic reaction towards acetaldehyde elimination rather than acetaldehyde formation. Our experimental observation suggests that the ADHES77 may play a pivotal role in modulating intracellular acetaldehyde concentration.

  18. Structure of the bifunctional inhibitor of trypsin and alpha-amylase from ragi seeds at 2.9 A resolution.

    Science.gov (United States)

    Gourinath, S; Srinivasan, A; Singh, T P

    1999-01-01

    The crystal structure of a bifunctional inhibitor of alpha-amylase and trypsin from the seeds of ragi (Indian finger millet, Eleusine coracana Gaertneri) has been determined by an X-ray diffraction method. The inhibitor consists of 122 amino acids with five disulfide bridges and belongs to the plant alpha-amylase/trypsin-inhibitor family. This is the first crystal structure determination of a member of this family. The protein, purified from the seeds of ragi, has a molecular mass of 13300 Da with a pI of 10.3. Crystals were grown by a microdialysis method using ammonium sulfate as precipitant. The improved purification protocol and the modified crystallization conditions enabled reproducible growth of the crystals. The cell parameters are a = 41. 2, b = 47.4, c = 55.9 A. The intensity data were collected to 2.9 A resolution, and the crystal structure was determined using the molecular-replacement method. The structure was refined using the X-PLOR and CCP4 program packages to a conventional R factor of 21%. The structure contains four alpha-helices between residues 19-29, 37-51, 56-65 and 90-95, and two short antiparallel beta-strands between residues 67-70 and 73-75.

  19. Structure of the bifunctional inhibitor of trypsin and alpha-amylase from ragi seeds at 2.2 A resolution.

    Science.gov (United States)

    Gourinath, S; Alam, N; Srinivasan, A; Betzel, C; Singh, T P

    2000-03-01

    The crystal structure of a bifunctional inhibitor of alpha-amylase and trypsin (RATI) from ragi seeds (Indian finger millet, Eleusine coracana Gaertneri) has been determined by X-ray diffraction at 2.2 A resolution. The inhibitor consists of 122 amino acids, with five disulfide bridges, and belongs to the plant alpha-amylase/trypsin inhibitor family. The crystals were grown by the microdialysis method using ammonium sulfate as a precipitating agent. The structure was determined by the molecular-replacement method using as models the structures of Corn Hageman factor inhibitor (CHFI) and of RATI at 2.9 A resolution determined previously. It has been refined to an R factor of 21.9%. The structure shows an r.m.s. deviation for C(alpha) atoms of 2.0 A compared with its own NMR structure, whereas the corresponding value compared with CHFI is found to be 1.4 A. The r.m.s. difference for C(alpha) atoms when compared with the same protein in the structure of the complex with alpha-amylase is 0.7 A. The conformations of trypsin-binding loop and the alpha-amylase-binding N-terminal region were also found to be similar in the crystal structures of native RATI and its complex with alpha-amylase. These regions differed considerably in the NMR structure.

  20. Rice bifunctional alpha-amylase/subtilisin inhibitor: cloning and characterization of the recombinant inhibitor expressed in Escherichia coli.

    Science.gov (United States)

    Yamasaki, Teruyuki; Deguchi, Masaki; Fujimoto, Toshiko; Masumura, Takehiro; Uno, Tomohide; Kanamaru, Kengo; Yamagata, Hiroshi

    2006-05-01

    The complete nucleotide sequences of the cDNA and its gene that encode a bifunctional alpha-amylase/subtilisin inhibitor of rice (Oryza sativa L.) (RASI) were analyzed. RASI cDNA (939 bp) encoded a 200-residue polypeptide with a molecular mass of 21,417 Da, including a signal peptide of 22 amino acids. Sequence comparison and phylogenetic analysis showed that RASI is closely related to alpha-amylase/subtilisin inhibitors from barley and wheat. RASI was found to be expressed only in seeds, suggesting that it has a seed-specific function. A coding region of RASI cDNA without the signal peptide was introduced into Escherichia coli and was expressed as a His-tagged protein. Recombinant RASI was purified to homogeneity in a single step by Ni-chelating affinity column chromatography and characterized to elucidate the target enzyme. The recombinant inhibitor had strong inhibitory activity toward subtilisin, with an equimolar relationship, comparable with that of native RASI, and weak inhibitory activity toward some microbial alpha-amylases, but not toward animal or insect alpha-amylases. These results suggest that RASI might function in the defense of the seed against microorganisms.

  1. 3D Ordered Mesoporous Bifunctional Oxygen Catalyst for Electrically Rechargeable Zinc-Air Batteries.

    Science.gov (United States)

    Park, Moon Gyu; Lee, Dong Un; Seo, Min Ho; Cano, Zachary Paul; Chen, Zhongwei

    2016-05-01

    To enhance energy efficiency and durability, a highly active and durable 3D ordered mesoporous cobalt oxide framework has been developed for rechargeable zinc-air batteries. The bifunctional air electrode consisting of 3DOM Co3 O4 having high active surface area and robust structure, results in superior charge and discharge battery voltages, and durable performance for electrically rechargeable zinc-air batteries.

  2. Radiation Induced Crosslinking of Polyethylene in the Presence of Bifunctional Vinyl Monomers

    DEFF Research Database (Denmark)

    Joshi, M. S.; Singer, Klaus Albert Julius; Silverman, J.

    1977-01-01

    Several reports have been published showing that the radiation induced grafting of bifunctional vinyl monomers to low density polyethylene results in a product with an unusually high density of crosslinks. The same grafting reactions are shown to reduce the incipient gel dose by more than a factor...... of fifty. This paper is concerned with the apparent crosslinking produced by the radiation grafting of two monomers to polyethylene: acrylic acid and acrylonitrile....

  3. Preliminary X-ray investigation of a bifunctional inhibitor from Indian finger millet (ragi).

    Science.gov (United States)

    Srinivasan, A; Raman, A; Singh, T P

    1991-11-05

    A bifunctional alpha-amylase/trypsin inhibitor that has two binding sites has been purified from ragi. The inhibitor has been crystallized from its ammonium sulphate solution by the vapour diffusion method. The crystals belong to the orthogonal space group P2(1)2(1)2(1) with unit cell dimensions a = 30.49 A, b = 56.30 A, c = 73.65 A and Z = 4.

  4. Enhancement of Bacillus thuringiensis insecticidal activity by combining Cry1Ac and bi-functional toxin HWTX-XI from spider.

    Science.gov (United States)

    Sun, Yunjun; Fu, Zujiao; He, Xiaohong; Yuan, Chunhua; Ding, Xuezhi; Xia, Liqiu

    2016-03-01

    In order to assess the potency of bi-functional HWTX-XI toxin from spider Ornithoctonus huwena in improving the insecticidal activity of Bacillus thuringiensis, a fusion gene of cry1Ac and hwtx-XI was constructed and expressed in an acrystalliferous B. thuringiensis strain Cry(-)B. Western blot analysis and microscopic observation revealed that the recombinant strain could express 140-kDa Cry1Ac-HWTX-XI fusion protein and produce parasporal inclusions during sporulation. Bioassay using the larvae of Helicoverpa armigera and Spodoptera exigua showed that the Cry1Ac-HWTX-XI fusion was more toxic than the control Cry1Ac protoxin, as revealed by 95% lethal concentration. Our study indicated that the HWTX-XI from spider might be a candidate for enhancing the toxicity of B. thuringiensis products.

  5. Collagen/chitosan based two-compartment and bi-functional dermal scaffolds for skin regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng [Department of Plastic Surgery and Burns, Shenzhen Second People' s Hospital, Shenzhen 518035 (China); Wang, Mingbo [Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); She, Zhending [Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Shenzhen Lando Biomaterials Co., Ltd., Shenzhen 518057 (China); Fan, Kunwu; Xu, Cheng [Department of Plastic Surgery and Burns, Shenzhen Second People' s Hospital, Shenzhen 518035 (China); Chu, Bin; Chen, Changsheng [Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Shi, Shengjun, E-mail: shengjunshi@yahoo.com [The Burns Department of Zhujiang Hospital, Southern Medical University, Guangzhou 510280 (China); Tan, Rongwei, E-mail: tanrw@landobiom.com [Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Shenzhen Lando Biomaterials Co., Ltd., Shenzhen 518057 (China)

    2015-07-01

    Inspired from the sophisticated bilayer structures of natural dermis, here, we reported collagen/chitosan based two-compartment and bi-functional dermal scaffolds. Two functions refer to mediating rapid angiogenesis based on recombinant human vascular endothelial growth factor (rhVEGF) and antibacterial from gentamicin, which were encapsulated in PLGA microspheres. The gentamicin and rhVEGF encapsulated PLGA microspheres were further combined with collagen/chitosan mixtures in low (lower layer) and high (upper layer) concentrations, and molded to generate the two-compartment and bi-functional scaffolds. Based on morphology and pore structure analyses, it was found that the scaffold has a distinct double layered porous and connective structure with PLGA microspheres encapsulated. Statistical analysis indicated that the pores in the upper layer and in the lower layer have great variations in diameter, indicative of a two-compartment structure. The release profiles of gentamicin and rhVEGF exceeded 28 and 49 days, respectively. In vitro culture of mouse fibroblasts showed that the scaffold can facilitate cell adhesion and proliferation. Moreover, the scaffold can obviously inhibit proliferation of Staphylococcus aureus and Serratia marcescens, exhibiting its unique antibacterial effect. The two-compartment and bi-functional dermal scaffolds can be a promising candidate for skin regeneration. - Highlights: • The dermal scaffold is inspired from the bilayer structures of natural dermis. • The dermal scaffold has two-compartment structures. • The dermal scaffold containing VEGF and gentamicin encapsulated PLGA microspheres • The dermal scaffold can facilitate cell adhesion and proliferation.

  6. Bifunctional Catalysts for Upgrading of Biomass-Derived Oxygenates: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Allison M.; Hensley, Jesse E.; Medlin, J. Will

    2016-08-05

    Deoxygenation is an important reaction in the conversion of biomass-derived oxygenates to fuels and chemicals. A key route for biomass refining involves the production of pyrolysis oil through rapid heating of the raw biomass feedstock. Pyrolysis oil as produced is highly oxygenated, so the feasibility of this approach depends in large part on the ability to selectively deoxygenate pyrolysis oil components to create a stream of high-value finished products. Identification of catalytic materials that are active and selective for deoxygenation of pyrolysis oil components has therefore represented a major research area. One catalyst is rarely capable of performing the different types of elementary reaction steps required to deoxygenate biomass-derived compounds. For this reason, considerable attention has been placed on bifunctional catalysts, where two different active materials are used to provide catalytic sites for diverse reaction steps. Here, we review recent trends in the development of catalysts, with a focus on catalysts for which a bifunctional effect has been proposed. We summarize recent studies of hydrodeoxygenation (HDO) of pyrolysis oil and model compounds for a range of materials, including supported metal and bimetallic catalysts as well as transition-metal oxides, sulfides, carbides, nitrides, and phosphides. Particular emphasis is placed on how catalyst structure can be related to performance via molecular-level mechanisms. These studies demonstrate the importance of catalyst bifunctionality, with each class of materials requiring hydrogenation and C-O scission sites to perform HDO at reasonable rates.

  7. A New Synthesis of TE2A-a Potential Bifunctional Chelator for {sup 64}Cu

    Energy Technology Data Exchange (ETDEWEB)

    Pandya, Darpan N.; Kwak, Won Jung; Park, Jeong Chan; Gawande, Manoj B.; Yoo, Jeong Soo [Kyungpook National University, Daegu (Korea, Republic of); Kim, Jung Young; An, Gwang Il [Molecular Imaging Research Center, Seoul (Korea, Republic of); Ryu, Eun Kyoung [Korea Basic Science Institute, Chungbuk (Korea, Republic of)

    2010-09-15

    The development of a new bifunctional chelator, which holds radio metals strongly in living systems, is a prerequisite for the successful application of disease-specific biomolecules to medical diagnosis and therapy. Recently, TE2A was reported to make kinetically more stable Cu({Pi}) complexes than TETA. Herein, we report a new synthetic route to TE2A and explore its potential as a bifunctional chelator. TE2A was synthesized using the regioselective alkylation of benzyl bromoacetate and successive de protection of the methylene bridge and benzyl group. Salt-free TE2A was radiolabeled with {sup 64}Cu and micro PET imaging was performed to follow the clearance pattern of the {sup 64}Cu-TE2A complex. TE2A was conjugated with cyclic RGD peptide and the TE2A-c(RGDyK) conjugate was radiolabeled with {sup 64}Cu. TE2A was prepared in salt-free form cyclam in an overall yield of 74%. The micro PET images showed that {sup 64}Cu-TE2A is excreted rapidly from the body by the kidney and liver. TE2A was successfully conjugated with c(RGDyK) peptide through on carboxylate group and the TE2A-c(RGDyK) conjugate was radiolabeled with {sup 64}Cu in 94% yield within 30 min. TE2A can be used by itself as a bifunctional chelator without any further structural modification.

  8. Characterization of a bifunctional xylanase/endoglucanase from yak rumen microorganisms.

    Science.gov (United States)

    Chang, Lei; Ding, Mozhu; Bao, Lei; Chen, Yingzhi; Zhou, Jungang; Lu, Hong

    2011-06-01

    A new gene, RuCelA, encoding a bifunctional xylanase/endoglucanase, was cloned from a metagenomic library of yak rumen microorganisms. RuCelA showed activity against xylan and carboxymethylcellulose (CMC), suggesting bifunctional xylanase/endoglucanase activity. The optimal conditions for xylanase and endoglucanase activities were 65°C, pH 7.0 and 50°C, pH 5.0, respectively. In addition, the presence of Co(+) and Co(2+) can greatly improve RuCelA's endoglucanase activity, while inhibits its xylanase activity. Further examination of substrate preference showed a higher activity against barley glucan and lichenin than against xylan and CMC. Using xylan and barley glucan as substrates, RuCelA displayed obvious synergistic effects with β-1,4-xylosidase and β-1,4-glucosidase. Generation of soluble oligosaccharides from lignocellulose is the key step in bioethanol production, and it is greatly notable that RuCelA can produce xylo-oligosaccharides and cello-oligosaccharides in the continuous saccharification of pretreated rice straw, which can be further degraded into fermentable sugars. Therefore, the bifunctional RuCelA distinguishes itself as an ideal candidate for industrial applications.

  9. Bifunctional alkylating agent-mediated MGMT-DNA cross-linking and its proteolytic cleavage in 16HBE cells.

    Science.gov (United States)

    Cheng, Jin; Ye, Feng; Dan, Guorong; Zhao, Yuanpeng; Wang, Bin; Zhao, Jiqing; Sai, Yan; Zou, Zhongmin

    2016-08-15

    Nitrogen mustard (NM), a bifunctional alkylating agent (BAA), contains two alkyl arms and can act as a cross-linking bridge between DNA and protein to form a DNA-protein cross-link (DPC). O(6)-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme for alkyl adducts removal, is found to enhance cell sensitivity to BAAs and to promote damage, possibly due to its stable covalent cross-linking with DNA mediated by BAAs. To investigate MGMT-DNA cross-link (mDPC) formation and its possible dual roles in NM exposure, human bronchial epithelial cell line 16HBE was subjected to different concentrations of HN2, a kind of NM, and we found mDPC was induced by HN2 in a concentration-dependent manner, but the mRNA and total protein of MGMT were suppressed. As early as 1h after HN2 treatment, high mDPC was achieved and the level maintained for up to 24h. Quick total DPC (tDPC) and γ-H2AX accumulation were observed. To evaluate the effect of newly predicted protease DVC1 on DPC cleavage, we applied siRNA of MGMT and DVC1, MG132 (proteasome inhibitor), and NMS-873 (p97 inhibitor) and found that proteolysis plays a role. DVC1 was proven to be more important in the cleavage of mDPC than tDPC in a p97-dependent manner. HN2 exposure induced DVC1 upregulation, which was at least partially contributed to MGMT cleavage by proteolysis because HN2-induced mDPC level and DNA damage was closely related with DVC1 expression. Homologous recombination (HR) was also activated. Our findings demonstrated that MGMT might turn into a DNA damage promoter by forming DPC when exposed to HN2. Proteolysis, especially DVC1, plays a crucial role in mDPC repair.

  10. Extremely supercharged proteins in mass spectrometry: profiling the pH of electrospray generated droplets, narrowing charge state distributions, and increasing ion fragmentation.

    Science.gov (United States)

    Zenaidee, Muhammad A; Donald, William A

    2015-03-21

    The effects of 12 acids, 4 solvents, and 8 low-volatility additives that increase analyte charging (i.e., superchargers) on the charge state distributions (CSDs) of protein ions in ESI-MS were investigated. We discovered that (i) relatively low concentrations [5% (v/v)] of 1,2-butylene carbonate (and 4-vinyl-1,3-dioxolan-2-one) can be added to ESI solutions to form higher charge states of cytochrome c and myoglobin ions than by using more traditional additives (e.g., propylene carbonate, sulfolane, or m-nitrobenzyl alcohol) under these conditions and (ii) the width of CSDs narrow as the effectiveness of superchargers increase, which concentrates protein ions into fewer detection channels. The use of strong acids (pKa values 0) results in significantly higher protein ion charging, less acid adduction, and narrower CSDs, indicating that protein ion supercharging in ESI can be significantly limited by the binding of conjugate base anions of acids that neutralize charge sites and broaden CSDs. The extent of protein charging as a function of acid identity (HA) does not strongly correlate with gas-phase proton transfer data (i.e., gas-phase basicity and proton affinity values for HA and A(-)), solution-phase protein secondary structures (as determined by circular dichroism spectroscopy), and/or acid molecule volatility data. For protein-denaturing solutions, these data were used to infer that the "effective" pH of ESI generated droplets near the moment of ion formation can be ∼0, which is ca. 1 to 3 pH units lower than the pH of the solutions prior to ESI. Electron capture dissociation (ECD) of [ubiquitin, 17H](17+) resulted in the identification of 223 cleavages, 74 of 75 inter-residue sites, and 92% ECD fragmentation efficiency, which correspond to highest of these values that have been obtained by ECD of a single isolated charge state of ubiquitin.

  11. Multidimensional extremal dependence coefficients

    OpenAIRE

    2017-01-01

    Extreme values modeling has attracting the attention of researchers in diverse areas such as the environment, engineering, or finance. Multivariate extreme value distributions are particularly suitable to model the tails of multidimensional phenomena. The analysis of the dependence among multivariate maxima is useful to evaluate risk. Here we present new multivariate extreme value models, as well as, coefficients to assess multivariate extremal dependence.

  12. The European Extreme Right and Religious Extremism

    Directory of Open Access Journals (Sweden)

    Jean-Yves Camus

    2007-12-01

    Full Text Available The ideology of the Extreme Right in Western Europe is rooted in Catholic fundamentalism and Counter-Revolutionary ideas. However, the Extreme Right, like all other political families, has had to adjust to an increasingly secular society. The old link between religion and the Extreme Right has thus been broken and in fact already was when Fascism overtook Europe: Fascism was secular, sometimes even anti-religious, in its essence. Although Catholic fundamentalists still retain strong positions within the apparatus of several Extreme Right parties (Front National, the vote for the Extreme Right is generally weak among regular churchgoers and strong among non-believers. In several countries, the vote for the Extreme Right is stronger among Protestant voters than among Catholics, since while Catholics may support Christian-Democratic parties, there are very few political parties linked to Protestant churches. Presently, it also seems that Paganism is becoming the dominant religious creed within the Extreme Right. In a multicultural Europe, non-Christian forms of religious fundamentalism such as Islamism also exist with ideological similarities to the Extreme Right, but this is not sufficient to categorize Islamism as a form of Fascism. Some Islamist groups seek alliances with the Extreme Right on the basis of their common dislike for Israel and the West, globalization and individual freedom of thought.

  13. Thrombomodulin: A Bifunctional Modulator of Inflammation and Coagulation in Sepsis

    Directory of Open Access Journals (Sweden)

    Takayuki Okamoto

    2012-01-01

    Full Text Available Deregulated interplay between inflammation and coagulation plays a pivotal role in the pathogenesis of sepsis. Therapeutic approaches that simultaneously target both inflammation and coagulation hold great promise for the treatment of sepsis. Thrombomodulin is an endogenous anticoagulant protein that, in cooperation with protein C and thrombin-activatable fibrinolysis inhibitor, serves to maintain the endothelial microenvironment in an anti-inflammatory and anticoagulant state. A recombinant soluble form of thrombomodulin has been approved to treat patients suffering from disseminated intravascular coagulation (DIC and has thus far shown greater therapeutic potential than heparin. A phase II clinical trial is currently underway in the USA to study the efficacy of thrombomodulin for the treatment of sepsis with DIC complications. This paper focuses on the critical roles that thrombomodulin plays at the intersection of inflammation and coagulation and proposes the possible existence of interactions with integrins via protein C. Finally, we provide a rationale for the clinical application of thrombomodulin for alleviating sepsis.

  14. Functional metagenomics of extreme environments.

    Science.gov (United States)

    Mirete, Salvador; Morgante, Verónica; González-Pastor, José Eduardo

    2016-04-01

    The bioprospecting of enzymes that operate under extreme conditions is of particular interest for many biotechnological and industrial processes. Nevertheless, there is a considerable limitation to retrieve novel enzymes as only a small fraction of microorganisms derived from extreme environments can be cultured under standard laboratory conditions. Functional metagenomics has the advantage of not requiring the cultivation of microorganisms or previous sequence information to known genes, thus representing a valuable approach for mining enzymes with new features. In this review, we summarize studies showing how functional metagenomics was employed to retrieve genes encoding for proteins involved not only in molecular adaptation and resistance to extreme environmental conditions but also in other enzymatic activities of biotechnological interest.

  15. Biophysical Characterization of an Bifunctional Iron Regulating Enzyme

    Science.gov (United States)

    2002-05-01

    the explicit purpose of mass overexpression . The principal genetic tool used is a plasmid, a short, circular DNA fragment that once altered, is easily...viscous protein laden solution is collected and placed into about 40 cm sterile dialysis tubing. The tubing, which is made of cellulose , has pores... synthase and transferring receptor (Gray et al, 1993). The fourth domain is involved with the IRP binding to IRE. Arginines 728 and 732 contact the IRE

  16. Nanostructured Perovskite LaCo1-xMnxO3 as Bifunctional Catalysts for Rechargeable Metal-Air Batteries

    Science.gov (United States)

    Ge, Xiaoming; Li, Bing; Wuu, Delvin; Sumboja, Afriyanti; An, Tao; Hor, T. S. Andy; Zong, Yun; Liu, Zhaolin

    2015-09-01

    Bifunctional catalyst that is active for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is one of the most important components of rechargeable metal-air batteries. Nanostructured perovskite bifunctional catalysts comprising La, Co and Mn(LaCo1-xMnxO3, LCMO) are synthesized by hydrothermal methods. The morphology, structure and electrochemical activity of the perovskite bifunctional catalysts are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and rotating disk electrode (RDE) techniques. Nanorod, nanodisc and nanoparticle are typical morphologies of LCMO. The electrocatalytic activity of LCMO is significantly improved by the addition of conductive materials such as carbon nanotube. To demonstrate the practical utilization, LCMO in the composition of LaCo0.8Mn0.2O3(LCMO82) is used as air cathode catalysts for rechargeable zinc-air batteries. The battery prototype can sustain 470 h or 40 discharge-charge cycles equivalent.

  17. Bifunctional activity of deoxyhypusine synthase/hydroxylase from Trichomonas vaginalis.

    Science.gov (United States)

    Quintas-Granados, Laura Itzel; Carvajal Gamez, Bertha Isabel; Villalpando, Jose Luis; Ortega-Lopez, Jaime; Arroyo, Rossana; Azuara-Liceaga, Elisa; Álvarez-Sánchez, María Elizbeth

    2016-04-01

    The Trichomonas vaginalis genome analysis suggested the presence of a putative deoxyhypusine synthase (TvDHS) that catalyzes the posttranslational modification of eIF-5A. Herein, we expressed and purified the recombinant TvDHS (rTvDHS) protein (43 kDa) and the recombinant TveIF-5A (rTveIF-5A) precursor protein (46 kDa). A 41 kDa band of the native TvDHS was recognized by western blot analysis in T. vaginalis total protein extract by a mouse polyclonal anti-rTvDHS antibody. The enzymatic activity of rTvDHS was determined by in vitro rTveIF-5A precursor modification. The modification reaction was performed by using ((3)H)-spermidine, and the biochemical analysis showed that rTvDHS exhibited Km value of 0.6 μM. The rTvDHS activity was inhibited by the spermidine analog, N″-guanyl-1,7-diamino-heptane (GC7). Native gel electrophoresis analysis showed two bands corresponding to an rTvDHS-rTveIF-5A complex and an intermediate form of rTveIF-5A. The two forms were subsequently separated by ion exchange chromatography to identify the hypusine residue by MS/MS analysis. Moreover, mutations in TvDHS showed that the putative HE motif present in this enzyme is involved in the hydroxylation of TveIF-5A. We observed that only hypusine-containing TveIF-5A was bound to an RNA hairpin ERE structure from the cox-2 gene, which contains the AAAUGUCACAC consensus sequence. Interestingly, 2DE-WB assays, using parasites that were grown in DAB-culture conditions and transferred to exogenous putrescine, showed the new isoform of TveIF-5A. In summary, our results indicate that T. vaginalis contains an active TvDHS capable of modifying the precursor TveIF-5A protein, which subsequently exhibits RNA binding activity.

  18. Legacy to the extreme

    NARCIS (Netherlands)

    Deursen, A. van; Kuipers, T.; Moonen, L.M.F.

    2000-01-01

    We explore the differences between developing a system using extreme programming techniques, and maintaining a legacy system. We investigate whether applying extreme programming techniques to legacy maintenance is useful and feasible.

  19. Extreme environment electronics

    CERN Document Server

    Cressler, John D

    2012-01-01

    Unfriendly to conventional electronic devices, circuits, and systems, extreme environments represent a serious challenge to designers and mission architects. The first truly comprehensive guide to this specialized field, Extreme Environment Electronics explains the essential aspects of designing and using devices, circuits, and electronic systems intended to operate in extreme environments, including across wide temperature ranges and in radiation-intense scenarios such as space. The Definitive Guide to Extreme Environment Electronics Featuring contributions by some of the world's foremost exp

  20. Bifunctional heterogeneous catalysts from oil palm empty fruit bunches ash and alum for biodiesel synthesis simultaneously

    Science.gov (United States)

    Astar, Ismail; Usman, Thamrin; Wahyuni, Nelly; Rudiyansyah, Alimuddin, Andi Hairil

    2017-03-01

    Free fatty acids (FFA) contained in crude palm oil (CPO) and sludge oil has been used as the base material of biodiesel with the aid of a catalyst in the transesterification and esterification reactions. This study aims to synthesize and characterize bifunctional catalysts were synthesized from the ashes of palm empty fruit bunches (EFB) and alum based on the analysis of XRD, XRF and acidity test. Bifunctional catalyst obtained was used as a catalyst to production of biodiesel with different levels of FFA. The optimum ratio alum added was 0.2 mol at 3 hours of reaction time and 3% of catalyst by the FFA samples were used 67,40%. The catalyst with optimum alum mole variations subsequently used on samples with varying levels of FFA, namely 1.29%, 4.98%, 29.21%, 67.40% and 74.47%. Optimum conversion of methyl ester in the esterification reaction occurs in the sample with 67.40% FFA content, which reached 86.17%, while the conversion of methyl ester transesterification process optimum amounted to 45.70% in the samples with 4.98% FFA content. Methyl ester produced has a refractive index of 1.448 (29.8 ° C), density of 0.883 g / mL (25 °C) and a viscosity of 8.933 cSt (25 ° C). The results of GC-MS analysis showed that the main composition of methyl ester result of esterification of sludge oil methyl palmitate (36.84%), while the CPO transesterification shows the main composition of methyl ester is methyl oleic (38.87%). Based on the research results, the catalyst synthesized from alum and EFB ash can be used as a Bifunctional catalysts for biodiesel synthesis.

  1. Deficiently Extremal Gorenstein Algebras

    Indian Academy of Sciences (India)

    Pavinder Singh

    2011-08-01

    The aim of this article is to study the homological properties of deficiently extremal Gorenstein algebras. We prove that if / is an odd deficiently extremal Gorenstein algebra with pure minimal free resolution, then the codimension of / must be odd. As an application, the structure of pure minimal free resolution of a nearly extremal Gorenstein algebra is obtained.

  2. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Karthikeyan K.; Gray, Michel J.; Job, Heather M.; Smith, Colin D.; Wang, Yong

    2016-04-10

    tA highly versatile ethanol conversion process to selectively generate high value compounds is pre-sented here. By changing the reaction temperature, ethanol can be selectively converted to >C2alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3cata-lyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensationor the acetone formation is the path taken in changing the product composition. This article containsthe catalytic activity comparison between the mono-functional and physical mixture counterpart to thehydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.

  3. Controlled Covalent Functionalization of Thermally Reduced Graphene Oxide To Generate Defined Bifunctional 2D Nanomaterials

    Science.gov (United States)

    Faghani, Abbas; Donskyi, Ievgen S.; Fardin Gholami, Mohammad; Ziem, Benjamin; Lippitz, Andreas; Unger, Wolfgang E. S.; Böttcher, Christoph; Rabe, Jürgen P.

    2017-01-01

    Abstract A controlled, reproducible, gram‐scale method is reported for the covalent functionalization of graphene sheets by a one‐pot nitrene [2+1] cycloaddition reaction under mild conditions. The reaction between commercially available 2,4,6‐trichloro‐1,3,5‐triazine and sodium azide with thermally reduced graphene oxide (TRGO) results in defined dichlorotriazine‐functionalized sheets. The different reactivities of the chlorine substituents on the functionalized graphene allow stepwise post‐modification by manipulating the temperature. This new method provides unique access to defined bifunctional 2D nanomaterials, as exemplified by chiral surfaces and multifunctional hybrid architectures. PMID:28165179

  4. An efficient bifunctional electrocatalyst for water splitting based on cobalt phosphide

    Science.gov (United States)

    Yang, Libin; Qi, Honglan; Zhang, Chengxiao; Sun, Xuping

    2016-06-01

    The development of highly efficient electrocatalysts for water splitting is critical for various renewable-energy technologies. In this letter, we demonstrate a cobalt phosphide nanowire array grown on a Ti mesh (CoP/TM) behaving as a bifunctional electrocatalyst for water splitting. The CoP/TM electrode delivers 10 mA cm-2 at an overpotential of 72 mV for the hydrogen evolution reaction (HER) and 310 mV for the oxygen evolution reaction (OER) in 1.0 M KOH. Furthermore, its corresponding two-electrode alkaline electrolyzer displays 10 mA cm-2 at 1.64 V.

  5. MoO3 nanoparticle anchored graphene as bifunctional agent for water purification

    Science.gov (United States)

    Lahan, Homen; Roy, Raju; Namsa, Nima D.; Das, Shyamal K.

    2016-10-01

    We report here a facile one step hydrothermal method to anchor MoO3 nanoparticles in graphene. The bifunctionality of graphene-MoO3 nanoparticles is demonstrated via dye adsorption and antibacterial activities. The nanocomposite showed excellent adsorption of methylene blue, a cationic dye, from water compared to pristine MoO3 and graphene. However, it showed negligible adsorption of methyl orange, an anionic dye. Again, the graphene-MoO3 nanoparticles exhibited bacteriostatic property against both Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria.

  6. Mutability of bifunctional thigh muscle activity in pedaling due to contralateral leg force generation.

    Science.gov (United States)

    Kautz, S A; Brown, D A; Van der Loos, H F M; Zajac, F E

    2002-09-01

    Locomotion requires uninterrupted transitions between limb extension and flexion. The role of contralateral sensorimotor signals in executing smooth transitions is little understood even though their participation is crucial to bipedal walking. However, elucidating neural interlimb coordinating mechanisms in human walking is difficult because changes to contralateral sensorimotor activity also affect the ipsilateral mechanics. Pedaling, conversely, is ideal for studying bilateral coordination because ipsilateral mechanics can be independently controlled. In pedaling, the anterior and posterior bifunctional thigh muscles develop needed anterior and posterior crank forces, respectively, to dominate the flexion-to-extension and extension-to-flexion transitions. We hypothesized that contralateral sensorimotor activity substantially contributes to the appropriate activation of these bifunctional muscles during the limb transitions. Bilateral pedal forces and surface electromyograms (EMGs) from four thigh muscles were collected from 15 subjects who pedaled with their right leg against a right-crank servomotor, which emulated the mechanical load experienced in conventional two-legged coupled-crank pedaling. In one pedaling session, the contralateral (left) leg pseudo-pedaled (i.e., EMG activity and pedal forces were pedaling-like, but pedal force was not allowed to affect crank rotation). In other sessions, the mechanically decoupled contralateral leg was first relaxed and then produced rhythmic isometric force trajectories during either leg flexion or one of the two limb transitions of the pedaling leg. With contralateral force production in the extension-to-flexion transition (predominantly by the hamstrings), rectus femoris activity and work output increased in the pedaling leg during its flexion-to-extension transition, which occurs simultaneously with contralateral extension-to-flexion in conventional pedaling. Similarly, with contralateral force production in the

  7. Increased serum and musculotendinous fibrogenic proteins following persistent low-grade inflammation in a rat model of long-term upper extremity overuse.

    Directory of Open Access Journals (Sweden)

    Helen G L Gao

    Full Text Available We examined the relationship between grip strength declines and muscle-tendon responses induced by long-term performance of a high-repetition, low-force (HRLF reaching task in rats. We hypothesized that grip strength declines would correlate with inflammation, fibrosis and degradation in flexor digitorum muscles and tendons. Grip strength declined after training, and further in weeks 18 and 24, in reach limbs of HRLF rats. Flexor digitorum tissues of reach limbs showed low-grade increases in inflammatory cytokines: IL-1β after training and in week 18, IL-1α in week 18, TNF-α and IL-6 after training and in week 24, and IL-10 in week 24, with greater increases in tendons than muscles. Similar cytokine increases were detected in serum with HRLF: IL-1α and IL-10 in week 18, and TNF-α and IL-6 in week 24. Grip strength correlated inversely with IL-6 in muscles, tendons and serum, and TNF-α in muscles and serum. Four fibrogenic proteins, TGFB1, CTGF, PDGFab and PDGFbb, and hydroxyproline, a marker of collagen synthesis, increased in serum in HRLF weeks 18 or 24, concomitant with epitendon thickening, increased muscle and tendon TGFB1 and CTGF. A collagenolytic gelatinase, MMP2, increased by week 18 in serum, tendons and muscles of HRLF rats. Grip strength correlated inversely with TGFB1 in muscles, tendons and serum; with CTGF-immunoreactive fibroblasts in tendons; and with MMP2 in tendons and serum. Thus, motor declines correlated with low-grade systemic and musculotendinous inflammation throughout task performance, and increased fibrogenic and degradative proteins with prolonged task performance. Serum TNF-α, IL-6, TGFB1, CTGF and MMP2 may serve as serum biomarkers of work-related musculoskeletal disorders, although further studies in humans are needed.

  8. Extreme value distributions

    CERN Document Server

    Ahsanullah, Mohammad

    2016-01-01

    The aim of the book is to give a through account of the basic theory of extreme value distributions. The book cover a wide range of materials available to date. The central ideas and results of extreme value distributions are presented. The book rwill be useful o applied statisticians as well statisticians interrested to work in the area of extreme value distributions.vmonograph presents the central ideas and results of extreme value distributions.The monograph gives self-contained of theory and applications of extreme value distributions.

  9. Crystallization, dehydration and experimental phasing of WbdD, a bifunctional kinase and methyltransferase from Escherichia coli O9a

    Energy Technology Data Exchange (ETDEWEB)

    Hagelueken, Gregor; Huang, Hexian [The University of St Andrews, North Haugh, St Andrews KY16 9ST, Scotland (United Kingdom); Harlos, Karl [University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Clarke, Bradley R.; Whitfield, Chris [University of Guelph, Ontario N1G 2W1 (Canada); Naismith, James H., E-mail: naismith@st-and.ac.uk [The University of St Andrews, North Haugh, St Andrews KY16 9ST, Scotland (United Kingdom)

    2012-10-01

    The optimization of WbdD crystals using a novel dehydration protocol and experimental phasing at 3.5 Å resolution by cross-crystal averaging followed by molecular replacement of electron density into a non-isomorphous 3.0 Å resolution native data set are reported. WbdD is a bifunctional kinase/methyltransferase that is responsible for regulation of lipopolysaccharide O antigen polysaccharide chain length in Escherichia coli serotype O9a. Solving the crystal structure of this protein proved to be a challenge because the available crystals belonging to space group I23 only diffracted to low resolution (>95% of the crystals diffracted to resolution lower than 4 Å and most only to 8 Å) and were non-isomorphous, with changes in unit-cell dimensions of greater than 10%. Data from a serendipitously found single native crystal that diffracted to 3.0 Å resolution were non-isomorphous with a lower (3.5 Å) resolution selenomethionine data set. Here, a strategy for improving poor (3.5 Å resolution) initial phases by density modification and cross-crystal averaging with an additional 4.2 Å resolution data set to build a crude model of WbdD is desribed. Using this crude model as a mask to cut out the 3.5 Å resolution electron density yielded a successful molecular-replacement solution of the 3.0 Å resolution data set. The resulting map was used to build a complete model of WbdD. The hydration status of individual crystals appears to underpin the variable diffraction quality of WbdD crystals. After the initial structure had been solved, methods to control the hydration status of WbdD were developed and it was thus possible to routinely obtain high-resolution diffraction (to better than 2.5 Å resolution). This novel and facile crystal-dehydration protocol may be useful for similar challenging situations.

  10. Crystallization, dehydration and experimental phasing of WbdD, a bifunctional kinase and methyltransferase from Escherichia coli O9a.

    Science.gov (United States)

    Hagelueken, Gregor; Huang, Hexian; Harlos, Karl; Clarke, Bradley R; Whitfield, Chris; Naismith, James H

    2012-10-01

    WbdD is a bifunctional kinase/methyltransferase that is responsible for regulation of lipopolysaccharide O antigen polysaccharide chain length in Escherichia coli serotype O9a. Solving the crystal structure of this protein proved to be a challenge because the available crystals belonging to space group I23 only diffracted to low resolution (>95% of the crystals diffracted to resolution lower than 4 Å and most only to 8 Å) and were non-isomorphous, with changes in unit-cell dimensions of greater than 10%. Data from a serendipitously found single native crystal that diffracted to 3.0 Å resolution were non-isomorphous with a lower (3.5 Å) resolution selenomethionine data set. Here, a strategy for improving poor (3.5 Å resolution) initial phases by density modification and cross-crystal averaging with an additional 4.2 Å resolution data set to build a crude model of WbdD is desribed. Using this crude model as a mask to cut out the 3.5 Å resolution electron density yielded a successful molecular-replacement solution of the 3.0 Å resolution data set. The resulting map was used to build a complete model of WbdD. The hydration status of individual crystals appears to underpin the variable diffraction quality of WbdD crystals. After the initial structure had been solved, methods to control the hydration status of WbdD were developed and it was thus possible to routinely obtain high-resolution diffraction (to better than 2.5 Å resolution). This novel and facile crystal-dehydration protocol may be useful for similar challenging situations.

  11. Crystallization, dehydration and experimental phasing of WbdD, a bifunctional kinase and methyltransferase from Escherichia coli O9a

    Science.gov (United States)

    Hagelueken, Gregor; Huang, Hexian; Harlos, Karl; Clarke, Bradley R.; Whitfield, Chris; Naismith, James H.

    2012-01-01

    WbdD is a bifunctional kinase/methyltransferase that is responsible for regulation of lipopolysaccharide O antigen polysaccharide chain length in Escherichia coli serotype O9a. Solving the crystal structure of this protein proved to be a challenge because the available crystals belonging to space group I23 only diffracted to low resolution (>95% of the crystals diffracted to resolution lower than 4 Å and most only to 8 Å) and were non-isomorphous, with changes in unit-cell dimensions of greater than 10%. Data from a serendipitously found single native crystal that diffracted to 3.0 Å resolution were non-isomorphous with a lower (3.5 Å) resolution selenomethionine data set. Here, a strategy for improving poor (3.5 Å resolution) initial phases by density modification and cross-crystal averaging with an additional 4.2 Å resolution data set to build a crude model of WbdD is desribed. Using this crude model as a mask to cut out the 3.5 Å resolution electron density yielded a successful molecular-replacement solution of the 3.0 Å resolution data set. The resulting map was used to build a complete model of WbdD. The hydration status of individual crystals appears to underpin the variable diffraction quality of WbdD crystals. After the initial structure had been solved, methods to control the hydration status of WbdD were developed and it was thus possible to routinely obtain high-resolution diffraction (to better than 2.5 Å resolution). This novel and facile crystal-dehydration protocol may be useful for similar challenging situations. PMID:22993091

  12. Conversion of cellulose into isosorbide over bifunctional ruthenium nanoparticles supported on niobium phosphate.

    Science.gov (United States)

    Sun, Peng; Long, Xiangdong; He, Hao; Xia, Chungu; Li, Fuwei

    2013-11-01

    Considerable effort has been applied to the development of new processes and catalysts for cellulose conversion to valuable platform chemicals. Isosorbide is among the most interesting products as it can be applied as a monomer and building block for the future replacement of fossil resource-based products. A sustainable method of isosorbide production from cellulose is presented in this work. The strategy relies on a bifunctional Ru catalyst supported on mesoporous niobium phosphate in a H2 atmosphere under pressure without further addition of any soluble acid. Over 50 % yield of isosorbide with almost 100 % cellulose conversion can be obtained in 1 h. The large surface area, pore size, and strong acidity of mesoporous niobium phosphate promote the hydrolysis of cellulose and dehydration of sorbitol; additionally, the appropriate size of the supported Ru nanoparticles avoids unnecessary hydrogenolysis of sorbitol. Under a cellulose/catalyst mass ratio of 43.3, the present bifunctional catalyst could be stably used up to six times, with its mesoporous structure well preserved and without detectable Ru leaching into the reaction solution.

  13. Bifunctional Ag/C3N4.5 composite nanobelts for photocatalysis and antibacterium

    Science.gov (United States)

    Lei, Renbo; Jian, Jikang; Zhang, Zhihua; Song, Bo; Wu, Rong

    2016-09-01

    Multiple functions can be achieved in carbon nitride-based composite nanomaterials by tuning their components and structures. Here, we report on a large-scale synthesis of novel bifunctional Ag/C3N4.5 composite nanobelts (CNBs) with efficient photocatalytic and antibacterial activity. The Ag/C3N4.5 CNBs were synthesized in high yield by a two-step route including a homogeneous precipitation process and a subsequent calcination treatment. The structural, morphological, compositional, and spectroscopic characterizations revealed that the Ag/C3N4.5 CNBs are composed of N-deficient melem ultrathin nanobelts and crystalline Ag nanoparticles attached to the surface of the nanobelts with good contact. The band gap of the Ag/C3N4.5 CNBs is determined to be about 3.04 eV. The efficient photocatalytic and antibacterial activities of the composite nanomaterials are verified by testing the degradation of Rhodamine B (RhB) and the inhibition zone to bacterium E. coli. The work provides a facile route to bifunctional carbon nitride-based composites with potential applications in the fields of the environment and biology.

  14. Cell Growth on ("Janus") Density Gradients of Bifunctional Zeolite L Crystals.

    Science.gov (United States)

    Kehr, Nermin Seda; Motealleh, Andisheh; Schäfer, Andreas H

    2016-12-28

    Nanoparticle density gradients on surfaces have attracted interest as two-dimensional material surfaces that can mimic the complex nano-/microstructure of the native extracellular matrix, including its chemical and physical gradients, and can therefore be used to systematically study cell-material interactions. In this respect, we report the preparation of density gradients made of bifunctional zeolite L crystals on glass surfaces and the effects of the density gradient and biopolymer functionalization of zeolite L crystals on cell adhesion. We also describe how we created "Janus" density gradient surfaces by gradually depositing two different types of zeolite L crystals that were functionalized and loaded with different chemical groups and guest molecules onto the two distinct sides of the same glass substrate. Our results show that more cells adhered on the density gradient of biopolymer-coated zeolites than on uncoated ones. The number of adhered cells increased up to a certain surface coverage of the glass by the zeolite L crystals, but then it decreased beyond the zeolite density at which a higher surface coverage decreased fibroblast cell adhesion and spreading. Additionally, cell experiments showed that cells gradually internalized the guest-molecule-loaded zeolite L crystals from the underlying density gradient containing bifunctional zeolite L crystals.

  15. Cyclic isoDGR and RGD peptidomimetics containing bifunctional diketopiperazine scaffolds are integrin antagonists.

    Science.gov (United States)

    Panzeri, Silvia; Zanella, Simone; Arosio, Daniela; Vahdati, Leila; Dal Corso, Alberto; Pignataro, Luca; Paolillo, Mayra; Schinelli, Sergio; Belvisi, Laura; Gennari, Cesare; Piarulli, Umberto

    2015-04-13

    The cyclo[DKP-isoDGR] peptidomimetics 2-5, containing bifunctional diketopiperazine (DKP) scaffolds that differ in the configuration of the two DKP stereocenters and in the substitution at the DKP nitrogen atoms, were prepared and examined in vitro in competitive binding assays with purified αv β3 and αv β5 integrin receptors. IC50 values ranged from low nanomolar (ligand 3) to submicromolar with αv β3 integrin. The biological activities of ligands cyclo[DKP3-RGD] 1 and cyclo[DKP3-isoDGR] 3, bearing the same bifunctional DKP scaffold and showing similar αV β3 integrin binding values, were compared in terms of their cellular effects in human U373 glioblastoma cells. Compounds 1 and 3 displayed overlapping inhibitory effects on the FAK/Akt integrin activated transduction pathway and on integrin-mediated cell infiltration processes, and qualify therefore, despite the different RGD and isoDGR sequences, as integrin antagonists. Both compounds induced apoptosis in glioma cells after 72 hour treatment.

  16. Bifunctional composite microspheres of silica/lanthanide-polyoxometalates/Au: Study on luminescence and catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun, E-mail: junwang924@mail.ccnu.edu.cn; Fan, Shaohua; Zhao, Weiqian; Lu, Xuelian; Li, Wuke

    2013-12-02

    In this paper, the synthesis and properties of composite silica microspheres grafted with gold nanoparticles and lanthanide-polyoxometalates are described. This synthesis employs polyethyleneimine as the crosslink polymer to immobilize the Au nanoparticles and lanthanide-polyoxometalates on silica spheres, which results in the formation of bifunctional composite microspheres of silica/lanthanide-polyoxometalates/Au. The composite material was found to be catalytically active in the oxidation of styrene, and benzaldehyde and styrene oxide were the main products. Catalyzed oxidation of styrene demonstrates the size-dependent activity of catalysts and the smaller catalyst shows the higher selectivity. Moreover, the composite particles show bright red luminescence under UV light, which could be seen by naked eyes. The luminescence properties of composite material and the effect of Au nanoparticles on the luminescence of Eu ion were investigated, and energy could be more effectively transferred from ligand to lanthanide ion when Au nanoparticles were grafted on silica spheres. The integration of luminescent components and Au particles makes it possible to label catalyst and monitor the catalyzed reactions. - Highlights: • The bifunctional composite microspheres were fabricated. • Both polyoxometalates and Au nanoparticles could be grafted on silica spheres. • The composite particles exhibit the excellent luminescence and catalytic activity. • The Au nanoparticles affect the luminescence properties of Eu{sup 3+} ions.

  17. The extreme COOH terminus of the retinoblastoma tumor suppressor protein pRb is required for phosphorylation on Thr-373 and activation of E2F.

