WorldWideScience

Sample records for bifunctional phage-based pretargeted

  1. Improvement of radioimmunotherapy using pretargeting

    Directory of Open Access Journals (Sweden)

    Eric eFrampas

    2013-06-01

    Full Text Available During the past two decades, considerable research has been devoted to radionuclide therapy using radiolabelled monoclonal antibodies and receptor binding agents. Conventional Radioimmunotherapy (RIT is now an established and important tool in the treatment of hematologic malignancies such as Non-Hodgkin lymphoma. For solid malignancies, the efficacy of RIT has not been as successful due to lower radiosensitivity, difficult penetration of the antibody into the tumor and potential excessive radiation to normal tissues. Innovative approaches have been developed in order to enhance tumor absorbed dose while limiting toxicity to overcome the different limitations due to the tumor and host characteristics.Pretargeting techniques (pRIT are a promising approach that consists of decoupling the delivery of a tumor monoclonal antibody (mAb from the delivery of the radionuclide. This results in a much higher tumor-to-normal tissue ratio and is favorable for therapy as well and imaging. This includes various strategies based on avidin/streptavidin-biotin, DNA-complementary DNA and bispecific antibody-hapten bindings. PRIT continuously evolves with the investigation of new molecular constructs and the development of radiochemistry. Pharmacokinetics improve dosimetry depending on the radionuclides used (alpha, beta and Auger emitters with prediction of tumor response and host toxicities. New constructs such as the Dock and Lock technology allow production of a variety of mABs directed against tumor-associated antigens. Survival benefit has already been shown in medullary thyroid carcinoma. Improvement in delivery of radioactivity to tumors with these pretargeting procedures associated with reduced hematologic toxicity will become the next generation of RIT. The following review addresses actual technical and clinical considerations and future development of pRIT.

  2. Engineering an antibody with picomolar affinity to DOTA chelates of multiple radionuclides for pretargeted radioimmunotherapy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Orcutt, Kelly Davis; Slusarczyk, Adrian L. [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Cieslewicz, Maryelise [Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Ruiz-Yi, Benjamin [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Bhushan, Kumar R. [Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Frangioni, John V. [Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Wittrup, K. Dane, E-mail: wittrup@mit.ed [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2011-02-15

    Introduction: In pretargeted radioimmunotherapy (PRIT), a bifunctional antibody is administered and allowed to pre-localize to tumor cells. Subsequently, a chelated radionuclide is administered and captured by cell-bound antibody while unbound hapten clears rapidly from the body. We aim to engineer high-affinity binders to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelates for use in PRIT applications. Methods: We mathematically modeled antibody and hapten pharmacokinetics to analyze hapten tumor retention as a function of hapten binding affinity. Motivated by model predictions, we used directed evolution and yeast surface display to affinity mature the 2D12.5 antibody to DOTA, reformatted as a single chain variable fragment (scFv). Results: Modeling predicts that for high antigen density and saturating bsAb dose, a hapten-binding affinity of 100 pM is needed for near-maximal hapten retention. We affinity matured 2D12.5 with an initial binding constant of about 10 nM to DOTA-yttrium chelates. Affinity maturation resulted in a 1000-fold affinity improvement to biotinylated DOTA-yttrium, yielding an 8.2{+-}1.9 picomolar binder. The high-affinity scFv binds DOTA complexes of lutetium and gadolinium with similar picomolar affinity and indium chelates with low nanomolar affinity. When engineered into a bispecific antibody construct targeting carcinoembryonic antigen, pretargeted high-affinity scFv results in significantly higher tumor retention of a {sup 111}In-DOTA hapten compared to pretargeted wild-type scFv in a xenograft mouse model. Conclusions: We have engineered a versatile, high-affinity, DOTA-chelate-binding scFv. We anticipate it will prove useful in developing pretargeted imaging and therapy protocols to exploit the potential of a variety of radiometals.

  3. Pretargeted PET Imaging Using a Site-Specifically Labeled Immunoconjugate.

    Science.gov (United States)

    Cook, Brendon E; Adumeau, Pierre; Membreno, Rosemery; Carnazza, Kathryn E; Brand, Christian; Reiner, Thomas; Agnew, Brian J; Lewis, Jason S; Zeglis, Brian M

    2016-08-17

    In recent years, both site-specific bioconjugation techniques and bioorthogonal pretargeting strategies have emerged as exciting technologies with the potential to improve the safety and efficacy of antibody-based nuclear imaging. In the work at hand, we have combined these two approaches to create a pretargeted PET imaging strategy based on the rapid and bioorthogonal inverse electron demand Diels-Alder reaction between a (64)Cu-labeled tetrazine radioligand ((64)Cu-Tz-SarAr) and a site-specifically modified huA33-trans-cyclooctene immunoconjugate ((ss)huA33-PEG12-TCO). A bioconjugation strategy that harnesses enzymatic transformations and strain-promoted azide-alkyne click chemistry was used to site-specifically append PEGylated TCO moieties to the heavy chain glycans of the colorectal cancer-targeting huA33 antibody. Preclinical in vivo validation studies were performed in athymic nude mice bearing A33 antigen-expressing SW1222 human colorectal carcinoma xenografts. To this end, mice were administered (ss)huA33-PEG12-TCO via tail vein injection and-following accumulation intervals of 24 or 48 h-(64)Cu-Tz-SarAr. PET imaging and biodistribution studies reveal that this strategy clearly delineates tumor tissue as early as 1 h post-injection (6.7 ± 1.7%ID/g at 1 h p.i.), producing images with excellent contrast and high tumor-to-background activity concentration ratios (tumor:muscle = 21.5 ± 5.6 at 24 h p.i.). Furthermore, dosimetric calculations illustrate that this pretargeting approach produces only a fraction of the overall effective dose (0.0214 mSv/MBq; 0.079 rem/mCi) of directly labeled radioimmunoconjugates. Ultimately, this method effectively facilitates the high contrast pretargeted PET imaging of colorectal carcinoma using a site-specifically modified immunoconjugate.

  4. Pretargeting with the affinity enhancement system for radioimmunotherapy.

    Science.gov (United States)

    Barbet, J; Kraeber-Bodéré, F; Vuillez, J P; Gautherot, E; Rouvier, E; Chatal, J F

    1999-06-01

    The pretargeting technique referred to as the Affinity Enhancement System (AES) uses bispecific antibodies and radiolabeled bivalent haptens that bind cooperatively to target cells in vivo. Experimental and clinical data demonstrate that AES can deliver large radiation doses to tumor cells with high tumor to normal tissue contrast ratios and long activity residence time in tumors. Preliminary clinical results of radioimmunotherapy of medullary thyroid carcinomas and lung cancers look promising.

  5. Bispecific Antibody Pretargeting for Improving Cancer Imaging and Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sharkey, Robert M.

    2005-02-04

    The main objective of this project was to evaluate pretargeting systems that use a bispecific antibody (bsMAb) to improve the detection and treatment of cancer. A bsMAb has specificity to a tumor antigen, which is used to bind the tumor, while the other specificity is to a peptide that can be radiolabeled. Pretargeting is the process by which the unlabeled bsMAb is given first, and after a sufficient time (1-2 days) is given for it to localize in the tumor and clear from the blood, a small molecular weight radiolabeled peptide is given. According to a dynamic imaging study using a 99mTc-labeled peptide, the radiolabeled peptide localizes in the tumor in less than 1 hour, with > 80% of it clearing from the blood and body within this same time. Tumor/nontumor targeting ratios that are nearly 50 times better than that with a directly radiolabeled Fab fragment have been observed (Sharkey et al., ''Signal amplification in molecular imaging by a multivalent bispecific nanobody'' submitted). The bsMAbs used in this project have been composed of 3 antibodies that will target antigens found in colorectal and pancreatic cancers (CEA, CSAp, and MUC1). For the ''peptide binding moiety'' of the bsMAb, we initially examined an antibody directed to DOTA, but subsequently focused on another antibody directed against a novel compound, HSG (histamine-succinyl-glycine).

  6. Phage-based magnetostrictive-acoustic microbiosensors for detecting bacillus anthracis spores

    Science.gov (United States)

    Wan, J.; Yang, H.; Lakshmanan, R. S.; Guntupalli, R.; Huang, S.; Hu, J.; Petrenko, V. A.; Chin, B. A.

    2006-05-01

    Magnetostrictive particles (MSPs) as biosensor platform have been developed recently. The principle of MSPs as sensor platform is the same as that of other acoustic wave devices, such as quartz crystal microbalance. In this paper, the fabrication, characterization and performance of phage-based MSP biosensors for detecting Bacillus anthracis spores are reported. A commercially available magnetostrictive alloy was utilized to fabricate the sensor platform. The phage was immobilized onto the MSPs using physical adsorption technology. The following performance of the phage-based MSP sensors will be presented: sensitivity, response time, longevity, specificity and binding efficacy. The performance of the sensors at static and dynamic conditions was characterized. The experimental results are confirmed by microscopy photographs. The excellent performance including high sensitivity and rapid response is demonstrated. More importantly, it is experimentally found that the phage-based MSP sensors have a much better longevity than antibody-based sensors.

  7. An innovative pre-targeting strategy for tumor cell specific imaging and therapy

    Science.gov (United States)

    Qin, Si-Yong; Peng, Meng-Yun; Rong, Lei; Jia, Hui-Zhen; Chen, Si; Cheng, Si-Xue; Feng, Jun; Zhang, Xian-Zheng

    2015-08-01

    A programmed pre-targeting system for tumor cell imaging and targeting therapy was established based on the ``biotin-avidin'' interaction. In this programmed functional system, transferrin-biotin can be actively captured by tumor cells with the overexpression of transferrin receptors, thus achieving the pre-targeting modality. Depending upon avidin-biotin recognition, the attachment of multivalent FITC-avidin to biotinylated tumor cells not only offered the rapid fluorescence labelling, but also endowed the pre-targeted cells with targeting sites for the specifically designed biotinylated peptide nano-drug. Owing to the successful pre-targeting, tumorous HepG2 and HeLa cells were effectively distinguished from the normal 3T3 cells via fluorescence imaging. In addition, the self-assembled peptide nano-drug resulted in enhanced cell apoptosis in the observed HepG2 cells. The tumor cell specific pre-targeting strategy is applicable for a variety of different imaging and therapeutic agents for tumor treatments.A programmed pre-targeting system for tumor cell imaging and targeting therapy was established based on the ``biotin-avidin'' interaction. In this programmed functional system, transferrin-biotin can be actively captured by tumor cells with the overexpression of transferrin receptors, thus achieving the pre-targeting modality. Depending upon avidin-biotin recognition, the attachment of multivalent FITC-avidin to biotinylated tumor cells not only offered the rapid fluorescence labelling, but also endowed the pre-targeted cells with targeting sites for the specifically designed biotinylated peptide nano-drug. Owing to the successful pre-targeting, tumorous HepG2 and HeLa cells were effectively distinguished from the normal 3T3 cells via fluorescence imaging. In addition, the self-assembled peptide nano-drug resulted in enhanced cell apoptosis in the observed HepG2 cells. The tumor cell specific pre-targeting strategy is applicable for a variety of different imaging

  8. Pretargeting of human mammary carcinoma xenografts with bispecific anti-MUC1/anti-Ga chelate antibodies and immunoscintigraphy with PET.

    Science.gov (United States)

    Schuhmacher, J; Klivényi, G; Kaul, S; Henze, M; Matys, R; Hauser, H; Clorius, J

    2001-10-01

    We recently demonstrated the feasibility of combining enhanced tumor-to-tissue contrast and PET imaging for immunoscintigraphic tumor localization in pancreas and colon carcinoma bearing nude mice. Contrast enhancement was obtained with a multistep targeting technique that consists of the sequential administration of an antitumor/antihapten bispecific antibody (BS-MAb), a blocker to saturate the antihapten binding sites of the BS-MAb that remains in circulation, and a low molecular weight Ga chelate, labeled with the positron emitter 68Ga, which serves as the hapten. To evaluate the efficacy of this pretargeting technique for breast cancer localization, we synthesized a BS-MAb from the F(ab')(2) fragments of the anti-MUC1 MAb 12H12 which reacts with the vast majority of human breast carcinomas, and the F(ab') fragment of an anti-Ga chelate MAb using a bifunctional chemical linker. The BS-MAb was tested for its affinity and its biokinetics in nude mice bearing a human mammary carcinoma. Equilibrium binding of the BS-MAb for mammary carcinoma cells was low (1.2 x 10(7) M(-1)) while the binding capacity of cells was high (8.4 x 10(6) BS-MAbs per cell). Tumor uptake of the 67Ga labeled chelate in pretargeted animals was to 5.8 +/- 0.8% iD/g resulting in a tumor-to-blood ratio of 2.6 at 1h postinjection. This compares with a ratio of 0.65 and 0.85 obtained with 125I-labeled native 12H12 at 24h and 48h postinjection. No difference in the tumor uptake of both the 68Ga and 67Ga labeled chelate was observed. PET imaging of mice, started 1h postinjection of the 68Ga chelate, clearly visualized all tumors.

  9. Pretargeting of human mammary carcinoma xenografts with bispecific anti-MUC1/anti-Ga chelate antibodies and immunoscintigraphy with PET

    Energy Technology Data Exchange (ETDEWEB)

    Schuhmacher, Jochen; Klivenyi, Gabor; Kaul, Sepp; Henze, Marcus; Matys, Ronald; Hauser, Harald; Clorius, John

    2001-10-01

    We recently demonstrated the feasibility of combining enhanced tumor-to-tissue contrast and PET imaging for immunoscintigraphic tumor localization in pancreas and colon carcinoma bearing nude mice. Contrast enhancement was obtained with a multistep targeting technique that consists of the sequential administration of an antitumor/antihapten bispecific antibody (BS-MAb), a blocker to saturate the antihapten binding sites of the BS-MAb that remains in circulation, and a low molecular weight Ga chelate, labeled with the positron emitter {sup 68}Ga, which serves as the hapten. To evaluate the efficacy of this pretargeting technique for breast cancer localization, we synthesized a BS-MAb from the F(ab'){sub 2} fragments of the anti-MUC1 MAb 12H12 which reacts with the vast majority of human breast carcinomas, and the F(ab') fragment of an anti-Ga chelate MAb using a bifunctional chemical linker. The BS-MAb was tested for its affinity and its biokinetics in nude mice bearing a human mammary carcinoma. Equilibrium binding of the BS-MAb for mammary carcinoma cells was low (1.2 x 10{sup 7} M{sup -1}) while the binding capacity of cells was high (8.4 x 10{sup 6} BS-MAbs per cell). Tumor uptake of the {sup 67}Ga labeled chelate in pretargeted animals was to 5.8 {+-} 0.8% iD/g resulting in a tumor-to-blood ratio of 2.6 at 1h postinjection. This compares with a ratio of 0.65 and 0.85 obtained with {sup 125}I-labeled native 12H12 at 24h and 48h postinjection. No difference in the tumor uptake of both the {sup 68}Ga and {sup 67}Ga labeled chelate was observed. PET imaging of mice, started 1h postinjection of the {sup 68}Ga chelate, clearly visualized all tumors.

  10. Phage & phosphatase: a novel phage-based probe for rapid, multi-platform detection of bacteria.

    Science.gov (United States)

    Alcaine, S D; Pacitto, D; Sela, D A; Nugen, S R

    2015-11-21

    Genetic engineering of bacteriophages allows for the development of rapid, highly specific, and easily manufactured probes for the detection of bacterial pathogens. A challenge for novel probes is the ease of their adoption in real world laboratories. We have engineered the bacteriophage T7, which targets Escherichia coli, to carry the alkaline phosphatase gene, phoA. This inclusion results in phoA overexpression following phage infection of E. coli. Alkaline phosphatase is commonly used in a wide range of diagnostics, and thus a signal produced by our phage-based probe could be detected using common laboratory equipment. Our work demonstrates the successful: (i) modification of T7 phage to carry phoA; (ii) overexpression of alkaline phosphatase in E. coli; and (iii) detection of this T7-induced alkaline phosphatase activity using commercially available colorimetric and chemilumiscent methods. Furthermore, we demonstrate the application of our phage-based probe to rapidly detect low levels of bacteria and discern the antibiotic resistance of E. coli isolates. Using our bioengineered phage-based probe we were able to detect 10(3) CFU per mL of E. coli in 6 hours using a chemiluminescent substrate and 10(4) CFU per mL within 7.5 hours using a colorimetric substrate. We also show the application of this phage-based probe for antibiotic resistance testing. We were able to determine whether an E. coli isolate was resistant to ampicillin within 4.5 hours using chemiluminescent substrate and within 6 hours using a colorimetric substrate. This phage-based scheme could be readily adopted in labs without significant capital investments and can be translated to other phage-bacteria pairs for further detection.

  11. Impedance Measurements Could Accelerate Phage-Based Identification of Bacillus anthracis and Other Bacteria

    Science.gov (United States)

    2016-09-01

    Impedance Measurements Could Accelerate Phage-Based Identification of Bacillus anthracis And Other Bacteria Thomas Brown, Salwa Shan, Teresa...This is particularly true in the field of biodefense where phage have a long history of being used to identify Bacillus anthracis and Yersinia pestis...based diagnostic assays for this pathogen. After exposing small quantities of Bacillus cultures to ɣ phage, we tracked the cultures for up to 90

  12. (99m)Tc-bioorthogonal click chemistry reagent for in vivo pretargeted imaging.

    Science.gov (United States)

    García, María Fernanda; Zhang, Xiuli; Shah, Manankumar; Newton-Northup, Jessica; Cabral, Pablo; Cerecetto, Hugo; Quinn, Thomas

    2016-03-15

    Metal-free click chemistry has become an important tool for pretargeted approaches in the molecular imaging field. The application of bioorthogonal click chemistry between a pretargeted trans-cyclooctene (TCO) derivatized monoclonal antibody (mAb) and a (99m)Tc-modified 1,2,4,5-tetrazine for tumor imaging was examined in vitro and in vivo. The HYNIC tetrazine compound was synthesized and structurally characterized, confirming its identity. Radiolabeling studies demonstrated that the HYNIC tetrazine was labeled with (99m)Tc at an efficiency of >95% and was radiochemically stable. (99m)Tc-HYNIC tetrazine reacted with the TCO-CC49 mAb in vitro demonstrating its selective reactivity. In vivo biodistribution studies revealed non-specific liver and GI uptake due to the hydrophobic property of the compound, however pretargeted SPECT imaging studies demonstrated tumor visualization confirming the success of the cycloaddition reaction in vivo. These results demonstrated the potential of (99m)Tc-HYNIC-tetrazine for tumor imaging with pretargeted mAbs.

  13. Pretargeted 177Lu radioimmunotherapy of carcinoembryonic antigen-expressing human colonic tumors in mice.

    NARCIS (Netherlands)

    Schoffelen, R.; Graaf, W.T.A. van der; Franssen, G.M.; Sharkey, R.M.; Goldenberg, D.M.; McBride, W.J.; Rossi, E.A.; Eek, A.; Oyen, W.J.G.; Boerman, O.C.

    2010-01-01

    Pretargeted radioimmunotherapy (PRIT) with bispecific antibodies in combination with a radiolabeled peptide reduces the radiation dose to normal tissues, especially the bone marrow. In this study, the optimization, therapeutic efficacy, and toxicity of PRIT of colon cancer with a (177)Lu-labeled pep

  14. The detection of Salmonella typhimurium on shell eggs using a phage-based biosensor

    Science.gov (United States)

    Chai, Yating; Li, Suiqiong; Horikawa, Shin; Shen, Wen; Park, Mi-Kyung; Vodyanoy, Vitaly J.; Chin, Bryan A.

    2011-06-01

    This paper presents the direct detection of Salmonella typhimurium on shell eggs using a phage-based magnetoelastic (ME) biosensor. The ME biosensor consists of a ME resonator as the sensor platform and E2 phage as the biorecognition element that is genetically engineered to specifically bind with Salmonella typhimurium. The ME biosensor, which is a wireless sensor, vibrates with a characteristic resonant frequency under an externally applied magnetic field. Multiple sensors can easily be remotely monitored. Multiple measurement and control sensors were placed on the shell eggs contaminated by Salmonella typhimurium solutions with different known concentrations. The resonant frequency of sensors before and after the exposure to the spiked shell eggs was measured. The frequency shift of the measurement sensors was significantly different than the control sensors indicating Salmonella contamination. Scanning electron microscopy was used to confirm binding of Salmonella to the sensor surface and the resulting frequency shift results.

  15. Bifunctional redox flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Y.H. [Research Institute of Chemical Defense, Beijing 100083 (China)], E-mail: wen_yuehua@126.com; Cheng, J. [Research Institute of Chemical Defense, Beijing 100083 (China); Beijing Science and Technology University, Beijing 100083 (China); Xun, Y. [Research Institute of Chemical Defense, Beijing 100083 (China); Ma, P.H. [Full Cell R and D Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Yang, Y.S. [Research Institute of Chemical Defense, Beijing 100083 (China); Beijing Science and Technology University, Beijing 100083 (China)

    2008-08-20

    A new bifunctional redox flow battery (BRFB) system, V(III)/V(II)-L-cystine(O{sub 2}), was systematically investigated by using different separators. It is shown that during charge, water transfer is significantly restricted with increasing the concentration of HBr when the Nafion 115 cation exchange membrane is employed. The same result can be obtained when the gas diffusion layer (GDL) hot-pressed separator is used. The organic electro-synthesis is directly correlated with the crossover of vanadium. When employing the anion exchange membrane, the electro-synthesis efficiency is over 96% due to a minimal crossover of vanadium. When the GDL hot-pressed separator is applied, the crossover of vanadium and water transfer are noticeably prevented and the electro-synthesis efficiency of over 99% is obtained. Those impurities such as vanadium ions and bromine can be eliminated through the purification of organic electro-synthesized products. The purified product is identified to be L-cysteic acid by IR spectrum. The BRFB shows a favorable discharge performance at a current density of 20 mA cm{sup -2}. Best discharge performance is achieved by using the GDL hot-pressed separator. The coulombic efficiency of 87% and energy efficiency of about 58% can be obtained. The cause of major energy losses is mainly associated with the cross-contamination of anodic and cathodic active electrolytes.

  16. In vitro evaluation of avidin antibody pretargeting using 211At-labeled and biotinylated poly-L-lysine as effector molecule

    DEFF Research Database (Denmark)

    Frost, Sofia H L; Jensen, Holger Lau; Lindegren, Sture

    2010-01-01

    Pretargeting is an approach for enhancing the therapeutic index of radioimmunotherapy by separating the administrations of tumor-targeting substance and radiolabel. In this study, a pretargeting model system of avidin-conjugated monoclonal antibody trastuzumab and biotinylated, (211)At-labeled po...

  17. Quantitative Immuno-SPECT Monitoring of Pretargeted Radioimmunotherapy with a Bispecific Antibody in an Intraperitoneal Nude Mouse Model of Human Colon Cancer

    NARCIS (Netherlands)

    Schoffelen, R.; Graaf, W.T. van der; Sharkey, R.M.; Franssen, G.M.; McBride, W.J.; Chang, C.H.; Bos, D.L.; Goldenberg, D.M.; Oyen, W.J.G.; Boerman, O.C.

    2012-01-01

    The prospects for using pretargeted immuno-SPECT to monitor the response to pretargeted radioimmunotherapy were examined. In this study, a bispecific anticarcinoembryonic antigen (CEACAM5; CD66e) x antihapten monoclonal antibody, TF2, was used in combination with a small (1.5 kD) peptide, IMP288, la

  18. Pretargeted Radioimmunotherapy Using Anti-CD45 Monoclonal Antibodies to Deliver Radiation to Murine Hematolymphoid Tissues and Human Myeloid Leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Pagel, John M.; Matthews, Dana C.; Kenoyer, Aimee L.; Hamlin, Donald K.; Wilbur, D. Scott; Fisher, Darrell R.; Gopal, Ajay K.; Lin, Yukang; Saganic, Laura; Appelbaum, Frederick R.; Press, Oliver W.

    2009-01-01

    The efficacy of radioimmunotherapy (RIT) for treatment of patients with hematological malignancies frequently fails because of disease recurrence. We therefore conducted pretargeted RIT studies to augment the efficacy in mice of therapy using a pretargeted anti-human (h)CD45 antibody (Ab)-streptavidin (SA) conjugate followed by delivery of a biotinylated clearing agent and radiolabeled-DOTA-biotin. Tumor-to-blood ratios at 24 hours were 20:1 using pretargeted anti-hCD45 RIT and <1:1 with conventional RIT. In vivo imaging studies confirmed that the pretargeted RIT approach provided high-contrast tumor images with minimal blood-pool activity, whereas directly-labeled anti-hCD45 Ab produced distinct tumor images but the blood pool retained a large amount of labeled antibody for a prolonged time. Therapy experiments demonstrated that 90Y-DOTA-biotin significantly prolonged survival of mice treated pretargeted with anti-hCD45 Ab-SA compared to mice treated with conventional RIT using 90Y-labeled anti-hCD45 Ab at the maximally tolerated dose (400 µCi). Since human CD45 antigens are confined to xenograft tumor cells in this model, and all murine tissues are devoid of hCD45 and will not bind anti-hCD45 Ab, we also compared one-step and pretargeted RIT using an anti-murine (m)CD45 Ab (A20 ) in a model where the target antigen is present on normal hematopoietic tissues. After 24 hours, 27.3 ± 2.8% of the injected dose of radionuclide was delivered per gram (% ID/g) of lymph node using 131I-A20-Ab compared with 40.0 ± 5.4% ID/g for pretargeted 111In-DOTA-biotin (p value). These data suggest that multi-step pretargeted methods for delivering RIT are superior to conventional RIT when targeting CD45 for the treatment of leukemia and may allow for the intensification of therapy, while minimizing toxicities.

  19. Effects of food surface topography on phage-based magnetoelastic biosensor detection

    Science.gov (United States)

    Horikawa, Shin; Chai, Yating; Zhao, Ruiting; Wikle, Howard C.; Chin, Bryan A.

    2014-05-01

    Phage-based magnetoelastic (ME) biosensors have proven useful in rapidly and inexpensively detecting food surface con- tamination. These biosensors are wireless, mass-sensitive biosensors and can be placed directly on food surfaces to detect the presence of target pathogens. Previously, millimeter-scale strip-shaped ME biosensors have been used to demonstrate direct detection of Salmonella Typhimurium on various fresh produce surfaces, including tomatoes, shell eggs, watermel- ons, and spinach leaves. Since the topography of these produce surfaces are different, and the biosensor must come into direct contact with Salmonella bacteria, food surfaces with large roughness and curvatures (e.g., spinach leaf surfaces) may allow the bacteria to avoid direct contact, thereby avoiding detection. The primary objective of this paper is, hence, to investigate the effects of food surface topography on the detection capabilities of the biosensors. Spinach leaf surfaces were selected as model surfaces, and detection experiments were conducted with differently sized biosensors (2 mm, 0.5 mm, and 150 μm in length). Spinach leaf roughness and curvatures of both adaxial (top) and abaxial (underside) surfaces were measured using a confocal laser scanning microscope. The experimental results showed that in spinach as the sen- sor was made smaller, the physical contact between the biosensors and bacteria were improved. Smaller sensors thereby enhance detection capabilities. When proper numbers of biosensors are used, micron-scale biosensors are anticipated to yield improved limits of detection over previously investigated millimeter-scale biosensors.

  20. Detection of Salmonella Typhimurium on Spinach Using Phage-Based Magnetoelastic Biosensors

    Science.gov (United States)

    Wang, Fengen; Horikawa, Shin; Hu, Jiajia; Wikle, Howard C.; Chen, I-Hsuan; Du, Songtao; Liu, Yuzhe; Chin, Bryan A.

    2017-01-01

    Phage-based magnetoelastic (ME) biosensors have been studied as an in-situ, real-time, wireless, direct detection method of foodborne pathogens in recent years. This paper investigates an ME biosensor method for the detection of Salmonella Typhimurium on fresh spinach leaves. A procedure to obtain a concentrated suspension of Salmonella from contaminated spinach leaves is described that is based on methods outlined in the U.S. FDA Bacteriological Analytical Manual for the detection of Salmonella on leafy green vegetables. The effects of an alternative pre-enrichment broth (LB broth vs. lactose broth), incubation time on the detection performance and negative control were investigated. In addition, different blocking agents (BSA, Casein, and Superblock) were evaluated to minimize the effect of nonspecific binding. None of the blocking agents was found to be superior to the others, or even better than none. Unblocked ME biosensors were placed directly in a concentrated suspension and allowed to bind with Salmonella cells for 30 min before measuring the resonant frequency using a surface-scanning coil detector. It was found that 7 h incubation at 37 °C in LB broth was necessary to detect an initial spike of 100 cfu/25 g S. Typhimurium on spinach leaves with a confidence level of difference greater than 95% (p foodborne pathogens on fresh products. PMID:28212322

  1. Detection of Salmonella Typhimurium on Spinach Using Phage-Based Magnetoelastic Biosensors

    Directory of Open Access Journals (Sweden)

    Fengen Wang

    2017-02-01

    Full Text Available Phage-based magnetoelastic (ME biosensors have been studied as an in-situ, real-time, wireless, direct detection method of foodborne pathogens in recent years. This paper investigates an ME biosensor method for the detection of Salmonella Typhimurium on fresh spinach leaves. A procedure to obtain a concentrated suspension of Salmonella from contaminated spinach leaves is described that is based on methods outlined in the U.S. FDA Bacteriological Analytical Manual for the detection of Salmonella on leafy green vegetables. The effects of an alternative pre-enrichment broth (LB broth vs. lactose broth, incubation time on the detection performance and negative control were investigated. In addition, different blocking agents (BSA, Casein, and Superblock were evaluated to minimize the effect of nonspecific binding. None of the blocking agents was found to be superior to the others, or even better than none. Unblocked ME biosensors were placed directly in a concentrated suspension and allowed to bind with Salmonella cells for 30 min before measuring the resonant frequency using a surface-scanning coil detector. It was found that 7 h incubation at 37 °C in LB broth was necessary to detect an initial spike of 100 cfu/25 g S. Typhimurium on spinach leaves with a confidence level of difference greater than 95% (p < 0.05. Thus, the ME biosensor method, on both partly and fully detection, was demonstrated to be a robust and competitive method for foodborne pathogens on fresh products.

  2. Phage-based magnetoelastic sensor for the detection of Salmonella typhimurium

    Science.gov (United States)

    Lakshmanan, Ramji S.

    In recent years, food-borne illness have garnered the attention of mainstream America with calls now coming from the media for more inspections to ensure the safety of our food supply. Food borne illness from the ingestion of S. typhimurium has been of great concern due to its common occurrence in food products of daily consumption. Annually approximately 80 million cases of food poisoning are reported in the United States alone. The ever growing need for rapid detection of pathogenic microorganisms present in food, environmental and clinical samples has invoked an increased interest in research efforts towards the development of novel diagnostic methodologies. Currently, the detection of bacteria in contaminated food relies on conventional microbiological methods that are time consuming and manpower intensive. This study presents the results of the characterization of a phage-based magnetoelastic biosensor for the detection of Salmonella typhimurium . This affinity-based biosensensor is comprised of a magnetoelastic material as the transducer and filamentous phage as the bio-recognition element. Magnetoelastic materials are ferromagnetic amorphous alloys that change dimensions in the presence of a magnetic field. This effect in combination with the reverse effect (inverse magnetostriction) is utilized in a typical sensor application. A time varying magnetic field causes these sensors to oscillate at a characteristic resonance frequency. The characteristic resonance frequency is dependent on the initial dimensions and physical properties of the material. These materials are of particular interest owing to their unique capability to perform remote (without direct wire contacts to the sensor) sensing, making in-vivo detection and detection in closed containers possible. The phage-immobilized magnetoelastic biosensor was characterized for specificity; dose response in water, spiked apple juice and in spiked milk; selectivity; and longevity. The sensor's sensitivity is

  3. Comparative Efficacy of 177Lu and 90Y for Anti-CD20 Pretargeted Radioimmunotherapy in Murine Lymphoma Xenograft Models

    Energy Technology Data Exchange (ETDEWEB)

    Frost, Sophia; Frayo, Shani; Miller, Brian W.; Orozco, Johnnie J.; Booth, Garrett C.; Hylarides, Mark; Lin, Yukang; Green, Damian J.; Gopal, Ajay K.; Pagel, John M.; Back, Tom; Fisher, Darrell R.; Press, Oliver W.

    2015-03-01

    Pretargeted radioimmunotherapy (PRIT) is a multi-step method of selectively delivering high doses of radiotherapy to tumor cells while minimizing exposure to surrounding tissues. Yttrium-90 (90Y) and lutetium-177 (177Lu) are two of the most promising beta-particle emitting radionuclides used for radioimmunotherapy, which despite having similar chemistries differ distinctly in terms of radiophysical features. These differences may have important consequences for the absorbed dose to tumors and normal organs. Whereas 90Y has been successfully applied in a number of preclinical and clinical radioimmunotherapy settings, there have been few published pretargeting studies with 177Lu. We therefore compared the therapeutic potential of targeting either 90Y or 177Lu to human B-cell lymphoma xenografts in mice.

  4. SPECT/NIRF Dual Modality Imaging for Detection of Intraperitoneal Colon Tumor with an Avidin/Biotin Pretargeting System.

    Science.gov (United States)

    Dong, Chengyan; Yang, Sujuan; Shi, Jiyun; Zhao, Huiyun; Zhong, Lijun; Liu, Zhaofei; Jia, Bing; Wang, Fan

    2016-01-06

    We describe herein dual-modality imaging of intraperitoneal colon tumor using an avidin/biotin pretargeting system. A novel dual-modality probe, (99m)Tc-HYNIC-lys(Cy5.5)-PEG4-biotin, was designed, synthesized and characterized. Single-photon emission computed tomography/ computed tomography (SPECT/CT) imaging and near infrared fluorescence (NIRF) imaging were developed using intraperitoneal LS180 human colon adenocarcinoma xenografts. Following avidin preinjection for 4 hours, (99m)Tc-HYNIC-lys(Cy5.5)-PEG4-biotin could successfully detect colon tumors of different sizes inside the abdominal region using both modalities, and the imaging results showed no differences. Biodistribution studies demonstrated that the tumors had a very high uptake of the probe (99m)Tc-HYNIC-lys(Cy5.5)-PEG4-biotin (12.74 ± 1.89% ID/g at 2 h p.i.), and the clearance from blood and other normal tissues occured very fast. The low tumor uptake in the non-pretargeted mice (1.63 ± 0.50% ID/g at 2 h p.i.) and tumor cell staining results showed excellent tumor binding specificity of the pretargeting system. The ability of the novel probe to show excellent imaging quality with high tumor-to-background contrast, a high degree of binding specificity with tumors and excellent in vivo biodistribution pharmacokinetics should prove that the avidin/biotin based dual-modality pretargeting probe is a promising imaging tool during the entire period of tumor diagnosis and treatment.

  5. Phage-based surface plasmon resonance strategies for the detection of pathogens

    Science.gov (United States)

    Tawil, Nancy

    We start by reviewing the basic principles and recent advances in biosensing technologies using optical, electrochemical and acoustic platforms for phage-based diagnostics. Although much notable work has been done, a low cost, specific, sensitive optical method for detecting low concentrations of pathogens, in a few minutes, has not been established. We conclude from the limited body of work on the subject that improving immobilization strategies and finding more suitable phage recognition elements would allow for a more sensitive approach. Our aim was to better describe the attachment process of MRSA specific phages on gold surfaces, and the subsequent biodetection of their bacterial hosts by surface plasmon resonance (SPR). With the knowledge that the adsorption characteristics of thiol-containing molecules are necessary for applications involving the attachment of recognition elements to a functionalized surface, we start by providing comparative details on the kinetics of self-assembly of L-cysteine and 11-mercaptoundecanoic acid (MUA) monolayers on gold using SPR[1]. Our purpose, in carrying out these measurements was to establish each molecule's validity and applicability as a linker element for use in biosensing. We find that monolayer formation, for both L-cysteine and MUA, is described by the Langmuir isotherm at low concentrations only. For L-cysteine, both the amine and thiol groups contribute to the initial attachment of the molecule, followed by the replacement of the amine-gold complexes initially formed with more stable thiol-gold complexes. The reorganization of L-cysteine creates more space on the gold surface, and the zwitterionic form of the molecule permits the physisorption of a second layer through electrostatic interactions. On the other hand, MUA deposits randomly onto the surface of gold as a SAM and slowly reorganizes into a denser, vertical state. Surface plasmon resonance was then used for the real-time monitoring of the attachment of

  6. Pretargeting CD45 enhances the selective delivery of radiation to hematolymphoid tissues in nonhuman primates

    Energy Technology Data Exchange (ETDEWEB)

    Green, Damian J.; Pagel, John M.; Nemecek, Eneida R.; Lin, Yukang; Kenoyer, Aimee L.; Pantelias, Anastasia; Hamlin, Donald K.; Wilbur, D. S.; Fisher, Darrell R.; Rajendran, Joseph G.; Gopal, Ajay K.; Park, Steven I.; Press, Oliver W.

    2009-08-06

    Pretargeted radioimmunotherapy (PRIT) is designed to enhance the directed delivery of radionuclides to malignant cells. Through a series of studies in nineteen nonhuman primates (M. fascicularis) the potential therapeutic advantage of anti-CD45 PRIT was evaluated. Anti-CD45 PRIT demonstrated a significant improvement in target-to-normal organ ratios of absorbed radiation when compared to directly radiolabeled bivalent antibody (conventional radioimmunotherapy [RIT]). Radio-DOTA-biotin administered 48 hours after anti-CD45 streptavidin fusion protein (FP) [BC8 (scFv)4SA] produced markedly lower concentrations of radiation in non-target tissues when compared to conventional RIT. PRIT generated superior target:normal organ ratios in the blood, lung and liver (10.3:1, 18.9:1 and 9.9:1 respectively) when compared to the conventional RIT controls (2.6:1, 6.4:1 and 2.9:1 respectively). The FP demonstrated superior retention in target tissues relative to comparable directly radiolabeled bivalent anti-CD45 RIT. The time-point of administration of the second step radiolabeled ligand (radio-DOTA-biotin) significantly impacted the biodistribution of radioactivity in target tissues. Rapid clearance of the FP from the circulation rendered unnecessary the addition of a synthetic clearing agent in this model. These results support proceeding to anti-CD45 PRIT clinical trials for patients with both leukemia and lymphoma.

  7. Obtaining control of cell surface functionalizations via Pre-targeting and Supramolecular host guest interactions.

    Science.gov (United States)

    Rood, Mark T M; Spa, Silvia J; Welling, Mick M; Ten Hove, Jan Bart; van Willigen, Danny M; Buckle, Tessa; Velders, Aldrik H; van Leeuwen, Fijs W B

    2017-01-06

    The use of mammalian cells for therapeutic applications is finding its way into modern medicine. However, modification or "training" of cells to make them suitable for a specific application remains complex. By envisioning a chemical toolbox that enables specific, but straight-forward and generic cellular functionalization, we investigated how membrane-receptor (pre)targeting could be combined with supramolecular host-guest interactions based on β-cyclodextrin (CD) and adamantane (Ad). The feasibility of this approach was studied in cells with membranous overexpression of the chemokine receptor 4 (CXCR4). By combining specific targeting of CXCR4, using an adamantane (Ad)-functionalized Ac-TZ14011 peptide (guest; KD = 56 nM), with multivalent host molecules that entailed fluorescent β-CD-Poly(isobutylene-alt-maleic-anhydride)-polymers with different fluorescent colors and number of functionalities, host-guest cell-surface modifications could be studied in detail. A second set of Ad-functionalized entities enabled introduction of additional surface functionalities. In addition, the attraction between CD and Ad could be used to drive cell-cell interactions. Combined we have shown that supramolecular interactions, that are based on specific targeting of an overexpressed membrane-receptor, allow specific and stable, yet reversible, surface functionalization of viable cells and how this approach can be used to influence the interaction between cells and their surroundings.

  8. Pretargeted Positron Emission Tomography Imaging That Employs Supramolecular Nanoparticles with in Vivo Bioorthogonal Chemistry.

    Science.gov (United States)

    Hou, Shuang; Choi, Jin-Sil; Garcia, Mitch Andre; Xing, Yan; Chen, Kuan-Ju; Chen, Yi-Ming; Jiang, Ziyue K; Ro, Tracy; Wu, Lily; Stout, David B; Tomlinson, James S; Wang, Hao; Chen, Kai; Tseng, Hsian-Rong; Lin, Wei-Yu

    2016-01-26

    A pretargeted oncologic positron emission tomography (PET) imaging that leverages the power of supramolecular nanoparticles with in vivo bioorthogonal chemistry was demonstrated for the clinically relevant problem of tumor imaging. The advantages of this approach are that (i) the pharmacokinetics (PKs) of tumor-targeting and imaging agents can be independently altered via chemical alteration to achieve the desired in vivo performance and (ii) the interplay between the two PKs and other controllable variables confers a second layer of control toward improved PET imaging. In brief, we utilized supramolecular chemistry to synthesize tumor-targeting nanoparticles containing transcyclooctene (TCO, a bioorthogonal reactive motif), called TCO⊂SNPs. After the intravenous injection and subsequent concentration of the TCO⊂SNPs in the tumors of living mice, a small molecule containing both the complementary bioorthogonal motif (tetrazine, Tz) and a positron-emitting radioisotope ((64)Cu) was injected to react selectively and irreversibly to TCO. High-contrast PET imaging of the tumor mass was accomplished after the rapid clearance of the unreacted (64)Cu-Tz probe. Our nanoparticle approach encompasses a wider gamut of tumor types due to the use of EPR effects, which is a universal phenomenon for most solid tumors.

  9. Synthesis of bifunctional antibodies for immunoassays.

    Science.gov (United States)

    DeSilva, B S; Wilson, G S

    2000-09-01

    The synthesis of bifunctional antibodies using the principle of solid-phase synthesis is described. Two Fab' fragments were chemically linked together via a bismaleimide crosslinking reagent. The F(ab')(2) fragments from intact immunoglobulin G (IgG) were prepared using an immobilized pepsin column. Goat, mouse, and human antibodies were digested completely within 4 h. The F(ab')(2) fragments thus produced did not contain any IgG impurities. Fab' fragments were produced by reducing the heavy interchain disulfide bonds using 2-mercaptoethylamine. Use of the solid-phase reactor in the preparation of the bifunctional antibodies eliminated many of the time-consuming separation steps between the fragmentation and conjugation steps. This procedure facilitates the automation of bifunctional antibody preparation and the rapid optimization of reaction conditions.

  10. Solid phase synthesis of bifunctional antibodies.

    Science.gov (United States)

    DeSilva, B S; Wilson, G S

    1995-12-15

    Bifunctional antibodies were prepared using the principle of solid-phase synthesis. The two Fab' fragments were chemically linked together via a bismaleimide crosslinking reagent. The F(ab')2 fragments from intact IgG were prepared using an immobilized pepsin column. Goat, mouse and human antibodies were digested completely within 4 h. The F(ab')2 fragments thus produced did not contain any IgG impurities. The Fab' fragments were produced by reducing the inter-heavy chain disulfide bonds using 2-mercaptoethylamine. The use of the solid-phase reactor in the preparation of the bifunctional antibodies eliminated many of the time-consuming separation steps between the fragmentation and conjugation steps. This procedure facilitates the automation of the bifunctional antibody preparation and the rapid optimization of reaction conditions.

  11. Pharmacokinetics and Dosimetry Studies for Optimization of Pretargeted Radioimmunotherapy in CEA-Expressing Advanced Lung Cancer Patients

    Directory of Open Access Journals (Sweden)

    Caroline eBodet-Milin

    2015-11-01

    Full Text Available Objectives. A phase I pretargeted radioimmunotherapy trial (EudractCT 200800603096 was designed in patients with metastatic lung cancer expressing carcinoembryonic antigen (CEA to optimize bispecific antibody and labelled peptide doses, as well as the delay between their injections.Methods. Three cohorts of 3 patients received the anti-CEA x anti-histamine-succinyl-glycine (HSG humanized trivalent bispecific antibody (TF2 and the IMP288 bivalent HSG-peptide. Patients underwent a pre-therapeutic imaging session S1 (44 or 88 nmol/m2 of TF2 followed by 4.4 nmol/m2, 185 MBq, of 111In-labelled IMP288, and, 1-2 weeks later, a therapy session S2 (240 or 480 nmol/m2 of TF2 followed by 24 nmol/m2, 1.1 GBq/m2, 177Lu-labeled IMP288. The pretargeting delay was 24 or 48 hours. The dose schedule was defined based on pre-clinical TF2 pharmacokinetic studies, on our previous clinical data using the previous anti-CEA pretargeting system and on clinical results observed in the first patients injected using the same system in the Netherlands.Results. TF2 pharmacokinetics (PK was represented by a two-compartment model in which the central compartment volume was linearly dependent on the patient's surface area. PK were remarkably similar, with a clearance of 0.33 +/- 0.03 L/h per m2. 111In- and 177Lu-IMP288 PK were also well represented by a two-compartment model. IMP288 PK were faster (clearance 1.4 to 3.3 l/h. The central compartment volume was proportional to body surface area and IMP288clearance depended on the molar ratio of injected IMP288 to circulating TF2 at the time of IMP288 injection. Modelling of image quantification confirmed the dependence of IMP288 kinetics on circulating TF2, but tumour activity PK were variable. Organ absorbed doses were not significantly different in the 3 cohorts, but the tumour dose was significantly higher with the higher molar doses of TF2 (p < 0.002. S1 imaging predicted absorbed doses calculated in S2. Conclusion. The best

  12. Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus

    Science.gov (United States)

    Park, Joo Youn; Moon, Bo Youn; Park, Juw Won; Thornton, Justin A.; Park, Yong Ho; Seo, Keun Seok

    2017-01-01

    Discovery of clustered, regularly interspaced, short palindromic repeats and the Cas9 RNA-guided nuclease (CRISPR/Cas9) system provides a new opportunity to create programmable gene-specific antimicrobials that are far less likely to drive resistance than conventional antibiotics. However, the practical therapeutic use of CRISPR/Cas9 is still questionable due to current shortcomings in phage-based delivery systems such as inefficient delivery, narrow host range, and potential transfer of virulence genes by generalized transduction. In this study, we demonstrate genetic engineering strategies to overcome these shortcomings by integrating CRISPR/Cas9 system into a temperate phage genome, removing major virulence genes from the host chromosome, and expanding host specificity of the phage by complementing tail fiber protein. This significantly improved the efficacy and safety of CRISPR/Cas9 antimicrobials to therapeutic levels in both in vitro and in vivo assays. The genetic engineering tools and resources established in this study are expected to provide an efficacious and safe CRISPR/Cas9 antimicrobial, broadly applicable to Staphylococcus aureus. PMID:28322317

  13. Pretargeted immunoPET of prostate cancer with an anti-TROP-2 x anti-HSG bispecific antibody in mice with PC3 xenografts

    NARCIS (Netherlands)

    Rij, C.M. van; Frielink, C.; Goldenberg, D.M.; Sharkey, R.M.; Franssen, G.M.; Lutje, S.; McBride, W.J.; Oyen, W.J.G.; Boerman, O.C.

    2015-01-01

    PURPOSE: Pretargeting with bispecific antibodies and radiolabeled hapten-peptides could be used to specifically target tumors with high target-to-background ratios. TF12 is a trivalent bispecific antibody that consists of two anti-TROP-2 Fab fragments and one anti-HSG (histamine-succinyl-glycine) Fa

  14. Synthesis of phosphine and antibody-azide probes for in vivo Staudinger ligation in a pretargeted imaging and therapy approach.

    Science.gov (United States)

    Vugts, Danielle J; Vervoort, Annelies; Stigter-van Walsum, Marijke; Visser, Gerard W M; Robillard, Marc S; Versteegen, Ron M; Vulders, Roland C M; Herscheid, J Koos D M; van Dongen, Guus A M S

    2011-10-19

    The application of intact monoclonal antibodies (mAbs) as targeting agents in nuclear imaging and radioimmunotherapy is hampered by the slow pharmacokinetics of these molecules. Pretargeting with mAbs could be beneficial to reduce the radiation burden to the patient, while using the excellent targeting capacity of the mAbs. In this study, we evaluated the applicability of the Staudinger ligation as pretargeting strategy using an antibody-azide conjugate as tumor-targeting molecule in combination with a small phosphine-containing imaging/therapeutic probe. Up to 8 triazide molecules were attached to the antibody without seriously affecting its immunoreactivity, pharmacokinetics, and tumor uptake in tumor bearing nude mice. In addition, two (89)Zr- and (67/68)Ga-labeled desferrioxamine (DFO)-phosphines, a (177)Lu-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-phosphine and a (123)I-cubyl phosphine probe were synthesized and characterized for their pharmacokinetic behavior in nude mice. With respect to the phosphine probes, blood levels at 30 min after injection were phosphine, relative to the azide, in aqueous solution resulted in 20-25% efficiency after 2 h. The presence of 37% human serum resulted in a reduced ligation efficiency (reduction max. 30% at 2 h), while the phosphines were still >80% intact. No in vivo Staudinger ligation was observed in a mouse model after injection of 500 μg antibody-azide, followed by 68 μg DFO-phosphine at t = 2 h, and evaluation in blood at t = 7 h. To explain negative results in mice, Staudinger ligation was performed in vitro in mouse serum. Under these conditions, a side product with the phosphine was formed and ligation efficiency was severely reduced. It is concluded that in vivo application of the Staudinger ligation in a pretargeting approach in mice is not feasible, since this ligation reaction is not bioorthogonal and efficient enough. Slow reaction kinetics will also severely restrict the applicability

  15. Development of a streptavidin-anti-carcinoembryonic antigen antibody, radiolabeled biotin pretargeting method for radioimmunotherapy of colorectal cancer. Reagent development.

    Science.gov (United States)

    Karacay, H; Sharkey, R M; Govindan, S V; McBride, W J; Goldenberg, D M; Hansen, H J; Griffiths, G L

    1997-01-01

    With pretargeting, radioisotope delivery to tumor is decoupled from the long antibody localization process, and this can increase tumor:blood ratios dramatically. Several reagents were prepared for each step of a "two-step" pretargeting method, and their properties were investigated. For pretargeting tumor, streptavidin-monoclonal antibody (StAv-mab) conjugates were prepared by cross-linking sulfo-SMCC-derivatized streptavidin to a free thiol (SH) group on MN-14 [a high-affinity anti-carcinoembryonic antigen (CEA) mab]. Thiolated mabs were generated either by reaction of 2-iminothiolane (2-IT) with mab lysine residues or by reduction of mab disulfide bonds with (2-mercaptoethyl)amine (MEA). Both procedures gave protein-protein conjugates isolated in relatively low yields (20-25%) after preparative size-exclusion (SE) chromatography purification with conservative peak collection. Both StAv-MN-14 conjugates retained their ability to bind to CEA, to an anti-idiotypic antibody to MN-14 (WI2), and to biotin, as demonstrated by SE-HPLC. Two clearing agents, WI2 mab and a biotin-human serum albumin (biotin-HSA) conjugate, were developed to remove excess circulating StAv-MN-14 conjugates in animals. Both clearing proteins were also modified with galactose residues, introduced using an activated thioimidate derivative, to produce clearing agents which would clear rapidly and clear primary mab rapidly. At least 14 galactose residues on WI2 were required to reduce blood levels to 5.9 +/- 0.7% ID/g in 1 h. Faster blood clearance (0.7 +/- 0.2% ID/g) was observed in 1 h using 44 galactose units per WI2. For the delivery of radioisotope to tumor, several biotinylated conjugates consisting of biotin, a linker, and a chelate were prepared. Conjugates showed good in vitro and in vivo stability when D-amino acid peptides were used as linkers, biotin-peptide-DOTA-indium-111 had a slightly longer blood circulation time (0.09 +/- 0.02% ID/g in 1 h) than biotin-peptide-DTPA-indium-111 (0

  16. Rapid detection of hypoxia-inducible factor-1-active tumours: pretargeted imaging with a protein degrading in a mechanism similar to hypoxia-inducible factor-1{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Masashi [Kyoto University, Radioisotopes Research Laboratory, Kyoto University Hospital, Faculty of Medicine, Kyoto (Japan); Kyoto University, Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto (Japan); Kudo, Takashi; Konishi, Hiroaki; Miyano, Azusa; Ono, Masahiro; Saji, Hideo [Kyoto University, Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto (Japan); Kuge, Yuji [Kyoto University, Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto (Japan); Hokkaido University, Central Institute of Isotope Science, Sapporo (Japan); Mukai, Takahiro [Kyushu University, Department of Biomolecular Recognition Chemistry, Graduate School of Pharmaceutical Sciences, Fukuoka (Japan); Tanaka, Shotaro; Kizaka-Kondoh, Shinae; Hiraoka, Masahiro [Kyoto University, Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto (Japan)

    2010-08-15

    Hypoxia-inducible factor-1 (HIF-1) plays an important role in malignant tumour progression. For the imaging of HIF-1-active tumours, we previously developed a protein, POS, which is effectively delivered to and selectively stabilized in HIF-1-active cells, and a radioiodinated biotin derivative, (3-{sup 123}I-iodobenzoyl)norbiotinamide ({sup 123}I-IBB), which can bind to the streptavidin moiety of POS. In this study, we aimed to investigate the feasibility of the pretargeting method using POS and {sup 123}I-IBB for rapid imaging of HIF-1-active tumours. Tumour-implanted mice were pretargeted with POS. After 24 h, {sup 125}I-IBB was administered and subsequently, the biodistribution of radioactivity was investigated at several time points. In vivo planar imaging, comparison between {sup 125}I-IBB accumulation and HIF-1 transcriptional activity, and autoradiography were performed at 6 h after the administration of {sup 125}I-IBB. The same sections that were used in autoradiographic analysis were subjected to HIF-1{alpha} immunohistochemistry. {sup 125}I-IBB accumulation was observed in tumours of mice pretargeted with POS (1.6%ID/g at 6 h). This result is comparable to the data derived from {sup 125}I-IBB-conjugated POS-treated mice (1.4%ID/g at 24 h). In vivo planar imaging provided clear tumour images. The tumoral accumulation of {sup 125}I-IBB significantly correlated with HIF-1-dependent luciferase bioluminescence (R=0.84, p<0.01). The intratumoral distribution of {sup 125}I-IBB was heterogeneous and was significantly correlated with HIF-1{alpha}-positive regions (R=0.58, p<0.0001). POS pretargeting with {sup 123}I-IBB is a useful technique in the rapid imaging and detection of HIF-1-active regions in tumours. (orig.)

  17. Astaxanthin diferulate as a bifunctional antioxidant

    DEFF Research Database (Denmark)

    Papa, T.B.R.; Pinho, V.D.; Nascimento, E.P. do;

    2015-01-01

    Abstract Astaxanthin when esterified with ferulic acid is better singlet oxygen quencher with k2 = (1.58 ± 0.1) 10(10) L mol(- 1)s(- 1) in ethanol at 25°C compared with astaxanthin with k2 = (1.12 ± 0.01) 10(9) L mol(- 1)s(- 1). The ferulate moiety in the astaxanthin diester is a better radical s....... The mutual enhancement of antioxidant activity for the newly synthetized astaxanthin diferulate becoming a bifunctional antioxidant is rationalized according to a two-dimensional classification plot for electron donation and electron acceptance capability....

  18. Acid-base bifunctional catalytic surfaces for nucleophilic addition reactions.

    Science.gov (United States)

    Motokura, Ken; Tada, Mizuki; Iwasawa, Yasuhiro

    2008-09-01

    This article illustrates the modification of oxide surfaces with organic amine functional groups to create acid-base bifunctional catalysts, summarizing our previous reports and also presenting new data. Immobilization of organic amines as bases on inorganic solid-acid surfaces afforded highly active acid-base bifunctional catalysts, which enabled various organic transformations including C--C coupling reactions, though these reactions did not proceed with either the homogeneous amine precursors or the acidic supports alone. Spectroscopic characterization, such as by solid-state MAS NMR and FTIR, revealed not only the interactions between acidic and basic sites but also bifunctional catalytic reaction mechanisms.

  19. Iron Group Hydrides in Noyori Bifunctional Catalysis.

    Science.gov (United States)

    Morris, Robert H

    2016-12-01

    This is an overview of the hydride-containing catalysts prepared in the Morris group for the efficient hydrogenation of simple ketones, imines, nitriles and esters and the asymmetric hydrogenation and transfer hydrogenation of prochiral ketones and imines. The work was inspired by and makes use of Noyori metal-ligand bifunctional concepts involving the hydride-ruthenium amine-hydrogen HRuNH design. It describes the synthesis and some catalytic properties of hydridochloro, dihydride and amide complexes of ruthenium and in one case, osmium, with monodentate, bidentate and tetradentate phosphorus and nitrogen donor ligands. The iron hydride that has been identified in a very effective asymmetric transfer hydrogenation process is also mentioned. The link between the HMNH structure and the sense of enantioinduction is demonstrated by use of simple transition state models.

  20. Bifunctional xylanases and their potential use in biotechnology

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, R.; Numan, M.Th.

    is half as sweet as sucrose, can be applicable to foods as a sweetener that is capable of improving diabetic symptoms [37]. Concluding remarks This review provides the information on most of the aspects of bifunctional enzyme with special reference... of the bifunctional xylanases it is necessary in future to utilize such hybrid protein as an alternative to expensive and polluting chemical treatments or to improve already existing enzymatic processes for utilization of veg- etal by-products in the agro...

  1. Targeting Prostate Cancer with Bifunctional Modulators of the Androgen Receptor

    Science.gov (United States)

    2013-10-01

    element of immunosuppressive regimens for organ transplantation (1). Despite these 24 Bifunctional Ligand Control of Nuclear Receptors 3 well...Gerez J, Paez-Pereda M, Rein T, Iniguez-Lluhi JA, Holsboer F, Arzt E 2013 RSUME enhances glucocorticoid receptor SUMOylation and transcriptional... transplant recipients. Transpl Immunol 27:12-18 42. Marinec PS, Lancia JK, Gestwicki JE 2008 Bifunctional molecules evade cytochrome P(450) metabolism

  2. Astaxanthin diferulate as a bifunctional antioxidant.

    Science.gov (United States)

    Papa, T B R; Pinho, V D; do Nascimento, E S P; Santos, W G; Burtoloso, A C B; Skibsted, L H; Cardoso, D R

    2015-01-01

    Astaxanthin when esterified with ferulic acid is better singlet oxygen quencher with k2 = (1.58 ± 0.1) 10(10) L mol(-1)s(-1) in ethanol at 25°C compared with astaxanthin with k2 = (1.12 ± 0.01) 10(9) L mol(-1)s(-1). The ferulate moiety in the astaxanthin diester is a better radical scavenger than free ferulic acid as seen from the rate constant of scavenging of 1-hydroxyethyl radicals in ethanol at 25°C with a second-order rate constant of (1.68 ± 0.1) 10(8) L mol(-1)s(-1) compared with (1.60 ± 0.03) 10(7) L mol(-1)s(-1) for the astaxanthin:ferulic acid mixture, 1:2 equivalents. The mutual enhancement of antioxidant activity for the newly synthetized astaxanthin diferulate becoming a bifunctional antioxidant is rationalized according to a two-dimensional classification plot for electron donation and electron acceptance capability.

  3. Shadow enhancers enable Hunchback bifunctionality in the Drosophila embryo.

    Science.gov (United States)

    Staller, Max V; Vincent, Ben J; Bragdon, Meghan D J; Lydiard-Martin, Tara; Wunderlich, Zeba; Estrada, Javier; DePace, Angela H

    2015-01-20

    Hunchback (Hb) is a bifunctional transcription factor that activates and represses distinct enhancers. Here, we investigate the hypothesis that Hb can activate and repress the same enhancer. Computational models predicted that Hb bifunctionally regulates the even-skipped (eve) stripe 3+7 enhancer (eve3+7) in Drosophila blastoderm embryos. We measured and modeled eve expression at cellular resolution under multiple genetic perturbations and found that the eve3+7 enhancer could not explain endogenous eve stripe 7 behavior. Instead, we found that eve stripe 7 is controlled by two enhancers: the canonical eve3+7 and a sequence encompassing the minimal eve stripe 2 enhancer (eve2+7). Hb bifunctionally regulates eve stripe 7, but it executes these two activities on different pieces of regulatory DNA--it activates the eve2+7 enhancer and represses the eve3+7 enhancer. These two "shadow enhancers" use different regulatory logic to create the same pattern.

  4. Development of a rapid phage-based method for the detection of viable Mycobacterium avium subsp. paratuberculosis in blood within 48 h☆

    Science.gov (United States)

    Swift, Benjamin M.C.; Denton, Emily J.; Mahendran, Sophie A.; Huxley, Jonathan N.; Rees, Catherine E.D.

    2013-01-01

    The aim of this study was to develop a methodology to rapidly detect viable Mycobacterium avium subsp. paratuberculosis (MAP) in clinical blood samples. MAP cells spiked into commercially available blood were recovered using optimised peptide-mediated magnetic separation (PMMS) and detected using a phage-based method, and the identity of the cells detected confirmed using nested-PCR amplification of MAP signature sequences (IS900). The limit of detection was determined to be 10 MAP cells per ml of blood and was used to detect MAP present in clinical bovine blood samples. Using the PMMS-phage method there was no difference when detecting MAP from whole blood or from isolated buffy coat. MAP was detected in animals that were milk-ELISA positive (15 animals) by PMMS-phage and no MAP was detected in blood samples from an accredited Johne's disease free herd (5 animals). In a set of samples from one herd (10 animals) that came from animals with variable milk ELISA status, the PMMS-phage results agreed with the positive milk-ELISA results in all but one case. These results show that the PMMS-phage method can detect MAP present in naturally infected blood. Total assay time is 48 h and, unlike PCR-based detection tests, only viable cells are detected. A rapid method for detecting MAP in blood could further the understanding of disseminated infection in animals with Johne's disease. PMID:23811207

  5. {sup 18}F-FDG PET predicts survival after pretargeted radioimmunotherapy in patients with progressive metastatic medullary thyroid carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Salaun, Pierre-Yves; Robin, Philippe [University Hospital, Nuclear Medicine Department, Brest (France); Campion, Loic [ICO-Gauducheau Cancer Institute, Statistical Department, Nantes (France); Ansquer, Catherine; Mathieu, Cedric [University Hospital, Nuclear Medicine Department, Nantes (France); Frampas, Eric [University Hospital, Radiology Department, Nantes (France); Universite de Nantes, Nantes-Angers Cancer Research Center, Inserm, U 892, CNRS, UMR 6299, Nantes (France); Bournaud, Claire [University Hospital, Nuclear Medicine Department, Lyon (France); Vuillez, Jean-Philippe [University Hospital, Nuclear Medicine Department, Grenoble (France); Taieb, David [University Hospital, Nuclear Medicine Department, Marseille (France); Rousseau, Caroline [Universite de Nantes, Nantes-Angers Cancer Research Center, Inserm, U 892, CNRS, UMR 6299, Nantes (France); ICO-Rene Gauducheau, Nuclear Medicine Department, Nantes (France); Drui, Delphine [University Hospital, Endocrinology Department, Nantes (France); Mirallie, Eric [University Hospital, Surgery Department, Nantes (France); Borson-Chazot, Francoise [University Hospital, Endocrinology Department, Lyon (France); Goldenberg, David M. [IBC Pharmaceuticals, Inc., and Immunomedics, Inc., Morris Plains, NJ (United States); Center for Molecular Medicine and Immunology, Garden State Cancer Center, Morris Plains, NJ (United States); Chatal, Jean-Francois [GIP ARRONAX, Saint-Herblain (France); Barbet, Jacques [Universite de Nantes, Nantes-Angers Cancer Research Center, Inserm, U 892, CNRS, UMR 6299, Nantes (France); GIP ARRONAX, Saint-Herblain (France); Kraeber-Bodere, Francoise [University Hospital, Nuclear Medicine Department, Nantes (France); Universite de Nantes, Nantes-Angers Cancer Research Center, Inserm, U 892, CNRS, UMR 6299, Nantes (France); ICO-Rene Gauducheau, Nuclear Medicine Department, Nantes (France); Hotel Dieu University Hospital, Nuclear Medicine Department, Nantes (France)

    2014-08-15

    PET is a powerful tool for assessing targeted therapy. Since {sup 18}F-FDG shows a potential prognostic value in medullary thyroid carcinoma (MTC), this study evaluated {sup 18}F-FDG PET alone and combined with morphological and biomarker evaluations as a surrogate marker of overall survival (OS) in patients with progressive metastatic MTC treated with pretargeted anti-CEA radioimmunotherapy (pRAIT) in a phase II clinical trial. Patients underwent PET associated with morphological imaging (CT and MRI) and biomarker evaluations, before and 3 and 6 months, and then every 6 months, after pRAIT for 36 months. A combined evaluation was performed using anatomic, metabolic and biomarker methods. The prognostic value of the PET response was compared with demographic parameters at inclusion including age, sex, RET mutation, time from initial diagnosis, calcitonin and CEA concentrations and doubling times (DT), SUV{sub max}, location of disease and bone marrow involvement, and with response using RECIST, biomarker concentration variation, impact on DT, and combined methods. Enrolled in the study were 25 men and 17 women with disease progression. The median OS from pRAIT was 3.7 years (0.2 to 6.5 years) and from MTC diagnosis 10.9 years (1.7 to 31.5 years). After pRAIT, PET/CT showed 1 patient with a complete response, 4 with a partial response and 24 with disease stabilization. The combined evaluation showed 20 responses. For OS from pRAIT, univariate analysis showed the prognostic value of biomarker DT (P = 0.011) and SUV{sub max} (P = 0.038) calculated before pRAIT and impact on DT (P = 0.034), RECIST (P = 0.009), PET (P = 0.009), and combined response (P = 0.004) measured after pRAIT. PET had the highest predictive value with the lowest Akaike information criterion (AIC 74.26) as compared to RECIST (AIC 78.06), biomarker variation (AIC 81.94) and impact on DT (AIC 79.22). No benefit was obtained by combining the methods (AIC 78.75). This result was confirmed by the

  6. Single flexible nanofiber to simultaneously realize electricity-magnetism bifunctionality

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ming; Sheng, Shujuan; Ma, Qianli; Lv, Nan; Yu, Wensheng; Wang, Jinxian; Dong, Xiangting; Liu, Guixia, E-mail: wenshengyu2009@sina.com, E-mail: dongxiangting888@163.com [Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun (China)

    2016-03-15

    In order to develop new-typed multifunctional composite nanofibers, PANI/Fe{sub 3}O{sub 4}/PVP flexible bifunctional composite nanofibers with simultaneous electrical conduction and magnetism have been successfully fabricated via a facile electrospinning technology. Polyvinyl pyrrolidone (PVP) is used as a matrix to construct composite nanofibers containing different amounts of polyaniline (PANI) and Fe{sub 3}O{sub 4} nanoparticles (NPs). The bifunctional composite nanofibers simultaneously possess excellent electrical conductivity and magnetic properties. The electrical conductivity reaches up to the order of 10{sup -3} S·cm{sup -1}. The electrical conductivity and saturation magnetization of the composite nanofibers can be respectively tuned by adding various amounts of PANI and Fe{sub 3}O{sub 4} NPs. The obtained electricity-magnetism bifunctional composite nanofibers are expected to possess many potential applications in areas such as electromagnetic interference shielding, special coating, microwave absorption, molecular electronics and future nanomechanics. More importantly, the design concept and construct technique are of universal significance to fabricate other bifunctional one-dimensional nanostructures. (author)

  7. Use of Bifunctional Immunotherapeutic Agents to Target Breast Cancer

    Science.gov (United States)

    2007-07-01

    Selective Tumor Cell Targeting Using Low-Affinity, Multivalent Interactions Coby B. Carlson†,‡, Patricia Mowery‡, Robert M. Owen†, Emily C. Dykhuizen†, and...washed cells and immediately analyzed for fluorescence using a FACSCalibur flow cytometer (Becton Dickinson ). Data were ana- lyzed using CellQuest...software (Becton Dickinson ). An identical assay omitting the bifunctional conjugate assessed background fluorescence. The relative fluorescence is

  8. Environmentally Benign Bifunctional Solid Acid and Base Catalysts

    NARCIS (Netherlands)

    Elmekawy, A.; Shiju, N.R.; Rothenberg, G.; Brown, D.R.

    2014-01-01

    Solid bifunctional acid-​base catalysts were prepd. in two ways on an amorphous silica support: (1) by grafting mercaptopropyl units (followed by oxidn. to propylsulfonic acid) and aminopropyl groups to the silica surface (NH2-​SiO2-​SO3H)​, and (2) by grafting only aminopropyl groups and then parti

  9. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons

    NARCIS (Netherlands)

    Zecevic, Jovana; Vanbutsele, Gina; de Jong, Krijn P.; Martens, Johan A.

    2015-01-01

    The ability to control nanoscale features precisely is increasingly being exploited to develop and improve monofunctional catalysts(1-4). Striking effects might also be expected in the case of bifunctional catalysts, which are important in the hydrocracking of fossil and renewable hydrocarbon source

  10. Bispecific antibody complex pre-targeting and targeted delivery of polymer drug conjugates for imaging and therapy in dual human mammary cancer xenografts. Targeted polymer drug conjugates for cancer diagnosis and therapy

    Energy Technology Data Exchange (ETDEWEB)

    Khaw, Ban-An; Gada, Keyur S.; Patil, Vishwesh; Panwar, Rajiv; Mandapati, Savitri [Northeastern University, Department of Pharmaceutical Sciences, Bouve College of Health Sciences, School of Pharmacy, Boston, MA (United States); Hatefi, Arash [Rutgers University, Department of Pharmaceutics, New Brunswick, NJ (United States); Majewski, Stan [West Virginia University, Department of Radiology, Morgantown, WV (United States); Weisenberger, Andrew [Thomas Jefferson National Accelerator Facility, Jefferson Lab, Newport News, VA (United States)

    2014-08-15

    Doxorubicin, a frontline chemotherapeutic agent, limited by its cardiotoxicity and other tissue toxicities, was conjugated to N-terminal DTPA-modified polyglutamic acid (D-Dox-PGA) to produce polymer pro-drug conjugates. D-Dox-PGA or Tc-99 m labeled DTPA-succinyl-polylysine polymers (DSPL) were targeted to HER2-positive human mammary carcinoma (BT-474) in a double xenografted SCID mouse model also hosting HER2-negative human mammary carcinoma (BT-20). After pretargeting with bispecific anti-HER2-affibody-anti-DTPA-Fab complexes (BAAC), anti-DTPA-Fab or only phosphate buffered saline, D-Dox-PGA or Tc-99 m DSPL were administered. Positive therapeutic control mice were injected with Dox alone at maximum tolerated dose (MTD). Only BT-474 lesions were visualized by gamma imaging with Tc-99 m-DSPL; BT-20 lesions were not. Therapeutic efficacy was equivalent in mice pretargeted with BAAC/targeted with D-Dox-PGA to mice treated only with doxorubicin. There was no total body weight (TBW) loss at three times the doxorubicin equivalent MTD with D-Dox-PGA, whereas mice treated with doxorubicin lost 10 % of TBW at 2 weeks and 16 % after the second MTD injection leading to death of all mice. Our cancer imaging and pretargeted therapeutic approaches are highly target specific, delivering very high specific activity reagents that may result in the development of a novel theranostic application. HER/2 neu specific affibody-anti-DTPA-Fab bispecific antibody pretargeting of HER2 positive human mammary xenografts enabled exquisite targeting of polymers loaded with radioisotopes for molecular imaging and doxorubicin for effective therapy without the associating non-tumor normal tissue toxicities. (orig.)

  11. The aminoindanol core as a key scaffold in bifunctional organocatalysts

    Directory of Open Access Journals (Sweden)

    Isaac G. Sonsona

    2016-03-01

    Full Text Available The 1,2-aminoindanol scaffold has been found to be very efficient, enhancing the enantioselectivity when present in organocatalysts. This may be explained by its ability to induce a bifunctional activation of the substrates involved in the reaction. Thus, it is easy to find hydrogen-bonding organocatalysts ((thioureas, squaramides, quinolinium thioamide, etc. in the literature containing this favored structural core. They have been successfully employed in reactions such as Friedel–Crafts alkylation, Michael addition, Diels–Alder and aza-Henry reactions. However, the 1,2-aminoindanol core incorporated into proline derivatives has been scarcely explored. Herein, the most representative and illustrative examples are compiled and this review will be mainly focused on the cases where the aminoindanol moiety confers bifunctionality to the organocatalysts.

  12. A fast approach to 3D HSQC-based spectroscopy based on a Fourier phase encoding of pre-targeted resonances

    Science.gov (United States)

    Lin, Yulan; Smith, Pieter E. S.; Zhang, Zhiyong; Frydman, Lucio

    2017-01-01

    Multidimensional Nuclear Magnetic Resonance (NMR) provides a unique window into structure and dynamics at an atomic level. Traditionally, given the scan-by-scan time modulation involved in these experiments, the duration of nD NMR increases exponentially with spectral dimensionality. In addition, acquisition times increase as the number of spectral elements being sought in each indirect domain - given by the ratio between the spectral bandwidth being targeted and the resolution desired. These long sampling times can be substantially reduced by exploiting information that is often available from lower-dimensionality acquisitions. This work presents a novel approach that exploits previous 2D information to speed up the acquisition of 3D spectra, based on what we denote as a Time-Optimized FouriEr Encoding (TOFEE) of pre-targeted peaks. Such 3D TOFEE experiments, which present points in common with Hadamard-encoded 3D acquisitions, do not necessarily require more scans than their 2D counterparts. This is here demonstrated based on extensions of 2D Heteronuclear Single-quantum Coherence (HSQC) experiments, to 3D HSQC-TOCSY or 3D HSQC-NOESY acquisitions. The theoretical basis of this new approach is given, and experimental demonstrations are presented on small molecule and protein-based model systems.

  13. Charge transfer to a semi-esterified bifunctional phenol

    Energy Technology Data Exchange (ETDEWEB)

    Brede, O.; Hermann, R.; Orthner, H. [Leipzig Univ. (Germany)

    1996-03-01

    The charge transfer from solvent radical cations of n-butyl chloride and cyclohexane to 2-butyl-6(3`-t-butyl-2`-hydroxy-5`-methylbenzyl)-4-methyl-phenylac rylate (GM) yields in the first step phenoxyl radicals as well as acrylate radical cations of this semi-acrylated bifunctional phenol. Subsequently an intramolecular charge transfer from the acrylate radical cation to the phenol group takes place. Because of the instability of phenol radical cations, under our experimental conditions (nanosecond pulse radiolysis, non-polar solvents, room temperature) phenoxyl radicals are the only observable products of phenol ionization. (author).

  14. A bifunctional perovskite catalyst for oxygen reduction and evolution.

    Science.gov (United States)

    Jung, Jae-Il; Jeong, Hu Young; Lee, Jang-Soo; Kim, Min Gyu; Cho, Jaephil

    2014-04-25

    La0.3(Ba0.5Sr0.5)0.7Co0.8Fe0.2O3d is a promising bifunctional perovskite catalyst for the oxygen reduction reaction and the oxygen evolution reaction. This catalyst has circa 10 nm-scale rhombohedral LaCoO3 cobaltite particles distributed on the surface. The dynamic microstructure phenomena are attributed to the charge imbalance from the replacement of A-site cations with La3+ and local stress on Cosite sub-lattice with the cubic perovskite structure.

  15. Bifunctional activation of a direct methanol fuel cell

    Science.gov (United States)

    Kulikovsky, A. A.; Schmitz, H.; Wippermann, K.; Mergel, J.; Fricke, B.; Sanders, T.; Sauer, D. U.

    We report a novel method for performance recovery of direct methanol fuel cells. Lowering of air flow rate below a critical value turns the cell into bifunctional regime, when the oxygen-rich part of the cell generates current while the rest part works in electrolysis mode (electrolytic domain). Upon restoring the normal (super-critical) air flow rate, the galvanic performance of the electrolytic domain increases. This recovery effect is presumably attributed to Pt surface cleaning on the cathode with the simultaneous increase in catalyst utilization on the anode.

  16. Photovoltachromic device with a micropatterned bifunctional counter electrode.

    Science.gov (United States)

    Cannavale, Alessandro; Manca, Michele; De Marco, Luisa; Grisorio, Roberto; Carallo, Sonia; Suranna, Gian Paolo; Gigli, Giuseppe

    2014-02-26

    A photovoltachromic window can potentially act as a smart glass skin which generates electric energy as a common dye-sensitized solar cell and, at the same time, control the incoming energy flux by reacting to even small modifications in the solar radiation intensity. We report here the successful implementation of a novel architecture of a photovoltachromic cell based on an engineered bifunctional counter electrode consisting of two physically separated platinum and tungsten oxide regions, which are arranged to form complementary comb-like patterns. Solar light is partially harvested by a dye-sensitized photoelectrode made on the front glass of the cell which fully overlaps a bifunctional counter electrode made on the back glass. When the cell is illuminated, the photovoltage drives electrons into the electrochromic stripes through the photoelectrochromic circuit and promotes the Li(+) diffusion towards the WO3 film, which thus turns into its colored state: a photocoloration efficiency of 17 cm(2) min(-1) W(-1) at a wavelength of 650 nm under 1.0 sun was reported along with fast response (coloration time photovoltaic functionality was also retained due to the copresence of the independently switchable micropatterned platinum electrode.

  17. Stability and kinetics of a bifunctional amylase/trypsin inhibitor.

    Science.gov (United States)

    Alagiri, S; Singh, T P

    1993-11-10

    The stability of the bifunctional amylase/trypsin inhibitor from ragi (Indian finger millet, Eleusine coracana) has been studied by methods of circular dichroism, UV absorption and intrinsic fluorescence. The inhibitor is stable in 8 M urea and 6 M guanidine-HCl. In 150 mM NaCl, thermal denaturation does not occur up to 90 degrees C. However, it is irreversibly denatured in 5 mM NaCl if heated over 73 degrees C. The acidic denaturation is reversible in both high and low salt conditions, but it shows different behavior below pH 1.65 under similar salt conditions. The helical content is about 2-4% in the pH range of 7-9 at which the inhibitor is active maximally. The NaCl concentration does not have a significant effect on the secondary structure elements. The beta-strand form does not show much variation under various conditions. Arg34-Leu35 is the reactive peptide bond in the trypsin-binding site. Trp and Tyr are involved in the binding with amylase. The bifunctional inhibitor represents the sum of individual inhibitors of trypsin and amylase.

  18. Synthesis and Characterization of a New Bifunctional Dye Containing Spirobenzopyran and Cinnamoyl Moiety

    Institute of Scientific and Technical Information of China (English)

    申凯华; 崔东熏

    2005-01-01

    A novel bifunctional dye containing spirobenzopyran and cinnaznoyl moiety has been prepared and its photochromic behavior following irradiation at different wavelengths of monochrome UV light was investigated.The colourless bifunctional dye in film or solution exhibits unusual photochromism through structural and geometrical transformation from spirobenzopyran to merocyanine accompanying with photocrosslinking reaction in cinnamoyl moieties. Two kinds of photochemical reaction were achieved by irradiation at the different wavelengths of monochrome UV light (275 nm, 365 nm) selectively. The photochromic process of the bifunctional dye was discussed and the dynamic behaviors of the decolorization process were investigated.

  19. Anti-CD45 Pretargeted Radioimmunotherapy using Bismuth-213: High Rates of Complete Remission and Long-Term Survival in a Mouse Myeloid Leukemia Xenograft Model

    Energy Technology Data Exchange (ETDEWEB)

    Pagel, John M; Kenoyer, Aimee L; Back, Tom; Hamlin, Donald K; Wilbur, D Scott; Fisher, Darrell R; Park, Steven I; Frayo, Shani; Axtman, Amanda; Orgun, Nural; Orozoco, Johnnie; Shenoi, Jaideep; Lin, Yukang; Gopal, Ajay K; Green, Damian J; Appelbaum, Frederick R; Press, Oliver W

    2011-07-21

    Pretargeted radioimmunotherapy (PRIT) using an anti-CD45 antibody (Ab)-streptavidin (SA) conjugate and DOTA-biotin labeled with β-emitting radionuclides has been explored as a strategy to decrease relapse and toxicity. α-emitting radionuclides exhibit high cytotoxicity coupled with a short path-length, potentially increasing the therapeutic index and making them an attractive alternative to β-emitting radionuclides for patients with Acute Myeloid Leukemia (AML). Accordingly, we have used 213Bi in mice with human leukemia xenografts. Results demonstrated excellent localization of 213Bi-DOTA-biotin to tumors with minimal uptake into normal organs. After 10 minutes, 4.5 ± 1.1% of the injected dose of 213Bi was delivered per gram of tumor. α imaging demonstrated uniform radionuclide distribution within tumor tissue 45 minutes after 213Bi-DOTA-biotin injection. Radiation absorbed doses were similar to those observed using a β-emitting radionuclide (90Y) in the same model. We conducted therapy experiments in a xenograft model using a single-dose of 213Bi-DOTA-biotin given 24 hours after anti-CD45 Ab-SA conjugate. Among mice treated with anti-CD45 Ab-SA conjugate followed by 800 μCi of 213Bi- or 90Y-DOTA-biotin, 80% and 20%, respectively, survived leukemia-free for >100 days with minimal toxicity. These data suggest that anti-CD45 PRIT using an α-emitting radionuclide may be highly effective and minimally toxic for treatment of AML.

  20. Pre-targeted immunodetection in glioma patients: tumour localization and single-photon emission tomography imaging of [[sup 99m]Tc ]PnAO-biotin

    Energy Technology Data Exchange (ETDEWEB)

    Paganelli, G. (INB-CNR, Milan Univ. (Italy). Dept. of Nuclear Medicine Scientific Inst. H San Raffaele, Milan (Italy)); Magnani, P. (INB-CNR, Milan Univ. (Italy). Dept. of Nuclear Medicine Scientific Inst. H San Raffaele, Milan (Italy)); Zito, F. (INB-CNR, Milan Univ. (Italy). Dept. of Nuclear Medicine Scientific Inst. H San Raffaele, Milan (Italy)); Lucignani, G. (INB-CNR, Milan Univ. (Italy). Dept. of Nuclear Medicine Scientific Inst. H San Raffaele, Milan (Italy)); Sudati, F. (INB-CNR, Milan Univ. (Italy). Dept. of Nuclear Medicine Scientific Inst. H San Raffaele, Milan (Italy)); Truci, G. (Div. of Neurology, Milan Univ. (Italy) Scientific Inst. H San Raffaele, Milan (Italy)); Motti, E. (Div. of Neurosurgery, Milan Univ. (Italy) Scientific Inst. H San Raffaele, Milan (Italy)); Terreni, M. (Dept. of Pathology, Scientific Inst. H San Raffaele, Milan (Italy)); Pollo, B. (Dept. of Pathology, Scientific Inst. G. Besta, Milan (Italy)); Giovanelli, M. (Div. of Neurosurgery, Milan

    1994-04-01

    We have developed a three-step pre-targeting method using the avidin-biotin system. The rationale of this technique consists in vivo labelling of biotinylated MoAbs targeted onto tumour deposits, when most of the unbound antibodies have been cleared from the bloodstream as avidin-bound complexes. The anti-tenascin MoAb BC2, specific for the majority of gliomas, was biotinylated and 1 mg was administered i.v. in 20 patients with histologically documented cerebral lesions. After 24-36 h, 5 mg avidin was injected i.v. followed 24 h later by a third i.v. injection of 0.2 mg PnAO-biotin labelled with 15-20 mCi technetium-99m. No evidence of toxicity was observed. Whole-body biodistribution was measured at 20 min, 3 h and 5 h post-injection. [[sup 99m]Tc]PnAO-biotin had a fast blood clearance and was primarily excreted through the biliary system. A dedicated single-photon emission tomography system was used to acquire brain tomographic images 1-2 h after the administration of [[sup 99m]Tc]PnAO-biotin. Tumours were detected in 15/18 glioma patients with a tumour to non-tumour ratio of up 14:1. This three-step method, based on the sequential adminsitration of anti-tenascin MoAb BC2, avidin and [[sup 99m]Tc]PnAO-biotin, can support computed tomography or magnetic resonance imaging for the diagnosis and follow-up of patients with glioma. (orig./MG)

  1. Bifunctional chelates of RH-105 and AU199 as potential radiotherapeutic agents

    Energy Technology Data Exchange (ETDEWEB)

    Droege, P.

    1997-03-01

    Research is presented on new bifunctional chelating ligand systems with stability on the macroscopic and radiochemical levels. The synthesis of the following complexes are described: rhodium 105, palladium 109, and gold 198.

  2. Bifunctional chelating agent for the design and development of site specific radiopharmaceuticals and biomolecule conjugation strategy

    Science.gov (United States)

    Katti, Kattesh V.; Prabhu, Kandikere R.; Gali, Hariprasad; Pillarsetty, Nagavara Kishore; Volkert, Wynn A.

    2003-10-21

    There is provided a method of labeling a biomolecule with a transition metal or radiometal in a site specific manner to produce a diagnostic or therapeutic pharmaceutical compound by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radio metal or a transition metal, and covalently linking the resulting metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. Also provided is a method of synthesizing the --PR.sub.2 containing biomolecules by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radiometal or a transition metal, and covalently linking the resulting radio metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. There is provided a therapeutic or diagnostic agent comprising a --PR.sub.2 containing biomolecule.

  3. The bi-functional organization of human basement membranes.

    Science.gov (United States)

    Halfter, Willi; Monnier, Christophe; Müller, David; Oertle, Philipp; Uechi, Guy; Balasubramani, Manimalha; Safi, Farhad; Lim, Roderick; Loparic, Marko; Henrich, Paul Bernhard

    2013-01-01

    The current basement membrane (BM) model proposes a single-layered extracellular matrix (ECM) sheet that is predominantly composed of laminins, collagen IVs and proteoglycans. The present data show that BM proteins and their domains are asymmetrically organized providing human BMs with side-specific properties: A) isolated human BMs roll up in a side-specific pattern, with the epithelial side facing outward and the stromal side inward. The rolling is independent of the curvature of the tissue from which the BMs were isolated. B) The epithelial side of BMs is twice as stiff as the stromal side, and C) epithelial cells adhere to the epithelial side of BMs only. Side-selective cell adhesion was also confirmed for BMs from mice and from chick embryos. We propose that the bi-functional organization of BMs is an inherent property of BMs and helps build the basic tissue architecture of metazoans with alternating epithelial and connective tissue layers.

  4. The bi-functional organization of human basement membranes.

    Directory of Open Access Journals (Sweden)

    Willi Halfter

    Full Text Available The current basement membrane (BM model proposes a single-layered extracellular matrix (ECM sheet that is predominantly composed of laminins, collagen IVs and proteoglycans. The present data show that BM proteins and their domains are asymmetrically organized providing human BMs with side-specific properties: A isolated human BMs roll up in a side-specific pattern, with the epithelial side facing outward and the stromal side inward. The rolling is independent of the curvature of the tissue from which the BMs were isolated. B The epithelial side of BMs is twice as stiff as the stromal side, and C epithelial cells adhere to the epithelial side of BMs only. Side-selective cell adhesion was also confirmed for BMs from mice and from chick embryos. We propose that the bi-functional organization of BMs is an inherent property of BMs and helps build the basic tissue architecture of metazoans with alternating epithelial and connective tissue layers.

