WorldWideScience

Sample records for bifunctional beta zeolite

  1. Rapid synthesis of beta zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Wei; Chang, Chun -Chih; Dornath, Paul; Wang, Zhuopeng

    2015-08-18

    The invention provides methods for rapidly synthesizing heteroatom containing zeolites including Sn-Beta, Si-Beta, Ti-Beta, Zr-Beta and Fe-Beta. The methods for synthesizing heteroatom zeolites include using well-crystalline zeolite crystals as seeds and using a fluoride-free, caustic medium in a seeded dry-gel conversion method. The Beta zeolite catalysts made by the methods of the invention catalyze both isomerization and dehydration reactions.

  2. Nonionic emulsion-mediated synthesis of zeolite beta

    Indian Academy of Sciences (India)

    Yuguo Shen; Ying Zhang; Chao Jin; Ying Cao; Wei Gao; Lishan Cui

    2011-07-01

    Zeolite beta synthesis was first carried out in a newly developed emulsion system containing nonionic polyoxyethylated alkylphenol surfactant, which showed interesting non-conventional features. Compared to the conventional hydrothermal synthesis of zeolite beta, the reported nonionic emulsion system showed a faster nucleation rate. Furthermore, the emulsion system could stabilize the beta product and retarded its further transformation to ZSM-5 even under the high crystallization temperature at 453 K. Additionally, the beta particle size could be tuned by the adoption of different lengths of alkyl chain in the surfactant and cosurfactant. Control experiments showed each emulsion component played a crucial role in the zeolite beta growth. The approach proposed in this paper might be extended to apply for the syntheses of other types of zeolites with particle size under control.

  3. Remarkable catalytic properties of hierarchical zeolite-Beta in epoxide rearrangement reactions

    Czech Academy of Sciences Publication Activity Database

    García-Munoz, J.L.; Serrano, D. P.; Vicente, G.; Linares, M.; Vitvarová, Dana; Čejka, Jiří

    2015-01-01

    Roč. 243, APR 2015 (2015), s. 141-152. ISSN 0920-5861 R&D Projects: GA ČR GBP106/12/G015 Institutional support: RVO:61388955 Keywords : hierarchical zeolites * zeolite beta * hybridzeolitic - mesostructured materials Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.893, year: 2014

  4. Oxidative dehydration of glycerol to acrylic acid over vanadium-impregnated zeolite beta

    Energy Technology Data Exchange (ETDEWEB)

    Pestana, Carolina F.M.; Guerra, Antonio C.O.; Turci, Cassia C. [Universidade Federal do Rio de Janeiro, RJ (Brazil). Inst. de Quimica; Ferreira, Glaucio B. [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Quimica; Mota, Claudio J.A., E-mail: cmota@iq.ufrj.br [INCT Energia e Ambiente, Universidade Federal do Rio de Janeiro, RJ (Brazil)

    2013-01-15

    The oxidative dehydration of glycerol to acrylic acid was studied over vanadium-impregnated zeolite Beta. Catalysts were prepared by wet impregnation of ammonium metavanadate over ammonium-exchanged zeolite Beta, followed by air calcination at 823 K. Impregnation reduced the specific surface area, but did not significantly affected the acidity (Bronsted and Lewis) of the zeolites. The catalytic evaluation was carried out in a fixed bed flow reactor using air as the carrier and injecting glycerol by means of a syringe pump. Acrolein was the main product, with acetaldehyde and hydroxy-acetone (acetol) being also formed. Acrylic acid was formed with approximately 25% selectivity at 548 K over the impregnated zeolites. The result can be explained by XPS (X-ray photoelectron spectroscopy) measurements, which indicated a good dispersion of the vanadium inside the pores. (author)

  5. Oxidative dehydration of glycerol to acrylic acid over vanadium-impregnated zeolite beta

    International Nuclear Information System (INIS)

    The oxidative dehydration of glycerol to acrylic acid was studied over vanadium-impregnated zeolite Beta. Catalysts were prepared by wet impregnation of ammonium metavanadate over ammonium-exchanged zeolite Beta, followed by air calcination at 823 K. Impregnation reduced the specific surface area, but did not significantly affected the acidity (Bronsted and Lewis) of the zeolites. The catalytic evaluation was carried out in a fixed bed flow reactor using air as the carrier and injecting glycerol by means of a syringe pump. Acrolein was the main product, with acetaldehyde and hydroxy-acetone (acetol) being also formed. Acrylic acid was formed with approximately 25% selectivity at 548 K over the impregnated zeolites. The result can be explained by XPS (X-ray photoelectron spectroscopy) measurements, which indicated a good dispersion of the vanadium inside the pores. (author)

  6. Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template

    KAUST Repository

    Zhu, Jie

    2014-02-12

    Mesoporous zeolites are useful solid catalysts for conversion of bulky molecules because they offer fast mass transfer along with size and shape selectivity. We report here the successful synthesis of mesoporous aluminosilicate zeolite Beta from a commercial cationic polymer that acts as a dual-function template to generate zeolitic micropores and mesopores simultaneously. This is the first demonstration of a single nonsurfactant polymer acting as such a template. Using high-resolution electron microscopy and tomography, we discovered that the resulting material (Beta-MS) has abundant and highly interconnected mesopores. More importantly, we demonstrated using a three-dimensional electron diffraction technique that each Beta-MS particle is a single crystal, whereas most previously reported mesoporous zeolites are comprised of nanosized zeolitic grains with random orientations. The use of nonsurfactant templates is essential to gaining single-crystalline mesoporous zeolites. The single-crystalline nature endows Beta-MS with better hydrothermal stability compared with surfactant-derived mesoporous zeolite Beta. Beta-MS also exhibited remarkably higher catalytic activity than did conventional zeolite Beta in acid-catalyzed reactions involving large molecules. © 2014 American Chemical Society.

  7. The study of methanol transformation over Cu-modified ZSM-5, Beta zeolite and MCM-41 mesoporous silica using 11C-radioisotope labeling

    International Nuclear Information System (INIS)

    Complete text of publication follows. The copper-containing zeolites and mesoporous silica, among other metals, are suitable for dehydrogenation of methanol. The Cu transition metal determines the route of methanol conversion on supports of ZSM-5 and Beta zeolite as well as MCM-41 mesoporous silica. The catalysis mechanism and the catalytic property are concluded from the composition of methanol derivates over Cu-modified catalysts. The Cu ion-exchanged ZSM-5 and Beta zeolite and MCM-41 mesoporous silica were synthesized and characterized using X-ray power diffraction, scanning electron microscope, nitrogen and pyridine adsorption, X-ray fluorescency and FTIR spectroscopy. The 11C-radioactive labeling method (11C radioisotope, T1/2 = 20 min, is a gamma emitter by annihilation of its positron) is suitable for following the process of 11C-methanol con- version i.e. adsorption, desorption and catalytic transformation as well as for investigation of small amounts of molecules over catalysts by very sensitive radioactivity detectors.The 11C radioisotope was produced at cyclotron and the 11C-methanol was synthesized by a classical radiochemical method. After catalysis the 11C-radioactive and non radioactive volatile products were identified by radiogas chromatography hereby radiolabeled compound and -derivates were distinguished from other participant natural, nonradioactive carbon compounds. Along radioactive products dimethyl ether and small hydrocarbons products were formed by Bronsted acid sites of catalysts while formaldehyde and small methyl formate were formed by Cu metal over bifunctional Cu-ZSM-5, Cu-Beta zeolite and mesoporous Cu-MCM-41 silica at 240 deg C. The detection of methoxy methanol and dimethoxy methane confirmed the simultaneous presence of acid and basic sites of catalysts. At higher temperature (400 deg C) the CO and CO2 final products were dominated. In our previous works, methanol conversion to hydrocarbons was observed by dehydration over acid H

  8. The effect of alkali metal on the surface properties of potassium doped Au-Beta zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Sobczak, Izabela, E-mail: sobiza@amu.edu.pl [A. Mickiewicz University, Faculty of Chemistry, Grunwaldzka 6, 60-780 Poznan (Poland); Rydz, Michal; Ziolek, Maria [A. Mickiewicz University, Faculty of Chemistry, Grunwaldzka 6, 60-780 Poznan (Poland)

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Interaction of gold with K leads to the change of electronic state and redox properties of gold. ► The amount of potassium incorporated into Au-zeolites determines the size of gold particles. ► K(0.2 wt.%)/Au-Beta exhibits the best performance in decomposition of N{sub 2}O and removal of Bu{sub 2}S. -- Abstract: Beta zeolite was applied as support for gold introduced by gold-precipitation method and potassium added by impregnation or adsorption. The effect of zeolite composition and the amount of potassium introduced on the surface properties of the final materials was considered. Moreover, the interaction of gold and potassium species was found to be related to the adsorptive and catalytic behaviour of zeolites in NO reduction with propene and deodorization. K/Au-Beta(Impregnated) exhibits the best performance in the above mentioned processes because of the small gold particles (between 2 and 5 nm) and interaction of gold with potassium species leading to the change of electronic properties of the surface (the appearance of cationic gold species). Potassium added as a promoter improves the catalytic properties of Au-zeolite in N{sub 2}O decomposition and also in deodorization (increase of the ability to dibutyl sulphide oxidation). The catalysts prepared were characterized by XRD, XPS, UV–vis, TEM, pyridine adsorption combined with FTIR and test reaction (2-propanol transformation).

  9. Dynamic Nuclear Polarization NMR Enables the Analysis of Sn-Beta Zeolite Prepared with Natural Abundance 119Sn Precursors

    OpenAIRE

    Gunther, William R.; Michaelis, Vladimir K.; Caporini, Marc A.; Griffin, Robert G.; Román-Leshkov, Yuriy

    2014-01-01

    The catalytic activity of tin-containing zeolites, such as Sn-Beta, is critically dependent on the successful incorporation of the tin metal center into the zeolite framework. However, synchrotron-based techniques or solid-state nuclear magnetic resonance (ssNMR) of samples enriched with 119Sn isotopes are the only reliable methods to verify framework incorporation. This work demonstrates, for the first time, the use of dynamic nuclear polarization (DNP) NMR for characterizing zeolites contai...

  10. Influence of the aluminium impregnation [ Al(NO33] in the beta zeolite over its acidity

    Directory of Open Access Journals (Sweden)

    Francisco José Sánchez Castellanos

    2010-04-01

    Full Text Available Beta zeolite was impregnated with [ Al(NO33], increasing the aluminium content in increments of 0.05% from 0.00% to 0.25%. A parallel treatment with 0.05% sulphuric acid was also performed; in both cases, methanol was used as solvent (disperse phase. Cation exchange capacity (CEC, ammonia chemisorption, infrared spectroscopy (FIT-IR, scanning electronic microscopy (SEM, X-Ray powder diffraction (XRD, atomic absorption spectroscopy (AAS, titration with sodium hydroxide and nitrogen physisorption at 77K were used to carry out the physical and chemical characterization of the catalysts. Futhermore, the catalysts were employed in the esterification of ethanol with acetic acid, to quantify the effect of aluminium impregnation over the beta zeolite.

  11. ASETILASI PADA FENOL DAN ANISOL MENGGUNAKAN ANHIDRIDA ASAM ASETAT BERKATALIS Zr4+-ZEOLIT BETA

    Directory of Open Access Journals (Sweden)

    DA Retnoningrum

    2015-07-01

    Full Text Available Zeolit beta pada umumnya memiliki keasaman tinggi dan berpotensi aktif sebagai katalis heterogen dalam asilasi Friedel-Crafts senyawa aromatik. Untuk meningkatkan stabilitas dan selektivitasnya, zeolit beta perlu diaktivasi dan dimodifikasi terlebih dahulu dengan mengembankan logam aktif zirkonium dengan metode pertukaran ion. Karakterisasi katalis meliputi analisis kristalinitas katalis dengan XRD, sifat permukaan katalis dengan Surface Area Analyzer dan uji keasaman dengan pengadsorbsi piridin. Dalam penelitian ini, dipelajari aktivitas dan selektivitas katalis Zr4+-zeolit beta dalam reaksi asetilasi fenol dan anisol. Reaksi dilakukan pada berbagai variasi suhu yaitu 100 dan 130C dengan waktu reaksi yaitu pada jam ke 4, 8 dan 12. Hasil asetilasi kemudian dianalisis menggunakan GC, FTIR dan analisis produk menggunakan GC-MS. Asetilasi fenol dengan katalis Zr4+-zeolit beta menghasilkan produk fenil etanoat dengan kadar 95,87% dan selektivitas 100%. Hasil ini didapatkan pada suhu reaksi 130C dan waktu reaksi 8 jam. Asetilasi pada cincin benzena baik pada fenol maupun anisol tidak terjadi, hal ini karena asetilasi pada cincin benzena lebih sukar dibandingkan asetilasi pada gugus OH fenol. Perlu adanya kondisi lain untuk melakukan asetilasi pada cincin benzena. Asetilasi anisol pada waktu reaksi 24 jam dan temperatur 130C didapatkan produk dengan kadar 74%.Beta zeolite generally has a high acidity and potentially active as heterogeneous catalyst in the Friedel-Crafts acylation of aromatic compounds. To improve its stability and selectivity, beta zeolite needs to be activated and modified in advance with zirconium to elicit active metal using ion exchange method. Characterization of catalyst include catalyst’s crystallinity using XRD analysis, the nature of the catalyst surface with the Surface Area Analyzer and the acidity test using pyridine adsorption. In the current study the activity and the selectivity of catalyst Zr4+-beta zeolite

  12. Direct evidence of advantage of using nanosized zeolite Beta for ISFET-based biosensor construction

    International Nuclear Information System (INIS)

    Analytical characteristics of urease- and butyrylcholinesterase (BuChE)- based ion sensitive field-effect transistor (ISFET) biosensors were investigated by the incorporation of zeolite Beta nanoparticles with varying Si/Al ratios. The results obtained by the zeolite-modified ISFET transducers suggested that the Si/Al ratio strongly influenced the biosensor performances due to the electrostatic interactions among enzyme, substrate, and zeolite surface as well as the nature of the enzymatic reaction. Using relatively small nanoparticles (62.7 ± 10, 76.2 ± 10, and 77.1 ± 10 nm) rather than larger particles, that are widely used in the literature, allow us to produce more homogenous products which will give more control over the quantity of materials used on the electrode surface and ability to change solely Si/Al ratio without changing other parameters such as particle size, pore volume, and surface area. This should enable the investigation of the individual effect of changing acidic and electronic nature of this material on the biosensor characteristics. According to our results, high biosensor sensitivity is evident on nanosize and submicron size particles, with the former resulting in higher performance. The sensitivity of biosensors modified by zeolite particles is higher than that to the protein for both types of biosensors. Most significantly, our results show that the performance of constructed ISFET-type biosensors strongly depends on Si/Al ratio of employed zeolite Beta nanoparticles as well as the type of enzymatic reaction employed. All fabricated biosensors demonstrated high signal reproducibility and stability for both BuChE and urease.

  13. Co-beta Zeolite Highly Active in Propane-SCR-NOx in the Presence of Water Vapor: Effect of Zeolite Preparation and Al Distribution in the Framework

    Czech Academy of Sciences Publication Activity Database

    Čapek, Libor; Dědeček, Jiří; Wichterlová, Blanka

    2004-01-01

    Roč. 227, č. 2 (2004), s. 352-366. ISSN 0021-9517 R&D Projects: GA MŠk 1P04OCD15.20 Institutional research plan: CEZ:AV0Z4040901 Keywords : Co-beta * SCR -NOx * Al distribution in zeolites Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.063, year: 2004

  14. Uniform Catalytic Site in Sn-beta Zeolite Determined using X-ray Absorption Fine Structure

    Energy Technology Data Exchange (ETDEWEB)

    Bare,S.; Kelly, S.; Sinkler, W.; Low, J.; Modica, F.; Valencia, S.; Corma, A.; Nemeth, L.

    2005-01-01

    The Sn silicate zeolite, Sn-{beta}, has been shown to be an efficient, selective heterogeneous catalyst for Baeyer-Villiger oxidations. Using primarily a multishell fit to extended X-ray absorption fine structure (EXAFS) data, we show that the Sn does not randomly insert into the {beta}-zeolite structure but rather occupies identical, specific, crystallographic sites. These sites are the T5/T6 sites in the six-membered rings. Moreover, the Sn is substituted in pairs on opposite sides of these six-membered rings. We believe that it is the specific, uniform crystallographic location of the Sn in the crystal structure that leads to sites with uniform catalytic activity, and consequently to the high chemical selectivity demonstrated for this catalyst. This manifests itself in the almost enzyme-like selectivity of this catalyst in Baeyer-Villiger oxidations. This uniform site distribution of the Sn suggests that there is likely a symbiotic relationship between the structure-directing agent in the zeolite synthesis and the Sn heteroatoms during the framework formation.

  15. Elaboration of new method of enzyme adsorption on silicalite and nano beta zeolite for amperometric biosensor creation

    Directory of Open Access Journals (Sweden)

    Soldatkin O. O.

    2014-07-01

    Full Text Available Aim. Optimization of a new method of enzyme immobilization for amperometric biosensor creation. Methods. The amperometric biosensor with glucose oxidase immobilized on zeolites as bioselective elements and platinum disk electrode as transducers of biochemical signal into the electric one was used in the work. Results. The biosensors based on glucose oxidase adsorbed on zeolites were characterized by a higher sensitivity to glucose and a better inter-reproducibility. The best analytical characteristics were obtained for the biosensors based on nano beta zeolite. It has been found that an increase in the amount of zeolite on the surface of amperometric transducer may change such biosensor parameters as sensitivity to the substrate and duration of the analysis. Conclusions. The proposed method of enzyme immobilization by adsorption on zeolites is shown to be quite promising in the development of amperometric biosensors and therefore should be further investigated.

  16. Tight bifunctional hierarchical catalyst.

    Science.gov (United States)

    Højholt, Karen T; Vennestrøm, Peter N R; Tiruvalam, Ramchandra; Beato, Pablo

    2011-12-28

    A new concept to prepare tight bifunctional catalysts has been developed, by anchoring CoMo(6) clusters on hierarchical ZSM-5 zeolites for simultaneous use in HDS and hydrocracking catalysis. The prepared material displays a significant improved activity in HDS catalysis compared to the impregnated counterpart. PMID:22048337

  17. Synthesis of zeolite beta with pretreated rice husk silica and its transformation to ZSM-12

    International Nuclear Information System (INIS)

    Silica with 98% purity was prepared from rice husk by acid leaching and used as a silica source for the syntheses of zeolite beta (Beta) under hydrothermal conditions with gel Si/Al ratios of 8, 13, 15, 20, 50, 100, 150, and 200. Based on powder X-ray diffraction patterns, samples with gel Si/Al ratios of 8-20 contained only the pure phase of Beta and the highest relative crystallinity was observed in the Beta with gel Si/Al ratio of 13. This sample was further characterized by scanning electron microscopy, particle size analyzer and N2 adsorption analysis. The Beta particles were sphere shaped with the average particle size of 1.5 μm and a surface area of 670 m2 g-1. The samples with gel Si/Al ratios ranging from 50 to 200 showed mixed phases of Beta and ZSM-12, and the latter phase was more dominant as the Si/Al ratio increased.

  18. Investigating the Influence of Mesoporosity in Zeolite Beta on its Catalytic Performance for the Conversion of Methanol to Hydrocarbons

    KAUST Repository

    Liu, Zhaohui

    2015-08-26

    Hierarchically porous zeolite Beta (Beta-MS) synthesized by a soft-templating method contains remarkable intra-crystalline mesoporosity, which reduces the diffusion length in zeolite channels down to several nanometers and alters the distribution of Al among distinct crystallographic sites. When used as a catalyst for the conversion of methanol to hydrocarbons (MTH) at 330 oC, Beta-MS exhibited a 2.7-fold larger conversion capacity, a 2.0-fold faster reaction rate, and a remarkably longer lifetime than conventional zeolite Beta (Beta-C). The superior catalytic performance of Beta-MS is attributed to its hierarchical structure, which offers full accessibility to all catalytic active sites. In contrast, Beta-C was easily deactivated because a layer of coke quickly deposited on the outer surfaces of the catalyst crystals, impeding access to interior active sites. This difference is clearly demonstrated by using electron microscopy combined with electron energy loss spectroscopy to probe the distribution of coke in the deactivated catalysts. At both low and high conversions, ranging from 20% to 100%, Beta-MS gave higher selectivity towards higher aliphatics (C4-C7) but lower ethene selectivity compared to Beta-C. Therefore, we conclude that a hierarchical structure decreases the residence time of methylbenzenes in zeolite micropores, disfavoring the propagation of the aromatic-based catalytic cycle. This conclusion is consistent with a recent report on ZSM-5 and is also strongly supported by our analysis of soluble coke species residing in the catalysts. Moreover, we identified an oxygen-containing compound, 4-methyl-benzaldehyde, in the coke, which has not been observed in the MTH reaction before.  

  19. Intergrown new zeolite beta polymorphs with interconnected 12-ring channels solved by combining electron crystallography and single-crystal X-ray diffraction

    KAUST Repository

    Yu, Zhengbao

    2012-10-09

    Two new polymorphs of zeolite beta, denoted as SU-78A and SU-78B, were synthesized by employing dicyclohexylammonium hydroxides as organic structure-directing agents. The structure was solved by combining transmission electron microscopy and single-crystal X-ray diffraction. SU-78 is an intergrowth of SU-78A and SU-78B and contains interconnected 12-ring channels in three directions. The two polymorphs are built from the same building layer, similar to that for the zeolite beta family. The layer stacking in SU-78, however, is different from those in zeolite beta polymorph A, B, and C, showing new zeolite framework topologies. SU-78 is thermally stable up to 600 °C. © 2012 American Chemical Society.

  20. S+X-I+ route to mesostructured materials from Fau and Beta zeolite precursors: A comparative study of their assembly behaviors in extremely acidic media

    International Nuclear Information System (INIS)

    Mesoporous molecular sieves were synthesized from Beta and Fau zeolite precursors through S+X-I+ route under extremely acidic conditions in parallel (designated as MBeta and MFau, respectively). The textural properties of MFau were different from its MBeta counterpart but resembled normal MCM-41 silica from TEOS. Al content in MBeta was almost equivalent to that in the initial Beta zeolite precursors, whereas only trace Al species was present in MFau from elemental analysis results. The hydrothermal stability of MBeta after post-synthesis ammonia treatment was considerably improved compared with normal MCM-41 aluminosilicates, whereas the MFau after the same procedure was as unstable as normal MCM-41 silica. Thus, the assembly behaviors of Beta and Fau zeolite precursors were comparatively studied based on these results. The microstructure of Fau zeolite precursors were degraded by the extremely acidic condition, and Al species was dissolved into the synthesis mixture. However, Beta zeolite precursors survived the chemical attack of extremely acidic media and were incorporated into mesostructured framework as primary building units

  1. Remarkably enhanced density and specific activity of active sites in Al-rich Cu-, Fe- and Co-beta zeolites for selective catalytic reduction of NOx

    Czech Academy of Sciences Publication Activity Database

    Sazama, Petr; Pilař, Radim; Mokrzycki, Lukasz; Vondrová, Alena; Kaucký, Dalibor; Plšek, Jan; Sklenák, Štěpán; Šťastný, Petr; Klein, Petr

    2016-01-01

    Roč. 189, JUL 2016 (2016), s. 65-74. ISSN 0926-3373 R&D Projects: GA TA ČR(CZ) TH01021259 Institutional support: RVO:61388955 Keywords : SCR -NOx * Al-rich beta zeolite (*BEA) * Cobalt Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.435, year: 2014

  2. Investigation of Aluminum Site Changes of Dehydrated Zeolite H-Beta during a Rehydration Process by High Field Solid State NMR

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhenchao; Xu, Suochang; Hu, Mary Y.; Bao, Xinhe; Peden, Charles HF; Hu, Jian Z.

    2015-01-22

    Aluminum site changes for dehydrated H-Beta zeolite during rehydration process are systematically investigated by ²⁷Al MAS and MQ MAS NMR at high magnetic fields up to 19.9 T. Benefiting from the high magnetic field, more detailed information is obtained from the considerably broadened and overlapped spectra of dehydrated H-beta zeolite. Dynamic changes of aluminum sites are demonstrated during rehydration process. In completely dehydrated H-Beta, invisible aluminum can reach 29%. The strength of quadrupole interactions for framework aluminum sites decreases gradually during water adsorption processes. The number of extra-framework aluminum (EFAL) species, i.e., penta- (34 ppm) and octa- (4 ppm) coordinated aluminum atoms rises initially with increasing water adsorption, and finally change into either tetra-coordinated framework or extra-framework aluminum in saturated water adsorption samples, with the remaining octa-coordinated aluminum lying at 0 and -4 ppm, respectively. Quantitative ²⁷Al MAS NMR analysis combined with ¹H MAS NMR indicates that some active EFAL species formed during calcination can reinsert into the framework during this hydration process. The assignment of aluminum at 0 ppm to EFAL cation and -4 ppm to framework aluminum is clarified for H-Beta zeolite.

  3. Dynamic nuclear polarization NMR enables the analysis of Sn-Beta zeolite prepared with natural abundance ¹¹⁹Sn precursors.

    Science.gov (United States)

    Gunther, William R; Michaelis, Vladimir K; Caporini, Marc A; Griffin, Robert G; Román-Leshkov, Yuriy

    2014-04-30

    The catalytic activity of tin-containing zeolites, such as Sn-Beta, is critically dependent on the successful incorporation of the tin metal center into the zeolite framework. However, synchrotron-based techniques or solid-state nuclear magnetic resonance (ssNMR) of samples enriched with (119)Sn isotopes are the only reliable methods to verify framework incorporation. This work demonstrates, for the first time, the use of dynamic nuclear polarization (DNP) NMR for characterizing zeolites containing ~2 wt % of natural abundance Sn without the need for (119)Sn isotopic enrichment. The biradicals TOTAPOL, bTbK, bCTbK, and SPIROPOL functioned effectively as polarizing sources, and the solvent enabled proper transfer of spin polarization from the radical's unpaired electrons to the target nuclei. Using bCTbK led to an enhancement (ε) of 75, allowing the characterization of natural-abundance (119)Sn-Beta with excellent signal-to-noise ratios in <24 h. Without DNP, no (119)Sn resonances were detected after 10 days of continuous analysis. PMID:24697321

  4. Elaboration of new method of enzyme adsorption on silicalite and nano beta zeolite for amperometric biosensor creation

    OpenAIRE

    Soldatkin O. O.; Ozansoy Kasap B.; Akata Kurc B.; Soldatkin A. P.; Dzyadevych S. V.; El’skaya A. V.

    2014-01-01

    Aim. Optimization of a new method of enzyme immobilization for amperometric biosensor creation. Methods. The amperometric biosensor with glucose oxidase immobilized on zeolites as bioselective elements and platinum disk electrode as transducers of biochemical signal into the electric one was used in the work. Results. The biosensors based on glucose oxidase adsorbed on zeolites were characterized by a higher sensitivity to glucose and a better inter-reproducibility. The best analytical charac...

  5. One-pot hydrothermal synthesis of CuBi co-doped mesoporous zeolite Beta for the removal of NOx by selective catalytic reduction with ammonia

    Science.gov (United States)

    Xie, Zhiguo; Zhou, Xiaoxia; Wu, Huixia; Chen, Lisong; Zhao, Han; Liu, Yan; Pan, Linyu; Chen, Hangrong

    2016-01-01

    A series of CuBi co-doped mesoporous zeolite Beta (CuxBiy-mBeta) were prepared by a facile one-pot hydrothermal treatment approach and were characterized by XRD, N2 adsorption-desorption, TEM/SEM, XPS, H2-TPR, NH3-TPD and in situ DRIFTS. The catalysts CuxBiy-mBeta were applied to the removal of NOx by selective catalytic reduction with ammonia (NH3-SCR), especially the optimized Cu1Bi1-mBeta achieved the high efficiency for the removal of NOx and N2 selectivity, superior water and sulfur resistance as well as good durability. The excellent catalytic performance could be attributed to the acid sites of the support and the synergistic effect between copper and bismuth species. Moreover, in situ DRIFTS results showed that amides NH2 and NH4+ generated from NH3 adsorption could be responsible for the high selective catalytic reduction of NOx to N2. In addition, a possible catalytic reaction mechanism on Cu1Bi1-mBeta for the removal of NOx by NH3-SCR was proposed for explaining this catalytic process. PMID:27445009

  6. One-pot hydrothermal synthesis of CuBi co-doped mesoporous zeolite Beta for the removal of NOx by selective catalytic reduction with ammonia

    Science.gov (United States)

    Xie, Zhiguo; Zhou, Xiaoxia; Wu, Huixia; Chen, Lisong; Zhao, Han; Liu, Yan; Pan, Linyu; Chen, Hangrong

    2016-07-01

    A series of CuBi co-doped mesoporous zeolite Beta (CuxBiy-mBeta) were prepared by a facile one-pot hydrothermal treatment approach and were characterized by XRD, N2 adsorption-desorption, TEM/SEM, XPS, H2-TPR, NH3-TPD and in situ DRIFTS. The catalysts CuxBiy-mBeta were applied to the removal of NOx by selective catalytic reduction with ammonia (NH3-SCR), especially the optimized Cu1Bi1-mBeta achieved the high efficiency for the removal of NOx and N2 selectivity, superior water and sulfur resistance as well as good durability. The excellent catalytic performance could be attributed to the acid sites of the support and the synergistic effect between copper and bismuth species. Moreover, in situ DRIFTS results showed that amides NH2 and NH4+ generated from NH3 adsorption could be responsible for the high selective catalytic reduction of NOx to N2. In addition, a possible catalytic reaction mechanism on Cu1Bi1-mBeta for the removal of NOx by NH3-SCR was proposed for explaining this catalytic process.

  7. One-pot hydrothermal synthesis of CuBi co-doped mesoporous zeolite Beta for the removal of NOx by selective catalytic reduction with ammonia.

    Science.gov (United States)

    Xie, Zhiguo; Zhou, Xiaoxia; Wu, Huixia; Chen, Lisong; Zhao, Han; Liu, Yan; Pan, Linyu; Chen, Hangrong

    2016-01-01

    A series of CuBi co-doped mesoporous zeolite Beta (CuxBiy-mBeta) were prepared by a facile one-pot hydrothermal treatment approach and were characterized by XRD, N2 adsorption-desorption, TEM/SEM, XPS, H2-TPR, NH3-TPD and in situ DRIFTS. The catalysts CuxBiy-mBeta were applied to the removal of NOx by selective catalytic reduction with ammonia (NH3-SCR), especially the optimized Cu1Bi1-mBeta achieved the high efficiency for the removal of NOx and N2 selectivity, superior water and sulfur resistance as well as good durability. The excellent catalytic performance could be attributed to the acid sites of the support and the synergistic effect between copper and bismuth species. Moreover, in situ DRIFTS results showed that amides NH2 and NH4(+) generated from NH3 adsorption could be responsible for the high selective catalytic reduction of NOx to N2. In addition, a possible catalytic reaction mechanism on Cu1Bi1-mBeta for the removal of NOx by NH3-SCR was proposed for explaining this catalytic process. PMID:27445009

  8. The annihilation of ortho-positronium in the {alpha} and {beta} cavities of the 4A zeolite and those CoZ4A and MnZ4A; La aniquilacion del orto-positronio en las cavidades {alpha} y {beta} de la zeolita 4A y en las de CoZ4A y MnZ4A

    Energy Technology Data Exchange (ETDEWEB)

    Cabral P, A.; Garcia S, I.; Jimenez B, J.; Solache R, M.; Bonifacio M, J.; Rodriguez F, C.; Bulbulian, S. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    The lifetime of the ortho-positronium in the zeolite 4A, partially dehydrated, changes to three characteristic modes. The first mode could be associated with the water elimination of the small {beta} cavity of this zeolite. At the end of this first dehydration process it is estimated a cavity radius, R = 33.8 nm. The other two types of variation of lifetime of ortho-positronium would be associated with the water elimination of the {alpha} great cavity and of the rest of the zeolite. From the zeolite 4A totally dehydrated and of the zeolite 4A exchanged with Co (II) and MN (II), also dehydrated radius are respectively determined for the {alpha} great cavity of R = 48.1, 54.5 and 56.5 nm. (Author)

  9. Chemical Imaging of Catalyst Deactivation during the Conversion of Renewables at the Single Particle Level: The Etherification of Biomass-based Polyols with Alkenes over H-Beta Zeolites

    Energy Technology Data Exchange (ETDEWEB)

    A Parvulescu; D Mores; E Stavitski; C Teodorescu; P Bruijnicx; R Klein Gebbing; B Weckhuysen

    2011-12-31

    The etherification of biomass-based alcohols with various linear {alpha}-olefins under solvent-free conditions was followed in a space- and time-resolved manner on 9 {micro}m large H-Beta zeolite crystals by confocal fluorescence microscopy. This allowed us to visualize the interaction with the substrate and distribution of the coke products into the catalyst at the level of an individual zeolite crystal during the etherification process. The spectroscopic information obtained on the micrometer-scale zeolite was in line with the results obtained with bulk characterization techniques and further confirmed by the catalytic results obtained both for micrometer-scale and nanoscale zeolites. This allowed us to explain the influence of the substrate type (glycerol, glycols, and alkenes) and zeolite properties (Si/Al ratio and particle size) on the etherification activity. The etherification of the biomass-based alcohols takes place mainly on the external surface of the zeolite particles. The gradual blockage of the external surface of the zeolite results in a partial or total loss of etherification activity. The deactivation could be attributed to olefin oligomerization. The high conversions obtained in the etherification of 1,2-propylene glycol with long linear alkenes (up to 80%) and the pronounced deactivation of the zeolite observed in the etherification of glycerol with long linear alkenes (max. 20% conversion) were explained by the spectroscopic measurements and is due to differences in the adsorption, i.e., in the center of the zeolite particle for glycerol and on the external surface in the case of glycols.

  10. The decisive role of the distribution of Al in the framework of beta zeolites on the structure and activity of Co ion species in propane-SCR-NOx in the presence of water vapour

    Czech Academy of Sciences Publication Activity Database

    Čapek, Libor; Dědeček, Jiří; Sazama, Petr; Wichterlová, Blanka

    2010-01-01

    Roč. 272, č. 1 (2010), s. 44-54. ISSN 0021-9517 R&D Projects: GA AV ČR KAN100400702; GA AV ČR IAA400400904 Grant ostatní: EU Network of Excellence IDECAT(XE) NMP 3-CT-2005-011730 Institutional research plan: CEZ:AV0Z40400503 Keywords : Co-beta zeolites * Al distribution * SCR -NOx Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.415, year: 2010

  11. Titanium-Beta Zeolites Catalyze the Stereospecific Isomerization of D-Glucose to L-Sorbose via Intramolecular C5-C1 Hydride Shift

    Energy Technology Data Exchange (ETDEWEB)

    Gounder, Rajamani [California Inst. of Technology (CalTech), Pasadena, CA (United States); Davis, Mark E. [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2013-06-03

    Pure-silica zeolite beta containing Lewis acidic framework Ti4+ centers (Ti-Beta) is shown to catalyze the isomerization of D-glucose to L-sorbose via an intramolecular C5–C1 hydride shift. Glucose–sorbose isomerization occurs in parallel to glucose–fructose isomerization on Ti-Beta in both water and methanol solvents, with fructose formed as the predominant product in water and sorbose as the predominant product in methanol (at 373 K) at initial times and over the course of >10 turnovers. Isotopic tracer studies demonstrate that 13C and D labels placed respectively at the C1 and C2 positions of glucose are retained respectively at the C6 and C5 positions of sorbose, consistent with its formation via an intramolecular C5–C1 hydride shift isomerization mechanism. This direct Lewis acid-mediated pathway for glucose–sorbose isomerization appears to be unprecedented among heterogeneous or biological catalysts and sharply contrasts indirect base-mediated glucose–sorbose isomerization via 3,4-enediol intermediates or via retro-aldol fragmentation and recombination of sugar fragments. Measured first-order glucose–sorbose isomerization rate constants (per total Ti; 373 K) for Ti-Beta in methanol are similar for glucose and glucose deuterated at the C2 position (within a factor of ~1.1), but are a factor of ~2.3 lower for glucose deuterated at each carbon position, leading to H/D kinetic isotope effects expected for kinetically relevant intramolecular C5–C1 hydride shift steps. Optical rotation measurements show that isomerization of D-(+)-glucose (92% enantiomeric purity) with Ti-Beta in water (373 K) led to the formation of L-(-)-sorbose (73% enantiomeric purity) and D-(-)-fructose (87% enantiomeric purity) as the predominant stereoisomers, indicating that stereochemistry is preserved at carbon centers not directly involved in intramolecular C5–C1 or C2–C1 hydride shift steps, respectively. This new Lewis acid

  12. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons

    Science.gov (United States)

    Zečević, Jovana; Vanbutsele, Gina; de Jong, Krijn P.; Martens, Johan A.

    2016-01-01

    The ability to precisely control nanoscale features is increasingly exploited to develop and improve monofunctional catalysts1–4. Striking effects might also be expected in the case of bifunctional catalysts, which play an important role in hydrocracking of fossil and renewable hydrocarbon sources to provide high-quality diesel fuel5–7. Such bifunctional hydrocracking catalysts contain metal sites and acid sites, and for more than 50 years the so-called ‘intimacy criterion’8 has dictated the maximum distance between the two site types beyond which catalytic activity decreases. The lack of synthesis and material characterization methods with nanometer precision has long prevented in-depth exploration of the criterion, which has often been interpreted simply as ‘the closer the better’ for positioning metal and acid sites8–11. Here we show for a bifunctional catalyst, comprised of an intimate mixture of zeolite Y and alumina binder and with platinum (Pt) metal controllably deposited20,21 on either the zeolite or the binder, that close proximity between metal and zeolite acid sites can be detrimental: the selectivity when cracking large hydrocarbon feedstock molecules for high-quality diesel production is optimized with the catalyst that contains Pt on the binder, i.e. with a larger distance between metal and acid sites. Cracking of the large and complex hydrocarbon molecules typically derived from alternative sources such as gas-to-liquid technology, vegetable oil or algal oil6–7 should thus benefit especially from bifunctional catalysts that avoid locating Pt on the zeolite as the traditionally assumed optimal location. More generally, we anticipate that the ability to spatially organize different active sites at the nanoscale demonstrated here will benefit the further development and optimization of the newly emerging generation of multifunctional catalysts12–15. PMID:26659185

  13. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons

    Science.gov (United States)

    Zecevic, Jovana; Vanbutsele, Gina; de Jong, Krijn P.; Martens, Johan A.

    2015-12-01

    The ability to control nanoscale features precisely is increasingly being exploited to develop and improve monofunctional catalysts. Striking effects might also be expected in the case of bifunctional catalysts, which are important in the hydrocracking of fossil and renewable hydrocarbon sources to provide high-quality diesel fuel. Such bifunctional hydrocracking catalysts contain metal sites and acid sites, and for more than 50 years the so-called intimacy criterion has dictated the maximum distance between the two types of site, beyond which catalytic activity decreases. A lack of synthesis and material-characterization methods with nanometre precision has long prevented in-depth exploration of the intimacy criterion, which has often been interpreted simply as ‘the closer the better’ for positioning metal and acid sites. Here we show for a bifunctional catalyst—comprising an intimate mixture of zeolite Y and alumina binder, and with platinum metal controllably deposited on either the zeolite or the binder—that closest proximity between metal and zeolite acid sites can be detrimental. Specifically, the selectivity when cracking large hydrocarbon feedstock molecules for high-quality diesel production is optimized with the catalyst that contains platinum on the binder, that is, with a nanoscale rather than closest intimacy of the metal and acid sites. Thus, cracking of the large and complex hydrocarbon molecules that are typically derived from alternative sources, such as gas-to-liquid technology, vegetable oil or algal oil, should benefit especially from bifunctional catalysts that avoid locating platinum on the zeolite (the traditionally assumed optimal location). More generally, we anticipate that the ability demonstrated here to spatially organize different active sites at the nanoscale will benefit the further development and optimization of the emerging generation of multifunctional catalysts.

  14. Application of novel Polypyrrole/thiol-functionalized zeolite Beta/MCM-41 type mesoporous silica nanocomposite for adsorption of Hg2+ from aqueous solution and industrial wastewater: Kinetic, isotherm and thermodynamic studies

    Science.gov (United States)

    Javadian, Hamedreza; Taghavi, Mehdi

    2014-01-01

    Hierarchical zeolite consists of both microporous and unordered mesoporous structures. A composite of Polypyrrole/thiol-functionalized Beta/MCM-41 (PPy/SH-Beta/MCM-41) was prepared, characterized by FE-SEM, FT-IR, XRD, TGA and BET analysis and applied in the investigation of its adsorption characteristics for the removal of Hg2+ ions from aqueous solutions. Thiol-functionalized Beta/MCM-41 (SH-Beta/MCM-41) was prepared by 3-mercaptopropyltrimethoxysilane (MPTMS) in the presence of aerosil-200 as a silica source by two-step hydrothermal crystallization procedure. Batch mode experiments were conducted and three kinetic models were used to describe the adsorption process. The experimental data fitted very well with the Pseudo-second-order kinetic model. The calculated thermodynamic parameters (ΔH, ΔS and ΔG) revealed that the adsorption of Hg2+ onto PPy/SH-Beta/MCM-41 is an endothermic and spontaneous process. It was found that temperature has a positive effect on the removal efficiency and that PPy/SH-Beta/MCM-41 is potentially able to remove Hg2+ ions from aqueous solutions at even high concentrations (400 mg L-1). The recovery of Hg2+ from the PPy/SH-Beta/MCM-41 adsorbent was found to be more than 90% using 0.5 M H2SO4, and the ability of the absorbent to be reused for removal of Hg2+ was investigated.

  15. Application of novel Polypyrrole/thiol-functionalized zeolite Beta/MCM-41 type mesoporous silica nanocomposite for adsorption of Hg2+ from aqueous solution and industrial wastewater: Kinetic, isotherm and thermodynamic studies

    International Nuclear Information System (INIS)

    Hierarchical zeolite consists of both microporous and unordered mesoporous structures. A composite of Polypyrrole/thiol-functionalized Beta/MCM-41 (PPy/SH-Beta/MCM-41) was prepared, characterized by FE-SEM, FT-IR, XRD, TGA and BET analysis and applied in the investigation of its adsorption characteristics for the removal of Hg2+ ions from aqueous solutions. Thiol-functionalized Beta/MCM-41 (SH-Beta/MCM-41) was prepared by 3-mercaptopropyltrimethoxysilane (MPTMS) in the presence of aerosil-200 as a silica source by two-step hydrothermal crystallization procedure. Batch mode experiments were conducted and three kinetic models were used to describe the adsorption process. The experimental data fitted very well with the Pseudo-second-order kinetic model. The calculated thermodynamic parameters (ΔH, ΔS and ΔG) revealed that the adsorption of Hg2+ onto PPy/SH-Beta/MCM-41 is an endothermic and spontaneous process. It was found that temperature has a positive effect on the removal efficiency and that PPy/SH-Beta/MCM-41 is potentially able to remove Hg2+ ions from aqueous solutions at even high concentrations (400 mg L−1). The recovery of Hg2+ from the PPy/SH-Beta/MCM-41 adsorbent was found to be more than 90% using 0.5 M H2SO4, and the ability of the absorbent to be reused for removal of Hg2+ was investigated.

  16. Bifunctional alkaline oxygen electrodes

    Science.gov (United States)

    Swette, L.; Kackley, N.; Mccatty, S. A.

    1991-01-01

    The authors describe the identification and testing of electrocatalysts and supports for the positive electrode of moderate-temperature, single-unit, rechargeable alkaline fuel cells. Recent work on Na(x)Pt3O4, a potential bifunctional catalyst, is described, as well as the application of novel approaches to the development of more efficient bifunctional electrode structures. The three dual-character electrodes considered here showed similar superior performance; the Pt/RhO2 and Rh/RhO2 electrodes showed slightly better performance than the Pt/IrO2 electrode. It is concluded that Na(x)Pt3O4 continues to be a promising bifunctional oxygen electrode catalyst but requires further investigation and development.

  17. Post-synthetic preparation of Sn-, Ti- and Zr-beta: a facile route to water tolerant, highly active Lewis acidic zeolites.

    Science.gov (United States)

    Wolf, Patrick; Hammond, Ceri; Conrad, Sabrina; Hermans, Ive

    2014-03-21

    A two-step procedure for the post-synthetic preparation of Lewis acidic Sn-, Zr- and Ti-zeolite β is reported. Dealumination of a commercially available Al-β zeolite leads to the formation of highly siliceous material containing silanol nests, which can be filled in a second step via the solid-state ion-exchange or impregnation of an appropriate metal precursor. Spectroscopic studies indicate that each metal is subsequently coordinated within the zeolite framework, and that little or no bulk oxides are formed--despite the high metal loadings. The synthesised catalysts demonstrate excellent activity for the isomerisation of glyceraldehyde to dihydroxyacetone, a key model reaction for the upgrading of bio-renewable feedstocks, and the epoxidation of bulky olefins. PMID:24407516

  18. Application of novel Polypyrrole/thiol-functionalized zeolite Beta/MCM-41 type mesoporous silica nanocomposite for adsorption of Hg{sup 2+} from aqueous solution and industrial wastewater: Kinetic, isotherm and thermodynamic studies

    Energy Technology Data Exchange (ETDEWEB)

    Javadian, Hamedreza, E-mail: Hamedreza.Javadian@yahoo.com [Department of Chemical Engineering, Shahrood Branch, Islamic Azad University, Shahrood, Islamic Republic of Iran (Iran, Islamic Republic of); Taghavi, Mehdi [Polymer Chemistry Research Laboratory, Department of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Islamic Republic of Iran (Iran, Islamic Republic of)

    2014-01-15

    Hierarchical zeolite consists of both microporous and unordered mesoporous structures. A composite of Polypyrrole/thiol-functionalized Beta/MCM-41 (PPy/SH-Beta/MCM-41) was prepared, characterized by FE-SEM, FT-IR, XRD, TGA and BET analysis and applied in the investigation of its adsorption characteristics for the removal of Hg{sup 2+} ions from aqueous solutions. Thiol-functionalized Beta/MCM-41 (SH-Beta/MCM-41) was prepared by 3-mercaptopropyltrimethoxysilane (MPTMS) in the presence of aerosil-200 as a silica source by two-step hydrothermal crystallization procedure. Batch mode experiments were conducted and three kinetic models were used to describe the adsorption process. The experimental data fitted very well with the Pseudo-second-order kinetic model. The calculated thermodynamic parameters (ΔH, ΔS and ΔG) revealed that the adsorption of Hg{sup 2+} onto PPy/SH-Beta/MCM-41 is an endothermic and spontaneous process. It was found that temperature has a positive effect on the removal efficiency and that PPy/SH-Beta/MCM-41 is potentially able to remove Hg{sup 2+} ions from aqueous solutions at even high concentrations (400 mg L{sup −1}). The recovery of Hg{sup 2+} from the PPy/SH-Beta/MCM-41 adsorbent was found to be more than 90% using 0.5 M H{sub 2}SO{sub 4}, and the ability of the absorbent to be reused for removal of Hg{sup 2+} was investigated.