    Science.gov (United States)

    Gorges, Laura L; Lents, Nathan H; Baldassare, Joseph J

    2008-11-01

    The retinoblastoma protein pRb plays a pivotal role in G(1)- to S-phase cell cycle progression and is among the most frequently mutated gene products in human cancer. Although much focus has been placed on understanding how the A/B pocket and COOH-terminal domain of pRb cooperate to relieve transcriptional repression of E2F-responsive genes, comparatively little emphasis has been placed on the function of the NH(2)-terminal region of pRb and the interaction of the multiple domains of pRb in the full-length context. Using "reverse mutational analysis" of Rb(DeltaCDK) (a dominantly active repressive allele of Rb), we have previously shown that restoration of Thr-373 is sufficient to render Rb(DeltaCDK) sensitive to inactivation via cyclin-CDK phosphorylation. This suggests that the NH(2)-terminal region plays a more critical role in pRb regulation than previously thought. In the present study, we have expanded this analysis to include additional residues in the NH(2)-terminal region of pRb and further establish that the mechanism of pRb inactivation by Thr-373 phosphorylation is through the dissociation of E2F. Most surprisingly, we further have found that removal of the COOH-terminal domain of either RbDeltaCDK(+T373) or wild-type pRb yields a functional allele that cannot be inactivated by phosphorylation and is repressive of E2F activation and S-phase entry. Our data demonstrate a novel function for the NH(2)-terminal domain of pRb and the necessity for cooperation of multiple domains for proper pRb regulation.

  18. Mechanish of dTTP Inhibition of the Bifunctional dCTP Deaminase:dUTPase Encoded by Mycobacterium tuberculosis

    DEFF Research Database (Denmark)

    Helt, Signe Smedegaard; Thymark, Majbritt; Harris, Pernille;

    2008-01-01

    to be characterised and provides evidence for bifunctionality of dCTP deaminase occurring outside the Archaea kingdom. A steady-state kinetic analysis revealed that the affinity for dCTP and deoxyuridine triphosphate as substrates for the synthesis of deoxyuridine monophosphate were very similar, a result...

  19. Pyrrolidinyl-sulfamide derivatives as a new class of bifunctional organocatalysts for direct asymmetric Michael addition of cyclohexanone to nitroalkenes.

    Science.gov (United States)

    Chen, Jia-Rong; Fu, Liang; Zou, You-Quan; Chang, Ning-Jie; Rong, Jian; Xiao, Wen-Jing

    2011-07-21

    A series of chiral pyrrolidinyl-sulfamide derivatives have been identified as efficient bifunctional organocatalysts for the direct Michael addition of cyclohexanone to a wide range of nitroalkenes. The desired Michael adducts were obtained in high chemical yields and excellent stereoselectivities (up to 99/1 dr and 95% ee).

  20. How extreme is extreme hourly precipitation?

    Science.gov (United States)

    Papalexiou, Simon Michael; Dialynas, Yannis G.; Pappas, Christoforos

    2016-04-01

    The importance of accurate representation of precipitation at fine time scales (e.g., hourly), directly associated with flash flood events, is crucial in hydrological design and prediction. The upper part of a probability distribution, known as the distribution tail, determines the behavior of extreme events. In general, and loosely speaking, tails can be categorized in two families: the subexponential and the hyperexponential family, with the first generating more intense and more frequent extremes compared to the latter. In past studies, the focus has been mainly on daily precipitation, with the Gamma distribution being the most popular model. Here, we investigate the behaviour of tails of hourly precipitation by comparing the upper part of empirical distributions of thousands of records with three general types of tails corresponding to the Pareto, Lognormal, and Weibull distributions. Specifically, we use thousands of hourly rainfall records from all over the USA. The analysis indicates that heavier-tailed distributions describe better the observed hourly rainfall extremes in comparison to lighter tails. Traditional representations of the marginal distribution of hourly rainfall may significantly deviate from observed behaviours of extremes, with direct implications on hydroclimatic variables modelling and engineering design.

  1. Genetic and biochemical analysis of the adenylyl cyclase-associated protein, cap, in Schizosaccharomyces pombe.

    OpenAIRE

    Kawamukai, M; Gerst, J; Field, J.; Riggs, M.; Rodgers, L; Wigler, M; Young, D

    1992-01-01

    We have identified, cloned, and studied a gene, cap, encoding a protein that is associated with adenylyl cyclase in the fission yeast Schizosaccharomyces pombe. This protein shares significant sequence homology with the adenylyl cyclase-associated CAP protein in the yeast Saccharomyces cerevisiae. CAP is a bifunctional protein; the N-terminal domain appears to be involved in cellular responsiveness to RAS, whereas loss of the C-terminal portion is associated with morphological and nutritional...

  2. A bifunctional α-amylase/trypsin inhibitor from pigeonpea seeds: Purification, biochemical characterization and its bio-efficacy against Helicoverpa armigera.

    Science.gov (United States)

    Gadge, Prafull P; Wagh, Sandip K; Shaikh, Faiyaz K; Tak, Rajesh D; Padul, Manohar V; Kachole, Manvendra S

    2015-11-01

    This paper evaluates α-amylase inhibitor (α-AI) mediated defense of pigeonpea against Helicoverpa armigera. A bifunctional α-amylase/trypsin inhibitor was purified from the seeds of pigeonpea by native liquid phase isoelectric focusing (N-LP-IEF), affinity chromatography and preparative electrophoresis. Its in-vivo and in-vitro interaction with midgut amylases of H. armigera was studied along with growth inhibitory activity. One and two dimensional (2D) zymographic analyses revealed that the purified inhibitor is dimeric glycoprotein (60.2kDa and 56kDa) exist in a multi-isomeric form with five pI variants (pI 5.5 to 6.3). It was found to be heat labile with complete inactivation up to 80°C and stable over a wide range of pH (4-11). The slow binding and competitive type of α-amylase inhibition was observed with 0.08μM of dissociation constant (Ki) for the enzyme-inhibitor complex (EI). The internal protein sequence of two subunits obtained by mass spectrometry matched with cereal-type α-AI, a conserved domain from AAI_LTSS superfamily and sialyltransferase-like protein respectively. In-vivo studies indicated up-regulation of total midgut α-amylase activity with negative effect on growth rate of H. armigera suggesting its suitability for pest control.

  3. Classifying Returns as Extreme

    DEFF Research Database (Denmark)

    Christiansen, Charlotte

    2014-01-01

    I consider extreme returns for the stock and bond markets of 14 EU countries using two classification schemes: One, the univariate classification scheme from the previous literature that classifies extreme returns for each market separately, and two, a novel multivariate classification scheme tha...

  4. Oxygen electrode bifunctional electrocatalyst NiCo2O4 spinel

    Science.gov (United States)

    Fielder, William L.; Singer, Joseph

    1988-01-01

    A significant increase in energy density may be possible if a two-unit alkaline regenerative H2-O2 fuel cell is replaced with a single-unit system that uses passive means for H2O transfer and thermal control. For this single-unit system, new electrocatalysts for the O2 electrode will be required which are not only bifunctionally active but also chemically and electrochemically stable between the voltage range of about 0.7 and 1.5 V. NiCo2O4 spinel is reported to have certain characteristics that make it useful for a study of electrode fabrication techniques. High surface area NiCo2O4 powder was fabricated into unsupported, bifunctional, PTFE-bonded, porous gas fuel cell electrodes by commercial sources using varying PTFE contents and sintering temperatures. The object of this study is to measure the bifunctional activities of these electrodes and to observe what performance differences might result from different commercial electrode fabricators. O2 evolution and O2 reduction data were obtained at 80 C (31 percent KOH). An irreversible reaction (i.e., aging) occurred during O2 evolution at potentials greater than about 1.5 V. Anodic Tafel slopes of 0.06 and 0.12 V/decade were obtained for the aged electrodes. Within the range of 15 to 25 percent, the PTFE content was not a critical parameter for optimizing the electrode for O2 evolution activity. Sintering temperatures between 300 and 340 C may be adequate but heating at 275 C may not be sufficient to properly sinter the PTFE-NiCo2O4 mixture. Electrode disintegration was observed during O2 reduction. Transport of O2 to the NiCo2O4 surface became prohibitive at greater than about -0.02 A/sq cm. Cathodic Tafel slopes of -0.6 and -0.12 V/decade were assumed for the O2 reduction process. A PTFE content of 25 percent (or greater) appears to be preferable for sintering the PTFE-NiCo2O4 mixture.

  5. Oxygen electrode bifunctional electrocatalyst NiCo/sub 2/O/sub 4/ spinel

    Energy Technology Data Exchange (ETDEWEB)

    Fielder, W.L.; Singer, J.

    1988-09-01

    A significant increase in energy density may be possible if a two-unit alkaline regenerative H2-O2 fuel cell is replaced with a single-unit system that uses passive means for H2O transfer and thermal control. For this single-unit system, new electrocatalysts for the O2 electrode will be required which are not only bifunctionally active but also chemically and electrochemically stable between the voltage range of about 0.7 and 1.5 V. NiCo2O4 spinel is reported to have certain characteristics that make it useful for a study of electrode fabrication techniques. High surface area NiCo2O4 powder was fabricated into unsupported, bifunctional, PTFE-bonded, porous gas fuel cell electrodes by commercial sources using varying PTFE contents and sintering temperatures. The object of this study is to measure the bifunctional activities of these electrodes and to observe what performance differences might result from different commercial electrode fabricators. O2 evolution and O2 reduction data were obtained at 80 C (31 percent KOH). An irreversible reaction (i.e., aging) occurred during O2 evolution at potentials greater than about 1.5 V. Anodic Tafel slopes of 0.06 and 0.12 V/decade were obtained for the aged electrodes. Within the range of 15 to 25 percent, the PTFE content was not a critical parameter for optimizing the electrode for O2 evolution activity. Sintering temperatures between 300 and 340 C may be adequate but heating at 275 C may not be sufficient to properly sinter the PTFE-NiCo2O4 mixture. Electrode disintegration was observed during O2 reduction. Transport of O2 to the NiCo2O4 surface became prohibitive at greater than about -0.02 A/sq cm. Cathodic Tafel slopes of -0.6 and -0.12 V/decade were assumed for the O2 reduction process. A PTFE content of 25 percent (or greater) appears to be preferable for sintering the PTFE-NiCo2O4 mixture.

  6. Dyes as bifunctional markers of DNA hybridization on surfaces and mutation detection.

    Science.gov (United States)

    García-Mendiola, Tania; Cerro, María Ramos; López-Moreno, José María; Pariente, Félix; Lorenzo, Encarnación

    2016-10-01

    The interaction of small molecules with DNA has found diagnostic and therapeutic applications. In this work, we propose the use of two different dyes, in particular Azure A and Safranine, as bifunctional markers of on-surface DNA hybridization and potent tools for screening of specific gene mutations directly in real DNA PCR amplicons extracted from blood cells. By combining spectroscopic and electrochemical methods we demonstrate that both dyes can interact with single and double stranded DNA to a different extent, allowing reliable hybridization detection. From these data, we have also elucidated the nature of the interaction. We conclude that the binding mode is fundamentally intercalative with an electrostatic component. The dye fluorescence allows their use as nucleic acid stains for the detection of on-surfaces DNA hybridization. Its redox activity is exploited in the development of selective electrochemical DNA biosensors.

  7. The fabrication of a bifunctional oxygen electrode without carbon components for alkaline secondary batteries

    Science.gov (United States)

    Price, Stephen W. T.; Thompson, Stephen J.; Li, Xiaohong; Gorman, Scott F.; Pletcher, Derek; Russell, Andrea E.; Walsh, Frank C.; Wills, Richard G. A.

    2014-08-01

    The fabrication of a gas diffusion electrode (GDE) without carbon components is described. It is therefore suitable for use as a bifunctional oxygen electrode in alkaline secondary batteries. The electrode is fabricated in two stages (a) the formation of a PTFE-bonded nickel powder layer on a nickel foam substrate and (b) the deposition of a NiCo2O4 spinel electrocatalyst layer by dip coating in a nitrate solution and thermal decomposition. The influence of modifications to the procedure on the performance of the GDEs in 8 M NaOH at 333 K is described. The GDEs can support current densities up to 100 mA cm-2 with state-of-the-art overpotentials for both oxygen evolution and oxygen reduction. Stable performance during >50 successive, 1 h oxygen reduction/evolution cycles at a current density of 50 mA cm-2 has been achieved.

  8. Synthesis of acrylic and allylic bifunctional cross-linking monomers derived from PET waste

    Science.gov (United States)

    Cruz-Aguilar, A.; Herrera-González, A. M.; Vázquez-García, R. A.; Navarro-Rodríguez, D.; Coreño, J.

    2013-06-01

    An acrylic and two novel allylic monomers synthesized from bis (hydroxyethyl) terephthalate, BHET, are reported. This was obtained by glycolysis of post-consumer PET with boiling ethylene glycol. The bifunctional monomer bis(2-(acryloyloxy)ethyl) terephthalate was obtained from acryloyl chloride, while the allylic monomers 2-(((allyloxi)carbonyl)oxy) ethyl (2-hydroxyethyl) terephthalate and bis(2-(((allyloxi)carbonyl)oxy)ethyl) terephthalate, from allyl chloroformate. Cross-linking was studied in bulk polymerization using two different thermal initiators. Monomers were analyzed by means of 1H NMR and the cross-linked polymers by infrared spectroscopy. Gel content higher than 90% was obtained for the acrylic monomer. In the case of the mixture of the allylic monomers, the cross-linked polymer was 80 % using BPO initiator, being this mixture 24 times less reactive than the acrylic monomer.

  9. Mono- and bi-functional arenethiols as surfactants for gold nanoparticles: synthesis and characterization

    Directory of Open Access Journals (Sweden)

    Fratoddi Ilaria

    2011-01-01

    Full Text Available Abstract Stable gold nanoparticles stabilized by different mono and bi-functional arenethiols, namely, benzylthiol and 1,4-benzenedimethanethiol, have been prepared by using a modified Brust's two-phase synthesis. The size, shape, and crystalline structure of the gold nanoparticles have been determined by high-resolution electron microscopy and full-pattern X-ray powder diffraction analyses. Nanocrystals diameters have been tuned in the range 2 ÷ 9 nm by a proper variation of Au/S molar ratio. The chemical composition of gold nanoparticles and their interaction with thiols have been investigated by X-ray photoelectron spectroscopy. In particular, the formation of networks has been observed with interconnected gold nanoparticles containing 1,4-benzenedimethanethiol as ligand.

  10. Bi-functional biobased packing of the cassava starch, glycerol, licuri nanocellulose and red propolis.

    Directory of Open Access Journals (Sweden)

    Samantha Serra Costa

    Full Text Available The aim of this study was to characterize and determine the bi-functional efficacy of active packaging films produced with starch (4% and glycerol (1.0%, reinforced with cellulose nanocrystals (0-1% and activated with alcoholic extracts of red propolis (0.4 to 1.0%. The cellulose nanocrystals used in this study were extracted from licuri leaves. The films were characterized using moisture, water-activity analyses and water vapor-permeability tests and were tested regarding their total phenolic compounds and mechanical properties. The antimicrobial and antioxidant efficacy of the films were evaluated by monitoring the use of the active films for packaging cheese curds and butter, respectively. The cellulose nanocrystals increased the mechanical strength of the films and reduced the water permeability and water activity. The active film had an antimicrobial effect on coagulase-positive staphylococci in cheese curds and reduced the oxidation of butter during storage.

  11. "Click" chemistry mildly stabilizes bifunctional gold nanoparticles for sensing and catalysis.

    Science.gov (United States)

    Li, Na; Zhao, Pengxiang; Liu, Na; Echeverria, María; Moya, Sergio; Salmon, Lionel; Ruiz, Jaime; Astruc, Didier

    2014-07-01

    A large family of bifunctional 1,2,3-triazole derivatives that contain both a polyethylene glycol (PEG) chain and another functional fragment (e.g., a polymer, dendron, alcohol, carboxylic acid, allyl, fluorescence dye, redox-robust metal complex, or a β-cyclodextrin unit) has been synthesized by facile "click" chemistry and mildly coordinated to nanogold particles, thus providing stable water-soluble gold nanoparticles (AuNPs) in the size range 3.0-11.2 nm with various properties and applications. In particular, the sensing properties of these AuNPs are illustrated through the detection of an analogue of a warfare agent (i.e., sulfur mustard) by means of a fluorescence "turn-on" assay, and the catalytic activity of the smallest triazole-AuNPs (core of 3.0 nm) is excellent for the reduction of 4-nitrophenol in water.

  12. Aldo-X Bifunctional Building Blocks for the Synthesis of Heterocycles.

    Science.gov (United States)

    Ravichandiran, Palanisamy; Lai, Bingbing; Gu, Yanlong

    2017-02-01

    Compounds containing oxygen, nitrogen, or sulfur atoms inside the rings are attracting much attention and interest due to their biological importance. In recent years, several methods for the synthesis of such molecules have been reported by using aldo-X bifunctional building blocks (AXB3 s) as substrates; these are a wide class of organic molecules that contain at least two reactive sites, among them, one aldehyde, acetal, or semiacetal group was involved. Because of the multiple reactivities, AXB3 s are widely used in the one-pot synthesis of biologically important heterocycles. This review summarizes the synthesis of important heterocycles by using AXB3 s as pivotal components in establishing multicomponent reactions, tandem reactions, and so forth. In many cases, the established reaction systems with AXB3 s were characterized by some green properties, such as easy access to the substrate, mild and environmentally benign conditions, and wide scope of the substrate.

  13. Bi-functional biobased packing of the cassava starch, glycerol, licuri nanocellulose and red propolis.

    Science.gov (United States)

    Costa, Samantha Serra; Druzian, Janice Izabel; Machado, Bruna Aparecida Souza; de Souza, Carolina Oliveira; Guimarães, Alaíse Gil

    2014-01-01

    The aim of this study was to characterize and determine the bi-functional efficacy of active packaging films produced with starch (4%) and glycerol (1.0%), reinforced with cellulose nanocrystals (0-1%) and activated with alcoholic extracts of red propolis (0.4 to 1.0%). The cellulose nanocrystals used in this study were extracted from licuri leaves. The films were characterized using moisture, water-activity analyses and water vapor-permeability tests and were tested regarding their total phenolic compounds and mechanical properties. The antimicrobial and antioxidant efficacy of the films were evaluated by monitoring the use of the active films for packaging cheese curds and butter, respectively. The cellulose nanocrystals increased the mechanical strength of the films and reduced the water permeability and water activity. The active film had an antimicrobial effect on coagulase-positive staphylococci in cheese curds and reduced the oxidation of butter during storage.

  14. Hydroisomerization of Ethylbenzene on Mordenite-Based Bifunctional Catalysts with Different Platinum Contents

    Directory of Open Access Journals (Sweden)

    Fernandes L.D.

    1998-01-01

    Full Text Available A commercial Na-mordenite sample underwent ion exchange with HCl. The ion-exchanged sample was sequentially submitted to hydrothermal treatments at 823, 873 and 923 K, each followed by acid leaching of the extraframework alumina (EFAL generated. Six mordenite samples, presenting different framework and extraframework compositions, were obtained. These samples were used to prepare bifunctional catalysts by mixing them with Pt/Al2O3 in different proportions. The generated samples presented distinct platinum contents and were tested in the hydroisomerization reaction of ethylbenzene. A maximum xylene selectivity at about 0.45 wt% of platinum was observed. Normally, the total activity increased as the platinum content increased; this effect was more pronounced in the samples which presented lower mesoporosity. The most dealuminated sample, which presented a high mesoporosity, did not show any change in activity with the increase in platinum content.

  15. Bifunctional enzyme FBPase/SBPase is essential for photoautotrophic growth in cyanobacterium Synechocystis sp. PCC 6803

    Institute of Scientific and Technical Information of China (English)

    Chunlan Yan; Xudong Xu

    2008-01-01

    From a random insertion mutant library of Synechocystis sp. PCC 6803, a mutant defective in photoautotrophic growth was obtained. The interrupted gene was identified to be sir2094 (fbpl), which encodes the fructose-l,6-biphosphatase (FBPase)/sedoheptu-lose-1,7-biphosphatase (SBPase) bifunctional enzyme (F-I). Two other independently constructed slr2094 mutants showed an identical phenotype. The FBPase activity was found to be virtually lacking in an sir2094 mutant, which was sensitive to light under mixotrophic growth conditions. These results indicate that sir2094 is the only active FBPase-encoding gene in this cyanobacterium. Inactivation of photosystem 11 by interrupting psbB in sir2094 mutant alleviated the sensitiveness to light. This report provides the direct genetic evi-dence for the essential role of F-I in the photosynthesis of Synechocystis sp. PCC 6803.

  16. New Tailor-Made Alkyl-Aldehyde Bifunctional Supports for Lipase Immobilization

    Directory of Open Access Journals (Sweden)

    Robson Carlos Alnoch

    2016-11-01

    Full Text Available Immobilized and stabilized lipases are important biocatalytic tools. In this paper, different tailor-made bifunctional supports were prepared for the immobilization of a new metagenomic lipase (LipC12. The new supports contained hydrophobic groups (different alkyl groups to promote interfacial adsorption of the lipase and aldehyde groups to react covalently with the amino groups of side chains of the adsorbed lipase. The best catalyst was 3.5-fold more active and 5000-fold more stable than the soluble enzyme. It was successfully used in the regioselective deacetylation of peracetylated d-glucal. The PEGylated immobilized lipase showed high regioselectivity, producing high yields of the C-3 monodeacetylated product at pH 5.0 and 4 °C.

  17. Cage-like bifunctional chelators, copper-64 radiopharmaceuticals and PET imaging using the same

    Energy Technology Data Exchange (ETDEWEB)

    Conti, Peter S.; Cai, Hancheng; Li, Zibo; Liu, Shuanglong

    2016-08-02

    Disclosed is a class of versatile Sarcophagine based bifunctional chelators (BFCs) containing a hexa-aza cage for labeling with metals having either imaging, therapeutic or contrast applications radiolabeling and one or more linkers (A) and (B). The compounds have the general formula ##STR00001## where A is a functional group selected from group consisting of an amine, a carboxylic acid, an ester, a carbonyl, a thiol, an azide and an alkene, and B is a functional group selected from the group consisting of hydrogen, an amine, a carboxylic acid, and ester, a carbonyl, a thiol, an azide and an alkene. Also disclosed are conjugate of the BFC and a targeting moiety, which may be a peptide or antibody. Also disclosed are metal complexes of the BFC/targeting moiety conjugates that are useful as radiopharmaceuticals, imaging agents or contrast agents.

  18. Hydrogen bonding in transient bifunctional hypervalent radicals by neutralization-reionization mass spectrometry.

    Science.gov (United States)

    Shaffer, S A; Tureček, F

    1995-11-01

    Neutralization-reionization mass spectrometry is used to generate hypervalent 9-N-4 (ammonium) and 9-O-3 (oxonium) radicals derived from protonated α,ω-bis-(dimethylamino)alkanes and α,ω-dimethoxyalkanes, which exist as cyclic hydrogen-bonded structures in the gas phase. Collisional neutralization with dimethyl disulfide, trimethylamine, and xenon of the hydrogen-bonded onium cations followed by reionization with oxygen results in complete dissociation. Bond cleavages at the hypervalent nitrogen atoms are found to follow the order CH2-N>CH3-N>N-H, which differs from that in the monofunctional hydrogen-n-heptyldimethylammonium radical, which gives CH2-N>N-H>CH3-N. No overall stabilization through hydrogen bonding of the bifunctional hypervalent ammonium and oxonium radicals is observed. Subtle effects of ring size are found that tend to stabilize large ring structures and are attributed to intramolecular hydrogen bonding.

  19. Recent Development of Bifunctional Small Molecules to Study Metal-Amyloid-β Species in Alzheimer's Disease.

    Science.gov (United States)

    Braymer, Joseph J; Detoma, Alaina S; Choi, Jung-Suk; Ko, Kristin S; Lim, Mi Hee

    2010-12-08

    Alzheimer's disease (AD) is a multifactorial neurodegenerative disease related to the deposition of aggregated amyloid-β (Aβ) peptides in the brain. It has been proposed that metal ion dyshomeostasis and miscompartmentalization contribute to AD progression, especially as metal ions (e.g., Cu(II) and Zn(II)) found in Aβ plaques of the diseased brain can bind to Aβ and be linked to aggregation and neurotoxicity. The role of metal ions in AD pathogenesis, however, is uncertain. To accelerate understanding in this area and contribute to therapeutic development, recent efforts to devise suitable chemical reagents that can target metal ions associated with Aβ have been made using rational structure-based design that combines two functions (metal chelation and Aβ interaction) in the same molecule. This paper presents bifunctional compounds developed by two different design strategies (linkage or incorporation) and discusses progress in their applications as chemical tools and/or potential therapeutics.

  20. Bifunctional Nanoparticle-SILP Catalysts (NPs@SILP) for the Selective Deoxygenation of Biomass Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Luska, Kylie L. [RWTH Aachen Univ. (Germany); Julis, Jennifer [RWTH Aachen Univ. (Germany); Evonik Industries AG, Marl (Germany); Stavitski, Eli [Brookhaven National Lab. (BNL), Upton, NY (United States); Zakharov, Dmitri N. [Brookhaven National Lab. (BNL), Upton, NY (United States); Adams, Alina [RWTH Aachen Univ. (Germany); Leitner, Walter [RWTH Aachen Univ. (Germany); Max Planck Inst. for Coal Research, Ruhr (Germany)

    2014-08-27

    We immobilized ruthenium nanoparticles onto an acidic supported ionic liquid phase (RuNPs@SILP) in the development of bifunctional catalysts for the selective deoxygenation of biomass substrates. RuNPs@SILPs possessed high catalytic activities, selectivities and recyclabilities in the hydrogenolytic deoxygenation and ring opening of C8- and C9-substrates derived from furfural or 5-hydroxymethylfurfural and acetone. When we tailor the acidity of the SILP through the ionic liquid loading provided a molecular parameter by which the catalytic activity and selectivity of the RuNPs@SILPs were controlled to provide a flexible catalyst system toward the formation of different classes of value-added products: cyclic ethers, primary alcohols or aliphatic ethers.

  1. Bifunctional Effect of Human IFN-γ on Cultured Human Fibroblasts from Tenon‘s Capsule

    Institute of Scientific and Technical Information of China (English)

    YanGuo; JianGe; 等

    2002-01-01

    Purpose:To study the effect of human IFN-γ on in ivtro cultured human fibroblasts from Tenon's capsule.Materials and methods:The effect of different concentrations of human IFN-γand mitomycin-C (MMC),5-fluorouracil(5-Fu) on cultured human Tenon's capsule fibroblasts(HTCF) was measured using a MTT[3-(4,5-dimethylthiazo-2-yI)]-2,5-diphenylterazolium bromide;Thiazolyl blue) colorimetric assay.The results were analyzed using ANOVA of the statistical package for social sciences (SPSS) 9.0 version.The difference was considered to be significant if P<0.05.Results:The effects of MMC and 5-Fu on the growth of HTCF were negative,while the effects of IFN-γon the growth of HTCF were both negative(102-104 units/ml in two experiments)and positive(106,105,10 units /ml in two experiments).The inhibition rate of MMC ranged from 5.73% to 46.9% ,which was similar to the inhibition rate of 5-Fu ranged from 12.49% to 38.92%(P=0.351).The inhibition rate of IFN-γ in two experiments was smaller than MMC and 5-Fu (P<0.05).Conclusion: IFN-γ has bifunctional effect (both enhancement and inhibition)on proliferation of cultured HTCF.The antiproliferative effect of IFN-γ was weaker than MMC and 5-Fu.Further study has to be carried out to document theinhibition of scar formation of filtration bleb by IFN-γ and the molecular mechanisms of its bifunctional effect on HTCF proliferation.Eye Science 2000;16:43-47.

  2. Bifunctional Effect of Human IFN-γon Cultured Human Fibroblasts from Tenon's Capsule

    Institute of Scientific and Technical Information of China (English)

    Yan Guo; Jian Ge; Haiquan Liu; Yanyan Li; Jianliang Zheng; Xiangkun Huang; Yuqing Lan

    2000-01-01

    Purpose: To study the effect of human IFN-γ on in vitro cultured human fibroblasts from Tenon's capsuleMaterials and methods: The effect of different concentrations of human IFN-γ and mitomycin-C (MMC), 5-fluorouracil (5-Fu) on cultured human Tenon's capsule fibroblasts (HTCF) was measured using a MIT [3-(4, 5-dimethylthiazo-2-yl)] -2,5-diphenyltetrazolium bromide; Thiazolyl blue) colorimetric assay. The results were analyzed using ANOVA of the statistical package for social sciences (SPSS) 9.0version. The difference was considered to be significant if P < 0. 05.Results: The effects of MMC and 5-Fu on the growth of HTCF were negative, while the effects of IFN-γ on the growth of HTCF were both negative (102 ~ l04 units/ml in two experiments) and positive (106, 105, 10 units/ml in two experiments) . The inhibition rate of MMC ranged from 5.73% to 46. 9%, which was similar to the inhibition rate of 5-Fu ranged from 12.49% to 38.92% ( P= 0. 351) . The inhibition rate of IFN-γ in two experiments was smaller than MMC and 5-Fu ( P < 0.05).Conclusion: IFN-γ has bifunctional effect (both enhancement and inhibition) on proliferation of cultured HTCF. The antiproliferative effect of IFN-γ was weaker than MMC and 5-Fu. Further study has to be carried out to document the inhibition of scar formation of filtration bleb by IFN-γ and the molecular mechanisms of its bifunctional effect on HTCF proliferation. Eye Science 2000; 16: 43~ 47.

  3. Preparation and Characterization of Silica-Coated Magnetic–Fluorescent Bifunctional Microspheres

    Directory of Open Access Journals (Sweden)

    Xiao Qi

    2009-01-01

    Full Text Available Abstract Bifunctional magnetic–fluorescent composite nanoparticles (MPQDs with Fe3O4MPs and Mn:ZnS/ZnS core–shell quantum dots (QDs encapsulated in silica spheres were synthesized through reverse microemulsion method and characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, vibration sample magnetometer, and photoluminescence (PL spectra. Our strategy could offer the following features: (1 the formation of Mn:ZnS/ZnS core/shell QDs resulted in enhancement of the PL intensity with respect to that of bare Mn:ZnS nanocrystals due to the effective elimination of the surface defects; (2 the magnetic nanoparticles were coated with silica, in order to reduce any detrimental effects on the QD PL by the magnetic cores; and (3 both Fe3O4MPs and Mn:ZnS/ZnS core–shell QDs were encapsulated in silica spheres, and the obtained MPQDs became water soluble. The experimental conditions for the silica coating on the surface of Fe3O4nanoparticles, such as the ratio of water to surfactant (R, the amount of ammonia, and the amount of tetraethoxysilane, on the photoluminescence properties of MPQDs were studied. It was found that the silica coating on the surface of Fe3O4could effectively suppress the interaction between the Fe3O4and the QDs under the most optimal parameters, and the emission intensity of MPQDs showed a maximum. The bifunctional MPQDs prepared under the most optimal parameters have a typical diameter of 35 nm and a saturation magnetization of 4.35 emu/g at room temperature and exhibit strong photoluminescence intensity.

  4. Electrochemical formation of transparent nanostructured TiO2 film as an effective bifunctional layer for dye-sensitized solar cells.

    Science.gov (United States)

    Wu, Mao-Sung; Tsai, Chen-Hsiu; Wei, Tzu-Chien

    2011-03-14

    A bifunctional TiO(2) layer having an inner compact layer and an outer anchoring layer coated on fluorine-doped tin oxide (FTO) glass could reduce the charge recombination and interfacial contact resistance between FTO and the main TiO(2) layer; photoelectron conversion efficiency of cell was increased from 7.31 to 8.04% by incorporating the bifunctional layer.

  5. Extremal surface barriers

    Energy Technology Data Exchange (ETDEWEB)

    Engelhardt, Netta; Wall, Aron C. [Department of Physics, University of California,Santa Barbara, CA 93106 (United States)

    2014-03-13

    We present a generic condition for Lorentzian manifolds to have a barrier that limits the reach of boundary-anchored extremal surfaces of arbitrary dimension. We show that any surface with nonpositive extrinsic curvature is a barrier, in the sense that extremal surfaces cannot be continuously deformed past it. Furthermore, the outermost barrier surface has nonnegative extrinsic curvature. Under certain conditions, we show that the existence of trapped surfaces implies a barrier, and conversely. In the context of AdS/CFT, these barriers imply that it is impossible to reconstruct the entire bulk using extremal surfaces. We comment on the implications for the firewall controversy.

  6. Moving in extreme environments

    DEFF Research Database (Denmark)

    Lucas, Samuel J E; Helge, Jørn W; Schütz, Uwe H W;

    2016-01-01

    This review addresses human capacity for movement in the context of extreme loading and with it the combined effects of metabolic, biomechanical and gravitational stress on the human body. This topic encompasses extreme duration, as occurs in ultra-endurance competitions (e.g. adventure racing...... and transcontinental races) and expeditions (e.g. polar crossings), to the more gravitationally limited load carriage (e.g. in the military context). Juxtaposed to these circumstances is the extreme metabolic and mechanical unloading associated with space travel, prolonged bedrest and sedentary lifestyle, which may...

  7. Statistics of extremes

    CERN Document Server

    Gumbel, E J

    2012-01-01

    This classic text covers order statistics and their exceedances; exact distribution of extremes; the 1st asymptotic distribution; uses of the 1st, 2nd, and 3rd asymptotes; more. 1958 edition. Includes 44 tables and 97 graphs.

  8. Extreme environments and exobiology.

    Science.gov (United States)

    Friedmann, E I

    1993-01-01

    Ecological research on extreme environments can be applied to exobiological problems such as the question of life on Mars. If life forms (fossil or extant) are found on Mars, their study will help to solve fundamental questions about the nature of life on Earth. Extreme environments that are beyond the range of adaptability of their inhabitants are defined as "absolute extreme". Such environments can serve as terrestrial models for the last stages of life in the history of Mars, when the surface cooled down and atmosphere and water disappeared. The cryptoendolithic microbial community in porous rocks of the Ross Desert in Antarctica and the microbial mats at the bottom of frozen Antarctic lakes are such examples. The microbial communities of Siberian permafrost show that, in frozen but stable communities, long-term survival is possible. In the context of terraforming Mars, selected microorganisms isolated from absolute extreme environments are considered for use in creation of a biological carbon cycle.

  9. Venous Ultrasound (Extremities)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Ultrasound - Venous (Extremities) Venous ultrasound uses sound waves to ... limitations of Venous Ultrasound Imaging? What is Venous Ultrasound Imaging? Ultrasound is safe and painless, and produces ...

  10. Imaging cancer using PET - the effect of the bifunctional chelator on the biodistribution of a {sup 64}Cu-labeled antibody

    Energy Technology Data Exchange (ETDEWEB)

    Dearling, Jason L.J., E-mail: jason.dearling@childrens.harvard.ed [Division of Nuclear Medicine and Department of Radiology, Children' s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States); Voss, Stephan D. [Division of Nuclear Medicine and Department of Radiology, Children' s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States); Dunning, Patricia; Snay, Erin [Division of Nuclear Medicine and Department of Radiology, Children' s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115 (United States); Fahey, Frederic [Division of Nuclear Medicine and Department of Radiology, Children' s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States); Smith, Suzanne V. [Australian National Science and Technology Organisation (ANSTO), New Illawarra Road, PMB1, Menai, New South Wales 2234 (Australia); Huston, James S. [EMD Serono Research Center, 45A Middlesex Turnpike, Billerica, MA 01821-3936 (United States); Boston Biomedical Research Institute, Watertown, MA 02472-2899 (United States); Meares, Claude F. [Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616-5295 (United States); Treves, S. Ted; Packard, Alan B. [Division of Nuclear Medicine and Department of Radiology, Children' s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States)

    2011-01-15

    Introduction: Use of copper radioisotopes in antibody radiolabeling is challenged by reported loss of the radionuclide from the bifunctional chelator used to label the protein. The objective of this study was to investigate the relationship between the thermodynamic stability of the {sup 64}Cu-complexes of five commonly used bifunctional chelators (BFCs) and the biodistribution of an antibody labeled with {sup 64}Cu using these chelators in tumor-bearing mice. Methods: The chelators [S-2-(aminobenzyl)1,4,7-triazacyclononane-1,4,7-triacetic acid (p-NH{sub 2}-Bn-NOTA): 6-[p-(bromoacetamido)benzyl]-1, 4, 8, 11-tetraazacyclotetradecane-N, N', N'', N'''-tetraacetic acid (BAT-6): S-2-(4-aminobenzyl)-1,4,7,10-tetraazacyclododocane tetraacetic acid (p-NH{sub 2}-Bn-DOTA): 1,4,7,10-tetraazacyclododocane-N, N', N', N''-tetraacetic acid (DOTA): and 1-N-(4-aminobenzyl)-3,6,10,13,16,19-hexaazabicyclo[6.6.6]eicosane-1, 8-diamine (SarAr)] were conjugated to the anti-GD2 antibody ch14.18, and the modified antibody was labeled with {sup 64}Cu and injected into mice bearing subcutaneous human melanoma tumors (M21) (n = 3-5 for each study). Biodistribution data were obtained from positron emission tomography images acquired at 1, 24 and 48 hours post-injection, and at 48 hours post-injection a full ex vivo biodistribution study was carried out. Results: The biodistribution, including tumor targeting, was similar for all the radioimmunoconjugates. At 48 h post-injection, the only statistically significant differences in radionuclide uptake (p < 0.05) were between blood, liver, spleen and kidney. For example, liver uptake of [{sup 64}Cu]ch14.18-p-NH{sub 2}-Bn-NOTA was 4.74 {+-} 0.77 per cent of the injected dose per gram of tissue (%ID/g), and for [{sup 64}Cu]ch14.18-SarAr was 8.06 {+-} 0.77 %ID/g. Differences in tumor targeting correlated with variations in tumor size rather than which BFC was used. Conclusions: The results of this

  11. Cloning and analysis of a bifunctional methyltransferase/restriction endonuclease TspGWI, the prototype of a Thermus sp. enzyme family

    Directory of Open Access Journals (Sweden)

    Zylicz-Stachula Agnieszka

    2009-05-01

    Full Text Available Abstract Background Restriction-modification systems are a diverse class of enzymes. They are classified into four major types: I, II, III and IV. We have previously proposed the existence of a Thermus sp. enzyme family, which belongs to type II restriction endonucleases (REases, however, it features also some characteristics of types I and III. Members include related thermophilic endonucleases: TspGWI, TaqII, TspDTI, and Tth111II. Results Here we describe cloning, mutagenesis and analysis of the prototype TspGWI enzyme that recognises the 5'-ACGGA-3' site and cleaves 11/9 nt downstream. We cloned, expressed, and mutagenised the tspgwi gene and investigated the properties of its product, the bifunctional TspGWI restriction/modification enzyme. Since TspGWI does not cleave DNA completely, a cloning method was devised, based on amino acid sequencing of internal proteolytic fragments. The deduced amino acid sequence of the enzyme shares significant sequence similarity with another representative of the Thermus sp. family – TaqII. Interestingly, these enzymes recognise similar, yet different sequences in the DNA. Both enzymes cleave DNA at the same distance, but differ in their ability to cleave single sites and in the requirement of S-adenosylmethionine as an allosteric activator for cleavage. Both the restriction endonuclease (REase and methyltransferase (MTase activities of wild type (wt TspGWI (either recombinant or isolated from Thermus sp. are dependent on the presence of divalent cations. Conclusion TspGWI is a bifunctional protein comprising a tandem arrangement of Type I-like domains; particularly noticeable is the central HsdM-like module comprising a helical domain and a highly conserved S-adenosylmethionine-binding/catalytic MTase domain, containing DPAVGTG and NPPY motifs. TspGWI also possesses an N-terminal PD-(D/EXK nuclease domain related to the corresponding domains in HsdR subunits, but lacks the ATP-dependent translocase module

  12. Dynamics of tropomyosin in muscle fibers as monitored by saturation transfer EPR of bi-functional probe.

    Directory of Open Access Journals (Sweden)

    Roni F Rayes

    Full Text Available The dynamics of four regions of tropomyosin was assessed using saturation transfer electron paramagnetic resonance in the muscle fiber. In order to fully immobilize the spin probe on the surface of tropomyosin, a bi-functional spin label was attached to i,i+4 positions via cysteine mutagenesis. The dynamics of bi-functionally labeled tropomyosin mutants decreased by three orders of magnitude when reconstituted into "ghost muscle fibers". The rates of motion varied along the length of tropomyosin with the C-terminus position 268/272 being one order of magnitude slower then N-terminal domain or the center of the molecule. Introduction of troponin decreases the dynamics of all four sites in the muscle fiber, but there was no significant effect upon addition of calcium or myosin subfragment-1.

  13. Studies towards the development of lipophilic bifunctional N{sub 3}S{sub 3} chelators for {sup 68}Ga

    Energy Technology Data Exchange (ETDEWEB)

    Riss, P.J.; Hanik, N.; Roesch, F. [Mainz Univ. (Germany). Inst. of Nuclear Chemistry

    2010-07-01

    The present study is concerned with a concept of charge-neutral, lipophilic, macrocyclic bifunctional chelators, suitable for the introduction of a gallium-68 label into small molecules. The synthesis of a novel bifunctional N{sub 3}S{sub 3}-type chelator, derived from 1,4,7-triazacyclononane, initial {sup 68}Ga-radiolabelling and the determination of stability and calculated lipophilicity of the compound are described. The {sup 68}Ga-labelled chelate was obtained in a maximum radiochemical yield of 93{+-}5% after a reaction time of 2 min. It remained intact over 3 h in a DTPA-challenge and a transferrin challenge experiment, indicating sufficient stability for PET studies. (orig.)

  14. Rational design of micro-RNA-like bifunctional siRNAs targeting HIV and the HIV coreceptor CCR5.

    Science.gov (United States)

    Ehsani, Ali; Saetrom, Pål; Zhang, Jane; Alluin, Jessica; Li, Haitang; Snøve, Ola; Aagaard, Lars; Rossi, John J

    2010-04-01

    Small-interfering RNAs (siRNAs) and micro-RNAs (miRNAs) are distinguished by their modes of action. SiRNAs serve as guides for sequence-specific cleavage of complementary mRNAs and the targets can be in coding or noncoding regions of the target transcripts. MiRNAs inhibit translation via partially complementary base-pairing to 3' untranslated regions (UTRs) and are generally ineffective when targeting coding regions of a transcript. In this study, we deliberately designed siRNAs that simultaneously direct cleavage and translational suppression of HIV RNAs, or cleavage of the mRNA encoding the HIV coreceptor CCR5 and suppression of translation of HIV. These bifunctional siRNAs trigger inhibition of HIV infection and replication in cell culture. The design principles have wide applications throughout the genome, as about 90% of genes harbor sites that make the design of bifunctional siRNAs possible.

  15. Dual-Doped Molybdenum Trioxide Nanowires: A Bifunctional Anode for Fiber-Shaped Asymmetric Supercapacitors and Microbial Fuel Cells.

    Science.gov (United States)

    Yu, Minghao; Cheng, Xinyu; Zeng, Yinxiang; Wang, Zilong; Tong, Yexiang; Lu, Xihong; Yang, Shihe

    2016-06-01

    A novel in situ N and low-valence-state Mo dual doping strategy was employed to significantly improve the conductivity, active-site accessibility, and electrochemical stability of MoO3 , drastically boosting its electrochemical properties. Consequently, our optimized N-MoO3-x nanowires exhibited exceptional performances as a bifunctional anode material for both fiber-shaped asymmetric supercapacitors (ASCs) and microbial fuel cells (MFCs). The flexible fiber-shaped ASC and MFC device based on the N-MoO3-x anode could deliver an unprecedentedly high energy density of 2.29 mWh cm(-3) and a remarkable power density of 0.76 μW cm(-1) , respectively. Such a bifunctional fiber-shaped N-MoO3-x electrode opens the way to integrate the electricity generation and storage for self-powered sources.

  16. "Bis-Click" Ligation of DNA: Template-Controlled Assembly, Circularisation and Functionalisation with Bifunctional and Trifunctional Azides.

    Science.gov (United States)

    Yang, Haozhe; Seela, Frank

    2017-03-08

    Ligation and circularisation of oligonucleotides containing terminal triple bonds was performed with bifunctional or trifunctional azides. Both reactions are high yielding. Template-assisted bis-click ligation of two individual non-complementary oligonucleotide strands was accomplished to yield heterodimers exclusively. In this context, the template fulfils two functions: it accelerates the ligation reaction and controls product assembly (heterodimer vs. homodimer formation). Intermolecular bis-click circularisation of one oligonucleotide strand took place without template assistance. For construction of oligonucleotides with terminal triple bonds in the nucleobase side chain, 7- or 5-functionalised 7-deaza-dA and dU residues were used. These oligonucleotides are directly accessible by solid-phase synthesis. When trifunctional azides were employed instead of bifunctional linkers, functionalisation of the remaining azido group was performed with small molecules such as 1-ethynyl pyrene, biotin propargyl amide or with ethynylated oligonucleotides. By this means, branched DNA was constructed.

  17. Purification, crystallization and preliminary X-ray crystallographic analysis of rice bifunctional α-amylase/subtilisin inhibitor from Oryza sativa

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yi-Hung [Life Science Group, Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076,Taiwan (China); Peng, Wen-Yan [Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, Hsinchu 30013,Taiwan (China); Huang, Yen-Chieh [Life Science Group, Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076,Taiwan (China); Guan, Hong-Hsiang; Hsieh, Ying-Cheng [Life Science Group, Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076,Taiwan (China); Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, Hsinchu 30013,Taiwan (China); Liu, Ming-Yih [Life Science Group, Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076,Taiwan (China); Chang, Tschining [Department of Hospitality Management, Nan Jeon Institute of Technology, Yen-Shui, Tainan 73746,Taiwan (China); Chen, Chun-Jung, E-mail: cjchen@nsrrc.org.tw [Life Science Group, Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076,Taiwan (China); Department of Physics, National Tsing-Hua University, Hsinchu 30013,Taiwan (China)

    2006-08-01

    The crystallization of rice α-amylase/subtilisin bifunctional inhibitor is reported. Rice bifunctional α-amylase/subtilisin inhibitor (RASI) can inhibit both α-amylase from larvae of the red flour beetle (Tribolium castaneum) and subtilisin from Bacillus subtilis. The synthesis of RASI is up-regulated during the late milky stage in developing seeds. The 8.9 kDa molecular-weight RASI from rice has been crystallized using the hanging-drop vapour-diffusion method. According to 1.81 Å resolution X-ray diffraction data from rice RASI crystals, the crystal belongs to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 79.99, b = 62.95, c = 66.70 Å. Preliminary analysis indicates two RASI molecules in an asymmetric unit with a solvent content of 44%.

  18. Bifunctional quaternary ammonium compounds to inhibit biofilm growth and enhance performance for activated carbon air-cathode in microbial fuel cells

    Science.gov (United States)

    Li, Nan; Liu, Yinan; An, Jingkun; Feng, Cuijuan; Wang, Xin

    2014-12-01

    The slow diffusion of hydroxyl out of the catalyst layer as well as the biofouling on the surface of cathode are two problems affecting power for membrane-less air-cathode microbial fuel cells (MFCs). In order to solve both of them simultaneously, here we simply modify activated carbon air-cathode using a bifunctional quaternary ammonium compound (QAC) by forced evaporation. The maximum power density reaches 1041 ± 12 mW m-2 in an unbuffered medium (0.5 g L-1 NaCl), which is 17% higher than the control, probably due to the accelerated anion transport in the catalyst layer. After 2 months, the protein content reduced by a factor of 26 and the power density increases by 33%, indicating that the QAC modification can effectively inhibit the growth of cathodic biofilm and improve the stability of performance. The addition of NaOH and QAC epoxy have a negative effect on power production due to the clogging of pores in catalyst layer.

  19. Electronics for Extreme Environments

    Science.gov (United States)

    Patel, J. U.; Cressler, J.; Li, Y.; Niu, G.