  5. Chemoselective Reactivity of Bifunctional Cyclooctynes on Si(001)

    CERN Document Server

    Reutzel, Marcel; Lipponer, Marcus A; Länger, Christian; Höfer, Ulrich; Koert, Ulrich; Dürr, Michael

    2016-01-01

    Controlled organic functionalization of silicon surfaces as integral part of semiconductor technology offers new perspectives for a wide range of applications. The high reactivity of the silicon dangling bonds, however, presents a major hindrance for the first basic reaction step of such a functionalization, i.e., the chemoselective attachment of bifunctional organic molecules on the pristine silicon surface. We overcome this problem by employing cyclooctyne as the major building block of our strategy. Functionalized cyclooctynes are shown to react on Si(001) selectively via the strained cyclooctyne triple bond while leaving the side groups intact. The achieved selectivity originates from the distinctly different adsorption dynamics of the separate functionalities: A direct adsorption pathway is demonstrated for cyclooctyne as opposed to the vast majority of other organic functional groups. The latter ones react on Si(001) via a metastable intermediate which makes them effectively unreactive in competition wi...

  6. GSK-3: A Bifunctional Role in Cell Death Pathways

    Directory of Open Access Journals (Sweden)

    Keith M. Jacobs

    2012-01-01

    Full Text Available Although glycogen synthase kinase-3 beta (GSK-3β was originally named for its ability to phosphorylate glycogen synthase and regulate glucose metabolism, this multifunctional kinase is presently known to be a key regulator of a wide range of cellular functions. GSK-3β is involved in modulating a variety of functions including cell signaling, growth metabolism, and various transcription factors that determine the survival or death of the organism. Secondary to the role of GSK-3β in various diseases including Alzheimer’s disease, inflammation, diabetes, and cancer, small molecule inhibitors of GSK-3β are gaining significant attention. This paper is primarily focused on addressing the bifunctional or conflicting roles of GSK-3β in both the promotion of cell survival and of apoptosis. GSK-3β has emerged as an important molecular target for drug development.

  7. GSK-3β: A Bifunctional Role in Cell Death Pathways

    Science.gov (United States)

    Jacobs, Keith M.; Bhave, Sandeep R.; Ferraro, Daniel J.; Jaboin, Jerry J.; Hallahan, Dennis E.; Thotala, Dinesh

    2012-01-01

    Although glycogen synthase kinase-3 beta (GSK-3β) was originally named for its ability to phosphorylate glycogen synthase and regulate glucose metabolism, this multifunctional kinase is presently known to be a key regulator of a wide range of cellular functions. GSK-3β is involved in modulating a variety of functions including cell signaling, growth metabolism, and various transcription factors that determine the survival or death of the organism. Secondary to the role of GSK-3β in various diseases including Alzheimer's disease, inflammation, diabetes, and cancer, small molecule inhibitors of GSK-3β are gaining significant attention. This paper is primarily focused on addressing the bifunctional or conflicting roles of GSK-3β in both the promotion of cell survival and of apoptosis. GSK-3β has emerged as an important molecular target for drug development. PMID:22675363

  8. [Bifunctional inhibitor of alpha-amylase/trypsin from wheat grain].

    Science.gov (United States)

    Islamov, R A; Furusov, O V

    2007-01-01

    A trypsin inhibitor, isolated from whole-wheat grain (Triticum aestivum L.) by the method of bio-specific chromatography on trypsin-Sepharose, was potent in inhibiting human salivary alpha-amylase. The bi-functional alpha-amylase/trypsin inhibitor was characterized by a narrow specificity for other alpha-amylases and proteinases. The high thermostability of the inhibitor was lost in the presence of SH group-reducing agents. The inhibitor-trypsin complex retained its activity against alpha-amylase. The inhibitor-alpha-amylase complex was active against trypsin. Studies of the enzyme kinetics demonstrated that the inhibition of alpha-amylase and trypsin was noncompetitive. Our results suggest the existence of two independent active sites responsible for the interaction with the enzymes.

  9. Opioid bifunctional ligands from morphine and the opioid pharmacophore Dmt-Tic.

    Science.gov (United States)

    Balboni, Gianfranco; Salvadori, Severo; Marczak, Ewa D; Knapp, Brian I; Bidlack, Jean M; Lazarus, Lawrence H; Peng, Xuemei; Si, Yu Gui; Neumeyer, John L

    2011-02-01

    Bifunctional ligands containing an ester linkage between morphine and the δ-selective pharmacophore Dmt-Tic were synthesized, and their binding affinity and functional bioactivity at the μ, δ and κ opioid receptors determined. Bifunctional ligands containing or not a spacer of β-alanine between the two pharmacophores lose the μ agonism deriving from morphine becoming partial μ agonists 4 or μ antagonists 5. Partial κ agonism is evidenced only for compound 4. Finally, both compounds showed potent δ antagonism.

  10. Bifunctional avidin with covalently modifiable ligand binding site.

    Directory of Open Access Journals (Sweden)

    Jenni Leppiniemi

    Full Text Available The extensive use of avidin and streptavidin in life sciences originates from the extraordinary tight biotin-binding affinity of these tetrameric proteins. Numerous studies have been performed to modify the biotin-binding affinity of (streptavidin to improve the existing applications. Even so, (streptavidin greatly favours its natural ligand, biotin. Here we engineered the biotin-binding pocket of avidin with a single point mutation S16C and thus introduced a chemically active thiol group, which could be covalently coupled with thiol-reactive molecules. This approach was applied to the previously reported bivalent dual chain avidin by modifying one binding site while preserving the other one intact. Maleimide was then coupled to the modified binding site resulting in a decrease in biotin affinity. Furthermore, we showed that this thiol could be covalently coupled to other maleimide derivatives, for instance fluorescent labels, allowing intratetrameric FRET. The bifunctional avidins described here provide improved and novel tools for applications such as the biofunctionalization of surfaces.

  11. A novel bifunctional transcriptional regulator of riboflavin metabolism in Archaea.

    Science.gov (United States)

    Rodionova, Irina A; Vetting, Matthew W; Li, Xiaoqing; Almo, Steven C; Osterman, Andrei L; Rodionov, Dmitry A

    2017-01-09

    Riboflavin (vitamin B2) is the precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide, which are essential coenzymes in all free-living organisms. Riboflavin biosynthesis in many Bacteria but not in Archaea is controlled by FMN-responsive riboswitches. We identified a novel bifunctional riboflavin kinase/regulator (RbkR), which controls riboflavin biosynthesis and transport genes in major lineages of Crenarchaeota, Euryarchaeota and Thaumarchaeota. RbkR proteins are composed of the riboflavin kinase domain and a DNA-binding winged helix-turn-helix-like domain. Using comparative genomics, we predicted RbkR operator sites and reconstructed RbkR regulons in 94 archaeal genomes. While the identified RbkR operators showed significant variability between archaeal lineages, the conserved core of RbkR regulons includes riboflavin biosynthesis genes, known/predicted vitamin uptake transporters and the rbkR gene. The DNA motifs and CTP-dependent riboflavin kinase activity of two RbkR proteins were experimentally validated in vitro The DNA binding activity of RbkR was stimulated by CTP and suppressed by FMN, a product of riboflavin kinase. The crystallographic structure of RbkR from Thermoplasma acidophilum was determined in complex with CTP and its DNA operator revealing key residues for operator and ligand recognition. Overall, this study contributes to our understanding of metabolic and regulatory networks for vitamin homeostasis in Archaea.

  12. Bifunctional alkyl nitrates - trace constituents of the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Kastler, J. [Department of Analytical and Environmental Chemistry, University of Ulm (Germany); Ballschmiter, K. [Center of Technology Assessment in Baden-Wuerttemberg, Stuttgart (Germany)

    1998-04-01

    Mono- and multifunctional esters of nitric acid (alkyl nitrates or organonitrates) form very complex mixtures of organic trace constituents in air. An analytical method was developed which combines selectivity in separation and detection in order to simplify this complexity in analytical terms. Mononitrates, dinitrates, keto nitrates, hydroxy nitrates of alkanes and alkenes, respecitvely, and bifunctional terpene nitrates were synthesized as reference substances. A specially developed new HPLC stationary phase (organonitrate phase) allows a group separation of mono-, di-, and hydroxy nitrates. After the HPLC preseparation the single components were finally separated by capillary HRGC-ECD and HRGC-MSD on polar and non-polar stationary phases. Mass spectrometric detection in the selected-ion-mode using the highly selective NO{sub 2}{sup +} fragment (m/z = 46 amu) led to very good selectivities for the nitric acid ester moiety. The analysis of a 100 m{sup 3} ambient air sample using this new analytical protocol allowed the identification of seven hydroxy nitrates and 24 dinitrates ranging from C2 to C7, 22 of them for the first time ever. (orig.) With 3 figs., 3 tabs., 20 refs.

  13. Bioinspired Bifunctional Membrane for Efficient Clean Water Generation.

    Science.gov (United States)

    Liu, Yang; Lou, Jinwei; Ni, Mengtian; Song, Chengyi; Wu, Jianbo; Dasgupta, Neil P; Tao, Peng; Shang, Wen; Deng, Tao

    2016-01-13

    Solving the problems of water pollution and water shortage is an urgent need for the sustainable development of modern society. Different approaches, including distillation, filtration, and photocatalytic degradation, have been developed for the purification of contaminated water and the generation of clean water. In this study, we explored a new approach that uses solar light for both water purification and clean water generation. A bifunctional membrane consisting of a top layer of TiO2 nanoparticles (NPs), a middle layer of Au NPs, and a bottom layer of anodized aluminum oxide (AAO) was designed and fabricated through multiple filtration processes. Such a design enables both TiO2 NP-based photocatalytic function and Au NP-based solar-driven plasmonic evaporation. With the integration of these two functions into a single membrane, both the purification of contaminated water through photocatalytic degradation and the generation of clean water through evaporation were demonstrated using simulated solar illumination. Such a demonstration should also help open up a new strategy for maximizing solar energy conversion and utilization.

  14. Bifunctional drugs for the treatment of asthma and chronic obstructive pulmonary disease.

    Science.gov (United States)

    Page, Clive; Cazzola, Mario

    2014-08-01

    Over the last decade, there has been a steady increase in the use of fixed-dose combinations of drugs for the treatment of a range of diseases, including hypertension, cancer, AIDS, tuberculosis and other infectious diseases. It is now evident that patients with asthma or chronic obstructive pulmonary disease (COPD) can also benefit from the use of fixed-dose combinations, including combinations of a long-acting β2-agonist and an inhaled corticosteroid, and combinations of long-acting β2-agonists and long-acting muscarinic receptor antagonists. In fact, there are now a number of "triple-inhaler" fixed-dose combinations under development, with the first such triple combination having been approved in India. This use of combinations containing drugs with complementary pharmacological actions in the treatment of patients with asthma or COPD has also led to the discovery and development of drugs having two different primary pharmacological actions in the same molecule, which we have called "bifunctional drugs". In this review, we discuss the state of the art of these new bifunctional drugs as novel treatments for asthma and COPD that can be categorised as bifunctional bronchodilators, bifunctional bronchodilator/anti-inflammatory drugs and bifunctional anti-inflammatory drugs.

  15. Single flexible nanofiber to achieve simultaneous photoluminescence-electrical conductivity bifunctionality.

    Science.gov (United States)

    Sheng, Shujuan; Ma, Qianli; Dong, Xiangting; Lv, Nan; Wang, Jinxian; Yu, Wensheng; Liu, Guixia

    2015-02-01

    In order to develop new-type multifunctional composite nanofibers, Eu(BA)3 phen/PANI/PVP bifunctional composite nanofibers with simultaneous photoluminescence and electrical conductivity have been successfully fabricated via electrospinning technology. Polyvinyl pyrrolidone (PVP) is used as a matrix to construct composite nanofibers containing different amounts of Eu(BA)3 phen and polyaniline (PANI). X-Ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), fluorescence spectroscopy and a Hall effect measurement system are used to characterize the morphology and properties of the composite nanofibers. The results indicate that the bifunctional composite nanofibers simultaneously possess excellent photoluminescence and electrical conductivity. Fluorescence emission peaks of Eu(3+) ions are observed in the Eu(BA)3 phen/PANI/PVP photoluminescence-electrical conductivity bifunctional composite nanofibers. The electrical conductivity reaches up to the order of 10(-3)  S/cm. The luminescent intensity and electrical conductivity of the composite nanofibers can be tuned by adjusting the amounts of Eu(BA)3 phen and PANI. The obtained photoluminescence-electrical conductivity bifunctional composite nanofibers are expected to possess many potential applications in areas such as microwave absorption, molecular electronics, biomedicine and future nanomechanics. More importantly, the design concept and construction technique are of universal significance to fabricate other bifunctional one-dimensional naonomaterials.

  16. Electrochemical Investigation of Interaction between a Bifunctional Probe and GG Mismatch Duplex.

    Science.gov (United States)

    Li, Jiao; He, Hanping; Peng, Xiaoqian; Huang, Min; Zhang, Xiuhua; Wang, Shengfu

    2015-01-01

    A bifunctional probe (FecNC), containing a recognition part and an electrochemical active center, was applied to electrochemical detection of GG mismatch duplexes. The preparation of gold electrodes modified by mismatch and complementatry duplexes was characterized by electrochemical impedance spectroscopy (EIS) and optimized for better detection in terms of self-assembly time, hybridization time, and incubation time. The interaction between FecNC and DNA duplexes modified on the surface of a gold electrode was explored by square wave voltammetry (SWV) and EIS. The results showed that the DNA duplexes with GG mismatch on the surface of a gold electrode was easily detected by the largest electrochemical signal of the bifunctional probe because of its selective binding to GG mismatches. The bifunctional probe could offer a simple, effective electrochemical detection of GG mismatches, and theoretical bases for development of electrochemical biosensors. Further, the method would be favorable for diagnosis of genetic diseases.

  17. Enhanced Bifunctional Oxygen Catalysis in Strained LaNiO3 Perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Petrie, Jonathan R.; Cooper, Valentino R.; Freeland, John W.; Meyer, Tricia L.; Zhang, Zhiyong; Lutterman, Daniel A.; Lee, Ho Nyung

    2016-03-02

    Strain is known to greatly influence low temperature oxygen electro catalysis on noble metal films, leading to significant enhancements in bifunctional activity essential for fuel cells and Metal-air batteries. However, its catalytic impact on transition-metal oxide thin films, such as perovskites, is not widely understood. Here, we epitaxially strain the conducting perovskite LaNiO3 to systematically determine its influence on both the oxygen reduction and oxygen evolution reaction. Uniquely, we found that compressive strain could significantly enhance both reactions, yielding a bifunctional catalyst that surpasses the performance of noble metals' such as Pt. We attribute the improved bifunctionality to strain induced splitting of the e(g) Orbitals, which can customize orbital asymmetry at the surface. Analogous to strain induced shifts in the d-band center of noble metals relative to the Fermi level, :such splitting can dramatically affect catalytic activity in this perovskite and other potentially more active Oxides.

  18. Laccase-mediated oxidation of small organics: bifunctional roles for versatile applications.

    Science.gov (United States)

    Jeon, Jong-Rok; Chang, Yoon-Seok

    2013-06-01

    Laccases have been widely used in several biotechnological areas, including organic synthesis, bioremediation, and pulp/textile bleaching. In most applications, the enzymatic actions start with single-electron oxidation of small organics followed by formation of the corresponding radicals. These radicals are subsequently involved in either oxidative coupling (i.e., bond formation) or bond cleavage of target organics. These bifunctional actions--catabolic versus anabolic--are readily identifiable in in vivo metabolic processes involving laccases. Here, we characterize the bifunctionality of laccase-mediated oxidation of small organics and present the view that knowledge of the biological functions of these metabolic processes in vivo can illuminate potential biotechnological applications of this bifunctionality.

  19. Energy Storage in Bifunctional TiO2 Composite Materials under UV and Visible Light

    Directory of Open Access Journals (Sweden)

    Jialin Li

    2009-11-01

    Full Text Available This paper provides an overview of recent studies on energy storage in bifunctional TiO2 composite materials under UV and visible light. The working mechanism, property improvements and applications of these bifunctional TiO2 composite systems are introduced, respectively. The latest results obtained in our laboratory, especially a new process for photoelectric conversion and energy storage in TiO2/Cu2O bilayer films under visible light, are also presented. Hopefully this review will stimulate more fundamental and applied research on this subject in the future.

  20. Hydroconversion of n-alkanes on bifunctional zeolites with unusual pore architecture

    Energy Technology Data Exchange (ETDEWEB)

    Doerr, G.; Tontisirin, S.; Ernst, S. [Technische Univ. Kaiserslautern (Germany). Dept. of Chemistry, Chemical Technology

    2010-12-30

    Zeolites MCM-68 and ZSM-18, both possessing unusual pore architectures, were synthesized via hydrothermal synthesis using optimized methods. X-ray powder diffraction and scanning electron microscopy revealed that the obtained zeolites are well crystallized and do not contain visible amounts of amorphous material. The bifunctional forms of MCM- 68 and ZSM-18 (viz. the acid form loaded with small amounts of palladium) were characterized using the hydroconversion of n-decane as catalytic test reaction. In this reaction, both catalysts showed the typical behaviour known from other bifunctional large pore zeolites. (orig.)

  1. Bifunctional catalysts for the direct production of liquid fuels from syngas

    NARCIS (Netherlands)

    Sartipi, S.

    2014-01-01

    Design and development of catalyst formulations that maximize the direct production of liquid fuels by combining Fischer-Tropsch synthesis (FTS), hydrocarbon cracking, and isomerization into one single catalyst particle (bifunctional FTS catalyst) have been investigated in this thesis. To achieve th

  2. Oxidations of amines with molecular oxygen using bifunctional gold–titania catalysts

    DEFF Research Database (Denmark)

    Klitgaard, Søren Kegnæs; Egeblad, Kresten; Mentzel, Uffe Vie

    2008-01-01

    Over the past decades it has become clear that supported gold nanoparticles are surprisingly active and selective catalysts for several green oxidation reactions of oxygen-containing hydrocarbons using molecular oxygen as the stoichiometric oxidant. We here report that bifunctional gold–titania c...... new and environmentally benign routes to caprolactam and cyclohexanone oxime, both of which are precursors for nylon-6....

  3. Purification, characterization, and cloning of a bifunctional molybdoenzyme with hydratase and alcohol dehydrogenase activity

    NARCIS (Netherlands)

    Jin, J.; Straathof, A.J.J.; Pinkse, M.W.H.; Hanefeld, U.

    2010-01-01

    A bifunctional hydratase/alcohol dehydrogenase was isolated from the cyclohexanol degrading bacterium Alicycliphilus denitrificans DSMZ 14773. The enzyme catalyzes the addition of water to α,β-unsaturated carbonyl compounds and the subsequent alcohol oxidation. The purified enzyme showed three subun

  4. Direct catalytic transformation of carbohydrates into 5-ethoxymethylfurfural with acid–base bifunctional hybrid nanospheres

    DEFF Research Database (Denmark)

    Li, Hu; Khokarale, Santosh Govind; Kotni, Ramakrishna;

    2014-01-01

    carbohydrates. A high EMF yield of 76.6%, 58.5%, 42.4%, and 36.5% could be achieved, when fructose, inulin, sorbose, and sucrose were used as starting materials, respectively. Although, the acid–base bifunctional nanocatalysts were inert for synthesis of EMF from glucose based carbohydrates, ethyl...

  5. Design and Synthesis of Bifunctional Oxime Reactivators of OP- inhibited Cholinesterase

    Science.gov (United States)

    2013-08-01

    military and civilian personnel. Reactivators of OP inhibited cholinesterases can serve as OP agent antidotes but can be limited by their poor...assisted bifunctional catalytic mechanism 46 O N O N OH 11 REPORTABLE OUTCOMES: None CONCLUSION: We have successfully evaluated the synthetic

  6. High surface area carbon for bifunctional air electrodes applied in zinc-air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Arai, H. [on leave from NTT Laboratories (Japan); Mueller, S.; Haas, O. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Bifunctional air electrodes with high surface area carbon substrates showed low reduction overpotential, thus are promising for enhancing the energy efficiency and power capability of zinc-air batteries. The improved performance is attributed to lower overpotential due to diffusion of the reaction intermediate, namely the peroxide ion. (author) 1 fig., 2 refs.

  7. Novel bifunctional double-layer catalysts for application in microreactors for direct DME synthesis

    OpenAIRE

    Lee, Seungcheol

    2016-01-01

    This thesis describes experimental research toward the selective and efficient DME production from syngas in microstructured reactors using bifunctional catalysts. Two catalysts, Cu/ZnO/Al2O3 and ZSM-5, catalyze syngas conversion to methanol and methanol conversion to DME, respectively. The catalysts were prepared and successfully introduced in microchannel reactor for direct DME synthesis.

  8. Enantioselective α-Chlorination of Aldehydes with Recyclable Fluorous (S)-Pyrrolidine-Thiourea Bifunctional Organocatalyst.

    Science.gov (United States)

    Wang, Liang; Cai, Chun; Curran, Dennis P; Zhang, Wei

    2010-01-01

    A novel fluorous (S)-pyrrolidine-thiourea bifunctional organocatalyst is prepared. The catalyst shows good activity and enantioselectivity for direct α-chlorination of aldehydes using N-chlorosuccinimide (NCS) as the chlorine source. It can be recovered from the reaction mixture by fluorous solid-phase extraction with excellent purity for direct reuse.

  9. Comparison of bifunctional chelates for {sup 64}Cu antibody imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Cara L.; Crisp, Sarah; Bensimon, Corinne [MDS Nordion, Vancouver, BC (Canada); Yapp, Donald T.T.; Ng, Sylvia S.W. [British Columbia Cancer Agency Research Centre, Vancouver, BC (Canada); University of British Columba, The Faculty of Pharmaceutical Sciences, Vancouver, BC (Canada); Sutherland, Brent W. [British Columbia Cancer Agency Research Centre, Vancouver, BC (Canada); Gleave, Martin [Prostate Centre at Vancouver General Hospital, Vancouver, BC (Canada); Jurek, Paul; Kiefer, Garry E. [Macrocyclics Inc., Dallas, TX (United States)

    2010-11-15

    Improved bifunctional chelates (BFCs) are needed to facilitate efficient {sup 64}Cu radiolabeling of monoclonal antibodies (mAbs) under mild conditions and to yield stable, target-specific agents. The utility of two novel BFCs, 1-Oxa-4,7,10-triazacyclododecane-5-S-(4-isothiocyanatobenzyl)-4,7,10-triacetic acid (p-SCN-Bn-Oxo-DO3A) and 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-4-S-(4-isothiocyanatobenzyl)-3,6,9-triacetic acid (p-SCN-Bn-PCTA), for mAb imaging with {sup 64}Cu were compared to the commonly used S-2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane-tetraacetic acid (p-SCN-Bn-DOTA). The BFCs were conjugated to trastuzumab, which targets the HER2/neu receptor. {sup 64}Cu radiolabeling of the conjugates was optimized. Receptor binding was analyzed using flow cytometry and radioassays. Finally, PET imaging and biodistribution studies were done in mice bearing either HER2/neu-positive or HER2/neu-negative tumors. {sup 64}Cu-Oxo-DO3A- and PCTA-trastuzumab were prepared at room temperature in >95% radiochemical yield (RCY) in <30 min, compared to only 88% RCY after 2 h for the preparation of {sup 64}Cu-DOTA-trastuzumab under the same conditions. Cell studies confirmed that the immunoreactivity of the mAb was retained for each of the bioconjugates. In vivo studies showed that {sup 64}Cu-Oxo-DO3A- and PCTA-trastuzumab had higher uptake than the {sup 64}Cu-DOTA-trastuzumab at 24 h in HER2/neu-positive tumors, resulting in higher tumor to background ratios and better tumor images. By 40 h all three of the {sup 64}Cu-BFC-trastuzumab conjugates allowed for clear visualization of the HER2/neu-positive tumors but not the negative control tumor. The antibody conjugates of PCTA and Oxo-DO3A were shown to have superior {sup 64}Cu radiolabeling efficiency and stability compared to the analogous DOTA conjugate. In addition, {sup 64}Cu-PCTA and Oxo-DO3A antibody conjugates may facilitate earlier imaging with greater target to background ratios than

  10. Energetic methods to study bifunctional biotin operon repressor.

    Science.gov (United States)

    Beckett, D

    1998-01-01

    measurements. The results of quantitative studies of the biotin regulatory system can be interpreted in the context of the biological function of the system. The biotin holoenzyme ligases are a class of enzymes found across the evolutionary spectrum. Only a subset of these enzymes, including BirA, also function as transcriptional repressors. The tight binding of the allosteric effector may be understood in light of the bifunctional nature of the BirA-bio-5'-AMP complex. It is possible that the unusually high thermodynamic and kinetic stability of the complex ensures that the most probable state of the protein in vivo is the adenylate-bound form. This complex, not the unliganded protein, is active in both enzymatic transfer of biotin and site-specific DNA binding. This ensures that on depletion of the intracellular pool of apoBCCP, BirA-bio-5'-AMP accumulates and binds to bioO to repress transcription of the biotin biosynthesis operon. The intracellular demand for and synthesis of biotin are, consequently, tightly coupled in the system. The dimerization that accompanies adenylate binding to BirA appears to be significant for site-specific binding of the protein to bioO. Functionally, the simultaneous binding of the two monomers to the two operator half-sites, regardless of the kinetic mechanism by which it occurs, ensures coordinate regulation of transcription initiation from both biotin operon promoters. The multifaceted approach utilized in studies of the biotin regulatory system can serve as a model for studies of any complex transcriptional regulatory system. It is critical in elucidating the functional energetics of any of these systems that the assembly first be dissected into the constituent interactions and that each of these interactions be studied in isolation. This is not only critical for understanding the physicochemical properties of each individual contributing interaction, but is also a necessary precursor to studies of thermodynamic linkage in the system. (AB

  11. A Metal-Amino Acid Complex-Derived Bifunctional Oxygen Electrocatalyst for Rechargeable Zinc-Air Batteries.

    Science.gov (United States)

    Ding, Yanjun; Niu, Yuchen; Yang, Jia; Ma, Liang; Liu, Jianguo; Xiong, Yujie; Xu, Hangxun

    2016-10-01

    Bifunctional oxygen electrocatalyst: A metal-amino acid complex is developed to prepare high-performance mesoporous carbon electrocatalyst for both oxygen reduction and oxygen evolution reactions. Such prepared catalyst can be used to assemble rechargeable zinc-air batteries with excellent durability. This work represents a new route toward low-cost, highly active, and durable bifunctional electrocatalysts for cutting-edge energy conversion devices.

  12. Bifunctional metamaterials with simultaneous and independent manipulation of thermal and electric fields.

    Science.gov (United States)

    Lan, Chuwen; Bi, Ke; Fu, Xiaojian; Li, Bo; Zhou, Ji

    2016-10-03

    Metamaterials offer a powerful way to manipulate a variety of physical fields ranging from wave fields (electromagnetic field, acoustic field, elastic wave, etc.), static fields (static magnetic field, static electric field) to diffusive fields (thermal field, diffusive mass). However, the relevant reports and studies are usually limited to a single physical field or functionality. In this study, we proposed and experimentally demonstrated a bifunctional metamaterial which could manipulate thermal and electric fields simultaneously and independently. Specifically, a composite with independently controllable thermal and electric conductivity was introduced, on the basis of which a bifunctional device capable of shielding thermal flux and concentrating electric current simultaneously was designed, fabricated and characterized. This work provides an encouraging example of metamaterials transcending their natural limitations, which offers a promising future in building a broad platform for the manipulation of multi-physics fields.

  13. Bifunctional Pt-Si Alloys for Small Organic Molecule Electro-oxidation

    DEFF Research Database (Denmark)

    Permyakova, Anastasia Aleksandrovna; Suntivich, Jin; Han, Binghong

    Designing highly active catalysts for electro-oxidation of small organic molecules can help to reduce the anodic overpotential for more efficient utilization of hydrocarbon fuels. The challenge in developing more active electrocatalysts for electro-oxidation reactions is to satisfy the stringent...... bifunctional requirement, which demands both adsorption and water oxidation sites. In this contribution, we explore the possibility of using Pt-Si alloys to fulfill this bifunctional requirement. Silicon, a highly oxophillic element, is alloyed into Pt as a site for water oxidation, while Pt serves as a CO...... adsorption site. We will discuss the enhanced activity of Pt-Si alloys for small organic molecule oxidation, which can be attributed to the improved CO electro-oxidation kinetics on Pt-Si....

  14. Tethering metal ions to photocatalyst particulate surfaces by bifunctional molecular linkers for efficient hydrogen evolution

    KAUST Repository

    Yu, Weili

    2014-08-19

    A simple and versatile method for the preparation of photocatalyst particulates modified with effective cocatalysts is presented; the method involves the sequential soaking of photocatalyst particulates in solutions containing bifunctional organic linkers and metal ions. The modification of the particulate surfaces is a universal and reproducible method because the molecular linkers utilize strong covalent bonds, which in turn result in modified monolayer with a small but controlled quantity of metals. The photocatalysis results indicated that the CdS with likely photochemically reduced Pd and Ni, which were initially immobilized via ethanedithiol (EDT) as a linker, were highly efficient for photocatalytic hydrogen evolution from Na2S-Na2SO3-containing aqueous solutions. The method developed in this study opens a new synthesis route for the preparation of effective photocatalysts with various combinations of bifunctional linkers, metals, and photocatalyst particulate materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Increasing round trip efficiency of hybrid Li-air battery with bifunctional catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Huang, K; Li, YF; Xing, YC

    2013-07-30

    Previously it was shown that Pt as cathode catalyst ha's a large overpotential during charge in rechargeable hybrid Li-air battery with sulfuric acid catholyte. This article demonstrates that a bifunctional catalyst composed of Pt and IrO2 supported on carbon nanotubes can address this problem. The specially designed and synthesized bifunctional catalyst showed significant overpotential reduction and achieved a round trip energy efficiency of 81% after 10 cycles, higher than many achieved in aprotic Li-O-2 batteries. The hybrid Li-air battery was discharged and recharged for 20 cycles at 0.2 mA/cm(2), showing a fairly stable cell performance. A specific capacity of 306 mAh/g and a specific energy of 1110 Wh/kg were obtained for the hybrid Li-air battery in terms of acid weight. (c) 2013 Elsevier Ltd. All rights reserved.

  16. Bifunctional metamaterials with simultaneous and independent manipulation of thermal and electric fields

    Science.gov (United States)

    Lan, Chuwen; Bi, Ke; Fu, Xiaojian; Li, Bo; Zhou, Ji

    2016-10-01

    Metamaterials offer a powerful way to manipulate a variety of physical fields ranging from wave fields (electromagnetic field, acoustic field, elastic wave, etc.), static fields (static magnetic field, static electric field) to diffusive fields (thermal field, diffusive mass). However, the relevant reports and studies are usually conducted on a single physical field or functionality. In this study, we proposed and experimentally demonstrated a bifunctional metamaterial which can manipulate thermal and electric fields simultaneously and independently. Specifically, a composite with independently controllable thermal and electric conductivity was introduced, on the basis of which a bifunctional device capable of shielding thermal flux and concentrating electric current simultaneously was designed, fabricated and characterized. This work provides an encouraging example of metamaterials transcending their natural limitations, which offers a promising future in building a broad platform for manipulation of multi-physics field.

  17. First-Principles Study of Structure Property Relationships of Monolayer (Hydroxy)Oxide-Metal Bifunctional Electrocatalysts

    DEFF Research Database (Denmark)

    Zeng, Zhenhua; Kubal, Joseph; Greeley, Jeffrey Philip

    2015-01-01

    In the present study, on the basis of detailed density functional theory (DFT) calculations, and using Ni hydroxy(oxide) films on Pt(111) and Au(111) electrodes as model systems, we describe a detailed structural and electrocatalytic analysis of hydrogen evolution (HER) at three-phase boundaries...... of information that is inaccessible by purely experimental means, and these structures, in turn, strongly suggest that a bifunctional reaction mechanism for alkaline HER will be operative at the interface between the films, the metal substrates, and the surrounding aqueous medium. This bifunctionality produces...... important changes in the calculated barriers of key elementary reaction steps, including water activation and dissociation, as compared to traditional monofunctional Pt surfaces. The successful identification of the structures of thin metal films and three-phase boundary catalysts is not only an important...

  18. Improving stability and biocompatibility of alginate/chitosan microcapsule by fabricating bi-functional membrane.

    Science.gov (United States)

    Zheng, Guoshuang; Liu, Xiudong; Wang, Xiuli; Chen, Li; Xie, Hongguo; Wang, Feng; Zheng, Huizhen; Yu, Weiting; Ma, Xiaojun

    2014-05-01

    Cell encapsulation technology holds promise for the cell-based therapy. But poor mechanical strength and biocompatibility of microcapsule membrane are still obstacles for the clinical applications. A novel strategy is presented to prepare AC₁ C₂ A microcapsules with bi-functional membrane (that is, both desirable biocompatibility and membrane stability) by sequentially complexing chitosans with higher deacetylation degree (C₁) and lower deacetylation degree (C₂) on alginate (A) gel beads. Both in vitro and in vivo evaluation of AC₁C₂ A microcapsules demonstrate higher membrane stability and less cell adhesion, because the introduction of C₂ increases membrane strength and decreases surface roughness. Moreover, diffusion test of AC₁C₂ A microcapsules displays no inward permeation of IgG protein suggesting good immunoisolation function. The results demonstrate that AC₁C₂ A microcapsules with bi-functional membrane could be a promising candidate for microencapsulated cell implantation with cost effective usage of naturally biocompatible polysaccharides.

  19. 3D Ordered Mesoporous Bifunctional Oxygen Catalyst for Electrically Rechargeable Zinc-Air Batteries.

    Science.gov (United States)

    Park, Moon Gyu; Lee, Dong Un; Seo, Min Ho; Cano, Zachary Paul; Chen, Zhongwei

    2016-05-01

    To enhance energy efficiency and durability, a highly active and durable 3D ordered mesoporous cobalt oxide framework has been developed for rechargeable zinc-air batteries. The bifunctional air electrode consisting of 3DOM Co3 O4 having high active surface area and robust structure, results in superior charge and discharge battery voltages, and durable performance for electrically rechargeable zinc-air batteries.

  20. Radiation Induced Crosslinking of Polyethylene in the Presence of Bifunctional Vinyl Monomers

    DEFF Research Database (Denmark)

    Joshi, M. S.; Singer, Klaus Albert Julius; Silverman, J.

    1977-01-01

    Several reports have been published showing that the radiation induced grafting of bifunctional vinyl monomers to low density polyethylene results in a product with an unusually high density of crosslinks. The same grafting reactions are shown to reduce the incipient gel dose by more than a factor...... of fifty. This paper is concerned with the apparent crosslinking produced by the radiation grafting of two monomers to polyethylene: acrylic acid and acrylonitrile....

  1. Preliminary X-ray investigation of a bifunctional inhibitor from Indian finger millet (ragi).

    Science.gov (United States)

    Srinivasan, A; Raman, A; Singh, T P

    1991-11-05

    A bifunctional alpha-amylase/trypsin inhibitor that has two binding sites has been purified from ragi. The inhibitor has been crystallized from its ammonium sulphate solution by the vapour diffusion method. The crystals belong to the orthogonal space group P2(1)2(1)2(1) with unit cell dimensions a = 30.49 A, b = 56.30 A, c = 73.65 A and Z = 4.

  2. Collagen/chitosan based two-compartment and bi-functional dermal scaffolds for skin regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng [Department of Plastic Surgery and Burns, Shenzhen Second People' s Hospital, Shenzhen 518035 (China); Wang, Mingbo [Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); She, Zhending [Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Shenzhen Lando Biomaterials Co., Ltd., Shenzhen 518057 (China); Fan, Kunwu; Xu, Cheng [Department of Plastic Surgery and Burns, Shenzhen Second People' s Hospital, Shenzhen 518035 (China); Chu, Bin; Chen, Changsheng [Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Shi, Shengjun, E-mail: shengjunshi@yahoo.com [The Burns Department of Zhujiang Hospital, Southern Medical University, Guangzhou 510280 (China); Tan, Rongwei, E-mail: tanrw@landobiom.com [Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Shenzhen Lando Biomaterials Co., Ltd., Shenzhen 518057 (China)

    2015-07-01

    Inspired from the sophisticated bilayer structures of natural dermis, here, we reported collagen/chitosan based two-compartment and bi-functional dermal scaffolds. Two functions refer to mediating rapid angiogenesis based on recombinant human vascular endothelial growth factor (rhVEGF) and antibacterial from gentamicin, which were encapsulated in PLGA microspheres. The gentamicin and rhVEGF encapsulated PLGA microspheres were further combined with collagen/chitosan mixtures in low (lower layer) and high (upper layer) concentrations, and molded to generate the two-compartment and bi-functional scaffolds. Based on morphology and pore structure analyses, it was found that the scaffold has a distinct double layered porous and connective structure with PLGA microspheres encapsulated. Statistical analysis indicated that the pores in the upper layer and in the lower layer have great variations in diameter, indicative of a two-compartment structure. The release profiles of gentamicin and rhVEGF exceeded 28 and 49 days, respectively. In vitro culture of mouse fibroblasts showed that the scaffold can facilitate cell adhesion and proliferation. Moreover, the scaffold can obviously inhibit proliferation of Staphylococcus aureus and Serratia marcescens, exhibiting its unique antibacterial effect. The two-compartment and bi-functional dermal scaffolds can be a promising candidate for skin regeneration. - Highlights: • The dermal scaffold is inspired from the bilayer structures of natural dermis. • The dermal scaffold has two-compartment structures. • The dermal scaffold containing VEGF and gentamicin encapsulated PLGA microspheres • The dermal scaffold can facilitate cell adhesion and proliferation.

  3. Bifunctional Catalysts for Upgrading of Biomass-Derived Oxygenates: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Allison M.; Hensley, Jesse E.; Medlin, J. Will

    2016-08-05

    Deoxygenation is an important reaction in the conversion of biomass-derived oxygenates to fuels and chemicals. A key route for biomass refining involves the production of pyrolysis oil through rapid heating of the raw biomass feedstock. Pyrolysis oil as produced is highly oxygenated, so the feasibility of this approach depends in large part on the ability to selectively deoxygenate pyrolysis oil components to create a stream of high-value finished products. Identification of catalytic materials that are active and selective for deoxygenation of pyrolysis oil components has therefore represented a major research area. One catalyst is rarely capable of performing the different types of elementary reaction steps required to deoxygenate biomass-derived compounds. For this reason, considerable attention has been placed on bifunctional catalysts, where two different active materials are used to provide catalytic sites for diverse reaction steps. Here, we review recent trends in the development of catalysts, with a focus on catalysts for which a bifunctional effect has been proposed. We summarize recent studies of hydrodeoxygenation (HDO) of pyrolysis oil and model compounds for a range of materials, including supported metal and bimetallic catalysts as well as transition-metal oxides, sulfides, carbides, nitrides, and phosphides. Particular emphasis is placed on how catalyst structure can be related to performance via molecular-level mechanisms. These studies demonstrate the importance of catalyst bifunctionality, with each class of materials requiring hydrogenation and C-O scission sites to perform HDO at reasonable rates.

  4. A New Synthesis of TE2A-a Potential Bifunctional Chelator for {sup 64}Cu

    Energy Technology Data Exchange (ETDEWEB)

    Pandya, Darpan N.; Kwak, Won Jung; Park, Jeong Chan; Gawande, Manoj B.; Yoo, Jeong Soo [Kyungpook National University, Daegu (Korea, Republic of); Kim, Jung Young; An, Gwang Il [Molecular Imaging Research Center, Seoul (Korea, Republic of); Ryu, Eun Kyoung [Korea Basic Science Institute, Chungbuk (Korea, Republic of)

    2010-09-15

    The development of a new bifunctional chelator, which holds radio metals strongly in living systems, is a prerequisite for the successful application of disease-specific biomolecules to medical diagnosis and therapy. Recently, TE2A was reported to make kinetically more stable Cu({Pi}) complexes than TETA. Herein, we report a new synthetic route to TE2A and explore its potential as a bifunctional chelator. TE2A was synthesized using the regioselective alkylation of benzyl bromoacetate and successive de protection of the methylene bridge and benzyl group. Salt-free TE2A was radiolabeled with {sup 64}Cu and micro PET imaging was performed to follow the clearance pattern of the {sup 64}Cu-TE2A complex. TE2A was conjugated with cyclic RGD peptide and the TE2A-c(RGDyK) conjugate was radiolabeled with {sup 64}Cu. TE2A was prepared in salt-free form cyclam in an overall yield of 74%. The micro PET images showed that {sup 64}Cu-TE2A is excreted rapidly from the body by the kidney and liver. TE2A was successfully conjugated with c(RGDyK) peptide through on carboxylate group and the TE2A-c(RGDyK) conjugate was radiolabeled with {sup 64}Cu in 94% yield within 30 min. TE2A can be used by itself as a bifunctional chelator without any further structural modification.

  5. Characterization of a bifunctional xylanase/endoglucanase from yak rumen microorganisms.

    Science.gov (United States)

    Chang, Lei; Ding, Mozhu; Bao, Lei; Chen, Yingzhi; Zhou, Jungang; Lu, Hong

    2011-06-01

    A new gene, RuCelA, encoding a bifunctional xylanase/endoglucanase, was cloned from a metagenomic library of yak rumen microorganisms. RuCelA showed activity against xylan and carboxymethylcellulose (CMC), suggesting bifunctional xylanase/endoglucanase activity. The optimal conditions for xylanase and endoglucanase activities were 65°C, pH 7.0 and 50°C, pH 5.0, respectively. In addition, the presence of Co(+) and Co(2+) can greatly improve RuCelA's endoglucanase activity, while inhibits its xylanase activity. Further examination of substrate preference showed a higher activity against barley glucan and lichenin than against xylan and CMC. Using xylan and barley glucan as substrates, RuCelA displayed obvious synergistic effects with β-1,4-xylosidase and β-1,4-glucosidase. Generation of soluble oligosaccharides from lignocellulose is the key step in bioethanol production, and it is greatly notable that RuCelA can produce xylo-oligosaccharides and cello-oligosaccharides in the continuous saccharification of pretreated rice straw, which can be further degraded into fermentable sugars. Therefore, the bifunctional RuCelA distinguishes itself as an ideal candidate for industrial applications.

  6. Nanostructured Perovskite LaCo1-xMnxO3 as Bifunctional Catalysts for Rechargeable Metal-Air Batteries

    Science.gov (United States)

    Ge, Xiaoming; Li, Bing; Wuu, Delvin; Sumboja, Afriyanti; An, Tao; Hor, T. S. Andy; Zong, Yun; Liu, Zhaolin

    2015-09-01

    Bifunctional catalyst that is active for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is one of the most important components of rechargeable metal-air batteries. Nanostructured perovskite bifunctional catalysts comprising La, Co and Mn(LaCo1-xMnxO3, LCMO) are synthesized by hydrothermal methods. The morphology, structure and electrochemical activity of the perovskite bifunctional catalysts are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and rotating disk electrode (RDE) techniques. Nanorod, nanodisc and nanoparticle are typical morphologies of LCMO. The electrocatalytic activity of LCMO is significantly improved by the addition of conductive materials such as carbon nanotube. To demonstrate the practical utilization, LCMO in the composition of LaCo0.8Mn0.2O3(LCMO82) is used as air cathode catalysts for rechargeable zinc-air batteries. The battery prototype can sustain 470 h or 40 discharge-charge cycles equivalent.

  7. Theranostic pretargeted radioimmunotherapy of colorectal cancer xenografts in mice using picomolar affinity {sup 86}Y- or {sup 177}Lu-DOTA-Bn binding scFv C825/GPA33 IgG bispecific immunoconjugates

    Energy Technology Data Exchange (ETDEWEB)

    Cheal, Sarah M.; Lee, Sang-gyu; Punzalan, Blesida; Larson, Steven M. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Memorial Sloan Kettering Cancer Center, Molecular Pharmacology and Chemistry Program, New York, NY (United States); Xu, Hong; Guo, Hong-fen [Memorial Sloan Kettering Cancer Center, Department of Pediatrics, New York, NY (United States); Chalasani, Sandhya; Carrasquillo, Jorge A. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Fung, Edward K. [Memorial Sloan Kettering Cancer Center, Molecular Pharmacology and Chemistry Program, New York, NY (United States); Memorial Sloan Kettering Cancer Center, Department of Medical Physics, New York, NY (United States); Jungbluth, Achim [Memorial Sloan Kettering Cancer Center, Department of Pathology, New York, NY (United States); Zanzonico, Pat B.; O' Donoghue, Joseph [Memorial Sloan Kettering Cancer Center, Department of Medical Physics, New York, NY (United States); Smith-Jones, Peter M. [Stony Brook University, Department of Psychiatry and Behavioral Science, Stony Brook, NY (United States); Stony Brook University, Department of Radiology, Stony Brook, NY (United States); Wittrup, K.D. [Massachusetts Institute of Technology, Department of Chemical Engineering, Cambridge, MA (United States); Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, MA (United States); Massachusetts Institute of Technology, Koch Institute for Integrative Cancer Research, Cambridge, MA (United States); Cheung, Nai-Kong V. [Memorial Sloan Kettering Cancer Center, Molecular Pharmacology and Chemistry Program, New York, NY (United States); Memorial Sloan Kettering Cancer Center, Department of Pediatrics, New York, NY (United States)

    2016-05-15

    GPA33 is a colorectal cancer (CRC) antigen with unique retention properties after huA33-mediated tumor targeting. We tested a pretargeted radioimmunotherapy (PRIT) approach for CRC using a tetravalent bispecific antibody with dual specificity for GPA33 tumor antigen and DOTA-Bn-(radiolanthanide metal) complex. PRIT was optimized in vivo by titrating sequential intravenous doses of huA33-C825, the dextran-based clearing agent, and the C825 haptens {sup 177}Lu-or {sup 86}Y-DOTA-Bn in mice bearing the SW1222 subcutaneous (s.c.) CRC xenograft model. Using optimized PRIT, therapeutic indices (TIs) for tumor radiation-absorbed dose of 73 (tumor/blood) and 12 (tumor/kidney) were achieved. Estimated absorbed doses (cGy/MBq) to tumor, blood, liver, spleen, and kidney for single-cycle PRIT were 65.8, 0.9 (TI 73), 6.3 (TI 10), 6.6 (TI 10), and 5.3 (TI 12), respectively. Two cycles of PRIT (66.6 or 111 MBq {sup 177}Lu-DOTA-Bn) were safe and effective, with a complete response of established s.c. tumors (100 - 700 mm{sup 3}) in nine of nine mice, with two mice alive without recurrence at >140 days. Tumor log kill in this model was estimated to be 2.1 - 3.0 based on time to 500-mm{sup 3} tumor recurrence. In addition, PRIT dosimetry/diagnosis was performed by PET imaging of the positron-emitting DOTA hapten {sup 86}Y-DOTA-Bn. We have developed anti-GPA33 PRIT as a triple-step theranostic strategy for preclinical detection, dosimetry, and safe targeted radiotherapy of established human colorectal mouse xenografts. (orig.)

  8. Bifunctional heterogeneous catalysts from oil palm empty fruit bunches ash and alum for biodiesel synthesis simultaneously

    Science.gov (United States)

    Astar, Ismail; Usman, Thamrin; Wahyuni, Nelly; Rudiyansyah, Alimuddin, Andi Hairil

    2017-03-01

    Free fatty acids (FFA) contained in crude palm oil (CPO) and sludge oil has been used as the base material of biodiesel with the aid of a catalyst in the transesterification and esterification reactions. This study aims to synthesize and characterize bifunctional catalysts were synthesized from the ashes of palm empty fruit bunches (EFB) and alum based on the analysis of XRD, XRF and acidity test. Bifunctional catalyst obtained was used as a catalyst to production of biodiesel with different levels of FFA. The optimum ratio alum added was 0.2 mol at 3 hours of reaction time and 3% of catalyst by the FFA samples were used 67,40%. The catalyst with optimum alum mole variations subsequently used on samples with varying levels of FFA, namely 1.29%, 4.98%, 29.21%, 67.40% and 74.47%. Optimum conversion of methyl ester in the esterification reaction occurs in the sample with 67.40% FFA content, which reached 86.17%, while the conversion of methyl ester transesterification process optimum amounted to 45.70% in the samples with 4.98% FFA content. Methyl ester produced has a refractive index of 1.448 (29.8 ° C), density of 0.883 g / mL (25 °C) and a viscosity of 8.933 cSt (25 ° C). The results of GC-MS analysis showed that the main composition of methyl ester result of esterification of sludge oil methyl palmitate (36.84%), while the CPO transesterification shows the main composition of methyl ester is methyl oleic (38.87%). Based on the research results, the catalyst synthesized from alum and EFB ash can be used as a Bifunctional catalysts for biodiesel synthesis.

  9. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Karthikeyan K.; Gray, Michel J.; Job, Heather M.; Smith, Colin D.; Wang, Yong

    2016-04-10

    tA highly versatile ethanol conversion process to selectively generate high value compounds is pre-sented here. By changing the reaction temperature, ethanol can be selectively converted to >C2alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3cata-lyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensationor the acetone formation is the path taken in changing the product composition. This article containsthe catalytic activity comparison between the mono-functional and physical mixture counterpart to thehydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.

  10. Controlled Covalent Functionalization of Thermally Reduced Graphene Oxide To Generate Defined Bifunctional 2D Nanomaterials

    Science.gov (United States)

    Faghani, Abbas; Donskyi, Ievgen S.; Fardin Gholami, Mohammad; Ziem, Benjamin; Lippitz, Andreas; Unger, Wolfgang E. S.; Böttcher, Christoph; Rabe, Jürgen P.

    2017-01-01

    Abstract A controlled, reproducible, gram‐scale method is reported for the covalent functionalization of graphene sheets by a one‐pot nitrene [2+1] cycloaddition reaction under mild conditions. The reaction between commercially available 2,4,6‐trichloro‐1,3,5‐triazine and sodium azide with thermally reduced graphene oxide (TRGO) results in defined dichlorotriazine‐functionalized sheets. The different reactivities of the chlorine substituents on the functionalized graphene allow stepwise post‐modification by manipulating the temperature. This new method provides unique access to defined bifunctional 2D nanomaterials, as exemplified by chiral surfaces and multifunctional hybrid architectures. PMID:28165179

  11. An efficient bifunctional electrocatalyst for water splitting based on cobalt phosphide

    Science.gov (United States)

    Yang, Libin; Qi, Honglan; Zhang, Chengxiao; Sun, Xuping

    2016-06-01

    The development of highly efficient electrocatalysts for water splitting is critical for various renewable-energy technologies. In this letter, we demonstrate a cobalt phosphide nanowire array grown on a Ti mesh (CoP/TM) behaving as a bifunctional electrocatalyst for water splitting. The CoP/TM electrode delivers 10 mA cm-2 at an overpotential of 72 mV for the hydrogen evolution reaction (HER) and 310 mV for the oxygen evolution reaction (OER) in 1.0 M KOH. Furthermore, its corresponding two-electrode alkaline electrolyzer displays 10 mA cm-2 at 1.64 V.

  12. MoO3 nanoparticle anchored graphene as bifunctional agent for water purification

    Science.gov (United States)

    Lahan, Homen; Roy, Raju; Namsa, Nima D.; Das, Shyamal K.

    2016-10-01

    We report here a facile one step hydrothermal method to anchor MoO3 nanoparticles in graphene. The bifunctionality of graphene-MoO3 nanoparticles is demonstrated via dye adsorption and antibacterial activities. The nanocomposite showed excellent adsorption of methylene blue, a cationic dye, from water compared to pristine MoO3 and graphene. However, it showed negligible adsorption of methyl orange, an anionic dye. Again, the graphene-MoO3 nanoparticles exhibited bacteriostatic property against both Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria.

  13. Mutability of bifunctional thigh muscle activity in pedaling due to contralateral leg force generation.

    Science.gov (United States)

    Kautz, S A; Brown, D A; Van der Loos, H F M; Zajac, F E

    2002-09-01

    Locomotion requires uninterrupted transitions between limb extension and flexion. The role of contralateral sensorimotor signals in executing smooth transitions is little understood even though their participation is crucial to bipedal walking. However, elucidating neural interlimb coordinating mechanisms in human walking is difficult because changes to contralateral sensorimotor activity also affect the ipsilateral mechanics. Pedaling, conversely, is ideal for studying bilateral coordination because ipsilateral mechanics can be independently controlled. In pedaling, the anterior and posterior bifunctional thigh muscles develop needed anterior and posterior crank forces, respectively, to dominate the flexion-to-extension and extension-to-flexion transitions. We hypothesized that contralateral sensorimotor activity substantially contributes to the appropriate activation of these bifunctional muscles during the limb transitions. Bilateral pedal forces and surface electromyograms (EMGs) from four thigh muscles were collected from 15 subjects who pedaled with their right leg against a right-crank servomotor, which emulated the mechanical load experienced in conventional two-legged coupled-crank pedaling. In one pedaling session, the contralateral (left) leg pseudo-pedaled (i.e., EMG activity and pedal forces were pedaling-like, but pedal force was not allowed to affect crank rotation). In other sessions, the mechanically decoupled contralateral leg was first relaxed and then produced rhythmic isometric force trajectories during either leg flexion or one of the two limb transitions of the pedaling leg. With contralateral force production in the extension-to-flexion transition (predominantly by the hamstrings), rectus femoris activity and work output increased in the pedaling leg during its flexion-to-extension transition, which occurs simultaneously with contralateral extension-to-flexion in conventional pedaling. Similarly, with contralateral force production in the

  14. A bifunctional spin label reports the structural topology of phospholamban in magnetically-aligned bicelles.

    Science.gov (United States)

    McCaffrey, Jesse E; James, Zachary M; Svensson, Bengt; Binder, Benjamin P; Thomas, David D

    2016-01-01

    We have applied a bifunctional spin label and EPR spectroscopy to determine membrane protein structural topology in magnetically-aligned bicelles, using monomeric phospholamban (PLB) as a model system. Bicelles are a powerful tool for studying membrane proteins by NMR and EPR spectroscopies, where magnetic alignment yields topological constraints by resolving the anisotropic spectral properties of nuclear and electron spins. However, EPR bicelle studies are often hindered by the rotational mobility of monofunctional Cys-linked spin labels, which obscures their orientation relative to the protein backbone. The rigid and stereospecific TOAC label provides high orientational sensitivity but must be introduced via solid-phase peptide synthesis, precluding its use in large proteins. Here we show that a bifunctional methanethiosulfonate spin label attaches rigidly and stereospecifically to Cys residues at i and i+4 positions along PLB's transmembrane helix, thus providing orientational resolution similar to that of TOAC, while being applicable to larger membrane proteins for which synthesis is impractical. Computational modeling and comparison with NMR data shows that these EPR experiments provide accurate information about helix tilt relative to the membrane normal, thus establishing a robust method for determining structural topology in large membrane proteins with a substantial advantage in sensitivity over NMR.

  15. Conversion of cellulose into isosorbide over bifunctional ruthenium nanoparticles supported on niobium phosphate.

    Science.gov (United States)

    Sun, Peng; Long, Xiangdong; He, Hao; Xia, Chungu; Li, Fuwei

    2013-11-01

    Considerable effort has been applied to the development of new processes and catalysts for cellulose conversion to valuable platform chemicals. Isosorbide is among the most interesting products as it can be applied as a monomer and building block for the future replacement of fossil resource-based products. A sustainable method of isosorbide production from cellulose is presented in this work. The strategy relies on a bifunctional Ru catalyst supported on mesoporous niobium phosphate in a H2 atmosphere under pressure without further addition of any soluble acid. Over 50 % yield of isosorbide with almost 100 % cellulose conversion can be obtained in 1 h. The large surface area, pore size, and strong acidity of mesoporous niobium phosphate promote the hydrolysis of cellulose and dehydration of sorbitol; additionally, the appropriate size of the supported Ru nanoparticles avoids unnecessary hydrogenolysis of sorbitol. Under a cellulose/catalyst mass ratio of 43.3, the present bifunctional catalyst could be stably used up to six times, with its mesoporous structure well preserved and without detectable Ru leaching into the reaction solution.

  16. Ternary NiCoP nanosheet arrays: An excellent bifunctional catalyst for alkaline overall water splitting

    Institute of Scientific and Technical Information of China (English)

    Yingjie Li; Haichuan Zhang; Ming Jiang; Yun Kuang; Xiaoming Sun; Xue Duan

    2016-01-01

    Exploring bifunctional catalysts for the hydrogen and oxygen evolution reactions (HER and OER) with high efficiency,low cost,and easy integration is extremely crucial for future renewable energy systems.Herein,ternary NiCoP nanosheet arrays (NSAs) were fabricated on 3D Ni foam by a facile hydrothermal method followed by phosphorization.These arrays serve as bifunctional alkaline catalysts,exhibiting excellent electrocatalytic performance and good working stability for both the HER and OER.The overpotentials of the NiCoP NSA electrode required to drive a current density of 50 mA/cm2 for the HER and OER are as low as 133 and 308 mV,respectively,which is ascribed to excellent intrinsic electrocatalytic activity,fast electron transport,and a unique superaerophobic structure.When NiCoP was integrated as both anodic and cathodic material,the electrolyzer required a potential as low as ~1.77 V to drive a current density of 50 mA/cm2 for overall water splitting,which is much smaller than a reported electrolyzer using the same kind of phosphide-based material and is even better than the combination of Pt/C and Ir/C,the best known noble metal-based electrodes.Combining satisfactory working stability and high activity,this NiCoP electrode paves the way for exploring overall water splitting catalysts.

  17. Bifunctional Ag/C3N4.5 composite nanobelts for photocatalysis and antibacterium

    Science.gov (United States)

    Lei, Renbo; Jian, Jikang; Zhang, Zhihua; Song, Bo; Wu, Rong

    2016-09-01

    Multiple functions can be achieved in carbon nitride-based composite nanomaterials by tuning their components and structures. Here, we report on a large-scale synthesis of novel bifunctional Ag/C3N4.5 composite nanobelts (CNBs) with efficient photocatalytic and antibacterial activity. The Ag/C3N4.5 CNBs were synthesized in high yield by a two-step route including a homogeneous precipitation process and a subsequent calcination treatment. The structural, morphological, compositional, and spectroscopic characterizations revealed that the Ag/C3N4.5 CNBs are composed of N-deficient melem ultrathin nanobelts and crystalline Ag nanoparticles attached to the surface of the nanobelts with good contact. The band gap of the Ag/C3N4.5 CNBs is determined to be about 3.04 eV. The efficient photocatalytic and antibacterial activities of the composite nanomaterials are verified by testing the degradation of Rhodamine B (RhB) and the inhibition zone to bacterium E. coli. The work provides a facile route to bifunctional carbon nitride-based composites with potential applications in the fields of the environment and biology.

  18. Cell Growth on ("Janus") Density Gradients of Bifunctional Zeolite L Crystals.

    Science.gov (United States)

    Kehr, Nermin Seda; Motealleh, Andisheh; Schäfer, Andreas H

    2016-12-28

    Nanoparticle density gradients on surfaces have attracted interest as two-dimensional material surfaces that can mimic the complex nano-/microstructure of the native extracellular matrix, including its chemical and physical gradients, and can therefore be used to systematically study cell-material interactions. In this respect, we report the preparation of density gradients made of bifunctional zeolite L crystals on glass surfaces and the effects of the density gradient and biopolymer functionalization of zeolite L crystals on cell adhesion. We also describe how we created "Janus" density gradient surfaces by gradually depositing two different types of zeolite L crystals that were functionalized and loaded with different chemical groups and guest molecules onto the two distinct sides of the same glass substrate. Our results show that more cells adhered on the density gradient of biopolymer-coated zeolites than on uncoated ones. The number of adhered cells increased up to a certain surface coverage of the glass by the zeolite L crystals, but then it decreased beyond the zeolite density at which a higher surface coverage decreased fibroblast cell adhesion and spreading. Additionally, cell experiments showed that cells gradually internalized the guest-molecule-loaded zeolite L crystals from the underlying density gradient containing bifunctional zeolite L crystals.

  19. Cyclic isoDGR and RGD peptidomimetics containing bifunctional diketopiperazine scaffolds are integrin antagonists.

    Science.gov (United States)

    Panzeri, Silvia; Zanella, Simone; Arosio, Daniela; Vahdati, Leila; Dal Corso, Alberto; Pignataro, Luca; Paolillo, Mayra; Schinelli, Sergio; Belvisi, Laura; Gennari, Cesare; Piarulli, Umberto

    2015-04-13

    The cyclo[DKP-isoDGR] peptidomimetics 2-5, containing bifunctional diketopiperazine (DKP) scaffolds that differ in the configuration of the two DKP stereocenters and in the substitution at the DKP nitrogen atoms, were prepared and examined in vitro in competitive binding assays with purified αv β3 and αv β5 integrin receptors. IC50 values ranged from low nanomolar (ligand 3) to submicromolar with αv β3 integrin. The biological activities of ligands cyclo[DKP3-RGD] 1 and cyclo[DKP3-isoDGR] 3, bearing the same bifunctional DKP scaffold and showing similar αV β3 integrin binding values, were compared in terms of their cellular effects in human U373 glioblastoma cells. Compounds 1 and 3 displayed overlapping inhibitory effects on the FAK/Akt integrin activated transduction pathway and on integrin-mediated cell infiltration processes, and qualify therefore, despite the different RGD and isoDGR sequences, as integrin antagonists. Both compounds induced apoptosis in glioma cells after 72 hour treatment.

  20. Bifunctional composite microspheres of silica/lanthanide-polyoxometalates/Au: Study on luminescence and catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun, E-mail: junwang924@mail.ccnu.edu.cn; Fan, Shaohua; Zhao, Weiqian; Lu, Xuelian; Li, Wuke

    2013-12-02

    In this paper, the synthesis and properties of composite silica microspheres grafted with gold nanoparticles and lanthanide-polyoxometalates are described. This synthesis employs polyethyleneimine as the crosslink polymer to immobilize the Au nanoparticles and lanthanide-polyoxometalates on silica spheres, which results in the formation of bifunctional composite microspheres of silica/lanthanide-polyoxometalates/Au. The composite material was found to be catalytically active in the oxidation of styrene, and benzaldehyde and styrene oxide were the main products. Catalyzed oxidation of styrene demonstrates the size-dependent activity of catalysts and the smaller catalyst shows the higher selectivity. Moreover, the composite particles show bright red luminescence under UV light, which could be seen by naked eyes. The luminescence properties of composite material and the effect of Au nanoparticles on the luminescence of Eu ion were investigated, and energy could be more effectively transferred from ligand to lanthanide ion when Au nanoparticles were grafted on silica spheres. The integration of luminescent components and Au particles makes it possible to label catalyst and monitor the catalyzed reactions. - Highlights: • The bifunctional composite microspheres were fabricated. • Both polyoxometalates and Au nanoparticles could be grafted on silica spheres. • The composite particles exhibit the excellent luminescence and catalytic activity. • The Au nanoparticles affect the luminescence properties of Eu{sup 3+} ions.

  1. Characterization of a bifunctional enzyme with (p)ppGpp-hydrolase/synthase activity in Leptospira interrogans.

    Science.gov (United States)

    He, Ping; Deng, Cong; Liu, Boyu; Zeng, LingBing; Zhao, Wei; Zhang, Yan; Jiang, XuCheng; Guo, XiaoKui; Qin, JinHong

    2013-11-01

    Alarmone Guanosine 5'-diphosphate (or 5'-triphosphate) 3'-diphosphate [(p)ppGpp] is the key component that globally regulates stringent control in bacteria. There are two homologous enzymes, RelA and SpoT in Escherichia coli, which are responsible for fluctuations in (p)ppGpp concentration inside the cell, whereas there exists only a single RelA/SpoT enzyme in Gram-positive bacteria. We have identified a bifunctional enzyme with (p)ppGpp-hydrolase/synthase activity in Leptospira interrogans. We show that the relLin gene (LA_3085) encodes a protein that fully complements the relA/spoT double mutants in E. coli. The protein functions as a (p)ppGpp degradase as well as a (p)ppGpp synthase when the cells encounter amino acid stress and deprivation of carbon sources. N-terminus HD and RSD domains of relLin (relLinN ) were observed to restore growth of double mutants of E. coli. Finally, We demonstrate that purified RelLin and RelLinN show high (p)ppGpp synthesis activity in vitro. Taken together, our results suggest that L. interrogans contain a single Rel-like bifunctional protein, RelLin , which plays an important role in maintaining the basal level of (p)ppGpp in the cell potentially contributing to the regulation of bacterial stress response.

  2. Mechanish of dTTP Inhibition of the Bifunctional dCTP Deaminase:dUTPase Encoded by Mycobacterium tuberculosis

    DEFF Research Database (Denmark)

    Helt, Signe Smedegaard; Thymark, Majbritt; Harris, Pernille;

    2008-01-01

    to be characterised and provides evidence for bifunctionality of dCTP deaminase occurring outside the Archaea kingdom. A steady-state kinetic analysis revealed that the affinity for dCTP and deoxyuridine triphosphate as substrates for the synthesis of deoxyuridine monophosphate were very similar, a result...

  3. Pyrrolidinyl-sulfamide derivatives as a new class of bifunctional organocatalysts for direct asymmetric Michael addition of cyclohexanone to nitroalkenes.

    Science.gov (United States)

    Chen, Jia-Rong; Fu, Liang; Zou, You-Quan; Chang, Ning-Jie; Rong, Jian; Xiao, Wen-Jing

    2011-07-21

    A series of chiral pyrrolidinyl-sulfamide derivatives have been identified as efficient bifunctional organocatalysts for the direct Michael addition of cyclohexanone to a wide range of nitroalkenes. The desired Michael adducts were obtained in high chemical yields and excellent stereoselectivities (up to 99/1 dr and 95% ee).

  4. Reciprocal regulation as a source of ultrasensitivity in two-component systems with a bifunctional sensor kinase.

    Directory of Open Access Journals (Sweden)

    Ronny Straube

    2014-05-01

    Full Text Available Two-component signal transduction systems, where the phosphorylation state of a regulator protein is modulated by a sensor kinase, are common in bacteria and other microbes. In many of these systems, the sensor kinase is bifunctional catalyzing both, the phosphorylation and the dephosphorylation of the regulator protein in response to input signals. Previous studies have shown that systems with a bifunctional enzyme can adjust the phosphorylation level of the regulator protein independently of the total protein concentrations--a property known as concentration robustness. Here, I argue that two-component systems with a bifunctional enzyme may also exhibit ultrasensitivity if the input signal reciprocally affects multiple activities of the sensor kinase. To this end, I consider the case where an allosteric effector inhibits autophosphorylation and, concomitantly, activates the enzyme's phosphatase activity, as observed experimentally in the PhoQ/PhoP and NRII/NRI systems. A theoretical analysis reveals two operating regimes under steady state conditions depending on the effector affinity: If the affinity is low the system produces a graded response with respect to input signals and exhibits stimulus-dependent concentration robustness--consistent with previous experiments. In contrast, a high-affinity effector may generate ultrasensitivity by a similar mechanism as phosphorylation-dephosphorylation cycles with distinct converter enzymes. The occurrence of ultrasensitivity requires saturation of the sensor kinase's phosphatase activity, but is restricted to low effector concentrations, which suggests that this mode of operation might be employed for the detection and amplification of low abundant input signals. Interestingly, the same mechanism also applies to covalent modification cycles with a bifunctional converter enzyme, which suggests that reciprocal regulation, as a mechanism to generate ultrasensitivity, is not restricted to two

  5. Oxygen electrode bifunctional electrocatalyst NiCo2O4 spinel

    Science.gov (United States)

    Fielder, William L.; Singer, Joseph

    1988-01-01

    A significant increase in energy density may be possible if a two-unit alkaline regenerative H2-O2 fuel cell is replaced with a single-unit system that uses passive means for H2O transfer and thermal control. For this single-unit system, new electrocatalysts for the O2 electrode will be required which are not only bifunctionally active but also chemically and electrochemically stable between the voltage range of about 0.7 and 1.5 V. NiCo2O4 spinel is reported to have certain characteristics that make it useful for a study of electrode fabrication techniques. High surface area NiCo2O4 powder was fabricated into unsupported, bifunctional, PTFE-bonded, porous gas fuel cell electrodes by commercial sources using varying PTFE contents and sintering temperatures. The object of this study is to measure the bifunctional activities of these electrodes and to observe what performance differences might result from different commercial electrode fabricators. O2 evolution and O2 reduction data were obtained at 80 C (31 percent KOH). An irreversible reaction (i.e., aging) occurred during O2 evolution at potentials greater than about 1.5 V. Anodic Tafel slopes of 0.06 and 0.12 V/decade were obtained for the aged electrodes. Within the range of 15 to 25 percent, the PTFE content was not a critical parameter for optimizing the electrode for O2 evolution activity. Sintering temperatures between 300 and 340 C may be adequate but heating at 275 C may not be sufficient to properly sinter the PTFE-NiCo2O4 mixture. Electrode disintegration was observed during O2 reduction. Transport of O2 to the NiCo2O4 surface became prohibitive at greater than about -0.02 A/sq cm. Cathodic Tafel slopes of -0.6 and -0.12 V/decade were assumed for the O2 reduction process. A PTFE content of 25 percent (or greater) appears to be preferable for sintering the PTFE-NiCo2O4 mixture.

  6. Oxygen electrode bifunctional electrocatalyst NiCo/sub 2/O/sub 4/ spinel

    Energy Technology Data Exchange (ETDEWEB)

    Fielder, W.L.; Singer, J.

    1988-09-01

    A significant increase in energy density may be possible if a two-unit alkaline regenerative H2-O2 fuel cell is replaced with a single-unit system that uses passive means for H2O transfer and thermal control. For this single-unit system, new electrocatalysts for the O2 electrode will be required which are not only bifunctionally active but also chemically and electrochemically stable between the voltage range of about 0.7 and 1.5 V. NiCo2O4 spinel is reported to have certain characteristics that make it useful for a study of electrode fabrication techniques. High surface area NiCo2O4 powder was fabricated into unsupported, bifunctional, PTFE-bonded, porous gas fuel cell electrodes by commercial sources using varying PTFE contents and sintering temperatures. The object of this study is to measure the bifunctional activities of these electrodes and to observe what performance differences might result from different commercial electrode fabricators. O2 evolution and O2 reduction data were obtained at 80 C (31 percent KOH). An irreversible reaction (i.e., aging) occurred during O2 evolution at potentials greater than about 1.5 V. Anodic Tafel slopes of 0.06 and 0.12 V/decade were obtained for the aged electrodes. Within the range of 15 to 25 percent, the PTFE content was not a critical parameter for optimizing the electrode for O2 evolution activity. Sintering temperatures between 300 and 340 C may be adequate but heating at 275 C may not be sufficient to properly sinter the PTFE-NiCo2O4 mixture. Electrode disintegration was observed during O2 reduction. Transport of O2 to the NiCo2O4 surface became prohibitive at greater than about -0.02 A/sq cm. Cathodic Tafel slopes of -0.6 and -0.12 V/decade were assumed for the O2 reduction process. A PTFE content of 25 percent (or greater) appears to be preferable for sintering the PTFE-NiCo2O4 mixture.

  7. Experimental verifications on chemical carcinogenesis, a bifunctional alkylation between DNA interstrands

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    It is evidenced by the filter elution method that two carcinogenic aromatic hydrocarbons, benzo[a]pyrene and dibenzo[a,h]anthracene, two carcinogenic metal salts, beryllium chloride and cadmium chloride, four carcinogenic aromatic amines, 2-aminofluorene, β-naphthylamine, 4-aminobiphenyl and benzidine, can all induce DNA interstrand and DNA-protein cross-link in L1210 culture. However, under the same condition, the corresponding non-carcinogenic compounds, including benzo[k]fluorancene, anthracene, magnesium chloride, zinc chloride, a -naphthylamine, 2-aminobiphenyl and m-toluidine, cannot produce any cross-link adducts. All these results are consistent with the di-region theory that carcinogens are bio-bifunctional alkylation agents. This method can also be used to discriminate carcinogens and non-carcinogens.

  8. Dyes as bifunctional markers of DNA hybridization on surfaces and mutation detection.

    Science.gov (United States)

    García-Mendiola, Tania; Cerro, María Ramos; López-Moreno, José María; Pariente, Félix; Lorenzo, Encarnación

    2016-10-01

    The interaction of small molecules with DNA has found diagnostic and therapeutic applications. In this work, we propose the use of two different dyes, in particular Azure A and Safranine, as bifunctional markers of on-surface DNA hybridization and potent tools for screening of specific gene mutations directly in real DNA PCR amplicons extracted from blood cells. By combining spectroscopic and electrochemical methods we demonstrate that both dyes can interact with single and double stranded DNA to a different extent, allowing reliable hybridization detection. From these data, we have also elucidated the nature of the interaction. We conclude that the binding mode is fundamentally intercalative with an electrostatic component. The dye fluorescence allows their use as nucleic acid stains for the detection of on-surfaces DNA hybridization. Its redox activity is exploited in the development of selective electrochemical DNA biosensors.

  9. The fabrication of a bifunctional oxygen electrode without carbon components for alkaline secondary batteries

    Science.gov (United States)

    Price, Stephen W. T.; Thompson, Stephen J.; Li, Xiaohong; Gorman, Scott F.; Pletcher, Derek; Russell, Andrea E.; Walsh, Frank C.; Wills, Richard G. A.

    2014-08-01

    The fabrication of a gas diffusion electrode (GDE) without carbon components is described. It is therefore suitable for use as a bifunctional oxygen electrode in alkaline secondary batteries. The electrode is fabricated in two stages (a) the formation of a PTFE-bonded nickel powder layer on a nickel foam substrate and (b) the deposition of a NiCo2O4 spinel electrocatalyst layer by dip coating in a nitrate solution and thermal decomposition. The influence of modifications to the procedure on the performance of the GDEs in 8 M NaOH at 333 K is described. The GDEs can support current densities up to 100 mA cm-2 with state-of-the-art overpotentials for both oxygen evolution and oxygen reduction. Stable performance during >50 successive, 1 h oxygen reduction/evolution cycles at a current density of 50 mA cm-2 has been achieved.

  10. Synthesis of acrylic and allylic bifunctional cross-linking monomers derived from PET waste

    Science.gov (United States)

    Cruz-Aguilar, A.; Herrera-González, A. M.; Vázquez-García, R. A.; Navarro-Rodríguez, D.; Coreño, J.

    2013-06-01

    An acrylic and two novel allylic monomers synthesized from bis (hydroxyethyl) terephthalate, BHET, are reported. This was obtained by glycolysis of post-consumer PET with boiling ethylene glycol. The bifunctional monomer bis(2-(acryloyloxy)ethyl) terephthalate was obtained from acryloyl chloride, while the allylic monomers 2-(((allyloxi)carbonyl)oxy) ethyl (2-hydroxyethyl) terephthalate and bis(2-(((allyloxi)carbonyl)oxy)ethyl) terephthalate, from allyl chloroformate. Cross-linking was studied in bulk polymerization using two different thermal initiators. Monomers were analyzed by means of 1H NMR and the cross-linked polymers by infrared spectroscopy. Gel content higher than 90% was obtained for the acrylic monomer. In the case of the mixture of the allylic monomers, the cross-linked polymer was 80 % using BPO initiator, being this mixture 24 times less reactive than the acrylic monomer.

  11. Mono- and bi-functional arenethiols as surfactants for gold nanoparticles: synthesis and characterization

    Directory of Open Access Journals (Sweden)

    Fratoddi Ilaria

    2011-01-01

    Full Text Available Abstract Stable gold nanoparticles stabilized by different mono and bi-functional arenethiols, namely, benzylthiol and 1,4-benzenedimethanethiol, have been prepared by using a modified Brust's two-phase synthesis. The size, shape, and crystalline structure of the gold nanoparticles have been determined by high-resolution electron microscopy and full-pattern X-ray powder diffraction analyses. Nanocrystals diameters have been tuned in the range 2 ÷ 9 nm by a proper variation of Au/S molar ratio. The chemical composition of gold nanoparticles and their interaction with thiols have been investigated by X-ray photoelectron spectroscopy. In particular, the formation of networks has been observed with interconnected gold nanoparticles containing 1,4-benzenedimethanethiol as ligand.

  12. Bi-functional biobased packing of the cassava starch, glycerol, licuri nanocellulose and red propolis.

    Directory of Open Access Journals (Sweden)

    Samantha Serra Costa

    Full Text Available The aim of this study was to characterize and determine the bi-functional efficacy of active packaging films produced with starch (4% and glycerol (1.0%, reinforced with cellulose nanocrystals (0-1% and activated with alcoholic extracts of red propolis (0.4 to 1.0%. The cellulose nanocrystals used in this study were extracted from licuri leaves. The films were characterized using moisture, water-activity analyses and water vapor-permeability tests and were tested regarding their total phenolic compounds and mechanical properties. The antimicrobial and antioxidant efficacy of the films were evaluated by monitoring the use of the active films for packaging cheese curds and butter, respectively. The cellulose nanocrystals increased the mechanical strength of the films and reduced the water permeability and water activity. The active film had an antimicrobial effect on coagulase-positive staphylococci in cheese curds and reduced the oxidation of butter during storage.

  13. "Click" chemistry mildly stabilizes bifunctional gold nanoparticles for sensing and catalysis.

    Science.gov (United States)

    Li, Na; Zhao, Pengxiang; Liu, Na; Echeverria, María; Moya, Sergio; Salmon, Lionel; Ruiz, Jaime; Astruc, Didier

    2014-07-01

    A large family of bifunctional 1,2,3-triazole derivatives that contain both a polyethylene glycol (PEG) chain and another functional fragment (e.g., a polymer, dendron, alcohol, carboxylic acid, allyl, fluorescence dye, redox-robust metal complex, or a β-cyclodextrin unit) has been synthesized by facile "click" chemistry and mildly coordinated to nanogold particles, thus providing stable water-soluble gold nanoparticles (AuNPs) in the size range 3.0-11.2 nm with various properties and applications. In particular, the sensing properties of these AuNPs are illustrated through the detection of an analogue of a warfare agent (i.e., sulfur mustard) by means of a fluorescence "turn-on" assay, and the catalytic activity of the smallest triazole-AuNPs (core of 3.0 nm) is excellent for the reduction of 4-nitrophenol in water.

  14. Aldo-X Bifunctional Building Blocks for the Synthesis of Heterocycles.

    Science.gov (United States)

    Ravichandiran, Palanisamy; Lai, Bingbing; Gu, Yanlong

    2017-02-01

    Compounds containing oxygen, nitrogen, or sulfur atoms inside the rings are attracting much attention and interest due to their biological importance. In recent years, several methods for the synthesis of such molecules have been reported by using aldo-X bifunctional building blocks (AXB3 s) as substrates; these are a wide class of organic molecules that contain at least two reactive sites, among them, one aldehyde, acetal, or semiacetal group was involved. Because of the multiple reactivities, AXB3 s are widely used in the one-pot synthesis of biologically important heterocycles. This review summarizes the synthesis of important heterocycles by using AXB3 s as pivotal components in establishing multicomponent reactions, tandem reactions, and so forth. In many cases, the established reaction systems with AXB3 s were characterized by some green properties, such as easy access to the substrate, mild and environmentally benign conditions, and wide scope of the substrate.

  15. Development and computational modeling of novel bifunctional organophosphorus extractants for lanthanoid separation

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Masahiro; Matsumoto, Satoshi; Uezu, Kazuya; Nakashio, Fumiyuki [Kyushu Univ., Hakozaki, Fukuoka (Japan). Dept. of Chemical Science and Technology; Yoshizuka, Kazuharu; Inoue, Katsutoshi [Saga Univ., Honjyo, Saga (Japan). Dept. of Applied Chemistry

    1999-08-01

    Novel organophosphorus extractants, which have two functional groups in the molecular structure, have been developed for the separation of lanthanoids using the liquid-liquid extraction technique. The separation efficiency and extractability of the novel extractants were investigated for nine lanthanoids. These bifunctional extractants have an extremely high extractability to all the lanthanoids compared to those of commercially available organophosphorus extractants. Two isomers having an identical chemical formulation show significantly different behaviors in lanthanoid extraction. This means that the extraction and separation abilities are quite sensitive to the structure of the spacer connecting the two functional groups. The authors also discuss the experimental results with a computational modeling by means of molecular mechanics and semiempirical molecular orbital methods. The novel molecular mechanics (MM) calculation program MOMEC enables them to analyze the stable conformation of a series of lanthanoid complexes. The calculation suggests that the structural effect of the spacer is one of the decisive factors for enhancing selectivity and extractability in lanthanoid extraction.

  16. Bi-functional biobased packing of the cassava starch, glycerol, licuri nanocellulose and red propolis.

    Science.gov (United States)

    Costa, Samantha Serra; Druzian, Janice Izabel; Machado, Bruna Aparecida Souza; de Souza, Carolina Oliveira; Guimarães, Alaíse Gil

    2014-01-01

    The aim of this study was to characterize and determine the bi-functional efficacy of active packaging films produced with starch (4%) and glycerol (1.0%), reinforced with cellulose nanocrystals (0-1%) and activated with alcoholic extracts of red propolis (0.4 to 1.0%). The cellulose nanocrystals used in this study were extracted from licuri leaves. The films were characterized using moisture, water-activity analyses and water vapor-permeability tests and were tested regarding their total phenolic compounds and mechanical properties. The antimicrobial and antioxidant efficacy of the films were evaluated by monitoring the use of the active films for packaging cheese curds and butter, respectively. The cellulose nanocrystals increased the mechanical strength of the films and reduced the water permeability and water activity. The active film had an antimicrobial effect on coagulase-positive staphylococci in cheese curds and reduced the oxidation of butter during storage.

  17. Hydroisomerization of Ethylbenzene on Mordenite-Based Bifunctional Catalysts with Different Platinum Contents

    Directory of Open Access Journals (Sweden)

    Fernandes L.D.

    1998-01-01

    Full Text Available A commercial Na-mordenite sample underwent ion exchange with HCl. The ion-exchanged sample was sequentially submitted to hydrothermal treatments at 823, 873 and 923 K, each followed by acid leaching of the extraframework alumina (EFAL generated. Six mordenite samples, presenting different framework and extraframework compositions, were obtained. These samples were used to prepare bifunctional catalysts by mixing them with Pt/Al2O3 in different proportions. The generated samples presented distinct platinum contents and were tested in the hydroisomerization reaction of ethylbenzene. A maximum xylene selectivity at about 0.45 wt% of platinum was observed. Normally, the total activity increased as the platinum content increased; this effect was more pronounced in the samples which presented lower mesoporosity. The most dealuminated sample, which presented a high mesoporosity, did not show any change in activity with the increase in platinum content.

  18. Bifunctional enzyme FBPase/SBPase is essential for photoautotrophic growth in cyanobacterium Synechocystis sp. PCC 6803

    Institute of Scientific and Technical Information of China (English)

    Chunlan Yan; Xudong Xu

    2008-01-01

    From a random insertion mutant library of Synechocystis sp. PCC 6803, a mutant defective in photoautotrophic growth was obtained. The interrupted gene was identified to be sir2094 (fbpl), which encodes the fructose-l,6-biphosphatase (FBPase)/sedoheptu-lose-1,7-biphosphatase (SBPase) bifunctional enzyme (F-I). Two other independently constructed slr2094 mutants showed an identical phenotype. The FBPase activity was found to be virtually lacking in an sir2094 mutant, which was sensitive to light under mixotrophic growth conditions. These results indicate that sir2094 is the only active FBPase-encoding gene in this cyanobacterium. Inactivation of photosystem 11 by interrupting psbB in sir2094 mutant alleviated the sensitiveness to light. This report provides the direct genetic evi-dence for the essential role of F-I in the photosynthesis of Synechocystis sp. PCC 6803.

  19. New Tailor-Made Alkyl-Aldehyde Bifunctional Supports for Lipase Immobilization

    Directory of Open Access Journals (Sweden)

    Robson Carlos Alnoch

    2016-11-01

    Full Text Available Immobilized and stabilized lipases are important biocatalytic tools. In this paper, different tailor-made bifunctional supports were prepared for the immobilization of a new metagenomic lipase (LipC12. The new supports contained hydrophobic groups (different alkyl groups to promote interfacial adsorption of the lipase and aldehyde groups to react covalently with the amino groups of side chains of the adsorbed lipase. The best catalyst was 3.5-fold more active and 5000-fold more stable than the soluble enzyme. It was successfully used in the regioselective deacetylation of peracetylated d-glucal. The PEGylated immobilized lipase showed high regioselectivity, producing high yields of the C-3 monodeacetylated product at pH 5.0 and 4 °C.

  20. Stable expression of a bifunctional diterpene synthase in the chloroplast of Chlamydomonas reinhardtii

    DEFF Research Database (Denmark)

    Zedler, Julie A Z; Gangl, Doris; Hamberger, Björn Robert;

    2015-01-01

    Chlamydomonas reinhardtii has been shown to hold significant promise as a production platform for recombinant proteins, but transformation of the nuclear genome is still a non-trivial process due to random gene insertion and frequent silencing. Insertion of transgenes into the chloroplasts...... is an alternative strategy, and we report here the stable expression of a large (91 kDa) protein in the chloroplast using a recently developed low-cost transformation protocol. Moreover, selection of transformants is based on restoration of prototrophy using an endogenous gene (psbH) as the marker, thereby allowing...... the generation of transgenic lines without the use of antibiotic-resistance genes. Here, we have expressed a bifunctional diterpene synthase in C. reinhardtii chloroplasts. Homoplasmic transformants were obtained with the expressed enzyme accounting for 3.7 % of total soluble protein. The enzyme was purified...

  1. On the molecular basis of D-bifunctional protein deficiency type III.

    Directory of Open Access Journals (Sweden)

    Maija L Mehtälä

    Full Text Available Molecular basis of D-bifunctional protein (D-BP deficiency was studied with wild type and five disease-causing variants of 3R-hydroxyacyl-CoA dehydrogenase fragment of the human MFE-2 (multifunctional enzyme type 2 protein. Complementation analysis in vivo in yeast and in vitro enzyme kinetic and stability determinants as well as in silico stability and structural fluctuation calculations were correlated with clinical data of known patients. Despite variations not affecting the catalytic residues, enzyme kinetic performance (K(m, V(max and k(cat of the recombinant protein variants were compromised to a varying extent and this can be judged as the direct molecular cause for D-BP deficiency. Protein stability plays an additional role in producing non-functionality of MFE-2 in case structural variations affect cofactor or substrate binding sites. Structure-function considerations of the variant proteins matched well with the available data of the patients.