  19. Zeolite-catalyzed isomerization of tetroses in aqueous medium

    DEFF Research Database (Denmark)

    Shunmugavel, Saravanamurugan; Riisager, Anders

    2014-01-01

    The isomerization of erythrose (ERO) was studied in water over commercially available large-pore zeolites such as, e.g. H-Y, H-USY and H-beta. Among the employed zeolites, H-USY(6) was found to efficiently isomerize the sugar yielding 45 % erythrulose (ERU), 42 % ERO and 3 % of the epimer threose...

  20. Synthesis of 2,3-Butanedione over TS-1, Ti-NCl, TiMCM-41, Ti-Beta, Fe-Si, Fe-Beta and VS-1 Zeolites

    OpenAIRE

    Oscar Anunziata; Liliana Pierella; Marcos Gomez; Andrea Beltramone

    2000-01-01

    The purpose of this work is the synthesis of 2,3-butanedione (diacetyl) by selective oxidation of 2-butanone (methyl ethyl ketone) in the presence of O2 and H2O2 30% as oxidants. All the tests were performed over several selective oxidation zeolite catalysts, synthesized and characterized in our laboratory.

  1. Quantifying defects in zeolites and zeolite membranes

    Science.gov (United States)

    Hammond, Karl Daniel

    Zeolites are crystalline aluminosilicates that are frequently used as catalysts to transform chemical feedstocks into more useful materials in a size- or shape-selective fashion; they are one of the earliest forms of nanotechnology. Zeolites can also be used, especially in the form of zeolite membranes (layers of zeolite on a support), to separate mixtures based on the size of the molecules. Recent advances have also created the possibility of using zeolites as alkaline catalysts, in addition to their traditional applications as acid catalysts and catalytic supports. Transport and catalysis in zeolites are greatly affected by physical and chemical defects. Such defects can be undesirable (in the case of zeolite membranes), or desirable (in the case of nitrogen-doped alkaline zeolites). Studying zeolites at the relevant length scales requires indirect experimental methods such as vapor adsorption or atomic-scale modeling such as electronic structure calculations. This dissertation explores both experimental and theoretical characterization of zeolites and zeolite membranes. Physical defects, important in membrane permeation, are studied using physical adsorption experiments and models of membrane transport. The results indicate that zeolite membranes can be modeled as a zeolite powder on top of a support---a "supported powder," so to speak---for the purposes of adsorption. Mesoporosity that might be expected based on permeation and confocal microscopy measurements is not observed. Chemical defects---substitutions of nitrogen for oxygen---are studied using quantum mechanical models that predict spectroscopic properties. These models provide a method for simulating the 29Si NMR spectra of nitrogendefected zeolites. They also demonstrate that nitrogen substitutes into the zeolite framework (not just on the surface) under the proper reaction conditions. The results of these studies will be valuable to experimentalists and theorists alike in our efforts to understand the

  2. Templating mesoporous zeolites

    DEFF Research Database (Denmark)

    Egeblad, Kresten; Christensen, Christina Hviid; Kustova, Marina;

    2008-01-01

    categorization of templating methods, the nature of the interface between the zeolite crystal and the mesopore exactly when the mesopore starts to form is emphasized. In solid templating, the zeolite crystal is in intimate contact with a solid material that is being removed to produce the mesoporosity. Similarly......The application of templating methods to produce zeolite materials with hierarchical bi- or trimodal pore size distributions is reviewed with emphasis on mesoporous materials. Hierarchical zeolite materials are categorized into three distinctly different types of materials: hierarchical zeolite...... crystals, nanosized zeolite crystals, and supported zeolite crystals. For the pure zeolite materials in the first two categories, the additional meso- or macroporosity can be classified as being either intracrystalline or intercrystalline, whereas for supported zeolite materials, the additional porosity...

  3. Bifunctional redox flow battery

    International Nuclear Information System (INIS)

    A new bifunctional redox flow battery (BRFB) system, V(III)/V(II)-L-cystine(O2), was systematically investigated by using different separators. It is shown that during charge, water transfer is significantly restricted with increasing the concentration of HBr when the Nafion 115 cation exchange membrane is employed. The same result can be obtained when the gas diffusion layer (GDL) hot-pressed separator is used. The organic electro-synthesis is directly correlated with the crossover of vanadium. When employing the anion exchange membrane, the electro-synthesis efficiency is over 96% due to a minimal crossover of vanadium. When the GDL hot-pressed separator is applied, the crossover of vanadium and water transfer are noticeably prevented and the electro-synthesis efficiency of over 99% is obtained. Those impurities such as vanadium ions and bromine can be eliminated through the purification of organic electro-synthesized products. The purified product is identified to be L-cysteic acid by IR spectrum. The BRFB shows a favorable discharge performance at a current density of 20 mA cm-2. Best discharge performance is achieved by using the GDL hot-pressed separator. The coulombic efficiency of 87% and energy efficiency of about 58% can be obtained. The cause of major energy losses is mainly associated with the cross-contamination of anodic and cathodic active electrolytes

  4. ZEOLITES: EFFECTIVE WATER PURIFIERS

    Science.gov (United States)

    Zeolites are known for their adsorption, ion exchange and catalytic properties. Various natural zeolites are used as odor and moisture adsorbents and water softeners. Due to their acidic nature, synthetic zeolites are commonly employed as solid acid catalysts in petrochemical ind...

  5. Study of the hydro-isomerization of paraffins with 7 and 8 carbon atoms on bifunctional catalysts; Etude de l'hydroisomerisation des paraffines a 7 et 8 atomes de carbone sur catalyseurs bifonctionnels

    Energy Technology Data Exchange (ETDEWEB)

    Patrigeon, A.

    2000-10-11

    Due to the suppression of lead additives and the trend to decrease the aromatic and olefinic content in gasoline, the interest for new octane enhancement processes has increased, particularly for isomerization of C{sub 7} and C{sub 8} linear paraffins into higher octane number multi-branched paraffins. Up to the present day, no industrial bifunctional catalyst exists due to the high tendency of the paraffins to be cracked limiting the amount of multi-branched products. The aim of this work is to study the possibility of isomerizing linear C{sub 7} and C{sub 8} paraffins in two steps in order to increase the amount of formed multi-branched paraffins. The first step converts linear paraffins into mono-branched paraffins (that step is supposed to be the slowest one) carried out using one bifunctional catalyst. The second step converts the formed mono-branched paraffins into multi-branched paraffins using a second bifunctional catalyst. The aim is to determine the characteristics of the two catalysts. To study the first step, Pt/zeolite or Pt/meso-porous solid catalysts, with different acidities and porosities, were tested in n-heptane and n-octane hydro-conversion. The role of solid porosity on selectivities was clearly established. Molecular modelling was utilised to explain the observed selectivities. To study the second step, the 2-methyl-hexane and 2-methyl-heptane hydro-conversion on Pt/H-beta and Pt/H-Y was carried out. This lead to maximum multi-branched yields similar to those obtained with the n-heptane and n-octane hydro-conversion. That result shows that the two steps isomerization process is not necessarily required because no more multi-branched products are formed. A kinetic study on the n-heptane hydro-conversion was performed. The decomposition of isomerization and cracking reactions into elementary steps has shown the major role of the paraffins physio-sorption step in the zeolite pores. (author)

  6. Study of zeolite influence on analytical characteristics of urea biosensor based on ion-selective field-effect transistors

    Science.gov (United States)

    Shelyakina, Margaryta K.; Soldatkin, Oleksandr O.; Arkhypova, Valentyna M.; Kasap, Berna O.; Akata, Burcu; Dzyadevych, Sergei V.

    2014-03-01

    A possibility of the creation of potentiometric biosensor by adsorption of enzyme urease on zeolite was investigated. Several variants of zeolites (nano beta, calcinated nano beta, silicalite, and nano L) were chosen for experiments. The surface of pH-sensitive field-effect transistors was modified with particles of zeolites, and then the enzyme was adsorbed. As a control, we used the method of enzyme immobilization in glutaraldehyde vapour (without zeolites). It was shown that all used zeolites can serve as adsorbents (with different effectiveness). The biosensors obtained by urease adsorption on zeolites were characterized by good analytical parameters (signal reproducibility, linear range, detection limit and the minimal drift factor of a baseline). In this work, it was shown that modification of the surface of pH-sensitive field-effect transistors with zeolites can improve some characteristics of biosensors.

  7. Dimerization of norbornene on zeolite catalysts

    Institute of Scientific and Technical Information of China (English)

    N. G. Grigor’eva; S. V. Bubennov; L. M. Khalilov; B. I. Kutepov

    2015-01-01

    The high activity and selectivity of H‐Beta and H‐ZSM‐12 zeolites in the dimerization of norbornene was established. The norbornene conversion reached 100%in chlorinated paraffin and argon gas medium, with a selectivity of dimer formation of 88%–98%. Four stereo‐isomers of the bis‐2,2’‐norbornylidene structure were identified in the dimer fraction, with the (Z)‐anti‐bis‐2,2’‐norbornylidene prevailing over the others.

  8. Thermodynamic Parameters Evaluation of Alpha- and Beta-cages in Na/sup +/, Ba/sup 2+/, Fe/sup 3+/, Co/sup 2+/, Ni/sup 2+/ and Cu/sup 2+/ Exchanged Zeolite a Using Quantum Mechanical Theory and Fermi Dirac Statistics

    International Nuclear Information System (INIS)

    The aim of present paper is to investigate the effects of non-framework cations, their hydration capacity and the role of phonons (acoustical and optical) on the thermodynamic characteristics of Type-A zeolite using Quantum Mechanical theory and Fermi Dirac Statistics. This study is motivated by the lack of an accurate measurement capability of thermodynamic properties of zeolites by the existing methods reported in literature, that is why we have suggested the quantum mechanical and Fermi Dirac statistical approaches. Thermal analysis data for zeolite samples were obtained by thermogravimetric and differential thermal analysis (TG-DTG) technique at a heating rate of 10 K min-1 in order to evaluate the desorption behavior of water. The results showed that the thermal stability of these samples was found to be dependent mainly on the electropositive non-framework cations. Meanwhile, on the basis of thermodynamic parameters, the sizes of alpha- and beta-cages in Na-A and its derivative zeolite were calculated using Fermi Dirac Statistics. Thereafter, semi-quantum effects (logarithmic behavior) of specific heat, entropy and enthalpy were observed in all samples as manifestations of the production of photons due to gaining of thermal energy. As a result, Debye temperature would increase due to localization of heat energy in the Brillouin zone, and the calculated specific heat capabilities showed almost no changes after cation exchange. However entropy and enthalpy first exceeds NaA in Ba/sup 2+/, Ni/sup 2+/ and Cu/sup 2+/ and then decrease in Fe/sup 3+/ and Co/sup 2+/. These demonstrations indicated that Ba/sup 2+/, Ni/sup 2+/, Cu/sup 2+/, Fe/sup 3+/ and Co/sup 2+/ cations influenced both the entropy and enthalpy as a result of the interaction of cations with the zeolite framework, which confirmed that the changes in the lattice mode were dependent on the increase or decrease in the electrostatic interactions between the cations and the framework zeolite. (author)

  9. Redox Catalysis over Metallo-Zeolites. Contribution to Environmental Catalysis

    Czech Academy of Sciences Publication Activity Database

    Wichterlová, Blanka; Sobalík, Zdeněk; Dědeček, Jiří

    2003-01-01

    Roč. 41, - (2003), s. 97-114. ISSN 0926-3373 R&D Projects: GA AV ČR IBS4040016; GA AV ČR IAA4040007 Institutional research plan: CEZ:AV0Z4040901 Keywords : metallo-zeolites * Co-beta * Fe-ZSM-5 Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.476, year: 2003

  10. Detergent zeolite filtration plant

    Directory of Open Access Journals (Sweden)

    Stanković Mirjana S.

    2003-01-01

    Full Text Available The IGPC Engineering Department designed basic projects for detergent zeolite filtration plant, using technology developed in the IGPC laboratories. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects, a production plant with a capacity of 75,000 t/y was manufactured, at "Zeolite Mira", Mira (VE, Italy, in 1997, for increasing detergent zeolite production, from 50,000 to 100,000 t/y. The main goal was to increase the detergent zeolite production capacity. The technological cycle of the filtrate was closed, and no effluents emitted, and there is no pollution. The detergent zeolite filtration process is fully continuous, by which a significant improvement in zeolite production was achieved, both in unification of quality of the product and in simplifying production. This process is fully automatized, and the product has uniform quality. The production process can be controlled manually, which is necessary during start-up, and repairs. By installing additional process equipment (centrifugal pumps, a vacuum system and belt filter technological bottlenecks were overcome by adjusting the work of centrifugal pumps and belt filter, and also by optimizing the capacities of process equipment.

  11. Lanthanum-catalysed synthesis of microporous 3D graphene-like carbons in a zeolite template.

    Science.gov (United States)

    Kim, Kyoungsoo; Lee, Taekyoung; Kwon, Yonghyun; Seo, Yongbeom; Song, Jongchan; Park, Jung Ki; Lee, Hyunsoo; Park, Jeong Young; Ihee, Hyotcherl; Cho, Sung June; Ryoo, Ryong

    2016-07-01

    Three-dimensional graphene architectures with periodic nanopores—reminiscent of zeolite frameworks—are of topical interest because of the possibility of combining the characteristics of graphene with a three-dimensional porous structure. Lately, the synthesis of such carbons has been approached by using zeolites as templates and small hydrocarbon molecules that can enter the narrow pore apertures. However, pyrolytic carbonization of the hydrocarbons (a necessary step in generating pure carbon) requires high temperatures and results in non-selective carbon deposition outside the pores. Here, we demonstrate that lanthanum ions embedded in zeolite pores can lower the temperature required for the carbonization of ethylene or acetylene. In this way, a graphene-like carbon structure can be selectively formed inside the zeolite template, without carbon being deposited at the external surfaces. X-ray diffraction data from zeolite single crystals after carbonization indicate that electron densities corresponding to carbon atoms are generated along the walls of the zeolite pores. After the zeolite template is removed, the carbon framework exhibits an electrical conductivity that is two orders of magnitude higher than that of amorphous mesoporous carbon. Lanthanum catalysis allows a carbon framework to form in zeolite pores with diameters of less than 1 nanometre; as such, microporous carbon nanostructures can be reproduced with various topologies corresponding to different zeolite pore sizes and shapes. We demonstrate carbon synthesis for large-pore zeolites (FAU, EMT and beta), a one-dimensional medium-pore zeolite (LTL), and even small-pore zeolites (MFI and LTA). The catalytic effect is a common feature of lanthanum, yttrium and calcium, which are all carbide-forming metal elements. We also show that the synthesis can be readily scaled up, which will be important for practical applications such as the production of lithium-ion batteries and zeolite-like catalyst

  12. Lanthanum-catalysed synthesis of microporous 3D graphene-like carbons in a zeolite template

    Science.gov (United States)

    Kim, Kyoungsoo; Lee, Taekyoung; Kwon, Yonghyun; Seo, Yongbeom; Song, Jongchan; Park, Jung Ki; Lee, Hyunsoo; Park, Jeong Young; Ihee, Hyotcherl; Cho, Sung June; Ryoo, Ryong

    2016-07-01

    Three-dimensional graphene architectures with periodic nanopores—reminiscent of zeolite frameworks—are of topical interest because of the possibility of combining the characteristics of graphene with a three-dimensional porous structure. Lately, the synthesis of such carbons has been approached by using zeolites as templates and small hydrocarbon molecules that can enter the narrow pore apertures. However, pyrolytic carbonization of the hydrocarbons (a necessary step in generating pure carbon) requires high temperatures and results in non-selective carbon deposition outside the pores. Here, we demonstrate that lanthanum ions embedded in zeolite pores can lower the temperature required for the carbonization of ethylene or acetylene. In this way, a graphene-like carbon structure can be selectively formed inside the zeolite template, without carbon being deposited at the external surfaces. X-ray diffraction data from zeolite single crystals after carbonization indicate that electron densities corresponding to carbon atoms are generated along the walls of the zeolite pores. After the zeolite template is removed, the carbon framework exhibits an electrical conductivity that is two orders of magnitude higher than that of amorphous mesoporous carbon. Lanthanum catalysis allows a carbon framework to form in zeolite pores with diameters of less than 1 nanometre; as such, microporous carbon nanostructures can be reproduced with various topologies corresponding to different zeolite pore sizes and shapes. We demonstrate carbon synthesis for large-pore zeolites (FAU, EMT and beta), a one-dimensional medium-pore zeolite (LTL), and even small-pore zeolites (MFI and LTA). The catalytic effect is a common feature of lanthanum, yttrium and calcium, which are all carbide-forming metal elements. We also show that the synthesis can be readily scaled up, which will be important for practical applications such as the production of lithium-ion batteries and zeolite-like catalyst

  13. β分子筛在加氢裂化反应中催化性能特点研究%STUDY ON THE CATALYTIC PERFORMANCE OF ZEOLITE BETA IN HYDROCRACKING

    Institute of Scientific and Technical Information of China (English)

    杜艳泽; 乔楠森; 王凤来; 关明华

    2011-01-01

    A brief introduction of the characteristics of zeolite p structure was presented. The hydrocracking performance of catalyst containing zeolite pwas studied on a 200 mL hydrocracking device,and compared with catalyst containing zeolite Y and amorphous silica-alumina catalyst. Results show that under the same process conditions,catalysts containing zeolite p exhibit better catalytic performance during hydrocracking than the others; the selectivity of middle distillates is more than two percentage points higher,the setting point of diesel fractions is 4-12℃ lower,as well as good isomerization property, high cracking activity and strong nitrogen tolerance, which indicates that hydrocracking catalyst containing zeolite β can be used for maximizing middle distillates production.%对β分子筛结构特点进行介绍,在200 mL小型加氢实验装置上考察β分子筛催化剂的加氢裂化性能,并与Y型分子筛和无定形硅铝催化剂的性能进行对比.结果表明:在相同工艺条件下,与Y型分子筛和无定形硅铝催化剂相比,β分子筛加氢裂化催化剂的中间馏分油选择性提高2.0百分点以上,柴油凝点降低4~12℃.β分子筛在加氢裂化反应中表现出异构性能好、裂化活性高、中间馏分油选择性好、产品质量好、抗氮能力强等特点,可应用于最大量生产中间馏分油的加氢裂化催化剂.

  14. Nanosized zeolites as a perspective material for conductometric biosensors creation

    Science.gov (United States)

    Kucherenko, Ivan; Soldatkin, Oleksandr; Kasap, Berna Ozansoy; Kirdeciler, Salih Kaan; Kurc, Burcu Akata; Jaffrezic-Renault, Nicole; Soldatkin, Alexei; Lagarde, Florence; Dzyadevych, Sergei

    2015-05-01

    In this work, the method of enzyme adsorption on different zeolites and mesoporous silica spheres (MSS) was investigated for the creation of conductometric biosensors. The conductometric transducers consisted of gold interdigitated electrodes were placed on the ceramic support. The transducers were modified with zeolites and MSS, and then the enzymes were adsorbed on the transducer surface. Different methods of zeolite attachment to the transducer surface were used; drop coating with heating to 200°C turned out to be the best one. Nanozeolites beta and L, zeolite L, MSS, and silicalite-1 (80 to 450 nm) were tested as the adsorbents for enzyme urease. The biosensors with all tested particles except zeolite L had good analytical characteristics. Silicalite-1 (450 nm) was also used for adsorption of glucose oxidase, acetylcholinesterase, and butyrylcholinesterase. The glucose and acetylcholine biosensors were successfully created, whereas butyrylcholinesterase was not adsorbed on silicalite-1. The enzyme adsorption on zeolites and MSS is simple, quick, well reproducible, does not require use of toxic compounds, and therefore can be recommended for the development of biosensors when these advantages are especially important.

  15. Zeolite H-BEA catalysed multicomponent reaction: One-pot synthesis of amidoalkyl naphthols - Biologically active drug-like molecules

    Indian Academy of Sciences (India)

    Sunil R Mistry; Rikesh S Joshi; Kalpana C Maheria

    2011-07-01

    Zeolite has been used as an efficient and a novel heterogeneous catalyst for one-pot synthesis of biologically active drug-like molecules, amidoalkyl naphthols. This green route involves multicomponent reaction of 2-naphthol, aromatic aldehydes and amide in the presence of a catalytic amount of zeolite H-Beta (H-BEA) under solvent reflux as well as solvent-free conditions.

  16. Neurodegeneration in D-bifunctional protein deficiency: diagnostic clues and natural history using serial magnetic resonance imaging

    International Nuclear Information System (INIS)

    We report serial neurodegenerative changes on neuroimaging in a rare peroxisomal disease called D-bifunctional protein deficiency. The pattern of posterior to anterior demyelination with white matter disease resembles X-linked adrenoleukodystrophy. We feel this case is important to (1) highlight that D-bifunctional protein deficiency should be considered in cases where the neuroimaging resembles X-linked adrenoleukodystrophy, (2) to show different stages of progression to help identify this disease using neuroimaging in children, and (3) to show that neuroimaging suggesting a leukodystrophy can warrant peroxisomal beta-oxidation studies in skin fibroblasts even when plasma very long chain fatty acids are normal. (orig.)

  17. Neurodegeneration in D-bifunctional protein deficiency: diagnostic clues and natural history using serial magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Aneal [University of Calgary, Department of Medical Genetics and Pediatrics, Alberta Children' s Hospital, Calgary, AB (Canada); Wei, Xing-Chang [University of Calgary, Department of Radiology, Alberta Children' s Hospital, Calgary, AB (Canada); Snyder, Floyd F. [Alberta Children' s Hospital, Biochemical Genetics Laboratory, Calgary, AB (Canada); Mah, Jean K. [University of Calgary, Division of Neurology, Department of Pediatrics, Calgary, AB (Canada); Waterham, Hans; Wanders, Ronald J.A. [University of Amsterdam, Academic Medical Center, Lab Genetic Metabolic Diseases, Amsterdam (Netherlands)

    2010-12-15

    We report serial neurodegenerative changes on neuroimaging in a rare peroxisomal disease called D-bifunctional protein deficiency. The pattern of posterior to anterior demyelination with white matter disease resembles X-linked adrenoleukodystrophy. We feel this case is important to (1) highlight that D-bifunctional protein deficiency should be considered in cases where the neuroimaging resembles X-linked adrenoleukodystrophy, (2) to show different stages of progression to help identify this disease using neuroimaging in children, and (3) to show that neuroimaging suggesting a leukodystrophy can warrant peroxisomal beta-oxidation studies in skin fibroblasts even when plasma very long chain fatty acids are normal. (orig.)

  18. for zeolite coating

    Directory of Open Access Journals (Sweden)

    Carlos Renato Rambo

    2006-01-01

    Full Text Available Biotemplating is the processing of microcellular ceramics by reproduction of natural morphologies, where the microstructural features of the biotemplate are maintained in the biomorphic ceramic. Different biotemplates with distinct pore anatomies were used to produce biomorphic supports for the zeolite coating: wood, cardboard, sea-sponge and sisal. The biomorphic ceramics were produced by distinguished processing routes: Al-gas infiltration-reaction, liquid-metal infiltration, dip-coating and sol-gel synthesis, in order to produce nitrides, carbides and oxides, depending on the processing conditions. The zeolite coating was performed by hydrothermal growth of MFI-type (Silicalite-1 and ZSM-5 zeolite crystals onto the internal pore walls of the biomorphic templates. The final biomorphic ceramic-zeolite composites were physically characterized, evaluated in terms of their gas adsorption capabilities and correlated to their microstructure and specific pore anatomy. The combination of the properties of the biomorphic ceramics with the adsorption properties of zeolites results in materials with distinct properties as potential candidates for adsorption and catalytic applications due to their characteristic porosity, molecular sieving capabilities and high thermo-mechanical strength.

  19. Synthesis of zeolite membranes

    Institute of Scientific and Technical Information of China (English)

    JIANG Haiyang; ZHANG Baoquan; Y. S. Lin; LI Yongdan

    2004-01-01

    Zeolite membranes offer great application potentials in membrane separation and/or reaction due to their excellent separation performance and catalytic ability. Up to present, various synthesis methods of zeolite membranes have been developed, including embedded method,in-situ hydrothermal synthesis method, and secondary growth method etc. Compared with the in-situ hydrothermal synthesis method, the secondary growth method possesses a variety of advantages such as easier operation, higher controllability in crystal orientation, microstructure and film thickness, leading to much better reproducibility. This review provides a concise summary and analysis of various synthesis methods reported in the literature. In particular, the secondary growth method was discussed in detail in terms of crystal orientation, defects and crystal grain layers. Some critical issues were also highlighted, which were conducive to the improvement in the synthesis technology of zeolite membranes.

  20. Effect of NiW Modified HZSM-5 and HY Zeolites on Hydrocracking Conversion of Crude Palm Oil to Liquid Hydrocarbons

    Directory of Open Access Journals (Sweden)

    Maliwan Subsadsana

    2016-05-01

    Full Text Available The catalytic conversion of crude palm oil over HZSM-5 and HY zeolites modified with NiW as catalysts in the hydrocracking process was investigated. These zeolites supported by NiW catalysts were prepared employing the impregnation technique. NiW was added to the zeolites in order to induce bi-functional properties (both acid and metal sites in the catalysts. Subsequently, the catalysts were characterized by X-ray diffraction spectrometry (XRD, scanning electron microscope (SEM, transmission electron microscope (TEM, ammonia temperature programmed desorption (NH3-TPD andnitrogen adsorption-desorption isotherms analysis. The catalytic activity of prepared catalysts was evaluated through the conversion of crude palm oil to biofuels. These results indicate that the incorporation of NiW over HZSM-5 and HY zeolites improves the conversion efficiency and enhances the yield of biofuel (gasoline, kerosene, and diesel, possibly due to NiW promote of hydrogenation and dehydrogenation reaction.

  1. Catalysis with hierarchical zeolites

    DEFF Research Database (Denmark)

    Holm, Martin Spangsberg; Taarning, Esben; Egeblad, Kresten;

    2011-01-01

    Hierarchical (or mesoporous) zeolites have attracted significant attention during the first decade of the 21st century, and so far this interest continues to increase. There have already been several reviews giving detailed accounts of the developments emphasizing different aspects of this resear...

  2. Environmental catalysis with zeolites

    Czech Academy of Sciences Publication Activity Database

    Sobalík, Zdeněk

    Kerala: Transworld Research Network, 2008 - (Čejka, J.; Peréz-Pariente, J.; Roth, W.), s. 333-356 ISBN 978-81-7895-330-4 R&D Projects: GA ČR GA104/06/1254 Institutional research plan: CEZ:AV0Z40400503 Keywords : zeolites * catalysis Subject RIV: CF - Physical ; Theoretical Chemistry

  3. Zeolite membrane - MFI

    Czech Academy of Sciences Publication Activity Database

    Drahokoupil, Jan; Hrabánek, Pavel; Zikánová, Arlette; Kočiřík, Milan

    2010-01-01

    Roč. 17, 2a (2010), k77-k78. ISSN 1211-5894 R&D Projects: GA AV ČR KAN300100801; GA ČR GA203/07/1443 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z40400503 Keywords : x-ray * zeolites Subject RIV: BM - Solid Matter Physics ; Magnetism

  4. Acid-Base Pairs in Lewis Acidic Zeolites Promote Direct Aldol Reactions by Soft Enolization.

    Science.gov (United States)

    Lewis, Jennifer D; Van de Vyver, Stijn; Román-Leshkov, Yuriy

    2015-08-17

    Hf-, Sn-, and Zr-Beta zeolites catalyze the cross-aldol condensation of aromatic aldehydes with acetone under mild reaction conditions with near quantitative yields. NMR studies with isotopically labeled molecules confirm that acid-base pairs in the Si-O-M framework ensemble promote soft enolization through α-proton abstraction. The Lewis acidic zeolites maintain activity in the presence of water and, unlike traditional base catalysts, in acidic solutions. PMID:26138135

  5. Zeolite Catalyzed Aldol Condensation Reactions

    OpenAIRE

    Adedayo I. Inegbenebor; Raphael C. Mordi; Oluwakayode M. Ogunwole

    2015-01-01

    The review is based on the description of zeolite structure, uses, synthesis, and catalytic aldol reaction in aldol condensation. An internal aldolcondensation reaction has been achieved over ZSM-5 zeolite with high silica-alumina ratio at 350oC. It therefore follows that zeolite canfunction as a catalyst in aldol type condensation reactions and that weak acid sites as well as a small number of active sites favor the aldolcondensation reaction of carbonyl compounds. However, the mixed condens...

  6. Granulated zeolite plant "Alusil", Zvornik

    Directory of Open Access Journals (Sweden)

    Stanković Mirjana S.

    2003-01-01

    Full Text Available The IGPC's Engineering Department designed basic technological and machine projects for a granulated zeolite production plant, on the basis of which a pilot plant with an initial capacity of 5,000 t/y was constructed in 1984, within Birač - Zvornik production complex. The technology in these projects was developed in the laboratories of the IGPC.Several goals were realized by designing a granulated zeolite production plant. This technology is one of the newest state of the art high tech technologies. The product meets all quality demands, as well as environmental regulations, by which granulated zeolite production for various uses was developed. The granulated zeolite production process is fully automatized, and the product has uniform quality. There is no waste material in granulated zeolite production, because all products with unsatisfactory quality are returned to the process. The production process can be controlled manually, which is necessary during start - up, and repairs.

  7. Method for producing zeolites and zeotypes

    DEFF Research Database (Denmark)

    2015-01-01

    The invention relates to a method for producing zeolite, zeolite-like or zeotype particles comprising the steps of: 1 ) Adding one or more metal precursors to a silica or alumina source; 2) Reducing the one or more metal precursors to form metal nanoparticles on the surface of the silica or alumina...... source; 3) Passing a gaseous hydrocarbon, alkyl alcohol or alkyl ether over the silica or alumina supported metal nanoparticle to form a carbon template coated zeolite, zeolite-like or zeotype precursor composition; 4a) Adding a structure directing agent to the carbon template coated zeolite, zeolite......-like or zeotype precursor composition thereby creating a zeolite, zeolite-like or zeotype gel composition; 4b) Crystallising the zeolite, zeolite-like or zeotype gel composition by subjecting said composition to a hydrothermal treatment; 5) Removing the carbon template and structure directing agent and...

  8. Zeolite ITQ-30

    OpenAIRE

    Corma, Avelino; Díaz Cabañas, María José

    2005-01-01

    [EN] The invention relates to a laminar microporous crystalline zeolite material known as ITQ-30 which, as when synthesized, has a chemical composition in the anhydrous state with the following molar relations: x (M 1/n XO 2 ): y YO 2 . SiO 2 z R, wherein: x represents a value less than 0.1, which can be equal to zero; y has a value of less than 0.1, which can be equal to zero; z has a value of less than 0.1; M is selected from among H + , NH 4+ , one or more +n inorganic cations and combinat...

  9. Properties and applications of zeolites.

    Science.gov (United States)

    Rhodes, Christopher J

    2010-01-01

    Zeolites are aluminosilicate solids bearing a negatively charged honeycomb framework of micropores into which molecules may be adsorbed for environmental decontamination, and to catalyse chemical reactions. They are central to green-chemistry since the necessity for organic solvents is minimised. Proton-exchanged (H) zeolites are extensively employed in the petrochemical industry for cracking crude oil fractions into fuels and chemical feedstocks for other industrial processes. Due to their ability to perform cation-exchange, in which the cations that are originally present to counterbalance the framework negative charge may be exchanged out of the zeolite by cations present in aqueous solution, zeolites are useful as industrial water-softeners, in the removal of radioactive Cs+ and Sr2+ cations from liquid nuclear waste and in the removal of toxic heavy metal cations from groundwaters and run-off waters. Surfactant-modified zeolites (SMZ) find particular application in the co-removal of both toxic anions and organic pollutants. Toxic anions such as arsenite, arsenate, chromate, cyanide and radioactive iodide can also be removed by adsorption into zeolites that have been previously loaded with co-precipitating metal cations such as Ag+ and Pb2+ which form practically insoluble complexes that are contained within the zeolite matrix. PMID:21047018

  10. Mesostructured zeolites: bridging the gap between zeolites and MCM-41.

    Science.gov (United States)

    Prasomsri, Teerawit; Jiao, Wenqian; Weng, Steve Z; Garcia Martinez, Javier

    2015-05-28

    Surfactant-templating is one of the most versatile and useful techniques to implement mesoporous systems into solid materials. Various strategies based on various interactions between surfactants and solid precursors have been explored to produce new structures. Zeolites are invaluable as size- and shape-selective solid acid catalysts. Nevertheless, their micropores impose limitations on the mass transport of bulky feed and/or product molecules. Many studies have attempted to address this by utilizing surfactant-assisting technology to alleviate the diffusion constraints. However, most efforts have failed due to micro/mesopore phase separation. Recently, a new technique combining the uses of cationic surfactants and mild basic solutions was introduced to synthesise mesostructured zeolites. These materials sustain the unique characteristics of zeolites (i.e., strong acidity, crystallinity, microporosity, and hydrothermal stability), including tunable mesopore sizes and degrees of mesoporosity. The mesostructured zeolites are now commercially available through Rive Technology, and show superior performance in VGO cracking. This feature article provides an overview of recent explorations in the introduction of mesoporosity into zeolites using surfactant-templating techniques. Various porous materials, preparation methods, physical and catalytic properties of mesostructured zeolites will be discussed. PMID:25866848

  11. Zeolite Catalyzed Aldol Condensation Reactions

    Directory of Open Access Journals (Sweden)

    Adedayo I. Inegbenebor

    2015-03-01

    Full Text Available The review is based on the description of zeolite structure, uses, synthesis, and catalytic aldol reaction in aldol condensation. An internal aldolcondensation reaction has been achieved over ZSM-5 zeolite with high silica-alumina ratio at 350oC. It therefore follows that zeolite canfunction as a catalyst in aldol type condensation reactions and that weak acid sites as well as a small number of active sites favor the aldolcondensation reaction of carbonyl compounds. However, the mixed condensation product was found to be favored at temperatures above 300oCand the self-condensation of ethanal to crotonaldehyde was favored at temperatures below 300oC. It has also been suggested that both Brønstedand Lewis acids are involved in aldol reactions with Lewis acid sites the most probable catalytic sites. The zeolite group of minerals has founduse in many chemical and allied industries.

  12. Effect of Platinum in Bifunctional Isomerization of n-Butane over Acid Zeolites

    Czech Academy of Sciences Publication Activity Database

    Babůrek, Evžen; Nováková, Jana

    2000-01-01

    Roč. 190, č. 1 (2000), s. 241-251. ISSN 0926-860X R&D Projects: GA AV ČR IAA4040710 Institutional research plan: CEZ:AV0Z4040901; CEZ:A54/98:Z4-040-9-ii Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.576, year: 2000

  13. Bifunctional electrocatalyst for oxygen/air electrodes

    International Nuclear Information System (INIS)

    Highlights: • Nano-Silver powder was prepared by chemical method. • Ag catalyst was characterized by SEM and XRD studies. • Ag was investigated as bi-functional electrocatalyst for oxygen/air electrodes. • Ag shows good electrochemical activity towards OER and ORR reactions. - Abstract: Nano-Silver powder has been studied as bi-functional electrocatalyst for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline medium. Ag nano-powder has been prepared by a simple wet chemical method with Silver nitrate as precursor and Glucose as reducing agent. X-ray Diffraction and Scanning Electron Microscopy studies were carried out to characterize the Silver catalyst. Electrochemical oxygen evolution characterization shows anodic peak typically at the range between 0.350 and 0.514 V Vs Hg/HgO corresponding to Silver oxidation followed by the onset of oxygen evolution at 0.706 V. Oxygen reduction reaction studies carried out using Rotating Disc Electrode (RDE) confirm the four electron reaction mechanism. Ag catalyst shows promising characteristics for oxygen evolution and oxygen reduction

  14. Theory of zeolite supralattices: Se in zeolite Linde type A

    International Nuclear Information System (INIS)

    We study theoretically properties of Se clusters in zeolites, and choose zeolite Linde type A (LTA) as a prototype system. The geometries of free-space Se clusters are first determined, and we report the energetics and electronic and vibrational properties of these clusters. The work on clusters includes an investigation of the energetics of C3-C1 defect formation in Se rings and chains. The electronic properties of two Se crystalline polymorphs, trigonal Se and -monoclinic Se, are also determined. Electronic and vibrational properties of the zeolite LTA are investigated. Next we investigate the electronic and optical properties of ring-like Se clusters inside the large -cages of LTA. We find that Se clusters inside cages of silaceous LTA have very little interaction with the zeolite, and that the HOMO-LUMO gaps (HOMO standing for highest occupied molecular orbital and LUMO for lowest unoccupied molecular orbital) are nearly those of the isolated cluster. The HOMO-LUMO gaps of Se6, Se8, and Se12 are found to be similar, which makes it difficult to identify them experimentally by absorption spectroscopy. We find that the zeolite/Se8 nanocomposite is lower in energy than the two separated systems. We also investigate two types of infinite chain encapsulated in LTA. Finally, we carry out finite-temperature molecular dynamics simulations for an encapsulated Se12 cluster, which shows cluster melting and formation of nanoscale Se droplets in theα-cages of LTA. (author)

  15. Preparation by the nano-casting process of novel porous carbons from large pore zeolite templates

    Energy Technology Data Exchange (ETDEWEB)

    F Gaslain; J Parmentier; V Valtchev; J Patarin [Laboratoire de Materiaux a Porosite Controlee (LMPC), UMR CNRS 7016, ENSCMu Universite de Haute Alsace, 3 rue Alfred Werner, 68093 Mulhouse Cedex, (France); C Vix Guterl [Institut de Chimie des Surfaces et Interfaces (ICSI), UPR CNRS 9069, 15 rue Jean Starky, 68057 Mulhouse Cedex (France)

    2005-07-01

    The development of new growing industrial applications such as gas storage (e.g.: methane or hydrogen) or electric double-layer capacitors has focussed the attention of many research groups. For this kind of application, porous carbons with finely tailored micro-porosity (i.e.: pore size diameter {<=} 1 nm) appear as very promising materials due to their high surface area and their specific pore size distribution. In order to meet these requirements, attention has been paid towards the feasibility of preparing microporous carbons by the nano-casting process. Since the sizes and shapes of the pores and walls respectively become the walls and pores of the resultant carbons, using templates with different framework topologies leads to various carbon replicas. The works performed with commercially available zeolites employed as templates [1-4] showed that the most promising candidate is the FAU-type zeolite, which is a large zeolite with three-dimensional channel system. The promising results obtained on FAU-type matrices encouraged us to study the microporous carbon formation on large pore zeolites synthesized in our laboratory, such as EMC-1 (International Zeolite Association framework type FAU), zeolite {beta} (BEA) or EMC-2 (EMT). The carbon replicas were prepared following largely the nano-casting method proposed for zeolite Y by the Kyotani research group [4]: either by liquid impregnation of furfuryl alcohol (FA) followed by carbonization or by vapour deposition (CVD) of propylene, or by an association of these two processes. Heat treatment of the mixed materials (zeolite / carbon) could also follow in order to improve the structural ordering of the carbon. After removal of the inorganic template by an acidic treatment, the carbon materials obtained were characterised by several analytical techniques (XRD, N{sub 2} and CO{sub 2} adsorption, electron microscopy, etc...). The unique characteristics of these carbons are discussed in details in this paper and

  16. Characterization of Mexican zeolite minerals

    International Nuclear Information System (INIS)

    50% of the Mexican territory is formed by volcanic sequences of the Pliocene type, which appear extensively in the northwest states (Sonora, Sinaloa, Chihuahua, Durango) and west of Mexico (Jalisco and Nayarit), in central Mexico (Zacatecas, Guanajuato, San Luis Potosi, Queretaro, Hidalgo) and south of Mexico (Guerrero, Oaxaca); therefore, it is to be expected that in our country big locations of natural zeolites exist in its majority of the clinoptilolite type. The present study was focused toward the characterization of two Mexican natural zeolite rocks presumably of the clinoptilolite and filipsite types, one of them comes from the state of Chihuahua and the other of a trader company of non metallic minerals, due that these materials are not characterized, its are not known their properties completely and therefore, the uses that can be given to these materials. In this investigation work it was carried out the characterization of two Mexican zeolite rocks, one coming from the Arroyo zone, municipality of La Haciendita, in the state of Chihuahua; and the other one was bought to a trader company of non metallic minerals. The two zeolites so much in their natural form as conditioned with sodium; they were characterized by means of X-ray diffraction, scanning electron microscopy of high vacuum and elementary microanalysis (EDS), surface area analysis (BET), thermal gravimetric analysis. To differentiate the heulandite crystalline phase of the other clinoptilolite rock, its were carried out thermal treatments. The quantification of Al, Na, Ca, K, Mg, Fe was carried out in solution, by means of atomic absorption spectroscopy and the quantity of Si was determined by gravimetry. The zeolite rocks presented for the major part the crystalline heulandite and clinoptilolite phases for the most part, and it was found that the zeolite coming from the state of Chihuahua possesses a bigger content of heulandite and the denominated filipsite it is really a zeolite

  17. Detergent zeolite complex "Alusil", Zvornik

    Directory of Open Access Journals (Sweden)

    Stanković Mirjana S.

    2003-01-01

    Full Text Available The IGPC Engineering Department designed the basis technological and machine projects for a detergent zeolite complex, on the basis of which a pilot plant with an initial capacity of 5,000 t/y was constructed in 1983 within Birač-Zvornik production complex. Additional projects were done afterwards and the starting capacity increased to 200,000 t/y in 1988. This plant became the biggest producer of detergent zeolite in the world. These projects were manufactured on the basis of specific technology developed in the laboratories of the IGPC.Several goals were realized by designing a detergent zeolite production complex. This technology was an innovation, because a new approach in detergent zeolite production was developed. The product meets all quality demands, as well as environmental regulations. The detergent production process is fully automatized and the product has uniform quality. There is no waste material in detergent zeolite production, because all products with unsatisfactory quality are returned to the process. The production process can be controlled manually, which is necessary during stanrt-up, and repairs.

  18. Comparison of adsorption efficiency of Triton X-100 surfactant from industrial wastewater using synthetic and natural zeolites: isotherm and kinetic studies

    Directory of Open Access Journals (Sweden)

    A Shahbazi

    2016-01-01

    Full Text Available Background and Objectives: Rapid growing of Triton X-100 application in industries results in its appearance in effluents  and threaten the aqueous ecosystems. Triton X-100 is not biodegradable and can accumulate in food chain. Materials and Methods: In this study, sorption capacity of six synthesized zeolites with different regular porous structure was studied for triton X-100 (TX-100 surfactant and the results were compared with Clinoptilolite natural zeolite of Damavand region. Results: Within all zeolite studied, Beta(200 showed the highest sorption capacity (about 575 mg/g, which is due to its regular pore structure with large pore diameter, channel intersections, high SiO2/Al2O3 ratio and high surface area. Langmuir monolayer isotherm and pseudo-second-order kinetic equation could provide well-fitted to the experimental data in simulating adsorption behavior of TX-100 over Beta(200 zeolite. Conclusion: The adsorption feature was internal sorption and the intraparticle diffusion might be a rate-limiting control for Beta(200 zeolite. Results of experiments demonstrated that the hydrophobic zeolites with large pore diameter such as Beta(200 could be effective sorbents for industrial wastewater treatment features.

  19. Zeolite-dye micro lasers

    CERN Document Server

    Vietze, U; Laeri, F; Ihlein, G; Schüth, F; Limburg, B; Abraham, M

    1998-01-01

    We present a new class of micro lasers based on nanoporous molecular sieve host-guest systems. Organic dye guest molecules of 1-Ethyl-4-(4-(p-Dimethylaminophenyl)-1,3-butadienyl)-pyridinium Perchlorat were inserted into the 0.73-nm-wide channel pores of a zeolite AlPO$_4$-5 host. The zeolitic micro crystal compounds where hydrothermally synthesized according to a particular host-guest chemical process. The dye molecules are found not only to be aligned along the host channel axis, but to be oriented as well. Single mode laser emission at 687 nm was obtained from a whispering gallery mode oscillating in a 8-$\\mu$m-diameter monolithic micro resonator, in which the field is confined by total internal reflection at the natural hexagonal boundaries inside the zeolitic microcrystals.