    2001-01-01

    Most of the NASA missions involve extreme environments comprising radiation and low or high temperatures. Current practice of providing friendly ambient operating environment to electronics costs considerable power and mass (for shielding). Immediate missions such as the Europa orbiter and lander and Mars landers require the electronics to perform reliably in extreme conditions during the most critical part of the mission. Some other missions planned in the future also involve substantial surface activity in terms of measurements, sample collection, penetration through ice and crust and the analysis of samples. Thus it is extremely critical to develop electronics that could reliably operate under extreme space environments. Silicon On Insulator (SOI) technology is an extremely attractive candidate for NASA's future low power and high speed electronic systems because it offers increased transconductance, decreased sub-threshold slope, reduced short channel effects, elimination of kink effect, enhanced low field mobility, and immunity from radiation induced latch-up. A common belief that semiconductor devices function better at low temperatures is generally true for bulk devices but it does not hold true for deep sub-micron SOI CMOS devices with microscopic device features of 0.25 micrometers and smaller. Various temperature sensitive device parameters and device characteristics have recently been reported in the literature. Behavior of state of the art technology devices under such conditions needs to be evaluated in order to determine possible modifications in the device design for better performance and survivability under extreme environments. Here, we present a unique approach of developing electronics for extreme environments to benefit future NASA missions as described above. This will also benefit other long transit/life time missions such as the solar sail and planetary outposts in which electronics is out open in the unshielded space at the ambient space

  20. Extreme Programming: Maestro Style

    Science.gov (United States)

    Norris, Jeffrey; Fox, Jason; Rabe, Kenneth; Shu, I-Hsiang; Powell, Mark

    2009-01-01

    "Extreme Programming: Maestro Style" is the name of a computer programming methodology that has evolved as a custom version of a methodology, called extreme programming that has been practiced in the software industry since the late 1990s. The name of this version reflects its origin in the work of the Maestro team at NASA's Jet Propulsion Laboratory that develops software for Mars exploration missions. Extreme programming is oriented toward agile development of software resting on values of simplicity, communication, testing, and aggressiveness. Extreme programming involves use of methods of rapidly building and disseminating institutional knowledge among members of a computer-programming team to give all the members a shared view that matches the view of the customers for whom the software system is to be developed. Extreme programming includes frequent planning by programmers in collaboration with customers, continually examining and rewriting code in striving for the simplest workable software designs, a system metaphor (basically, an abstraction of the system that provides easy-to-remember software-naming conventions and insight into the architecture of the system), programmers working in pairs, adherence to a set of coding standards, collaboration of customers and programmers, frequent verbal communication, frequent releases of software in small increments of development, repeated testing of the developmental software by both programmers and customers, and continuous interaction between the team and the customers. The environment in which the Maestro team works requires the team to quickly adapt to changing needs of its customers. In addition, the team cannot afford to accept unnecessary development risk. Extreme programming enables the Maestro team to remain agile and provide high-quality software and service to its customers. However, several factors in the Maestro environment have made it necessary to modify some of the conventional extreme

  1. A bifunctional palladium-acid solid catalyst performs the direct synthesis of cyclohexylanilines and dicyclohexylamines from nitrobenzenes

    OpenAIRE

    Rubio Marqués, Paula; Leyva Perez, Antonio; Corma Canós, Avelino

    2013-01-01

    Nitroderivatives are transformed to cyclohexylanilines at room temperature in good yields and selectivity via a hydrogenation-amine coupling cascade reaction using Pd nanoparticles on carbon as a catalyst and a Bronsted acid. Consolider-Ingenio MULTICAT subprograma de Apoyo a Centros y Universidades de Excelencia Severo Ochoa SEV 2012 0267 MICINN MAT2009-00889 FPU contract ITQ Rubio Marqués, P.; Leyva Perez, A.; Corma Canós, A. (2013). A bifunctional palladium-acid solid ca...

  2. Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application.

    Science.gov (United States)

    Chen, Zhu; Yu, Aiping; Higgins, Drew; Li, Hui; Wang, Haijiang; Chen, Zhongwei

    2012-04-11

    A new class of core-corona structured bifunctional catalyst (CCBC) consisting of lanthanum nickelate centers supporting nitrogen-doped carbon nanotubes (NCNT) has been developed for rechargeable metal-air battery application. The nanostructured design of the catalyst allows the core and corona to catalyze the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), respectively. These materials displayed exemplary OER and ORR activity through half-cell testing, comparable to state of the art commercial lanthanum nickelate (LaNiO(3)) and carbon-supported platinum (Pt/C), with added bifunctional capabilities allowing metal-air battery rechargeability. LaNiO(3) and Pt/C are currently the most accepted benchmark electrocatalyst materials for the OER and ORR, respectively; thus with comparable activity toward both of these reactions, CCBC are presented as a novel, inexpensive catalyst component for the cathode of rechargeable metal-air batteries. Moreover, after full-range degradation testing (FDT) CCBC retained excellent activity, retaining 3 and 13 times greater ORR and OER current upon comparison to state of the art Pt/C. Zinc-air battery performances of CCBC is in good agreement with the half-cell experiments with this bifunctional electrocatalyst displaying high activity and stability during battery discharge, charge, and cycling processes. Owing to its outstanding performance toward both the OER and ORR, comparable with the highest performing commercial catalysts to date for each of the respective reaction, coupled with high stability and rechargeability, CCBC is presented as a novel class of bifunctional catalyst material that is very applicable to future generation rechargeable metal-air batteries.

  3. Synergistic bifunctional catalyst design based on perovskite oxide nanoparticles and intertwined carbon nanotubes for rechargeable zinc-air battery applications.

    Science.gov (United States)

    Lee, Dong Un; Park, Hey Woong; Park, Moon Gyu; Ismayilov, Vugar; Chen, Zhongwei

    2015-01-14

    Advanced morphology of intertwined core-corona structured bifunctional catalyst (IT-CCBC) is introduced where perovskite lanthanum nickel oxide nanoparticles (LaNiO3 NP) are encapsulated by high surface area network of nitrogen-doped carbon nanotubes (NCNT) to produce highly active and durable bifunctional catalyst for rechargeable metal-air battery applications. The unique composite morphology of IT-CCBC not only enhances the charge transport property by providing rapid electron-conduction pathway but also facilitates in diffusion of hydroxyl and oxygen reactants through the highly porous framework. Confirmed by electrochemical half-cell testing, IT-CCBC in fact exhibits very strong synergy between LaNiO3 NP and NCNT demonstrating bifunctionality with significantly improved catalytic activities of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Furthermore, when compared to the state-of-art catalysts, IT-CCBC outperforms Pt/C and Ir/C in terms of ORR and OER, respectively, and shows improved electrochemical stability compared to them after cycle degradation testing. The practicality of the catalyst is corroborated by testing in a realistic rechargeable zinc-air battery utilizing atmospheric air in ambient conditions, where IT-CCBC demonstrates superior charge and discharge voltages and long-term cycle stability with virtually no battery voltage fading. These improved electrochemical properties of the catalyst are attributed to the nanosized dimensions of LaNiO3 NP controlled by simple hydrothermal technique, which enables prolific growth of and encapsulation by highly porous NCNT network. The excellent electrochemical results presented in this study highlight IT-CCBC as highly efficient and commercially viable bifunctional catalyst for rechargeable metal-air battery applications.

  4. L-Threonine-derived novel bifunctional phosphine-sulfonamide catalyst-promoted enantioselective aza-morita-Baylis-Hillman reaction

    KAUST Repository

    Zhong, Fangrui

    2011-03-18

    A series of novel bifunctional phosphine-sulfonamide organic catalysts were designed and readily prepared from natural amino acids, and they were utilized to promote enantioselective aza-Morita-Baylis-Hillman (MBH) reactions. l-Threonine-derived phosphine-sulfonamide 9b was found to be the most efficient catalyst, affording the desired aza-MBH adducts in high yields and with excellent enantioselectivities. © 2011 American Chemical Society.

  5. Bifunctional TiO2 Catalysts for Efficient Cr(Ⅵ) Photoreduction Under Solar Light Irradiation Without Addition of Acids

    Institute of Scientific and Technical Information of China (English)

    Fu-cheng Shi; Wen-dong Wang; Wei-xin Huang

    2012-01-01

    Bifunctional Ti02 photocatalysts co-doped with nitrogen and sulfur were prepared by the controlled thermal decomposition of ammonium titanyl sulfate precursor.They have both photocatalytic activity and Brφnsted acidity,and thus are active in the photoreduction of Cr(VI) under solar light irradiation without the addition of acids.The activity is superior to that of Degussa P25 in the acidified suspension at the same pH adjusted by H2SO4.

  6. Morphology-controlled growth of magnetic iron oxide components on gold nanoparticles as bi-functional agents

    OpenAIRE

    2015-01-01

    Summary form only given. Hybrid nanostructure can inherit the physiochemical properties of its individual components to realize its multi-functionality. The coupling of plasmonic effect of gold nanoparticles with magnetic properties of iron oxide nanoparticles has shown great promise as bi-functional agents allowing simultaneous magnetic resonance imaging (MRI)/computed tomography (CT) imaging and magnetic/photonic thermal therapy. However, since gold and iron oxide are two dissimilar materia...

  7. Bifunctional chimeric SuperCD suicide gene -YCD: YUPRT fusion is highly effective in a rat hepatoma model

    Institute of Scientific and Technical Information of China (English)

    Florian Graepler; Ulrike A Lauer; Reinhard Vonthein; Michael Gregor; Sorin Armeanu; Michael Bitzer; Ulrich M. Lauer; Marie-Luise Lemken; Wolfgang A Wybranietz; Ulrike Schmidt; Irina Smirnow; Christine D Groβ; Martin Spiegel; Andrea Schenk; Hansj(o)rg Graf

    2005-01-01

    AIM: To investigate the effects of catalytically superior gene-directed enzyme prodrug therapy systems on a rat hepatoma model.METHODS: To increase hepatoma cell chemosensitivity for the prodrug 5-fluorocytosine (5-FC), we generated a chimeric bifunctional SuperCD suicide gene, a fusion of the yeast cytosine deaminase (YCD) and the yeast uracil phosphoribosyltransferase (YUPRT) gene.RESULTS: In vitro stably transduced Morris rat hepatoma cells (MH) expressing the bifunctional SuperCD suicide gene (MH SuperCD) showed a clearly marked enhancement in cell killing when incubated with 5-FC as compared with MH ceils stably expressing YCD solely (MH YCD) or the cytosine deaminase gene of bacterial origin(MH BCD), respectively. In vivo, MH SuperCD tumors implanted both subcutaneously as well as orthotopically into the livers of syngeneic ACI rats demonstrated significant tumor regressions (P<0.01) under both high dose as well as low dose systemic 5-FC application,whereas MH tumors without transgene expression (MH naive) showed rapid progression. For the first time, an order of in vivo suicide gene effectiveness (SuperCD>>YCD > > BCD > > > negative control) was defi ned as a result of a directin vivo comparison of all three suicide genes.CONCLUSION: Bifunctional SuperCD suicide gene expression is highly effective in a rat hepatoma model,thereby significantly improving both the therapeutic index and the efficacy of hepatocellular carcinoma killing by fluorocytosine.

  8. Theoretical Study on Highly Active Bifunctional Metalloporphyrin Catalysts for the Coupling Reaction of Epoxides with Carbon Dioxide.

    Science.gov (United States)

    Hasegawa, Jun-Ya; Miyazaki, Ray; Maeda, Chihiro; Ema, Tadashi

    2016-10-01

    Highly active bifunctional metalloporphyrin catalysts were developed for the coupling reaction of epoxides with CO2 to produce cyclic carbonates. The bifunctional catalysts have both quaternary ammonium halide groups and a metal center. To elucidate the roles of these catalytic groups, DFT calculations were performed. Control reactions using tetrabutylammonium halide as a catalyst were also investigated for comparison. In the present article, the results of our computational studies are overviewed. The computational results are consistent with the experimental data and are useful for elucidating the structure-activity relationship. The key features responsible for the high catalytic activity of the bifunctional catalysts are as follows: 1) the cooperative action of the halide anion (nucleophile) and the metal center (Lewis acid); 2) the near-attack conformation, leading to the efficient opening of the epoxide ring in the rate-determining step; and 3) the conformational change of the quaternary ammonium cation to stabilize various anionic species generated during catalysis, in addition to the robustness (thermostability) of the catalysts.

  9. Molecular and biochemical characterization of bifunctional pyruvate decarboxylases and pyruvate ferredoxin oxidoreductases from Thermotoga maritima and Thermotoga hypogea.

    Science.gov (United States)

    Eram, Mohammad S; Wong, Alton; Oduaran, Erica; Ma, Kesen

    2015-12-01

    Hyperthermophilic bacteria Thermotoga maritima and Thermotoga hypogea produce ethanol as a metabolic end product, which is resulted from acetaldehyde reduction catalysed by an alcohol dehydrogenase (ADH). However, the enzyme that is involved in the production of acetaldehyde from pyruvate is not well characterized. An oxygen sensitive and coenzyme A-dependent pyruvate decarboxylase (PDC) activity was found to be present in cell free extracts of T. maritima and T. hypogea. Both enzymes were purified and found to have pyruvate ferredoxin oxidoreductase (POR) activity, indicating their bifunctionality. Both PDC and POR activities from each of the purified enzymes were characterized in regards to their optimal assay conditions including pH dependency, oxygen sensitivity, thermal stability, temperature dependency and kinetic parameters. The close relatedness of the PORs that was shown by sequence analysis could be an indication of the presence of such bifunctionality in other hyperthermophilic bacteria. This is the first report of a bifunctional PDC/POR enzyme in hyperthermophilic bacteria. The PDC and the previously reported ADHs are most likely the key enzymes catalysing the production of ethanol from pyruvate in bacterial hyperthermophiles.

  10. Intronic mutation in the growth hormone (GH) receptor gene from a girl with Laron syndrome and extremely high serum GH binding protein: extended phenotypic study in a very large pedigree.

    Science.gov (United States)

    Silbergeld, A; Dastot, F; Klinger, B; Kanety, H; Eshet, R; Amselem, S; Laron, Z

    1997-01-01

    Laron syndrome (LS) is a hereditary form of GH resistance due to molecular defects in the GH receptor (GHR). Most of the identified mutations are located in the extracellular domain of the receptor, resulting in a lack of serum GHBP in the majority of LS patients. We present an LS patient with supranormal levels of serum GHBP, in addition to 35 of her relatives. The proband is a 3.5 year-old Druse girl with severe short stature (height SDS -5.1), high GH (250 micrograms/l), low IGF-I (2.7 nmol/l) and IGFBP-3 (410 micrograms/l), both unresponsive to exogenous GH. The binding capacity of the serum GHBP was 22 nM (adult reference serum, 0.7 nM), with an affinity constant Ka = 1.9 x 10(9) M-1 comparable to that of normal sera (Ka = 1.7-2.1 x 10(9) M-1). The apparent MW of the GHBP was approximately 60-80 kDa, similar to that of control sera. In the proband's sister, parents, grandparents and uncles, extremely high GHBP values were observed (43.0 +/- 4.8 RSB, n = 10) compared with normal adults (0.81 +/- 0.06 RSB) (p T substitution at nucleotide 785-1 preceding exon 8, a sequence that encodes the transmembrane domain. This mutation, which destroys the invariant dinucleotide of the splice acceptor site, is expected to alter GHR mRNA splicing and to be responsible for skipping exon 8. The resulting truncated protein that retains GH binding activity is probably no longer anchored in the cell membrane, affecting signal transmission in the homozygous patient and causing high GHBP levels in the heterozygous relatives.

  11. Precursors of extreme increments

    CERN Document Server

    Hallerberg, S; Holstein, D; Kantz, H; Hallerberg, Sarah; Altmann, Eduardo G.; Holstein, Detlef; Kantz, Holger

    2006-01-01

    We investigate precursors and predictability of extreme events in time series, which consist in large increments within successive time steps. In order to understand the predictability of this class of extreme events, we study analytically the prediction of extreme increments in AR(1)-processes. The resulting strategies are then applied to predict sudden increases in wind speed recordings. In both cases we evaluate the success of predictions via creating receiver operator characteristics (ROC-plots). Surprisingly, we obtain better ROC-plots for completely uncorrelated Gaussian random numbers than for AR(1)-correlated data. Furthermore, we observe an increase of predictability with increasing event size. Both effects can be understood by using the likelihood ratio as a summary index for smooth ROC-curves.

  12. Extremely deformable structures

    CERN Document Server

    2015-01-01

    Recently, a new research stimulus has derived from the observation that soft structures, such as biological systems, but also rubber and gel, may work in a post critical regime, where elastic elements are subject to extreme deformations, though still exhibiting excellent mechanical performances. This is the realm of ‘extreme mechanics’, to which this book is addressed. The possibility of exploiting highly deformable structures opens new and unexpected technological possibilities. In particular, the challenge is the design of deformable and bi-stable mechanisms which can reach superior mechanical performances and can have a strong impact on several high-tech applications, including stretchable electronics, nanotube serpentines, deployable structures for aerospace engineering, cable deployment in the ocean, but also sensors and flexible actuators and vibration absorbers. Readers are introduced to a variety of interrelated topics involving the mechanics of extremely deformable structures, with emphasis on ...

  13. Statistics of Extremes

    KAUST Repository

    Davison, Anthony C.

    2015-04-10

    Statistics of extremes concerns inference for rare events. Often the events have never yet been observed, and their probabilities must therefore be estimated by extrapolation of tail models fitted to available data. Because data concerning the event of interest may be very limited, efficient methods of inference play an important role. This article reviews this domain, emphasizing current research topics. We first sketch the classical theory of extremes for maxima and threshold exceedances of stationary series. We then review multivariate theory, distinguishing asymptotic independence and dependence models, followed by a description of models for spatial and spatiotemporal extreme events. Finally, we discuss inference and describe two applications. Animations illustrate some of the main ideas. © 2015 by Annual Reviews. All rights reserved.

  14. Extremal graph theory

    CERN Document Server

    Bollobas, Bela

    2004-01-01

    The ever-expanding field of extremal graph theory encompasses a diverse array of problem-solving methods, including applications to economics, computer science, and optimization theory. This volume, based on a series of lectures delivered to graduate students at the University of Cambridge, presents a concise yet comprehensive treatment of extremal graph theory.Unlike most graph theory treatises, this text features complete proofs for almost all of its results. Further insights into theory are provided by the numerous exercises of varying degrees of difficulty that accompany each chapter. A

  15. Weather and Climate Extremes.

    Science.gov (United States)

    1997-09-01

    Antarctica’s highest (New Zealand Antarctic Society, 1974). This extreme exceeded the record of 58°F (14.4°C) that occurred on 20 October 1956 at Esperanza ... Esperanza (also known as Bahia Esperanza , Hope Bay) was in operation from 1945 through the early 1960s. Meteorological/Climatological Factors: This extreme...cm) Location: Grand Ilet, La R’eunion Island [21°00’S, 55°30’E] Date: 26 January 1980 WORLD’S GREATEST 24-HOUR RAINFALL 72 in (182.5 cm

  16. Adventure and Extreme Sports.

    Science.gov (United States)

    Gomez, Andrew Thomas; Rao, Ashwin

    2016-03-01

    Adventure and extreme sports often involve unpredictable and inhospitable environments, high velocities, and stunts. These activities vary widely and include sports like BASE jumping, snowboarding, kayaking, and surfing. Increasing interest and participation in adventure and extreme sports warrants understanding by clinicians to facilitate prevention, identification, and treatment of injuries unique to each sport. This article covers alpine skiing and snowboarding, skateboarding, surfing, bungee jumping, BASE jumping, and whitewater sports with emphasis on epidemiology, demographics, general injury mechanisms, specific injuries, chronic injuries, fatality data, and prevention. Overall, most injuries are related to overuse, trauma, and environmental or microbial exposure.

  17. Moving in extreme environments

    DEFF Research Database (Denmark)

    Lucas, Samuel J E; Helge, Jørn W; Schütz, Uwe H W

    2016-01-01

    and transcontinental races) and expeditions (e.g. polar crossings), to the more gravitationally limited load carriage (e.g. in the military context). Juxtaposed to these circumstances is the extreme metabolic and mechanical unloading associated with space travel, prolonged bedrest and sedentary lifestyle, which may...

  18. de Sitter Extremal Surfaces

    CERN Document Server

    Narayan, K

    2015-01-01

    We study extremal surfaces in de Sitter space in the Poincare slicing in the upper patch, anchored on spatial subregions at the future boundary ${\\cal I}^+$, restricted to constant boundary Euclidean time slices (focussing on strip subregions). We find real extremal surfaces of minimal area as the boundaries of past lightcone wedges of the subregions in question: these are null surfaces with vanishing area. We find also complex extremal surfaces as complex extrema of the area functional, and the area is not always real-valued. In $dS_4$ the area is real and has some structural resemblance with entanglement entropy in a dual $CFT_3$. There are parallels with analytic continuation from the Ryu-Takayanagi expressions for holographic entanglement entropy in $AdS$. We also discuss extremal surfaces in the $dS$ black brane and the de Sitter "bluewall" studied previously. The $dS_4$ black brane complex surfaces exhibit a real finite cutoff-independent extensive piece. In the bluewall geometry, there are real surface...

  19. Statistics of Local Extremes

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Bierbooms, W.; Hansen, Kurt Schaldemose

    2003-01-01

    . A theoretical expression for the probability density function associated with local extremes of a stochasticprocess is presented. The expression is basically based on the lower four statistical moments and a bandwidth parameter. The theoretical expression is subsequently verified by comparison with simulated...

  20. Hydrological extremes and security

    Science.gov (United States)

    Kundzewicz, Z. W.; Matczak, P.

    2015-04-01

    Economic losses caused by hydrological extremes - floods and droughts - have been on the rise. Hydrological extremes jeopardize human security and impact on societal livelihood and welfare. Security can be generally understood as freedom from threat and the ability of societies to maintain their independent identity and their functional integrity against forces of change. Several dimensions of security are reviewed in the context of hydrological extremes. The traditional interpretation of security, focused on the state military capabilities, has been replaced by a wider understanding, including economic, societal and environmental aspects that get increasing attention. Floods and droughts pose a burden and serious challenges to the state that is responsible for sustaining economic development, and societal and environmental security. The latter can be regarded as the maintenance of ecosystem services, on which a society depends. An important part of it is water security, which can be defined as the availability of an adequate quantity and quality of water for health, livelihoods, ecosystems and production, coupled with an acceptable level of water-related risks to people, environments and economies. Security concerns arise because, over large areas, hydrological extremes - floods and droughts - are becoming more frequent and more severe. In terms of dealing with water-related risks, climate change can increase uncertainties, which makes the state's task to deliver security more difficult and more expensive. However, changes in population size and development, and level of protection, drive exposure to hydrological hazards.

  1. Extremity perfusion for sarcoma

    NARCIS (Netherlands)

    Hoekstra, Harald Joan

    2008-01-01

    For more than 50 years, the technique of extremity perfusion has been explored in the limb salvage treatment of local, recurrent, and multifocal sarcomas. The "discovery" of tumor necrosis factor-or. in combination with melphalan was a real breakthrough in the treatment of primarily irresectable ext

  2. A Lower-Order Oligomer Form of Phage Shock Protein A (PspA) Stably Associates with the Hexameric AAA+ Transcription Activator Protein PspF for Negative Regulation

    OpenAIRE

    Joly, Nicolas; Burrows, Patricia C.; Engl, Christoph; Jovanovic, Goran; Buck, Martin

    2009-01-01

    To survive and colonise their various environments, including those used during infection, bacteria have developed a variety of adaptive systems. Amongst these is phage shock protein (Psp) response, which can be induced in Escherichia coli upon filamentous phage infection (specifically phage secretin pIV) and by other membrane-damaging agents. The E. coli Psp system comprises seven proteins, of which PspA is the central component. PspA is a bifunctional protein that is directly involved in (i...

  3. Highly Active and Durable Nanocrystal-Decorated Bifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries.

    Science.gov (United States)

    Lee, Dong Un; Park, Moon Gyu; Park, Hey Woong; Seo, Min Ho; Wang, Xiaolei; Chen, Zhongwei

    2015-09-21

    A highly active and durable bifunctional electrocatalyst that consists of cobalt oxide nanocrystals (Co3 O4 NC) decorated on the surface of N-doped carbon nanotubes (N-CNT) is introduced as effective electrode material for electrically rechargeable zinc-air batteries. This active hybrid catalyst is synthesized by a facile surfactant-assisted method to produce Co3 O4 NC that are then decorated on the surface of N-CNT through hydrophobic attraction. Confirmed by half-cell testing, Co3 O4 NC/N-CNT demonstrates superior oxygen reduction and oxygen evolution catalytic activities and has a superior electrochemical stability compared to Pt/C and Ir/C. Furthermore, rechargeable zinc-air battery testing of Co3 O4 NC/N-CNT reveals superior galvanodynamic charge and discharge voltages with a significantly extended cycle life of over 100 h, which suggests its potential as a replacement for precious-metal-based catalysts for electric vehicles and grid energy storage applications.

  4. Enhanced phytoremediation of toxic metals by inoculating endophytic Enterobacter sp. CBSB1 expressing bifunctional glutathione synthase.

    Science.gov (United States)

    Qiu, Zhiqi; Tan, Hongming; Zhou, Shining; Cao, Lixiang

    2014-02-28

    To engineer plant-bacteria symbionts for remediating complex sites contaminated with multiple metals, the bifunctional glutathione (GSH) synthase gene gcsgs was introduced into endophytic Enterobacter sp. CBSB1 to improve phytoremediation efficiency of host plant Brassica juncea. The GSH contents of shoots inoculated with CBSB1 is 0.4μMg(-1) fresh weight. However, the GSH concentration of shoots with engineered CBSB1-GCSGS increased to 0.7μMg(-1) fresh weight. The shoot length, fresh weight and dry weight of seedlings inoculated with CBSB1-GCSGS increased 67%, 123%, and 160%, compared with seedlings without inoculation, respectively. The Cd and Pb concentration in shoots with CBSB1-GCSGS increased 48% and 59% compared with seedlings without inoculation, respectively. The inoculation of CBSB1 and CBSB1-GCSGS could increase the Cd and Pb extraction amounts of seedlings significantly compared with those without inoculation (PEnterobacter sp. CBSB1 upgraded the phytoremediation efficacy of B. juncea. So the engineered Enterobacter sp. CBSB1-GCSGS showed potentials in remediation sites contaminated with complex contaminants by inoculating into remediating plants.

  5. Colorimetric and luminescent bifunctional iridium(III) complexes for the sensitive recognition of cyanide ions

    Science.gov (United States)

    Chen, Xiudan; Wang, Huili; Li, Jing; Hu, Wenqin; Li, Mei-Jin

    2017-02-01

    Two new cyclometalated iridium(III) complexes [(ppy)2Irppz]Cl (1) and [(ppy)2Irbppz]Cl (2) (where ppy = 2-phenylpyridine, ppz = 4,7-phenanthrolino-5,6:5,6-pyrazine, bppz = 2.3-di-2-pyridylpyrazine), were designed and synthesized. The structure of [(ppy)2Irppz]Cl was determined by single crystal X-ray diffraction. Their photophysical properties were also studied. This kind of complexes could coordinate with Cu2 +, the photoluminescence (PL) of the complex was quenched, and the color changed from orange-red to green. The forming M-Cu (M: complexes 1 and 2) ensemble could be further utilized as a colorimetric and emission "turn-on" bifunctional detection for CN-, especially for complex 1-Cu2 + showed a high sensitivity toward CN- with a limit of diction is 97 nM. Importantly, this kind of iridium(III) complexes shows a unique recognition of cyanide ions over other anions which makes it an eligible sensing probe for cyanide ions.

  6. Bifunctional redox flow battery - 2. V(III)/V(II)-L-cystine(O{sub 2}) system

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Y.H.; Xun, Y. [Research Institute of Chemical Defense, Beijing 100083 (China); Cheng, J.; Yang, Y.S. [Research Institute of Chemical Defense, Beijing 100083 (China); Beijing Science and Technology University, Beijing 100083 (China); Ma, P.H. [Full Cell R and D Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China)

    2008-08-20

    A new bifunctional redox flow battery (BRFB) system, V(III)/V(II) - L-cystine(O{sub 2}), was systematically investigated by using different separators. It is shown that during charge, water transfer is significantly restricted with increasing the concentration of HBr when the Nafion 115 cation exchange membrane is employed. The same result can be obtained when the gas diffusion layer (GDL) hot-pressed separator is used. The organic electro-synthesis is directly correlated with the crossover of vanadium. When employing the anion exchange membrane, the electro-synthesis efficiency is over 96% due to a minimal crossover of vanadium. When the GDL hot-pressed separator is applied, the crossover of vanadium and water transfer are noticeably prevented and the electro-synthesis efficiency of over 99% is obtained. Those impurities such as vanadium ions and bromine can be eliminated through the purification of organic electro-synthesized products. The purified product is identified to be L-cysteic acid by IR spectrum. The BRFB shows a favorable discharge performance at a current density of 20 mA cm{sup -2}. Best discharge performance is achieved by using the GDL hot-pressed separator. The coulombic efficiency of 87% and energy efficiency of about 58% can be obtained. The cause of major energy losses is mainly associated with the cross-contamination of anodic and cathodic active electrolytes. (author)

  7. Highly stable acyclic bifunctional chelator for {sup 64}Cu PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Abada, S.; Lecointre, A.; Christine, C.; Charbonniere, L. [CNRS/UDS, EPCM, Strasbourg (France). Lab. d' Ingenierie Appliquee a l' Analyse; Dechamps-Olivier, I. [Univ. de Reims Champagne Ardenne, Reims (France). Group Chimie de Coordination; Platas-Iglesias, C. [Univ. da Coruna (Spain). Dept. de Quimica Fundamental; Elhabiri, M. [CNRS/UDS, EPCM, Strasbourg (France). Lab. de Physico-Chimie Bioinorganique

    2011-07-01

    Ligand L{sup 1}, based on a pyridine scaffold, functionalized by two bis(methane phosphonate)aminomethyl groups, was shown to display a very high affinity towards Cu(II) (log K{sub CuL}=22.7) and selectivity over Ni(II), Co(II), Zn(II) and Ga(III) ({delta} log K{sub ML}>4) as shown by the values of the stability constants obtained from potentiometric measurements. Insights into the coordination mode of the ligand around Cu(II) cation were obtained by UV-Vis absorption and EPR spectroscopies as well as density functional theory (DFT) calculations (B3LYP model) performed in aqueous solution. The results point to a pentacoordination pattern of the metal ion in the fully deprotonated [CuL{sup 1}]{sup 6-} species. Considering the beneficial thermodynamic parameters of this ligand, kinetic experiments were run to follow the formation of the copper(II) complexes, indicating a very rapid formation of the complex, appropriate for {sup 64}Cu complexation. As L{sup 1} represents a particularly interesting target within the frame of {sup 64}Cu PET imaging, a synthetic protocol was developed to introduce a labeling function on the pyridyl moiety of L{sup 1}, thereby affording L{sup 2}, a potential bifunctional chelator (BFC) for PET imaging.

  8. The Golgi localized bifunctional UDP-rhamnose/UDP-galactose transporter family of Arabidopsis.

    Science.gov (United States)

    Rautengarten, Carsten; Ebert, Berit; Moreno, Ignacio; Temple, Henry; Herter, Thomas; Link, Bruce; Doñas-Cofré, Daniela; Moreno, Adrián; Saéz-Aguayo, Susana; Blanco, Francisca; Mortimer, Jennifer C; Schultink, Alex; Reiter, Wolf-Dieter; Dupree, Paul; Pauly, Markus; Heazlewood, Joshua L; Scheller, Henrik V; Orellana, Ariel

    2014-08-05

    Plant cells are surrounded by a cell wall that plays a key role in plant growth, structural integrity, and defense. The cell wall is a complex and diverse structure that is mainly composed of polysaccharides. The majority of noncellulosic cell wall polysaccharides are produced in the Golgi apparatus from nucleotide sugars that are predominantly synthesized in the cytosol. The transport of these nucleotide sugars from the cytosol into the Golgi lumen is a critical process for cell wall biosynthesis and is mediated by a family of nucleotide sugar transporters (NSTs). Numerous studies have sought to characterize substrate-specific transport by NSTs; however, the availability of certain substrates and a lack of robust methods have proven problematic. Consequently, we have developed a novel approach that combines reconstitution of NSTs into liposomes and the subsequent assessment of nucleotide sugar uptake by mass spectrometry. To address the limitation of substrate availability, we also developed a two-step reaction for the enzymatic synthesis of UDP-l-rhamnose (Rha) by expressing the two active domains of the Arabidopsis UDP-l-Rha synthase. The liposome approach and the newly synthesized substrates were used to analyze a clade of Arabidopsis NSTs, resulting in the identification and characterization of six bifunctional UDP-l-Rha/UDP-d-galactose (Gal) transporters (URGTs). Further analysis of loss-of-function and overexpression plants for two of these URGTs supported their roles in the transport of UDP-l-Rha and UDP-d-Gal for matrix polysaccharide biosynthesis.

  9. Site-specific conjugation of bifunctional chelator BAT to mouse IgG1 Fab' fragment

    Institute of Scientific and Technical Information of China (English)

    Jun LI; Xue-hao WANG; Xiao-ming WANG; Zhao-lai CHEN

    2006-01-01

    Aim: To perform a site-specific conjugation of Fab' fragments of a mouse monoclonal antibody(MoAb) B43(of IgG1 subtype) to a bifunctional chelator 6-[p-(bromoacetamido) benzyl]-l,4,8,11-tetraazacyclotetradecane-N,N',N",N'"-tetraacetic acid (BAT) via the thiol groups in the hinge distal to the antigenbinding site of the Fab'. Methods: B43 was cleaved using a simple 2-step method.First, stable F(ab')2 was produced by pepsin treatment. Fab' with free thiol in the hinge region was then obtained by cysteine reduction of F(ab')2. Second, a sitespecific conjugation of Fab' to thiol-specific BAT was performed in a one-step reaction. Results: The Fab' fragment had approximately 1.8 free thiol groups per molecule after cysteine reduction. The conjugation efficiency and the chemical yield were approximately 1.28 moles chelator/Fab' and 74% of the initial concentration of Fab', respectively. The F(ab')2, Fab' and Fab'-BAT all maintained reasonable antigen-binding properties. 67Cu labeling of the conjugate under standard conditions did not impair the immunoreactivity of Fab'-BAT. Conclusion: This is a simple and efficient method for producing immunoreactive conjugates of Fab'-BAT, which can be used to make radiometal-labeled conjugates for further diagnostic and therapeutic applications.

  10. Catalytic characterization of bi-functional catalysts derived from Pd–Mg–Al layered double hydroxides

    Indian Academy of Sciences (India)

    N N Das; S C Srivastava

    2002-08-01

    Hydrotalcite like precursors containing PdII–MgII–AlIII with varying molar ratios, (Pd + Mg)/Al ≈ 3 and Mg/Pd ≈ 750 to 35, were prepared by coprecipitation of metal nitrates at constant pH. Characterization of samples as synthesized and their calcined products by elemental analyses, powder XRD, TG–DTA, FT–IR spectroscopy, TPR and N2 physisorption indicated a well crystalline hydrotalcite like structure with incorporation of Pd2+ in the brucite layers. Thermal decomposition of hydrotalcite precursors at intermediate temperatures led to amorphous mixed oxides, Pd/MgAl(O), which on reduction yielded bi-functional catalyst, Pd°/MgAl(O). The resultant catalysts with acid, base and hydrogenating sites, were highly active and selective for one-step synthesis of methyl isobutyl ketone (MIBK) from acetone and hydrogen. The results showed an optimal balance between acid-base and metallic sites were required to increase the selectivity of MIBK and stability of the catalysts.

  11. Designing calcium phosphate-based bifunctional nanocapsules with bone-targeting properties

    Energy Technology Data Exchange (ETDEWEB)

    Khung, Yit-Lung; Bastari, Kelsen; Cho, Xing Ling; Yee, Wu Aik; Loo, Say Chye Joachim, E-mail: joachimloo@ntu.edu.sg [Nanyang Technological University, School of Materials Science and Engineering (Singapore)

    2012-06-15

    Using sodium dodecyl sulphate micelles as template, hollow-cored calcium phosphate nanocapsules were produced. The surfaces of the nanocapsule were subsequently silanised by a polyethylene glycol (PEG)-based silane with an N-hydroxysuccinimide ester end groups which permits for further attachment with bisphosphonates (BP). Characterisations of these nanocapsules were investigated using Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy, Fourier Transform Infra-Red Spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Dynamic Light Scattering. To further validate the bone-targeting potential, dentine discs were incubated with these functionalised nanocapsules. FESEM analysis showed that these surface-modified nanocapsules would bind strongly to dentine surfaces compared to non-functionalised nanocapsules. We envisage that respective components would give this construct a bifunctional attribute, whereby (1) the shell of the calcium phosphate nanocapsule would serve as biocompatible coating aiding in gradual osteoconduction, while (2) surface BP moieties, acting as targeting ligands, would provide the bone-targeting potential of these calcium phosphate nanocapsules.

  12. Evolution of the Bifunctional Lead μ Agonist / δ Antagonist Containing the Dmt-Tic Opioid Pharmacophore.

    Science.gov (United States)

    Balboni, Gianfranco; Salvadori, Severo; Trapella, Claudio; Knapp, Brian I; Bidlack, Jean M; Lazarus, Lawrence H; Peng, Xuemei; Neumeyer, John L

    2010-02-17

    Based on a renewed importance recently attributed to bi- or multifunctional opioids, we report the synthesis and pharmacological evaluation of some analogues derived from our lead μ agonist / δ antagonist, H-Dmt-Tic-Gly-NH-Bzl. Our previous studies focused on the importance of the C-teminal benzyl function in the induction of such bifunctional activity. The introduction of some substituents in the para position of the phenyl ring (-Cl, -CH(3), partially -NO(2), inactive -NH(2)) was found to give a more potent μ agonist / antagonist effect associated with a relatively unmodified δ antagonist activity (pA(2) = 8.28-9.02). Increasing the steric hindrance of the benzyl group (using diphenylmethyl and tetrahydroisoquinoline functionalities) substantially maintained the μ agonist and δ antagonist activities of the lead compound. Finally and quite unexpectedly D-Tic2, considered as a wrong opioid message now; inserted into the reference compound in lieu of L-Tic, provided a μ agonist / δ agonist better than our reference ligand (H-Dmt-Tic-Gly-NH-Ph) and was endowed with the same pharmacological profile.

  13. Employing bifunctional enzymes for enhanced extraction of bioactives from plants: flavonoids as an example.

    Science.gov (United States)

    Xu, Ming-Shu; Chen, Shuo; Wang, Wen-Quan; Liu, Si-Qin

    2013-08-21

    A cost-effective and environmentally friendly approach was developed to improve the extraction of active ingredients from plants, in which a bifunctional enzyme was employed for not only facilitating cell wall degradation but also increasing the bioactivity of target compounds in the extract. In the aqueous extraction of flavonoids from Glycyrrhizae radix, Trichoderma viride cellulase, a commercial cell-wall-degrading enzyme, was found to efficiently deglycosylate liquiritin and isoliquiritin, which are of high content but low bioactivity, into their aglycones that have much higher physiological activities for dietary and medicinal uses. Under optimized conditions, the extraction yield of liquiritigenin and isoliquiritigenin aglycones reached 4.23 and 0.39 mg/g of dry weight (dw) with 6.51- and 3.55-fold increases, respectively. The same approach was expanded to the extraction of flavonoids from Scutellariae radix using Penicillium decumbens naringinase, where enhanced production of more bioactive bacalein and wogonin was achieved via enzymatic deglycosylation of bacalin and wogonoside.

  14. Bifunctional Luminomagnetic Rare-Earth Nanorods for High-Contrast Bioimaging Nanoprobes

    Science.gov (United States)

    Gupta, Bipin Kumar; Singh, Satbir; Kumar, Pawan; Lee, Yean; Kedawat, Garima; Narayanan, Tharangattu N.; Vithayathil, Sajna Antony; Ge, Liehui; Zhan, Xiaobo; Gupta, Sarika; Martí, Angel A.; Vajtai, Robert; Ajayan, Pulickel M.; Kaipparettu, Benny Abraham

    2016-09-01

    Nanoparticles exhibiting both magnetic and luminescent properties are need of the hour for many biological applications. A single compound exhibiting this combination of properties is uncommon. Herein, we report a strategy to synthesize a bifunctional luminomagnetic Gd2‑xEuxO3 (x = 0.05 to 0.5) nanorod, with a diameter of ~20 nm and length in ~0.6 μm, using hydrothermal method. Gd2O3:Eu3+ nanorods have been characterized by studying its structural, optical and magnetic properties. The advantage offered by photoluminescent imaging with Gd2O3:Eu3+ nanorods is that this ultrafine nanorod material exhibits hypersensitive intense red emission (610 nm) with good brightness (quantum yield more than 90%), which is an essential parameter for high-contrast bioimaging, especially for overcoming auto fluorescent background. The utility of luminomagnetic nanorods for biological applications in high-contrast cell imaging capability and cell toxicity to image two human breast cancer cell lines T47D and MDA-MB-231 are also evaluated. Additionally, to understand the significance of shape of the nanostructure, the photoluminescence and paramagnetic characteristic of Gd2O3:Eu3+ nanorods were compared with the spherical nanoparticles of Gd2O3:Eu3+.

  15. The rigid bi-functional sail, new concept concerning the reduction of the drag of ships

    Science.gov (United States)

    Țicu, I.; Popa, I.; Ristea, M.

    2015-11-01

    The policy of the European Union in the energy field, for the period to follow until 2020, is based on three fundamental objectives: sustainability, competitiveness and safety in energy supply. The “Energy - Climate Changes” program sets out a number of objectives for the EU for the year 2020, known as the “20-20-20 objectives”, namely: the reduction of greenhouse gas emissions by at least 20% from the level of those of 1990, a 20% increase in the share of renewable energy sources out of the total energy consumption as well as a target of 10% biofuels in the transports energy consumption. In this context, in order to produce or save a part of the propulsive power produced by the main propulsion machinery, by burning fossil fuels, we suggest the equipping of vessels designed for maritime transport with a bi-functional rigid sail. We consider that this device may have both the role of trapping wind energy and the role of acting as a deflector for reducing the resistance of the vessel's proceeding through the water by conveniently using the bow air current, as a result of the vessel's heading through the water with significant advantage in reducing the energy consumption for propulsion insurance.

  16. Bifunctional compounds for controlling metal-mediated aggregation of the aβ42 peptide.

    Science.gov (United States)

    Sharma, Anuj K; Pavlova, Stephanie T; Kim, Jaekwang; Finkelstein, Darren; Hawco, Nicholas J; Rath, Nigam P; Kim, Jungsu; Mirica, Liviu M

    2012-04-18

    Abnormal interactions of Cu and Zn ions with the amyloid β (Aβ) peptide are proposed to play an important role in the pathogenesis of Alzheimer's disease (AD). Disruption of these metal-peptide interactions using chemical agents holds considerable promise as a therapeutic strategy to combat this incurable disease. Reported herein are two bifunctional compounds (BFCs) L1 and L2 that contain both amyloid-binding and metal-chelating molecular motifs. Both L1 and L2 exhibit high stability constants for Cu(2+) and Zn(2+) and thus are good chelators for these metal ions. In addition, L1 and L2 show strong affinity toward Aβ species. Both compounds are efficient inhibitors of the metal-mediated aggregation of the Aβ(42) peptide and promote disaggregation of amyloid fibrils, as observed by ThT fluorescence, native gel electrophoresis/Western blotting, and transmission electron microscopy (TEM). Interestingly, the formation of soluble Aβ(42) oligomers in the presence of metal ions and BFCs leads to an increased cellular toxicity. These results suggest that for the Aβ(42) peptide-in contrast to the Aβ(40) peptide-the previously employed strategy of inhibiting Aβ aggregation and promoting amyloid fibril dissagregation may not be optimal for the development of potential AD therapeutics, due to formation of neurotoxic soluble Aβ(42) oligomers.

  17. Structure and Function of Fusicoccadiene Synthase, a Hexameric Bifunctional Diterpene Synthase.

    Science.gov (United States)

    Chen, Mengbin; Chou, Wayne K W; Toyomasu, Tomonobu; Cane, David E; Christianson, David W

    2016-04-15

    Fusicoccin A is a diterpene glucoside phytotoxin generated by the fungal pathogen Phomopsis amygdali that causes the plant disease constriction canker, first discovered in New Jersey peach orchards in the 1930s. Fusicoccin A is also an emerging new lead in cancer chemotherapy. The hydrocarbon precursor of fusicoccin A is the tricyclic diterpene fusicoccadiene, which is generated by a bifunctional terpenoid synthase. Here, we report X-ray crystal structures of the individual catalytic domains of fusicoccadiene synthase: the C-terminal domain is a chain elongation enzyme that generates geranylgeranyl diphosphate, and the N-terminal domain catalyzes the cyclization of geranylgeranyl diphosphate to form fusicoccadiene. Crystal structures of each domain complexed with bisphosphonate substrate analogues suggest that three metal ions and three positively charged amino acid side chains trigger substrate ionization in each active site. While in vitro incubations reveal that the cyclase domain can utilize farnesyl diphosphate and geranyl diphosphate as surrogate substrates, these shorter isoprenoid diphosphates are mainly converted into acyclic alcohol or hydrocarbon products. Gel filtration chromatography and analytical ultracentrifugation experiments indicate that full-length fusicoccadiene synthase adopts hexameric quaternary structure, and small-angle X-ray scattering data yield a well-defined molecular envelope illustrating a plausible model for hexamer assembly.

  18. Bifunctional separator as a polysulfide mediator for highly stable Li-S batteries

    KAUST Repository

    Abbas, Syed Ali

    2016-05-24

    The shuttling process involving lithium polysulfides is one of the major factors responsible for the degradation in capacity of lithium–sulfur batteries (LSBs). Herein, we demonstrate a novel and simple strategy—using a bifunctional separator, prepared by spraying poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) on pristine separator—to obtain long-cycle LSBs. The negatively charged SO3– groups present in PSS act as an electrostatic shield for soluble lithium polysulfides through mutual coulombic repulsion, whereas PEDOT provides chemical interactions with insoluble polysulfides (Li2S, Li2S2). The dual shielding effect can provide an efficient protection from the shuttling phenomenon by confining lithium polysulfides to the cathode side of the battery. Moreover, coating with PEDOT:PSS transforms the surface of the separator from hydrophobic to hydrophilic, thereby improving the electrochemical performance. We observed an ultralow decay of 0.0364% per cycle when we ran the battery for 1000 cycles at 0.25 C—far superior to that of the pristine separator and one of the lowest recorded values reported at a low current density. We examined the versatility of our separator by preparing a flexible battery that functioned well under various stress conditions; it displayed flawless performance. Accordingly, this economical and simple strategy appears to be an ideal platform for commercialization of LSBs.

  19. Mutations induced by monofunctional and bifunctional phosphoramide mustards in supF tRNA gene.

    Science.gov (United States)

    Mudipalli, A; Maccubbin, A E; Nadadur, S S; Struck, R F; Gurtoo, H L

    1997-11-19

    The relative mutagenicity, nature of the mutations and the sequence specificity of mutations induced by the bifunctional alkylating agent, phosphoramide mustard (PM) and a monofunctional derivative, dechloroethyl phosphoramide mustard (dePM), were analyzed by the Ames test and by an in vitro shuttle vector mutagenesis assay. Both PM and dePM increased the mutation frequency above background in either assay. However, on an equimolar basis, dePM was less mutagenic than PM. In the in vitro shuttle vector mutagenesis assay, sequencing demonstrated that about 40% of the mutant plasmids contained more than one mutation in the supF tRNA gene segment of the plasmid. About 70% of the mutations observed in dePM-treated plasmids were single base substitutions with A:T and G:C base pairs being mutated at equivalent rates. In contrast, only about 50% of the mutations observed in PM-treated plasmids were single base substitutions, 80% of which involved G:C base pairs. Single base deletions and insertions were found in approximately equal proportions with both compounds; however, these lesions were in greater abundance in PM-treated plasmids. Putative hot-spots for mutation in the supF tRNA gene included base pairs at position 102 and 110 for PM and positions 170 and 171 for dePM.