  2. Cage-like bifunctional chelators, copper-64 radiopharmaceuticals and PET imaging using the same

    Energy Technology Data Exchange (ETDEWEB)

    Conti, Peter S.; Cai, Hancheng; Li, Zibo; Liu, Shuanglong

    2016-08-02

    Disclosed is a class of versatile Sarcophagine based bifunctional chelators (BFCs) containing a hexa-aza cage for labeling with metals having either imaging, therapeutic or contrast applications radiolabeling and one or more linkers (A) and (B). The compounds have the general formula ##STR00001## where A is a functional group selected from group consisting of an amine, a carboxylic acid, an ester, a carbonyl, a thiol, an azide and an alkene, and B is a functional group selected from the group consisting of hydrogen, an amine, a carboxylic acid, and ester, a carbonyl, a thiol, an azide and an alkene. Also disclosed are conjugate of the BFC and a targeting moiety, which may be a peptide or antibody. Also disclosed are metal complexes of the BFC/targeting moiety conjugates that are useful as radiopharmaceuticals, imaging agents or contrast agents.

  3. Hydrogen bonding in transient bifunctional hypervalent radicals by neutralization-reionization mass spectrometry.

    Science.gov (United States)

    Shaffer, S A; Tureček, F

    1995-11-01

    Neutralization-reionization mass spectrometry is used to generate hypervalent 9-N-4 (ammonium) and 9-O-3 (oxonium) radicals derived from protonated α,ω-bis-(dimethylamino)alkanes and α,ω-dimethoxyalkanes, which exist as cyclic hydrogen-bonded structures in the gas phase. Collisional neutralization with dimethyl disulfide, trimethylamine, and xenon of the hydrogen-bonded onium cations followed by reionization with oxygen results in complete dissociation. Bond cleavages at the hypervalent nitrogen atoms are found to follow the order CH2-N>CH3-N>N-H, which differs from that in the monofunctional hydrogen-n-heptyldimethylammonium radical, which gives CH2-N>N-H>CH3-N. No overall stabilization through hydrogen bonding of the bifunctional hypervalent ammonium and oxonium radicals is observed. Subtle effects of ring size are found that tend to stabilize large ring structures and are attributed to intramolecular hydrogen bonding.

  4. Recent Development of Bifunctional Small Molecules to Study Metal-Amyloid-β Species in Alzheimer's Disease.

    Science.gov (United States)

    Braymer, Joseph J; Detoma, Alaina S; Choi, Jung-Suk; Ko, Kristin S; Lim, Mi Hee

    2010-12-08

    Alzheimer's disease (AD) is a multifactorial neurodegenerative disease related to the deposition of aggregated amyloid-β (Aβ) peptides in the brain. It has been proposed that metal ion dyshomeostasis and miscompartmentalization contribute to AD progression, especially as metal ions (e.g., Cu(II) and Zn(II)) found in Aβ plaques of the diseased brain can bind to Aβ and be linked to aggregation and neurotoxicity. The role of metal ions in AD pathogenesis, however, is uncertain. To accelerate understanding in this area and contribute to therapeutic development, recent efforts to devise suitable chemical reagents that can target metal ions associated with Aβ have been made using rational structure-based design that combines two functions (metal chelation and Aβ interaction) in the same molecule. This paper presents bifunctional compounds developed by two different design strategies (linkage or incorporation) and discusses progress in their applications as chemical tools and/or potential therapeutics.

  5. Bifunctional Nanoparticle-SILP Catalysts (NPs@SILP) for the Selective Deoxygenation of Biomass Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Luska, Kylie L. [RWTH Aachen Univ. (Germany); Julis, Jennifer [RWTH Aachen Univ. (Germany); Evonik Industries AG, Marl (Germany); Stavitski, Eli [Brookhaven National Lab. (BNL), Upton, NY (United States); Zakharov, Dmitri N. [Brookhaven National Lab. (BNL), Upton, NY (United States); Adams, Alina [RWTH Aachen Univ. (Germany); Leitner, Walter [RWTH Aachen Univ. (Germany); Max Planck Inst. for Coal Research, Ruhr (Germany)

    2014-08-27

    We immobilized ruthenium nanoparticles onto an acidic supported ionic liquid phase (RuNPs@SILP) in the development of bifunctional catalysts for the selective deoxygenation of biomass substrates. RuNPs@SILPs possessed high catalytic activities, selectivities and recyclabilities in the hydrogenolytic deoxygenation and ring opening of C8- and C9-substrates derived from furfural or 5-hydroxymethylfurfural and acetone. When we tailor the acidity of the SILP through the ionic liquid loading provided a molecular parameter by which the catalytic activity and selectivity of the RuNPs@SILPs were controlled to provide a flexible catalyst system toward the formation of different classes of value-added products: cyclic ethers, primary alcohols or aliphatic ethers.

  6. AmpH, a bifunctional DD-endopeptidase and DD-carboxypeptidase of Escherichia coli.

    Science.gov (United States)

    González-Leiza, Silvia M; de Pedro, Miguel A; Ayala, Juan A

    2011-12-01

    In Escherichia coli, low-molecular-mass penicillin-binding proteins (LMM PBPs) are important for correct cell morphogenesis. These enzymes display DD-carboxypeptidase and/or dd-endopeptidase activities associated with maturation and remodeling of peptidoglycan (PG). AmpH has been classified as an AmpH-type class C LMM PBP, a group closely related to AmpC β-lactamases. AmpH has been associated with PG recycling, although its enzymatic activity remained uncharacterized until now. Construction and purification of His-tagged AmpH from E. coli permitted a detailed study of its enzymatic properties. The N-terminal export signal of AmpH is processed, but the protein remains membrane associated. The PBP nature of AmpH was demonstrated by its ability to bind the β-lactams Bocillin FL (a fluorescent penicillin) and cefmetazole. In vitro assays with AmpH and specific muropeptides demonstrated that AmpH is a bifunctional DD-endopeptidase and DD-carboxypeptidase. Indeed, the enzyme cleaved the cross-linked dimers tetrapentapeptide (D45) and tetratetrapeptide (D44) with efficiencies (k(cat)/K(m)) of 1,200 M(-1) s(-1) and 670 M(-1) s(-1), respectively, and removed the terminal D-alanine from muropeptides with a C-terminal D-Ala-D-Ala dipeptide. Both DD-peptidase activities were inhibited by 40 μM cefmetazole. AmpH also displayed a weak β-lactamase activity for nitrocefin of 1.4 × 10(-3) nmol/μg protein/min, 1/1,000 the rate obtained for AmpC under the same conditions. AmpH was also active on purified sacculi, exhibiting the bifunctional character that was seen with pure muropeptides. The wide substrate spectrum of the DD-peptidase activities associated with AmpH supports a role for this protein in PG remodeling or recycling.

  7. Bifunctional Effect of Human IFN-γ on Cultured Human Fibroblasts from Tenon‘s Capsule

    Institute of Scientific and Technical Information of China (English)

    YanGuo; JianGe; 等

    2002-01-01

    Purpose:To study the effect of human IFN-γ on in ivtro cultured human fibroblasts from Tenon's capsule.Materials and methods:The effect of different concentrations of human IFN-γand mitomycin-C (MMC),5-fluorouracil(5-Fu) on cultured human Tenon's capsule fibroblasts(HTCF) was measured using a MTT[3-(4,5-dimethylthiazo-2-yI)]-2,5-diphenylterazolium bromide;Thiazolyl blue) colorimetric assay.The results were analyzed using ANOVA of the statistical package for social sciences (SPSS) 9.0 version.The difference was considered to be significant if P<0.05.Results:The effects of MMC and 5-Fu on the growth of HTCF were negative,while the effects of IFN-γon the growth of HTCF were both negative(102-104 units/ml in two experiments)and positive(106,105,10 units /ml in two experiments).The inhibition rate of MMC ranged from 5.73% to 46.9% ,which was similar to the inhibition rate of 5-Fu ranged from 12.49% to 38.92%(P=0.351).The inhibition rate of IFN-γ in two experiments was smaller than MMC and 5-Fu (P<0.05).Conclusion: IFN-γ has bifunctional effect (both enhancement and inhibition)on proliferation of cultured HTCF.The antiproliferative effect of IFN-γ was weaker than MMC and 5-Fu.Further study has to be carried out to document theinhibition of scar formation of filtration bleb by IFN-γ and the molecular mechanisms of its bifunctional effect on HTCF proliferation.Eye Science 2000;16:43-47.

  8. Bifunctional Effect of Human IFN-γon Cultured Human Fibroblasts from Tenon's Capsule

    Institute of Scientific and Technical Information of China (English)

    Yan Guo; Jian Ge; Haiquan Liu; Yanyan Li; Jianliang Zheng; Xiangkun Huang; Yuqing Lan

    2000-01-01

    Purpose: To study the effect of human IFN-γ on in vitro cultured human fibroblasts from Tenon's capsuleMaterials and methods: The effect of different concentrations of human IFN-γ and mitomycin-C (MMC), 5-fluorouracil (5-Fu) on cultured human Tenon's capsule fibroblasts (HTCF) was measured using a MIT [3-(4, 5-dimethylthiazo-2-yl)] -2,5-diphenyltetrazolium bromide; Thiazolyl blue) colorimetric assay. The results were analyzed using ANOVA of the statistical package for social sciences (SPSS) 9.0version. The difference was considered to be significant if P < 0. 05.Results: The effects of MMC and 5-Fu on the growth of HTCF were negative, while the effects of IFN-γ on the growth of HTCF were both negative (102 ~ l04 units/ml in two experiments) and positive (106, 105, 10 units/ml in two experiments) . The inhibition rate of MMC ranged from 5.73% to 46. 9%, which was similar to the inhibition rate of 5-Fu ranged from 12.49% to 38.92% ( P= 0. 351) . The inhibition rate of IFN-γ in two experiments was smaller than MMC and 5-Fu ( P < 0.05).Conclusion: IFN-γ has bifunctional effect (both enhancement and inhibition) on proliferation of cultured HTCF. The antiproliferative effect of IFN-γ was weaker than MMC and 5-Fu. Further study has to be carried out to document the inhibition of scar formation of filtration bleb by IFN-γ and the molecular mechanisms of its bifunctional effect on HTCF proliferation. Eye Science 2000; 16: 43~ 47.

  9. Preparation and Characterization of Silica-Coated Magnetic–Fluorescent Bifunctional Microspheres

    Directory of Open Access Journals (Sweden)

    Xiao Qi

    2009-01-01

    Full Text Available Abstract Bifunctional magnetic–fluorescent composite nanoparticles (MPQDs with Fe3O4MPs and Mn:ZnS/ZnS core–shell quantum dots (QDs encapsulated in silica spheres were synthesized through reverse microemulsion method and characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, vibration sample magnetometer, and photoluminescence (PL spectra. Our strategy could offer the following features: (1 the formation of Mn:ZnS/ZnS core/shell QDs resulted in enhancement of the PL intensity with respect to that of bare Mn:ZnS nanocrystals due to the effective elimination of the surface defects; (2 the magnetic nanoparticles were coated with silica, in order to reduce any detrimental effects on the QD PL by the magnetic cores; and (3 both Fe3O4MPs and Mn:ZnS/ZnS core–shell QDs were encapsulated in silica spheres, and the obtained MPQDs became water soluble. The experimental conditions for the silica coating on the surface of Fe3O4nanoparticles, such as the ratio of water to surfactant (R, the amount of ammonia, and the amount of tetraethoxysilane, on the photoluminescence properties of MPQDs were studied. It was found that the silica coating on the surface of Fe3O4could effectively suppress the interaction between the Fe3O4and the QDs under the most optimal parameters, and the emission intensity of MPQDs showed a maximum. The bifunctional MPQDs prepared under the most optimal parameters have a typical diameter of 35 nm and a saturation magnetization of 4.35 emu/g at room temperature and exhibit strong photoluminescence intensity.

  10. Electrochemical formation of transparent nanostructured TiO2 film as an effective bifunctional layer for dye-sensitized solar cells.

    Science.gov (United States)

    Wu, Mao-Sung; Tsai, Chen-Hsiu; Wei, Tzu-Chien

    2011-03-14

    A bifunctional TiO(2) layer having an inner compact layer and an outer anchoring layer coated on fluorine-doped tin oxide (FTO) glass could reduce the charge recombination and interfacial contact resistance between FTO and the main TiO(2) layer; photoelectron conversion efficiency of cell was increased from 7.31 to 8.04% by incorporating the bifunctional layer.

  11. Dynamics of tropomyosin in muscle fibers as monitored by saturation transfer EPR of bi-functional probe.

    Directory of Open Access Journals (Sweden)

    Roni F Rayes

    Full Text Available The dynamics of four regions of tropomyosin was assessed using saturation transfer electron paramagnetic resonance in the muscle fiber. In order to fully immobilize the spin probe on the surface of tropomyosin, a bi-functional spin label was attached to i,i+4 positions via cysteine mutagenesis. The dynamics of bi-functionally labeled tropomyosin mutants decreased by three orders of magnitude when reconstituted into "ghost muscle fibers". The rates of motion varied along the length of tropomyosin with the C-terminus position 268/272 being one order of magnitude slower then N-terminal domain or the center of the molecule. Introduction of troponin decreases the dynamics of all four sites in the muscle fiber, but there was no significant effect upon addition of calcium or myosin subfragment-1.

  12. Studies towards the development of lipophilic bifunctional N{sub 3}S{sub 3} chelators for {sup 68}Ga

    Energy Technology Data Exchange (ETDEWEB)

    Riss, P.J.; Hanik, N.; Roesch, F. [Mainz Univ. (Germany). Inst. of Nuclear Chemistry

    2010-07-01

    The present study is concerned with a concept of charge-neutral, lipophilic, macrocyclic bifunctional chelators, suitable for the introduction of a gallium-68 label into small molecules. The synthesis of a novel bifunctional N{sub 3}S{sub 3}-type chelator, derived from 1,4,7-triazacyclononane, initial {sup 68}Ga-radiolabelling and the determination of stability and calculated lipophilicity of the compound are described. The {sup 68}Ga-labelled chelate was obtained in a maximum radiochemical yield of 93{+-}5% after a reaction time of 2 min. It remained intact over 3 h in a DTPA-challenge and a transferrin challenge experiment, indicating sufficient stability for PET studies. (orig.)

  13. In situ labeling and imaging of cellular protein via a bi-functional anticancer aptamer and its fluorescent ligand.

    Science.gov (United States)

    Ai, Jun; Li, Tao; Li, Bingling; Xu, Yuanhong; Li, Dan; Liu, Zuojia; Wang, Erkang

    2012-09-05

    In this article, we reported a novel approach for in situ labeling and imaging HeLa cancer cells utilizing a bifunctional aptamer (AS1411) and its fluorescent ligand, protoporphyrin IX (PPIX). In the presence of potassium ion, AS1411 folded to G-quadruplex structure, binded fluorescent ligand (PPIX) with fluorescent enhancement, and targeted the nucleolin overexpressed by cancer cells. Consequently, bioimaging of cancer cells specifically were realized by laser scanning confocal microscope. The bioimaging strategy with AS1411-PPIX complex was capable to distinguish HeLa cancer cells from normal cells unambiguously, and fluorescence imaging of cancer cells was also realized in human serum. Moreover, the bioimaging method was very facile, effective and need not any covalent modification. These results illustrated that the useful approach can provide a novel clue for bioimaging based on non-covalent bifunctional aptamer in clinic diagnosis.

  14. Rational design of micro-RNA-like bifunctional siRNAs targeting HIV and the HIV coreceptor CCR5.

    Science.gov (United States)

    Ehsani, Ali; Saetrom, Pål; Zhang, Jane; Alluin, Jessica; Li, Haitang; Snøve, Ola; Aagaard, Lars; Rossi, John J

    2010-04-01

    Small-interfering RNAs (siRNAs) and micro-RNAs (miRNAs) are distinguished by their modes of action. SiRNAs serve as guides for sequence-specific cleavage of complementary mRNAs and the targets can be in coding or noncoding regions of the target transcripts. MiRNAs inhibit translation via partially complementary base-pairing to 3' untranslated regions (UTRs) and are generally ineffective when targeting coding regions of a transcript. In this study, we deliberately designed siRNAs that simultaneously direct cleavage and translational suppression of HIV RNAs, or cleavage of the mRNA encoding the HIV coreceptor CCR5 and suppression of translation of HIV. These bifunctional siRNAs trigger inhibition of HIV infection and replication in cell culture. The design principles have wide applications throughout the genome, as about 90% of genes harbor sites that make the design of bifunctional siRNAs possible.

  15. Dual-Doped Molybdenum Trioxide Nanowires: A Bifunctional Anode for Fiber-Shaped Asymmetric Supercapacitors and Microbial Fuel Cells.

    Science.gov (United States)

    Yu, Minghao; Cheng, Xinyu; Zeng, Yinxiang; Wang, Zilong; Tong, Yexiang; Lu, Xihong; Yang, Shihe

    2016-06-01

    A novel in situ N and low-valence-state Mo dual doping strategy was employed to significantly improve the conductivity, active-site accessibility, and electrochemical stability of MoO3 , drastically boosting its electrochemical properties. Consequently, our optimized N-MoO3-x nanowires exhibited exceptional performances as a bifunctional anode material for both fiber-shaped asymmetric supercapacitors (ASCs) and microbial fuel cells (MFCs). The flexible fiber-shaped ASC and MFC device based on the N-MoO3-x anode could deliver an unprecedentedly high energy density of 2.29 mWh cm(-3) and a remarkable power density of 0.76 μW cm(-1) , respectively. Such a bifunctional fiber-shaped N-MoO3-x electrode opens the way to integrate the electricity generation and storage for self-powered sources.

  16. "Bis-Click" Ligation of DNA: Template-Controlled Assembly, Circularisation and Functionalisation with Bifunctional and Trifunctional Azides.

    Science.gov (United States)

    Yang, Haozhe; Seela, Frank

    2017-03-08

    Ligation and circularisation of oligonucleotides containing terminal triple bonds was performed with bifunctional or trifunctional azides. Both reactions are high yielding. Template-assisted bis-click ligation of two individual non-complementary oligonucleotide strands was accomplished to yield heterodimers exclusively. In this context, the template fulfils two functions: it accelerates the ligation reaction and controls product assembly (heterodimer vs. homodimer formation). Intermolecular bis-click circularisation of one oligonucleotide strand took place without template assistance. For construction of oligonucleotides with terminal triple bonds in the nucleobase side chain, 7- or 5-functionalised 7-deaza-dA and dU residues were used. These oligonucleotides are directly accessible by solid-phase synthesis. When trifunctional azides were employed instead of bifunctional linkers, functionalisation of the remaining azido group was performed with small molecules such as 1-ethynyl pyrene, biotin propargyl amide or with ethynylated oligonucleotides. By this means, branched DNA was constructed.

  17. Purification, crystallization and preliminary X-ray crystallographic analysis of rice bifunctional α-amylase/subtilisin inhibitor from Oryza sativa

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yi-Hung [Life Science Group, Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076,Taiwan (China); Peng, Wen-Yan [Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, Hsinchu 30013,Taiwan (China); Huang, Yen-Chieh [Life Science Group, Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076,Taiwan (China); Guan, Hong-Hsiang; Hsieh, Ying-Cheng [Life Science Group, Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076,Taiwan (China); Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, Hsinchu 30013,Taiwan (China); Liu, Ming-Yih [Life Science Group, Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076,Taiwan (China); Chang, Tschining [Department of Hospitality Management, Nan Jeon Institute of Technology, Yen-Shui, Tainan 73746,Taiwan (China); Chen, Chun-Jung, E-mail: cjchen@nsrrc.org.tw [Life Science Group, Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076,Taiwan (China); Department of Physics, National Tsing-Hua University, Hsinchu 30013,Taiwan (China)

    2006-08-01

    The crystallization of rice α-amylase/subtilisin bifunctional inhibitor is reported. Rice bifunctional α-amylase/subtilisin inhibitor (RASI) can inhibit both α-amylase from larvae of the red flour beetle (Tribolium castaneum) and subtilisin from Bacillus subtilis. The synthesis of RASI is up-regulated during the late milky stage in developing seeds. The 8.9 kDa molecular-weight RASI from rice has been crystallized using the hanging-drop vapour-diffusion method. According to 1.81 Å resolution X-ray diffraction data from rice RASI crystals, the crystal belongs to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 79.99, b = 62.95, c = 66.70 Å. Preliminary analysis indicates two RASI molecules in an asymmetric unit with a solvent content of 44%.

  18. A bifunctional palladium-acid solid catalyst performs the direct synthesis of cyclohexylanilines and dicyclohexylamines from nitrobenzenes

    OpenAIRE

    Rubio Marqués, Paula; Leyva Perez, Antonio; Corma Canós, Avelino

    2013-01-01

    Nitroderivatives are transformed to cyclohexylanilines at room temperature in good yields and selectivity via a hydrogenation-amine coupling cascade reaction using Pd nanoparticles on carbon as a catalyst and a Bronsted acid. Consolider-Ingenio MULTICAT subprograma de Apoyo a Centros y Universidades de Excelencia Severo Ochoa SEV 2012 0267 MICINN MAT2009-00889 FPU contract ITQ Rubio Marqués, P.; Leyva Perez, A.; Corma Canós, A. (2013). A bifunctional palladium-acid solid ca...

  19. Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application.

    Science.gov (United States)

    Chen, Zhu; Yu, Aiping; Higgins, Drew; Li, Hui; Wang, Haijiang; Chen, Zhongwei

    2012-04-11

    A new class of core-corona structured bifunctional catalyst (CCBC) consisting of lanthanum nickelate centers supporting nitrogen-doped carbon nanotubes (NCNT) has been developed for rechargeable metal-air battery application. The nanostructured design of the catalyst allows the core and corona to catalyze the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), respectively. These materials displayed exemplary OER and ORR activity through half-cell testing, comparable to state of the art commercial lanthanum nickelate (LaNiO(3)) and carbon-supported platinum (Pt/C), with added bifunctional capabilities allowing metal-air battery rechargeability. LaNiO(3) and Pt/C are currently the most accepted benchmark electrocatalyst materials for the OER and ORR, respectively; thus with comparable activity toward both of these reactions, CCBC are presented as a novel, inexpensive catalyst component for the cathode of rechargeable metal-air batteries. Moreover, after full-range degradation testing (FDT) CCBC retained excellent activity, retaining 3 and 13 times greater ORR and OER current upon comparison to state of the art Pt/C. Zinc-air battery performances of CCBC is in good agreement with the half-cell experiments with this bifunctional electrocatalyst displaying high activity and stability during battery discharge, charge, and cycling processes. Owing to its outstanding performance toward both the OER and ORR, comparable with the highest performing commercial catalysts to date for each of the respective reaction, coupled with high stability and rechargeability, CCBC is presented as a novel class of bifunctional catalyst material that is very applicable to future generation rechargeable metal-air batteries.

  20. Synergistic bifunctional catalyst design based on perovskite oxide nanoparticles and intertwined carbon nanotubes for rechargeable zinc-air battery applications.

    Science.gov (United States)

    Lee, Dong Un; Park, Hey Woong; Park, Moon Gyu; Ismayilov, Vugar; Chen, Zhongwei

    2015-01-14

    Advanced morphology of intertwined core-corona structured bifunctional catalyst (IT-CCBC) is introduced where perovskite lanthanum nickel oxide nanoparticles (LaNiO3 NP) are encapsulated by high surface area network of nitrogen-doped carbon nanotubes (NCNT) to produce highly active and durable bifunctional catalyst for rechargeable metal-air battery applications. The unique composite morphology of IT-CCBC not only enhances the charge transport property by providing rapid electron-conduction pathway but also facilitates in diffusion of hydroxyl and oxygen reactants through the highly porous framework. Confirmed by electrochemical half-cell testing, IT-CCBC in fact exhibits very strong synergy between LaNiO3 NP and NCNT demonstrating bifunctionality with significantly improved catalytic activities of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Furthermore, when compared to the state-of-art catalysts, IT-CCBC outperforms Pt/C and Ir/C in terms of ORR and OER, respectively, and shows improved electrochemical stability compared to them after cycle degradation testing. The practicality of the catalyst is corroborated by testing in a realistic rechargeable zinc-air battery utilizing atmospheric air in ambient conditions, where IT-CCBC demonstrates superior charge and discharge voltages and long-term cycle stability with virtually no battery voltage fading. These improved electrochemical properties of the catalyst are attributed to the nanosized dimensions of LaNiO3 NP controlled by simple hydrothermal technique, which enables prolific growth of and encapsulation by highly porous NCNT network. The excellent electrochemical results presented in this study highlight IT-CCBC as highly efficient and commercially viable bifunctional catalyst for rechargeable metal-air battery applications.

  1. L-Threonine-derived novel bifunctional phosphine-sulfonamide catalyst-promoted enantioselective aza-morita-Baylis-Hillman reaction

    KAUST Repository

    Zhong, Fangrui

    2011-03-18

    A series of novel bifunctional phosphine-sulfonamide organic catalysts were designed and readily prepared from natural amino acids, and they were utilized to promote enantioselective aza-Morita-Baylis-Hillman (MBH) reactions. l-Threonine-derived phosphine-sulfonamide 9b was found to be the most efficient catalyst, affording the desired aza-MBH adducts in high yields and with excellent enantioselectivities. © 2011 American Chemical Society.

  2. Bifunctional TiO2 Catalysts for Efficient Cr(Ⅵ) Photoreduction Under Solar Light Irradiation Without Addition of Acids

    Institute of Scientific and Technical Information of China (English)

    Fu-cheng Shi; Wen-dong Wang; Wei-xin Huang

    2012-01-01

    Bifunctional Ti02 photocatalysts co-doped with nitrogen and sulfur were prepared by the controlled thermal decomposition of ammonium titanyl sulfate precursor.They have both photocatalytic activity and Brφnsted acidity,and thus are active in the photoreduction of Cr(VI) under solar light irradiation without the addition of acids.The activity is superior to that of Degussa P25 in the acidified suspension at the same pH adjusted by H2SO4.

  3. Morphology-controlled growth of magnetic iron oxide components on gold nanoparticles as bi-functional agents

    OpenAIRE

    2015-01-01

    Summary form only given. Hybrid nanostructure can inherit the physiochemical properties of its individual components to realize its multi-functionality. The coupling of plasmonic effect of gold nanoparticles with magnetic properties of iron oxide nanoparticles has shown great promise as bi-functional agents allowing simultaneous magnetic resonance imaging (MRI)/computed tomography (CT) imaging and magnetic/photonic thermal therapy. However, since gold and iron oxide are two dissimilar materia...

  4. Bifunctional chimeric SuperCD suicide gene -YCD: YUPRT fusion is highly effective in a rat hepatoma model

    Institute of Scientific and Technical Information of China (English)

    Florian Graepler; Ulrike A Lauer; Reinhard Vonthein; Michael Gregor; Sorin Armeanu; Michael Bitzer; Ulrich M. Lauer; Marie-Luise Lemken; Wolfgang A Wybranietz; Ulrike Schmidt; Irina Smirnow; Christine D Groβ; Martin Spiegel; Andrea Schenk; Hansj(o)rg Graf

    2005-01-01

    AIM: To investigate the effects of catalytically superior gene-directed enzyme prodrug therapy systems on a rat hepatoma model.METHODS: To increase hepatoma cell chemosensitivity for the prodrug 5-fluorocytosine (5-FC), we generated a chimeric bifunctional SuperCD suicide gene, a fusion of the yeast cytosine deaminase (YCD) and the yeast uracil phosphoribosyltransferase (YUPRT) gene.RESULTS: In vitro stably transduced Morris rat hepatoma cells (MH) expressing the bifunctional SuperCD suicide gene (MH SuperCD) showed a clearly marked enhancement in cell killing when incubated with 5-FC as compared with MH ceils stably expressing YCD solely (MH YCD) or the cytosine deaminase gene of bacterial origin(MH BCD), respectively. In vivo, MH SuperCD tumors implanted both subcutaneously as well as orthotopically into the livers of syngeneic ACI rats demonstrated significant tumor regressions (P<0.01) under both high dose as well as low dose systemic 5-FC application,whereas MH tumors without transgene expression (MH naive) showed rapid progression. For the first time, an order of in vivo suicide gene effectiveness (SuperCD>>YCD > > BCD > > > negative control) was defi ned as a result of a directin vivo comparison of all three suicide genes.CONCLUSION: Bifunctional SuperCD suicide gene expression is highly effective in a rat hepatoma model,thereby significantly improving both the therapeutic index and the efficacy of hepatocellular carcinoma killing by fluorocytosine.

  5. Theoretical Study on Highly Active Bifunctional Metalloporphyrin Catalysts for the Coupling Reaction of Epoxides with Carbon Dioxide.

    Science.gov (United States)

    Hasegawa, Jun-Ya; Miyazaki, Ray; Maeda, Chihiro; Ema, Tadashi

    2016-10-01

    Highly active bifunctional metalloporphyrin catalysts were developed for the coupling reaction of epoxides with CO2 to produce cyclic carbonates. The bifunctional catalysts have both quaternary ammonium halide groups and a metal center. To elucidate the roles of these catalytic groups, DFT calculations were performed. Control reactions using tetrabutylammonium halide as a catalyst were also investigated for comparison. In the present article, the results of our computational studies are overviewed. The computational results are consistent with the experimental data and are useful for elucidating the structure-activity relationship. The key features responsible for the high catalytic activity of the bifunctional catalysts are as follows: 1) the cooperative action of the halide anion (nucleophile) and the metal center (Lewis acid); 2) the near-attack conformation, leading to the efficient opening of the epoxide ring in the rate-determining step; and 3) the conformational change of the quaternary ammonium cation to stabilize various anionic species generated during catalysis, in addition to the robustness (thermostability) of the catalysts.

  6. Molecular and biochemical characterization of bifunctional pyruvate decarboxylases and pyruvate ferredoxin oxidoreductases from Thermotoga maritima and Thermotoga hypogea.

    Science.gov (United States)

    Eram, Mohammad S; Wong, Alton; Oduaran, Erica; Ma, Kesen

    2015-12-01

    Hyperthermophilic bacteria Thermotoga maritima and Thermotoga hypogea produce ethanol as a metabolic end product, which is resulted from acetaldehyde reduction catalysed by an alcohol dehydrogenase (ADH). However, the enzyme that is involved in the production of acetaldehyde from pyruvate is not well characterized. An oxygen sensitive and coenzyme A-dependent pyruvate decarboxylase (PDC) activity was found to be present in cell free extracts of T. maritima and T. hypogea. Both enzymes were purified and found to have pyruvate ferredoxin oxidoreductase (POR) activity, indicating their bifunctionality. Both PDC and POR activities from each of the purified enzymes were characterized in regards to their optimal assay conditions including pH dependency, oxygen sensitivity, thermal stability, temperature dependency and kinetic parameters. The close relatedness of the PORs that was shown by sequence analysis could be an indication of the presence of such bifunctionality in other hyperthermophilic bacteria. This is the first report of a bifunctional PDC/POR enzyme in hyperthermophilic bacteria. The PDC and the previously reported ADHs are most likely the key enzymes catalysing the production of ethanol from pyruvate in bacterial hyperthermophiles.

  7. pH-Sensitive, N-ethoxybenzylimidazole (NEBI) bifunctional crosslinkers enable triggered release of therapeutics from drug delivery carriers.

    Science.gov (United States)

    Luong, Alice; Issarapanichkit, Tawny; Kong, Seong Deok; Fong, Rina; Yang, Jerry

    2010-11-21

    This paper presents a pH-sensitive bifunctional crosslinker that enables facile conjugation of small molecule therapeutics to macromolecular carriers for use in drug delivery systems. This N-ethoxybenzylimidazole (NEBI) bifunctional crosslinker was designed to exploit mildly acidic, subcellular environments to trigger the release of therapeutics upon internalization in cells. We demonstrate that an analog of doxorubicin (a representative example of an anticancer therapeutic) conjugated to human serum albumin (HSA, a representative example of a macromolecular carrier) via this NEBI crosslinker can internalize and localize into acidic lysosomes of ovarian cancer cells. Fluorescence imaging and cell viability studies demonstrate that the HSA-NEBI-doxorubicin conjugate exhibited improved uptake and cytotoxic activity compared to the unconjugated doxorubicin analog. The pH-sensitive NEBI group was also shown to be relatively stable to biologically-relevant metal Lewis acids and to serum proteins, supporting that these bifunctional crosslinkers may be useful for constructing drug delivery systems that will be stable in biological fluids such as blood.

  8. The Mycobacterium tuberculosis Rv2540c DNA sequence encodes a bifunctional chorismate synthase

    Directory of Open Access Journals (Sweden)

    Santos Diógenes S

    2008-04-01

    Full Text Available Abstract Background The emergence of multi- and extensively-drug resistant Mycobacterium tuberculosis strains has created an urgent need for new agents to treat tuberculosis (TB. The enzymes of shikimate pathway are attractive targets to the development of antitubercular agents because it is essential for M. tuberculosis and is absent from humans. Chorismate synthase (CS is the seventh enzyme of this route and catalyzes the NADH- and FMN-dependent synthesis of chorismate, a precursor of aromatic amino acids, naphthoquinones, menaquinones, and mycobactins. Although the M. tuberculosis Rv2540c (aroF sequence has been annotated to encode a chorismate synthase, there has been no report on its correct assignment and functional characterization of its protein product. Results In the present work, we describe DNA amplification of aroF-encoded CS from M. tuberculosis (MtCS, molecular cloning, protein expression, and purification to homogeneity. N-terminal amino acid sequencing, mass spectrometry and gel filtration chromatography were employed to determine identity, subunit molecular weight and oligomeric state in solution of homogeneous recombinant MtCS. The bifunctionality of MtCS was determined by measurements of both chorismate synthase and NADH:FMN oxidoreductase activities. The flavin reductase activity was characterized, showing the existence of a complex between FMNox and MtCS. FMNox and NADH equilibrium binding was measured. Primary deuterium, solvent and multiple kinetic isotope effects are described and suggest distinct steps for hydride and proton transfers, with the former being more rate-limiting. Conclusion This is the first report showing that a bacterial CS is bifunctional. Primary deuterium kinetic isotope effects show that C4-proS hydrogen is being transferred during the reduction of FMNox by NADH and that hydride transfer contributes significantly to the rate-limiting step of FMN reduction reaction. Solvent kinetic isotope effects and

  9. Highly Active and Durable Nanocrystal-Decorated Bifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries.

    Science.gov (United States)

    Lee, Dong Un; Park, Moon Gyu; Park, Hey Woong; Seo, Min Ho; Wang, Xiaolei; Chen, Zhongwei

    2015-09-21

    A highly active and durable bifunctional electrocatalyst that consists of cobalt oxide nanocrystals (Co3 O4 NC) decorated on the surface of N-doped carbon nanotubes (N-CNT) is introduced as effective electrode material for electrically rechargeable zinc-air batteries. This active hybrid catalyst is synthesized by a facile surfactant-assisted method to produce Co3 O4 NC that are then decorated on the surface of N-CNT through hydrophobic attraction. Confirmed by half-cell testing, Co3 O4 NC/N-CNT demonstrates superior oxygen reduction and oxygen evolution catalytic activities and has a superior electrochemical stability compared to Pt/C and Ir/C. Furthermore, rechargeable zinc-air battery testing of Co3 O4 NC/N-CNT reveals superior galvanodynamic charge and discharge voltages with a significantly extended cycle life of over 100 h, which suggests its potential as a replacement for precious-metal-based catalysts for electric vehicles and grid energy storage applications.

  10. Enhanced phytoremediation of toxic metals by inoculating endophytic Enterobacter sp. CBSB1 expressing bifunctional glutathione synthase.

    Science.gov (United States)

    Qiu, Zhiqi; Tan, Hongming; Zhou, Shining; Cao, Lixiang

    2014-02-28

    To engineer plant-bacteria symbionts for remediating complex sites contaminated with multiple metals, the bifunctional glutathione (GSH) synthase gene gcsgs was introduced into endophytic Enterobacter sp. CBSB1 to improve phytoremediation efficiency of host plant Brassica juncea. The GSH contents of shoots inoculated with CBSB1 is 0.4μMg(-1) fresh weight. However, the GSH concentration of shoots with engineered CBSB1-GCSGS increased to 0.7μMg(-1) fresh weight. The shoot length, fresh weight and dry weight of seedlings inoculated with CBSB1-GCSGS increased 67%, 123%, and 160%, compared with seedlings without inoculation, respectively. The Cd and Pb concentration in shoots with CBSB1-GCSGS increased 48% and 59% compared with seedlings without inoculation, respectively. The inoculation of CBSB1 and CBSB1-GCSGS could increase the Cd and Pb extraction amounts of seedlings significantly compared with those without inoculation (PEnterobacter sp. CBSB1 upgraded the phytoremediation efficacy of B. juncea. So the engineered Enterobacter sp. CBSB1-GCSGS showed potentials in remediation sites contaminated with complex contaminants by inoculating into remediating plants.

  11. Development of a spectroscopic assay for bifunctional ligand-protein conjugates based on copper

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Erik D. E-mail: bradye@mail.nih.gov; Chong, Hyun-Soon; Milenic, Diane E.; Brechbiel, Martin W

    2004-08-01

    A simple, non-radioactive method for the determination of ligand-to-protein ratio (L/P) for novel ligand-antibody conjugates has been developed based on an exchange equilibrium with the purple Cu(II) complex of arsenazo III. The method requires a UV/Vis spectrometer and has been verified for monoclonal antibody Herceptin conjugates of a variety of ligand modalities, including common macrocyclic compounds NOTA and TETA, and with a new bifunctional tachpyridine (1H-Pyrrole-1-butanamide,N-[4-[[(1{alpha},3{alpha},5{alpha})-3,5-bis[(2-pyridi= nylmethyl) amino]cyclohexyl](2-pyridinylmethyl)amino]butyl]-2,5-dihydro-2, 5-dioxo-(9CI)). The spectroscopically derived values for L/P were verified by titration of the ligand-antibody conjugate with {sup 64}Cu. In each case, the value obtained by UV/Vis spectroscopy matches that found by radiolabeling. The method is rapid, taking less than 30 minutes with each ligand in this study.

  12. Colorimetric and luminescent bifunctional iridium(III) complexes for the sensitive recognition of cyanide ions

    Science.gov (United States)

    Chen, Xiudan; Wang, Huili; Li, Jing; Hu, Wenqin; Li, Mei-Jin

    2017-02-01

    Two new cyclometalated iridium(III) complexes [(ppy)2Irppz]Cl (1) and [(ppy)2Irbppz]Cl (2) (where ppy = 2-phenylpyridine, ppz = 4,7-phenanthrolino-5,6:5,6-pyrazine, bppz = 2.3-di-2-pyridylpyrazine), were designed and synthesized. The structure of [(ppy)2Irppz]Cl was determined by single crystal X-ray diffraction. Their photophysical properties were also studied. This kind of complexes could coordinate with Cu2 +, the photoluminescence (PL) of the complex was quenched, and the color changed from orange-red to green. The forming M-Cu (M: complexes 1 and 2) ensemble could be further utilized as a colorimetric and emission "turn-on" bifunctional detection for CN-, especially for complex 1-Cu2 + showed a high sensitivity toward CN- with a limit of diction is 97 nM. Importantly, this kind of iridium(III) complexes shows a unique recognition of cyanide ions over other anions which makes it an eligible sensing probe for cyanide ions.

  13. Bifunctional redox flow battery - 2. V(III)/V(II)-L-cystine(O{sub 2}) system

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Y.H.; Xun, Y. [Research Institute of Chemical Defense, Beijing 100083 (China); Cheng, J.; Yang, Y.S. [Research Institute of Chemical Defense, Beijing 100083 (China); Beijing Science and Technology University, Beijing 100083 (China); Ma, P.H. [Full Cell R and D Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China)

    2008-08-20

    A new bifunctional redox flow battery (BRFB) system, V(III)/V(II) - L-cystine(O{sub 2}), was systematically investigated by using different separators. It is shown that during charge, water transfer is significantly restricted with increasing the concentration of HBr when the Nafion 115 cation exchange membrane is employed. The same result can be obtained when the gas diffusion layer (GDL) hot-pressed separator is used. The organic electro-synthesis is directly correlated with the crossover of vanadium. When employing the anion exchange membrane, the electro-synthesis efficiency is over 96% due to a minimal crossover of vanadium. When the GDL hot-pressed separator is applied, the crossover of vanadium and water transfer are noticeably prevented and the electro-synthesis efficiency of over 99% is obtained. Those impurities such as vanadium ions and bromine can be eliminated through the purification of organic electro-synthesized products. The purified product is identified to be L-cysteic acid by IR spectrum. The BRFB shows a favorable discharge performance at a current density of 20 mA cm{sup -2}. Best discharge performance is achieved by using the GDL hot-pressed separator. The coulombic efficiency of 87% and energy efficiency of about 58% can be obtained. The cause of major energy losses is mainly associated with the cross-contamination of anodic and cathodic active electrolytes. (author)

  14. Heterozygous mutations in HSD17B4 cause juvenile peroxisomal D-bifunctional protein deficiency

    Science.gov (United States)

    Amor, David J.; Marsh, Ashley P.L.; Storey, Elsdon; Tankard, Rick; Gillies, Greta; Delatycki, Martin B.; Pope, Kate; Bromhead, Catherine; Leventer, Richard J.; Bahlo, Melanie

    2016-01-01

    Objective: To determine the genetic cause of slowly progressive cerebellar ataxia, sensorineural deafness, and hypergonadotropic hypogonadism in 5 patients from 3 different families. Methods: The patients comprised 2 sib pairs and 1 sporadic patient. Clinical assessment included history, physical examination, and brain MRI. Linkage analysis was performed separately on the 2 sets of sib pairs using single nucleotide polymorphism microarrays, followed by analysis of the intersection of the regions. Exome sequencing was performed on 1 affected patient with variant filtering and prioritization undertaken using these intersected regions. Results: Using a combination of sequencing technologies, we identified compound heterozygous mutations in HSD17B4 in all 5 affected patients. In all 3 families, peroxisomal D-bifunctional protein (DBP) deficiency was caused by compound heterozygosity for 1 nonsense/deletion mutation and 1 missense mutation. Conclusions: We describe 5 patients with juvenile DBP deficiency from 3 different families, bringing the total number of reported patients to 14, from 8 families. This report broadens and consolidates the phenotype associated with juvenile DBP deficiency.

  15. Highly stable acyclic bifunctional chelator for {sup 64}Cu PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Abada, S.; Lecointre, A.; Christine, C.; Charbonniere, L. [CNRS/UDS, EPCM, Strasbourg (France). Lab. d' Ingenierie Appliquee a l' Analyse; Dechamps-Olivier, I. [Univ. de Reims Champagne Ardenne, Reims (France). Group Chimie de Coordination; Platas-Iglesias, C. [Univ. da Coruna (Spain). Dept. de Quimica Fundamental; Elhabiri, M. [CNRS/UDS, EPCM, Strasbourg (France). Lab. de Physico-Chimie Bioinorganique

    2011-07-01

    Ligand L{sup 1}, based on a pyridine scaffold, functionalized by two bis(methane phosphonate)aminomethyl groups, was shown to display a very high affinity towards Cu(II) (log K{sub CuL}=22.7) and selectivity over Ni(II), Co(II), Zn(II) and Ga(III) ({delta} log K{sub ML}>4) as shown by the values of the stability constants obtained from potentiometric measurements. Insights into the coordination mode of the ligand around Cu(II) cation were obtained by UV-Vis absorption and EPR spectroscopies as well as density functional theory (DFT) calculations (B3LYP model) performed in aqueous solution. The results point to a pentacoordination pattern of the metal ion in the fully deprotonated [CuL{sup 1}]{sup 6-} species. Considering the beneficial thermodynamic parameters of this ligand, kinetic experiments were run to follow the formation of the copper(II) complexes, indicating a very rapid formation of the complex, appropriate for {sup 64}Cu complexation. As L{sup 1} represents a particularly interesting target within the frame of {sup 64}Cu PET imaging, a synthetic protocol was developed to introduce a labeling function on the pyridyl moiety of L{sup 1}, thereby affording L{sup 2}, a potential bifunctional chelator (BFC) for PET imaging.

  16. Structure of a bifunctional alcohol dehydrogenase involved in bioethanol generation in Geobacillus thermoglucosidasius.

    Science.gov (United States)

    Extance, Jonathan; Crennell, Susan J; Eley, Kirstin; Cripps, Roger; Hough, David W; Danson, Michael J

    2013-10-01

    Bifunctional alcohol/aldehyde dehydrogenase (ADHE) enzymes are found within many fermentative microorganisms. They catalyse the conversion of an acyl-coenzyme A to an alcohol via an aldehyde intermediate; this is coupled to the oxidation of two NADH molecules to maintain the NAD(+) pool during fermentative metabolism. The structure of the alcohol dehydrogenase (ADH) domain of an ADHE protein from the ethanol-producing thermophile Geobacillus thermoglucosidasius has been determined to 2.5 Å resolution. This is the first structure to be reported for such a domain. In silico modelling has been carried out to generate a homology model of the aldehyde dehydrogenase domain, and this was subsequently docked with the ADH-domain structure to model the structure of the complete ADHE protein. This model suggests, for the first time, a structural mechanism for the formation of the large multimeric assemblies or `spirosomes' that are observed for this ADHE protein and which have previously been reported for ADHEs from other organisms.

  17. The Golgi localized bifunctional UDP-rhamnose/UDP-galactose transporter family of Arabidopsis.

    Science.gov (United States)

    Rautengarten, Carsten; Ebert, Berit; Moreno, Ignacio; Temple, Henry; Herter, Thomas; Link, Bruce; Doñas-Cofré, Daniela; Moreno, Adrián; Saéz-Aguayo, Susana; Blanco, Francisca; Mortimer, Jennifer C; Schultink, Alex; Reiter, Wolf-Dieter; Dupree, Paul; Pauly, Markus; Heazlewood, Joshua L; Scheller, Henrik V; Orellana, Ariel

    2014-08-05

    Plant cells are surrounded by a cell wall that plays a key role in plant growth, structural integrity, and defense. The cell wall is a complex and diverse structure that is mainly composed of polysaccharides. The majority of noncellulosic cell wall polysaccharides are produced in the Golgi apparatus from nucleotide sugars that are predominantly synthesized in the cytosol. The transport of these nucleotide sugars from the cytosol into the Golgi lumen is a critical process for cell wall biosynthesis and is mediated by a family of nucleotide sugar transporters (NSTs). Numerous studies have sought to characterize substrate-specific transport by NSTs; however, the availability of certain substrates and a lack of robust methods have proven problematic. Consequently, we have developed a novel approach that combines reconstitution of NSTs into liposomes and the subsequent assessment of nucleotide sugar uptake by mass spectrometry. To address the limitation of substrate availability, we also developed a two-step reaction for the enzymatic synthesis of UDP-l-rhamnose (Rha) by expressing the two active domains of the Arabidopsis UDP-l-Rha synthase. The liposome approach and the newly synthesized substrates were used to analyze a clade of Arabidopsis NSTs, resulting in the identification and characterization of six bifunctional UDP-l-Rha/UDP-d-galactose (Gal) transporters (URGTs). Further analysis of loss-of-function and overexpression plants for two of these URGTs supported their roles in the transport of UDP-l-Rha and UDP-d-Gal for matrix polysaccharide biosynthesis.

  18. Synthesis, Characterization, and in Vitro Evaluation of a New TSPO-Selective Bifunctional Chelate Ligand.

    Science.gov (United States)

    Denora, Nunzio; Margiotta, Nicola; Laquintana, Valentino; Lopedota, Angela; Cutrignelli, Annalisa; Losacco, Maurizio; Franco, Massimo; Natile, Giovanni

    2014-06-12

    The 18-kDa translocator protein (TSPO) is overexpressed in many types of cancers and is also abundant in activated microglial cells occurring in inflammatory neurodegenerative diseases. Thus, TSPO has become an extremely attractive subcellular target not only for imaging disease states overexpressing this protein, but also for a selective mitochondrial drug delivery. In this work we report the synthesis, the characterization, and the in vitro evaluation of a new TSPO-selective ligand, 2-(8-(2-(bis(pyridin-2-yl)methyl)amino)acetamido)-2-(4-chlorophenyl)H-imidazo[1,2-a]pyridin-3-yl)-N,N-dipropylacetamide (CB256), which fulfils the requirements for a bifunctional chelate approach. The goal was to provide a new TSPO ligand that could be used further to prepare coordination complexes of a metallo drug to be used in diagnosis and therapy. However, the ligand itself proved to be a potent tumor cell growth inhibitor and DNA double-strand breaker.

  19. Site-specific conjugation of bifunctional chelator BAT to mouse IgG1 Fab' fragment

    Institute of Scientific and Technical Information of China (English)

    Jun LI; Xue-hao WANG; Xiao-ming WANG; Zhao-lai CHEN

    2006-01-01

    Aim: To perform a site-specific conjugation of Fab' fragments of a mouse monoclonal antibody(MoAb) B43(of IgG1 subtype) to a bifunctional chelator 6-[p-(bromoacetamido) benzyl]-l,4,8,11-tetraazacyclotetradecane-N,N',N",N'"-tetraacetic acid (BAT) via the thiol groups in the hinge distal to the antigenbinding site of the Fab'. Methods: B43 was cleaved using a simple 2-step method.First, stable F(ab')2 was produced by pepsin treatment. Fab' with free thiol in the hinge region was then obtained by cysteine reduction of F(ab')2. Second, a sitespecific conjugation of Fab' to thiol-specific BAT was performed in a one-step reaction. Results: The Fab' fragment had approximately 1.8 free thiol groups per molecule after cysteine reduction. The conjugation efficiency and the chemical yield were approximately 1.28 moles chelator/Fab' and 74% of the initial concentration of Fab', respectively. The F(ab')2, Fab' and Fab'-BAT all maintained reasonable antigen-binding properties. 67Cu labeling of the conjugate under standard conditions did not impair the immunoreactivity of Fab'-BAT. Conclusion: This is a simple and efficient method for producing immunoreactive conjugates of Fab'-BAT, which can be used to make radiometal-labeled conjugates for further diagnostic and therapeutic applications.

  20. Catalytic characterization of bi-functional catalysts derived from Pd–Mg–Al layered double hydroxides

    Indian Academy of Sciences (India)

    N N Das; S C Srivastava

    2002-08-01

    Hydrotalcite like precursors containing PdII–MgII–AlIII with varying molar ratios, (Pd + Mg)/Al ≈ 3 and Mg/Pd ≈ 750 to 35, were prepared by coprecipitation of metal nitrates at constant pH. Characterization of samples as synthesized and their calcined products by elemental analyses, powder XRD, TG–DTA, FT–IR spectroscopy, TPR and N2 physisorption indicated a well crystalline hydrotalcite like structure with incorporation of Pd2+ in the brucite layers. Thermal decomposition of hydrotalcite precursors at intermediate temperatures led to amorphous mixed oxides, Pd/MgAl(O), which on reduction yielded bi-functional catalyst, Pd°/MgAl(O). The resultant catalysts with acid, base and hydrogenating sites, were highly active and selective for one-step synthesis of methyl isobutyl ketone (MIBK) from acetone and hydrogen. The results showed an optimal balance between acid-base and metallic sites were required to increase the selectivity of MIBK and stability of the catalysts.

  1. Designing calcium phosphate-based bifunctional nanocapsules with bone-targeting properties

    Energy Technology Data Exchange (ETDEWEB)

    Khung, Yit-Lung; Bastari, Kelsen; Cho, Xing Ling; Yee, Wu Aik; Loo, Say Chye Joachim, E-mail: joachimloo@ntu.edu.sg [Nanyang Technological University, School of Materials Science and Engineering (Singapore)

    2012-06-15

    Using sodium dodecyl sulphate micelles as template, hollow-cored calcium phosphate nanocapsules were produced. The surfaces of the nanocapsule were subsequently silanised by a polyethylene glycol (PEG)-based silane with an N-hydroxysuccinimide ester end groups which permits for further attachment with bisphosphonates (BP). Characterisations of these nanocapsules were investigated using Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy, Fourier Transform Infra-Red Spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Dynamic Light Scattering. To further validate the bone-targeting potential, dentine discs were incubated with these functionalised nanocapsules. FESEM analysis showed that these surface-modified nanocapsules would bind strongly to dentine surfaces compared to non-functionalised nanocapsules. We envisage that respective components would give this construct a bifunctional attribute, whereby (1) the shell of the calcium phosphate nanocapsule would serve as biocompatible coating aiding in gradual osteoconduction, while (2) surface BP moieties, acting as targeting ligands, would provide the bone-targeting potential of these calcium phosphate nanocapsules.

  2. Evolution of the Bifunctional Lead μ Agonist / δ Antagonist Containing the Dmt-Tic Opioid Pharmacophore.

    Science.gov (United States)

    Balboni, Gianfranco; Salvadori, Severo; Trapella, Claudio; Knapp, Brian I; Bidlack, Jean M; Lazarus, Lawrence H; Peng, Xuemei; Neumeyer, John L

    2010-02-17

    Based on a renewed importance recently attributed to bi- or multifunctional opioids, we report the synthesis and pharmacological evaluation of some analogues derived from our lead μ agonist / δ antagonist, H-Dmt-Tic-Gly-NH-Bzl. Our previous studies focused on the importance of the C-teminal benzyl function in the induction of such bifunctional activity. The introduction of some substituents in the para position of the phenyl ring (-Cl, -CH(3), partially -NO(2), inactive -NH(2)) was found to give a more potent μ agonist / antagonist effect associated with a relatively unmodified δ antagonist activity (pA(2) = 8.28-9.02). Increasing the steric hindrance of the benzyl group (using diphenylmethyl and tetrahydroisoquinoline functionalities) substantially maintained the μ agonist and δ antagonist activities of the lead compound. Finally and quite unexpectedly D-Tic2, considered as a wrong opioid message now; inserted into the reference compound in lieu of L-Tic, provided a μ agonist / δ agonist better than our reference ligand (H-Dmt-Tic-Gly-NH-Ph) and was endowed with the same pharmacological profile.

  3. Bifunctional apoptosis inhibitor (BAR) protects neurons from diverse cell death pathways.

    Science.gov (United States)

    Roth, W; Kermer, P; Krajewska, M; Welsh, K; Davis, S; Krajewski, S; Reed, J C

    2003-10-01

    The bifunctional apoptosis regulator (BAR) is a multidomain protein that was originally identified as an inhibitor of Bax-induced apoptosis. Immunoblot analysis of normal human tissues demonstrated high BAR expression in the brain, compared to low or absent expression in other organs. Immunohistochemical staining of human adult tissues revealed that the BAR protein is predominantly expressed by neurons in the central nervous system. Immunofluorescence microscopy indicated that BAR localizes mainly to the endoplasmic reticulum (ER) of cells. Overexpression of BAR in CSM 14.1 neuronal cells resulted in significant protection from a broad range of cell death stimuli, including agents that activate apoptotic pathways involving mitochondria, TNF-family death receptors, and ER stress. Downregulation of BAR by antisense oligonucleotides sensitized neuronal cells to induction of apoptosis. Moreover, the search for novel interaction partners of BAR identified several candidate proteins that might contribute to the regulation of neuronal apoptosis (HIP1, Hippi, and Bap31). Taken together, the expression pattern and functional data suggest that the BAR protein is involved in the regulation of neuronal survival.

  4. Employing bifunctional enzymes for enhanced extraction of bioactives from plants: flavonoids as an example.

    Science.gov (United States)

    Xu, Ming-Shu; Chen, Shuo; Wang, Wen-Quan; Liu, Si-Qin

    2013-08-21

    A cost-effective and environmentally friendly approach was developed to improve the extraction of active ingredients from plants, in which a bifunctional enzyme was employed for not only facilitating cell wall degradation but also increasing the bioactivity of target compounds in the extract. In the aqueous extraction of flavonoids from Glycyrrhizae radix, Trichoderma viride cellulase, a commercial cell-wall-degrading enzyme, was found to efficiently deglycosylate liquiritin and isoliquiritin, which are of high content but low bioactivity, into their aglycones that have much higher physiological activities for dietary and medicinal uses. Under optimized conditions, the extraction yield of liquiritigenin and isoliquiritigenin aglycones reached 4.23 and 0.39 mg/g of dry weight (dw) with 6.51- and 3.55-fold increases, respectively. The same approach was expanded to the extraction of flavonoids from Scutellariae radix using Penicillium decumbens naringinase, where enhanced production of more bioactive bacalein and wogonin was achieved via enzymatic deglycosylation of bacalin and wogonoside.

  5. Characterization of a bifunctional glyoxylate cycle enzyme, malate synthase/isocitrate lyase, of Euglena gracilis.

    Science.gov (United States)

    Nakazawa, Masami; Nishimura, Masaaki; Inoue, Kengo; Ueda, Mitsuhiro; Inui, Hiroshi; Nakano, Yoshihisa; Miyatake, Kazutaka

    2011-01-01

    The glyoxylate cycle is a modified form of the tricarboxylic acid cycle, which enables organisms to synthesize carbohydrates from C2 compounds. In the protozoan Euglena gracilis, the key enzyme activities of the glyoxylate cycle, isocitrate lyase (ICL) and malate synthase (MS), are conferred by a single bifunctional protein named glyoxylate cycle enzyme (Euglena gracilis glyoxylate cycle enzyme [EgGCE]). We analyzed the enzymatic properties of recombinant EgGCE to determine the functions of its different domains. The 62-kDa N-terminal domain of EgGCE was sufficient to provide the MS activity as expected from an analysis of the deduced amino acid sequence. In contrast, expression of the 67-kDa C-terminal domain of EgGCE failed to yield ICL activity even though this domain was structurally similar to ICL family enzymes. Analyses of truncation mutants suggested that the N-terminal residues of EgGCE are critical for both the ICL and MS activities. The ICL activity of EgGCE increased in the presence of micro-molar concentrations of acetyl-coenzyme A (CoA). Acetyl-CoA also increased the activity in a mutant type EgGCE with a mutation at the acetyl-CoA binding site in the MS domain of EgGCE. This suggests that acetyl-CoA regulates the ICL reaction by binding to a site other than the catalytic center of the MS reaction.

  6. Bifunctional Luminomagnetic Rare-Earth Nanorods for High-Contrast Bioimaging Nanoprobes

    Science.gov (United States)

    Gupta, Bipin Kumar; Singh, Satbir; Kumar, Pawan; Lee, Yean; Kedawat, Garima; Narayanan, Tharangattu N.; Vithayathil, Sajna Antony; Ge, Liehui; Zhan, Xiaobo; Gupta, Sarika; Martí, Angel A.; Vajtai, Robert; Ajayan, Pulickel M.; Kaipparettu, Benny Abraham

    2016-09-01

    Nanoparticles exhibiting both magnetic and luminescent properties are need of the hour for many biological applications. A single compound exhibiting this combination of properties is uncommon. Herein, we report a strategy to synthesize a bifunctional luminomagnetic Gd2‑xEuxO3 (x = 0.05 to 0.5) nanorod, with a diameter of ~20 nm and length in ~0.6 μm, using hydrothermal method. Gd2O3:Eu3+ nanorods have been characterized by studying its structural, optical and magnetic properties. The advantage offered by photoluminescent imaging with Gd2O3:Eu3+ nanorods is that this ultrafine nanorod material exhibits hypersensitive intense red emission (610 nm) with good brightness (quantum yield more than 90%), which is an essential parameter for high-contrast bioimaging, especially for overcoming auto fluorescent background. The utility of luminomagnetic nanorods for biological applications in high-contrast cell imaging capability and cell toxicity to image two human breast cancer cell lines T47D and MDA-MB-231 are also evaluated. Additionally, to understand the significance of shape of the nanostructure, the photoluminescence and paramagnetic characteristic of Gd2O3:Eu3+ nanorods were compared with the spherical nanoparticles of Gd2O3:Eu3+.

  7. The rigid bi-functional sail, new concept concerning the reduction of the drag of ships

    Science.gov (United States)

    Țicu, I.; Popa, I.; Ristea, M.

    2015-11-01

    The policy of the European Union in the energy field, for the period to follow until 2020, is based on three fundamental objectives: sustainability, competitiveness and safety in energy supply. The “Energy - Climate Changes” program sets out a number of objectives for the EU for the year 2020, known as the “20-20-20 objectives”, namely: the reduction of greenhouse gas emissions by at least 20% from the level of those of 1990, a 20% increase in the share of renewable energy sources out of the total energy consumption as well as a target of 10% biofuels in the transports energy consumption. In this context, in order to produce or save a part of the propulsive power produced by the main propulsion machinery, by burning fossil fuels, we suggest the equipping of vessels designed for maritime transport with a bi-functional rigid sail. We consider that this device may have both the role of trapping wind energy and the role of acting as a deflector for reducing the resistance of the vessel's proceeding through the water by conveniently using the bow air current, as a result of the vessel's heading through the water with significant advantage in reducing the energy consumption for propulsion insurance.

  8. Bifunctional compounds for controlling metal-mediated aggregation of the aβ42 peptide.

    Science.gov (United States)

    Sharma, Anuj K; Pavlova, Stephanie T; Kim, Jaekwang; Finkelstein, Darren; Hawco, Nicholas J; Rath, Nigam P; Kim, Jungsu; Mirica, Liviu M

    2012-04-18

    Abnormal interactions of Cu and Zn ions with the amyloid β (Aβ) peptide are proposed to play an important role in the pathogenesis of Alzheimer's disease (AD). Disruption of these metal-peptide interactions using chemical agents holds considerable promise as a therapeutic strategy to combat this incurable disease. Reported herein are two bifunctional compounds (BFCs) L1 and L2 that contain both amyloid-binding and metal-chelating molecular motifs. Both L1 and L2 exhibit high stability constants for Cu(2+) and Zn(2+) and thus are good chelators for these metal ions. In addition, L1 and L2 show strong affinity toward Aβ species. Both compounds are efficient inhibitors of the metal-mediated aggregation of the Aβ(42) peptide and promote disaggregation of amyloid fibrils, as observed by ThT fluorescence, native gel electrophoresis/Western blotting, and transmission electron microscopy (TEM). Interestingly, the formation of soluble Aβ(42) oligomers in the presence of metal ions and BFCs leads to an increased cellular toxicity. These results suggest that for the Aβ(42) peptide-in contrast to the Aβ(40) peptide-the previously employed strategy of inhibiting Aβ aggregation and promoting amyloid fibril dissagregation may not be optimal for the development of potential AD therapeutics, due to formation of neurotoxic soluble Aβ(42) oligomers.

  9. Structure and Function of Fusicoccadiene Synthase, a Hexameric Bifunctional Diterpene Synthase.

    Science.gov (United States)

    Chen, Mengbin; Chou, Wayne K W; Toyomasu, Tomonobu; Cane, David E; Christianson, David W

    2016-04-15

    Fusicoccin A is a diterpene glucoside phytotoxin generated by the fungal pathogen Phomopsis amygdali that causes the plant disease constriction canker, first discovered in New Jersey peach orchards in the 1930s. Fusicoccin A is also an emerging new lead in cancer chemotherapy. The hydrocarbon precursor of fusicoccin A is the tricyclic diterpene fusicoccadiene, which is generated by a bifunctional terpenoid synthase. Here, we report X-ray crystal structures of the individual catalytic domains of fusicoccadiene synthase: the C-terminal domain is a chain elongation enzyme that generates geranylgeranyl diphosphate, and the N-terminal domain catalyzes the cyclization of geranylgeranyl diphosphate to form fusicoccadiene. Crystal structures of each domain complexed with bisphosphonate substrate analogues suggest that three metal ions and three positively charged amino acid side chains trigger substrate ionization in each active site. While in vitro incubations reveal that the cyclase domain can utilize farnesyl diphosphate and geranyl diphosphate as surrogate substrates, these shorter isoprenoid diphosphates are mainly converted into acyclic alcohol or hydrocarbon products. Gel filtration chromatography and analytical ultracentrifugation experiments indicate that full-length fusicoccadiene synthase adopts hexameric quaternary structure, and small-angle X-ray scattering data yield a well-defined molecular envelope illustrating a plausible model for hexamer assembly.

  10. Bifunctional separator as a polysulfide mediator for highly stable Li-S batteries

    KAUST Repository

    Abbas, Syed Ali

    2016-05-24

    The shuttling process involving lithium polysulfides is one of the major factors responsible for the degradation in capacity of lithium–sulfur batteries (LSBs). Herein, we demonstrate a novel and simple strategy—using a bifunctional separator, prepared by spraying poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) on pristine separator—to obtain long-cycle LSBs. The negatively charged SO3– groups present in PSS act as an electrostatic shield for soluble lithium polysulfides through mutual coulombic repulsion, whereas PEDOT provides chemical interactions with insoluble polysulfides (Li2S, Li2S2). The dual shielding effect can provide an efficient protection from the shuttling phenomenon by confining lithium polysulfides to the cathode side of the battery. Moreover, coating with PEDOT:PSS transforms the surface of the separator from hydrophobic to hydrophilic, thereby improving the electrochemical performance. We observed an ultralow decay of 0.0364% per cycle when we ran the battery for 1000 cycles at 0.25 C—far superior to that of the pristine separator and one of the lowest recorded values reported at a low current density. We examined the versatility of our separator by preparing a flexible battery that functioned well under various stress conditions; it displayed flawless performance. Accordingly, this economical and simple strategy appears to be an ideal platform for commercialization of LSBs.

  11. Mutations induced by monofunctional and bifunctional phosphoramide mustards in supF tRNA gene.

    Science.gov (United States)

    Mudipalli, A; Maccubbin, A E; Nadadur, S S; Struck, R F; Gurtoo, H L

    1997-11-19

    The relative mutagenicity, nature of the mutations and the sequence specificity of mutations induced by the bifunctional alkylating agent, phosphoramide mustard (PM) and a monofunctional derivative, dechloroethyl phosphoramide mustard (dePM), were analyzed by the Ames test and by an in vitro shuttle vector mutagenesis assay. Both PM and dePM increased the mutation frequency above background in either assay. However, on an equimolar basis, dePM was less mutagenic than PM. In the in vitro shuttle vector mutagenesis assay, sequencing demonstrated that about 40% of the mutant plasmids contained more than one mutation in the supF tRNA gene segment of the plasmid. About 70% of the mutations observed in dePM-treated plasmids were single base substitutions with A:T and G:C base pairs being mutated at equivalent rates. In contrast, only about 50% of the mutations observed in PM-treated plasmids were single base substitutions, 80% of which involved G:C base pairs. Single base deletions and insertions were found in approximately equal proportions with both compounds; however, these lesions were in greater abundance in PM-treated plasmids. Putative hot-spots for mutation in the supF tRNA gene included base pairs at position 102 and 110 for PM and positions 170 and 171 for dePM.

  12. Bifunctional Crosslinking Agents Enhance Anion Exchange Membrane Efficacy for Vanadium Redox Flow Batteries.

    Science.gov (United States)

    Wang, Wenpin; Xu, Min; Wang, Shubo; Xie, Xiaofeng; Lv, Yafei; Ramani, Vijay K

    2014-06-01

    A series of cross-linked fluorinated poly (aryl ether oxadiazole) membranes (FPAEOM) derivatized with imidazolium groups were prepared. Poly (N-vinylimidazole) (PVI) was used as the bifunctional cross-linking agent to: a) lower vanadium permeability, b) enhance dimensional stability, and c) concomitantly provide added ion exchange capacity in the resultant anion exchange membranes. At a molar ratio of PVI to FPAEOM of 1.5, the resultant membrane (FPAEOM-1.5 PVI) had an ion exchange capacity of 2.2 meq g-1, a vanadium permeability of 6.8×10-7 cm2 min-1, a water uptake of 68 wt.%, and an ionic conductivity of 22.0 mS cm-1, all at 25°C. Single cells prepared with the FPAEOM-1.5 PVI membrane exhibited a higher coulombic efficiency (> 92%) and energy efficiency (> 86%) after 40 test cycles in vanadium redox flow battery. The imidazolium cation showed high chemical stability in highly acidic and oxidizing vanadium solution as opposed to poor stability in alkaline solutions. Based on our DFT studies, this was attributed to the lower HOMO energy (-7.265 eV) of the HSO4- ion (compared to the OH- ion; -5.496 eV) and the larger HOMO-LUMO energy gap (6.394 eV) of dimethylimidazolium bisulfate ([DMIM] [HSO4]) as compared to [DMIM] [OH] (5.387 eV).

  13. Modification of a bi-functional diguanylate cyclase-phosphodiesterase to efficiently produce cyclic diguanylate monophosphate

    Directory of Open Access Journals (Sweden)

    Natasha M. Nesbitt

    2015-09-01

    Full Text Available Cyclic-diGMP is a bacterial messenger that regulates many physiological processes, including many attributed to pathogenicity. Bacteria synthesize cyclic-diGMP from GTP using diguanylate cyclases; its hydrolysis is catalyzed by phosphodiesterases. Here we report the over-expression and purification of a bi-functional diguanylate cyclase-phosphodiesterase from Agrobacterium vitis S4. Using homology modeling and primary structure alignment, we identify several amino acids predicted to participate in the phosphodiesterase reaction. Upon altering selected residues, we obtain variants of the enzyme that efficiently and quantitatively catalyze the synthesis of cyclic-diGMP from GTP without hydrolysis to pGpG. Additionally, we identify a variant that produces cyclic-diGMP while immobilized to NiNTA beads and can catalyze the conversion of [α-32P]-GTP to [32P]-cyclic-diGMP. In short, we characterize a novel cyclic-diGMP processing enzyme and demonstrate its utility for efficient and cost-effective production of cyclic-diGMP, as well as modified cyclic-diGMP molecules, for use as probes in studying the many important biological processes mediated by cyclic-diGMP.

  14. Chrysanthemyl diphosphate synthase operates in planta as a bifunctional enzyme with chrysanthemol synthase activity.

    Science.gov (United States)

    Yang, Ting; Gao, Liping; Hu, Hao; Stoopen, Geert; Wang, Caiyun; Jongsma, Maarten A

    2014-12-26

    Chrysanthemyl diphosphate synthase (CDS) is the first pathway-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1'-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate (CPP). Three proteins are known to catalyze this cyclopropanation reaction of terpene precursors. Two of them, phytoene and squalene synthase, are bifunctional enzymes with both prenyltransferase and terpene synthase activity. CDS, the other member, has been reported to perform only the prenyltransferase step. Here we show that the NDXXD catalytic motif of CDS, under the lower substrate conditions prevalent in plants, also catalyzes the next step, converting CPP into chrysanthemol by hydrolyzing the diphosphate moiety. The enzymatic hydrolysis reaction followed conventional Michaelis-Menten kinetics, with a Km value for CPP of 196 μm. For the chrysanthemol synthase activity, DMAPP competed with CPP as substrate. The DMAPP concentration required for half-maximal activity to produce chrysanthemol was ∼100 μm, and significant substrate inhibition was observed at elevated DMAPP concentrations. The N-terminal peptide of CDS was identified as a plastid-targeting peptide. Transgenic tobacco plants overexpressing CDS emitted chrysanthemol at a rate of 0.12-0.16 μg h(-1) g(-1) fresh weight. We propose that CDS should be renamed a chrysanthemol synthase utilizing DMAPP as substrate.

  15. Bifunctional Inhibition of Human Immunodeficiency Virus Type 1 Reverse Transcriptase: Mechanism and Proof-of-Concept as a Novel Therapeutic Design Strategy

    Science.gov (United States)

    Bailey, Christopher M.; Sullivan, Todd J.; Iyidogan, Pinar; Tirado-Rives, Julian; Chung, Raymond; Ruiz-Caro, Juliana; Mohamed, Ebrahim; Jorgensen, William; Hunter, Roger; Anderson, Karen S.

    2013-01-01

    Human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) is a major target for currently approved anti-HIV drugs. These drugs are divided into two classes: nucleoside and non-nucleoside reverse transcriptase inhibitors (NRTIs and NNRTIs). This study illustrates the synthesis and biochemical evaluation of a novel bifunctional RT inhibitor utilizing d4T (NRTI) and a TMC-derivative (a diarylpyrimidine NNRTI) linked via a poly(ethylene glycol) (PEG) linker. HIV-1 RT successfully incorporates the triphosphate of d4T-4PEG-TMC bifunctional inhibitor in a base-specific manner. Moreover, this inhibitor demonstrates low nanomolar potency that has 4.3-fold and 4300-fold enhancement of polymerization inhibition in vitro relative to the parent TMC-derivative and d4T, respectively. This study serves as a proof-of-concept for the development and optimization of bifunctional RT inhibitors as potent inhibitors of HIV-1 viral replication. PMID:23659183

  16. A Brassica cDNA clone encoding a bifunctional hydroxymethylpyrimidine kinase/thiamin-phosphate pyrophosphorylase involved in thiamin biosynthesis.

    Science.gov (United States)

    Kim, Y S; Nosaka, K; Downs, D M; Kwak, J M; Park, D; Chung, I K; Nam, H G

    1998-08-01

    We report the characterization of a Brassica napus cDNA clone (pBTHI) encoding a protein (BTHI) with two enzymatic activities in the thiamin biosynthetic pathway, thiamin-phosphate pyrophosphorylase (TMP-PPase) and 2-methyl-4-amino-5-hydroxymethylpyrimidine-monophosphate kinase (HMP-P kinase). The cDNA clone was isolated by a novel functional complementation strategy employing an Escherichia coli mutant deficient in the TMP-PPase activity. A biochemical assay showed the clone to confer recovery of TMP-PPase activity in the E. coli mutant strain. The cDNA clone is 1746 bp long and contains an open reading frame encoding a peptide of 524 amino acids. The C-terminal part of BTH1 showed 53% and 59% sequence similarity to the N-terminal TMP-PPase region of the bifunctional yeast proteins Saccharomyces THI6 and Schizosaccharomyces pombe THI4, respectively. The N-terminal part of BTH1 showed 58% sequence similarity to HMP-P kinase of Salmonella typhimurium. The cDNA clone functionally complemented the S. typhimurium and E. coli thiD mutants deficient in the HMP-P kinase activity. These results show that the clone encodes a bifunctional protein with TMP-PPase at the C-terminus and HMP-P kinase at the N-terminus. This is in contrast to the yeast bifunctional proteins that encode TMP-PPase at the N-terminus and 4-methyl-5-(2-hydroxyethyl)thiazole kinase at the C-terminus. Expression of the BTH1 gene is negatively regulated by thiamin, as in the cases for the thiamin biosynthetic genes of microorganisms. This is the first report of a plant thiamin biosynthetic gene on which a specific biochemical activity is assigned. The Brassica BTH1 gene may correspond to the Arabidopsis TH-1 gene.

  17. Enzymatic 13C Labeling and Multidimensional NMR Analysis of Miltiradiene Synthesized by Bifunctional Diterpene Cyclase in Selaginella moellendorffii*

    Science.gov (United States)

    Sugai, Yoshinori; Ueno, Yohei; Hayashi, Ken-ichiro; Oogami, Shingo; Toyomasu, Tomonobu; Matsumoto, Sadamu; Natsume, Masahiro; Nozaki, Hiroshi; Kawaide, Hiroshi

    2011-01-01

    Diterpenes show diverse chemical structures and various physiological roles. The diversity of diterpene is primarily established by diterpene cyclases that catalyze a cyclization reaction to form the carbon skeleton of cyclic diterpene. Diterpene cyclases are divided into two types, monofunctional and bifunctional cyclases. Bifunctional diterpene cyclases (BDTCs) are involved in hormone and defense compound biosyntheses in bryophytes and gymnosperms, respectively. The BDTCs catalyze the successive two-step type-B (protonation-initiated cyclization) and type-A (ionization-initiated cyclization) reactions of geranylgeranyl diphosphate (GGDP). We found that the genome of a lycophyte, Selaginella moellendorffii, contains six BDTC genes with the majority being uncharacterized. The cDNA from S. moellendorffii encoding a BDTC-like enzyme, miltiradiene synthase (SmMDS), was cloned. The recombinant SmMDS converted GGDP to a diterpene hydrocarbon product with a molecular mass of 272 Da. Mutation in the type-B active motif of SmMDS abolished the cyclase activity, whereas (+)-copalyl diphosphate, the reaction intermediate from the conversion of GGDP to the hydrocarbon product, rescued the cyclase activity of the mutant to form a diterpene hydrocarbon. Another mutant lacking type-A activity accumulated copalyl diphosphate as the reaction intermediate. When the diterpene hydrocarbon was enzymatically synthesized from [U-13C6]mevalonate, all carbons were labeled with 13C stable isotope (>99%). The fully 13C-labeled product was subjected to 13C-13C COSY NMR spectroscopic analyses. The direct carbon-carbon connectivities observed in the multidimensional NMR spectra demonstrated that the hydrocarbon product by SmMDS is miltiradiene, a putative biosynthetic precursor of tanshinone identified from the Chinese medicinal herb Salvia miltiorrhiza. Hence, SmMDS functions as a bifunctional miltiradiene synthase in S. moellendorffii. In this study, we demonstrate that one-dimensional and

  18. Azidopropylvinylsulfonamide as a New Bifunctional Click Reagent for Bioorthogonal Conjugations: Application for DNA-Protein Cross-Linking.

    Science.gov (United States)

    Dadová, Jitka; Vrábel, Milan; Adámik, Matej; Brázdová, Marie; Pohl, Radek; Fojta, Miroslav; Hocek, Michal

    2015-11-01

    N-(3-Azidopropyl)vinylsulfonamide was developed as a new bifunctional bioconjugation reagent suitable for the cross-linking of biomolecules through copper(I)-catalyzed azide-alkyne cycloaddition and thiol Michael addition reactions under biorthogonal conditions. The reagent is easily clicked to an acetylene-containing DNA or protein and then reacts with cysteine-containing peptides or proteins to form covalent cross-links. Several examples of bioconjugations of ethynyl- or octadiynyl-modified DNA with peptides, p53 protein, or alkyne-modified human carbonic anhydrase with peptides are given.

  19. Opportunities and challenges in the electrocatalysis of CO2 and CO reduction using bifunctional surfaces

    DEFF Research Database (Denmark)

    Jovanov, Zarko; Hansen, Heine A.; Varela Gasque, Ana Sofia;

    2016-01-01

    "bifunctional" catalysts using Au-Cd based alloys inspired by theoretical modelling. Density functional theory calculations suggest more favourable thermodynamics for CO2 reduction to CO and methanol on mixed Au-Cd sites on Au3Cd relative to similar values on Au. We use various tools to test the bulk......Electrolysis could enable the large-scale conversion of CO2 to fuels and small molecules. This perspective discusses the state-of-the-art understanding of CO2 and CO reduction electrocatalysis and provides an overview of the most promising approaches undertaken thus far. We set to explore...

  20. Novel configuration of bifunctional air electrodes for rechargeable zinc-air batteries

    Science.gov (United States)

    Li, Po-Chieh; Chien, Yu-Ju; Hu, Chi-Chang

    2016-05-01

    A novel configuration of two electrodes containing electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) pressed into a bifunctional air electrode is designed for rechargeable Zn-air batteries. MOC/25BC carbon paper (MOC consisting of α-MnO2 and XC-72 carbon black) and Fe0.1Ni0.9Co2O4/Ti mesh on this air electrode mainly serve as the cathode for the ORR and the anode for the OER, respectively. The morphology and physicochemical properties of Fe0.1Ni0.9Co2O4 are investigated through scanning electron microscopy, inductively coupled plasma-mass spectrometry, and X-ray diffraction. Electrochemical studies comprise linear sweep voltammetry, rotating ring-disk electrode voltammetry, and the full-cell charge-discharge-cycling test. The discharge peak power density of the Zn-air battery with the unique air electrode reaches 88.8 mW cm-2 at 133.6 mA cm-2 and 0.66 V in an alkaline electrolyte under an ambient atmosphere. After 100 charge-discharge cycles at 10 mA cm-2, an increase of 0.3 V between charge and discharge cell voltages is observed. The deep charge-discharge curve (10 h in each step) indicates that the cell voltages of discharge (1.3 V) and charge (1.97 V) remain constant throughout the process. The performance of the proposed rechargeable Zn-air battery is superior to that of most other similar batteries reported in recent studies.

  1. Rice bifunctional phytocystatin is a dual modulator of legumain and papain-like proteases.

    Science.gov (United States)

    Christoff, Ana Paula; Passaia, Gisele; Salvati, Caroline; Alves-Ferreira, Márcio; Margis-Pinheiro, Marcia; Margis, Rogerio

    2016-09-01

    Phytocystatins are well-known inhibitors of C1A cysteine proteinases. However, previous research has revealed legumain (C13) protease inhibition via a carboxy-extended phytocystatin. Among the 12 phytocystatins genes in rice, OcXII is the only gene possessing this carboxy-terminal extension. The specific legumain inhibition activity was confirmed, in our work, using a recombinant OcXII harboring only the carboxy-terminal domain and this part did not exhibit any effect on papain-like activities. Meanwhile, rice plants silenced at the whole OcXII gene presented higher legumain and papain-like proteolytic activities, resulting in a faster initial seedling growth. However, when germinated under stressful alkaline conditions, OcXII-silenced plants exhibited impaired root formation and delayed shoot growth. Interestingly, the activity of OcXII promoter gene was detected in the rice seed scutellum region, and decreases with seedling growth. Seeds from these plants also exhibited slower growth at germination under ABA or alkaline conditions, while maintaining very high levels of OcXII transcriptional activation. This likely reinforces the proteolytic control necessary for seed germination and growth. In addition, increased legumain activity was detected in OcXII RNAi plants subjected to a fungal elicitor. Overall, the results of this study highlight the association of OcXII with not only plant development processes, but also with stress response pathways. The results of this study reinforce the bifunctional ability of carboxy-extended phytocystatins in regulating legumain proteases via its carboxy-extended domain and papain-like proteases by its amino-terminal domain.

  2. Fast and reliable production, purification and characterization of heat-stable, bifunctional enzyme chimeras.

    Science.gov (United States)

    Neddersen, Mara; Elleuche, Skander

    2015-12-01

    Degradation of complex plant biomass demands a fine-regulated portfolio of glycoside hydrolases. The LE (LguI/Eco81I)-cloning approach was used to produce two enzyme chimeras CB and BC composed of an endoglucanase Cel5A (C) from the extreme thermophilic bacterium Fervidobacterium gondwanense and an archaeal β-glucosidase Bgl1 (B) derived from a hydrothermal spring metagenome. Recombinant chimeras and parental enzymes were produced in Escherichia coli and purified using a two-step affinity chromatography approach. Enzymatic properties revealed that both chimeras closely resemble the parental enzymes and physical mixtures, but Cel5A displayed lower temperature tolerance at 100°C when fused to Bgl1 independent of the conformational order. Moreover, the determination of enzymatic performances resulted in the detection of additive effects in case of BC fusion chimera. Kinetic measurements in combination with HPLC-mediated product analyses and site-directed mutation constructs indicated that Cel5A was strongly impaired when fused at the N-terminus, while activity was reduced to a slighter extend as C-terminal fusion partner. In contrast to these results, catalytic activity of Bgl1 at the N-terminus was improved 1.2-fold, effectively counteracting the slightly reduced activity of Cel5A by converting cellobiose into glucose. In addition, cellobiose exhibited inhibitory effects on Cel5A, resulting in a higher yield of cellobiose and glucose by application of an enzyme mixture (53.1%) compared to cellobiose produced from endoglucanase alone (10.9%). However, the overall release of cellobiose and glucose was even increased by catalytic action of BC (59.2%). These results indicate possible advantages of easily produced bifunctional fusion enzymes for the improved conversion of complex polysaccharide plant materials.

  3. CIA, a novel estrogen receptor coactivator with a bifunctional nuclear receptor interacting determinant.

    Science.gov (United States)

    Sauvé, F; McBroom, L D; Gallant, J; Moraitis, A N; Labrie, F; Giguère, V

    2001-01-01

    Coregulators for nuclear receptors (NR) are factors that either enhance or repress their transcriptional activity. Both coactivators and corepressors have been shown to use similar but functionally distinct NR interacting determinants containing the core motifs LxxLL and PhixxPhiPhi, respectively. These interactions occur through a hydrophobic cleft located on the surface of the ligand-binding domain (LBD) of the NR and are regulated by ligand-dependent activation function 2 (AF-2). In an effort to identify novel coregulators that function independently of AF-2, we used the LBD of the orphan receptor RVR (which lacks AF-2) as bait in a yeast two-hybrid screen. This strategy led to the cloning of a nuclear protein referred to as CIA (coactivator independent of AF-2 function) that possesses both repressor and activator functions. Strikingly, we observed that CIA not only interacts with RVR and Rev-ErbAalpha in a ligand-independent manner but can also form complexes with estrogen receptor alpha (ERalpha) and ERbeta in vitro and enhances ERalpha transcriptional activity in the presence of estradiol (E(2)). CIA-ERalpha interactions were found to be independent of AF-2 and enhanced by the antiestrogens EM-652 and ICI 182,780 but not by 4-hydroxytamoxifen and raloxifene. We further demonstrate that CIA-ERalpha interactions require the presence within CIA of a novel bifunctional NR recognition determinant containing overlapping LxxLL and PhixxPhiPhi motifs. The identification and functional characterization of CIA suggest that hormone binding can create a functional coactivator interaction interface in the absence of AF-2.

  4. Isomerism in benzyl-DOTA derived bifunctional chelators: implications for molecular imaging.

    Science.gov (United States)

    Payne, Katherine M; Woods, Mark

    2015-02-18

    The bifunctional chelator IB-DOTA has found use in a range of biomedical applications given its ability to chelate many metal ions, but in particular the lanthanide(III) ions. Gd(3+) in particular is of interest in the development of new molecular imaging agents for MRI and is highly suitable for chelation by IB-DOTA. Given the long-term instability of the aryl isothiocyanate functional group we have used the more stable nitro derivative (NB-DOTA) to conduct a follow-up study of some of our previous work on the coordination chemistry of chelates of these BFCs. Using a combination of NMR and HPLC to study the Eu(3+) and Yb(3+) chelates of NB-DOTA, we have demonstrated that this ligand will produce two discrete regioisomeric chelates at the point at which the metal ion is introduced into the BFC. These regioisomers are defined by the position of the benzylic substituent on the macrocyclic ring: adopting an equatorial position either at the corner or the side of the [3333] ring conformation. These regioisomers are incapable of interconversion and are distinct, separate structures with different SAP/TSAP ratios. The side isomer exhibits an increased population of the TSAP isomer, pointing to more rapid water exchange kinetics in this regioisomer. This has potential ramifications for the use of these two regioisomers of Gd(3+)-BFC chelates in MRI applications. We have also found that, remarkably, there is little or no freedom of rotation about the first single bond extending from the macrocyclic ring to the benzylic substituent. Since this is the linkage through which the chelate is conjugated to the remainder of the molecular imaging probe, this result implies that there may be reduced local rotation of the Gd(3+) chelate within a molecular imaging probe. This implies that this type of BFC could exhibit higher relaxivities than other types of BFC.