  20. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons

    OpenAIRE

    Zecevic, Jovana; Vanbutsele, Gina; de Jong, Krijn P.; Martens, Johan

    2015-01-01

    The ability to precisely control nanoscale features is increasingly exploited to develop and improve monofunctional catalysts1–4. Striking effects might also be expected in the case of bifunctional catalysts, which play an important role in hydrocracking of fossil and renewable hydrocarbon sources to provide high-quality diesel fuel5–7. Such bifunctional hydrocracking catalysts contain metal sites and acid sites, and for more than 50 years the so-called ‘intimacy criterion’8 has dictated the ...

  1. Nanoparticle Superlattices as Efficient Bifunctional Electrocatalysts for Water Splitting.

    Science.gov (United States)

    Li, Jun; Wang, Yongcheng; Zhou, Tong; Zhang, Hui; Sun, Xuhui; Tang, Jing; Zhang, Lijuan; Al-Enizi, Abdullah M; Yang, Zhongqin; Zheng, Gengfeng

    2015-11-18

    The solar-driven water splitting process is highly attractive for alternative energy utilization, while developing efficient, earth-abundant, bifunctional catalysts for both oxygen evolution reaction and hydrogen evolution reaction has remained as a major challenge. Herein, we develop an ordered CoMnO@CN superlattice structure as an efficient bifunctional water-splitting electrocatalyst, in which uniform Co-Mn oxide (CoMnO) nanoparticles are coated with a thin, continuous nitrogen-doped carbon (CN) framework. The CoMnO nanoparticles enable optimized OER activity with effective electronic structure configuration, and the CN framework serves as an excellent HER catalyst. Importantly, the ordered superlattice structure is beneficial for enhanced reactive sites, efficient charge transfer, and structural stability. This bifunctional superlattice catalyst manifests optimized current densities and electrochemical stability in overall water splitting, outperforming most of the previously reported single- or bifunctional electrocatalysts. Combining with a silicon photovoltaic cell, this CoMnO@CN superlattice bifunctional catalyst enables unassisted solar water splitting continuously for ∼5 days with a solar-to-hydrogen conversion efficiency of ∼8.0%. Our discovery suggests that these transition metal oxide-based superlattices may serve as a unique structure modality for efficient bifunctional water splitting electrocatalysts with scale-up potentials. PMID:26496655

  2. Hydrothermal conversion of FAU zeolite into RUT zeolite in TMAOH system

    OpenAIRE

    Jon, Hery; Takahashi, Shoutarou; Sasaki, Hitoshi; Oumi, Yasunori; Sano, Tsuneji

    2008-01-01

    The highly crystalline and pure RUT (RUB-10) zeolite could be obtained from the hydrothermal conversion of FAU zeolite used as a crystalline Si/Al source in tetramethylammonium hydroxide (TMAOH) media. As compared to amorphous silica/Al(OH)3 and amorphous silica/γ-Al2O3 sources, the crystallization rate for the formation of RUT zeolite was clearly faster when FAU zeolite was employed as the Si/Al source. Moreover, it was found that the hydrothermal conversion of FAU zeolite into RUT zeolite d...

  3. Hydrodewaxing with mixed zeolite catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Chester, A.W.; McHale, W.D.; Yen, J.H.

    1986-03-11

    A process is described for catalytically dewaxing a hydrocarbon lubricating oil feedstock comprising contacting the feedstock with a dewaxing catalyst, the dewaxing catalyst comprising, in combination: (a) a zeolite catalyst having a Constraint Index not less than 1, (b) an acidic catalytic material selected from the group consisting of Mordenite, TEA Mordenite, Dealuminized Y, Ultrastable Y, Rare Earth Y, amorphous silica-alumina chlorinated alumina, ZSM-4 and ZSM-20, and (c) a hydrogenation component, and recovering a dewaxed product. A process is also described for catalytically dewaxing a hydrocarbon lubricating oil feedstock comprising contacting the feedstock with a dewaxing catalyst, the dewaxing catalyst comprising, in combinations: (a) a first zeolite catalyst selected from the group consisting of ZSM-5, ZMS-11, ZSM-12, ZSM-22, ZSM-23, ZSM-34, ZSM-35, ZSM-38, ZSM-48, TMA Offretite and Erionite, (b) a second catalyst selected from the group consisting of ZSM-12, ZSM-22, ZSM-38 and ZSM-48, the second zeolite catalyst being different from the first zeolite catalyst, and (c) a hydrogenation component, and recovering a dewaxed product.

  4. Fixing noble gas in zeolites

    International Nuclear Information System (INIS)

    In order to increase safety during the long-term storage of Kr-85 it has been proposed to encaosulate this gas in zeolite 5A. Due to the decay heat of Kr-85 it is expected, however, that the inorganic matrix will be at an increased temperature over several decades. Below 6000C only very small Kr-desorption rates are observed when a linear temperature gradient is applied to a loaded 5A zeolite sample. If heating is interrupted and the temperature kept konstant at a certain value (>6000C), it is observed that the desorption rate either decreased below the detection limit or stayed constant at some measurable value. The overall activation energy in the temperature range 5700C-7450C is found to be 250 kJ/mol. At temperature above 7900C the total encapsulated gas is rapidly liberated. No significant leakage was apparent from zeolite 5A samples containing between 19 and 57 cm3 STP Kr/g kept at 2000C for up to 2500 h and 4000C for up to 3500 h. From these studies it is found that type 5A zeolites are particularly suitable as a matrix for the inmobilization of Kr-85. (Author)

  5. Zeolites: Structures and Inclusion Properties

    Czech Academy of Sciences Publication Activity Database

    Čejka, Jiří

    New York : Marcel Dekker, 2004, s. 1623-1630 R&D Projects: GA AV ČR IAA4040001; GA ČR GA104/02/0571; GA ČR GA203/03/0804 Institutional research plan: CEZ:AV0Z4040901 Keywords : zeolites * mesoporous molecular sieves * inclusion compounds Subject RIV: CF - Physical ; Theoretical Chemistry

  6. Zeolites with Continuously Tuneable Porosity

    Czech Academy of Sciences Publication Activity Database

    Wheatley, P. S.; Eliášová, Pavla; Greer, H. F.; Zhou, W.; Seymour, V. R.; Dawson, D. M.; Ashbrook, S. E.; Pinar, A. B.; McCusker, L.B.; Opanasenko, Maksym; Čejka, Jiří; Morris, R. E.

    2014-01-01

    Roč. 53, č. 48 (2014), s. 13210-13214. ISSN 1433-7851 R&D Projects: GA ČR GBP106/12/G015 Institutional support: RVO:61388955 Keywords : ADOR * germanosilicates * porosity * zeolite s Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 11.261, year: 2014

  7. Hydrogen Selective Exfoliated Zeolite Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Tsapatsis, Michael [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Daoutidis, Prodromos [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Elyassi, Bahman [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Lima, Fernando [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Iyer, Aparna [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Agrawal, Kumar [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Sabnis, Sanket [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science

    2015-04-06

    The objective of this project was to develop and evaluate an innovative membrane technology at process conditions that would be representative of Integrated Gasification Combined Cycle (IGCC) advanced power generation with pre-combustion capture of carbon dioxide (CO2). This research focused on hydrogen (H2)-selective zeolite membranes that could be utilized to separate conditioned syngas into H2-rich and CO2-rich components. Both experiments and process design and optimization calculations were performed to evaluate the concept of ultra-thin membranes made from zeolites nanosheets. In this work, efforts in the laboratory were made to tackle two fundamental challenges in application of zeolite membranes in harsh industrial environments, namely, membrane thickness and membrane stability. Conventional zeolite membranes have thicknesses in the micron range, limiting their performance. In this research, we developed a method for fabrication of ultimately thin zeolite membranes based on zeolite nanosheets. A range of layered zeolites (MWW, RWR, NSI structure types) suitable for hydrogen separation was successfully exfoliated to their constituent nanosheets. Further, membranes were made from one of these zeolites, MWW, to demonstrate the potential of this group of materials. Moreover, long-term steam stability of these zeolites (up to 6 months) was investigated in high concentrations of steam (35 mol% and 95 mole%), high pressure (10 barg), and high temperatures (350 °C and 600 °C) relevant to conditions of water-gas-shift and steam methane reforming reactions. It was found that certain nanosheets are stable, and that stability depends on the concentration of structural defects. Additionally, models that represent a water-gas-shift (WGS) membrane reactor equipped with the zeolite membrane were developed for systems studies. These studies had the aim of analyzing the effect of the membrane reactor integration into IGCC plants

  8. Zeolite and high silica zeotype microporous materials used for the removal of toxic elements

    International Nuclear Information System (INIS)

    Breakthrough properties and kinetics of barium (Ba/sup 2+/ sorption in high silica zeolite-beta and zeotype beta-Fe and beta-B have been studied. Exchange diffusion coefficients and activation energies were measured at temperatures between 298 to 333 K and thermodynamic parameters delta S/sup */ and delta G/sup */ were also calculated. The sodium forms of zeolite-beta, zeotype materials beta-B and beta-Fe were synthesized hydrothermally from the aqueous silicate gels of Na/sub 2/O-SiO/sub 2/-Al/sub 2/O/sub 3/-B/sub 2/O/sub 3/-Fe/sub 2/O/sub 3/-[(C/sub 4/H/sub 9)/ sub 4/ N]/sub 2/O-H/sub 2/O. The crystalline products have been characterised by a wide range of analytical techniques like X-ray powder diffraction (DSC). /sup 57/Fe Moessbauer spectroscopic studies on synthesized and calcined samples have confirmed the uniform dispersion of Fe/sup 3+/ ion sin the tetrahedral framework of zeotype beta-Fe. (authors)

  9. Resonant diffusion of normal alkanes in zeolites: Effect of the zeolite structure and alkane molecule vibrations

    CERN Document Server

    Tsekov, R

    2015-01-01

    Diffusion of normal alkanes in one-dimensional zeolites is theoretically studied on the basis of the stochastic equation formalism. The calculated diffusion coefficient accounts for the vibrations of the diffusing molecule and zeolite framework, molecule-zeolite interaction, and specific structure of the zeolite. It is shown that when the interaction potential is predominantly determined by the zeolite pore structure, the diffusion coefficient varies periodically with the number of carbon atoms of the alkane molecule, a phenomenon called resonant diffusion. A criterion for observable resonance is obtained from the balance between the interaction potentials of the molecule due to the atomic and pore structures of the zeolite. It shows that the diffusion is not resonant in zeolites without pore structure, such as ZSM-12. Moreover, even in zeolites with developed pore structure no resonant dependence of the diffusion constant can be detected if the pore structure energy barriers are not at least three times high...

  10. Process for producing zeolite adsorbent and process for treating radioactive liquid waste with the zeolite adsorbent

    International Nuclear Information System (INIS)

    Zeolite is contacted with an aqueous solution containing at least one of copper, nickel, cobalt, manganese and zinc salts, preferably copper and nickel salts, particularly preferably copper salt, in such a form as sulfate, nitrate, or chloride, thereby adsorbing the metal on the zeolite in its pores by ion exchange, then the zeolite is treated with a water-soluble ferrocyanide compound, for example, potassium ferrocyanide, thereby forming metal ferrocyanide on the zeolite in its pores. Then, the zeolite is subjected to ageing treatment, thereby producing a zeolite adsorbent impregnated with metal ferrocyanide in the pores of zeolite. The adsorbent can selectively recover cesium with a high percent cesium removal from a radioactive liquid waste containing at least radioactive cesium, for example, a radioactive liquid waste containing cesium and such coexisting ions as sodium, magnesium, calcium and carbonate ions at the same time at a high concentration. The zeolite adsorbent has a stable adsorbability for a prolonged time

  11. Concerted bifunctionality of the dCTP deaminase-dUTPase from Methanocaldococcus jannaschii: A structural and pre-steady state kinetic analysis

    DEFF Research Database (Denmark)

    Siggaard, Julie; Johansson, Eva; Vognsen, Tina Reinholdt; Helt, Signe Smedegaard; Harris, Pernille; Larsen, Sine; Willemoës, Martin

    2009-01-01

    Two mutant dCTP deaminase-dUTPases from Methanocaldococcus jannaschii were crystallised and the crystal structures were solved: E145A in complex with the substrate analogue alpha,beta-imido-dUTP and E145Q in complex with diphosphate. Both mutant enzymes were defect in the deaminase reaction and had...... nucleotidyl diphosphorylase reaction was observed in the E145A:alpha,beta-imido-dUTP complex and positioned similarly as in the monofunctional trimeric dUTPase. A comparison of the active sites of the bifunctional enzyme and the monofunctional family members, dCTP deaminase and dUTPase, suggests similar...

  12. Beta Thalassemia

    Science.gov (United States)

    ... South Asian (Indian, Pakistani, etc.), Southeast Asian and Chinese descent. 1 Beta Thalassemia ßß Normal beta globin ... then there is a 25% chance with each pregnancy that their child will inherit two abnormal beta ...

  13. The Effect of Zeolite Pore Size and Channel Dimensionality on the Selective Acylation of Napthalene with Acetic Anhydride

    Czech Academy of Sciences Publication Activity Database

    Čejka, Jiří; Prokešová, Pavla; Červený, L.; Mikulcová, K.

    Amsterdam : Elsevier, 2002 - (Aielo, R.; Giordano, G.; Testa, F.), s. 627-634 - (Studies in Surface Science and Catalysis.. 142 A). [International FEZA Conference /2./. Taormina (IT), 01.09.2002-05.09.2002] Institutional research plan: CEZ:AV0Z4040901 Keywords : acylation of naphthalene * 2-acetylnaphthalene * zeolite Beta Subject RIV: CF - Physical ; Theoretical Chemistry

  14. Unprecedented propane–SCR-NOx activity over template-free synthesized Al-rich Co-BEA* zeolite

    Czech Academy of Sciences Publication Activity Database

    Sazama, Petr; Mokrzycki, Lukasz; Wichterlová, Blanka; Vondrová, Alena; Pilař, Radim; Dědeček, Jiří; Sklenák, Štěpán; Tabor, Edyta

    2015-01-01

    Roč. 332, DEC 2015 (2015), s. 201-211. ISSN 0021-9517 R&D Projects: GA TA ČR(CZ) TH01021259; GA ČR GA15-13876S Institutional support: RVO:61388955 Keywords : beta zeolite * Al-rich BEA* * OSDA-free synthesis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.921, year: 2014

  15. Zeolite from fly ash: synthesis and characterization

    Indian Academy of Sciences (India)

    Keka Ojha; Narayan C Pradhan; Amar Nath Samanta

    2004-12-01

    Coal fly ash was used to synthesize X-type zeolite by alkali fusion followed by hydrothermal treatment. The synthesized zeolite was characterized using various techniques such as X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, BET method for surface area measurement etc. The synthesis conditions were optimized to obtain highly crystalline zeolite with maximum BET surface area. The maximum surface area of the product was found to be 383 m2/g with high purity. The crystallinity of the prepared zeolite was found to change with fusion temperature and a maximum value was obtained at 823 K. The cost of synthesized zeolite was estimated to be almost one-fifth of that of commercial 13X zeolite available in the market.

  16. Adsorption of radioactive iodide by natural zeolites

    International Nuclear Information System (INIS)

    Two natural zeolites from Iranian deposits (clinoptilolite and natrolite) were characterized and their ability for adsorption of iodide from nuclear wastewaters was evaluated. The adsorption behavior was studied on natural and modified zeolites by γ-spectrometry using 131I as radiotracer. Adsorption isotherms and distribution coefficient (Kd) were measured. The results showed that clinoptilolite is a more promising zeolite for removal of iodide compared to natrolite. Furthermore, the adsorption was higher in silver, lead and thallium forms, whereas the lowest desorption was observed in lead modified zeolite. (author)

  17. Bifunctional Nanostructured Base Catalysts: Opportunities for BioFuels

    Energy Technology Data Exchange (ETDEWEB)

    Connor, William

    2010-12-30

    ABSTRACT This research studied and develop novel basic catalysts for production of renewable chemicals and fuels from biomass. We will focus on the development of unique porous structural-base catalysts formed by two techniques: from (mixed) metal-oxide bases and by nitrogen substitution for oxygen in zeolites. These catalysts will be compared to conventional solid base materials for aldol condensation, catalytic fast pyrolysis, and transesterification reactions. These reactions are important in processes that are currently being commercialized for production of fuels from biomass and will be pivotal in future biomass conversion to fuels and chemicals. Specifically, we have studied the aldol-condensation of acetone with furfural over oxides and zeolites, the conversion of sugars by rapid pyrolysis over zeolites and the trans-esterification of vegetable oil with methanol over mixed oxide catalysts. Our previous research has indicated that the base strength of framework nitrogen in nitrogen-substituted zeolites (NH-zeolites) is nearly twice as strong as in standard zeolites. Nitrogen substituted catalysts have been synthesized from several zeolites (including FAU, MFI, BEA, and LTL) using NH3 treatment.

  18. Structural simulation of natural zeolites

    International Nuclear Information System (INIS)

    The application of X-ray diffraction (XRD) in the study of crystalline structures of the natural and modified zeolites allows the identification, lattice parameter determination and the crystallinity grade of the sample of interest. Until two decades ago, simulation methods of X-ray diffraction patterns were developed with which was possible to do reliable determinations of their crystalline structure. In this work it is presented the first stage of the crystalline structure simulation of zeolitic material from Etla, Oaxaca which has been studied for using it in the steam production industry and purification of industrial water. So that the natural material was modified for increasing its sodium contents and this material in its turn was put in contact with aqueous solutions of Na, Mg and Ca carbonates. All the simulations were done with the Lazy-Pulverix method. The considered phase was clinoptilolite. It was done the comparison with three clinoptilolite reported in the literature. (Author)

  19. Novel Bifunctional Natriuretic Peptides as Potential Therapeutics*

    Science.gov (United States)

    Dickey, Deborah M.; Burnett, John C.; Potter, Lincoln R.

    2008-01-01

    Synthetic atrial natriuretic peptide (carperitide) and B-type natriuretic peptide (BNP; nesiritide) are used to treat congestive heart failure. However, despite beneficial cardiac unloading properties, reductions in renal perfusion pressures limit their clinical effectiveness. Recently, CD-NP, a chimeric peptide composed of C-type natriuretic peptide (CNP) fused to the C-terminal tail of Dendroaspis natriuretic peptide (DNP), was shown to be more glomerular filtration rate-enhancing than BNP in dogs. However, the molecular basis for the increased responsiveness was not determined. Here, we show that the DNP tail has a striking effect on CNP, converting it from a non-agonist to a partial agonist of natriuretic peptide receptor (NPR)-A while maintaining the ability to activate NPR-B. This effect is specific for human receptors because CD-NP was only a slightly better activator of rat NPR-A due to the promiscuous nature of CNP in this species. Interesting, the DNP tail alone had no effect on any NPR even though it is effective in vivo. To further increase the potency of CD-NP for NPR-A, we converted two different triplet sequences within the CNP ring to their corresponding residues in BNP. Both variants demonstrated increased affinity and full agonist activity for NPR-A, whereas one was as potent as any NPR-A activator known. In contrast to a previous report, we found that DNP binds the natriuretic peptide clearance receptor (NPR-C). However, none of the chimeric peptides bound NPR-C with significantly higher affinity than endogenous ligands. We suggest that bifunctional chimeric peptides represent a new generation of natriuretic peptide therapeutics. PMID:18940797

  20. Novel bifunctional natriuretic peptides as potential therapeutics.

    Science.gov (United States)

    Dickey, Deborah M; Burnett, John C; Potter, Lincoln R

    2008-12-12

    Synthetic atrial natriuretic peptide (carperitide) and B-type natriuretic peptide (BNP; nesiritide) are used to treat congestive heart failure. However, despite beneficial cardiac unloading properties, reductions in renal perfusion pressures limit their clinical effectiveness. Recently, CD-NP, a chimeric peptide composed of C-type natriuretic peptide (CNP) fused to the C-terminal tail of Dendroaspis natriuretic peptide (DNP), was shown to be more glomerular filtration rate-enhancing than BNP in dogs. However, the molecular basis for the increased responsiveness was not determined. Here, we show that the DNP tail has a striking effect on CNP, converting it from a non-agonist to a partial agonist of natriuretic peptide receptor (NPR)-A while maintaining the ability to activate NPR-B. This effect is specific for human receptors because CD-NP was only a slightly better activator of rat NPR-A due to the promiscuous nature of CNP in this species. Interesting, the DNP tail alone had no effect on any NPR even though it is effective in vivo. To further increase the potency of CD-NP for NPR-A, we converted two different triplet sequences within the CNP ring to their corresponding residues in BNP. Both variants demonstrated increased affinity and full agonist activity for NPR-A, whereas one was as potent as any NPR-A activator known. In contrast to a previous report, we found that DNP binds the natriuretic peptide clearance receptor (NPR-C). However, none of the chimeric peptides bound NPR-C with significantly higher affinity than endogenous ligands. We suggest that bifunctional chimeric peptides represent a new generation of natriuretic peptide therapeutics. PMID:18940797

  1. Removal of Toluene over NaX Zeolite Exchanged with Cu2+

    Directory of Open Access Journals (Sweden)

    Douglas Romero

    2015-09-01

    Full Text Available Toluene is a major air pollutant emitted from painting and metal coating processes and might have some health effects. Adsorption and catalytic complete oxidation are promising ways to retain or convert toluene into harmless products. The present work aims to develop a bifunctional material which can be used as an adsorbent and catalyst for low-temperature toluene removal. Copper zeolites were obtained by exchanging the sodium in the parent NaX zeolite with copper from aqueous solutions of Cu(NO32∙2.5H2O. Several characterization techniques, H2-TPR, XPS, XRD and N2 physisorption, were used in order to evaluate the redox, surface, structural and textural properties of the materials, respectively. The various materials were tested in adsorption and catalytic processes. The sample with low copper content (1 wt. % exhibited promising features in terms of toluene adsorption capacity and total oxidation. The results can be correlated to the presence of micropores and well-dispersed CuO species.

  2. Dynamics Studies on Molecular Diffusion in Zeolites

    Institute of Scientific and Technical Information of China (English)

    王秋霞; 樊建芬; 肖鹤鸣

    2003-01-01

    A review about the applications of molecular dynamics(MD)simulation in zeolites is presented. MD simulation has been proved to be a useful tool due to its applications in this field for the recent two decades. The fundamental theory of MD is introduced and the hydrocarbon diffusion in zeolites is mainly focused on in this paper.

  3. Natural zeolites - origin and mechanism of action

    International Nuclear Information System (INIS)

    The chemical composition and the crystalline structure explain ion exchange, adsorption selectivity, acidity and stability of zeolites. The properties of the two most important natural zeolites, e.g. Klinoptilolite and mordenite are described in detail. This includes petrography, chemical modification and applications. (orig.)

  4. Moessbauer spectroscopy study of a natural zeolite

    International Nuclear Information System (INIS)

    With the help of Moessbauer spectroscopy, it was established that iron in natural zeolites occupies positions in the aluminosilicate structure in place of aluminium; the positions of iron are octahedricals, and the valency is 3+; it was shown too, that the zeolite is geometrically stable to acid treatment, notwithstanding the formation of vacancies during acid treatments. (author)

  5. Method of producing zeolite encapsulated nanoparticles

    DEFF Research Database (Denmark)

    2015-01-01

    The invention therefore relates to a method for producing zeolite, zeolite-like or zeotype encapsulated metal nanoparticles, the method comprises the steps of: 1) Adding one or more metal precursors to a silica or alumina source; 2) Reducing the one or more metal precursors to form metal nanopart......The invention therefore relates to a method for producing zeolite, zeolite-like or zeotype encapsulated metal nanoparticles, the method comprises the steps of: 1) Adding one or more metal precursors to a silica or alumina source; 2) Reducing the one or more metal precursors to form metal...... nanoparticles on the surface of the silica or alumina source; 3) Passing a gaseous hydrocarbon, alkyl alcohol or alkyl ether over the silica or alumina supported metal nanoparticles to form a carbon template coated zeolite, zeolite-like or zeotype precursor composition; 4a) Adding a structure directing agent...... template and structure directing agent and isolating the resulting zeolite, zeolite-like or zeotype encapsulated metal nanoparticles...

  6. Nuclear waste treatment using Iranian natural zeolites

    International Nuclear Information System (INIS)

    Full text: The zeolite researches in Iran is a relatively new subject which has started about 10 years ago. The motivation for this scientific and interesting field was provided after discovery of significant deposits of natural zeolites in different regions of Iran as well as further developments of research institutions and the national concern to environmental protection especially the wastewater clean-up in point of view of recycling of such waste water to compensate some needs to water in other utilizations. This paper intends to review and describes scientific researches which have done on using zeolites in the field of nuclear waste treatment in Iran to introduce the potential resources to the world in more details. Zeolite tuffs are widely distributed in huge deposits in different regions of Iran. So far, the clinoptilolite tuffs are the most abundant natural zeolite which exist with zeolite content of 65%- 95%. Nowadays several different types of Iranian natural zeolites are characterized in point of view of chemical composition, type of structure, chemical, thermal, and radiation resistance using different instrumental and classical methods such as; X-ray diffraction (XRD), X-ray fluoresce (XRF), thermal methods of analysis (TA), scanning electron microscopy (SEM), analytical chemistry and radioanalytical methods as well as different ion-exchange techniques (e.g.3-7). The ability of Iranian natural clinoptilolite for removal of some fission products from nuclear wastewaters have been investigated. The selectivity of all investigated zeolites toward radiocesium and radiostrontium have been promising (e.g. 8-10). The successful synthesize of P zeolite from Iranian clinoptilolite-reach tuffs under different conditions were performed. The compatibility of zeolites with glass and cement matrices, for final disposal of radwaste, as well as their selectivity toward most dangerous heat generating radionuclides (e.g. 137Cs and 90Sr) is very important in using them

  7. Nuclear waste treatment using Iranian natural zeolites (a brief review)

    International Nuclear Information System (INIS)

    The natural zeolite research in Iran is a relatively new subject, which has started about 12 years ago. This paper intends to review some performed research in the field of nuclear wastewater using zeolites in our laboratory. The results of various research work on the natural zeolites as well as on some relevant synthetic zeolites will be discussed in this article. (author)

  8. Magnetic zeolites for removal of metals in water; Materiais magneticos baseados em diferentes zeolitas para remocao de metais em agua

    Energy Technology Data Exchange (ETDEWEB)

    Pergher, Sibele B.C.; Oliveira, Luiz C.A.; Smaniotto, Alessandra; Petkowicz, Diego I. [Universidade Regional Integrada do Alto Uruguai e das Missoes, Erechim, RS (Brazil). Dept. de Quimica]. E-mail: pergher@uri.com.br

    2005-09-15

    In this work the adsorption features of zeolites (NaY, Beta, Mordenite and ZSM-5) have been combined with the magnetic properties of iron oxides in a composite to produce a magnetic adsorbent. These magnetic composites can be used as adsorbents for contaminants in water and subsequently removed from the medium by a simple magnetic process. The magnetic zeolites were characterized by XRD, magnetization measurements, chemical analyses, N{sub 2} adsorption isotherms and Moessbauer spectroscopy. These magnetic adsorbents show remarkable adsorption capacity for metal ion contaminants in water. (author)

  9. Ion exchange investigation on the Syrian zeolite

    International Nuclear Information System (INIS)

    We have studied the ion exchange process by using Syrian zeolite from the region of Tell-Assis with four solutions containing these ions: Ag+, NH4+, Pb2+, and Cu2+. It was found that the required time to reach the equilibrium is 6-8 hours, and depends on the type of ion. the exchange capacity mainly depends on the type of ions, and range between 0.5-1.57 m. mol/g. The effect of pH on ion exchange capacity was obvious and the best results were reached when the pH ranged between 5+ will exchange with univalent and bivalent ions in the zeolite, whereas the bivalent ions as Pb+2 will preferentially exchange with the bivalent ions in the zeolite. we concluded that the used zeolite gave good results compared with some known zeolite. (Author)

  10. Proton Adsorption Selectivity of Zeolites in Aqueous Media: Effect of Si/Al Ratio of Zeolites

    Directory of Open Access Journals (Sweden)

    Moses Wazingwa Munthali

    2014-12-01

    Full Text Available In addition to their well-known uses as catalysts, zeolites are utilized to adsorb and remove various cations from aqueous system. The adsorption of the cations is ascribed to the negative charge of zeolites derived from isomorphous substitution of Si by Al. The amount of Na+ adsorption on 4A, X, Y, Na-P1 and mordenite type zeolites were determined in aqueous media, in a two-cation (Na+ and H+ system. Although each zeolite has a constant amount of negative charge, the amount of Na+ adsorption of each zeolite decreased drastically at low pH−pNa values, where pH−pNa is equal to log{(Na+/(H+}. By using the plot of the amount of Na+ adsorption versus pH−pNa, an index of the H+ selectivity, which is similar to the pKa of acids, of each zeolite was estimated, and the index tended to increase with decreasing Si/Al ratio of zeolites. These indicate that zeolites with lower Si/Al and higher negative charge density have higher H+ adsorption selectivity, and in fact, such a zeolite species (4A and X adsorbed considerable amount of H+ even at weakly alkaline pH region. The adsorption of H+ results in the decrease of cation adsorption ability, and may lead to the dissolution of zeolites in aqueous media.

  11. Bifunctional mesoporous silicas with clearly distinguished localization of grafted groups

    Science.gov (United States)

    Roik, N. V.; Belyakova, L. A.

    2013-12-01

    Bifunctional mesoporous silicas with clearly distinguished localization of grafted groups on the surface of particles and inside their pores were obtained by means of sol-gel synthesis with postsynthetic vapor-phase treatment in vacuum. It was found that the synthesized materials have the hexagonally ordered porous structure typical of MCM-41 type silica.

  12. Single flexible nanofiber to simultaneously realize electricity-magnetism bifunctionality

    International Nuclear Information System (INIS)

    In order to develop new-typed multifunctional composite nanofibers, PANI/Fe3O4/PVP flexible bifunctional composite nanofibers with simultaneous electrical conduction and magnetism have been successfully fabricated via a facile electrospinning technology. Polyvinyl pyrrolidone (PVP) is used as a matrix to construct composite nanofibers containing different amounts of polyaniline (PANI) and Fe3O4 nanoparticles (NPs). The bifunctional composite nanofibers simultaneously possess excellent electrical conductivity and magnetic properties. The electrical conductivity reaches up to the order of 10-3 S·cm-1. The electrical conductivity and saturation magnetization of the composite nanofibers can be respectively tuned by adding various amounts of PANI and Fe3O4 NPs. The obtained electricity-magnetism bifunctional composite nanofibers are expected to possess many potential applications in areas such as electromagnetic interference shielding, special coating, microwave absorption, molecular electronics and future nanomechanics. More importantly, the design concept and construct technique are of universal significance to fabricate other bifunctional one-dimensional nanostructures. (author)

  13. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons

    NARCIS (Netherlands)

    Zecevic, Jovana; Vanbutsele, Gina; de Jong, Krijn P.; Martens, Johan A.

    2015-01-01

    The ability to control nanoscale features precisely is increasingly being exploited to develop and improve monofunctional catalysts(1-4). Striking effects might also be expected in the case of bifunctional catalysts, which are important in the hydrocracking of fossil and renewable hydrocarbon source

  14. Single flexible nanofiber to simultaneously realize electricity-magnetism bifunctionality

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ming; Sheng, Shujuan; Ma, Qianli; Lv, Nan; Yu, Wensheng; Wang, Jinxian; Dong, Xiangting; Liu, Guixia, E-mail: wenshengyu2009@sina.com, E-mail: dongxiangting888@163.com [Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun (China)

    2016-03-15

    In order to develop new-typed multifunctional composite nanofibers, PANI/Fe{sub 3}O{sub 4}/PVP flexible bifunctional composite nanofibers with simultaneous electrical conduction and magnetism have been successfully fabricated via a facile electrospinning technology. Polyvinyl pyrrolidone (PVP) is used as a matrix to construct composite nanofibers containing different amounts of polyaniline (PANI) and Fe{sub 3}O{sub 4} nanoparticles (NPs). The bifunctional composite nanofibers simultaneously possess excellent electrical conductivity and magnetic properties. The electrical conductivity reaches up to the order of 10{sup -3} S·cm{sup -1}. The electrical conductivity and saturation magnetization of the composite nanofibers can be respectively tuned by adding various amounts of PANI and Fe{sub 3}O{sub 4} NPs. The obtained electricity-magnetism bifunctional composite nanofibers are expected to possess many potential applications in areas such as electromagnetic interference shielding, special coating, microwave absorption, molecular electronics and future nanomechanics. More importantly, the design concept and construct technique are of universal significance to fabricate other bifunctional one-dimensional nanostructures. (author)

  15. Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water

    Energy Technology Data Exchange (ETDEWEB)

    Moliner, Manuel [California Inst. of Technology (CalTech), Pasadena, CA (United States); Roman-Leshkov, Yuriy [California Inst. of Technology (CalTech), Pasadena, CA (United States); Davis, Mark E. [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2010-04-06

    The isomerization of glucose into fructose is a large-scale reaction for the production of high-fructose corn syrup (HFCS; reaction performed by enzyme catalysts) and recently is being considered as an intermediate step in the possible route of biomass to fuels and chemicals. Here, it is shown that a large-pore zeolite that contains tin (Sn-Beta) is able to isomerize glucose to fructose in aqueous media with high activity and selectivity. Specifically, a 10% (wt/wt) glucose solution containing a catalytic amount of Sn-Beta (1:50 Sn:glucose molar ratio) gives product yields of approximately 46% (wt/wt) glucose, 31% (wt/wt) fructose, and 9% (wt/wt) mannose after 30 min and 12 min of reaction at 383 K and 413 K, respectively. This reactivity is achieved also when a 45 wt% glucose solution is used. The properties of the large-pore zeolite greatly influence the reaction behavior because the reaction does not proceed with a medium-pore zeolite, and the isomerization activity is considerably lower when the metal centers are incorporated in ordered mesoporous silica (MCM-41). The Sn-Beta catalyst can be used for multiple cycles, and the reaction stops when the solid is removed, clearly indicating that the catalysis is occurring heterogeneously. Most importantly, the Sn-Beta catalyst is able to perform the isomerization reaction in highly acidic, aqueous environments with equivalent activity and product distribution as in media without added acid. This enables Sn-Beta to couple isomerizations with other acid-catalyzed reactions, including hydrolysis/isomerization or isomerization/dehydration reaction sequences [starch to fructose and glucose to 5-hydroxymethylfurfural (HMF) demonstrated here].

  16. Mesoporous zeolite single crystal catalysts: Diffusion and catalysis in hierarchical zeolites

    DEFF Research Database (Denmark)

    Christensen, Christina Hviid; Johannsen, Kim; Toernqvist, Eric; Schmidt, Iver; Topsoe, Henrik; Christensen, Claus H.

    exhibit higher catalytic activity, but in some cases also improved selectivity and longer catalyst lifetime has been reported. The beneficial effects of introducing mesopores into the zeolites has in most instances been attributed to improved mass transport to and from the active sites located in the...... zeolite micropores. Here, we briefly discuss the most important ways of introducing mesopores into zeolites and, for the first time, we show experimentally that the presence of mesopores dramatically increases the rate of diffusion in zeolite catalysts. This is done by studying the elution of iso......-butane from packed beds of conventional and mesoporous zeolite catalysts. Moreover, we discuss in detail the recent observation of improved activity and selectivity in the alkylation of benzene with ethene using mesoporous zeolite single crystal catalysts. For this reaction, we show by calculation of the...

  17. Hierachical Zeolite-Zeolite Composite Prepared by a Vapor Phase Transport Method

    Directory of Open Access Journals (Sweden)

    ZHANG Qiu, Tan Wei, ZHENG Jia-Jun, ZHAO Qiang-Qiang, WANG Guang-Shuai, YI Yu-Ming, LI Rui-Feng

    2014-09-01

    Full Text Available A zeolite-zeolite composite composed of Y and ZSM-5 was successfully prepared by a vapor phase transport (VPT method. The as-synthesized samples were characterized by X-ray diffraction (XRD, scanning electron microscope (SEM, N2 adsorption-desorption and FT-IR. The results display that the synthesis is influenced by the Y content, preparing condition of dry gel andtransfering condition for VPT method. FT-IR spectra show the characteristic peaks of MFI framework on ZSM-5 precursor after hydrothermal pre-treatment for 16 h. The result can be attributed to the crystal nucleus or microcrystal of ZSM-5 zeolite, either of which may promote growth of ZSM-5 crystals during the VPT procedure, and depresse formation of ZSM-35 crystals. The mesopores structure, created in as-synthesized zeolite-zeolite composite, can be ascribed to the extracted aluminum from Y zeolite crystals by VPT procedure.

  18. Water nanodroplets confined in zeolite pores.

    Science.gov (United States)

    Coudert, François-Xavier; Cailliez, Fabien; Vuilleumier, Rodolphe; Fuchs, Alain H; Boutin, Anne

    2009-01-01

    We provide a comprehensive depiction of the behaviour of a nanodroplet of approximately equal to 20 water molecules confined in the pores of a series of 3D-connected isostructural zeolites with varying acidity, by means of molecular simulations. Both grand canonical Monte Carlo simulations using classical interatomic forcefields and first-principles Car-Parrinello molecular dynamics were used in order to characterise the behaviour of confined water by computing a range of properties, from thermodynamic quantities to electronic properties such as dipole moment, including structural and dynamical information. From the thermodynamic point of view, we have identified the all-silica zeolite as hydrophobic, and the cationic zeolites as hydrophilic; the condensation transition in the first case was demonstrated to be of first order. Furthermore, in-depth analysis of the dynamical and electronic properties of water showed that water in the hydrophobic zeolite behaves as a nanodroplet trying to close its hydrogen-bond network onto itself, with a few short-lived dangling OH groups, while water in hydrophilic zeolites "opens up" to form weak hydrogen bonds with the zeolite oxygen atoms. Finally, the dipole moment of confined water is studied and the contributions of water self-polarisation and the zeolite electric field are discussed. PMID:19227366

  19. Selective catalytic conversion of bio-oil over high-silica zeolites.

    Science.gov (United States)

    Widayatno, Wahyu Bambang; Guan, Guoqing; Rizkiana, Jenny; Du, Xiao; Hao, Xiaogang; Zhang, Zhonglin; Abudula, Abuliti

    2015-03-01

    Four high silica zeolites, i.e., HSZ-385, 890, 960, and 990 were utilized for the selective catalytic conversion of bio-oil from Fallopia japonica to certain chemicals in a fixed-bed reactor. The Beta-type HSZ-960 zeolite showed the highest selectivity to hydrocarbons, especially to aromatics as well as PAH compounds with the lowest unwanted chemicals while HSZ-890 showed high selectivity to aromatics. NH3-Temperature Programmed Desorption (TPD) analysis indicated that different amounts of acid sites in different zeolites determined the catalytic activity for the oxygen removal from bio-oil, in which the acid sites at low temperature (LT) region gave more contribution within the utilized temperature region. The reusability test of HSZ-960 showed the stability of hydrocarbons yield at higher temperature due to the significant contribution of coke gasification which assisted further deoxygenation of bio-oil. These results provide a guidance to select suitable zeolite catalysts for the upgrading of bio-oil in a practical process. PMID:25576987

  20. Preparation by the nano casting process of novel porous carbons from large pore zeolite templates

    Energy Technology Data Exchange (ETDEWEB)

    Gaslain, F.; Parmentier, J.; Valtchev, V.; Patarin, J. [Universite de Haute Alsace, Lab. de Materiaux a Porosite Controlee (LMPC), UMR CNRS 7016, ENSCMu, 68 - Mulhouse (France); Vix-Guterl, C. [Institut de Chimie des Surfaces et Interfaces (ICSI), UPR CNRS 9069, 68 - Mulhouse (France)

    2005-07-01

    The development of new growing industrial applications such as gas storage (e.g.: methane or hydrogen) or electric double-layer capacitors has focussed the attention of many research groups. For this kind of application, porous carbons with finely tailored micro-porosity (i.e.: pore size diameter {<=} 1 nm) appear as very promising materials due to their high surface area and their specific pore size distribution. In order to meet these requirements, attention has been paid towards the feasibility of preparing microporous carbons by the nano-casting process. Since the sizes and shapes of the pores and walls respectively become the walls and pores of the resultant carbons, using templates with different framework topologies leads to various carbon replicas. The works performed with commercially available zeolites employed as templates [1-4] showed that the most promising candidate is the FAU-type zeolite, which is a large zeolite with three-dimensional channel system. The promising results obtained on FAU-type matrices encouraged us to study the microporous carbon formation on large pore zeolites synthesized in our laboratory, such as EMC-1 (International Zeolite Association framework type FAU), zeolite {beta} (BEA) or EMC-2 (EMT). The carbon replicas were prepared following largely the nano-casting method proposed for zeolite Y by the Kyotani research group [4]: either by liquid impregnation of furfuryl alcohol (FA) followed by carbonisation or by vapour deposition (CVD) of propylene, or by an association of these two processes. Heat treatment of the mixed materials (zeolite / carbon) could also follow in order to improve the structural ordering of the carbon. After removal of the inorganic template by an acidic treatment, the carbon materials obtained were characterised by several analytical techniques (XRD, N{sub 2} and CO{sub 2} adsorption, electron microscopy, etc...). The unique characteristics of these carbons are discussed in details in this paper and

  1. Ultrasound-assisted dealumination of zeolite Y

    Indian Academy of Sciences (India)

    M Hosseini; M A Zanjanchi; B Ghalami-Choobar; H Golmojdeh

    2015-01-01

    We demonstrate a new procedure for dealumination of zeolite Y. The method employs a 28 KHz ultrasound bath and an ethanolic acetylacetone solution. Acetylacetone was used as chelating agent and ultrasound irradiation was used as extraction intensifier. Four types of samples, as-synthesized, ammoniumexchanged, acidic and neutralized zeolite were used for dealumination. Parts of the framework aluminumatoms are removed from their sites in the structure of zeolite Y upon the use of either acetylacetone on its own or simultaneous use of acetylacetone and ultrasound waves. Higher dealumination was observed for those samples subjected to both ultrasound irradiation and acetylacetone extraction.

  2. Characterization of UO22+ exchanged Y zeolite

    International Nuclear Information System (INIS)

    The present study discusses the incorporation of uranyl ion into Y-zeolite framework. The UO22+ sorption was measured by neutron activation analyses. The Y-zeolite framework distorts in response to the cations present in the structure. Hence, depending on the amount and the location of the exchanged cations, the features of the X-ray diffraction pattern may vary. From the Rietveld analysis of these patterns, the positions occupied by the UO22+ cations in the zeolite network were determined. (author)

  3. Proton Adsorption Selectivity of Zeolites in Aqueous Media: Effect of Si/Al Ratio of Zeolites

    OpenAIRE

    Moses Wazingwa Munthali; Mohammed Abdalla Elsheikh; Erni Johan; Naoto Matsue

    2014-01-01

    In addition to their well-known uses as catalysts, zeolites are utilized to adsorb and remove various cations from aqueous system. The adsorption of the cations is ascribed to the negative charge of zeolites derived from isomorphous substitution of Si by Al. The amount of Na+ adsorption on 4A, X, Y, Na-P1 and mordenite type zeolites were determined in aqueous media, in a two-cation (Na+ and H+) system. Although each zeolite has a constant amount of negative charge, the amount of Na+ adsorptio...

  4. A general method to incorporate metal nanoparticles in zeolites and zeotypes

    DEFF Research Database (Denmark)

    2015-01-01

    Disclosed herein is a method for producing a zeolite, zeolite-like or zeotype structure with selective formation of metal, metal oxide or metal sulphide nanoparticles and/or clusters inside the zeolite, zeolite-like or zeotype structure.......Disclosed herein is a method for producing a zeolite, zeolite-like or zeotype structure with selective formation of metal, metal oxide or metal sulphide nanoparticles and/or clusters inside the zeolite, zeolite-like or zeotype structure....

  5. Factors affecting the MTW zeolite cristallization process

    Energy Technology Data Exchange (ETDEWEB)

    Katovic, A.; Giordano, G. [Universita della Calabria, Rende (Italy)

    1995-12-01

    The synthesis mechanism of the high silica zeolite types other than MFI is rarely studied in the open literature. This work is devoted to the role of different parameters governing the zeolite MTW crystallization process. The influence of the most important factors: the nature of the silica and alumina source, the type of the organic cation, the alkalinity of the reaction mixture and the crystallization temperature, was studied. The molar composition of the initial hydrogel was varied in other to determine the crystallization field of the zeolite MTW. The observed morphology and particle size of the crystallites are related to the corresponding reaction conditions. The competitive formation of the other zeolite types (prevalently MFI and BEA) is discussed.

  6. Characteristics of some Iranian natural zeolites

    International Nuclear Information System (INIS)

    Zeolites are hydrated crystalline aluminosilicates of alkali and alkaline earth cations. Their three dimensional framework consist of (SIO4) and (AlO4) tetrahedra. Beside their low price and abundance, three main properties of zeolites i.e: adsorption, ion exchange and catalytically properties promote their versatile industrial applications. In Iran, lack of a systematic and comprehensive research on the characterization of natural zeolites causes these valuable minerals to be relatively unknown. The aim of this research is to characterize some of the Iranian natural zeolites by means of thermal analysis methods including thermogravimetry (TG), and derivative thermogravimetry (DTG). In some cases, X-ray diffractometry and chemical analysis were used as complementary methods

  7. Effects of Hydrothermal Aging on NH3-SCR reaction over Cu/zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Ja Hun; Tran, Diana N.; Burton, Sarah D.; Szanyi, Janos; Lee, Jong H.; Peden, Charles HF

    2012-02-06

    The effects of hydrothermal treatment on model Cu/zeolite catalysts were investigated to better understand the nature of Cu species for the selective catalytic reduction of NO{sub x} by NH{sub 3}. After hydrothermal aging at 800 C for 16 h, the NO{sub x} reduction performance of Cu-ZSM-5 and Cu-beta were significantly reduced at low temperatures, while that of Cu-SSZ-13 was not affected. When the zeolite framework aluminum species were probed using solid state {sup 27}Al-NMR, significant reduction in the intensities of the tetrahedral aluminum peak was observed for Cu-ZSM-5 and Cu-beta, although no increase in the intensities of the octahedral aluminum peak was observed. When the redox behavior of Cu species was examined using H{sub 2}-TPR, it was found that Cu{sup 2+} could be reduced to Cu{sup +} and to Cu{sup 0} fir Cu-ZSM-5 and Cu-beta catalysts, while Cu{sup 2+} could be reduced to Cu{sup +} only for Cu-SSZ-13. After hydrothermal aging, CuO and Cu-aluminate species were found to form in Cu-ZSM-5 and Cu-beta, while little changes were observed for Cu-SSZ-13.