  20. Bifunctional Crosslinking Agents Enhance Anion Exchange Membrane Efficacy for Vanadium Redox Flow Batteries.

    Science.gov (United States)

    Wang, Wenpin; Xu, Min; Wang, Shubo; Xie, Xiaofeng; Lv, Yafei; Ramani, Vijay K

    2014-06-01

    A series of cross-linked fluorinated poly (aryl ether oxadiazole) membranes (FPAEOM) derivatized with imidazolium groups were prepared. Poly (N-vinylimidazole) (PVI) was used as the bifunctional cross-linking agent to: a) lower vanadium permeability, b) enhance dimensional stability, and c) concomitantly provide added ion exchange capacity in the resultant anion exchange membranes. At a molar ratio of PVI to FPAEOM of 1.5, the resultant membrane (FPAEOM-1.5 PVI) had an ion exchange capacity of 2.2 meq g-1, a vanadium permeability of 6.8×10-7 cm2 min-1, a water uptake of 68 wt.%, and an ionic conductivity of 22.0 mS cm-1, all at 25°C. Single cells prepared with the FPAEOM-1.5 PVI membrane exhibited a higher coulombic efficiency (> 92%) and energy efficiency (> 86%) after 40 test cycles in vanadium redox flow battery. The imidazolium cation showed high chemical stability in highly acidic and oxidizing vanadium solution as opposed to poor stability in alkaline solutions. Based on our DFT studies, this was attributed to the lower HOMO energy (-7.265 eV) of the HSO4- ion (compared to the OH- ion; -5.496 eV) and the larger HOMO-LUMO energy gap (6.394 eV) of dimethylimidazolium bisulfate ([DMIM] [HSO4]) as compared to [DMIM] [OH] (5.387 eV).

  1. Modification of a bi-functional diguanylate cyclase-phosphodiesterase to efficiently produce cyclic diguanylate monophosphate

    Directory of Open Access Journals (Sweden)

    Natasha M. Nesbitt

    2015-09-01

    Full Text Available Cyclic-diGMP is a bacterial messenger that regulates many physiological processes, including many attributed to pathogenicity. Bacteria synthesize cyclic-diGMP from GTP using diguanylate cyclases; its hydrolysis is catalyzed by phosphodiesterases. Here we report the over-expression and purification of a bi-functional diguanylate cyclase-phosphodiesterase from Agrobacterium vitis S4. Using homology modeling and primary structure alignment, we identify several amino acids predicted to participate in the phosphodiesterase reaction. Upon altering selected residues, we obtain variants of the enzyme that efficiently and quantitatively catalyze the synthesis of cyclic-diGMP from GTP without hydrolysis to pGpG. Additionally, we identify a variant that produces cyclic-diGMP while immobilized to NiNTA beads and can catalyze the conversion of [α-32P]-GTP to [32P]-cyclic-diGMP. In short, we characterize a novel cyclic-diGMP processing enzyme and demonstrate its utility for efficient and cost-effective production of cyclic-diGMP, as well as modified cyclic-diGMP molecules, for use as probes in studying the many important biological processes mediated by cyclic-diGMP.

  2. Extreme Photonics & Applications

    CERN Document Server

    Hall, Trevor J; Paredes, Sofia A

    2010-01-01

    "Extreme Photonics & Applications" arises from the 2008 NATO Advanced Study Institute in Laser Control & Monitoring in New Materials, Biomedicine, Environment, Security and Defense. Leading experts in the manipulation of light offered by recent advances in laser physics and nanoscience were invited to give lectures in their fields of expertise and participate in discussions on current research, applications and new directions. The sum of their contributions to this book is a primer for the state of scientific knowledge and the issues within the subject of photonics taken to the extreme frontiers: molding light at the ultra-finest scales, which represents the beginning of the end to limitations in optical science for the benefit of 21st Century technological societies. Laser light is an exquisite tool for physical and chemical research. Physicists have recently developed pulsed lasers with such short durations that one laser shot takes the time of one molecular vibration or one electron rotation in an ...

  3. Non-extremal branes

    Directory of Open Access Journals (Sweden)

    Pablo Bueno

    2015-04-01

    Full Text Available We prove that for arbitrary black brane solutions of generic Supergravities there is an adapted system of variables in which the equations of motion are exactly invariant under electric–magnetic duality, i.e. the interchange of a given extended object by its electromagnetic dual. We obtain thus a procedure to automatically construct the electromagnetic dual of a given brane without needing to solve any further equation. We apply this procedure to construct the non-extremal (p,q-string of Type-IIB String Theory (new in the literature, explicitly showing how the dual (p,q-five-brane automatically arises in this construction. In addition, we prove that the system of variables used is suitable for a generic characterization of every double-extremal Supergravity brane solution, which we perform in full generality.

  4. Extremal periodic wave profiles

    Directory of Open Access Journals (Sweden)

    E. van Groesen

    2007-01-01

    Full Text Available As a contribution to deterministic investigations into extreme fluid surface waves, in this paper wave profiles of prescribed period that have maximal crest height will be investigated. As constraints the values of the momentum and energy integrals are used in a simplified description with the KdV model. The result is that at the boundary of the feasible region in the momentum-energy plane, the only possible profiles are the well known cnoidal wave profiles. Inside the feasible region the extremal profiles of maximal crest height are "cornered" cnoidal profiles: cnoidal profiles of larger period, cut-off and periodically continued with the prescribed period so that at the maximal crest height a corner results.

  5. Extremal Hairy Black Holes

    CERN Document Server

    Gonzalez, P A; Saavedra, Joel; Vasquez, Yerko

    2014-01-01

    We consider a gravitating system consisting of a scalar field minimally coupled to gravity with a self-interacting potential and an U(1) electromagnetic field. Solving the coupled Einstein-Maxwell-scalar system we find exact hairy charged black hole solutions with the scalar field regular everywhere. We go to the zero temperature limit and we study the effect of the scalar field on the near horizon geometry of an extremal black hole. We find that except a critical value of the charge of the black hole there is also a critical value of the charge of the scalar field beyond of which the extremal black hole is destabilized. We study the thermodynamics of these solutions and we find that if the space is flat then at low temperature the Reissner-Nordstr\\"om black hole is thermodynamically preferred, while if the space is AdS the hairy charged black hole is thermodynamically preferred at low temperature.

  6. Extremes in nature

    CERN Document Server

    Salvadori, Gianfausto; Kottegoda, Nathabandu T

    2007-01-01

    This book is about the theoretical and practical aspects of the statistics of Extreme Events in Nature. Most importantly, this is the first text in which Copulas are introduced and used in Geophysics. Several topics are fully original, and show how standard models and calculations can be improved by exploiting the opportunities offered by Copulas. In addition, new quantities useful for design and risk assessment are introduced.

  7. Religious Extremism in Pakistan

    Science.gov (United States)

    2014-12-01

    Face (July 2008): 32. 21 Ahmed Rashid , Pakistan on the Brink: The Future of America, Pakistan, and Afghanistan (New York: Viking, 2012). 22 Brian J...promoting extremism. Commentators such as Jessica Stern, Alan Richards, Hussain Haqqani, Ahmed Rashid , and Ali Riaz are a few of the scholars who...www.jstor.org/stable/3183558; See also Ahmed Rashid , Descent Into Chaos: The United States and the Failure of Nation Building in Pakistan, Afghanistan, and

  8. USACE Extreme Sea levels

    Science.gov (United States)

    2014-03-14

    flooding in the Thames Estuary under imaginable worst case sea-level rise scenarios. Int J Water Resour Dev Special Edition Water Disasters 21(4):577...Extreme tide and sea-level events. Technical report, Antarctic Climate and Ecosystems Corporate Research Centre. McMillan, A., Batstone, C...Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner GK, Allen SK, Tignor M, Midgley PM. A Special Report of Working Groups

  9. Extreme geomagnetically induced currents

    Science.gov (United States)

    Kataoka, Ryuho; Ngwira, Chigomezyo

    2016-12-01

    We propose an emergency alert framework for geomagnetically induced currents (GICs), based on the empirically extreme values and theoretical upper limits of the solar wind parameters and of d B/d t, the time derivative of magnetic field variations at ground. We expect this framework to be useful for preparing against extreme events. Our analysis is based on a review of various papers, including those presented during Extreme Space Weather Workshops held in Japan in 2011, 2012, 2013, and 2014. Large-amplitude d B/d t values are the major cause of hazards associated with three different types of GICs: (1) slow d B/d t with ring current evolution (RC-type), (2) fast d B/d t associated with auroral electrojet activity (AE-type), and (3) transient d B/d t of sudden commencements (SC-type). We set "caution," "warning," and "emergency" alert levels during the main phase of superstorms with the peak Dst index of less than -300 nT (once per 10 years), -600 nT (once per 60 years), or -900 nT (once per 100 years), respectively. The extreme d B/d t values of the AE-type GICs are 2000, 4000, and 6000 nT/min at caution, warning, and emergency levels, respectively. For the SC-type GICs, a "transient alert" is also proposed for d B/d t values of 40 nT/s at low latitudes and 110 nT/s at high latitudes, especially when the solar energetic particle flux is unusually high.

  10. Bifunctional Inhibition of Human Immunodeficiency Virus Type 1 Reverse Transcriptase: Mechanism and Proof-of-Concept as a Novel Therapeutic Design Strategy

    Science.gov (United States)

    Bailey, Christopher M.; Sullivan, Todd J.; Iyidogan, Pinar; Tirado-Rives, Julian; Chung, Raymond; Ruiz-Caro, Juliana; Mohamed, Ebrahim; Jorgensen, William; Hunter, Roger; Anderson, Karen S.

    2013-01-01

    Human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) is a major target for currently approved anti-HIV drugs. These drugs are divided into two classes: nucleoside and non-nucleoside reverse transcriptase inhibitors (NRTIs and NNRTIs). This study illustrates the synthesis and biochemical evaluation of a novel bifunctional RT inhibitor utilizing d4T (NRTI) and a TMC-derivative (a diarylpyrimidine NNRTI) linked via a poly(ethylene glycol) (PEG) linker. HIV-1 RT successfully incorporates the triphosphate of d4T-4PEG-TMC bifunctional inhibitor in a base-specific manner. Moreover, this inhibitor demonstrates low nanomolar potency that has 4.3-fold and 4300-fold enhancement of polymerization inhibition in vitro relative to the parent TMC-derivative and d4T, respectively. This study serves as a proof-of-concept for the development and optimization of bifunctional RT inhibitors as potent inhibitors of HIV-1 viral replication. PMID:23659183

  11. Enzymatic 13C Labeling and Multidimensional NMR Analysis of Miltiradiene Synthesized by Bifunctional Diterpene Cyclase in Selaginella moellendorffii*

    Science.gov (United States)

    Sugai, Yoshinori; Ueno, Yohei; Hayashi, Ken-ichiro; Oogami, Shingo; Toyomasu, Tomonobu; Matsumoto, Sadamu; Natsume, Masahiro; Nozaki, Hiroshi; Kawaide, Hiroshi

    2011-01-01

    Diterpenes show diverse chemical structures and various physiological roles. The diversity of diterpene is primarily established by diterpene cyclases that catalyze a cyclization reaction to form the carbon skeleton of cyclic diterpene. Diterpene cyclases are divided into two types, monofunctional and bifunctional cyclases. Bifunctional diterpene cyclases (BDTCs) are involved in hormone and defense compound biosyntheses in bryophytes and gymnosperms, respectively. The BDTCs catalyze the successive two-step type-B (protonation-initiated cyclization) and type-A (ionization-initiated cyclization) reactions of geranylgeranyl diphosphate (GGDP). We found that the genome of a lycophyte, Selaginella moellendorffii, contains six BDTC genes with the majority being uncharacterized. The cDNA from S. moellendorffii encoding a BDTC-like enzyme, miltiradiene synthase (SmMDS), was cloned. The recombinant SmMDS converted GGDP to a diterpene hydrocarbon product with a molecular mass of 272 Da. Mutation in the type-B active motif of SmMDS abolished the cyclase activity, whereas (+)-copalyl diphosphate, the reaction intermediate from the conversion of GGDP to the hydrocarbon product, rescued the cyclase activity of the mutant to form a diterpene hydrocarbon. Another mutant lacking type-A activity accumulated copalyl diphosphate as the reaction intermediate. When the diterpene hydrocarbon was enzymatically synthesized from [U-13C6]mevalonate, all carbons were labeled with 13C stable isotope (>99%). The fully 13C-labeled product was subjected to 13C-13C COSY NMR spectroscopic analyses. The direct carbon-carbon connectivities observed in the multidimensional NMR spectra demonstrated that the hydrocarbon product by SmMDS is miltiradiene, a putative biosynthetic precursor of tanshinone identified from the Chinese medicinal herb Salvia miltiorrhiza. Hence, SmMDS functions as a bifunctional miltiradiene synthase in S. moellendorffii. In this study, we demonstrate that one-dimensional and

  12. Opportunities and challenges in the electrocatalysis of CO2 and CO reduction using bifunctional surfaces

    DEFF Research Database (Denmark)

    Jovanov, Zarko; Hansen, Heine A.; Varela Gasque, Ana Sofia;

    2016-01-01

    "bifunctional" catalysts using Au-Cd based alloys inspired by theoretical modelling. Density functional theory calculations suggest more favourable thermodynamics for CO2 reduction to CO and methanol on mixed Au-Cd sites on Au3Cd relative to similar values on Au. We use various tools to test the bulk......Electrolysis could enable the large-scale conversion of CO2 to fuels and small molecules. This perspective discusses the state-of-the-art understanding of CO2 and CO reduction electrocatalysis and provides an overview of the most promising approaches undertaken thus far. We set to explore...

  13. Novel configuration of bifunctional air electrodes for rechargeable zinc-air batteries

    Science.gov (United States)

    Li, Po-Chieh; Chien, Yu-Ju; Hu, Chi-Chang

    2016-05-01

    A novel configuration of two electrodes containing electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) pressed into a bifunctional air electrode is designed for rechargeable Zn-air batteries. MOC/25BC carbon paper (MOC consisting of α-MnO2 and XC-72 carbon black) and Fe0.1Ni0.9Co2O4/Ti mesh on this air electrode mainly serve as the cathode for the ORR and the anode for the OER, respectively. The morphology and physicochemical properties of Fe0.1Ni0.9Co2O4 are investigated through scanning electron microscopy, inductively coupled plasma-mass spectrometry, and X-ray diffraction. Electrochemical studies comprise linear sweep voltammetry, rotating ring-disk electrode voltammetry, and the full-cell charge-discharge-cycling test. The discharge peak power density of the Zn-air battery with the unique air electrode reaches 88.8 mW cm-2 at 133.6 mA cm-2 and 0.66 V in an alkaline electrolyte under an ambient atmosphere. After 100 charge-discharge cycles at 10 mA cm-2, an increase of 0.3 V between charge and discharge cell voltages is observed. The deep charge-discharge curve (10 h in each step) indicates that the cell voltages of discharge (1.3 V) and charge (1.97 V) remain constant throughout the process. The performance of the proposed rechargeable Zn-air battery is superior to that of most other similar batteries reported in recent studies.

  14. Rice bifunctional phytocystatin is a dual modulator of legumain and papain-like proteases.

    Science.gov (United States)

    Christoff, Ana Paula; Passaia, Gisele; Salvati, Caroline; Alves-Ferreira, Márcio; Margis-Pinheiro, Marcia; Margis, Rogerio

    2016-09-01

    Phytocystatins are well-known inhibitors of C1A cysteine proteinases. However, previous research has revealed legumain (C13) protease inhibition via a carboxy-extended phytocystatin. Among the 12 phytocystatins genes in rice, OcXII is the only gene possessing this carboxy-terminal extension. The specific legumain inhibition activity was confirmed, in our work, using a recombinant OcXII harboring only the carboxy-terminal domain and this part did not exhibit any effect on papain-like activities. Meanwhile, rice plants silenced at the whole OcXII gene presented higher legumain and papain-like proteolytic activities, resulting in a faster initial seedling growth. However, when germinated under stressful alkaline conditions, OcXII-silenced plants exhibited impaired root formation and delayed shoot growth. Interestingly, the activity of OcXII promoter gene was detected in the rice seed scutellum region, and decreases with seedling growth. Seeds from these plants also exhibited slower growth at germination under ABA or alkaline conditions, while maintaining very high levels of OcXII transcriptional activation. This likely reinforces the proteolytic control necessary for seed germination and growth. In addition, increased legumain activity was detected in OcXII RNAi plants subjected to a fungal elicitor. Overall, the results of this study highlight the association of OcXII with not only plant development processes, but also with stress response pathways. The results of this study reinforce the bifunctional ability of carboxy-extended phytocystatins in regulating legumain proteases via its carboxy-extended domain and papain-like proteases by its amino-terminal domain.

  15. Isomerism in benzyl-DOTA derived bifunctional chelators: implications for molecular imaging.

    Science.gov (United States)

    Payne, Katherine M; Woods, Mark

    2015-02-18

    The bifunctional chelator IB-DOTA has found use in a range of biomedical applications given its ability to chelate many metal ions, but in particular the lanthanide(III) ions. Gd(3+) in particular is of interest in the development of new molecular imaging agents for MRI and is highly suitable for chelation by IB-DOTA. Given the long-term instability of the aryl isothiocyanate functional group we have used the more stable nitro derivative (NB-DOTA) to conduct a follow-up study of some of our previous work on the coordination chemistry of chelates of these BFCs. Using a combination of NMR and HPLC to study the Eu(3+) and Yb(3+) chelates of NB-DOTA, we have demonstrated that this ligand will produce two discrete regioisomeric chelates at the point at which the metal ion is introduced into the BFC. These regioisomers are defined by the position of the benzylic substituent on the macrocyclic ring: adopting an equatorial position either at the corner or the side of the [3333] ring conformation. These regioisomers are incapable of interconversion and are distinct, separate structures with different SAP/TSAP ratios. The side isomer exhibits an increased population of the TSAP isomer, pointing to more rapid water exchange kinetics in this regioisomer. This has potential ramifications for the use of these two regioisomers of Gd(3+)-BFC chelates in MRI applications. We have also found that, remarkably, there is little or no freedom of rotation about the first single bond extending from the macrocyclic ring to the benzylic substituent. Since this is the linkage through which the chelate is conjugated to the remainder of the molecular imaging probe, this result implies that there may be reduced local rotation of the Gd(3+) chelate within a molecular imaging probe. This implies that this type of BFC could exhibit higher relaxivities than other types of BFC.

  16. Modification of bifunctional epoxy resin using CO{sub 2} fixation process and nanoclay

    Energy Technology Data Exchange (ETDEWEB)

    Khoshkish, Morteza; Bouhendi, Hosein, E-mail: H.boohendi@ippi.ac.ir; Vafayan, Mehdi

    2014-10-15

    A bifunctional epoxy resin was modified by using a CO{sub 2} fixation solution process in the presence of tetra n-butyl ammonium bromide (TBAB) as catalyst and the modified treated resin was treated by cloisite 30B as nano additive. The Unmodified epoxy resin (UME), CO{sub 2} fixated modified epoxy resin (CFME), and CFME/clay nano composite (CFMEN), were cured by diethylenetriamine (DETA). A cycloaliphatic compound as a reactive diluent was used to control the viscosity of high viscose CFME. The exfoliation of organoclay in UME and CFME was investigated by X-ray diffraction and activation energy was computed using the advanced integral isoconversional method. The activation energy dependency demonstrated that the mechanism of UME curing did not change in the presence of nanoclay. In contrast, the CO{sub 2} fixation results showed a significant change in the activation energy dependency. The Thermal stability parameters include the initial degradation temperature (IDT), the temperature at the maximum rate of weight loss (T{sub max}), and the decomposition activation energy (E{sub d}) were determined by thermal gravimetry analysis. Dynamic mechanical thermal analysis measurements showed that the presence of organoclay in CFME increases the T{sub g} of nano composite in contrast to UME. The fracture roughness of UME, CFME and CFNE were determined by scanning electron microscope. The exfoliated UME/1%clay nanocomposite was confirmed by TEM image. - Highlights: • A new epoxy resin was synthesized using CO{sub 2} fixation reaction. • The synthesized epoxy resin was modified by an organo nano-clay. • CO{sub 2} fixation noticeably changed the curing mechanism. • CO{sub 2} fixation reaction consumes CO{sub 2} which is a harmful greenhouse gas.

  17. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions

    Science.gov (United States)

    Zhang, Jintao; Zhao, Zhenghang; Xia, Zhenhai; Dai, Liming

    2015-05-01

    The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are traditionally carried out with noble metals (such as Pt) and metal oxides (such as RuO2 and MnO2) as catalysts, respectively. However, these metal-based catalysts often suffer from multiple disadvantages, including high cost, low selectivity, poor stability and detrimental environmental effects. Here, we describe a mesoporous carbon foam co-doped with nitrogen and phosphorus that has a large surface area of ˜1,663 m2 g-1 and good electrocatalytic properties for both ORR and OER. This material was fabricated using a scalable, one-step process involving the pyrolysis of a polyaniline aerogel synthesized in the presence of phytic acid. We then tested the suitability of this N,P-doped carbon foam as an air electrode for primary and rechargeable Zn-air batteries. Primary batteries demonstrated an open-circuit potential of 1.48 V, a specific capacity of 735 mAh gZn-1 (corresponding to an energy density of 835 Wh kgZn-1), a peak power density of 55 mW cm-2, and stable operation for 240 h after mechanical recharging. Two-electrode rechargeable batteries could be cycled stably for 180 cycles at 2 mA cm-2. We also examine the activity of our carbon foam for both OER and ORR independently, in a three-electrode configuration, and discuss ways in which the Zn-air battery can be further improved. Finally, our density functional theory calculations reveal that the N,P co-doping and graphene edge effects are essential for the bifunctional electrocatalytic activity of our material.

  18. Extreme Programming Pocket Guide

    CERN Document Server

    Chromatic

    2003-01-01

    Extreme Programming (XP) is a radical new approach to software development that has been accepted quickly because its core practices--the need for constant testing, programming in pairs, inviting customer input, and the communal ownership of code--resonate with developers everywhere. Although many developers feel that XP is rooted in commonsense, its vastly different approach can bring challenges, frustrations, and constant demands on your patience. Unless you've got unlimited time (and who does these days?), you can't always stop to thumb through hundreds of pages to find the piece of info

  19. Metagenomics of extreme environments.

    Science.gov (United States)

    Cowan, D A; Ramond, J-B; Makhalanyane, T P; De Maayer, P

    2015-06-01

    Whether they are exposed to extremes of heat or cold, or buried deep beneath the Earth's surface, microorganisms have an uncanny ability to survive under these conditions. This ability to survive has fascinated scientists for nearly a century, but the recent development of metagenomics and 'omics' tools has allowed us to make huge leaps in understanding the remarkable complexity and versatility of extremophile communities. Here, in the context of the recently developed metagenomic tools, we discuss recent research on the community composition, adaptive strategies and biological functions of extremophiles.

  20. Characterizing Extreme Ionospheric Storms

    Science.gov (United States)

    Sparks, L.; Komjathy, A.; Altshuler, E.

    2011-12-01

    Ionospheric storms consist of disturbances of the upper atmosphere that generate regions of enhanced electron density typically lasting several hours. Depending upon the storm magnitude, gradients in electron density can sometimes become large and highly localized. The existence of such localized, dense irregularities is a major source of positioning error for users of the Global Positioning System (GPS). Consequently, satellite-based augmentation systems have been implemented to improve the accuracy and to ensure the integrity of user position estimates derived from GPS measurements. Large-scale irregularities generally do not pose a serious threat to estimate integrity as they can be readily detected by such systems. Of greater concern, however, are highly localized irregularities that interfere with the propagation of a signal detected by a user measurement but are poorly sampled by the receivers in the system network. The most challenging conditions have been found to arise following disturbances of large magnitude that occur only rarely over the course of a solar cycle. These extremely disturbed conditions exhibit behavior distinct from moderately disturbed conditions and, hence, have been designated "extreme storms". In this paper we examine and compare the behavior of the extreme ionospheric storms of solar cycle 23 (or, more precisely, extreme storms occurring between January 1, 2000, and December 31, 2008), as represented in maps of vertical total electron content. To identify these storms, we present a robust means of quantifying the regional magnitude of an ionospheric storm. Ionospheric storms are observed frequently to occur in conjunction with magnetic storms, i.e., periods of geophysical activity as measured by magnetometers. While various geomagnetic indices, such as the disturbance storm time (Dst) and the planetary Kp index, have long been used to rank the magnitudes of distinct magnetic storms, no comparable, generally recognized index exists for

  1. Winter Storms and Extreme Cold

    Science.gov (United States)

    ... Landslides & Debris Flow Nuclear Blast Nuclear Power Plants Power Outages Pandemic Radiological Dispersion Device Severe Weather Snowstorms & Extreme ... Landslides & Debris Flow Nuclear Blast Nuclear Power Plants Power Outages Pandemic Radiological Dispersion Device Severe Weather Snowstorms & Extreme ...

  2. Standardization of methodology to derivatization and radiolabeling of the anti-CD20 monoclonal antibody from bifunctional chelator DOTA-NHS-Ester

    Energy Technology Data Exchange (ETDEWEB)

    Massicano, Adriana V.F.; Akanji, Akinkunmi G.; Santos, Josefina S.; Pujatti, Priscilla B.; Couto, Renata M.; Massicano, Felipe; Araujo, Elaine Bortoleti de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], E-mail: adriana.avfernandes@gmail.com

    2009-07-01

    Lymphomas are cancers of the lymphatic system, being the most common the non-Hodgkin lymphoma (NHL). The Radioimmunotherapy (RIT), that increase the cytotoxic effect of monoclonal antibodies (mAb), therefore labeling these Mab with different radioisotopes. RIT combines the specificity of the antibody and the toxicity of the radionuclides. The mAb anti-CD20 is used for treatment of relapse or refractory NHL. The labeling of anti- CD20 with {sup 177}Lu, requires a bifunctional chelating agent that is designed to make a 'connect bridge' between the mAb and the radionuclide. The incorporation of the chelating group in mAb structure is called derivatization. The aim of this work is to study the derivatization of anti-CD20 antibody with DOTA-NHS-ester chelating group and labeling parameters to produce {sup 177}Lu-DOTA-Anti CD20. Five milligrams of anti-CD20 were purified by dialysis against phosphate buffer pH 8.0 and derivatized with DOTA-NHS-ester in 1:250, 1:500 and 1:1000 molar ratios. The reaction was conducted for 1 hour in gently mixing at room temperature and remained under refrigeration for 48 hours. The reaction mixture was purified in gel column Sephadex G-50 ; the aliquots that presented greater protein concentration, were mixed and concentrated. The purified antibody conjugated was added to 111-185MBq (3-5mCi) of {sup 177}LuCl3 diluted in 0.4 M acetate buffer pH 5.5. Radiochemical purity was less than 95% in all the molar ratios, indicating necessity of the purification after the labeling. The mAb derivatized showed stable when stored for to 1 month to 4 deg C and 4 days at -20 deg C. (author)

  3. A putative bifunctional histidine kinase/phosphatase of the HWE family exerts positive and negative control on the Sinorhizobium meliloti general stress response.

    Science.gov (United States)

    Sauviac, Laurent; Bruand, Claude

    2014-07-01

    The EcfG-type sigma factor RpoE2 is the regulator of the general stress response in Sinorhizobium meliloti. RpoE2 activity is negatively regulated by two NepR-type anti-sigma factors (RsiA1/A2), themselves under the control of two anti-anti-sigma factors (RsiB1/B2) belonging to the PhyR family of response regulators. The current model of RpoE2 activation suggests that in response to stress, RsiB1/B2 are activated by phosphorylation of an aspartate residue in their receiver domain. Once activated, RsiB1/B2 become able to interact with the anti-sigma factors and release RpoE2, which can then associate with the RNA polymerase to transcribe its target genes. The purpose of this work was to identify and characterize proteins involved in controlling the phosphorylation status of RsiB1/B2. Using in vivo approaches, we show that the putative histidine kinase encoded by the rsiC gene (SMc01507), located downstream from rpoE2, is able to both positively and negatively regulate the general stress response. In addition, our data suggest that the negative action of RsiC results from inhibition of RsiB1/B2 phosphorylation. From these observations, we propose that RsiC is a bifunctional histidine kinase/phosphatase responsible for RsiB1/B2 phosphorylation or dephosphorylation in the presence or absence of stress, respectively. Two proteins were previously proposed to control PhyR phosphorylation in Caulobacter crescentus and Sphingomonas sp. strain FR1. However, these proteins contain a Pfam:HisKA_2 domain of dimerization and histidine phosphotransfer, whereas S. meliloti RsiC harbors a Pfam:HWE_HK domain instead. Therefore, this is the first report of an HWE_HK-containing protein controlling the general stress response in Alphaproteobacteria.

  4. Bifunctional carbohydrate biopolymers entrapped lipase as catalyst for the two consecutive conversions of α-pinene to oxy-derivatives.

    Science.gov (United States)

    Tudorache, Madalina; Gheorghe, Andreea; Negoi, Alina; Enache, Madalin; Maria, Gabriel-Mihai; Parvulescu, Vasile I

    2016-11-01

    Bifunctional catalysts designed as carbohydrate biopolymers entrapping lipase have been investigated for the biotransformation of a natural compound (α-pinene) to oxy-derivatives. Lipases assisted the epoxidation of α-pinene using H2O2 as oxidation reagent and ethyl acetate as both acetate-supplier and solvent affording α-pinene oxide as the main product. Further, the biopolymer promoted the isomerization of α-pinene oxide to campholenic aldehyde and trans-carenol. In this case, the biopolymers played double roles of the support and also active part of the bifunctional catalyst. Screening of enzymes and their entrapping in a biopolymeric matrix (e.g. Ca-alginate and κ-carrageenan) indicated the lipase extracted from Aspergillus niger as the most efficient. In addition, the presence of biopolymers enhanced the catalytic activity of the immobilized lipase (i.e. 13.39×10(3), 19.76×10(3)and 26.46×10(3) for the free lipase, lipase-carrageenan and lipase-alginate, respectively). The catalysts stability and reusability were confirmed in eight consecutively reaction runs.

  5. Efficient bifunctional catalyst lipase/organophosphonic acid-functionalized silica for biodiesel synthesis by esterification of oleic acid with ethanol.

    Science.gov (United States)

    Yin, Ping; Chen, Wen; Liu, Wei; Chen, Hou; Qu, Rongjun; Liu, Xiguang; Tang, Qinghua; Xu, Qiang

    2013-07-01

    An efficient bifunctional catalyst lipase/organophosphonic acid-functionalized silica (SG-T-P-LS) has been successfully developed, and biodiesel production of fatty acid ethyl ester (FAEE) from free fatty acid (FFA) oleic acid with short-chain alcohol ethanol catalyzed by SG-T-P-LS was investigated. The process optimization using response surface methodology (RSM) was performed and the interactions between the operational variables were elucidated, and it was found that the molar ratio of alcohol to acid was the most significant factor. The optimum values for maximum conversion ratio can be obtained by using a Box-Behnken center-united design, and the conversion ratio could reach 89.94 ± 0.42% under the conditions that ethanol/acid molar ratio was 1.05:1 and SG-T-P-LS to FFA weight ratio was 14.9 wt.% at 28.6°C. The research results show that SG-T-P and LS-20 could work cooperatively to promote the esterification reaction, and the bifunctional catalyst SG-T-P-LS is a potential catalyst for biodiesel production.

  6. Preparation of IrO2 nanoparticles with SBA-15 template and its supported Pt nanocomposite as bifunctional oxygen catalyst

    Science.gov (United States)

    Kong, Fan-Dong; Liu, Jing; Ling, Ai-Xia; Xu, Zhi-Qiang; Wang, Hui-Yun; Kong, Qing-Sheng

    2015-12-01

    In the present work, we report the syntheses of IrO2 nanoparticles with SBA-15 template (s-IrO2), and s-IrO2 supported Pt nanocomposite (Pt/s-IrO2) as bifunctional oxygen catalyst. Physical characterizations including X-ray diffraction and transmission electron microscopy demonstrate that s-IrO2 catalyst has excellent uniformity and regularity in particle shape and much ordered distribution in geometric space, and Pt/s-IrO2 catalyst shows a uniform Pt dispersion on the surface of the s-IrO2 particles. Electrochemical analyses prove that s-IrO2 catalyst possesses superior OER activity at operating potentials; and that Pt/s-IrO2 catalyst, in comparison to Pt/commercial IrO2, has higher ESA value and ORR catalytic performance with a mechanism of four-electron pathway and a high ORR efficiency. And as a bifunctional oxygen catalyst, Pt/s-IrO2 also exhibits more remarkable OER performance than the commercial one. The s-IrO2 nanoparticles will be a promising active component (for OER), and suitable for Pt support (for ORR).

  7. A systematic comparative evaluation of 90Y-labeled bifunctional chelators for their use in targeted therapy.

    Science.gov (United States)

    Chakravarty, Rubel; Chakraborty, Sudipta; Dash, Ashutosh

    2014-02-01

    This paper describes a systematic comparative evaluation of five commonly used bifunctional chelators, namely,p-isothiocyanato benzyl derivatives of diethylenetriaminepentacetic acid (DTPA-NCS), trans-cyclohexyl diethylenetriaminepentaceticacid (CHX-A″-DTPA-NCS), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA-NCS), 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA-NCS), and 3,6,9,15-tetraazabicyclo [9.3.1]pentadeca-1(15),11,13-triene-3,6,9-triacetic acid (PCTA-NCS), on the basis of their ability to complex 90Y at room temperature, in vitro and in vivo stability and clearance pattern in biological system. The results of the experiments carried out revealed that CHX-A″-DTPA-NCS was the most promising option as it could be radiolabeled with 90Y at room temperature with highest specific activity and demonstrated high in vitro stability in human serum and in presence of challenging metal ions commonly present inhuman plasma. The clearance pattern in Swiss mice revealed that 90Y-CHX- A″-DTPA-NCS cleared through the kidneys with minimum retention in any other major organ. Thus, the use of cyclohexyl-DTPA based bifunctional chelators would increase the scope of making 90Y-labeled agents suitable for targeted therapy.

  8. Carbon Nanotube/Boron Nitride Nanocomposite as a Significant Bifunctional Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions.

    Science.gov (United States)

    Patil, Indrajit M; Lokanathan, Moorthi; Ganesan, Balakrishnan; Swami, Anita; Kakade, Bhalchandra

    2017-01-12

    It is an immense challenge to develop bifunctional electrocatalysts for oxygen reduction reactions (ORR) and oxygen evolution reactions (OER) in low temperature fuel cells and rechargeable metal-air batteries. Herein, a simple and cost-effective approach is developed to prepare novel materials based on carbon nanotubes (CNTs) and a hexagonal boron nitride (h-BN) nanocomposite (CNT/BN) through a one-step hydrothermal method. The structural analysis and morphology study confirms the formation of a homogeneous composite and merging of few exfoliated graphene layers of CNTs on the graphitic planes of h-BN, respectively. Moreover, the electrochemical study implies that CNT/BN nanocomposite shows a significantly higher ORR activity with a single step 4-electron transfer pathway and an improved onset potential of +0.86 V versus RHE and a current density of 5.78 mA cm(-2) in alkaline conditions. Interestingly, it exhibits appreciably better catalytic activity towards OER at low overpotential (η=0.38 V) under similar conditions. Moreover, this bifunctional catalyst shows substantially higher stability than a commercial Pt/C catalyst even after 5000 cycles. Additionally, this composite catalyst does not show any methanol oxidation reactions that nullify the issues due to fuel cross-over effects in direct methanol fuel cell applications.

  9. Precipitation extremes under climate change

    CERN Document Server

    O'Gorman, Paul A

    2015-01-01

    The response of precipitation extremes to climate change is considered using results from theory, modeling, and observations, with a focus on the physical factors that control the response. Observations and simulations with climate models show that precipitation extremes intensify in response to a warming climate. However, the sensitivity of precipitation extremes to warming remains uncertain when convection is important, and it may be higher in the tropics than the extratropics. Several physical contributions govern the response of precipitation extremes. The thermodynamic contribution is robust and well understood, but theoretical understanding of the microphysical and dynamical contributions is still being developed. Orographic precipitation extremes and snowfall extremes respond differently from other precipitation extremes and require particular attention. Outstanding research challenges include the influence of mesoscale convective organization, the dependence on the duration considered, and the need to...

  10. "Triangular" extremal dilatonic dyons

    CERN Document Server

    Gal'tsov, Dmitri; Orlov, Dmitri

    2014-01-01

    Explicit dyonic dilaton black holes of the four-dimensional Einstein-Maxwell-dilaton theory are known only for two particular values of the dilaton coupling constant $a =1,\\sqrt{3}$, while for other $a$ numerical evidence was presented earlier about existence of extremal dyons in theories with the discrete sequence of dilaton couplings $a=\\sqrt{n(n+1)/2}$ with integer $n$. Apart from the lower members $n=1,\\,2$, this family of theories does not have motivation from supersymmetry or higher dimensions, and so far the above quantization rule has not been derived analytically. We fill this gap showing that this rule follows from analyticity of the dilaton at the $AdS_2\\times S^2$ event horizon with $n$ being the leading dilaton power in the series expansion. We also present generalization for asymptotically anti-de Sitter dyonic black holes with spherical, plane and hyperbolic topology of the horizon.

  11. Pulsars and Extreme Physics

    Science.gov (United States)

    Bell-Burnell, Jocelyn

    2004-10-01

    Pulsars were discovered 35 years ago. What do we know about them now, and what have they taught us about the extremes of physics? With an average density comparable to that of the nucleus, magnetic fields around 108 T and speeds close to c these objects have stretched our understanding of the behaviour of matter. They serve as extrememly accurate clocks with which to carry out precision experiments in relativity. Created in cataclysmic explosions, pulsars are a (stellar) form of life after death. After half a billion revolutions most pulsars finally die, but amazingly some are born again to yet another, even weirder, afterlife. Pulsar research continues lively, delivering exciting, startling and almost unbelievable results!

  12. Extreme skin depth waveguides

    CERN Document Server

    Jahani, Saman

    2014-01-01

    Recently, we introduced a paradigm shift in light confinement strategy and introduced a class of extreme skin depth (e-skid) photonic structures (S. Jahani and Z. Jacob, "Transparent sub-diffraction optics: nanoscale light confinement without metal," Optica 1, 96-100 (2014)). Here, we analytically establish that figures of merit related to light confinement in dielectric waveguides are fundamentally tied to the skin depth of waves in the cladding. We contrast the propagation characteristics of the fundamental mode of e-skid waveguides and conventional waveguides to show that the decay constant in the cladding is dramatically larger in e-skid waveguides, which is the origin of sub-diffraction confinement. Finally, we propose an approach to verify the reduced skin depth in experiment using the decrease in the Goos-H\\"anchen phase shift.

  13. Extremely Preterm Birth

    Science.gov (United States)

    ... infants. Preeclampsia: A disorder that can occur during pregnancy or after childbirth in which there is high blood pressure and other signs of organ injury, such as an abnormal amount of protein in the urine, a low number of platelets, abnormal kidney or liver function, pain over the upper abdomen, ...

  14. Monofunctionalization of Calix[4]arene Tetracarboxylic Acid at the Upper Rim with Isothiocyanate Group: First Bifunctional Chelating Agent for Alpha-Emitter Ac-225.

    Science.gov (United States)

    Chen, Xiaoyuan; Ji, Min; Fisher, Darrell R; Wai, Chien M

    1999-09-01

    A procedure is reported for synthesizing a novel, water-soluble bifunctional chelating agent derived from calix[4]arene. This chelate features tetracarboxylic acid groups at the lower rim as an actinium-225 ionophore, and an isothiocyanate functional group at the upper rim for labeling of the N-terminus of monoclonal antibodies through thiourea linkage.

  15. Enantiopure bifunctional chelators for copper radiopharmaceuticals--does chirality matter in radiotracer design?

    Science.gov (United States)

    Singh, Ajay N; Dakanali, Marianna; Hao, Guiyang; Ramezani, Saleh; Kumar, Amit; Sun, Xiankai

    2014-06-10

    It is well recognized that carbon chirality plays a critical role in the design of drug molecules. However, very little information is available regarding the effect of stereoisomerism of macrocyclic bifunctional chelators (BFC) on biological behaviors of the corresponding radiopharmaceuticals. To evaluate such effects, three enantiopure stereoisomers of a copper radiopharmaceutical BFC bearing two chiral carbon atoms were synthesized in forms of R,R-, S,S-, and R,S-. Their corresponding peptide conjugates were prepared by coupling with a model peptide sequence, c(RGDyK), which targets the αvβ3 integrin for in vitro and in vivo evaluation of their biological behaviors as compared to the racemic conjugate. Despite the chirality differences, all the conjugates showed a similar in vitro binding affinity profile to the αvβ3 integrin (106, 108, 85 and 100 nM for rac-H2-1, RR-H2-1, SS-H2-1, and RS-H2-1 respectively with all p values > 0.05) and a similar level of in vivo tumor uptake (2.72 ± 0.45, 2.60 ± 0.52, 2.45 ± 0.48 and 2.88 ± 0.59 for rac-(64)Cu-1, RR-(64)Cu-1, SS-(64)Cu-1, and RS-(64)Cu-1 at 1 h p.i. respectively). Furthermore, they demonstrated a nearly identical biodistribution pattern in major organs (e.g. 2.07 ± 0.21, 2.13 ± 0.58, 1.70 ± 0.20 and 1.90 ± 0.46 %ID/g at 24 h p.i. in liver for rac-(64)Cu-1, RR-(64)Cu-1, SS-(64)Cu-1, and RS-(64)Cu-1 respectively; 1.80 ± 0.46, 2.30 ± 1.49, 1.73 ± 0.31 and 2.23 ± 0.71 at 24 h p.i. in kidneys for rac-(64)Cu-1, RR-(64)Cu-1, SS-(64)Cu-1, and RS-(64)Cu-1 respectively). Therefore we conclude that the chirality of BFC plays a negligible role in αvβ3-targeted copper radiopharmaceuticals. However, we believe it is still worthwhile to consider the chirality effects of BFCs on other targeted imaging or therapeutic agents.

  16. Evaluation of novel bifunctional chelates for the development of Cu-64-based radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Cara L. [MDS Nordion, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada)], E-mail: cara.ferreira@mdsinc.com; Yapp, Donald T. [British Columbia Cancer Agency Research Centre, Vancouver, BC, V5Z 1L3 (Canada); Lamsa, Eric [MDS Nordion, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Gleave, Martin [Prostrate Centre at Vancouver General Hospital, Vancouver, BC, V6H 3Z6 (Canada); Bensimon, Corinne [MDS Nordion, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Jurek, Paul; Kiefer, Garry E. [Macrocylics Inc., Dallas, Texas, 75235 (United States)

    2008-11-15

    Background: Currently available bifunctional chelates (BFCs) for attaching Cu-64 to a targeting molecule are limited by either their radiolabeling conditions or in vivo stability. With the goal of identifying highly effective BFCs, we compared the properties of two novel BFCs, 1-oxa-4,7,10-triazacyclododecane-S-5-(4-nitrobenzyl)-4,7,10-triacetic acid (p-NO{sub 2}-Bn-Oxo) and 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-S-4- (4-nitrobenzyl)-3,6,9-triacetic acid (p-NO{sub 2}-Bn-PCTA), with the commonly used S-2-(4-nitrobenzyl)-1,4,7,10-tetraazacyclododecanetetraacetic acid (p-NO{sub 2}-Bn-DOTA). Methods: p-NO{sub 2}-Bn-DOTA, p-NO{sub 2}-Bn-Oxo and p-NO{sub 2}-Bn-PCTA were each radiolabeled with Cu-64 under various conditions to assess the reaction kinetics and robustness of the radiolabeling. Stability of each Cu-64 BFC complex was evaluated at low pH and in serum. Small animal positron emission tomography imaging and biodistribution studies in mice were undertaken. Results: p-NO{sub 2}-Bn-Oxo and p-NO{sub 2}-Bn-PCTA possessed superior reaction kinetics compared to p-NO{sub 2}-Bn-DOTA under all radiolabeling conditions; >98% radiochemical yields were achieved in <5 min at room temperature even when using near stoichiometric amounts of BFC. Under nonideal conditions, such as low or high pH, high radiochemical yields were still achievable with the novel BFCs. The radiolabeled compounds were stable in serum and at pH 2 for 48 h. The imaging and biodistribution of the Cu-64-radiolabeled BFCs illustrated differences between the BFCs, including preferential clearance via the kidneys for the p-NO{sub 2}-Bn-PCTA Cu-64 complex. Conclusions: The novel BFCs facilitated efficient Cu-64 radiolabeling under mild conditions to produce stable complexes at potentially high specific activities. These BFCs may find wide utility in the development of Cu-64-based radiopharmaceuticals.

  17. Women in extreme poverty.

    Science.gov (United States)

    1994-01-01

    Population is estimated to increase from 5.5 billion in 1990 to 10 billion by 2050; the poverty level is expected to increase from 1 billion to 2-3 billion people. Women in development has been promoted throughout the UN and development system, but women in poverty who perform work in the informal sector are still uncounted, and solutions are elusive. The issue of extreme poverty can not be approached as just another natural disaster with immediate emergency relief. Many people live in precarious economic circumstances throughout their lives. Recent research reveals a greater understanding of the underlying causes and the need for inclusion of poor women in sustainable development. Sanitation, water, housing, health facilities need to be improved. Women must have access to education, opportunities for trading, and loans on reasonable terms. UNESCO makes available a book on survival strategies for poor women in the informal sector. The profile shows common problems of illiteracy, broken marriages, and full time involvement in provision of subsistence level existence. Existence is a fragile balance. Jeanne Vickers' "Women and the World" offers simple, low cost interventions for aiding extremely poor women. The 1992 Commission on the Status of Women was held in Vienna. Excerpts from several speeches are provided. The emphasis is on some global responses and an analysis of solutions. The recommendation is for attention to the gender dimension of poverty. Women's dual role contributes to greater disadvantages. Women are affected differently by macroeconomic factors, and that there is intergenerational transfer of poverty. Social services should be viewed as investments and directed to easing the burdens on time and energy. Public programs must be equipped to deal with poverty and to bring about social and economic change. Programs must be aware of the different distribution of resources within households. Women must be recognized as principal economic providers within

  18. Extreme winds in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Kristensen, L.; Rathmann, O.; Hansen, S.O.

    1999-02-01

    Wind-speed data from four sites in Denmark have been analyzed in order to obtain estimates of the basic wind velocity which is defined as the 50-year wind speed under standard conditions, i.e. ten-minute averages at the height 10 m over a uniform terrain with the roughness length 0.05 m. The sites are, from west, Skjern (15 years), Kegnaes (7 years), Sprogoe (20 years), and Tystofte (15 years). The data are ten minute averages of wind speed, wind direction, temperature and pressure. The last two quantities are used to determine the air density {rho}. The data are cleaned for terrain effects by means of a slightly modified WASP technique where the sector speed-up factors and roughness lengths are linearly smoothed with a direction resolution of one degree. Assuming geotropic balance, all the wind-velocity data are transformed to friction velocity u{sub *} and direction at standard conditions by means of the geotropic drag law for neutral stratification. The basic wind velocity in 30 deg. sectors are obtained through ranking of the largest values of the friction velocity pressure 1/2{rho}u{sub *}{sup 2} taken both one every two months and once every year. The main conclusion is that the basic wind velocity is significantly larger at Skjern, close to the west coast of Jutland, than at any of the other sites. Irrespective of direction, the present standard estimates of 50-year wind are 25 {+-} 1 m/s at Skern and 22 {+-} 1 m/s at the other three sites. These results are in agreement with those obtained by Jensen and Franck (1970) and Abild (1994) and supports the conclusion that the wind climate at the west coast of Jutland is more extreme than in any other part of the country. Simple procedures to translate in a particular direction sector the standard basic wind velocity to conditions with a different roughness length and height are presented. It is shown that a simple scheme makes it possible to calculate the total 50-year extreme load on a general structure without

  19. Detectors in Extreme Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Blaj, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Carini, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Carron, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Haller, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hart, P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hasi, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Herrmann, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Kenney, C. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Segal, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Tomada, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-06

    Free Electron Lasers opened a new window on imaging the motion of atoms and molecules. At SLAC, FEL experiments are performed at LCLS using 120Hz pulses with 1012 - 1013 photons in 10 femtoseconds (billions of times brighter than the most powerful synchrotrons). This extreme detection environment raises unique challenges, from obvious to surprising. Radiation damage is a constant threat due to accidental exposure to insufficiently attenuated beam, focused beam and formation of ice crystals reflecting the beam onto the detector. Often high power optical lasers are also used (e.g., 25TW), increasing the risk of damage or impeding data acquisition through electromagnetic pulses (EMP). The sample can contaminate the detector surface or even produce shrapnel damage. Some experiments require ultra high vacuum (UHV) with strict design, surface contamination and cooling requirements - also for detectors. The setup is often changed between or during experiments with short turnaround times, risking mechanical and ESD damage, requiring work planning, training of operators and sometimes continuous participation of the LCLS Detector Group in the experiments. The detectors used most often at LCLS are CSPAD cameras for hard x-rays and pnCCDs for soft x-rays.