  5. Modification of bifunctional epoxy resin using CO{sub 2} fixation process and nanoclay

    Energy Technology Data Exchange (ETDEWEB)

    Khoshkish, Morteza; Bouhendi, Hosein, E-mail: H.boohendi@ippi.ac.ir; Vafayan, Mehdi

    2014-10-15

    A bifunctional epoxy resin was modified by using a CO{sub 2} fixation solution process in the presence of tetra n-butyl ammonium bromide (TBAB) as catalyst and the modified treated resin was treated by cloisite 30B as nano additive. The Unmodified epoxy resin (UME), CO{sub 2} fixated modified epoxy resin (CFME), and CFME/clay nano composite (CFMEN), were cured by diethylenetriamine (DETA). A cycloaliphatic compound as a reactive diluent was used to control the viscosity of high viscose CFME. The exfoliation of organoclay in UME and CFME was investigated by X-ray diffraction and activation energy was computed using the advanced integral isoconversional method. The activation energy dependency demonstrated that the mechanism of UME curing did not change in the presence of nanoclay. In contrast, the CO{sub 2} fixation results showed a significant change in the activation energy dependency. The Thermal stability parameters include the initial degradation temperature (IDT), the temperature at the maximum rate of weight loss (T{sub max}), and the decomposition activation energy (E{sub d}) were determined by thermal gravimetry analysis. Dynamic mechanical thermal analysis measurements showed that the presence of organoclay in CFME increases the T{sub g} of nano composite in contrast to UME. The fracture roughness of UME, CFME and CFNE were determined by scanning electron microscope. The exfoliated UME/1%clay nanocomposite was confirmed by TEM image. - Highlights: • A new epoxy resin was synthesized using CO{sub 2} fixation reaction. • The synthesized epoxy resin was modified by an organo nano-clay. • CO{sub 2} fixation noticeably changed the curing mechanism. • CO{sub 2} fixation reaction consumes CO{sub 2} which is a harmful greenhouse gas.

  6. Function and localization dynamics of bifunctional penicillin-binding proteins in Caulobacter crescentus.

    Science.gov (United States)

    Strobel, Wolfgang; Möll, Andrea; Kiekebusch, Daniela; Klein, Kathrin E; Thanbichler, Martin

    2014-04-01

    The peptidoglycan cell wall of bacteria is a complex macromolecule composed of glycan strands that are cross-linked by short peptide bridges. Its biosynthesis involves a conserved group of enzymes, the bifunctional penicillin-binding proteins (bPBPs), which contain both a transglycosylase and a transpeptidase domain, thus being able to elongate the glycan strands and, at the same time, generate the peptide cross-links. The stalked model bacterium Caulobacter crescentus possesses five bPBP paralogs, named Pbp1A, PbpC, PbpX, PbpY, and PbpZ, whose function is still incompletely understood. In this study, we show that any of these proteins except for PbpZ is sufficient for growth and normal morphogenesis when expressed at native or elevated levels, whereas inactivation of all five paralogs is lethal. Growth analyses indicate a central role of PbpX in the resistance of C. crescentus against the noncanonical amino acid d-alanine. Moreover, we show that PbpX and PbpY localize to the cell division site. Their recruitment to the divisome is dependent on the essential cell division protein FtsN and likely involves interactions with FtsL and the putative peptidoglycan hydrolase DipM. The same interaction pattern is observed for Pbp1A and PbpC, although these proteins do not accumulate at midcell. Our findings demonstrate that the bPBPs of C. crescentus are, to a large extent, redundant and have retained the ability to interact with the peptidoglycan biosynthetic machineries responsible for cell elongation, cytokinesis, and stalk growth. Nevertheless, they may preferentially act in specific peptidoglycan biosynthetic complexes, thereby facilitating the independent regulation of distinct growth processes.

  7. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions

    Science.gov (United States)

    Zhang, Jintao; Zhao, Zhenghang; Xia, Zhenhai; Dai, Liming

    2015-05-01

    The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are traditionally carried out with noble metals (such as Pt) and metal oxides (such as RuO2 and MnO2) as catalysts, respectively. However, these metal-based catalysts often suffer from multiple disadvantages, including high cost, low selectivity, poor stability and detrimental environmental effects. Here, we describe a mesoporous carbon foam co-doped with nitrogen and phosphorus that has a large surface area of ˜1,663 m2 g-1 and good electrocatalytic properties for both ORR and OER. This material was fabricated using a scalable, one-step process involving the pyrolysis of a polyaniline aerogel synthesized in the presence of phytic acid. We then tested the suitability of this N,P-doped carbon foam as an air electrode for primary and rechargeable Zn-air batteries. Primary batteries demonstrated an open-circuit potential of 1.48 V, a specific capacity of 735 mAh gZn-1 (corresponding to an energy density of 835 Wh kgZn-1), a peak power density of 55 mW cm-2, and stable operation for 240 h after mechanical recharging. Two-electrode rechargeable batteries could be cycled stably for 180 cycles at 2 mA cm-2. We also examine the activity of our carbon foam for both OER and ORR independently, in a three-electrode configuration, and discuss ways in which the Zn-air battery can be further improved. Finally, our density functional theory calculations reveal that the N,P co-doping and graphene edge effects are essential for the bifunctional electrocatalytic activity of our material.

  8. The Expression and Characterization of a Bifunctional Protein in E. coli for Autologous Erythrocyte Agglutination Test

    Institute of Scientific and Technical Information of China (English)

    Changli Shao; Jingang Zhang

    2008-01-01

    H antigen, the precursor of A and B antigens, belongs to Hh blood system in which it is the only antigen. H antigen distributes on all the human RBC surface except for Bombay phenotype and the copy number of H antigen on the surface of an adult RBC is approximately 1.7 x 106. These characteristics made H antigen the potential target molecule for the immunoassay and immunotherapy. A monoclonal antibody 2E8 against H antigen on the surface of erythrocyte had been prepared in previous work. Based on this antibody, the variable region genes of heavy and light chains (VH and VL) from 2E8 had been cloned by 5' RACE. The two variable region genes were spliced by overlap extension and assembled ScFv (VH-linker-VL) gene encoding the anti-H antigen named ScFv2EB. According to the prediction of the three-dimension structure of ScFv2EB and CH1 fragment from 2E8 and HIV-1 gp41 antigen peptide, we further constructed the ScFv2EBCH1-gp41 fusion molecule. The recombinant ScFv2EB-CH1-gp41 gene was cloned into pET-his vector and expressed in BL21(DE3)plysS cells. The fusion protein was purified from the inclusion bodies. In a series of subsequent analyses, this fusion protein showed identical antigen binding site and activity with the parent antibody. Meanwhile, in mimic test, as the main ingredient of reagent for autologous erythrocyte agglutination test, the bifunctional protein could agglutinate the RBCs in the presence of HIV-1 gp41 antibodies using sera from HIV-infected individuals. Cellular & Molecular Immunology. 2008;5(4):299-306.

  9. Cloning and Functional Analysis of the Bifunctional Agglutinin/Trypsin Inhibitor from Helianthus tuberosus L.

    Institute of Scientific and Technical Information of China (English)

    Tuanjie Chang; Hongli Zhai; Songbiao Chen; Guisheng Song; Honglin Xu; Xiaoli Wei; Zhen Zhu

    2006-01-01

    In order to find new insect resistance genes, four homologous cDNAs, hta-a, hta-b, hta-c and hta-d with lengths of 775, 718, 784 and 752 bp, respectively (GenBank accession numbers AF477031-AF477034), were isolated from a tuber cDNA expression library of Helianthus tuberosus L. Sequence analysis revealed that all four cDNAs contain an open reading frame of 444 bp, coding a polypeptide of 147 amino acid residues, and that the sequences of the cDNAs are very similar to those of the mannose-binding agglutinin genes of the jacalin-related family. In hemagglutination reactions and hapten inhibition assays, affinity-purified HTA (Helianthus tuberosus agglutinin) from induced Escherichia coli BL21(DE3) expressing GST-HTA shows hemagglutination ability and a higher carbohydrate-binding ability for mannose than other tested sugars.Trypsin inhibitory activity was detected in the crude extracts of induced E. coli BL21(DE3)expressing HTA,and was further verified by trypsin inhibitory activity staining on native polyacrylamide gel. The mechanism of interaction between HTA and trypsin was studied by molecular modeling. We found that plenty of hydrogen bonds and electrostatic interactions can be formed between the supposed binding sites of HTA-b and the active site of trypsin, and that a stable HTA/trypsin complex can be formed. The results above imply that HTA might be a bifunctional protein with carbohydrate-binding activity and trypsin inhibitory activity. Moreover,Northern blotting analysis demonstrated that hta is predominantly expressed in tubers of H. tuberosus, very weakly expressed in stems, but not expressed at all in other tissues. Southern blotting analysis indicated that hta is encoded by a multi-gene family. The insect resistance traits have been described in another paper.

  10. Bifunctional bioceramics stimulating osteogenic differentiation of a gingival fibroblast and inhibiting plaque biofilm formation.

    Science.gov (United States)

    Shen, Ya; Wang, Zhejun; Wang, Jiao; Zhou, Yinghong; Chen, Hui; Wu, Chengtie; Haapasalo, Markus

    2016-04-01

    Gingival recession is a common clinical problem that results in esthetic deficiencies and poor plaque control and predominantly occurs in aged patients. In order to restore the cervical region, ideal biomaterials should possess the ability to stimulate proliferation and osteogenesis/cementogenesis of human gingival fibroblasts (HGF) and have a strong antibiofilm effect. The aim of the present study was to investigate the interactions of HGF and oral multispecies biofilms with Ca, Mg and Si-containing bredigite (BRT, Ca7MgSi4O16) bioceramics. BRT extract induced osteogenic/cementogenic differentiation of HGF and its inhibition of plaque biofilm formation were systematically studied. BRT extract in concentrations lower than <200 mg mL(-1) presented high biocompatibility to HGF cells in 3 days. Ion extracts from BRT also stimulated a series of bone-related gene and protein expressions in HGF cells. Furthermore, BRT extract significantly inhibited oral multispecies plaque biofilm growth on its surface and contributed to over 30% bacterial cell death without additional antibacterial agents in two weeks. A planktonic killing test showed that BRT suppressed 98% plaque bacterial growth compared to blank control in 3 days. The results also revealed that BRT extract has an osteostimulation effect on HGF. The suppression effect on plaque biofilms suggested that BRT might be used as a bioactive material for cervical restoration and that the synergistic effect of bioactive ions, such as Ca, Mg and Si ions, played an important role in the design and construction of bifunctional biomaterials in combination with tissue regeneration and antibiofilm activity.

  11. Bifunctional carbohydrate biopolymers entrapped lipase as catalyst for the two consecutive conversions of α-pinene to oxy-derivatives.

    Science.gov (United States)

    Tudorache, Madalina; Gheorghe, Andreea; Negoi, Alina; Enache, Madalin; Maria, Gabriel-Mihai; Parvulescu, Vasile I

    2016-11-01

    Bifunctional catalysts designed as carbohydrate biopolymers entrapping lipase have been investigated for the biotransformation of a natural compound (α-pinene) to oxy-derivatives. Lipases assisted the epoxidation of α-pinene using H2O2 as oxidation reagent and ethyl acetate as both acetate-supplier and solvent affording α-pinene oxide as the main product. Further, the biopolymer promoted the isomerization of α-pinene oxide to campholenic aldehyde and trans-carenol. In this case, the biopolymers played double roles of the support and also active part of the bifunctional catalyst. Screening of enzymes and their entrapping in a biopolymeric matrix (e.g. Ca-alginate and κ-carrageenan) indicated the lipase extracted from Aspergillus niger as the most efficient. In addition, the presence of biopolymers enhanced the catalytic activity of the immobilized lipase (i.e. 13.39×10(3), 19.76×10(3)and 26.46×10(3) for the free lipase, lipase-carrageenan and lipase-alginate, respectively). The catalysts stability and reusability were confirmed in eight consecutively reaction runs.

  12. Efficient bifunctional catalyst lipase/organophosphonic acid-functionalized silica for biodiesel synthesis by esterification of oleic acid with ethanol.

    Science.gov (United States)

    Yin, Ping; Chen, Wen; Liu, Wei; Chen, Hou; Qu, Rongjun; Liu, Xiguang; Tang, Qinghua; Xu, Qiang

    2013-07-01

    An efficient bifunctional catalyst lipase/organophosphonic acid-functionalized silica (SG-T-P-LS) has been successfully developed, and biodiesel production of fatty acid ethyl ester (FAEE) from free fatty acid (FFA) oleic acid with short-chain alcohol ethanol catalyzed by SG-T-P-LS was investigated. The process optimization using response surface methodology (RSM) was performed and the interactions between the operational variables were elucidated, and it was found that the molar ratio of alcohol to acid was the most significant factor. The optimum values for maximum conversion ratio can be obtained by using a Box-Behnken center-united design, and the conversion ratio could reach 89.94 ± 0.42% under the conditions that ethanol/acid molar ratio was 1.05:1 and SG-T-P-LS to FFA weight ratio was 14.9 wt.% at 28.6°C. The research results show that SG-T-P and LS-20 could work cooperatively to promote the esterification reaction, and the bifunctional catalyst SG-T-P-LS is a potential catalyst for biodiesel production.

  13. Preparation of IrO2 nanoparticles with SBA-15 template and its supported Pt nanocomposite as bifunctional oxygen catalyst

    Science.gov (United States)

    Kong, Fan-Dong; Liu, Jing; Ling, Ai-Xia; Xu, Zhi-Qiang; Wang, Hui-Yun; Kong, Qing-Sheng

    2015-12-01

    In the present work, we report the syntheses of IrO2 nanoparticles with SBA-15 template (s-IrO2), and s-IrO2 supported Pt nanocomposite (Pt/s-IrO2) as bifunctional oxygen catalyst. Physical characterizations including X-ray diffraction and transmission electron microscopy demonstrate that s-IrO2 catalyst has excellent uniformity and regularity in particle shape and much ordered distribution in geometric space, and Pt/s-IrO2 catalyst shows a uniform Pt dispersion on the surface of the s-IrO2 particles. Electrochemical analyses prove that s-IrO2 catalyst possesses superior OER activity at operating potentials; and that Pt/s-IrO2 catalyst, in comparison to Pt/commercial IrO2, has higher ESA value and ORR catalytic performance with a mechanism of four-electron pathway and a high ORR efficiency. And as a bifunctional oxygen catalyst, Pt/s-IrO2 also exhibits more remarkable OER performance than the commercial one. The s-IrO2 nanoparticles will be a promising active component (for OER), and suitable for Pt support (for ORR).

  14. A systematic comparative evaluation of 90Y-labeled bifunctional chelators for their use in targeted therapy.

    Science.gov (United States)

    Chakravarty, Rubel; Chakraborty, Sudipta; Dash, Ashutosh

    2014-02-01

    This paper describes a systematic comparative evaluation of five commonly used bifunctional chelators, namely,p-isothiocyanato benzyl derivatives of diethylenetriaminepentacetic acid (DTPA-NCS), trans-cyclohexyl diethylenetriaminepentaceticacid (CHX-A″-DTPA-NCS), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA-NCS), 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA-NCS), and 3,6,9,15-tetraazabicyclo [9.3.1]pentadeca-1(15),11,13-triene-3,6,9-triacetic acid (PCTA-NCS), on the basis of their ability to complex 90Y at room temperature, in vitro and in vivo stability and clearance pattern in biological system. The results of the experiments carried out revealed that CHX-A″-DTPA-NCS was the most promising option as it could be radiolabeled with 90Y at room temperature with highest specific activity and demonstrated high in vitro stability in human serum and in presence of challenging metal ions commonly present inhuman plasma. The clearance pattern in Swiss mice revealed that 90Y-CHX- A″-DTPA-NCS cleared through the kidneys with minimum retention in any other major organ. Thus, the use of cyclohexyl-DTPA based bifunctional chelators would increase the scope of making 90Y-labeled agents suitable for targeted therapy.

  15. Carbon Nanotube/Boron Nitride Nanocomposite as a Significant Bifunctional Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions.

    Science.gov (United States)

    Patil, Indrajit M; Lokanathan, Moorthi; Ganesan, Balakrishnan; Swami, Anita; Kakade, Bhalchandra

    2017-01-12

    It is an immense challenge to develop bifunctional electrocatalysts for oxygen reduction reactions (ORR) and oxygen evolution reactions (OER) in low temperature fuel cells and rechargeable metal-air batteries. Herein, a simple and cost-effective approach is developed to prepare novel materials based on carbon nanotubes (CNTs) and a hexagonal boron nitride (h-BN) nanocomposite (CNT/BN) through a one-step hydrothermal method. The structural analysis and morphology study confirms the formation of a homogeneous composite and merging of few exfoliated graphene layers of CNTs on the graphitic planes of h-BN, respectively. Moreover, the electrochemical study implies that CNT/BN nanocomposite shows a significantly higher ORR activity with a single step 4-electron transfer pathway and an improved onset potential of +0.86 V versus RHE and a current density of 5.78 mA cm(-2) in alkaline conditions. Interestingly, it exhibits appreciably better catalytic activity towards OER at low overpotential (η=0.38 V) under similar conditions. Moreover, this bifunctional catalyst shows substantially higher stability than a commercial Pt/C catalyst even after 5000 cycles. Additionally, this composite catalyst does not show any methanol oxidation reactions that nullify the issues due to fuel cross-over effects in direct methanol fuel cell applications.

  16. Detection of Salmonella typhimurium using phage-based magnetostrictive sensor

    Science.gov (United States)

    Lakshmanan, Ramji S.; Hu, Jing; Guntupalli, Rajesh; Wan, Jiehui; Huang, Shichu; Yang, Hong; Petrenko, Valery A.; Barbaree, James M.; Chin, Bryan A.

    2006-05-01

    This article presents a contactless, remote sensing Salmonella typhimurium sensor based on the principle of magnetostriction. Magnetostrictive materials have been used widely for various types of sensor systems. In this work, the use of a magnetostrictive material for the detection of Salmonella typhimurium has been established. The mass of the bacteria attached to the sensor causes changes in the resonance frequency of the sensor. Filamentous bacteriophage was used as a probe order to ensure specific and selective binding of the bacteria onto the sensor surface. Thus changes in response of the sensor due to the mass added onto the sensor caused by specific attachment of bacteria can be monitored in absence of any contact to the sensor. The response of the sensor due to increasing concentrations (from 5x101 to 5x10 8 cfu/ml) of the bacteria was studied. A reduction in the physical dimensions enhances the sensitivity of these sensors and hence different dimensions of the sensor ribbons were studied. For a 2mm x 0.1mm x 0.02mm the detection limit was observed to be of the order of 10 4 cfu/mL and for a sensor of 1mm x 0.2mm x 0.02mm a reduced detection limit of 10 3 cfu/mL was achieved.

  17. Bacterial Recombineering: Genome Engineering via Phage-Based Homologous Recombination.

    Science.gov (United States)

    Pines, Gur; Freed, Emily F; Winkler, James D; Gill, Ryan T

    2015-11-20

    The ability to specifically modify bacterial genomes in a precise and efficient manner is highly desired in various fields, ranging from molecular genetics to metabolic engineering and synthetic biology. Much has changed from the initial realization that phage-derived genes may be employed for such tasks to today, where recombineering enables complex genetic edits within a genome or a population. Here, we review the major developments leading to recombineering becoming the method of choice for in situ bacterial genome editing while highlighting the various applications of recombineering in pushing the boundaries of synthetic biology. We also present the current understanding of the mechanism of recombineering. Finally, we discuss in detail issues surrounding recombineering efficiency and future directions for recombineering-based genome editing.

  18. Purification, crystallization and preliminary X-ray analysis of bifunctional isocitrate dehydrogenase kinase/phosphatase in complex with its substrate, isocitrate dehydrogenase, from Escherichia coli

    OpenAIRE

    2009-01-01

    The protein complex of bifunctional isocitrate dehydrogenase kinase/phosphatase with its substrate, isocitrate dehydrogenase, has been crystallized for structural analysis. A complete data set was collected from the complex crystal and processed to 2.9 Å resolution.

  19. Robust Control of PEP Formation Rate in the Carbon Fixation Pathway of C4 Plants by a Bi-functional Enzyme

    Directory of Open Access Journals (Sweden)

    Hart Yuval

    2011-10-01

    Full Text Available Abstract Background C4 plants such as corn and sugarcane assimilate atmospheric CO2 into biomass by means of the C4 carbon fixation pathway. We asked how PEP formation rate, a key step in the carbon fixation pathway, might work at a precise rate, regulated by light, despite fluctuations in substrate and enzyme levels constituting and regulating this process. Results We present a putative mechanism for robustness in C4 carbon fixation, involving a key enzyme in the pathway, pyruvate orthophosphate dikinase (PPDK, which is regulated by a bifunctional enzyme, Regulatory Protein (RP. The robust mechanism is based on avidity of the bifunctional enzyme RP to its multimeric substrate PPDK, and on a product-inhibition feedback loop that couples the system output to the activity of the bifunctional regulator. The model provides an explanation for several unusual biochemical characteristics of the system and predicts that the system's output, phosphoenolpyruvate (PEP formation rate, is insensitive to fluctuations in enzyme levels (PPDK and RP, substrate levels (ATP and pyruvate and the catalytic rate of PPDK, while remaining sensitive to the system's input (light levels. Conclusions The presented PPDK mechanism is a new way to achieve robustness using product inhibition as a feedback loop on a bifunctional regulatory enzyme. This mechanism exhibits robustness to protein and metabolite levels as well as to catalytic rate changes. At the same time, the output of the system remains tuned to input levels.

  20. Monofunctionalization of Calix[4]arene Tetracarboxylic Acid at the Upper Rim with Isothiocyanate Group: First Bifunctional Chelating Agent for Alpha-Emitter Ac-225.

    Science.gov (United States)

    Chen, Xiaoyuan; Ji, Min; Fisher, Darrell R; Wai, Chien M

    1999-09-01

    A procedure is reported for synthesizing a novel, water-soluble bifunctional chelating agent derived from calix[4]arene. This chelate features tetracarboxylic acid groups at the lower rim as an actinium-225 ionophore, and an isothiocyanate functional group at the upper rim for labeling of the N-terminus of monoclonal antibodies through thiourea linkage.

  1. CXCL10 Acts as a Bifunctional Antimicrobial Molecule against Bacillus anthracis

    Directory of Open Access Journals (Sweden)

    Katie R. Margulieux

    2016-05-01

    Full Text Available Bacillus anthracis is killed by the interferon-inducible, ELR(− CXC chemokine CXCL10. Previous studies showed that disruption of the gene encoding FtsX, a conserved membrane component of the ATP-binding cassette transporter-like complex FtsE/X, resulted in resistance to CXCL10. FtsX exhibits some sequence similarity to the mammalian CXCL10 receptor, CXCR3, suggesting that the CXCL10 N-terminal region that interacts with CXCR3 may also interact with FtsX. A C-terminal truncated CXCL10 was tested to determine if the FtsX-dependent antimicrobial activity is associated with the CXCR3-interacting N terminus. The truncated CXCL10 exhibited antimicrobial activity against the B. anthracis parent strain but not the ΔftsX mutant, which supports a key role for the CXCL10 N terminus. Mutations in FtsE, the conserved ATP-binding protein of the FtsE/X complex, resulted in resistance to both CXCL10 and truncated CXCL10, indicating that both FtsX and FtsE are important. Higher concentrations of CXCL10 overcame the resistance of the ΔftsX mutant to CXCL10, suggesting an FtsX-independent killing mechanism, likely involving its C-terminal α-helix, which resembles a cationic antimicrobial peptide. Membrane depolarization studies revealed that CXCL10 disrupted membranes of the B. anthracis parent strain and the ΔftsX mutant, but only the parent strain underwent depolarization with truncated CXCL10. These findings suggest that CXCL10 is a bifunctional molecule that kills B. anthracis by two mechanisms. FtsE/X-dependent killing is mediated through an N-terminal portion of CXCL10 and is not reliant upon the C-terminal α-helix. The FtsE/X-independent mechanism involves membrane depolarization by CXCL10, likely because of its α-helix. These findings present a new paradigm for understanding mechanisms by which CXCL10 and related chemokines kill bacteria.

  2. Enantiopure bifunctional chelators for copper radiopharmaceuticals--does chirality matter in radiotracer design?

    Science.gov (United States)

    Singh, Ajay N; Dakanali, Marianna; Hao, Guiyang; Ramezani, Saleh; Kumar, Amit; Sun, Xiankai

    2014-06-10

    It is well recognized that carbon chirality plays a critical role in the design of drug molecules. However, very little information is available regarding the effect of stereoisomerism of macrocyclic bifunctional chelators (BFC) on biological behaviors of the corresponding radiopharmaceuticals. To evaluate such effects, three enantiopure stereoisomers of a copper radiopharmaceutical BFC bearing two chiral carbon atoms were synthesized in forms of R,R-, S,S-, and R,S-. Their corresponding peptide conjugates were prepared by coupling with a model peptide sequence, c(RGDyK), which targets the αvβ3 integrin for in vitro and in vivo evaluation of their biological behaviors as compared to the racemic conjugate. Despite the chirality differences, all the conjugates showed a similar in vitro binding affinity profile to the αvβ3 integrin (106, 108, 85 and 100 nM for rac-H2-1, RR-H2-1, SS-H2-1, and RS-H2-1 respectively with all p values > 0.05) and a similar level of in vivo tumor uptake (2.72 ± 0.45, 2.60 ± 0.52, 2.45 ± 0.48 and 2.88 ± 0.59 for rac-(64)Cu-1, RR-(64)Cu-1, SS-(64)Cu-1, and RS-(64)Cu-1 at 1 h p.i. respectively). Furthermore, they demonstrated a nearly identical biodistribution pattern in major organs (e.g. 2.07 ± 0.21, 2.13 ± 0.58, 1.70 ± 0.20 and 1.90 ± 0.46 %ID/g at 24 h p.i. in liver for rac-(64)Cu-1, RR-(64)Cu-1, SS-(64)Cu-1, and RS-(64)Cu-1 respectively; 1.80 ± 0.46, 2.30 ± 1.49, 1.73 ± 0.31 and 2.23 ± 0.71 at 24 h p.i. in kidneys for rac-(64)Cu-1, RR-(64)Cu-1, SS-(64)Cu-1, and RS-(64)Cu-1 respectively). Therefore we conclude that the chirality of BFC plays a negligible role in αvβ3-targeted copper radiopharmaceuticals. However, we believe it is still worthwhile to consider the chirality effects of BFCs on other targeted imaging or therapeutic agents.

  3. Evaluation of novel bifunctional chelates for the development of Cu-64-based radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Cara L. [MDS Nordion, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada)], E-mail: cara.ferreira@mdsinc.com; Yapp, Donald T. [British Columbia Cancer Agency Research Centre, Vancouver, BC, V5Z 1L3 (Canada); Lamsa, Eric [MDS Nordion, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Gleave, Martin [Prostrate Centre at Vancouver General Hospital, Vancouver, BC, V6H 3Z6 (Canada); Bensimon, Corinne [MDS Nordion, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Jurek, Paul; Kiefer, Garry E. [Macrocylics Inc., Dallas, Texas, 75235 (United States)

    2008-11-15

    Background: Currently available bifunctional chelates (BFCs) for attaching Cu-64 to a targeting molecule are limited by either their radiolabeling conditions or in vivo stability. With the goal of identifying highly effective BFCs, we compared the properties of two novel BFCs, 1-oxa-4,7,10-triazacyclododecane-S-5-(4-nitrobenzyl)-4,7,10-triacetic acid (p-NO{sub 2}-Bn-Oxo) and 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-S-4- (4-nitrobenzyl)-3,6,9-triacetic acid (p-NO{sub 2}-Bn-PCTA), with the commonly used S-2-(4-nitrobenzyl)-1,4,7,10-tetraazacyclododecanetetraacetic acid (p-NO{sub 2}-Bn-DOTA). Methods: p-NO{sub 2}-Bn-DOTA, p-NO{sub 2}-Bn-Oxo and p-NO{sub 2}-Bn-PCTA were each radiolabeled with Cu-64 under various conditions to assess the reaction kinetics and robustness of the radiolabeling. Stability of each Cu-64 BFC complex was evaluated at low pH and in serum. Small animal positron emission tomography imaging and biodistribution studies in mice were undertaken. Results: p-NO{sub 2}-Bn-Oxo and p-NO{sub 2}-Bn-PCTA possessed superior reaction kinetics compared to p-NO{sub 2}-Bn-DOTA under all radiolabeling conditions; >98% radiochemical yields were achieved in <5 min at room temperature even when using near stoichiometric amounts of BFC. Under nonideal conditions, such as low or high pH, high radiochemical yields were still achievable with the novel BFCs. The radiolabeled compounds were stable in serum and at pH 2 for 48 h. The imaging and biodistribution of the Cu-64-radiolabeled BFCs illustrated differences between the BFCs, including preferential clearance via the kidneys for the p-NO{sub 2}-Bn-PCTA Cu-64 complex. Conclusions: The novel BFCs facilitated efficient Cu-64 radiolabeling under mild conditions to produce stable complexes at potentially high specific activities. These BFCs may find wide utility in the development of Cu-64-based radiopharmaceuticals.

  4. Acid/base bifunctional carbonaceous nanomaterial with large surface area: Preparation, characterization, and adsorption properties for cationic and anionic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kai; Ma, Chun–Fang; Ling, Yuan; Li, Meng [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Gao, Qiang, E-mail: gaoqiang@cug.edu.cn [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan 430074 (China); Luo, Wen–Jun, E-mail: heartnohome@yahoo.com.cn [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China)

    2015-07-15

    Nanostructured carbonaceous materials are extremely important in the nano field, yet developing simple, mild, and “green” methods that can make such materials possess large surface area and rich functional groups on their surfaces still remains a considerable challenge. Herein, a one-pot and environment-friendly method, i.e., thermal treatment (180 °C; 18 h) of water mixed with glucose and chitosan (CTS), has been proposed. The resultant carbonaceous nanomaterials were characterized by field emitting scanning electron microscope, N{sub 2} adsorption/desorption, Fourier transform infrared spectroscope, X-ray photoelectron spectroscopy, and zeta-potential analysis. It was found that, in contrast to the conventional hydrothermally carbonized product from pure glucose, with low surface area (9.3 m{sup 2} g{sup −1}) and pore volume (0.016 cm{sup 3} g{sup −1}), the CTS-added carbonaceous products showed satisfactory textural parameters (surface area and pore volume up to 254 m{sup 2} g{sup −1} and 0.701 cm{sup 3} g{sup −1}, respectively). Moreover, it was also interestingly found that these CTS-added carbonaceous products possessed both acidic (–COOH) and basic (–NH{sub 2}) groups on their surfaces. Taking the advantages of large surface area and –COOH/–NH{sub 2} bifunctional surface, the carbonaceous nanomaterials exhibited excellent performance for adsorptions of cationic compound (i.e., methylene blue) at pH 10 and anionic compound (i.e., acid red 18) at pH 2, respectively. This work not only provides a simple and green route to prepare acid/base bifunctional carbonaceous nanomaterials with large surface area but also well demonstrates their potential for application in adsorption. - Highlights: • A simple and green method was proposed to prepare carbon nanomaterials. • The carbon product showed acid/base bifunctional surface with large surface area. • The carbon material could efficiently adsorb both cationic and anionic compounds.

  5. Facile synthesis of flower like FePt@ZnO core–shell structure and its bifunctional properties

    Energy Technology Data Exchange (ETDEWEB)

    Majeed, Jerina [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Jayakumar, O.D., E-mail: ddjaya@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Mandal, B.P. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Salunke, H.G. [Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Naik, R. [Department of Physics, Wayne State University, Detroit, MI 48202 (United States); Tyagi, A.K., E-mail: aktyagi@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2014-06-01

    Graphical abstract: Flower shaped FePt and ZnO coated FePt with core–shell nanostructures are synthesized by a facile solvothermal procedure. Shell thickness of ZnO over FePt core was tuned by varying FePt concentration with respect to ZnO. Hybrid structure with lower FePt concentration exhibited bifunctionality such as near room temperature ferromagnetism and photoluminescence. Pristine FePt crystallize in the fct (L1{sub 0}) phase whereas it converts into fcc phase in presence of ZnO. - Highlights: • FePt@ZnO hybrid core–shell particles, with unique flower shape morphology have been prepared by solvothermal method. • Phase transition of fct-FePt to fcc-FePt has been found in presence of ZnO nanoparticles. • Plausible mechanism for growth of flowershaped nanoparticle is in accordance with energy minimization principle. • The core shell structure (FePt@ZnO) exhibits bi-functional properties. - Abstract: Flower shaped FePt and ZnO coated FePt (FePt@ZnO) core–shell nanostructures are synthesized by a facile solvothermal procedure. Two different compositions (molar ratio) of FePt and ZnO (FePt:ZnO = 1:3 and FePt:ZnO = 1:6) core–shells with different thicknesses of ZnO shells were synthesized. Hybrid FePt@ZnO core–shell flower structure with lower FePt concentration (FePt:ZnO = 1:6) exhibited bifunctionality including near room temperature ferromagnetism and photoluminescence at ambient conditions. X-ray diffraction patterns of pristine FePt showed partially ordered face centred tetragonal (fct) L1{sub 0} phase whereas ZnO coated FePt (FePt@ZnO) nanostructures showed hexagonal ZnO and disordered phase of FePt with fcc structure. The phase transition of fct FePt to fcc phase occurring in presence of ZnO is further confirmed by transmission electron microscopy and magnetic measurement studies. The formation of the nanoflowers was possibly due to growth along the [0 1 1] or [0 0 1] direction, keeping the core nearly spherical in accordance with the

  6. Identification and Overexpression of a Bifunctional Aldehyde/Alcohol Dehydrogenase Responsible for Ethanol Production in Thermoanaerobacter mathranii

    DEFF Research Database (Denmark)

    Yao, Shuo; Just Mikkelsen, Marie

    2010-01-01

    Thermoanaerobacter mathranii contains four genes, adhA, adhB, bdhA and adhE, predicted to code for alcohol dehydrogenases involved in ethanol metabolism. These alcohol dehydrogenases were characterized as NADP(H)-dependent primary alcohol dehydrogenase (AdhA), secondary alcohol dehydrogenase (Adh......B), butanol dehydrogenase (BdhA) and NAD(H)-dependent bifunctional aldehyde/alcohol dehydrogenase (AdhE), respectively. Here we observed that AdhE is an important enzyme responsible for ethanol production in T. mathranii based on the constructed adh knockout strains. An adhE knockout strain fails to produce...... ethanol as a fermentation product, while other adh knockout strains showed no significant difference from the wild type. Further analysis revealed that the ΔadhE strain was defective in aldehyde dehydrogenase activity, but still maintained alcohol dehydrogenase activity. This showed that AdhE is the major...

  7. Preparation of highly hydrophobic cotton fabrics by modification with bifunctional silsesquioxanes in the sol-gel process

    Science.gov (United States)

    Przybylak, Marcin; Maciejewski, Hieronim; Dutkiewicz, Agnieszka

    2016-11-01

    The surface modification of cotton fabrics was carried out using two types of bifunctional fluorinated silsesquioxanes with different ratios of functional groups. The modification was performed either by one- or two-step process. Two methods, the sol-gel and the dip coating method were used in different configurations. The heat treatment and the washing process were applied after modification. The wettability of cotton fabric was evaluated by measuring water contact angles (WCA). Changes in the surface morphology were examined by scanning electron microscopy (SEM, SEM-LFD) and atomic force microscopy (AFM). Moreover, the modified fabrics were subjected to analysis of elemental composition of the applied coatings using SEM-EDS techniques. Highly hydrophobic textiles were obtained in all cases studied and one of the modifications resulted in imparting superhydrophobic properties. Most of impregnated textiles remained hydrophobic even after multiple washing process which shows that the studied modification is durable.

  8. The bifunctional dihydrofolate reductase thymidylate synthase of Tetrahymena thermophila provides a tool for molecular and biotechnology applications

    Directory of Open Access Journals (Sweden)

    Tiedtke Arno

    2006-03-01

    Full Text Available Abstract Background Dihydrofolate reductase (DHFR and thymidylate synthase (TS are crucial enzymes in DNA synthesis. In alveolata both enzymes are expressed as one bifunctional enzyme. Results Loss of this essential enzyme activities after successful allelic assortment of knock out alleles yields an auxotrophic marker in ciliates. Here the cloning, characterisation and functional analysis of Tetrahymena thermophila's DHFR-TS is presented. A first aspect of the presented work relates to destruction of DHFR-TS enzyme function in an alveolate thereby causing an auxotrophy for thymidine. A second aspect is to knock in an expression cassette encoding for a foreign gene with subsequent expression of the target protein. Conclusion This system avoids the use of antibiotics or other drugs and therefore is of high interest for biotechnological applications.

  9. The cation channel mucolipin-1 is a bifunctional protein that facilitates membrane remodeling via its serine lipase domain.

    Science.gov (United States)

    LaPlante, Janice M; Falardeau, John L; Brown, Edward M; Slaugenhaupt, Susan A; Vassilev, Peter M

    2011-04-01

    Phospholipase modulators have been shown to affect the topology of lipid bilayers and the formation of tubulo-vesicular structures, but the specific endogenous phospholipases involved have yet to be identified. Here we show that TRPML1 (MLN1), a Ca(2+)-permeable channel, contributes to membrane remodeling through a serine lipase consensus domain, and thus represents a novel type of bifunctional protein. Remarkably, this serine lipase active site determines the ability of MLN1 to generate tubulo-vesicular extensions in mucolipin-1-expressing oocytes, human fibroblasts and model membrane vesicles. Our demonstration that MLN1 is involved in membrane remodeling and the formation of extensions suggests that it may play a role in the formation of cellular processes linked to the late endosome/lysosome (LE/L) pathway. MLN1 is absent or mutated in patients with mucolipidosis IV (MLIV), a lysosomal disorder with devastating neurological and other consequences. This study provides potential insight into the pathophysiology of MLIV.

  10. A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery applications

    Science.gov (United States)

    Wang, Jinmin; Zhang, Lei; Yu, Le; Jiao, Zhihui; Xie, Huaqing; Lou, Xiong Wen (David); Wei Sun, Xiao

    2014-09-01

    Electrochromic smart windows are regarded as a good choice for green buildings. However, conventional devices need external biases to operate, which causes additional energy consumption. Here we report a self-powered electrochromic window, which can be used as a self-rechargeable battery. We use aluminium to reduce Prussian blue (PB, blue in colour) to Prussian white (PW, colourless) in potassium chloride electrolyte, realizing a device capable of self-bleaching. Interestingly, the device can be self-recovered (gaining blue appearance again) by simply disconnecting the aluminium and PB electrodes, which is due to the spontaneous oxidation of PW to PB by the dissolved oxygen in aqueous solution. The self-operated bleaching and colouration suggest another important function of the device: a self-rechargeable transparent battery. Thus the PB/aluminium device we report here is bifunctional, that is, it is a self-powered electrochromic window as well as a self-rechargeable transparent battery.

  11. RNA Secondary Structure Modulates FMRP’s Bi-Functional Role in the MicroRNA Pathway

    Directory of Open Access Journals (Sweden)

    Phillip Kenny

    2016-06-01

    Full Text Available MicroRNAs act by post-transcriptionally regulating the gene expression of 30%–60% of mammalian genomes. MicroRNAs are key regulators in all cellular processes, though the mechanism by which the cell activates or represses microRNA-mediated translational regulation is poorly understood. In this review, we discuss the RNA binding protein Fragile X Mental Retardation Protein (FMRP and its role in microRNA-mediated translational regulation. Historically, FMRP is known to function as a translational suppressor. However, emerging data suggests that FMRP has both an agonistic and antagonistic role in regulating microRNA-mediated translational suppression. This bi-functional role is dependent on FMRP’s interaction with the RNA helicase Moloney leukemia virus 10 (MOV10, which modifies the structural landscape of bound mRNA, therefore facilitating or inhibiting its association with the RNA-Induced Silencing Complex.

  12. Synthesis of a bifunctional cytidine derivative and its conjugation to RNA for in vitro selection of a cytidine deaminase ribozyme.

    Science.gov (United States)

    Rublack, Nico; Müller, Sabine

    2014-01-01

    Over the past 20 years, the generation of functional RNAs by in vitro selection has become a standard technique. Apart from aptamers for simple binding of defined ligands, also RNAs for catalysis of chemical reactions have been selected. In the latter case, a key step often is the conjugation of one of the two reactants to the library, requiring suitable strategies for terminal or internal RNA functionalization. With the aim of selecting a ribozyme for deamination of cytidine, we have set up a selection scheme involving the attachment of the cytidine acting as deamination substrate to the 3'-terminus of the RNAs in the library, and library immobilization. Here, we report the synthesis of a bifunctional cytidine derivative suitable for conjugation to RNA and linkage of the conjugated library to a streptavidine-coated surface. Successful conjugation of the cytidine derivative to the 3'-terminus of a model RNA is demonstrated.

  13. Synthesis of a bifunctional cytidine derivative and its conjugation to RNA for in vitro selection of a cytidine deaminase ribozyme

    Directory of Open Access Journals (Sweden)

    Nico Rublack

    2014-08-01

    Full Text Available Over the past 20 years, the generation of functional RNAs by in vitro selection has become a standard technique. Apart from aptamers for simple binding of defined ligands, also RNAs for catalysis of chemical reactions have been selected. In the latter case, a key step often is the conjugation of one of the two reactants to the library, requiring suitable strategies for terminal or internal RNA functionalization. With the aim of selecting a ribozyme for deamination of cytidine, we have set up a selection scheme involving the attachment of the cytidine acting as deamination substrate to the 3'-terminus of the RNAs in the library, and library immobilization. Here, we report the synthesis of a bifunctional cytidine derivative suitable for conjugation to RNA and linkage of the conjugated library to a streptavidine-coated surface. Successful conjugation of the cytidine derivative to the 3'-terminus of a model RNA is demonstrated.

  14. Evaluation of 64Cu-labeled bifunctional chelate-bombesin conjugates.

    Science.gov (United States)

    Ait-Mohand, Samia; Fournier, Patrick; Dumulon-Perreault, Véronique; Kiefer, Garry E; Jurek, Paul; Ferreira, Cara L; Bénard, François; Guérin, Brigitte

    2011-08-17

    Several bifunctional chelates (BFCs) were investigated as carriers of (64)Cu for PET imaging. The most widely used chelator for (64)Cu labeling of BFCs is DOTA (1,4,7,10-tetraazacyclododecane-N,N',N″,N'''-tretraacetic acid), even though this complex exhibits only moderate in vivo stability. In this study, we prepared a series of alternative chelator-peptide conjugates labeled with (64)Cu, measured in vitro receptor binding affinities in human breast cancer T47D cells expressing the gastrin-releasing peptide receptor (GRPR) and compared their in vivo stability in mice. DOTA-, NOTA-(1,4,7-triazacyclononane-1,4,7-triacetic acid), PCTA-(3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-3,6,9-triacetic acid), and Oxo-DO3A-(1-oxa-4,7,10-triazacyclododecane-4,7,10-triacetic acid) peptide conjugates were prepared using H(2)N-Aoc-[d-Tyr(6),βAla(11),Thi(13),Nle(14)]bombesin(6-14) (BBN) as a peptide template. The BBN moiety was selected since it binds with high affinity to the GRPR, which is overexpressed on human breast cancer cells. A convenient synthetic approach for the attachment of aniline-BFC to peptides on solid support is also presented. To facilitate the attachment of the aniline-PCTA and aniline-Oxo-DO3A to the peptide via an amide bond, a succinyl spacer was introduced at the N-terminus of BBN. The partially protected aniline-BFC (p-H(2)N-Bn-PCTA(Ot-Bu)(3) or p-H(2)N-Bn-DO3A(Ot-Bu)(3)) was then coupled to the resulting N-terminal carboxylic acid preactivated with DEPBT/ClHOBt on resin. After cleavage and purification, the peptide-conjugates were labeled with (64)Cu using [(64)Cu]Cu(OAc)(2) in 0.1 M ammonium acetate buffer at 100 °C for 15 min. Labeling efficacy was >90% for all peptides; Oxo-DO3A-BBN was incubated an additional 150 min at 100 °C to achieve this high yield. Specific activities varied from 76 to 101 TBq/mmol. Competition assays on T47D cells showed that all BFC-BBN complexes retained high affinity for the GRPR. All BFC-BBN (64)Cu

  15. Structure of the phosphotransferase domain of the bifunctional aminoglycoside-resistance enzyme AAC(6')-Ie-APH(2'')-Ia.

    Science.gov (United States)

    Smith, Clyde A; Toth, Marta; Bhattacharya, Monolekha; Frase, Hilary; Vakulenko, Sergei B

    2014-06-01

    The bifunctional acetyltransferase(6')-Ie-phosphotransferase(2'')-Ia [AAC(6')-Ie-APH(2'')-Ia] is the most important aminoglycoside-resistance enzyme in Gram-positive bacteria, conferring resistance to almost all known aminoglycoside antibiotics in clinical use. Owing to its importance, this enzyme has been the focus of intensive research since its isolation in the mid-1980s but, despite much effort, structural details of AAC(6')-Ie-APH(2'')-Ia have remained elusive. The structure of the Mg2GDP complex of the APH(2'')-Ia domain of the bifunctional enzyme has now been determined at 2.3 Å resolution. The structure of APH(2'')-Ia is reminiscent of the structures of other aminoglycoside phosphotransferases, having a two-domain architecture with the nucleotide-binding site located at the junction of the two domains. Unlike the previously characterized APH(2'')-IIa and APH(2'')-IVa enzymes, which are capable of utilizing both ATP and GTP as the phosphate donors, APH(2'')-Ia uses GTP exclusively in the phosphorylation of the aminoglycoside antibiotics, and in this regard closely resembles the GTP-dependent APH(2'')-IIIa enzyme. In APH(2'')-Ia this GTP selectivity is governed by the presence of a `gatekeeper' residue, Tyr100, the side chain of which projects into the active site and effectively blocks access to the adenine-binding template. Mutation of this tyrosine residue to a less bulky phenylalanine provides better access for ATP to the NTP-binding template and converts APH(2'')-Ia into a dual-specificity enzyme.

  16. A Nanostructured Bifunctional platform for Sensing of Glucose Biomarker in Artificial Saliva: Synergy in hybrid Pt/Au surfaces.

    Science.gov (United States)

    Raymundo-Pereira, Paulo A; Shimizu, Flávio M; Coelho, Dyovani; Piazzeta, Maria H O; Gobbi, Angelo L; Machado, Sergio A S; Oliveira, Osvaldo N

    2016-12-15

    We report on a bimetallic, bifunctional electrode where a platinum (Pt) surface was patterned with nanostructured gold (Au) fingers with different film thicknesses, which was functionalized with glucose oxidase (GOx) to yield a highly sensitive glucose biosensor. This was achieved by using selective adsorption of a self-assembled monolayer (SAM) onto Au fingers, which allowed GOx immobilization only onto the Au-SAM surface. This modified electrode was termed bifunctional because it allowed to simultaneously immobilize the biomolecule (GOx) on gold to catalyze glucose, and detect hydrogen peroxide on Pt sites. Optimized electrocatalytic activity was reached for the architecture Pt/Au-SAM/GOx with 50nm thickness of Au, where synergy between Pt and Au allowed for detection of hydrogen peroxide (H2O2) at a low applied potential (0V vs. Ag/AgCl). Detection was performed for H2O2 in the range between 4.7 and 102.7 nmol L(-1), with detection limit of 3.4×10(-9) mol L(-1) (3.4 nmol L(-1)) and an apparent Michaelis-Menten rate constant of 3.2×10(-6)molL(-1), which is considerably smaller than similar devices with monometallic electrodes. The methodology was validated by measuring glucose in artificial saliva, including in the presence of interferents. The synergy between Pt and Au was confirmed in electrochemical impedance spectroscopy measurements with an increased electron transfer, compared to bare Pt and Au electrodes. The approach for fabricating the reproducible bimetallic Pt/Au electrodes is entirely generic and may be explored for other types of biosensors and biodevices where advantage can be taken of the combination of the two metals.

  17. Catalytic Asymmetric Synthesis of Both Enantiomers of 4‑Substituted 1,4-Dihydropyridines with the Use of Bifunctional Thiourea-Ammonium Salts Bearing Different Counterions

    Directory of Open Access Journals (Sweden)

    Kohzo Yoshida

    2010-11-01

    Full Text Available Organoammonium salts composed of a Brønsted acid and an anilinothiourea promoted the Michael addition of β-keto esters and α,β-unsaturated aldehydes in the presence of primary amines to give functionalized 1,4-dihydropyridines enantioselectively. With the use of the different Brønsted acids such as DFA and HBF4 with the same bifunctional thiourea, both enantiomers of 4-substituted 1,4-dihydropyridine were synthesized from the same starting materials.

  18. Metal-ligand bifunctional reactivity and catalysis of protic N-heterocyclic carbene and pyrazole complexes featuring β-NH units.

    Science.gov (United States)

    Kuwata, Shigeki; Ikariya, Takao

    2014-11-28

    Metal-ligand bifunctional cooperation has attracted much attention because it offers a powerful methodology to realize a number of highly efficient and selective catalysts. In this article, recent developments in the metal-ligand cooperative reactions of protic N-heterocyclic carbene (NHC) and pyrazole complexes bearing an acidic NH group at the position β to the metal are surveyed. Protic 2-pyridylidenes as related cooperating non-innocent ligands are also described.

  19. Uniting anion relay chemistry with Pd-mediated cross coupling: design, synthesis and evaluation of bifunctional aryl and vinyl silane linchpins.

    Science.gov (United States)

    Smith, Amos B; Kim, Won-Suk; Tong, Rongbiao

    2010-02-05

    Union of type II Anion Relay Chemistry (ARC) with Pd-induced Cross Coupling Reactions (CCR) has been achieved, in conjunction with the design, synthesis, and evaluation of a new class of bifunctional linchpins, comprising a series of vinyl silanes bearing beta- or gamma-electrophilic sites. The synthetic tactic permits both alkylation and Pd-mediated CCR of the anions derived via 1,4-silyl C(sp(2))-->O Brook Rearrangements.

  20. Therapeutic potential of a non-steroidal bifunctional anti-inflammatory and anti-cholinergic agent against skin injury induced by sulfur mustard

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yoke-Chen; Wang, James D.; Hahn, Rita A.; Gordon, Marion K.; Joseph, Laurie B. [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Heck, Diane E. [Department of Environmental Science, New York Medical College, Valhalla, NY (United States); Heindel, Ned D. [Department of Chemistry, Lehigh University, Bethlehem, PA (United States); Young, Sherri C. [Department of Chemistry, Muhlenberg College, Allentown, PA (United States); Sinko, Patrick J. [Department of Pharmaceutics, Rutgers University, Piscataway, NJ (United States); Casillas, Robert P. [MRIGlobal, Kansas City, MO (United States); Laskin, Jeffrey D. [Environmental and Occupational Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Gerecke, Donald R., E-mail: gerecke@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States)

    2014-10-15

    Sulfur mustard (bis(2-chloroethyl) sulfide, SM) is a highly reactive bifunctional alkylating agent inducing edema, inflammation, and the formation of fluid-filled blisters in the skin. Medical countermeasures against SM-induced cutaneous injury have yet to be established. In the present studies, we tested a novel, bifunctional anti-inflammatory prodrug (NDH 4338) designed to target cyclooxygenase 2 (COX2), an enzyme that generates inflammatory eicosanoids, and acetylcholinesterase, an enzyme mediating activation of cholinergic inflammatory pathways in a model of SM-induced skin injury. Adult SKH-1 hairless male mice were exposed to SM using a dorsal skin vapor cup model. NDH 4338 was applied topically to the skin 24, 48, and 72 h post-SM exposure. After 96 h, SM was found to induce skin injury characterized by edema, epidermal hyperplasia, loss of the differentiation marker, keratin 10 (K10), upregulation of the skin wound marker keratin 6 (K6), disruption of the basement membrane anchoring protein laminin 322, and increased expression of epidermal COX2. NDH 4338 post-treatment reduced SM-induced dermal edema and enhanced skin re-epithelialization. This was associated with a reduction in COX2 expression, increased K10 expression in the suprabasal epidermis, and reduced expression of K6. NDH 4338 also restored basement membrane integrity, as evidenced by continuous expression of laminin 332 at the dermal–epidermal junction. Taken together, these data indicate that a bifunctional anti-inflammatory prodrug stimulates repair of SM induced skin injury and may be useful as a medical countermeasure. - Highlights: • Bifunctional anti-inflammatory prodrug (NDH4338) tested on SM exposed mouse skin • The prodrug NDH4338 was designed to target COX2 and acetylcholinesterase. • The application of NDH4338 improved cutaneous wound repair after SM induced injury. • NDH4338 treatment demonstrated a reduction in COX2 expression on SM injured skin. • Changes of skin repair

  1. Asymmetric α-hydroxylation of tetralone-derived β-ketoesters by using a guanidine-urea bifunctional organocatalyst in the presence of cumene hydroperoxide.

    Science.gov (United States)

    Odagi, Minami; Furukori, Kota; Watanabe, Tatsuya; Nagasawa, Kazuo

    2013-12-02

    Highly enantioselective catalytic oxidation of 1-tetralone-derived β-keto esters was achieved by using a guanidine-urea bifunctional organocatalyst in the presence of cumene hydroperoxide (CHP), a safe, commercially available oxidant. The α-hydroxylation products were obtained in 99% yield with up to 95% enantiomeric excess (ee). The present oxidation was successfully applied to synthesize a key intermediate of the anti-cancer agent daunorubicin (2).

  2. Molecularly Imprinted Polymers with Bi-functional Monomers of Polymerizable Cyclodextrin Derivatives and 2-(Diethylamino)-ethyl Methacrylate for Recognition of Norfloxacin in Aqueous Media

    Institute of Scientific and Technical Information of China (English)

    Zhi Feng XU; Lan LIU; Qin Ying DENG

    2006-01-01

    A molecularly imprinted polymer was synthesized using 2-(diethylamino)ethylmethacry -late(DEM) and bismethacryloyl-β-cyclodextrin(BMA-β-CD) as bi-functional monomers and norfloxacin(NOF) as a template. The results of equilibrium binding experiments indicated that the polymer has affinity and specificity for NOF in aqueous media, and that its selective recognition ability for the template was higher than that of the imprinted polymers synthesized with a single functional monomer (BMA-β-CD or DEM).

  3. An Efficient Bifunctional Electrocatalyst for a Zinc-Air Battery Derived from Fe/N/C and Bimetallic Metal-Organic Framework Composites.

    Science.gov (United States)

    Wang, Mengfan; Qian, Tao; Zhou, Jinqiu; Yan, Chenglin

    2017-02-15

    Efficient bifunctional electrocatalysts with desirable oxygen activities are closely related to practical applications of renewable energy systems including metal-air batteries, fuel cells, and water splitting. Here a composite material derived from a combination of bimetallic zeolitic imidazolate frameworks (denoted as BMZIFs) and Fe/N/C framework was reported as an efficient bifunctional catalyst. Although BMZIF or Fe/N/C alone exhibits undesirable oxygen reaction activity, a combination of these materials shows unprecedented ORR (half-wave potential of 0.85 V as well as comparatively superior OER activities (potential@10 mA cm(-2) of 1.64 V), outperforming not only a commercial Pt/C electrocatalyst but also most reported bifunctional electrocatalysts. We then tested its practical application in Zn-air batteries. The primary batteries exhibit a high peak power density of 235 mW cm(-2), and the batteries are able to be operated smoothly for 100 cycles at a curent density of 10 mA cm(-2). The unprecedented catalytic activity can be attritued to chemical coupling effects between Fe/N/C and BMZIF and will aid the development of highly active electrocatalysts and applications for electrochemical energy devices.

  4. Novel Electrospun Dual-Layered Composite Nanofibrous Membrane Endowed with Electricity-Magnetism Bifunctionality at One Layer and Photoluminescence at the Other Layer.

    Science.gov (United States)

    Wang, Zijiao; Ma, Qianli; Dong, Xiangting; Li, Dan; Xi, Xue; Yu, Wensheng; Wang, Jinxian; Liu, Guixia

    2016-10-05

    Dual-layered composite nanofibrous membrane equipped with electrical conduction, magnetism and photoluminescence trifunctionality is constructed via electrospinning. The composite membrane consists of a polyaniline (PANI)/Fe3O4 nanoparticles (NPs)/polyacrylonitrile (PAN) tuned electrical-magnetic bifunctional nanofibrous layer at one side and a Eu(TTA)3(TPPO)2/polyvinylpyrrolidone (PVP) photoluminescent nanofibrous layer at the other side, and the two layers are tightly combined face-to-face together into the novel dual-layered composite membrane with trifunctionality. The electric conductivity and magnetism of electrical-magnetic bifunctionality can be respectively tunable via modulating the respective PANI and Fe3O4 NPs contents, and the highest electric conductivity approaches the order of 1 × 10(-2) S cm(-1). Predominant red emission at 615 nm can be obviously observed in the photoluminescent layer under 366 nm excitation. Moreover, the luminescent intensity of photoluminescent layer is almost unaffected by the electrical-magnetic bifunctional layer because of the fact that the photoluminescent materials have been successfully isolated from dark-colored PANI and Fe3O4 NPs. The novel dual-layered composite nanofibrous membrane with trifunctionality has potentials in many fields. Furthermore, the design philosophy and fabrication method for the dual-layered multifunctional membrane provide a new and facile strategy toward other membranes with multifunctionality.

  5. Self-assembly of cobalt-centered metal organic framework and multiwalled carbon nanotubes hybrids as a highly active and corrosion-resistant bifunctional oxygen catalyst

    Science.gov (United States)

    Fang, Yiyun; Li, Xinzhe; Li, Feng; Lin, Xiaoqing; Tian, Min; Long, Xuefeng; An, Xingcai; Fu, Yan; Jin, Jun; Ma, Jiantai

    2016-09-01

    Metal organic frameworks (MOF) derived carbonaceous materials have emerged as promising bifunctional oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) catalysts for electrochemical energy conversion and storage. But previous attempts to overcome the poor electrical conductivity of MOFs hybrids involve a harsh high-template pyrolytic process to in situ form carbon, which suffer from extremely complex operation and inevitable carbon corrosion at high positive potentials when OER is operated. Herein, a self-assembly approach is presented to synthesize a non-precious metal-based, high active and strong durable Co-MOF@CNTs bifunctional catalyst for OER and ORR. CNTs not only improve the transportation of the electrons but also can sustain the harsh oxidative environment of OER without carbon corrosion. Meanwhile, the unique 3D hierarchical structure offers a large surface area and stable anchoring sites for active centers and CNTs, which enables the superior durability of hybrid. Moreover, a synergistic catalysis of Co(II), organic ligands and CNTs will enhance the bifunctional electrocatalytic performance. Impressively, the hybrid exhibits comparable OER and ORR catalytic activity to RuO2 and 20 wt% Pt/C catalysts and superior stability. This facile and versatile strategy to fabricating MOF-based hybrids may be extended to other electrode materials for fuel cell and water splitting applications.

  6. NiCo2S4 nanowires array as an efficient bifunctional electrocatalyst for full water splitting with superior activity

    Science.gov (United States)

    Liu, Danni; Lu, Qun; Luo, Yonglan; Sun, Xuping; Asiri, Abdullah M.

    2015-09-01

    The present communication reports the topotactic conversion of NiCo2O4 nanowires array on carbon cloth (NiCo2O4 NA/CC) into NiCo2S4 NA/CC, which is used as an efficient bifunctional electrocatalyst for water splitting with good durability and superior activity in 1.0 M KOH. This NiCo2S4 NA/CC electrode produces 100 mA cm-2 at an overpotential of 305 mV for hydrogen evolution and 100 mA cm-2 at an overpotential of 340 mV for oxygen evolution. To afford a 10 mA cm-2 water-splitting current, the alkaline water electrolyzer made from NiCo2S4 NA/CC needs a cell voltage of 1.68 V, which is 300 mV less than that for NiCo2O4 NA/CC, and has good stability.The present communication reports the topotactic conversion of NiCo2O4 nanowires array on carbon cloth (NiCo2O4 NA/CC) into NiCo2S4 NA/CC, which is used as an efficient bifunctional electrocatalyst for water splitting with good durability and superior activity in 1.0 M KOH. This NiCo2S4 NA/CC electrode produces 100 mA cm-2 at an overpotential of 305 mV for hydrogen evolution and 100 mA cm-2 at an overpotential of 340 mV for oxygen evolution. To afford a 10 mA cm-2 water-splitting current, the alkaline water electrolyzer made from NiCo2S4 NA/CC needs a cell voltage of 1.68 V, which is 300 mV less than that for NiCo2O4 NA/CC, and has good stability. Electronic supplementary information (ESI) available: Experimental section and ESI Figures. See DOI: 10.1039/c5nr04064g

  7. Degradable polyethylenimine derivate coupled to a bifunctional peptide R13 as a new gene-delivery vector

    Directory of Open Access Journals (Sweden)

    Liu K

    2012-02-01

    Full Text Available Kehai Liu1,2,*, Xiaoyu Wang1,*, Wei Fan1, Qing Zhu2, Jingya Yang2, Jing Gao3, Shen Gao1 1Department of Pharmaceutics, Shanghai Hospital, Second Military Medical University, 2Department of Biopharmaceutics, School of Food Science and Technology, Shanghai Ocean University, 3Department of Pharmaceutics, School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China*The first two authors contributed equally to this workBackground: To solve the efficiency versus cytotoxicity and tumor-targeting problems of polyethylenimine (PEI used as a nonviral gene delivery vector, a degradable PEI derivate coupled to a bifunctional peptide R13 was developed.Methods: First, we synthesized a degradable PEI derivate by crosslinking low-molecular-weight PEI with pluronic P123, then used tumor-targeting peptide arginine-glycine-aspartate-cysteine (RGDC, in conjunction with the cell-penetrating peptide Tat (49–57, to yield a bifunctional peptide RGDC-Tat (49–57 named R13, which can improve cell selection and increase cellular uptake, and, lastly, adopted R13 to modify the PEI derivates so as to prepare a new polymeric gene vector (P123-PEI-R13. The new gene vector was characterized in terms of its chemical structure and biophysical parameters. We also investigated the specificity, cytotoxicity, and gene transfection efficiency of this vector in avß3-positive human cervical carcinoma Hela cells and murine melanoma B16 cells in vitro.Results: The vector showed controlled degradation, strong targeting specificity to avß3 receptor, and noncytotoxicity in Hela cells and B16 cells at higher doses, in contrast to PEI 25 KDa. The particle size of P123-PEI-R13/DNA complexes was around 100–250 nm, with proper zeta potential. The nanoparticles can protect plasmid DNA from being digested by DNase I at a concentration of 6 U DNase I/µg DNA. The nanoparticles were resistant to dissociation induced by 50% fetal bovine serum and 600 µg/mL sodium

  8. Sinorhizobium meliloti flavin secretion and bacteria-host interaction: role of the bifunctional RibBA protein.

    Science.gov (United States)

    Yurgel, Svetlana N; Rice, Jennifer; Domreis, Elizabeth; Lynch, Joseph; Sa, Na; Qamar, Zeeshan; Rajamani, Sathish; Gao, Mengsheng; Roje, Sanja; Bauer, Wolfgang D

    2014-05-01

    Sinorhizobium meliloti, the nitrogen-fixing bacterial symbiont of Medicago spp. and other legumes, secretes a considerable amount of riboflavin. This precursor of the cofactors flavin mononucleotide and flavin adenine dinucleotide is a bioactive molecule that has a beneficial effect on plant growth. The ribBA gene of S. meliloti codes for a putative bifunctional enzyme with dihydroxybutanone phosphate synthase and guanosine triphosphate (GTP) cyclohydrolase II activities, catalyzing the initial steps of the riboflavin biosynthesis pathway. We show here that an in-frame deletion of ribBA does not cause riboflavin auxotrophy or affect the ability of S. meliloti to establish an effective symbiosis with the host plant but does affect the ability of the bacteria to secrete flavins, colonize host-plant roots, and compete for nodulation. A strain missing the RibBA protein retains considerable GTP cyclohydrolase II activity. Based on these results, we hypothesize that S. meliloti has two partly interchangeable modules for biosynthesis of riboflavin, one fulfilling the internal need for flavins in bacterial metabolism and the other producing riboflavin for secretion. Our data also indicate that bacteria-derived flavins play a role in communication between rhizobia and the legume host and that the RibBA protein is important in this communication process even though it is not essential for riboflavin biosynthesis and symbiosis.

  9. Generating bifunctional fusion enzymes composed of heat-active endoglucanase (Cel5A) and endoxylanase (XylT).

    Science.gov (United States)

    Rizk, Mazen; Elleuche, Skander; Antranikian, Garabed

    2015-01-01

    Bifunctional enzyme constructs were generated comprising two genes encoding heat-active endoglucanase (cel5A) and endoxylanase (xylT). The fused proteins Cel5A-XylT and XylT-Cel5A were active on both β-glucan and beechwood xylan. An improvement in endoglucanase and endoxylanase catalytic activities was observed. The specific activity of the fusion towards xylan was significantly raised when compared to XylT. The fusion constructs were active from 40 to 100 °C for endoglucanase and from 40 to 90 °C for endoxylanase, but the temperature optima were lowered from 90 to 80 °C for the endoglucanase and from 80 to 70 °C for the endoxylanase. XylT in the construct XylT-Cel5A was less stable at higher temperatures compared to Cel5A-XylT. Due to the enzymatic performance, these fusion enzymes are attractive candidates for applications in biorefineries based on plant waste.

  10. Bifunctional CYP81AA proteins catalyse identical hydroxylations but alternative regioselective phenol couplings in plant xanthone biosynthesis

    Science.gov (United States)

    El-Awaad, Islam; Bocola, Marco; Beuerle, Till; Liu, Benye; Beerhues, Ludger

    2016-01-01

    Xanthones are natural products present in plants and microorganisms. In plants, their biosynthesis starts with regioselective cyclization of 2,3′,4,6-tetrahydroxybenzophenone to either 1,3,5- or 1,3,7-trihydroxyxanthones, catalysed by cytochrome P450 (CYP) enzymes. Here we isolate and express CYP81AA-coding sequences from Hypericum calycinum and H. perforatum in yeast. Microsomes catalyse two consecutive reactions, that is, 3′-hydroxylation of 2,4,6-trihydroxybenzophenone and C–O phenol coupling of the resulting 2,3′,4,6-tetrahydroxybenzophenone. Relative to the inserted 3′-hydroxyl, the orthologues Hc/HpCYP81AA1 cyclize via the para position to form 1,3,7-trihydroxyxanthone, whereas the paralogue HpCYP81AA2 directs cyclization to the ortho position, yielding the isomeric 1,3,5-trihydroxyxanthone. Homology modelling and reciprocal mutagenesis reveal the impact of S375, L378 and A483 on controlling the regioselectivity of HpCYP81AA2, which is converted into HpCYP81AA1 by sextuple mutation. However, the reciprocal mutations in HpCYP81AA1 barely affect its regiospecificity. Product docking rationalizes the alternative C–O phenol coupling reactions. Our results help understand the machinery of bifunctional CYPs. PMID:27145837

  11. Transferrin-targeted magnetic/fluorescence micelles as a specific bi-functional nanoprobe for imaging liver tumor

    Science.gov (United States)

    Qi, Hui; Li, Zhengzheng; Du, Kai; Mu, Ketao; Zhou, Qing; Liang, Shuyan; Zhu, Wenzhen; Yang, Xiangliang; Zhu, Yanhong

    2014-10-01

    In order to delineate the location of the tumor both before and during operation, we developed targeted bi-functional polymeric micelles for magnetic resonance (MR) and fluorescence imaging in liver tumors. Hydrophobic superparamagnetic iron oxide nanoparticles (SPIONs) were loaded into the polymeric micelles through self-assembly of an amphiphilic block copolymer poly(ethylene glycol)-poly(ɛ-caprolactone). After, transferrin (Tf) and near-infrared fluorescence molecule Cy5.5 were conjugated onto the surface of the polymeric micelles to obtain the nanosized probe SPIO@PEG- b-PCL-Tf/Cy5.5 (SPPTC). Imaging capabilities of this nanoprobe were evaluated both in vitro and in vivo. The accumulation of SPPTC in HepG2 cells increased over SPIO@PEG- b-PCL-Cy5.5 (SPPC) by confocal microscopy. The targeted nanoprobe SPPTC possessed favorable properties on the MR and fluorescence imaging both in vitro and in vivo. The MTT results showed that the nanoprobes were well tolerated. SPPTC had the potential for pre-operation evaluation and intra-operation navigation of tumors in clinic.

  12. Bifunctional Polymer Nanocomposites as Hole-Transport Layers for Efficient Light Harvesting: Application to Perovskite Solar Cells.

    Science.gov (United States)

    Wang, Jhong-Yao; Hsu, Fang-Chi; Huang, Jeng-Yeh; Wang, Leeyih; Chen, Yang-Fang

    2015-12-23

    A new approach to largely enhancing light harvesting of solar cells by employing bifunctional polymer nanocomposites as hole-transport layers (HTLs) is proposed. To illustrate our working principle, CH3NH3PbI3-xClx perovskite solar cells are used as examples. Gold nanoparticles (Au-NPs) are added into a conjugated poly(3-hexylthiophene-2,5-diyl) (P3HT) matrix, resulting in a ∼4-fold enhancement in the electrical conductivity and carrier mobility of the native P3HT film. The improved electrical properties are attributed to enhanced polymer chain ordering caused by Au-NPs. By integration of those P3HT:Au-NP films with an optimum loading concentration of 20% into perovskite solar cells as HTLs, this leads to a more than 25% enhancement in the power conversion efficiency (PCE) compared with that of the NP-free one. In addition to the modulated electrical properties of the HTL, the improved performance can also be attributed to the scattering effect from the incorporated Au-NPs, which effectively extends the optical pathway to amplify photon absorption of the photoactive layer. The design principle shown here can be generalized to other organic materials as well, which should be very useful for the further development of high-performance optoelectronic devices.

  13. Biochemical characterization of a bifunctional acetaldehyde-alcohol dehydrogenase purified from a facultative anaerobic bacterium Citrobacter sp. S-77.

    Science.gov (United States)

    Tsuji, Kohsei; Yoon, Ki-Seok; Ogo, Seiji

    2016-03-01

    Acetaldehyde-alcohol dehydrogenase (ADHE) is a bifunctional enzyme consisting of two domains of an N-terminal acetaldehyde dehydrogenase (ALDH) and a C-terminal alcohol dehydrogenase (ADH). The enzyme is known to be important in the cellular alcohol metabolism. However, the role of coenzyme A-acylating ADHE responsible for ethanol production from acetyl-CoA remains uncertain. Here, we present the purification and biochemical characterization of an ADHE from Citrobacter sp. S-77 (ADHE(S77)). Interestingly, the ADHE(S77) was unable to be solubilized from membrane with detergents either 1% Triton X-100 or 1% Sulfobetaine 3-12. However, the enzyme was easily dissociated from membrane by high-salt buffers containing either 1.0 M NaCl or (NH(4))(2)SO(4) without detergents. The molecular weight of a native protein was estimated as approximately 400 kDa, consisting of four identical subunits of 96.3 kDa. Based on the specific activity and kinetic analysis, the ADHES77 tended to have catalytic reaction towards acetaldehyde elimination rather than acetaldehyde formation. Our experimental observation suggests that the ADHES77 may play a pivotal role in modulating intracellular acetaldehyde concentration.

  14. Simultaneous H2 Generation and Biomass Upgrading in Water by an Efficient Noble-Metal-Free Bifunctional Electrocatalyst.

    Science.gov (United States)

    You, Bo; Jiang, Nan; Liu, Xuan; Sun, Yujie

    2016-08-16

    As an environmentally friendly approach to generate H2 , electrocatalytic water splitting has attracted worldwide interest. However, its broad employment has been inhibited by costly catalysts and low energy conversion efficiency, mainly due to the sluggish anodic half reaction, the O2 evolution reaction (OER), whose product O2 is not of significant value. Herein, we report an efficient strategy to replace OER with a thermodynamically more favorable reaction, the oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA), catalyzed by 3D Ni2 P nanoparticle arrays on nickel foam (Ni2 P NPA/NF). HMF is one of the primary dehydration intermediates of raw biomass and FDCA is of many industrial applications. As a bifunctional electrocatalyst, Ni2 P NPA/NF is not only active for HMF oxidation but also competent for H2 evolution. In fact, a two-electrode electrolyzer employing Ni2 P NPA/NF for simultaneous H2 and FDCA production required a voltage at least 200 mV smaller compared with pure water splitting to achieve the same current density, as well as exhibiting robust stability and nearly unity Faradaic efficiencies.

  15. Two-Step Hydrothermal Synthesis of Bifunctional Hematite-Silver Heterodimer Nanoparticles for Potential Antibacterial and Anticancer Applications

    Science.gov (United States)

    Trang, Vu Thi; Tam, Le Thi; Phan, Vu Ngoc; Van Quy, Nguyen; Huy, Tran Quang; Le, Anh-Tuan

    2017-01-01

    In recent years, the development of composite nanostructures containing noble metal and magnetic nanocrystals has attracted much interest because they offer a promising avenue for multifunctional applications in nanomedicine and pharmacotherapy. In this work, we present a facile two-step hydrothermal approach for the synthesis of bifunctional heterodimer nanoparticles (HDNPs) composed of hematite nanocubes (α-Fe2O3 NCs) and silver nanoparticles (Ag-NPs). The formation and magnetic property of α-Fe2O3-Ag HDNPs was analyzed by transmission electron microscopy, x-ray diffraction and vibrating sample magnetometer. Interestingly, the hydrothermal-synthesized α-Fe2O3-Ag HDNPs were found to display significant antibacterial activity against three types of infectious bacteria. The cytotoxicity of α-Fe2O3-Ag nanocomposite against lung cancer A549 cell line was investigated and compared with that of pure α-Fe2O3 NCs and Ag-NPs. The obtained results reveal that the α-Fe2O3-Ag nanocomposite exhibited higher anticancer performance than that of pure Ag-NPs, whereas pure α-Fe2O3 NCs were not cytotoxic to the tested cells. The inhibitory concentration (IC50) of the α-Fe2O3-Ag nanocomposite was found at 20.94 μg/mL. With the aforementioned properties, α-Fe2O3-Ag HDNPs showed a high potential as a multifunctional material for advanced biomedicine and nanotherapy applications.

  16. Molecular cloning and characterization of a novel bi-functional α-amylase/subtilisin inhibitor from Hevea brasiliensis.

    Science.gov (United States)

    Bunyatang, Orawan; Chirapongsatonkul, Nion; Bangrak, Phuwadol; Henry, Robert; Churngchow, Nunta

    2016-04-01

    A novel cDNA encoding a bi-functional α-amylase/subtilisin inhibitor (HbASI) was isolated from rubber (Hevea brasiliensis) leaves cultivar RRIM600. The HbASI had strong homology with the soybean trypsin inhibitor (Kunitz) family of protease inhibitors. Its putative amino acid sequence was similar to that of the α-amylase/subtilisin inhibitor from Ricinus communis (72% identity). Genomic sequencing indicated that the HbASI gene contained no introns. The messenger RNA of HbASI was detected in leaf, hypocotyl and root. The recombinant HbASI expressed extracellularly in Pichia pastoris exhibited inhibitory activity against α-amylase from Aspergillus oryzae, trypsin and subtilisin A. The HbASI gene was induced in the rubber leaves infected with a rubber tree pathogen, Phytophthora palmivora. It was also enhanced by salicylic acid (SA) treatment and mechanical wounding. In addition, the biological activity of the HbASI protein involving in the plant defence responses was also investigated. The HbASI at a concentration of 0.16 mg mL(-1) could inhibit the mycelium growth of P. palmivora. These data suggested that the HbASI protein might play a crucial role in defence against pathogen of rubber trees.

  17. Study of a Bifunctional Aβ Aggregation Inhibitor with the Abilities of Antiamyloid-β and Copper Chelation.

    Science.gov (United States)

    Zhang, Qian; Hu, Xiaoyu; Wang, Wei; Yuan, Zhi

    2016-02-08

    In this study, a bifunctional Aβ aggregation inhibitor peptide, GGHRYYAAFFARR (GR), with the abilities to bind copper and antiamyloid was designed to inhibit the neurotoxicity of the Aβ-Cu(II) complex. The thioflavin T (ThT) assay, turbidimetric analysis, transmission electron microscopy (TEM), and (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay were used to study its potential inhibitory effect on Aβ aggregation. Our findings indicate that GGH was the specific chelating sequence and that the RYYAAFFARR (RR) component acted as an aggregation inhibitor. More importantly, GR significantly decreased the cytotoxicity of the Aβ-Cu(II) complex. The cell viability improved to 88%, which was higher than with the single functional peptide GGH and RR by 39% and 20%, respectively. Moreover, the qualitative effect of Cu(II) on the Aβ-Cu(II) complex was also studied. Our results indicate that Cu(II) induces the formation of the β-sheet structure with a subequimolar Cu(II):Aβ molar ratio (0.25:1) but led to increased ROS production at a supra-equimolar ratio.

  18. Structure of the bifunctional inhibitor of trypsin and alpha-amylase from ragi seeds at 2.9 A resolution.

    Science.gov (United States)

    Gourinath, S; Srinivasan, A; Singh, T P

    1999-01-01

    The crystal structure of a bifunctional inhibitor of alpha-amylase and trypsin from the seeds of ragi (Indian finger millet, Eleusine coracana Gaertneri) has been determined by an X-ray diffraction method. The inhibitor consists of 122 amino acids with five disulfide bridges and belongs to the plant alpha-amylase/trypsin-inhibitor family. This is the first crystal structure determination of a member of this family. The protein, purified from the seeds of ragi, has a molecular mass of 13300 Da with a pI of 10.3. Crystals were grown by a microdialysis method using ammonium sulfate as precipitant. The improved purification protocol and the modified crystallization conditions enabled reproducible growth of the crystals. The cell parameters are a = 41. 2, b = 47.4, c = 55.9 A. The intensity data were collected to 2.9 A resolution, and the crystal structure was determined using the molecular-replacement method. The structure was refined using the X-PLOR and CCP4 program packages to a conventional R factor of 21%. The structure contains four alpha-helices between residues 19-29, 37-51, 56-65 and 90-95, and two short antiparallel beta-strands between residues 67-70 and 73-75.

  19. Structure of the bifunctional inhibitor of trypsin and alpha-amylase from ragi seeds at 2.2 A resolution.

    Science.gov (United States)

    Gourinath, S; Alam, N; Srinivasan, A; Betzel, C; Singh, T P

    2000-03-01

    The crystal structure of a bifunctional inhibitor of alpha-amylase and trypsin (RATI) from ragi seeds (Indian finger millet, Eleusine coracana Gaertneri) has been determined by X-ray diffraction at 2.2 A resolution. The inhibitor consists of 122 amino acids, with five disulfide bridges, and belongs to the plant alpha-amylase/trypsin inhibitor family. The crystals were grown by the microdialysis method using ammonium sulfate as a precipitating agent. The structure was determined by the molecular-replacement method using as models the structures of Corn Hageman factor inhibitor (CHFI) and of RATI at 2.9 A resolution determined previously. It has been refined to an R factor of 21.9%. The structure shows an r.m.s. deviation for C(alpha) atoms of 2.0 A compared with its own NMR structure, whereas the corresponding value compared with CHFI is found to be 1.4 A. The r.m.s. difference for C(alpha) atoms when compared with the same protein in the structure of the complex with alpha-amylase is 0.7 A. The conformations of trypsin-binding loop and the alpha-amylase-binding N-terminal region were also found to be similar in the crystal structures of native RATI and its complex with alpha-amylase. These regions differed considerably in the NMR structure.

  20. Conversion of β-carotene into astaxanthin: Two separate enzymes or a bifunctional hydroxylase-ketolase protein?

    Directory of Open Access Journals (Sweden)

    Gudiña Eduardo

    2008-02-01

    Full Text Available Abstract Astaxanthin is a xanthophyll of great interest in animal nutrition and human health. The market prospect in the nutraceutics industries for this health-protective molecule is very promising. Astaxanthin is synthesized by several bacteria, algae and plants from β-carotene by the sequential action of two enzymes: a β-carotene, 3,3'-hydroxylase that introduces an hydroxyl group at the 3 (and 3' positions of each of the two β-ionone rings of β-carotene, and a β-carotene ketolase that introduces keto groups at carbons 4 and 4' of the β-ionone rings. Astaxanthin is also produced by the yeast-like basidiomycete Xanthophyllomyces dendrorhous. A gene crtS involved in the conversion of β-carotene to astaxanthin has been cloned simultaneously by two research groups. Complementation studies of X. dendrorhous mutants and expression analysis in Mucor circinelloides reveals that the CrtS enzyme is a β-carotene hydroxylase of the P-450 monooxygenase family that converts β-carotene to the hydroxylated derivatives β-cryptoxanthin and zeaxanthin, but it does not form astaxanthin or the ketolated intermediates in this fungus. A bifunctional β-carotene hydroxylase-ketolase activity has been proposed for the CrtS protein. The evidence for and against this hypothesis is analyzed in detail in this review.

  1. Acid-base bifunctional catalysis of silica-alumina-supported organic amines for carbon-carbon bond-forming reactions.

    Science.gov (United States)

    Motokura, Ken; Tomita, Mitsuru; Tada, Mizuki; Iwasawa, Yasuhiro

    2008-01-01

    Acid-base bifunctional heterogeneous catalysts were prepared by the reaction of an acidic silica-alumina (SA) surface with silane-coupling reagents possessing amino functional groups. The obtained SA-supported amines (SA-NR2) were characterized by solid-state 13C and 29Si NMR spectroscopy, FT-IR spectroscopy, and elemental analysis. The solid-state NMR spectra revealed that the amines were immobilized by acid-base interactions at the SA surface. The interactions between the surface acidic sites and the immobilized basic amines were weaker than the interactions between the SA and free amines. The catalytic performances of the SA-NR2 catalysts for various carbon-carbon bond-forming reactions, such as cyano-ethoxycarbonylation, the Michael reaction, and the nitro-aldol reaction, were investigated and compared with those of homogeneous and other heterogeneous catalysts. The SA-NR2 catalysts showed much higher catalytic activities for the carbon-carbon bond-forming reactions than heterogeneous amine catalysts using other supports, such as SiO2 and Al2O3. On the other hand, homogeneous amines hardly promoted these reactions under similar reaction conditions, and the catalytic behavior of SA-NR2 was also different from that of MgO, which was employed as a typical heterogeneous base. An acid-base dual-activation mechanism for the carbon-carbon bond-forming reactions is proposed.

  2. Metallosalen-Based Ionic Porous Polymers as Bifunctional Catalysts for the Conversion of CO2 into Valuable Chemicals.

    Science.gov (United States)

    Luo, Rongchang; Chen, Yaju; He, Qian; Lin, Xiaowei; Xu, Qihang; He, Xiaohui; Zhang, Wuying; Zhou, Xiantai; Ji, Hongbing

    2016-12-31

    A series of new metallosalen-based ionic porous organic polymers (POPs) were synthesized for the first time using a simple unique strategy based on the free-radical copolymerization reaction. Various techniques were used to characterize the physicochemical properties of these catalysts. These well-designed materials endowed high surface area, hierarchical porous structures, and enhanced CO2 /N2 adsorptive selectivity. Moreover, these POPs having both metal centers (Lewis acid) and ionic units (nucleophile) could serve as bifunctional catalysts in the catalytic conversion of CO2 into high value-added chemicals without any additional co-catalyst under mild and solvent-free conditions, for example, CO2 /epoxides cycloaddition and Nformylation of amines from CO2 and hydrosilanes. The results demonstrated that the irregular porous structure was very favorable for the diffusion of substrates and products, and the microporous structural property resulted in the enrichment of CO2 near the catalytic centers in the CO2 -involved transformations. Additionally, the superhydrophobic property could not only enhance the chemoselectivity of products but also promote the stability and recyclability of catalysts.

  3. Rice bifunctional alpha-amylase/subtilisin inhibitor: cloning and characterization of the recombinant inhibitor expressed in Escherichia coli.

    Science.gov (United States)

    Yamasaki, Teruyuki; Deguchi, Masaki; Fujimoto, Toshiko; Masumura, Takehiro; Uno, Tomohide; Kanamaru, Kengo; Yamagata, Hiroshi

    2006-05-01

    The complete nucleotide sequences of the cDNA and its gene that encode a bifunctional alpha-amylase/subtilisin inhibitor of rice (Oryza sativa L.) (RASI) were analyzed. RASI cDNA (939 bp) encoded a 200-residue polypeptide with a molecular mass of 21,417 Da, including a signal peptide of 22 amino acids. Sequence comparison and phylogenetic analysis showed that RASI is closely related to alpha-amylase/subtilisin inhibitors from barley and wheat. RASI was found to be expressed only in seeds, suggesting that it has a seed-specific function. A coding region of RASI cDNA without the signal peptide was introduced into Escherichia coli and was expressed as a His-tagged protein. Recombinant RASI was purified to homogeneity in a single step by Ni-chelating affinity column chromatography and characterized to elucidate the target enzyme. The recombinant inhibitor had strong inhibitory activity toward subtilisin, with an equimolar relationship, comparable with that of native RASI, and weak inhibitory activity toward some microbial alpha-amylases, but not toward animal or insect alpha-amylases. These results suggest that RASI might function in the defense of the seed against microorganisms.

  4. A new bifunctional chelate, BrMe sub 2 HBED: An effective conjugate for radiometals and antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Mathias, C.J.; Connett, J.M.; Philpott, G.W.; Welch, M.J. (Washington Univ. School of Medicine, St. Louis, MO (USA)); Sun, Yizhen; Martell, A.E. (Texas A and M Univ., College Station (USA))

    1990-04-18

    A new bifunctional chelate, N-(2-hydroxy-3,5-dimethylbenzyl)-N{prime}-(2-hydroxy-5-(bromoacetamido)benzyl)ethylenediamine-N,-N{prime}-diacetic acid (BrMe{sub 2}HBED), was designed and synthesized to bind trivalent cationic metals with monoclonal antibodies. The stability constants (log values) for indium complexed with a similar ligand, HBED, were increased over those of more commonly used ligands DTPA and EDTA. Predictably, the increased metal-ligand complex stability would expedite the in vivo clearance from nontarget regions and perhaps enhance the localization of the radiolabeled antibody (Ab). BrMe{sub 2}HBED was conjugated with the Ab (24 h) and then radiolabeled with indium-111 citrate (24 h). Additionally, the Ab was radiolabeled by using conventional methods ({sup 111}In-DTPA and {sup 125}I-lactoperoxidase) and then compared by measuring the in vitro stability, in vitro immunoreactivity(IR), and in vivo distribution and clearance. A 10:1 BrMe{sub 2} HBED:Ab mole ratio resulted in good labeling efficiency with {sup 111}In and more importantly a very high IR. In a hamster tumor model, {sup 111}In-BrMe{sub 2} HBED-labeled monoclonal antibody (1A3) had high uptake in the tumor tissue and preferable blood clearance compared to either of the more conventional radiolabeled 1A3 monoclonal antibodies ({sup 111}In-DTPA or {sup 125}I-lactoperoxidase). 49 refs., 4 figs., 8 tabs.