  8. Recipe for fabricating zeolite ion source for plasma probing

    International Nuclear Information System (INIS)

    Alkali zeolite is often used as an ion source material owing to its easy extraction of alkali ions. In our laboratory, we fabricated zeolite containing a particular alkali species through a replacement reaction with sodium zeolite. In this paper, we present a simple mathematical model for describing this replacement reaction for making zeolite containing a particular alkali species. In this model, the fraction of alkali ions trapped in the zeolite lattice is expressed as a function of the number of substitution reactions in a concise recursion formula. This formula gives a simple estimation of efficiency for fabricating alkali zeolite in terms of the consumptions of time and chemicals. (author)

  9. PENENTUAN KEASAMAN ZEOLIT MENGGUNAKAN METODE GRAVIMETRI, TITRASI DAN FTIR

    OpenAIRE

    Dwi Kartika; Mardiyah Kurniasih

    2007-01-01

    Determination of natural zeolite and activated natural zeolite acidity using gravimetric, titration and FTIR methods had been carried out. The result of gravimetric method show that the acidity of the natural zeolite and activated natural zeolite was 2,350 and 5,628 mol/gram, respectively. The titration method can be obtained that the acidity degree of the natural zeolite and activated natural zeolite was 12,333 and 12,067, respectively. The result showed that the activation of the natural ze...

  10. Synthesis and peculiarities of the cesium zeolite crystal structure (cesite)

    International Nuclear Information System (INIS)

    An attempt is made to synthesize cesium zeolite by introduction of amorphous seed crystals which correspond by composition with cesium-containing zeolite into the aluminosilicate gel, since this method can produce zeolite with a crystal structure it would not adopt under the usual conditions. It is seen that during crystablization upon introduction of a seed crystal the cesium content in zeolite decreases. A more complete structural elucidation of zeolite obtained by the suggested method was carried out by x0ray and IR spectral analyses. The data of x-ray analysis showed that the structures of synthesized zeolite and binary octagonal pores are similar

  11. Crystal engineering of zeolites with graphene

    OpenAIRE

    Gebhardt, Paul; Pattison, Sebastian M.; Ren, Zhibin; Cooke, David J.; Elliott, James A.; Eder, Dominik

    2014-01-01

    Achieving control over the morphology of zeolite crystals at the nanoscale is crucial for enhancing their performance in diverse applications including catalysis, sensors and separation. The complexity and sensitivity of zeolite synthesis processes, however, often make such control both highly empirical and difficult to implement. We demonstrate that graphene can significantly alter the morphology of titanium silicalite (TS-1) particles, in particular being able to reduce their dimensions fro...

  12. Catalytic Cracking of Heptane Using Prepared Zeolite

    OpenAIRE

    Mohammed Nsaif; Ahmed Abdulhaq; Ali Farhan; Safa Neamat

    2012-01-01

    This investigation was conducted to study the potential of type Y-zeolite prepared locally from Iraqi Rice Husk (IRH) (which considered as a type of agricultural waste that difficult to discard it in conventional methods in Iraq) on the removal of one heavy metals pollutant which was divalent zinc (Zn+2) ions from industrial wastewater using different design parameters by adsorption process. The design parameters studied to remove (Zn+2) ions using zeolite prepared locally from (IRH) as an ad...

  13. Acetylene diffusion in Na-Y zeolite

    Indian Academy of Sciences (India)

    S Mitra; S Sumitra; A M Umarji; R Mukhopadhyay; S Yashonath; S L Chaplot

    2004-08-01

    Study of diffusivity of acetylene adsorbed in Na-Y zeolite by quasi-elastic neutron scattering (QENS) measurements at temperatures of 300, 325 and 350 K is reported. A model in which the acetylene molecules undergo random-walk diffusion characterized by a Gaussian distribution of jump lengths inside zeolite cages describes the data consistently. The diffusion constant, residence time between jumps and root mean square jump length are determined.

  14. Multidiagnostic Analysis to Track Zeolite Formation

    OpenAIRE

    Castro, M.; Haouas, M.; Taulelle, Francis; Lim, I; Breynaert, Eric; Brabants, Gert; Kirschhock, Christine; Schmidt, W.

    2014-01-01

    Introduction The formation of zeolites in presence of tetraalkylammonium cations from so-called clear solutions using silicon alkoxides is a highly complex process. Our research aims to identify the key mechanisms on a molecular scale with the goal of understanding the factors that drive the formation of zeolites [1]. For this purpose we have used electrospray ionization mass spectrometry (ESI-MS), 29Si and 27Al liquid-NMR spectrometry, DOSY NMR (diffusion experi...

  15. Preparation and characterization of bifunctional oxidative and acidic catalysts Nb2O5/TS-1 for synthesis of diols

    International Nuclear Information System (INIS)

    Bifunctional oxidative and acidic catalyst was prepared by incorporation of titanium ion (Ti4+) and niobic acid in zeolite molecular-sieve. The catalysts being active both in oxidation reactions due to the presence of tetrahedral Ti4+, and acid-catalyzed reactions due to the presence of niobic acid. Nb/TS-1 was prepared by hydrothermal synthesis of TS-1, calcination in air and subsequent impregnation of niobium into TS-1. The sample was characterized by XRD, FTIR, UV-vis DR, TPR and pyridine adsorption techniques. The XRD analysis of Nb/TS-1 revealed that the MFI structure of the TS-1 support was found to be intact upon incorporation of niobium. The infrared spectra showed that the tetrahedral titanium in the TS-1 is still remained after impregnation with niobium while based on the UV-vis DR result, the niobium species are in the octahedral structure. On the basis TPR and infrared of hydroxyl groups results, it is concluded that niobium species interacted with the silanols on the surface of TS-1. Pyridine adsorption study shows both Bronsted and Lewis acid sites are present in Nb/TS-1. The catalytic results in the transformation of 1-octene to 1,2-octanediol through the formation of 1,2-epoxyoctane by using Nb/TS-1 indicate that the production of epoxide and diol was correlated with the presence of oxidative and Bronsted acidic sites in the catalyst

  16. Catalytic Upgrading of 5-Hydroxymethylfurfural to Drop-in Biofuels by Solid Base and Bifunctional Metal-Acid Catalysts.

    Science.gov (United States)

    Bohre, Ashish; Saha, Basudeb; Abu-Omar, Mahdi M

    2015-12-01

    Design and synthesis of effective heterogeneous catalysts for the conversion of biomass intermediates into long chain hydrocarbon precursors and their subsequent deoxygenation to hydrocarbons is a viable strategy for upgrading lignocellulose into distillate range drop-in biofuels. Herein, we report a two-step process for upgrading 5-hydroxymethylfurfural (HMF) to C9 and C11 fuels with high yield and selectivity. The first step involves aldol condensation of HMF and acetone with a water tolerant solid base catalyst, zirconium carbonate (Zr(CO3 )x ), which gave 92 % C9 -aldol product with high selectivity at nearly 100 % HMF conversion. The as-synthesised Zr(CO3 )x was analysed by several analytical methods for elucidating its structural properties. Recyclability studies of Zr(CO3 )x revealed a negligible loss of its activity after five consecutive cycles over 120 h of operation. Isolated aldol product from the first step was hydrodeoxygenated with a bifunctional Pd/Zeolite-β catalyst in ethanol, which showed quantitative conversion of the aldol product to n-nonane and 1-ethoxynonane with 40 and 56 % selectivity, respectively. 1-Ethoxynonane, a low oxygenate diesel range fuel, which we report for the first time in this paper, is believed to form through etherification of the hydroxymethyl group of the aldol product with ethanol followed by opening of the furan ring and hydrodeoxygenation of the ether intermediate. PMID:26549016

  17. Hexadentate bispidine derivatives as versatile bifunctional chelate agents for copper(II) radioisotopes.

    Science.gov (United States)

    Juran, Stefanie; Walther, Martin; Stephan, Holger; Bergmann, Ralf; Steinbach, Jörg; Kraus, Werner; Emmerling, Franziska; Comba, Peter

    2009-02-01

    The preparation and use of bispidine derivatives (3,7-diazabicyclo[3.3.1]nonane) as chelate ligands for radioactive copper isotopes for diagnosis (64Cu) or therapy (67Cu) are reported. Starting from the hexadentate bispidine-based bis(amine)tetrakis(pyridine) ligand 1 with a keto and two ester substituents, the corresponding mono-ol 2 and two dicarboxylic acid derivatives 3 and 5 have been synthesized. A range of techniques, including single-crystal X-ray structure analysis, UV/vis spectroscopy, cyclic voltammetry, thin-layer- (TLC), and high-performance liquid chromatography (HPLC), have been used to characterize the structure and stability of the copper(II)-bispidine complexes. A rapid formation (within 1 min) of stable copper(II)-bispidine complexes under mild conditions (ambient temperature, aqueous solution) has been observed. Challenge experiments of these complexes in the presence of a high excess of competing ligands, such as glutathione, cyclam, or superoxide dismutase (SOD), as well as in rat plasma, gave no evidence of demetalation or transchelation. The bifunctional bispidine derivative 5 can be readily functionalized with biologically active molecules at the pendant carboxylate groups. The coupling of a bombesin analogue betahomo-Glu-betaAla-betaAla-[Cha(13),Nle(14)]BBN(7-14), by condensation of a carboxylate of the bispidine backbone with the N-terminus of the peptide produced the bifunctional ligand 6. The radiocopper(II) complex of this bombesin-bispidine conjugate has a considerable hydrophilicity (log D(o/w) < -2.4), and this leads to a very fast blood clearance (blood: 0.28 +/- 0.02 SUV, 1 h p.i.), low liver tissue accumulation (liver: 1.20 +/- 0.27 SUV, 1 h p.i.), and rapid renal-urinary excretion (kidneys: 6.06 +/- 2.96 SUV, 1 h p.i.) as shown by biodistribution studies of 64Cu-6 in Wistar rats. Preliminary in vivo studies of 64Cu-6 in NMRI nu/nu mice, bearing the human prostate tumor PC-3 showed an accumulation of the conjugate in the tumor (2

  18. High performance bi-functional quantum cascade laser and detector

    Science.gov (United States)

    Schwarz, Benedikt; Ristanic, Daniela; Reininger, Peter; Zederbauer, Tobias; MacFarland, Donald; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried

    2015-08-01

    An improved bi-functional quantum cascade laser and detector emitting and detecting around 6.8 μ m is demonstrated. The design allows a significantly higher laser performance, showing that bi-functional designs can achieve a comparable pulsed performance to conventional quantum cascade lasers. In particular, the device has a threshold current density of 3 kA / cm 2 , an output power of 0.47 W , and a total wall-plug efficiency of 4.5% in pulsed mode. Optimized electron extraction and the prevention of thermal backfilling allow higher duty cycles, operation up to 10%, with 15 mW average output power at room temperature without optimization of the laser cavity or coatings. At zero bias, the device has a responsivity of around 40 mA / W and a noise equivalent power of 80 pW / √{ Hz } at room temperature, which in on-chip configuration outperforms conventional uncooled discrete detectors.

  19. Investigation of new bifunctional agents. D-Penicillamine

    International Nuclear Information System (INIS)

    Somatostatin inhibits the release of growth hormone (somatotropin) from the Anterior Pituitary. The main use of derivatives of somatostatin is to diagnose growth hormone problems and to use against some forms of cancer which involve growth hormone. Also somatostatin suppresses gastric acid secretion, gallbladder contractions, and pancreatic enzyme secretion. The aim of the current study is to investigate new bifunctional agents for labeling with 99mTc. Therefore D-Penicillamine was used as a bifunctional agent and compared to DTPA in the labeling with 99mTc. Quality controls were established using thin layer radio chromatography (TLRC) and electrophoresis techniques. In addition, high performance liquid radio chromatography (HPLRC) was also performed for elimination of possible uncertainties. The radiolabeled complexes maintained their stabilities throughout the study. The results obtained showed that 99mTc-D-Penicillamine-somatostatin is a promising potential radiopharmaceutical and an alternative of 99mTc-DTPA-somatostatin for in vivo and in vitro applications. (author)

  20. [Bifunctional chelates of Rh-105, Au-199, and other metallic radionuclides as potential radiotherapeutic agents

    International Nuclear Information System (INIS)

    Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III)

  1. [Bifunctional chelates of Rh-105, Au-199, and other metallic radionuclides as potential radiotherapeutic agents

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III).

  2. (Bifunctional chelates of Rh-105, Au-199, and other metallic radionuclides as potential radiotherapeutic agents)

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III).

  3. Hierarchical zeolites: progress on synthesis and characterization of mesoporous zeolite single crystal catalysts

    DEFF Research Database (Denmark)

    Kustova, Marina; Egeblad, Kresten; Christensen, Claus H.; Kustov, Arkadii; Christensen, Christina Hviid

    measurements. Additionally, the results of diffusion of n-hexadecane in conventional and mesoporous zeolites are presented. Isomerization and cracking of n-hexadecane was chosen as model test reaction for these materials. All results support that mesoporous zeolites are superior catalysts due to improved mass...

  4. Theoretical investigation of layered zeolite frameworks: Surface properties of 2D zeolites

    Czech Academy of Sciences Publication Activity Database

    Hermann, Jan; Trachta, Michal; Nachtigall, P.; Bludský, Ota

    2014-01-01

    Roč. 227, May 15 (2014), s. 2-8. ISSN 0920-5861 R&D Projects: GA ČR GBP106/12/G015 Institutional support: RVO:61388963 Keywords : layered zeolite frameworks * surface properties * 2D zeolite s Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.893, year: 2014

  5. Salt-occluded zeolite waste forms: Crystal structures and transformability

    International Nuclear Information System (INIS)

    Neutron diffraction studies of salt-occluded zeolite and zeolite/glass composite samples, simulating nuclear waste forms loaded with fission products, have revealed complex structures, with cations assuming the dual roles of charge compensation and occlusion (cluster formation). These clusters roughly fill the 6--8 angstrom diameter pores of the zeolites. Samples are prepared by equilibrating zeolite-A with complex molten Li, K, Cs, Sr, Ba, Y chloride salts, with compositions representative of anticipated waste systems. Samples prepared using zeolite 4A (which contains exclusively sodium cations) as starting material are observed to transform to sodalite, a denser aluminosilicate framework structure, while those prepared using zeolite 5A (sodium and calcium ions) more readily retain the zeolite-A structure. Because the sodalite framework pores are much smaller than those of zeolite-A, clusters are smaller and more rigorously confined, with a correspondingly lower capacity for waste containment. Details of the sodalite structures resulting from transformation of zeolite-A depend upon the precise composition of the original mixture. The enhanced resistance of salt-occluded zeolites prepared from zeolite 5A to sodalite transformation is thought to be related to differences in the complex chloride clusters present in these zeolite mixtures. Data relating processing conditions to resulting zeolite composition and structure can be used in the selection of processing parameters which lead to optimal waste forms

  6. Effect of different glasses in glass bonded zeolite

    International Nuclear Information System (INIS)

    A mineral waste form has been developed for chloride waste salt generated during the pyrochemical treatment of spent nuclear fuel. The waste form consists of salt-occluded zeolite powders bound within a glass matrix. The zeolite contains the salt and immobilizes the fission products. The zeolite powders are hot pressed to form a mechanically stable, durable glass bonded zeolite. Further development of glass bonded zeolite as a waste form requires an understanding of the interaction between the glass and the zeolite. Properties of the glass that enhance binding and durability of the glass bonded zeolite need to be identified. Three types of glass, boroaluminosilicate, soda-lime silicate, and high silica glasses, have a range of properties and are now being investigated. Each glass was hot pressed by itself and with an equal amount of zeolite. MCC-1 leach tests were run on both. Soda-lime silicate and high silica glasses did not give a durable glass bonded zeolite. Boroaluminosilicate glasses rich in alkaline earths did bind the zeolite and gave a durable glass bonded zeolite. Scanning electron micrographs suggest that the boroaluminosilicate glasses wetted the zeolite powders better than the other glasses. Development of the glass bonded zeolite as a waste form for chloride waste salt is continuing

  7. Polyphosphates substitution for zeolite to in detergents

    International Nuclear Information System (INIS)

    The detergents, as well as the cleaning products, contain active ingredients that are good to increase their efficiency and some of them, as the sodium Tripoli-phosphate (TPF), they have turned out to be noxious for the environment. The zeolites use in the formulation of detergents has grown substantially since they fulfill the same function of the TPF and they have been recommended ecologically as substitutes from these when not being polluting. The objective of this work is to obtain a zeolite with appropriate characteristics for its use in the formulation of detergents, reproducing those of the zeolites used industrially. The zeolite synthesis is studied 4A starting from hydro-gels of different composition, varying the operation conditions and using two raw materials: (sodium meta-silicate, commercial degree and metallic aluminum) and clay type kaolin like silica source and aluminum It is looked for to get a product of beveled cubic morphology, or spherical, with glass size between 1 and 3 microns and that it possesses good capacity of conical exchange. Since the capacity and speed of ionic exchange is influenced by the particle size, time of contact and temperature, experimentation conditions settle down to measure the exchange of ions calcium and magnesium in watery solutions that they simulate the real situation of a laundry process in the country. This way the ability of the zeolite 4A obtained to diminish the concentration of these ions in the laundry waters is evaluated and its possibilities like component in the formulation of detergents non-phosphatates. Of the synthesized zeolites, the best in agreement is chosen with chemical properties as ionic and physical exchange capacity as crystalline, particle size and color, to prepare a detergent in which the polyphosphates is substituted partial and totally for the synthesized zeolite

  8. Acid and redox activity of template-free Al-rich H-BEA* and Fe-BEA* zeolites

    Czech Academy of Sciences Publication Activity Database

    Sazama, Petr; Wichterlová, Blanka; Sklenák, Štěpán; Parvulescu, V. I.; Candu, N.; Sádovská, Galina; Dědeček, Jiří; Klein, Petr; Pashková, Veronika; Šťastný, Petr

    2014-01-01

    Roč. 318, OCT 2014 (2014), s. 22-33. ISSN 0021-9517 R&D Projects: GA ČR GAP106/11/0624; GA ČR(CZ) GA14-10251S; GA TA ČR TA01021377 Institutional support: RVO:61388955 Keywords : Acid strength * Alkylation of aromatics * Beta zeolite Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.921, year: 2014

  9. EFFICIENCY OF HOTYNETS NATURAL ZEOLITES UTILIZATION IN LIVESTOCK INDUSTRY

    OpenAIRE

    Yarovan, N.; Boytsova, O.; Novikova, I.; Petrushina, M.

    2014-01-01

    The article presents data on efficiency of Hotynets natural zeolites in combination with other biological additives in dairy cattle breeding. It shows the economic effect of the complexes: "hotynets zeolites + thyme" under transport and industry stress; "hotynets zeolites + lecithin" under industrial stress and in the treatment of subclinical ketosis of heavy milking cows the main treatment. Utilization of hotynets natural zeolites and thyme as means of adaptogenic action of heavy milking cow...

  10. Separation and Recovery of Tetramethyl Ammonium Hydroxide with Zeolitic Adsorbents

    OpenAIRE

    S. Nishihama; Takatori, K.; K. Yoshizuka

    2010-01-01

    Separation and recovery of tetramethyl ammonium hydroxide (TMAH) has been investigated, employing several zeolites as adsorbents. Zeolite X, prepared by using TMAH as a structure directing agent, possesses highest adsorption ability among the adsorbents investigated in the present work, which corresponds to the specific surface area and pore volume of the zeolite. The adsorption amount of TMAH with the zeolitic adsorbents increases with increase in pH value in the aqueous solution, indicating...

  11. First Principles Simulations of Hydrocarbon Conversion Processes in Functionalized Zeolitic Materials

    Science.gov (United States)

    Mazar, Mark Nickolaus

    is responsible for the largest activation energy of the catalytic cycle. This assessment is similar to the findings of alkane metathesis studies on alumina/silica supports and indicates that the entire AM cycle can be performed in zeolites by isolated single-atom transition metal hydrides. Performed over acid form zeolites, MTH is used in the conversion of methanol into a broad range of hydrocarbons, including alkenes, alkanes, and aromatics. For reasons that are not yet rigorously quantified, product selectivities vary dramatically based on the choice of catalyst and reaction conditions. The methylation of species containing double bonds (i.e., co-catalysts) is central to the overall process. Distinct structure-function relationships were found with respect to the elementary steps in the methylation and beta-scission of olefins. In Chapter 4, the role of zeolite topology in the step-wise methylation of ethene by surface methoxides is investigated. Elementary steps are studied across multiple frameworks (i.e., BEA, CHA, FER, MFI, and MOR) constituting a wide variety of confinement environments. The reaction of surface methoxides with ethene is found to require a transition state containing a primary carbocation. The barrier height is found to decrease nearly monotonically with respect to the degree of dispersion interactions stabilizing the primary carbocationic species in the transition state. In addition, quantification of the ``local'' dispersion energy indicates that confinement effects can not be simply correlated to pore size. The beta-scission of olefins plays an important role in the product selectivities of many important chemical processes, including MTH. In Chapter 5, beta-scission modes involving C6 and C8 isomers are investigated at a single, isolated Bronsted acid site within H-ZSM-5. We find that the relative enthalpic barriers of beta-scission elementary steps can be rationalized by the substitution order of the two different carbocationic carbon

  12. Zeolite and swine inoculum effect on poultry manure biomethanation

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; Fotidis, Ioannis; Zaganas, I.D.;

    2013-01-01

    manure was investigated. A significant increase in methane production was observed in treatments where zeolite was added, compared to the treatment without zeolite.Methane production in the treatment with 10 g dm-3 of natural zeolite was found to be 109.75% higher compared to the treatment without...

  13. Zeolites and Zeotypes for Oil and Gas Conversion

    NARCIS (Netherlands)

    Vogt, Eelco T C; Whiting, Gareth T.; Dutta Chowdhury, Abhishek; Weckhuysen, Bert M.

    2015-01-01

    Zeolite-based catalyst materials are widely used in chemical industry. In this chapter, the applications of zeolites and zeotypes in the catalytic conversion of oil and gas are reviewed. After a general introduction to zeolite science and technology, we discuss refinery applications, such as fluid c

  14. Physicochemical impact of zeolites as the support for photocatalytic hydrogen production using solar-activated TiO2-based nanoparticles

    International Nuclear Information System (INIS)

    Highlights: • Zeolite chemical properties are crucial to photocatalytic hydrogen production. • Basic zeolite, TiO2, heteropolyacid and cobalt together are active under visible light. • TiO2 impregnation on zeolite causes band gap widening and band edges’ anodic shift. • Heteropolyacid enhances the visible light activity of the photocatalyst. • Zeolite’s basicity can overshadow the anodic shift, advancing hydrogen evolution. - Abstract: Silico-aluminates (zeolites) have been recently utilized promisingly as the support for photocatalytic hydrogen production using solar-activated TiO2-based nanoparticles. Aside from conventional advantages offered by the supports in photocatalysis, we demonstrate the unique physicochemical impact of zeolites on photocatalytic hydrogen production. Beside zeolites, our synthesized materials comprise titanium dioxide (TiO2) as the semiconductor, cobalt ions as the hydrogen evolution sites, and heteropolyacids (HPAs) as the multifunctional solid acids with significant excitability under visible light. Four classes of zeolites (Na-Y, Na-mordenite, H-Y, and H-beta) with different Si/Al ratios and sodium contents were evaluated. Among the studied photocatalysts, Na-Y and Na-mordenite containing 10 wt% titania emerged as the potential candidates for the hydrogen evolution reaction, with corresponding rates of 250.8 and 187.2 μmol/g h, in comparison to 84.2 μmol/g h for Degussa P25; while these values for H-Y and H-beta were 96.8 and 100.1 μmol/g h, respectively. The higher photocatalytic activity of the first two classes is attributed to the basicity of the zeolite matrix, which is possibly due to the pH dependency of the TiO2 band edges. The results indicate the importance of controlling the chemical properties of the zeolite as a photocatalyst support through the selection of suitable types. Furthermore, our analyses show that the precise pore size distribution of the zeolite framework rules over accommodating the

  15. Radon capture with silver exchanged zeolites

    International Nuclear Information System (INIS)

    To enable laboratory work with larger amounts of 226Ra and its decay products, e.g., 222Rn and its daughters, these need to be captured in order to avoid unnecessary alpha contamination of the laboratory work space and ventilation systems. In this study, radon gas was pumped through a column filled with the silver exchanged zeolite called 'silver exchanged molecular sieves 13X' (Ag84Na2[(AlO2)86(SiO2)106].xH2O). After exposure to radon, the radioactivity of the zeolite was measured repeatedly using high resolution gamma spectrometry. It was shown that radon was captured and retained in the silver exchanged zeolite. The zeolites' ability to retain radon was decreased by formation of metallic silver, caused by ionizing radiation. However, the zeolite was regenerated by heating and its radon capture ability was restored. The daughters of radon are not in gas phase and will hence stay on the column. (orig.)

  16. Italian zeolitized rocks of technological interest

    Science.gov (United States)

    de'Gennaro, M.; Langella, A.

    1996-09-01

    Large areas of Italian territory are covered by thick and widespread deposits of zeolite-bearing volcaniclastic products. The main zeolites are phillipsite and chabazite spread over the whole peninsula, and clinoptilolite recorded only in Sardinia. A trachytic to phonolitic glassy precursor accounts for the formation of the former zeolites characterized by low Si/Al ratios (?3.00), while clinoptilolite is related to more acidic volcanism. The genesis of most of these zeolitized deposits is linked to pyroclastic flow emplacement mechanisms characterized by quite high temperatures and by the presence of abundant fluids. The main utilization of these materials has been and still is as dimension stones in the building industry. Currently, limited amounts are also employed in animal farming (dietary supplement, pet litter and manure deodorizer) and in agriculture as soil improvement and slow-release fertilizers. New fields of application have been proposed for these products on account of their easy availability, very low cost, their high-grade zeolites (50 70%), and good technological features such as high cation exchange capacities and adsorption properties.

  17. Detergent zeolite complex "Ceosil", Tallinn, Estonia

    Directory of Open Access Journals (Sweden)

    Stanković Mirjana S.

    2003-01-01

    Full Text Available The IGPC Engineering Department, together with the "Birac", Zvornik Engineering Department designed basic projects for detergent zeolite production, using waste flotation sand and hydrates. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects, production plant in Tallinn, Estonia was constructed, with a capacity of 100,000 t/y from 1989. to 1993. This plant became the biggest producer of detergent zeolite in the world.Several goals were realized by designing the "Ceosil" plant. Waste flotation sand was used and detergent zeolite was produced in a market which is not properly supplied with this zeolite. The product meets all quality demands, as well as environmental regulations. The detergent production process is fully automatized and the product has uniform quality. There is no waste material in detergent zeolite production, because all products with unsatisfactory quality are returned to the process. The production process can be controlled manually, which is necessary during start - up, and repairs.

  18. Characterization of Zeolite in Zeolite-Geopolymer Hybrid Bulk Materials Derived from Kaolinitic Clays

    Directory of Open Access Journals (Sweden)

    Hayami Takeda

    2013-05-01

    Full Text Available Zeolite-geopolymer hybrid materials have been formed when kaolin was used as a starting material. Their characteristics are of interest because they can have a wide pore size distribution with micro- and meso-pores due to the zeolite and geopolymer, respectively. In this study, Zeolite-geopolymer hybrid bulk materials were fabricated using four kinds of kaolinitic clays (a halloysite and three kinds of kaolinite. The kaolinitic clays were first calcined at 700 °C for 3 h to transform into the amorphous aluminosilicate phases. Alkali-activation treatment of the metakaolin yielded bulk materials with different amounts and types of zeolite and different compressive strength. This study investigated the effects of the initial kaolinitic clays on the amount and types of zeolite in the resultant geopolymers as well as the strength of the bulk materials. The kaolinitic clays and their metakaolin were characterized by XRD analysis, chemical composition, crystallite size, 29Si and 27Al MAS NMR analysis, and specific surface area measurements. The correlation between the amount of zeolite formed and the compressive strength of the resultant hybrid bulk materials, previously reported by other researchers was not positively observed. In the studied systems, the effects of Si/Al and crystalline size were observed. When the atomic ratio of Si/Al in the starting kaolinitic clays increased, the compressive strength of the hybrid bulk materials increased. The crystallite size of the zeolite in the hybrid bulk materials increased with decreasing compressive strength of the hybrid bulk materials.

  19. Characterization and kinetic mechanism of mono- and bifunctional ornithine acetyltransferases from thermophilic microorganisms.

    Science.gov (United States)

    Marc, F; Weigel, P; Legrain, C; Almeras, Y; Santrot, M; Glansdorff, N; Sakanyan, V

    2000-08-01

    The argJ gene coding for N2-acetyl-L-ornithine: L-glutamate N-acetyltransferase, the key enzyme involved in the acetyl cycle of L-arginine biosynthesis, has been cloned from thermophilic procaryotes: the archaeon Methanoccocus jannaschii, and the bacteria Thermotoga neapolitana and Bacillus stearothermophilus. Archaeal argJ only complements an Escherichia coli argE mutant (deficient in acetylornithinase, which catalyzes the fifth step in the linear biosynthetic pathway), whereas bacterial genes additionally complement an argA mutant (deficient in N-acetylglutamate synthetase, the first enzyme of the pathway). In keeping with these in vivo data the purified His-tagged ArgJ enzyme of M. jannaschii only catalyzes N2-acetylornithine conversion to ornithine, whereas T. neapolitana and B. stearothermophilus ArgJ also catalyze the conversion of glutamate to N-acetylglutamate using acetylCoA as the acetyl donor. M. jannaschii ArgJ is therefore a monofunctional enzyme, whereas T. neapolitana and B. stearothermophilus encoded ArgJ are bifunctional. Kinetic data demonstrate that in all three thermophilic organisms ArgJ-mediated catalysis follows ping-pong bi-bi kinetic mechanism. Acetylated ArgJ intermediates were detected in semireactions using [14C]acetylCoA or [14C]N2-acetyl-L-glutamate as acetyl donors. In this catalysis L-ornithine acts as an inhibitor; this amino acid therefore appears to be a key regulatory molecule in the acetyl cycle of L-arginine synthesis. Thermophilic ArgJ are synthesized as protein precursors undergoing internal cleavage to generate alpha and beta subunits which appear to assemble to alpha2beta2 heterotetramers in E. coli. The cleavage occurs between alanine and threonine residues within the highly conserved PXM-ATML motif detected in all available ArgJ sequences. PMID:10931207

  20. Hydrogen Purification Using Natural Zeolite Membranes

    Science.gov (United States)

    DelValle, William

    2003-01-01

    The School of Science at Universidad del Turabo (UT) have a long-lasting investigation plan to study the hydrogen cleaning and purification technologies. We proposed a research project for the synthesis, phase analysis and porosity characterization of zeolite based ceramic perm-selective membranes for hydrogen cleaning to support NASA's commitment to achieving a broad-based research capability focusing on aerospace-related issues. The present study will focus on technology transfer by utilizing inorganic membranes for production of ultra-clean hydrogen for application in combustion. We tested three different natural zeolite membranes (different particle size at different temperatures and time of exposure). Our results show that the membranes exposured at 900 C for 1Hr has the most higher permeation capacity, indicated that our zeolite membranes has the capacity to permeate hydrogen.

  1. Cupric natural zeolites as microbic ides

    International Nuclear Information System (INIS)

    The Escherichia coli and the Candida albicans are considered contamination indicators for what these organisms reflect the water quality. The natural zeolites by their characteristics and properties, they could incorporate to a waters treatment system, as ion exchange, adsorbents and/or microbiocid agents, representing an alternative method of low cost. Inside this investigation work was found that depending on the microorganism type, it varies the quantity of cupric zeolite that is required to carry out the water disinfection, being great for the case of yeasts than the bacteria s. In addition to that marked differences are presented in the required time to reach this process. The characterization of the natural zeolite material, sodium and cupric, was realized by means of scanning electron microscopy, determining the elementary composition (Energy Dispersive Spectroscopy) of each one of them, and by X-ray diffraction. (Author)

  2. Preparation and Characterization of Natural Zeolite Modified with Iron Nanoparticles

    Directory of Open Access Journals (Sweden)

    Alvaro Ruíz-Baltazar

    2015-01-01

    Full Text Available This study is aimed at investigating the structural and morphological characterization of natural and modified zeolite obtained from the state of Oaxaca (Mexico. Iron nanoparticles were used for the zeolite modification. The iron nanoparticles were loaded on the zeolite surface by homogeneous nucleation. Adsorption kinetic models of pseudo first and second order were surveyed. The characterization of pristine and modified zeolite was performed by Fourier transform infrared (FTIR, transmission electron microscopy (TEM, and X-ray diffraction (XRD. From the results, three main phases were identified: clinoptilolite, mordenite, and feldspar. We could also determine the adsorption capacity of the zeolites by means of adsorption kinetic models.

  3. Zeolite-coated interdigital capacitors for humidity sensing

    OpenAIRE

    Urbiztondo, M.; Pellejero, I.; Rodríguez Martínez, Ángel; Pina Iritia, María Pilar; Santamaría Ramiro, Jesús Marcos

    2011-01-01

    Inter-digital capacitors (IDCs) with electrode gaps of 10 or 50 microns have been coated with zeolite films consisting of different zeolites with Si/Al ratios ranging from 1.5 (zeolite A) to infinite (silicalite). The performance of the sensor in the measurement of humidity has been related to the electrical properties of the zeolites (relative permittivity, ɛr), which in turn is a function of their Si/Al ratio. With zeolites of a high Al content the limit of detection was under 0.5 ppmV.

  4. Studies of anions sorption on natural zeolites.

    Science.gov (United States)

    Barczyk, K; Mozgawa, W; Król, M

    2014-12-10

    This work presents results of FT-IR spectroscopic studies of anions-chromate, phosphate and arsenate - sorbed from aqueous solutions (different concentrations of anions) on zeolites. The sorption has been conducted on natural zeolites from different structural groups, i.e. chabazite, mordenite, ferrierite and clinoptilolite. The Na-forms of sorbents were exchanged with hexadecyltrimethylammonium cations (HDTMA(+)) and organo-zeolites were obtained. External cation exchange capacities (ECEC) of organo-zeolites were measured. Their values are 17mmol/100g for chabazite, 4mmol/100g for mordenite and ferrierite and 10mmol/100g for clinoptilolite. The used initial inputs of HDTMA correspond to 100% and 200% ECEC of the minerals. Organo-modificated sorbents were subsequently used for immobilization of mentioned anions. It was proven that aforementioned anions' sorption causes changes in IR spectra of the HDTMA-zeolites. These alterations are dependent on the kind of anions that were sorbed. In all cases, variations are due to bands corresponding to the characteristic Si-O(Si,Al) vibrations (occurring in alumino- and silicooxygen tetrahedra building spatial framework of zeolites). Alkylammonium surfactant vibrations have also been observed. Systematic changes in the spectra connected with the anion concentration in the initial solution have been revealed. The amounts of sorbed CrO4(2-), AsO4(3-) and PO4(3-) ions were calculated from the difference between their concentrations in solutions before (initial concentration) and after (equilibrium concentration) sorption experiments. Concentrations of anions were determined by spectrophotometric method. PMID:25002191

  5. Structural analysis of a recombinant plant bifunctional nuclease TBN1

    Czech Academy of Sciences Publication Activity Database

    Kovaľ, Tomáš; Lipovová, P.; Podzimek, Tomáš; Matoušek, Jaroslav; Dušková, Jarmila; Skálová, Tereza; Štěpánková, Andrea; Hašek, Jindřich; Dohnálek, Jan

    Vol. no 1. Praha : Czech and Slovak Crystallographic Association, 2011. s. 29. ISSN 1211-5894. [Discussions in Structural Molecular Biology /9./. 24.03.2011-26.03.2011, Nové Hrady] R&D Projects: GA ČR GA202/06/0757; GA ČR GA310/09/1407; GA ČR GA521/09/1214 Grant ostatní: AVČR(CZ) Praemium Academiae Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z50510513; CEZ:AV0Z40500505 Keywords : bifunctional nuclease * cancer * x-ray analysis Subject RIV: BM - Solid Matter Physics ; Magnetism

  6. Bifunctional chelating agents for targeted α-particle radiotherapy

    International Nuclear Information System (INIS)

    An α-emitting radionuclide is proposed as a better choice for application in radiotherapy of either leukemias or lymphomas due to very high cytotoxicity, short emission path length, and immediate energy deposition minimizing collateral cytotoxicity. Metallic α-emitters that have been studied are 212Bi and 213Bi. Bifunctional derivatives of diethylenetriamine pentaacetic acid (DTPA) were found to form Bi(III) complexes that were labile in vivo. Pre-clinical experiments confirmed both the stability of the CHX-DTPA ligands for the Bi(III) isotopes and the therapeutic applicability of these α-emitting isotopes

  7. Diagenetic Quartz Morphologies and Zeolite formation

    DEFF Research Database (Denmark)

    Kazerouni, Afsoon Moatari; Hansen, Rikke Weibel; Friis, Henrik;

    also formed in samples where no volcanic ash is demonstrated; it seems that a rapid supply of dissolved silica from dissolution of siliceous fossils was the main reason for the early co-precipitation of opal and zeolite. There are two important sources for Si: 1) Biogenic opal from diatoms or...... precipitation of Si-rich clinoptolite, or zeolite may not precipitate at all.  The dissolution of volcanic lithoclasts may also release a high rate of Al, resulting in abundant formation of Al-rich clinoptilolite.  If both sources interact, a compositional variation may occur with time.  The compositional...

  8. Ammonium removal by modified zeolite from municipal wastewater

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ya-ping; GAO Ting-yao; JIANG Shang-ying; CAO Da-wen

    2004-01-01

    Ammonium removal by modified zeolite, H-form and Na-form zeolite, were examined by batch-type methods. The adsorption of ammonium on modified zeolite was exothermic process. The saturation adsorption capacity of ammonium on H-form and Na-form zeolite were 21.23 and 41.15 mg/g, respectively. After ten times adsorption- desorption-readsorption cycles the standard deviations of H-form and Na-form zeolite were 6.34% and 6.59%. The zeolite adsorption process has proved cost effective and practical in reducing ammonium by H-form and Na-form zeolite in municipal wastewater from concentration 27.68 mg/L to 2.80 mg/L and 5.91 mg/L.

  9. Adsorption Cooling System Using Metal-Impregnated Zeolite-4A

    Directory of Open Access Journals (Sweden)

    Somsuk Trisupakitti

    2016-01-01

    Full Text Available The adsorption cooling systems have been developed to replace vapor compression due to their benefits of being environmentally friendly and energy saving. We prepared zeolite-4A and experimental cooling performance test of zeolite-water adsorption system. The adsorption cooling test-rig includes adsorber, evaporator, and condenser which perform in vacuum atmosphere. The maximum and minimum water adsorption capacity of different zeolites and COP were used to assess the performance of the adsorption cooling system. We found that loading zeolite-4A with higher levels of silver and copper increased COP. The Cu6%/zeolite-4A had the highest COP at 0.56 while COP of zeolite-4A alone was 0.38. Calculating the acceleration rate of zeolite-4A when adding 6% of copper would accelerate the COP at 46%.

  10. AKTIVASI ZEOLIT ALAM SEBAGAI ADSORBEN PADA ALAT PENGERING BERSUHU RENDAH

    Directory of Open Access Journals (Sweden)

    Laeli Kurniasari

    2012-04-01

    Full Text Available ACTIVATION OF NATURAL ZEOLITE AS AN ADSORBENT FOR LOW TEMPERATURE DRYING SYSTEM. Drying is one process which is used in many industries, especially in food product. The process usually still has low energy efficiency and can make food deterioration because of the usage of high temperature. One alternative in drying technology is the use of zeolite as a water vapor adsorbent. This kind of drying method make it possible to operate in lower temperature, hence it will be suitable for heat sensitive product. Natural zeolit can be one promising adsorbent since it is spreadly abundant in Indonesia. Natural zeolite must be activated first before used, in order to get zeolite with high adsorption capacity. Activation process in natural zeolite will change the Si/Al ratio, polarity, and affinity of zeolite toward water vapor and also increase the porosity. Activation of natural zeolite can be done with two methods, chemical activation use NaOH and physical activation use heat. In the activation using NaOH, natural zeolite is immersed with NaOH solution 0.5-2N in 2 hour with temperature range 60-900C. The process is continued with the drying of zeolite in oven with 1100C for 4 hours. While in heat treatment, zeolit is heated into 200-5000C in furnace for 2-5 hours. SEM analysis is used to compare the change in zeolite morphology before and after each treatment, while to know the adsorption capacity of zeolite, the analyses were done in many temperature and relative humidity. Result gives the best condition in NaOH activation is NaOH 1N and temperature 700C, with water vapor loading is 0.171 gr/gr adsorbent. In heat treatment, the best condition is 3000C and 3 hours with loading 0.137 gr water vapor/gr adsorbent.  Pengeringan merupakan salah satu proses yang banyak digunakan pada produk pangan. Proses ini umumnya menyebabkan kerusakan pada bahan pangan, disamping masih rendahnya efisiensi energi. Salah satu alternatif pada proses pengeringan yaitu

  11. Relationship between structure and catalytic performance of dealuminated Y zeolites

    International Nuclear Information System (INIS)

    Dealuminated Y zeolites which have been prepared by hydrothermal and chemical treatments show differences in catalytic performance when tested fresh; however, these differences disappear after the zeolites have been steamed. The catalytic behavior of fresh and steamed zeolites is directly related to zeolite structural and chemical characteristics. Such characteristics determine the strength and density of acid sites for catalytic cracking. Dealuminated zeolites were characterized using x-ray diffraction, porosimetry, solid-state NMR and elemental analysis. Hexadecane cracking was used as a probe reaction to determine catalytic properties. Cracking activity was found to be proportional to total aluminum content in the zeolite. Product selectivity was dependent on unit cell size, presence of extra framework alumina and spatial distribution of active sites. The results from this study elucidate the role that zeolite structure plays in determining catalytic performance

  12. Cobalt sulfide/N,S codoped porous carbon core-shell nanocomposites as superior bifunctional electrocatalysts for oxygen reduction and evolution reactions

    Science.gov (United States)

    Chen, Binling; Li, Rong; Ma, Guiping; Gou, Xinglong; Zhu, Yanqiu; Xia, Yongde

    2015-12-01

    Exploring highly-efficient and low-cost bifunctional electrocatalysts for both oxygen reduction reaction (ORR) and oxygen evolution reactions (OER) in the renewable energy area has gained momentum but still remains a significant challenge. Here we present a simple but efficient method that utilizes ZIF-67 as the precursor and template for the one-step generation of homogeneous dispersed cobalt sulfide/N,S-codoped porous carbon nanocomposites as high-performance electrocatalysts. Due to the favourable molecular-like structural features and uniform dispersed active sites in the precursor, the resulting nanocomposites, possessing a unique core-shell structure, high porosity, homogeneous dispersion of active components together with N and S-doping effects, not only show excellent electrocatalytic activity towards ORR with the high onset potential (around -0.04 V vs. -0.02 V for the benchmark Pt/C catalyst) and four-electron pathway and OER with a small overpotential of 0.47 V for 10 mA cm-2 current density, but also exhibit superior stability (92%) to the commercial Pt/C catalyst (74%) in ORR and promising OER stability (80%) with good methanol tolerance. Our findings suggest that the transition metal sulfide-porous carbon nanocomposites derived from the one-step simultaneous sulfurization and carbonization of zeolitic imidazolate frameworks are excellent alternative bifunctional electrocatalysts towards ORR and OER in the next generation of energy storage and conversion technologies.Exploring highly-efficient and low-cost bifunctional electrocatalysts for both oxygen reduction reaction (ORR) and oxygen evolution reactions (OER) in the renewable energy area has gained momentum but still remains a significant challenge. Here we present a simple but efficient method that utilizes ZIF-67 as the precursor and template for the one-step generation of homogeneous dispersed cobalt sulfide/N,S-codoped porous carbon nanocomposites as high-performance electrocatalysts. Due to the

  13. Natural zeolite reactivity towards ozone: The role of compensating cations

    International Nuclear Information System (INIS)

    Highlights: ► Chemical and thermal treatment enhances catalytic activity of natural zeolite. ► Modified natural zeolite exhibits high stability after thermal treatment. ► Reducing the compensating cation content leads to an increase on ozone abatement. ► Surface active atomic oxygen was detected using the DRIFT technique. ► The highest reactivity toward ozone was performed by NH4Z3 zeolite sample. - Abstract: Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L−1). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77 K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH3-TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal.

  14. Natural zeolite reactivity towards ozone: The role of compensating cations

    Energy Technology Data Exchange (ETDEWEB)

    Valdes, Hector, E-mail: hvaldes@ucsc.cl [Laboratorio de Tecnologias Limpias (F. Ingenieria), Universidad Catolica de la Santisima Concepcion, Alonso de Ribera 2850, Concepcion (Chile); Alejandro, Serguei; Zaror, Claudio A. [Departamento de Ingenieria Quimica (F. Ingenieria), Universidad de Concepcion, Concepcion (Chile)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Chemical and thermal treatment enhances catalytic activity of natural zeolite. Black-Right-Pointing-Pointer Modified natural zeolite exhibits high stability after thermal treatment. Black-Right-Pointing-Pointer Reducing the compensating cation content leads to an increase on ozone abatement. Black-Right-Pointing-Pointer Surface active atomic oxygen was detected using the DRIFT technique. Black-Right-Pointing-Pointer The highest reactivity toward ozone was performed by NH4Z3 zeolite sample. - Abstract: Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L{sup -1}). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77 K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH{sub 3}-TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal.