  20. Solar extreme events

    CERN Document Server

    Hudson, Hugh S

    2015-01-01

    Solar flares and CMEs have a broad range of magnitudes. This review discusses the possibility of "extreme events," defined as those with magnitudes greater than have been seen in the existing historical record. For most quantitative measures, this direct information does not extend more than a century and a half into the recent past. The magnitude distributions (occurrence frequencies) of solar events (flares/CMEs) typically decrease with the parameter measured or inferred (peak flux, mass, energy etc. Flare radiation fluxes tend to follow a power law slightly flatter than $S^{-2}$, where S represents a peak flux; solar particle events (SPEs) follow a still flatter power law up to a limiting magnitude, and then appear to roll over to a steeper distribution, which may take an exponential form or follow a broken power law. This inference comes from the terrestrial $^{14}$C record and from the depth dependence of various radioisotope proxies in the lunar regolith and in meteorites. Recently major new observation...

  1. Stacked Extreme Learning Machines.

    Science.gov (United States)

    Zhou, Hongming; Huang, Guang-Bin; Lin, Zhiping; Wang, Han; Soh, Yeng Chai

    2015-09-01

    Extreme learning machine (ELM) has recently attracted many researchers' interest due to its very fast learning speed, good generalization ability, and ease of implementation. It provides a unified solution that can be used directly to solve regression, binary, and multiclass classification problems. In this paper, we propose a stacked ELMs (S-ELMs) that is specially designed for solving large and complex data problems. The S-ELMs divides a single large ELM network into multiple stacked small ELMs which are serially connected. The S-ELMs can approximate a very large ELM network with small memory requirement. To further improve the testing accuracy on big data problems, the ELM autoencoder can be implemented during each iteration of the S-ELMs algorithm. The simulation results show that the S-ELMs even with random hidden nodes can achieve similar testing accuracy to support vector machine (SVM) while having low memory requirements. With the help of ELM autoencoder, the S-ELMs can achieve much better testing accuracy than SVM and slightly better accuracy than deep belief network (DBN) with much faster training speed.

  2. Upper extremity amputations and prosthetics.

    Science.gov (United States)

    Ovadia, Steven A; Askari, Morad

    2015-02-01

    Upper extremity amputations are most frequently indicated by severe traumatic injuries. The location of the injury will determine the level of amputation. Preservation of extremity length is often a goal. The amputation site will have important implications on the functional status of the patient and options for prosthetic reconstruction. Advances in amputation techniques and prosthetic reconstructions promote improved quality of life. In this article, the authors review the principles of upper extremity amputation, including techniques, amputation sites, and prosthetic reconstructions.

  3. Extremal almost-Kahler metrics

    CERN Document Server

    Lejmi, Mehdi

    2009-01-01

    We generalize the notion of the Futaki invariant and extremal vector field to the general almost-Kahler case and we prove the periodicity of the extremal vector field when the symplectic form represents an integral cohomology class modulo torsion. We give also an explicit formula of the hermitian scalar curvature which allows us to obtain examples of non-integrable extremal almost-Kahler metrics saturating LeBrun's estimates.

  4. Likelihood estimators for multivariate extremes

    KAUST Repository

    Huser, Raphaël

    2015-11-17

    The main approach to inference for multivariate extremes consists in approximating the joint upper tail of the observations by a parametric family arising in the limit for extreme events. The latter may be expressed in terms of componentwise maxima, high threshold exceedances or point processes, yielding different but related asymptotic characterizations and estimators. The present paper clarifies the connections between the main likelihood estimators, and assesses their practical performance. We investigate their ability to estimate the extremal dependence structure and to predict future extremes, using exact calculations and simulation, in the case of the logistic model.

  5. Facile synthesis of flower like FePt@ZnO core–shell structure and its bifunctional properties

    Energy Technology Data Exchange (ETDEWEB)

    Majeed, Jerina [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Jayakumar, O.D., E-mail: ddjaya@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Mandal, B.P. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Salunke, H.G. [Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Naik, R. [Department of Physics, Wayne State University, Detroit, MI 48202 (United States); Tyagi, A.K., E-mail: aktyagi@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2014-06-01

    Graphical abstract: Flower shaped FePt and ZnO coated FePt with core–shell nanostructures are synthesized by a facile solvothermal procedure. Shell thickness of ZnO over FePt core was tuned by varying FePt concentration with respect to ZnO. Hybrid structure with lower FePt concentration exhibited bifunctionality such as near room temperature ferromagnetism and photoluminescence. Pristine FePt crystallize in the fct (L1{sub 0}) phase whereas it converts into fcc phase in presence of ZnO. - Highlights: • FePt@ZnO hybrid core–shell particles, with unique flower shape morphology have been prepared by solvothermal method. • Phase transition of fct-FePt to fcc-FePt has been found in presence of ZnO nanoparticles. • Plausible mechanism for growth of flowershaped nanoparticle is in accordance with energy minimization principle. • The core shell structure (FePt@ZnO) exhibits bi-functional properties. - Abstract: Flower shaped FePt and ZnO coated FePt (FePt@ZnO) core–shell nanostructures are synthesized by a facile solvothermal procedure. Two different compositions (molar ratio) of FePt and ZnO (FePt:ZnO = 1:3 and FePt:ZnO = 1:6) core–shells with different thicknesses of ZnO shells were synthesized. Hybrid FePt@ZnO core–shell flower structure with lower FePt concentration (FePt:ZnO = 1:6) exhibited bifunctionality including near room temperature ferromagnetism and photoluminescence at ambient conditions. X-ray diffraction patterns of pristine FePt showed partially ordered face centred tetragonal (fct) L1{sub 0} phase whereas ZnO coated FePt (FePt@ZnO) nanostructures showed hexagonal ZnO and disordered phase of FePt with fcc structure. The phase transition of fct FePt to fcc phase occurring in presence of ZnO is further confirmed by transmission electron microscopy and magnetic measurement studies. The formation of the nanoflowers was possibly due to growth along the [0 1 1] or [0 0 1] direction, keeping the core nearly spherical in accordance with the

  6. Management of Extremity Lymphedema.

    Science.gov (United States)

    Puleo; Luh

    1995-10-01

    Chronic lymphedema is almost always a permanent and often progressive condition. In most cases, neither medical nor surgical means can completely relieve the effects of lymphedema. Surgical management of chronic lymphedema has high morbidity and a success rate of only 30%, and many patients return to their presurgical limb girth within three to four years. Nonsurgical treatment of chronic lymphedema can decrease overall lymphatic edema. Sequential gradient compression systems, which compensate for impaired lymphatic flow, return protein-rich lymphatic fluid from the extracellular regions of the tissues back into the circulatory system where the fluid can be excreted.

  7. A novel human immunoglobulin Fcγ–Fcε bifunctional fusion protein inhibits FcεRI-mediated degranulation

    OpenAIRE

    Zhu, Daocheng; Kepley, Christopher L.; Zhang, Min; Zhang, Ke; Saxon, Andrew

    2002-01-01

    Human mast cells and basophils that express the high-affinity immunoglobulin E (IgE) receptor, Fcε receptor 1 (FcεRI), have key roles in allergic diseases. FcεRI cross-linking stimulates the release of allergic mediators1. Mast cells and basophils co-express FcγRIIb, a low affinity receptor containing an immunoreceptor tyrosine-based inhibitory motif and whose co-aggregation with FcεRI can block FcεRI-mediated reactivity2–4. Here we designed, expressed and tested the human basophil and mast-c...

  8. Bifunctional CYP81AA proteins catalyse identical hydroxylations but alternative regioselective phenol couplings in plant xanthone biosynthesis

    OpenAIRE

    El-Awaad, Islam; Bocola, Marco; Beuerle, Till; Liu, Benye; Beerhues, Ludger

    2016-01-01

    Xanthones are natural products present in plants and microorganisms. In plants, their biosynthesis starts with regioselective cyclization of 2,3′,4,6-tetrahydroxybenzophenone to either 1,3,5- or 1,3,7-trihydroxyxanthones, catalysed by cytochrome P450 (CYP) enzymes. Here we isolate and express CYP81AA-coding sequences from Hypericum calycinum and H. perforatum in yeast. Microsomes catalyse two consecutive reactions, that is, 3′-hydroxylation of 2,4,6-trihydroxybenzophenone and C–O phenol coupl...

  9. Gender, Education, Extremism and Security

    Science.gov (United States)

    Davies, Lynn

    2008-01-01

    This paper examines the complex relationships between gender, education, extremism and security. After defining extremism and fundamentalism, it looks first at the relationship of gender to violence generally, before looking specifically at how this plays out in more extremist violence and terrorism. Religious fundamentalism is also shown to have…

  10. Grassland responses to precipitation extremes

    Science.gov (United States)

    Grassland ecosystems are naturally subjected to periods of prolonged drought and sequences of wet years. Climate change is expected to enhance the magnitude and frequency of extreme events at the intraannual and multiyear scales. Are grassland responses to extreme precipitation simply a response to ...

  11. Identification and Overexpression of a Bifunctional Aldehyde/Alcohol Dehydrogenase Responsible for Ethanol Production in Thermoanaerobacter mathranii

    DEFF Research Database (Denmark)

    Yao, Shuo; Just Mikkelsen, Marie

    2010-01-01

    Thermoanaerobacter mathranii contains four genes, adhA, adhB, bdhA and adhE, predicted to code for alcohol dehydrogenases involved in ethanol metabolism. These alcohol dehydrogenases were characterized as NADP(H)-dependent primary alcohol dehydrogenase (AdhA), secondary alcohol dehydrogenase (Adh......B), butanol dehydrogenase (BdhA) and NAD(H)-dependent bifunctional aldehyde/alcohol dehydrogenase (AdhE), respectively. Here we observed that AdhE is an important enzyme responsible for ethanol production in T. mathranii based on the constructed adh knockout strains. An adhE knockout strain fails to produce...... ethanol as a fermentation product, while other adh knockout strains showed no significant difference from the wild type. Further analysis revealed that the ΔadhE strain was defective in aldehyde dehydrogenase activity, but still maintained alcohol dehydrogenase activity. This showed that AdhE is the major...

  12. Preparation of highly hydrophobic cotton fabrics by modification with bifunctional silsesquioxanes in the sol-gel process

    Science.gov (United States)

    Przybylak, Marcin; Maciejewski, Hieronim; Dutkiewicz, Agnieszka

    2016-11-01

    The surface modification of cotton fabrics was carried out using two types of bifunctional fluorinated silsesquioxanes with different ratios of functional groups. The modification was performed either by one- or two-step process. Two methods, the sol-gel and the dip coating method were used in different configurations. The heat treatment and the washing process were applied after modification. The wettability of cotton fabric was evaluated by measuring water contact angles (WCA). Changes in the surface morphology were examined by scanning electron microscopy (SEM, SEM-LFD) and atomic force microscopy (AFM). Moreover, the modified fabrics were subjected to analysis of elemental composition of the applied coatings using SEM-EDS techniques. Highly hydrophobic textiles were obtained in all cases studied and one of the modifications resulted in imparting superhydrophobic properties. Most of impregnated textiles remained hydrophobic even after multiple washing process which shows that the studied modification is durable.

  13. A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery applications

    Science.gov (United States)

    Wang, Jinmin; Zhang, Lei; Yu, Le; Jiao, Zhihui; Xie, Huaqing; Lou, Xiong Wen (David); Wei Sun, Xiao

    2014-09-01

    Electrochromic smart windows are regarded as a good choice for green buildings. However, conventional devices need external biases to operate, which causes additional energy consumption. Here we report a self-powered electrochromic window, which can be used as a self-rechargeable battery. We use aluminium to reduce Prussian blue (PB, blue in colour) to Prussian white (PW, colourless) in potassium chloride electrolyte, realizing a device capable of self-bleaching. Interestingly, the device can be self-recovered (gaining blue appearance again) by simply disconnecting the aluminium and PB electrodes, which is due to the spontaneous oxidation of PW to PB by the dissolved oxygen in aqueous solution. The self-operated bleaching and colouration suggest another important function of the device: a self-rechargeable transparent battery. Thus the PB/aluminium device we report here is bifunctional, that is, it is a self-powered electrochromic window as well as a self-rechargeable transparent battery.

  14. Synthesis of a bifunctional cytidine derivative and its conjugation to RNA for in vitro selection of a cytidine deaminase ribozyme.

    Science.gov (United States)

    Rublack, Nico; Müller, Sabine

    2014-01-01

    Over the past 20 years, the generation of functional RNAs by in vitro selection has become a standard technique. Apart from aptamers for simple binding of defined ligands, also RNAs for catalysis of chemical reactions have been selected. In the latter case, a key step often is the conjugation of one of the two reactants to the library, requiring suitable strategies for terminal or internal RNA functionalization. With the aim of selecting a ribozyme for deamination of cytidine, we have set up a selection scheme involving the attachment of the cytidine acting as deamination substrate to the 3'-terminus of the RNAs in the library, and library immobilization. Here, we report the synthesis of a bifunctional cytidine derivative suitable for conjugation to RNA and linkage of the conjugated library to a streptavidine-coated surface. Successful conjugation of the cytidine derivative to the 3'-terminus of a model RNA is demonstrated.

  15. Synthesis of a bifunctional cytidine derivative and its conjugation to RNA for in vitro selection of a cytidine deaminase ribozyme

    Directory of Open Access Journals (Sweden)

    Nico Rublack

    2014-08-01

    Full Text Available Over the past 20 years, the generation of functional RNAs by in vitro selection has become a standard technique. Apart from aptamers for simple binding of defined ligands, also RNAs for catalysis of chemical reactions have been selected. In the latter case, a key step often is the conjugation of one of the two reactants to the library, requiring suitable strategies for terminal or internal RNA functionalization. With the aim of selecting a ribozyme for deamination of cytidine, we have set up a selection scheme involving the attachment of the cytidine acting as deamination substrate to the 3'-terminus of the RNAs in the library, and library immobilization. Here, we report the synthesis of a bifunctional cytidine derivative suitable for conjugation to RNA and linkage of the conjugated library to a streptavidine-coated surface. Successful conjugation of the cytidine derivative to the 3'-terminus of a model RNA is demonstrated.

  16. Evaluation of 64Cu-labeled bifunctional chelate-bombesin conjugates.

    Science.gov (United States)

    Ait-Mohand, Samia; Fournier, Patrick; Dumulon-Perreault, Véronique; Kiefer, Garry E; Jurek, Paul; Ferreira, Cara L; Bénard, François; Guérin, Brigitte

    2011-08-17

    Several bifunctional chelates (BFCs) were investigated as carriers of (64)Cu for PET imaging. The most widely used chelator for (64)Cu labeling of BFCs is DOTA (1,4,7,10-tetraazacyclododecane-N,N',N″,N'''-tretraacetic acid), even though this complex exhibits only moderate in vivo stability. In this study, we prepared a series of alternative chelator-peptide conjugates labeled with (64)Cu, measured in vitro receptor binding affinities in human breast cancer T47D cells expressing the gastrin-releasing peptide receptor (GRPR) and compared their in vivo stability in mice. DOTA-, NOTA-(1,4,7-triazacyclononane-1,4,7-triacetic acid), PCTA-(3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-3,6,9-triacetic acid), and Oxo-DO3A-(1-oxa-4,7,10-triazacyclododecane-4,7,10-triacetic acid) peptide conjugates were prepared using H(2)N-Aoc-[d-Tyr(6),βAla(11),Thi(13),Nle(14)]bombesin(6-14) (BBN) as a peptide template. The BBN moiety was selected since it binds with high affinity to the GRPR, which is overexpressed on human breast cancer cells. A convenient synthetic approach for the attachment of aniline-BFC to peptides on solid support is also presented. To facilitate the attachment of the aniline-PCTA and aniline-Oxo-DO3A to the peptide via an amide bond, a succinyl spacer was introduced at the N-terminus of BBN. The partially protected aniline-BFC (p-H(2)N-Bn-PCTA(Ot-Bu)(3) or p-H(2)N-Bn-DO3A(Ot-Bu)(3)) was then coupled to the resulting N-terminal carboxylic acid preactivated with DEPBT/ClHOBt on resin. After cleavage and purification, the peptide-conjugates were labeled with (64)Cu using [(64)Cu]Cu(OAc)(2) in 0.1 M ammonium acetate buffer at 100 °C for 15 min. Labeling efficacy was >90% for all peptides; Oxo-DO3A-BBN was incubated an additional 150 min at 100 °C to achieve this high yield. Specific activities varied from 76 to 101 TBq/mmol. Competition assays on T47D cells showed that all BFC-BBN complexes retained high affinity for the GRPR. All BFC-BBN (64)Cu

  17. Modeling extreme risks in ecology.

    Science.gov (United States)

    Burgman, Mark; Franklin, James; Hayes, Keith R; Hosack, Geoffrey R; Peters, Gareth W; Sisson, Scott A

    2012-11-01

    Extreme risks in ecology are typified by circumstances in which data are sporadic or unavailable, understanding is poor, and decisions are urgently needed. Expert judgments are pervasive and disagreements among experts are commonplace. We outline approaches to evaluating extreme risks in ecology that rely on stochastic simulation, with a particular focus on methods to evaluate the likelihood of extinction and quasi-extinction of threatened species, and the likelihood of establishment and spread of invasive pests. We evaluate the importance of assumptions in these assessments and the potential of some new approaches to account for these uncertainties, including hierarchical estimation procedures and generalized extreme value distributions. We conclude by examining the treatment of consequences in extreme risk analysis in ecology and how expert judgment may better be harnessed to evaluate extreme risks.

  18. Structure of the phosphotransferase domain of the bifunctional aminoglycoside-resistance enzyme AAC(6')-Ie-APH(2'')-Ia.

    Science.gov (United States)

    Smith, Clyde A; Toth, Marta; Bhattacharya, Monolekha; Frase, Hilary; Vakulenko, Sergei B

    2014-06-01

    The bifunctional acetyltransferase(6')-Ie-phosphotransferase(2'')-Ia [AAC(6')-Ie-APH(2'')-Ia] is the most important aminoglycoside-resistance enzyme in Gram-positive bacteria, conferring resistance to almost all known aminoglycoside antibiotics in clinical use. Owing to its importance, this enzyme has been the focus of intensive research since its isolation in the mid-1980s but, despite much effort, structural details of AAC(6')-Ie-APH(2'')-Ia have remained elusive. The structure of the Mg2GDP complex of the APH(2'')-Ia domain of the bifunctional enzyme has now been determined at 2.3 Å resolution. The structure of APH(2'')-Ia is reminiscent of the structures of other aminoglycoside phosphotransferases, having a two-domain architecture with the nucleotide-binding site located at the junction of the two domains. Unlike the previously characterized APH(2'')-IIa and APH(2'')-IVa enzymes, which are capable of utilizing both ATP and GTP as the phosphate donors, APH(2'')-Ia uses GTP exclusively in the phosphorylation of the aminoglycoside antibiotics, and in this regard closely resembles the GTP-dependent APH(2'')-IIIa enzyme. In APH(2'')-Ia this GTP selectivity is governed by the presence of a `gatekeeper' residue, Tyr100, the side chain of which projects into the active site and effectively blocks access to the adenine-binding template. Mutation of this tyrosine residue to a less bulky phenylalanine provides better access for ATP to the NTP-binding template and converts APH(2'')-Ia into a dual-specificity enzyme.

  19. A Nanostructured Bifunctional platform for Sensing of Glucose Biomarker in Artificial Saliva: Synergy in hybrid Pt/Au surfaces.

    Science.gov (United States)

    Raymundo-Pereira, Paulo A; Shimizu, Flávio M; Coelho, Dyovani; Piazzeta, Maria H O; Gobbi, Angelo L; Machado, Sergio A S; Oliveira, Osvaldo N

    2016-12-15

    We report on a bimetallic, bifunctional electrode where a platinum (Pt) surface was patterned with nanostructured gold (Au) fingers with different film thicknesses, which was functionalized with glucose oxidase (GOx) to yield a highly sensitive glucose biosensor. This was achieved by using selective adsorption of a self-assembled monolayer (SAM) onto Au fingers, which allowed GOx immobilization only onto the Au-SAM surface. This modified electrode was termed bifunctional because it allowed to simultaneously immobilize the biomolecule (GOx) on gold to catalyze glucose, and detect hydrogen peroxide on Pt sites. Optimized electrocatalytic activity was reached for the architecture Pt/Au-SAM/GOx with 50nm thickness of Au, where synergy between Pt and Au allowed for detection of hydrogen peroxide (H2O2) at a low applied potential (0V vs. Ag/AgCl). Detection was performed for H2O2 in the range between 4.7 and 102.7 nmol L(-1), with detection limit of 3.4×10(-9) mol L(-1) (3.4 nmol L(-1)) and an apparent Michaelis-Menten rate constant of 3.2×10(-6)molL(-1), which is considerably smaller than similar devices with monometallic electrodes. The methodology was validated by measuring glucose in artificial saliva, including in the presence of interferents. The synergy between Pt and Au was confirmed in electrochemical impedance spectroscopy measurements with an increased electron transfer, compared to bare Pt and Au electrodes. The approach for fabricating the reproducible bimetallic Pt/Au electrodes is entirely generic and may be explored for other types of biosensors and biodevices where advantage can be taken of the combination of the two metals.

  20. TIAR and TIA-1 mRNA binding proteins co-aggregate under conditions of rapid oxygen decline and extreme hypoxia, suppress HIF-1alpha pathway and inhibit proliferation and angiogenesis

    OpenAIRE

    Gottschald, Oana Raluca

    2010-01-01

    T-cell intracellular antigen (TIA)-1 and TIA-1 related protein (TIAR) are mRNA-binding proteins that aggregate within stress granules under specific stress conditions. In this study, we analyzed TIAR/TIA-1 aggregation under different hypoxic conditions, and studied the effects on hypoxia-inducible factor (HIF)-1alpha, as well as on proliferation and angiogenesis. TIAR/TIA-1 formed stress granules under acute and pronounced hypoxic conditions in A549 adenocarcinoma cells. In parallel, HIF-1alp...

  1. Aldosterone and cortisol co-secreting bifunctional adrenal cortical carcinoma: A rare event

    OpenAIRE

    Chowdhury, Puskar Shyam; Nayak, Prasant; Gurumurthy, Srinivasan; David, Deepak

    2014-01-01

    Adrenocortical carcinoma (ACC) co-secreting aldosterone and cortisol is extremely rare. We report the case of a 37-yearold female who presented with paresis and facial puffiness. Evaluation revealed hypertension, hyperglycemia, severe hypokalemia and hyperaldosteronemia with elevated plasma aldosterone to renin ratio (ARR). Urinary free cortisol estimation showed elevated levels. Computed tomography scan revealed a right adrenal mass. Radical adrenalectomy specimen revealed ACC (T3N1). Post-o...

  2. Genomics of an extreme psychrophile, Psychromonas ingrahamii

    Directory of Open Access Journals (Sweden)

    Hauser Loren J

    2008-05-01

    Full Text Available Abstract Background The genome sequence of the sea-ice bacterium Psychromonas ingrahamii 37, which grows exponentially at -12C, may reveal features that help to explain how this extreme psychrophile is able to grow at such low temperatures. Determination of the whole genome sequence allows comparison with genes of other psychrophiles and mesophiles. Results Correspondence analysis of the composition of all P. ingrahamii proteins showed that (1 there are 6 classes of proteins, at least one more than other bacteria, (2 integral inner membrane proteins are not sharply separated from bulk proteins suggesting that, overall, they may have a lower hydrophobic character, and (3 there is strong opposition between asparagine and the oxygen-sensitive amino acids methionine, arginine, cysteine and histidine and (4 one of the previously unseen clusters of proteins has a high proportion of "orphan" hypothetical proteins, raising the possibility these are cold-specific proteins. Based on annotation of proteins by sequence similarity, (1 P. ingrahamii has a large number (61 of regulators of cyclic GDP, suggesting that this bacterium produces an extracellular polysaccharide that may help sequester water or lower the freezing point in the vicinity of the cell. (2 P. ingrahamii has genes for production of the osmolyte, betaine choline, which may balance the osmotic pressure as sea ice freezes. (3 P. ingrahamii has a large number (11 of three-subunit TRAP systems that may play an important role in the transport of nutrients into the cell at low temperatures. (4 Chaperones and stress proteins may play a critical role in transforming nascent polypeptides into 3-dimensional configurations that permit low temperature growth. (5 Metabolic properties of P. ingrahamii were deduced. Finally, a few small sets of proteins of unknown function which may play a role in psychrophily have been singled out as worthy of future study. Conclusion The results of this genomic analysis

  3. Genomics of an extreme psychrophile, Psychromonas ingrahamii

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Monica [Woods Hole Research Center, Woods Hole, MA; Staley, James T. [University of Washington, Seattle; Danchin, Antoine [Universite Louis Pasteur, France; Wang, T. [University of Washington; Brettin, Tom [Los Alamos National Laboratory (LANL); Hauser, Loren John [ORNL; Land, Miriam L [ORNL; Thompson, Linda S [Los Alamos National Laboratory (LANL)

    2008-05-01

    Background: The genome sequence of the sea-ice bacterium Psychromonas ingrahamii 37, which grows exponentially at -12C, may reveal features that help to explain how this extreme psychrophile is able to grow at such low temperatures. Determination of the whole genome sequence allows comparison with genes of other psychrophiles and mesophiles. Results: Correspondence analysis of the composition of all P. ingrahamii proteins showed that (1) there are 6 classes of proteins, at least one more than other bacteria, (2) integral inner membrane proteins are not sharply separated from bulk proteins suggesting that, overall, they may have a lower hydrophobic character, and (3) there is strong opposition between asparagine and the oxygen-sensitive amino acids methionine, arginine, cysteine and histidine and (4) one of the previously unseen clusters of proteins has a high proportion of "orphan" hypothetical proteins, raising the possibility these are cold-specific proteins. Based on annotation of proteins by sequence similarity, (1) P. ingrahamii has a large number (61) of regulators of cyclic GDP, suggesting that this bacterium produces an extracellular polysaccharide that may help sequester water or lower the freezing point in the vicinity of the cell. (2) P. ingrahamii has genes for production of the osmolyte, betaine choline, which may balance the osmotic pressure as sea ice freezes. (3) P. ingrahamii has a large number (11) of three-subunit TRAP systems that may play an important role in the transport of nutrients into the cell at low temperatures. (4) Chaperones and stress proteins may play a critical role in transforming nascent polypeptides into 3-dimensional configurations that permit low temperature growth. (5) Metabolic properties of P. ingrahamii were deduced. Finally, a few small sets of proteins of unknown function which may play a role in psychrophily have been singled out as worthy of future study. Conclusion: The results of this genomic analysis provide a

  4. Moment methods in extremal geometry

    NARCIS (Netherlands)

    De Laat, D.

    2016-01-01

    In this thesis we develop techniques for solving problems in extremal geometry. We give an infinite dimensional generalization of moment techniques from polynomial optimization. We use this to construct semidefinite programming hierarchies for approximating optimal packing densities and ground state

  5. Deformations of extremal toric manifolds

    CERN Document Server

    Rollin, Yann

    2012-01-01

    Let $X$ be a compact toric extremal K\\"ahler manifold. Using the work of Sz\\'ekelyhidi, we provide a simple criterion on the fan describing $X$ to ensure the existence of complex deformations of $X$ that carry extremal metrics. As an example, we find new CSC metrics on 4-points blow-ups of $\\C\\P^1\\times\\C\\P^1$.

  6. Observed Statistics of Extreme Waves

    Science.gov (United States)

    2006-12-01

    9 Figure 5. An energy stealing wave as a solution to the NLS equation . (From: Dysthe and...shown that nonlinear interaction between four colliding waves can produce extreme wave behavior. He utilized the NLS equation in his numerical ...2000) demonstrated the formation of extreme waves using the Korteweg de Vries ( KdV ) equation , which is valid in shallow water. It was shown in the

  7. Catalytic Asymmetric Synthesis of Both Enantiomers of 4‑Substituted 1,4-Dihydropyridines with the Use of Bifunctional Thiourea-Ammonium Salts Bearing Different Counterions

    Directory of Open Access Journals (Sweden)

    Kohzo Yoshida

    2010-11-01

    Full Text Available Organoammonium salts composed of a Brønsted acid and an anilinothiourea promoted the Michael addition of β-keto esters and α,β-unsaturated aldehydes in the presence of primary amines to give functionalized 1,4-dihydropyridines enantioselectively. With the use of the different Brønsted acids such as DFA and HBF4 with the same bifunctional thiourea, both enantiomers of 4-substituted 1,4-dihydropyridine were synthesized from the same starting materials.

  8. Metal-ligand bifunctional reactivity and catalysis of protic N-heterocyclic carbene and pyrazole complexes featuring β-NH units.

    Science.gov (United States)

    Kuwata, Shigeki; Ikariya, Takao

    2014-11-28

    Metal-ligand bifunctional cooperation has attracted much attention because it offers a powerful methodology to realize a number of highly efficient and selective catalysts. In this article, recent developments in the metal-ligand cooperative reactions of protic N-heterocyclic carbene (NHC) and pyrazole complexes bearing an acidic NH group at the position β to the metal are surveyed. Protic 2-pyridylidenes as related cooperating non-innocent ligands are also described.

  9. Uniting anion relay chemistry with Pd-mediated cross coupling: design, synthesis and evaluation of bifunctional aryl and vinyl silane linchpins.

    Science.gov (United States)

    Smith, Amos B; Kim, Won-Suk; Tong, Rongbiao

    2010-02-05

    Union of type II Anion Relay Chemistry (ARC) with Pd-induced Cross Coupling Reactions (CCR) has been achieved, in conjunction with the design, synthesis, and evaluation of a new class of bifunctional linchpins, comprising a series of vinyl silanes bearing beta- or gamma-electrophilic sites. The synthetic tactic permits both alkylation and Pd-mediated CCR of the anions derived via 1,4-silyl C(sp(2))-->O Brook Rearrangements.

  10. Asymmetric α-hydroxylation of tetralone-derived β-ketoesters by using a guanidine-urea bifunctional organocatalyst in the presence of cumene hydroperoxide.

    Science.gov (United States)

    Odagi, Minami; Furukori, Kota; Watanabe, Tatsuya; Nagasawa, Kazuo

    2013-12-02

    Highly enantioselective catalytic oxidation of 1-tetralone-derived β-keto esters was achieved by using a guanidine-urea bifunctional organocatalyst in the presence of cumene hydroperoxide (CHP), a safe, commercially available oxidant. The α-hydroxylation products were obtained in 99% yield with up to 95% enantiomeric excess (ee). The present oxidation was successfully applied to synthesize a key intermediate of the anti-cancer agent daunorubicin (2).

  11. Molecularly Imprinted Polymers with Bi-functional Monomers of Polymerizable Cyclodextrin Derivatives and 2-(Diethylamino)-ethyl Methacrylate for Recognition of Norfloxacin in Aqueous Media

    Institute of Scientific and Technical Information of China (English)

    Zhi Feng XU; Lan LIU; Qin Ying DENG

    2006-01-01

    A molecularly imprinted polymer was synthesized using 2-(diethylamino)ethylmethacry -late(DEM) and bismethacryloyl-β-cyclodextrin(BMA-β-CD) as bi-functional monomers and norfloxacin(NOF) as a template. The results of equilibrium binding experiments indicated that the polymer has affinity and specificity for NOF in aqueous media, and that its selective recognition ability for the template was higher than that of the imprinted polymers synthesized with a single functional monomer (BMA-β-CD or DEM).

  12. An Efficient Bifunctional Electrocatalyst for a Zinc-Air Battery Derived from Fe/N/C and Bimetallic Metal-Organic Framework Composites.

    Science.gov (United States)

    Wang, Mengfan; Qian, Tao; Zhou, Jinqiu; Yan, Chenglin

    2017-02-15

    Efficient bifunctional electrocatalysts with desirable oxygen activities are closely related to practical applications of renewable energy systems including metal-air batteries, fuel cells, and water splitting. Here a composite material derived from a combination of bimetallic zeolitic imidazolate frameworks (denoted as BMZIFs) and Fe/N/C framework was reported as an efficient bifunctional catalyst. Although BMZIF or Fe/N/C alone exhibits undesirable oxygen reaction activity, a combination of these materials shows unprecedented ORR (half-wave potential of 0.85 V as well as comparatively superior OER activities (potential@10 mA cm(-2) of 1.64 V), outperforming not only a commercial Pt/C electrocatalyst but also most reported bifunctional electrocatalysts. We then tested its practical application in Zn-air batteries. The primary batteries exhibit a high peak power density of 235 mW cm(-2), and the batteries are able to be operated smoothly for 100 cycles at a curent density of 10 mA cm(-2). The unprecedented catalytic activity can be attritued to chemical coupling effects between Fe/N/C and BMZIF and will aid the development of highly active electrocatalysts and applications for electrochemical energy devices.

  13. Novel Electrospun Dual-Layered Composite Nanofibrous Membrane Endowed with Electricity-Magnetism Bifunctionality at One Layer and Photoluminescence at the Other Layer.

    Science.gov (United States)

    Wang, Zijiao; Ma, Qianli; Dong, Xiangting; Li, Dan; Xi, Xue; Yu, Wensheng; Wang, Jinxian; Liu, Guixia

    2016-10-05

    Dual-layered composite nanofibrous membrane equipped with electrical conduction, magnetism and photoluminescence trifunctionality is constructed via electrospinning. The composite membrane consists of a polyaniline (PANI)/Fe3O4 nanoparticles (NPs)/polyacrylonitrile (PAN) tuned electrical-magnetic bifunctional nanofibrous layer at one side and a Eu(TTA)3(TPPO)2/polyvinylpyrrolidone (PVP) photoluminescent nanofibrous layer at the other side, and the two layers are tightly combined face-to-face together into the novel dual-layered composite membrane with trifunctionality. The electric conductivity and magnetism of electrical-magnetic bifunctionality can be respectively tunable via modulating the respective PANI and Fe3O4 NPs contents, and the highest electric conductivity approaches the order of 1 × 10(-2) S cm(-1). Predominant red emission at 615 nm can be obviously observed in the photoluminescent layer under 366 nm excitation. Moreover, the luminescent intensity of photoluminescent layer is almost unaffected by the electrical-magnetic bifunctional layer because of the fact that the photoluminescent materials have been successfully isolated from dark-colored PANI and Fe3O4 NPs. The novel dual-layered composite nanofibrous membrane with trifunctionality has potentials in many fields. Furthermore, the design philosophy and fabrication method for the dual-layered multifunctional membrane provide a new and facile strategy toward other membranes with multifunctionality.

  14. Aldosterone and cortisol co-secreting bifunctional adrenal cortical carcinoma: A rare event.

    Science.gov (United States)

    Chowdhury, Puskar Shyam; Nayak, Prasant; Gurumurthy, Srinivasan; David, Deepak

    2014-07-01

    Adrenocortical carcinoma (ACC) co-secreting aldosterone and cortisol is extremely rare. We report the case of a 37-yearold female who presented with paresis and facial puffiness. Evaluation revealed hypertension, hyperglycemia, severe hypokalemia and hyperaldosteronemia with elevated plasma aldosterone to renin ratio (ARR). Urinary free cortisol estimation showed elevated levels. Computed tomography scan revealed a right adrenal mass. Radical adrenalectomy specimen revealed ACC (T3N1). Post-operatively, the patient became normotensive and euglycemic with normalization of urinary cortisol and ARR. This case highlights the need for a complete evaluation in patients of hyperaldosteronism if overlapping symptoms of hypercortisolism are encountered, to avoid post-operative adrenal crisis.

  15. Are hourly precipitation extremes increasing faster than daily precipitation extremes?

    Science.gov (United States)

    Barbero, Renaud; Fowler, Hayley; Blenkinsop, Stephen; Lenderink, Geert

    2016-04-01

    Extreme precipitation events appear to be increasing with climate change in many regions of the world, including the United States. These extreme events have large societal impacts, as seen during the recent Texas-Oklahoma flooding in May 2015 which caused several billion in damages and left 47 deaths in its path. Better understanding of past changes in the characteristics of extreme rainfall events is thus critical for reliable projections of future changes. Although it has been documented in several studies that daily precipitation extremes are increasing across parts of the contiguous United States, very few studies have looked at hourly extremes. However, this is of primary importance as recent studies on the temperature scaling of extreme precipitation have shown that increases above the Clausius-Clapeyron (~ 7% °C-1) are possible for hourly precipitation. In this study, we used hourly precipitation data (HPD) from the National Climatic Data Center and extracted more than 1,000 stations across the US with more than 40 years of data spanning the period 1950-2010. As hourly measurements are often associated with a range of issues, the data underwent multiple quality control processes to exclude erroneous data. While no significant changes were found in annual maximum precipitation using both hourly and daily resolution datasets, significant increasing trends in terms of frequency of episodes exceeding present-day 95th percentiles of wet hourly/daily precipitation were observed across a significant portion of the US. The fraction of stations with significant increasing trends falls outside the confidence interval range during all seasons but the summer. While less than 12% of stations exhibit significant trends at the daily scale in the wintertime, more than 45% of stations, mostly clustered in central and Northern United States, show significant increasing trends at the hourly scale. This suggests that short-duration storms have increased faster than daily

  16. NiCo2S4 nanowires array as an efficient bifunctional electrocatalyst for full water splitting with superior activity

    Science.gov (United States)

    Liu, Danni; Lu, Qun; Luo, Yonglan; Sun, Xuping; Asiri, Abdullah M.

    2015-09-01

    The present communication reports the topotactic conversion of NiCo2O4 nanowires array on carbon cloth (NiCo2O4 NA/CC) into NiCo2S4 NA/CC, which is used as an efficient bifunctional electrocatalyst for water splitting with good durability and superior activity in 1.0 M KOH. This NiCo2S4 NA/CC electrode produces 100 mA cm-2 at an overpotential of 305 mV for hydrogen evolution and 100 mA cm-2 at an overpotential of 340 mV for oxygen evolution. To afford a 10 mA cm-2 water-splitting current, the alkaline water electrolyzer made from NiCo2S4 NA/CC needs a cell voltage of 1.68 V, which is 300 mV less than that for NiCo2O4 NA/CC, and has good stability.The present communication reports the topotactic conversion of NiCo2O4 nanowires array on carbon cloth (NiCo2O4 NA/CC) into NiCo2S4 NA/CC, which is used as an efficient bifunctional electrocatalyst for water splitting with good durability and superior activity in 1.0 M KOH. This NiCo2S4 NA/CC electrode produces 100 mA cm-2 at an overpotential of 305 mV for hydrogen evolution and 100 mA cm-2 at an overpotential of 340 mV for oxygen evolution. To afford a 10 mA cm-2 water-splitting current, the alkaline water electrolyzer made from NiCo2S4 NA/CC needs a cell voltage of 1.68 V, which is 300 mV less than that for NiCo2O4 NA/CC, and has good stability. Electronic supplementary information (ESI) available: Experimental section and ESI Figures. See DOI: 10.1039/c5nr04064g

  17. Degradable polyethylenimine derivate coupled to a bifunctional peptide R13 as a new gene-delivery vector

    Directory of Open Access Journals (Sweden)

    Liu K

    2012-02-01

    Full Text Available Kehai Liu1,2,*, Xiaoyu Wang1,*, Wei Fan1, Qing Zhu2, Jingya Yang2, Jing Gao3, Shen Gao1 1Department of Pharmaceutics, Shanghai Hospital, Second Military Medical University, 2Department of Biopharmaceutics, School of Food Science and Technology, Shanghai Ocean University, 3Department of Pharmaceutics, School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China*The first two authors contributed equally to this workBackground: To solve the efficiency versus cytotoxicity and tumor-targeting problems of polyethylenimine (PEI used as a nonviral gene delivery vector, a degradable PEI derivate coupled to a bifunctional peptide R13 was developed.Methods: First, we synthesized a degradable PEI derivate by crosslinking low-molecular-weight PEI with pluronic P123, then used tumor-targeting peptide arginine-glycine-aspartate-cysteine (RGDC, in conjunction with the cell-penetrating peptide Tat (49–57, to yield a bifunctional peptide RGDC-Tat (49–57 named R13, which can improve cell selection and increase cellular uptake, and, lastly, adopted R13 to modify the PEI derivates so as to prepare a new polymeric gene vector (P123-PEI-R13. The new gene vector was characterized in terms of its chemical structure and biophysical parameters. We also investigated the specificity, cytotoxicity, and gene transfection efficiency of this vector in avß3-positive human cervical carcinoma Hela cells and murine melanoma B16 cells in vitro.Results: The vector showed controlled degradation, strong targeting specificity to avß3 receptor, and noncytotoxicity in Hela cells and B16 cells at higher doses, in contrast to PEI 25 KDa. The particle size of P123-PEI-R13/DNA complexes was around 100–250 nm, with proper zeta potential. The nanoparticles can protect plasmid DNA from being digested by DNase I at a concentration of 6 U DNase I/µg DNA. The nanoparticles were resistant to dissociation induced by 50% fetal bovine serum and 600 µg/mL sodium

  18. Book review: Extreme ocean waves

    Science.gov (United States)

    Geist, Eric L.

    2017-01-01

    Extreme Ocean Waves”, edited by E. Pelinovsky and C. Kharif, second edition, Springer International Publishing, 2016; ISBN: 978-3-319-21574-7, ISBN (eBook): 978-3-319-21575-4The second edition of “Extreme Ocean Waves” published by Springer is an update of a collection of 12 papers edited by Efim Pelinovsky and Christian Kharif following the April 2007 meeting of the General Assembly of the European Geosciences Union. In this edition, three new papers have been added and three more have been substantially revised. Color figures are now included, which greatly aids in reading several of the papers, and is especially helpful in visualizing graphs as in the paper on symbolic computation of nonlinear wave resonance (Tobisch et al.). A note on terminology: extreme waves in this volume broadly encompass different types of waves, including deep-water and shallow-water rogue waves (which are alternatively termed freak waves), and internal waves. One new paper on tsunamis (Viroulet et al.) is now included in the second edition of this volume. Throughout the book, the reader will find a combination of laboratory, theoretical, and statistical/empirical treatment necessary for the complete examination of this subject. In the Introduction, the editors underscore the importance of studying extreme waves, documenting a dramatic instance of damaging extreme waves that recently occurred in 2014.

  19. Extreme resistance to two Brazilian strains of Potato virus Y (PVY in transgenic potato, cv. Achat, expressing the PVYº coat protein Resistência extrema a duas estirpes do Potato virus Y (PVY de batata transgênica, cv. Achat, expressando o gene da capa protéica do PVY O

    Directory of Open Access Journals (Sweden)

    Eduardo Romano

    2001-07-01

    Full Text Available The coat protein (CP gene of the potato virus Y strain "o" (PVY O was introduced into potato, cultivar Achat, via Agrobacterium tumefaciens-mediated transformation. Sixty three putative transgenic lines were challenged against the Brazilian strains PVY-OBR and PVY-NBR. An extremely resistant phenotype, against the two strains, was observed in one line, denominated 1P. No symptoms or positive ELISA results were observed in 16 challenged plants from this line. Another clone, named as 63P, showed a lower level of resistance. Southern blot analysis showed five copies of the CP gene in the extremely resistant line and at least three copies in the other resistant line. The stability of the integrated transgenes in the extreme resistant line was examined during several in vitro multiplications over a period of three years, with no modification in the Southern pattern was observed. The stability of the transgenes, the absence of primary infections and the relatively broad spectrum of resistance suggest that the extremely resistant line obtained in this work can be useful for agricultural purposes.O gene da capa protéica (CP do Potato virus Y estirpe "o", foi introduzido em batata cultivar Achat, via Agrobacterium tumefaciens. Sessenta e três linhas possivelmente transgênicas foram desafiadas com as estirpes brasileiras PVY-OBR e PVY-NBR. Uma linha apresentou extrema resistência às duas estirpes inoculadas, e foi denominado clone 1P. Não foram observados sintomas sistêmicos de infecção e as plantas foram negativas em Elisa. Outra linha, denominada clone 63P, mostrou algum nível de resistência. Análises por Southern blot indicaram a presença de pelo menos cinco cópias do gen CP no clone 1P e pelo menos três cópias no clone 63P. A estabilidade do gene introduzido no clone 1P foi avaliada durante três anos, após várias multiplicações in vitro. Não foram observadas mudanças no padrão do Southern blot. A estabilidade do transgene, na

  20. Mitochondriogenesis genes and extreme longevity.

    Science.gov (United States)

    Santiago, Catalina; Garatachea, Nuria; Yvert, Thomas; Rodríguez-Romo, Gabriel; Santos-Lozano, Alejandro; Fiuza-Luces, Carmen; Lucia, Alejandro

    2013-02-01

    Genes of the proliferator-activated receptor delta (PPARD)-peroxisome proliferator-activated receptor γ coactivator 1α (PPARGC1A, also termed PGC1-α)-nuclear respiratory factor (NRF)-mitochondrial transcription Factor A (TFAM) mitochondriogenesis pathway can influence health/disease phenotypes, yet their association with extreme longevity is not known. We studied the association of five common polymorphisms in genes of this pathway (rs2267668, rs8192678, rs6949152, rs12594956, rs1937) and extreme longevity using a case (107 centenarians)-control (284 young adults) design. We found no between-group differences in allele/genotype frequencies, except for CC genotype in rs1937 (p=0.003), with no representation in controls (0%), versus 2.8% in centenarians (2 men, 1 woman). In summary, the studied genetic variants of the PPARD-PPARGC1A-NRF-TFAM pathway were not associated with extreme longevity, yet a marginal association could exist for rs1937.

  1. Extreme, expedition, and wilderness medicine.

    Science.gov (United States)

    Imray, Christopher H E; Grocott, Michael P W; Wilson, Mark H; Hughes, Amy; Auerbach, Paul S

    2015-12-19

    Extreme, expedition, and wilderness medicine are modern and rapidly evolving specialties that address the spirit of adventure and exploration. The relevance of and interest in these specialties are changing rapidly to match the underlying activities, which include global exploration, adventure travel, and military deployments. Extreme, expedition, and wilderness medicine share themes of providing best available medical care in the outdoors, especially in austere or remote settings. Early clinical and logistics decision making can often have important effects on subsequent outcomes. There are lessons to be learned from out-of-hospital care, military medicine, humanitarian medicine, and disaster medicine that can inform in-hospital medicine, and vice-versa. The future of extreme, expedition, and wilderness medicine will be defined by both recipients and practitioners, and empirical observations will be transformed by evidence-based practice.