  5. Fabrication of triple-layered magnetite/hydrogel/quantum dots via the molecular linkage of bi-functional diamines.

    Science.gov (United States)

    Lim, Sera; Lee, Sangwha

    2012-07-01

    A multifunctional biomedical agent with magnetism, pH-sensitive, fluorescent properties was fabricated as a triple-layered magnetite/hydrogel/quantum dots. First, core-shell magnetic silica nanospheres (Fe3O4@SiO2) were synthesized via the sol-gel reaction of magnetite clusters with tetraethyl orthosilicate (TEOS), and the resuting magnetic particles were encapsulated with poly(N-isopropylacrylamide-co-acrylic acid) hydrogels through a free radical polymerization. The hydrogel-encapsulated magnetic particles were subsequently anchored by quantum dots (QDs) via the molecular linkage of bi-functional diamines. Diamine molecules effecrively induced the crosslinking between magnetic hydrogels and quantum dots. Among diamine linkers with different chain lengths (C-4, C-8, and C-12), C-8 diamine (1,8-diaminooctane) produced the maximal PL intensity for QD-bound hydrogels, indicating that C-8 diamine was an optimal cross-linker between hydrogels and QDs with surface carboxylic acid groups. The characteristic properties of the multifunctional nanocomposites were analyzed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), zeta-potential meter, and photoluminescence (PL) spectroscopy.

  6. CO2 capture performance of bi-functional activated bleaching earth modified with basic-alcoholic solution and functionalization with monoethanolamine: isotherms, kinetics and thermodynamics.

    Science.gov (United States)

    Pongstabodee, Sangobtip; Pornaroontham, Phuwadej; Pintuyothin, Nuthapol; Pootrakulchote, Nuttapol; Thouchprasitchai, Nutthavich

    2016-10-01

    CO2 capture performance of bifunctional activated bleaching earth (ABE) was investigated at atmospheric pressure. The sorbents were characterized by means of X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), Caron-Hydrogen-Nitrogen analysis (CHN), Fourier transform infrared (FT-IR) and thermal gravimetric analysis (TGA). The CO2 capacity was enhanced via basic-modification and monoethanolamine (MEA) loading of the ABE sorbent to obtain a bifunctional surface property. Here, basic-modified calcined ABE with a 30wt.% MEA loading (SAB-30) showed the highest CO2 capture capacity, but this was decreased with excess MEA loading (>30wt.%). At a 10% (V/V) initial CO2 concentration feed, the maximum capacity of SAB-30 increased from 2.71mmol/g at 30°C (without adding moisture to the feed) to 3.3mmol/g at 50°C when adding 10% (V/V) moisture to the feed. Increasing the moisture concentration further reduced the maximum CO2 capacity due to the blocking effect of the excess moisture on the sorbent surface. However, SAB-30 could completely capture CO2 even in a 100% (V/V) initial CO2 concentration feed. A maximum CO2 capacity of 5.7mmol/g for SAB-30 was achieved at 30°C. Varying the ratio of sorbent weight to total flow rate of the gas stream had no discernible effect on the equilibrium CO2 capture capacity. Avrami's equation and Toth's isotherm model provided a good fitting for the data and suggested the presence of more than one reaction pathway in the CO2 capture process and the heterogeneous adsorption surface of SAB-30. Thermodynamics studies revealed that CO2 capture on the bifunctional SAB-30 is feasible, spontaneous and exothermic in nature.

  7. Evolution of Conifer Diterpene Synthases: Diterpene Resin Acid Biosynthesis in Lodgepole Pine and Jack Pine Involves Monofunctional and Bifunctional Diterpene Synthases1[W][OA

    Science.gov (United States)

    Hall, Dawn E.; Zerbe, Philipp; Jancsik, Sharon; Quesada, Alfonso Lara; Dullat, Harpreet; Madilao, Lina L.; Yuen, Macaire; Bohlmann, Jörg

    2013-01-01

    Diterpene resin acids (DRAs) are major components of pine (Pinus spp.) oleoresin. They play critical roles in conifer defense against insects and pathogens and as a renewable resource for industrial bioproducts. The core structures of DRAs are formed in secondary (i.e. specialized) metabolism via cycloisomerization of geranylgeranyl diphosphate (GGPP) by diterpene synthases (diTPSs). Previously described gymnosperm diTPSs of DRA biosynthesis are bifunctional enzymes that catalyze the initial bicyclization of GGPP followed by rearrangement of a (+)-copalyl diphosphate intermediate at two discrete class II and class I active sites. In contrast, similar diterpenes of gibberellin primary (i.e. general) metabolism are produced by the consecutive activity of two monofunctional class II and class I diTPSs. Using high-throughput transcriptome sequencing, we discovered 11 diTPS from jack pine (Pinus banksiana) and lodgepole pine (Pinus contorta). Three of these were orthologous to known conifer bifunctional levopimaradiene/abietadiene synthases. Surprisingly, two sets of orthologous PbdiTPSs and PcdiTPSs were monofunctional class I enzymes that lacked functional class II active sites and converted (+)-copalyl diphosphate, but not GGPP, into isopimaradiene and pimaradiene as major products. Diterpene profiles and transcriptome sequences of lodgepole pine and jack pine are consistent with roles for these diTPSs in DRA biosynthesis. The monofunctional class I diTPSs of DRA biosynthesis form a new clade within the gymnosperm-specific TPS-d3 subfamily that evolved from bifunctional diTPS rather than monofunctional enzymes (TPS-c and TPS-e) of gibberellin metabolism. Homology modeling suggested alterations in the class I active site that may have contributed to their functional specialization relative to other conifer diTPSs. PMID:23370714

  8. Practical selective hydrogenation of α-fluorinated esters with bifunctional pincer-type ruthenium(II) catalysts leading to fluorinated alcohols or fluoral hemiacetals.

    Science.gov (United States)

    Otsuka, Takashi; Ishii, Akihiro; Dub, Pavel A; Ikariya, Takao

    2013-07-01

    Selective hydrogenation of fluorinated esters with pincer-type bifunctional catalysts RuHCl(CO)(dpa) 1a, trans-RuH2(CO)(dpa) 1b, and trans-RuCl2(CO)(dpa) 1c under mild conditions proceeds rapidly to give the corresponding fluorinated alcohols or hemiacetals in good to excellent yields. Under the optimized conditions, the hydrogenation of chiral (R)-2-fluoropropionate proceeds smoothly to give the corresponding chiral alcohol without any serious decrease of the ee value.

  9. Bifunctional Imidazolium-Based Ionic Liquid Decorated UiO-67 Type MOF for Selective CO2 Adsorption and Catalytic Property for CO2 Cycloaddition with Epoxides.

    Science.gov (United States)

    Ding, Luo-Gang; Yao, Bing-Jian; Jiang, Wei-Ling; Li, Jiang-Tao; Fu, Qi-Juan; Li, Yan-An; Liu, Zhen-Hua; Ma, Jian-Ping; Dong, Yu-Bin

    2017-02-20

    A bifunctional robust and highly porous imidazolium-based ionic liquid decorated UiO-67 type MOF (UiO-67-IL, 1) was successfully constructed via solvothermal assembly of the imidazolium-based ligand and Zr(IV) ions. It exhibits a highly selective adsorption for CO2 over CH4 and N2. Furthermore, 1 herein can be used as a highly active heterogeneous catalyst for CO2 cycloaddition with epoxides under atmospheric pressure with or without cocatalyst TBAB (n-Bu4NBr).

  10. Production of propylene from 1-butene on highly active "bi-functional single active site" catalyst: Tungsten carbene-hydride supported on alumina

    KAUST Repository

    Mazoyer, Etienne

    2011-12-02

    1-Butene is transformed in a continuous flow reactor over tungsten hydrides precursor W-H/Al2O3, 1, giving a promising yield into propylene at 150 °C and different pressures. Tungsten carbene-hydride single active site operates as a "bi-functional catalyst" through 1-butene isomerization on W-hydride and 1-butene/2-butenes cross-metathesis on W-carbene. This active moiety is generated in situ at the initiation steps by insertion of 1-butene on tungsten hydrides precursor W-H/Al2O3, 1 followed by α-H and β-H abstraction. © 2011 American Chemical Society.

  11. Cell tracking with gadophrin-2: a bifunctional contrast agent for MR imaging, optical imaging, and fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Daldrup-Link, Heike E. [Department of Radiology, UCSF Medical Center, University of California in San Francisco, 513 Parnassus Ave, CA 94143, San Francisco (United States); Rudelius, Martina; Piontek, Guido; Schlegel, Juergen [Institute of Pathology, Technical University, Munich (Germany); Metz, Stephan; Settles, Marcus; Rummeny, Ernst J. [Department of Radiology, Technical University, Munich (Germany); Pichler, Bernd [Department of Biomedical Engineering, University of California Davis, Davis (United States); Heinzmann, Ulrich [National Research Center for Environment and Health, Technical University, Munich (Germany); Oostendorp, Robert A.J. [3. Clinic of Internal Medicine, Laboratory of Stem Cell Physiology, Technical University, Munich (Germany)

    2004-09-01

    The purpose of this study was to assess the feasibility of use of gadophrin-2 to trace intravenously injected human hematopoietic cells in athymic mice, employing magnetic resonance (MR) imaging, optical imaging (OI), and fluorescence microscopy. Mononuclear peripheral blood cells from GCSF-primed patients were labeled with gadophrin-2 (Schering AG, Berlin, Germany), a paramagnetic and fluorescent metalloporphyrin, using established transfection techniques with cationic liposomes. The labeled cells were evaluated in vitro with electron microscopy and inductively coupled plasma atomic emission spectrometry. Then, 1 x 10{sup 6}-3 x 10{sup 8} labeled cells were injected into 14 nude Balb/c mice and the in vivo cell distribution was evaluated with MR imaging and OI before and 4, 24, and 48 h after intravenous injection (p.i.). Five additional mice served as controls: three mice were untreated controls and two mice were investigated after injection of unlabeled cells. The contrast agent effect was determined quantitatively for MR imaging by calculating signal-to-noise-ratio (SNR) data. After completion of in vivo imaging studies, fluorescence microscopy of excised organs was performed. Intracellular cytoplasmatic uptake of gadophrin-2 was confirmed by electron microscopy. Spectrometry determined an uptake of 31.56 nmol Gd per 10{sup 6} cells. After intravenous injection, the distribution of gadophrin-2 labeled cells in nude mice could be visualized by MR, OI, and fluorescence microscopy. At 4 h p.i., the transplanted cells mainly distributed to lung, liver, and spleen, and 24 h p.i. they also distributed to the bone marrow. Fluorescence microscopy confirmed the distribution of gadophrin-2 labeled cells to these target organs. Gadophrin-2 is suited as a bifunctional contrast agent for MR imaging, OI, and fluorescence microscopy and may be used to combine the advantages of each individual imaging modality for in vivo tracking of intravenously injected hematopoietic cells

  12. Synthesis and characterization of bifunctional transition-metal/silica-alumina catalysts for the chloromethane conversion to hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, J.F. [Universidade Federal de Rio de Grande do Norte (UFRN), Natal, RN (Brazil). Programa de Pos-Graduacao em Engenharia Quimica; Rojas, L.O.A.; Nascimento, J.C. [Universidade Federal de Rio de Grande do Norte (UFRN), Natal, RN (Brazil). Programa de Pos-Graduacao em Engenharia Quimica; Centro de Tecnologias do Gas (CTGAS), Natal, RN (Brazil)], E-mail: leopoldo@ctgas.com.br; Ruiz, J.A.C. [Centro de Tecnologias do Gas (CTGAS), Natal, RN (Brazil); Benachour, M. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Programa de Pos-Graduacao em Engenharia Quimica

    2008-10-15

    In this work bifunctional (metal-acid) catalysts of Fe, Ni, Fe{sub 2}O{sub 3} and NiO over amorphous silica alumina support were characterized (acidity) and evaluated for the conversion of chloromethane in a fixed bed reactor. Temperature program tests TPD (Temperature Programmed Desorption) and TPR (Temperature Programmed Reduction) were performed to characterize the chemisorption sites for the impregnated and unimpregnated support. New adsorption sites were created on the metal supported catalysts. The conversion yield of chloromethane was evaluated for the five materials. The highest conversion conversion (85%) was observed for the unmodified support (SiAl) after 6 of reaction at 860 K and a WHSV (Weight Hourly Space Velocity) of 4,5 h{sup -1}. The best selectivity toward desirable hydrocarbons (C{sup 3}, C{sup 4}) was found for the Fe-SiAl catalyst. C{sup 3} was also found in the products stream when Ni/SiAl and NiO/SiAl catalysts were tested. Ni catalysts were the most favorable to methane production. The catalytic tests showed coke formation in all materials. For the SiAl support the desorption energy of chloromethane, determined by TPD runs, was 101,9 KJ/mol. The metals presented lower desorption energies (75,2 KJ/mol for Ni and 133,4 KJ/mol for Fe) than the oxides (190,1 KJ/mol for Fe{sub 2}O{sub 3} and 322,4 KJ/mol for NiO). (author)

  13. The role of the methyltransferase domain of bifunctional restriction enzyme RM.BpuSI in cleavage activity.

    Directory of Open Access Journals (Sweden)

    Arthur Sarrade-Loucheur

    Full Text Available Restriction enzyme (REase RM.BpuSI can be described as a Type IIS/C/G REase for its cleavage site outside of the recognition sequence (Type IIS, bifunctional polypeptide possessing both methyltransferase (MTase and endonuclease activities (Type IIC and endonuclease activity stimulated by S-adenosyl-L-methionine (SAM (Type IIG. The stimulatory effect of SAM on cleavage activity presents a major paradox: a co-factor of the MTase activity that renders the substrate unsusceptible to cleavage enhances the cleavage activity. Here we show that the RM.BpuSI MTase activity modifies both cleavage substrate and product only when they are unmethylated. The MTase activity is, however, much lower than that of M1.BpuSI and is thought not to be the major MTase for host DNA protection. SAM and sinefungin (SIN increase the Vmax of the RM.BpuSI cleavage activity with a proportional change in Km, suggesting the presence of an energetically more favorable pathway is taken. We further showed that RM.BpuSI undergoes substantial conformational changes in the presence of Ca(2+, SIN, cleavage substrate and/or product. Distinct conformers are inferred as the pre-cleavage/cleavage state (in the presence of Ca(2+, substrate or both and MTase state (in the presence of SIN and substrate, SIN and product or product alone. Interestingly, RM.BpuSI adopts a unique conformation when only SIN is present. This SIN-bound state is inferred as a branch point for cleavage and MTase activity and an intermediate to an energetically favorable pathway for cleavage, probably through increasing the binding affinity of the substrate to the enzyme under cleavage conditions. Mutation of a SAM-binding residue resulted in altered conformational changes in the presence of substrate or Ca(2+ and eliminated cleavage activity. The present study underscores the role of the MTase domain as facilitator of efficient cleavage activity for RM.BpuSI.

  14. A Novel N-Acetylglutamate Synthase Architecture Revealed by the Crystal Structure of the Bifunctional Enzyme from Maricaulis maris

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Dashuang; Li, Yongdong; Cabrera-Luque, Juan; Jin, Zhongmin; Yu, Xiaolin; Zhao, Gengxiang; Haskins, Nantaporn; Allewell, Norma M.; Tuchman, Mendel (Maryland); (GWU); (Georgia)

    2012-05-24

    Novel bifunctional N-acetylglutamate synthase/kinases (NAGS/K) that catalyze the first two steps of arginine biosynthesis and are homologous to vertebrate N-acetylglutamate synthase (NAGS), an essential cofactor-producing enzyme in the urea cycle, were identified in Maricaulis maris and several other bacteria. Arginine is an allosteric inhibitor of NAGS but not NAGK activity. The crystal structure of M. maris NAGS/K (mmNAGS/K) at 2.7 {angstrom} resolution indicates that it is a tetramer, in contrast to the hexameric structure of Neisseria gonorrhoeae NAGS. The quaternary structure of crystalline NAGS/K from Xanthomonas campestris (xcNAGS/K) is similar, and cross-linking experiments indicate that both mmNAGS/K and xcNAGS are tetramers in solution. Each subunit has an amino acid kinase (AAK) domain, which is likely responsible for N-acetylglutamate kinase (NAGK) activity and has a putative arginine binding site, and an N-acetyltransferase (NAT) domain that contains the putative NAGS active site. These structures and sequence comparisons suggest that the linker residue 291 may determine whether arginine acts as an allosteric inhibitor or activator in homologous enzymes in microorganisms and vertebrates. In addition, the angle of rotation between AAK and NAT domains varies among crystal forms and subunits within the tetramer. A rotation of 26{sup o} is sufficient to close the predicted AcCoA binding site, thus reducing enzymatic activity. Since mmNAGS/K has the highest degree of sequence homology to vertebrate NAGS of NAGS and NAGK enzymes whose structures have been determined, the mmNAGS/K structure was used to develop a structural model of human NAGS that is fully consistent with the functional effects of the 14 missense mutations that were identified in NAGS-deficient patients.

  15. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution.

    Science.gov (United States)

    Jin, Haiyan; Wang, Jing; Su, Diefeng; Wei, Zhongzhe; Pang, Zhenfeng; Wang, Yong

    2015-02-25

    Remarkable hydrogen evolution reaction (HER) or superior oxygen evolution reaction (OER) catalyst has been applied in water splitting, however, utilizing a bifunctional catalyst for simultaneously generating H2 and O2 is still a challenging issue, which is crucial for improving the overall efficiency of water electrolysis. Herein, inspired by the superiority of carbon conductivity, the propitious H atom binding energy of metallic cobalt, and better OER activity of cobalt oxide, we synthesized cobalt-cobalt oxide/N-doped carbon hybrids (CoOx@CN) composed of Co(0), CoO, Co3O4 applied to HER and OER by simple one-pot thermal treatment method. CoOx@CN exhibited a small onset potential of 85 mV, low charge-transfer resistance (41 Ω), and considerable stability for HER. Electrocatalytic experiments further indicated the better performance of CoOx@CN for HER can be attributed to the high conductivity of carbon, the synergistic effect of metallic cobalt and cobalt oxide, the stability of carbon-encapsulated Co nanoparticles, and the introduction of electron-rich nitrogen. In addition, when used as catalysts of OER, the CoOx@CN hybrids required 0.26 V overpotential for a current density of 10 mA cm(-2), which is comparable even superior to many other non-noble metal catalysts. More importantly, an alkaline electrolyzer that approached ∼20 mA cm(-2) at a voltage of 1.55 V was fabricated by applying CoOx@CN as cathode and anode electrocatalyst, which opened new possibilities for exploring overall water splitting catalysts.

  16. Insights into the dual activation mechanism involving bifunctional cinchona alkaloid thiourea organocatalysts: an NMR and DFT study.

    Science.gov (United States)

    Zhu, Jun-Ling; Zhang, Yong; Liu, Chong; Zheng, An-Min; Wang, Wei

    2012-11-02

    In-depth understanding of the activation mechanism in asymmetric organocatalysis is of great importance for rational development of highly efficient catalytic systems. In this Article, the mechanism for the direct vinylogous Michael reaction of α,β-unsaturated γ-butyrolactam (Nu) and chalcone (EI) catalyzed by the bifunctional cinchona alkaloid thiourea organocatalyst (Cat) was studied with a combination of experimental (NMR) and theoretical (DFT) approaches, through which a new dual activation pathway was found. The key feature of this new dual activation mechanism (Pathway C) is that one N-H(A) of the thiourea moiety and the N-H of the protonated amine in Cat simultaneously activate Nu, while the other N-H(B) of the thiourea moiety activates EI. Both the NMR measurement and the DFT calculation identified that the interaction of Cat with Nu is stronger than that with EI in the catalyst-substrate complexes. Kinetic studies via variable-temperature NMR measurements indicated that, with the experimental activation energy E(a) of 10.2 kcal/mol, the reaction is all first-order in Nu, EI, and Cat. The DFT calculation further revealed that the C-C bond formation is both the rate-determining and the stereoselectivity-controlling steps. In agreement with the experimental data, the energy barrier for the rate-determining step along Pathway C was calculated as 8.8 kcal/mol. The validity of Pathway C was further evidenced by the calculated enantioselectivity (100% ee) and diastereoselectivity (60:1 dr), which are in excellent match with the experimental data (98% ee and >30:1 dr, respectively). Mechanistic study on the Michael addition of nitromethane to chalcone catalyzed by the Catalyst I further identified the generality of this new dual activation mechanism in cinchona alkaloid thiourea organocatalysis.

  17. Crystallization, dehydration and experimental phasing of WbdD, a bifunctional kinase and methyltransferase from Escherichia coli O9a

    Energy Technology Data Exchange (ETDEWEB)

    Hagelueken, Gregor; Huang, Hexian [The University of St Andrews, North Haugh, St Andrews KY16 9ST, Scotland (United Kingdom); Harlos, Karl [University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Clarke, Bradley R.; Whitfield, Chris [University of Guelph, Ontario N1G 2W1 (Canada); Naismith, James H., E-mail: naismith@st-and.ac.uk [The University of St Andrews, North Haugh, St Andrews KY16 9ST, Scotland (United Kingdom)

    2012-10-01

    The optimization of WbdD crystals using a novel dehydration protocol and experimental phasing at 3.5 Å resolution by cross-crystal averaging followed by molecular replacement of electron density into a non-isomorphous 3.0 Å resolution native data set are reported. WbdD is a bifunctional kinase/methyltransferase that is responsible for regulation of lipopolysaccharide O antigen polysaccharide chain length in Escherichia coli serotype O9a. Solving the crystal structure of this protein proved to be a challenge because the available crystals belonging to space group I23 only diffracted to low resolution (>95% of the crystals diffracted to resolution lower than 4 Å and most only to 8 Å) and were non-isomorphous, with changes in unit-cell dimensions of greater than 10%. Data from a serendipitously found single native crystal that diffracted to 3.0 Å resolution were non-isomorphous with a lower (3.5 Å) resolution selenomethionine data set. Here, a strategy for improving poor (3.5 Å resolution) initial phases by density modification and cross-crystal averaging with an additional 4.2 Å resolution data set to build a crude model of WbdD is desribed. Using this crude model as a mask to cut out the 3.5 Å resolution electron density yielded a successful molecular-replacement solution of the 3.0 Å resolution data set. The resulting map was used to build a complete model of WbdD. The hydration status of individual crystals appears to underpin the variable diffraction quality of WbdD crystals. After the initial structure had been solved, methods to control the hydration status of WbdD were developed and it was thus possible to routinely obtain high-resolution diffraction (to better than 2.5 Å resolution). This novel and facile crystal-dehydration protocol may be useful for similar challenging situations.

  18. Crystallization, dehydration and experimental phasing of WbdD, a bifunctional kinase and methyltransferase from Escherichia coli O9a.

    Science.gov (United States)

    Hagelueken, Gregor; Huang, Hexian; Harlos, Karl; Clarke, Bradley R; Whitfield, Chris; Naismith, James H

    2012-10-01

    WbdD is a bifunctional kinase/methyltransferase that is responsible for regulation of lipopolysaccharide O antigen polysaccharide chain length in Escherichia coli serotype O9a. Solving the crystal structure of this protein proved to be a challenge because the available crystals belonging to space group I23 only diffracted to low resolution (>95% of the crystals diffracted to resolution lower than 4 Å and most only to 8 Å) and were non-isomorphous, with changes in unit-cell dimensions of greater than 10%. Data from a serendipitously found single native crystal that diffracted to 3.0 Å resolution were non-isomorphous with a lower (3.5 Å) resolution selenomethionine data set. Here, a strategy for improving poor (3.5 Å resolution) initial phases by density modification and cross-crystal averaging with an additional 4.2 Å resolution data set to build a crude model of WbdD is desribed. Using this crude model as a mask to cut out the 3.5 Å resolution electron density yielded a successful molecular-replacement solution of the 3.0 Å resolution data set. The resulting map was used to build a complete model of WbdD. The hydration status of individual crystals appears to underpin the variable diffraction quality of WbdD crystals. After the initial structure had been solved, methods to control the hydration status of WbdD were developed and it was thus possible to routinely obtain high-resolution diffraction (to better than 2.5 Å resolution). This novel and facile crystal-dehydration protocol may be useful for similar challenging situations.

  19. Crystallization, dehydration and experimental phasing of WbdD, a bifunctional kinase and methyltransferase from Escherichia coli O9a

    Science.gov (United States)

    Hagelueken, Gregor; Huang, Hexian; Harlos, Karl; Clarke, Bradley R.; Whitfield, Chris; Naismith, James H.

    2012-01-01

    WbdD is a bifunctional kinase/methyltransferase that is responsible for regulation of lipopolysaccharide O antigen polysaccharide chain length in Escherichia coli serotype O9a. Solving the crystal structure of this protein proved to be a challenge because the available crystals belonging to space group I23 only diffracted to low resolution (>95% of the crystals diffracted to resolution lower than 4 Å and most only to 8 Å) and were non-isomorphous, with changes in unit-cell dimensions of greater than 10%. Data from a serendipitously found single native crystal that diffracted to 3.0 Å resolution were non-isomorphous with a lower (3.5 Å) resolution selenomethionine data set. Here, a strategy for improving poor (3.5 Å resolution) initial phases by density modification and cross-crystal averaging with an additional 4.2 Å resolution data set to build a crude model of WbdD is desribed. Using this crude model as a mask to cut out the 3.5 Å resolution electron density yielded a successful molecular-replacement solution of the 3.0 Å resolution data set. The resulting map was used to build a complete model of WbdD. The hydration status of individual crystals appears to underpin the variable diffraction quality of WbdD crystals. After the initial structure had been solved, methods to control the hydration status of WbdD were developed and it was thus possible to routinely obtain high-resolution diffraction (to better than 2.5 Å resolution). This novel and facile crystal-dehydration protocol may be useful for similar challenging situations. PMID:22993091

  20. Bifunctional alkylating agent-mediated MGMT-DNA cross-linking and its proteolytic cleavage in 16HBE cells.

    Science.gov (United States)

    Cheng, Jin; Ye, Feng; Dan, Guorong; Zhao, Yuanpeng; Wang, Bin; Zhao, Jiqing; Sai, Yan; Zou, Zhongmin

    2016-08-15

    Nitrogen mustard (NM), a bifunctional alkylating agent (BAA), contains two alkyl arms and can act as a cross-linking bridge between DNA and protein to form a DNA-protein cross-link (DPC). O(6)-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme for alkyl adducts removal, is found to enhance cell sensitivity to BAAs and to promote damage, possibly due to its stable covalent cross-linking with DNA mediated by BAAs. To investigate MGMT-DNA cross-link (mDPC) formation and its possible dual roles in NM exposure, human bronchial epithelial cell line 16HBE was subjected to different concentrations of HN2, a kind of NM, and we found mDPC was induced by HN2 in a concentration-dependent manner, but the mRNA and total protein of MGMT were suppressed. As early as 1h after HN2 treatment, high mDPC was achieved and the level maintained for up to 24h. Quick total DPC (tDPC) and γ-H2AX accumulation were observed. To evaluate the effect of newly predicted protease DVC1 on DPC cleavage, we applied siRNA of MGMT and DVC1, MG132 (proteasome inhibitor), and NMS-873 (p97 inhibitor) and found that proteolysis plays a role. DVC1 was proven to be more important in the cleavage of mDPC than tDPC in a p97-dependent manner. HN2 exposure induced DVC1 upregulation, which was at least partially contributed to MGMT cleavage by proteolysis because HN2-induced mDPC level and DNA damage was closely related with DVC1 expression. Homologous recombination (HR) was also activated. Our findings demonstrated that MGMT might turn into a DNA damage promoter by forming DPC when exposed to HN2. Proteolysis, especially DVC1, plays a crucial role in mDPC repair.

  1. Co3O4 nanoparticle-modified MnO2 nanotube bifunctional oxygen cathode catalysts for rechargeable zinc-air batteries

    Science.gov (United States)

    Du, Guojun; Liu, Xiaogang; Zong, Yun; Hor, T. S. Andy; Yu, Aishui; Liu, Zhaolin

    2013-05-01

    We report the preparation of MnO2 nanotubes functionalized with Co3O4 nanoparticles and their use as bifunctional air cathode catalysts for oxygen reduction reaction and oxygen evolution reaction in rechargeable zinc-air batteries. These hybrid MnO2/Co3O4 nanomaterials exhibit enhanced catalytic reactivity toward oxygen evolution reaction under alkaline conditions compared with that in the presence of MnO2 nanotubes or Co3O4 nanoparticles alone.We report the preparation of MnO2 nanotubes functionalized with Co3O4 nanoparticles and their use as bifunctional air cathode catalysts for oxygen reduction reaction and oxygen evolution reaction in rechargeable zinc-air batteries. These hybrid MnO2/Co3O4 nanomaterials exhibit enhanced catalytic reactivity toward oxygen evolution reaction under alkaline conditions compared with that in the presence of MnO2 nanotubes or Co3O4 nanoparticles alone. Electronic supplementary information (ESI) available: Zinc-air cell device, XPS survey scan and power density of the cell. See DOI: 10.1039/c3nr00300k

  2. Novel molecularly imprinted polymers based on multiwalled carbon nanotubes with bifunctional monomers for solid-phase extraction of rhein from the root of kiwi fruit.

    Science.gov (United States)

    Chen, Xing; Zhang, Zhaohui; Yang, Xiao; Liu, Yunan; Li, Jiaxing; Peng, Mijun; Yao, Shouzhuo

    2012-09-01

    A novel molecularly imprinted polymers based on multiwalled carbon nanotubes synthesized by precipitate polymerization was applied as a selective sorbent for separation and determination of rhein (4,5-dihydroxyanthraquinone-2-carboxylic acid) from the root of kiwi fruit samples coupled with high performance liquid chromatography (HPLC). The molecularly imprinted polymers were prepared with methacrylic acid and 4-vinylpyridine as bifunctional monomers. The chemical structure of the molecularly imprinted polymers was characterized by Fourier transform infrared spectrometer. The equilibrium rebinding experiment and competitive adsorption experiment showed that these imprinted polymers exhibited good adsorption ability toward rhein. The Langmuir adsorption equilibrium constant, K(m) , and theoretical maximum adsorption capacity, Q(m) , were estimated to be 0.43 and 6.77 mg g(-1) , respectively. Compared with molecularly imprinted polymers prepared with methacrylic acid or 4-vinylpyridine solely, the molecularly imprinted polymers synthesized with bifunctional monomers showed enhanced molecular imprinting effect and higher adsorption capacity for the template rhein. The performances of the molecularly imprinted polymers utilized as solid phase extraction sorbent were investigated in detail. The molecularly imprinted polymers prepared by the method proposed in this work could successfully apply to extraction and determination of rhein from the root of kiwi fruit samples coupled with HPLC.

  3. NiFe layered double hydroxide/reduced graphene oxide nanohybrid as an efficient bifunctional electrocatalyst for oxygen evolution and reduction reactions

    Science.gov (United States)

    Zhan, Tianrong; Zhang, Yumei; Liu, Xiaolin; Lu, SiSi; Hou, Wanguo

    2016-11-01

    Highly active and low-cost bifunctional electrocatalysts for oxygen evolution and reduction reactions (OER and ORR) hold a heart position for the renewable energy technologies such as metal-air batteries and fuel cells. Here, we reported the synthesis of NiFe layered double hydroxide/reduced graphene oxide (NiFe-LDH/rGO) nanohybrid via the facile solvothermal method followed by chemical reduction. The template role of surfactant and the hybridization of rGO supplied the NiFe-LDH/rGO catalyst with a porous nanostructure and an enhanced conductivity, favoring both mass transport and charge communication of electrocatalytic reactions. The NiFe-LDH/rGO composite not only displayed highly efficient OER activity in alkaline solution with a low onset overpotential of 240 mV, but also only needed an overpotential of 250 mV to reach the 10 mA cm-2 current density. The NiFe-LDH/rGO nanohybrid also offered excellent ORR catalytic activity with onset potential at 0.796 V in alkaline media. The rotating-disk and rotating-ring-disk electrodes both revealed that the ORR on NiFe-LDH/rGO mainly involved a direct four-electron reaction pathways accompanying part of the two-electron process. The excellent bifunctional activity of the NiFe-LDH/rGO nanohybrid could be attributed to the synergistic effects of rGO and NiFe-LDH components due to the strongly coupled interactions.

  4. RuO2 nanoparticles decorated MnOOH/C as effective bifunctional electrocatalysts for lithium-air battery cathodes with long-cycling stability

    Science.gov (United States)

    Kim, Gil-Pyo; Lim, Dongwook; Park, Inyeong; Park, Hyelee; Shim, Sang Eun; Baeck, Sung-Hyeon

    2016-08-01

    Manganite (MnOOH) is one of the most effective electrocatalysts for oxygen reduction reaction (ORR), and RuO2 nanoparticles exhibit high activity for oxygen evolution reaction (OER). We herein report a facile means of producing well dispersed RuO2/MnOOH on Ketjen black (RuO2/MnOOH/C) as a bifunctional catalyst for lithium-air (Li-air) batteries. RuO2/MnOOH/C was simply synthesized using a hydrothermal/precipitation based method, and was used as a cathode for a Li-air battery using a Swagelok-type cell. The importance of dispersing active catalysts on a carbon support was clearly demonstrated by textural, charge-discharge voltammetric, and electrochemical impedance spectroscopic (EIS) analyses, comparing results with a catalyst produced by physically mixing RuO2/MnOOH with carbon (RuO2/MnOOH + C). RuO2/MnOOH/C showed low overpotential and stable cycleability up to 170th cycles with 1000 mAh g-1 of charge-discharge capacity, which was attributed to its enhanced active surface area and low charge-transfer resistance. The results obtained suggest that this strategy can be widely applied to bifunctional electrocatalysis, such as secondary batteries and regenerative fuel cell (RFC).

  5. Cobalt Nanoparticle-Embedded Porous Carbon Nanofibers with Inherent N- and F-Doping as Binder-Free Bifunctional Catalysts for Oxygen Reduction and Evolution Reactions.

    Science.gov (United States)

    Singhal, Richa; Kalra, Vibha

    2017-01-18

    Efficient, low-cost, non-precious metal-based, and stable bifunctional electrocatalysts are key to various energy storage and conversion devices such as regenerative fuel cells and metal-air batteries. In this work, we report cobalt nanoparticle-embedded porous carbon nanofibers with inherent N- and F-doping as binder-free bifunctional electrocatalysts with excellent activity for both the oxygen reduction and oxygen evolution reaction (ORR/OER) in an alkaline medium. Single-step electrospinning of a solution of the polymer mixture (carbon precursor) and the cobalt precursor followed by controlled pyrolysis with an intermediate reduction step in H2 (to reduce cobalt oxides to cobalt) was utilized to synthesize an integrated freestanding catalyst. The fabricated catalyst with effective structural and electronic interaction between the cobalt metal nanoparticles and the N- and F-doped carbon defect sites showed enhanced catalytic properties compared to the benchmark catalysts for ORR and OER (Pt, Ir, and Ru). The ORR potential at the current density of -3 mA cm(-2) was 0.81 VRHE and the OER potential at a current density of 10 mA cm(-2) was 1.595 VRHE , resulting in a ΔE of only 0.785 V.

  6. Immunology in the clinic review series; focus on cancer: double trouble for tumours: bi-functional and redirected T cells as effective cancer immunotherapies.

    Science.gov (United States)

    Marr, L A; Gilham, D E; Campbell, J D M; Fraser, A R

    2012-02-01

    Cancer is one of the most important pathological conditions facing mankind in the 21st century, and is likely to become the most important cause of death as improvements continue in health, diet and life expectancy. The immune response is responsible for controlling nascent cancer through immunosurveillance. If tumours escape this control, they can develop into clinical cancer. Although surgery and chemo- or radiotherapy have improved survival rates significantly, there is a drive to reharness immune responses to treat disease. As T cells are one of the key immune cells in controlling cancer, research is under way to enhance their function and improve tumour targeting. This can be achieved by transduction with tumour-specific T cell receptor (TCR) or chimaeric antigen receptors (CAR) to generate redirected T cells. Virus-specific cells can also be transduced with TCR or CAR to create bi-functional T cells with specificity for both virus and tumour. In this review we outline the development and optimization of redirected and bi-functional T cells, and outline the results from current clinical trials using these cells. From this we discuss the challenges involved in generating effective anti-tumour responses while avoiding concomitant damage to normal tissues and organs.

  7. Two interpenetrating Cu{sup II}/Ni{sup II}-coordinated polymers based on an unsymmetrical bifunctional N/O-tectonic: Syntheses, structures and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong-Liang [College of Materials & Chemical Engineering, China Three Gorges University, Yichang 443002 (China); Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shang Luo University, Shang Luo 726000 (China); Wu, Ya-Pan [College of Materials & Chemical Engineering, China Three Gorges University, Yichang 443002 (China); Li, Dong-Sheng, E-mail: lidongsheng1@126.com [College of Materials & Chemical Engineering, China Three Gorges University, Yichang 443002 (China); Dong, Wen-Wen [College of Materials & Chemical Engineering, China Three Gorges University, Yichang 443002 (China); Zhou, Chun-Sheng [Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shang Luo University, Shang Luo 726000 (China)

    2015-03-15

    Two new interpenetrating Cu{sup II}/Ni{sup II} coordination polymers, based on a unsymmetrical bifunctional N/O-tectonic 3-(pyrid-4′-yl)-5-(4″-carbonylphenyl)-1,2,4-triazolyl (H{sub 2}pycz), ([Cu-(Hpycz){sub 2}]·2H{sub 2}O){sub n} (1) and ([Ni(Hpycz){sub 2}]·H{sub 2}O){sub n} (2), have been solvothermally synthesized and structure characterization. Single crystal X-ray analysis indicates that compound 1 shows 2-fold parallel interpenetrated 4{sup 4}-sql layers with the same handedness. The overall structure of 1 is achiral—in each layer of doubly interpenetrating nets, the two individual nets have the opposite handedness to the corresponding nets in the adjoining layers—while 2 features a rare 8-fold interpenetrating 6{sup 6}-dia network that belongs to class IIIa interpenetration. In addition, compounds 1 and 2 both show similar paramagnetic characteristic properties. - Graphical abstract: Two new Cu(II)/Ni(II) coordination polymers present 2D parallel 2-fold interpenetrated 4{sup 4}-sql layers and a rare 3D 8-fold interpenetrating 6{sup 6}-dia network. In addition, magnetic susceptibility measurements show similar paramagnetic characteristic for two complexes. - Highlights: • A new unsymmetrical bifunctional N/O-tectonic as 4-connected spacer. • A 2-fold parallel interpenetrated sql layer with the same handedness. • A rare 8-fold interpenetrating dia network (class IIIa)

  8. A novel bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1.

    Science.gov (United States)

    Kalscheuer, Rainer; Steinbüchel, Alexander

    2003-03-07

    Triacylglycerols (TAGs) and wax esters are neutral lipids with considerable importance for dietetic, technical, cosmetic, and pharmaceutical applications. Acinetobacter calcoaceticus ADP1 accumulates wax esters and TAGs as intracellular storage lipids. We describe here the identification of a bifunctional enzyme from this bacterium exhibiting acyl-CoA:fatty alcohol acyltransferase (wax ester synthase, WS) as well as acyl-CoA:diacylglycerol acyltransferase (DGAT) activity. Experiments with a knock-out mutant demonstrated the key role of the bifunctional WS/DGAT for biosynthesis of both storage lipids in A. calcoaceticus. This novel type of long-chain acyl-CoA acyltransferase is not related to known acyltransferases including the WS from jojoba (Simmondsia chinensis), the DGAT1 or DGAT2 families present in yeast, plants, and animals, and the phospholipid:diacylglycerol acyltransferase catalyzing TAG formation in yeast and plants. A large number of WS/DGAT-related proteins were identified in Mycobacterium and Arabidopsis thaliana indicating an important function of these proteins. WS and DGAT activity was demonstrated for the translational product of one WS/DGAT homologous gene from M. smegmatis mc(2)155. The potential of WS/DGAT to establish novel processes for biotechnological production of jojoba-like wax esters was demonstrated by heterologous expression in recombinant Pseudomonas citronellolis. The potential of WS/DGAT as a selective therapeutic target of mycobacterial infections is discussed.

  9. The size effect of titania-supported Pt nanoparticles on the electrocatalytic activity towards methanol oxidation reaction primarily via the bifunctional mechanism

    Science.gov (United States)

    Ting, Chao-Cheng; Liu, Chung-Hsuan; Tai, Chun-Yen; Hsu, Shih-Chieh; Chao, Chih-Shuan; Pan, Fu-Ming

    2015-04-01

    We prepared Pt nanoparticles of different particle sizes by plasma enhanced atomic layer deposition (PEALD) on the native oxide surface layer of Ti thin films, and investigated the Pt particle size effect on the electrocatalytic activity towards methanol oxidation reaction (MOR) in acidic media. The average Pt nanoparticles size ranges from 3 nm to 7 nm depending on the number of the PEALD reaction cycles. The electronic interaction between Pt nanoparticles and the TiO2 support is insignificant according to x-ray photoelectron spectroscopy analyses, suggesting that the influence of the Pt particle size on the electrocatalytic activity can be mainly described by the bifunctional mechanism. From cyclic voltammetry measurements, Pt particles of smaller size have a better CO tolerance in MOR. We proposed the reaction steps for the electrooxidation of CO adspecies on Pt nanoparticles on the basis of the bifunctional mechanism. The electrode with Pt nanoparticles of ∼5 nm in size shows the best electrocatalytic performance in terms of CO tolerance and electrochemical stability.

  10. Bacterial biofilm formation versus mammalian cell growth on titanium-based mono- and bi-functional coating

    Directory of Open Access Journals (Sweden)

    G Subbiahdoss

    2010-05-01

    Full Text Available Biomaterials-associated-infections (BAI are serious complications in modern medicine. Although non-adhesive coatings, like polymer-brush coatings, have been shown to prevent bacterial adhesion, they do not support cell growth. Bi-functional coatings are supposed to prevent biofilm formation while supporting tissue integration. Here, bacterial and cellular responses to poly(ethylene glycol (PEG brush-coatings on titanium oxide presenting the integrin-active peptide RGD (arginine-glycine-aspartic acid (bioactive “PEG-RGD” were compared to mono-functional PEG brush-coatings (biopassive “PEG” and bare titanium oxide (TiO2 surfaces under flow. Staphylococcus epidermidis ATCC 35983 was deposited on the surfaces under a shear rate of 11 s-1 for 2 h followed by seeding of U2OS osteoblasts. Subsequently, both S. epidermidis and U2OS cells were grown simultaneously on the surfaces for 48 h under low shear (0.14 s-1. After 2 h, staphylococcal adhesion was reduced to 3.6±1.8 × 103 and 6.0±3.9 × 103 cm-2 on PEG and PEG-RGD coatings respectively, compared to 1.3±0.4 × 105 cm-2 for the TiO2 surface. When allowed to grow for 48 h, biofilms formed on all surfaces. However, biofilms detached from the PEG and PEG-RGD coatings when exposed to an elevated shear (5.6 s-1 U2OS cells neither adhered nor spread on PEG brush-coatings, regardless of the presence of biofilm. In contrast, in the presence of biofilm, U2OS cells adhered and spread on PEG-RGD coatings with a significantly higher surface coverage than on bare TiO2. The detachment of biofilm and the high cell surface coverage revealed the potential significance of PEG-RGD coatings in the context of the “race for the surface” between bacteria and mammalian cells.

  11. Multivalent bifunctional chelator scaffolds for gallium-68 based positron emission tomography imaging probe design: signal amplification via multivalency.

    Science.gov (United States)

    Singh, Ajay N; Liu, Wei; Hao, Guiyang; Kumar, Amit; Gupta, Anjali; Öz, Orhan K; Hsieh, Jer-Tsong; Sun, Xiankai

    2011-08-17

    The role of the multivalent effect has been well recognized in the design of molecular imaging probes toward the desired imaging signal amplification. Recently, we reported a bifunctional chelator (BFC) scaffold design, which provides a simple and versatile approach to impart multivalency to radiometal based nuclear imaging probes. In this work, we report a series of BFC scaffolds ((t)Bu(3)-1-COOH, (t)Bu(3)-2-(COOH)(2), and (t)Bu(3)-3-(COOH)(3)) constructed on the framework of 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) for (68)Ga-based PET probe design and signal amplification via the multivalent effect. For proof of principle, a known integrin α(v)β(3) specific ligand (c(RGDyK)) was used to build the corresponding NOTA conjugates (H(3)1, H(3)2, and H(3)3), which present 1-3 copies of c(RGDyK) peptide, respectively, in a systematic manner. Using the integrin α(v)β(3) binding affinities (IC(50) values), enhanced specific binding was observed for multivalent conjugates (H(3)2: 43.9 ± 16.1 nM; H(3)3: 14.7 ± 5.0 nM) as compared to their monovalent counterpart (H(3)1: 171 ± 60 nM) and the intact c(RGDyK) peptide (204 ± 76 nM). The obtained conjugates were efficiently labeled with (68)Ga(3+) within 30 min at room temperature in high radiochemical yields (>95%). The in vivo evaluation of the labeled conjugates, (68)Ga-1, (68)Ga-2, and (68)Ga-3, was performed using male severe combined immunodeficiency (SCID) mice bearing integrin α(v)β(3) positive PC-3 tumor xenografts (n = 3). All (68)Ga-labeled conjugates showed high in vivo stability with no detectable metabolites found by radio-HPLC within 2 h postinjection (p.i.). The PET signal amplification in PC-3 tumor by the multivalent effect was clearly displayed by the tumor uptake of the (68)Ga-labeled conjugates ((68)Ga-3: 2.55 ± 0.50%ID/g; (68)Ga-2: 1.90 ± 0.10%ID/g; (68)Ga-1: 1.66 ± 0.15%ID/g) at 2 h p.i. In summary, we have designed and synthesized a series of NOTA-based BFC scaffolds with signal

  12. Detection of amyloid plaques targeted by bifunctional USPIO in Alzheimer's disease transgenic mice using magnetic resonance microimaging.

    Directory of Open Access Journals (Sweden)

    Youssef Zaim Wadghiri

    Full Text Available Amyloid plaques are a key pathological hallmark of Alzheimer's disease (AD. The detection of amyloid plaques in the brain is important for the diagnosis of AD, as well as for following potential amyloid targeting therapeutic interventions. Our group has developed several contrast agents to detect amyloid plaques in vivo using magnetic resonance microimaging (µMRI in AD transgenic mice, where we used mannitol to enhance blood brain barrier (BBB permeability. In the present study, we used bifunctional ultrasmall superparamagnetic iron oxide (USPIO nanoparticles, chemically coupled with Aβ1-42 peptide to image amyloid plaque deposition in the mouse brain. We coupled the nanoparticles to polyethylene glycol (PEG in order to improve BBB permeability. These USPIO-PEG-Aβ1-42 nanoparticles were injected intravenously in AD model transgenic mice followed by initial in vivo and subsequent ex vivo μMRI. A 3D gradient multi-echo sequence was used for imaging with a 100 µm isotropic resolution. The amyloid plaques detected by T2*-weighted μMRI were confirmed with matched histological sections. The region of interest-based quantitative measurement of T2* values obtained from the in vivo μMRI showed contrast injected AD Tg mice had significantly reduced T2* values compared to wild-type mice. In addition, the ex vivo scans were examined with voxel-based analysis (VBA using statistical parametric mapping (SPM for comparison of USPIO-PEG-Aβ1-42 injected AD transgenic and USPIO alone injected AD transgenic mice. The regional differences seen by VBA in the USPIO-PEG-Aβ1-42 injected AD transgenic correlated with the amyloid plaque distribution histologically. Our results indicate that USPIO-PEG-Aβ1-42 can be used for amyloid plaque detection in vivo by intravenous injection without the need to co-inject an agent which increases permeability of the BBB. This technique could aid the development of novel amyloid targeting drugs by allowing therapeutic effects

  13. A nanoplex PCR assay for the rapid detection of vancomycin and bifunctional aminoglycoside resistance genes in Enterococcus species

    Directory of Open Access Journals (Sweden)

    Ravichandran Manickam

    2007-12-01

    Full Text Available Abstract Background Enterococci have emerged as a significant cause of nosocomial infections in many parts of the world over the last decade. The most common enterococci strains present in clinical isolates are E. faecalis and E. faecium which have acquired resistant to either gentamicin or vancomycin. The conventional culture test takes 2–5 days to yield complete information of the organism and its antibiotic sensitivity pattern. Hence our present study was focused on developing a nanoplex PCR assay for the rapid detection of vancomycin and bifunctional aminoglycoside resistant enterococci (V-BiA-RE. This assay simultaneously detects 8 genes namely 16S rRNA of Enterococcus genus, ddl of E. faecalis and E. faecium, aacA-aphD that encodes high level gentamicin resistance (HLGR, multilevel vancomycin resistant genotypes such as vanA, vanB, vanC and vanD and one internal control gene. Results Unique and specific primer pairs were designed to amplify the 8 genes. The specificity of the primers was confirmed by DNA sequencing of the nanoplex PCR products and BLAST analysis. The sensitivity and specificity of V-BiA-RE nanoplex PCR assay was evaluated against the conventional culture method. The analytical sensitivity of the assay was found to be 1 ng at the DNA level while the analytical specificity was evaluated with 43 reference enterococci and non-enterococcal strains and was found to be 100%. The diagnostic accuracy was determined using 159 clinical specimens, which showed that 97% of the clinical isolates belonged to E. faecalis, of which 26% showed the HLGR genotype, but none were vancomycin resistant. The presence of an internal control in the V-BiA-RE nanoplex PCR assay helped us to rule out false negative cases. Conclusion The nanoplex PCR assay is robust and can give results within 4 hours about the 8 genes that are essential for the identification of the most common Enterococcus spp. and their antibiotic sensitivity pattern. The PCR assay

  14. Ethanol synthesis and water gas shift over bifunctional sulfide catalysts. Final technical progress report, September 12, 1991--December 11, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Klier, K.; Herman, R.G.; Deemer, M.; Richards-Babb, M.; Carr, T.

    1995-07-01

    The objective of this research was to investigate sulfur-resistant catalysts for the conversion of synthesis gas having H{sub 2}/CO {le} 1 into C{sub 1}--C{sub 4} alcohols, especially ethanol, by a highly selective and efficient pathway, while also promoting the water gas shift reaction (WGSR). The catalysts chosen are bifunctional, base-hydrogenation, sulfur-tolerant transition metal sulfides with heavy alkali, e.g. Cs{sup +}, promoter dispersed on their surfaces. The modes of activation of H{sub 2} and CO on MoS{sub 2} and alkali-doped MoS{sub 2} were considered, and computational analyses of the thermodynamic stability of transition metal sulfides and of the electronic structure of these sulfide catalysts were carried out. In the preparation of the cesium-promoted MoS{sub 2} catalysts, a variety of preparation methods using CsOOCH were examined. In all cases, doping with CsOOCH led to a lost of surface area. The undoped molybdenum disulfide catalyst only produced hydrocarbons. Cs-doped MoS{sub 2} catalysts all produced linear alcohols, along with smaller amounts of hydrocarbons. With a 20 wt% CsOOCH/MoS{sub 2} catalyst, temperature, pressure, and flow rate dependences of the synthesis reactions were investigated in the presence and absence of H{sub 2}S in the H{sub 2}/CO = 1/1 synthesis gas during short term testing experiments. It was shown that with a carefully prepared 10 wt% CsOOCH/MoS{sub 2} catalyst, reproducible and high alcohol synthesis activity could be obtained. For example, at 295 C with H{sub 2}/CO = 1 synthesis gas at 8.3 MPa and with GHSV = 7,760 l/kg cat/hr, the total alcohol space time yield was ca 300 g/kg cat/hr (accompanied with a hydrocarbon space time yield of ca 60 g/kg cat/hr). Over a testing period of ca 130 hr, no net deactivation of the catalyst was observed. 90 refs., 82 figs., 14 tabs.

  15. Synthesis and Characterization of a New Bifunctional Dye Containing Spirobenzopyran and Cinnamoyl Moiety%一种新型含肉桂酸酯结构的螺吡喃光致变色染料的合成与性能研究

    Institute of Scientific and Technical Information of China (English)

    申凯华; 崔东熏

    2005-01-01

    A novel bifunctional dye containing spirobenzopyran and cinnamoyl moiety has been prepared and its photochromic behavior following irradiation at different wavelengths of monochrome UV light was investigated.The colourless bifunctional dye in film or solution exhibits unusual photochromism through structural and geometrical transformation from spirobenzopyran to merocyanine accompanying with photocrosslinking reaction in cinnamoyl moieties. Two kinds of photochemical reaction were achieved by irradiation at the different wavelengths of monochrome UV light (275 nm, 365 nm) selectively. The photochromic process of the bifunctional dye was discussed and the dynamic behaviors of the decolorization process were investigated.

  16. Hydrodesulfurization on Transition Metal Catalysts: Elementary Steps of C-S Bond Activation and Consequences of Bifunctional Synergies

    Science.gov (United States)

    Yik, Edwin Shyn-Lo

    surfaces. Our interpretations place HDS in a specific class of more general C-X hydrogenolysis reactions, including hydrodeoxygenation (HDO) that has gained popular appeal in recent biomass conversion processes. These hydrodearomatization routes, hydrogenolysis and hydrogenation, act as probes for studying hydrogen spillover, a frequently observed phenomenon in bifunctional systems. Indeed, we observe enhancements solely in the rates of thiophene hydrogenation when monofunctional catalysts, which generate equilibrated concentrations of surface H-species, are mixed with materials (e.g. Al 2O3) that cannot dissociate H2. Conventional mechanisms that suggest gas phase or surface diffusion of atomic H-species (or H +-e- pairs) are implausible across distances along insulating surfaces (i.e. SiO2, Al2O3). We propose, with kinetic-transport models that are consistent with all observed behaviors, that mobility of active H-species occurs through gas phase diffusion of thiophene-derived molecular H-carriers, whose formation rate on HDS sites can control maximum spillover enhancements. This synergy is disrupted when the ability of thiophene to form these H-carriers is suppressed, leading to an absence of spillover-mediated rates and further challenging any diffusive roles of atomic H-species. Such implications help guide optimal designs of bifunctional cascades to permit the uninhibited access and egress of larger molecules within both catalytic functions. (Abstract shortened by UMI.).

  17. Bifunctional catalysts based on m-phenylene-bridged porphyrin dimer and trimer platforms: synthesis of cyclic carbonates from carbon dioxide and epoxides.

    Science.gov (United States)

    Maeda, Chihiro; Taniguchi, Tomoya; Ogawa, Kanae; Ema, Tadashi

    2015-01-01

    Highly active bifunctional diporphyrin and triporphyrin catalysts were synthesized through Stille coupling reactions. As compared with a porphyrin monomer, both exhibited improved catalytic activities for the reaction of CO2 with epoxides to form cyclic carbonates, because of the multiple catalytic sites which cooperatively activate the epoxide. Catalytic activities were carefully investigated by controlling temperature, reaction time, and catalyst loading, and very high turnover number and turnover frequency were obtained: 220 000 and 46 000 h(-1) , respectively, for the magnesium catalyst, and 310 000 and 40 000 h(-1) , respectively, for the zinc catalyst. Results obtained with a zinc/free-base hybrid diporphyrin catalyst demonstrated that the Br(-) ions on the adjacent porphyrin moiety also function as nucleophiles.

  18. Bi-functional modified-phosphate catalyzed the synthesis of α-α′-(EE)-bis(benzylidene)-cycloalkanones: Microwave versus conventional-heating

    KAUST Repository

    Solhy, Abderrahim

    2011-02-01

    The impregnation of hydroxyapatite (HAP) by NaNO3 leads to a modified-hydroxyapatite which has a bi-functional acid-base property. Sodium-modified-hydroxyapatite (Na-HAP) efficiently catalyzed the cross-aldol condensation of arylaldehydes and cycloketones to afford α-α′- (EE)-bis(benzylidene)-cycloalkanones in good yields under microwave irradiation. Moreover, the methodology described in this paper provides a very easy and efficient synthesis carried out in water as the greenest available solvent under conventional heating. A comparison study between these two different modes of heating was investigated. The catalyst was easily recovered and efficiently re-used. © 2010 Elsevier B.V.

  19. Hierarchical nanostructured NiCo2O4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc-air batteries

    Science.gov (United States)

    Prabu, Moni; Ketpang, Kriangsak; Shanmugam, Sangaraju

    2014-02-01

    A nickel-doped cobalt oxide spinel structure is a promising non-precious metal electrocatalyst for oxygen evolution and oxygen reduction in rechargeable metal-air batteries and water electrolyzers operating with alkaline electrolytes. One dimensional NiCo2O4 (NCO) nanostructures were prepared by using a simple electrospinning technique with two different metal precursors (metal nitrate/PAN and metal acetylacetonate/PAN). The effect of precursor concentration on the morphologies was investigated. Single-phase, NCO with an average diameter of 100 nm, porous interconnected fibrous morphology was revealed by FESEM and FETEM analysis. The hierarchical nanostructured 1D-spinel NiCo2O4 materials showed a remarkable electrocatalytic activity towards oxygen reduction and evolution in an aqueous alkaline medium. The extraordinary bi-functional catalytic activity towards both ORR and OER was observed by the low over potential (0.84 V), which is better than that of noble metal catalysts [Pt/C (1.16 V), Ru/C (1.01 V) and Ir/C (0.92 V)], making them promising cathode materials for metal-air batteries. Furthermore, the rechargeable zinc-air battery with NCO-A1 as a bifunctional electrocatalyst displays high activity and stability during battery discharge, charge, and cycling processes.A nickel-doped cobalt oxide spinel structure is a promising non-precious metal electrocatalyst for oxygen evolution and oxygen reduction in rechargeable metal-air batteries and water electrolyzers operating with alkaline electrolytes. One dimensional NiCo2O4 (NCO) nanostructures were prepared by using a simple electrospinning technique with two different metal precursors (metal nitrate/PAN and metal acetylacetonate/PAN). The effect of precursor concentration on the morphologies was investigated. Single-phase, NCO with an average diameter of 100 nm, porous interconnected fibrous morphology was revealed by FESEM and FETEM analysis. The hierarchical nanostructured 1D-spinel NiCo2O4 materials showed a

  20. The synthesis of a bifunctional copper metal organic framework and its application in the aerobic oxidation/Knoevenagel condensation sequential reaction.

    Science.gov (United States)

    Miao, Zongcheng; Luan, Yi; Qi, Chao; Ramella, Daniele

    2016-09-21

    A novel one-pot aerobic oxidation/Knoevenagel condensation reaction system was developed employing a Cu(ii)/amine bifunctional, basic metal-organic framework (MOF) as the catalyst. The sequential aerobic alcohol oxidation/Knoevenagel condensation reaction was efficiently promoted by the Cu3TATAT MOF catalyst in the absence of basic additives. The benzylidenemalononitrile product was produced in high yield and selectivity from an inexpensive benzyl alcohol starting material under an oxygen atmosphere. The role of the basic functionality was studied to demonstrate its role in the aerobic oxidation and Knoevenagel condensation reactions. The reaction progress was monitored in order to identify the reaction intermediate and follow the accumulation of the desired product. Lastly, results showed that the yield was not significantly compromised by the reuse of a batch of catalyst, even after more than five cycles.

  1. Enhancement of Bacillus thuringiensis insecticidal activity by combining Cry1Ac and bi-functional toxin HWTX-XI from spider.

    Science.gov (United States)

    Sun, Yunjun; Fu, Zujiao; He, Xiaohong; Yuan, Chunhua; Ding, Xuezhi; Xia, Liqiu

    2016-03-01

    In order to assess the potency of bi-functional HWTX-XI toxin from spider Ornithoctonus huwena in improving the insecticidal activity of Bacillus thuringiensis, a fusion gene of cry1Ac and hwtx-XI was constructed and expressed in an acrystalliferous B. thuringiensis strain Cry(-)B. Western blot analysis and microscopic observation revealed that the recombinant strain could express 140-kDa Cry1Ac-HWTX-XI fusion protein and produce parasporal inclusions during sporulation. Bioassay using the larvae of Helicoverpa armigera and Spodoptera exigua showed that the Cry1Ac-HWTX-XI fusion was more toxic than the control Cry1Ac protoxin, as revealed by 95% lethal concentration. Our study indicated that the HWTX-XI from spider might be a candidate for enhancing the toxicity of B. thuringiensis products.

  2. Extraction Kinetics of Lanthanum in Chloride Medium by Bifunctional Ionic Liquid [A336][CA-12] Using a Constant Interfacial Cell with Laminar Flow☆

    Institute of Scientific and Technical Information of China (English)

    Hualing Yang; Ji Chen; Wei Wang; Hongmin Cui; Dongli Zhang; Yu Liu

    2014-01-01

    The extraction kinetics of La(III) from aqueous chloride solutions into n-heptane solutions of bifunctional ionic liquid extractant [A336][CA-12] (tricaprylmethylammonium sec-octylphenoxy acetic acid) was investigated using a constant interfacial cel with laminar flow. The effects of stirring speed, temperature and specific interfa-cial area on the extraction rate were examined. The results indicate that mass transfer kinetics of La(III) is a mixed-controlled process influenced by interfacial reaction. On the basis of mass transfer kinetic results in the ex-traction of La(III) by [A336][CA-12], the extraction rate equation of La(III) is proposed in terms of pseudo-first-order constants, which is supported by the measured thermodynamic equations. The mass-transfer kinetic model deduced from the rate controlling step is adequate to interpret the experimental data qualitatively.

  3. Construction of bifunctional molecules specific to antigen and antibody’s Fc-fragment by fusion of scFv-antibodies with staphylococcal protein A

    Directory of Open Access Journals (Sweden)

    Kolibo D. V.

    2009-06-01

    Full Text Available Aim. To develop approach for detection of scFv and their complexes with antigens. Methods. The fusion proteins, which include sequences of scFv and staphylococcal protein A, were constructed and the obtained bifunctional molecules were immunochemically analysed. Results. It was shown, that scFv fused with protein A and their complexes with antigens are effectively recognized by labelled immunoglobulins with unrestricted antigenic specificity. Conclusions. The fusion of scFv with protein A fragment is a perspective approach to increase the efficiency of application in ELISA. The obtained scFv, fused with protein A, could be used for development of test-systems for the detection of diphtheria toxin.

  4. The bifunctional μ opioid agonist/antioxidant [Dmt(1)]DALDA is a superior analgesic in an animal model of complex regional pain syndrome-type i.

    Science.gov (United States)

    Schiller, Peter W; Nguyen, Thi M-D; Saray, Amy; Poon, Annie Wing Hoi; Laferrière, André; Coderre, Terence J

    2015-11-18

    Reactive oxygen species (ROS) play an important role in the development of complex regional pain syndrome-Type I (CRPS-I), as also demonstrated with the chronic post ischemia pain (CPIP) animal model of CRPS-I. We show that morphine and the antioxidant N-acetylcysteine (NAC) act synergistically to reduce mechanical allodynia in CPIP rats. The tetrapeptide amide [Dmt(1)]DALDA (H-Dmt-d-Arg-Phe-Lys-NH2) is a potent and selective μ opioid receptor (MOR) agonist with favorable pharmacokinetic properties and with antioxidant activity due to its N-terminal Dmt (2',6'-dimethyltyrosine) residue. In the CPIP model, [Dmt(1)]DALDA was 15-fold more potent than morphine in reversing mechanical allodynia and 4.5-fold more potent as analgesic in the heat algesia test. The results indicate that bifunctional compounds with MOR agonist/antioxidant activity have therapeutic potential for the treatment of CRPS-I.

  5. SYNTHESIS OF NOVEL BI-FUNCTIONAL COPOLYMER BEA RING STERICALLY HINDERED PHENOL AND HINDERED AMINE GROUPS VIA RING-OPENING METATHESIS POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    Bo-yong Xue; Kenichi Ogata; Akinori Toyota

    2008-01-01

    Norbornene derivatives exo,endo-2-[2-(3,5-di-tert-butyl-4-hydroxyphenoxy)-acetoxy]methyl-5-norbornene(M1) and 3,3,5,5-tetramethyl-4-piperidinyl 5-norbornene-exo,endo-2-carboxylate(M2)were synthesized and polymerized by RuCl2(=CHPh)(PCy3)2 to prepare a novel kind of bi-functional polymer bearing sterically hindered phenol (SHP) and hindered amine(HLAS)groups via ring-opening metathesis polymerization(ROMP).The resulting copolymers were characterized by gel permeation chromatography(GPC),'H-NMR and differential scanning calorimetry (DSC).The number average molecular weight(Mn)and functional unit content of the resulting copolymer could be regulated by varying the concentration of catalyst and monomer feed.

  6. Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis

    DEFF Research Database (Denmark)

    Su, Hai-Yan; Gorlin, Yelena; Man, Isabela Costinela

    2012-01-01

    Progress in the field of electrocatalysis is often hampered by the difficulty in identifying the active site on an electrode surface. Herein we combine theoretical analysis and electrochemical methods to identify the active surfaces in a manganese oxide bi-functional catalyst for the oxygen...... and that its overpotential is highly dependent on the stabilization of intermediates through hydrogen bonds with water molecules. We also determine that OER occurs through direct recombination mechanism and that its major source of overpotential is the scaling relationship between HOO* and HO* surface...... intermediates. Using a previously developed Sabatier model we show that the theoretical predictions of catalytic activities match the experimentally determined onset potentials for the ORR and the OER, both qualitatively and quantitatively. Consequently, the combination of first-principles theoretical analysis...

  7. Type II Anion Relay Chemistry: Exploiting Bifunctional Weinreb Amide Linchpins for the One-Pot Synthesis of Differentiated 1,3-Diketones, Pyrans, and Spiroketals.

    Science.gov (United States)

    Farrell, Mark; Melillo, Bruno; Smith, Amos B

    2016-01-04

    The design, synthesis, and validation of new highly effective bifunctional linchpins for type II anion relay chemistry (ARC) has been achieved. The mechanistically novel negative-charge migration that comprises the Brook rearrangement is now initiated by a stabilized tetrahedral intermediate, which is generated by nucleophilic addition to a Weinreb amide, rather than by a simple oxyanion that is generated from an epoxide. As a result, the linchpin preserves the carbonyl functionality in the ARC adducts, thus permitting access to functionally complex systems in a single flask without the need for further chemical manipulations. This tactic was validated with the one-pot preparation of monoprotected 1,3-diketones as well as pyran and spiroketal scaffolds, depending on the choice of nucleophile, electrophile, and work-up conditions.

  8. Interaction between wheat alpha-amylase/trypsin bi-functional inhibitor and mammalian digestive enzymes: Kinetic, equilibrium and structural characterization of binding.

    Science.gov (United States)

    Cuccioloni, Massimiliano; Mozzicafreddo, Matteo; Ali, Ishtiaq; Bonfili, Laura; Cecarini, Valentina; Eleuteri, Anna Maria; Angeletti, Mauro

    2016-12-15

    Alpha-amylase/trypsin bi-functional inhibitors (ATIs) are non-gluten protein components of wheat and other cereals that can hypersensitise the human gastrointestinal tract, eventually causing enteropathies in predisposed individuals. These inhibitory proteins can act both directly by targeting specific pro-inflammatory receptors, and indirectly by impairing the activity of digestive enzymes, the latter event causing the accumulation of undigested peptides with potential immunogenic properties. Herein, according to a concerted approach based on in vitro and in silico methods we characterized kinetics, equilibrium parameters and modes of binding of the complexes formed between wheat ATI and two representative mammalian digestive enzymes, namely trypsin and alpha-amylase. Interestingly, we demonstrated ATI to target both enzymes with independent binding sites and with moderately high affinity.

  9. Purification of a bifunctional amylase/protease inhibitor from ragi (Eleusine coracana) by chromatography and its use as an affinity ligand.

    Science.gov (United States)

    Saxena, Lalit; Iyer, Bharti K; Ananthanarayan, Laxmi

    2010-06-01

    An ammonium sulphate fraction (20-60%) of bifunctional amylase/protease inhibitor from ragi (Eleusine coracana) was purified by affinity chromatography to give 6.59-fold purity with 81.48% yield. The same ammonium sulphate fraction was also subjected to ion exchange chromatography and was purified 4.28-fold with 75.95% yield. The ion exchange fraction was subjected to gel filtration and the inhibitor was purified to 6.67-fold with 67.36% yield. Further sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) was performed to check the homogeneity of purified amylase/trypsin inhibitor obtained through affinity, ion exchange and gel chromatography. The molecular weight of the inhibitor was found to be 14 kDa. This purified inhibitor was used as affinity ligand for the purification of a commercial preparation of pancreatic amylase.

  10. Synthesis of Bifunctional Fe3O4@SiO2-Ag Magnetic-Plasmonic Nanoparticles by an Ultrasound Assisted Chemical Method

    Science.gov (United States)

    Chu, Dung Tien; Sai, Doanh Cong; Luu, Quynh Manh; Tran, Hong Thi; Quach, Truong Duy; Kim, Dong Hyun; Nguyen, Nam Hoang

    2017-03-01

    Bifunctional magnetic-plasmonic nanoparticles (NPs)—Fe3O4@SiO2-Ag were successfully synthesized by an ultrasound assisted chemical method. Silver ions were absorbed and then reduced by sodium borohydride on the surface of 3-aminopropyltriethoxysilane (APTES) functionalized silica-coated magnetic NPs, then they were reduced under the influence of a 200 W ultrasonic wave for 60 min. When the amount of precursor silver ions increased, the relative intensity of diffraction peaks of silver crystals in all samples increased with the atomic ratio of silver/iron increasing from 0.208 to 0.455 and saturation magnetization (M s) decreasing from 44.68 emu/g to 34.74 emu/g. The NPs have superparamagnetic properties and strong surface plasmon absorption at 420 nm, which make these particles promising for biomedical applications.

  11. MIL-53(Fe) as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr(VI) and oxidation of dyes

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Ruowen; Jing, Fenfen; Shen, Lijuan; Qin, Na; Wu, Ling, E-mail: wuling@fzu.edu.cn

    2015-04-28

    Highlights: • Fe(III)-based MOF was firstly applied to the photocatalytic reduction reaction. • MIL-53(Fe) exhibited an outstanding photocatalytic activity for reduction of Cr(VI). • A first systematic study of the Fe(III)-based MOF as bifunctional photocatalyst. • Dyes and Cr(VI) could be also converted simultaneously over MIL-53(Fe). • MIL-53(Fe) was performed a stable and reusable visible-light-driven photocatalyst. - Abstract: A bifunctional photocatalyst-Fe-benzenedicarboxylate (MIL-53(Fe)) has been synthesized successfully via a facile solvothermal method. The resulting MIL-53(Fe) photocatalyst exhibited an excellent visible light (λ ≥ 420 nm) photocatalytic activity for the reduction of Cr(VI), the reduction rate have reached about 100% after 40 min of visible light irradiation, which has been more efficient than that of N-doped TiO{sub 2} (85%) under identical experimental conditions. Further experimental results have revealed that the photocatalytic activity of MIL-53(Fe) for the reduction of Cr(VI) can be drastically affected by the pH value of the reaction solution, the hole scavenger and atmosphere. Moreover, MIL-53(Fe) has exhibited considerable photocatalytic activity in the mixed systems (Cr(VI)/dyes). After 6 h of visible light illumination, the reduction ratio of Cr(VI) and the degradation ratio of dyes have been exceed 60% and 80%, respectively. More significantly, the synergistic effect can also be found during the process of photocatalytic treatment of Cr(VI) contained wastewater under the same photocatalytic reaction conditions, which makes it a potential candidate for environmental restoration. Finally, a possible reaction mechanism has also been investigated in detail.

  12. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst.

    Science.gov (United States)

    Yang, Hong Bin; Miao, Jianwei; Hung, Sung-Fu; Chen, Jiazang; Tao, Hua Bing; Wang, Xizu; Zhang, Liping; Chen, Rong; Gao, Jiajian; Chen, Hao Ming; Dai, Liming; Liu, Bin

    2016-04-01

    Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are critical to renewable energy conversion and storage technologies. Heteroatom-doped carbon nanomaterials have been reported to be efficient metal-free electrocatalysts for ORR in fuel cells for energy conversion, as well as ORR and OER in metal-air batteries for energy storage. We reported that metal-free three-dimensional (3D) graphene nanoribbon networks (N-GRW) doped with nitrogen exhibited superb bifunctional electrocatalytic activities for both ORR and OER, with an excellent stability in alkaline electrolytes (for example, KOH). For the first time, it was experimentally demonstrated that the electron-donating quaternary N sites were responsible for ORR, whereas the electron-withdrawing pyridinic N moieties in N-GRW served as active sites for OER. The unique 3D nanoarchitecture provided a high density of the ORR and OER active sites and facilitated the electrolyte and electron transports. As a result, the as-prepared N-GRW holds great potential as a low-cost, highly efficient air cathode in rechargeable metal-air batteries. Rechargeable zinc-air batteries with the N-GRW air electrode in a two-electrode configuration exhibited an open-circuit voltage of 1.46 V, a specific capacity of 873 mAh g(-1), and a peak power density of 65 mW cm(-2), which could be continuously charged and discharged with an excellent cycling stability. Our work should open up new avenues for the development of various carbon-based metal-free bifunctional electrocatalysts of practical significance.

  13. Bifunctional sensor of pentachlorophenol and copper ions based on nanostructured hybrid films of humic acid and exfoliated layered double hydroxide via a facile layer-by-layer assembly.

    Science.gov (United States)

    Yuan, Shuang; Peng, Dinghua; Hu, Xianluo; Gong, Jingming

    2013-06-27

    A new, highly sensitive bifunctional electrochemical sensor for the simultaneous determination of pentachlorophenol (PCP) and copper ions (Cu(2+)) has been developed, where organic-inorganic hybrid ultrathin films were fabricated by alternate assembly of humic acid (HA) and exfoliated Mg-Al-layered double hydroxide (LDH) nanosheets onto ITO substrates via a layer-by-layer (LBL) approach. The multilayer films were then characterized by means of UV-vis spectrometry, scanning electron microscopy (SEM), and atomic force microscope (AFM). These films were found to have a relatively smooth surface with almost equal amounts of HA incorporated in each cycle. Its electrochemical performance was systematically investigated. Our results demonstrate that such a newly designed (LDH/HA)n multilayer films, combining the individual properties of HA (dual recognition ability for organic herbicides and metal ions) together with LDH nanosheets (a rigid inorganic matrix), can be applied to the simultaneous analysis of PCP and Cu(II) without interference from each other. The LBL assembled nanoarchitectures were further investigated by X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (IR), which provides insight for bifunctional sensing behavior. Under the optimized conditions, the detection limit was found to be as low as 0.4 nM PCP, well below the guideline value of PCP in drinking water (3.7 nM) set by the United States Environmental Protection Agency (U.S. EPA), and 2.0 nM Cu(2+), much below the guideline value (2.0 mg L(-1), ~31.2 nM) from the World Health Organization (WHO), respectively. Toward the goal for practical applications, this simple and cost-effective probe was further evaluated by monitoring PCP and Cu(II) in water samples.

  14. IBU-octyl-cytisine, a novel bifunctional compound eliciting anti-inflammatory and cholinergic activity, ameliorates CNS inflammation by inhibition of T-cell activity.

    Science.gov (United States)

    Nizri, Eran; Irony-Tur-Sinai, Michal; Lavon, Iris; Meshulam, Haim; Amitai, Gabi; Brenner, Talma

    2007-09-01

    Experimental autoimmune encephalomyelitis (EAE) is a central nervous system (CNS) inflammatory model in which MOG-specific T-cells initiate an autoimmune attack leading to demyelinization and consequently, neurological damage and morbidity. As EAE pathogenesis results from the involvement of immune cells, CNS resident-cells and inflammatory mediators, our treatment strategy was to use a bifunctional compound with dual anti-inflammatory properties: a non-steroidal anti-inflammatory moiety and a nicotinic agonist moiety, intended to interact with the alpha7 nicotinic receptor present on immune cells. We used IBU-Octyl-Cytisine, with an ibuprofen (IBU) moiety and Cytisine, as the nicotinic agonist. The two moieties are attached by an eight carbon (octyl) spacer. Treatment of EAE with IBU-Octyl-Cytisine (2.5 mg/kg/day, i.p.) reduced significantly (by 70%) disease severity and inflammatory infiltrates in the spinal cord. An equivalent dose of IBU was ineffective, whereas Cytisine was significantly toxic. Treatment with IBU-Octyl-Cytisine inhibited the T-cell response toward the encephalitogenic epitope of myelin oligodendrocyte glycoprotein (MOG). In addition, expression of CCR5 by CD4(+)T-cells was lower, indicating a reduced migratory capacity following treatment. IBU-Octyl-Cytisine reduced Th(1) but not Th(2) cytokine production. This reduction was accompanied by a drop in the level of T-bet mRNA, a transcription factor pivotal to Th(1) lineage differentiation. Thus, IBU-Octyl-Cytisine is an effective treatment for EAE, influencing T-cell responses in several stages of disease pathogenesis. This bifunctional compound was more efficient than IBU or Cytisine separately, as well as than both moieties unconjugated. Thus, it seems that this strategy may be applicable in wider context.

  15. Optimum bifunctionality in a 2-(2-pyridyl-2-ol)-1,10-phenanthroline based ruthenium complex for transfer hydrogenation of ketones and nitriles: impact of the number of 2-hydroxypyridine fragments.

    Science.gov (United States)

    Paul, Bhaskar; Chakrabarti, Kaushik; Kundu, Sabuj

    2016-07-05

    Considerable differences in reactivity and selectivity for 2-hydroxypyridine (2-HP) derived ruthenium complexes in transfer hydrogenation are described. Bifunctional Ru(ii)-(phenpy-OH) [phenpy-OH: 2-(2-pyridyl-2-ol)-1,10-phenanthroline] complex () exhibited excellent catalytic activity in transfer hydrogenation (TH) of ketones and nitriles. Notably, in comparison with all the reported 2-hydroxypyridine (2-HP) derived ruthenium complexes in transfer hydrogenation, complex displayed significantly higher activity. Additionally, exploiting the metal-ligand cooperativity in complex , chemoselective TH of ketones was achieved and sterically demanding ketones were readily reduced. An outer-sphere mechanism is proposed for this system as exogenous PPh3 has no significant effect on the rate of this reaction. This is a rare example of a highly active bifunctional Ru(ii) catalyst bearing only one 2-HP unit.

  16. Hydrothermal synthesis of superparamagnetic and red luminescent bifunctional Fe3O4@Mn2+-doped NaYF4:Yb/Er core@shell monodisperse nanoparticles and their subsequent ligand exchange in water

    Science.gov (United States)

    Qin, Zhenli; Du, Sinan; Luo, Yang; Liao, Zhijian; Zuo, Fang; Luo, Jianbin; Liu, Dong

    2016-08-01

    We report the use of an efficient hydrothermal method to synthesize superparamagnetic and red luminescent bifunctional Fe3O4@Mn2+-doped NaYF4:Yb/Er nanoparticles (NPs) with core@shell structures via a seed-growth procedure. Oleic acid coated Fe3O4 (OA-Fe3O4) NPs were initially synthesized using a coprecipitation method. The as-synthesized OA-Fe3O4 NPs were then used as seeds, on which the red upconversion luminescent shell (Mn2+-doped NaYF4:Yb/Er) was formed. Furthermore, hydrophobic to hydrophilic surface modification of the Fe3O4@Mn2+-doped NaYF4:Yb/Er NPs was achieved via a ligand exchange method where oleic acid was displaced by a PEG phosphate ligand [PEG = poly(ethylene glycol)]. These materials were characterized by means of transmission electron microscopy (TEM), X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, and vibrating sample magnetometry (VSM). The Fe3O4 cores were uniformly coated with a Mn2+-doped NaYF4:Yb/Er shell, and the bifunctional Fe3O4@Mn2+-doped NaYF4:Yb/Er NPs were monodispersed. Furthermore, the Fe3O4@Mn2+-doped NaYF4:Yb/Er NPs exhibited a saturated magnetization value of 6.2 emu/g and emitted red luminescence under a 980 nm laser. The obtained bifunctional Fe3O4@Mn2+-doped NaYF4:Yb/Er NPs may find potential applications in drug targeting, bioseparation, and diagnostic analysis. The synthetic method may be employed for the preparation of other bifunctional nanomaterials.

  17. Imaging cancer using PET - the effect of the bifunctional chelator on the biodistribution of a {sup 64}Cu-labeled antibody

    Energy Technology Data Exchange (ETDEWEB)

    Dearling, Jason L.J., E-mail: jason.dearling@childrens.harvard.ed [Division of Nuclear Medicine and Department of Radiology, Children' s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States); Voss, Stephan D. [Division of Nuclear Medicine and Department of Radiology, Children' s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States); Dunning, Patricia; Snay, Erin [Division of Nuclear Medicine and Department of Radiology, Children' s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115 (United States); Fahey, Frederic [Division of Nuclear Medicine and Department of Radiology, Children' s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States); Smith, Suzanne V. [Australian National Science and Technology Organisation (ANSTO), New Illawarra Road, PMB1, Menai, New South Wales 2234 (Australia); Huston, James S. [EMD Serono Research Center, 45A Middlesex Turnpike, Billerica, MA 01821-3936 (United States); Boston Biomedical Research Institute, Watertown, MA 02472-2899 (United States); Meares, Claude F. [Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616-5295 (United States); Treves, S. Ted; Packard, Alan B. [Division of Nuclear Medicine and Department of Radiology, Children' s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States)

    2011-01-15

    Introduction: Use of copper radioisotopes in antibody radiolabeling is challenged by reported loss of the radionuclide from the bifunctional chelator used to label the protein. The objective of this study was to investigate the relationship between the thermodynamic stability of the {sup 64}Cu-complexes of five commonly used bifunctional chelators (BFCs) and the biodistribution of an antibody labeled with {sup 64}Cu using these chelators in tumor-bearing mice. Methods: The chelators [S-2-(aminobenzyl)1,4,7-triazacyclononane-1,4,7-triacetic acid (p-NH{sub 2}-Bn-NOTA): 6-[p-(bromoacetamido)benzyl]-1, 4, 8, 11-tetraazacyclotetradecane-N, N', N'', N'''-tetraacetic acid (BAT-6): S-2-(4-aminobenzyl)-1,4,7,10-tetraazacyclododocane tetraacetic acid (p-NH{sub 2}-Bn-DOTA): 1,4,7,10-tetraazacyclododocane-N, N', N', N''-tetraacetic acid (DOTA): and 1-N-(4-aminobenzyl)-3,6,10,13,16,19-hexaazabicyclo[6.6.6]eicosane-1, 8-diamine (SarAr)] were conjugated to the anti-GD2 antibody ch14.18, and the modified antibody was labeled with {sup 64}Cu and injected into mice bearing subcutaneous human melanoma tumors (M21) (n = 3-5 for each study). Biodistribution data were obtained from positron emission tomography images acquired at 1, 24 and 48 hours post-injection, and at 48 hours post-injection a full ex vivo biodistribution study was carried out. Results: The biodistribution, including tumor targeting, was similar for all the radioimmunoconjugates. At 48 h post-injection, the only statistically significant differences in radionuclide uptake (p < 0.05) were between blood, liver, spleen and kidney. For example, liver uptake of [{sup 64}Cu]ch14.18-p-NH{sub 2}-Bn-NOTA was 4.74 {+-} 0.77 per cent of the injected dose per gram of tissue (%ID/g), and for [{sup 64}Cu]ch14.18-SarAr was 8.06 {+-} 0.77 %ID/g. Differences in tumor targeting correlated with variations in tumor size rather than which BFC was used. Conclusions: The results of this

  18. Coupling of a bifunctional peptide R13 to OTMCS-PEI copolymer as a gene vector increases transfection efficiency and tumor targeting

    Directory of Open Access Journals (Sweden)

    Lv H

    2014-03-01

    Full Text Available Hui Lv,1,* Qing Zhu,1,* Kewu Liu,2 Manman Zhu,1 Wenfang Zhao,1 Yuan Mao,1 Kehai Liu1 1Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, People's Republic of China; 2Heilongjiang Forest By-Product and Speciality Institute, Mudanjiang, People's Republic of China *These authors contributed equally to this work Background: A degradable polyethylenimine (PEI derivative coupled to a bifunctional peptide R13 was developed to solve the transfection efficiency versus cytotoxicity and tumor-targeting problems of PEI when used as a gene vector. Methods: We crossed-linked low molecular weight PEI with N-octyl-N-quaternary chitosan (OTMCS to synthesize a degradable PEI derivative (OTMCS-PEI, and then used a bifunctional peptide, RGDC-Tat (49–57 called R13 to modify OTMCS-PEI so as to prepare a new gene vector, OTMCS-PEI-R13. This new gene vector was characterized by various physicochemical methods. Its cytotoxicity and gene transfection efficiency were also determined both in vitro and in vivo. Results: The vector showed controlled degradation and excellent buffering capacity. The particle size of the OTMCS-PEI-R13/DNA complexes was around 150–250 nm and the zeta potential ranged from 10 mV to 30 mV. The polymer could protect plasmid DNA from being digested by DNase I at a concentration of 23.5 U DNase I/µg DNA. Further, the polymer was resistant to dissociation induced by 50% fetal bovine serum and 400 µg/mL sodium heparin. Compared with PEI 25 kDa, the OTMCS-PEI-R13/DNA complexes showed higher transfection efficiency both in vitro and in vivo. Further, compared with OTMCS-PEI, distribution of OTMCS-PEI-R13 at tumor sites was markedly enhanced, indicating the tumor-targeting specificity of R13. Conclusion: OTMCS-PEI-R13 could be a potential candidate as a safe and efficient gene delivery carrier for gene therapy. Keywords: nonviral gene vector, polyethylenimine, R13, transfection efficiency

  19. Optimizing acid-base bifunctional mesoporous catalysts for the henry reaction: effects of the surface density and site isolation of functional groups.

    Science.gov (United States)

    Sharma, Krishna K; Buckley, Robert P; Asefa, Tewodros

    2008-12-16

    We report on the effects of the surface density and the spacing between grafted organoamines (and residual ungrafted silanols) of amine-functionalized mesoporous materials on their (cooperative) catalytic activity in the Henry reaction. The spacing between the bifunctional groups (amines and silanols), their site isolation, and their surface density were controlled by one-step or two-step grafting of a series of organosilanes containing linear alkylamine, alkyldiamine, alkyltriamine, and meta- and para-substituted aromatic amines onto mesoporous silica in ethanol and/or toluene. The grafting in ethanol produced site-isolated, flexible alkylamines, alkyldiamines, and alkyltriamines of different tether lengths and rigid meta- and para-substituted aromatic amines and high surface area materials, whereas the grafting in toluene resulted in closely spaced organoamines and materials with lower surface areas. The spacing between the organoamine groups was probed by complexing cupric ions with the amines and by measuring the electronic spectra of the complexes. The materials' catalytic activities were dependent not only on the degree of site isolation of the amine groups and the surface areas of the materials, but also on the relative spacing between the functional groups and their surface density. Samples grafted with monoamine groups in ethanol and samples grafted with diamine or triamine groups in toluene for 5 h gave approximately 100% conversion in 16 min of the Henry reaction between p-hydroxybenzaldehyde and nitromethane. However, the corresponding monoamine-grafted sample in toluene and diamine- and triamine-grafted samples in ethanol gave approximately 100% conversion after 1 h. On the basis of turnover number (TON) and TON per surface area, the samples containing optimum concentrations of approximately 0.8 - 1.5 mmol of grafted organoamines/g, which we dubbed as the critical density of organic grafted groups, gave the highest catalytic efficiencies. These samples

  20. Highly efficient redox isomerisation of allylic alcohols catalysed by pyrazole-based ruthenium(IV) complexes in water: mechanisms of bifunctional catalysis in water.