  15. Two-dimensional zeolites: dream or reality?

    Czech Academy of Sciences Publication Activity Database

    Roth, W. J.; Čejka, Jiří

    2011-01-01

    Roč. 1, č. 1 (2011), s. 43-53. ISSN 2044-4753 R&D Projects: GA AV ČR KAN100400701; GA ČR GA104/09/0561; GA ČR GA203/08/0604 Institutional research plan: CEZ:AV0Z40400503 Keywords : catalysis * physical chemistry * zeolites Subject RIV: CF - Physical ; Theoretical Chemistry

  16. Synthesis of ‘unfeasible’ zeolites

    Czech Academy of Sciences Publication Activity Database

    Mazur, Michal; Wheatley, P. S.; Navarro, M.; Roth, Wieslaw Jerzy; Položij, M.; Mayoral, A. M.; Eliášová, Pavla; Nachtigall, P.; Čejka, Jiří; Morris, R. E.

    2016-01-01

    Roč. 8 (2016), s. 58-62. ISSN 1755-4330 R&D Projects: GA ČR GBP106/12/G015 EU Projects: European Commission(XE) 604307; European Commission(XE) 312483 Institutional support: RVO:61388955 Keywords : synthesis * zeolites * physical chemistry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 25.325, year: 2014

  17. Dehydrogenation of light alkanes over zeolites

    NARCIS (Netherlands)

    Narbeshuber, Thomas F.; Brait, Axel; Seshan, Kulathuiyer; Lercher, Johannes A.

    1997-01-01

    The conversion of light paraffins to olefins and the secondary reactions of the unsaturated compounds were investigated on H-ZSM5 and H-Y zeolites between 733 and 823 K. Steady state- and transient response-isotope tracing studies revealed that two mechanisms of dehydrogenation are operative. The ma

  18. Chemical interactions in multimetal/zeolite catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Sachtler, W.M.H.

    1992-02-07

    Mechanistic explanations have been found for the migration of atoms and ions through the zeolite channels leading to specific distribution of ions and the metal clusters. In this report, we summarize the state of understanding attained on a number of topics in the area of mono- and multimetal/zeolite systems, to which our recent research has made significant contributions. The following topics are discussed: (1) Formation of isolated metal atoms in sodalite cages; (2) differences of metal/zeolite systems prepared by ion reduction in channels or via isolated atoms; (3) rejuvenation of Pd/NaY and Pd/HY catalysts by oxidative redispersion of the metal; (4) formation of mono- or bimetal particles in zeolites by programmed reductive decomposition of volatile metal complexes; (5) cation-cation interaction as a cause of enhanced reducibility; (6) formation of palladium carbonyl clusters in supercages; (7) enhanced catalytic activity of metal particle-proton complexes for hydrocarbon conversion reactions; (8) stereoselectivity of catalytic reactions due to geometric constraints of particles in cages.

  19. UTL zeolite and the way beyond

    Czech Academy of Sciences Publication Activity Database

    Shvets, O. V.; Nachtigall, P.; Roth, Wieslaw Jerzy; Čejka, Jiří

    2013-01-01

    Roč. 182, DEC 2013 (2013), s. 229-238. ISSN 1387-1811 R&D Projects: GA ČR GBP106/12/G015 Institutional support: RVO:61388955 Keywords : zeolite UTL * synthesis * hydrolysis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.209, year: 2013

  20. Thermal Treatment of Salt-Loaded Zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Guk; Lee, Jae Hee; Kim, Eung Ho; Kim, Joon Hyung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    For disposal in a geological repository, the waste salts such as molten LiCl salt from an oxide fuel reduction process and molten LiCl-KCl eutectic salt from an electro refining process must meet the acceptance criteria. For a waste form containing chloride salt, two of the more important criteria are known to be leach resistance and waste form durability. US Argonne National Laboratory (ANL) developed a ceramic waste form (CWF) fabrication technology for LiCl-KCl eutectic salt from ANL Experimental Breeder Reactor-II (EBR-II). The CWF, which was made by first occluding salt in zeolite A at 730 K and then encapsulating the zeolite in a borosilicate binder glass by a hot isostatic press (HIP) method or pressureless consolidation (PC) method, has the phase composition of about 70% sodalite, 25% binder glass, and a 5% total of inclusion phases (halite, nepheline, and various oxides and silicates). US ANL showed that the chemical durability and leach resistance of the CWF were higher than those of glass waste form for high level waste from aqueous process, by a 7-day product consistency test (PCT). However, the waste form fabrication process for waste LiCl salt is somewhat different in mixing temperature from that for LiCl-KCl eutectic salt at US ANL. The former is mixed at 920 K, whereas, the later mixing is accomplished at 730 K. Such difference in mixing temperature results in the different major phase of SLZ, that is, zeolite Li-A from LiCl salt, and unchanged zeolite A from LiCl-KCl eutectic salt. This unchanged phase of zeolite A during an immobilization step is transformed to sodalite, which was known to be very high leach-resistant, in the step of encapsulating with borosilicate glass. In this work, we tried to investigate the transformation of major phase of SLZ, from zeolite Li-A to Na{sub 8}Cl{sub 2}-Sod using zeolite only sodalite, by a quantitative analysis with a software for X-ray diffractometer during the thermal treatment under 1170 K.

  1. Conversion of Ethanol to Hydrocarbons on Hierarchical HZSM-5 Zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Karthikeyan K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Washington State Univ., Pullman, WA (United States); Zhang, He [Washington State Univ., Pullman, WA (United States); Sun, Junming [Washington State Univ., Pullman, WA (United States); Wang, Yong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Washington State Univ., Pullman, WA (United States)

    2014-02-22

    This study reports synthesis, characterization, and catalytic activity of the nano-size hierarchical HZSM-5 zeolite with high mesoporosity produced via a solvent evaporation procedure. Further, this study compares hierarchical zeolites with conventional HZSM-5 zeolite with similar Si/Al ratios for the ethanol-to-hydrocarbon conversion process. The catalytic performance of the hierarchical and conventional zeolites was evaluated using a fixed-bed reactor at 360 °C, 300 psig, and a weight hourly space velocity of 7.9 h-1. For the low Si/Al ratio zeolite (~40), the catalytic life-time for the hierarchical HZSM-5 was approximately 2 times greater than the conventional HZSM-5 despite its coking amount deposited 1.6 times higher than conventional HZSM-5. For the high Si/Al ratio zeolite (~140), the catalytic life-time for the hierarchical zeolite was approximately 5 times greater than the conventional zeolite and the amount of coking deposited was 2.1 times higher. Correlation was observed between catalyst life time, porosity, and the crystal size of the zeolite. The nano-size hierarchical HZSM-5 zeolites containing mesoporosity demonstrated improved catalyst life-time compared to the conventional catalyst due to faster removal of products, shorter diffusion path length, and the migration of the coke deposits to the external surface from the pore structure.

  2. Ethylenediamine effect on No2+ uptake by zeolite Y

    International Nuclear Information System (INIS)

    Co2+ ion exchange, at room temperature, form aqueous cobalt-sodium chloride solutions with NaY zeolite has been studied. The effect of contact time on the shape of the sorption curves of Co2+ using zeolite Y dehydrated at 600 deg C is similar to the one found in our previous work with a zeolite dehydrated at 150 deg C. A fast sorption uptake is observed in which 1.8 meq of Na= ions/g zeolite are replaced by cobalt ions followed by a desorption process where the uptake decreases to 1.2 meq/g zeolite. The Co2+ sorption using zeolite Y dehydrated at 600 deg C is increased when ethylenediamine solution is passed through the zeolite. The Co2+ sorption uptake, initially 2.0 meq/g, increases to 2.8 meq/g, of zeolite. This behavior is explained by the location and coordination of cobalt in zeolite Y sites. It is suggested that the highest uptake process is due to the blocking of zeolite sites by a Co complex compound. (author) 17 refs.; 4 figs

  3. Zeolite Nanoparticles for Selective Sorption of Plasma Proteins

    Science.gov (United States)

    Rahimi, M.; Ng, E.-P.; Bakhtiari, K.; Vinciguerra, M.; Ahmad, H. Ali; Awala, H.; Mintova, S.; Daghighi, M.; Bakhshandeh Rostami, F.; de Vries, M.; Motazacker, M. M.; Peppelenbosch, M. P.; Mahmoudi, M.; Rezaee, F.

    2015-11-01

    The affinity of zeolite nanoparticles (diameter of 8-12 nm) possessing high surface area and high pore volume towards human plasma proteins has been investigated. The protein composition (corona) of zeolite nanoparticles has been shown to be more dependent on the plasma protein concentrations and the type of zeolites than zeolite nanoparticles concentration. The number of proteins present in the corona of zeolite nanoparticles at 100% plasma (in vivo state) is less than with 10% plasma exposure. This could be due to a competition between the proteins to occupy the corona of the zeolite nanoparticles. Moreover, a high selective adsorption for apolipoprotein C-III (APOC-III) and fibrinogen on the zeolite nanoparticles at high plasma concentration (100%) was observed. While the zeolite nanoparticles exposed to low plasma concentration (10%) exhibited a high selective adsorption for immunoglobulin gamma (i.e. IGHG1, IGHG2 and IGHG4) proteins. The zeolite nanoparticles can potentially be used for selectively capture of APOC-III in order to reduce the activation of lipoprotein lipase inhibition during hypertriglyceridemia treatment. The zeolite nanoparticles can be adapted to hemophilic patients (hemophilia A (F-VIII deficient) and hemophilia B (F-IX deficient)) with a risk of bleeding, and thus might be potentially used in combination with the existing therapy.

  4. Incorporação de dióxido de titânio em zeólitas para emprego em fotocatálise heterogênea Titanium oxide incorporation on zeolites for heterogeneous photocatalisis

    Directory of Open Access Journals (Sweden)

    Jean C. Merg

    2010-01-01

    Full Text Available This work proposes the study of heterogeneous photocatalysis using TiO2 impregnated in zeolites beta, ZSM-5, mordenite, NaXb, NaXp and NaY for the decomposition of methylene blue. The catalysts were characterized by XRD, IR, textural analyses by N2 adsorption, SEM, DRS and the reaction of decomposition was monitored by UV visible. The results indicated that didn't have structural changes in the catalysts after Ti impregnations, only in the case of NaY and NaX zeolites. The better photocatalyst to metylene blue decomposition was beta/Ti zeolite due had one structure more accessible (with bigger porous helping in TiO2 dispersion and catalytic active.

  5. Solidification of cesium and strontium with zeolites

    International Nuclear Information System (INIS)

    The thermal change of zeolites and the elution property of nuclides from calcined matters were experimentally studied in order to produce the solid of low leaching property. The method includes the ion exchange of nuclides in radioactive waste solution and the calcination at a high temperature. Differential thermal analysis, thermal gravity analysis and X-ray diffraction method were employed to see the occurrence of recrystallization of Na type, Cs type, Sr type of the zeolites at a high temperature. Samples were synthetic zeolites including A type, X type, Y type and mordenite (zolen, hereafter referred to as S.M.), and natural mordenite. The ion exchanging capacity for Cs and Sr was measured, using the above zeolites. The adsorption was measured by the column method, using Cs-135 and Sr-85 as tracers. The leaching test of the zeolites calcined at 8000C, 9000C, 1,0000C and 1,1000C for 3 hours was performed by the atomic light absorption method. The daily change of the leaching ratio was observed according to the method of IAEA. The experiment revealed that CsA and CsX recrystallized at 1,0000C or above, whereas mordenite did not recrystallize even at the calcining temperature of 1,1000C, and it was leachable. The calcined CsY showed much lower leaching value than the other methods such as cement solidification and glass solidification. The leaching into sea water was five times as much as that into distilled water. (Iwakiri, K.)

  6. Zeolites - a high resolution electron microscopy study

    International Nuclear Information System (INIS)

    High resolution transmission electron microscopy (HRTEM) has been used to investigate a number of zeolites (EMT, FAU, LTL, MFI and MOR) and a member of the mesoporous M41S family. The electron optical artefact, manifested as a dark spot in the projected centre of the large zeolite channels, caused by insufficient transfer of certain reflections in the objective lens has been explained. The artefact severely hinders observation of materials confined in the zeolite channels and cavities. It is shown how to circumvent the artefact problem and how to image confined materials in spite of disturbance caused by the artefact. Image processing by means of a Wiener filter has been applied for removal of the artefact. The detailed surface structure of FAU has been investigated. Comparison of experimental micrographs with images simulated using different surface models indicates that the surface can be terminated in different ways depending on synthesis methods. The dealuminated form of FAU (USY) is covered by an amorphous region. Platinum incorporated in FAU has a preponderance to aggregate in the (111) twin planes, probably due to a local difference in cage structure with more spacious cages. It is shown that platinum is intra-zeolitic as opposed to being located on the external surface of the zeolite crystal. This could be deduced from tomography of ultra-thin sections among observations. HRTEM studies of the mesoporous MCM-41 show that the pores have a hexagonal shape and also supports the mechanistic model proposed which involves a cooperative formation of a mesophase including the silicate species as well as the surfactant. 66 refs, 24 figs

  7. Synthesis and Characterization of a New Bifunctional Dye Containing Spirobenzopyran and Cinnamoyl Moiety

    Institute of Scientific and Technical Information of China (English)

    申凯华; 崔东熏

    2005-01-01

    A novel bifunctional dye containing spirobenzopyran and cinnaznoyl moiety has been prepared and its photochromic behavior following irradiation at different wavelengths of monochrome UV light was investigated.The colourless bifunctional dye in film or solution exhibits unusual photochromism through structural and geometrical transformation from spirobenzopyran to merocyanine accompanying with photocrosslinking reaction in cinnamoyl moieties. Two kinds of photochemical reaction were achieved by irradiation at the different wavelengths of monochrome UV light (275 nm, 365 nm) selectively. The photochromic process of the bifunctional dye was discussed and the dynamic behaviors of the decolorization process were investigated.

  8. 3D-modelling of bifunctional core-shell catalysts for the production of fuels from biomass-based synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Wenjin; Lee, Seung Cheol; Li, Hui; Pfeifer, Peter; Dittmeyer, Roland [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Inst. for Micro Process Engineering (IMVT)

    2013-09-01

    Until now, the main route for the production of DME from synthesis gas in industry is methanol synthesis on a metallic catalyst and subsequent dehydration of methanol on an acid catalyst (two-step process). A single-step process using bifunctional catalysts to perform the two steps simultaneously would be preferred e.g. due to thermodynamic considerations; but this is impeded by the higher volumetric heat release which may cause deactivation of the methanol synthesis catalyst function. Thus we propose to conduct the reaction in a microchannel reactor. However, in order to increase the productivity of the microchannel reactor and to lower the investment costs, we aim at a high selectivity and activity of the catalyst. The continuously removal of methanol by dehydration on an acidic ZSM-5 catalyst as shell improves the thermodynamic conditions of methanol synthesis in the CuO/ZnO/Al{sub 2}O{sub 3} core; thus, the synthesis gas conversion can be higher than that determined by the thermodynamics of pure methanol synthesis. The molecular sieving in the zeolite layer can further lead to higher selectivity of DME at milder reaction conditions. However, mass transport limitation of the synthesis gas to the catalyst core should not hinder the reaction, and therefore a more detailed investigation is required. In order to computer-aided optimize the catalyst structure and the operating conditions for core-shell catalysts, a simulation model should be developed to study the coupled reaction and transport processes in core-shell catalysts. In this simulation model the complicated interaction of diffusion and reaction in the zeolite layer (shell) must be detailed by a network model to describe its structure and the mechanisms effectively. In addition, suitable diffusion and kinetic models are required to describe the mass transport and reactions in the layer. Suitable networks, diffusion and kinetic models are discussed for 3D simulations in this contribution. (orig.)

  9. characterization of alumino and ferosilicate high siliceous zeolites by thermo analytical and Moessbauer spectroscopic techniques

    International Nuclear Information System (INIS)

    Simultaneous thermogravimetric/differential thermal analysis (TG/DTA) and differential scanning calorimetric (DSC) techniques were used to measure quantitatively the degree of crystallization and confirmation of tetrapropylammonium (TPA /sup +/) and tetraethylammonium (TEA /sup +/) species incorporated in ZSM5 and BETA-zeolite structure framework respectively. It is observed from thermal analysis that 3.3 to 3.8 TPA entities are normally present per unit cell of the ZSM-5 structure while for BETA the corresponding values are 6.2 to 6.7 for TEA. The propyl organic molecule was found to be located preferentially in the zigzag channel of ZSM5-AL and ZSM5-Fe in agreement with the results of the other techniques. 67Fe Moessbauer spectroscopic studies on as-synthesized and calcined samples have confirmed the uniform dispersion of Fe/sup 3+/ in the tetrahedral framework of ZSM5-Fe zeotype. Crystallinity and unit cell parameters of the materials were determined by powder x-ray diffraction, which are the function of Al and Fe content of the zeolites. A good correlation was obtained between the degree of crystallinity as established by TG/DSC techniques and x-ray diffraction crystallinity. (author)

  10. Preparation of beta-coated cordierite honeycomb monoliths by in situ synthesis. Utilisation as Pt support for NOx abatement in diesel exhaust

    International Nuclear Information System (INIS)

    In this paper, a method for the preparation of beta-coated cordierite honeycomb monoliths suitable as Pt supports for deNOx application is described. The main advantage of this in situ process is the elimination of the need for a binder. The presence of beta zeolite on the supports was confirmed by XRD and SEM. SEM characterisation clearly showed that zeolite grows both into the cordierite macroporous structure and on the surface of the monolith channels. The formation of a compact zeolite network may be the reason of the strong anchorage of zeolite to the cordierite support. Maximum thickness of the zeolite-coating layer is 10μm and coating is stable up to 600oC in air. Single- and two-step syntheses have been performed in order to increase zeolite loading. Single-step syntheses yielded monolith samples with average size of beta crystallites ca. 0.5μm and BET surface areas that present a linear relationship with zeolite loading. Samples prepared in a two-step synthetic procedure had an average crystal size of 1μm and present diffusion limitations in N2 adsorption measurements.NOx conversion of 70% with 0.5wt.% Pt-beta-coated monolith has been reached at 210oC under a simulated diesel exhaust (5600h-1) containing 1000ppm NOx, 1500ppm C3H6 and 5% O2 in He. This value is similar to the previously observed for Pt-beta powder catalysts

  11. Natural zeolites: structures, classification, origin, occurrence and importance

    International Nuclear Information System (INIS)

    Zeolite are hydrated aluminosilicates composed of SiO/sub 4/ and AlO/sub 4/ tetrahedra. The aluminosilicate frameworks contain well defined channels (pores) and cavities . The cavities contain exchangeable cation, in particular sodium, potasium, magnesium, calcium and barium. The dehydrated zeolite behaves like molecular sieve. The zeolites occur both as minerals and as material synthesized in laboratory and on industrial scale. The old classification of recognized species of zeolites was based on morphological properties. A modified classification in based on secondary building units of frameworks. There are different opinions about the origin and occurrence of zeolite minerals. The zeolites have gained much importance as molecular sieves and catalysts. They are also very important for their unique structural properties. (authors)

  12. A conductive composite of polythiophene with 13X-zeolite

    International Nuclear Information System (INIS)

    A composite of polythiophene (PTP) with 13X-zeolite was prepared via chemical oxidative polymerization of thiophene (TP) in presence of a dispersion of 13X-zeolite (powder) in CHCl3 solvent using anhydrous FeCl3 oxidant. Formation of PTP and its subsequent incorporation in the PTP-13X composite was confirmed by FTIR spectral studies and X-ray diffraction (XRD) pattern analysis. Scanning electron microscopic (SEM) analysis revealed formation of composite particles with average diameter in the range of 5-10 μm. XRD analyses indicated typical structural differences between 13X-zeolite and PTP-13X-zeolite composite. DC conductivity value of the PTP-13X-zeolite composite was in the order of 10-2 S/cm, which was indeed high compared to that of PTP, produced under identical conditions as above without the presence of 13X-zeolite

  13. Cation locations and dislocations in zeolites

    Science.gov (United States)

    Smith, Luis James

    The focus of this dissertation is the extra-framework cation sites in a particular structural family of zeolites, chabazite. Cation sites play a particularly important role in the application of these sieves for ion exchange, gas separation, catalysis, and, when the cation is a proton, acid catalysis. Structural characterization is commonly performed through the use of powder diffraction and Rietveld analysis of powder diffraction data. Use of high-resolution nuclear magnetic resonance, in the study of the local order of the various constituent nuclei of zeolites, complements well the long-range order information produced by diffraction. Recent developments in solid state NMR techniques allow for increased study of disorder in zeolites particularly when such phenomena test the detection limits of diffraction. These two powerful characterization techniques, powder diffraction and NMR, offer many insights into the complex interaction of cations with the zeolite framework. The acids site locations in SSZ-13, a high silica chabazite, and SAPO-34, a silicoaluminophosphate with the chabazite structure, were determined. The structure of SAPO-34 upon selective hydration was also determined. The insensitivity of X-rays to hydrogen was avoided through deuteration of the acid zeolites and neutron powder diffraction methods. Protons at inequivalent positions were found to have different acid strengths in both SSZ-13 and SAPO-34. Other light elements are incorporated into zeolites in the form of extra-framework cations, among these are lithium, sodium, and calcium. Not amenable by X-ray powder diffraction methods, the positions of such light cations in fully ion-exchanged versions of synthetic chabazite were determined through neutron powder diffraction methods. The study of more complex binary cation systems were conducted. Powder diffraction and solid state NMR methods (MAS, MQMAS) were used to examine cation site preferences and dislocations in these mixed-akali chabazites

  14. Fundamental aspects of water methane separation in zeolites

    OpenAIRE

    Leirvik, Kim Nes

    2013-01-01

    The main objective of this thesis was to use molecular dynamics to investigate the methane interactions with zeolite, specifically the Linde Type A-3A, alongside with an investigation into the use of polynomial path integration for water in zeolite. This thesis is a part of a larger collaboration between the separation group at the University of Bergen and Statoil, with the main goal of explaining the reduced lifetime of zeolites. This thesis continued from the work done by ...

  15. Zeolitic tuffs as raw materials for lightweight aggregates

    OpenAIRE

    de Gennaro, R.; P. Cappelletti; Cerri, G.; Gennaro, M; Dondi, M.; A. Langella

    2004-01-01

    The aim of this research is to assess the possible use of Italian zeolitic rocks for the production of lightweight aggregates. In particular, both the expansion at high temperature and the technological features of fired products were investigated. Fifteen zeolite-bearing volcanoclastites from Northern Sardinia and three zeolitized tuffs from Campania and Tuscany (Sorano and Campanian ignimbrites and Neapolitan Yellow Tuff) were taken into account. The firing expansion turned out to be mainly...

  16. Ionic Liquid assisted Synthesis of Zeolite-TON

    OpenAIRE

    Tian, Yuyang; McPherson, Matthew Joseph; Wheatley, Paul Stewart; Morris, Russell Edward

    2014-01-01

    An ionic liquid assisted strategy for the synthesis of zeolitic material is reported. This strategy is a solid state synthetic method and the ionic liquid is employed as structure directing agent. A TON-type zeolite, which contains one-dimensional 10-member-ring, is successfully synthesized with the assistance of the ionic liquid, 1-ethyl-3-methylimidazolium bromide. This finding improves our understanding about the challenge of ionothermally synthesizing siliceous and aluminosilicate zeolites.

  17. Multi-elemental characterization of Cuban natural zeolites

    International Nuclear Information System (INIS)

    Concentration of 38 elements in samples from four important Cuban zeolite beds have been obtained by Instrumental Neutron Activation (INAA) and X-ray Fluorescence analyses (XRFA). In comparison with other analytical techniques good agreement was reached. The concentration values of minor element Ba, Sr, Zn and Mn and 25 trace element (including 9 REE) are at the first time reported in Cuban zeolite. It is important for the zeolite evaluation in different industrial uses. (author)

  18. Use of zeolites for decontamination of radioactively contamined working surfaces

    International Nuclear Information System (INIS)

    The possibility of using zeolites in decontaminates applied for cleaning up radioactively contaminated working clothes and surfaces is studied. It has been established that zeolites can be used for decontamination of working clothes, as well as, working surfaces presented by metals, ceramic tile, wood coated with paint or varnish, glass. The data on different zeolite-based decontaminate in comparison with a known detergent 'Zashchita' are given

  19. Removal of Ammonia from Air, using Three Iranian Natural Zeolites

    OpenAIRE

    H. Asilian; SB Mortazavi; Kazemian, H; S Phaghiehzadeh; Sj Shahtaheri; Salem, M.

    2004-01-01

    Ammonia in air can be hazardous to human and animal life and should be removed from the environment. Recently the removal of environmental pollutants such as ammonia by means of natural and modified zeolites has attracted a lot of attention and interests. In this study the capability of three Iranian natural zeolites (Clinoptilolite) in point of view of removal of ammonia from air was investigated. Through this research, different zeolites from various regions of Iran including Semnan, Meyane...

  20. Application of natural zeolites in anaerobic digestion processes: A review

    OpenAIRE

    Montalvo, Silvio; Borja Padilla, Rafael; Sánchez, Enrique; Milán, Zhenia; Cortés, Isel; Rubia, M. Ángeles de la

    2012-01-01

    This paper reviews the most relevant uses and applications of zeolites in anaerobic digestion processes. The feasibility of using natural zeolites as support media for the immobilization of microorganisms in different high-rate reactor configurations (fixed bed, fluidized bed, etc.) is also reviewed. Zeolite, with its favorable characteristics for microorganism adhesion, has also been widely used as an ion exchanger for the removal of ammonium in anaerobic digestion due to the presence of Na ...

  1. Selective adsorption of heavy and light metals by natural zeolites

    OpenAIRE

    Fosso-Kankeu, Elvis; Reitz, Magdali; Waanders, Frans

    2014-01-01

    Recent studies have shown that zeolite can be applied through an ion-exchange process to remove metals from solutions. In this paper the potential of two zeolites to perform as sorbents for treatment of multi-metal system is investigated. Parameters such as initial metal concentration, contact time, zeolite type and affinity for heavy versus light metals are taken into consideration. All the samples were prepared and characterized by XRD, XRF and FTIR. Evaluating suitable model for the det...

  2. Treatments of reverse osmosis concentrate using natural zeolites

    OpenAIRE

    Taherifar Hossein; Rezvantalab Sima; Bahadori Fatemeh; Khoei Omid Sadrzadeh

    2015-01-01

    The purpose of the current study is to experimentally investigate the reduction of sodium adsorption ratio (SAR) from a concentrated stream of reversed osmosis (RO) using natural zeolites. In order to reduce the salinity of solution, experiments were carried out using zeolites of varying concentration, pretreatment of adsorbents, and the addition of Ethylenediaminetetraacetic acid (EDTA). The results show that both zeolites can be used in an RO brine treatment; however, Rhyolitic tuff is more...

  3. Properties of natural zeolites in benefit of nutrition and health

    OpenAIRE

    Irina Smical

    2011-01-01

    Due to their remarkable properties, natural zeolites have come to the attention of medicineresearchers to find new ways of treating various diseases and ensure an improved supply of mineralsin nutrition. The research results have shown the beneficial effects of application of various types ofnatural zeolites in healing or ameliorating especially gastrointestinal and diarrhea disease and cancerdisease, as well. Because natural zeolites have a very good ability as ion exchangers they are largel...

  4. Zeolitization of Tuffaceous Rocks in the Kesan Region, Thrace, Turkey

    OpenAIRE

    Esenli, F.; Uz, B.; Suner, F.; Esenli, V.; Ece, O.I.; Kumbasar, I.

    2005-01-01

    A 33 metre thick pyroclastic-rich zone of the Mezardere formation of Oligocene age is exposed in the Kesan region of Thrace, Turkey. In this zone, vitreous tuffs of dacitic composition have altered primarily to zeolites, including mordenite, heulandite–clinoptilolite and analcime. Silicification and alteration to clay minerals are common. Zeolite minerals have developed from volcanic glass, whereas some mordenites have formed from dissolution of heulandite-group zeolites. Although authigenic ...

  5. Association of indigo with zeolites for improved colour stabilization

    OpenAIRE

    Dejoie, Catherine; Martinetto, Pauline; Dooryhee, Eric; Van Eslande, Elsa; Blanc, Sylvie; Bordat, Patrice; Brown, Ross; Porcher, Florence; Anne, Michel

    2010-01-01

    The durability of an organic colour and its resistance against external chemical agents and exposure to light can be significantly enhanced by hybridizing the natural dye with a mineral. In search for stable natural pigments, the present work focuses on the association of indigo blue with several zeolitic matrices (LTA zeolite, mordenite, MFI zeolite). The manufacturing of the hybrid pigment is tested under varying oxidising conditions, using Raman and UV-visible spectrometric techniques. Ble...

  6. Extraction and immobilization of simulated pyrometallurgical chloride waste in Zeolite

    International Nuclear Information System (INIS)

    Zeolites are effective media for the removal and immobilization of fission products waste from pyrometallurgical reprocessing of nuclear fuels. In the present study, equilibration experiments between zeolite 4A and a simulated: pyrometallurgical chloride waste were carried out. Several batches of equilibration were carried out by varying the zeolite to salt (Z/S) ratio. The effects of Z/S on the extraction behaviour of the waste chloride salts were explored. (author)

  7. Transport properties of β-irradiated zeolite cathodes

    International Nuclear Information System (INIS)

    Full text : The interesting properties of zeolites such as the ion-exchange selectivity is their ability to spontaneously generate a free electron and hole in the zeolite by β-radiation that an electron transfer from the guest to the zeolite can occur leading to the desired nuclear applications. It is important to know the relation between the discharge generation in nanopores and plasma characteristics for unirradiated and irradiated cathode in terms of GDED optimization

  8. Fluoride-assisted synthesis of bimodal microporous SSZ-13 zeolite.

    Science.gov (United States)

    Zhu, Xiaochun; Kosinov, Nikolay; Hofmann, Jan P; Mezari, Brahim; Qian, Qingyun; Rohling, Roderigh; Weckhuysen, Bert M; Ruiz-Martínez, Javier; Hensen, Emiel J M

    2016-02-21

    The presence of small amount of fluoride in alkaline hydrothermal synthesis of SSZ-13 zeolite yields bimodal microporous particles with substantially improved performance in the methanol-to-olefins (MTO) reaction. Hydrocarbon uptake measurements and fluorescence microspectroscopy of spent catalysts demonstrate enhanced diffusion through micropores at the grain boundaries of nanocrystals running through the zeolite particles. Fluoride-assisted SSZ-13 synthesis is a cheap and scalable approach to optimize the performance of MTO zeolite catalysts. PMID:26810114

  9. Nano technology and Metal Encapsulation in the Zeolite Structure

    International Nuclear Information System (INIS)

    Interest in the field of nano technology, especially in the synthesis ofnano scale materials (nano structured, nanophase or nanocrystalline) has beenfast growing over the past decade. In this paper what is the nano technology,especially in the synthesis of nano particles on zeolite structure and theapplication of the particles in the field of photo catalysis will bedescribed. It will also been described the synthesis of iron oxide particleson the zeolite-Y structure and theirs distribution on the zeolite. (author)

  10. 3D Nanoscale Imaging and Quantitative Analysis of Zeolite Catalysts

    OpenAIRE

    Zecevic, J.

    2013-01-01

    Zeolites are crystalline microporous aluminosilicates, one of the most versatile and widely used class of materials.The unique physico-chemical properties of zeolites are found to be irreplaceable in many industrial processes such as separation, adsorption and catalysis. To exploit their full potential and optimize their properties for specific applications, zeolites are often subjected to several post-synthesis modifications. The work presented in this thesis aims to provide a deeper underst...

  11. Composites obtained from magnesium clusters and zeolite 4A

    International Nuclear Information System (INIS)

    Zeolite-supported metal clusters have most commonly been prepared by ion exchange, followed by calcination and reduction. Proper activation and reduction treatment give the highest metal dispersion into zeolite mass. This work presents composites obtained from metal magnesium clusters and zeolite 4 A. It was determined the structure and properties by studies of texture, X-ray diffraction and transmission electron microscopy (TEM). These samples offer an opportunity to determine the catalytic properties of metal magnesium clusters. (authors)

  12. Zeolite for strontium separation from concentrated sodium salt solutions

    International Nuclear Information System (INIS)

    Strontium sorption from solutions with concentration of 5 mol/l sodium chloride on zeolites of different structure is investigated. Synthetic potassium zeolite of the K-G(13) chabasite type is established to be used to purify the solutions given from strontium radionuclides. Capacity of K-G(13) zeolite for strontium in the solution with concentration of 5 mol/l sodium chloride is 0.65 mmol/g

  13. Crystallization of recombinant bifunctional nuclease TBN1 from tomato

    International Nuclear Information System (INIS)

    Glycosylated recombinant bifunctional nuclease from tomato has been crystallized and preliminary X-ray diffraction analysis was performed. The endonuclease TBN1 from Solanum lycopersicum (tomato) was expressed in Nicotiana benthamiana leaves and purified with suitable quality and in suitable quantities for crystallization experiments. Two crystal forms (orthorhombic and rhombohedral) were obtained and X-ray diffraction experiments were performed. The presence of natively bound Zn2+ ions was confirmed by X-ray fluorescence and by an absorption-edge scan. X-ray diffraction data were collected from the orthorhombic (resolution of 5.2 Å) and rhombohedral (best resolution of 3.2 Å) crystal forms. SAD, MAD and MR methods were applied for solution of the phase problem, with partial success. TBN1 contains three Zn2+ ions in a similar spatial arrangement to that observed in nuclease P1 from Penicillium citrinum

  14. Chemoselective Reactivity of Bifunctional Cyclooctynes on Si(001)

    CERN Document Server

    Reutzel, Marcel; Lipponer, Marcus A; Länger, Christian; Höfer, Ulrich; Koert, Ulrich; Dürr, Michael

    2016-01-01

    Controlled organic functionalization of silicon surfaces as integral part of semiconductor technology offers new perspectives for a wide range of applications. The high reactivity of the silicon dangling bonds, however, presents a major hindrance for the first basic reaction step of such a functionalization, i.e., the chemoselective attachment of bifunctional organic molecules on the pristine silicon surface. We overcome this problem by employing cyclooctyne as the major building block of our strategy. Functionalized cyclooctynes are shown to react on Si(001) selectively via the strained cyclooctyne triple bond while leaving the side groups intact. The achieved selectivity originates from the distinctly different adsorption dynamics of the separate functionalities: A direct adsorption pathway is demonstrated for cyclooctyne as opposed to the vast majority of other organic functional groups. The latter ones react on Si(001) via a metastable intermediate which makes them effectively unreactive in competition wi...

  15. Peculiarities of the dielectric response of natural zeolite composites prepared by using zeolite and silicon powders

    Science.gov (United States)

    Ozturk Koc, S.; Orbukh, V. I.; Eyvazova, G. M.; Lebedeva, N. N.; Salamov, B. G.

    2016-03-01

    We present the real and imaginary part of the dielectric permittivity of natural zeolite composites prepared by using zeolite and silicon powders. The dielectric response (DR) dependences on the frequency (3-300 GHz) of electric field and different Si concentrations (5-33%) are non-monotonic and a maximum peak is observed. This peak position is practically independent on the frequency and its maximum is observed in zeolite composites which included 9% of the Si-powder. Also the maximum peak is decreased by about an order of magnitude when frequency increases from 500 Hz to 5 kHz. Addition of the conductive Si-particles to zeolite-powder leads to two opposite effects. Firstly, the movement of electrons in the Si-particles provides increase of DR. Secondly, cations which leaving from zeolite pores can be neutralized by the particles of Si in the intercrystalline-space. Such a peculiar mechanism for recombination of Si electrons and cations from pores leads to a reduction of DR for large silicon concentrations. Due to the fact that the contribution of free carriers in the decreasing of the DR as the frequency increases, it is consistent with the suggestion that the maximum peak decreases with increasing frequency.

  16. Bifunctional chelates of RH-105 and AU199 as potential radiotherapeutic agents

    Energy Technology Data Exchange (ETDEWEB)

    Droege, P.

    1997-03-01

    Research is presented on new bifunctional chelating ligand systems with stability on the macroscopic and radiochemical levels. The synthesis of the following complexes are described: rhodium 105, palladium 109, and gold 198.

  17. Bifunctional chelating agent for the design and development of site specific radiopharmaceuticals and biomolecule conjugation strategy

    Science.gov (United States)

    Katti, Kattesh V.; Prabhu, Kandikere R.; Gali, Hariprasad; Pillarsetty, Nagavara Kishore; Volkert, Wynn A.

    2003-10-21

    There is provided a method of labeling a biomolecule with a transition metal or radiometal in a site specific manner to produce a diagnostic or therapeutic pharmaceutical compound by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radio metal or a transition metal, and covalently linking the resulting metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. Also provided is a method of synthesizing the --PR.sub.2 containing biomolecules by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radiometal or a transition metal, and covalently linking the resulting radio metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. There is provided a therapeutic or diagnostic agent comprising a --PR.sub.2 containing biomolecule.

  18. Zeolite occurrence and genesis in the Late-Cretaceous Cayo arc of Coastal Ecuador: Evidence for zeolite formation in cooling marine pyroclastic flow deposits

    OpenAIRE

    Machiels, L.; Garces, D. (D.); Snellings, R.; Vilema, W.; Morante, F.; C Paredes; ELSEN, J

    2014-01-01

    This paper describes the quantitative mineralogy, the mineral chemistry and the distribution of natural zeolites over the outcrop area of the Late Cretaceous Cayo Formation of Coastal Ecuador (>1000 km(2)) and develops a model for zeolite alteration in the Cayo volcanic arc. Different zeolite types were identified: Ca-heulandite-type zeolites (clinoptilolite and heulandite), mordenite, laumontite, analcime, stilbite, epistilbite, chabazite, thomsonite and erionite. Zeolites occur over nearly ...

  19. Human bile sorption by cancrinite-type zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Linares, Carlos F. [Laboratorio de Catalisis y Metales de Transicion, Facultad de Ciencias y Tecnologia, Departamento de Quimica, Universidad de Carabobo, Valencia. Edo. Carabobo, Apartado Postal 3336 (Venezuela, Bolivarian Republic of)], E-mail: clinares@uc.edu.ve; Colmenares, Maryi; Ocanto, Freddy [Laboratorio de Catalisis y Metales de Transicion, Facultad de Ciencias y Tecnologia, Departamento de Quimica, Universidad de Carabobo, Valencia. Edo. Carabobo, Apartado Postal 3336 (Venezuela, Bolivarian Republic of); Valbuena, Oscar [Facultad de Ciencias y Tecnologia, Departamento de Biologia, Universidad de Carabobo, Valencia. Edo. Carabobo, Apartado Postal 3336 (Venezuela, Bolivarian Republic of)], E-mail: ovalbuena@uc.edu.ve

    2009-01-01

    A nitrated cancrinite-type zeolite was synthesized from zeolite X, NaOH and NaNO{sub 3} solutions under autogeneous pressure at 80 deg. C for 48 h. This zeolite was characterized by X-ray diffraction (XRD), FT-IR-spectroscopy, scanning electron microscopy (SEM) and BET surface area. XRD, SEM and FT-IR confirmed the presence of nitrated cancrinite-type zeolite without other collateral phases as sodalite. Then, this sodium zeolite was exchanged with potassium and calcium cations and finally, these modified zeolites were reacted with biliar solutions from human gallbladder. Several factors such as: mass of used cancrinite, nature of the exchanged cation and reaction time of the cancrinite-bile solution interactions were studied. The composition of bile solutions (bile acids, phospholipids and bilirubin) was analyzed before and after the cancrinite-bile solution reaction. Results showed that the components of the bile were notably reduced after the contact with solids. Ca-cancrinite, 120 min of reaction time and 500 mg of solids were the best conditions determined for the bile acid reduction in human bile. When the modified zeolites were compared with the commercial cholestyramine, it was found that zeolites were more active than the latter. These zeolites may be an alternative choice to diminish cholesterol levels in hypercholesterolemic patients.

  20. Zeolite Crystal Growth in Microgravity and on Earth

    Science.gov (United States)

    2003-01-01

    The Center for Advanced Microgravity Materials Processing (CAMMP), a NASA-sponsored Research Partnership Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Shown here are zeolite crystals (top) grown in a ground control experiment and grown in microgravity on the USML-2 mission (bottom). Zeolite experiments have also been conducted aboard the International Space Station.

  1. Natural zeolites in diet or litter of broilers.

    Science.gov (United States)

    Schneider, A F; Almeida, D S De; Yuri, F M; Zimmermann, O F; Gerber, M W; Gewehr, C E

    2016-04-01

    This study aims to analyse the influence of adding natural zeolites (clinoptilolite) to the diet or litter of broilers and their effects on growth performance, carcass yield and litter quality. Three consecutive flocks of broilers were raised on the same sawdust litter, from d 1 to d 42 of age, and distributed in three treatments (control with no added zeolites, addition of 5 g/kg zeolite to diet and addition of 100 g/kg zeolites to litter). The addition of zeolites to the diet or litter did not affect growth performance or carcass yield. The addition of zeolites to the diet did not influence moisture content of the litter, ammonia volatilisation was reduced only in the first flock and pH of litter was reduced in the second and third flock. However, the addition of zeolites to the litter reduced moisture content, litter pH and ammonia volatilisation in all flocks analysed. The addition of 5 g/kg zeolite to the diet in three consecutive flocks was not effective in maintaining litter quality, whereas the addition of 100 g/kg natural zeolites to sawdust litter reduced litter moisture and ammonia volatilisation in three consecutive flocks raised on the same litter. PMID:26879673

  2. Influence of temperature on natural and chemically modified zeolites

    International Nuclear Information System (INIS)

    Zeolites from Nizny Hrabovec (Slovak Republic) were modified with solutions of NaOH. The changes of zeolites in the temperature range 20-1200 deg C were studied by thermal analysis (DTA, TG, ETA), X-ray analysis and REM analysis. Thermal analysis showed that the process of dehydration started between temperatures 20 and 600 deg C, over this temperature the dealumination and structural changes have taken place. X-ray analysis and REM analysis showed the structural changes of natural zeolites and gradual loss of cristallinity of the chemically modified zeolites. (author)

  3. Regioselective nitration of aromatic substrates in zeolite cages

    Indian Academy of Sciences (India)

    T Esakkidurai; M Kumarraja; K Pitchumani

    2003-04-01

    Phenol is nitrated regioselectively by fuming nitric acid inside the cages of faujasite zeolites (dependent on the loading level) and a remarkable orthoselectivity is observed in solid state nitration. Toluene and chlorobenzene also containing ortho-/para-orienting substituents, undergo faster nitration, though the regioselectivity is less significant in zeolite media. The results are explained on the basis of diffusion and binding of phenol inside zeolite, which facilitate regioselectivity (and which is absent in toluene and chlorobenzene). Other advantages of employing zeolites as media for mild and selective nitration are also highlighted.

  4. Human bile sorption by cancrinite-type zeolites

    International Nuclear Information System (INIS)

    A nitrated cancrinite-type zeolite was synthesized from zeolite X, NaOH and NaNO3 solutions under autogeneous pressure at 80 deg. C for 48 h. This zeolite was characterized by X-ray diffraction (XRD), FT-IR-spectroscopy, scanning electron microscopy (SEM) and BET surface area. XRD, SEM and FT-IR confirmed the presence of nitrated cancrinite-type zeolite without other collateral phases as sodalite. Then, this sodium zeolite was exchanged with potassium and calcium cations and finally, these modified zeolites were reacted with biliar solutions from human gallbladder. Several factors such as: mass of used cancrinite, nature of the exchanged cation and reaction time of the cancrinite-bile solution interactions were studied. The composition of bile solutions (bile acids, phospholipids and bilirubin) was analyzed before and after the cancrinite-bile solution reaction. Results showed that the components of the bile were notably reduced after the contact with solids. Ca-cancrinite, 120 min of reaction time and 500 mg of solids were the best conditions determined for the bile acid reduction in human bile. When the modified zeolites were compared with the commercial cholestyramine, it was found that zeolites were more active than the latter. These zeolites may be an alternative choice to diminish cholesterol levels in hypercholesterolemic patients

  5. CHEMICALLY MODIFIED ZEOLITES: SURFACES AND INTERACTION WITH Cs AND Co

    Directory of Open Access Journals (Sweden)

    Pavel Dillinger

    2007-06-01

    Full Text Available Inorganic exchangers, including zeolites, have interesting properties such as resistance to decomposition in the presence of ionizing radiation or to high temperatures, what make them applicable for the purification of low and middle polluted radioactive waste waters. The research was focused on model radioactive waste effluents and the investigated metals were cobalt (Co and cesium (Cs. The performance of natural zeolite of clinoptilolite type and zeolite chemically modified with NaOH solutions was determined by studying their surface and sorption properties using volumetric method and static radioindicator method. The measurements of zeolite´s surfaces showed the double increase of the specific surface along with an increase of mesopore’s diameter. The reason is the extraction of silicon from zeolite caused by NaOH solution what creates secondary mesoporous structure. The radioactive tracer technique was used to evaluate sorption properties of zeolites and the best sorbent was selected based on KD, μ, Γ and S values. The sorption abilities of natural and chemically modified zeolites for Cs uptake were comparable. The uptake of Co with natural zeolite was negligible and it increased up to 14 times for modified zeolites depending on the concentration of treated NaOH solution.