  2. Aldosterone and cortisol co-secreting bifunctional adrenal cortical carcinoma: A rare event

    Directory of Open Access Journals (Sweden)

    Puskar Shyam Chowdhury

    2014-01-01

    Full Text Available Adrenocortical carcinoma (ACC co-secreting aldosterone and cortisol is extremely rare. We report the case of a 37-yearold female who presented with paresis and facial puffiness. Evaluation revealed hypertension, hyperglycemia, severe hypokalemia and hyperaldosteronemia with elevated plasma aldosterone to renin ratio (ARR. Urinary free cortisol estimation showed elevated levels. Computed tomography scan revealed a right adrenal mass. Radical adrenalectomy specimen revealed ACC (T3N1. Post-operatively, the patient became normotensive and euglycemic with normalization of urinary cortisol and ARR. This case highlights the need for a complete evaluation in patients of hyperaldosteronism if overlapping symptoms of hypercortisolism are encountered, to avoid post-operative adrenal crisis.

  3. Extreme Weather and Natural Disasters

    CERN Document Server

    Healey, Justin

    2012-01-01

    Australia is a vast land in which weather varies significantly in different parts of the continent. Recent extreme weather events in Australia, such as the Queensland floods and Victorian bushfires, are brutal reminders of nature's devastating power. Is global warming increasing the rate of natural disasters? What part do La Niña and El Niño play in the extreme weather cycle? Cyclones, floods, severe storms, bushfires, landslides, earthquakes, tsunamis - what are the natural and man-made causes of these phenomena, how predictable are they, and how prepared are we for the impacts of natural dis

  4. Extreme Conditions Modeling Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Coe, R. G.; Neary, V. S.; Lawson, M. J.; Yu, Y.; Weber, J.

    2014-07-01

    Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL) hosted the Wave Energy Converter (WEC) Extreme Conditions Modeling (ECM) Workshop in Albuquerque, NM on May 13th-14th, 2014. The objective of the workshop was to review the current state of knowledge on how to model WECs in extreme conditions (e.g. hurricanes and other large storms) and to suggest how U.S. Department of Energy (DOE) and national laboratory resources could be used to improve ECM methods for the benefit of the wave energy industry.

  5. Pluronic-lysozyme conjugates as anti-adhesive and antibacterial bifunctional polymers for surface coating

    NARCIS (Netherlands)

    Muszanska, A.K.; Busscher, H.J.; Herrmann, A.; Mei, van der H.C.; Norde, W.

    2011-01-01

    This paper describes the preparation and characterization of polymer protein conjugates composed of a synthetic triblock copolymer with a central polypropylene oxide (PPO) block and two terminal polyethylene oxide (PEO) segments, Pluronic F-127, and the antibacterial enzyme lysozyme attached to the

  6. Transferrin-targeted magnetic/fluorescence micelles as a specific bi-functional nanoprobe for imaging liver tumor

    Science.gov (United States)

    Qi, Hui; Li, Zhengzheng; Du, Kai; Mu, Ketao; Zhou, Qing; Liang, Shuyan; Zhu, Wenzhen; Yang, Xiangliang; Zhu, Yanhong

    2014-10-01

    In order to delineate the location of the tumor both before and during operation, we developed targeted bi-functional polymeric micelles for magnetic resonance (MR) and fluorescence imaging in liver tumors. Hydrophobic superparamagnetic iron oxide nanoparticles (SPIONs) were loaded into the polymeric micelles through self-assembly of an amphiphilic block copolymer poly(ethylene glycol)-poly(ɛ-caprolactone). After, transferrin (Tf) and near-infrared fluorescence molecule Cy5.5 were conjugated onto the surface of the polymeric micelles to obtain the nanosized probe SPIO@PEG- b-PCL-Tf/Cy5.5 (SPPTC). Imaging capabilities of this nanoprobe were evaluated both in vitro and in vivo. The accumulation of SPPTC in HepG2 cells increased over SPIO@PEG- b-PCL-Cy5.5 (SPPC) by confocal microscopy. The targeted nanoprobe SPPTC possessed favorable properties on the MR and fluorescence imaging both in vitro and in vivo. The MTT results showed that the nanoprobes were well tolerated. SPPTC had the potential for pre-operation evaluation and intra-operation navigation of tumors in clinic.

  7. Bifunctional Polymer Nanocomposites as Hole-Transport Layers for Efficient Light Harvesting: Application to Perovskite Solar Cells.

    Science.gov (United States)

    Wang, Jhong-Yao; Hsu, Fang-Chi; Huang, Jeng-Yeh; Wang, Leeyih; Chen, Yang-Fang

    2015-12-23

    A new approach to largely enhancing light harvesting of solar cells by employing bifunctional polymer nanocomposites as hole-transport layers (HTLs) is proposed. To illustrate our working principle, CH3NH3PbI3-xClx perovskite solar cells are used as examples. Gold nanoparticles (Au-NPs) are added into a conjugated poly(3-hexylthiophene-2,5-diyl) (P3HT) matrix, resulting in a ∼4-fold enhancement in the electrical conductivity and carrier mobility of the native P3HT film. The improved electrical properties are attributed to enhanced polymer chain ordering caused by Au-NPs. By integration of those P3HT:Au-NP films with an optimum loading concentration of 20% into perovskite solar cells as HTLs, this leads to a more than 25% enhancement in the power conversion efficiency (PCE) compared with that of the NP-free one. In addition to the modulated electrical properties of the HTL, the improved performance can also be attributed to the scattering effect from the incorporated Au-NPs, which effectively extends the optical pathway to amplify photon absorption of the photoactive layer. The design principle shown here can be generalized to other organic materials as well, which should be very useful for the further development of high-performance optoelectronic devices.

  8. Simultaneous H2 Generation and Biomass Upgrading in Water by an Efficient Noble-Metal-Free Bifunctional Electrocatalyst.

    Science.gov (United States)

    You, Bo; Jiang, Nan; Liu, Xuan; Sun, Yujie

    2016-08-16

    As an environmentally friendly approach to generate H2 , electrocatalytic water splitting has attracted worldwide interest. However, its broad employment has been inhibited by costly catalysts and low energy conversion efficiency, mainly due to the sluggish anodic half reaction, the O2 evolution reaction (OER), whose product O2 is not of significant value. Herein, we report an efficient strategy to replace OER with a thermodynamically more favorable reaction, the oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA), catalyzed by 3D Ni2 P nanoparticle arrays on nickel foam (Ni2 P NPA/NF). HMF is one of the primary dehydration intermediates of raw biomass and FDCA is of many industrial applications. As a bifunctional electrocatalyst, Ni2 P NPA/NF is not only active for HMF oxidation but also competent for H2 evolution. In fact, a two-electrode electrolyzer employing Ni2 P NPA/NF for simultaneous H2 and FDCA production required a voltage at least 200 mV smaller compared with pure water splitting to achieve the same current density, as well as exhibiting robust stability and nearly unity Faradaic efficiencies.

  9. Two-Step Hydrothermal Synthesis of Bifunctional Hematite-Silver Heterodimer Nanoparticles for Potential Antibacterial and Anticancer Applications

    Science.gov (United States)

    Trang, Vu Thi; Tam, Le Thi; Phan, Vu Ngoc; Van Quy, Nguyen; Huy, Tran Quang; Le, Anh-Tuan

    2017-01-01

    In recent years, the development of composite nanostructures containing noble metal and magnetic nanocrystals has attracted much interest because they offer a promising avenue for multifunctional applications in nanomedicine and pharmacotherapy. In this work, we present a facile two-step hydrothermal approach for the synthesis of bifunctional heterodimer nanoparticles (HDNPs) composed of hematite nanocubes (α-Fe2O3 NCs) and silver nanoparticles (Ag-NPs). The formation and magnetic property of α-Fe2O3-Ag HDNPs was analyzed by transmission electron microscopy, x-ray diffraction and vibrating sample magnetometer. Interestingly, the hydrothermal-synthesized α-Fe2O3-Ag HDNPs were found to display significant antibacterial activity against three types of infectious bacteria. The cytotoxicity of α-Fe2O3-Ag nanocomposite against lung cancer A549 cell line was investigated and compared with that of pure α-Fe2O3 NCs and Ag-NPs. The obtained results reveal that the α-Fe2O3-Ag nanocomposite exhibited higher anticancer performance than that of pure Ag-NPs, whereas pure α-Fe2O3 NCs were not cytotoxic to the tested cells. The inhibitory concentration (IC50) of the α-Fe2O3-Ag nanocomposite was found at 20.94 μg/mL. With the aforementioned properties, α-Fe2O3-Ag HDNPs showed a high potential as a multifunctional material for advanced biomedicine and nanotherapy applications.

  10. Study of a Bifunctional Aβ Aggregation Inhibitor with the Abilities of Antiamyloid-β and Copper Chelation.

    Science.gov (United States)

    Zhang, Qian; Hu, Xiaoyu; Wang, Wei; Yuan, Zhi

    2016-02-08

    In this study, a bifunctional Aβ aggregation inhibitor peptide, GGHRYYAAFFARR (GR), with the abilities to bind copper and antiamyloid was designed to inhibit the neurotoxicity of the Aβ-Cu(II) complex. The thioflavin T (ThT) assay, turbidimetric analysis, transmission electron microscopy (TEM), and (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay were used to study its potential inhibitory effect on Aβ aggregation. Our findings indicate that GGH was the specific chelating sequence and that the RYYAAFFARR (RR) component acted as an aggregation inhibitor. More importantly, GR significantly decreased the cytotoxicity of the Aβ-Cu(II) complex. The cell viability improved to 88%, which was higher than with the single functional peptide GGH and RR by 39% and 20%, respectively. Moreover, the qualitative effect of Cu(II) on the Aβ-Cu(II) complex was also studied. Our results indicate that Cu(II) induces the formation of the β-sheet structure with a subequimolar Cu(II):Aβ molar ratio (0.25:1) but led to increased ROS production at a supra-equimolar ratio.

  11. Acid-base bifunctional catalysis of silica-alumina-supported organic amines for carbon-carbon bond-forming reactions.

    Science.gov (United States)

    Motokura, Ken; Tomita, Mitsuru; Tada, Mizuki; Iwasawa, Yasuhiro

    2008-01-01

    Acid-base bifunctional heterogeneous catalysts were prepared by the reaction of an acidic silica-alumina (SA) surface with silane-coupling reagents possessing amino functional groups. The obtained SA-supported amines (SA-NR2) were characterized by solid-state 13C and 29Si NMR spectroscopy, FT-IR spectroscopy, and elemental analysis. The solid-state NMR spectra revealed that the amines were immobilized by acid-base interactions at the SA surface. The interactions between the surface acidic sites and the immobilized basic amines were weaker than the interactions between the SA and free amines. The catalytic performances of the SA-NR2 catalysts for various carbon-carbon bond-forming reactions, such as cyano-ethoxycarbonylation, the Michael reaction, and the nitro-aldol reaction, were investigated and compared with those of homogeneous and other heterogeneous catalysts. The SA-NR2 catalysts showed much higher catalytic activities for the carbon-carbon bond-forming reactions than heterogeneous amine catalysts using other supports, such as SiO2 and Al2O3. On the other hand, homogeneous amines hardly promoted these reactions under similar reaction conditions, and the catalytic behavior of SA-NR2 was also different from that of MgO, which was employed as a typical heterogeneous base. An acid-base dual-activation mechanism for the carbon-carbon bond-forming reactions is proposed.

  12. Metallosalen-Based Ionic Porous Polymers as Bifunctional Catalysts for the Conversion of CO2 into Valuable Chemicals.

    Science.gov (United States)

    Luo, Rongchang; Chen, Yaju; He, Qian; Lin, Xiaowei; Xu, Qihang; He, Xiaohui; Zhang, Wuying; Zhou, Xiantai; Ji, Hongbing

    2016-12-31

    A series of new metallosalen-based ionic porous organic polymers (POPs) were synthesized for the first time using a simple unique strategy based on the free-radical copolymerization reaction. Various techniques were used to characterize the physicochemical properties of these catalysts. These well-designed materials endowed high surface area, hierarchical porous structures, and enhanced CO2 /N2 adsorptive selectivity. Moreover, these POPs having both metal centers (Lewis acid) and ionic units (nucleophile) could serve as bifunctional catalysts in the catalytic conversion of CO2 into high value-added chemicals without any additional co-catalyst under mild and solvent-free conditions, for example, CO2 /epoxides cycloaddition and Nformylation of amines from CO2 and hydrosilanes. The results demonstrated that the irregular porous structure was very favorable for the diffusion of substrates and products, and the microporous structural property resulted in the enrichment of CO2 near the catalytic centers in the CO2 -involved transformations. Additionally, the superhydrophobic property could not only enhance the chemoselectivity of products but also promote the stability and recyclability of catalysts.

  13. A new bifunctional chelate, BrMe sub 2 HBED: An effective conjugate for radiometals and antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Mathias, C.J.; Connett, J.M.; Philpott, G.W.; Welch, M.J. (Washington Univ. School of Medicine, St. Louis, MO (USA)); Sun, Yizhen; Martell, A.E. (Texas A and M Univ., College Station (USA))

    1990-04-18

    A new bifunctional chelate, N-(2-hydroxy-3,5-dimethylbenzyl)-N{prime}-(2-hydroxy-5-(bromoacetamido)benzyl)ethylenediamine-N,-N{prime}-diacetic acid (BrMe{sub 2}HBED), was designed and synthesized to bind trivalent cationic metals with monoclonal antibodies. The stability constants (log values) for indium complexed with a similar ligand, HBED, were increased over those of more commonly used ligands DTPA and EDTA. Predictably, the increased metal-ligand complex stability would expedite the in vivo clearance from nontarget regions and perhaps enhance the localization of the radiolabeled antibody (Ab). BrMe{sub 2}HBED was conjugated with the Ab (24 h) and then radiolabeled with indium-111 citrate (24 h). Additionally, the Ab was radiolabeled by using conventional methods ({sup 111}In-DTPA and {sup 125}I-lactoperoxidase) and then compared by measuring the in vitro stability, in vitro immunoreactivity(IR), and in vivo distribution and clearance. A 10:1 BrMe{sub 2} HBED:Ab mole ratio resulted in good labeling efficiency with {sup 111}In and more importantly a very high IR. In a hamster tumor model, {sup 111}In-BrMe{sub 2} HBED-labeled monoclonal antibody (1A3) had high uptake in the tumor tissue and preferable blood clearance compared to either of the more conventional radiolabeled 1A3 monoclonal antibodies ({sup 111}In-DTPA or {sup 125}I-lactoperoxidase). 49 refs., 4 figs., 8 tabs.

  14. Fabrication of triple-layered magnetite/hydrogel/quantum dots via the molecular linkage of bi-functional diamines.

    Science.gov (United States)

    Lim, Sera; Lee, Sangwha

    2012-07-01

    A multifunctional biomedical agent with magnetism, pH-sensitive, fluorescent properties was fabricated as a triple-layered magnetite/hydrogel/quantum dots. First, core-shell magnetic silica nanospheres (Fe3O4@SiO2) were synthesized via the sol-gel reaction of magnetite clusters with tetraethyl orthosilicate (TEOS), and the resuting magnetic particles were encapsulated with poly(N-isopropylacrylamide-co-acrylic acid) hydrogels through a free radical polymerization. The hydrogel-encapsulated magnetic particles were subsequently anchored by quantum dots (QDs) via the molecular linkage of bi-functional diamines. Diamine molecules effecrively induced the crosslinking between magnetic hydrogels and quantum dots. Among diamine linkers with different chain lengths (C-4, C-8, and C-12), C-8 diamine (1,8-diaminooctane) produced the maximal PL intensity for QD-bound hydrogels, indicating that C-8 diamine was an optimal cross-linker between hydrogels and QDs with surface carboxylic acid groups. The characteristic properties of the multifunctional nanocomposites were analyzed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), zeta-potential meter, and photoluminescence (PL) spectroscopy.

  15. Increased levels of conditioned fear and avoidance behavior coincide with changes in phosphorylation of the protein kinase B (AKT) within the amygdala in a mouse model of extremes in trait anxiety.

    Science.gov (United States)

    Yen, Yi-Chun; Mauch, Christoph P; Dahlhoff, Maik; Micale, Vincenzo; Bunck, Mirjam; Sartori, Simone B; Singewald, Nicolas; Landgraf, Rainer; Wotjak, Carsten T

    2012-07-01

    Patients diagnosed for anxiety disorders often display faster acquisition and slower extinction of learned fear. To gain further insights into the mechanisms underlying these phenomenona, we studied conditioned fear in mice originating form a bi-directional selective breeding approach, which is based on elevated plus-maze behavior and results in CD1-derived high (HAB), normal (NAB), and low (LAB) anxiety-related behavior mice. HAB mice displayed pronounced cued-conditioned fear compared to NAB/CD1 and LAB mice that coincided with increased phosphorylation of the protein kinase B (AKT) in the basolateral amygdala 45 min after conditioning. No similar changes were observed after non-associative immediate shock presentations. Fear extinction of recent but not older fear memories was preserved. However, HAB mice were more prone to relapse of conditioned fear with the passage of time. HAB mice also displayed higher levels of contextual fear compared to NAB and LAB mice and exaggerated avoidance following step-down avoidance training. Interestingly, HAB mice showed lower and LAB mice higher levels of acoustic startle responses compared to NAB controls. The increase in arousal observed in LAB mice coincided with the general absence of conditioned freezing. Taken together, our results suggest that the genetic predisposition to high anxiety-related behavior may increase the risk of forming traumatic memories, phobic-like fear and avoidance behavior following aversive encounters, with a clear bias towards passive coping styles. In contrast, genetic predisposition to low anxiety-related and high risk-taking behavior seems to be associated with an increase in active coping styles. Our data imply changes in AKT phosphorylation as a therapeutic target for the prevention of exaggerated fear memories.

  16. Applied extreme-value statistics

    Energy Technology Data Exchange (ETDEWEB)

    Kinnison, R.R.

    1983-05-01

    The statistical theory of extreme values is a well established part of theoretical statistics. Unfortunately, it is seldom part of applied statistics and is infrequently a part of statistical curricula except in advanced studies programs. This has resulted in the impression that it is difficult to understand and not of practical value. In recent environmental and pollution literature, several short articles have appeared with the purpose of documenting all that is necessary for the practical application of extreme value theory to field problems (for example, Roberts, 1979). These articles are so concise that only a statistician can recognise all the subtleties and assumptions necessary for the correct use of the material presented. The intent of this text is to expand upon several recent articles, and to provide the necessary statistical background so that the non-statistician scientist can recognize and extreme value problem when it occurs in his work, be confident in handling simple extreme value problems himself, and know when the problem is statistically beyond his capabilities and requires consultation.

  17. Extreme conditions (p, T, H)

    Energy Technology Data Exchange (ETDEWEB)

    Mesot, J. [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    The aim of this paper is to summarize the sample environment which will be accessible at the SINQ. In order to illustrate the type of experiments which will be feasible under extreme conditions of temperature, magnetic field and pressure at the SINQ a few selected examples are also given. (author) 7 figs., 14 refs.

  18. Generic Hurricane Extreme Seas State

    DEFF Research Database (Denmark)

    Wehmeyer, Christof; Skourup, Jesper; Frigaard, Peter

    2012-01-01

    the US east coast and the Gulf of Mexico (1851 - 2009) and Japanese east coast (1951 -2009) form the basis for Weibull extreme value analyses to determine return period respective maximum wind speeds. Unidirectional generic sea state spectra are obtained by application of the empirical models...

  19. Extreme cervical elongation after sacrohysteropexy

    NARCIS (Netherlands)

    Vierhout, M.E.; Futterer, J.J.

    2013-01-01

    We present a case of extreme cervical elongation with a cervix of 12 cm after an unusual operation in which the uterine corpus was directly fixed to the promontory, and which became symptomatic after 8 years. The possible pathophysiology of cervical elongation is discussed. Diagnosing a case of seve

  20. Extreme Energy Events Monitoring report

    CERN Document Server

    Baimukhamedova, Nigina

    2015-01-01

    Following paper reflects the progress I made on Summer Student Program within Extreme Energy Events Monitor project I was working on. During 8 week period I managed to build a simple detector system that is capable of triggering events similar to explosions (sudden change in sound levels) and measuring approximate location of the event. Source codes are available upon request and settings described further.

  1. Astrobiology: Life in Extreme Environments

    Science.gov (United States)

    Kaur, Preeti

    2011-01-01

    Astrobiology is the study of the origin, evolution and distribution of life in the universe. It seeks to answer two important scientific questions: how did we get here and are we alone in the universe? Scientists begin by studying life on Earth and its limits. The discovery of extremophiles on Earth capable of surviving extremes encourages the…

  2. Extreme low temperature tolerance in woody plants

    Directory of Open Access Journals (Sweden)

    George Richard Strimbeck

    2015-10-01

    Full Text Available Woody plants in boreal to arctic environments and high mountains survive prolonged exposure to temperatures below -40˚C and minimum temperatures below -60˚C, and laboratory tests show that many of these species can also survive immersion in liquid nitrogen at -196˚C. Studies of biochemical changes that occur during acclimation, including recent proteomic and metabolomic studies, have identified changes in carbohydrate and compatible solute concentrations, membrane lipid composition, and proteins, notably dehydrins, that may have important roles in survival at extreme low temperature. Consideration of the biophysical mechanisms of membrane stress and strain lead to the following hypotheses for cellular and molecular mechanisms of survival at extreme low temperature: 1. Changes in lipid composition stabilize membranes at temperatures above the lipid phase transition temperature (-20 to 30˚C, preventing phase changes that result in irreversible injury. 2. High concentrations of oligosaccharides promote vitrification or high viscosity in the cytoplasm in freeze-dehydrated cells, which would prevent deleterious interactions between membranes. 3. Dehydrins bind membranes and further promote vitrification or act stearically to prevent membrane-membrane interactions.

  3. Genetic background of extreme violent behavior.

    Science.gov (United States)

    Tiihonen, J; Rautiainen, M-R; Ollila, H M; Repo-Tiihonen, E; Virkkunen, M; Palotie, A; Pietiläinen, O; Kristiansson, K; Joukamaa, M; Lauerma, H; Saarela, J; Tyni, S; Vartiainen, H; Paananen, J; Goldman, D; Paunio, T

    2015-06-01

    In developed countries, the majority of all violent crime is committed by a small group of antisocial recidivistic offenders, but no genes have been shown to contribute to recidivistic violent offending or severe violent behavior, such as homicide. Our results, from two independent cohorts of Finnish prisoners, revealed that a monoamine oxidase A (MAOA) low-activity genotype (contributing to low dopamine turnover rate) as well as the CDH13 gene (coding for neuronal membrane adhesion protein) are associated with extremely violent behavior (at least 10 committed homicides, attempted homicides or batteries). No substantial signal was observed for either MAOA or CDH13 among non-violent offenders, indicating that findings were specific for violent offending, and not largely attributable to substance abuse or antisocial personality disorder. These results indicate both low monoamine metabolism and neuronal membrane dysfunction as plausible factors in the etiology of extreme criminal violent behavior, and imply that at least about 5-10% of all severe violent crime in Finland is attributable to the aforementioned MAOA and CDH13 genotypes.

  4. Molecular characterization of the bifunctional VHDL-CP from the hemolymph of white shrimp Penaeus vannamei.

    Science.gov (United States)

    Yepiz-Plascencia, Gloria; Jiménez-Vega, Florinda; Romo-Figueroa, María Gabriela; Sotelo-Mundo, Rogerio R; Vargas-Albores, Francisco

    2002-07-01

    A very high-density lipoprotein (VHDL) purified from the hemolymph of the white shrimp Penaeus vannamei is shown to be identical to the clotting protein (CP) previously reported from the same organism based on size, subunits and N-terminal amino acid sequence. The approximately 440-kDa protein, a homodimer of approximately 200-kDa subunits, was present in KBr gradient fractions ranging in density from 1.155 to 1.212 g/ml. Samples of VHDL after purification by strong cation exchange chromatography were subjected to electrophoresis on native polyacrylamide gels. Lipids associated with the VHDL were detected by Sudan Black and Oil Red O staining and comprise 9-15% of the purified protein. Circular dichroism of VHDL-CP indicates that the alpha-helix content of the VHDL-CP is 32%, while beta-sheets correspond to 33%, closely resembling the secondary structure of CP from the shrimp Penaeus monodon and, remarkably, the secondary structure of very high-density lipophorin E (VHDLpE) from the tobacco hornworm, Manduca sexta.

  5. Extremal non-BPS black holes and entropy extremization

    CERN Document Server

    Lópes-Cardoso, G; Lust, D; Perz, J; Cardoso, Gabriel Lopes; Grass, Viviane; Lust, Dieter; Perz, Jan

    2006-01-01

    At the horizon, a static extremal black hole solution in N=2 supergravity in four dimensions is determined by a set of so-called attractor equations which, in the absence of higher-curvature interactions, can be derived as extremization conditions for the black hole potential or, equivalently, for the entropy function. We contrast both methods by explicitly solving the attractor equations for a one-modulus prepotential associated with the conifold. We find that near the conifold point, the non-supersymmetric solution has a substantially different behavior than the supersymmetric solution. We analyze the stability of the solutions and the extrema of the resulting entropy as a function of the modulus. For the non-BPS solution the region of attractivity and the maximum of the entropy do not coincide with the conifold point.

  6. Life at extreme limits: the anaerobic halophilic alkalithermophiles.

    Science.gov (United States)

    Mesbah, Noha M; Wiegel, Juergen

    2008-03-01

    The ability of anaerobic microorganisms to proliferate under extreme conditions is of widespread importance for microbial physiology, remediation, industry, and evolution. The halophilic alkalithermophiles are a novel group of polyextremophiles. Tolerance to alkaline pH, elevated NaCl concentrations, and high temperatures necessitates mechanisms for cytoplasmic pH acidification; permeability control of the cell membrane; and stability of proteins, the cell wall, and other cellular constituents to multiple extreme conditions. Although it is generally assumed that extremophiles growing at more than one extreme combine adaptive mechanisms for each individual extreme, adaptations for individual extremes often counteract each other. However, in alkaline, hypersaline niches heated via intense solar irradiation, culture-independent analyses have revealed the presence of an extensive diversity of aerobic and anaerobic microorganisms belonging to Bacteria and Archaea that survive and grow under multiple harsh conditions. Thus, polyextremophiles must have developed novel adaptive strategies enabling them to grow and proliferate under multiple extreme conditions. The recent isolation of two novel anaerobic, halophilic alkalithermophiles, Natranaerobius thermophilus and Halonatronum saccharophilum, will provide a platform for detailed biochemical, genomic, and proteomic experiments, allowing a greater understanding of the novel adaptive mechanisms undoubtedly employed by polyextremophiles. In this review, we highlight growth characteristics, ecology, and phylogeny of the anaerobic halophilic alkalithermophiles isolated. We also describe the bioenergetic and physiological problems posed by growth at the multiple extreme conditions of alkaline pH, high NaCl concentration, and elevated temperature under anoxic conditions and highlight recent findings and unresolved problems regarding adaptation to multiple extreme conditions.

  7. The Golgi localized bifunctional UDP-rhamnose/UDP-galactose transporter family of Arabidopsis

    DEFF Research Database (Denmark)

    Rautengarten, Carsten; Ebert, Berit; Moreno, Ignacio

    2014-01-01

    Delivery of nucleotide sugar substrates into the Golgi apparatus and endoplasmic reticulum for processes such as cell wall biosynthesis and protein glycosylation is critical for plant growth and development. Plant genomes encode large families of uncharacterized nucleotide sugar transporters......-of-function and overexpression lines for two of these transporters identified biochemical alterations supporting their roles in the biosynthesis of Rha- and Gal-containing polysaccharides. Thus, cell wall polysaccharide biosynthesis in the Golgi apparatus of plants is likely also regulated by substrate transport mechanisms....

  8. On causality of extreme events

    CERN Document Server

    Zanin, Massimiliano

    2016-01-01

    Multiple metrics have been developed to detect causality relations between data describing the elements constituting complex systems, all of them considering their evolution through time. Here we propose a metric able to detect causality within static data sets, by analysing how extreme events in one element correspond to the appearance of extreme events in a second one. The metric is able to detect both linear and non-linear causalities; to analyse both cross-sectional and longitudinal data sets; and to discriminate between real causalities and correlations caused by confounding factors. We validate the metric through synthetic data, dynamical and chaotic systems, and data representing the human brain activity in a cognitive task.

  9. Cacti with Extremal PI Index

    Directory of Open Access Journals (Sweden)

    Chunxiang Wang

    2016-12-01

    Full Text Available The vertex PI index PI(G=∑ xy∈E(G [n xy (x‎+‎n xy (y] PI(G=∑xy∈E(G[nxy(x‎+‎nxy(y] is a distance-based molecular structure descriptor‎, ‎where n xy (x nxy(x denotes the number of vertices which are closer to the vertex x x than to the vertex y y and which has been the considerable research in computational chemistry dating back to Harold Wiener in 1947‎. ‎A connected graph is a cactus if any two of its cycles have at most one common vertex‎. ‎In this paper‎, ‎we completely determine the extremal graphs with the greatest and smallest vertex PI indices mong all cacti with a fixed number of vertices‎. ‎As a consequence‎, ‎we obtain the sharp bounds with corresponding extremal cacti and extend a known result‎.

  10. Extreme Conditions Modeling Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Coe, Ryan Geoffrey [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Neary, Vincent Sinclair [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Lawon, Michael J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Lab. (NREL), Golden, CO (United States); Weber, Jochem [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-07-01

    Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL) hosted the Wave Energy Converter (WEC) Extreme Conditions Modeling (ECM) Workshop in Albuquerque, New Mexico on May 13–14, 2014. The objective of the workshop was to review the current state of knowledge on how to numerically and experimentally model WECs in extreme conditions (e.g. large ocean storms) and to suggest how national laboratory resources could be used to improve ECM methods for the benefit of the wave energy industry. More than 30 U.S. and European WEC experts from industry, academia, and national research institutes attended the workshop, which consisted of presentations from W EC developers, invited keynote presentations from subject matter experts, breakout sessions, and a final plenary session .

  11. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, Kurt Schaldemose

    2004-01-01

    (PDF) of turbulence driven short-term extreme wind shear events, conditioned on the mean wind speed, for an arbitrary recurrence period. The model is based on an asymptotic expansion, and only a few and easily accessible parameters are needed as input. The model of the extreme PDF is supplemented....... the measurements have been extracted from "Database on Wind Charateristics" (http://www.winddata.com/), and they refer to a site caracterised by a flat homogeneous terrain. The comparison has been conducted for three different (high wind) mean wind speed, and model predictions and experimental results......In order to continue cost-optimisation of modern large wind turbines, it is important to continously increase the knowledge on wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...

  12. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Larsen, Gunner Chr.

    2005-01-01

    (PDF) of turbulence driven short-term extreme wind shear events, conditioned on the mean wind speed, for an arbitrary recurrence period. The model is based on an asymptotic expansion, and only a few and easily accessible parameters are needed as input. The model of the extreme PDF is supplemented....... The measurements have been extracted from "Database on Wind Characteristics" (http://www.winddata.com/), and they refer to a site characterised by a flat homogeneous terrain. The comparison has been conducted for three different mean wind speeds in the range 15m/s – 19m/s, and model predictions and experimental......In order to continue cost-optimisation of modern large wind turbines, it is important to continuously increase the knowledge of wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...

  13. On causality of extreme events

    Directory of Open Access Journals (Sweden)

    Massimiliano Zanin

    2016-06-01

    Full Text Available Multiple metrics have been developed to detect causality relations between data describing the elements constituting complex systems, all of them considering their evolution through time. Here we propose a metric able to detect causality within static data sets, by analysing how extreme events in one element correspond to the appearance of extreme events in a second one. The metric is able to detect non-linear causalities; to analyse both cross-sectional and longitudinal data sets; and to discriminate between real causalities and correlations caused by confounding factors. We validate the metric through synthetic data, dynamical and chaotic systems, and data representing the human brain activity in a cognitive task. We further show how the proposed metric is able to outperform classical causality metrics, provided non-linear relationships are present and large enough data sets are available.

  14. On causality of extreme events

    Science.gov (United States)

    2016-01-01

    Multiple metrics have been developed to detect causality relations between data describing the elements constituting complex systems, all of them considering their evolution through time. Here we propose a metric able to detect causality within static data sets, by analysing how extreme events in one element correspond to the appearance of extreme events in a second one. The metric is able to detect non-linear causalities; to analyse both cross-sectional and longitudinal data sets; and to discriminate between real causalities and correlations caused by confounding factors. We validate the metric through synthetic data, dynamical and chaotic systems, and data representing the human brain activity in a cognitive task. We further show how the proposed metric is able to outperform classical causality metrics, provided non-linear relationships are present and large enough data sets are available. PMID:27330866

  15. Promoting Exit from Violent Extremism

    DEFF Research Database (Denmark)

    Dalgaard-Nielsen, Anja

    2013-01-01

    A number of Western countries are currently adding exit programs targeting militant Islamists to their counterterrorism efforts. Drawing on research into voluntary exit from violent extremism, this article identifies themes and issues that seem to cause doubt, leading to exit. It then provides a ...... the influence attempt as subtle as possible, use narratives and self-affirmatory strategies to reduce resistance to persuasion, and consider the possibility to promote attitudinal change via behavioral change as an alternative to seek to influence beliefs directly....

  16. Racial Extremism in the Army

    Science.gov (United States)

    1998-04-01

    example, one soldier has a picture of Martin Luther King ;. another has a picture of Ronald Reagan). What is legal, appropriate action? (1) The particular...degree requirements for the 46h Judge Advocate Officer Graduate Course. 2 Virginia A. White, Killings Tied to Racism , FAYETTEVILLE OBSERVER-TIMES...causes to lure new members to their organizations. Lieutenant Colonel Edwin W. Anderson, Jr ., Right Wing Extremism in America and its Implications for

  17. Typologies of Extreme Longevity Myths

    OpenAIRE

    2010-01-01

    Purpose. Political, national, religious, and other motivations have led the media and even scientists to errantly accept extreme longevity claims prima facie. We describe various causes of false claims of extraordinary longevity. Design and Methods. American Social Security Death Index files for the period 1980–2009 were queried for individuals with birth and death dates yielding ages 110+ years of age. Frequency was compared to a list of age-validated supercentenarians maintained by the Ge...

  18. Upper Extremity Injuries in Gymnasts.

    Science.gov (United States)

    Wolf, Megan R; Avery, Daniel; Wolf, Jennifer Moriatis

    2017-02-01

    Gymnastics is a unique sport, which loads the wrist and arms as weight-bearing extremities. Because of the load demands on the wrist in particular, stress fractures, physeal injury, and overuse syndromes may be observed. This spectrum of injury has been termed "gymnast's wrist," and incorporates such disorders as wrist capsulitis, ligamentous tears, triangular fibrocartilage complex tears, chondromalacia of the carpus, stress fractures, distal radius physeal arrest, and grip lock injury.

  19. CO2 capture performance of bi-functional activated bleaching earth modified with basic-alcoholic solution and functionalization with monoethanolamine: isotherms, kinetics and thermodynamics.

    Science.gov (United States)

    Pongstabodee, Sangobtip; Pornaroontham, Phuwadej; Pintuyothin, Nuthapol; Pootrakulchote, Nuttapol; Thouchprasitchai, Nutthavich

    2016-10-01

    CO2 capture performance of bifunctional activated bleaching earth (ABE) was investigated at atmospheric pressure. The sorbents were characterized by means of X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), Caron-Hydrogen-Nitrogen analysis (CHN), Fourier transform infrared (FT-IR) and thermal gravimetric analysis (TGA). The CO2 capacity was enhanced via basic-modification and monoethanolamine (MEA) loading of the ABE sorbent to obtain a bifunctional surface property. Here, basic-modified calcined ABE with a 30wt.% MEA loading (SAB-30) showed the highest CO2 capture capacity, but this was decreased with excess MEA loading (>30wt.%). At a 10% (V/V) initial CO2 concentration feed, the maximum capacity of SAB-30 increased from 2.71mmol/g at 30°C (without adding moisture to the feed) to 3.3mmol/g at 50°C when adding 10% (V/V) moisture to the feed. Increasing the moisture concentration further reduced the maximum CO2 capacity due to the blocking effect of the excess moisture on the sorbent surface. However, SAB-30 could completely capture CO2 even in a 100% (V/V) initial CO2 concentration feed. A maximum CO2 capacity of 5.7mmol/g for SAB-30 was achieved at 30°C. Varying the ratio of sorbent weight to total flow rate of the gas stream had no discernible effect on the equilibrium CO2 capture capacity. Avrami's equation and Toth's isotherm model provided a good fitting for the data and suggested the presence of more than one reaction pathway in the CO2 capture process and the heterogeneous adsorption surface of SAB-30. Thermodynamics studies revealed that CO2 capture on the bifunctional SAB-30 is feasible, spontaneous and exothermic in nature.

  20. Evolution of Conifer Diterpene Synthases: Diterpene Resin Acid Biosynthesis in Lodgepole Pine and Jack Pine Involves Monofunctional and Bifunctional Diterpene Synthases1[W][OA

    Science.gov (United States)

    Hall, Dawn E.; Zerbe, Philipp; Jancsik, Sharon; Quesada, Alfonso Lara; Dullat, Harpreet; Madilao, Lina L.; Yuen, Macaire; Bohlmann, Jörg

    2013-01-01

    Diterpene resin acids (DRAs) are major components of pine (Pinus spp.) oleoresin. They play critical roles in conifer defense against insects and pathogens and as a renewable resource for industrial bioproducts. The core structures of DRAs are formed in secondary (i.e. specialized) metabolism via cycloisomerization of geranylgeranyl diphosphate (GGPP) by diterpene synthases (diTPSs). Previously described gymnosperm diTPSs of DRA biosynthesis are bifunctional enzymes that catalyze the initial bicyclization of GGPP followed by rearrangement of a (+)-copalyl diphosphate intermediate at two discrete class II and class I active sites. In contrast, similar diterpenes of gibberellin primary (i.e. general) metabolism are produced by the consecutive activity of two monofunctional class II and class I diTPSs. Using high-throughput transcriptome sequencing, we discovered 11 diTPS from jack pine (Pinus banksiana) and lodgepole pine (Pinus contorta). Three of these were orthologous to known conifer bifunctional levopimaradiene/abietadiene synthases. Surprisingly, two sets of orthologous PbdiTPSs and PcdiTPSs were monofunctional class I enzymes that lacked functional class II active sites and converted (+)-copalyl diphosphate, but not GGPP, into isopimaradiene and pimaradiene as major products. Diterpene profiles and transcriptome sequences of lodgepole pine and jack pine are consistent with roles for these diTPSs in DRA biosynthesis. The monofunctional class I diTPSs of DRA biosynthesis form a new clade within the gymnosperm-specific TPS-d3 subfamily that evolved from bifunctional diTPS rather than monofunctional enzymes (TPS-c and TPS-e) of gibberellin metabolism. Homology modeling suggested alterations in the class I active site that may have contributed to their functional specialization relative to other conifer diTPSs. PMID:23370714

  1. Technology improves upper extremity rehabilitation.

    Science.gov (United States)

    Kowalczewski, Jan; Prochazka, Arthur

    2011-01-01

    Stroke survivors with hemiparesis and spinal cord injury (SCI) survivors with tetraplegia find it difficult or impossible to perform many activities of daily life. There is growing evidence that intensive exercise therapy, especially when supplemented with functional electrical stimulation (FES), can improve upper extremity function, but delivering the treatment can be costly, particularly after recipients leave rehabilitation facilities. Recently, there has been a growing level of interest among researchers and healthcare policymakers to deliver upper extremity treatments to people in their homes using in-home teletherapy (IHT). The few studies that have been carried out so far have encountered a variety of logistical and technical problems, not least the difficulty of conducting properly controlled and blinded protocols that satisfy the requirements of high-level evidence-based research. In most cases, the equipment and communications technology were not designed for individuals with upper extremity disability. It is clear that exercise therapy combined with interventions such as FES, supervised over the Internet, will soon be adopted worldwide in one form or another. Therefore it is timely that researchers, clinicians, and healthcare planners interested in assessing IHT be aware of the pros and cons of the new technology and the factors involved in designing appropriate studies of it. It is crucial to understand the technical barriers, the role of telesupervisors, the motor improvements that participants can reasonably expect and the process of optimizing IHT-exercise therapy protocols to maximize the benefits of the emerging technology.

  2. Moderate and extreme maternal obesity.

    LENUS (Irish Health Repository)

    Abdelmaboud, M O

    2012-05-01

    The aim of this study was to investigate the prevalence of moderate and extreme obesity among an Irish obstetric population over a 10-year period, and to evaluate the obstetric features of such pregnancies. Of 31,869 women delivered during the years 2000-2009, there were 306 women in the study group, including 173 in the moderate or Class 2 obese category (BMI 35-39.9) and 133 in the extreme or Class 3 obese category (BMI > or = 40).The prevalence of obese women with BMI > or = 35 was 9.6 per 1000 (0.96%), with an upward trend observed from 2.1 per 1000 in the year 2000, to 11.8 per 1000 in the year 2009 (P = 0.001). There was an increase in emergency caesarean section (EMCS) risk for primigravida versus multigravid women, within both obese categories (P < 0.001). However, there was no significant difference in EMCS rates observed between Class 2 and Class 3 obese women, when matched for parity. The prevalence of moderate and extreme obesity reported in this population is high, and appears to be increasing. The increased rates of abdominal delivery, and the levels of associated morbidity observed, have serious implications for such women embarking on pregnancy.

  3. Typologies of Extreme Longevity Myths

    Directory of Open Access Journals (Sweden)

    Robert D. Young

    2010-01-01

    Full Text Available Purpose. Political, national, religious, and other motivations have led the media and even scientists to errantly accept extreme longevity claims prima facie. We describe various causes of false claims of extraordinary longevity. Design and Methods. American Social Security Death Index files for the period 1980–2009 were queried for individuals with birth and death dates yielding ages 110+ years of age. Frequency was compared to a list of age-validated supercentenarians maintained by the Gerontology Research Group who died during the same time period. Age claims of 110+ years and the age validation experiences of the authors facilitated a list of typologies of false age claims. Results. Invalid age claim rates increase with age from 65% at age 110-111 to 98% by age 115 to 100% for 120+ years. Eleven typologies of false claims were: Religious Authority Myth, Village Elder Myth, Fountain of Youth Myth (substance, Shangri-La Myth (geographic, Nationalist Pride, Spiritual Practice, Familial Longevity, Individual and/or Family Notoriety, Military Service, Administrative Entry Error, and Pension-Social Entitlement Fraud. Conclusions. Understanding various causes of false extreme age claims is important for placing current, past, and future extreme longevity claims in context and for providing a necessary level of skepticism.

  4. A bi-functional xyloglucan galactosyltransferase is an indispensable salt stress tolerance determinant in arabidop

    KAUST Repository

    Li, Wenbo

    2013-07-01

    Salinity is an abiotic stress that substantially limits crop production worldwide. To identify salt stress tolerance determinants, we screened for Arabidopsis mutants that are hypersensitive to salt stress and designated these mutants as short root in salt medium (rsa). One of these mutants, rsa3-1, is hypersensitive to NaCl and LiCl but not to CsCl or to general osmotic stress. Reactive oxygen species (ROS) over-accumulate in rsa3-1 plants under salt stress. Gene expression profiling with Affymetrix microarray analysis revealed that RSA3 controls expression of many genes including genes encoding proteins for ROS detoxification under salt stress. Map-based cloning showed that RSA3 encodes a xyloglucan galactosyltransferase, which is allelic to a gene previously named MUR3/KAM1. The RSA3/ MUR3/KAM1-encoded xylogluscan galactosyltransferase regulates actin microfilament organization (and thereby contributes to endomembrane distribution) and is also involved in cell wall biosynthesis. In rsa3-1, actin cannot assemble and form bundles as it does in the wild-type but instead aggregates in the cytoplasm. Furthermore, addition of phalloidin, which prevents actin depolymerization, can rescue salt hypersensitivity of rsa3-1. Together, these results suggest that RSA3/MUR3/KAM1 along with other cell wall-associated proteins plays a critical role in salt stress tolerance by maintaining the proper organization of actin microfilaments in order to minimize damage caused by excessive ROS. © 2013 The Author.

  5. Practical selective hydrogenation of α-fluorinated esters with bifunctional pincer-type ruthenium(II) catalysts leading to fluorinated alcohols or fluoral hemiacetals.

    Science.gov (United States)

    Otsuka, Takashi; Ishii, Akihiro; Dub, Pavel A; Ikariya, Takao

    2013-07-01

    Selective hydrogenation of fluorinated esters with pincer-type bifunctional catalysts RuHCl(CO)(dpa) 1a, trans-RuH2(CO)(dpa) 1b, and trans-RuCl2(CO)(dpa) 1c under mild conditions proceeds rapidly to give the corresponding fluorinated alcohols or hemiacetals in good to excellent yields. Under the optimized conditions, the hydrogenation of chiral (R)-2-fluoropropionate proceeds smoothly to give the corresponding chiral alcohol without any serious decrease of the ee value.

  6. Bifunctional Imidazolium-Based Ionic Liquid Decorated UiO-67 Type MOF for Selective CO2 Adsorption and Catalytic Property for CO2 Cycloaddition with Epoxides.

    Science.gov (United States)

    Ding, Luo-Gang; Yao, Bing-Jian; Jiang, Wei-Ling; Li, Jiang-Tao; Fu, Qi-Juan; Li, Yan-An; Liu, Zhen-Hua; Ma, Jian-Ping; Dong, Yu-Bin

    2017-02-20

    A bifunctional robust and highly porous imidazolium-based ionic liquid decorated UiO-67 type MOF (UiO-67-IL, 1) was successfully constructed via solvothermal assembly of the imidazolium-based ligand and Zr(IV) ions. It exhibits a highly selective adsorption for CO2 over CH4 and N2. Furthermore, 1 herein can be used as a highly active heterogeneous catalyst for CO2 cycloaddition with epoxides under atmospheric pressure with or without cocatalyst TBAB (n-Bu4NBr).

  7. Production of propylene from 1-butene on highly active "bi-functional single active site" catalyst: Tungsten carbene-hydride supported on alumina

    KAUST Repository

    Mazoyer, Etienne

    2011-12-02

    1-Butene is transformed in a continuous flow reactor over tungsten hydrides precursor W-H/Al2O3, 1, giving a promising yield into propylene at 150 °C and different pressures. Tungsten carbene-hydride single active site operates as a "bi-functional catalyst" through 1-butene isomerization on W-hydride and 1-butene/2-butenes cross-metathesis on W-carbene. This active moiety is generated in situ at the initiation steps by insertion of 1-butene on tungsten hydrides precursor W-H/Al2O3, 1 followed by α-H and β-H abstraction. © 2011 American Chemical Society.