    Science.gov (United States)

    Bellarosa, Luca; Díez, Josefina; Gimeno, José; Lledós, Agustí; Suárez, Francisco J; Ujaque, Gregori; Vicent, Cristian

    2012-06-18

    The catalytic activity of ruthenium(IV) ([Ru(η(3):η(3)-C(10)H(16))Cl(2)L]; C(10)H(16) = 2,7-dimethylocta-2,6-diene-1,8-diyl, L = pyrazole, 3-methylpyrazole, 3,5-dimethylpyrazole, 3-methyl-5-phenylpyrazole, 2-(1H-pyrazol-3-yl)phenol or indazole) and ruthenium(II) complexes ([Ru(η(6)-arene)Cl(2)(3,5-dimethylpyrazole)]; arene = C(6)H(6), p-cymene or C(6)Me(6)) in the redox isomerisation of allylic alcohols into carbonyl compounds in water is reported. The former show much higher catalytic activity than ruthenium(II) complexes. In particular, a variety of allylic alcohols have been quantitatively isomerised by using [Ru(η(3):η(3)-C(10)H(16))Cl(2)(pyrazole)] as a catalyst; the reactions proceeded faster in water than in THF, and in the absence of base. The isomerisations of monosubstituted alcohols take place rapidly (10-60 min, turn-over frequency = 750-3000 h(-1)) and, in some cases, at 35 °C in 60 min. The nature of the aqueous species formed in water by this complex has been analysed by ESI-MS. To analyse how an aqueous medium can influence the mechanism of the bifunctional catalytic process, DFT calculations (B3LYP) including one or two explicit water molecules and using the polarisable continuum model have been carried out and provide a valuable insight into the role of water on the activity of the bifunctional catalyst. Several mechanisms have been considered and imply the formation of aqua complexes and their deprotonated species generated from [Ru(η(3):η(3)-C(10)H(16))Cl(2)(pyrazole)]. Different competitive pathways based on outer-sphere mechanisms, which imply hydrogen-transfer processes, have been analysed. The overall isomerisation implies two hydrogen-transfer steps from the substrate to the catalyst and subsequent transfer back to the substrate. In addition to the conventional Noyori outer-sphere mechanism, which involves the pyrazolide ligand, a new mechanism with a hydroxopyrazole complex as the active species can be at work in water. The

  1. Cloning and analysis of a bifunctional methyltransferase/restriction endonuclease TspGWI, the prototype of a Thermus sp. enzyme family

    Directory of Open Access Journals (Sweden)

    Zylicz-Stachula Agnieszka

    2009-05-01

    Full Text Available Abstract Background Restriction-modification systems are a diverse class of enzymes. They are classified into four major types: I, II, III and IV. We have previously proposed the existence of a Thermus sp. enzyme family, which belongs to type II restriction endonucleases (REases, however, it features also some characteristics of types I and III. Members include related thermophilic endonucleases: TspGWI, TaqII, TspDTI, and Tth111II. Results Here we describe cloning, mutagenesis and analysis of the prototype TspGWI enzyme that recognises the 5'-ACGGA-3' site and cleaves 11/9 nt downstream. We cloned, expressed, and mutagenised the tspgwi gene and investigated the properties of its product, the bifunctional TspGWI restriction/modification enzyme. Since TspGWI does not cleave DNA completely, a cloning method was devised, based on amino acid sequencing of internal proteolytic fragments. The deduced amino acid sequence of the enzyme shares significant sequence similarity with another representative of the Thermus sp. family – TaqII. Interestingly, these enzymes recognise similar, yet different sequences in the DNA. Both enzymes cleave DNA at the same distance, but differ in their ability to cleave single sites and in the requirement of S-adenosylmethionine as an allosteric activator for cleavage. Both the restriction endonuclease (REase and methyltransferase (MTase activities of wild type (wt TspGWI (either recombinant or isolated from Thermus sp. are dependent on the presence of divalent cations. Conclusion TspGWI is a bifunctional protein comprising a tandem arrangement of Type I-like domains; particularly noticeable is the central HsdM-like module comprising a helical domain and a highly conserved S-adenosylmethionine-binding/catalytic MTase domain, containing DPAVGTG and NPPY motifs. TspGWI also possesses an N-terminal PD-(D/EXK nuclease domain related to the corresponding domains in HsdR subunits, but lacks the ATP-dependent translocase module

  2. Y{sub 2}O{sub 3}: Eu{sup 3+}, Tb{sup 3+} spherical particles based anti-reflection and wavelength conversion bi-functional films: Synthesis and application to solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Hui [School of Physics, Northwest University, Xi’an 710069 (China); National Photoelectric Technology and Functional Materials & Application of Science and Technology International Cooperation Base, Northwest University, Xi’an 710069 (China); Ji, Ruonan [School of Physics, Northwest University, Xi’an 710069 (China); Hu, Xiaoyun, E-mail: hxy3275@nwu.edu.cn [School of Physics, Northwest University, Xi’an 710069 (China); National Photoelectric Technology and Functional Materials & Application of Science and Technology International Cooperation Base, Northwest University, Xi’an 710069 (China); Han, Linzi; Hao, Yuanyuan; Sun, Qian [School of Physics, Northwest University, Xi’an 710069 (China); Zhang, Dekai [School of Physics, Northwest University, Xi’an 710069 (China); National Photoelectric Technology and Functional Materials & Application of Science and Technology International Cooperation Base, Northwest University, Xi’an 710069 (China); Fan, Jun [School of Chemical Engineering, Northwest University, Xi’an 710069 (China); Bai, Jintao [School of Physics, Northwest University, Xi’an 710069 (China); National Photoelectric Technology and Functional Materials & Application of Science and Technology International Cooperation Base, Northwest University, Xi’an 710069 (China); and others

    2015-04-25

    Highlights: • Eu{sup 3+} and Tb{sup 3+} co-doped Y{sub 2}O{sub 3} particles were successfully prepared. The as prepared particles can convert UV region photos to visible photons between 460 nm and 640 nm, which just matched the spectral response of most solar cells. • Y{sub 2}O{sub 3} is not only a good photoluminescence host material, but also it has high corrosion resistivity, thermal stability, and transparency from violet to infrared light. Cooperated with SiO{sub 2} sols, it could realize a better anti-reflection property. • As a proof-of-concept application, the as prepared bi-functional films could effectively improve the photoelectric conversion efficiency by 0.23% compared to pure SiO{sub 2} AR coating film and 0.55% compared to glass. - Abstract: In this study, Eu{sup 3+} and Tb{sup 3+} co-doped Y{sub 2}O{sub 3} particles were prepared via the simple, cost-effective urea homogeneous precipitation method without additives. The chosen particles were added in the SiO{sub 2} sols to get anti-reflection (AR) and wavelength conversion bi-functional films. Careful investigations were carried out to find the optimum preparation conditions and proper morphology. SEM images showed that the particle sizes reduced as metal ion/urea ratio decreased. Additionally, the extracted particles turned from sphere to lamellar type when the deionized water, which was used as solvent, reduced to a certain extent. The mechanisms of the morphology formation and diversification were proposed as well. The as prepared materials can convert UV region photos to visible photons between 460 nm and 640 nm, which just matched the spectral response of most solar cells. The spherical sample showed better luminescence performance than the one with lamellar morphology. In addition, the optical transmittance spectra indicated that the films adding spherical particles had better anti-reflective performance, and the best adding amount was 0.08 g. Finally, As a proof-of-concept application

  3. Direct and Highly Selective Conversion of Synthesis Gas into Lower Olefins: Design of a Bifunctional Catalyst Combining Methanol Synthesis and Carbon-Carbon Coupling.

    Science.gov (United States)

    Cheng, Kang; Gu, Bang; Liu, Xiaoliang; Kang, Jincan; Zhang, Qinghong; Wang, Ye

    2016-04-01

    The direct synthesis of lower (C2 to C4) olefins, key building-block chemicals, from syngas (H2/CO), which can be derived from various nonpetroleum carbon resources, is highly attractive, but the selectivity for lower olefins is low because of the limitation of the Anderson-Schulz-Flory distribution. We report that the coupling of methanol-synthesis and methanol-to-olefins reactions with a bifunctional catalyst can realize the direct conversion of syngas to lower olefins with exceptionally high selectivity. We demonstrate that the choice of two active components and the integration manner of the components are crucial to lower olefin selectivity. The combination of a Zr-Zn binary oxide, which alone shows higher selectivity for methanol and dimethyl ether even at 673 K, and SAPO-34 with decreased acidity offers around 70% selectivity for C2-C4 olefins at about 10% CO conversion. The micro- to nanoscale proximity of the components favors the lower olefin selectivity.

  4. Survival and bioactivities of selected probiotic lactobacilli in yogurt fermentation and cold storage: New insights for developing a bi-functional dairy food.

    Science.gov (United States)

    Rutella, Giuseppina Sefora; Tagliazucchi, Davide; Solieri, Lisa

    2016-12-01

    In previous work, we demonstrated that two probiotic strains, namely Lactobacillus casei PRA205 and Lactobacillus rhamnosus PRA331, produce fermented milks with potent angiotensin-converting enzyme (ACE)-inhibitory and antioxidant activities. Here, we tested these strains for the survivability and the release of antihypertensive and antioxidant peptides in yogurt fermentation and cold storage. For these purposes three yogurt batches were compared: one prepared using yogurt starters alone (Lactobacillus delbrueckii subspecies bulgaricus 1932 and Streptococcus thermophilus 99), and the remaining two containing either PRA205 or PRA331 in addition to yogurt starters. Despite the lower viable counts at the fermentation end compared to PRA331, PRA205 overcame PRA331 in survivability during refrigerated storage for 28 days, leading to viable counts (>10(8) CFU/g) higher than the minimum therapeutic threshold (10(6) CFU/g). Analyses of in vitro ACE-inhibitory and antioxidant activities of peptide fractions revealed that yogurt supplemented with PRA205 displays higher amounts of antihypertensive and antioxidant peptides than that produced with PRA331 at the end of fermentation and over storage. Two ACE-inhibitory peptides, Valine-Proline-Proline (VPP) and Isoleucine-Proline-Proline (IPP), were identified and quantified. This study demonstrated that L. casei PRA205 could be used as adjunct culture for producing bi-functional yogurt enriched in bioactive peptides and in viable cells, which bring health benefits to the host as probiotics.

  5. Nano-molybdenum carbide/carbon nanotubes composite as bifunctional anode catalyst for high-performance Escherichia coli-based microbial fuel cell.

    Science.gov (United States)

    Wang, Yaqiong; Li, Bin; Cui, Dan; Xiang, Xingde; Li, Weishan

    2014-01-15

    A novel electrode, carbon felt-supported nano-molybdenum carbide (Mo2C)/carbon nanotubes (CNTs) composite, was developed as platinum-free anode of high performance microbial fuel cell (MFC). The Mo2C/CNTs composite was synthesized by using the microwave-assisted method with Mo(CO)6 as a single source precursor and characterized by using X-ray diffraction and transmission electron microscopy. The activity of the composite as anode electrocatalyst of MFC based on Escherichia coli (E. coli) was investigated with cyclic voltammetry, chronoamperometry, and cell discharge test. It is found that the carbon felt electrode with 16.7 wt% Mo Mo2C/CNTs composite exhibits a comparable electrocatalytic activity to that with 20 wt% platinum as anode electrocatalyst. The superior performance of the developed platinum-free electrode can be ascribed to the bifunctional electrocatalysis of Mo2C/CNTs for the conversion of organic substrates into electricity through bacteria. The composite facilitates the formation of biofilm, which is necessary for the electron transfer via c-type cytochrome and nanowires. On the other hand, the composite exhibits the electrocatalytic activity towards the oxidation of hydrogen, which is the common metabolite of E. coli.

  6. MnCo2O4 nanowires anchored on reduced graphene oxide sheets as effective bifunctional catalysts for Li-O2 battery cathodes.

    Science.gov (United States)

    Kim, Jong Guk; Kim, Youngmin; Noh, Yuseong; Kim, Won Bae

    2015-05-22

    A hybrid composite system of MnCo2 O4 nanowires (MCO NWs) anchored on reduced graphene oxide (RGO) nanosheets was prepared as the bifunctional catalyst of a Li-O2 battery cathode. The catalysts can be obtained from the hybridization of one-dimensional MCO NWs and two-dimensional RGO nanosheets. As O2 -cathode catalysts for Li-O2 cells, the MCO@RGO composites showed a high initial discharge capacity (ca. 11092.1 mAh gcarbon (-1) ) with a high rate performance. The Li-O2 cells could run for more than 35 cycles with high reversibility under a limited specific capacity of 1000 mAh gcarbon (-1) with a low potential polarization of 1.36 V, as compared with those of pure Ketjenblack and MCO NWs. The high cycling stability, low potential polarization, and rate capability suggest that the MCO@RGO composites prepared here are promising catalyst candidates for highly reversible Li-O2 battery cathodes.

  7. Catalytic activity of nanostructured Au: Scale effects versus bimetallic/bifunctional effects in low-temperature CO oxidation on nanoporous Au

    Directory of Open Access Journals (Sweden)

    Lu-Cun Wang

    2013-02-01

    Full Text Available The catalytic properties of nanostructured Au and their physical origin were investigated by using the low-temperature CO oxidation as a test reaction. In order to distinguish between structural effects (structure–activity correlations and bimetallic/bifunctional effects, unsupported nanoporous gold (NPG samples prepared from different Au alloys (AuAg, AuCu by selective leaching of a less noble metal (Ag, Cu were employed, whose structure (surface area, ligament size as well as their residual amount of the second metal were systematically varied by applying different potentials for dealloying. The structural and chemical properties before and after 1000 min reaction were characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD and X-ray photoelectron spectroscopy (XPS. The catalytic behavior was evaluated by kinetic measurements in a conventional microreactor and by dynamic measurements in a temporal analysis of products (TAP reactor. The data reveal a clear influence of the surface contents of residual Ag and Cu species on both O2 activation and catalytic activity, while correlations between activity and structural parameters such as surface area or ligament/crystallite size are less evident. Consequences for the mechanistic understanding and the role of the nanostructure in these NPG catalysts are discussed.

  8. Bifunctional quaternary ammonium compounds to inhibit biofilm growth and enhance performance for activated carbon air-cathode in microbial fuel cells

    Science.gov (United States)

    Li, Nan; Liu, Yinan; An, Jingkun; Feng, Cuijuan; Wang, Xin

    2014-12-01

    The slow diffusion of hydroxyl out of the catalyst layer as well as the biofouling on the surface of cathode are two problems affecting power for membrane-less air-cathode microbial fuel cells (MFCs). In order to solve both of them simultaneously, here we simply modify activated carbon air-cathode using a bifunctional quaternary ammonium compound (QAC) by forced evaporation. The maximum power density reaches 1041 ± 12 mW m-2 in an unbuffered medium (0.5 g L-1 NaCl), which is 17% higher than the control, probably due to the accelerated anion transport in the catalyst layer. After 2 months, the protein content reduced by a factor of 26 and the power density increases by 33%, indicating that the QAC modification can effectively inhibit the growth of cathodic biofilm and improve the stability of performance. The addition of NaOH and QAC epoxy have a negative effect on power production due to the clogging of pores in catalyst layer.

  9. Ionic Polymer Microspheres Bearing a Co(III) -Salen Moiety as a Bifunctional Heterogeneous Catalyst for the Efficient Cycloaddition of CO2 and Epoxides.

    Science.gov (United States)

    Leng, Yan; Lu, Dan; Zhang, Chenjun; Jiang, Pingping; Zhang, Weijie; Wang, Jun

    2016-06-01

    We report a unique strategy to obtain the bifunctional heterogeneous catalyst TBB-Bpy@Salen-Co (TBB=1,2,4,5-tetrakis(bromomethyl)benzene, Bpy=4,4'-bipyridine, Salen-Co=N,N'-bis({4-dimethylamino}salicylidene)ethylenediamino cobalt(III) acetate) by combining a cross-linked ionic polymer with a Co(III) -salen Schiff base. The catalyst showed extra high activity for CO2 fixation under mild, solvent-free reaction conditions with no requirement for a co-catalyst. The synthesized catalyst possessed distinctive spherical structural features, abundant halogen Br(-) anions with good leaving group ability, and accessible Lewis acidic Co metal centers. These unique features, together with the synergistic role of the Co and Br(-) functional sites, allowed TBB-Bpy@Salen-Co to exhibit enhanced catalytic conversion of CO2 into cyclic carbonates relative to the corresponding monofunctional analogues. This catalyst can be easily recovered and recycled five times without significant leaching of Co or loss of activity. Moreover, based on our experimental results and previous work, a synergistic cycloaddition reaction mechanism was proposed.

  10. Sorption of water alkalinity and hardness from high-strength wastewater on bifunctional activated carbon: process optimization, kinetics and equilibrium studies.

    Science.gov (United States)

    Amosa, Mutiu K

    2016-08-01

    Sorption optimization and mechanism of hardness and alkalinity on bifunctional empty fruit bunch-based powdered activation carbon (PAC) were studied. The PAC possessed both high surface area and ion-exchange properties, and it was utilized in the treatment of biotreated palm oil mill effluent. Batch adsorption experiments designed with Design Expert(®) were conducted in correlating the singular and interactive effects of the three adsorption parameters: PAC dosage, agitation speed and contact time. The sorption trends of the two contaminants were sequentially assessed through a full factorial design with three factor interaction models and a central composite design with polynomial models of quadratic order. Analysis of variance revealed the significant factors on each design response with very high R(2) values indicating good agreement between model and experimental values. The optimum operating conditions of the two contaminants differed due to their different regions of operating interests, thus necessitating the utility of desirability factor to get consolidated optimum operation conditions. The equilibrium data for alkalinity and hardness sorption were better represented by the Langmuir isotherm, while the pseudo-second-order kinetic model described the adsorption rates and behavior better. It was concluded that chemisorption contributed majorly to the adsorption process.

  11. Improved electron transfer and plasmonic effect in dye-sensitized solar cells with bi-functional Nb-doped TiO2/Ag ternary nanostructures.

    Science.gov (United States)

    Park, Jung Tae; Chi, Won Seok; Jeon, Harim; Kim, Jong Hak

    2014-03-07

    TiO2 nanoparticles are surface-modified via atom transfer radical polymerization (ATRP) with a hydrophilic poly(oxyethylene)methacrylate (POEM), which can coordinate to the Ag precursor, i.e. silver trifluoromethanesulfonate (AgCF3SO3). Following the reduction of Ag ions, a Nb2O5 doping process and calcination at 450 °C, bi-functional Nb-doped TiO2/Ag ternary nanostructures are generated. The resulting nanostructures are characterized by energy-filtering transmission electron microscopy (EF-TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. The dye-sensitized solar cell (DSSC) based on the Nb-doped TiO2/Ag nanostructure photoanode with a polymerized ionic liquid (PIL) as the solid polymer electrolyte shows an overall energy conversion efficiency (η) of 6.9%, which is much higher than those of neat TiO2 (4.7%) and Nb-doped TiO2 (5.4%). The enhancement of η is mostly due to the increase of current density, attributed to the improved electron transfer properties including electron injection, collection, and plasmonic effects without the negative effects of charge recombination or problems with corrosion. These properties are supported by intensity modulated photocurrent/voltage spectroscopy (IMPS/IMVS) and incident photon-to-electron conversion efficiency (IPCE) measurements.

  12. Surface functionalization of PLGA nanoparticles by non-covalent insertion of a homo-bifunctional spacer for active targeting in cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Thamake, S I; Raut, S L [Department of Biomedical Sciences, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107 (United States); Ranjan, A P; Vishwanatha, J K [Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States); Gryczynski, Z, E-mail: jamboor.vishwanatha@unthsc.edu [Center for Commercialization of Fluorescence Technology, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States)

    2011-01-21

    This work reports the surface functionalization of polymeric PLGA nanoparticles by non-covalent insertion of a homo-bifunctional chemical crosslinker, bis(sulfosuccinimidyl) suberate (BS3) for targeted cancer therapy. We dissolved BS3 in aqueous solution of PVA during formulation of nanoparticles by a modified solid/oil/water emulsion solvent evaporation method. The non-covalent insertion of BS3 was confirmed by Fourier transform infrared (FTIR) spectroscopy. Curcumin and annexin A2 were used as a model drug and a cell specific target, respectively. Nanoparticles were characterized for particle size, zeta potential and surface morphology. The qualitative assessment of antibody attachment was performed by transmission electron microscopy (TEM) as well as confocal microscopy. The optimized formulation showed antibody attachment of 86%. However, antibody attachment was abolished upon blocking the functional groups of BS3. The availability of functional antibodies was evaluated by the presence of a light chain fraction after gel electrophoresis. We further evaluated the in vitro release kinetics of curcumin from antibody coated and uncoated nanoparticles. The release of curcumin is enhanced upon antibody attachment and followed an anomalous release pattern. We also observed that the cellular uptake of nanoparticles was significantly higher in annexin A2 positive cells than in negative cells. Therefore, these results demonstrate the potential use of this method for functionalization as well as to deliver chemotherapeutic agents for treating cancer.

  13. Bifunctional coating based on carboxymethyl chitosan with stable conjugated alkaline phosphatase for inhibiting bacterial adhesion and promoting osteogenic differentiation on titanium

    Science.gov (United States)

    Zheng, Dong; Neoh, Koon Gee; Kang, En-Tang

    2016-01-01

    In this work, alkaline phosphatase (ALP) was covalently immobilized on carboxymethyl chitosan (CMCS)-coated polydopamine (PDA)-functionalized Ti to achieve a bifunctional surface. Our results showed ∼89% reduction in Staphylococcus epidermidis adhesion on this surface compared to that on pristine Ti. The ALP-modified Ti supported cell proliferation, and significantly enhanced cellular ALP activity and calcium deposition of osteoblasts, human mesenchymal stem cells (hMSCs) and human adipose-derived stem cells (hADSCs). The extent of enhancement in the functions of these cells is dependent on the surface density of immobilized ALP. The substrate prepared using an ALP solution of 50 μg/cm2 resulted in 44%, 54% and 129% increase in calcium deposited by osteoblasts, hMSCs and hADSCs, respectively, compared to those cultured on pristine Ti. The ALP-modified substrates also promoted the osteogenic differentiation of hMSCs and hADSCs by up-regulating gene expressions of runt-related transcription factor 2 (RUNX2), osterix (OSX), and osteocalcin (OC) in the two types of stem cells. The surface-immobilized ALP was stable after being subjected to 1 h immersion in 70% ethanol and autoclaving at 121 °C for 20 min. However, the enzymatic bioactivity of the surface-immobilized ALP was reduced by about 50% after these substrates were immersed in phosphate buffered saline (PBS) or PBS containing lysozyme for 14 days.

  14. Structural Studies of Geosmin Synthase, a Bifunctional Sesquiterpene Synthase with αα Domain Architecture That Catalyzes a Unique Cyclization-Fragmentation Reaction Sequence.

    Science.gov (United States)

    Harris, Golda G; Lombardi, Patrick M; Pemberton, Travis A; Matsui, Tsutomu; Weiss, Thomas M; Cole, Kathryn E; Köksal, Mustafa; Murphy, Frank V; Vedula, L Sangeetha; Chou, Wayne K W; Cane, David E; Christianson, David W

    2015-12-01

    Geosmin synthase from Streptomyces coelicolor (ScGS) catalyzes an unusual, metal-dependent terpenoid cyclization and fragmentation reaction sequence. Two distinct active sites are required for catalysis: the N-terminal domain catalyzes the ionization and cyclization of farnesyl diphosphate to form germacradienol and inorganic pyrophosphate (PPi), and the C-terminal domain catalyzes the protonation, cyclization, and fragmentation of germacradienol to form geosmin and acetone through a retro-Prins reaction. A unique αα domain architecture is predicted for ScGS based on amino acid sequence: each domain contains the metal-binding motifs typical of a class I terpenoid cyclase, and each domain requires Mg(2+) for catalysis. Here, we report the X-ray crystal structure of the unliganded N-terminal domain of ScGS and the structure of its complex with three Mg(2+) ions and alendronate. These structures highlight conformational changes required for active site closure and catalysis. Although neither full-length ScGS nor constructs of the C-terminal domain could be crystallized, homology models of the C-terminal domain were constructed on the basis of ∼36% sequence identity with the N-terminal domain. Small-angle X-ray scattering experiments yield low-resolution molecular envelopes into which the N-terminal domain crystal structure and the C-terminal domain homology model were fit, suggesting possible αα domain architectures as frameworks for bifunctional catalysis.

  15. Bifunctional enhancement of oxygen reduction reaction activity on Ag catalysts due to water activation on LaMnO3 supports in alkaline media.

    Science.gov (United States)

    Park, Shin-Ae; Lee, Eun-Kyung; Song, Hannah; Kim, Yong-Tae

    2015-08-27

    Ag is considered to be one of the best candidates for oxygen reduction reaction electrocatalysts in alkaline media for application in various electrochemical energy devices. In this study, we demonstrate that water activation is a key factor in enhancing the ORR activity in alkaline media, unlike in acid environments. Ag supported on LaMnO3 having a high oxophilicity showed a markedly higher ORR activity than that on carbon with inert surfaces. Through various electrochemical tests, it was revealed that the origin of the enhanced ORR activity of Ag/LaMnO3 is the bifunctional effect mainly due to the water activation at the interface between Ag and LaMnO3. Furthermore, the ligand effect due to the charge transfer from Mn to Ag leads to the enhancement of both oxygen activation on Ag and water activation on Mn sites, and hence, an improvement in the ORR activity of Ag/LaMnO3. On the other hand, the strain effect based on the fine structure variation in the lattice was negligible. We therefore suggest that the employment of a co-catalyst or support with highly oxophilic nature and the maximization of the interface between catalyst and support should be considered in the design of electrocatalysts for the ORR in alkaline media.

  16. HpDTC1, a Stress-Inducible Bifunctional Diterpene Cyclase Involved in Momilactone Biosynthesis, Functions in Chemical Defence in the Moss Hypnum plumaeforme

    Science.gov (United States)

    Okada, Kazunori; Kawaide, Hiroshi; Miyamoto, Koji; Miyazaki, Sho; Kainuma, Ryosuke; Kimura, Honoka; Fujiwara, Kaoru; Natsume, Masahiro; Nojiri, Hideaki; Nakajima, Masatoshi; Yamane, Hisakazu; Hatano, Yuki; Nozaki, Hiroshi; Hayashi, Ken-ichiro

    2016-01-01

    Momilactones, which are diterpenoid phytoalexins with antimicrobial and allelopathic functions, have been found only in rice and the moss Hypnum plumaeforme. Although these two evolutionarily distinct plant species are thought to produce momilactones as a chemical defence, the momilactone biosynthetic pathway in H. plumaeforme has been unclear. Here, we identified a gene encoding syn-pimara-7,15-diene synthase (HpDTC1) responsible for the first step of momilactone biosynthesis in the moss. HpDTC1 is a bifunctional diterpene cyclase that catalyses a two-step cyclization reaction of geranylgeranyl diphosphate to syn-pimara-7,15-diene. HpDTC1 transcription was up-regulated in response to abiotic and biotic stress treatments. HpDTC1 promoter-GUS analysis in transgenic Physcomitrella patens showed similar transcriptional responses as H. plumaeforme to the stresses, suggesting that a common response system to stress exists in mosses. Jasmonic acid (JA), a potent signalling molecule for inducing plant defences, could not activate HpDTC1 expression. In contrast, 12-oxo-phytodienoic acid, an oxylipin precursor of JA in vascular plants, enhanced HpDTC1 expression and momilactone accumulation, implying that as-yet-unknown oxylipins could regulate momilactone biosynthesis in H. plumaeforme. These results demonstrate the existence of an evolutionarily conserved chemical defence system utilizing momilactones and suggest the molecular basis of the regulation for inductive production of momilactones in H. plumaeforme. PMID:27137939

  17. The Quest for Converting Biorenewable Bifunctional α-Methylene-γ-butyrolactone into Degradable and Recyclable Polyester: Controlling Vinyl-Addition/Ring-Opening/Cross-Linking Pathways

    KAUST Repository

    Tang, Xiaoyan

    2016-10-04

    α-Methylene-γ-butyrolactone (MBL), a naturally occurring and biomass-sourced bifunctional monomer, contains both a highly reactive exocyclic C═C bond and a highly stable five-membered γ-butyrolactone ring. Thus, all previous work led to exclusive vinyl-addition polymerization (VAP) product P(MBL)VAP. Now, this work reverses this conventional chemoselectivity to enable the first ring-opening polymerization (ROP) of MBL, thereby producing exclusively unsaturated polyester P(MBL)ROP with Mn up to 21.0 kg/mol. This elusive goal was achieved through uncovering the thermodynamic, catalytic, and processing conditions. A third reaction pathway has also been discovered, which is a crossover propagation between VAP and ROP processes, thus affording cross-linked polymer P(MBL)CLP. The formation of the three types of polymers, P(MBL)VAP, P(MBL)CLP, and P(MBL)ROP, can be readily controlled by adjusting the catalyst (La)/initiator (ROH) ratio, which is determined by the unique chemoselectivity of the La–X (X = OR, NR2, R) group. The resulting P(MBL)ROP is degradable and can be readily postfunctionalized into cross-linked or thiolated materials but, more remarkably, can also be fully recycled back to its monomer thermochemically. Computational studies provided the theoretical basis for, and a mechanistic understanding of, the three different polymerization processes and the origin of the chemoselectivity.

  18. Preparation and characterization of bifunctional dendrimer modified Fe{sub 3}O{sub 4}/CdTe nanoparticles with both luminescent and superparamagnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiuling, E-mail: wxling_self@163.com [Department of Chemical and Biological Engineering, Suzhou University of Science and Technology, Suzhou 215009 (China); Gu, Yinjun; Dong, Shuling [Department of Chemical and Biological Engineering, Suzhou University of Science and Technology, Suzhou 215009 (China); Zhao, Qin [School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019 (China); Liu, Yongjian [Department of Chemical and Biological Engineering, Suzhou University of Science and Technology, Suzhou 215009 (China)

    2015-10-15

    Highlights: • The fluorescent superparamagnetic dendrimeric Fe{sub 3}O{sub 4}/CdTe nanoparticles are synthesized in this paper. • The synthesized nanocomposites maintain excellent magnetic properties. • The synthesized nanocomposites maintain highly luminescent markers with narrow emission bands. - Abstract: Magnetic nanoparticles Fe{sub 3}O{sub 4} were prepared by hydrothermal coprecipitation of ferric and ferrous ions using NaOH. The surface modification of Fe{sub 3}O{sub 4} nanoparticle by dendrimers has rendered the nanoparticle surface with enriched amine groups which facilitated the adsorption and conjugation of thioglycolic acid (TGA) modified CdTe quantum dots to form a stable hybrid nanostructure. Three generations (first generation: G0F, second generation: G1F, third generation: G3F) of bifunctional dendrimeric Fe{sub 3}O{sub 4}/CdTe nanoparticles were successfully prepared using this technique and characterized by microscopy. The optical and magnetic properties of the dendrimeric Fe{sub 3}O{sub 4}/CdTe nanoparticle were also investigated. The microscopic study reveals 3 different sizes for 3 generations, 16 nm (G0F), 31 nm (G1F) and 47 nm (G3F). Among three generations of nanoparticles, the G1F has the best optical property with a luminescent quantum yield of 25.6% and the G0F has the best magnetic property with a saturation magnetization of 19.3 emμ/g.

  19. Novel trends in electrocatalysis: Extended Brewer hypo-hyper-d-interionic bonding theory and selective interactive grafting of composite bifunctional electrocatalysts for simultaneous anodic hydrogen

    Directory of Open Access Journals (Sweden)

    Neophytides S.G.

    2003-01-01

    Full Text Available Novel Trends in Electrocatalysis: Extended Brewer Hypo-Hyper-d-lnterionic Bonding Theory and Selective Interactive Grafting of Composite Bifunctional Electrocatalysts for Simultaneous Anodic Hydrogen and CO OxidationThe Extended Brewer Interactive Interionic Bonding Theory (EBIIBT has been developed to show the equivalence of interatomic and interionic bonding features, and for their mutual combinations, as well as its effect upon electrocatalytic properties for the hydrogen electrode reactions (HELR. The equivalence of interionic hypo-hyper-d-interelectronic interaction in both metallic and any other ionic state and its effect upon electrocatalytic properties for hydrogen electrode reactions (HELR has been proved and inferred. TG (Thermal Gravimetry analysis of TPR (Temperature Programmed Reduction of mixed hypc-hyper-d-electronic oxides of transition elements was broadly employed to prove the EBIIBT effect as reflected in dramatically decreased individual temperatures of their mutual reduction into intermetallic phases. The same interionic Brewer (and/or intermetallic bonding effect has been confirmed both by UPD of hyper-d-upon hypo-d-electronic substrates and vice versa, and by the shift of bonding peaks in XPS analysis.

  20. Design Of A Bi-Functional α-Fe2O3/Zn2SiO4:Mn2+ By Layer-By-Layer Assembly Method

    Directory of Open Access Journals (Sweden)

    Yu Ri

    2015-06-01

    Full Text Available This work describes the design of bi-functional α-Fe2O3/Zn2SiO4:Mn2+ using a two-step coating process. We propose a combination of pigments (α-Fe2O3 and phosphor (Zn2SiO4:Mn2+ glaze which is assembled using a layer-by-layer method. A silica-coated α-Fe2O3 pigment was obtained by a sol-gel method and a Zn2+ precursor was then added to the silica-coated α-Fe2O3 to create a ZnO layer. Finally, the Zn2SiO4:Mn2+ layer was prepared with the addition of Mn2+ ions to serve as a phosphor precursor in the multi-coated α-Fe2O3, followed by annealing at a temperature above 1000°C. Details of the phase structure, color and optical properties of the multi-functional α-Fe2O3/Zn2SiO4:Mn2+ were characterized by transmission electron microscopy and X-ray diffraction analyses.

  1. Extraction mechanism of cerium(IV) in H2SO4/H3PO4 system using bifunctional ionic liquid extractants

    Institute of Scientific and Technical Information of China (English)

    张丽; 陈继; 金为群; 邓岳锋; 田君; 张阳

    2013-01-01

    The extraction of Ce(IV) in H2SO4/H3PO4 system was investigated systematically using bifunctional ionic liquid extrac-tants (Bif-ILES) [A336][P507], [A336][P204] and [A336][C272] in n-heptane. The effects of H2SO4 concentration, extractant con-centration and salting-out agent concentration were observed in detail. The extraction mechanism of Ce(IV) in H2SO4/H3PO4 system was obtained. The comparison with other extractants such as Cyanex923, TBP was also studied. Thermodynamic functions of the ex-traction reaction were calculated, showing that the extraction was an exothermic process. The separation of Ce(IV) from RE(III) and Th(IV) was also investigated. The result indicated that Ce(IV) could be selectively extracted in this system. CePO4 nanoparticles were obtained in the process of stripping using H2O2 in H2SO4/H3PO4 system. X-ray diffraction (XRD), scanning electron microscopy (SEM) and spectroscopy were adopted for the characterization of the sample.

  2. A facile method for the preparation of bifunctional Mn:ZnS/ZnS/Fe3O4 magnetic and fluorescent nanocrystals

    Directory of Open Access Journals (Sweden)

    Houcine Labiadh

    2015-08-01

    Full Text Available Bifunctional magnetic and fluorescent core/shell/shell Mn:ZnS/ZnS/Fe3O4 nanocrystals were synthesized in a basic aqueous solution using 3-mercaptopropionic acid (MPA as a capping ligand. The structural and optical properties of the heterostructures were characterized by X-ray diffraction (XRD, dynamic light scattering (DLS, transmission electron microscopy (TEM, UV–vis spectroscopy and photoluminescence (PL spectroscopy. The PL spectra of Mn:ZnS/ZnS/Fe3O4 quantum dots (QDs showed marked visible emission around 584 nm related to the 4T1 → 6A1 Mn2+ transition. The PL quantum yield (QY and the remnant magnetization can be regulated by varying the thickness of the magnetic shell. The results showed that an increase in the thickness of the Fe3O4 magnetite layer around the Mn:ZnS/ZnS core reduced the PL QY but improved the magnetic properties of the composites. Nevertheless, a good compromise was achieved in order to maintain the dual modality of the nanocrystals, which may be promising candidates for various biological applications.

  3. A bifunctional α-amylase/trypsin inhibitor from pigeonpea seeds: Purification, biochemical characterization and its bio-efficacy against Helicoverpa armigera.

    Science.gov (United States)

    Gadge, Prafull P; Wagh, Sandip K; Shaikh, Faiyaz K; Tak, Rajesh D; Padul, Manohar V; Kachole, Manvendra S

    2015-11-01

    This paper evaluates α-amylase inhibitor (α-AI) mediated defense of pigeonpea against Helicoverpa armigera. A bifunctional α-amylase/trypsin inhibitor was purified from the seeds of pigeonpea by native liquid phase isoelectric focusing (N-LP-IEF), affinity chromatography and preparative electrophoresis. Its in-vivo and in-vitro interaction with midgut amylases of H. armigera was studied along with growth inhibitory activity. One and two dimensional (2D) zymographic analyses revealed that the purified inhibitor is dimeric glycoprotein (60.2kDa and 56kDa) exist in a multi-isomeric form with five pI variants (pI 5.5 to 6.3). It was found to be heat labile with complete inactivation up to 80°C and stable over a wide range of pH (4-11). The slow binding and competitive type of α-amylase inhibition was observed with 0.08μM of dissociation constant (Ki) for the enzyme-inhibitor complex (EI). The internal protein sequence of two subunits obtained by mass spectrometry matched with cereal-type α-AI, a conserved domain from AAI_LTSS superfamily and sialyltransferase-like protein respectively. In-vivo studies indicated up-regulation of total midgut α-amylase activity with negative effect on growth rate of H. armigera suggesting its suitability for pest control.

  4. Dimethyl ether synthesis from CO2 hydrogenation on La-modified CuO-ZnO-Al2O3/HZSM-5 bifunctional catalysts

    Institute of Scientific and Technical Information of China (English)

    GAO Wengui; WANG Hua; WANG Yuhao; GUO Wei; JIA Miaoyao

    2013-01-01

    A series of CuO-ZnO-A12O3-La2Oy/HZSM-5 bifunctional catalysts with various La loadings for dimethyl ether (DME) directly synthesized from CO2 hydrogenation were prepared.The catalysts were characterized with N2 adsorption-desorption,X-ray diffraction (XRD),H2 temperature-programmed reduction (H2-TPR),NH3 temperature-programmed desorption (NH3-TPD) and N2O titration techniques,and tested for the synthesis of DME directly from CO2 hydrogenation in a fixed-bed reactor.The results showed that the reducibility,dispersion ofbifunctional catalysts were strongly dependent on the addition of La.With the addition of appropriate amount of La,the crystallite size of CuO was decreased and the dispersion of Cu on the surface was enhanced,which resulted in the increased conversion of CO2.It was also found that the selectivity to DME was related to the intensity and amount of strong acid site on the catalyst surface.The presence of La favored the production of DME,and the optimum catalytic activity was obtained when the amount of La was 2.0 wt.%.

  5. Electrocatalytic performances of g-C3N4-LaNiO3 composite as bi-functional catalysts for lithium-oxygen batteries

    Science.gov (United States)

    Wu, Yixin; Wang, Taohuan; Zhang, Yidie; Xin, Sen; He, Xiaojun; Zhang, Dawei; Shui, Jianglan

    2016-04-01

    A low cost and non-precious metal composite material g-C3N4-LaNiO3 (CNL) was synthesized as a bifunctional electrocatalyst for the air electrode of lithium-oxygen (Li-O2) batteries. The composition strategy changed the electron structure of LaNiO3 and g-C3N4, ensures high Ni3+/Ni2+ ratio and more absorbed hydroxyl on the surface of CNL that can promote the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The composite catalyst presents higher activities than the individual components g-C3N4 and LaNiO3 for both ORR and OER. In non-aqueous Li-O2 batteries, CNL shows higher capacity, lower overpotentials and better cycling stability than XC-72 carbon and LaNiO3 catalysts. Our results suggest that CNL composite is a promising cathode catalyst for Li-O2 batteries.

  6. The urchin-like sphere arrays Co3O4 as a bifunctional catalyst for hydrogen evolution reaction and oxygen evolution reaction

    Science.gov (United States)

    Li, Ruchun; Zhou, Dan; Luo, Jiaxian; Xu, Weiming; Li, Jingwei; Li, Shuoshuo; Cheng, Pengpeng; Yuan, Dingsheng

    2017-02-01

    Electrochemical water splitting has attracted great interest because of the growing demand for sustainable energy and increasing concerns for the environment. We present a facile strategy to design the three-dimensional (3D) urchin-like sphere arrays Co3O4 as an effective bifunctional catalyst for electrochemical water splitting. The 3D urchin-like Co3O4 was directly grown on Ni foam by a hydrothermal reaction and annealing treatment at a low temperature. This process offers several advantages including facile synthesis, binder-free, and low cost. The 3D urchin-like Co3O4 as a catalyst for hydrogen evolution reaction exhibits a low onset potential (-130 mV vs. RHE) and good cycling stability in an alkaline electrolyte. When urchin-like Co3O4 is used as a catalyst for oxygen evolution reaction, the onset potential is at 1.46 V (vs. RHE) with a low overpotential of only 230 mV. The good catalytic activity can be attributed to the unique urchin-like nanostructure, abundant mesopores, and low charge-transfer resistance (compared with Co3O4 NPs). In addition, H2 and O2 generation was performed using Co3O4 as both cathode and anode catalysts with a potential of 1.64 V to reach a current density of 10 mA cm-2.

  7. A Bifunctional Thioether Linked Coumarin Appended Calix[4]arene Acquires Selectivity Toward Cu(2+) Sensing on Going from Solution to SAM on Gold.

    Science.gov (United States)

    Samanta, Kushal; Rao, Chebrolu Pulla

    2016-02-10

    A bifunctional calix[4]arene molecule bearing coumarin moiety on the lower rim and thioether moiety on the upper rim (L1), has been synthesized and well characterized by (1)H, (13)C NMR and mass spectrometry. Suitably functionalized coumarin moieties are well suited for selective recognition of various cations and anions. Among the 10 different metal ions studied, only Cu(2+) and Fe(3+) exhibit appreciable changes in the absorption spectra owing to the availability of functional moieties present at both the lower as well as the upper rim of free L1 in acetonitrile solution. To bring better selectivity, we blocked one of these functional moieties by coating on to a surface so that only the other one is exposed to the environment for sensing. Such a study carried out in the present case using the self-assembled monolayer (SAM) of L1 on Au(111) resulted in selective sensing of Cu(2+) over several other metal ions as studied by surface plasmon resonance (SPR). The SAM of L1 on Au(111) was confirmed by different techniques, such as grazing incidence FT-IR, contact angle measurement, cyclic voltammetry and scanning tunneling microscopy. Thus, L1 is proven to be a suitable sensor for Cu(2+) when attached to gold surface.

  8. HpDTC1, a Stress-Inducible Bifunctional Diterpene Cyclase Involved in Momilactone Biosynthesis, Functions in Chemical Defence in the Moss Hypnum plumaeforme.

    Science.gov (United States)

    Okada, Kazunori; Kawaide, Hiroshi; Miyamoto, Koji; Miyazaki, Sho; Kainuma, Ryosuke; Kimura, Honoka; Fujiwara, Kaoru; Natsume, Masahiro; Nojiri, Hideaki; Nakajima, Masatoshi; Yamane, Hisakazu; Hatano, Yuki; Nozaki, Hiroshi; Hayashi, Ken-Ichiro

    2016-05-03

    Momilactones, which are diterpenoid phytoalexins with antimicrobial and allelopathic functions, have been found only in rice and the moss Hypnum plumaeforme. Although these two evolutionarily distinct plant species are thought to produce momilactones as a chemical defence, the momilactone biosynthetic pathway in H. plumaeforme has been unclear. Here, we identified a gene encoding syn-pimara-7,15-diene synthase (HpDTC1) responsible for the first step of momilactone biosynthesis in the moss. HpDTC1 is a bifunctional diterpene cyclase that catalyses a two-step cyclization reaction of geranylgeranyl diphosphate to syn-pimara-7,15-diene. HpDTC1 transcription was up-regulated in response to abiotic and biotic stress treatments. HpDTC1 promoter-GUS analysis in transgenic Physcomitrella patens showed similar transcriptional responses as H. plumaeforme to the stresses, suggesting that a common response system to stress exists in mosses. Jasmonic acid (JA), a potent signalling molecule for inducing plant defences, could not activate HpDTC1 expression. In contrast, 12-oxo-phytodienoic acid, an oxylipin precursor of JA in vascular plants, enhanced HpDTC1 expression and momilactone accumulation, implying that as-yet-unknown oxylipins could regulate momilactone biosynthesis in H. plumaeforme. These results demonstrate the existence of an evolutionarily conserved chemical defence system utilizing momilactones and suggest the molecular basis of the regulation for inductive production of momilactones in H. plumaeforme.

  9. Cellulose Nanocrystals/ZnO as a Bifunctional Reinforcing Nanocomposite for Poly(vinyl alcohol/Chitosan Blend Films: Fabrication, Characterization and Properties

    Directory of Open Access Journals (Sweden)

    Susan Azizi

    2014-06-01

    Full Text Available In this study, cellulose nanocrystals/zinc oxide (CNCs/ZnO nanocomposites were dispersed as bifunctional nano-sized fillers into poly(vinyl alcohol (PVA and chitosan (Cs blend by a solvent casting method to prepare PVA/Cs/CNCs/ZnO bio-nanocomposites films. The morphology, thermal, mechanical and UV-vis absorption properties, as well antimicrobial effects of the bio-nanocomposite films were investigated. It demonstrated that CNCs/ZnO were compatible with PVA/Cs and dispersed homogeneously in the polymer blend matrix. CNCs/ZnO improved tensile strength and modulus of PVA/Cs significantly. Tensile strength and modulus of bio-nanocomposite films increased from 55.0 to 153.2 MPa and from 395 to 932 MPa, respectively with increasing nano-sized filler amount from 0 to 5.0 wt %. The thermal stability of PVA/Cs was also enhanced at 1.0 wt % CNCs/ZnO loading. UV light can be efficiently absorbed by incorporating ZnO nanoparticles into a PVA/Cs matrix, signifying that these bio-nanocomposite films show good UV-shielding effects. Moreover, the biocomposites films showed antibacterial activity toward the bacterial species Salmonella choleraesuis and Staphylococcus aureus. The improved physical properties obtained by incorporating CNCs/ZnO can be useful in variety uses.

  10. Quaternary organization in a bifunctional prokaryotic FAD synthetase: Involvement of an arginine at its adenylyltransferase module on the riboflavin kinase activity.

    Science.gov (United States)

    Serrano, Ana; Sebastián, María; Arilla-Luna, Sonia; Baquedano, Silvia; Pallarés, María Carmen; Lostao, Anabel; Herguedas, Beatriz; Velázquez-Campoy, Adrián; Martínez-Júlvez, Marta; Medina, Milagros

    2015-08-01

    Prokaryotic FAD synthetases (FADSs) are bifunctional enzymes composed of two modules, the C-terminal module with ATP:riboflavin kinase (RFK) activity, and the N-terminus with ATP:FMN adenylyltransferase (FMNAT) activity. The FADS from Corynebacterium ammoniagenes, CaFADS, forms transient oligomers during catalysis. These oligomers are stabilized by several interactions between the RFK and FMNAT sites from neighboring protomers, which otherwise are separated in the monomeric enzyme. Among these inter-protomer interactions, the salt bridge between E268 at the RFK site and R66 at the FMNAT-module is particularly relevant, as E268 is the catalytic base of the kinase reaction. Here we have introduced point mutations at R66 to analyze the impact of the salt-bridge on ligand binding and catalysis. Interestingly, these mutations have only mild effects on ligand binding and kinetic properties of the FMNAT-module (where R66 is located), but considerably impair the RFK activity turnover. Substitutions of R66 also modulate the ratio between monomeric and oligomeric species and modify the quaternary arrangement observed by single-molecule methods. Therefore, our data further support the cross-talk between the RFK- and FMNAT-modules of neighboring protomers in the CaFADS enzyme, and establish the participation of R66 in the modulation of the geometry of the RFK active site during catalysis.

  11. Role of key residues at the flavin mononucleotide (FMN):adenylyltransferase catalytic site of the bifunctional riboflavin kinase/flavin adenine dinucleotide (FAD) Synthetase from Corynebacterium ammoniagenes.

    Science.gov (United States)

    Serrano, Ana; Frago, Susana; Velázquez-Campoy, Adrián; Medina, Milagros

    2012-11-08

    In mammals and in yeast the conversion of Riboflavin (RF) into flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) is catalysed by the sequential action of two enzymes: an ATP:riboflavin kinase (RFK) and an ATP:FMN adenylyltransferase (FMNAT). However, most prokaryotes depend on a single bifunctional enzyme, FAD synthetase (FADS), which folds into two modules: the C-terminal associated with RFK activity and the N-terminal associated with FMNAT activity. Sequence and structural analysis suggest that the 28-HxGH-31, 123-Gx(D/N)-125 and 161-xxSSTxxR-168 motifs from FADS must be involved in ATP stabilisation for the adenylylation of FMN, as well as in FAD stabilisation for FAD phyrophosphorolysis. Mutants were produced at these motifs in the Corynebacterium ammoniagenes FADS (CaFADS). Their effects on the kinetic parameters of CaFADS activities (RFK, FMNAT and FAD pyrophosphorilase), and on substrates and product binding properties indicate that H28, H31, N125 and S164 contribute to the geometry of the catalytically competent complexes at the FMNAT-module of CaFADS.

  12. sCD4-17b bifunctional protein: Extremely broad and potent neutralization of HIV-1 Env pseudotyped viruses from genetically diverse primary isolates

    Directory of Open Access Journals (Sweden)

    Dey Barna

    2010-02-01

    Full Text Available Abstract Background We previously described a potent recombinant HIV-1 neutralizing protein, sCD4-17b, composed of soluble CD4 attached via a flexible polypeptide linker to an SCFv of the 17b human monoclonal antibody directed against the highly conserved CD4-induced bridging sheet of gp120 involved in coreceptor binding. The sCD4 moiety of the bifunctional protein binds to gp120 on free virions, thereby enabling the 17b SCFv moiety to bind and block the gp120/coreceptor interaction required for entry. The previous studies using the MAGI-CCR5 assay system indicated that sCD4-17b (in concentrated cell culture medium, or partially purified potently neutralized several genetically diverse HIIV-1 primary isolates; however, at the concentrations tested it was ineffective against several other strains despite the conservation of binding sites for both CD4 and 17b. To address this puzzle, we designed variants of sCD4-17b with different linker lengths, and tested the neutralizing activities of the immunoaffinity purified proteins over a broader concentration range against a large number of genetically diverse HIV-1 primary isolates, using the TZM-bl Env pseudotype assay system. We also examined the sCD4-17b sensitivities of isogenic viruses generated from different producer cell types. Results We observed that immunoaffinity purified sCD4-17b effectively neutralized HIV-1 pseudotypes, including those from HIV-1 isolates previously found to be relatively insensitive in the MAGI-CCR5 assay. The potencies were equivalent for the original construct and a variant with a longer linker, as observed with both pseudotype particles and infectious virions; by contrast, a construct with a linker too short to enable simultaneous binding of the sCD4 and 17b SCFv moieties was much less effective. sCD4-17b displayed potent neutralizing activity against 100% of nearly 4 dozen HIV-1 primary isolates from diverse genetic subtypes (clades A, B, C, D, F, and circulating

  13. Nitrogen-doped aligned carbon nanotube/graphene sandwiches: facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries.

    Science.gov (United States)

    Tang, Cheng; Zhang, Qiang; Zhao, Meng-Qiang; Huang, Jia-Qi; Cheng, Xin-Bing; Tian, Gui-Li; Peng, Hong-Jie; Wei, Fei

    2014-09-17

    Nitrogen-doped aligned CNT/graphene sandwiches are rationally designed and in-situ fabricated by a facile catalytic growth on bifunctional natural catalysts that exhibit high-rate performances as scaffolds for lithium-sulfur batteries, with a high initial capacity of 1152 mA h g(-1) at 1.0 C. A remarkable capacity of 770 mA h g(-1) can be achieved at 5.0 C. Such a design strategy for materials opens up new perspectives to novel advanced functional composites, especially interface-modified hierarchical nanocarbons for broad applications.

  14. Development of Guanidine-Bisurea Bifunctional Organocatalyst Bearing Chirality at the Inner and Outer Sides of the Urea Groups, and Application to Enantioselective α-Hydroxylation of Pyranoindolizine Intermediate for Camptothecin Synthesis

    Directory of Open Access Journals (Sweden)

    Minami Odagi

    2015-01-01

    Full Text Available Pyranoindolizine is a tricyclic structure found in various biologically active compounds, such as camptothecin (CPT and its derivatives. In the case of CPTs, the chirality at the α-position in the α-hydroxyl lactone moiety of pyranoindolizine is important for the antitumor activity. This paper deals with enantioselective oxidation of the α-position in pyranoindolizine lactone, which corresponds at C20 in CPT, with cumene hydroperoxide (CHP in the presence of newly synthesized guanidine-bisurea bifunctional organocatalysts bearing chirality on both the inner and outer sides of the urea groups.

  15. Bifunctional homodimeric triokinase/FMN cyclase: contribution of protein domains to the activities of the human enzyme and molecular dynamics simulation of domain movements.

    Science.gov (United States)

    Rodrigues, Joaquim Rui; Couto, Ana; Cabezas, Alicia; Pinto, Rosa María; Ribeiro, João Meireles; Canales, José; Costas, María Jesús; Cameselle, José Carlos

    2014-04-11

    Mammalian triokinase, which phosphorylates exogenous dihydroxyacetone and fructose-derived glyceraldehyde, is neither molecularly identified nor firmly associated to an encoding gene. Human FMN cyclase, which splits FAD and other ribonucleoside diphosphate-X compounds to ribonucleoside monophosphate and cyclic X-phosphodiester, is identical to a DAK-encoded dihydroxyacetone kinase. This bifunctional protein was identified as triokinase. It was modeled as a homodimer of two-domain (K and L) subunits. Active centers lie between K1 and L2 or K2 and L1: dihydroxyacetone binds K and ATP binds L in different subunits too distant (≈ 14 Å) for phosphoryl transfer. FAD docked to the ATP site with ribityl 4'-OH in a possible near-attack conformation for cyclase activity. Reciprocal inhibition between kinase and cyclase reactants confirmed substrate site locations. The differential roles of protein domains were supported by their individual expression: K was inactive, and L displayed cyclase but not kinase activity. The importance of domain mobility for the kinase activity of dimeric triokinase was highlighted by molecular dynamics simulations: ATP approached dihydroxyacetone at distances below 5 Å in near-attack conformation. Based upon structure, docking, and molecular dynamics simulations, relevant residues were mutated to alanine, and kcat and Km were assayed whenever kinase and/or cyclase activity was conserved. The results supported the roles of Thr(112) (hydrogen bonding of ATP adenine to K in the closed active center), His(221) (covalent anchoring of dihydroxyacetone to K), Asp(401) and Asp(403) (metal coordination to L), and Asp(556) (hydrogen bonding of ATP or FAD ribose to L domain). Interestingly, the His(221) point mutant acted specifically as a cyclase without kinase activity.

  16. Standardization of methodology to derivatization and radiolabeling of the anti-CD20 monoclonal antibody from bifunctional chelator DOTA-NHS-Ester

    Energy Technology Data Exchange (ETDEWEB)

    Massicano, Adriana V.F.; Akanji, Akinkunmi G.; Santos, Josefina S.; Pujatti, Priscilla B.; Couto, Renata M.; Massicano, Felipe; Araujo, Elaine Bortoleti de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], E-mail: adriana.avfernandes@gmail.com

    2009-07-01

    Lymphomas are cancers of the lymphatic system, being the most common the non-Hodgkin lymphoma (NHL). The Radioimmunotherapy (RIT), that increase the cytotoxic effect of monoclonal antibodies (mAb), therefore labeling these Mab with different radioisotopes. RIT combines the specificity of the antibody and the toxicity of the radionuclides. The mAb anti-CD20 is used for treatment of relapse or refractory NHL. The labeling of anti- CD20 with {sup 177}Lu, requires a bifunctional chelating agent that is designed to make a 'connect bridge' between the mAb and the radionuclide. The incorporation of the chelating group in mAb structure is called derivatization. The aim of this work is to study the derivatization of anti-CD20 antibody with DOTA-NHS-ester chelating group and labeling parameters to produce {sup 177}Lu-DOTA-Anti CD20. Five milligrams of anti-CD20 were purified by dialysis against phosphate buffer pH 8.0 and derivatized with DOTA-NHS-ester in 1:250, 1:500 and 1:1000 molar ratios. The reaction was conducted for 1 hour in gently mixing at room temperature and remained under refrigeration for 48 hours. The reaction mixture was purified in gel column Sephadex G-50 ; the aliquots that presented greater protein concentration, were mixed and concentrated. The purified antibody conjugated was added to 111-185MBq (3-5mCi) of {sup 177}LuCl3 diluted in 0.4 M acetate buffer pH 5.5. Radiochemical purity was less than 95% in all the molar ratios, indicating necessity of the purification after the labeling. The mAb derivatized showed stable when stored for to 1 month to 4 deg C and 4 days at -20 deg C. (author)

  17. 3D-modelling of bifunctional core-shell catalysts for the production of fuels from biomass-based synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Wenjin; Lee, Seung Cheol; Li, Hui; Pfeifer, Peter; Dittmeyer, Roland [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Inst. for Micro Process Engineering (IMVT)

    2013-09-01

    Until now, the main route for the production of DME from synthesis gas in industry is methanol synthesis on a metallic catalyst and subsequent dehydration of methanol on an acid catalyst (two-step process). A single-step process using bifunctional catalysts to perform the two steps simultaneously would be preferred e.g. due to thermodynamic considerations; but this is impeded by the higher volumetric heat release which may cause deactivation of the methanol synthesis catalyst function. Thus we propose to conduct the reaction in a microchannel reactor. However, in order to increase the productivity of the microchannel reactor and to lower the investment costs, we aim at a high selectivity and activity of the catalyst. The continuously removal of methanol by dehydration on an acidic ZSM-5 catalyst as shell improves the thermodynamic conditions of methanol synthesis in the CuO/ZnO/Al{sub 2}O{sub 3} core; thus, the synthesis gas conversion can be higher than that determined by the thermodynamics of pure methanol synthesis. The molecular sieving in the zeolite layer can further lead to higher selectivity of DME at milder reaction conditions. However, mass transport limitation of the synthesis gas to the catalyst core should not hinder the reaction, and therefore a more detailed investigation is required. In order to computer-aided optimize the catalyst structure and the operating conditions for core-shell catalysts, a simulation model should be developed to study the coupled reaction and transport processes in core-shell catalysts. In this simulation model the complicated interaction of diffusion and reaction in the zeolite layer (shell) must be detailed by a network model to describe its structure and the mechanisms effectively. In addition, suitable diffusion and kinetic models are required to describe the mass transport and reactions in the layer. Suitable networks, diffusion and kinetic models are discussed for 3D simulations in this contribution. (orig.)

  18. Symmetrically tetrasubstituted [2.2]paracyclophanes: their systematization and regioselective synthesis of several types of bis-bifunctional derivatives by double electrophilic substitution.

    Science.gov (United States)

    Vorontsova, Natalia V; Rozenberg, Valeria I; Sergeeva, Elena V; Vorontsov, Evgenii V; Starikova, Zoya A; Lyssenko, Konstantin A; Hopf, Henning

    2008-01-01

    The possible number of chiral and achiral tetrasubstituted [2.2]paracyclophanes possessing different types of symmetry (C(2), C(i), C(s), C(2v), C(2h)) is evaluated and a unified independent trivial naming descriptor system is introduced. The reactivity and regioselectivity of the electrophilic substitution of the chiral pseudo-meta- and achiral pseudo-para-disubstituted [2.2]paracyclophanes are investigated in an approach suggested to be general for the synthesis of bis-bifunctional [2.2]paracyclophanes. The mono- and diacylation of chiral pseudo-meta-dihydroxy[2.2]paracyclophane 14 with acetylchloride occur ortho-regioselectively to produce tri- 22, 23 and symmetrically 21 tetrasubstituted acyl derivatives. The same reaction with benzoylchloride is neither regio-, nor chemoselective, and gives rise to a mixture of ortho-/para-, mono-/diacylated compounds 27-31. The double acylation of pseudo-meta-dimethoxy[2.2]paracyclophane 18 is completely para-regioselective. Electrophilic substitution of pseudo-meta-bis(methoxycarbonyl)[2.2]paracyclophane 20 regioselectively generates the pseudo-gem-substitution pattern. Formylation of this substrate produces the monocarbonyl derivatives 35 only, whereas the Fe-catalyzed bromination may be directed towards mono- 36 or disubstitution 37 products chemoselectively by varying the reactions conditions. The diacylation and dibromination reactions of the respective achiral diphenol 12 and bis(methoxycarbonyl) 40 derivatives of the pseudo-para-structure retain regioselectivities which are characteristic for their pseudo-meta-regioisomers. Imino ligands 26, 25, and 39, which were obtained from monoacyl- 22 and diacyldihydroxy[2.2]paracyclophanes 21, 38, are tested as chiral ligands in stereoselective Et(2)Zn addition to benzaldehyde producing 1-phenylpropanol with ee values up to 76 %.

  19. Bi-functional Au/FeS (Au/Co{sub 3}O{sub 4}) composite for in situ SERS monitoring and degradation of organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Shuzhen; Cai, Qian; Lu, Kailing; Liao, Fan, E-mail: fliao@suda.edu.cn; Shao, Mingwang, E-mail: mwshao@suda.edu.cn [Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University (China)

    2016-01-15

    The bi-functional Au/FeS (Au/Co{sub 3}O{sub 4}) composite was fabricated by in situ reducing Au nanoparticles onto the surface of FeS (Co{sub 3}O{sub 4}). The as-prepared FeS possessed a multi-structure composed of plenty of nanoplates, which were coated by Au nanoparticles with an average size of ∼47.5 nm. While the Co{sub 3}O{sub 4} showed a thin hexagonal sheet containing Au nanoparticles on its surface with an average size of ∼79.0 nm. Both the as-prepared Au/FeS and Au/Co{sub 3}O{sub 4} composites exhibited excellent SERS performance, capable of enhancing the Raman signals of R6G molecules with the enhancement factor up to 1.81 × 10{sup 6} and 7.60 × 10{sup 4}, respectively. Moreover, Au/FeS (Au/Co{sub 3}O{sub 4}) composite also has been verified to have intrinsic peroxidase-like activity, which could decompose H{sub 2}O{sub 2} into hydroxyl radicals and then degrade organic pollutants into small molecules. Therefore, SERS can be used to real-time and in situ monitoring the degradation process of R6G molecules, employing the Au/FeS (Au/Co{sub 3}O{sub 4}) composite both as SERS substrate and catalyst. Graphical abstract: SERS was used to real-time and in situ monitoring the degradation of R6G, employing the Au/FeS and Au/Co{sub 3}O{sub 4} composites both as SERS substrates and catalysts.

  20. Paclitaxel conjugated Fe3O4@LaF3:Ce3+,Tb3+ nanoparticles as bifunctional targeting carriers for Cancer theranostics application

    Science.gov (United States)

    Mangaiyarkarasi, Rajendiran; Chinnathambi, Shanmugavel; Karthikeyan, Subramani; Aruna, Prakasarao; Ganesan, Singaravelu

    2016-02-01

    The bi-functional Chitosan functionalized magnetite doped luminescent rare earth nanoparticles (Fe3O4@LaF3: Ce3+,Tb3+/chi NPs) as a carrier of paclitaxel (PTX) drug was designed using a co-precipitation and facile direct precipitation method. The synthesized nanoparticles are spherical in shape with a typical diameter of 19-37 nm respectively. They are water soluble, super paramagnetic and biocompatible, in which the amino groups on the nanoparticles surface are used for the conjugation with an anticancer drug, paclitaxel. The nature of PTX binding with Fe3O4@LaF3: Ce3+,Tb3+/chi nanoparticles were studied using X-ray diffraction, vibrating sample magnetometer and scanning electron micrograph. The nature of interactions between PTX and Fe3O4@LaF3: Ce3+,Tb3+/chi NPs due to complex formation were conceded out by various spectroscopic methods viz., UV-visible, steady state and excited state fluorescence spectroscopy. The photo-physical characterization reveals that the adsorption and release of PTX from Fe3O4@LaF3:Tb3+/chi nanoparticles is quicker when compared with other nanoparticles and also confirms that this may be due to the hydrogen bond formation between the hydroxyl group of drug and amino group of nanoparticles respectively. The maximum loading capacity and entrapment efficiency of 83.69% and 80.51% were attained at a ratio of 5:8 of PTX and Fe3O4@LaF3: Ce3+,Tb3+/chi NPs respectively. In addition with that, antitumoral activity study of PTX conjugated Fe3O4@LaF3:Tb3+/chi nanoparticles exhibits increased cytotoxic effects on A549 lung cancer cell lines than that of unconjugated PTX.

  1. Determination of the three-dimensional structure of the bifunctional alpha-amylase/trypsin inhibitor from ragi seeds by NMR spectroscopy.

    Science.gov (United States)

    Strobl, S; Mühlhahn, P; Bernstein, R; Wiltscheck, R; Maskos, K; Wunderlich, M; Huber, R; Glockshuber, R; Holak, T A

    1995-07-04

    The three-dimensional structure of the bifunctional alpha-amylase/trypsin inhibitor (RBI) from seeds of ragi (Eleusine coracana Gaertneri) has been determined in solution using multidimensional 1H and 15N NMR spectroscopy. The inhibitor consists of 122 amino acids, with 5 disulfide bridges, and belongs to the plant alpha-amylase/trypsin inhibitor family for which no three-dimensional structures have yet been available. The structure of the inhibitor was determined on the basis of 1131 interresidue interproton distance constraints derived from nuclear Overhauser enhancement measurements and 52 phi angles, supplemented by 9 psi and 51 chi 1 angles. RBI consists of a globular four-helix motif with a simple "up-and-down" topology. The helices are between residues 18-29, 37-51, 58-65, and 87-94. A fragment from Val 67 to Ser 69 and Gln 73 to Glu 75 forms an antiparallel beta-sheet. The fold of RBI represents a new motif among the serine proteinase inhibitors. The trypsin binding loop of RBI adopts the "canonical", substrate-like conformation which is highly conserved among serine proteinase inhibitors. The binding loop is stabilized by the two adjacent alpha-helices 1 and 2. This motif is also novel and not found in known structures of serine proteinase inhibitors. The three-dimensional structure of RBI together with biochemical data suggests the location of the alpha-amylase binding site on the face of the molecule opposite to the site of the trypsin binding loop. The RBI fold should be general for all members of the RBI family because conserved residues among the members of the family from the core of the structure.

  2. Bifunctional heterogeneous catalysis of silica-alumina-supported tertiary amines with controlled acid-base interactions for efficient 1,4-addition reactions.

    Science.gov (United States)

    Motokura, Ken; Tanaka, Satoka; Tada, Mizuki; Iwasawa, Yasuhiro

    2009-10-19

    We report the first tunable bifunctional surface of silica-alumina-supported tertiary amines (SA-NEt(2)) active for catalytic 1,4-addition reactions of nitroalkanes and thiols to electron-deficient alkenes. The 1,4-addition reaction of nitroalkanes to electron-deficient alkenes is one of the most useful carbon-carbon bond-forming reactions and applicable toward a wide range of organic syntheses. The reaction between nitroethane and methyl vinyl ketone scarcely proceeded with either SA or homogeneous amines, and a mixture of SA and amines showed very low catalytic activity. In addition, undesirable side reactions occurred in the case of a strong base like sodium ethoxide employed as a catalytic reagent. Only the present SA-supported amine (SA-NEt(2)) catalyst enabled selective formation of a double-alkylated product without promotions of side reactions such as an intramolecular cyclization reaction. The heterogeneous SA-NEt(2) catalyst was easily recovered from the reaction mixture by simple filtration and reusable with retention of its catalytic activity and selectivity. Furthermore, the SA-NEt(2) catalyst system was applicable to the addition reaction of other nitroalkanes and thiols to various electron-deficient alkenes. The solid-state magic-angle spinning (MAS) NMR spectroscopic analyses, including variable-contact-time (13)C cross-polarization (CP)/MAS NMR spectroscopy, revealed that acid-base interactions between surface acid sites and immobilized amines can be controlled by pretreatment of SA at different temperatures. The catalytic activities for these addition reactions were strongly affected by the surface acid-base interactions.

  3. Electrochemical characterization of IrO{sub 2}-Pt and RuO{sub 2}-Pt mixtures as bifunctional electrodes for unitized regenerative fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Escalante-Garcia, I.L.; Duron-Torres, S.M. [Univ. Autonoma de Zacatecas, Zacatecas (Mexico). Unidad Academica de Ciencias Quimicas; Cruz, J.C.; Arriaga-Hurtado, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Pedro Escobedo (Mexico)

    2010-07-15

    A unitized regenerative fuel cell (URFC) is a single electrochemical cell that has the potential to meet the required features of an idealized energy cycle whereby hydrogen can be produced from renewable energy sources. A URFC is a system which can operate as a polymer electrolyte water electrolyzer (PEMWE) or as a polymer electrolyte fuel cell (PEMFC). In the PEMWE mode, water is converted into hydrogen and oxygen by using electricity from solar or wind energy. In the PEMFC mode, the stored hydrogen and oxygen are supplied to generate electricity and water. Combining PEMWEs and PEMFCs remains a great challenge because several practical and structural features must be considered. The limiting reaction steps at the oxygen electrode for PEMFC or PEMWE are the oxygen reduction reaction (ORR) and the water oxidation reaction (OER), respectively. The high-efficiency therefore depends on the type of electrocatalysts and the capability of the oxygen electrode to operate under PEMFC or PEMWE conditions. As such, much research has gone into the development of a new oxygen electrode design for URFCs. Several bifunctional electrodes for OER and ORR were designed in this study using platinum (Pt) and iridium oxide (IrO{sub 2}) electrocatalysts or Pt and ruthenium oxide (RuO{sub 2}) supported electrocatalysts on Ebonex{sup R}. According to electrochemical characterization by CV, LV and EIS in aqueous 0.5 M H{sub 2}SO{sub 4}, IrO{sub 2}-Pt and RuO{sub 2}-Pt supported on Ebonex have high electrocatalytic properties for ORR and OER, indicating potential use in URFCs. IrO{sub 2} based electrodes were more stable than RuO{sub 2} based electrodes. 31 refs., 2 tabs., 6 figs.

  4. Tailoring bifunctional hybrid organic–inorganic nanoadsorbents by the choice of functional layer composition probed by adsorption of Cu2+ ions

    Science.gov (United States)

    Tomina, Veronika V; Melnyk, Inna V; Zub, Yuriy L; Kareiva, Aivaras; Vaclavikova, Miroslava; Kessler, Vadim G

    2017-01-01

    Spherical silica particles with bifunctional (≡Si(CH2)3NH2/≡SiCH3, ≡Si(CH2)3NH2/≡Si(CH2)2(CF2)5CF3) surface layers were produced by a one-step approach using a modified Stöber method in three-component alkoxysilane systems, resulting in greatly increased contents of functional components. The content of functional groups and thermal stability of the surface layers were analyzed by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, and 13C and 29Si solid-state NMR spectroscopy revealing their composition and organization. The fine chemical structure of the surface in the produced hybrid adsorbent particles and the ligand distribution were further investigated by electron paramagnetic resonance (EPR) and electron spectroscopy of diffuse reflectance (ESDR) spectroscopy using Cu2+ ion coordination as a probe. The composition and structure of the emerging surface complexes were determined and used to provide an insight into the molecular structure of the surfaces. It was demonstrated that the introduction of short hydrophobic (methyl) groups improves the kinetic characteristics of the samples during the sorption of copper(II) ions and promotes fixation of aminopropyl groups on the surface of silica microspheres. The introduction of long hydrophobic (perfluoroctyl) groups changes the nature of the surface, where they are arranged in alternately hydrophobic/hydrophilic patches. This makes the aminopropyl groups huddled and less active in the sorption of metal cations. The size and aggregation/morphology of obtained particles was optimized controlling the synthesis conditions, such as concentrations of reactants, basicity of the medium, and the process temperature. PMID:28243572

  5. Preparation of acid-base bifunctional mesoporous KIT-6 (KIT: Korea Advanced Institute of Science and Technology) and its catalytic performance in Knoevenagel reaction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ling [College of Chemistry and Chemical Engineering, Inner Mongolia University for Nationalities, Tongliao 028000 (China); Wang, Chunhua [Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, Changchun 130023 (China); Guan, Jingqi, E-mail: guanjq@jlu.edu.cn [Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, Changchun 130023 (China)

    2014-05-01

    Acid-base bifunctional mesoporous catalysts Al-KIT-6-NH{sub 2} containing different aluminum content have been synthesized through post synthetic grafting method. The materials were characterized by X-ray diffraction (XRD), scanning electron micrographs (SEM), transmission electron micrographs (TEM), Fourier-transform infrared spectroscopy (FTIR), IR spectra of pyridine adsorption, NH{sub 3}-TPD and TG analysis. The characterization results indicated that the pore structure of KIT-6 was well kept after the addition of aluminum and grafting of aminopropyl groups. The acid amount of Al-KIT-6 increased with enhancing aluminum content. Catalytic results showed that weak acid and weak base favor the Knoevenagel reaction, while catalysts with strong acid and weak base exhibited worse catalytic behavior. - Graphical abstract: The postulated steps of mechanism for the acid-base catalyzed process are as follows: (1) the aldehyde gets activated by the surface acidic sites which allow the amine undergoes nucleophilic to attack the carbonyl carbon of benzaldehyde. (2) Water is released in the formation of imine intermediate. (3) The ethyl cyanoacetate reacts with the intermediate. (4) The benzylidene ethyl cyanoacetate is formed and the amine is regenerated. - Highlights: • KIT-6 and Al-KIT-6-NH{sub 2} with different Si/Al ratios has been successfully prepared. • 79.4% Yield was obtained over 46-Al-KIT-6-NH{sub 2} within 20 min in Knoevenagel reaction. • Low Al-content Al-KIT-6-NH{sub 2} shows better catalytic stability than high Al-content catalysts. • There is acid-base synergistic effect in Knoevenagel reaction.

  6. A Novel Application of Synthetic Biology and Directed Evolution to Engineer Phage-based Antibiotics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Meiye [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-09-01

    The emergence of multiple drug resistant bacteria poses threats to human health, agriculture and food safety. Annually over 100,000 deaths and up to $20 billion loss to the U.S. economy are attributed to multiple drug resistant bacteria. With only four new chemical antibiotics in the drug development pipeline, we are in dire need of new solutions to address the emerging threat of multiple drug resistance. We propose a paradigm-changing approach to address the multi-drug resistant bacteria problem by utilizing Synthetic Biology (SynBio) methodologies to create and evolve “designer” bacteriophages or phages – viruses that specifically infect bacteria – to infect and kill newly emerging pathogenic bacterial strains WITHOUT the need for chemical antibiotics. A major advantage of using phage to combat pathogenic bacteria is that phages can co-evolve with their bacterial host, and Sandia can be the first in the world to establish an industrial scale Synthetic Biology pipeline for phage directed evolution for safe, targeted, customizable solution to bacterial drug resistance. Since there is no existing phage directed evolution effort within or outside of Sandia, this proposal is suitable as a high-risk LDRD effort to create the first pipeline for such an endeavor. The high potential reward nature of this proposal will be the immediate impact in decontamination and restoration of surfaces and infrastructure, with longer term impact in human or animal therapeutics. The synthetic biology and screening approaches will lead to fundamental knowledge of phage/bacteria co-evolution, making Sandia a world leader in directed evolution of bacteriophages.

  7. Development of SERS substrate using phage-based magnetic template for triplex assay in sepsis diagnosis.

    Science.gov (United States)

    Nguyen, Anh H; Shin, Yesol; Sim, Sang Jun

    2016-11-15

    Development of a new substrate for surface-enhanced Raman scattering (SERS) is one area of interest for the improvement of SERS performance. Herein, we introduce a new method for developing new mesoporous SERS substrates using M13 phages that display cysteine-rich peptides on the pVIII major units, which is an alternative for thiol donor using chemical modifications. Together with the SERS substrate development, and the use of the SERS technique for sepsis diagnostics is a new approach in clinical settings. The substrates were characterized and magnetized with magnetic immuno colloids made of gold-coated magnetic nanoparticles and specific antibodies. Conventionally, the SERS-tags are prepared by using gold nanoparticles and are modified with Raman dyes to immobilize specific antibodies to capture the biomarkers in the serum samples. However, in this method the SERS-tags are bound to the mesoporous substrate via antibody/antigen interactions to form clusters or layer-by-layer assemblies of SERS-tags for Raman signal enhancement. The SERS spectra showed distinct peaks for tags corresponding to three typical sepsis-specific biomarkers for diagnostics with the limit of detection values of 27 pM, 103 pM, and 78 pM for C-reactive protein (CRP), procalcitonin (PCT), and soluble triggering receptor expressed on myeloid cells-1 (sTREM-1), respectively. With such an approach, SERS can be used for clinical purposes and can be improved by phage display modification rather than chemical alternatives.

  8. Indirect Detection Of Bacillus Anthracis (Anthrax) Using Amplified Gamma Phage-Based Assays

    Science.gov (United States)

    2007-11-01

    Figure 3.3 Pasteur Institute TEM of Bacillus surface 31 Bacillus anthracis is taxonomically aligned with B. cereus , B. thuringiensis and B...None of the DNA from bacteria (B. anthracis, B. cereus , Staphylococcus aureus, Pseudomonas aeroginosa, and Neisseria gonorrhea), yeast, blood , or...49-54. 59. Ryzhov, V., Y. Hathout, and C. Fenselau, Rapid Characterization of Spores of Bacillus Cereus Group Bacteria by Matrix-assisted Laser

  9. Phage based green chemistry for gold ion reduction and gold retrieval.

    Science.gov (United States)

    Setyawati, Magdiel I; Xie, Jianping; Leong, David T

    2014-01-22

    The gold mining industry has taken its toll on the environment, triggering the development of more environmentally benign processes to alleviate the waste load release. Here, we demonstrate the use of bacteriophages (phages) for biosorption and bioreduction of gold ions from aqueous solution, which potentially can be applied to remediate gold ions from gold mining waste effluent. Phage has shown a remarkably efficient sorption of gold ions with a maximum gold adsorption capacity of 571 mg gold/g dry weight phage. The product of this phage mediated process is gold nanocrystals with the size of 30-630 nm. Biosorption and bioreduction processes are mediated by the ionic and covalent interaction between gold ions and the reducing groups on the phage protein coat. The strategy offers a simple, ecofriendly and feasible option to recover of gold ions to form readily recoverable products of gold nanoparticles within 24 h.

  10. Phage-based magnetoelastic biosensor for the detection of Salmonella typhimurium

    Science.gov (United States)

    Li, Suiqiong; Lakshmanan, Ramji S.; Guntupalli, Rajesh; Huang, Shichu; Cheng, Z.-Y.; Petrenko, Valery A.; Barbaree, James M.; Vodyanoy, Vitaly; Chin, Bryan A.

    2009-05-01

    In this paper, we report a wireless magnetoelastic (ME) biosensor with phage as the bio-recognition probe for real time detection of Salmonella typhimurium. The ME biosensor was constructed by immobilizing filamentous phage that specifically binds with S. typhimurium onto the surface of a strip-shaped ME particle. The ME sensor oscillates with a characteristic resonance frequency when subjected to a time varying magnetic field. Binding between the phage and antigen (bacteria) causes a shift in the sensor's resonance frequency. Sensors with different dimensions were exposed to various known concentrations of S. typhimurium ranging from 5 x101 to 5 x 108 cfu/ml. The detection limit of the ME sensors was found to improve as the size of the sensor became smaller. The detection limit was found to improve from 161 Hz/decade (2mm length sensors) to 1150 Hz/decade (500 μm length sensors). The stability of the ME biosensor was investigated by storing the sensor at different temperatures (25, 45, and 65 °C), and then evaluating the binding activity of the stored biosensor after exposure to S. typhimurium solution (5 x 108 cfu/ml). The results showed that the phage-coated biosensor is robust. Even after storage in excess of 60 days at 65 °C, the phage-coated sensors have a greater binding affinity than the best antibody coated sensors stored for 1 day at 45 °C. The antibody coated sensors showed near zero binding affinity after 3 days of storage at 65 °C.

  11. Highly sensitive phage-based biosensor for the detection of beta-galactosidase.

    Science.gov (United States)

    Nanduri, Viswaprakash; Balasubramanian, Shankar; Sista, Srinivas; Vodyanoy, Vitaly J; Simonian, Aleksandr L

    2007-04-25

    Development of real-time sensor based on the target-specific probe that make possible sensitive, rapid and selective detection and monitoring of the particular antigen molecules could be of substantial importance to the many applications. Because of its high specificity to the target molecules, excellent temperature stability, and easy production, bacterial phage might serve as a powerful biorecognition probe in biosensor applications. Here, we report extremely sensitive and specific label-free direct detection of model antigen, beta-galactosidase (beta-gal), based on surface plasmon resonance (SPR) spectroscopy. The beta-gal specific landscape phage 1G40 has been immobilized on the gold surface of SPR SPREETA sensor chip through physical adsorption [V. Nanduri, A.M. Samoylova, V.Petrenko, V. Vodyanoy and A.L.Simonian, Comparison of optical and acoustic wave phage biosensors, 206th Meeting of The Electrochemical Society, Honolulu, Hawaii, October 3-8, (2004)]. Another non-specific to the beta-gal phage, a wild-type phage F8-5, was used in the reference channel. The concentration-dependent binding of beta-gal in both channels were assessed by monitoring the sensor optical response as a function of time under different experimental conditions, and the concentration of beta-gal was computed in differential mode. Concentrations of beta-gal between 10(-12) M and 10(-7) M could be readily detected, with linear part of calibration curve between 10(-9) M and 10(-6) M. When beta-gal was pre-incubated with different concentrations of free 1G40 phage prior to exposure to the biosensor, concentration-dependent inhibition was observed, indicating on biosensor high specificity toward beta-gal. Apart from a flow through mode used to deliver the samples to the surface for the SPR sensor, batch mode sensing was also employed to study the binding of beta-gal to immobilized phage on the SPR sensor surface. Experiments using a flow through mode provided more consistent results in the full dose range and showed higher sensitivity as opposed to the batch mode studies. The mean K(d) and binding valences for the flow through mode studies was 1.3+/-0.001 nM and 1.5+/-0.03, in comparison to 26+/-0.003 nM and 2.4+/-0.01 for the batch mode studies. The average thickness of phage 1G40 adlayer deposited through flow through and batch mode was 3+/-0.002 and 0.66+/-0.001 nm, respectively.

  12. Design of an effective bifunctional catalyst organotriphosphonic acid-functionalized ferric alginate (ATMP-FA) and optimization by Box-Behnken model for biodiesel esterification synthesis of oleic acid over ATMP-FA.

    Science.gov (United States)

    Liu, Wei; Yin, Ping; Liu, Xiguang; Qu, Rongjun

    2014-12-01

    Biodiesel production has become an intense research area because of rapidly depleting energy reserves and increasing petroleum prices together with environmental concerns. This paper focused on the optimization of the catalytic performance in the esterification reaction of oleic acid for biodiesel production over the bifunctional catalyst organotriphosphonic acid-functionalized ferric alginate ATMP-FA. The reaction parameters including catalyst amount, ethanol to oleic acid molar ratio and reaction temperature have been optimized by response surface methodology (RSM) using the Box-Behnken model. It was found that the reaction temperature was the most significant factor, and the best conversion ratio of oleic acid could reach 93.17% under the reaction conditions with 9.53% of catalyst amount and 8.62:1 of ethanol to oleic acid molar ratio at 91.0 °C. The research results show that two catalytic species could work cooperatively to promote the esterification reaction, and the bifunctional ATMP-FA is a potential catalyst for biodiesel production.

  13. Bifunctional chelate formers for Tc and Re isotope complexing - preparation, disengagement of conjugated compounds, diagnostic and therapeutical uses. Bifunktionelle Chelatbildner zur Komplexierung von Tc- und Re-Isotopen, Verfahren zu ihrer Herstellung und Darstellung von Konjugaten daraus sowie deren Verwendung in Diagnostik und Therapie

    Energy Technology Data Exchange (ETDEWEB)

    Neumeier, R.; Kramp, W.; Maecke, H.R.

    1991-03-21

    The proposed bifunctional chelate formers have a functional and/or activated group for selective-compound coupling and functional groups for dative bonding of metal ions from carrying groups. The new compounds are used for Tc and Re isotope complexing. The respective conjugated compounds are used in medical diagnostics and therapy.

  14. KatG, the Bifunctional Catalase of Xanthomonas citri subsp. citri, Responds to Hydrogen Peroxide and Contributes to Epiphytic Survival on Citrus Leaves

    Science.gov (United States)

    Tondo, María Laura; Delprato, María Laura; Kraiselburd, Ivana; Fernández Zenoff, María Verónica; Farías, María Eugenia; Orellano, Elena G.

    2016-01-01

    Xanthomonas citri subsp. citri (Xcc) is the bacterium responsible for citrus canker. This bacterium is exposed to reactive oxygen species (ROS) at different points during its life cycle, including those normally produced by aerobic respiration or upon exposition to ultraviolet (UV) radiation. Moreover, ROS are key components of the host immune response. Among enzymatic ROS-detoxifying mechanisms, catalases eliminate H2O2, avoiding the potential damage caused by this specie. Xcc genome includes four catalase genes. In this work, we studied the physiological role of KatG, the only bifunctional catalase of Xcc, through the construction and characterization of a modified strain (XcckatG), carrying an insertional mutation in the katG gene. First, we evaluated the involvement of KatG in the bacterial adaptive response to H2O2. XcckatG cultures exhibited lower catalase activity than those of the wild-type strain, and this activity was not induced upon treatment with sub-lethal doses of H2O2. Moreover, the KatG-deficient mutant exhibited decreased tolerance to H2O2 toxicity compared to wild-type cells and accumulated high intracellular levels of peroxides upon exposure to sub-lethal concentrations of H2O2. To further study the role of KatG in Xcc physiology, we evaluated bacterial survival upon exposure to UV-A or UV-B radiation. In both conditions, XcckatG showed a high mortality in comparison to Xcc wild-type. Finally, we studied the development of bacterial biofilms. While structured biofilms were observed for the Xcc wild-type, the development of these structures was impaired for XcckatG. Based on these results, we demonstrated that KatG is responsible for Xcc adaptive response to H2O2 and a key component of the bacterial response to oxidative stress. Moreover, this enzyme plays an important role during Xcc epiphytic survival, being essential for biofilm formation and UV resistance. PMID:26990197

  15. A putative bifunctional histidine kinase/phosphatase of the HWE family exerts positive and negative control on the Sinorhizobium meliloti general stress response.