  6. Novel 16-substituted bifunctional derivatives of huperzine B: multifunctional cholinesterase inhibitors

    OpenAIRE

    Shi, Yu-fang; Zhang, Hai-Yan; Wang, Wei; Fu, Yan; Xia, Yu; Tang, Xi-can; Bai, Dong-lu; He, Xu-chang

    2009-01-01

    Aim: To design novel bifunctional derivatives of huperzine B (HupB) based on the concept of dual binding site of acetylcholinesterase (AChE) and evaluate their pharmacological activities for seeking new drug candidates against Alzheimer's disease (AD). Methods: Novel 16-substituted bifunctional derivatives of HupB were synthesized through chemical reactions. The inhibitory activities of the derivatives toward AChE and butyrylcholinesterase (BuChE) were determined in vitro by modified Ellman's...

  7. Bifunctional Pt-Si Alloys for Small Organic Molecule Electro-oxidation

    DEFF Research Database (Denmark)

    Permyakova, Anastasia Aleksandrovna; Suntivich, Jin; Han, Binghong;

    bifunctional requirement, which demands both adsorption and water oxidation sites. In this contribution, we explore the possibility of using Pt-Si alloys to fulfill this bifunctional requirement. Silicon, a highly oxophillic element, is alloyed into Pt as a site for water oxidation, while Pt serves as a CO...... adsorption site. We will discuss the enhanced activity of Pt-Si alloys for small organic molecule oxidation, which can be attributed to the improved CO electro-oxidation kinetics on Pt-Si....

  8. Sorption of metals on zeolites and bentonite

    International Nuclear Information System (INIS)

    This contribution presents the recently obtained results on the sorption of heavy metals by natural microporous materials (especially zeolites and bentonite) of different origin. The sorption of caesium and strontium from its aqueous solutions by ten clinoptilolite-mordenite-containing sedimentary materials from Slovakia, Bulgaria, Ukraine and Greece and bentonite was investigated a batch-type procedure and radiotracer techniques. The experimental results provide information on suitability of the individual materials for the treatment of radioactive waste and their application as backfills in potential nuclear waste repositories. Furthermore, the sorption of cadmium, mercury and zinc-ions by zeolites and bentonite was investigated using batch techniques and radioactive tracers. Uptake values and distribution coefficients were calculated in order to study the suitability of these materials for utilization in the environmental technology (i.g. treatment of industrial waste). (author)

  9. Zeolites as possible biofortifiers in Maitake cultivation

    Directory of Open Access Journals (Sweden)

    Vunduk Jovana

    2014-01-01

    Full Text Available The levels of Ni, Cu and Mg in Grifola frondosa (also known as Maitake mushroom fruit body produced on zeolite Minazel Plus (MG-supplemented substrate were measured with inductively coupled plasma optical emission spectrometry (ICP-OES. Two different concentrations of MG were added to the substrate for mushroom cultivation. Levels of selected metals were measured in cultivated dry carpophores. The content of Ni increased in fruit bodies produced on supplemented substrate, while in case of Cu, a pronounced decrease was observed. When two different concentrations of MG were implemented, the Mg level showed both positive and negative trend, depending on the applied concentration of zeolite. MG in a concentration of 1% showed the strongest influence on the observed elements in the cultivated fruiting body of Maitake mushroom. [Projekat Ministarstva nauke Republike Srbije, br. 46010

  10. Synthesis and characterization of ZSM-5 zeolites; Synthese et caracterisation des zeolites de type ZSM-5

    Energy Technology Data Exchange (ETDEWEB)

    Soualah, A.; Berkani, M. [Bejaia Univ., Lab. des Procedes Catalytiques et Thermodynamique des Materiaux, Dept. de Genie des Procedes, Faculte des Sciences et des Sciences de L' ingenieur (Algeria); Chater, M. [Universite des sciences et de la technologie Houari Boumediene (USTHB), Lab. de Valorisation des Coupes Petrolieres, Faculte de Chimie, Alger (Algeria)

    2004-07-01

    The purpose of this work is the synthesis of the ZSM-5-type zeolite by varying the Si/Al ratio and the length of the alkyl chain of the template by using tetra-propyl-ammonium bromide, tetra-butyl-ammonium bromide and tetramethylammonium bromide. The obtained zeolites were characterized by X-ray diffraction and electron microscopy. The X-ray diffraction patterns of samples A (TPA, Si/Al=36), B (TPA, Si/Al=60) and C (TPA, Si/Al=120) indicated a pure zeolite ZSM-5, with however different morphologies. On the other hand, the X-ray diffraction patterns as well as the micrography of sample F (TPA, Si/Al=30), show a mixture of phases. The X-ray diffraction patterns of the samples D (TBA, Si/Al=30) and E (TMA, Si/Al=30) also indicated a mixture of phases. (authors)

  11. Zeolites as possible biofortifiers in Maitake cultivation

    OpenAIRE

    Vunduk Jovana; Klaus Anita; Kozarski Maja; Đorđević R.; Jovanović Lj.; Nikšić M.

    2014-01-01

    The levels of Ni, Cu and Mg in Grifola frondosa (also known as Maitake mushroom) fruit body produced on zeolite Minazel Plus (MG)-supplemented substrate were measured with inductively coupled plasma optical emission spectrometry (ICP-OES). Two different concentrations of MG were added to the substrate for mushroom cultivation. Levels of selected metals were measured in cultivated dry carpophores. The content of Ni increased in fruit bodies produced on suppl...

  12. Transformations of aromatic hydrocarbons over zeolites

    Czech Academy of Sciences Publication Activity Database

    Voláková, Martina; Žilková, Naděžda; Čejka, Jiří

    2008-01-01

    Roč. 34, 5-7 (2008), s. 439-454. ISSN 0922-6168 R&D Projects: GA ČR GA203/05/0197; GA AV ČR 1QS400400560; GA AV ČR KJB4040402 Institutional research plan: CEZ:AV0Z40400503 Keywords : aromatic hydrocarbons * zeolites * alkylation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.514, year: 2008

  13. Adsorption of ions onto treated natural zeolite

    Directory of Open Access Journals (Sweden)

    Cristiane da Rosa Oliveira

    2007-12-01

    Full Text Available This work presents studies of modification of a natural zeolite by activation with Na+ cations and functionalisation with Ba+2 and/or Cu2+ ions (FZ. The zeolite was characterized, modified and applied in adsorption studies of sulphate and isopropilxanthate ions as flocculated and powdered forms. The reuse of SO4Ba-FZ was investigated by adsorption-removal of either Ba2+ or sulphate ions in stages. Equilibrium data showed that the FZ, flocculated or as powder, provide considerable removal of sulphate ions (q mLangmuir: 1.15 and 1.35 meq.g-1, respectively and isopropilxanthate (q mLangmuir: 0.35 and 0.93 meq.g-1, respectively. The reuse of the SO4-FZ, either powdered or flocculated also uptake significant amount of Ba2+ or sulphate ions (q mLangmuir: 1.15 meq.g-1, providing a new alternative for the exhausted adsorbent. Thus the activated and functionalised zeolites create new options on the materials engineering area with applications in environmental applied adsorption processes.

  14. Ion exchange in a zeolite-molten chloride system

    International Nuclear Information System (INIS)

    Electrometallurgical treatment of spent nuclear fuel results in a secondary waste stream of radioactive fission products dissolved in chloride salt. Disposal plans include a waste form that can incorporate chloride forms featuring one or more zeolites consolidated with sintered glass. A candidate method for incorporating fission products in the zeolites is passing the contaminated salt over a zeolite column for ion exchange. To date, the molten chloride ion-exchange properties of four zeolites have been investigated for this process: zeolite A, IE95 reg-sign, clinoptilolite, and mordenite. Of these, zeolite A has been the most promising. Treating zeolite 4A, the sodium form of zeolite A , with the solvent salt for the waste stream-lithium-potassium chloride of eutectic melting composition, is expected to provide a material with favorable ion-exchange properties for the treatment of the waste salt. The authors constructed a pilot-plant system for the ion-exchange column. Initial results indicate that there is a direct relationship between the two operating variable of interest, temperature, and initial sodium concentration. Also, the mass ratio has been about 3--5 to bring the sodium concentration of the effluent below 1 mol%

  15. Inelastic neutron scattering from non-framework species within zeolites

    International Nuclear Information System (INIS)

    Inelastic and quasielastic neutron scattering have special advantages for studying certain of the motional properties of protonated or organic species within zeolites and related microporous materials. In this paper these advantages and various experimental methods are outlined, and illustrated by measurements of torsional vibrations and rotational diffusion of tetramethylammonium (TMA) cations occluded within zeolites TMA-sodalite, omega, ZK-4 and SAPO-20

  16. A zeolite ion exchange membrane for redox flow batteries.

    Science.gov (United States)

    Xu, Zhi; Michos, Ioannis; Wang, Xuerui; Yang, Ruidong; Gu, Xuehong; Dong, Junhang

    2014-03-01

    The zeolite-T membrane was discovered to have high proton permselectivity against vanadium ions and exhibit low electrical resistance in acidic electrolyte solutions because of its enormous proton concentration and small thickness. The zeolite membrane was demonstrated to be an efficient ion exchange membrane in vanadium redox flow batteries. PMID:24396857

  17. Generalized synthesis of mesoporous shells on zeolite crystals

    KAUST Repository

    Han, Yu

    2010-12-30

    A simple and generalized synthetic approach is developed for creating mesoporous shells on zeolite crystals. This method allows for the tailoring of thickness, pore size, and composition of the mesoporous shell, and can be applied to zeolites of various structures, compositions, and crystal sizes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Arrangement and dynamics of water in natural zeolites

    International Nuclear Information System (INIS)

    Elastic, inelastic and quasielastic neutron scattering experiments are performed on natural zeolites. Hydrogen atoms at the water molecules could be located in the fibrous zeolites natrolite and edingtonite. Inelastic neutron spectra can be divided into translational (δE -5 cm sec-1 at T = 295 K for the full amount of water. (author) 6 refs., 4 figs., 1 tab

  19. Cleaning of liquid radioactive wastes using natural zeolites

    International Nuclear Information System (INIS)

    Natural zeolite, clinoptilolite, was used to eliminate liquid radioactive wastes (LRW) 137Cs and 90Sr. The influence of several factors (pH of solution, grain size of the zeolite, etc.) on the process effectivity was studied. It was shown that clinoptilolite is an effective filter of the nuclides above

  20. Incorporation of copper histidine complexes into a zeolite Y matrix

    NARCIS (Netherlands)

    Mesu, J.G.; Baute, D.; Tromp, H.J.; Faassen, E.E.H. van; Weckhuysen, B.M.

    2003-01-01

    Preformed copper-histidine complexes were loaded into zeolite Y by ion exchange. The zeolite was found to contain a mixture of two different encaged complexes: a mono-histidine complex (A) and a bis-histidine complex (B). The initial copper concentration affects the composition of this mixture, with

  1. 3D Nanoscale Imaging and Quantitative Analysis of Zeolite Catalysts

    NARCIS (Netherlands)

    Zecevic, J.

    2013-01-01

    Zeolites are crystalline microporous aluminosilicates, one of the most versatile and widely used class of materials.The unique physico-chemical properties of zeolites are found to be irreplaceable in many industrial processes such as separation, adsorption and catalysis. To exploit their full potent

  2. Zeolite-Nafion composites as ion conducting membrane materials

    International Nuclear Information System (INIS)

    Composite membranes formed of zeolitic fillers embedded in Nafion can be made by evaporating the solvents from a suspension of small zeolite crystals in a Nafion solution. Two natural zeolites were selected as fillers: chabazite and clinoptilolite. Membranes with various zeolite content were obtained. Composite membranes with zeolite content up to 40 vol.% exhibited uniform distribution of the zeolite fillers throughout the thickness, as ascertained by scanning electron microscopy (SEM), energy dispersive X-rays absorption (EDX) and ion conductivity measurements. Although more brittle than Nafion, these composite sheets retain--when hydrated--reasonable flexibility below 40 vol.% zeolite content. We have determined the hydrogen ion conductivity and the permeability of methanol molecules through these membranes (in the H+-form as well as in the Na+-form) in the temperature range 22-60 deg. C. We found that the presence of the zeolitic fillers in the membranes can bear notable changes of conductivity, permeability and selectivity with respect to membranes made out of sole Nafion

  3. Innovations in the synthesis of Fe-(exchanged)-zeolites

    NARCIS (Netherlands)

    Melian-Cabrera, [No Value; Kapteijn, F; Moulijn, JA; Melián-Cabrera, I.

    2005-01-01

    Several aspects on the preparation of Fe-zeolites are discussed. In contrast to the many studies highlighting the characterisation of the active sites, new approaches for incorporation of Fe are presented. Full utilization of exchange capacity of zeolites has been achieved by a controlled alkaline t

  4. Preparation of Synthetic Zeolites from Myanmar Clay Mineral

    International Nuclear Information System (INIS)

    Faujasite type zeolite X was successfully synthesized from Myanmar clay mineral kaolinite, by treating with sodium hydroxide at 820 C followed by dissolution in water and hydrothermal treatment. It was found that the solution of fused clay powder can be crystallized at 90C under ambient pressure to synthesize faujasite type zeolite X. The effects of aging time and the amount of water on the formation of the product phase and Si/ Al ratios of the resulting products were investigated. Most of the Si and Al components in kaolinite might be dissolved into an alkaline solution and reacted to form ring-like structures. Then it was effectively transformed into zeolite materials. The maximum relative crystallinity of faujasite zeolite obtained was found to be 100%. Zeolite P was found to be a competitive phase present in some resulting products during hydrothermal treatment. The cation exchange capacity of kaolinite is very low, but increased after a proper treatment. It was found that the prepared faujasite type zeolite X, zeolite P and hydrogen zeolite (HZ) can reduce the hardness, the alkalinity, the total dissolved solid and the dissolved iron of raw water in the batch wise operation of water treatment. Therefore, it can be used as the cation exchanged resin for water treatment

  5. Hydrothermal synthesis of zeolite SSZ-16 (AFX) from optimized synthesis solutions

    Czech Academy of Sciences Publication Activity Database

    Hrabánek, Pavel; Zikánová, Arlette; Drahokoupil, Jan; Prokopová, Olga; Brabec, Libor; Jirka, Ivan; Fíla, V.; Cookney, J.; Kočiřík, Milan

    Moscow : The International Zeolite Association, 2013. P-1,1-03. ISBN 978-5-903391-97-4. [The international zeolite conference (IZC) /17./, Zeolites and ordered porous materials: bridging the gap between nanoscience and technology. 07.07.2013-12.07.2013, Moscow] Institutional support: RVO:61388955 Keywords : zeolites * hydrothermal synthesis Subject RIV: CF - Physical ; Theoretical Chemistry

  6. Fly ash based zeolitic pigments for application in anticorrosive paints

    Science.gov (United States)

    Shaw, Ruchi; Tiwari, Sangeeta

    2016-04-01

    The purpose of this work is to evaluate the utilization of waste fly ash in anticorrosive paints. Zeolite NaY was synthesized from waste fly ash and subsequently modified by exchanging its nominal cation Na+ with Mg2+ and Ca2+ ions. The metal ion exchanged zeolite was then used as anticorrosive zeolitic pigments in paints. The prepared zeolite NaY was characterized using X-Ray diffraction technique and Scanning electron microscopy. The size, shape and density of the prepared fly ash based pigments were determined by various techniques. The paints were prepared by using fly ash based zeolitic pigments in epoxy resin and the percentages of pigments used in paints were 2% and 5%. These paints were applied to the mild steel panels and the anticorrosive properties of the pigments were assessed by the electrochemical spectroscopy technique (EIS).

  7. Rheological Influence of Synthetic Zeolite on Cement Pastes

    Science.gov (United States)

    Baldino, N.; Gabriele, D.; Frontera, P.; Crea, F.; de Cindio, B.

    2008-07-01

    Self Compacting Concrete (SCC) is characterized by specific and particular mechanical properties, often due to the addition of components, able to modify the paste rheology. Concrete properties are strongly affected by characteristics of the fresh cement paste that is the continuous phase dispersing larger aggregates. Therefore, aiming to characterize mechanical properties of final concrete is relevant to know rheological properties of the base cement paste. In this work cement pastes for SCC were prepared by using, as additive, synthetic zeolite 5A in different amounts and they were analyzed by small amplitude oscillations. Experimental results have shown a relationship between dynamic moduli and zeolite content, identifying a proper level of zeolite addition. Moreover samples containing traditional fine additives, such as silica fume and limestone, were prepared and experimental data were compared to those obtained by using zeolite. It was found that zeolite seems to give better properties to cement paste than other additives can do.

  8. The charge transport in the nanoporous natural zeolite

    International Nuclear Information System (INIS)

    It was presented the electrical characterization of a natural zeolite plate and charge transport, it is studied the functions of pressure (4-760 Torr), temperatures (295-435 K) and diameter (5-25 mm) of the cathode areas in the gas discharge electronic devices (GDED) with nanoporous zeolite cathode (NZC) for the first time. There are not enough investigations devoted to conductivity of zeolites in a dc voltage mode. Comparison of current from GDED is used for the determination of the stabilization under low- and atmospheric pressure glow microdischarges conditions. It is found that the gas in zeolite pores ionizes and accordingly the number of electrons in the pores grows. It is of importance to have knowledge in peculiarities of operation of GDED. It can be supposed that cheap natural zeolite will be effective in low-power GDED

  9. Treatments of reverse osmosis concentrate using natural zeolites

    Directory of Open Access Journals (Sweden)

    Taherifar Hossein

    2015-06-01

    Full Text Available The purpose of the current study is to experimentally investigate the reduction of sodium adsorption ratio (SAR from a concentrated stream of reversed osmosis (RO using natural zeolites. In order to reduce the salinity of solution, experiments were carried out using zeolites of varying concentration, pretreatment of adsorbents, and the addition of Ethylenediaminetetraacetic acid (EDTA. The results show that both zeolites can be used in an RO brine treatment; however, Rhyolitic tuff is more effective than clinoptilolite for the reduction of water salinity. The experiments show that Rhyolitic tuff decreases salinity of RO concentrate to nearly one – third of the initial value. Statistical analyses show that the effect of zeolite concentration is negligible. Furthermore, the addition of EDTA and pretreatment of zeolite increase the SAR values.

  10. The Separation Of Uranium And Molybdenum Mixture Using Zeolite

    International Nuclear Information System (INIS)

    The zeolite was preparated from the Gunung Kidul, Yogyakarta Indonesia natural zeolite, which was washed with 0.1 M HCI solution. Alkali or alkaline earth cations of natural zeolite was exchanged with NH4+ by using 0.5 M of NH4CI and was dried at 200oC. This zeolite product by Chemically activation was used for process separation of (U,Mo) mixture. The separation of (U,Mo) mixture was done by using zeolite of -200 +325 mesh for U = 31,000 ppm and Mo = 100 ppm in 0.05 M H2SO4 solution with time extraction of 1 hour. By using this method a separation factor of U,Mo gained was OA

  11. Synthesis and catalytic applications of combined zeolitic/mesoporous materials

    Directory of Open Access Journals (Sweden)

    Jarian Vernimmen

    2011-11-01

    Full Text Available In the last decade, research concerning nanoporous siliceous materials has been focused on mesoporous materials with intrinsic zeolitic features. These materials are thought to be superior, because they are able to combine (i the enhanced diffusion and accessibility for larger molecules and viscous fluids typical of mesoporous materials with (ii the remarkable stability, catalytic activity and selectivity of zeolites. This review gives an overview of the state of the art concerning combined zeolitic/mesoporous materials. Focus is put on the synthesis and the applications of the combined zeolitic/mesoporous materials. The different synthesis approaches and formation mechanisms leading to these materials are comprehensively discussed and compared. Moreover, Ti-containing nanoporous materials as redox catalysts are discussed to illustrate a potential implementation of combined zeolitic/mesoporous materials.

  12. Adsorption and thermodynamic behavior of uranium on natural zeolite

    International Nuclear Information System (INIS)

    Adsorptive behavior of natural clinoptilolite-rich zeolite from Balikesir deposites in Turkey was assessed for the removal of uranium from aqueous solutions. The uranium uptake and cation exchange capacities of zeolite were determined. The effect of initial uranium concentrations in solution was studied in detail at the optimum conditions determined before (pH 2.0, contact time: 60 minutes, temperature: 20 deg C). The uptake equilibrium is best described by Langmuir adsorption isotherm. Some thermodynamic parameters (ΔH deg, ΔS deg, ΔG deg) of the adsorption system were also determined. Application to fixation of uranium to zeolite was performed. The uptake of uranium complex on zeolite followed Langmuir adsorption isotherm for the initial concentration (25 to 100 μg/ml). Thermodynamic values of ΔG deg, ΔS deg and ΔH deg found show the spontaneous and exothermic nature of the process of uranium ions uptake by natural zeolite. (author)

  13. Ethylenediamine complexes of transition metals in zeolite X

    International Nuclear Information System (INIS)

    Single-crystal X-ray diffraction studies of two ion-exchanged zeolite forms of the faujasite type are performed. Form I, NaCu[Cu(en)2]X [a=25.013(5) A, space group Fd3, 315F(hkl), R=0.050], is obtained by the treatment of zeolite NaX crystals with a [Cu(en)2]SO4 solution. Form II, NaCo[Co(en)x]X [a=25.000(5) A, space group Fd3, 532F(hkl), R=0.051], is obtained by the treatment of zeolite NaCoX with an ethylenediamine solution. Along with Na, Cu, and Co ions situated at the positions typical of zeolite X, the cationic complexes [Cu(en)2]2+ and [Co(en)x]2+ are found to be located in the large-sized zeolite cavities

  14. Tailoring the porosity of hierarchical zeolites by carbon-templating

    DEFF Research Database (Denmark)

    Zhu, Kake; Egeblad, Kresten; Christensen, Claus H.

    We report the synthesis and characterization of a series of hierarchical porous zeolite single crystal materials with a range of porosities made available by carbon-templating using differently-sized carbon particles as templates for the additional non-micropore porosity. The materials were...... prepared by adsorption of the required zeolite synthesis gel components onto various commercially available carbon black powders followed by crystallization of the zeolite crystals in the presence of the inert carbon matrix and subsequent removal of the carbon particles embedded in the zeolite crystals by...... combustion. It is shown that the additional porosity of the hierarchical zeolites can be tailored by encapsulation of the differently-sized carbon particles during crystallization....

  15. Theoretical investigation of layered zeolite frameworks: Interaction between IPC-1P layers derived from zeolite UTL

    Czech Academy of Sciences Publication Activity Database

    Grajciar, L.; Bludský, Ota; Roth, Wieslaw Jerzy; Nachtigall, P.

    2013-01-01

    Roč. 204, Apr 15 (2013), s. 15-21. ISSN 0920-5861 R&D Projects: GA ČR GBP106/12/G015 Institutional support: RVO:61388963 ; RVO:61388955 Keywords : layered zeolites * density functional theory * hydrogen bonding * structure Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.309, year: 2013

  16. Adsorption of CO2 in FAU zeolites: Effect of zeolite composition

    Czech Academy of Sciences Publication Activity Database

    Thang, H. V.; Grajciar, L.; Nachtigall, P.; Bludský, Ota; Areán, C. O.; Frýdová, E.; Bulánek, R.

    2014-01-01

    Roč. 227, May 15 (2014), s. 50-56. ISSN 0920-5861 R&D Projects: GA ČR GBP106/12/G015 Institutional support: RVO:61388963 Keywords : DFT/CC * CO2 * carbon capture and storage * zeolite * adsorption calorimetry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.893, year: 2014

  17. Zeolite stability constraints on radioactive waste isolation in zeolite-bearing volcanic rocks

    International Nuclear Information System (INIS)

    Silicic tuffs of the southern Great Basin and basalts of the Columbia River Plateau are under investigation as potential host rocks for high- and intermediate-level radioactive wastes. Non-welded and partially welded tuffs may contain major amounts (> 50%) of the zeolite minerals: clinoptilolite, mordenite, and analcime. Densely welded tuffs and some basalt flows may contain clinoptilolite as fracture filling which limits permeability of these rocks. The cation exchange properties of these zeolite minerals allow them to pose a natural barrier to the migration of cationic species of various radionuclides in aqueous solutions. However, these minerals are unstable at elevated temperatures and at low water vapor pressures, and they may break down either by reversible dehydration or by irreversible mineralogical reactions. All of the breakdown reactions occurring with increased temperature involve a net volume reduction and evolution of fluids. Thus, they may provide both a pathway (shrinkage fractures) and a driving force (fluid pressure) for release of radionuclides to the biosphere. These reactions may be avoided by keeping zeolite-bearing horizons saturated with water and below about 850C. This may restrict allowable gross thermal loadings in radioactive waste repositories in zeolite-bearing volcanic rocks. 3 figures

  18. Oxidative regeneration of toluene-saturated natural zeolite by gaseous ozone: the influence of zeolite chemical surface characteristics.

    Science.gov (United States)

    Alejandro, Serguei; Valdés, Héctor; Manéro, Marie-Hélène; Zaror, Claudio A

    2014-06-15

    In this study, the effect of zeolite chemical surface characteristics on the oxidative regeneration of toluene saturated-zeolite samples is investigated. A Chilean natural zeolite (53% clinoptilolite, 40% mordenite and 7% quartz) was chemically modified by acid treatment with hydrochloric acid and by ion-exchange with ammonium sulphate. Thermal pre-treatments at 623 and 823K were applied and six zeolite samples with different chemical surface characteristics were generated. Chemical modification of natural zeolite followed by thermal out-gassing allows distinguishing the role of acidic surface sites on the regeneration of exhausted zeolites. An increase in Brønsted acid sites on zeolite surface is observed as a result of ammonium-exchange treatment followed by thermal treatment at 623K, thus increasing the adsorption capacity toward toluene. High ozone consumption could be associated to a high content of Lewis acid sites, since these could decompose ozone into atomic active oxygen species. Then, surface oxidation reactions could take part among adsorbed toluene at Brønsted acid sites and surface atomic oxygen species, reducing the amount of adsorbed toluene after the regenerative oxidation with ozone. Experimental results show that the presence of adsorbed oxidation by-products has a negative impact on the recovery of zeolite adsorption capacity. PMID:24794812

  19. Magnetic-plasmonic bifunctional CoO–Ag heterostructure nanoparticles

    International Nuclear Information System (INIS)

    We demonstrate the synthesis of CoO–Ag heterostructure nanoparticles by chemical reduction of AgNO3 in the presence of Co nanoparticles in oleylamine (OAm). OAm plays multiple roles as a surfactant, solvent, and reducing agent. The mechanism of surface-activated heterogeneous nucleation and growth on the preformed seeds has been proposed. At the same time, the Co nanoparticles are oxidized to form hollow CoO nanoparticles through the Kirkendall effect. The resulting CoO–Ag heterostructures display mushroom-like morphology, Ag nanoparticle as ‘cap’ attached on the ‘stem’ of hollow CoO nanoparticles. The size of Ag domains in the heterostructure nanoparticles can be tuned by controlling the volume of Co nanoparticles. The plasmonic absorption and the magnetization of the bifunctional nanoparticles were investigated. The combination of the hollow structure of the CoO and the surface plasmon resonances of the Ag domains may make them suitable for catalysis, drug delivery, therapy, and surface-enhanced Raman scattering. (papers)

  20. Gold(I) catalysts with bifunctional P, N ligands.

    Science.gov (United States)

    Wetzel, Corinna; Kunz, Peter C; Thiel, Indre; Spingler, Bernhard

    2011-08-15

    A series of phosphanes with imidazolyl substituents were prepared as hemilabile PN ligands. The corresponding gold(I) complexes were tested as bifunctional catalysts in the Markovnikov hydration of 1-octyne, as well as in the synthesis of propargylamines by the three component coupling reaction of piperidine, benzaldehyde, and phenylacetylene. While the activity in the hydration of 1-octyne was low, the complexes are potent catalysts for the three component coupling reaction. In homogeneous solution the conversions to the respective propargylamine were considerably higher than under aqueous biphasic conditions. The connectivity of the imidazolyl substituents to the phosphorus atom, their substitution pattern, as well as the number of heteroaromatic substituents have pronounced effects on the catalytic activity of the corresponding gold(I) complexes. Furthermore, formation of polymetallic species with Au(2), Au(3), and Au(4) units has been observed and the solid-state structures of the compounds [(5)(2)Au(3)Cl(2)]Cl and [(3c)(2)Au(4)Cl(2)]Cl(2) (3c = tris(2-isopropylimidazol-4(5)-yl phosphane, 5 = 2-tert-butylimidazol-4(5)-yldiphenyl phosphane) were determined. The gold(I) complexes of imidazol-2-yl phosphane ligands proved to be a novel source for bis(NHC)gold(I) complexes (NHC = N-heterocyclic carbene). PMID:21761834

  1. Gold-Copper Nanoparticles: Nanostructural Evolution and Bifunctional Catalytic Sites

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Jun; Shan, Shiyao; Yang, Lefu; Mott, Derrick; Malis, Oana; Petkov, Valeri; Cai, Fan; Ng, Mei; Luo, Jin; Chen, Bing H.; Engelhard, Mark H.; Zhong, Chuan-Jian

    2012-12-12

    Understanding of the atomic-scale structure is essential for exploiting the unique catalytic properties of any nanoalloy catalyst. This report describes novel findings of an investigation of the nanoscale alloying of gold-copper (AuCu) nanoparticles and its impact on the surface catalytic functions. Two pathways have been explored for the formation of AuCu nanoparticles of different compositons, including wet chemical synthesis from mixed Au- and Cu-precursor molecules, and nanoscale alloying via an evolution of mixed Au- and Cu-precursor nanoparticles near the nanoscale melting temperatures. For the evolution of mixed precursor nanoparticles, synchrotron x-ray based in-situ real time XRD was used to monitor the structural changes, revealing nanoscale alloying and reshaping towards an fcc-type nanoalloy (particle or cube) via a partial melting–resolidification mechanism. The nanoalloys supported on carbon or silica were characterized by in-situ high-energy XRD/PDFs, revealing an intriguing lattice "expanding-shrinking" phenomenon depending on whether the catalyst is thermochemically processed under oxidative or reductive atmosphere. This type of controllable structural changes is found to play an important role in determining the catalytic activity of the catalysts for carbon monoxide oxidation reaction. The tunable catalytic activities of the nanoalloys under thermochemically oxidative and reductive atmospheres are also discussed in terms of the bifunctional sites and the surface oxygenated metal species for carbon monoxide and oxygen activation.

  2. The use of clinoptilolite and synthetic zeolites for removal of petroleum substances

    OpenAIRE

    Bandura, L.; Panek, R; Franus, W.

    2014-01-01

    In the present paper the sorption of petroleum substances such as diesel fuels on zeolite beds was investigated. A natural occurring zeolite clinoptilolite, and mixtures of clinoptilolite and synthetic zeolites Na-P1 and Na-X type, in the ratio 3:1, were used in this study. Natural zeolite acquired from the mine tuffs in Sokyrnytsya (Ukraine). In order to obtain synthetic zeolites, F-class fly ash (Kozienice Power Plant, Poland) with sodium hydroxide was u...

  3. Novel Polyamide Proton Exchange Membranes with Bi-Functional Sulfonimide Bridges for Fuel Cell Applications

    International Nuclear Information System (INIS)

    Graphical abstract: A polymer proton conductor crosslinked with bi-functional sulfonamide bridges is synthesized for PEM fuel cell applications. The architecture simultaneously enhances mechanical strength and improves water retention of the PEMs. With an appropriate degree of crosslinking, the bi-functional PEM exhibits comparable performance to that of a commercial Nafion membrane tested in a direct methanol fuel cell. - Abstract: We design and successfully synthesize non-fluorinated polyamides with controlled crosslinking using sulfonimide as a bi-functional linker to interconnect polymer backbones and as a bridge for proton conduction. We show that the bi-functional linkers are highly beneficial not only for mechanical enforcement of the proton exchange membranes but also for enhancement of water retention capacity. With an appropriate degree of crosslinking, higher water retention capacity than that of commercial Nafion membranes can be obtained. The maximum proton conductivity of the membranes is found to be as high as 0.139 S cm−1 at 80 °C, almost the same as that of a Nafion 117 membrane. Excellent performance with the bi-functional polymer membranes in an air-breathing direct methanol fuel cell prototype, comparable to the performance of a Nafion 117 membrane, is demonstrated

  4. Zeolite thin films: from computer chips to space stations.

    Science.gov (United States)

    Lew, Christopher M; Cai, Rui; Yan, Yushan

    2010-02-16

    Zeolites are a class of crystalline oxides that have uniform and molecular-sized pores (3-12 A in diameter). Although natural zeolites were first discovered in 1756, significant commercial development did not begin until the 1950s when synthetic zeolites with high purity and controlled chemical composition became available. Since then, major commercial applications of zeolites have been limited to catalysis, adsorption, and ion exchange, all using zeolites in powder form. Although researchers have widely investigated zeolite thin films within the last 15 years, most of these studies were motivated by the potential application of these materials as separation membranes and membrane reactors. In the last decade, we have recognized and demonstrated that zeolite thin films can have new, diverse, and economically significant applications that others had not previously considered. In this Account, we highlight our work on the development of zeolite thin films as low-dielectric constant (low-k) insulators for future generation computer chips, environmentally benign corrosion-resistant coatings for aerospace alloys, and hydrophilic and microbiocidal coatings for gravity-independent water separation in space stations. Although these three applications might not seem directly related, they all rely on the ability to fine-tune important macroscopic properties of zeolites by changing their ratio of silicon to aluminum. For example, pure-silica zeolites (PSZs, Si/Al = infinity) are hydrophobic, acid stable, and have no ion exchange capacity, while low-silica zeolites (LSZs, Si/Al antifouling coatings. When zeolites are incorporated into polymer thin films in the form of nanocrystals, we also show that the resultant composite membranes can significantly improve the performance of reverse osmosis membranes for sea water desalination and proton exchange membrane fuel cells. These diverse applications of zeolites have the potential to initiate new industries while revolutionizing

  5. Structural analysis of hierarchically organized zeolites

    Science.gov (United States)

    Mitchell, Sharon; Pinar, Ana B.; Kenvin, Jeffrey; Crivelli, Paolo; Kärger, Jörg; Pérez-Ramírez, Javier

    2015-10-01

    Advances in materials synthesis bring about many opportunities for technological applications, but are often accompanied by unprecedented complexity. This is clearly illustrated by the case of hierarchically organized zeolite catalysts, a class of crystalline microporous solids that has been revolutionized by the engineering of multilevel pore architectures, which combine unique chemical functionality with efficient molecular transport. Three key attributes, the crystal, the pore and the active site structure, can be expected to dominate the design process. This review examines the adequacy of the palette of techniques applied to characterize these distinguishing features and their catalytic impact.

  6. Hydrogen storage in Chabazite zeolite frameworks.

    Science.gov (United States)

    Regli, Laura; Zecchina, Adriano; Vitillo, Jenny G; Cocina, Donato; Spoto, Giuseppe; Lamberti, Carlo; Lillerud, Karl P; Olsbye, Unni; Bordiga, Silvia

    2005-09-01

    We have recently highlighted that H-SSZ-13, a highly siliceous zeolite (Si/Al = 11.6) with a chabazitic framework, is the most efficient zeolitic material for hydrogen storage [A. Zecchina, S. Bordiga, J. G. Vitillo, G. Ricchiardi, C. Lamberti, G. Spoto, M. Bjørgen and K. P. Lillerud, J. Am. Chem. Soc., 2005, 127, 6361]. The aim of this new study is thus to clarify both the role played by the acidic strength and by the density of the polarizing centers hosted in the same framework topology in the increase of the adsorptive capabilities of the chabazitic materials towards H2. To achieve this goal, the volumetric experiments of H2 uptake (performed at 77 K) and the transmission IR experiment of H2 adsorption at 15 K have been performed on H-SSZ-13, H-SAPO-34 (the isostructural silico-aluminophosphate material with the same Brønsted site density) and H-CHA (the standard chabazite zeolite: Si/Al = 2.1) materials. We have found that a H2 uptake improvement has been obtained by increasing the acidic strength of the Brønsted sites (moving from H-SAPO-34 to H-SSZ-13). Conversely, the important increase of the Brønsted sites density (moving from H-SSZ-13 to H-CHA) has played a negative role. This unexpected behavior has been explained as follows. The additional Brønsted sites are in mutual interaction via H-bonds inside the small cages of the chabazitic framework and for most of them the energetic cost needed to displace the adjacent OH ligand is higher than the adsorption enthalpy of the OH...H2 adduct. From our work it can be concluded that proton exchanged chabazitic frameworks represent, among zeolites, the most efficient materials for hydrogen storage. We have shown that a proper balance between available space (volume accessible to hydrogen), high contact surface, and specific interaction with strong and isolated polarizing centers are the necessary characteristics requested to design better materials for molecular H2 storage. PMID:16240032

  7. Synthesis of fine chemical over zeolites

    Czech Academy of Sciences Publication Activity Database

    Voláková, Martina; Čejka, Jiří

    Kerala : Transworld Research Network, 2008 - (Čejka, J.; Peréz-Pariente, J.; Roth, W.), s. 263-297 ISBN 978-81-7895-330-4 R&D Projects: GA ČR GA104/05/0192; GA ČR GA203/05/0197; GA ČR GA104/07/0383; GA AV ČR 1QS400400560; GA AV ČR 1ET400400413 Institutional research plan: CEZ:AV0Z40400503 Keywords : zeolites * synthesis * molecular sieves Subject RIV: CF - Physical ; Theoretical Chemistry

  8. 氧化钙改性分子筛对一步法合成二甲醚的影响%One-step synthesis of dimethyl ether over a bi-functional catalyst containing CaO-modified HZSM-5

    Institute of Scientific and Technical Information of China (English)

    许庆利; 李廷琛; 颜涌捷

    2008-01-01

    Synthesis of dimethyl ether (DME) was carried out in a fixed bed reactor over a bifunctional catalyst CaO/HZSM-5+JC207,which was composed of a methanol-synthesis catalyst JC207 (Jingjing Catalyst Plant,China) and a dehydrator HZSM-5 (Si/Al = 38) modified with CaO. The effects of zeolite modification with CaO on the performance of the bifunctional catalyst in one-step synthesis of DME were investigated. XRD analysis of the modified zeolite CaO/HZSM-5 indicates that CaO is highly dispersed on the zeolite HZSM-5 without any new species formed. Pyridine-IR analysis shows that the modification of HZSM-5 with CaO not only brings on significant changes in acid type and acid amount but also turns some of Bronstead acid sites into Lewis acid sites. NH3-temperature programming desorption analysis indicates that the number of acid sites on the zeolite surface,especially,that of the strong acid sites decreases with the increase of CaO loading. Modification of zeolite HZSM-5 with appropriate dose of CaO turns the strong acid sites into weak or less strong acid sites;such a redistribution of acid sites may be beneficial for the increase of DME selectivity.%采用浸渍法制备了一系列CaO改性的HZSM-5 (Si/Al=38)分子筛,并以CaO/HZSM-5为脱水剂 与JC207甲醇合成催化剂(靖江催化剂厂)按照一定的比例组成双功能催化剂,在固定床反应器上考察了其对一步法合成二甲醚的影响.XRD结果表明,CaO在HZSM-5上呈高度分散状态,没有发现新的物种生成.Pyridine-IR结果表明,CaO引入HZSM-5后,酸中心的类型和数量发生明显的变化,CaO的加人促使部分酸中心由B酸中心转变为L酸中心.NH3-TPD结果表明,随着CaO含量的增加,HZSM-5分子筛表面酸性较强的酸中心数目下降,总酸中心数目也下降,但酸性较强的酸中心下降较快.表明适量的CaO改性HZSM-5分子筛不是除去表面所有的酸中心,而是通过与表面强酸中心的作用,使其向弱酸和中强

  9. Design and characterization of chitosan/zeolite composite films--Effect of zeolite type and zeolite dose on the film properties.

    Science.gov (United States)

    Barbosa, Gustavo P; Debone, Henrique S; Severino, Patrícia; Souto, Eliana B; da Silva, Classius F

    2016-03-01

    Chitosan films can be used as wound dressings for the treatment of chronic wounds and severe burns. The antimicrobial properties of these films may be enhanced by the addition of silver. Despite the antimicrobial activity of silver, several studies have reported the cytotoxicity as a factor limiting its biomedical applications. This problem may, however, be circumvented by the provision of sustained release of silver. Silver zeolites can be used as drug delivery platforms to extend the release of silver. The objective of this study was to evaluate the addition of clinoptilolite and A-type zeolites in chitosan films. Sodium zeolites were initially subjected to ion-exchange in a batch reactor. Films were prepared by casting technique using a 2% w/w chitosan solution and two zeolite doses (0.1 or 0.2% w/w). Films were characterized by thermal analysis, color analysis, scanning electron microscopy, X-ray diffraction, and water vapor permeation. The results showed that films present potential for application as dressing. The water vapor permeability is one of the main properties in wound dressings, the best results were obtained for A-type zeolite/chitosan films, which presented a brief reduction of this property in relation to zeolite-free chitosan film. On the other hand, the films containing clinoptilolite showed lower water vapor permeation, which may be also explained by the best distribution of the particles into the polymer which also promoted greater thermal resistance. PMID:26706528

  10. Mechanish of dTTP Inhibition of the Bifunctional dCTP Deaminase:dUTPase Encoded by Mycobacterium tuberculosis

    DEFF Research Database (Denmark)

    Helt, Signe Smedegaard; Thymark, Majbritt; Harris, Pernille;

    2008-01-01

    Recombinant deoxycytidine triphosphate (dCTP) deaminase from Mycobacterium tuberculosis was produced in Escherichia coli and purified. The enzyme proved to be a bifunctional dCTP deaminase:deoxyuridine triphosphatase. As such, the M. tuberculosis enzyme is the second bifunctional enzyme to be cha...

  11. Synthesis of NaA zeolite from kaolin source

    Institute of Scientific and Technical Information of China (English)

    Qian MIAO; Zhihui ZHOU; Jianhua YANG; Jinming LU; Shiwei YAN; Jinqu WANG

    2009-01-01

    In this work, zeolite NaA was successfully synthesized by a hydrothermal method using kaolin as a combined source for silica and alumina. Zeolite NaA with high static water adsorption was synthesized from the low-cost raw material, kaolin, and the reaction parameters were optimized. Metakaolin was obtained by calcining kaolin at temperatures ranged from 953 K to 1173 K. The synthesis mixture was pre-crystallized at 343 K and crystallized at 373 K successively. Zeolite NaA was obtained, which was confirmed by SEM, XRD and the water adsorption analysis. The optimized metakaolinization temperature was found at 973 K. The influence of Na2O/SiO2 molar ratio, pre-crystallization time and seed on the crystal- lization of NaA zeolite was investigated. A thorough mixing of metakaolin and NaOH solution was favourable for the nucleation/crystallization rate. The obtained NaA zeolite under the optimized conditions shows excellent crystallinity and static water adsorption of 28.0wt-%,which was higher than 25.9 wt-% of the commercial NaA zeolite. Kaolin was suggested to be a feasible and economical raw material for the practical industrial applications for NaA zeolite.

  12. Distribution of metal and adsorbed guest species in zeolites

    International Nuclear Information System (INIS)

    Because of their high internal surface areas and molecular-size cavity dimensions, zeolites are used widely as catalysts, shape- selective supports, or adsorbents in a variety of important chemical processes. For metal-catalyzed reactions, active metal species must be dispersed to sites within the zeolite pores that are accessible to diffusing reactant molecules. The distribution of the metal, together with transport and adsorption of reactant molecules in zeolite powders, are crucial to ultimate catalyst performance. The nature of the metal or adsorbed guest distribution is known, however, to be dramatically dependent upon preparatory conditions. Our objective is to understand, at the molecular level, how preparatory treatments influence the distribution of guest species in zeolites, in order that macroscopic adsorption and reaction properties of these materials may be better understood. The sensitivity of xenon to its adsorption environment makes 129Xe NMR spectroscopy an important diagnostic probe of metal clustering and adsorbate distribution processes in zeolites. The utility of 129Xe NMR depends on the mobility of the xenon atoms within the zeolite-guest system, together with the length scale of the sample heterogeneity being studied. In large pore zeolites containing dispersed guest species, such as Pt--NaY, 129Xe NMR is insensitive to fine structural details at room temperature

  13. Copper cation removal in an electrokinetic cell containing zeolite.

    Science.gov (United States)

    Elsayed-Ali, Omar H; Abdel-Fattah, Tarek; Elsayed-Ali, Hani E

    2011-01-30

    Zeolites are used in environmental remediation of soil or water to immobilize or remove toxic materials by cation exchange. An experiment was conducted to test the use a low electric field to direct the toxic cations towards the zeolite. An electrokinetic cell was constructed using carbon electrodes. Synthetic Linde Type A (LTA) zeolite was placed in the cell. Copper(II) chloride dissolved in water was used as a contaminant. The Cu(2+) concentration was measured for ten hours with and without an applied electric field. The removal of the Cu(2+) ions was accelerated by the applied field in the first two hours. For longer time, the electric field did not improve the removal rate of the Cu(2+) ions. The presence of zeolite and applied electric field complicates the chemistry near the cathode and causes precipitation of Cu(2+) ions as copper oxide on the surface of the zeolite. With increased electric field the zeolite farther away from the cathode had little cation exchange due to the higher drift velocity of the Cu(2+) ions. The results also show that, in the LTA Zeolite A pellets, the cation exchange of Cu is limited to a shell of several tens of micrometers. PMID:21109348

  14. Introduction to chemistry of crystalline zeolites and its applications

    International Nuclear Information System (INIS)

    Establishes the zeolites as the most important group of solid acids and its relation to the contemporaneous chemical industry. It describes that zeolites are used in the following applications: refineries, chemicals/petrochemicals, environmental chemistry, separation of gas, adsorbent ia and ionic exchange in water purification in mineral processes, medicine and agricultural industry. Zeolites are defined as crystalline aluminium silicates with a compound structure of interconnected tetrahedrons. It mentions the key components in zeolites structure. It focuses that structural basic unity of the zeolite is the tetrahedron and compound structural unities are: cells and columns. Besides, it describes that pore system defines a lot of all its properties; but chemical composition affects them. Composition and properties of zeolites are established: adsorption, molecular sieves, acidity, selectivity, transition state in the hydrocarbon's chemistry. It concludes that the newer application of zeolite is in oxidations: Titanium-Silicate-1; production of propylene's oxide using peroxide of hydrogen as oxidizing. The catalysis is an active area of research, and the most popular areas are related to chemicals and the environment

  15. Distribution of metal and adsorbed guest species in zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Chmelka, B.F.