  8. Outcomes for extremely premature infants.

    Science.gov (United States)

    Glass, Hannah C; Costarino, Andrew T; Stayer, Stephen A; Brett, Claire M; Cladis, Franklyn; Davis, Peter J

    2015-06-01

    Premature birth is a significant cause of infant and child morbidity and mortality. In the United States, the premature birth rate, which had steadily increased during the 1990s and early 2000s, has decreased annually for 7 years and is now approximately 11.39%. Human viability, defined as gestational age at which the chance of survival is 50%, is currently approximately 23 to 24 weeks in developed countries. Infant girls, on average, have better outcomes than infant boys. A relatively uncomplicated course in the intensive care nursery for an extremely premature infant results in a discharge date close to the prenatal estimated date of confinement. Despite technological advances and efforts of child health experts during the last generation, the extremely premature infant (less than 28 weeks gestation) and extremely low birth weight infant (death and disability with 30% to 50% mortality and, in survivors, at least 20% to 50% risk of morbidity. The introduction of continuous positive airway pressure, mechanical ventilation, and exogenous surfactant increased survival and spurred the development of neonatal intensive care in the 1970s through the early 1990s. Routine administration of antenatal steroids during premature labor improved neonatal mortality and morbidity in the late 1990s. The recognition that chronic postnatal administration of steroids to infants should be avoided may have improved outcomes in the early 2000s. Evidence from recent trials attempting to define the appropriate target for oxygen saturation in preterm infants suggests arterial oxygen saturation between 91% and 95% (compared with 85%-89%) avoids excess mortality; however, final analyses of data from these trials have not been published, so definitive recommendations are still pending. The development of neonatal neurocritical intensive care units may improve neurocognitive outcomes in this high-risk group. Long-term follow-up to detect and address developmental, learning, behavioral, and

  9. Cell tracking with gadophrin-2: a bifunctional contrast agent for MR imaging, optical imaging, and fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Daldrup-Link, Heike E. [Department of Radiology, UCSF Medical Center, University of California in San Francisco, 513 Parnassus Ave, CA 94143, San Francisco (United States); Rudelius, Martina; Piontek, Guido; Schlegel, Juergen [Institute of Pathology, Technical University, Munich (Germany); Metz, Stephan; Settles, Marcus; Rummeny, Ernst J. [Department of Radiology, Technical University, Munich (Germany); Pichler, Bernd [Department of Biomedical Engineering, University of California Davis, Davis (United States); Heinzmann, Ulrich [National Research Center for Environment and Health, Technical University, Munich (Germany); Oostendorp, Robert A.J. [3. Clinic of Internal Medicine, Laboratory of Stem Cell Physiology, Technical University, Munich (Germany)

    2004-09-01

    The purpose of this study was to assess the feasibility of use of gadophrin-2 to trace intravenously injected human hematopoietic cells in athymic mice, employing magnetic resonance (MR) imaging, optical imaging (OI), and fluorescence microscopy. Mononuclear peripheral blood cells from GCSF-primed patients were labeled with gadophrin-2 (Schering AG, Berlin, Germany), a paramagnetic and fluorescent metalloporphyrin, using established transfection techniques with cationic liposomes. The labeled cells were evaluated in vitro with electron microscopy and inductively coupled plasma atomic emission spectrometry. Then, 1 x 10{sup 6}-3 x 10{sup 8} labeled cells were injected into 14 nude Balb/c mice and the in vivo cell distribution was evaluated with MR imaging and OI before and 4, 24, and 48 h after intravenous injection (p.i.). Five additional mice served as controls: three mice were untreated controls and two mice were investigated after injection of unlabeled cells. The contrast agent effect was determined quantitatively for MR imaging by calculating signal-to-noise-ratio (SNR) data. After completion of in vivo imaging studies, fluorescence microscopy of excised organs was performed. Intracellular cytoplasmatic uptake of gadophrin-2 was confirmed by electron microscopy. Spectrometry determined an uptake of 31.56 nmol Gd per 10{sup 6} cells. After intravenous injection, the distribution of gadophrin-2 labeled cells in nude mice could be visualized by MR, OI, and fluorescence microscopy. At 4 h p.i., the transplanted cells mainly distributed to lung, liver, and spleen, and 24 h p.i. they also distributed to the bone marrow. Fluorescence microscopy confirmed the distribution of gadophrin-2 labeled cells to these target organs. Gadophrin-2 is suited as a bifunctional contrast agent for MR imaging, OI, and fluorescence microscopy and may be used to combine the advantages of each individual imaging modality for in vivo tracking of intravenously injected hematopoietic cells

  10. Synthesis and characterization of bifunctional transition-metal/silica-alumina catalysts for the chloromethane conversion to hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, J.F. [Universidade Federal de Rio de Grande do Norte (UFRN), Natal, RN (Brazil). Programa de Pos-Graduacao em Engenharia Quimica; Rojas, L.O.A.; Nascimento, J.C. [Universidade Federal de Rio de Grande do Norte (UFRN), Natal, RN (Brazil). Programa de Pos-Graduacao em Engenharia Quimica; Centro de Tecnologias do Gas (CTGAS), Natal, RN (Brazil)], E-mail: leopoldo@ctgas.com.br; Ruiz, J.A.C. [Centro de Tecnologias do Gas (CTGAS), Natal, RN (Brazil); Benachour, M. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Programa de Pos-Graduacao em Engenharia Quimica

    2008-10-15

    In this work bifunctional (metal-acid) catalysts of Fe, Ni, Fe{sub 2}O{sub 3} and NiO over amorphous silica alumina support were characterized (acidity) and evaluated for the conversion of chloromethane in a fixed bed reactor. Temperature program tests TPD (Temperature Programmed Desorption) and TPR (Temperature Programmed Reduction) were performed to characterize the chemisorption sites for the impregnated and unimpregnated support. New adsorption sites were created on the metal supported catalysts. The conversion yield of chloromethane was evaluated for the five materials. The highest conversion conversion (85%) was observed for the unmodified support (SiAl) after 6 of reaction at 860 K and a WHSV (Weight Hourly Space Velocity) of 4,5 h{sup -1}. The best selectivity toward desirable hydrocarbons (C{sup 3}, C{sup 4}) was found for the Fe-SiAl catalyst. C{sup 3} was also found in the products stream when Ni/SiAl and NiO/SiAl catalysts were tested. Ni catalysts were the most favorable to methane production. The catalytic tests showed coke formation in all materials. For the SiAl support the desorption energy of chloromethane, determined by TPD runs, was 101,9 KJ/mol. The metals presented lower desorption energies (75,2 KJ/mol for Ni and 133,4 KJ/mol for Fe) than the oxides (190,1 KJ/mol for Fe{sub 2}O{sub 3} and 322,4 KJ/mol for NiO). (author)

  11. The role of the methyltransferase domain of bifunctional restriction enzyme RM.BpuSI in cleavage activity.

    Directory of Open Access Journals (Sweden)

    Arthur Sarrade-Loucheur

    Full Text Available Restriction enzyme (REase RM.BpuSI can be described as a Type IIS/C/G REase for its cleavage site outside of the recognition sequence (Type IIS, bifunctional polypeptide possessing both methyltransferase (MTase and endonuclease activities (Type IIC and endonuclease activity stimulated by S-adenosyl-L-methionine (SAM (Type IIG. The stimulatory effect of SAM on cleavage activity presents a major paradox: a co-factor of the MTase activity that renders the substrate unsusceptible to cleavage enhances the cleavage activity. Here we show that the RM.BpuSI MTase activity modifies both cleavage substrate and product only when they are unmethylated. The MTase activity is, however, much lower than that of M1.BpuSI and is thought not to be the major MTase for host DNA protection. SAM and sinefungin (SIN increase the Vmax of the RM.BpuSI cleavage activity with a proportional change in Km, suggesting the presence of an energetically more favorable pathway is taken. We further showed that RM.BpuSI undergoes substantial conformational changes in the presence of Ca(2+, SIN, cleavage substrate and/or product. Distinct conformers are inferred as the pre-cleavage/cleavage state (in the presence of Ca(2+, substrate or both and MTase state (in the presence of SIN and substrate, SIN and product or product alone. Interestingly, RM.BpuSI adopts a unique conformation when only SIN is present. This SIN-bound state is inferred as a branch point for cleavage and MTase activity and an intermediate to an energetically favorable pathway for cleavage, probably through increasing the binding affinity of the substrate to the enzyme under cleavage conditions. Mutation of a SAM-binding residue resulted in altered conformational changes in the presence of substrate or Ca(2+ and eliminated cleavage activity. The present study underscores the role of the MTase domain as facilitator of efficient cleavage activity for RM.BpuSI.

  12. A Novel N-Acetylglutamate Synthase Architecture Revealed by the Crystal Structure of the Bifunctional Enzyme from Maricaulis maris

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Dashuang; Li, Yongdong; Cabrera-Luque, Juan; Jin, Zhongmin; Yu, Xiaolin; Zhao, Gengxiang; Haskins, Nantaporn; Allewell, Norma M.; Tuchman, Mendel (Maryland); (GWU); (Georgia)

    2012-05-24

    Novel bifunctional N-acetylglutamate synthase/kinases (NAGS/K) that catalyze the first two steps of arginine biosynthesis and are homologous to vertebrate N-acetylglutamate synthase (NAGS), an essential cofactor-producing enzyme in the urea cycle, were identified in Maricaulis maris and several other bacteria. Arginine is an allosteric inhibitor of NAGS but not NAGK activity. The crystal structure of M. maris NAGS/K (mmNAGS/K) at 2.7 {angstrom} resolution indicates that it is a tetramer, in contrast to the hexameric structure of Neisseria gonorrhoeae NAGS. The quaternary structure of crystalline NAGS/K from Xanthomonas campestris (xcNAGS/K) is similar, and cross-linking experiments indicate that both mmNAGS/K and xcNAGS are tetramers in solution. Each subunit has an amino acid kinase (AAK) domain, which is likely responsible for N-acetylglutamate kinase (NAGK) activity and has a putative arginine binding site, and an N-acetyltransferase (NAT) domain that contains the putative NAGS active site. These structures and sequence comparisons suggest that the linker residue 291 may determine whether arginine acts as an allosteric inhibitor or activator in homologous enzymes in microorganisms and vertebrates. In addition, the angle of rotation between AAK and NAT domains varies among crystal forms and subunits within the tetramer. A rotation of 26{sup o} is sufficient to close the predicted AcCoA binding site, thus reducing enzymatic activity. Since mmNAGS/K has the highest degree of sequence homology to vertebrate NAGS of NAGS and NAGK enzymes whose structures have been determined, the mmNAGS/K structure was used to develop a structural model of human NAGS that is fully consistent with the functional effects of the 14 missense mutations that were identified in NAGS-deficient patients.

  13. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution.

    Science.gov (United States)

    Jin, Haiyan; Wang, Jing; Su, Diefeng; Wei, Zhongzhe; Pang, Zhenfeng; Wang, Yong

    2015-02-25

    Remarkable hydrogen evolution reaction (HER) or superior oxygen evolution reaction (OER) catalyst has been applied in water splitting, however, utilizing a bifunctional catalyst for simultaneously generating H2 and O2 is still a challenging issue, which is crucial for improving the overall efficiency of water electrolysis. Herein, inspired by the superiority of carbon conductivity, the propitious H atom binding energy of metallic cobalt, and better OER activity of cobalt oxide, we synthesized cobalt-cobalt oxide/N-doped carbon hybrids (CoOx@CN) composed of Co(0), CoO, Co3O4 applied to HER and OER by simple one-pot thermal treatment method. CoOx@CN exhibited a small onset potential of 85 mV, low charge-transfer resistance (41 Ω), and considerable stability for HER. Electrocatalytic experiments further indicated the better performance of CoOx@CN for HER can be attributed to the high conductivity of carbon, the synergistic effect of metallic cobalt and cobalt oxide, the stability of carbon-encapsulated Co nanoparticles, and the introduction of electron-rich nitrogen. In addition, when used as catalysts of OER, the CoOx@CN hybrids required 0.26 V overpotential for a current density of 10 mA cm(-2), which is comparable even superior to many other non-noble metal catalysts. More importantly, an alkaline electrolyzer that approached ∼20 mA cm(-2) at a voltage of 1.55 V was fabricated by applying CoOx@CN as cathode and anode electrocatalyst, which opened new possibilities for exploring overall water splitting catalysts.

  14. Insights into the dual activation mechanism involving bifunctional cinchona alkaloid thiourea organocatalysts: an NMR and DFT study.

    Science.gov (United States)

    Zhu, Jun-Ling; Zhang, Yong; Liu, Chong; Zheng, An-Min; Wang, Wei

    2012-11-02

    In-depth understanding of the activation mechanism in asymmetric organocatalysis is of great importance for rational development of highly efficient catalytic systems. In this Article, the mechanism for the direct vinylogous Michael reaction of α,β-unsaturated γ-butyrolactam (Nu) and chalcone (EI) catalyzed by the bifunctional cinchona alkaloid thiourea organocatalyst (Cat) was studied with a combination of experimental (NMR) and theoretical (DFT) approaches, through which a new dual activation pathway was found. The key feature of this new dual activation mechanism (Pathway C) is that one N-H(A) of the thiourea moiety and the N-H of the protonated amine in Cat simultaneously activate Nu, while the other N-H(B) of the thiourea moiety activates EI. Both the NMR measurement and the DFT calculation identified that the interaction of Cat with Nu is stronger than that with EI in the catalyst-substrate complexes. Kinetic studies via variable-temperature NMR measurements indicated that, with the experimental activation energy E(a) of 10.2 kcal/mol, the reaction is all first-order in Nu, EI, and Cat. The DFT calculation further revealed that the C-C bond formation is both the rate-determining and the stereoselectivity-controlling steps. In agreement with the experimental data, the energy barrier for the rate-determining step along Pathway C was calculated as 8.8 kcal/mol. The validity of Pathway C was further evidenced by the calculated enantioselectivity (100% ee) and diastereoselectivity (60:1 dr), which are in excellent match with the experimental data (98% ee and >30:1 dr, respectively). Mechanistic study on the Michael addition of nitromethane to chalcone catalyzed by the Catalyst I further identified the generality of this new dual activation mechanism in cinchona alkaloid thiourea organocatalysis.

  15. Facile labelling of an anti-epidermal growth factor receptor nanobody with {sup 68}Ga via a novel bifunctional desferal chelate for immuno-PET

    Energy Technology Data Exchange (ETDEWEB)

    Vosjan, Maria J.W.D.; Perk, Lars R.; Stigter van Walsum, Marijke [VU University Medical Center, Department of Otolaryngology/Head and Neck Surgery, De Boelelaan 1117, P.O. Box 7057, Amsterdam (Netherlands); Roovers, Rob C.; Bergen en Henegouwen, Paul M.P. van [Utrecht University, Cellular Dynamics, Science Faculty, Utrecht (Netherlands); Visser, Gerard W.M. [VU University Medical Center, Department of Nuclear Medicine and PET Research, Amsterdam (Netherlands); Dongen, Guus A.M.S. van [VU University Medical Center, Department of Otolaryngology/Head and Neck Surgery, De Boelelaan 1117, P.O. Box 7057, Amsterdam (Netherlands); VU University Medical Center, Department of Nuclear Medicine and PET Research, Amsterdam (Netherlands)

    2011-04-15

    The {proportional_to}15 kDa variable domains of camelid heavy-chain-only antibodies (called Nanobodies {sup registered}) have the flexibility to be formatted as monovalent, monospecific, multivalent or multispecific single chain proteins with either fast or slow pharmacokinetics. We report the evaluation of the fast kinetic anti-epidermal growth factor receptor (EGFR) Nanobody 7D12, labelled with {sup 68}Ga via the novel bifunctional chelate (BFC) p-isothiocyanatobenzyl-desferrioxamine (Df-Bz-NCS). Df-Bz-NCS has recently been introduced as the chelate of choice for {sup 89}Zr immuno-positron emission tomography (PET). Nanobody 7D12 was premodified with Df-Bz-NCS at pH 9. Radiolabelling with purified {sup 68}Ga was performed at pH 5.0-6.5 for 5 min at room temperature. For in vitro stability measurements in storage buffer (0.25 M NaOAc with 5 mg ml{sup -1} gentisic acid, pH 5.5) at 4 C or in human serum at 37 C, a mixture of {sup 67}Ga and {sup 68}Ga was used. Biodistribution and immuno-PET studies of {sup 68}Ga-Df-Bz-NCS-7D12 were performed in nude mice bearing A431 xenografts using {sup 89}Zr-Df-Bz-NCS-7D12 as the reference conjugate. The Df-Bz-NCS chelate was conjugated to Nanobody 7D12 with a chelate to Nanobody molar substitution ratio of 0.2:1. The overall {sup 68}Ga radiochemical yield was 55-70% (not corrected for decay); specific activity was 100-500 MBq/mg. Radiochemical purity of the conjugate was >96%, while the integrity and immunoreactivity were preserved. {sup 68/67}Ga-Df-Bz-NCS-7D12 was stable in storage buffer as well as in human serum during a 5-h incubation period (<2% radioactivity loss). In biodistribution studies the {sup 68}Ga-labelled Nanobody 7D12 showed high uptake in A431 tumours (ranging from 6.1 {+-} 1.3 to 7.2 {+-} 1.5%ID/g at 1-3 h after injection) and high tumour to blood ratios, which increased from 8.2 to 14.4 and 25.7 at 1, 2 and 3 h after injection, respectively. High uptake was also observed in the kidneys. Biodistribution was

  16. Bifunctional role of the Treponema pallidum extracellular matrix binding adhesin Tp0751.

    Science.gov (United States)

    Houston, Simon; Hof, Rebecca; Francescutti, Teresa; Hawkes, Aaron; Boulanger, Martin J; Cameron, Caroline E

    2011-03-01

    Treponema pallidum, the causative agent of syphilis, is a highly invasive pathogenic spirochete capable of attaching to host cells, invading the tissue barrier, and undergoing rapid widespread dissemination via the circulatory system. The T. pallidum adhesin Tp0751 was previously shown to bind laminin, the most abundant component of the basement membrane, suggesting a role for this adhesin in host tissue colonization and bacterial dissemination. We hypothesized that similar to that of other invasive pathogens, the interaction of T. pallidum with host coagulation proteins, such as fibrinogen, may also be crucial for dissemination via the circulatory system. To test this prediction, we used enzyme-linked immunosorbent assay (ELISA) methodology to demonstrate specific binding of soluble recombinant Tp0751 to human fibrinogen. Click-chemistry-based palmitoylation profiling of heterologously expressed Tp0751 confirmed the presence of a lipid attachment site within this adhesin. Analysis of the Tp0751 primary sequence revealed the presence of a C-terminal putative HEXXH metalloprotease motif, and in vitro degradation assays confirmed that recombinant Tp0751 purified from both insect and Escherichia coli expression systems degrades human fibrinogen and laminin. The proteolytic activity of Tp0751 was abolished by the presence of the metalloprotease inhibitor 1,10-phenanthroline. Further, inductively coupled plasma-mass spectrometry showed that Tp0751 binds zinc and calcium. Collectively, these results indicate that Tp0751 is a zinc-dependent, membrane-associated protease that exhibits metalloprotease-like characteristics. However, site-directed mutagenesis of the HEXXH motif to HQXXH did not abolish the proteolytic activity of Tp0751, indicating that further mutagenesis studies are required to elucidate the critical active site residues associated with this protein. This study represents the first published description of a T. pallidum protease capable of degrading host

  17. Development of a Bifunctional Andrographolide-Based Chemical Probe for Pharmacological Study.

    Science.gov (United States)

    Hsu, Ya-Hsin; Hsu, Yu-Ling; Liu, Sheng-Hung; Liao, Hsin-Chia; Lee, Po-Xuan; Lin, Chao-Hsiung; Lo, Lee-Chiang; Fu, Shu-Ling

    2016-01-01

    Andrographolide (ANDRO) is a lactone diterpenoid compound present in the medicinal plant Andrographis paniculata which is clinically applied for multiple human diseases in Asia and Europe. The pharmacological activities of andrographolide have been widely demonstrated, including anti-inflammation, anti-cancer and hepatoprotection. However, the pharmacological mechanism of andrographolide remains unclear. Therefore, further characterization on the kinetics and molecular targets of andrographolide is essential. In this study, we described the synthesis and characterization of a novel fluorescent andrographolide derivative (ANDRO-NBD). ANDRO-NBD exhibited a comparable anti-cancer spectrum to andrographolide: ANDRO-NBD was cytotoxic to various types of cancer cells and suppressed the migration activity of melanoma cells; ANDRO-NBD treatment induced the cleavage of heat shock protein 90 (Hsp90) and the downregulation of its client oncoproteins, v-Src and Bcr-abl. Notably, ANDRO-NBD showed superior inhibitory effects to andrographolide in all anticancer assays we have performed. In addition, ANDRO-NBD was further used as a fluorescent probe to investigate the uptake kinetics, cellular distribution and molecular targets of andrographolide. Our data revealed that ANDRO-NBD entered cells rapidly and its fluorescent signal could be detected in nucleus, cytoplasm, mitochondria, and lysosome. Moreover, we demonstrated that ANDRO-NBD was covalently bound to several putative target proteins of andrographolide, including NF-κB and hnRNPK. In summary, we developed a fluorescent andrographolide probe with comparable bioactivity to andrographolide, which serves as a powerful tool to explore the pharmacological mechanism of andrographolide.

  18. Development of a Bifunctional Andrographolide-Based Chemical Probe for Pharmacological Study.

    Directory of Open Access Journals (Sweden)

    Ya-Hsin Hsu

    Full Text Available Andrographolide (ANDRO is a lactone diterpenoid compound present in the medicinal plant Andrographis paniculata which is clinically applied for multiple human diseases in Asia and Europe. The pharmacological activities of andrographolide have been widely demonstrated, including anti-inflammation, anti-cancer and hepatoprotection. However, the pharmacological mechanism of andrographolide remains unclear. Therefore, further characterization on the kinetics and molecular targets of andrographolide is essential. In this study, we described the synthesis and characterization of a novel fluorescent andrographolide derivative (ANDRO-NBD. ANDRO-NBD exhibited a comparable anti-cancer spectrum to andrographolide: ANDRO-NBD was cytotoxic to various types of cancer cells and suppressed the migration activity of melanoma cells; ANDRO-NBD treatment induced the cleavage of heat shock protein 90 (Hsp90 and the downregulation of its client oncoproteins, v-Src and Bcr-abl. Notably, ANDRO-NBD showed superior inhibitory effects to andrographolide in all anticancer assays we have performed. In addition, ANDRO-NBD was further used as a fluorescent probe to investigate the uptake kinetics, cellular distribution and molecular targets of andrographolide. Our data revealed that ANDRO-NBD entered cells rapidly and its fluorescent signal could be detected in nucleus, cytoplasm, mitochondria, and lysosome. Moreover, we demonstrated that ANDRO-NBD was covalently bound to several putative target proteins of andrographolide, including NF-κB and hnRNPK. In summary, we developed a fluorescent andrographolide probe with comparable bioactivity to andrographolide, which serves as a powerful tool to explore the pharmacological mechanism of andrographolide.

  19. Highly thermostable fluorescent proteins

    Science.gov (United States)

    Bradbury, Andrew M.; Waldo, Geoffrey S.; Kiss, Csaba

    2011-03-22

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  20. Towards understanding the extreme radiation resistance of Ustilago maydis.

    Science.gov (United States)

    Holloman, William K; Schirawski, Jan; Holliday, Robin

    2007-12-01

    Ustilago maydis is a phytopathogenic fungus exhibiting extreme resistance to UV and ionizing radiation. The molecular mechanisms underlying this resistance are as yet unknown. The recently determined genome sequence was examined for clues to the radiation resistance, focusing on proteins in homologous recombination, but there was little that was unusual about them. Furthermore, by comparison, its recombinational repair system seems to be only minimally related to the extended synthesis-dependent DNA strand-annealing system of Deinococcus radiodurans. Thus, consideration should be given to the possibility that incremental structural changes in repair proteins or their elevated expression are the basis for the extreme radiation resistance in U. maydis. Evolution of a system enabling the survival of U. maydis under such conditions could be a secondary consequence of adaptation to an environment of continual genotoxic stress encountered in its habitat.

  1. Structural Analysis of Proteins in Extreme Saline Environments

    Science.gov (United States)

    1989-03-16

    ferredoxinz with the same 2Fe-2S prosthetic group trom the blue-green algae Spirulina platensis (SplFd) (K. Fukuyama et al., 1980; Tsukihara et al...homologous 2Fe-2S ferredoxin from a nonhalophilic source, the algae Spirulinaplatensis. We wanted to understand what sort of adaptation, on the...thermophilic organisms are known today, among them bacteria, algae and fungi. The group of true thermophiles, i.e. organisms that thrive in high temperatures and

  2. Outcomes for Extremely Premature Infants

    Science.gov (United States)

    Glass, Hannah C.; Costarino, Andrew T.; Stayer, Stephen A.; Brett, Claire; Cladis, Franklyn; Davis, Peter J.

    2015-01-01

    Premature birth is a significant cause of infant and child morbidity and mortality. In the United States, the premature birth rate, which had steadily increased during the 1990s and early 2000s, has decreased annually for four years and is now approximately 11.5%. Human viability, defined as gestational age at which the chance of survival is 50%, is currently approximately 23–24 weeks in developed countries. Infant girls, on average, have better outcomes than infant boys. A relatively uncomplicated course in the intensive care nursery for an extremely premature infant results in a discharge date close to the prenatal EDC. Despite technological advances and efforts of child health experts during the last generation, the extremely premature infant (less than 28 weeks gestation) and extremely low birth weight infant (ELBW) (< 1000 grams) remain at high risk for death and disability with 30–50% mortality and, in survivors, at least 20–50% risk of morbidity. The introduction of CPAP, mechanical ventilation, and exogenous surfactant increased survival and spurred the development of neonatal intensive care in the 1970s through the early 1990s. Routine administration of antenatal steroids during premature labor improved neonatal mortality and morbidity in the late 1990s. The recognition that chronic postnatal administration of steroids to infants should be avoided may have improved outcomes in the early 2000s. Evidence from recent trials attempting to define the appropriate target for oxygen saturation in preterm infants suggests arterial oxygen saturation between 91–95% (compared to 85–89%) avoids excess mortality. However, final analyses of data from these trials have not been published, so definitive recommendations are still pending The development of neonatal neurocognitive care visits may improve neurocognitive outcomes in this high-risk group. Long-term follow up to detect and address developmental, learning, behavioral, and social problems is critical for

  3. Ionization Chamber Measures Extreme Ultraviolet

    Science.gov (United States)

    Carlson, Robert W.

    1987-01-01

    Ionization chamber operates in nearly total photon absorption as stable, self-calibrating detector of ionizing extreme ultraviolet radiation. Working gas of instrument is neon; photoionization properties well known and readily applicable to absolute measurements. Designed for measurements of solar ultraviolet flux aboard sounding rocket, instrument used on Earth to measure ultraviolet radiation in vacuum systems. Ionization chamber collects positive neon ions and electrons produced by irradiation of neon gas by ultraviolet photons. Approximately one ion produced by each photon; consequently, photoionization current nearly proportional to photon flux.

  4. Gravity and Extreme Magnetism SMEX

    Science.gov (United States)

    2012-01-01

    The Gravity and Extreme Magnetism SMEX mission will be the first mission to catalogue the X-ray polarisation of many astrophysical objects including black-holes and pulsars. This first of its kind mission is enabled by the novel use of a time projection chamber as an X-ray polarimeter. The detector has been developed over the last 5 years, with the current effort charged toward a demonstration of it's technical readiness to be at level 6 prior to the preliminary design review. This talk will describe the design GEMS polarimeter and the results to date from the engineering test unit.

  5. Advances in upper extremity prosthetics.

    Science.gov (United States)

    Zlotolow, Dan A; Kozin, Scott H

    2012-11-01

    Until recently, upper extremity prostheses had changed little since World War II. In 2006, the Defense Advanced Research Projects Agency responded to an increasing number of military amputees with the Revolutionizing Prosthetics program. The program has yielded several breakthroughs both in the engineering of new prosthetic arms and in the control of those arms. Direct brain-wave control of a limb with 22° of freedom may be within reach. In the meantime, advances such as individually powered digits have opened the door to multifunctional full and partial hand prostheses. Restoring sensation to the prosthetic limb remains a major challenge to full integration of the limb into a patient's self-image.

  6. Extreme Geomagnetic Storms - 1868 - 2010

    Science.gov (United States)

    Vennerstrom, S.; Lefevre, L.; Dumbović, M.; Crosby, N.; Malandraki, O.; Patsou, I.; Clette, F.; Veronig, A.; Vršnak, B.; Leer, K.; Moretto, T.

    2016-05-01

    We present the first large statistical study of extreme geomagnetic storms based on historical data from the time period 1868 - 2010. This article is the first of two companion papers. Here we describe how the storms were selected and focus on their near-Earth characteristics. The second article presents our investigation of the corresponding solar events and their characteristics. The storms were selected based on their intensity in the aa index, which constitutes the longest existing continuous series of geomagnetic activity. They are analyzed statistically in the context of more well-known geomagnetic indices, such as the Kp and Dcx/Dst index. This reveals that neither Kp nor Dcx/Dst provide a comprehensive geomagnetic measure of the extreme storms. We rank the storms by including long series of single magnetic observatory data. The top storms on the rank list are the New York Railroad storm occurring in May 1921 and the Quebec storm from March 1989. We identify key characteristics of the storms by combining several different available data sources, lists of storm sudden commencements (SSCs) signifying occurrence of interplanetary shocks, solar wind in-situ measurements, neutron monitor data, and associated identifications of Forbush decreases as well as satellite measurements of energetic proton fluxes in the near-Earth space environment. From this we find, among other results, that the extreme storms are very strongly correlated with the occurrence of interplanetary shocks (91 - 100 %), Forbush decreases (100 %), and energetic solar proton events (70 %). A quantitative comparison of these associations relative to less intense storms is also presented. Most notably, we find that most often the extreme storms are characterized by a complexity that is associated with multiple, often interacting, solar wind disturbances and that they frequently occur when the geomagnetic activity is already elevated. We also investigate the semiannual variation in storm occurrence

  7. Communication path for extreme environments

    Science.gov (United States)

    Jorgensen, Charles C. (Inventor); Betts, Bradley J. (Inventor)

    2010-01-01

    Methods and systems for using one or more radio frequency identification devices (RFIDs), or other suitable signal transmitters and/or receivers, to provide a sensor information communication path, to provide location and/or spatial orientation information for an emergency service worker (ESW), to provide an ESW escape route, to indicate a direction from an ESW to an ES appliance, to provide updated information on a region or structure that presents an extreme environment (fire, hazardous fluid leak, underwater, nuclear, etc.) in which an ESW works, and to provide accumulated thermal load or thermal breakdown information on one or more locations in the region.

  8. Statistical analysis on extreme wave height

    Digital Repository Service at National Institute of Oceanography (India)

    Teena, N.V.; SanilKumar, V.; Sudheesh, K.; Sajeev, R.

    The classical extreme value theory based on generalized extreme value (GEV) distribution and generalized Pareto distribution (GPD) is applied to the wave height estimate based on wave hindcast data covering a period of 31 years for a location...

  9. Cations modulate the substrate specificity of bifunctional class I O-methyltransferase from Ammi majus.

    Science.gov (United States)

    Lukacin, Richard; Matern, Ulrich; Specker, Silvia; Vogt, Thomas

    2004-11-19

    Caffeoyl-coenzyme A O-methyltransferase cDNA was cloned from dark-grown Ammi majus L. (Apiaceae) cells treated with a crude fungal elicitor and the open reading frame was expressed in Escherichia coli. The translated polypeptide of 27.1-kDa shared significant identity to other members of this highly conserved class of proteins and was 98.8% identical to the corresponding O-methyltransferase from parsley. For biochemical characterization, the recombinant enzyme could be purified to apparent homogeneity by metal-affinity chromatography, although the recombinant enzyme did not contain any affinity tag. Based on sequence analysis and substrate specificity, the enzyme classifies as a cation-dependent O-methyltransferase with pronounced preference for caffeoyl coenzyme A, when assayed in the presence of Mg2+-ions. Surprisingly, however, the substrate specificity changed dramatically, when Mg2+ was replaced by Mn2+ or Co2+ in the assays. This effect could point to yet unknown functions and substrate specificities in situ and suggests promiscuous roles for the lignin specific cluster of plant O-methyltransferases.

  10. Biosynthesis of the earthy odorant geosmin by a bifunctional Streptomyces coelicolor enzyme.

    Science.gov (United States)

    Jiang, Jiaoyang; He, Xiaofei; Cane, David E

    2007-11-01

    Geosmin is responsible for the characteristic odor of moist soil, as well as off-flavors in drinking water and foodstuffs. Geosmin is generated from farnesyl diphosphate (FPP, 2) by an enzyme that is encoded by the SCO6073 gene in the soil organism Streptomyces coelicolor A32 (ref. 3). We have now shown that the recombinant N-terminal half of this protein catalyzes the Mg2+-dependent cyclization of FPP to germacradienol and germacrene D, while the highly homologous C-terminal domain, previously thought to be catalytically silent, catalyzes the Mg2+-dependent conversion of germacradienol to geosmin. Site-directed mutagenesis confirmed that the N- and C-terminal domains each harbor a distinct, independently functioning active site. A mutation in the N-terminal domain of germacradienol-geosmin synthase of a catalytically essential serine to alanine results in the conversion of FPP to a mixture of sesquiterpenes that includes an aberrant product identified as isolepidozene, which was previously suggested to be an enzyme-bound intermediate in the cyclization of FPP to germacradienol.

  11. [Changes in body composition during an extreme endurance run].

    Science.gov (United States)

    Knechtle, B; Bircher, S

    2005-03-09

    We measured before, during and after a six-day-run in one athlete body weight, skinfold thickness, circumference of extremities, energy expenditure and nutritional intake. Despite an increased fat and protein intake during the race we found a significantly decrease in adipose subcutaneous tissue of the whole body and muscle mass in the active limbs whereas body weight remained stable. We presume that during running as eccentric exercise subcutaneous adipose tissue and muscle mass will be oxidised.

  12. Prevention of Lower Extremity Injuries in Basketball

    OpenAIRE

    2015-01-01

    Context: Lower extremity injuries are common in basketball, yet it is unclear how prophylactic interventions affect lower extremity injury incidence rates. Objective: To analyze the effectiveness of current lower extremity injury prevention programs in basketball athletes, focusing on injury rates of (1) general lower extremity injuries, (2) ankle sprains, and (3) anterior cruciate ligament (ACL) tears. Data Sources: PubMed, MEDLINE, CINAHL, SPORTDiscus, and the Cochrane Register of Controlle...

  13. Co3O4 nanoparticle-modified MnO2 nanotube bifunctional oxygen cathode catalysts for rechargeable zinc-air batteries

    Science.gov (United States)

    Du, Guojun; Liu, Xiaogang; Zong, Yun; Hor, T. S. Andy; Yu, Aishui; Liu, Zhaolin

    2013-05-01

    We report the preparation of MnO2 nanotubes functionalized with Co3O4 nanoparticles and their use as bifunctional air cathode catalysts for oxygen reduction reaction and oxygen evolution reaction in rechargeable zinc-air batteries. These hybrid MnO2/Co3O4 nanomaterials exhibit enhanced catalytic reactivity toward oxygen evolution reaction under alkaline conditions compared with that in the presence of MnO2 nanotubes or Co3O4 nanoparticles alone.We report the preparation of MnO2 nanotubes functionalized with Co3O4 nanoparticles and their use as bifunctional air cathode catalysts for oxygen reduction reaction and oxygen evolution reaction in rechargeable zinc-air batteries. These hybrid MnO2/Co3O4 nanomaterials exhibit enhanced catalytic reactivity toward oxygen evolution reaction under alkaline conditions compared with that in the presence of MnO2 nanotubes or Co3O4 nanoparticles alone. Electronic supplementary information (ESI) available: Zinc-air cell device, XPS survey scan and power density of the cell. See DOI: 10.1039/c3nr00300k

  14. Novel molecularly imprinted polymers based on multiwalled carbon nanotubes with bifunctional monomers for solid-phase extraction of rhein from the root of kiwi fruit.

    Science.gov (United States)

    Chen, Xing; Zhang, Zhaohui; Yang, Xiao; Liu, Yunan; Li, Jiaxing; Peng, Mijun; Yao, Shouzhuo

    2012-09-01

    A novel molecularly imprinted polymers based on multiwalled carbon nanotubes synthesized by precipitate polymerization was applied as a selective sorbent for separation and determination of rhein (4,5-dihydroxyanthraquinone-2-carboxylic acid) from the root of kiwi fruit samples coupled with high performance liquid chromatography (HPLC). The molecularly imprinted polymers were prepared with methacrylic acid and 4-vinylpyridine as bifunctional monomers. The chemical structure of the molecularly imprinted polymers was characterized by Fourier transform infrared spectrometer. The equilibrium rebinding experiment and competitive adsorption experiment showed that these imprinted polymers exhibited good adsorption ability toward rhein. The Langmuir adsorption equilibrium constant, K(m) , and theoretical maximum adsorption capacity, Q(m) , were estimated to be 0.43 and 6.77 mg g(-1) , respectively. Compared with molecularly imprinted polymers prepared with methacrylic acid or 4-vinylpyridine solely, the molecularly imprinted polymers synthesized with bifunctional monomers showed enhanced molecular imprinting effect and higher adsorption capacity for the template rhein. The performances of the molecularly imprinted polymers utilized as solid phase extraction sorbent were investigated in detail. The molecularly imprinted polymers prepared by the method proposed in this work could successfully apply to extraction and determination of rhein from the root of kiwi fruit samples coupled with HPLC.

  15. NiFe layered double hydroxide/reduced graphene oxide nanohybrid as an efficient bifunctional electrocatalyst for oxygen evolution and reduction reactions

    Science.gov (United States)

    Zhan, Tianrong; Zhang, Yumei; Liu, Xiaolin; Lu, SiSi; Hou, Wanguo

    2016-11-01

    Highly active and low-cost bifunctional electrocatalysts for oxygen evolution and reduction reactions (OER and ORR) hold a heart position for the renewable energy technologies such as metal-air batteries and fuel cells. Here, we reported the synthesis of NiFe layered double hydroxide/reduced graphene oxide (NiFe-LDH/rGO) nanohybrid via the facile solvothermal method followed by chemical reduction. The template role of surfactant and the hybridization of rGO supplied the NiFe-LDH/rGO catalyst with a porous nanostructure and an enhanced conductivity, favoring both mass transport and charge communication of electrocatalytic reactions. The NiFe-LDH/rGO composite not only displayed highly efficient OER activity in alkaline solution with a low onset overpotential of 240 mV, but also only needed an overpotential of 250 mV to reach the 10 mA cm-2 current density. The NiFe-LDH/rGO nanohybrid also offered excellent ORR catalytic activity with onset potential at 0.796 V in alkaline media. The rotating-disk and rotating-ring-disk electrodes both revealed that the ORR on NiFe-LDH/rGO mainly involved a direct four-electron reaction pathways accompanying part of the two-electron process. The excellent bifunctional activity of the NiFe-LDH/rGO nanohybrid could be attributed to the synergistic effects of rGO and NiFe-LDH components due to the strongly coupled interactions.

  16. RuO2 nanoparticles decorated MnOOH/C as effective bifunctional electrocatalysts for lithium-air battery cathodes with long-cycling stability

    Science.gov (United States)

    Kim, Gil-Pyo; Lim, Dongwook; Park, Inyeong; Park, Hyelee; Shim, Sang Eun; Baeck, Sung-Hyeon

    2016-08-01

    Manganite (MnOOH) is one of the most effective electrocatalysts for oxygen reduction reaction (ORR), and RuO2 nanoparticles exhibit high activity for oxygen evolution reaction (OER). We herein report a facile means of producing well dispersed RuO2/MnOOH on Ketjen black (RuO2/MnOOH/C) as a bifunctional catalyst for lithium-air (Li-air) batteries. RuO2/MnOOH/C was simply synthesized using a hydrothermal/precipitation based method, and was used as a cathode for a Li-air battery using a Swagelok-type cell. The importance of dispersing active catalysts on a carbon support was clearly demonstrated by textural, charge-discharge voltammetric, and electrochemical impedance spectroscopic (EIS) analyses, comparing results with a catalyst produced by physically mixing RuO2/MnOOH with carbon (RuO2/MnOOH + C). RuO2/MnOOH/C showed low overpotential and stable cycleability up to 170th cycles with 1000 mAh g-1 of charge-discharge capacity, which was attributed to its enhanced active surface area and low charge-transfer resistance. The results obtained suggest that this strategy can be widely applied to bifunctional electrocatalysis, such as secondary batteries and regenerative fuel cell (RFC).

  17. Cobalt Nanoparticle-Embedded Porous Carbon Nanofibers with Inherent N- and F-Doping as Binder-Free Bifunctional Catalysts for Oxygen Reduction and Evolution Reactions.

    Science.gov (United States)

    Singhal, Richa; Kalra, Vibha

    2017-01-18

    Efficient, low-cost, non-precious metal-based, and stable bifunctional electrocatalysts are key to various energy storage and conversion devices such as regenerative fuel cells and metal-air batteries. In this work, we report cobalt nanoparticle-embedded porous carbon nanofibers with inherent N- and F-doping as binder-free bifunctional electrocatalysts with excellent activity for both the oxygen reduction and oxygen evolution reaction (ORR/OER) in an alkaline medium. Single-step electrospinning of a solution of the polymer mixture (carbon precursor) and the cobalt precursor followed by controlled pyrolysis with an intermediate reduction step in H2 (to reduce cobalt oxides to cobalt) was utilized to synthesize an integrated freestanding catalyst. The fabricated catalyst with effective structural and electronic interaction between the cobalt metal nanoparticles and the N- and F-doped carbon defect sites showed enhanced catalytic properties compared to the benchmark catalysts for ORR and OER (Pt, Ir, and Ru). The ORR potential at the current density of -3 mA cm(-2) was 0.81 VRHE and the OER potential at a current density of 10 mA cm(-2) was 1.595 VRHE , resulting in a ΔE of only 0.785 V.

  18. Immunology in the clinic review series; focus on cancer: double trouble for tumours: bi-functional and redirected T cells as effective cancer immunotherapies.

    Science.gov (United States)

    Marr, L A; Gilham, D E; Campbell, J D M; Fraser, A R

    2012-02-01

    Cancer is one of the most important pathological conditions facing mankind in the 21st century, and is likely to become the most important cause of death as improvements continue in health, diet and life expectancy. The immune response is responsible for controlling nascent cancer through immunosurveillance. If tumours escape this control, they can develop into clinical cancer. Although surgery and chemo- or radiotherapy have improved survival rates significantly, there is a drive to reharness immune responses to treat disease. As T cells are one of the key immune cells in controlling cancer, research is under way to enhance their function and improve tumour targeting. This can be achieved by transduction with tumour-specific T cell receptor (TCR) or chimaeric antigen receptors (CAR) to generate redirected T cells. Virus-specific cells can also be transduced with TCR or CAR to create bi-functional T cells with specificity for both virus and tumour. In this review we outline the development and optimization of redirected and bi-functional T cells, and outline the results from current clinical trials using these cells. From this we discuss the challenges involved in generating effective anti-tumour responses while avoiding concomitant damage to normal tissues and organs.

  19. Two interpenetrating Cu{sup II}/Ni{sup II}-coordinated polymers based on an unsymmetrical bifunctional N/O-tectonic: Syntheses, structures and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong-Liang [College of Materials & Chemical Engineering, China Three Gorges University, Yichang 443002 (China); Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shang Luo University, Shang Luo 726000 (China); Wu, Ya-Pan [College of Materials & Chemical Engineering, China Three Gorges University, Yichang 443002 (China); Li, Dong-Sheng, E-mail: lidongsheng1@126.com [College of Materials & Chemical Engineering, China Three Gorges University, Yichang 443002 (China); Dong, Wen-Wen [College of Materials & Chemical Engineering, China Three Gorges University, Yichang 443002 (China); Zhou, Chun-Sheng [Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shang Luo University, Shang Luo 726000 (China)

    2015-03-15

    Two new interpenetrating Cu{sup II}/Ni{sup II} coordination polymers, based on a unsymmetrical bifunctional N/O-tectonic 3-(pyrid-4′-yl)-5-(4″-carbonylphenyl)-1,2,4-triazolyl (H{sub 2}pycz), ([Cu-(Hpycz){sub 2}]·2H{sub 2}O){sub n} (1) and ([Ni(Hpycz){sub 2}]·H{sub 2}O){sub n} (2), have been solvothermally synthesized and structure characterization. Single crystal X-ray analysis indicates that compound 1 shows 2-fold parallel interpenetrated 4{sup 4}-sql layers with the same handedness. The overall structure of 1 is achiral—in each layer of doubly interpenetrating nets, the two individual nets have the opposite handedness to the corresponding nets in the adjoining layers—while 2 features a rare 8-fold interpenetrating 6{sup 6}-dia network that belongs to class IIIa interpenetration. In addition, compounds 1 and 2 both show similar paramagnetic characteristic properties. - Graphical abstract: Two new Cu(II)/Ni(II) coordination polymers present 2D parallel 2-fold interpenetrated 4{sup 4}-sql layers and a rare 3D 8-fold interpenetrating 6{sup 6}-dia network. In addition, magnetic susceptibility measurements show similar paramagnetic characteristic for two complexes. - Highlights: • A new unsymmetrical bifunctional N/O-tectonic as 4-connected spacer. • A 2-fold parallel interpenetrated sql layer with the same handedness. • A rare 8-fold interpenetrating dia network (class IIIa)

  20. The size effect of titania-supported Pt nanoparticles on the electrocatalytic activity towards methanol oxidation reaction primarily via the bifunctional mechanism

    Science.gov (United States)

    Ting, Chao-Cheng; Liu, Chung-Hsuan; Tai, Chun-Yen; Hsu, Shih-Chieh; Chao, Chih-Shuan; Pan, Fu-Ming

    2015-04-01

    We prepared Pt nanoparticles of different particle sizes by plasma enhanced atomic layer deposition (PEALD) on the native oxide surface layer of Ti thin films, and investigated the Pt particle size effect on the electrocatalytic activity towards methanol oxidation reaction (MOR) in acidic media. The average Pt nanoparticles size ranges from 3 nm to 7 nm depending on the number of the PEALD reaction cycles. The electronic interaction between Pt nanoparticles and the TiO2 support is insignificant according to x-ray photoelectron spectroscopy analyses, suggesting that the influence of the Pt particle size on the electrocatalytic activity can be mainly described by the bifunctional mechanism. From cyclic voltammetry measurements, Pt particles of smaller size have a better CO tolerance in MOR. We proposed the reaction steps for the electrooxidation of CO adspecies on Pt nanoparticles on the basis of the bifunctional mechanism. The electrode with Pt nanoparticles of ∼5 nm in size shows the best electrocatalytic performance in terms of CO tolerance and electrochemical stability.

  1. An alternative easy method for antibody purification and analysis of protein-protein interaction using GST fusion proteins immobilized onto glutathione-agarose.

    Science.gov (United States)

    Zalazar, L; Alonso, C A I; De Castro, R E; Cesari, A

    2014-01-01

    Immobilization of small proteins designed to perform protein-protein assays can be a difficult task. Often, the modification of reactive residues necessary for the interaction between the immobilized protein and the matrix compromises the interaction between the protein and its target. In these cases, glutathione-S-transferase (GST) is a valuable tag providing a long arm that makes the bait protein accessible to the mobile flow phase of the chromatography. In the present report, we used a GST fusion version of the 8-kDa protein serine protease inhibitor Kazal-type 3 (SPINK3) as the bait to purify anti-SPINK3 antibodies from a rabbit crude serum. The protocol for immobilization of GST-SPINK3 to glutathione-agarose beads was modified from previously reported protocols by using an alternative bifunctional cross-linker (dithiobis(succinimidyl propionate)) in a very simple procedure and by using simple buffers under physiological conditions. We concluded that the immobilized protein remained bound to the column after elution with low pH, allowing the reuse of the column for alternative uses, such as screening for other protein-protein interactions using SPINK3 as the bait.

  2. Bacterial biofilm formation versus mammalian cell growth on titanium-based mono- and bi-functional coating

    Directory of Open Access Journals (Sweden)

    G Subbiahdoss

    2010-05-01

    Full Text Available Biomaterials-associated-infections (BAI are serious complications in modern medicine. Although non-adhesive coatings, like polymer-brush coatings, have been shown to prevent bacterial adhesion, they do not support cell growth. Bi-functional coatings are supposed to prevent biofilm formation while supporting tissue integration. Here, bacterial and cellular responses to poly(ethylene glycol (PEG brush-coatings on titanium oxide presenting the integrin-active peptide RGD (arginine-glycine-aspartic acid (bioactive “PEG-RGD” were compared to mono-functional PEG brush-coatings (biopassive “PEG” and bare titanium oxide (TiO2 surfaces under flow. Staphylococcus epidermidis ATCC 35983 was deposited on the surfaces under a shear rate of 11 s-1 for 2 h followed by seeding of U2OS osteoblasts. Subsequently, both S. epidermidis and U2OS cells were grown simultaneously on the surfaces for 48 h under low shear (0.14 s-1. After 2 h, staphylococcal adhesion was reduced to 3.6±1.8 × 103 and 6.0±3.9 × 103 cm-2 on PEG and PEG-RGD coatings respectively, compared to 1.3±0.4 × 105 cm-2 for the TiO2 surface. When allowed to grow for 48 h, biofilms formed on all surfaces. However, biofilms detached from the PEG and PEG-RGD coatings when exposed to an elevated shear (5.6 s-1 U2OS cells neither adhered nor spread on PEG brush-coatings, regardless of the presence of biofilm. In contrast, in the presence of biofilm, U2OS cells adhered and spread on PEG-RGD coatings with a significantly higher surface coverage than on bare TiO2. The detachment of biofilm and the high cell surface coverage revealed the potential significance of PEG-RGD coatings in the context of the “race for the surface” between bacteria and mammalian cells.