    Science.gov (United States)

    Sauviac, Laurent; Bruand, Claude

    2014-07-01

    The EcfG-type sigma factor RpoE2 is the regulator of the general stress response in Sinorhizobium meliloti. RpoE2 activity is negatively regulated by two NepR-type anti-sigma factors (RsiA1/A2), themselves under the control of two anti-anti-sigma factors (RsiB1/B2) belonging to the PhyR family of response regulators. The current model of RpoE2 activation suggests that in response to stress, RsiB1/B2 are activated by phosphorylation of an aspartate residue in their receiver domain. Once activated, RsiB1/B2 become able to interact with the anti-sigma factors and release RpoE2, which can then associate with the RNA polymerase to transcribe its target genes. The purpose of this work was to identify and characterize proteins involved in controlling the phosphorylation status of RsiB1/B2. Using in vivo approaches, we show that the putative histidine kinase encoded by the rsiC gene (SMc01507), located downstream from rpoE2, is able to both positively and negatively regulate the general stress response. In addition, our data suggest that the negative action of RsiC results from inhibition of RsiB1/B2 phosphorylation. From these observations, we propose that RsiC is a bifunctional histidine kinase/phosphatase responsible for RsiB1/B2 phosphorylation or dephosphorylation in the presence or absence of stress, respectively. Two proteins were previously proposed to control PhyR phosphorylation in Caulobacter crescentus and Sphingomonas sp. strain FR1. However, these proteins contain a Pfam:HisKA_2 domain of dimerization and histidine phosphotransfer, whereas S. meliloti RsiC harbors a Pfam:HWE_HK domain instead. Therefore, this is the first report of an HWE_HK-containing protein controlling the general stress response in Alphaproteobacteria.

  16. p-Isothiocyanatobenzyl-desferrioxamine: a new bifunctional chelate for facile radiolabeling of monoclonal antibodies with zirconium-89 for immuno-PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Perk, Lars R.; Vosjan, Maria J.W.D.; Budde, Marianne [VU University Medical Center, Department of Otolaryngology/Head and Neck Surgery, De Boelelaan 1117, PO Box 7057, MB, Amsterdam (Netherlands); Visser, Gerard W.M. [VU University Medical Center, Nuclear Medicine and PET Research, Amsterdam (Netherlands); Jurek, Paul; Kiefer, Garry E. [Macrocyclics Inc., Dallas, TX (United States); Dongen, Guus A.M.S. van [VU University Medical Center, Department of Otolaryngology/Head and Neck Surgery, De Boelelaan 1117, PO Box 7057, MB, Amsterdam (Netherlands); VU University Medical Center, Nuclear Medicine and PET Research, Amsterdam (Netherlands)

    2010-02-15

    Immuno-PET is an emerging imaging tool for the selection of high potential antibodies (mAbs) for imaging and therapy. The positron emitter zirconium-89 ({sup 89}Zr) has attractive characteristics for immuno-PET with intact mAbs. Previously, we have described a multi-step procedure for stable coupling of {sup 89}Zr to mAbs via the bifunctional chelate (BFC) tetrafluorophenol-N-succinyldesferal (TFP-N-sucDf). To enable widespread use of {sup 89}Zr-immuno-PET, we now introduce the novel BFC p-isothiocyanatobenzyl-desferrioxamine B (Df-Bz-NCS) and compare its performance in {sup 89}Zr-immuno-PET with the reference BFC TFP-N-sucDf. Three mAbs were premodified with Df-Bz-NCS and labeled with {sup 89}Zr at different pHs to assess the reaction kinetics and robustness of the radiolabeling. Stability of both {sup 89}Zr-Df-Bz-NCS- and {sup 89}Zr-N-sucDf-conjugates was evaluated in different buffers and human serum. Comparative biodistribution and PET studies in tumor-bearing mice were undertaken. The selected conjugation conditions resulted in a chelate:mAb substitution ratio of about 1.5:1. Under optimal radiolabeling conditions (pH between 6.8-7.2), the radiochemical yield was >85% after 60 min incubation at room temperature, resulting in radioimmunoconjugates with preserved integrity and immunoreactivity. The new radioimmunoconjugate was very stable in serum for up to 7 days at 37 C, with <5% {sup 89}Zr release, and was equally stable compared to the reference conjugate when stored in the appropriate buffer at 4 C. In biodistribution and imaging experiments, the novel and the reference radioimmunoconjugates showed high and similar accumulation in tumors in nude mice. The novel Df-Bz-NCS BFC allows efficient and easy preparation of optimally performing {sup 89}Zr-labeled mAbs, facilitating further exploration of {sup 89}Zr-immuno-PET as an imaging tool. (orig.)

  17. KatG, the Bifunctional Catalase of Xanthomonas citri subsp. citri, Responds to Hydrogen Peroxide and Contributes to Epiphytic Survival on Citrus Leaves.

    Directory of Open Access Journals (Sweden)

    María Laura Tondo

    Full Text Available Xanthomonas citri subsp. citri (Xcc is the bacterium responsible for citrus canker. This bacterium is exposed to reactive oxygen species (ROS at different points during its life cycle, including those normally produced by aerobic respiration or upon exposition to ultraviolet (UV radiation. Moreover, ROS are key components of the host immune response. Among enzymatic ROS-detoxifying mechanisms, catalases eliminate H2O2, avoiding the potential damage caused by this specie. Xcc genome includes four catalase genes. In this work, we studied the physiological role of KatG, the only bifunctional catalase of Xcc, through the construction and characterization of a modified strain (XcckatG, carrying an insertional mutation in the katG gene. First, we evaluated the involvement of KatG in the bacterial adaptive response to H2O2. XcckatG cultures exhibited lower catalase activity than those of the wild-type strain, and this activity was not induced upon treatment with sub-lethal doses of H2O2. Moreover, the KatG-deficient mutant exhibited decreased tolerance to H2O2 toxicity compared to wild-type cells and accumulated high intracellular levels of peroxides upon exposure to sub-lethal concentrations of H2O2. To further study the role of KatG in Xcc physiology, we evaluated bacterial survival upon exposure to UV-A or UV-B radiation. In both conditions, XcckatG showed a high mortality in comparison to Xcc wild-type. Finally, we studied the development of bacterial biofilms. While structured biofilms were observed for the Xcc wild-type, the development of these structures was impaired for XcckatG. Based on these results, we demonstrated that KatG is responsible for Xcc adaptive response to H2O2 and a key component of the bacterial response to oxidative stress. Moreover, this enzyme plays an important role during Xcc epiphytic survival, being essential for biofilm formation and UV resistance.

  18. Specific combination of compound heterozygous mutations in 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4 defines a new subtype of D-bifunctional protein deficiency

    Directory of Open Access Journals (Sweden)

    McMillan Hugh J

    2012-11-01

    Full Text Available Abstract Background D-bifunctional protein (DBP deficiency is typically apparent within the first month of life with most infants demonstrating hypotonia, psychomotor delay and seizures. Few children survive beyond two years of age. Among patients with prolonged survival all demonstrate severe gross motor delay, absent language development, and severe hearing and visual impairment. DBP contains three catalytically active domains; an N-terminal dehydrogenase, a central hydratase and a C-terminal sterol carrier protein-2-like domain. Three subtypes of the disease are identified based upon the domain affected; DBP type I results from a combined deficiency of dehydrogenase and hydratase activity; DBP type II from isolated hydratase deficiency and DBP type III from isolated dehydrogenase deficiency. Here we report two brothers (16½ and 14 years old with DBP deficiency characterized by normal early childhood followed by sensorineural hearing loss, progressive cerebellar and sensory ataxia and subclinical retinitis pigmentosa. Methods and results Biochemical analysis revealed normal levels of plasma VLCFA, phytanic acid and pristanic acid, and normal bile acids in urine; based on these results no diagnosis was made. Exome analysis was performed using the Agilent SureSelect 50Mb All Exon Kit and the Illumina HiSeq 2000 next-generation-sequencing (NGS platform. Compound heterozygous mutations were identified by exome sequencing and confirmed by Sanger sequencing within the dehydrogenase domain (c.101C>T; p.Ala34Val and hydratase domain (c.1547T>C; p.Ile516Thr of the 17β-hydroxysteroid dehydrogenase type 4 gene (HSD17B4. These mutations have been previously reported in patients with severe-forms of DBP deficiency, however each mutation was reported in combination with another mutation affecting the same domain. Subsequent studies in fibroblasts revealed normal VLCFA levels, normal C26:0 but reduced pristanic acid beta-oxidation activity. Both DBP

  19. KatG, the Bifunctional Catalase of Xanthomonas citri subsp. citri, Responds to Hydrogen Peroxide and Contributes to Epiphytic Survival on Citrus Leaves.

    Science.gov (United States)

    Tondo, María Laura; Delprato, María Laura; Kraiselburd, Ivana; Fernández Zenoff, María Verónica; Farías, María Eugenia; Orellano, Elena G

    2016-01-01

    Xanthomonas citri subsp. citri (Xcc) is the bacterium responsible for citrus canker. This bacterium is exposed to reactive oxygen species (ROS) at different points during its life cycle, including those normally produced by aerobic respiration or upon exposition to ultraviolet (UV) radiation. Moreover, ROS are key components of the host immune response. Among enzymatic ROS-detoxifying mechanisms, catalases eliminate H2O2, avoiding the potential damage caused by this specie. Xcc genome includes four catalase genes. In this work, we studied the physiological role of KatG, the only bifunctional catalase of Xcc, through the construction and characterization of a modified strain (XcckatG), carrying an insertional mutation in the katG gene. First, we evaluated the involvement of KatG in the bacterial adaptive response to H2O2. XcckatG cultures exhibited lower catalase activity than those of the wild-type strain, and this activity was not induced upon treatment with sub-lethal doses of H2O2. Moreover, the KatG-deficient mutant exhibited decreased tolerance to H2O2 toxicity compared to wild-type cells and accumulated high intracellular levels of peroxides upon exposure to sub-lethal concentrations of H2O2. To further study the role of KatG in Xcc physiology, we evaluated bacterial survival upon exposure to UV-A or UV-B radiation. In both conditions, XcckatG showed a high mortality in comparison to Xcc wild-type. Finally, we studied the development of bacterial biofilms. While structured biofilms were observed for the Xcc wild-type, the development of these structures was impaired for XcckatG. Based on these results, we demonstrated that KatG is responsible for Xcc adaptive response to H2O2 and a key component of the bacterial response to oxidative stress. Moreover, this enzyme plays an important role during Xcc epiphytic survival, being essential for biofilm formation and UV resistance.

  20. Study of the hydro-isomerization of paraffins with 7 and 8 carbon atoms on bifunctional catalysts; Etude de l'hydroisomerisation des paraffines a 7 et 8 atomes de carbone sur catalyseurs bifonctionnels

    Energy Technology Data Exchange (ETDEWEB)

    Patrigeon, A.

    2000-10-11

    Due to the suppression of lead additives and the trend to decrease the aromatic and olefinic content in gasoline, the interest for new octane enhancement processes has increased, particularly for isomerization of C{sub 7} and C{sub 8} linear paraffins into higher octane number multi-branched paraffins. Up to the present day, no industrial bifunctional catalyst exists due to the high tendency of the paraffins to be cracked limiting the amount of multi-branched products. The aim of this work is to study the possibility of isomerizing linear C{sub 7} and C{sub 8} paraffins in two steps in order to increase the amount of formed multi-branched paraffins. The first step converts linear paraffins into mono-branched paraffins (that step is supposed to be the slowest one) carried out using one bifunctional catalyst. The second step converts the formed mono-branched paraffins into multi-branched paraffins using a second bifunctional catalyst. The aim is to determine the characteristics of the two catalysts. To study the first step, Pt/zeolite or Pt/meso-porous solid catalysts, with different acidities and porosities, were tested in n-heptane and n-octane hydro-conversion. The role of solid porosity on selectivities was clearly established. Molecular modelling was utilised to explain the observed selectivities. To study the second step, the 2-methyl-hexane and 2-methyl-heptane hydro-conversion on Pt/H-beta and Pt/H-Y was carried out. This lead to maximum multi-branched yields similar to those obtained with the n-heptane and n-octane hydro-conversion. That result shows that the two steps isomerization process is not necessarily required because no more multi-branched products are formed. A kinetic study on the n-heptane hydro-conversion was performed. The decomposition of isomerization and cracking reactions into elementary steps has shown the major role of the paraffins physio-sorption step in the zeolite pores. (author)

  1. Origin of stereocontrol in guanidine-bisurea bifunctional organocatalyst that promotes α-hydroxylation of tetralone-derived β-ketoesters: asymmetric synthesis of β- and γ-substituted tetralone derivatives via organocatalytic oxidative kinetic resolution.

    Science.gov (United States)

    Odagi, Minami; Furukori, Kota; Yamamoto, Yoshiharu; Sato, Makoto; Iida, Keisuke; Yamanaka, Masahiro; Nagasawa, Kazuo

    2015-02-11

    The mechanism of asymmetric α-hydroxylation of tetralone-derived β-ketoesters with guanidine-bisurea bifunctional organocatalyst in the presence of cumene hydroperoxide (CHP) was examined by means of DFT calculations to understand the origin of the stereocontrol in the reaction. The identified transition-state model was utilized to design an enantioselective synthesis of β- or γ-substituted tetralones by catalytic oxidative kinetic resolution reaction of tetralone-derived β-ketoesters. This kinetic resolution reaction proceeded with high selectivity, and selectivity factors (s value) of up to 99 were obtained. The potential utility of this oxidative kinetic resolution method for synthesis of natural products was confirmed by applying it to achieve an enantioselective synthesis of (+)-linoxepin (13) from β-substituted tetralone rac-7 in only six steps.

  2. The first bis-cyanoxime: synthesis and properties of a new versatile and accessible polydentate bifunctional building block for coordination and supramolecular chemistry.

    Science.gov (United States)

    Cheadle, Carl; Gerasimchuk, Nikolay; Barnes, Charles L; Tyukhtenko, Sergiy I; Silchenko, Svitlana

    2013-04-14

    A new multidentate bifunctional organic ligand – di-N,N′-(2-cyano-2-oximinoacetyl)piperazine – was synthesized in high yield using a two-step procedure carried out under ambient conditions. At first, the reaction of piperazine and neat methylcyanoacetate led to the di-N,N′-(cyanoacetyl)piperazine (1), which then was converted into bis-cyanoxime, di-N,N′-(2-cyano-2-oximinoacetyl)piperazine (HL, 2) using a room temperature nitrosation reaction with gaseous methylnitrite. Synthesized bis-cyanoxime was characterized by 1H, 13C NMR, UV-visible, IR spectroscopy and the X-ray analysis. The ligand 2 exists as a mixture of three diastereomers arising from the syn- and anti-geometry of the cyanoxime group. The prolonged crystallization of 2 from an ethanol–water mixture leads to the formation of: (a) colorless crystals that according to the X-ray analysis contain a 51.2:48.8% co-crystallized mixture of both isomers that have the same H-bonding motif (minority), and (b) a white amorphous material that represents an almost pure anti-isomer (majority). The deprotonation of 2 leads to the formation of a yellow dianion that demonstrated pronounced solvatochromism of its n → π* transition in the nitroso-chromophore. The disodium salt Na2L·4H2O (3) was obtained from 2 using NaOC2H5 in ethanol. The new bis-cyanoxime 2 reacts with Tl2CO3 and AgNO3 in aqueous solutions with the formation of light-stable, sparingly soluble yellow precipitates of M′2L·xH2O composition (M′ = Tl, Ag; Tl = 4, x = 0; Ag = 5, x = 2). The reaction of 3 with Ni2+ or K2M′′Cl4 (M′′ = Pd, Pt) in aqueous solutions leads to NiL·4H2O (6), PdL·4H2O (7) and PtL·5H2O (8). The crystal structure of 4 was determined and revealed the formation of a 3D-coordination polymeric complex in which the bis-cyanoxime acts as a dianionic, bridging, formally decadentate ligand. Each Tl(I) center has two bonds (2.655, 2.769 Å), shorter than the sum of ionic radii Tl–O (oxime group), and three longer

  3. Facile labelling of an anti-epidermal growth factor receptor nanobody with {sup 68}Ga via a novel bifunctional desferal chelate for immuno-PET

    Energy Technology Data Exchange (ETDEWEB)

    Vosjan, Maria J.W.D.; Perk, Lars R.; Stigter van Walsum, Marijke [VU University Medical Center, Department of Otolaryngology/Head and Neck Surgery, De Boelelaan 1117, P.O. Box 7057, Amsterdam (Netherlands); Roovers, Rob C.; Bergen en Henegouwen, Paul M.P. van [Utrecht University, Cellular Dynamics, Science Faculty, Utrecht (Netherlands); Visser, Gerard W.M. [VU University Medical Center, Department of Nuclear Medicine and PET Research, Amsterdam (Netherlands); Dongen, Guus A.M.S. van [VU University Medical Center, Department of Otolaryngology/Head and Neck Surgery, De Boelelaan 1117, P.O. Box 7057, Amsterdam (Netherlands); VU University Medical Center, Department of Nuclear Medicine and PET Research, Amsterdam (Netherlands)

    2011-04-15

    The {proportional_to}15 kDa variable domains of camelid heavy-chain-only antibodies (called Nanobodies {sup registered}) have the flexibility to be formatted as monovalent, monospecific, multivalent or multispecific single chain proteins with either fast or slow pharmacokinetics. We report the evaluation of the fast kinetic anti-epidermal growth factor receptor (EGFR) Nanobody 7D12, labelled with {sup 68}Ga via the novel bifunctional chelate (BFC) p-isothiocyanatobenzyl-desferrioxamine (Df-Bz-NCS). Df-Bz-NCS has recently been introduced as the chelate of choice for {sup 89}Zr immuno-positron emission tomography (PET). Nanobody 7D12 was premodified with Df-Bz-NCS at pH 9. Radiolabelling with purified {sup 68}Ga was performed at pH 5.0-6.5 for 5 min at room temperature. For in vitro stability measurements in storage buffer (0.25 M NaOAc with 5 mg ml{sup -1} gentisic acid, pH 5.5) at 4 C or in human serum at 37 C, a mixture of {sup 67}Ga and {sup 68}Ga was used. Biodistribution and immuno-PET studies of {sup 68}Ga-Df-Bz-NCS-7D12 were performed in nude mice bearing A431 xenografts using {sup 89}Zr-Df-Bz-NCS-7D12 as the reference conjugate. The Df-Bz-NCS chelate was conjugated to Nanobody 7D12 with a chelate to Nanobody molar substitution ratio of 0.2:1. The overall {sup 68}Ga radiochemical yield was 55-70% (not corrected for decay); specific activity was 100-500 MBq/mg. Radiochemical purity of the conjugate was >96%, while the integrity and immunoreactivity were preserved. {sup 68/67}Ga-Df-Bz-NCS-7D12 was stable in storage buffer as well as in human serum during a 5-h incubation period (<2% radioactivity loss). In biodistribution studies the {sup 68}Ga-labelled Nanobody 7D12 showed high uptake in A431 tumours (ranging from 6.1 {+-} 1.3 to 7.2 {+-} 1.5%ID/g at 1-3 h after injection) and high tumour to blood ratios, which increased from 8.2 to 14.4 and 25.7 at 1, 2 and 3 h after injection, respectively. High uptake was also observed in the kidneys. Biodistribution was

  4. Evaluation of the different supported bifunctional electrocatalysts for unified regenerative cells; Evaluacion de diferentes soportes de electrocatalizadores bifuncionales para celdas regenerativas unificadas

    Energy Technology Data Exchange (ETDEWEB)

    Gurrola, M. P.; Torres-Amaya, D. S.; Duron-Torres, S. M.; Escalante-Garcia, I. L. [Universidad Autonoma de Zacatecas, Unidad Academica de Ciencias Quimicas, Zacatecas (Mexico)]. E-mail: duronsm@prodigy.net.mx; Arriaga-Hurtado, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Pedro Escobedo, Queretaro (Mexico)

    2009-09-15

    Unified regenerative fuel cells (URFC) represent an alternative to normal regenerative cells, providing decreased costs and space in one single device. The challenges of these systems are even greater than those for conventional fuel cells, with the most pressing technical problem being the optimization of the oxygen electrode. The high operating potentials of these devices in the electrolyzer mode, E >1.6 V vs. ENH, limit the use of supported Pt/Vulcan electrodes. The electroactivity of Pt is not sufficient to catalyze the oxygen evolution reaction (OER) and at these potentials carbon-based supports undergo corrosion. In addition to studies of materials that function as bifunctional catalysts, a significant amount of research is being aimed at the search of new matrixes for use in supporting electrocatalysts for OER and ORR{sup 1,2}. This work presents the preliminary results of the kinetic study of oxygen reactions on different Pt combinations, with IrO{sub 2} and RuO{sub 2} supported by different forms of carbon and substoichiometric titanium oxide. The studies were conducted using cyclical (CV) and linear (LV) voltamperometry for OER and rotary disc electrode (RDE) for the ORR in watery H{sub 2}SO{sub 4} 0.5M solutions. The chronoamperometry (CA) technique provided information about the electrochemical stability of the electrodes. The results indicate that the performance of the electrodes supported by different forms of carbon decreases gradually as a result of corrosion when consecutive cycles of oxygen reduction and formation reactions occur. Titanium oxide provides the greatest stability to electrodes constructed on that material and thus can potentially support oxygen electrodes based on combinations of Pt, IrO{sub 2} and RuO{sub 2} as binfunctional electrocatalysts for the URFC. [Spanish] Las celdas de combustible regenerativas unificadas (URFC) representan una alternativa a las celdas regenerativas normales que implica disminucion de costos y espacio en

  5. An electrochemical biosensor for rapid detection of E. coli O157:H7 with highly efficient bi-functional glucose oxidase-polydopamine nanocomposites and Prussian blue modified screen-printed interdigitated electrodes.

    Science.gov (United States)

    Xu, Meng; Wang, Ronghui; Li, Yanbin

    2016-09-21

    The presence of pathogenic bacteria in foods has always been a great threat to the wellbeing of people and the revenue of food manufacturers. Therefore, the demand for advanced detection methods that can sensitively and rapidly detect these pathogens has been of great importance. This study reports an electrochemical biosensor for rapid detection of E. coli O157:H7 with the integration of bifunctional glucose oxidase (GOx)-polydopamine (PDA) based polymeric nanocomposites (PMNCs) and Prussian blue (PB) modified screen-printed interdigitated microelectrodes (SP-IDMEs). The core-shell magnetic beads (MBs)-GOx@PDA PMNCs were first synthesized by the self-polymerization of dopamine (DA). Gold nanoparticles (AuNPs) were dispersed on the surface of PMNCs through biochemical synthesis to achieve further highly efficient adsorption of antibodies (ABs) and GOx. The final product ABs/GOxext/AuNPs/MBs-GOx@PDA PMNCs served as the carrier to separate target bacteria from food matrices as well as the amplifier for electrochemical measurement. The unbound PMNCs were separated by a filtration step and transferred into glucose solution to allow the enzymatic reaction to occur. The change of the current response was measured with an electrochemical detector using PB-modified SP-IDMEs. The constructed biosensor has been proven to be able to detect E. coli O157:H7 with the detection limit of 10(2) cfu ml(-1). The bifunctional PMNCs contain a high load of enzyme and can optimally utilize the binding sites on bacterial cells, which efficiently amplify the signals for measurement. The biosensor in this study exhibited good specificity, reproducibility, and stability and is expected to have a great impact on applications in the detection of foodborne pathogens.

  6. Bifunctional electrodes with ir and Ru oxide mixtures and pt for unified regenerative cells; Electrodos bifuncionales basados en mezclas de oxidos de Ir y Ru con Pt para celdas regenerativas unificadas

    Energy Technology Data Exchange (ETDEWEB)

    Duron-Torres, S.M.; Escalante-Garcia, I.L. [Universidad Autonoma de Zacatecas, Zacatecas (Mexico); Cruz, J. C.; Arriaga-Hurtado; L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Pedro Escobedo, Queretaro (Mexico)]. E-mail: duronsm@prodigy.net.mx

    2009-09-15

    Unified regenerative fuel cells (URFC) represent an attractive option to obtain hydrogen and generate energy using a compact device. Nevertheless, the fusion of a fuel cell (PEMFC) and a water electrolyzer continue to be a challenge because of the wide range of conditions to which this type of device is subject. Because of its kinetic characteristics, oxygen reduction reaction (ORR) in PEMFC and oxygen evolution reaction (OER) in PEMWE are the limiting stages of the URFC depending on the mode of operation. The primary focus of research related to URFC is the obtainment of bifunctional electrocatalysts that satisfactorily perform in both oxygen reactions and support the different working conditions found in a fuel cell and an electrolyzer. The present work contributes to the research on bifunctional electrocatalysts and shows some preliminary results from the electrochemical study of different Pt gcc, IrO{sub 2} and RuO{sub 2} mixtures supported in Ebonex® as oxygen electrodes. The electrochemical characterization with cyclic voltamperometry (CV), linear voltamperometry (LV) and electrochemical impedance spectroscopy (EIS) in H{sub 2}SO{sub 4} 0.5 M, in the absence and present of oxygen shows that Ebonex®-supported bifunctional electrodes IrO{sub 2}-Pt and RuO{sub 2}-Pt present reasonable electrocatalytic properties for oxygen evolution and reduction reactions and present the possibility of their use in an URFC. The Ir- based oxide electrodes show greater stability than ruthenium-oxide electrodes. [Spanish] Las celdas de combustible regenerativas unificadas (URFC) representan una atractiva opcion para la obtencion de hidrogeno y generacion de energia en un dispositivo compacto. Sin embargo, la fusion de una celda de combustible (PEMFC) y un electrolizador de agua (PEMWE) sigue siendo un reto por la amplia gama de condiciones a que se sujeta un dispositivo de este tipo. Por sus caracteristicas cineticas, la reaccion de reduccion de oxigeno (ORR) en la PEMFC y la

  7. Fabrication of α-Fe{sub 2}O{sub 3}/TiO{sub 2} bi-functional composites with hierarchical and hollow structures and their application in water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yinhui, E-mail: lillian09281@hotmail.com; Zhang, Na; Chen, Jianxin, E-mail: chjx2000@126.com; Li, Ruijuan; Li, Liang; Li, Kunyu [Hebei University of Technology, School of Marine Science and Engineering, Engineering Research Center of Seawater Utilization Technology, Ministry of Education (China)

    2016-02-15

    The α-Fe{sub 2}O{sub 3}/TiO{sub 2} bi-functional composites with hierarchical and hollow structures are fabricated through a hydrothermal route. The adsorption performance and photocatalytic activity of the composites towards Pb{sup 2+} are investigated in this work. Different adsorption kinetics models and equilibrium models are used to explore the adsorption behavior of hierarchical α-Fe{sub 2}O{sub 3}/TiO{sub 2} hollow spheres. Experimental data show that adsorption kinetics of the hierarchical α-Fe{sub 2}O{sub 3}/TiO{sub 2} hollow spheres can be fitted well by the pseudo-second-order model, while the isothermal data can be perfectly described by the Langmuir adsorption model. The maximum adsorption capacity of the hierarchical α-Fe{sub 2}O{sub 3}/TiO{sub 2} hollow spheres is 32.36 mg g{sup −1}. Moreover, the hierarchical α-Fe{sub 2}O{sub 3}/TiO{sub 2} hollow spheres possess photocatalytic oxidation character under simulated solar light irradiation. The results demonstrate that the hierarchical α-Fe{sub 2}O{sub 3}/TiO{sub 2} hollow spheres, as effective and cheap materials, can be applied to the removal of heavy metal ions from wastewater.

  8. Self-assembly formation of Bi-functional Co3O4/MnO2-CNTs hybrid catalysts for achieving both high energy/power density and cyclic ability of rechargeable zinc-air battery

    Science.gov (United States)

    Xu, Nengneng; Liu, Yuyu; Zhang, Xia; Li, Xuemei; Li, Aijun; Qiao, Jinli; Zhang, Jiujun

    2016-09-01

    α-MnO2 nanotubes-supported Co3O4 (Co3O4/MnO2) and its carbon nanotubes (CNTs)-hybrids (Co3O4/MnO2-CNTs) have been successfully developed through a facile two-pot precipitation reaction and hydrothermal process, which exhibit the superior bi-functional catalytic activity for both ORR and OER. The high performance is believed to be induced by the hybrid effect among MnO2 nanotubes, hollow Co3O4 and CNTs, which can produce a synergetic enhancement. When integrated into the practical primary and electrochemically rechargeable Zn-air batteries, such a hybrid catalyst can give a discharge peak power density as high as 450 mW cm‑2. At 1.0 V of cell voltage, a current density of 324 mA cm‑2 is achieved. This performance is superior to all reported non-precious metal catalysts in literature for zinc-air batteries and significantly outperforms the state-of-the-art platinum-based catalyst. Particularly, the rechargeable Zn-air battery can be fabricated into all-solid-state one through a simple solid-state approach, which exhibits an excellent peak power density of 62 mW cm‑2, and the charge and discharge potentials remain virtually unchanged during the overall cycles, which is comparable to the one with liquid electrolyte.

  9. Synthesis and evaluation of novel bifunctional chelating agents based on 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid for radiolabeling proteins

    Energy Technology Data Exchange (ETDEWEB)

    Chappell, L.L.; Ma, D.; Milenic, D.E.; Garmestani, K.; Venditto, V.; Beitzel, M.P.; Brechbiel, M.W. E-mail: martinwb@mail.nih.gov

    2003-08-01

    Detailed synthesis of the bifunctional chelating agents 2-methyl-6-(p-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane-1,4,7,10 -tetraacetic acid (1B4M-DOTA) and 2-(p-isothiocyanatobenzyl)-5, 6-cyclohexano-1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetate (CHX-DOTA) are reported. These chelating agents were compared to 2-(p-isothiocyanatobenzyl)-1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid (C-DOTA) and 1, 4, 7, 10-Tetraaza-N-(1-carboxy-3-(4-nitrophenyl)propyl)-N', N'', N'''-tris(acetic acid) cyclododecane (PA-DOTA) as their {sup 177}Lu radiolabeled conjugates with Herceptin{sup TM}. In vitro stability of the immunoconjugates radiolabeled with {sup 177}Lu was assessed by serum stability studies. The in vivo stability of the radiolabeled immunoconjugates and their targeting characteristics were determined by biodistribution studies in LS-174T xenograft tumor-bearing mice. Relative radiolabeling rates and efficiencies were determined for all four immunoconjugates. Insertion of the 1B4M moiety into the DOTA backbone increases radiometal chelation rate and provides complex stability comparable to C-DOTA and PA-DOTA while the CHX-DOTA appears to not form as stable a {sup 177}Lu complex while exhibiting a substantial increase in formation rate. The 1B4M-DOTAmay have potential for radioimmunotherapy applications. Published by Elsevier Inc. All rights reserved.

  10. EC300: a phage-based, bacteriolysin-like protein with enhanced antibacterial activity against Enterococcus faecalis.

    Science.gov (United States)

    Proença, Daniela; Leandro, Clara; Garcia, Miguel; Pimentel, Madalena; São-José, Carlos

    2015-06-01

    Bacteriophage lytic enzymes, either endolysins or virion-associated lysins, have been receiving considerable attention as potential antibacterial agents, particularly for the combat of antibiotic-resistant Gram-positive pathogens. A conclusion that easily emerges from the careful analysis of a great number of reports on the field is that the activity of phage lytic enzymes is rarely studied in conditions that support robust growth of the target bacteria. Here, we report the construction and study of a chimerical lysin, EC300, which was designed to target and kill Enterococcus faecalis in conditions supporting vigorous bacterial growth. EC300 resulted from the fusion of a predicted M23 endopeptidase domain of a virion-associated lysin to the putative cell wall binding domain of a previously characterized amidase endolysin, both produced by the E. faecalis phage F170/08. This bacteriolysin-like protein exhibited a clear enhanced lytic activity over the parental endolysin when both were assayed in a rich bacterial growth medium. We demonstrate the killing efficacy of EC300 against growing cells of a panel of typed E. faecalis clinical strains with high level of antibiotic resistance. The possible reasons for the marked difference between the lytic performance of EC300 and that of the amidase are discussed.

  11. Phage-Based Fluorescent Biosensor Prototypes to Specifically Detect Enteric Bacteria Such as E. coli and Salmonella enterica Typhimurium.

    Directory of Open Access Journals (Sweden)

    Manon Vinay

    Full Text Available Water safety is a major concern for public health and for natural environment preservation. We propose to use bacteriophages to develop biosensor tools able to detect human and animal pathogens present in water. For this purpose, we take advantage of the highly discriminating properties of the bacteriophages, which specifically infect their bacterial hosts. The challenge is to use a fluorescent reporter protein that will be synthesized, and thus detected, only once the specific recognition step between a genetically modified temperate bacteriophage and its bacterial host has occurred. To ensure the accuracy and the execution speed of our system, we developed a test that does not require bacterial growth, since a simple 1-hour infection step is required. To ensure a high sensitivity of our tool and in order to detect up to a single bacterium, fluorescence is measured using a portable flow cytometer, also allowing on-site detection. In this study, we have constructed and characterized several "phagosensor" prototypes using the HK620 bacteriophage and its host Escherichia coli TD2158 and we successfully adapted this method to Salmonella detection. We show that the method is fast, robust and sensitive, allowing the detection of as few as 10 bacteria per ml with no concentration nor enrichment step. Moreover, the test is functional in sea water and allows the detection of alive bacteria. Further development will aim to develop phagosensors adapted on demand to the detection of any human or animal pathogen that may be present in water.

  12. Development of Phage-Based Antibody Fragment Reagents for Affinity Enrichment of Bacterial Immunoglobulin G Binding Proteins.

    Science.gov (United States)

    Säll, Anna; Sjöholm, Kristoffer; Waldemarson, Sofia; Happonen, Lotta; Karlsson, Christofer; Persson, Helena; Malmström, Johan

    2015-11-06

    Disease and death caused by bacterial infections are global health problems. Effective bacterial strategies are required to promote survival and proliferation within a human host, and it is important to explore how this adaption occurs. However, the detection and quantification of bacterial virulence factors in complex biological samples are technically demanding challenges. These can be addressed by combining targeted affinity enrichment of antibodies with the sensitivity of liquid chromatography-selected reaction monitoring mass spectrometry (LC-SRM MS). However, many virulence factors have evolved properties that make specific detection by conventional antibodies difficult. We here present an antibody format that is particularly well suited for detection and analysis of immunoglobulin G (IgG)-binding virulence factors. As proof of concept, we have generated single chain fragment variable (scFv) antibodies that specifically target the IgG-binding surface proteins M1 and H of Streptococcus pyogenes. The binding ability of the developed scFv is demonstrated against both recombinant soluble protein M1 and H as well as the intact surface proteins on a wild-type S. pyogenes strain. Additionally, the capacity of the developed scFv antibodies to enrich their target proteins from both simple and complex backgrounds, thereby allowing for detection and quantification with LC-SRM MS, was demonstrated. We have established a workflow that allows for affinity enrichment of bacterial virulence factors.

  13. Novel Approach of a Phage-Based Magnetoelastic Biosensor for the Detection of Salmonella enterica serovar Typhimurium in Soil.

    Science.gov (United States)

    Park, Mi-Kyung; Chin, Bryan A

    2016-12-28

    To date, there has been no employment of a magnetoelastic (ME) biosensor method to detect Salmonella enterica serovar Typhimurium in soil. The ME biosensor method needs to be investigated and modified for its successful performance. The filtration method, cation-exchange resin method, and combinations of both methods were employed for the extraction of S. Typhimurium from soil. The number of S. Typhimurium and the resonant frequency shift of the ME sensor were then compared using a brilliant green sulfa agar plate and an HP 8751A network analyzer. A blocking study was performed using bovine serum albumin (BSA), polyethylene glycol (PEG), and casein powder suspension. Finally, the modified ME biosensor method was performed to detect S. Typhimurium in soil. The number of S. Typhimurium was significantly decreased from 7.10 log CFU/soil to 4.45-4.72 log CFU/soil after introduction of the cation-exchange resin method. The greatest resonant frequency shift of the measurement sensor was found when employing centrifugation and filtration procedures. The resonant frequency shift of the PEG-blocked measurement sensor was 3,219 ± 755 Hz, which was significantly greater than those of the BSA- and casein-blocked ME sensor. The optimum concentration of PEG was determined to be 1.0 mg/ml after considering the resonant shift and economic issue. Finally, the modified ME biosensor method was able to detect S. Typhimurium in soil in a dose-response manner. Although these modifications of the ME biosensor method sacrificed some advantages, such as cost, time effectiveness, and operator friendliness, this study demonstrated a novel approach of the ME biosensor method to detect S. Typhimurium in soil.

  14. Sensory map transfer to the neocortex relies on pretarget ordering of thalamic axons.

    Science.gov (United States)

    Lokmane, Ludmilla; Proville, Rémi; Narboux-Nême, Nicolas; Györy, Ildiko; Keita, Maryama; Mailhes, Caroline; Léna, Clément; Gaspar, Patricia; Grosschedl, Rudolf; Garel, Sonia

    2013-05-06

    Sensory maps, such as the representation of mouse facial whiskers, are conveyed throughout the nervous system by topographic axonal projections that preserve neighboring relationships between adjacent neurons. In particular, the map transfer to the neocortex is ensured by thalamocortical axons (TCAs), whose terminals are topographically organized in response to intrinsic cortical signals. However, TCAs already show a topographic order early in development, as they navigate toward their target. Here, we show that this preordering of TCAs is required for the transfer of the whisker map to the neocortex. Using Ebf1 conditional inactivation that specifically perturbs the development of an intermediate target, the basal ganglia, we scrambled TCA topography en route to the neocortex without affecting the thalamus or neocortex. Notably, embryonic somatosensory TCAs were shifted toward the visual cortex and showed a substantial intermixing along their trajectory. Somatosensory TCAs rewired postnatally to reach the somatosensory cortex but failed to form a topographic anatomical or functional map. Our study reveals that sensory map transfer relies not only on positional information in the projecting and target structures but also on preordering of axons along their trajectory, thereby opening novel perspectives on brain wiring.

  15. In Situ Coupling of Strung Co4N and Intertwined N-C Fibers toward Free-Standing Bifunctional Cathode for Robust, Efficient, and Flexible Zn-Air Batteries.

    Science.gov (United States)

    Meng, Fanlu; Zhong, Haixia; Bao, Di; Yan, Junmin; Zhang, Xinbo

    2016-08-17

    Flexible power sources with high energy density are crucial for the realization of next-generation flexible electronics. Theoretically, rechargeable flexible zinc-air (Zn-air) batteries could provide high specific energy, while their large-scale applications are still greatly hindered by high cost and resources scarcity of noble-metal-based oxygen evolution reaction (OER)/oxygen reduction reaction (ORR) electrocatalysts as well as inferior mechanical properties of the air cathode. Combining metallic Co4N with superior OER activity and Co-N-C with perfect ORR activity on a free-standing and flexible electrode could be a good step for flexible Zn-air batteries, while lots of difficulties need to be overcome. Herein, as a proof-of-concept experiment, we first propose a strategy for in situ coupling of strung Co4N and intertwined N-C fibers, by pyrolyzation of the novel pearl-like ZIF-67/polypyrrole nanofibers network rooted on carbon cloth. Originating from the synergistic effect of Co4N and Co-N-C and the stable 3D interconnected conductive network structure, the obtained free-standing and highly flexible bifunctional oxygen electrode exhibits excellent electrocatalytic activity and stability for both OER and ORR in terms of low overpotential (310 mV at 10 mA cm(-2)) for OER, a positive half-wave potential (0.8 V) for ORR, and a stable current density retention for at least 20 h, and especially, the obtained Zn-air batteries exhibit a low discharge-charge voltage gap (1.09 V at 50 mA cm(-2)) and long cycle life (up to 408 cycles). Furthermore, the perfect bendable and twistable and rechargeable properties of the flexible Zn-air battery particularly make it a potentially power portable and wearable electronic device.

  16. Comparative studies of mononuclear Ni(II) and UO2(II) complexes having bifunctional coordinated groups: synthesis, thermal analysis, X-ray diffraction, surface morphology studies and biological evaluation.

    Science.gov (United States)

    Fahem, Abeer A

    2012-03-01

    Two Schiff base ligands derived from condensation of phthalaldehyde and o-phenylenediamine in 1:2 (L(1)) and 2:1 (L(2)) having bifunctional coordinated groups (NH(2) and CHO groups, respectively) and their metal complexes with Ni(II) and UO(2)(II) have been synthesized and characterized by elemental analysis, molar conductance, magnetic susceptibilities and spectral data (IR, (1)H NMR, mass and solid reflectance) as well as thermal, XRPD and SEM analysis. The formula [Ni(L(1))Cl(2)]·2.5H(2)O, [UO(2)(L(1))(NO(3))(2)]·2H(2)O, [Ni(L(2))Cl(2)]·1.5H(2)O and [UO(2)(L(2))(NO(3))(2)] have been suggested for the complexes. The vibrational spectral data show that the ligands behave as neutral ligands and coordinated to the metal ions in a tetradentate manner. The Ni(II) complexes are six coordinate with octahedral geometry and the ligand field parameters: D(q), B, β and LFSE were calculated while, UO(2)(II) complexes are eight coordinate with dodecahedral geometry and the force constant, F(U-O) and bond length, R(U-O) were calculated. The thermal decomposition of complexes ended with metal chloride/nitrate as a final product and the highest thermal stability is displayed by [UO(2)(L(2))(NO(3))(2)] complex. The X-ray powder diffraction data revealed the formation of nano sized crystalline complexes. The SEM analysis provides the morphology of the synthesized compounds and SEM image of [UO(2)(L(2))(NO(3))(2)] complex exhibits nano rod structure. The growth-inhibiting potential of the ligands and their complexes has been assessed against a variety of bacterial and fungal strains.

  17. Study on the dyeing of the pineapple fibers with bi-functional reactive dyes%双活性基活性染料菠萝纤维染色工艺研究

    Institute of Scientific and Technical Information of China (English)

    李萍; 顾东雅

    2014-01-01

    Pineapple fibers were dyed with bi-functional reactive dyes of Cibacron FN. Dyeing tempera-ture, the amount of sodium sulfate, and dosage of alkaline agent were analyzed using single factor experiment and taking the K/S value and the dyeing uptake as measurement index. At the same time, the curve of the rate of dyeing and building up properties of dyes in the pineapple fibers were discussed. The optimal dyeing conditions were obtained: the amount of alkaline agent was 12 g/L, the dosage of sodium sulfate was 40 g/L, and the dyeing temperature was 65 ℃. Under the optimal dyeing conditions, pineapple fibers had higher dye-ing uptake. Good matching color effect and good building up properties on pineapple fibers could be obtained by trichromatic color reactive dyes of Cibacron FN.%采用汽巴克隆FN双活性基活性染料对菠萝纤维进行染色,以表面得色K/S值和上染率为衡量指标,对染色温度、元明粉用量和纯碱用量等工艺条件进行单因素分析,同时分析了染料在菠萝纤维上的上染率曲线和提升性能.试验得到最佳染色工艺为:纯碱用量12 g/L、元明粉用量40 g/L、染色温度65℃.在此工艺条件下,菠萝纤维具有较好的上染率;汽巴克隆FN三原色活性染料能获得较好的拼色效果,在纤维上的提升性能也较好.

  18. N-doped mesoporous carbon as a bifunctional material for oxygen reduction reaction and supercapacitors%掺氮介孔炭作为双功能材料用于氧还原与超级电容器

    Institute of Scientific and Technical Information of China (English)

    梁群英; 苏红; 闫晶; 梁俊杰; 曹水良; 袁定胜

    2014-01-01

    A N-doped mesoporous carbon (NMC-1) has been synthesized at relatively low temperature using chitosan as a nitrogen and carbon source, tetraethoxysilane as a soft template, and nickel nitrate as a catalyst. NMC-1 has a porous structure and heteroatoms such as N and O atoms, indicating that NMC-1 can contribute to electrocatalysis, electric double-layer capacitance, and pseudocapacitance. Hence, NMC-1 was used as a bifunctional material which shows effective activity as an electrocata-lyst for oxygen reduction reaction in alkaline solution, and a high specific capacitance as an ultraca-pacitor (252 F/g at 0.2 A/g). The results demonstrate that the presented NMC-1 has potential ap-plications as a renewable and environmentally friendly material in fuel cells and supercapacitors.%以壳聚糖为含氮碳源,正硅酸乙酯为软模板,硝酸镍为催化剂,通过简单的低温水热法及后续炭化,成功合成出掺氮介孔炭材料(NMC-1). NMC-1含有多孔结构以及氮氧等杂原子,能提高其电催化性能、双电层电容与赝电容.由于NMC-1在碱液中表现出显著的催化氧还原反应活性和具有较高的超级电容器比电容(在0.2 A/g时为252 F/g)及好的循环稳定性,因此,它有可能作为一种可再生、环保的双功能材料同时应用于燃料电池与超级电容器领域.

  19. Co(II)1-xCo(0)x/3Mn(III)2x/3S Nanoparticles Supported on B/N-Codoped Mesoporous Nanocarbon as a Bifunctional Electrocatalyst of Oxygen Reduction/Evolution for High-Performance Zinc-Air Batteries.

    Science.gov (United States)

    Wang, Zilong; Xiao, Shuang; An, Yiming; Long, Xia; Zheng, Xiaoli; Lu, Xihong; Tong, Yexiang; Yang, Shihe

    2016-06-01

    Rechargeable Zn-air battery is an ideal type of energy storage device due to its high energy and power density, high safety, and economic viability. Its large-scale application rests upon the availability of active, durable, low-cost electrocatalysts for the oxygen reduction reaction (ORR) in the discharge process and oxygen evolution reaction (OER) in the charge process. Herein we developed a novel ORR/OER bifunctional electrocatalyst for rechargeable Zn-air batteries based on the codoping and hybridization strategies. The B/N-codoped mesoporous nanocarbon supported Co(II)1-xCo(0)x/3Mn(III)2x/3S nanoparticles exhibit a superior OER performance compared to that of IrO2 catalyst and comparable Zn-air battery performance to that of the Pt-based battery. The rechargeable Zn-air battery shows high discharge peak power density (over 250 mW cm(-2)) and current density (180 mA cm(-2) at 1 V), specific capacity (∼550 mAh g(-1)), small charge-discharge voltage gap of ∼0.72 V at 20 mA cm(-2) and even higher stability than the Pt-based battery. The advanced performance of the bifunctional catalysts highlights the beneficial role of the simultaneous formation of Mn(III) and Co(0) as well as the dispersed hybridization with the codoped nanocarbon support.

  20. Application of new bifunctional chelator DOTA and its derivatives in the metal radionuclide labeled compounds%新型双功能螯合剂DOTA及其衍生物在金属核素标记中的应用进展

    Institute of Scientific and Technical Information of China (English)

    陈飞; 蒋孟军; 朱宝

    2016-01-01

    DOTA及其衍生物是应用最为广泛的新型双功能螯合剂之一.DOTA及其衍生物不仅具有成熟的合成工艺路线,还具有良好的配位和螯合能力,DOTA-多肽分子探针作为MRI对比剂、核素靶向显像剂和放射性药物在生物医学领域被广泛应用.笔者对DOTA双功能螯合剂的种类、DOTA-多肽标记前体的合成和DOTA-多肽金属配合物的应用进行综述.%DOTA and its derivatives are most widely uscd novel bifunctional chelators.They have not only mature synthesis route,but also good coordination and chelating ability.Therefore,DOTA metal complexes of DOTA-peptide conjugates are increasingly used as MRI contrast agents,radionuclide targeted imaging agents and therapeutic radiopharmaceuticals in the biomedical field.This review covers the bifunctional derivatives of DOTA,the synthesis of DOTA-peptide conjugates,and the applications of DOTA-peptide conjugate metal complexes.

  1. Hydrothermal synthesis of superparamagnetic and red luminescent bifunctional Fe{sub 3}O{sub 4}@Mn{sup 2+}-doped NaYF{sub 4}:Yb/Er core@shell monodisperse nanoparticles and their subsequent ligand exchange in water

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhenli; Du, Sinan; Luo, Yang; Liao, Zhijian; Zuo, Fang, E-mail: polymerzf@swun.cn; Luo, Jianbin; Liu, Dong

    2016-08-15

    Graphical abstract: An efficient hydrothermal method was used to fabricate the superparamagnetic and red luminescent bifunctional Fe{sub 3}O{sub 4}@Mn{sup 2(*)+}-doped NaYF{sub 4}:Yb/Er nanoparticles (NPs) with core@shell structures through a seed-growth procedure. Then using PEG phosphate ligand to displace oleate from the as-synthesized NPs, hydrophilic Fe{sub 3}O{sub 4}@Mn{sup 2+}-doped NaYF{sub 4}:Yb/Er NPs with good water solubility are obtained. - Highlights: • Homogeneous size distribution of magnetic-upconversion core@shell structured nanoparticles (NPs) were synthesized. • The core@shell nanostructures were obtained by seed-growth method. • The oleic acid coated Fe{sub 3}O{sub 4} NPs were used as seeds and cores. • The magnetic-upconversion NPs emitted red luminescence under a 980 nm laser. • Synthesized magnetic-upconversion NPs were phase transferred using ligand exchange process. - Abstract: We report the use of an efficient hydrothermal method to synthesize superparamagnetic and red luminescent bifunctional Fe{sub 3}O{sub 4}@Mn{sup 2+}-doped NaYF{sub 4}:Yb/Er nanoparticles (NPs) with core@shell structures via a seed-growth procedure. Oleic acid coated Fe{sub 3}O{sub 4} (OA-Fe{sub 3}O{sub 4}) NPs were initially synthesized using a coprecipitation method. The as-synthesized OA-Fe{sub 3}O{sub 4} NPs were then used as seeds, on which the red upconversion luminescent shell (Mn{sup 2+}-doped NaYF{sub 4}:Yb/Er) was formed. Furthermore, hydrophobic to hydrophilic surface modification of the Fe{sub 3}O{sub 4}@Mn{sup 2+}-doped NaYF{sub 4}:Yb/Er NPs was achieved via a ligand exchange method where oleic acid was displaced by a PEG phosphate ligand [PEG = poly(ethylene glycol)]. These materials were characterized by means of transmission electron microscopy (TEM), X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, and vibrating sample magnetometry (VSM). The Fe{sub 3}O{sub 4} cores were uniformly coated with a Mn{sup 2+}-doped NaYF{sub 4}:Yb

  2. CuZnAl双功能催化剂上一步法合成二甲醚的工艺研究%Study on Single-step Synthesis of Dimethyl Ether over CuZnAl Bifunctional Catalyst

    Institute of Scientific and Technical Information of China (English)

    吴文炳; 倪建聪; 林顺华; 林志文; 宋建龙; 杨顺童

    2011-01-01

    探讨TC301/γ-Al2O3和C207/γ-Al2O3双功能催化剂上合成气一步法制取二甲醚的反应,考察了催化剂浓度、原料气氢碳比和搅拌转速对一氧化碳转化率和二甲醚收率的影响.结果表明:在浆态床反应器内,催化剂C301的催化效果优于C207,且催化剂最佳浓度为7.27%;在300r/min搅拌转速下,外扩散阻力的影响基本可以消除;当原料气氢碳比为1.0时,二甲醚收率最大,进而提出利用富碳合成气生产二甲醚是缓解能源问题和减少能源污染的一条新途径.%The direct conversion of syngas into dimethyl ether over CuZnAI bifunctional catalyst was studied. Effect of catalyst concentration, feed gas ratio and stirring speed on CO conversion and DME yield was investigated. The results showed that C301 catalyst exhibited better performance than C207 catalyst in a slurry reactor, and the optimum concentration of catalyst was 7.27%. The resistance of external diffusion was eliminated when stirring speed reaching 300 r/min. When feed gas ratio between hydrogen and carbon was 1:1, the DME yield reached the maximum, and the production of DME from rich CO syngas was put forward, which is a new approach of solving energy problems and reducing environmental pollution from fuel combustion.

  3. 双功能性离子液体溶胶-凝胶法制备介孔SiO2%Bifunctional ionic liquid as template in the preparation of mesoporous silica via a sol-gel method

    Institute of Scientific and Technical Information of China (English)

    葛倪林; 张迪; 魏海兵; 丁运生

    2014-01-01

    首先合成了一种新型双功能性离子液体1-甲基-3-(3′-磺酸丙基)咪唑十二烷基磺酸盐([PMIM(SO3H)][C12SO3]),并采用FT-IR、1HNMR和13CNMR对其结构进行了表征;进一步以该离子液体为模板剂和酸源,以正硅酸乙酯(TEOS)为硅源,通过溶胶-凝胶法制备出介孔SiO2,利用TGA和FT-IR研究了介孔材料的形成过程,采用SAXRD、SEM、TEM和氮气等温吸附-脱附等手段对介孔材料的结构形貌进行了表征,并研究了其对Pb2+的吸附性能。结果显示,以[PMIM(SO3H)][C12SO3]为模板剂和酸源制备的介孔SiO2其比表面积、孔容、平均孔径大小分别为1010m2/g、0.95cm3/g、3.25nm,其对重金属Pb2+有很好的吸附性能。%A novel bifunctional ionic liquid 1-methyl-3-(3-sulfopropyl )-imidazolium n-dodecayl sulfonate ([PMIM(SO3 H)][C12 SO3 ])was conveniently synthesized,and the structure was determined by FT-IR,1 H NMR and 13 C NMR,respectively.Furthermore,mesoporous silica was prepared from ethyl silicate (TEOS)as silica source and the obtained ionic liquid as acid source and template by traditional sol-gel methods.The forma-tion of the mesoporous material was characterized by TGA and FT-IR.Several methods such as SAXRD,SEM, TEM and nitrogen adsorption-desorption isotherms were employed to characterized the morphological structure and properties of mesoporous silica.The experiment on Pb2+,one kind of heavy metal ion,adsorption was ap-plied so as to detect the property of the material.The resultant mesoporous silica material exhibited the specific surface area of 1 010 m2/g,the pore volume of 0.95 cm3/g and the average pore diameter size of 3.25 nm,re-spectively,while the mesoporous silica has a good adsorption property for heavy metal ion of Pb2+.

  4. 磷改性双功能催化剂合成二甲醚性能研究%Study on performances of P-modified bifunctional catalyst for dimethyl ether synthesis

    Institute of Scientific and Technical Information of China (English)

    黄兵; 张世玲; 谢磊磊

    2011-01-01

    采用磷酸水溶液浸渍-焙烧法对甲醇脱水催化剂γ-Al2O3改性,得到磷改性甲醇脱水催化剂P-γ-Al2O3与C301甲醇合成催化剂以1:4的质量比混合制备成C301/p-γ-A12O3双功能催化剂用于一步法合成二甲醚,该改性双功能催化剂比未改性催化剂具有更高的催化活性.将该催化剂用于浆态床反应器,在p=3.7MPa,T=250℃,进料合成气n(H2)/n(CO)=2的条件下,CO转化率从93.11%提高到95.90%,DME选择性从34.61%提高到42.27%.改性催化剂经FT-IR、BET、XRD手段进行表征,发现在P-γ-Al2O3中增加了O=P-O键,使得脱水催化剂的表面总酸量和L酸中心数量同时增加,从而提高了双功能催化剂的活性.%Abifunctional catalyst (C301/P-γ-Al2O3) for one-step synthesis of dimethyl ether from syngas was prepared by the method as follows: γ-Al2O3 was modified by impregnation with phosphoric acid aqueous solution and calcination to obtain the P-γ-Al2O3, which was then mixed with the commercial methanol synthesis catalyst C301 in a mass ratio of 1:4. The P-modified catalyst had higher activity than the unmodified catalyst. The modified catalyst was used in a slurry bed reactor and the conversion of CO increased from 93.11% to 95.90% while the DME selectivity increased from 34.61% to 42.27% under pressure of 3.7MPa, temperature of 250°C and feed gas HVCO molar ratio of 2. The P-γ-Al2O3 catalyst was characterized by FT-IR, XRD and BET, and it was found that the 0=P-0 bond existed in the P-γ-Al2O3, which made the numbers of both total acid and L acid sites of the P-γ-A12O3 surface increased that resulted in the improvement of the activity of the prepared bifunctional catalyst.

  5. Paclitaxel conjugated Fe{sub 3}O{sub 4}@LaF{sub 3}:Ce{sup 3+},Tb{sup 3+} nanoparticles as bifunctional targeting carriers for Cancer theranostics application

    Energy Technology Data Exchange (ETDEWEB)

    Mangaiyarkarasi, Rajendiran; Chinnathambi, Shanmugavel; Karthikeyan, Subramani; Aruna, Prakasarao; Ganesan, Singaravelu, E-mail: sganesan@annauniv.edu

    2016-02-01

    The bi-functional Chitosan functionalized magnetite doped luminescent rare earth nanoparticles (Fe{sub 3}O{sub 4}@LaF{sub 3}: Ce{sup 3+},Tb{sup 3+}/chi NPs) as a carrier of paclitaxel (PTX) drug was designed using a co-precipitation and facile direct precipitation method. The synthesized nanoparticles are spherical in shape with a typical diameter of 19–37 nm respectively. They are water soluble, super paramagnetic and biocompatible, in which the amino groups on the nanoparticles surface are used for the conjugation with an anticancer drug, paclitaxel. The nature of PTX binding with Fe{sub 3}O{sub 4}@LaF{sub 3}: Ce{sup 3+},Tb{sup 3+}/chi nanoparticles were studied using X-ray diffraction, vibrating sample magnetometer and scanning electron micrograph. The nature of interactions between PTX and Fe{sub 3}O{sub 4}@LaF{sub 3}: Ce{sup 3+},Tb{sup 3+}/chi NPs due to complex formation were conceded out by various spectroscopic methods viz., UV–visible, steady state and excited state fluorescence spectroscopy. The photo-physical characterization reveals that the adsorption and release of PTX from Fe{sub 3}O{sub 4}@LaF{sub 3}:Tb{sup 3+}/chi nanoparticles is quicker when compared with other nanoparticles and also confirms that this may be due to the hydrogen bond formation between the hydroxyl group of drug and amino group of nanoparticles respectively. The maximum loading capacity and entrapment efficiency of 83.69% and 80.51% were attained at a ratio of 5:8 of PTX and Fe{sub 3}O{sub 4}@LaF{sub 3}: Ce{sup 3+},Tb{sup 3+}/chi NPs respectively. In addition with that, antitumoral activity study of PTX conjugated Fe{sub 3}O{sub 4}@LaF{sub 3}:Tb{sup 3+}/chi nanoparticles exhibits increased cytotoxic effects on A549 lung cancer cell lines than that of unconjugated PTX. - Highlights: • Fe{sub 3}O{sub 4}@LaF{sub 3}: Ce{sup 3+},Tb{sup 3+}/chi nanoparticles as a carrier of paclitaxel. • These particles are water soluble, super paramagnetic and biocompatible. • The maximum

  6. Bifunctional Bisphosphonates for Delivering Biomolecules to Bone

    Science.gov (United States)

    2012-01-13

    Osteoporosis primarily affects women after menopause (11). In general, menopause limits estrogen , which has an anti-resorptive characteristic, in the...several bone diseases. Since bisphosphonates (BPs) are known to have high affinity to bone mineral and are being widely used in treatment of osteoporosis ...diseases. Since bisphosphonates (BPs) are known to have high affinity to bone mineral and are being widely used in treatment of osteoporosis , they are well

  7. Bi-functionality of Opisthorchis viverrini aquaporins.

    Science.gov (United States)

    Geadkaew, Amornrat; von Bülow, Julia; Beitz, Eric; Tesana, Smarn; Vichasri Grams, Suksiri; Grams, Rudi

    2015-01-01

    Aquaporins (AQP) are essential mediators of water regulation in all living organisms and members of the major intrinsic protein (MIP) superfamily of integral membrane proteins. They are potential vehicles or targets for chemotherapy, e.g. in Trypanosoma brucei melarsoprol and pentamidine uptake is facilitated by TbAQP-2. Transcriptome data suggests that there are at least three active aquaporins in the human liver fluke, Opisthorchis viverrini, OvAQP-1, 2 and 3, and crude RNA silencing of OvAQP-1 and 2 has recently been shown to affect parasite swelling in destilled water. In the present work we demonstrate that OvAQP-3 is a major water-conducting channel of the parasite, that it can be detected from the newly excysted juvenile to the adult stage and that it is present in major tissues of the parasite. Furthermore, a comparative functional characterization of the three parasite AQPs was performed by using Xenopus oocyte swelling and yeast phenotypic assays. OvAQP-1, OvAQP-2, and OvAQP-3 were found to conduct water and glycerol while only the latter two were also able to conduct urea. In addition, all OvAQPs were found to transport ammonia and methylamine. Our findings demonstrate that the sequence-based classification into orthodox aquaporins and glycerol-conducting aquaglyceroporins is not functionally conserved in the parasite and implicate a broder range of functions for these channels.

  8. Bifunctional Catalysts for CO2 Reduction

    Science.gov (United States)

    2014-09-30

    dioxide reduction catalysis . (SA 1 – Catalyst candidate synthesis) As outlined in the original proposal, ligand platforms have been synthesized to...was limited to outer-sphere electron transfer (necessary oxidation potentials for catalysis > –2.1 V vs. [Cp2Fe] +/0). Thus, we pursued two...to heterogeneous Fischer-Tropsch13 catalysts. This reactivity must also be compared with mononuclear early transition metal ligands that require

  9. Variational Convergence Of Bifunctions: Motivating Applications

    Science.gov (United States)

    2011-01-01

    theoretical and computationally levels. Simply think about the Lagrangians , and augmented Lagrangians , and the role they play in the de- velopment of duality...of examples. The same applies to Hamiltonians associated with Calculus of Variations and Optimal Control problems as well as to the study of minimax...of the Legendre-Fenchel transform with applications to convex programming and mechanics . Annales de l’Institut H. Poincaré: Analyse Nonlinéaire, 5

  10. Orientation and crystallinity of bifunctional adsorbates

    CERN Document Server

    Perry, C C

    1998-01-01

    3-thiophene carboxylate (3-TC) and 9-anthracene carboxylate (9-AC) on the clean and O(2x1)/Cu(110) surfaces demonstrates the sensitivity of the technique to orientation parallel and perpendicular to the surface. The coverage dependent molecular polar and azimuthal orientations are determined from high-resolution electron energy loss spectroscopy (HREELS) and are correlated with the RAS results via LEED patterns of the ordered structures. A complete vibrational assignment of 9-AC is given. Coadsorption of phase separated domains of (2x3)N and alpha-phase benzoate/Cu(110) was used to identify plausible adsorption sites for upright benzoate species. A multiple regression model to analyse scanning tunnelling microscopy (STM) images was developed, which properly addresses the non-normally distributed noise present in the digitally sampled images. Electron energy loss-low energy electron diffraction (ELS-LEED) measurements show enhancement of the vibrational losses in the dipole mechanism regime appropriate for eac...

  11. Bifunctional effect of E2 on macrophage

    Institute of Scientific and Technical Information of China (English)

    MinHONG; QuanZHU

    2004-01-01

    AIM: Our previous study showed that the effect of 1713-estradiol(E2) on macrophage does not strengthen when concentrationincreased. So the effect of E2 on cytokines, intracellular free Ca2+([Ca2+]i) and morphological change of macrophages at differentconcentrations were studied. METHODS: TNF-α was measured by MTT via L929 cell. Nitrate and nitrite level(NO) wasmeasured by the method of Griess. [Ca2+]i was examined by laser scanning confocal microscopy(LSCM). Fluorescent microscopy

  12. Effects of a pretarget distractor on saccade reaction times across space and time in monkeys and humans.

    Science.gov (United States)

    Khan, Aarlenne Z; Munoz, Douglas P; Takahashi, Naomi; Blohm, Gunnar; McPeek, Robert M

    2016-05-01

    Previous studies have shown that the influence of a behaviorally irrelevant distractor on saccade reaction times (SRTs) varies depending on the temporal and spatial relationship between the distractor and the saccade target. We measured distractor influence on SRTs to a subsequently presented target, varying the spatial location and the timing between the distractor and the target. The distractor appeared at one of four equally eccentric locations, followed by a target (either 50 ms or 200 ms after) at one of 136 different locations encompassing an area of 20° square. We extensively tested two humans and two monkeys on this task to determine interspecies similarities and differences, since monkey neurophysiology is often used to interpret human behavioral findings. Results were similar across species; for the short interval (50 ms), SRTs were shortest to a target presented close to or at the distractor location and increased primarily as a function of the distance from the distractor. There was also an effect of distractor-target direction and visual field. For the long interval (200 ms) the results were inverted; SRTs were longest for short distances between the distractor and target and decreased as a function of distance from distractor. Both SRT patterns were well captured by a two-dimensional dynamic field model with short-distance excitation and long-distance inhibition, based upon known functional connectivity found in the superior colliculus that includes wide-spread excitation and inhibition. Based on these findings, we posit that the different time-dependent patterns of distractor-related SRTs can emerge from the same underlying neuronal mechanisms common to both species.

  13. Pretargetted imaging of colorectal cancer recurrences using an 111In-labelled bivalent hapten and a bispecific antibody conjugate.

    Science.gov (United States)

    Chetanneau, A; Barbet, J; Peltier, P; Le Doussal, J M; Gruaz-Guyon, A; Bernard, A M; Resche, I; Rouvier, E; Bourguet, P; Delaage, M

    1994-12-01

    In 11 patients recurrence of colorectal cancer was suspected by a rise in serum carcinoembryonic antigen (CEA) (nine cases), by a subocclusive clinical situation (one case) or by endoscopy (on an anastomosis, one case). Two-step tumour targetting was performed by a first injection of 0.1 mg kg-1 of unlabelled bispecific antibody conjugate (an anti-CEA Fab' fragment chemically coupled to an anti-diethylene triamine pentaacetate (DTPA)-indium fragment) followed 4 to 5 days later by injection of the bivalent DTPA hapten labelled with 5 to 8 mCi 111In. Planar scintigraphy, single photon emission computed tomographic (SPECT) 360 degrees acquisitions and whole-body scans were obtained 4.5 and 24 h after injection of the radiolabelled hapten. Biodistribution was determined for eight patients at 48 h. The final diagnosis was confirmed histologically in nine patients (eight by second-look surgery, one by laparotomy). Overall, results were one true negative (1-year follow-up) and 10 true positive; however, for the three large liver metastases (3 to 6 cm), only the periphery of the metastasis had high uptake compared to normal liver. For pelvic recurrences, immunoscintigraphic (IS) contrast was better for small tumours. The highest tumour uptake was found for a 1 cm diameter pelvic recurrence (7.2% i.d. kg-1). Mean tumour-to-blood ratios were 6.4. Thus, this two-step tumour targetting technique, which uses a bispecific antibody conjugate and an 111In-labelled bivalent hapten injected sequentially without chasing the excess bispecific antibody, provided satisfactory results in this preliminary clinical trial for detection of recurrent colorectal cancers.

  14. New, enhanced phage-based bacterium detection/identification by COnductance-Noise-Sensing-of-Phage-Triggered-Ion-Cascades (CON-SEPTIC)

    CERN Document Server

    Kish, Laszlo B

    2010-01-01

    We point out the reasons for the problems with the reproducibility and sensitivity of the earlier page-based bacterium detection/identification method SEPTIC (Sensing-of-Phage-Triggered-Ion-Cascades). The main weaknesses originate from the DC field/current nature of the method. Then we propose a new principle and method, CON-SEPTIC (COnductance-Noise-Sensing-of-Phage-Triggered-Ion-Cascades), which, similarly to SEPTIC, also utilizes the ion release during phage infection. However CON-SEPTIC, instead of sensing the electrical field (voltage) during phage infection, uses the measurement of the AC conductivity and its fluctuations (conductance noise) to detect slow fluctuations of the ionic concentration due to infected bacteria. In this way, the effects of electrode material, corrosion, drift, ageing, surface imperfections, 1/f potential fluctuations and even thermal noise (with two-frequency or phase drive) are absent and the detection of a single bacterium maybe possible. Moreover, because no electrical poten...

  15. DFT Study on the Bifunctional Ionic Liquid [Promim]^+ [CF3CO2]^--Supported Asymmetric Aldol Reaction%双官能团离子液体[Promim]^+[CF3CO2]^-支撑不对称Aldol反应的密度泛函理论研究

    Institute of Scientific and Technical Information of China (English)

    张金生; 陈卓; 谢辉; 申婧; 许亮

    2011-01-01

    By using the B3LYP method of the density functional theory(DFT),the bifunctional ionic liquid(IL) [Promim]+ [CF3CO2]--supported asymmetric aldol reaction between ketone and o-nitrobenzaldehyde is theoretically studied.The results demonstrate that bifunctional proline and imidazole fragments of the IL coordinate to catalyze the reactions.The overall reactions are initiated by a nucleophilic addition reaction of the proline fragment with the carbonyl group of ketone,and subsequently go through a dehydration reaction,a dehydrogenation,a nucleophilic addition of enamine with aldehyde,a hydration reaction and a regeneration of the catalyst.The first step is rate-controlling,and the chiral carbon center is generated in the enamine nucleophilic addition with the aldehyde.It is a new finding that the 2-position hydrogen of the imidazole fragment takes part in the dehydration reaction leading to an imine onium IM1-2.Moreover,a water molecule acts as a hydrogen shuttle to transport a hydrogen atom from methyl of ketone to carbonyl-oxygen of aldehyde fragment.The electron-withdrawing inductive effect of ortho-nitro-group in phenyl decreases the electron density of the carbonyl carbon and increases its electrophilic ability,thus promoting the nucleophilic addition reaction of the enamine with aldehyde.On the whole,the ionic liquid of [Promim]+ [CF3CO2]- decreases the reaction barriers excluding the last steps.%用密度泛函理论B3LYP方法对双官能团离子液体[Promim]+[CF3CO2]-支撑丙酮与邻-硝基苯甲醛不对称aldol反应进行了研究.结果表明,该离子液体的脯胺酸和咪唑基团一起对反应产生催化作用.整个反应包括:丙酮的羰基与脯胺酸基团的胺基间的亲核加成反应,咪唑2-位氢参与的脱水反应生成亚胺IM1-2,丙酮甲基脱氢反应生成烯胺I M1-3,苯甲醛与烯胺的亲核加成反应,水加成反应和催化剂再生反应.第一步骤是速率控制步骤,产物羟基位碳原子的

  16. A bifunctional HBED-derivative for labeling of antibodies with [sup 67]Ga, [sup 111]In and [sup 59]Fe. Comparative biodistribution with [sup 111]In-DPTA and [sup 131]I-labeled antibodies in mice bearing antibody internalizing and non-internalizing tumors. [Isothiocyanato-substituted phenolic polyaminocarboxylic acid (HBED-CI)

    Energy Technology Data Exchange (ETDEWEB)

    Schuhmacher, J.; Hull, W.E.; Matys, R.; Hauser, H.; Maier-Borst, W.; Matzku, S. (German Cancer Research Center, Heidelberg (Germany)); Klivenyi, G. (National ' ' FJC' ' Research Inst. for Radiobiology and Radiohygiene, Budapest (Hungary)); Kalthoff, H.; Schmiegel, W.H. (University Hospital, Eppendorf, Hamburg (Germany))

    1992-11-01

    To investigate whether bifunctional ligands containing chelating structures other than EDTA and DTPA and metallic radiotracers other than [sup 111]In will reduce the non-specific radioactivity uptake in the liver during immunoscintigraphy, we synthetized an isothiocyanato-substituted phenolic polyaminocarboxylic acid (HBED-CI) for labeling of MAbs with [sup 67]Ga, [sup 111]In and [sup 59]Fe. Biodistribution of HBED-CI-labeled MAbs was compared to that of [sup 131]I and [sup 111]In-DTPA labeled MAbs in nude mice bearing tumors, which differ with regard to intracellular internalization and catabolism of the corresponding MAb-antigen complex. In the liver a continuous radioactivity excretion for [sup 67]Ga-HBED-CI-labeled MAbs was observed with kinetics that parallel [sup 131]I clearance after administration of [sup 131]I-MAbs, while [sup 111]In-HBED-CI-labeling led to a constant [sup 111]In liver level quite similar to that of [sup 111]In-DTPA-MAbs. In tumors, [sup 67]Ga-HBED-CI-MAb uptake again paralleled that of [sup 131]I-MAbs. A much lower uptake was found in the case of MAb-antigen internalization. [sup III]In of [sup III]In-HBED-CI- and [sup III]In-DTPA-labeled MAbs continuously accumulated in both types of tumors. Compared with [sup III]In-DTPA-MAbs, an improvement in tumor-to-liver ratios, due to the reduced liver radioactivity associated with [sup 67]Ga-HBED-CI-labeled MAbs, could only be obtained with non-internalizing tumors. The time course of radioactivity distribution in the liver and in MAb-internalizing tumors after administration of [sup 67]Ga-HBED-CI-, [sup III]In-HBED-CI- and [sup III]In-DTPA-labeled MAbs further indicates a dominating influence of the metallic radiotracer rather than the ligand on retention or excretion of radioactivity in MAb-catabolizing tissues. (author).

  17. 磁性/荧光量子点双功能纳米粒子双标记对大鼠骨髓间充质干细胞生物学特性的影响%Biological characteristics of rat bone mesenchymal stem cells after magnetic/luminescent quantum dots bifunctional nanoparticles labeling

    Institute of Scientific and Technical Information of China (English)

    颜荣华; 王劲; 单鸿; 聂立波; 张黎明

    2011-01-01

    目的:利用磁性/荧光量子点双功能纳米粒子双标记大鼠骨髓间充质干细胞( BMSOs),探讨其对BMSCs生物学特性的影响.方法:分离、纯化及培养大鼠BMSCs.制备二氧化硅( SiO2)包裹的含四氧化三铁(Fe3O4)和碲化镉(CdTe)荧光量子点的磁性及荧光双功能纳米粒子Fe3O4@ CdTe@ SiO2,利用铁浓度为25 mg/L的Fe3O4@ CdTe@ SiO2双标记BMSCs,未标记的BMSCs作为对照组.采用细胞计数(CCK-8)试剂盒检测BMSCs细胞毒性和增殖能力,台盼蓝拒染测细胞活力,成骨、成脂诱导检测细胞多向分化能力,评价双标记对BMSCs生物学特性的影响.荧光显微镜和普鲁士蓝染色观察诱导分化后Fe3O4@ CdTe@ SiO2双标记情况.结果:荧光显微镜下可见双标记组细胞内Fe3O4@ CdTe@ SiO2纳米粒子显示为红色荧光,荧光和磁性双标记率均达到90%以上.Fe3O4@ CdTe@ SiO2双标记后细胞存活率为(94±5)%.Fe3O4@CdTe@ SiO2对BMSCs无明显细胞毒性,对BMSCs的成脂、成骨分化潜能无明显影响.结论:磁性/荧光量子点双功能纳米粒子(Fe3O4@CdTe@ SiO2纳米粒子)双标记对大鼠BMSCs安全有效,对BMSCs的生物学特性无明显影响,有望为MRI和光学成像活体示踪BMSCs提供技术基础.%Objective; To evaluate the safety of magnetic and luminescent quantum dots bifunctional nanoparti-cles dual-labeling in rat bone mesenchymal stem cells (BMSCs). Methods; Rat BMSCs were isolated, purified, and expanded. Magnetic/luminescent bifunctional nanoparticles (Fe3O4@ CdTe@ SiO2) , were prepared by simultaneous encapsulation of Fe3O4 and CdTe quantum dots with silicon dioxide (SiO2). Subsequently, BMSCs were incubated with the Fe3O4@ CdTe@SiO2 nanoparticles with iron concentration of 25 mg/L The viability, cytotoxici-ty and proliferation activity of dual-labeled BMSCs were evaluated with CCK-8 and trypan blue stain exclusion, respectively. Multilineage differentiation potential of dual-labeled BMSCs was assessed by induced

  18. Pt{sub X}Ru{sub Y}Ir{sub Z} as a bifunctional electrocatalyst for oxygen reduction reaction in a PEM fuel cell; Pt{sub X}Ru{sub Y}Ir{sub Z} como electrocatalizador bifuncional para la reaccion redox del oxigeno en una celda tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Morales, L.; Fernandez, A.M. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Temixco, Morelos (Mexico)]. E-mail: limos@cie.unam.mx; Cano, U. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2009-09-15

    This work presents the synthesis and characterization of the ternary material Pt{sub X}Ru{sub Y}Ir{sub Z}, obtained by chemical reduction with NaBH{sub 4}. Two different atomic compositions were developed (sample A and B) in order to observe the kinetic effect, as suggested by the combinatorial libraries. The main objective of this synthesis is to study the oxygen reduction reaction (ORR and OER) and its potential use in the construction of a bifunctional catalyst. In addition, each of the metals are synthesized separately using the same technique in order to make the corresponding comparison. The compounds obtained were characterized by sweep electron microscopy, x-ray diffraction and composition using fluorescence and energy-dispersive x-ray spectroscopy. The results showed a displacement of the x-ray diffraction peaks for Ir and Pt in sample A, and displacement in sample B for Ru and Ir peaks. These changes suggest the possible formation of a solid solution substitution. Separate cyclic and linear voltamperometry studies were performed for the oxygen reduction and release reactions. The electrochemical analysis showed improved kinetic behavior when combining the three metals according to the composition of sample B. [Spanish] En este trabajo se presenta la sintesis y caracterizacion del material ternario Pt{sub X}Ru{sub Y}Ir{sub Z}, elaborado por la tecnica de Reduccion Quimica utilizando al NaBH{sub 4}. Se elaboraron dos composiciones atomicas diferentes (Muestra A y B) con el fin de observar el efecto cinetico, como lo sugieren las librerias combinatorias. El objetivo principal de esta sintesis es para el estudio de la Reaccion Redox del Oxigeno (RRO y REO) y su potencial uso para la construccion de un catalizador bifuncional. Asi mismo, se realiza la sintesis de cada uno de los metales por separado empleando la misma tecnica, con el proposito de realizar la comparacion correspondiente. Los compuestos obtenidos se caracterizaron por Microscopia Electronica de

  19. Cloning and Characterization of a Novel Cold-active Bifunctional Xylosidase/Arabinfuranosidease AX543%低温木糖苷/阿拉伯呋喃糖苷酶 AX543的基因克隆及性质研究

    Institute of Scientific and Technical Information of China (English)

    张明慧; 李中媛; 仇海燕; 王翠琼; 王惠; 张同存

    2016-01-01

    旨在获得在低温条件下具有高催化能力的低温木糖苷酶,并对其进行异源表达研究和酶学性质分析。利用 Touch down PCR 和 TAIL PCR 方法,从枝顶孢菌中克隆得到一个序列新颖的 GH43家族双功能木糖苷酶/阿拉伯呋喃糖苷酶基因 ax543,该酶基因在毕赤酵母中成功表达。酶学性质分析发现重组酶 AX543的最适温度为25℃,在15℃和4℃仍有54%和21%的相对酶活;具有木糖苷酶和阿拉伯呋喃糖苷酶活性,并可以降解木二糖、木三糖、桦木木聚糖、榉木木聚糖和小麦阿拉伯木聚糖;可以与木聚糖酶 Xyn11-1协同作用,协同度达1.46;具有高木糖/阿拉伯糖耐受性,抑制常数 Ki 分别为84.78 mmol/L 和54.01 mmol/L。%This work aims to obtain the cold-active xylosidase with high catalytic activity at low temperature,and to study its heterologous expression,as well as analyze its enzymatic characteristics. A novel psychrophilic bifunctional xylosidase/arabinofuranosidase gene ax543 in GH43 family was cloned using Touch down PCR and TAIL PCR,and was successfully expressed in Pichia pastoris. Analysis of biochemical characterization suggested that recombinant enzyme AX543 exhibited optimal activity at 25℃,and remained 54% and 21%relative activities at 15℃ and 4℃. Moreover,AX543 with xylosidase and arabinofuranosidase activity hydrolyzed xylobiose,xylotriose, birchwood xylan,beechwood xylan,and wheat arabinoxylan,and showed a 1.46 fold synergic effect with xylanase Xyn11-1. AX543 also presented xylose and arabinose tolerance with Ki 84.78 mmol/L and 54.01 mmol/L.

  20. An improved synthesis and biological evaluation of a new cage-like bifunctional chelator, 4-((8-amino-3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane-1-ylamino)methyl) benzoic acid, for {sup 64}Cu radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Cai Hancheng; Li Zibo; Huang, C.-W.; Park, Ryan; Shahinian, Anthony H. [Molecular Imaging Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 (United States); Conti, Peter S. [Molecular Imaging Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 (United States)], E-mail: pconti@usc.edu

    2010-01-15

    Introduction: Stable attachment of {sup 64}Cu{sup 2+} to a targeting molecule usually requires the use of a bifunctional chelator (BFC). Sarcophagine (Sar) ligands rapidly coordinate {sup 64}Cu{sup 2+} within the multiple macrocyclic rings comprising the cage structure under mild conditions, providing high stability in vivo. Previously, we have designed a new versatile cage-like BFC Sar ligand, 4-((8-amino-3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane-1-ylamino)methyl) benzoic acid (AmBaSar), for {sup 64}Cu radiopharmaceuticals. Here we report the improved synthesis of AmBaSar, {sup 64}Cu{sup 2+} labeling conditions and its biological evaluation compared with the known BFC 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA). Methods: The AmBaSar was synthesized in four steps starting from (1,8-diamine-Sar) cobalt(III) pentachloride ([Co(DiAmSar)]Cl{sub 5}) using an improved synthetic method. The AmBaSar was labeled with {sup 64}Cu{sup 2+} in pH 5.0 ammonium acetate buffer solution at room temperature, followed by analysis and purification with HPLC. The in vitro stability of {sup 64}Cu-AmBaSar complex was evaluated in phosphate buffered saline (PBS), fetal bovine serum and mouse blood. The microPET imaging and biodistribution studies of {sup 64}Cu-AmBaSar were performed in Balb/c mice, and the results were compared with {sup 64}Cu-DOTA. Results: The AmBaSar was readily prepared and characterized by MS and {sup 1}H NMR. The radiochemical yield of {sup 64}Cu-AmBaSar was {>=}98% after 30 min of incubation at 25 deg. C. The {sup 64}Cu-AmBaSar complex was analyzed and purified by HPLC with a retention time of 17.9 min. The radiochemical purity of {sup 64}Cu-AmBaSar was more than 97% after 26 h of incubation in PBS or serum. The biological evaluation of {sup 64}Cu-AmBaSar in normal mouse demonstrated renal clearance as the primary mode of excretion, with improved stability in vivo compared to {sup 64}Cu-DOTA. Conclusions: The

  1. Solvent extraction and separation of copper from base metals using bifunctional ionic liquid from sulfate medium%在硫酸盐介质中采用双官能团离子液体从母材中提取和分离铜

    Institute of Scientific and Technical Information of China (English)

    Niharbala Devi

    2016-01-01

    研究了一种在煤油中采用双官能团[A336/Cy272]离子液体(IL),从其他母材离子溶剂萃取与分离铜的新工艺。采用这种双官能团IL比单独采用Aliquat 336或Cyanex 272萃取剂能更有效地萃取铜。采用紫外−可见光谱表征八面体铜−IL复合物的形成,同时采用FTIR光谱验证金属配体的相互作用。0.1 mol/L [A336/Cy272]的负载容量为1.71 g/L。剥离研究表明,采用0.1 mol/L硫酸从0.05 mol/L IL中有效剥离0.298 g/L铜离子。在煤油中采用0.05 mol/L [A336/Cy272]等摩尔二元混合物研究铜对镍、镉、铁的选择性。在pH 3.56时得到最高分离因子8.41。在pH研究范围内铜能有效地从镍中分离,铁比铜优先被IL萃取,在pH 2.4时,得到最高分离因子3246。含有其他金属杂质的铜合成溶液中金属离子萃取率顺序为Fe>Zn>Cu>Cd>Co>Ni。%A novel solvent extraction process for extraction and separation of copper from other base metal ions using a bifunctional ionic liquid (IL) (trioctylmethylammonium/2,4,4-trimethylpentyl phosphinate, [A336/Cy272]) in kerosene was reported. This IL was found to extract copper more efficiently than the individual extractants Aliquat 336 or Cyanex 272. Formation of an octahedral copper-IL complex was characterized by UV-Visible spectra and metal ligand interaction was confirmed by FTIR spectra. The loading capacity of 0.1 mol/L [A336/Cy272] was found to be 1.71 g/L. Stripping studies reported that 0.298 g/L copper ions were efficiently stripped using 0.1 mol/L sulfuric acid from 0.05 mol/L loaded IL. The selectivity of copper against nickel, cadmium and iron was investigated from their equimolar binary mixtures using 0.05 mol/L [A336/Cy272] in kerosene. The highest separation factorβCu/Cd=8.41 was obtained at pH 3.56. Copper can be effectively separated from nickel over the pH range studied. The IL extracts preferentially iron over copper and the highest separation factorβFe/Cuwas 3246 at pH 2

  2. 新型双功能螯合剂研究——富勒烯基邻苯二酚类螯合物的分子设计%New bifunctional sequestering agent for actinides chelation——molecular design of fullerene-based catechol chelating agents

    Institute of Scientific and Technical Information of China (English)

    赵云; 彭汝芳; 金波; 楚士晋; 宋宏涛

    2012-01-01

    bifunctional actinide chelating agents based on the excellent resistance to oxidation and absorption of free radical of fullerenes and its derivatives. According to the chemical modified principle of fullerenes and the characteristics of molecular structure of catechol, We designed the molecular structure of the new chelating a-gent of fullerene-based catechol, the feasibility of the design of molecular structure and synthesis was analyzed and discussed, the analysis shows that the conception and the plan is feasible.

  3. Bifunctional anode catalysts for direct methanol fuel cells

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Ferrin, Peter; Tritsaris, Georgios

    2012-01-01

    Using the binding energy of OH* and CO* on close-packed surfaces as reactivity descriptors, we screen bulk and surface alloy catalysts for methanol electro-oxidation activity. Using these two descriptors, we illustrate that a good methanol electro-oxidation catalyst must have three key properties......: (1) the ability to activate methanol, (2) the ability to activate water, and (3) the ability to react off surface intermediates (such as CO* and OH*). Based on this analysis, an alloy catalyst made up of Cu and Pt should have a synergistic effect facilitating the activity towards methanol electro....... Adding Cu to a Pt(111) surface increases the methanol oxidation current by more than a factor of three, supporting our theoretical predictions for improved electrocatalysts....