    1989-12-01

    Because of their high internal surface areas and molecular-size cavity dimensions, zeolites are used widely as catalysts, shape- selective supports, or adsorbents in a variety of important chemical processes. For metal-catalyzed reactions, active metal species must be dispersed to sites within the zeolite pores that are accessible to diffusing reactant molecules. The distribution of the metal, together with transport and adsorption of reactant molecules in zeolite powders, are crucial to ultimate catalyst performance. The nature of the metal or adsorbed guest distribution is known, however, to be dramatically dependent upon preparatory conditions. Our objective is to understand, at the molecular level, how preparatory treatments influence the distribution of guest species in zeolites, in order that macroscopic adsorption and reaction properties of these materials may be better understood. The sensitivity of xenon to its adsorption environment makes {sup 129}Xe NMR spectroscopy an important diagnostic probe of metal clustering and adsorbate distribution processes in zeolites. The utility of {sup 129}Xe NMR depends on the mobility of the xenon atoms within the zeolite-guest system, together with the length scale of the sample heterogeneity being studied. In large pore zeolites containing dispersed guest species, such as Pt--NaY, {sup 129}Xe NMR is insensitive to fine structural details at room temperature.

  16. Potential applications of synthetic zeolites for in situ land reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Rebedea, I.; Edwards, R. [Liverpool John Moores University (United Kingdom). School of Chemical and Physical Sciences Byrom Street; Lepp, N.W. [Liverpool John Moores University (United Kingdom). School of Biological and Earth Science Byrom Street; Lovell, A.J. [Crosfield Chemicals, Warrington, Cheshire (United Kingdom)

    1997-12-31

    The results of a detailed study on the use of synthetic zeolites for the amelioration of contaminated soils are presented. Binary exchange isotherms (25 C) for the systems Na/M (where M is Cd{sup 2+}, Cu{sup 2+}, Pb{sup 2+} and Zn{sup 2+}) and three synthetic zeolites have been derived. The zeolites studied, 4A, P and Y, showed a preference for the exchanging divalent metal cation over sodium. The effect of the three zeolites on the pool of plant available heavy metals of three contaminated soils (mine spoil and sewage sludge application) has been determined, with all three zeolites showing beneficial effects at differing levels of application. The phyto-toxicity and metal bioavailability in the soils, with and without zeolite application, was assessed by growing test species, Lolium perenne, Helianthus annuus and Zea mays and determining the resulting plant metal concentrations and plant biomass. The optimum application rates for the various zeolites were determined

  17. Sorption of trifluoromethane in zeolites and ionic liquid

    International Nuclear Information System (INIS)

    Highlights: • Adsorption of trifluoromethane on zeolites Na-Y, K,H-Y, and Rb,Na-Y. • Absorption of trifluoromethane in ionic liquid, [emim][Tf2N]. • Heat of adsorption of trifluoromethane on zeolites from 29 to 35 kJ · mol−1. • Type II adsorption on zeolites. • Type V phase behavior in ionic liquid. -- Abstract: Sorption isotherms for trifluoromethane (R-23) on three zeolites, Na-Y, K,H-Y, and Rb,Na-Y and ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [emim][Tf2N] have been measured at ca. 298 and 323 K, using a gravimetric microbalance. The adsorption on the zeolites reaches about 3 mol · kg−1 at 0.025 MPa and 298 K while in the ionic liquid the absorption reaches 3 mol · kg−1 at about 2.5 MPa (100 times higher pressure). Three different adsorption models (Langmuir, multi-site Langmuir, and BET equations) have been used to analyze the zeolite sorption data, with a particular interest in the heat of adsorption (−ΔH). The heat of adsorption for zeolites Na-Y, K,H-Y, and Rb,Na-Y were about 35 ± 3 kJ · mol−1, 29 ± 3 kJ · mol−1, and 34 ± 5 kJ · mol−1, respectively. These values are within the range of typical physical adsorption. According to the IUPAC classification, the zeolites exhibit Type II adsorption and according to the Scott and van Konynenburg classification the ionic liquid is predicted to be Type V phase behavior. The adsorption process on the zeolites took more time than the absorption process in the ionic liquid to reach the thermodynamic equilibrium and both processes were reversible

  18. Enhanced Bifunctional Oxygen Catalysis in Strained LaNiO3 Perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Petrie, Jonathan R.; Cooper, Valentino R.; Freeland, John W.; Meyer, Tricia L.; Zhang, Zhiyong; Lutterman, Daniel A.; Lee, Ho Nyung

    2016-03-02

    Strain is known to greatly influence low temperature oxygen electro catalysis on noble metal films, leading to significant enhancements in bifunctional activity essential for fuel cells and Metal-air batteries. However, its catalytic impact on transition-metal oxide thin films, such as perovskites, is not widely understood. Here, we epitaxially strain the conducting perovskite LaNiO3 to systematically determine its influence on both the oxygen reduction and oxygen evolution reaction. Uniquely, we found that compressive strain could significantly enhance both reactions, yielding a bifunctional catalyst that surpasses the performance of noble metals' such as Pt. We attribute the improved bifunctionality to strain induced splitting of the e(g) Orbitals, which can customize orbital asymmetry at the surface. Analogous to strain induced shifts in the d-band center of noble metals relative to the Fermi level, :such splitting can dramatically affect catalytic activity in this perovskite and other potentially more active Oxides.

  19. Nickel sulfide microsphere film on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting.

    Science.gov (United States)

    Zhu, Wenxin; Yue, Xiaoyue; Zhang, Wentao; Yu, Shaoxuan; Zhang, Yuhuan; Wang, Jing; Wang, Jianlong

    2016-01-25

    Developing low-cost, efficient, and bifunctional electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is an appealing yet challenging task. Herein, for the first time, a NiS microsphere film was grown in situ on Ni foam (NiS/Ni foam) via a sulfurization reaction as an efficient bifunctional electrocatalyst for overall water splitting with superior activity and good durability. This NiS/Ni foam electrode delivers 20 mA cm(-2) at an overpotential of 158 mV for the HER and 50 mA cm(-2) at an overpotential of 335 mV for the OER in 1.0 M KOH. This bifunctional electrode also enables a high-efficiency alkaline water electrolyzer with 10 mA cm(-2) at a cell voltage of only 1.64 V, which could be promising in water splitting devices for large-scale hydrogen production. PMID:26661579

  20. Polymer-Supported Reagents: The Role of Bifunctionality in the Design of Ion-Selective Complexants

    Energy Technology Data Exchange (ETDEWEB)

    Alexandratos, S. D.

    2001-06-01

    The importance of multi-functionality in the preparation of ion-selective polymers is evident from the structure of enzymes where specific metal ions are bound through cooperative interactions among different amino acids. In synthetic polymers, ionic selectivity is enhanced when a chemical reaction is superimposed on an ion-exchange process. The concept of reactive ion exchange has been extended through the synthesis of crosslinked polymers whose metal ion selectivity is a function of reduction, coordination or precipitation reactions as determined by various covalently bound ligands. Development of three classes of dual mechanism bifunctional polymers, a new series of bifunctional diphosphonate polymers, and novel bifunctional ion-selective polymers with enhanced ionic accessibility has been accomplished.

  1. Thermal behaviour of beta-uranophane

    International Nuclear Information System (INIS)

    Beta-uranophane from Perus, SP, Brazil- has been heated progressively up to 1.3500C, and its thermal behaviour has been investigated thoroughly by several methods: thermo-gravimetry, differential thermal analysis, optical measurements, infra-red spectroscopy, and X-Ray diffraction. The mineral seems to be stable up to a temperature of 2000C, confirmed by the several experimental procedures. The differential thermal analysis gives a sharper point of transformation at 1650C, which should be ascribed to water evaporation (zeolitic water). The crystal structure of the mineral could be transformed into a random layer structure, due probably to loss of the structural water. This kind of crystal disorder induces, as a rule, in the X-ray powder diagrams, absences of the hkl reflections. This could explain the small number of observed lines in the powder photographs of the material heated above 2000C. A new phase transformation is reported in the temperature interval of 700 to 8000C. This transformation should be related to the beta-uranophane chemical breakdown into two or more new crystalline phases. The chemical composition of such products is discussed in the paper. As the temperature rises to a higher level, a phase transformation takes place between 1000 and 12000C and yet another one in the range of 1200 to 13500C. The latter transition could be ascribed to the formation of an alloy between the platinum holder and the breakdown products of beta-uranophane

  2. Catalytic pyrolysis using UZM-44 aluminosilicate zeolite

    Science.gov (United States)

    Nicholas, Christopher P; Boldingh, Edwin P

    2013-12-17

    A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula Na.sub.nM.sub.m.sup.k+T.sub.tAl.sub.1-xE.sub.xSi.sub.yO.sub.z where "n" is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, "m" is the mole ratio of M to (Al+E), "k" is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-44 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  3. Formaldehyde removal from wastewater applying natural zeolite

    Directory of Open Access Journals (Sweden)

    Dovilė Kulikauskaitė

    2015-10-01

    Full Text Available Formaldehyde is one of the most chemically active compounds which is discharged with untreated or just partially treated industrial wastewater. It is hazardous for environment and humans. Formaldehyde vapors can strongly irritate skin, can cause damage to eyes and harm respiratory tract. As long as formaldehyde causes a toxic effect on environment and living organisms, it is necessary to remove it from wastewater which is directed to natural water. There are many methods used for formaldehyde removal from wastewater: biological method, evaporation, membrane separation method. Most of them have disadvantages. Adsorption method has many advantages: it is fast, cheap, and universal, and can be widely used, therefore it was chosen for this research. Experiment was carried out with natural zeolite in different contact time with different concentration formaldehyde solutions. Concentration of formaldehyde was determined applying the Photocolorimetric Method. Method is based on reaction of formaldehyde with chromotropic acid and determination of formaldehyde concentration. Determined average sorption efficiency was highest when formaldehyde concentration was lowest, e. g. 2 mg/l (45.94% after eight hours of contact time with adsorbent. Sorption efficiency was increasing when the contact time increased, but when the contact time increased to 12 hours, sorption efficiency stayed the same because of the saturation of zeolite.

  4. Hierarchical zeolites from class F coal fly ash

    Science.gov (United States)

    Chitta, Pallavi

    Fly ash, a coal combustion byproduct is classified as types class C and class F. Class C fly ash is traditionally recycled for concrete applications and Class F fly ash often disposed in landfills. Class F poses an environmental hazard due to disposal and leaching of heavy metals into ground water and is important to be recycled in order to mitigate the environmental challenges. A major recycling option is to reuse the fly ash as a low-cost raw material for the production of crystalline zeolites, which serve as catalysts, detergents and adsorbents in the chemical industry. Most of the prior literature of fly ash conversion to zeolites does not focus on creating high zeolite surface area zeolites specifically with hierarchical pore structure, which are very important properties in developing a heterogeneous catalyst for catalysis applications. This research work aids in the development of an economical process for the synthesis of high surface area hierarchical zeolites from class F coal fly ash. In this work, synthesis of zeolites from fly ash using classic hydrothermal treatment approach and fusion pretreatment approach were examined. The fusion pretreatment method led to higher extent of dissolution of silica from quartz and mullite phases, which in turn led to higher surface area and pore size of the zeolite. A qualitative kinetic model developed here attributes the difference in silica content to Si/Al ratio of the beginning fraction of fly ash. At near ambient crystallization temperatures and longer crystallization times, the zeolite formed is a hierarchical faujasite with high surface area of at least 360 m2/g. This work enables the large scale recycling of class F coal fly ash to produce zeolites and mitigate environmental concerns. Design of experiments was used to predict surface area and pore sizes of zeolites - thus obviating the need for intense experimentation. The hierarchical zeolite catalyst supports tested for CO2 conversion, yielded hydrocarbons

  5. Aluminum-rich mesoporous MFI - type zeolite single crystals

    DEFF Research Database (Denmark)

    Kustova, Marina; Kustov, Arkadii; Christensen, Christina Hviid

    Zeolitcs are crystalline materials, which are widely used as solid acid catalysts and supports in many industrial processes. Recently, mesoporous MFI-type zeolite single crystals were synthesized by use of carbon particles as a mesopore template and sodium aluminate as the aluminum Source. With...... this technique, only zeolites with relatively low Al contents were reported (Si/Al ratio about 100). In this work, the preparation of aluminum-rich mesoporous MFI-type zeolite single crystals (Si/Al similar to 16-50) using aluminum isopropoxide as the aluminum Source is reported for the first time. All...

  6. Sorption of 60 Co in natural zeolite (clinoptilolite)

    International Nuclear Information System (INIS)

    A Mexican zeolite (clinoptilolite) from Taxco, Guerrero, was partially stabilized with sodium cations. Radioactive Cobalt (60 Co) was used to study the Co 2+ sorption in the stabilized zeolite (Na+). It was found that sorption in general does not favour the diffusion of cobalt between framework, it explains because of it is a natural zeolite and its composition heterogeneous decrease its exchange capacity by the generated competence to the existence other type of exchange ions. The cobalt retention reached the highest level, around 0.408 m eq Co2+ /g in the Na-Clinoptilolite. The crystallinity of the aluminosilicates was maintained during experiments, it was verified by XRD patterns. (Author)

  7. Immobilization of 137Cs on cement-zeolite composites

    International Nuclear Information System (INIS)

    The research has been mainly concerned with the solidification of radioactive waste in cement based matrices to reduce the mobility of cesium in the solid form. Zeolite was fixed in a cement based matrix and exposed to synthetic ground water. The zeolite can replace sand materials that are used in the cement formulations. The influences of different weights of zeolite and sand on the diffusion coefficients for 137Cs were studied using the solid waste form treated in ground water. (author). 3 refs, 3 figs, 8 tabs

  8. Aluminum-rich mesoporous MFI - type zeolite single crystals

    DEFF Research Database (Denmark)

    Kustova, Marina; Kustov, Arkadii; Christensen, Christina Hviid

    2005-01-01

    Zeolitcs are crystalline materials, which are widely used as solid acid catalysts and supports in many industrial processes. Recently, mesoporous MFI-type zeolite single crystals were synthesized by use of carbon particles as a mesopore template and sodium aluminate as the aluminum Source. With...... this technique, only zeolites with relatively low Al contents were reported (Si/Al ratio about 100). In this work, the preparation of aluminum-rich mesoporous MFI-type zeolite single crystals (Si/Al similar to 16-50) using aluminum isopropoxide as the aluminum Source is reported for the first time. All...

  9. Structural, thermal and electrical properties of natural zeolite in Syria

    International Nuclear Information System (INIS)

    we have applied, in this work, the techniques of X-Ray Diffraction (XRD), Differential Thermal Analysis (DTA), X-Ray Florescence (XRF), Electron Microscopy (EM) and Scanning of Electronic Microscope (SEM) in order to investigate some samples taken from Sis mountain located in Syrian territory where geological exploration efforts carried out by the General Establishment of Geology and Mineral Resources. The study indicates that zeolite could be existed there in an economical quantities. This work is intended to determine zeolite types and their concentrations as well as to investigate thermal and electrical properties of samples containing zeolite minerals. (author)

  10. Properties of natural zeolites in benefit of nutrition and health

    Directory of Open Access Journals (Sweden)

    Irina Smical

    2011-11-01

    Full Text Available Due to their remarkable properties, natural zeolites have come to the attention of medicineresearchers to find new ways of treating various diseases and ensure an improved supply of mineralsin nutrition. The research results have shown the beneficial effects of application of various types ofnatural zeolites in healing or ameliorating especially gastrointestinal and diarrhea disease and cancerdisease, as well. Because natural zeolites have a very good ability as ion exchangers they are largelyused in nutrition for supplying the essential minerals in nutrition of animals.

  11. Ion exchange of ammonium in natural and synthesized zeolites

    International Nuclear Information System (INIS)

    In this study, zeolite Na-P and Na-Y was prepared by hydrothermal treatment of the Chinese natural clinoptilolite with NaOH. The ion exchange of NH4+ into the three zeolites in the temperature range of 288-333 K was also investigated, and the thermodynamic parameters were calculated. The selectivity sequence for NH4+ entering the sodium form of the three materials was Na-clinoptilolite > Na-Y > Na-P, as indicated by values of ΔGo. The results demonstrated that the Si/Al molar ratio of zeolites determined the selectivity for NH4+

  12. Radiation effects on a zeolite ion exchanger and a pollucite

    International Nuclear Information System (INIS)

    Cation exchange capacity and selective Cs and Sr ion sorption measurements were found to be too insensitive to detect radiation effects on irradiated Ionsiv-IE-95 zeolite. However, leaching the zeolite while under γ-irradiation caused a modest increase in the desorption of exchangeable ions. Gamma-irradiation and subsequent leaching of a natural pollucite also slightly enhanced the leachability of this material. The increased desorption of ions from the zeolite and the enhanced leachability of the pollucite are apparently caused by a decrease in pH due to the generation of acidic species during irradiation

  13. Zeolite-catalyzed biomass conversion to fuels and chemicals

    DEFF Research Database (Denmark)

    Taarning, Esben; Osmundsen, Christian Mårup; Yang, Xiaobo;

    2011-01-01

    Heterogeneous catalysts have been a central element in the efficient conversion of fossil resources to fuels and chemicals, but their role in biomass utilization is more ambiguous. Zeolites constitute a promising class of heterogeneous catalysts and developments in recent years have demonstrated...... their potential to find broad use in the conversion of biomass. In this perspective we review and discuss the developments that have taken place in the field of biomass conversion using zeolites. Emphasis is put on the conversion of lignocellulosic material to fuels using conventional zeolites as well...

  14. Zeolite mineralogy of the Cayo formation in Guayaquil, Ecuador

    OpenAIRE

    Machiels, L.; Morante Carballo, Fernando Enrique; Snellings, R.; Calvo Pérez, Benjamín; Canoira López, Laureano; Paredes Bartolomé, Carlos; Elsen, J.

    2008-01-01

    This work shows the presence of zeolites in the Cretaceous Cayo formation in Coastal Ecuador. In the area of Guayaquil the Cayo formation consist of marine pyroclastic flow deposits, associated fallout tuffs and epiclastic rocks. The main zeolites are Ca-heulandite (mean Si/Al: 3.30) and Ca-clinoptilolite (mean Si/Al: 4.35). Less common are laumontite, mordenite and analcime. Zeolites compose 10–60% of the rocks. The deposit is of great importance for Ecuador, considering its enormous zeoliti...

  15. Biosorption of Cr VI supported on mordenite zeolite

    OpenAIRE

    Figueiredo, Hugo; Silva, Bruna Andreia Nogueira Airosa; Quintelas, C.; Neves, Isabel C.; Tavares, M. T.

    2008-01-01

    This work reports the usage of a combined zeolite-biosorbent system for the removal and recovery of aqueous CrVI. The biosorption system consisted of a bacterium, Arthrobacter viscosus, supported on two mordenite (MOR) type zeolites with different Si/Al ratio, HMOR (Si/Al = 10) and NaMOR (Si/Al = 6.5). The results show that the biofilm of A. viscosus supported on MOR zeolite is able to recover chromium from dilute solutions. For both biosorption-MOR systems, the maximum removal...

  16. Synthesis, characterization and catalytic activity of acid-base bifunctional materials through protection of amino groups

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yanqiu [College of Chemistry, Jilin University, Changchun 130023 (China); College of Chemistry, Mudanjiang Normal University, Mudanjiang 157012 (China); Liu, Heng; Yu, Xiaofang [College of Chemistry, Jilin University, Changchun 130023 (China); Guan, Jingqi, E-mail: guanjq@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130023 (China); Kan, Qiubin, E-mail: qkan@mail.jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130023 (China)

    2012-03-15

    Graphical abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. Highlights: Black-Right-Pointing-Pointer The acid-base bifunctional material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized through protection of amino groups. Black-Right-Pointing-Pointer The obtained bifunctional material was tested for aldol condensation. Black-Right-Pointing-Pointer The SO{sub 3}H-SBA-15-NH{sub 2} catalyst containing amine and sulfonic acid groups exhibited excellent acid-basic properties. -- Abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. X-ray diffraction (XRD), N{sub 2} adsorption-desorption, transmission electron micrographs (TEM), back titration, {sup 13}C magic-angle spinning (MAS) NMR and {sup 29}Si magic-angle spinning (MAS) NMR were employed to characterize the synthesized materials. The obtained bifunctional material was tested for aldol condensation reaction between acetone and 4-nitrobenzaldehyde. Compared with monofunctional catalysts of SO{sub 3}H-SBA-15 and SBA-15-NH{sub 2}, the bifunctional sample of SO{sub 3}H-SBA-15-NH{sub 2} containing amine and sulfonic acid groups exhibited excellent acid-basic properties, which make it possess high activity for the aldol condensation.

  17. Physical properties of bifunctional BST/LSMO nanocomposites

    International Nuclear Information System (INIS)

    We report the fabrication of bifunctional nanocomposites consisting of ferroelectric Ba0.7Sr0.3TiO3 (BST) and ferromagnetic La0.67Sr0.33MnO3 (LSMO) at different concentrations via a high-temperature solid state route. The structural, dielectric, electrical, magnetodielectric (MD), magnetoelectric (ME) and magnetic properties of BST/LSMO nanocomposites were systematically investigated over a wide range of temperatures and frequencies. The X-Ray Diffraction analyses reveal the nanocrystalline nature of the heterostructures, wherein both perovskite phases co-exist. No parasitic phases were observed. The study of the dielectric properties shows that the nanocomposites exhibit relaxor ferroelectric character, with ferroelectric-paraelectric phase transition temperatures around 287–292 K that do not follow the Curie-Weiss law. The electrical measurements indicate that ac conductivities of the nanocomposites follow the Jonscher's universal power law, with activation energies of 0.42–0.63 eV based on Arrhenius-type behavior at high temperatures. The nanocomposites exhibit well-defined ferromagnetic hysteresis loops at room temperature (RT). The MD and ME measurements at RT indicate that BST/LSMO exhibits a nonlinear ME effect at low frequencies, with a threshold near 0.5 T. The magnetocapacitance (MCp) measurements evidence a quadratic dependence on magnetic field, further confirming the multiferroic nature of BST/LSMO. The order of MCp was found to be ∼7% per Tesla. The analysis of the MCp measurements indicates that one of the BST/LSMO compositions studied can be considered as a new multiferroic compound

  18. Physical properties of bifunctional BST/LSMO nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Beltran-Huarac, Juan, E-mail: baristary26@gmail.com; Morell, Gerardo [Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, Puerto Rico 00931 (United States); Department of Physics, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico 00936 (United States); Martinez, Ricardo [Department of Mathematics and Physics, University of Puerto Rico, Cayey Campus, Cayey, Puerto Rico 00737 (United States)

    2014-02-28

    We report the fabrication of bifunctional nanocomposites consisting of ferroelectric Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} (BST) and ferromagnetic La{sub 0.67}Sr{sub 0.33}MnO{sub 3} (LSMO) at different concentrations via a high-temperature solid state route. The structural, dielectric, electrical, magnetodielectric (MD), magnetoelectric (ME) and magnetic properties of BST/LSMO nanocomposites were systematically investigated over a wide range of temperatures and frequencies. The X-Ray Diffraction analyses reveal the nanocrystalline nature of the heterostructures, wherein both perovskite phases co-exist. No parasitic phases were observed. The study of the dielectric properties shows that the nanocomposites exhibit relaxor ferroelectric character, with ferroelectric-paraelectric phase transition temperatures around 287–292 K that do not follow the Curie-Weiss law. The electrical measurements indicate that ac conductivities of the nanocomposites follow the Jonscher's universal power law, with activation energies of 0.42–0.63 eV based on Arrhenius-type behavior at high temperatures. The nanocomposites exhibit well-defined ferromagnetic hysteresis loops at room temperature (RT). The MD and ME measurements at RT indicate that BST/LSMO exhibits a nonlinear ME effect at low frequencies, with a threshold near 0.5 T. The magnetocapacitance (MC{sub p}) measurements evidence a quadratic dependence on magnetic field, further confirming the multiferroic nature of BST/LSMO. The order of MC{sub p} was found to be ∼7% per Tesla. The analysis of the MC{sub p} measurements indicates that one of the BST/LSMO compositions studied can be considered as a new multiferroic compound.

  19. Oxidations of amines with molecular oxygen using bifunctional gold–titania catalysts

    DEFF Research Database (Denmark)

    Klitgaard, Søren Kegnæs; Egeblad, Kresten; Mentzel, Uffe Vie;

    2008-01-01

    Over the past decades it has become clear that supported gold nanoparticles are surprisingly active and selective catalysts for several green oxidation reactions of oxygen-containing hydrocarbons using molecular oxygen as the stoichiometric oxidant. We here report that bifunctional gold–titania c......Over the past decades it has become clear that supported gold nanoparticles are surprisingly active and selective catalysts for several green oxidation reactions of oxygen-containing hydrocarbons using molecular oxygen as the stoichiometric oxidant. We here report that bifunctional gold...

  20. Structural basis for bifunctional peptide recognition at human δ-opioid receptor.

    Science.gov (United States)

    Fenalti, Gustavo; Zatsepin, Nadia A; Betti, Cecilia; Giguere, Patrick; Han, Gye Won; Ishchenko, Andrii; Liu, Wei; Guillemyn, Karel; Zhang, Haitao; James, Daniel; Wang, Dingjie; Weierstall, Uwe; Spence, John C H; Boutet, Sébastien; Messerschmidt, Marc; Williams, Garth J; Gati, Cornelius; Yefanov, Oleksandr M; White, Thomas A; Oberthuer, Dominik; Metz, Markus; Yoon, Chun Hong; Barty, Anton; Chapman, Henry N; Basu, Shibom; Coe, Jesse; Conrad, Chelsie E; Fromme, Raimund; Fromme, Petra; Tourwé, Dirk; Schiller, Peter W; Roth, Bryan L; Ballet, Steven; Katritch, Vsevolod; Stevens, Raymond C; Cherezov, Vadim

    2015-03-01

    Bifunctional μ- and δ-opioid receptor (OR) ligands are potential therapeutic alternatives, with diminished side effects, to alkaloid opiate analgesics. We solved the structure of human δ-OR bound to the bifunctional δ-OR antagonist and μ-OR agonist tetrapeptide H-Dmt-Tic-Phe-Phe-NH2 (DIPP-NH2) by serial femtosecond crystallography, revealing a cis-peptide bond between H-Dmt and Tic. The observed receptor-peptide interactions are critical for understanding of the pharmacological profiles of opioid peptides and for development of improved analgesics. PMID:25686086

  1. A nanostructured bifunctional Pd/C gas-diffusion electrode for metal-air batteries

    OpenAIRE

    McKerracher, R.D.; Alegre, C.; Baglio, V.; Aricò, A.S.; Ponce de León, C.; Mornaghini, F.; Rodlert, M.; Walsh, F. C.

    2015-01-01

    Designing a bifunctional air electrode which catalyses both the oxygen reduction and oxygen evolution reactions is an essential part of progress towards fully rechargeable metal-air batteries, such as the iron-air battery which is environmentally friendly, low cost, and does not suffer risk of thermal runaway like lithium-ion batteries. This paper reports the development of a lightweight carbon-based bifunctional air electrode, catalysed by a small (0.5 mg cm?2) loading of 30 wt.% palladium o...

  2. Direct catalytic transformation of carbohydrates into 5-ethoxymethylfurfural with acid–base bifunctional hybrid nanospheres

    DEFF Research Database (Denmark)

    Li, Hu; Khokarale, Santosh Govind; Kotni, Ramakrishna;

    2014-01-01

    A series of acid–base bifunctional hybrid nanospheres prepared from the self-assembly of basic amino acids and phosphotungstic acid (HPA) with different molar ratios were employed as efficient and recyclable catalysts for synthesis of liquid biofuel 5-ethoxymethylfurfural (EMF) from various...... carbohydrates. A high EMF yield of 76.6%, 58.5%, 42.4%, and 36.5% could be achieved, when fructose, inulin, sorbose, and sucrose were used as starting materials, respectively. Although, the acid–base bifunctional nanocatalysts were inert for synthesis of EMF from glucose based carbohydrates, ethyl...

  3. Janus nanobelts: fabrication, structure and enhanced magnetic-fluorescent bifunctional performance

    Science.gov (United States)

    Ma, Qianli; Yu, Wensheng; Dong, Xiangting; Wang, Jinxian; Liu, Guixia

    2014-02-01

    A new nanostructure of magnetic-fluorescent bifunctional Janus nanobelts with Fe3O4/PMMA as one half and Tb(BA)3phen/PMMA as the other half has been successfully fabricated by a specially designed parallel spinneret electrospinning technology. The morphology and properties of the final products were investigated in detail by X-ray diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), biological microscopy (BM), vibrating sample magnetometry (VSM) and fluorescence spectroscopy. The results revealed that the [Fe3O4/PMMA]//[Tb(BA)3phen/PMMA] magnetic-fluorescent bifunctional Janus nanobelts possess superior magnetic and fluorescent properties due to their special nanostructure. Compared with Fe3O4/Tb(BA)3phen/PMMA composite nanobelts, the magnetic-fluorescent bifunctional Janus nanobelts provided better performance. The new magnetic-fluorescent bifunctional Janus nanobelts have potential applications in novel nano-bio-label materials, drug target delivery materials and future nanodevices due to their excellent magnetic-fluorescent properties, flexibility and insolubility. Moreover, the construction technique for the Janus nanobelts is of universal significance for the fabrication of other multifunctional Janus nanobelts.A new nanostructure of magnetic-fluorescent bifunctional Janus nanobelts with Fe3O4/PMMA as one half and Tb(BA)3phen/PMMA as the other half has been successfully fabricated by a specially designed parallel spinneret electrospinning technology. The morphology and properties of the final products were investigated in detail by X-ray diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), biological microscopy (BM), vibrating sample magnetometry (VSM) and fluorescence spectroscopy. The results revealed that the [Fe3O4/PMMA]//[Tb(BA)3phen/PMMA] magnetic-fluorescent bifunctional Janus nanobelts possess superior magnetic and fluorescent properties due to their special

  4. Energy Storage in Bifunctional TiO2 Composite Materials under UV and Visible Light

    Directory of Open Access Journals (Sweden)

    Jialin Li

    2009-11-01

    Full Text Available This paper provides an overview of recent studies on energy storage in bifunctional TiO2 composite materials under UV and visible light. The working mechanism, property improvements and applications of these bifunctional TiO2 composite systems are introduced, respectively. The latest results obtained in our laboratory, especially a new process for photoelectric conversion and energy storage in TiO2/Cu2O bilayer films under visible light, are also presented. Hopefully this review will stimulate more fundamental and applied research on this subject in the future.

  5. Oxidative regeneration of toluene-saturated natural zeolite by gaseous ozone: The influence of zeolite chemical surface characteristics

    International Nuclear Information System (INIS)

    Highlights: • Surface acidity of modified natural zeolite is related to its chemical reactivity. • Brønsted acid sites are associated to toluene adsorption. • Lewis acid sites could decompose ozone generating surface active oxygen species. • Infrared spectra evidence active atomic oxygen and oxidation by-product formation. • 2NH4Z1 sample shows the highest reactivity toward adsorbed toluene. - Abstract: In this study, the effect of zeolite chemical surface characteristics on the oxidative regeneration of toluene saturated-zeolite samples is investigated. A Chilean natural zeolite (53% clinoptilolite, 40% mordenite and 7% quartz) was chemically modified by acid treatment with hydrochloric acid and by ion-exchange with ammonium sulphate. Thermal pre-treatments at 623 and 823 K were applied and six zeolite samples with different chemical surface characteristics were generated. Chemical modification of natural zeolite followed by thermal out-gassing allows distinguishing the role of acidic surface sites on the regeneration of exhausted zeolites. An increase in Brønsted acid sites on zeolite surface is observed as a result of ammonium-exchange treatment followed by thermal treatment at 623 K, thus increasing the adsorption capacity toward toluene. High ozone consumption could be associated to a high content of Lewis acid sites, since these could decompose ozone into atomic active oxygen species. Then, surface oxidation reactions could take part among adsorbed toluene at Brønsted acid sites and surface atomic oxygen species, reducing the amount of adsorbed toluene after the regenerative oxidation with ozone. Experimental results show that the presence of adsorbed oxidation by-products has a negative impact on the recovery of zeolite adsorption capacity

  6. Oxidative regeneration of toluene-saturated natural zeolite by gaseous ozone: The influence of zeolite chemical surface characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Alejandro, Serguei [Laboratorio de Tecnologías Limpias (F. Ingeniería), Universidad Católica de la Santísima Concepción, Alonso de Ribera 2850, Concepción (Chile); Núcleo de Energías Renovables (F. Ingeniería), Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco (Chile); Valdés, Héctor, E-mail: hvaldes@ucsc.cl [Laboratorio de Tecnologías Limpias (F. Ingeniería), Universidad Católica de la Santísima Concepción, Alonso de Ribera 2850, Concepción (Chile); Manéro, Marie-Hélène [Université de Toulouse (France); INPT, UPS (France); Laboratoire de Génie Chimique, 4, Allée Emile Monso, F–31030 Toulouse (France); CNRS (France); Laboratoire de Génie Chimique, F–31030 Toulouse (France); Zaror, Claudio A. [Departamento de Ingeniería Química (F. Ingeniería), Universidad de Concepción, Concepción, Correo 3, Casilla 160–C (Chile)

    2014-06-01

    Highlights: • Surface acidity of modified natural zeolite is related to its chemical reactivity. • Brønsted acid sites are associated to toluene adsorption. • Lewis acid sites could decompose ozone generating surface active oxygen species. • Infrared spectra evidence active atomic oxygen and oxidation by-product formation. • 2NH4Z1 sample shows the highest reactivity toward adsorbed toluene. - Abstract: In this study, the effect of zeolite chemical surface characteristics on the oxidative regeneration of toluene saturated-zeolite samples is investigated. A Chilean natural zeolite (53% clinoptilolite, 40% mordenite and 7% quartz) was chemically modified by acid treatment with hydrochloric acid and by ion-exchange with ammonium sulphate. Thermal pre-treatments at 623 and 823 K were applied and six zeolite samples with different chemical surface characteristics were generated. Chemical modification of natural zeolite followed by thermal out-gassing allows distinguishing the role of acidic surface sites on the regeneration of exhausted zeolites. An increase in Brønsted acid sites on zeolite surface is observed as a result of ammonium-exchange treatment followed by thermal treatment at 623 K, thus increasing the adsorption capacity toward toluene. High ozone consumption could be associated to a high content of Lewis acid sites, since these could decompose ozone into atomic active oxygen species. Then, surface oxidation reactions could take part among adsorbed toluene at Brønsted acid sites and surface atomic oxygen species, reducing the amount of adsorbed toluene after the regenerative oxidation with ozone. Experimental results show that the presence of adsorbed oxidation by-products has a negative impact on the recovery of zeolite adsorption capacity.

  7. BETA-S, Multi-Group Beta-Ray Spectra

    International Nuclear Information System (INIS)

    1 - Description of program or function: BETA-S calculates beta-decay source terms and energy spectra in multigroup format for time-dependent radionuclide inventories of actinides, fission products, and activation products. Multigroup spectra may be calculated in any arbitrary energy-group structure. The code also calculates the total beta energy release rate from the sum of the average beta-ray energies as determined from the spectral distributions. BETA-S also provides users with an option to determine principal beta-decaying radionuclides contributing to each energy group. The CCC-545/SCALE 4.3 (or SCALE4.2) code system must be installed on the computer before installing BETA-S, which requires the SCALE subroutine library and nuclide-inventory generation from the ORIGEN-S code. 2 - Methods:Well-established models for beta-energy distributions are used to explicitly represent allowed, and 1., 2. - and 3. -forbidden transition types. Forbidden non-unique transitions are assumed to have a spectral shape of allowed transitions. The multigroup energy spectra are calculated by numerically integrating the energy distribution functions using an adaptive Simpson's Rule algorithm. Nuclide inventories are obtained from a binary interface produced by the ORIGEN-S code. BETA-S calculates the spectra for all isotopes on the binary interface that have associated beta-decay transition data in the ENSDF-95 library, developed for the BETA-S code. This library was generated from ENSDF data and contains 715 materials, representing approximately 8500 individual beta transition branches. 3 - Restrictions on the complexity of the problem: The algorithms do not treat positron decay transitions or internal conversion electrons. The neglect of positron transitions in inconsequential for most applications involving aggregate fission products, since most of the decay modes are via electrons. The neglect of internal conversion electrons may impact on the accuracy of the spectrum in the low

  8. Aluminum distribution in the framework of zeolites - key parameter controling properties of zeolite catalysts

    Czech Academy of Sciences Publication Activity Database

    Sobalík, Zdeněk; Dědeček, Jiří; Sazama, Petr; Gábová, Vendula; Wichterlová, Blanka

    Prague: J. Heyrovský Institute of Physical Chemistry of the ASCR, v.v.i, 2011 - (Horáček, M.). P3 ISBN 978-80-87351-14-7. [Czech-Italian- Spanish Symposium on Molecular Sieves and Catalysis /4./. 15.06.2011-18.06.2011, Liblice] Institutional research plan: CEZ:AV0Z40400503 Keywords : zeolites * Al atoms Subject RIV: CF - Physical ; Theoretical Chemistry

  9. Summary of radioactive operations for Zeolite Vitrification Demonstration Program

    International Nuclear Information System (INIS)

    The Zeolite Vitrification Demonstration Program (ZVDP) has successfully vitrified the zeolite used in the Submerged Demineralizer System (SDS) at Three Mile Island (TMI) Unit 2 to a borosilicate glass product. Under the ZVDP, the US Department of Energy authorized the Pacific Northwest Laboratory (PNL) to demonstrate the vitrification process on a full scale by use of the in-can melter process. This program was accomplished in two phases. The first phase developed a glass formulation and demonstrated the vitrification process with nonradioactive materials. The second phase received three radioactive liners from the SDS and vitrified the zeolite contained in each. These studies concluded that emission of melter-generated aerosols is responsible for most radioactive, process-related losses to the off-gas system. Tritium, in the form of water vapor, is the only significant gaseous radioactive effluent generated by the vitrification of TMI zeolite waste

  10. Theoretical models for NO decomposition in Cu-exchanged zeolites

    CERN Document Server

    Tsekov, R

    2015-01-01

    A unified description of the catalytic effect of Cu-exchanged zeolites is proposed for the decomposition of NO. A general expression for the rate constant of NO decomposition is obtained by assuming that the rate-determining step consists of the transferring of a single atom associated with breaking of the N-O bond. The analysis is performed on the base of the generalized Langevin equation and takes into account both the potential interactions in the system and the memory effects due to the zeolite vibrations. Two different mechanisms corresponding to monomolecular and bimolecular NO decomposition are discussed. The catalytic effect in the monomolecular mechanism is related to both the Cu+ ions and zeolite O-vacancies, while in the case of the bimolecular mechanism the zeolite contributes through dissipation only. The comparison of the theoretically calculated rate constants with experimental results reveals additional information about the geometric and energetic characteristics of the active centers and con...

  11. Oxidation of Bioethanol using Zeolite-Encapsulated Gold Nanoparticles

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Abildstrøm, Jacob Oskar; Wang, Feng;

    2014-01-01

    With the ongoing developments in biomass conversion, the oxidation of bioethanol to acetaldehyde may become a favorable and green alternative to the preparation from ethylene. Here, a simple and effective method to encapsulate gold nanoparticles in zeolite silicalite-1 is reported and their high...... activity and selectivity for the catalytic gas-phase oxidation of ethanol are demonstrated. The zeolites are modified by a recrystallization process, which creates intraparticle voids and mesopores that facilitate the formation of small and disperse nanoparticles upon simple impregnation. The individual...... zeolite crystals comprise a broad range of mesopores and contain up to several hundred gold nanoparticles with a diameter of 2-3nm that are distributed inside the zeolites rather than on the outer surface. The encapsulated nanoparticles have good stability and result in 50% conversion of ethanol with 98...

  12. Oxidation of Bioethanol using Zeolite-Encapsulated Gold Nanoparticles

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Abildstrøm, Jacob Oskar; Wang, Feng;

    2014-01-01

    With the ongoing developments in biomass conversion, the oxidation of bioethanol to acetaldehyde may become a favorable and green alternative to the preparation from ethylene. Here, a simple and effective method to encapsulate gold nanoparticles in zeolite silicalite‐1 is reported and their high...... activity and selectivity for the catalytic gas‐phase oxidation of ethanol are demonstrated. The zeolites are modified by a recrystallization process, which creates intraparticle voids and mesopores that facilitate the formation of small and disperse nanoparticles upon simple impregnation. The individual...... zeolite crystals comprise a broad range of mesopores and contain up to several hundred gold nanoparticles with a diameter of 2–3 nm that are distributed inside the zeolites rather than on the outer surface. The encapsulated nanoparticles have good stability and result in 50 % conversion of ethanol with 98...

  13. Ammoniacal nitrogen removal from groundwaters using natural and synthetic zeolites

    OpenAIRE

    Matsiyevska, Oksana; Chverenchuk, Andrii; Soprunko, Svitlana; Berezyuk, Roman; Pidlisny, Bogdan

    2013-01-01

    In article results of ammoniacal nitrogen occurrence ways into groundwaters analysis was represented. NH4+ removing effectivity from simulative solutions by natural (Sokyrnytsia minefield, Ukraine) and synthetic zeolites was compared.

  14. Properties of zeolite a synthesized by natural bentonite

    International Nuclear Information System (INIS)

    Synthetic zeolite was prepared by using of natural bentonite from Kampo area and the application of detergent builder was investigated. The optimum synthetic condition was SiO2/Al2O3 = 2, Na2O/Al2O3 = 1, H2O/Al2O3 30 at 90 deg C for 3 hr and it was found by XRD analysis that the zeolite synthesized under this condition was type A. When the zeolite A synthesized under the optimum condition was contacted with 40 deg Dh CaCl2 solution at 30 deg C for 15 min, the cation exchange capacity was 264.9 mg CaO/g-zeolite. And the whiteness of the sample was 89% and the mean particle size was 9.95μm. (author)

  15. Zeolite - A Natural Filter Material for Lead Polluted Water

    Science.gov (United States)

    Neamţu, Corina Ioana; Pică, Elena Maria; Rusu, Tiberiu

    2014-11-01

    Reducing the concentration of lead ions in a wastewater using zeolite has proven to be a successful water treatement method, all over the world. Putting the two media (solid and liquid) in contact in static conditions had good results regarding the concentration of the filtered solution, the pH and the electric conductivity, depending on the values of certain parameters such as the amount of the zeolite, volume of the solution or interaction time. The present study highlights the zeolite ability to retain the lead ions from a solution, in dynamic interaction conditions between the two environments, in a short interaction time. The results confirmed the effectiveness of ion exchange water treatment method in the conditions set, emphasizing once again the properties of the filter material - the zeolite

  16. Preparation of Natural Zeolite for Air Dehumidification in Food Drying

    Directory of Open Access Journals (Sweden)

    Mohamad Djaeni

    2015-03-01

    Full Text Available Drying with air dehumidification with solid adsorbent improves the quality of food product as well as energy efficiency. The natural zeolite is one of adsorbent having potential to adsorb the water.  Normally, the material was activated to open the pore, remove the organic impurities, and increase Si/Al rate. Hence, it can enhance the adsorbing capacity. This research studied the activation of natural zeolite mined from Klaten, Indonesia as air dehumidification for food drying. Two different methods were used involving activation by heat and NaOH introduction.  As indicators, the porosity and water loaded were evaluated. Results showed both methods improved the adsorbing capacity significantly. With NaOH, the adsorbing capacity was higher. The simple test in onion and corn drying showed the presence of activated natural zeolite can speed up water evaporation positively. This performance was also comparable with Zeolite 3A

  17. Catalytic Cracking of Used Palm Oil using Composite Zeolite

    International Nuclear Information System (INIS)

    The rapid expansion of human society implies greater energy demand and environmental issues. In face of depletion energy resources, research is being carried out widely in order to convert the plant oil into biofuel. In this research, the production of liquid biofuels via catalytic cracking of used palm oil in the presence of composite zeolite was studied. The performance of composite zeolite of different properties in the reaction has been evaluated. The catalytic cracking reactions were carried out in a batch reactor at reaction temperature of 350 degree Celsius for an hour. In the present study, adjusting the ratio of meso porous coating to microporous zeolite and magnesium loading on composite zeolite catalyst were found to be able to increase the gasoline fraction and overall conversion of the reaction. (author)

  18. Zeolites and clays behavior in presence of radioactive solutions

    International Nuclear Information System (INIS)

    Natural aluminosilicates have found application as selective ion exchangers for radioactive cations, present in liquid wastes arising from nuclear facilities. Among severals cations and complex mixtures of them, Co is a common constituent of liquid radioactive wastes. Two types of zeolites (Y zeolite, and natural mexican erionite), and two types of clays (natural bentonite, and Al-expanded bentonite (Al-B) were used. Previous to the experiments, the zeolites and the natural bentonite were stabilized to their respective Na+ form using 5N NaCl solution. 2Na+→ 60Co2+ ion exchange kinetics in zeolites and clays was followed by gamma spectrometry using a NaCl-Co(NO3)2 isonormal solution (0.1N) labeled with 60Co-Co(NO3)2 (100 μ Ci). Before and after experiments, the structural changes in the cristallinity of aluminosilicates were determined by X-ray diffraction. XRD analyzes show that the cristallinity of the aluminosilicates was not affected by ion exchange. After Co exchange the cell parameters were determined in all samples. The efficiency of zeolites, natual clays and expanded clays to remove cobalt ions from solutions depends on the ion echange capacity of the material. Results for long contacts time, 18 days, show that Co is more effectively removed by Y zeolite ( 4.07 wt %), followed by erionite (3.09 wt %), then bentonite ( 2.36 wt %) and finally expanded bentonite ( 0.70 wt %). In Y zeolite an unusual fast soportion uptake of 4.51 % wt Co was observed followed by a desorption process to 4.07 %. This effect is due to the different hydration degree of zeolites during the contact time between the zeolite and the 60Co solution. In erionite the exchange is lower than in Y-zeolite, frist because the Si/Al ratio is higher for erionite than for Y-zeolite and second because K ions in erionite cannot be exchanged during the stabilization of erionite in 5N NaCl solution. The low exchange in expanded bentonite was expected because its cation exchange capacity was

  19. Use of Natural Zeolite to Upgrade Activated Sludge Process

    OpenAIRE

    Hrenović, Jasna; Büyükgüngör, Hanife; Orhan, Yüksel

    2003-01-01

    The objective of this study was to achieve better efficiency of phosphorus removal in an enhanced biological phosphorus removal process by upgrading the system with different amounts of natural zeolite addition. The system performance for synthetic wastewater containing different carbon sources applied at different initial concentrations of phosphorus, as well as for municipal wastewater, was investigated. Natural zeolite addition in the aerobic phase of the anaerobic/aerobic bioaugmented act...