  3. Multivalent bifunctional chelator scaffolds for gallium-68 based positron emission tomography imaging probe design: signal amplification via multivalency.

    Science.gov (United States)

    Singh, Ajay N; Liu, Wei; Hao, Guiyang; Kumar, Amit; Gupta, Anjali; Öz, Orhan K; Hsieh, Jer-Tsong; Sun, Xiankai

    2011-08-17

    The role of the multivalent effect has been well recognized in the design of molecular imaging probes toward the desired imaging signal amplification. Recently, we reported a bifunctional chelator (BFC) scaffold design, which provides a simple and versatile approach to impart multivalency to radiometal based nuclear imaging probes. In this work, we report a series of BFC scaffolds ((t)Bu(3)-1-COOH, (t)Bu(3)-2-(COOH)(2), and (t)Bu(3)-3-(COOH)(3)) constructed on the framework of 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) for (68)Ga-based PET probe design and signal amplification via the multivalent effect. For proof of principle, a known integrin α(v)β(3) specific ligand (c(RGDyK)) was used to build the corresponding NOTA conjugates (H(3)1, H(3)2, and H(3)3), which present 1-3 copies of c(RGDyK) peptide, respectively, in a systematic manner. Using the integrin α(v)β(3) binding affinities (IC(50) values), enhanced specific binding was observed for multivalent conjugates (H(3)2: 43.9 ± 16.1 nM; H(3)3: 14.7 ± 5.0 nM) as compared to their monovalent counterpart (H(3)1: 171 ± 60 nM) and the intact c(RGDyK) peptide (204 ± 76 nM). The obtained conjugates were efficiently labeled with (68)Ga(3+) within 30 min at room temperature in high radiochemical yields (>95%). The in vivo evaluation of the labeled conjugates, (68)Ga-1, (68)Ga-2, and (68)Ga-3, was performed using male severe combined immunodeficiency (SCID) mice bearing integrin α(v)β(3) positive PC-3 tumor xenografts (n = 3). All (68)Ga-labeled conjugates showed high in vivo stability with no detectable metabolites found by radio-HPLC within 2 h postinjection (p.i.). The PET signal amplification in PC-3 tumor by the multivalent effect was clearly displayed by the tumor uptake of the (68)Ga-labeled conjugates ((68)Ga-3: 2.55 ± 0.50%ID/g; (68)Ga-2: 1.90 ± 0.10%ID/g; (68)Ga-1: 1.66 ± 0.15%ID/g) at 2 h p.i. In summary, we have designed and synthesized a series of NOTA-based BFC scaffolds with signal

  4. Detection of amyloid plaques targeted by bifunctional USPIO in Alzheimer's disease transgenic mice using magnetic resonance microimaging.

    Directory of Open Access Journals (Sweden)

    Youssef Zaim Wadghiri

    Full Text Available Amyloid plaques are a key pathological hallmark of Alzheimer's disease (AD. The detection of amyloid plaques in the brain is important for the diagnosis of AD, as well as for following potential amyloid targeting therapeutic interventions. Our group has developed several contrast agents to detect amyloid plaques in vivo using magnetic resonance microimaging (µMRI in AD transgenic mice, where we used mannitol to enhance blood brain barrier (BBB permeability. In the present study, we used bifunctional ultrasmall superparamagnetic iron oxide (USPIO nanoparticles, chemically coupled with Aβ1-42 peptide to image amyloid plaque deposition in the mouse brain. We coupled the nanoparticles to polyethylene glycol (PEG in order to improve BBB permeability. These USPIO-PEG-Aβ1-42 nanoparticles were injected intravenously in AD model transgenic mice followed by initial in vivo and subsequent ex vivo μMRI. A 3D gradient multi-echo sequence was used for imaging with a 100 µm isotropic resolution. The amyloid plaques detected by T2*-weighted μMRI were confirmed with matched histological sections. The region of interest-based quantitative measurement of T2* values obtained from the in vivo μMRI showed contrast injected AD Tg mice had significantly reduced T2* values compared to wild-type mice. In addition, the ex vivo scans were examined with voxel-based analysis (VBA using statistical parametric mapping (SPM for comparison of USPIO-PEG-Aβ1-42 injected AD transgenic and USPIO alone injected AD transgenic mice. The regional differences seen by VBA in the USPIO-PEG-Aβ1-42 injected AD transgenic correlated with the amyloid plaque distribution histologically. Our results indicate that USPIO-PEG-Aβ1-42 can be used for amyloid plaque detection in vivo by intravenous injection without the need to co-inject an agent which increases permeability of the BBB. This technique could aid the development of novel amyloid targeting drugs by allowing therapeutic effects

  5. A nanoplex PCR assay for the rapid detection of vancomycin and bifunctional aminoglycoside resistance genes in Enterococcus species

    Directory of Open Access Journals (Sweden)

    Ravichandran Manickam

    2007-12-01

    Full Text Available Abstract Background Enterococci have emerged as a significant cause of nosocomial infections in many parts of the world over the last decade. The most common enterococci strains present in clinical isolates are E. faecalis and E. faecium which have acquired resistant to either gentamicin or vancomycin. The conventional culture test takes 2–5 days to yield complete information of the organism and its antibiotic sensitivity pattern. Hence our present study was focused on developing a nanoplex PCR assay for the rapid detection of vancomycin and bifunctional aminoglycoside resistant enterococci (V-BiA-RE. This assay simultaneously detects 8 genes namely 16S rRNA of Enterococcus genus, ddl of E. faecalis and E. faecium, aacA-aphD that encodes high level gentamicin resistance (HLGR, multilevel vancomycin resistant genotypes such as vanA, vanB, vanC and vanD and one internal control gene. Results Unique and specific primer pairs were designed to amplify the 8 genes. The specificity of the primers was confirmed by DNA sequencing of the nanoplex PCR products and BLAST analysis. The sensitivity and specificity of V-BiA-RE nanoplex PCR assay was evaluated against the conventional culture method. The analytical sensitivity of the assay was found to be 1 ng at the DNA level while the analytical specificity was evaluated with 43 reference enterococci and non-enterococcal strains and was found to be 100%. The diagnostic accuracy was determined using 159 clinical specimens, which showed that 97% of the clinical isolates belonged to E. faecalis, of which 26% showed the HLGR genotype, but none were vancomycin resistant. The presence of an internal control in the V-BiA-RE nanoplex PCR assay helped us to rule out false negative cases. Conclusion The nanoplex PCR assay is robust and can give results within 4 hours about the 8 genes that are essential for the identification of the most common Enterococcus spp. and their antibiotic sensitivity pattern. The PCR assay

  6. Ethanol synthesis and water gas shift over bifunctional sulfide catalysts. Final technical progress report, September 12, 1991--December 11, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Klier, K.; Herman, R.G.; Deemer, M.; Richards-Babb, M.; Carr, T.

    1995-07-01

    The objective of this research was to investigate sulfur-resistant catalysts for the conversion of synthesis gas having H{sub 2}/CO {le} 1 into C{sub 1}--C{sub 4} alcohols, especially ethanol, by a highly selective and efficient pathway, while also promoting the water gas shift reaction (WGSR). The catalysts chosen are bifunctional, base-hydrogenation, sulfur-tolerant transition metal sulfides with heavy alkali, e.g. Cs{sup +}, promoter dispersed on their surfaces. The modes of activation of H{sub 2} and CO on MoS{sub 2} and alkali-doped MoS{sub 2} were considered, and computational analyses of the thermodynamic stability of transition metal sulfides and of the electronic structure of these sulfide catalysts were carried out. In the preparation of the cesium-promoted MoS{sub 2} catalysts, a variety of preparation methods using CsOOCH were examined. In all cases, doping with CsOOCH led to a lost of surface area. The undoped molybdenum disulfide catalyst only produced hydrocarbons. Cs-doped MoS{sub 2} catalysts all produced linear alcohols, along with smaller amounts of hydrocarbons. With a 20 wt% CsOOCH/MoS{sub 2} catalyst, temperature, pressure, and flow rate dependences of the synthesis reactions were investigated in the presence and absence of H{sub 2}S in the H{sub 2}/CO = 1/1 synthesis gas during short term testing experiments. It was shown that with a carefully prepared 10 wt% CsOOCH/MoS{sub 2} catalyst, reproducible and high alcohol synthesis activity could be obtained. For example, at 295 C with H{sub 2}/CO = 1 synthesis gas at 8.3 MPa and with GHSV = 7,760 l/kg cat/hr, the total alcohol space time yield was ca 300 g/kg cat/hr (accompanied with a hydrocarbon space time yield of ca 60 g/kg cat/hr). Over a testing period of ca 130 hr, no net deactivation of the catalyst was observed. 90 refs., 82 figs., 14 tabs.

  7. Proposal of Enhanced Extreme Programming Model

    Directory of Open Access Journals (Sweden)

    M. Rizwan Jameel Qureshi

    2015-01-01

    Full Text Available Extreme programming is one of the commonly used agile methodologies in software development. It is very responsive to changing requirements even in the late phases of the project. However, quality activities in extreme programming phases are implemented sequentially along with the activities that work on the functional requirements. This reduces the agility to deliver increments continuously and makes an inverse relationship between quality and agility. Due to this relationship, extreme programming does not consume enough time on making extensive documentation and robust design. To overcome these issues, an enhanced extreme programming model is proposed. Enhanced extreme programming introduces parallelism in the activities' execution through putting quality activities into a separate execution line. In this way, the focus on delivering increments quickly is achieved without affecting the quality of the final output. In enhanced extreme programming, the quality concept is extended to include refinement of all phases of classical extreme programming and creating architectural design based on the refined design documents.

  8. Extreme resilience in cochleate nanoparticles.

    Science.gov (United States)

    Bozó, Tamás; Brecska, Richárd; Gróf, Pál; Kellermayer, Miklós S Z

    2015-01-20

    Cochleates, prospective nanoscale drug delivery vehicles, are rolls of negatively charged phospholipid membrane layers. The membrane layers are held together by calcium ions; however, neither the magnitude of membrane interaction forces nor the overall mechanical properties of cochleates have been known. Here, we manipulated individual nanoparticles with atomic force microscopy to characterize their nanomechanical behavior. Their stiffness (4.2-12.5 N/m) and membrane-rupture forces (45.3-278 nN) are orders of magnitude greater than those of the tough viral nanoshells. Even though the fundamental building material of cochleates is a fluid membrane, the combination of supramolecular geometry, the cross-linking action of calcium, and the tight packing of the ions apparently lead to extreme mechanical resilience. The supramolecular design of cochleates may provide efficient protection for encapsulated materials and give clues to understanding biomolecular structures of similar design, such as the myelinated axon.

  9. Weather extremes could affect agriculture

    Science.gov (United States)

    Balcerak, Ernie

    2012-05-01

    As Earth's climate warms, agricultural producers will need to adapt. Changes, especially increases in extreme events, are already having an impact on food production, according to speakers at a 1 May session on agriculture and food security at the AGU Science Policy Conference. Christopher Field, director of the Department of Global Ecology at the Carnegie Institution for Science of Washington, D. C., pointed out the complex factors that come into play in understanding food security, including spatially varying controls and stresses, incomplete models, and the potential for threshold responses. Factors that are likely to cause problems include increasing population; increasing preference for meat, which needs more land and energy inputs to produce; climate change; and increasing use of agricultural lands for biomass energy.

  10. QCD matter in extreme environments

    CERN Document Server

    Fukushima, Kenji

    2011-01-01

    We review various theoretical approaches to the states of QCD matter out of quarks and gluons in extreme environments such as the high-temperature states at zero and finite baryon density and the dimensionally reduced state under an intense magnetic field. The topics at high temperature include the Polyakov loop and the 't Hooft loop in the perturbative regime, the Polyakov loop behaviour and the phase transition in some of non-perturbative methods; the strong-coupling expansion, the large-Nc limit and the holographic QCD models. These analyses are extended to hot and dense matter with a finite baryon chemical potential. We point out that the difficulty in the finite-density problem has similarity to that under a strong magnetic field. We make a brief summary of results related to the topological contents probed by the magnetic field and the Chiral Magnetic Effect. We also address the close connection to the (1+1) dimensional system.

  11. Reach Envelope of Human Extremities

    Institute of Scientific and Technical Information of China (English)

    YANG Jingzhou(杨景周); ZHANG Yunqing(张云清); CHEN Liping(陈立平); ABDEL-MALEK Karim

    2004-01-01

    Significant attention in recent years has been given to obtain a better understanding of human joint ranges, measurement, and functionality, especially in conjunction with commands issued by the central nervous system. While researchers have studied motor commands needed to drive a limb to follow a path trajectory, various computer algorithms have been reported that provide adequate analysis of limb modeling and motion. This paper uses a rigorous mathematical formulation to model human limbs, understand their reach envelope, delineate barriers therein where a trajectory becomes difficult to control, and help visualize these barriers. Workspaces of a typical forearm with 9 degrees of freedom, a typical finger modeled as a 4- degree-of-freedom system, and a lower extremity with 4 degrees of freedom are discussed. The results show that using the proposed formulation, joint limits play an important role in distinguishing the barriers.

  12. Pneumatic tourniquets in extremity surgery.

    LENUS (Irish Health Repository)

    Wakai, A

    2012-02-03

    Pneumatic tourniquets maintain a relatively bloodless field during extremity surgery, minimize blood loss, aid identification of vital structures, and expedite the procedure. However, they may induce an ischemia-reperfusion injury with potentially harmful local and systemic consequences. Modern pneumatic tourniquets are designed with mechanisms to regulate and maintain pressure. Routine maintenance helps ensure that these systems are working properly. The complications of tourniquet use include postoperative swelling, delay of recovery of muscle power, compression neurapraxia, wound hematoma with the potential for infection, vascular injury, tissue necrosis, and compartment syndrome. Systemic complications can also occur. The incidence of complications can be minimized by use of wider tourniquets, careful preoperative patient evaluation, and adherence to accepted principles of tourniquet use.

  13. Synthesis and Characterization of a New Bifunctional Dye Containing Spirobenzopyran and Cinnamoyl Moiety%一种新型含肉桂酸酯结构的螺吡喃光致变色染料的合成与性能研究

    Institute of Scientific and Technical Information of China (English)

    申凯华; 崔东熏

    2005-01-01

    A novel bifunctional dye containing spirobenzopyran and cinnamoyl moiety has been prepared and its photochromic behavior following irradiation at different wavelengths of monochrome UV light was investigated.The colourless bifunctional dye in film or solution exhibits unusual photochromism through structural and geometrical transformation from spirobenzopyran to merocyanine accompanying with photocrosslinking reaction in cinnamoyl moieties. Two kinds of photochemical reaction were achieved by irradiation at the different wavelengths of monochrome UV light (275 nm, 365 nm) selectively. The photochromic process of the bifunctional dye was discussed and the dynamic behaviors of the decolorization process were investigated.

  14. Extremely red quasars in BOSS

    Science.gov (United States)

    Hamann, Fred; Zakamska, Nadia L.; Ross, Nicholas; Paris, Isabelle; Alexandroff, Rachael M.; Villforth, Carolin; Richards, Gordon T.; Herbst, Hanna; Brandt, W. Niel; Cook, Ben; Denney, Kelly D.; Greene, Jenny E.; Schneider, Donald P.; Strauss, Michael A.

    2017-01-01

    Red quasars are candidate young objects in an early transition stage of massive galaxy evolution. Our team recently discovered a population of extremely red quasars (ERQs) in the Baryon Oscillation Spectroscopic Survey (BOSS) that has a suite of peculiar emission-line properties including large rest equivalent widths (REWs), unusual `wingless' line profiles, large N V/Lyα, N V/C IV, Si IV/C IV and other flux ratios, and very broad and blueshifted [O III] λ5007. Here we present a new catalogue of C IV and N V emission-line data for 216 188 BOSS quasars to characterize the ERQ line properties further. We show that they depend sharply on UV-to-mid-IR colour, secondarily on REW(C IV), and not at all on luminosity or the Baldwin Effect. We identify a `core' sample of 97 ERQs with nearly uniform peculiar properties selected via i-W3 ≥ 4.6 (AB) and REW(C IV) ≥ 100 Å at redshifts 2.0-3.4. A broader search finds 235 more red quasars with similar unusual characteristics. The core ERQs have median luminosity ˜ 47.1, sky density 0.010 deg-2, surprisingly flat/blue UV spectra given their red UV-to-mid-IR colours, and common outflow signatures including BALs or BAL-like features and large C IV emission-line blueshifts. Their SEDs and line properties are inconsistent with normal quasars behind a dust reddening screen. We argue that the core ERQs are a unique obscured quasar population with extreme physical conditions related to powerful outflows across the line-forming regions. Patchy obscuration by small dusty clouds could produce the observed UV extinctions without substantial UV reddening.

  15. Hydrodesulfurization on Transition Metal Catalysts: Elementary Steps of C-S Bond Activation and Consequences of Bifunctional Synergies

    Science.gov (United States)

    Yik, Edwin Shyn-Lo

    surfaces. Our interpretations place HDS in a specific class of more general C-X hydrogenolysis reactions, including hydrodeoxygenation (HDO) that has gained popular appeal in recent biomass conversion processes. These hydrodearomatization routes, hydrogenolysis and hydrogenation, act as probes for studying hydrogen spillover, a frequently observed phenomenon in bifunctional systems. Indeed, we observe enhancements solely in the rates of thiophene hydrogenation when monofunctional catalysts, which generate equilibrated concentrations of surface H-species, are mixed with materials (e.g. Al 2O3) that cannot dissociate H2. Conventional mechanisms that suggest gas phase or surface diffusion of atomic H-species (or H +-e- pairs) are implausible across distances along insulating surfaces (i.e. SiO2, Al2O3). We propose, with kinetic-transport models that are consistent with all observed behaviors, that mobility of active H-species occurs through gas phase diffusion of thiophene-derived molecular H-carriers, whose formation rate on HDS sites can control maximum spillover enhancements. This synergy is disrupted when the ability of thiophene to form these H-carriers is suppressed, leading to an absence of spillover-mediated rates and further challenging any diffusive roles of atomic H-species. Such implications help guide optimal designs of bifunctional cascades to permit the uninhibited access and egress of larger molecules within both catalytic functions. (Abstract shortened by UMI.).

  16. Remembrance of ecohydrologic extremes past

    Science.gov (United States)

    Band, L. E.; Hwang, T.

    2013-12-01

    Ecohydrological systems operate at time scales that span several orders of magnitude. Significant processes and feedbacks range from subdaily physiologic response to meteorological drivers, to soil forming and geomorphic processes ranging up through 10^3-10^4 years. While much attention in ecohydrology has focused on ecosystem optimization paradigms, these systems can show significant transience in structure and function, with apparent memory of hydroclimate extremes and regime shifts. While optimization feedbacks can be reconciled with system transience, a better understanding of the time scales and mechanisms of adjustment to increased hydroclimate variability and to specific events is required to understand and predict dynamics and vulnerability of ecosystems. Under certain circumstances of slowly varying hydroclimate, we hypothesize that ecosystems can remain adjusted to changing climate regimes, without displaying apparent system memory. Alternatively, rapid changes in hydroclimate and increased hydroclimate variability, amplified with well expressed non-linearity in the processes controlling feedbacks between water, carbon and nutrients, can move ecosystems far from adjusted states. The Coweeta Hydrological Laboratory is typical of humid, broadleaf forests in eastern North America, with a range of forest biomes from northern hardwoods at higher elevations, to oak-pine assemblages at lower elevations. The site provides almost 80 years of rainfall-runoff records for a set of watersheds under different management, along with multi-decadal forest plot structural information, soil moisture conditions and stream chemistry. An initial period of multi-decadal cooling, was followed by three decades of warming and increased hydroclimate variability. While mean temperature has risen over this time period, precipitation shows no long term trends in the mean, but has had a significant rise in variability with repeated extreme drought and wet periods. Over this latter

  17. Systemic inflammation and cerebral palsy risk in extremely preterm infants.

    Science.gov (United States)

    Kuban, Karl C K; O'Shea, T Michael; Allred, Elizabeth N; Paneth, Nigel; Hirtz, Deborah; Fichorova, Raina N; Leviton, Alan

    2014-12-01

    The authors hypothesized that among extremely preterm infants, elevated concentrations of inflammation-related proteins in neonatal blood are associated with cerebral palsy at 24 months. In 939 infants born before 28 weeks gestation, the authors measured blood concentrations of 25 proteins on postnatal days 1, 7, and 14 and evaluated associations between elevated protein concentrations and cerebral palsy diagnosis. Protein elevations within 3 days of birth were not associated with cerebral palsy. Elevations of tumor necrosis factor-α, tumor necrosis factor-α-receptor-1, interleukin-8, and intercellular adhesion molecule-1 on at least 2 days were associated with diparesis. Recurrent-persistent elevations of interleukin-6, E-selectin, or insulin-like growth factor binding protein-1 were associated with hemiparesis. Diparesis and hemiparesis were more likely among infants who had at least 4 of 9 protein elevations that previously have been associated with cognitive impairment and microcephaly. Repeated elevations of inflammation-related proteins during the first 2 postnatal weeks are associated with increased risk of cerebral palsy.

  18. Extreme heat and runoff extremes in the Swiss Alps

    Directory of Open Access Journals (Sweden)

    M. Zappa

    2007-06-01

    Full Text Available The hydrological response of Swiss river basins to the 2003 European summer heatwave was evaluated by a combined analysis of historical discharge records and specific applications of distributed hydrological modeling. In the summer of 2003, the discharge from headwater streams of the Swiss Central Plateau was only 40%–60% of the long-term average. For alpine basins runoff was about 60%–80% of the average. Glacierized basins showed the opposite behavior. According to the degree of glacierization, the average summer runoff was close or even above average. The hydrological model PREVAH was applied for the period 1982–2005. Even if the model was not calibrated for such extreme meteorological conditions, it was well able to simulate the hydrological responses of three basins. The aridity index φ describes feedbacks between hydrological and meteorological anomalies, and was adopted as an indicator of hydrological drought. The anomalies of φ and temperature in the summer of 2003 exceeded the 1982–2005 mean by more than 2 standard deviations. Catchments without glaciers showed negative correlations between φ and discharge R. In basins with about 15% glacierization, φ and R were not correlated. River basins with higher glacier percentages showed a positive correlation between φ and R. Icemelt was positively correlated with φ and reduced the variability of discharge with larger amounts of meltwater. Runoff generation from the non-glaciated sub-areas was limited by high evapotranspiration and reduced precipitation. The 2003 summer heatwave could be a precursor to similar events in the near future. Hydrological models and further data analysis will allow the identification of the most sensitive regions where heatwaves may become a recurrent natural hazard with large environmental, social and economical impacts.

  19. Extreme Programming in a Research Environment

    Science.gov (United States)

    Wood, William A.; Kleb, William L.

    2002-01-01

    This article explores the applicability of Extreme Programming in a scientific research context. The cultural environment at a government research center differs from the customer-centric business view. The chief theoretical difficulty lies in defining the customer to developer relationship. Specifically, can Extreme Programming be utilized when the developer and customer are the same person? Eight of Extreme Programming's 12 practices are perceived to be incompatible with the existing research culture. Further, six of the nine 'environments that I know don't do well with XP' apply. A pilot project explores the use of Extreme Programming in scientific research. The applicability issues are addressed and it is concluded that Extreme Programming can function successfully in situations for which it appears to be ill-suited. A strong discipline for mentally separating the customer and developer roles is found to be key for applying Extreme Programming in a field that lacks a clear distinction between the customer and the developer.

  20. Driving Extreme Efficiency to Market

    Science.gov (United States)

    Garbesi, Karina

    2014-03-01

    The rapid development of extremely energy efficient appliances and equipment is essential to curtail catastrophic climate disruption. This will require the on-going development of products that apply all best-practices and that take advantage of the synergies of hybridization and building integration. Beyond that, it requires the development of new disruptive technologies and concepts. To facilitate these goals, in 2011 the Lawrence Berkeley National Laboratory and the U.S. Department of Energy launched the Max Tech and Beyond Design Competition for Ultra-Low-Energy-Use Appliances and Equipment. Now in its third year, the competition supports faculty-lead student design teams at U.S. universities to develop and test new technology prototypes. This talk describes what the competition and the Max Tech Program are doing to drive such rapid technology progress and to facilitate the entry to the market of successful Max Tech prototypes. The talk also initiates a discussion of physicists' unique role in driving that technology progress faster and farther. Emerging Technologies, Building Technologies Office, U.S. Department of Energy.

  1. Living with the extreme demand

    Directory of Open Access Journals (Sweden)

    Teppo Eskelinen

    2013-05-01

    Full Text Available Most of the ethical literature on extreme poverty suggests, that some, if not most, of the incomes of the residents of rich countries ought to be donated to the global poor. Yet complying with this ethical demand becomes increasingly more difficult as the changes in lifestyle in the (postindustrial north demand ever more consumption in order to obtain the necessities for survival in such societies. In this article, I will discuss Peter Singer's famous arguments for the ethical duty to donate one's possessions, and elaborate the conception of needs prevalent in both Singer's theory and the theories of many of his critics. My argument is that we have to recognise a category of needs called 'social necessities' that are neither luxuries nor basic needs. This leads to two main conclusions: first, the space for ethical deliberation on whether to donate to life-saving purposes is socially conditioned; and second, ethical strategies of redistribution ought to be accompanied with institutional changes, which also concern the conditions in wealthy countries.http://dx.doi.org/10.5324/eip.v7i1.1791

  2. An extremely primitive halo star

    CERN Document Server

    Caffau, E; François, P; Sbordone, L; Monaco, L; Spite, M; Spite, F; Ludwig, H -G; Cayrel, R; Zaggia, S; Hammer, F; Randich, S; Molaro, P; Hill, V; 10.1038/nature10377

    2012-01-01

    The early Universe had a chemical composition consisting of hydrogen, helium and traces of lithium1, almost all other elements were created in stars and supernovae. The mass fraction, Z, of elements more massive than helium, is called "metallicity". A number of very metal poor stars have been found some of which, while having a low iron abundance, are rich in carbon, nitrogen and oxygen. For theoretical reasons and because of an observed absence of stars with metallicities lower than Z=1.5E-5, it has been suggested that low mass stars (M<0.8M\\odot, the ones that survive to the present day) cannot form until the interstellar medium has been enriched above a critical value, estimated to lie in the range 1.5E-8\\leqZ\\leq1.5E-6, although competing theories claiming the contrary do exist. Here we report the chemical composition of a star with a very low Z\\leq6.9E-7 (4.5E-5 of that of the Sun) and a chemical pattern typical of classical extremely metal poor stars, meaning without the enrichment of carbon, nitroge...

  3. Extremely Red Quasars in BOSS

    CERN Document Server

    Hamann, Fred; Ross, Nicholas; Paris, Isabelle; Alexandroff, Rachael M; Villforth, Carolin; Richards, Gordon T; Herbst, Hanna; Brandt, W Niel; Cook, Ben; Denney, Kelly D; Greene, Jenny E; Schneider, Donald P; Strauss, Michael A

    2016-01-01

    Red quasars are candidate young objects in an early transition stage of massive galaxy evolution. Our team recently discovered a population of extremely red quasars (ERQs) in the Baryon Oscillation Spectroscopic Survey (BOSS) that has a suite of peculiar emission-line properties including large rest equivalent widths (REWs), unusual "wingless" line profiles, large NV/Lya, NV/CIV, SiIV/CIV and other flux ratios, and very broad and blueshifted [OIII] 5007. Here we present a new catalog of CIV and NV emission-line data for 216,188 BOSS quasars to characterize the ERQ line properties further. We show that they depend sharply on UV-to-mid-IR color, secondarily on REW(CIV), and not at all on luminosity or the Baldwin Effect. We identify a "core" sample of 97 ERQs with nearly uniform peculiar properties selected via i-W3 > 4.6 (AB) and REW(CIV) > 100 A at redshifts 2.0-3.4. A broader search finds 235 more red quasars with similar unusual characteristics. The core ERQs have median luminosity log L (ergs/s) ~ 47.1, sk...

  4. Extreme weather events and infectious disease outbreaks

    OpenAIRE

    McMichael, Anthony J.

    2015-01-01

    Human-driven climatic changes will fundamentally influence patterns of human health, including infectious disease clusters and epidemics following extreme weather events. Extreme weather events are projected to increase further with the advance of human-driven climate change. Both recent and historical experiences indicate that infectious disease outbreaks very often follow extreme weather events, as microbes, vectors and reservoir animal hosts exploit the disrupted social and environmental c...

  5. Extreme Events in Nature and Society

    CERN Document Server

    Albeverio, Sergio; Kantz, Holger

    2006-01-01

    Significant, and usually unwelcome, surprises, such as floods, financial crisis, epileptic seizures, or material rupture, are the topics of Extreme Events in Nature and Society. The book, authored by foremost experts in these fields, reveals unifying and distinguishing features of extreme events, including problems of understanding and modelling their origin, spatial and temporal extension, and potential impact. The chapters converge towards the difficult problem of anticipation: forecasting the event and proposing measures to moderate or prevent it. Extreme Events in Nature and Society will interest not only specialists, but also the general reader eager to learn how the multifaceted field of extreme events can be viewed as a coherent whole.

  6. Exclusive lower extremity mirror movements and diastematomyelia.

    Science.gov (United States)

    Tubbs, R Shane; Smyth, Matthew D; Dure, Leon S; Oakes, W Jerry

    2004-01-01

    Mirror movements usually seen in the Klippel-Feil syndrome are most commonly appreciated in the upper extremities. Lower extremity involvement is seen rarely and when observed, is found in conjunction with upper extremity mirror movements. We report what we believe to be the first case of mirror movements found exclusively in the lower extremities in a female patient presenting with tethered cord syndrome. Our hopes are that this report will help elucidate mechanisms involved with these anomalous movements, as currently there is no commonly accepted etiology.

  7. Bifunctional catalysts based on m-phenylene-bridged porphyrin dimer and trimer platforms: synthesis of cyclic carbonates from carbon dioxide and epoxides.

    Science.gov (United States)

    Maeda, Chihiro; Taniguchi, Tomoya; Ogawa, Kanae; Ema, Tadashi

    2015-01-01

    Highly active bifunctional diporphyrin and triporphyrin catalysts were synthesized through Stille coupling reactions. As compared with a porphyrin monomer, both exhibited improved catalytic activities for the reaction of CO2 with epoxides to form cyclic carbonates, because of the multiple catalytic sites which cooperatively activate the epoxide. Catalytic activities were carefully investigated by controlling temperature, reaction time, and catalyst loading, and very high turnover number and turnover frequency were obtained: 220 000 and 46 000 h(-1) , respectively, for the magnesium catalyst, and 310 000 and 40 000 h(-1) , respectively, for the zinc catalyst. Results obtained with a zinc/free-base hybrid diporphyrin catalyst demonstrated that the Br(-) ions on the adjacent porphyrin moiety also function as nucleophiles.

  8. Bi-functional modified-phosphate catalyzed the synthesis of α-α′-(EE)-bis(benzylidene)-cycloalkanones: Microwave versus conventional-heating

    KAUST Repository

    Solhy, Abderrahim

    2011-02-01

    The impregnation of hydroxyapatite (HAP) by NaNO3 leads to a modified-hydroxyapatite which has a bi-functional acid-base property. Sodium-modified-hydroxyapatite (Na-HAP) efficiently catalyzed the cross-aldol condensation of arylaldehydes and cycloketones to afford α-α′- (EE)-bis(benzylidene)-cycloalkanones in good yields under microwave irradiation. Moreover, the methodology described in this paper provides a very easy and efficient synthesis carried out in water as the greenest available solvent under conventional heating. A comparison study between these two different modes of heating was investigated. The catalyst was easily recovered and efficiently re-used. © 2010 Elsevier B.V.

  9. Hierarchical nanostructured NiCo2O4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc-air batteries

    Science.gov (United States)

    Prabu, Moni; Ketpang, Kriangsak; Shanmugam, Sangaraju

    2014-02-01

    A nickel-doped cobalt oxide spinel structure is a promising non-precious metal electrocatalyst for oxygen evolution and oxygen reduction in rechargeable metal-air batteries and water electrolyzers operating with alkaline electrolytes. One dimensional NiCo2O4 (NCO) nanostructures were prepared by using a simple electrospinning technique with two different metal precursors (metal nitrate/PAN and metal acetylacetonate/PAN). The effect of precursor concentration on the morphologies was investigated. Single-phase, NCO with an average diameter of 100 nm, porous interconnected fibrous morphology was revealed by FESEM and FETEM analysis. The hierarchical nanostructured 1D-spinel NiCo2O4 materials showed a remarkable electrocatalytic activity towards oxygen reduction and evolution in an aqueous alkaline medium. The extraordinary bi-functional catalytic activity towards both ORR and OER was observed by the low over potential (0.84 V), which is better than that of noble metal catalysts [Pt/C (1.16 V), Ru/C (1.01 V) and Ir/C (0.92 V)], making them promising cathode materials for metal-air batteries. Furthermore, the rechargeable zinc-air battery with NCO-A1 as a bifunctional electrocatalyst displays high activity and stability during battery discharge, charge, and cycling processes.A nickel-doped cobalt oxide spinel structure is a promising non-precious metal electrocatalyst for oxygen evolution and oxygen reduction in rechargeable metal-air batteries and water electrolyzers operating with alkaline electrolytes. One dimensional NiCo2O4 (NCO) nanostructures were prepared by using a simple electrospinning technique with two different metal precursors (metal nitrate/PAN and metal acetylacetonate/PAN). The effect of precursor concentration on the morphologies was investigated. Single-phase, NCO with an average diameter of 100 nm, porous interconnected fibrous morphology was revealed by FESEM and FETEM analysis. The hierarchical nanostructured 1D-spinel NiCo2O4 materials showed a

  10. The synthesis of a bifunctional copper metal organic framework and its application in the aerobic oxidation/Knoevenagel condensation sequential reaction.

    Science.gov (United States)

    Miao, Zongcheng; Luan, Yi; Qi, Chao; Ramella, Daniele

    2016-09-21

    A novel one-pot aerobic oxidation/Knoevenagel condensation reaction system was developed employing a Cu(ii)/amine bifunctional, basic metal-organic framework (MOF) as the catalyst. The sequential aerobic alcohol oxidation/Knoevenagel condensation reaction was efficiently promoted by the Cu3TATAT MOF catalyst in the absence of basic additives. The benzylidenemalononitrile product was produced in high yield and selectivity from an inexpensive benzyl alcohol starting material under an oxygen atmosphere. The role of the basic functionality was studied to demonstrate its role in the aerobic oxidation and Knoevenagel condensation reactions. The reaction progress was monitored in order to identify the reaction intermediate and follow the accumulation of the desired product. Lastly, results showed that the yield was not significantly compromised by the reuse of a batch of catalyst, even after more than five cycles.

  11. Extraction Kinetics of Lanthanum in Chloride Medium by Bifunctional Ionic Liquid [A336][CA-12] Using a Constant Interfacial Cell with Laminar Flow☆

    Institute of Scientific and Technical Information of China (English)

    Hualing Yang; Ji Chen; Wei Wang; Hongmin Cui; Dongli Zhang; Yu Liu

    2014-01-01

    The extraction kinetics of La(III) from aqueous chloride solutions into n-heptane solutions of bifunctional ionic liquid extractant [A336][CA-12] (tricaprylmethylammonium sec-octylphenoxy acetic acid) was investigated using a constant interfacial cel with laminar flow. The effects of stirring speed, temperature and specific interfa-cial area on the extraction rate were examined. The results indicate that mass transfer kinetics of La(III) is a mixed-controlled process influenced by interfacial reaction. On the basis of mass transfer kinetic results in the ex-traction of La(III) by [A336][CA-12], the extraction rate equation of La(III) is proposed in terms of pseudo-first-order constants, which is supported by the measured thermodynamic equations. The mass-transfer kinetic model deduced from the rate controlling step is adequate to interpret the experimental data qualitatively.

  12. The bifunctional μ opioid agonist/antioxidant [Dmt(1)]DALDA is a superior analgesic in an animal model of complex regional pain syndrome-type i.

    Science.gov (United States)

    Schiller, Peter W; Nguyen, Thi M-D; Saray, Amy; Poon, Annie Wing Hoi; Laferrière, André; Coderre, Terence J

    2015-11-18

    Reactive oxygen species (ROS) play an important role in the development of complex regional pain syndrome-Type I (CRPS-I), as also demonstrated with the chronic post ischemia pain (CPIP) animal model of CRPS-I. We show that morphine and the antioxidant N-acetylcysteine (NAC) act synergistically to reduce mechanical allodynia in CPIP rats. The tetrapeptide amide [Dmt(1)]DALDA (H-Dmt-d-Arg-Phe-Lys-NH2) is a potent and selective μ opioid receptor (MOR) agonist with favorable pharmacokinetic properties and with antioxidant activity due to its N-terminal Dmt (2',6'-dimethyltyrosine) residue. In the CPIP model, [Dmt(1)]DALDA was 15-fold more potent than morphine in reversing mechanical allodynia and 4.5-fold more potent as analgesic in the heat algesia test. The results indicate that bifunctional compounds with MOR agonist/antioxidant activity have therapeutic potential for the treatment of CRPS-I.

  13. SYNTHESIS OF NOVEL BI-FUNCTIONAL COPOLYMER BEA RING STERICALLY HINDERED PHENOL AND HINDERED AMINE GROUPS VIA RING-OPENING METATHESIS POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    Bo-yong Xue; Kenichi Ogata; Akinori Toyota

    2008-01-01

    Norbornene derivatives exo,endo-2-[2-(3,5-di-tert-butyl-4-hydroxyphenoxy)-acetoxy]methyl-5-norbornene(M1) and 3,3,5,5-tetramethyl-4-piperidinyl 5-norbornene-exo,endo-2-carboxylate(M2)were synthesized and polymerized by RuCl2(=CHPh)(PCy3)2 to prepare a novel kind of bi-functional polymer bearing sterically hindered phenol (SHP) and hindered amine(HLAS)groups via ring-opening metathesis polymerization(ROMP).The resulting copolymers were characterized by gel permeation chromatography(GPC),'H-NMR and differential scanning calorimetry (DSC).The number average molecular weight(Mn)and functional unit content of the resulting copolymer could be regulated by varying the concentration of catalyst and monomer feed.

  14. Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis

    DEFF Research Database (Denmark)

    Su, Hai-Yan; Gorlin, Yelena; Man, Isabela Costinela

    2012-01-01

    Progress in the field of electrocatalysis is often hampered by the difficulty in identifying the active site on an electrode surface. Herein we combine theoretical analysis and electrochemical methods to identify the active surfaces in a manganese oxide bi-functional catalyst for the oxygen...... and that its overpotential is highly dependent on the stabilization of intermediates through hydrogen bonds with water molecules. We also determine that OER occurs through direct recombination mechanism and that its major source of overpotential is the scaling relationship between HOO* and HO* surface...... intermediates. Using a previously developed Sabatier model we show that the theoretical predictions of catalytic activities match the experimentally determined onset potentials for the ORR and the OER, both qualitatively and quantitatively. Consequently, the combination of first-principles theoretical analysis...

  15. Type II Anion Relay Chemistry: Exploiting Bifunctional Weinreb Amide Linchpins for the One-Pot Synthesis of Differentiated 1,3-Diketones, Pyrans, and Spiroketals.

    Science.gov (United States)

    Farrell, Mark; Melillo, Bruno; Smith, Amos B

    2016-01-04

    The design, synthesis, and validation of new highly effective bifunctional linchpins for type II anion relay chemistry (ARC) has been achieved. The mechanistically novel negative-charge migration that comprises the Brook rearrangement is now initiated by a stabilized tetrahedral intermediate, which is generated by nucleophilic addition to a Weinreb amide, rather than by a simple oxyanion that is generated from an epoxide. As a result, the linchpin preserves the carbonyl functionality in the ARC adducts, thus permitting access to functionally complex systems in a single flask without the need for further chemical manipulations. This tactic was validated with the one-pot preparation of monoprotected 1,3-diketones as well as pyran and spiroketal scaffolds, depending on the choice of nucleophile, electrophile, and work-up conditions.

  16. Purification of a bifunctional amylase/protease inhibitor from ragi (Eleusine coracana) by chromatography and its use as an affinity ligand.

    Science.gov (United States)

    Saxena, Lalit; Iyer, Bharti K; Ananthanarayan, Laxmi

    2010-06-01

    An ammonium sulphate fraction (20-60%) of bifunctional amylase/protease inhibitor from ragi (Eleusine coracana) was purified by affinity chromatography to give 6.59-fold purity with 81.48% yield. The same ammonium sulphate fraction was also subjected to ion exchange chromatography and was purified 4.28-fold with 75.95% yield. The ion exchange fraction was subjected to gel filtration and the inhibitor was purified to 6.67-fold with 67.36% yield. Further sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) was performed to check the homogeneity of purified amylase/trypsin inhibitor obtained through affinity, ion exchange and gel chromatography. The molecular weight of the inhibitor was found to be 14 kDa. This purified inhibitor was used as affinity ligand for the purification of a commercial preparation of pancreatic amylase.

  17. Synthesis of Bifunctional Fe3O4@SiO2-Ag Magnetic-Plasmonic Nanoparticles by an Ultrasound Assisted Chemical Method

    Science.gov (United States)

    Chu, Dung Tien; Sai, Doanh Cong; Luu, Quynh Manh; Tran, Hong Thi; Quach, Truong Duy; Kim, Dong Hyun; Nguyen, Nam Hoang

    2017-03-01

    Bifunctional magnetic-plasmonic nanoparticles (NPs)—Fe3O4@SiO2-Ag were successfully synthesized by an ultrasound assisted chemical method. Silver ions were absorbed and then reduced by sodium borohydride on the surface of 3-aminopropyltriethoxysilane (APTES) functionalized silica-coated magnetic NPs, then they were reduced under the influence of a 200 W ultrasonic wave for 60 min. When the amount of precursor silver ions increased, the relative intensity of diffraction peaks of silver crystals in all samples increased with the atomic ratio of silver/iron increasing from 0.208 to 0.455 and saturation magnetization (M s) decreasing from 44.68 emu/g to 34.74 emu/g. The NPs have superparamagnetic properties and strong surface plasmon absorption at 420 nm, which make these particles promising for biomedical applications.

  18. MIL-53(Fe) as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr(VI) and oxidation of dyes

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Ruowen; Jing, Fenfen; Shen, Lijuan; Qin, Na; Wu, Ling, E-mail: wuling@fzu.edu.cn

    2015-04-28

    Highlights: • Fe(III)-based MOF was firstly applied to the photocatalytic reduction reaction. • MIL-53(Fe) exhibited an outstanding photocatalytic activity for reduction of Cr(VI). • A first systematic study of the Fe(III)-based MOF as bifunctional photocatalyst. • Dyes and Cr(VI) could be also converted simultaneously over MIL-53(Fe). • MIL-53(Fe) was performed a stable and reusable visible-light-driven photocatalyst. - Abstract: A bifunctional photocatalyst-Fe-benzenedicarboxylate (MIL-53(Fe)) has been synthesized successfully via a facile solvothermal method. The resulting MIL-53(Fe) photocatalyst exhibited an excellent visible light (λ ≥ 420 nm) photocatalytic activity for the reduction of Cr(VI), the reduction rate have reached about 100% after 40 min of visible light irradiation, which has been more efficient than that of N-doped TiO{sub 2} (85%) under identical experimental conditions. Further experimental results have revealed that the photocatalytic activity of MIL-53(Fe) for the reduction of Cr(VI) can be drastically affected by the pH value of the reaction solution, the hole scavenger and atmosphere. Moreover, MIL-53(Fe) has exhibited considerable photocatalytic activity in the mixed systems (Cr(VI)/dyes). After 6 h of visible light illumination, the reduction ratio of Cr(VI) and the degradation ratio of dyes have been exceed 60% and 80%, respectively. More significantly, the synergistic effect can also be found during the process of photocatalytic treatment of Cr(VI) contained wastewater under the same photocatalytic reaction conditions, which makes it a potential candidate for environmental restoration. Finally, a possible reaction mechanism has also been investigated in detail.

  19. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst.

    Science.gov (United States)

    Yang, Hong Bin; Miao, Jianwei; Hung, Sung-Fu; Chen, Jiazang; Tao, Hua Bing; Wang, Xizu; Zhang, Liping; Chen, Rong; Gao, Jiajian; Chen, Hao Ming; Dai, Liming; Liu, Bin

    2016-04-01

    Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are critical to renewable energy conversion and storage technologies. Heteroatom-doped carbon nanomaterials have been reported to be efficient metal-free electrocatalysts for ORR in fuel cells for energy conversion, as well as ORR and OER in metal-air batteries for energy storage. We reported that metal-free three-dimensional (3D) graphene nanoribbon networks (N-GRW) doped with nitrogen exhibited superb bifunctional electrocatalytic activities for both ORR and OER, with an excellent stability in alkaline electrolytes (for example, KOH). For the first time, it was experimentally demonstrated that the electron-donating quaternary N sites were responsible for ORR, whereas the electron-withdrawing pyridinic N moieties in N-GRW served as active sites for OER. The unique 3D nanoarchitecture provided a high density of the ORR and OER active sites and facilitated the electrolyte and electron transports. As a result, the as-prepared N-GRW holds great potential as a low-cost, highly efficient air cathode in rechargeable metal-air batteries. Rechargeable zinc-air batteries with the N-GRW air electrode in a two-electrode configuration exhibited an open-circuit voltage of 1.46 V, a specific capacity of 873 mAh g(-1), and a peak power density of 65 mW cm(-2), which could be continuously charged and discharged with an excellent cycling stability. Our work should open up new avenues for the development of various carbon-based metal-free bifunctional electrocatalysts of practical significance.

  20. Bifunctional sensor of pentachlorophenol and copper ions based on nanostructured hybrid films of humic acid and exfoliated layered double hydroxide via a facile layer-by-layer assembly.

    Science.gov (United States)

    Yuan, Shuang; Peng, Dinghua; Hu, Xianluo; Gong, Jingming

    2013-06-27

    A new, highly sensitive bifunctional electrochemical sensor for the simultaneous determination of pentachlorophenol (PCP) and copper ions (Cu(2+)) has been developed, where organic-inorganic hybrid ultrathin films were fabricated by alternate assembly of humic acid (HA) and exfoliated Mg-Al-layered double hydroxide (LDH) nanosheets onto ITO substrates via a layer-by-layer (LBL) approach. The multilayer films were then characterized by means of UV-vis spectrometry, scanning electron microscopy (SEM), and atomic force microscope (AFM). These films were found to have a relatively smooth surface with almost equal amounts of HA incorporated in each cycle. Its electrochemical performance was systematically investigated. Our results demonstrate that such a newly designed (LDH/HA)n multilayer films, combining the individual properties of HA (dual recognition ability for organic herbicides and metal ions) together with LDH nanosheets (a rigid inorganic matrix), can be applied to the simultaneous analysis of PCP and Cu(II) without interference from each other. The LBL assembled nanoarchitectures were further investigated by X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (IR), which provides insight for bifunctional sensing behavior. Under the optimized conditions, the detection limit was found to be as low as 0.4 nM PCP, well below the guideline value of PCP in drinking water (3.7 nM) set by the United States Environmental Protection Agency (U.S. EPA), and 2.0 nM Cu(2+), much below the guideline value (2.0 mg L(-1), ~31.2 nM) from the World Health Organization (WHO), respectively. Toward the goal for practical applications, this simple and cost-effective probe was further evaluated by monitoring PCP and Cu(II) in water samples.