  4. Biophysical Characterization of an Bifunctional Iron Regulating Enzyme

    Science.gov (United States)

    2002-05-01

    the explicit purpose of mass overexpression . The principal genetic tool used is a plasmid, a short, circular DNA fragment that once altered, is easily...viscous protein laden solution is collected and placed into about 40 cm sterile dialysis tubing. The tubing, which is made of cellulose , has pores... synthase and transferring receptor (Gray et al, 1993). The fourth domain is involved with the IRP binding to IRE. Arginines 728 and 732 contact the IRE

  5. Thrombomodulin: A Bifunctional Modulator of Inflammation and Coagulation in Sepsis

    Directory of Open Access Journals (Sweden)

    Takayuki Okamoto

    2012-01-01

    Full Text Available Deregulated interplay between inflammation and coagulation plays a pivotal role in the pathogenesis of sepsis. Therapeutic approaches that simultaneously target both inflammation and coagulation hold great promise for the treatment of sepsis. Thrombomodulin is an endogenous anticoagulant protein that, in cooperation with protein C and thrombin-activatable fibrinolysis inhibitor, serves to maintain the endothelial microenvironment in an anti-inflammatory and anticoagulant state. A recombinant soluble form of thrombomodulin has been approved to treat patients suffering from disseminated intravascular coagulation (DIC and has thus far shown greater therapeutic potential than heparin. A phase II clinical trial is currently underway in the USA to study the efficacy of thrombomodulin for the treatment of sepsis with DIC complications. This paper focuses on the critical roles that thrombomodulin plays at the intersection of inflammation and coagulation and proposes the possible existence of interactions with integrins via protein C. Finally, we provide a rationale for the clinical application of thrombomodulin for alleviating sepsis.

  6. Marine Bifunctional Sphingolipids from the Sponge Oceanapia ramsayi

    Directory of Open Access Journals (Sweden)

    Emile M. Gaydou

    2008-04-01

    Full Text Available During the course of our continuing studies on marine natural lipid products,two known sphingolipids have been isolated for the first time from a specimen of themarine sponge Oceanapia ramsayi collected at Itampolo on the west coast of Madagascarin the Indian Ocean. The structures were elucidated using NMR data and by comparisonwith literature data. The occurrence of these sphingolipids within other Oceanapia spp. isdiscussed.

  7. Bifunctional dendrons for multiple carbohydrate presentation via carbonyl chemistry

    Directory of Open Access Journals (Sweden)

    Davide Bini

    2014-07-01

    Full Text Available The synthesis of new dendrons of the generations 0, 1 and 2 with a double bond at the focal point and a carbonyl group at the termini has been carried out. The carbonyl group has been exploited for the multivalent conjugation to a sample saccharide by reductive amination and alkoxyamine conjugation.

  8. Bifunctional activity of deoxyhypusine synthase/hydroxylase from Trichomonas vaginalis.

    Science.gov (United States)

    Quintas-Granados, Laura Itzel; Carvajal Gamez, Bertha Isabel; Villalpando, Jose Luis; Ortega-Lopez, Jaime; Arroyo, Rossana; Azuara-Liceaga, Elisa; Álvarez-Sánchez, María Elizbeth

    2016-04-01

    The Trichomonas vaginalis genome analysis suggested the presence of a putative deoxyhypusine synthase (TvDHS) that catalyzes the posttranslational modification of eIF-5A. Herein, we expressed and purified the recombinant TvDHS (rTvDHS) protein (43 kDa) and the recombinant TveIF-5A (rTveIF-5A) precursor protein (46 kDa). A 41 kDa band of the native TvDHS was recognized by western blot analysis in T. vaginalis total protein extract by a mouse polyclonal anti-rTvDHS antibody. The enzymatic activity of rTvDHS was determined by in vitro rTveIF-5A precursor modification. The modification reaction was performed by using ((3)H)-spermidine, and the biochemical analysis showed that rTvDHS exhibited Km value of 0.6 μM. The rTvDHS activity was inhibited by the spermidine analog, N″-guanyl-1,7-diamino-heptane (GC7). Native gel electrophoresis analysis showed two bands corresponding to an rTvDHS-rTveIF-5A complex and an intermediate form of rTveIF-5A. The two forms were subsequently separated by ion exchange chromatography to identify the hypusine residue by MS/MS analysis. Moreover, mutations in TvDHS showed that the putative HE motif present in this enzyme is involved in the hydroxylation of TveIF-5A. We observed that only hypusine-containing TveIF-5A was bound to an RNA hairpin ERE structure from the cox-2 gene, which contains the AAAUGUCACAC consensus sequence. Interestingly, 2DE-WB assays, using parasites that were grown in DAB-culture conditions and transferred to exogenous putrescine, showed the new isoform of TveIF-5A. In summary, our results indicate that T. vaginalis contains an active TvDHS capable of modifying the precursor TveIF-5A protein, which subsequently exhibits RNA binding activity.

  9. Characterization of Afb, a novel bifunctional protein in Streptococcus agalactiae

    Directory of Open Access Journals (Sweden)

    Sanaz Dehbashi

    2016-03-01

    Full Text Available Background and Objectives: Streptococcus agalactiae is the leading cause of bacterial sepsis and meningitis in newborns and results in pneumonia and bacteremia in adults. A number of S. agalactiae components are involved in colonization of target cells. Destruction of peptidoglycan and division of covalently linked daughter cells is mediated by autolysins. In this study, autolytic activity and plasma binding ability of AFb novel recombinant protein of S. agalactiae was investigated.Materials and Methods: The gbs1805 gene was cloned and expressed. E. coli strains DH5α and BL21 were used as cloning and expression hosts, respectively. After purification, antigenicity and binding ability to plasma proteins of the recombinant protein was evaluated.Results: AFb, the 18KDa protein was purified successfully. The insoluble mature protein revealed the ability to bind to fibrinogen and fibronectin. This insoluble mature protein revealed that it has the ability to bind to fibrinogen and fibronectin plasma proteins. Furthermore, in silico analysis demonstrated the AFb has an autolytic activity.Conclusions: AFb is a novel protein capable of binding to fibrinogen and fibronectin. This findings lay a ground work for further investigation of the role of the bacteria in adhesion and colonization to the host. Keywords: Streptococcus agalactiae, Fibrinogen, Fibronectin, Autolysin

  10. Targeting Prostate Cancer with Bifunctional Modulators of the Androgen Receptor

    Science.gov (United States)

    2015-06-01

    infection of 4 and lysed 48 hours after infection with a Dounce homogenizer in 20 mM HEPES (pH 7.4), 1 mM EDTA, 5% glycerol , 20 mM sodium molyb- date, 5...50 L. After a 2-hours incubation, 100 L of a dextran coated charcoal solution (1% charcoal; 0.2% dextran in 10 mM HEPES, pH 7.4; 1 mM EDTA) was added...heat-inac- tivated, charcoal-stripped fetal bovine serum and seeded onto 96-well plates at a density of 2 104 cells/well. After an addi- tional 8

  11. Bifunctional Nanostructured Base Catalysts: Opportunities for BioFuels

    Energy Technology Data Exchange (ETDEWEB)

    Connor, William

    2010-12-30

    ABSTRACT This research studied and develop novel basic catalysts for production of renewable chemicals and fuels from biomass. We will focus on the development of unique porous structural-base catalysts formed by two techniques: from (mixed) metal-oxide bases and by nitrogen substitution for oxygen in zeolites. These catalysts will be compared to conventional solid base materials for aldol condensation, catalytic fast pyrolysis, and transesterification reactions. These reactions are important in processes that are currently being commercialized for production of fuels from biomass and will be pivotal in future biomass conversion to fuels and chemicals. Specifically, we have studied the aldol-condensation of acetone with furfural over oxides and zeolites, the conversion of sugars by rapid pyrolysis over zeolites and the trans-esterification of vegetable oil with methanol over mixed oxide catalysts. Our previous research has indicated that the base strength of framework nitrogen in nitrogen-substituted zeolites (NH-zeolites) is nearly twice as strong as in standard zeolites. Nitrogen substituted catalysts have been synthesized from several zeolites (including FAU, MFI, BEA, and LTL) using NH3 treatment.

  12. Scaffolding Catalysis: Expanding the Repertoire of Bifunctional Catalysts.

    Science.gov (United States)

    Tan, Kian L; Sun, Xixi; Worthy, Amanda D

    2012-02-01

    Inducing an intramolecular reaction is a powerful means of accelerating reactions. Though this mechanism of catalysis is common in enzymes, it is underutilized in synthetic catalysts. This article outlines our group's recent efforts to use reversible covalent bonding to induce an intramolecular reaction, allowing for rate acceleration as well as control of the selectivity in the desymmetrization of 1,2-diols.

  13. Pre-targeted radioimmunotherapy of solid tumors: A multidisciplinary approach; La radio-immunotherapie preciblee des tumeurs solides: une demarche pluridisciplinaire

    Energy Technology Data Exchange (ETDEWEB)

    Barbet, J.; Kraber-Bodere, F.; Faivre-Chauvet, A.; Gestin, J.F.; Bardies, M.; Chatal, J.F. [Institut National de la Sante et de la Recherche Medicale (INSERM), U601, Institut de Biologie, Dept. de Recherche en Cancerologie, 44 - Nantes (France); Nantes Univ., U601, Dept. de Recherche en Cancerologie, 44 (France); Campion, L. [Institut National de la Sante et de la Recherche Medicale (INSERM), U601, Institut de Biologie, Dept. de Recherche en Cancerologie, 44 - Nantes (France); Centre de lutte contre le cancer Rene-Gauducheau, 44 - Saint-Herblain (France)

    2007-09-15

    No effective therapy is currently available for the management of patients with metastases of most solid tumors. Thus, pre targeted radioimmunotherapy approaches have been developed that have shown promises. One of these techniques uses bi specific monoclonal antibody and radiolabeled bivalent haptens injected sequentially. In two clinical trials, 29 patients with advanced, progressive medullary thyroid carcinoma, as documented by short serum calcitonin doubling times, received an anti-carcinoembryonic antigen x anti-diethylenetriamine pentaacetic acid (DTPA)-indium) bi specific monoclonal antibody, followed four to five days later by an {sup 131}I-labeled bivalent hapten. Overall survival was significantly longer in high-risk, treated patients than in high-risk, untreated patients (110 versus 61 months; P < 0.030). Forty-seven percent of patients, defined as biologic responders by a more than 100% increase in calcitonin doubling time, experienced significantly longer survival than non-responders (159 versus 109 months; P < 0.035) and untreated patients (159 versus 61 months; P < 0.010). Toxicity was mainly hematologic and related to bone/bone-marrow tumor spread. Various multidisciplinary aspects of this long-term endeavor that resulted in long-term disease stabilization and a significantly longer survival in high-risk patients are described and discussed with respect to future directions of research on pre targeted radioimmunotherapy. (authors)

  14. UV photocatalysis-assisted adsorptive desulfurization of gasoline using bi-functional Ti-Si-O material%Ti-Si-O双功能催化吸附材料的汽油光催化-吸附耦合脱硫性能

    Institute of Scientific and Technical Information of China (English)

    叶飞燕; 梅亮; 肖静; 夏启斌; 李忠

    2015-01-01

    研究新型双功能Ti-Si-O吸附催化材料在紫外光照射下对汽油的光催化-吸附耦合脱硫性能.采用溶胶-凝胶法制备了Ti-Si-O双功能催化吸附材料,并用N2吸附法、XRD等对Ti-Si-O进行了结构表征;有机硫化物的含量和种类采用液相色谱、库仑仪、GC-MS和GC-SCD检测.实验结果表明:当钛硅摩尔比为3:7时,所制得的Ti-Si-O材料的光催化-吸附耦合脱硫性能最好,脱硫率达 96%,优于单一的 TiO2和 SiO2材料;Ti0.3Si0.7O2对汽油中的 3种有机硫化物的光催化-吸附耦合脱硫速率大小顺序为T > MT > BT;GC-MS产物检测表明汽油中的有机硫在Ti0.3Si0.7O2双功能催化吸附材料表面转化成极性较强的砜类物质,而后选择性地吸附在Ti0.3Si0.7O2表面;Ti0.3Si0.7O2可经过丙酮洗涤和热空气氧化法再生,5 次循环使用后的脱硫性能基本维持不变;在光催化-吸附耦合工艺下, Ti0.3Si0.7O2材料可将真实汽油的硫含量降低至10μg·g-1以下.%UV photocatalysis-assisted adsorptive desulfurization of bi-functional Ti-Si-O materials was investigated for clean gasoline. The Ti-Si-O materials were prepared by the sol-gel method and then characterized by N2 adsorption, X-ray diffraction,etc. Desulfurization performances of the Ti-Si-O materials were examined. Sulfur species in gasoline were measured by HPLC, coulomb instrument, GC-MS and GC-SCD. The results showed that at the Ti/Si mole ratio of 3:7, the desulfurization efficiency of the Ti-Si-O material reached the maximum [96%, 11.52 mg S·(g sorb)-1], which was more superior than those of the pure TiO2 and SiO2 materials. The photocatalysis-assisted adsorptive desulfurization (PADS) rates of Ti0.3Si0.7O2 for the three organosulfur compounds followed the order of T > MT > BT. On the basis of GC-MS analysis for desulfurized products, it could be judged that the organosulfur compounds in gasoline were firstly photocatalytically oxidized to polar sulfone over Ti0.3Si0.7O2

  15. Catalytic conversion of Jerusalem artichoke tuber into hexitols using the bifunctional catalyst Ru/(AC-SO3H)%双功能催化剂Ru/(AC-SO3H)催化转化菊芋根茎制备六元醇

    Institute of Scientific and Technical Information of China (English)

    周立坤; 李振雷; 庞纪峰; 郑明远; 王爱琴; 张涛

    2015-01-01

    菊芋根茎水解反应是主要的反应路径.在H2气氛下反应,糖类产率在1 h内达到最大值,然后开始逐渐降低,同时加氢产物逐渐增加.因此, H2气氛下反应过程中生成的糖类是中间产物.以菊芋根茎为原料,1%Ru/(AC-SO3H)催化剂循环使用4次后六元醇产率由87%降至55%;而以菊粉为原料,循环4次后六元醇产率略有降低. ICP测试表明, Ru催化剂并未流失,3次循环后催化剂的CO化学吸附表明, Ru的分散度由74.2%降至17.8%.这表明催化剂失活是由菊芋根茎中的杂质毒化Ru活性位点导致的.%Jerusalem artichoke tuber (JAT) was employed as a feedstock for production of hexitols under mild conditions over a sulfonated activated carbon supported Ru catalyst (Ru/(AC-SO3H)). In compari-son with conventional Ru/AC catalyst, the sulfonation process of the carbon support was observed to create abundant surface acid groups, which in turn function as the anchoring sites for Ru nano-particles, thus increasing the dispersion of Ru. Consequently, the bifunctional Ru/(AC-SO3H) catalyst displayed significantly enhanced activity in one-pot production of hexitols from JAT; the hexitols yield achieved 92.6% over the 3%Ru/(AC-SO3H) catalyst when the reaction was conducted at 373K and 6 MPa H2 for 3 h. The stability of the catalyst was also investigated, which showed a decreasing trend in the yield of sorbitol with the run number due to poisoning of Ru surface by the impurity in the JAT feedstock. In contrast, when pure inulin was used as the feedstock, the catalyst presented excellent stability in the successive four runs.

  16. Pt-Si Bifunctional Surfaces for CO and Methanol Electro-Oxidation

    DEFF Research Database (Denmark)

    Permyakova, Anastasia A.; Han, Binghong; Jensen, Jens Oluf;

    2015-01-01

    and storage. Here we report on Pt-Si bulk samples prepared by arc-melting, for the first time, with high activities toward the electro-oxidation of CO and methanol. Increasing the Si concentration on the surface was correlated with the shifts of onset oxidation potentials to lower values and higher activities...... for CO and methanol electro-oxidation. It is proposed that the reaction on the Pt-Si catalyst could follow a Langmuir-Hinshelwood type of mechanism, where substantially enhanced catalytic activity is attributed to the fine-tuning of the surface Pt-Si atomic structure....

  17. An X-band bifunctional antenna using anisotropic transparent meta-surface

    Science.gov (United States)

    Cai, Tong; Wang, Guang-Ming; Liang, Jian-Gang

    2017-04-01

    An integration of a transmitarray antenna and a beam-steering antenna has been achieved and experimentally demonstrated. The antenna system operating at X-band (8-12 GHz) is implemented by a well-optimized transparent meta-surface and launched by polarization-controlled feed antennas. The transparent meta-surface, with polarization-independent property, consists of 12 × 12 elements with a parabolic phase distribution at y-direction and a linear phase gradient at x = direction, respectively. Illuminating the meta-surface with differently-polarized electromagnetic waves, anomalous phenomena of beam bending and focusing are clearly observed. The performances of the antenna system are investigated in depth through near-field analysis and far-field measurements. Numerical and experimental results coincide well, indicating that the proposed antenna system advances in many aspects such as bifuncional radiation patterns, a broad bandwidth and also a simple fabrication process based on the convenient print circuit board (PCB) technology.

  18. Synthesis of Small Peptides and Their Use as Bifunctional Chelating Agents in Diagnostic Radiopharmaceuticalst

    Institute of Scientific and Technical Information of China (English)

    TANG Chongzhi; LI Longjin; PANG Zhen; YUAN Zhibin

    2009-01-01

    Three linear mercaptoacetyl tetrapeptides, MAG3-Leu-OH, MAG3-Phe-OH and MAG3-Tyr-OH, were synthe-sized via a liquid phase synthetic approach with high yields and high purities without using preparative HPLC tech-nique. The obtained products could be radiolabeled easily with 99mTc under a mild condition and showed high sta-bility in vitro and in vivo conditions. The scintigrams of the tested rabbit after injection of the radiolabeled products via mainline showed a normal biodistribution, which is definitely different from that of 99mTc-MAG3, indicating different routes of metabolization between these two radiochemicals.

  19. Magnetic optical bifunctional CoPt3/Co multilayered nanowire arrays

    Institute of Scientific and Technical Information of China (English)

    苏轶坤; 闫志龙; 吴喜明; 刘欢; 任肖; 杨海涛

    2015-01-01

    CoPt3/Co multilayered nanowire (NW) arrays are synthesized by pulsed electrodeposition into nanoporous anodic aluminum oxide (AAO) templates. The electrochemistry deposition parameters are determined by cyclic voltammetry to realize the well control of the ratio of Co to Pt and the length of every segment. The x-ray diffraction (XRD) patterns show that both Co and CoPt3 NWs exhibit face-centered cubic ( f cc) structures. In the UV-visible absorption spectra, CoPt3/Co NW arrays show a red-shift with respect to pure CoPt3NWs. Compared with the pure Co nanowire arrays, the CoPt3/Co multilayered nanowire arrays show a weak shape anisotropy and well-modulated magnetic properties. CoPt3/Co multilayered nanowires are highly encouraging that new families of bimetallic nanosystems may be developed to meet the needs of nanomaterials in emerging multifunctional nanotechnologies.

  20. The Golgi localized bifunctional UDP-rhamnose/UDP-galactose transporter family of Arabidopsis

    DEFF Research Database (Denmark)

    Rautengarten, Carsten; Ebert, Berit; Moreno, Ignacio

    2014-01-01

    Delivery of nucleotide sugar substrates into the Golgi apparatus and endoplasmic reticulum for processes such as cell wall biosynthesis and protein glycosylation is critical for plant growth and development. Plant genomes encode large families of uncharacterized nucleotide sugar transporters......-of-function and overexpression lines for two of these transporters identified biochemical alterations supporting their roles in the biosynthesis of Rha- and Gal-containing polysaccharides. Thus, cell wall polysaccharide biosynthesis in the Golgi apparatus of plants is likely also regulated by substrate transport mechanisms....

  1. A bifunctional amorphous polymer exhibiting equal linear and circular photoinduced birefringences.

    Science.gov (United States)

    Royes, Jorge; Provenzano, Clementina; Pagliusi, Pasquale; Tejedor, Rosa M; Piñol, Milagros; Oriol, Luis

    2014-11-01

    The large and reversible photoinduced linear and circular birefringences in azo-compounds are at the basis of the interest in these materials, which are potentially useful for several applications. Since the onset of the linear and circular anisotropies relies on orientational processes, which typically occur on the molecular and supramolecular length scale, respectively, a circular birefringence at least one order of magnitude lower than the linear one is usually observed. Here, the synthesis and characterization of an amorphous polymer with a dimeric repeating unit containing a cyanoazobenzene and a cyanobiphenyl moiety are reported, in which identical optical linear and circular birefringences are induced for proper light dose and ellipticity. A pump-probe technique and an analytical method based on the Stokes-Mueller formalism are used to investigate the photoinduced effects and to evaluate the anisotropies. The peculiar photoresponse of the polymer makes it a good candidate for applications in smart functional devices.

  2. Photovoltaic and Electroluminescence Bifunctional Devices with Starburst Amine and Rare-Earth-Complexes

    Institute of Scientific and Technical Information of China (English)

    WEN Fu-Shan; LI Wen-Lian; WEI Han-Zhi; LIU Yun-Qi; KIM Jin-Hyeok

    2007-01-01

    We fabricate the organic photovoltaic (P V) devices, in which 4,4',4"-tris-(2-methylphenylphenylamino)triphenylamine (m-MTDATA) and rare earth (RE) (dibenzoylmethanato)3(bathohenanthroline) (RE(DBM)3bath) (RE = Nd or Pr) are used as electron donor and acceptor, and investigate their PV properties. The PV diode fabricated in the ptimum processing conditions shows the open-circuit voltage of 1.91 V, short-circuit current of 0.1mA/cm2, fill factor of 0.38, and the overall power conversion efficiency of 1.9% when it is irradiated under UV light (4mW/cm2). The photocurrent density exhibits an increase of 20% at least when a very thin LiF layer is inserted between the RE-complexes and the Al cathode. A strong electroluminescence from the interface is also observed and the maximum luminance of a yellow emission resulted from the exciplex is 580 cd/m2 at 17V bias.

  3. Silver-Copper Nanoalloy Catalyst Layer for Bifunctional Air Electrodes in Alkaline Media.

    Science.gov (United States)

    Wu, Xiaoqiang; Chen, Fuyi; Jin, Yachao; Zhang, Nan; Johnston, Roy L

    2015-08-19

    A carbon-free and binder-free catalyst layer composed of a Ag-Cu nanoalloy on Ni foam was used as the air cathode in a zinc-air battery for the first time. The Ag-Cu catalyst was prepared using pulsed laser deposition. The structures of the catalysts were found to consist of crystalline Ag-Cu nanoalloy particles with an average size of 2.58 nm embedded in amorphous Cu films. As observed in the X-ray photoelectron spectra, the Ag 3d core levels shifted to higher binding energies, whereas the Cu 2p core levels shifted to lower binding energies, indicating alloying of the silver and copper. Rotating disk electrode measurements indicated that the oxygen reduction reaction (ORR) proceeded through a four-electron pathway on the Ag50Cu50 and Ag90Cu10 nanoalloy catalysts in alkaline solution. Moreover, the catalytic activity of Ag50Cu50 in the ORR is more efficient than that of Ag90Cu10. By performing charge and discharge cycling measurements, the Ag50Cu50 catalyst layer was confirmed to have a maximum power density of approximately 86.3 mW cm(-2) and an acceptable cell voltage at 0.863 V for current densities up to 100 mA cm(-2) in primary zinc-air batteries. In addition, a round-trip efficiency of approximately 50% at a current density of 20 mA cm(-2) was also obtained in the test.

  4. Insights into Diterpene Cyclization from Structure of Bifunctional Abietadiene Synthase from Abies grandis

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ke; Gao, Yang; Hoy, Julie A.; Mann, Francis M.; Honzatko, Richard B.; Peters, Reuben J. (Iowa State)

    2013-09-24

    Abietadiene synthase from Abies grandis (AgAS) is a model system for diterpene synthase activity, catalyzing class I (ionization-initiated) and class II (protonation-initiated) cyclization reactions. Reported here is the crystal structure of AgAS at 2.3 {angstrom} resolution and molecular dynamics simulations of that structure with and without active site ligands. AgAS has three domains ({alpha}, {beta}, and {gamma}). The class I active site is within the C-terminal {alpha} domain, and the class II active site is between the N-terminal {gamma} and {beta} domains. The domain organization resembles that of monofunctional diterpene synthases and is consistent with proposed evolutionary origins of terpene synthases. Molecular dynamics simulations were carried out to determine the effect of substrate binding on enzymatic structure. Although such studies of the class I active site do lead to an enclosed substrate-Mg{sup 2+} complex similar to that observed in crystal structures of related plant enzymes, it does not enforce a single substrate conformation consistent with the known product stereochemistry. Simulations of the class II active site were more informative, with observation of a well ordered external loop migration. This 'loop-in' conformation not only limits solvent access but also greatly increases the number of conformational states accessible to the substrate while destabilizing the nonproductive substrate conformation present in the 'loop-out' conformation. Moreover, these conformational changes at the class II active site drive the substrate toward the proposed transition state. Docked substrate complexes were further assessed with regard to the effects of site-directed mutations on class I and II activities.

  5. Synthesis of bifunctional Gd2O3:Eu3+nanocrystals and their applications in biomedical imaging

    Institute of Scientific and Technical Information of China (English)

    吴燕利; 徐贤柱; 李倩兰; 阳如春; 丁海新; 肖强

    2015-01-01

    Ultrafine Gd2O3:Eu3+nanocrystals were successfully prepared by a simple reverse microemulsion method and subsequent calcination. Their structural, optical and magnetic properties were investigated using scanning electron microscopy (SEM), transmis-sion electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), photoluminescence (PL), and magnetic property measurement system (MPMS). The amorphous Gd2(CO3)3:Eu3+colloidal spheres were proved as an intermediate product, and gradually transformed into crystallized Gd2O3:Eu3+with average diameter less than 100 nm. The paramagnetic property of the synthesized Gd2O3:Eu3+nanocrystals were confirmed with its linear hysteresis plot (M-H). And Gd2O3:Eu3+nanocrystals showed high contrast T1-enhancing modality due to the presence of the Gd3+ ions onto the particle surface. In addition, the application of the Gd2O3:Eu3+nanocrystals as biotag for cell labeling was reported, red fluorescence from Eu3+ions observed by fluorescence micros-copy showed that the nanocrystals could permeate the cell membrane. Cytotoxicity studies of the Gd2O3:Eu3+nanocrystals showed no adverse effect on cell viability, evidencing their high biological compatibility. Therefore, the nanoprobe formed from Gd2O3:Eu3+nanocrystals provided the dual modality of optical and magnetic resonance imaging.

  6. Cations modulate the substrate specificity of bifunctional class I O-methyltransferase from Ammi majus.

    Science.gov (United States)

    Lukacin, Richard; Matern, Ulrich; Specker, Silvia; Vogt, Thomas

    2004-11-19

    Caffeoyl-coenzyme A O-methyltransferase cDNA was cloned from dark-grown Ammi majus L. (Apiaceae) cells treated with a crude fungal elicitor and the open reading frame was expressed in Escherichia coli. The translated polypeptide of 27.1-kDa shared significant identity to other members of this highly conserved class of proteins and was 98.8% identical to the corresponding O-methyltransferase from parsley. For biochemical characterization, the recombinant enzyme could be purified to apparent homogeneity by metal-affinity chromatography, although the recombinant enzyme did not contain any affinity tag. Based on sequence analysis and substrate specificity, the enzyme classifies as a cation-dependent O-methyltransferase with pronounced preference for caffeoyl coenzyme A, when assayed in the presence of Mg2+-ions. Surprisingly, however, the substrate specificity changed dramatically, when Mg2+ was replaced by Mn2+ or Co2+ in the assays. This effect could point to yet unknown functions and substrate specificities in situ and suggests promiscuous roles for the lignin specific cluster of plant O-methyltransferases.

  7. Bifunctional lanthanum phosphate substrates as novel adsorbents and biocatalyst supports for perchlorate removal

    Energy Technology Data Exchange (ETDEWEB)

    Sankar, Sasidharan [Materials Science and Technology Division (India); Prajeesh, Gangadharan Puthiya Veetil; Anupama, Vijaya Nadaraja [Process Engineering and Environmental Technology Division, CSIR – National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Thiruvananthapuram 695019 (India); Krishnakumar, Bhaskaran [Process Engineering and Environmental Technology Division, CSIR – National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Thiruvananthapuram 695019 (India); Academy of Scientific and Industrial Research (AcSIR) (India); Hareesh, Padinhattayil [Materials Science and Technology Division (India); Nair, Balagopal N. [R and D Centre, Noritake Co. Ltd., Aichi (Japan); Warrier, Krishna Gopakumar [Materials Science and Technology Division (India); Academy of Scientific and Industrial Research (AcSIR) (India); Hareesh, Unnikrishnan Nair Saraswathy, E-mail: hareesh@niist.res.in [Materials Science and Technology Division (India); Academy of Scientific and Industrial Research (AcSIR) (India)

    2014-06-30

    Graphical abstract: Porous lanthanum phosphate substrates, obtained by an environmentally benign thermal gelation process, performed the role of dual functional sorbent facilitating perchlorate adsorption and bioremediation through the growth of perchlorate reducing microbial colonies. - Highlights: • Lanthanum phosphate monoliths as efficient perchlorate adsorbents. • And also as substrates for biofilm (perchlorate reducing bacteria) growth. • Environmentally benign thermal gelation process for substrate fabrication. • 98% adsorption efficiency for perchlorate concentrations up to 100 μg/L. • The regenerated monoliths show nearly 100% reusability. - Abstract: Porous lanthanum phosphate substrates, obtained by an environmentally benign colloidal forming process employing methyl cellulose, are reported here as excellent adsorbents of perchlorate with >98% efficiency and with 100% reusability. Additionally, the effectiveness of such substrates as biocatalyst supports that facilitate biofilm formation of perchlorate reducing microbes (Serratia marcescens NIIST 5) is also demonstrated for the first time. The adsorption of perchlorate ions is attributed to the pore structure of lanthanum phosphate substrate and the microbial attachment is primarily ascribed to its intrinsic hydrophobic property. Lanthanum phosphate thus emerges as a dual functional material that possesses an integrated adsorption/bioremediation property for the effective removal of ClO{sub 4}{sup −} which is an increasingly important environmental contaminant.

  8. Bifunctional (cyclopentadienone)iron-tricarbonyl complexes: Synthesis, computational studies and application in reductive amination

    KAUST Repository

    Moulin, Solenne

    2013-11-15

    Reductive amination under hydrogen pressure is a valuable process in organic chemistry to access amine derivatives from aldehydes or ketones. Knölker\\'s complex has been shown to be an efficient iron catalyst in this reaction. To determine the influence of the substituents on the cyclopentadienone ancillary ligand, a series of modified Knölker\\'s complexes was synthesised and fully characterised. These complexes were also transformed into their analogous acetonitrile iron-dicarbonyl complexes. Catalytic activities of these complexes were evaluated and compared in a model reaction. The scope of this reaction is also reported. For mechanistic insights, deuterium-labelling experiments and DFT calculations were undertaken and are also presented. Festival of amination: Two series of modified Knölker\\'s complexes were synthesised and applied in the reductive amination of various carbonyl derivatives with primary or secondary amines (see scheme, TIPS = triisopropylsilyl). For a mechanistic insight, deuterium-labelling experiments and DFT calculations were undertaken and are also presented. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Bifunctional ultrasound assisted extraction and determination of Elettaria cardamomum Maton essential oil.

    Science.gov (United States)

    Sereshti, Hassan; Rohanifar, Ahmad; Bakhtiari, Sadjad; Samadi, Soheila

    2012-05-18

    A new hyphenated extraction method composed of ultrasound assisted extraction (UAE)-optimized ultrasound assisted emulsification microextraction (USAEME) was developed for the extraction and preconcentration of the essential oil of Elettaria cardamomum Maton. The essential oil was analyzed by gas chromatography-mass spectrometry (GC-MS) and optimization was performed using gas chromatography-flame ionization detection (GC-FID). Ultrasound played two different roles in the extraction of the essential oil. First, as a source of sufficient energy to break the oil-containing glands in order to release the oil, and second as an emulsifier to disperse the organic phase within water. The effective parameters (factors) of USAEME including volume of extraction solvent (C(2)H(4)Cl(2)), extraction temperature and ultrasonic time were optimized by using a central composite design (CCD). The optimal conditions were 120 μL for extraction solvent volume, 32.5 °C for temperature and 10.5 min for ultrasonic time. The linear dynamic ranges (LDRs) were 0.01-50 mg L(-1) with the determination coefficients in the range of 0.9990-0.9999. The limits of detection (LODs) and the relative standard deviations (RSDs) were 0.001-0.007 mg L(-1) and 3.6-6.3%, respectively. The enrichment factors were 93-98. The main components of the extracted essential oil were α-terpenyl acetate (46.0%), 1,8-cineole (27.7%), linalool (5.3%), α-terpineol (4.0%), linalyl acetate (3.5%).

  10. Combining the Physical Adsorption Approach and the Covalent Attachment Method to Prepare a Bifunctional Bioreactor

    Directory of Open Access Journals (Sweden)

    Zhi Wang

    2012-09-01

    Full Text Available Aminopropyl-functionalized SBA-15 mesoporous silica was used as a support to adsorb myoglobin. Then, in order to avoid the leakage of adsorbed myoglobin, lysozyme was covalently tethered to the internal and external surface of the mesoporous silica with glutaraldehyde as the coupling agent. The property of amino-functionalized mesoporous silica was characterized by N2 adsorption-desorption and thermogravimetric (TG analysis. The feature of the silica-based matrix before and after myoglobin adsorption was identified by fourier transform infrared (FTIR and UV/VIS measurement. With o-dianisidine and H2O2 as the substrate, the peroxidase activity of adsorbed myoglobin was determined. With Micrococus lysodeilicus as the substrate, the antibacterial activity of covalently tethered lysozyme was measured. Results demonstrated that the final product not only presented peroxidase activity of the myoglobin but yielded antibacterial activity of the lysozyme.

  11. Bifunctional thermoelectric tube made of tilted multilayer material as an alternative to standard heat exchangers.

    Science.gov (United States)

    Takahashi, Kouhei; Kanno, Tsutomu; Sakai, Akihiro; Tamaki, Hiromasa; Kusada, Hideo; Yamada, Yuka

    2013-01-01

    Enormously large amount of heat produced by human activities is now mostly wasted into the environment without use. To realize a sustainable society, it is important to develop practical solutions for waste heat recovery. Here, we demonstrate that a tubular thermoelectric device made of tilted multilayer of Bi(0.5)Sb(1.5)Te3/Ni provides a promising solution. The Bi(0.5)Sb(1.5)Te3/Ni tube allows tightly sealed fluid flow inside itself, and operates in analogy with the standard shell and tube heat exchanger. We show that it achieves perfect balance between efficient heat exchange and high-power generation with a heat transfer coefficient of 4.0 kW/m(2)K and a volume power density of 10 kW/m(3) using low-grade heat sources below 100°C. The Bi(0.5)Sb(1.5)Te3/Ni tube thus serves as a power generator and a heat exchanger within a single unit, which is advantageous for developing new cogeneration systems in factories, vessels, and automobiles where cooling of excess heat is routinely carried out.

  12. Development of Novel Bifunctional Compounds That Induce Apoptosis in Prostate Cancer Cells

    Science.gov (United States)

    2009-03-01

    Agilent 6410 triple quadrupole electrospray ionization mass spectrometer. Doubly protonated forms of 11β adducts are selected for collision induced...expression of p21 in tissue sections after treatment with 11β. These techniques proved not to be sensitive enough to determine their responses in the...radiolabeled analog that incorporated one 14C atom into the linker of our molecule we have used the technique of Accelerator Mass Spectrometry (AMS) to

  13. Rapid enrichment of leucocytes and genomic DNA from blood based on bifunctional core shell magnetic nanoparticles

    Science.gov (United States)

    Xie, Xin; Nie, Xiaorong; Yu, Bingbin; Zhang, Xu

    2007-04-01

    A series of protocols are proposed to extract genomic DNA from whole blood at different scales using carboxyl-functionalized magnetic nanoparticles as solid-phase absorbents. The enrichment of leucocytes and the adsorption of genomic DNA can be achieved with the same carboxyl-functionalized magnetic nanoparticles. The DNA bound to the bead surfaces can be used directly as PCR templates. By coupling cell separation and DNA purification, the whole operation can be accomplished in a few minutes. Our simplified protocols proved to be rapid, low cost, and biologically and chemically non-hazardous, and are therefore promising for microfabrication of a DNA-preparation chip and routine laboratory use.

  14. Extraction studies of actinides and lanthanides by bifunctional H-phosphonates

    Energy Technology Data Exchange (ETDEWEB)

    Brahmmananda Rao, C.V.S.; Jayalakshmi, S.; Subramaniam, S.; Sivaraman, N.; Vasudeva Rao, P.R. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Fuel Chemistry Div.

    2015-07-01

    The extraction behavior of actinides and lanthanides was investigated by three homologues of H-phosphonates viz. diamylhydrogen phosphonate (DAHP), dihexylhydrogen phosphonate (DHeHP) and dioctylhydrogen phosphonate (DOHP). These compounds were synthesized, characterized by using elemental analysis, IR, NMR ({sup 1}H, {sup 13}C and {sup 31}P) and mass spectroscopy. The extraction behavior of these ligands was compared with a member of dialkylalkyl phosphonate viz. diamylamyl phosphonate (DAAP). The present study has been taken up to understand the influence of phosphorus bonded hydrogen and alkyl groups in H-phosphonates on the extraction behavior of actinides and lanthanides. The important physicochemical properties such as density, viscosity, phase disengagement time, dispersion number and solubility are also reported for the first time. These compounds extract actinides through the P-OH group which is present in tautomeric equilibrium with the P-H bond at lower acidities, and through the phosphoryl group at higher acidities thus exhibiting a dual behaviour. The physical properties can be modified by suitably designing the extractant based on the requirement for a given purpose. The H-phosphonates have potential applications in pre-concentration of large quantities of dilute solutions of uranium and plutonium.

  15. One pot synthesis of cyclohexanone oxime from nitrobenzene using a bifunctional catalyst.

    Science.gov (United States)

    Rubio-Marqués, Paula; Hernández-Garrido, Juan Carlos; Leyva-Pérez, Antonio; Corma, Avelino

    2014-02-18

    Cyclohexanone oxime is formed from nitrobenzene with 97% yield in a one-pot reaction catalysed by palladium and gold nanoparticles on carbon. The reaction is carried out under hydrogen at 60 °C and the overall transformation involves a multi-step catalysed mechanism from which intermediates and catalytically active species have been identified.

  16. Molecular characterization of the bifunctional VHDL-CP from the hemolymph of white shrimp Penaeus vannamei.

    Science.gov (United States)

    Yepiz-Plascencia, Gloria; Jiménez-Vega, Florinda; Romo-Figueroa, María Gabriela; Sotelo-Mundo, Rogerio R; Vargas-Albores, Francisco

    2002-07-01

    A very high-density lipoprotein (VHDL) purified from the hemolymph of the white shrimp Penaeus vannamei is shown to be identical to the clotting protein (CP) previously reported from the same organism based on size, subunits and N-terminal amino acid sequence. The approximately 440-kDa protein, a homodimer of approximately 200-kDa subunits, was present in KBr gradient fractions ranging in density from 1.155 to 1.212 g/ml. Samples of VHDL after purification by strong cation exchange chromatography were subjected to electrophoresis on native polyacrylamide gels. Lipids associated with the VHDL were detected by Sudan Black and Oil Red O staining and comprise 9-15% of the purified protein. Circular dichroism of VHDL-CP indicates that the alpha-helix content of the VHDL-CP is 32%, while beta-sheets correspond to 33%, closely resembling the secondary structure of CP from the shrimp Penaeus monodon and, remarkably, the secondary structure of very high-density lipophorin E (VHDLpE) from the tobacco hornworm, Manduca sexta.

  17. Efficient Synthesis of Dimethyl Ether from Methanol in a Bifunctional Zeolite Membrane Reactor.

    Science.gov (United States)

    Zhou, Chen; Wang, Nanyi; Qian, Yanan; Liu, Xiaoxing; Caro, Jürgen; Huang, Aisheng

    2016-10-04

    A sandwich FAU-LTA zeolite dual-layer membrane has been developed and used as a catalytic membrane reactor for the synthesis of dimethyl ether (DME). In the top H-FAU layer with mild acidity, methanol is dehydrated to DME. The other reaction product, water, is removed in situ through a hydrophilic Na-LTA layer, which is located between the porous alumina support and the H-FAU top layer. The combination of mild acidity with the continuous removal of water results in high methanol conversion (90.9 % at 310 °C) and essentially 100 % DME selectivity. Furthermore, owing to the selective and continuous removal of water through the Na-LTA membrane, catalyst deactivation can be effectively suppressed.

  18. Surface-Renewable AgNPs/CNT/rGO Nanocomposites as Bifunctional Impedimetric Sensors

    Institute of Scientific and Technical Information of China (English)

    Azadeh Azadbakht; Amir Reza Abbasi; Zohreh Derikvand; Ziba Karimi; Mahmoud Roushani

    2017-01-01

    In this study, glassy carbon electrode modified by silver nanoparticles/carbon nanotube/reduced graphene oxide (AgNPs/CNT/rGO) composite has been utilized as a platform to immobilize cis-dioxomolybdenum (VI)–salicylaldehyde-histidine (MoO2/Sal-His). The modified electrode shows two reversible redox couples for MoO2/Sal-His. Electrocatalytic oxidation of cysteine (CySH) and electrocatalytic reduction of iodate on the surface of the modified electrode were investigated with cyclic voltammetry and electrochemical impedance spectroscopy methods. The presence of MoO2/Sal-His on AgNPs/CNT/rGO shifted the catalytic current of iodate reduction to a more positive potential and the catalytic current of cysteine oxidation to a more negative potential. The change of interfacial charge transfer resistance (Rct) recorded by the modified electrode was monitored for sensitive quantitative detection of CySH and iodate. Moreover, the sensor has a good stability, and it can be renewed easily and repeatedly through a mechanical or electrochemical process.

  19. Bifunctional role of the Treponema pallidum extracellular matrix binding adhesin Tp0751.

    Science.gov (United States)

    Houston, Simon; Hof, Rebecca; Francescutti, Teresa; Hawkes, Aaron; Boulanger, Martin J; Cameron, Caroline E

    2011-03-01

    Treponema pallidum, the causative agent of syphilis, is a highly invasive pathogenic spirochete capable of attaching to host cells, invading the tissue barrier, and undergoing rapid widespread dissemination via the circulatory system. The T. pallidum adhesin Tp0751 was previously shown to bind laminin, the most abundant component of the basement membrane, suggesting a role for this adhesin in host tissue colonization and bacterial dissemination. We hypothesized that similar to that of other invasive pathogens, the interaction of T. pallidum with host coagulation proteins, such as fibrinogen, may also be crucial for dissemination via the circulatory system. To test this prediction, we used enzyme-linked immunosorbent assay (ELISA) methodology to demonstrate specific binding of soluble recombinant Tp0751 to human fibrinogen. Click-chemistry-based palmitoylation profiling of heterologously expressed Tp0751 confirmed the presence of a lipid attachment site within this adhesin. Analysis of the Tp0751 primary sequence revealed the presence of a C-terminal putative HEXXH metalloprotease motif, and in vitro degradation assays confirmed that recombinant Tp0751 purified from both insect and Escherichia coli expression systems degrades human fibrinogen and laminin. The proteolytic activity of Tp0751 was abolished by the presence of the metalloprotease inhibitor 1,10-phenanthroline. Further, inductively coupled plasma-mass spectrometry showed that Tp0751 binds zinc and calcium. Collectively, these results indicate that Tp0751 is a zinc-dependent, membrane-associated protease that exhibits metalloprotease-like characteristics. However, site-directed mutagenesis of the HEXXH motif to HQXXH did not abolish the proteolytic activity of Tp0751, indicating that further mutagenesis studies are required to elucidate the critical active site residues associated with this protein. This study represents the first published description of a T. pallidum protease capable of degrading host components and thus provides novel insight into the mechanism of T. pallidum dissemination.

  20. Bifunctional polydopamine thin film coated zinc oxide nanorods for label-free photoelectrochemical immunoassay.

    Science.gov (United States)

    Yang, Yan; Hu, Weihua

    2017-05-01

    Photoelectrochemical (PEC) detection is a promising method for label-free immunoassay by reporting the specific biological recognition events with electrical signals. However, it is challenging to rationally incorporate immunosensing components with a photocurrent conversion interface, which generally necessitates multistep fabrication and careful tailoring of various components such as photoactive material and biological probe. For high detection reliability and reproducibility, it is highly desirable to rationally construct an efficient PEC interface with architecture as simple as possible. In this work, a novel yet simple PEC immunosensor based on bio-inspired polydopamine (PDA) thin film-coated zinc oxide (ZnO) nanorods was reported. In this PEC immunosensor, the PDA thin film serves simultaneously as a unique sensitizer for charge separation as well as a functional layer for probe antibody attachment. The photocurrent on this electrode under illumination decreases upon the immunoreaction on the surface, possibly due to the blocking effect of formed immunocomplexes on the access of reducing reagent to the photoelectrode, thus offering a simple and reliable platform for PEC label-free immunoassay. By using an antibody-antigen pair as a model, successful label-free immunoassay was achieved with a detection limit of 10pgmL(-1) and a dynamic range from 100pgmL(-1) to 500ngmL(-1). This work demonstrates intriguing electro-optical property and bioconjugation activity of PDA film and may pave the way toward advanced PEC immunoassays.

  1. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    Science.gov (United States)

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.

    2016-07-01

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.

  2. Biosynthesis of the earthy odorant geosmin by a bifunctional Streptomyces coelicolor enzyme.

    Science.gov (United States)

    Jiang, Jiaoyang; He, Xiaofei; Cane, David E

    2007-11-01

    Geosmin is responsible for the characteristic odor of moist soil, as well as off-flavors in drinking water and foodstuffs. Geosmin is generated from farnesyl diphosphate (FPP, 2) by an enzyme that is encoded by the SCO6073 gene in the soil organism Streptomyces coelicolor A32 (ref. 3). We have now shown that the recombinant N-terminal half of this protein catalyzes the Mg2+-dependent cyclization of FPP to germacradienol and germacrene D, while the highly homologous C-terminal domain, previously thought to be catalytically silent, catalyzes the Mg2+-dependent conversion of germacradienol to geosmin. Site-directed mutagenesis confirmed that the N- and C-terminal domains each harbor a distinct, independently functioning active site. A mutation in the N-terminal domain of germacradienol-geosmin synthase of a catalytically essential serine to alanine results in the conversion of FPP to a mixture of sesquiterpenes that includes an aberrant product identified as isolepidozene, which was previously suggested to be an enzyme-bound intermediate in the cyclization of FPP to germacradienol.

  3. Biosynthesis of bifunctional iron oxyhydrosulfate by Acidithiobacillus ferroxidans and their application to coagulation and adsorption.

    Science.gov (United States)

    Gan, Min; Song, Zibo; Jie, Shiqi; Zhu, Jianyu; Zhu, Yaowu; Liu, Xinxing

    2016-02-01

    Coagulation and adsorption are important environmental technologies, which were widely applied in water treatment. In this study, a type of villous iron oxyhydrosulfate with low crystallinity, high content iron, sulfate and hydroxyl was synthesized by Acidithiobacillus ferrooxidans, which possessed coagulation and heavy metal adsorption ability simultaneously. The results showed that the Cu(II) adsorption capacity increased within a small range over the pH range of 3.0-5.0 but increased evidently over the range of 6.0-8.0. The maximal Cu(II) adsorption capacity of sample Af and Gf reached 50.97 and 46.08mg/g respectively. The optimum pH for Cr(VI) adsorption was 6.0, and the maximal adsorption capacity reached 51.32 and 59.57mg/g. The Langmuir isotherm can better describe the adsorption behavior of Cr(VI). Coagulation performance of the iron oxyhydrosulfate (Sh) has been significantly enhanced by polysilicic acid (PSA), which was mainly determined by PSA/Sh ratio, pH and coagulant dosage. Coagulation efficiency maintained approximately at 98% when the PSA/Sh ratio ranged from 0.4/0.1 to 1.0/0.1. Polysilicic acid worked efficiently in wide pH range extending, from 2 to 3.5. Coagulation performance improved significantly with the increasing of the coagulant dosage at lower dosage range, while, at higher dosage range, the improvement was not evident even with more coagulant addition.

  4. Construction and shuttling of novel bifunctional vectors for Streptomyces spp. and Escherichia coli.

    OpenAIRE

    Neesen, K; Volckaert, G.

    1989-01-01

    Shuttle vectors for gene transfer between Streptomyces spp. and Escherichia coli have been constructed by fusion of an artificial multicopy E. coli replicon and DNA fragments of pIJ702. Stable transfer to Streptomyces lividans was obtained. Marked differences in transformation efficiency were observed when plasmid DNA isolated from E. coli GM119 was used instead of that from strain HB101.

  5. Interactions with the bifunctional interface of the transcriptional coactivator DCoH1 are kinetically regulated.

    Science.gov (United States)

    Wang, Dongli; Coco, Matthew W; Rose, Robert B

    2015-02-13

    Pterin-4a-carbinolamine dehydratase (PCD) is a highly conserved enzyme that evolved a second, unrelated function in mammals, as a transcriptional coactivator. As a coactivator, PCD is known as DCoH or dimerization cofactor of the transcription factor HNF-1. These two activities are associated with a change in oligomeric state: from two dimers interacting as an enzyme in the cytoplasm to a dimer interacting with a dimer of HNF-1 in the nucleus. The same interface of DCoH forms both complexes. To determine how DCoH partitions between its two functions, we studied the folding and stability of the DCoH homotetramer. We show that the DCoH1 homotetramer is kinetically trapped, meaning once it forms it will not dissociate to interact with HNF-1. In contrast, DCoH2, a paralog of DCoH1, unfolds within hours. A simple mutation in the interface of DCoH2 from Ser-51 to Thr, as found in DCoH1, increases the kinetic stability by 9 orders of magnitude, to τ(½) ∼ 2 million years. This suggests that the DCoH1·HNF-1 complex must co-fold to interact. We conclude that simple mutations can dramatically affect the dissociation kinetics of a complex. Residue 51 represents a "kinetic hot spot" instead of a "thermodynamic hot spot." Kinetic regulation allows PCD to adopt two distinct functions. Mutations in DCoH1 associated with diabetes affect both functions of DCoH1, perhaps by disrupting the balance between the two DCoH complexes.

  6. Pluronic-lysozyme conjugates as anti-adhesive and antibacterial bifunctional polymers for surface coating

    NARCIS (Netherlands)

    Muszanska, A.K.; Busscher, H.J.; Herrmann, A.; Mei, van der H.C.; Norde, W.

    2011-01-01

    This paper describes the preparation and characterization of polymer protein conjugates composed of a synthetic triblock copolymer with a central polypropylene oxide (PPO) block and two terminal polyethylene oxide (PEO) segments, Pluronic F-127, and the antibacterial enzyme lysozyme attached to the

  7. Aldosterone and cortisol co-secreting bifunctional adrenal cortical carcinoma: A rare event

    Directory of Open Access Journals (Sweden)

    Puskar Shyam Chowdhury

    2014-01-01

    Full Text Available Adrenocortical carcinoma (ACC co-secreting aldosterone and cortisol is extremely rare. We report the case of a 37-yearold female who presented with paresis and facial puffiness. Evaluation revealed hypertension, hyperglycemia, severe hypokalemia and hyperaldosteronemia with elevated plasma aldosterone to renin ratio (ARR. Urinary free cortisol estimation showed elevated levels. Computed tomography scan revealed a right adrenal mass. Radical adrenalectomy specimen revealed ACC (T3N1. Post-operatively, the patient became normotensive and euglycemic with normalization of urinary cortisol and ARR. This case highlights the need for a complete evaluation in patients of hyperaldosteronism if overlapping symptoms of hypercortisolism are encountered, to avoid post-operative adrenal crisis.

  8. Bifunctional Catalysis: Direct Reductive Amination of Aliphatic Ketones with an Iridium-Phosphate Catalyst

    Directory of Open Access Journals (Sweden)

    Barbara Villa-Marcos

    2010-04-01

    Full Text Available Chiral amines are one of the ubiquitous functional groups in fine chemical, pharmaceutical and agrochemical products, and the most convenient, economical, and eco-benign synthetic pathway to these amines is direct asymmetric reductive amination (DARA of prochiral ketones. This paper shows that a wide range of aliphatic ketones can be directly aminated under hydrogenation conditions, affording chiral amines with good to excellent yields and with enantioselectivities up to 96% ee. The catalysis is effected by the cooperative action of a cationic Cp*Ir(III complex and its phosphate counteranion.

  9. Linkage of α-cyclodextrin-terminated poly(dimethylsiloxanes by inclusion of quasi bifunctional ferrocene

    Directory of Open Access Journals (Sweden)

    Helmut Ritter

    2013-07-01

    Full Text Available We report the noncovalent linkage of terminally substituted oligo(dimethylsiloxanes bearing α-cyclodextrins (α-CD as host end groups for the cyclopentadienyl rings of ferrocene. This double complexation of unsubstituted ferrocene leads to a supramolecuar formation of the siloxane strands. Structural characterization was performed by the use of 1H NMR and IR spectroscopy and by mass spectrometry. Electron microscopy studies and dynamic light scattering measurements show a significant decrease of the derivative size after the complexation with ferrocene. In addition, further evidence for the successful complexation of the end groups was verified by the shifts of the protons in the 1H NMR spectra and in the correlation signals of the 2D ROESY NMR spectra.

  10. Aldosterone and cortisol co-secreting bifunctional adrenal cortical carcinoma: A rare event.

    Science.gov (United States)

    Chowdhury, Puskar Shyam; Nayak, Prasant; Gurumurthy, Srinivasan; David, Deepak

    2014-07-01

    Adrenocortical carcinoma (ACC) co-secreting aldosterone and cortisol is extremely rare. We report the case of a 37-yearold female who presented with paresis and facial puffiness. Evaluation revealed hypertension, hyperglycemia, severe hypokalemia and hyperaldosteronemia with elevated plasma aldosterone to renin ratio (ARR). Urinary free cortisol estimation showed elevated levels. Computed tomography scan revealed a right adrenal mass. Radical adrenalectomy specimen revealed ACC (T3N1). Post-operatively, the patient became normotensive and euglycemic with normalization of urinary cortisol and ARR. This case highlights the need for a complete evaluation in patients of hyperaldosteronism if overlapping symptoms of hypercortisolism are encountered, to avoid post-operative adrenal crisis.

  11. Aldosterone and cortisol co-secreting bifunctional adrenal cortical carcinoma: A rare event

    OpenAIRE

    Chowdhury, Puskar Shyam; Nayak, Prasant; Gurumurthy, Srinivasan; David, Deepak

    2014-01-01

    Adrenocortical carcinoma (ACC) co-secreting aldosterone and cortisol is extremely rare. We report the case of a 37-yearold female who presented with paresis and facial puffiness. Evaluation revealed hypertension, hyperglycemia, severe hypokalemia and hyperaldosteronemia with elevated plasma aldosterone to renin ratio (ARR). Urinary free cortisol estimation showed elevated levels. Computed tomography scan revealed a right adrenal mass. Radical adrenalectomy specimen revealed ACC (T3N1). Post-o...

  12. Structure-function relationship of bifunctional scorpion toxin BmBKTxl

    Institute of Scientific and Technical Information of China (English)

    Suming Wang; Lijun Huang; Dieter Wicher; Chengwu Chi; Chenqi Xu

    2008-01-01

    As the first identified scorpion toxin active on both big conductance Ca2+-activated K+ channels (BK) and small conductance Ca2+-activated K+ channels (SK), BmBKTxl has been proposed to have two separate functional faces for two targets. To investigate this hypothesis, two double mutants,K21A-Y30A and R9A-KIlA, together with wild-type toxin were expressed in Escherichia coli. The recombinant toxins were tested on cockroach BK and rat SK2 channel for functional assay. Mutant K21A-Y30A had a dramatic loss of function on BK but retained its function on SK. Mutant R9A-KI1A did not lose function on BK or SK. These data support the two functional-face hypothesis and indicate that the BK face is on the C-terminal β-sheet.

  13. Asymmetric α-amination of 3-substituted oxindoles using chiral bifunctional phosphine catalysts

    Directory of Open Access Journals (Sweden)

    Qiao-Wen Jin

    2016-04-01

    Full Text Available A highly enantioselective α-amination of 3-substituted oxindoles with azodicarboxylates catalyzed by amino acids-derived chiral phosphine catalysts is reported. The corresponding products containing a tetrasubstituted carbon center attached to a nitrogen atom at the C-3 position of the oxindole were obtained in high yields and with up to 98% ee.

  14. Green Synthesis of Bifunctional Fluorescent Carbon Dots from Garlic for Cellular Imaging and Free Radical Scavenging.

    Science.gov (United States)

    Zhao, Shaojing; Lan, Minhuan; Zhu, Xiaoyue; Xue, Hongtao; Ng, Tsz-Wai; Meng, Xiangmin; Lee, Chun-Sing; Wang, Pengfei; Zhang, Wenjun

    2015-08-12

    Nitrogen and sulfur codoped carbon dots (CDs) were prepared from garlic by a hydrothermal method. The as-prepared CDs possess good water dispersibility, strong blue fluorescence emission with a fluorescent quantum yield of 17.5%, and excellent photo and pH stabilities. It is also demonstrated that the fluorescence of CDs are resistant to the interference of metal ions, biomolecules, and high ionic strength environments. Combining with low cytotoxicity properties, CDs could be used as an excellent fluorescent probe for cellular multicolor imaging. Moreover, the CDs were also demonstrated to exhibit favorable radical scavenging activity.

  15. Bi-functionally Graded Electrode Supported SOFC Modeling and Computational Thermal Fluid Analysis for Experimental Design

    Energy Technology Data Exchange (ETDEWEB)

    Shi, J.; Xue, X.

    2011-01-01

    A comprehensive 3D CFD model is developed for a bi-electrode supported cell (BSC) SOFC. The model includes complicated transport phenomena of mass/heat transfer, charge (electron and ion) migration, and electrochemical reaction. The uniqueness of the modeling study is that functionally graded porous electrode property is taken into account, including not only linear but nonlinear porosity distributions. Extensive numerical analysis is performed to elucidate the effects of both porous microstructure distributions and operating condition on cell performance. Results indicate that cell performance is strongly dependent on both operating conditions and porous microstructure distributions of electrodes. Using the proposed fuel/gas feeding design, the uniform hydrogen distribution within porous anode is achieved; the oxygen distribution within the cathode is dependent on porous microstructure distributions as well as pressure loss conditions. Simulation results show that fairly uniform temperature distribution can be obtained with the proposed fuel/gas feeding design. The modeling results can be employed to guide experimental design of BSC test and provide pre-experimental analysis, as a result, to circumvent high cost associated with try-and-error experimental design and setup.

  16. Development of Novel Bifunctional Compounds that Induce Apoptosis in Prostate Cancer Cells

    Science.gov (United States)

    2006-02-01

    and mitomycin C – both of which form crosslinks in DNA that are similar to those formed by 11β. Neither of these compounds, however, induced...amount of [14C] in blood. The amount of intact 11β-dichloro that was present in blood was determined by HPLC analysis. An aliquot of the organic...the 100% methanol fraction, an aliquot was analyzed by HPLC using conditions described above. Compounds in fractions collected from the HPLC were

  17. Bifunctional Enantioselective Ligands of Chiral BINOL Derivatives for Asymmetric Addition of Alkynylzinc to Aldehydes

    Institute of Scientific and Technical Information of China (English)

    ZOU Xiao-Wei; ZHENG Li-Fei; WU Ling-Lin; ZONG Li-Li; CHENG Yi-Xiang

    2008-01-01

    Four analogous binaphthyl compounds (R)-3a-3d containing (R)-3,3'-bis(2-pyridyl) groups were synthesized by the conjugation of (R)-2,2'-dimethoxy-1,1'-binaphthyl-3,3'-diboronic acid [(R)-2] with 2-bromopyridine,2-bromo-5-methylpyridine, 2-chloro-4-fluoropyridine and 2-chloro-3-(trifluoromethyl)pyridine via Pd-catalyzed Suzuki reactions, respectively.The application of the four chiral ligands in combination with Et2Zn and Ti(Oi-Pr)4 to the asymmetric addition of phenylacetylene to various aldehydes has been studied.The results show that (R)-3a and (R)-3b are not good catalysts for the alkynylzinc addition to aldehydes, (R)-3d shows good enantioselectivity only for the alkynylzinc addition to aliphatic aldehydes, and (R)-3c exhibits excellent enantioselectivity for phenylethynylzinc addition to both aromatic and aliphatic aldehydes.All the four chiral ligands produced the opposite configuration of the propargylic alcohols to that of the chiral ligands.

  18. An ethylene glycol intercalated monometallic layered double hydroxide based on iron as an efficient bifunctional catalyst.

    Science.gov (United States)

    Nagarajan, Rajamani; Gupta, Pankaj; Singh, Poonam; Chakraborty, Pinki

    2016-11-01

    Given the fact that the literature describing the intercalation of organic molecules in monometallic LDH systems is scarce, the present investigation is aimed at the generation of ethylene glycol intercalated Fe(II)-Fe(III) LDH with the objective of enhancing the surface area for further catalytic applications of industrially important and environmentally harmful organics. The solvothermal reaction of FeCl3 with urea in an ethylene glycol medium yielded a brown colored powder which was characterized employing a wide range of analytical techniques including high resolution powder X-ray diffraction (PXRD), scanning electron microscopy, thermal analysis, X-ray photo electron spectroscopy (XPS), elemental (C, H, N and S) analysis, UV-visible, photoluminescence spectroscopy measurements, BET surface area and pore-size analysis. The observed reflections in the PXRD pattern were indexed in a rhombohedral symmetry with a = 3.175 and c = 31.9 Å. Combining the results from the Fe 2p core level analysis and anion contents from elemental and thermogravimetric analysis, a formula of Fe(2+)1.06 Fe(3+)0.94 (O2C2H4) (OH)4 was deduced for the sample. The intercalation of EG in the interlayer was confirmed from FTIR and Raman spectroscopy measurements. The d-d transitions of the Fe(3+)-ion and the charge transfer transition of the Fe(ii)-Fe(iii) lattice were evident in the UV-visible spectrum. Blue indigoid emission bands arising from the transitions present in the Fe(3+)-ion were noticed in the photoluminescence spectrum. The measured BET surface area and pore diameter of the sample were 144 m(2) g(-1) and 12.5 nm, respectively. Almost instant decolourisation of the Xylenol Orange (XO) dye occurred in the presence of H2O2 and the LDH sample as catalyst. Similar observations were encountered for Methyl Orange (MO) and Methylene Blue (MB) dyes. All these reactions followed pseudo first-order kinetics. The industrially important reductive conversion of nitro aromatics was catalyzed by the sample. The selective reduction of 2,4-dinitrophenol to 2-amino-4-nitrophenol was effected almost instantaneously by this catalyst. Both the reusability and possible mechanism of catalytic action have been discussed. The EG intercalated Fe(2+)-Fe(3+) LDH influenced the relaxivity value of protons as determined from NMR spectroscopy experiments.

  19. A bi-functional xyloglucan galactosyltransferase is an indispensable salt stress tolerance determinant in arabidop

    KAUST Repository

    Li, Wenbo

    2013-07-01

    Salinity is an abiotic stress that substantially limits crop production worldwide. To identify salt stress tolerance determinants, we screened for Arabidopsis mutants that are hypersensitive to salt stress and designated these mutants as short root in salt medium (rsa). One of these mutants, rsa3-1, is hypersensitive to NaCl and LiCl but not to CsCl or to general osmotic stress. Reactive oxygen species (ROS) over-accumulate in rsa3-1 plants under salt stress. Gene expression profiling with Affymetrix microarray analysis revealed that RSA3 controls expression of many genes including genes encoding proteins for ROS detoxification under salt stress. Map-based cloning showed that RSA3 encodes a xyloglucan galactosyltransferase, which is allelic to a gene previously named MUR3/KAM1. The RSA3/ MUR3/KAM1-encoded xylogluscan galactosyltransferase regulates actin microfilament organization (and thereby contributes to endomembrane distribution) and is also involved in cell wall biosynthesis. In rsa3-1, actin cannot assemble and form bundles as it does in the wild-type but instead aggregates in the cytoplasm. Furthermore, addition of phalloidin, which prevents actin depolymerization, can rescue salt hypersensitivity of rsa3-1. Together, these results suggest that RSA3/MUR3/KAM1 along with other cell wall-associated proteins plays a critical role in salt stress tolerance by maintaining the proper organization of actin microfilaments in order to minimize damage caused by excessive ROS. © 2013 The Author.

  20. Hydrocracking of ethyl laurate on bifunctional micro-/mesoporous composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Adam, M.; Busse, O.; Reschetilowski, W. [Technische Univ. Dresden (Germany). Inst. for Industrial Chemistry

    2011-07-01

    Hydrocracking of ethyl laurate (dodecanoic acid ethyl ester) as a representative model compound of vegetable oil has been investigated in a fixed bed reactor under integral conditions. A synthesized micro-/mesoporous composite support material Al-MCM-41/ZSM-5 modified by different metal loadings (NiMo, NiW, PtNiW) was used as catalyst system. It could be demonstrated that the metal loading and reducibility influence product selectivity as well as deactivation behavior of catalyst samples. (orig.)

  1. Bifunctional phenyl monophosphonic/sulfonic acid ion exchange resin and process for using the same

    Science.gov (United States)

    Alexandratos, Spiro; Shelley, Christopher A.; Horwitz, E. Philip; Chiarizia, Renato; Gula, Michael J.; Xue, Sui; Harvey, James T.

    2002-01-01

    A cross-linked water-insoluble ion exchange resin comprised of polymerized monomers having a phenyl ring is disclosed. A contemplated resin contains (i) polymerized phenyl ring-containing monomers having a phosphonic acid ligand linked to the phenyl ring, (ii) about 2 to about 5 millimoles per gram (mmol/g) of phosphorus as phosphonic acid ligands, and (iii) a sufficient amount of a sulfonic acid ligand such that the ratio of mmol/g of phosphonic acid to mmol/g sulfonic acid is up to 3:1. A process for removing polyvalent metal cations from aqueous solution, and a process for removing iron(III) cations from acidic copper(II) cation-containing solutions that utilize the contemplated resin or other resins are disclosed.

  2. Operando study of iridium acetylacetonate decomposition on amorphous silica-alumina for bifunctional catalyst preparation.

    Science.gov (United States)

    Nassreddine, Salim; Bergeret, Gérard; Jouguet, Bernadette; Geantet, Christophe; Piccolo, Laurent

    2010-07-28

    The decomposition of iridium acetylacetonate Ir(acac)(3) impregnated on amorphous silica-alumina (ASA) has been investigated by combined thermogravimetry-differential thermal analysis-mass spectrometry (TG-DTA-MS) and by in situ X-ray diffraction (XRD). The resulting Ir/ASA hydrotreating catalysts have also been characterized by transmission electron microscopy (TEM). The effects of heating treatments under oxidative, reductive or inert gas flows are compared with each other and with similar experiments on ASA-supported acetylacetone (acacH). It is shown that Ir(acac)(3) undergoes exothermic combustion during calcination in air, leading to agglomerated IrO(2) particles. Conversely, direct reduction involves hydrogenolysis of the acac followed by hydrogenation of the ligand residues to alkanes and water. These two processes are catalyzed by Ir clusters, the gradual growth of which is followed in situ by XRD. The resulting nanoparticles are highly and homogeneously dispersed.

  3. Synthesis and Characterization of Bifunctional α-Fe2O3-Ag Nanoparticles

    Directory of Open Access Journals (Sweden)

    Alvaro Ruíz-Baltazar

    2015-01-01

    Full Text Available The synthesis of α-Fe2O3-Ag bimetallic nanoparticles using a novel and simplified route is presented in this work. These hybrid nanoparticles were produced using a modification of the chemical reduction method by sodium borohydride (NaBH4. Fe(III chloride hexahydrate (FeCl3·6H2O and silver nitrate (AgNO3 as precursors were employed. Particles with semispherical morphology and dumbbell configuration were observed. High-resolution transmission electron microscopy (HRTEM technique reveals the structure of the dumbbell-like α-Fe2O3-Ag nanoparticles. Some theoretical models further confirm the formation of the α-Fe2O3-Ag structures. Analysis by cyclic voltammetry reveals an interesting catalytic behavior which is associated with the combination of the individual properties of the Ag and α-Fe2O3 nanoparticles.

  4. Bifunctional (cyclopentadienone)iron-tricarbonyl complexes: synthesis, computational studies and application in reductive amination.

    Science.gov (United States)

    Moulin, Solenne; Dentel, Hélène; Pagnoux-Ozherelyeva, Anastassiya; Gaillard, Sylvain; Poater, Albert; Cavallo, Luigi; Lohier, Jean-François; Renaud, Jean-Luc

    2013-12-23

    Reductive amination under hydrogen pressure is a valuable process in organic chemistry to access amine derivatives from aldehydes or ketones. Knölker's complex has been shown to be an efficient iron catalyst in this reaction. To determine the influence of the substituents on the cyclopentadienone ancillary ligand, a series of modified Knölker's complexes was synthesised and fully characterised. These complexes were also transformed into their analogous acetonitrile iron-dicarbonyl complexes. Catalytic activities of these complexes were evaluated and compared in a model reaction. The scope of this reaction is also reported. For mechanistic insights, deuterium-labelling experiments and DFT calculations were undertaken and are also presented.

  5. Influence of metal loading on hydrocracking of rapeseed oil using bifunctional micro-/mesoporous composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Gille, T.; Busse, O.; Reschetilowski, W. [Technische Univ. Dresden (Germany). Inst. of Industrial Chemistry

    2013-11-01

    Hydrocracking of rapeseed oil has been investigated in a fixed bed reactor under integral conditions. A synthesized micro-/mesoporous composite material Al-MCM-41/ZSM-5 modified by different metal loadings (NiMo, PtNiMo, Pt) was used as catalyst system. It could be demonstrated that the support material and their metal loading influence the product selectivity as well as the deactivation tendencies of the catalyst sample. (orig.)

  6. Synthesis and biological evaluation of compact, conformationally constrained bifunctional opioid agonist – neurokinin-1 antagonist peptidomimetics

    Science.gov (United States)

    Guillemyn, Karel; Kleczkowska, Patrycia; Lesniak, Anna; Dyniewicz, Jolanta; Van der Poorten, Olivier; Van den Eynde, Isabelle; Keresztes, Attila; Varga, Eva; Lai, Josephine; Porreca, Frank; Chung, Nga N.; Lemieux, Carole; Mika, Joanna; Rojewska, Ewelina; Makuch, Wioletta; Van Duppen, Joost; Przewlocka, Barbara; Broeck, Jozef Vanden; Lipkowski, Andrzej W.; Schiller, Peter W.; Tourwé, Dirk; Ballet, Steven

    2014-01-01

    A reported mixed opioid agonist - neurokinin 1 receptor (NK1R) antagonist 4 (Dmt-D-Arg-Aba-Gly-(3’,5’-(CF3)2)NMe-benzyl) was modified to identify important features in both pharmacophores. The new dual ligands were tested in vitro and subsequently two compounds (lead structure 4 and one of the new analogues 22, Dmt-D-Arg-Aba-β-Ala-NMe-Bn) were selected for in vivo behavioral assays, which were conducted in acute (tail-flick) and neuropathic pain models (cold plate and von Frey) in rats. Compared to the parent opioid compound 33 (without NK1R pharmacophore), hybrid 22 was more active in the neuropathic pain models. Attenuation of neuropathic pain emerged from NK1R antagonism as demonstrated by the pure NK1R antagonist 6. Surprisingly, despite a lower in vitro activity at NK1R in comparison with 4, compound 22 was more active in the neuropathic pain models. Although potent analgesic effects were observed for 4 and 22, upon chronic administration, both manifested a tolerance profile similar to that of morphine and cross tolerance with morphine in a neuropathic pain model in rat. PMID:25544687

  7. Synthesis and biological evaluation of compact, conformationally constrained bifunctional opioid agonist - neurokinin-1 antagonist peptidomimetics.

    Science.gov (United States)

    Guillemyn, Karel; Kleczkowska, Patrycia; Lesniak, Anna; Dyniewicz, Jolanta; Van der Poorten, Olivier; Van den Eynde, Isabelle; Keresztes, Attila; Varga, Eva; Lai, Josephine; Porreca, Frank; Chung, Nga N; Lemieux, Carole; Mika, Joanna; Rojewska, Ewelina; Makuch, Wioletta; Van Duppen, Joost; Przewlocka, Barbara; Vanden Broeck, Jozef; Lipkowski, Andrzej W; Schiller, Peter W; Tourwé, Dirk; Ballet, Steven

    2015-03-06

    A reported mixed opioid agonist - neurokinin 1 receptor (NK1R) antagonist 4 (Dmt-D-Arg-Aba-Gly-(3',5'-(CF3)2)NMe-benzyl) was modified to identify important features in both pharmacophores. The new dual ligands were tested in vitro and subsequently two compounds (lead structure 4 and one of the new analogues 22, Dmt-D-Arg-Aba-β-Ala-NMe-Bn) were selected for in vivo behavioural assays, which were conducted in acute (tail-flick) and neuropathic pain models (cold plate and von Frey) in rats. Compared to the parent opioid compound 33 (without NK1R pharmacophore), hybrid 22 was more active in the neuropathic pain models. Attenuation of neuropathic pain emerged from NK1R antagonism as demonstrated by the pure NK1R antagonist 6. Surprisingly, despite a lower in vitro activity at NK1R in comparison with 4, compound 22 was more active in the neuropathic pain models. Although potent analgesic effects were observed for 4 and 22, upon chronic administration, both manifested a tolerance profile similar to that of morphine and cross tolerance with morphine in a neuropathic pain model in rat.

  8. Advanced Anticorrosion Coating Materials Derived from Sunflower Oil with Bifunctional Properties.

    Science.gov (United States)

    Balakrishnan, Thiruparasakthi; Sathiyanarayanan, Sadagopan; Mayavan, Sundar

    2015-09-09

    High-performance barrier films preventing permeation of moisture, aggressive chloride ions, and corrosive acids are important for many industries ranging from food to aviation. In the current study, pristine sunflower oil was used to form uniform adherent films on iron (Fe) via a simple single-step thermal treatment (without involving any initiator/mediator/catalyst). Oxidation of oil on heating results in a highly conjugated (oxidized) crystalline lamellar network with interlayer separation of 0.445 nm on Fe. The electrochemical corrosion tests proved that the coating exhibits superior anticorrosion performance with high coating resistance (>10(9) ohm cm2) and low capacitance values (<10(-10) F cm(-2)) as compared to bare Fe, graphene, and conducting polymer based coatings in 1 M hydrochloric acid solutions. The electrochemical analyses reveal that the oil coatings developed in this study provided a two-fold protection of passivation from the oxide layer and barrier from polymeric films. It is clearly observed that there is no change in structure, morphology, or electrochemical properties even after a prolonged exposure time of 80 days. This work indicates the prospect of developing highly inert, environmentally green, nontoxic, and micrometer level passivating barrier coatings from more sustainable and renewable sources, which can be of interest for numerous applications.

  9. Insights into Diterpene Cyclization from Structure of Bifunctional Abietadiene Synthase from Abies grandis*

    Science.gov (United States)

    Zhou, Ke; Gao, Yang; Hoy, Julie A.; Mann, Francis M.; Honzatko, Richard B.; Peters, Reuben J.

    2012-01-01

    Abietadiene synthase from Abies grandis (AgAS) is a model system for diterpene synthase activity, catalyzing class I (ionization-initiated) and class II (protonation-initiated) cyclization reactions. Reported here is the crystal structure of AgAS at 2.3 Å resolution and molecular dynamics simulations of that structure with and without active site ligands. AgAS has three domains (α, β, and γ). The class I active site is within the C-terminal α domain, and the class II active site is between the N-terminal γ and β domains. The domain organization resembles that of monofunctional diterpene synthases and is consistent with proposed evolutionary origins of terpene synthases. Molecular dynamics simulations were carried out to determine the effect of substrate binding on enzymatic structure. Although such studies of the class I active site do lead to an enclosed substrate-Mg2+ complex similar to that observed in crystal structures of related plant enzymes, it does not enforce a single substrate conformation consistent with the known product stereochemistry. Simulations of the class II active site were more informative, with observation of a well ordered external loop migration. This “loop-in” conformation not only limits solvent access but also greatly increases the number of conformational states accessible to the substrate while destabilizing the nonproductive substrate conformation present in the “loop-out” conformation. Moreover, these conformational changes at the class II active site drive the substrate toward the proposed transition state. Docked substrate complexes were further assessed with regard to the effects of site-directed mutations on class I and II activities. PMID:22219188

  10. Development of a Bifunctional Andrographolide-Based Chemical Probe for Pharmacological Study.

    Science.gov (United States)

    Hsu, Ya-Hsin; Hsu, Yu-Ling; Liu, Sheng-Hung; Liao, Hsin-Chia; Lee, Po-Xuan; Lin, Chao-Hsiung; Lo, Lee-Chiang; Fu, Shu-Ling

    2016-01-01

    Andrographolide (ANDRO) is a lactone diterpenoid compound present in the medicinal plant Andrographis paniculata which is clinically applied for multiple human diseases in Asia and Europe. The pharmacological activities of andrographolide have been widely demonstrated, including anti-inflammation, anti-cancer and hepatoprotection. However, the pharmacological mechanism of andrographolide remains unclear. Therefore, further characterization on the kinetics and molecular targets of andrographolide is essential. In this study, we described the synthesis and characterization of a novel fluorescent andrographolide derivative (ANDRO-NBD). ANDRO-NBD exhibited a comparable anti-cancer spectrum to andrographolide: ANDRO-NBD was cytotoxic to various types of cancer cells and suppressed the migration activity of melanoma cells; ANDRO-NBD treatment induced the cleavage of heat shock protein 90 (Hsp90) and the downregulation of its client oncoproteins, v-Src and Bcr-abl. Notably, ANDRO-NBD showed superior inhibitory effects to andrographolide in all anticancer assays we have performed. In addition, ANDRO-NBD was further used as a fluorescent probe to investigate the uptake kinetics, cellular distribution and molecular targets of andrographolide. Our data revealed that ANDRO-NBD entered cells rapidly and its fluorescent signal could be detected in nucleus, cytoplasm, mitochondria, and lysosome. Moreover, we demonstrated that ANDRO-NBD was covalently bound to several putative target proteins of andrographolide, including NF-κB and hnRNPK. In summary, we developed a fluorescent andrographolide probe with comparable bioactivity to andrographolide, which serves as a powerful tool to explore the pharmacological mechanism of andrographolide.

  11. Development of a Bifunctional Andrographolide-Based Chemical Probe for Pharmacological Study.

    Directory of Open Access Journals (Sweden)

    Ya-Hsin Hsu

    Full Text Available Andrographolide (ANDRO is a lactone diterpenoid compound present in the medicinal plant Andrographis paniculata which is clinically applied for multiple human diseases in Asia and Europe. The pharmacological activities of andrographolide have been widely demonstrated, including anti-inflammation, anti-cancer and hepatoprotection. However, the pharmacological mechanism of andrographolide remains unclear. Therefore, further characterization on the kinetics and molecular targets of andrographolide is essential. In this study, we described the synthesis and characterization of a novel fluorescent andrographolide derivative (ANDRO-NBD. ANDRO-NBD exhibited a comparable anti-cancer spectrum to andrographolide: ANDRO-NBD was cytotoxic to various types of cancer cells and suppressed the migration activity of melanoma cells; ANDRO-NBD treatment induced the cleavage of heat shock protein 90 (Hsp90 and the downregulation of its client oncoproteins, v-Src and Bcr-abl. Notably, ANDRO-NBD showed superior inhibitory effects to andrographolide in all anticancer assays we have performed. In addition, ANDRO-NBD was further used as a fluorescent probe to investigate the uptake kinetics, cellular distribution and molecular targets of andrographolide. Our data revealed that ANDRO-NBD entered cells rapidly and its fluorescent signal could be detected in nucleus, cytoplasm, mitochondria, and lysosome. Moreover, we demonstrated that ANDRO-NBD was covalently bound to several putative target proteins of andrographolide, including NF-κB and hnRNPK. In summary, we developed a fluorescent andrographolide probe with comparable bioactivity to andrographolide, which serves as a powerful tool to explore the pharmacological mechanism of andrographolide.

  12. Bifunctional Asymmetric Catalysis with Hydrogen Chloride: Enantioselective Ring-Opening of Aziridines Catalyzed by a Phosphinothiourea.

    Science.gov (United States)

    Mita, Tsuyoshi; Jacobsen, Eric N

    2009-06-01

    Ring-opening of aziridines with hydrogen chloride to form β-chloroamine derivatives is catalyzed by a chiral phosphinothiourea derivative in high yields and with high enantioselectivities. On the basis of (31)P NMR studies, activation of HCl appears to proceed via quantitative protonation of the catalyst to afford a phosphonium chloride complex.

  13. ZrO2-Nanoparticle-Modified Graphite Felt: Bifunctional Effects on Vanadium Flow Batteries.

    Science.gov (United States)

    Zhou, Haipeng; Shen, Yi; Xi, Jingyu; Qiu, Xinping; Chen, Liquan

    2016-06-22

    To improve the electrochemical performance of graphite felt (GF) electrodes in vanadium flow batteries (VFBs), we synthesize a series of ZrO2-modified GF (ZrO2/GF) electrodes with varying ZrO2 contents via a facile immersion-precipitation approach. It is found that the uniform immobilization of ZrO2 nanoparticles on the GF not only significantly promotes the accessibility of vanadium electrolyte, but also provides more active sites for the redox reactions, thereby resulting in better electrochemical activity and reversibility toward the VO(2+)/VO2(+) and V(2+)/V(3+) redox reactions as compared with those of GF. In particular, The ZrO2/GF composite with 0.3 wt % ZrO2 displays the best electrochemical performance with voltage and energy efficiencies of 71.9% and 67.4%, respectively, which are much higher than those of 57.3% and 53.8% as obtained from the GF electrode at 200 mA cm(-2). The cycle life tests demonstrate that the ZrO2/GF electrodes exhibit outstanding stability. The ZrO2/GF-based VFB battery shows negligible activity decay after 200 cycles.

  14. Chrysanthemyl diphosphate synthase operates in planta as a bifunctional enzyme with chrysanthemolsynthase activity

    NARCIS (Netherlands)

    Yang, T.; Gao, L.; Hu, H.; Stoopen, G.M.; Wang, C.; Jongsma, M.A.

    2014-01-01

    Chrysanthemyl diphosphate synthase (CDS) is the first pathway-specific enzyme inthe biosynthesis of pyrethrins, the most widely used plant-derivedpesticide.CDScatalyzes c1’-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate (CPP).

  15. Identification of a plastid-localized bifunctional nerolidol/linalool synthase in relation to linalool biosynthesis in young grape berries.

    Science.gov (United States)

    Zhu, Bao-Qing; Cai, Jian; Wang, Zhi-Qun; Xu, Xiao-Qing; Duan, Chang-Qing; Pan, Qiu-Hong

    2014-01-01

    Monoterpenoids are a diverse class of natural products and contribute to the important varietal aroma of certain Vitis vinifera grape cultivars. Among the typical monoterpenoids, linalool exists in almost all grape varieties. A gene coding for a nerolidol/linalool (NES/LINS) synthase was evaluated in the role of linalool biosynthesis in grape berries. Enzyme activity assay of this recombinant protein revealed that it could convert geranyl diphosphate and farnesyl diphosphate into linalool and nerolidol in vitro, respectively, and thus it was named VvRILinNer. However, localization experiment showed that this enzyme was only localized to chloroplasts, which indicates that VvRILinNer functions in the linalool production in vivo. The patterns of gene expression and linalool accumulation were analyzed in the berries of three grape cultivars ("Riesling", "Cabernet Sauvignon", "Gewurztraminer") with significantly different levels of monoterpenoids. The VvRILinNer was considered to be mainly responsible for the synthesis of linalool at the early developmental stage. This finding has provided us with new knowledge to uncover the complex monoterpene biosynthesis in grapes.

  16. A novel human immunoglobulin Fc gamma Fc epsilon bifunctional fusion protein inhibits Fc epsilon RI-mediated degranulation.

    Science.gov (United States)

    Zhu, Daocheng; Kepley, Christopher L; Zhang, Min; Zhang, Ke; Saxon, Andrew

    2002-05-01

    Human mast cells and basophils that express the high-affinity immunoglobulin E (IgE) receptor, Fc epsilon receptor 1 (Fc epsilon RI), have key roles in allergic diseases. Fc epsilon RI cross-linking stimulates the release of allergic mediators. Mast cells and basophils co-express Fc gamma RIIb, a low affinity receptor containing an immunoreceptor tyrosine-based inhibitory motif and whose co-aggregation with Fc epsilon RI can block Fc epsilon RI-mediated reactivity. Here we designed, expressed and tested the human basophil and mast-cell inhibitory function of a novel chimeric fusion protein, whose structure is gamma Hinge-CH gamma 2-CH gamma 3-15aa linker-CH epsilon 2-CH epsilon 3-CH epsilon 4. This Fc gamma Fc epsilon fusion protein was expressed as the predicted 140-kappa D dimer that reacted with anti-human epsilon- and gamma-chain specific antibodies. Fc gamma Fc epsilon bound to both human Fc epsilon RI and Fc gamma RII. It also showed dose- and time-dependent inhibition of antigen-driven IgE-mediated histamine release from fresh human basophils sensitized with IgE directed against NIP (4-hydroxy-3-iodo-5-nitrophenylacetyl). This was associated with altered Syk signaling. The fusion protein also showed increased inhibition of human anti-NP (4-hydroxy-3-nitrophenylacetyl) and anti-dansyl IgE-mediated passive cutaneous anaphylaxis in transgenic mice expressing human Fc epsilon RI alpha. Our results show that this chimeric protein is able to form complexes with both Fc epsilon RI and Fc gamma RII, and inhibit mast-cell and basophil function. This approach, using a Fc gamma Fc epsilon fusion protein to co-aggregate Fc epsilon RI with a receptor containing an immunoreceptor tyrosine-based inhibition motif, has therapeutic potential in IgE- and Fc epsilon RI-mediated diseases.

  17. A novel human immunoglobulin Fcγ–Fcε bifunctional fusion protein inhibits FcεRI-mediated degranulation

    OpenAIRE

    Zhu, Daocheng; Kepley, Christopher L.; Zhang, Min; Zhang, Ke; Saxon, Andrew

    2002-01-01

    Human mast cells and basophils that express the high-affinity immunoglobulin E (IgE) receptor, Fcε receptor 1 (FcεRI), have key roles in allergic diseases. FcεRI cross-linking stimulates the release of allergic mediators1. Mast cells and basophils co-express FcγRIIb, a low affinity receptor containing an immunoreceptor tyrosine-based inhibitory motif and whose co-aggregation with FcεRI can block FcεRI-mediated reactivity2–4. Here we designed, expressed and tested the human basophil and mast-c...

  18. Epoxidation of alkenes through oxygen activation over a bifunctional CuO/Al2O3 catalyst.

    Science.gov (United States)

    Scotti, Nicola; Ravasio, Nicoletta; Zaccheria, Federica; Psaro, Rinaldo; Evangelisti, Claudio

    2013-03-07

    The epoxidation of alkenes was carried out over a CuO/Al(2)O(3) catalyst using cumene as an oxygen carrier, through a one-pot reaction, giving high conversion and selectivity with different substrates. Trans-β-methylstyrene gave the corresponding epoxide in 95% yield after 3 h.