  20. Catalytic transformation of methyl benzenes over zeolite catalysts

    KAUST Repository

    Al-Khattaf, S.

    2011-02-01

    Catalytic transformation of three methyl benzenes (toluene, m-xylene, and 1,2,4-trimethyl benzene) has been investigated over ZSM-5, TNU-9, mordenite and SSZ-33 catalysts in a novel riser simulator at different operating conditions. Catalytic experiments were carried out in the temperature range of 300-400 °C to understand the transformation of these alkyl benzenes over large pore (mordenite and SSZ-33) in contrast to medium-pore (ZSM-5 and TNU-9) zeolite-based catalysts. The effect of reaction conditions on the isomerization to disproportionation product ratio, distribution of trimethylbenzene (TMB) isomers, and p-xylene/o-xylene ratios are reported. The sequence of reactivity of the three alkyl benzenes depends upon the pore structure of zeolites. The zeolite structure controls primarily the diffusion of reactants and products while the acidity of these zeolites is of a secondary importance. In the case of medium pore zeolites, the order of conversion was m-xylene > 1,2,4-TMB > toluene. Over large pore zeolites the order of reactivity was 1,2,4-TMB > m-xylene > toluene for SSZ-33 catalyst, and m-xylene ∼ 1,2,4-TMB > toluene over mordenite. Significant effect of pore size between ZSM-5 and TNU-9 was observed; although TNU-9 is also 3D 10-ring channel system, its slightly larger pores compared with ZSM-5 provide sufficient reaction space to behave like large-pore zeolites in transformation of aromatic hydrocarbons. We have also carried out kinetic studies for these reactions and activation energies for all three reactants over all zeolite catalysts under study have been calculated. © 2011 Elsevier B.V.

  1. Sorption behavior of tritiated water on Armenian natural zeolites

    International Nuclear Information System (INIS)

    The sorptive behavior of tritiated water on natural, irradiated, chemically treated and heated at high temperatures Armenian zeolites was studied and their capacity for the separation and enrichment of tritiated water was evaluated. The distribution coefficients from the batch experiments were calculated for different zeolites and vary between 0.23 and 3.01. The influence of temperature, acidity, basicity, specific activity, electron and gamma-irradiation on sorption has been studied. (author)

  2. DIELECTRIC PROPERTIES OF NATURAL SYRIAN AND ARMENIAN ZEOLITES

    OpenAIRE

    Sahakyan, A.; Soulayman, S.; Nikogosyan, S.; Yunusova, S.

    2007-01-01

    Using an experimental arrangement, designed and manufactured locally, the electric permittivity ε = ε' iε" and alternative current (a.c.) conductivity σac of natural Syrian and Armenian zeolites were investigated in order to understand the mechanism of the electrical properties in these materials. The frequency dependence of angle tangents (tan δ = ε" /ε') of dielectric losses was also studied for both zeolites. The mentioned measuring arrangement has a configuration of an electrical bridge. ...

  3. Phosphate recovery using calcium zeolite in ultrafiltration pilot plant

    OpenAIRE

    La Rotonda Ferrer, Pablo

    2015-01-01

    One of the most important ecological problems is the eutrophication, this process consist in the uncontrolled growing of algae and phytoplankton, which can destroy entire aquatic ecosystems. The reason of this process is the excess of nutrients, as for example, phosphate coming from human activities. This project focus on the study of synthetic zeolites capacity to absorb phosphate from wastewater. Zeolites are porous minerals of the alumina-silicates family with high capacity ...

  4. NMR Studies of Quantum Rotors Confined in Zeolite

    Science.gov (United States)

    Ji, Yu; Hamida, J. A.; Sullivan, N. S.

    2010-02-01

    We report the results of NMR studies of methane trapped in zeolite at low temperatures. Samples were prepared to contain 1.0±0.2 molecules per α-sodalite cage of zeolite-13X. The NMR spin-spin and spin-lattice relaxation times were measured for 4NMR spin-spin relaxation is seen at this “melting” transition.

  5. Effects of Zeolite on Seed Quality of Organic Upland Rice

    OpenAIRE

    Raumjit Nokkoul; Teerayut Wichitparp

    2014-01-01

    The production of high quality seeds is an important strategy for organic seed producers. In particular, organic farming is a production system which avoids the use of synthetic fertilizers, insecticides and plant growth regulators. Alternative management organic farming system is reducing nutrient loss and improving soil quality. Zeolite is organic matter and alternative for organic upland rice production. Our objective was to determine the effects of zeolite on seed quality of organic uplan...

  6. Production and characterization of zeolite from fly ash by xrd

    OpenAIRE

    González, Daniel R.; Pérez, Lucía; Santa, Alejandra; Ramírez, José H.

    2014-01-01

    By classical alkaline hydrothermal process, Zeolites were synthesized from fly ashes coming from a thermo electrical power plant. This process consisted on the reaction between the ash’s inorganic oxides (primarily aluminum and silicon oxides, which according to the characterization of the fly ash exceeded 80% of the sample) and NaOH in different concentrations in a batch reactor. Zeolites obtained were characterized by x-ray diffraction (XRD) analysis, which determines the crystalline phases...

  7. Reduction volume of radioactive wastes using natural zeolite

    International Nuclear Information System (INIS)

    The aim of this experience was to know of the characteristics of zeolite as the sorbent for reduction volume of liquid waste with the Pb contaminant contain. The experiment was done by sorption method a batch performed by using zeolite from Gedangsari Gunung Kidul with the grain size (-60+80) mesh, (-80+100) mesh dan (-100+120) mesh which was activated by (NH4) CI and NH4N03 1.0 M. Weight of sorbent was added was variated from 5.0 to 40.0 %, and variation of silica sand to added from 0.5 to 2.5 % of weight sorbent. Stirring speed was varied from 30 to 180 rpm and the stirring time of 10 to 120 minutes, and filtrates from filtering process to analyzed by Absorption Analysis Spectrophotometry utilities. From the experience can be achieved of data that the best sorption to obtained at the condition of zeolite on (-80+100) mesh, sorbent added of 25 %, stirring speed of 120 rpm, time of stirring of 90 minutes, and the setting time of 120 minutes. At this condition to obtained sorption efficiency are 64.162 % for natural zeolite, 7.034 % for zeolite be activated with NH4N03 and 77.414 % for zeolite be activated with NH4Cl 1.0 M. (author)

  8. Activity of titania and zeolite samples dosed with triethylamine

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Caitlin; Gole, James L.; Brauer, Jonathann I.; Graham, Samuel; Hu, Jian Z.; Kenvin, Jeff; D' Amico, Andrew D.; White, Mark

    2016-01-15

    Certain properties of titania and the ammonium- and proton-form of Y zeolites (silica/alumina ratio of 5.2) were explored before and after treatment by triethylamine (TEA). The effect of the triethylamine upon the physical and chemical properties of both titania and the zeolite were characterized by physical and chemical adsorption methods. BET surface area data showed enhanced surface area of the TEA-treated nanotitania over the untreated nanotitania whereas the TEA-treated zeolite showed a considerable decrease in surface area compared to the untreated zeolite. TPD of the TEA-treated Y zeolite showed that weakly adsorbed TEA left the surface between 150 and 300 oC; strongly adsorbed TEA decomposed to ethylene and ammonia at higher temperatures. XPS, IR, and Raman spectroscopies, powder XRD, and 27Al MAS-NMR spectroscopy were used to further characterize the changes introduced by in-situ nitridation. Pre-adsorbed triethylamine decorated acid sites so as to neutralize these sites for the reaction of methanol to dimethylether. Carbon monoxide and ormaldehyde, products of the methanol probe reaction, were observed-- suggesting that basic sites are present in this treated zeolite and titania.

  9. Removal of Ammonia from Air, using Three Iranian Natural Zeolites

    Directory of Open Access Journals (Sweden)

    H Asilian

    2004-06-01

    Full Text Available Ammonia in air can be hazardous to human and animal life and should be removed from the environment. Recently the removal of environmental pollutants such as ammonia by means of natural and modified zeolites has attracted a lot of attention and interests. In this study the capability of three Iranian natural zeolites (Clinoptilolite in point of view of removal of ammonia from air was investigated. Through this research, different zeolites from various regions of Iran including Semnan, Meyaneh, and Firoozkooh resources were considered to be studied. These samples of zeolites were ground and granulized into 425 µm to 4 mm and were utilized in dynamic sorption experiments. Curves of sorption were plotted and breakthrough and saturated points of zeolite samples were obtained. The adsorption capacities at different ammonia concentrations, temperatures, and flow – rates were also calculated. Results obtained showed that, the natural Iranian zeolite (Clinoptilolite was identified to be more efficient adsorbent than the others to remove ammonia from the air. In the same conditions, the obtained breakthrough time for clinoptilolite sample of Meyaneh was longer than the others ( 135min , while, the adsorption capacity of Semnan clinoptilolite was higher than adsorbents ( 6.30 mg /g (P<0.0001.

  10. Removal of ammonium from municipal landfill leachate using natural zeolites.

    Science.gov (United States)

    Ye, Zhihong; Wang, Jiawen; Sun, Lingyu; Zhang, Daobin; Zhang, Hui

    2015-01-01

    Ammonium ion-exchange performance of the natural zeolite was investigated in both batch and column studies. The effects of zeolite dosage, contact time, stirring speed and pH on ammonium removal were investigated in batch experiments. The result showed that ammonium removal efficiency increased with an increase in zeolite dosage from 25 to 150 g/L, and an increase in stirring speed from 200 to 250 r/min. But further increase in zeolite dosage and stirring speed would result in an unpronounced increase of ammonium removal. The optimal pH for the removal of ammonium was found as 7.1. In the column studies, the effect of flow rate was investigated, and the total ammonium removal percentage during 180 min operation time decreased with the flow rate though the ion-exchange capacity varied to a very small extent with the flow rate ranging from 4 to 9 mL/min. The spent zeolite was regenerated by sodium chloride solution and the ammonia removal capacity of zeolite changed little or even increased after three regeneration cycles. PMID:26510611

  11. Tribomechanical micronization and activation of whey protein concentrate and zeolite

    Indian Academy of Sciences (India)

    Z Herceg; V Lelas; M Brnčić; B Tripalo; D Ježek

    2004-02-01

    Tribomechanics is a part of physics that is concerned with the study of phenomena that appear during milling under dynamic conditions. Tribomechanical micronization and activation (TMA) of whey protein concentrates (WPC) and zeolites (type clinoptilolite) were carried out. Samples of powdered WPC and zeolite were treated with the laboratory TMA equipment. The treatment was carried out at two various rotor speeds: 16,000 and 22,000 r.p.m. at ambient temperature. Analyses of the particle size and distribution as well as the specific area and scanning electron microscopy were carried out on the powdered WPC and zeolite, before and after the TMA treatment. Suspensions of the WPC and zeolite were treated with ultrasound, just before determining the particle size distribution, at 50 kHz. The results showed that tribomechanical treatment causes significant decrease in particle size, change in particle size distribution and increase in specific area of WPC and zeolite. These changes of the treated materials depend on the type of the material, the level of inserting particles, the planned angle of the impact, internal rubbing and the planned number of impacts. The effects found became stronger as the rotor speed of the TMA equipment increased (16,000 to 22,000 rpm). Ultrasonic treatment of suspension of tribomechanically treated WPC resulted infurther breakdown of partly damaged protein globules as proved with the statistic analyses. No further changes in their granulometric composition were caused by ultrasonic treatment of a suspension of tribomechanically treated zeolite.

  12. Polypropylene obtained through zeolite supported catalysts

    Directory of Open Access Journals (Sweden)

    Queli C. Bastos

    2004-01-01

    Full Text Available Propylene polymerizations were carried out with f2C(Flu(CpZrCl2 and SiMe2(Ind2ZrCl2 catalysts supported on silica, zeolite sodic mordenite (NaM and acid mordenite (HM. The polymerizations were performed at different temperatures and varying aluminium/zirconium molar ratios ([Al]/[Zr]. The effect of these reaction parameters on the catalyst activity was investigated using a proposed statistical experimental planning. In the case of f2C(Flu(CpZrCl2, SiO2 and NaM were used as support and the catalyst performance evaluated using toluene and pentane as polymerization solvent. The molecular weight, molecular weight distribution, melting point and crystallinity of the polymers were examined. The results indicate very high activities for the syndiospecific heterogeneous system. Also, the polymers obtained had superior Mw and stereoregularity.

  13. Zeolites as alcohol adsorbents from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Cekova Blagica

    2006-01-01

    Full Text Available The potential usage of zeolites as adsorbents for the removal of organic molecules from water was investigated in a series of experiments with aqueous solutions of lower alcohols. This could represent a simple solution to the problem of cleaning up industrial wastewater as well as recovering valuable chemicals at relatively low costs. Adsorption isotherms of the Langmuir type were applied, and calculations showed that the amount of propanol adsorbed on silicalite corresponded to approximately 70% of the pore volume. The adsorption process is simple, and recovery of the more concentrated products is easily done by heat treatment and/or at lowered pressures. Adsorption experiments with aqueous acetone showed that silicalite had approximately the same adsorption capacity for acetone as for n-propanol. Heats of adsorption were determined calorimetrically.

  14. Polypropylene obtained through zeolite supported catalysts

    International Nuclear Information System (INIS)

    Propylene polymerizations were carried out with φ2C(Flu)(Cp)ZrCl2 and SiMe2(Ind)2ZrCl2 catalysts supported on silica, zeolite sodic mordenite (NaM) and acid mordenite (HM). The polymerizations were performed at different temperatures and varying aluminium/zirconium molar ratios ([Al]/[Zr]). The effect of these reaction parameters on the catalyst activity was investigated using a proposed statistical experimental planning. In the case of f2C(Flu)(Cp)ZrCl2, SiO2 and NaM were used as support and the catalyst performance evaluated using toluene and pentane as polymerization solvent. The molecular weight, molecular weight distribution, melting point and crystallinity of the polymers were examined. The results indicate very high activities for the syndiospecific heterogeneous system. Also, the polymers obtained had superior Mw and stereo regularity. (author)

  15. Pyrolysis of scrap tyres with zeolite USY

    International Nuclear Information System (INIS)

    A zeolite catalyst of ultrastable Y-type (USY) was investigated in the research of two staged pyrolysis-catalysis of scrap tyres. Scrap tyres were pyrolysed in a fixed bed reactor and the evolved pyrolysis gases were passed through a secondary catalytic reactor. The main objective of this paper was to investigate the effect of zeolite USY on the yield of products and the composition of derived oil. The influences of several parameters such as pyrolysis temperature, catalytic temperature, catalyst/tyre ratio, heating rate, etc. on the yield of the derived oil, char and gas were investigated. It showed that the increase of catalytic temperature and catalyst/tyre ratio resulted in high yield of gas at the expense of the oil yield. For example, when the catalyst/tyre ratio increased from 0.25 to 1.0, the yield of gas increased from 30.5 to 49.9 wt.%, and the oil yield decreased nearly two-fold from 31.6 to 12.7 wt.%. The concentration of light naphtha (boiling point < 160 deg. C) was also investigated in this study. And the high catalyst/tyre ratio favored to increase the concentration of light naphtha (<160 deg. C) in oil. In order to study the composition of derived oil, a distilled fraction (<280 deg. C), which was 92.5 wt.% of the oil obtained from catalytic pyrolysis of scrap tyre at a pyrolysis temperature, catalytic temperature and catalyst/tyre ratio of 500, 400 deg. C and 0.5, respectively, was analyzed with gas chromatography/mass spectrometry (GC/MS). The distillate was found to contain 1.23 wt.% benzene, 9.35 wt.% toluene, 3.68 wt.% ethylbenzene, 12.64 wt.% xylenes, 1.81 wt.% limonene and 13.89 wt.% PAHs, etc., where the single ring aromatics represented a significant potential use as chemicals

  16. Comparison of bifunctional chelates for {sup 64}Cu antibody imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Cara L.; Crisp, Sarah; Bensimon, Corinne [MDS Nordion, Vancouver, BC (Canada); Yapp, Donald T.T.; Ng, Sylvia S.W. [British Columbia Cancer Agency Research Centre, Vancouver, BC (Canada); University of British Columba, The Faculty of Pharmaceutical Sciences, Vancouver, BC (Canada); Sutherland, Brent W. [British Columbia Cancer Agency Research Centre, Vancouver, BC (Canada); Gleave, Martin [Prostate Centre at Vancouver General Hospital, Vancouver, BC (Canada); Jurek, Paul; Kiefer, Garry E. [Macrocyclics Inc., Dallas, TX (United States)

    2010-11-15

    Improved bifunctional chelates (BFCs) are needed to facilitate efficient {sup 64}Cu radiolabeling of monoclonal antibodies (mAbs) under mild conditions and to yield stable, target-specific agents. The utility of two novel BFCs, 1-Oxa-4,7,10-triazacyclododecane-5-S-(4-isothiocyanatobenzyl)-4,7,10-triacetic acid (p-SCN-Bn-Oxo-DO3A) and 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-4-S-(4-isothiocyanatobenzyl)-3,6,9-triacetic acid (p-SCN-Bn-PCTA), for mAb imaging with {sup 64}Cu were compared to the commonly used S-2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane-tetraacetic acid (p-SCN-Bn-DOTA). The BFCs were conjugated to trastuzumab, which targets the HER2/neu receptor. {sup 64}Cu radiolabeling of the conjugates was optimized. Receptor binding was analyzed using flow cytometry and radioassays. Finally, PET imaging and biodistribution studies were done in mice bearing either HER2/neu-positive or HER2/neu-negative tumors. {sup 64}Cu-Oxo-DO3A- and PCTA-trastuzumab were prepared at room temperature in >95% radiochemical yield (RCY) in <30 min, compared to only 88% RCY after 2 h for the preparation of {sup 64}Cu-DOTA-trastuzumab under the same conditions. Cell studies confirmed that the immunoreactivity of the mAb was retained for each of the bioconjugates. In vivo studies showed that {sup 64}Cu-Oxo-DO3A- and PCTA-trastuzumab had higher uptake than the {sup 64}Cu-DOTA-trastuzumab at 24 h in HER2/neu-positive tumors, resulting in higher tumor to background ratios and better tumor images. By 40 h all three of the {sup 64}Cu-BFC-trastuzumab conjugates allowed for clear visualization of the HER2/neu-positive tumors but not the negative control tumor. The antibody conjugates of PCTA and Oxo-DO3A were shown to have superior {sup 64}Cu radiolabeling efficiency and stability compared to the analogous DOTA conjugate. In addition, {sup 64}Cu-PCTA and Oxo-DO3A antibody conjugates may facilitate earlier imaging with greater target to background ratios than

  17. Bifunctional phage-based pretargeted imaging of human prostate carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Newton-Northup, Jessica R. [Department of Biochemistry, University of Missouri, Columbia, MO 65211 (United States)], E-mail: newtonj@missouri.edu; Figueroa, Said D. [Department of Radiology, University of Missouri, Columbia, MO 65211 (United States); Quinn, Thomas P.; Deutscher, Susan L. [Department of Biochemistry, University of Missouri, Columbia, MO 65211 (United States); Research Service, Harry S. Truman Veterans Memorial Hospital, Columbia, MO 65201 (United States)

    2009-10-15

    Introduction: Two-step and three-step pretargeting systems utilizing biotinylated prostate tumor-homing bacteriophage (phage) and {sup 111}In-radiolabeled streptavidin or biotin were developed for use in cancer radioimaging. The in vivo selected prostate carcinoma-specific phage (G1) displaying up to five copies of the peptide IAGLATPGWSHWLAL was the focus of the present study. Methods: The ability of G1 phage to extravasate and target prostate tumor cells was investigated using immunohistochemistry. G1 phages were biotinylated, streptavidin was conjugated to diethylenetriaminepentaacetic acid (DTPA) and biotin was conjugated to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). Biodistribution studies and single-photon emission computed tomography (SPECT)/CT imaging of xenografted PC-3 tumors via two-step pretargeted {sup 111}In-labeled streptavidin and three-step pretargeted {sup 111}In-labeled biotin were performed in SCID mice to determine the optimal pretargeting method. Results: The ability of G1 phage to extravasate the vasculature and bind directly to human PC-3 prostate carcinoma tumor cells in vivo was demonstrated via immunocytochemical analysis. Comparative biodistribution studies of the two-step and three-step pretargeting strategies indicated increased PC-3 human prostate carcinoma tumor uptake in SCID mice of 4.34{+-}0.26 %ID g{sup -1} at 0.5 h postinjection of {sup 111}In-radiolabeled biotin (utilized in a three-step protocol) compared to 0.67{+-}0.06 %ID g{sup -1} at 24 h postinjection of {sup 111}In radiolabeled streptavidin (employed in a two-step protocol). In vivo SPECT/CT imaging of xenografted PC-3 tumors in SCID mice with the three-step pretargeting method was superior to that of the two-step pretargeting method, and, importantly, blocking studies demonstrated specificity of tumor uptake of {sup 111}In-labeled biotin in the three-step pretargeting scheme. Conclusion: This study demonstrates the use of multivalent bifunctional

  18. Direct catalytic transformation of carbohydrates into 5-ethoxymethylfurfural with acid–base bifunctional hybrid nanospheres

    International Nuclear Information System (INIS)

    Graphical abstract: Catalytic conversion of carbohydrates into HMF and EMF in ethanol/DMSO with acid–base bifunctional hybrid nanospheres prepared from self-assembly of corresponding basic amino acids and HPA. - Highlights: • Acid–base bifunctional nanospheres were efficient for production of EMF from sugars. • Synthesis of EMF in a high yield of 76.6% was realized from fructose. • Fructose based biopolymers could also be converted into EMF with good yields. • Ethyl glucopyranoside was produced in good yields from glucose in ethanol. - Abstract: A series of acid–base bifunctional hybrid nanospheres prepared from the self-assembly of basic amino acids and phosphotungstic acid (HPA) with different molar ratios were employed as efficient and recyclable catalysts for synthesis of liquid biofuel 5-ethoxymethylfurfural (EMF) from various carbohydrates. A high EMF yield of 76.6%, 58.5%, 42.4%, and 36.5% could be achieved, when fructose, inulin, sorbose, and sucrose were used as starting materials, respectively. Although, the acid–base bifunctional nanocatalysts were inert for synthesis of EMF from glucose based carbohydrates, ethyl glucopyranoside in good yields could be obtained from glucose in ethanol. Moreover, the nanocatalyst functionalized with acid and basic sites was able to be reused several times with no significant loss in catalytic activity

  19. Synthesis, characterization and use of ATRP bifunctional initiator with trichloromethyl end-groups

    Czech Academy of Sciences Publication Activity Database

    Toman, Luděk; Janata, Miroslav; Spěváček, Jiří; Masař, Bohumil; Vlček, Petr; Látalová, Petra

    2002-01-01

    Roč. 43, č. 2 (2002), s. 18-19. ISSN 0032-3934 R&D Projects: GA ČR GA203/01/0513 Institutional research plan: CEZ:AV0Z4050913 Keywords : bifunctional initiator * ATRP polymerization * trichloromethyl end-groups Subject RIV: CD - Macromolecular Chemistry

  20. Structure and potential applications of amido lanthanide complexes chelated by bifunctional b-diketiminate ligand

    Czech Academy of Sciences Publication Activity Database

    Olejník, R.; Padělková, Z.; Fridrichová, A.; Horáček, Michal; Merna, J.; Růžička, A.

    2014-01-01

    Roč. 759, JUN 2014 (2014), s. 1-10. ISSN 0022-328X R&D Projects: GA ČR GAP106/10/0924 Institutional support: RVO:61388955 Keywords : Bifunctional b-diketiminates * lanthanides * hydroamination Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.173, year: 2014

  1. Asymmetric α-amination of β-keto esters using a guanidine–bisurea bifunctional organocatalyst

    Science.gov (United States)

    Yamamoto, Yoshiharu

    2016-01-01

    Summary An asymmetric α-amination of β-keto esters with azodicarboxylate in the presence of a guanidine–bisurea bifunctional organocatalyst was investigated. The α-amination products were obtained in up to 99% yield with up to 94% ee. PMID:26977179

  2. High surface area carbon for bifunctional air electrodes applied in zinc-air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Arai, H. [on leave from NTT Laboratories (Japan); Mueller, S.; Haas, O. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Bifunctional air electrodes with high surface area carbon substrates showed low reduction overpotential, thus are promising for enhancing the energy efficiency and power capability of zinc-air batteries. The improved performance is attributed to lower overpotential due to diffusion of the reaction intermediate, namely the peroxide ion. (author) 1 fig., 2 refs.

  3. Bifunctional catalysts for the direct production of liquid fuels from syngas

    NARCIS (Netherlands)

    Sartipi, S.

    2014-01-01

    Design and development of catalyst formulations that maximize the direct production of liquid fuels by combining Fischer-Tropsch synthesis (FTS), hydrocarbon cracking, and isomerization into one single catalyst particle (bifunctional FTS catalyst) have been investigated in this thesis. To achieve th

  4. PENGARUH WAKTU DEALUMINASI DAN JENIS SUMBER ZEOLIT ALAM TERHADAP KINERJA H-ZEOLIT UNTUK PROSES DEHIDRASI ETANOL

    OpenAIRE

    Widayat Widayat; Achmad Roesyadi; Muhammad Rachimoellah

    2012-01-01

    Katalis H-zeolit telah disintesa dari zeolit alam. Proses pembuatan katalis meliputi tahap proses pelakuan kimia, penyaringan dan pencucian, pengeringan dan proses kalsinasi. Penelitian ini bertujuan mempelajari waktu dan sumber bahan baku terhadap karakteristik katalis yang meliputi perbandingan Si/Al, X ray Diffraction (XRD) dan luas permukaan. Hasil penelitian menunjukkan bahwa perlakuan kimia menyebabkan penurunan kadar CaO, MgO dan Na2O karena melarut dalam asam klorida. Perbandingan Si/...

  5. Peroxisomal beta-oxidation defect with detectable peroxisomes: a case with neonatal onset and progressive course.

    Science.gov (United States)

    Barth, P G; Wanders, R J; Schutgens, R B; Bleeker-Wagemakers, E M; van Heemstra, D

    1990-07-01

    A progressive demyelinating cerebral disorder is described in a normally-appearing female infant with neonatal seizures, progressive psychomotor deterioration, deafness, retinopathy, peripheral neuropathy and loss of myelin observed on magnetic resonance imaging (MRI) scanning. MRI also showed the absence of macroscopic neocortical dysplasia which is usually found in Zellweger syndrome (ZS). Adrenal cortical function was normal. The patient died at the age of 37 months. Extensive biochemical investigations of peroxisomal functions in the patient revealed an impairment of peroxisomal beta-oxidation resulting in elevated levels of very long (greater than C22) chain fatty acids in plasma and fibroblasts. Moreover, elevated plasma levels of intermediates of bile acid biosynthesis such as tri- and dihydroxycholestanoic acid were found. Other peroxisomal functions were normal. Immunoblotting of the peroxisomal beta-oxidation enzyme proteins in liver from the patient revealed normal responses with antisera against acyl-CoA oxidase, bifunctional protein and thiolase respectively. From these data we conclude that the patient had a deficiency of a single peroxisomal beta-oxidation enzyme at the level of either the bifunctional protein or peroxisomal thiolase with retained immunoreactivity against these enzymes. PMID:2209666

  6. Metal clusters in zeolite 4A obtained by synthesis process

    Directory of Open Access Journals (Sweden)

    E. David

    2006-09-01

    Full Text Available Purpose: The goal of this paper is to study the possibility of obtaining of the supported metal clusters in zeolite 4A that are a new class of composite materials with application in sorption and catalytic processes.Design/methodology/approach: The materials were fabricated by synthesis process involving organo-metallic chemistry on surfaces, gas-phase cluster chemistry and chemistry in zeolite cages. The magnesium clusters in zeolite 4A(Mg/Z4A has been prepared by ion exchange, followed by calcination and reduction processes. The metals are introduced as cationic form, which replace cations such as natrium from zeolite and then treated by heating in oxidized mixture or air and reduced in hydrogen. The activation and reduction treatments give the highest metal dispersions. The texture studies, X-ray diffraction , transmission electron microscopy (TEM and atomic absorption were used for to characterize these materials.Findings: Through this study it was determined the structures and properties of (Mg/Z4A composites and then these properties were compared with zeolite 4A properties without metal addition. It was found that Mg/Z4A have new properties, with high catalytic effect and the reducing process are decisively regarding the size and the placement of the metal magnesium particles into zeolite 4A.Research limitations/implications: It is noticed, that increase of the reducing temperature over 600ºC promotes the forming of metal clusters with great sizes at the external surface of zeolite 4A and the catalitycal activity is diminished. The activation and reduction treatments give the highest metal dispersions, but the most uniform metal clusters are not easily formed.Practical implications: Obtained results allowed to optimize the catalytic activity of the supported metals on zeolite.Originality/value: This work contains several new aspects, which are: the conditions for performing the magnesium metal clusters in zeolite 4A cages, wide range of

  7. X-ray electron probe microanalysis of zeolite powder particles

    International Nuclear Information System (INIS)

    Complete text of publication follows. The zeolite powders of various trademarks are used for production of petroleum-refining catalysts. In this connection, it is very important have information not only about chemical composition and distribution of impurity elements, but about shape, surface, structure and size of particles. That allows a more detailed analysis of the physical-chemical characteristics of catalysts, affecting their activity at different stages of technological process. The X-ray electron probe microanalysis (EPMA) technique is developed for individual particles of fine-dispersed zeolite powders of various trademarks: ZSM-5, ZSM-12, MOR, BEA. The investigations were conducted using Superprobe-733 and Superprobe JXA-8200 (JEOL Ltd, Japan) devices with energy-dispersive and wavelength-dispersive spectrometers. The dependencies of the relative intensity on the time of electron probe influence have been studied at the different accelerating voltages and currents of probe for the selecting of optimum condition of analytical signal registration. The phase and chemical composition of zeolite powders, the surface, shape of particles and their distribution in sizes were studied. The results of phase analysis showed, that particles of different shape and various size were separated in all samples of zeolites. The particles of flaky, orbicular, rounded and oval shape with size of 10 m are separated in zeolite sample ZSM-12. The particles of faceted shape with size of 5-10 μm are observed in zeolite samples MOR and BEA. Larger particles of different shape with size of 5-20 μm are separated in zeolite sample ZSM-5, while the finer-dispersed fraction of particles with size of 3-10 μm are observed in this sample after gel decomposition (aging of gel). The data of zeolite powders chemical composition showed the heterogeneous distribution of silicon. The increased contents of silicon are observed towards the edge of particles that connected with aggregation and

  8. Synthesis and characterization of zeolite material from coal ashes modified by surfactant

    International Nuclear Information System (INIS)

    Coal ash was used as starting material for zeolite synthesis by means of hydrothermal treatment. The surfactant-modified zeolite (SMZ) was prepared by adsorbing the cationic surfactant hexadecyltrimethylammonium bromide (HDTMA-Br) on the external surface of the zeolite from coal ash. The zeolite structure stability was monitored during the characterization of the materials by FTIR, XDR and SEM. The structural parameters of surfactant-modified zeolite are very close to that of corresponding non-modified zeolite which indicates that the crystalline nature of the zeolite remained intact after required chemical treatment with HDTMA-Br molecules and heating treatment for drying. The most intense peaks in the FTIR spectrum of HDTMA-Br were observed in SMZ spectrum confirming adsorption of surfactant on zeolites. (author)

  9. Preparation of zeolite NaA for CO2 capture from nickel laterite residue

    Institute of Scientific and Technical Information of China (English)

    Tao Du; Li-ying Liu; Penny Xiao; Shuai Che; He-ming Wang

    2014-01-01

    Zeolite NaA was successfully prepared from nickel laterite residue for the first time via a fusion-hydrothermal procedure. The structure and morphology of the as-synthesized zeolite NaA were characterized with a range of experimental techniques, such as X-ray diffraction, scanning electronic microscopy, and infrared spectroscopy. It was revealed that the structures of the produced zeolites were dependent on the molar ratios of the reactants and hydrothermal reaction conditions, so the synthesis conditions were optimized to obtain pure zeolite NaA. Adsorption of nitrogen and carbon dioxide on the prepared zeolite NaA was also measured and analyzed. The results showed that zeolite NaA could be prepared with reasonable purity, it had physicochemical properties comparable with zeolite NaA made from other methods, and it had excellent gas adsorption properties, thus demonstrating that zeolite NaA could be prepared from nickel laterite residue.

  10. CaE-T zeolite - a new effective adsorber for vacuum technique

    International Nuclear Information System (INIS)

    Adsorption of air at low pressures on type E zeolites was studied as a function of their composition and dehydration regime. It was shown that zeolite CaE-T has a greatly increased sorption capacity for air at low pressures and that this is more than 3 times that of industrial zeolites currently used in vacuum technology. Mass-spectrometer studies were made of the gas phase over zeolites type E and A after adsorption of air at pressures from 10-8 to 10-5 mm Hg at liquid nitrogen temperatures under conditions approximating equilibrium. It was shown that zeolite CaE-T has a high adsorption capacity for Ar, O2, and H2. Adsorption of H2 and Ar by zeolites of different structural types at low pressures was studied. It was shown that zeolite CaE-T has a significantly higher adsorption capacity for hydrogen and argon than all industrial zeolites

  11. Hierarchical zeolites: Enhanced utilisation of microporous crystals in catalysis by advances in materials design

    DEFF Research Database (Denmark)

    Perez-Ramirez, Javier; Christensen, Claus H.; Egeblad, Kresten; Christensen, Christina Hviid; Grøn, Johan C.

    2008-01-01

    these materials often imposes intracrystalline diffusion limitations, rendering low utilisation of the zeolite active volume in catalysed reactions. This critical review examines recent advances in the rapidly evolving area of zeolites with improved accessibility and molecular transport. Strategies to...

  12. Synthesis of mesoporous zeolite single crystals with cheap porogens

    International Nuclear Information System (INIS)

    Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals have been successfully synthesized by adding soluble starch or sodium carboxymethyl cellulose (CMC) to a conventional zeolite synthesis system. The obtained samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen sorption analysis, 27Al magic angle spinning nuclear magnetic resonance (27Al MAS NMR), temperature-programmed desorption of ammonia (NH3-TPD) and ultraviolet-visible spectroscopy (UV-vis). The SEM images clearly show that all zeolite crystals possess the similar morphology with particle size of about 300 nm, the TEM images reveal that irregular intracrystal pores are randomly distributed in the whole crystal. 27Al MAS NMR spectra indicate that nearly all of the Al atoms are in tetrahedral co-ordination in ZSM-5, UV-vis spectra confirm that nearly all of titanium atoms are incorporated into the framework of TS-1. The catalytic activity of meso-ZSM-5 in acetalization of cyclohexanone and meso-TS-1 in hydroxylation of phenol was also studied. The synthesis method reported in this paper is cost-effective and environmental friendly, can be easily expended to prepare other hierarchical structured zeolites. - Graphical abstract: Mesoporous zeolite single crystals were synthesized by using cheap porogens as template. Highlights: → Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals were synthesized. → Soluble starch or sodium carboxymethyl cellulose (CMC) was used as porogens. → The mesoporous zeolites had connected mesopores although closed pores existed. → Higher catalytic activities were obtained.

  13. SYNTHESIS AND CHARACTERISATION OF HIERARCHICAL ZEOLITIC MATERIALS FOR HEAVY METALS ADSORPTION

    OpenAIRE

    De Haro del rio, David

    2015-01-01

    This thesis explains a method based on the homogenisation of zeta potential charges on carbon supports for the production of hierarchical structured zeolitic composites. The modification of carbons’ surface chemistry allowed zeolite particles to be fixed to the support by electrostatic interactions. In order to achieve this, the size reduction of zeolite particles was carried out by two different methods: a) ball milling and b) a synthetic route to produce zeolite colloidal dispersions. Also, th...

  14. Influence of zeolites on the sintering and technological properties of porcelain stoneware tiles

    OpenAIRE

    de Gennaro, R.; Cappelletti, P.; G. Cerri; Gennaro, M.; Dondi, M.; Guarini, G.; Langella, A.; Naimo, D.

    2003-01-01

    Low-cost zeolitic rocks are promising substitutes for feldspathic fluxes in ceramic bodies, since their fusibility, modest hardness and high cation exchange capacity (CEC) should improve grinding and sintering. Five large-scale Italian deposits of natural zeolites with different mineralogy were characterised and tested in porcelain stoneware bodies. Their behaviour during processing was appraised and compared with that of zeolite-free bodies. Zeolites increased the slip viscosity during wet g...

  15. BTX abatement using Chilean natural zeolite: the role of Brønsted acid sites

    OpenAIRE

    Alejandro, S.; Valdés, Héctor; Manero, Marie-Hélène; Zaror, Claudio A.

    2012-01-01

    In wastewater treatment facilities, air quality is not only affected by conventional unpleasant odour compounds; toxic volatile organic compounds (VOCs) are also found. In this study, the adsorptive capacity of Chilean natural zeolite toward VOC removal was evaluated. Moreover, the influence of zeolite chemical surface properties on VOC elimination was also investigated. Three modified zeolite samples were prepared from a natural Chilean zeolite (53% clinoptilolite, 40% mordenite and 7% quart...

  16. Na-noparticles of activated natural zeolite on textiles for protection and therapy

    OpenAIRE

    Ivančica Kovaček; Anita Tarbuk; Ana Marija Grancarić

    2009-01-01

    Activated natural zeolite clinoptilolite is microporous hydrated aluminosilicates crystals with well-defined structures containing AlO4 and SiO4 tetrahedral linked through the common oxygen atoms. It is to point out that zeolites act as strong adsorbents and ion-exchangers but having many other useful properties. Due to its cationexchange ability, zeolites have catalytic properties and, for that, multiple uses in medicine and industry, agriculture, water purification and detergents. Zeolites ...

  17. Enhancement of Sudan Gasoline Octane Number by Natural and Synthetic Zeolites

    OpenAIRE

    *M. A. M. El Hassan

    2014-01-01

    The sample of natural zeolite is collected from the Sudan area, (scolecite) from Buda desert. And the other one is synthetic zeolite (Y). The study characterized the natural zeolite (scolecite) and synthetic (Y). Using thin sections for natural zeolite to recognize it. Beside different techniques as follow: Atomic absorption, x- ray diffraction (XRD), inferared spectroscopy (FTIR), acidity measured by pyridine FTIR, scanning electron microscopy (SEM). The study was carried out for selected na...

  18. In vitro studies on the ability of natural zeolites to sorb some radionuclides

    International Nuclear Information System (INIS)

    The aim of our work was to study sorption and sorption kinetics of 85Sr, 137Cs and 131I from rumen liquid after application of zeolite (clinoptilolite) under laboratory conditions. Zeolite dump corresponded with usual (3%) and high (9%) dose of zeolite in feed. We have ascertained that zeolite is characterized with a high sorption ability for 85Sr and 137Cs from rumen liquid. 84% of 85Sr and 98% of 137Cs was bound after 24 hours. (orig.)

  19. Sorption and migration of radiocaesium in natural zeolite-water systems

    International Nuclear Information System (INIS)

    The sorption properties for caesium and its migration in a system zeolite-aqueous solution were studied for natural zoelites from Zaloshka gorica. It was found that zeolites are rather efficient sorbents for caesium even in the presence of some other electrolytes. A correlation between the rate of migration of caesium in the system zeolite-water and the sorption intensity was established. Migration of caesium from a zeolite layer by diffusion is described. (author) 7 refs.; 2 figs,; 1 tab

  20. Zeolite fiber integrated microsensors for highly sensitive point detection of chemical agents

    Science.gov (United States)

    Liu, Ning; Hui, Juan; Dong, Junhang; Xiao, Hai

    2006-05-01

    A zeolite-fiber integrated chemical sensor was developed for in situ point detection of chemical warfare agents. The sensor was made by fine-polishing the MFI polycrystalline zeolite thin film synthesized on the endface of the single mode optical fiber. The sensor device operates by measuring the optical thickness changes of the zeolite thin film caused by the adsorption of analytes into the zeolite channels. The sensor was demonstrated for sensitive detection of toluene and dimethyl methylphosphonate (DMMP).

  1. Zeolite catalysts and their use in selective catalytic reduction of NOx

    NARCIS (Netherlands)

    Seijger, G.B.F.; Van den Bleek, C.M.; Calis, H.P.A.

    2003-01-01

    The invention is directed to catalyst compositions comprising a zeolite, as well as to processes for the reduction of nitrogen oxides (NOx) employing these catalyst compositions. The catalyst compositions of the invention comprise a zeolite of the ferrierite type (FER), which zeolite is ion exchange

  2. A study of highly concentrated fission product salt loading into zeolite-A

    International Nuclear Information System (INIS)

    A study investigating the loading of highly contaminated electrorefiner salt into zeolite-4A is currently underway. The objective of the study is to optimize the absorption process in order to maximize fission product sorption into zeolite, which should result in reduction of waste associated with the pyrochemical processing of spent nuclear fuel. The study is based on both experimental and theoretical investigations to develop a fundamental understanding of the transport of LiCl-KCl and fission product chlorides in zeolite-A. A diffusion-limited sorption rate model has been formulated, while data have been collected using molten salt-zeolite contacting experiments. Solid-state salt-zeolite contacts have also been performed to probe single salt sorption characteristics in the absence of LiCl-KCl. Experimental data suggest that the rate of fission product sorption into the zeolite can be increased by pre-loading the zeolite with LiCl-KCl. Additionally, experiments involving variable zeolite particle size were performed in an effort to further support the theory that the salt sorption is diffusion-limited. X-ray fluorescence imaging of the cross section of a zeolite pellet after solid-state salt-zeolite contacting was performed to examine salt distribution through the zeolite pellet. The findings will be used to design practical processes that can be used for absorbing high fission product content salt into zeolite-A. (author)

  3. Influence of Different Factors on Sorption of 90Sr by natural and Synthetic Zeolites

    International Nuclear Information System (INIS)

    The paper researches into factors influencing sorption and selective properties of natural zeolite clinoptilolite from the Sokirnitsky deposit of Ukraine and synthetic zeolites in relation to radionuclide 90Sr. It also studies the effect of competing ions on the sorption of 90Sr by zeolites

  4. Leachability of cobalt and cesium from natural and chemically treated zeolites

    International Nuclear Information System (INIS)

    The determination of leachability of radioisotopes of cesium and cobalt from preloaded zeolites in distilled water, base solution and acid solution has been studied. For the experiment, we used natural and chemically treated zeolites. The zeolites before leaching were calcined at different temperatures. (author). 8 refs., 5 figs., 2 tabs

  5. Adsorption of alkali and alkaline earth radionuclides on zeolite from water solutions

    International Nuclear Information System (INIS)

    The adsorption of cesium and strontium ions from water solutions on zeolite has been investigated in presence of sodium, potassium, magnesium and calcium ions. Distribution ratios of cesium and strontium on the zeolite were determined in solutions of various compositions and solution volume to sorbent weight ratios (batch factor). Breakthrough curves for zeolite layers are reported. (author) 7 refs.; 4 figs

  6. Solid state uptake of manganese from KMnO4 by zeolite-13X

    International Nuclear Information System (INIS)

    The solid state reaction between KMnO4 and zeolite-13X at a temperature below the melting point of the salt presumably results in inclusion of manganese in the zeolite. Quantitative measurements of manganese uptake at various proportions of KMnO4 in the mixture were achieved by neutron activation analysis of the Mn-zeolite. (author)

  7. Fabrication of zeolite/polymer multilayer composite membranes for carbon dioxide capture: Deposition of zeolite particles on polymer supports.

    Science.gov (United States)

    Ramasubramanian, Kartik; Severance, Michael A; Dutta, Prabir K; Ho, W S Winston

    2015-08-15

    Membranes, due to their smaller footprint and potentially lower energy consumption than the amine process, offer a promising route for post-combustion CO2 capture. Zeolite Y based inorganic selective layers offer a favorable combination of CO2 permeance and CO2/N2 selectivity, membrane properties crucial to the economics. For economic viability on large scale, we propose to use flexible and scalable polymer supports for inorganic selective layers. The work described in this paper developed a detailed protocol for depositing thin zeolite Y seed layers on polymer supports, the first step in the synthesis of a polycrystalline zeolite Y membrane. We also studied the effects of support surface morphology (pore size and surface porosity) on the quality of deposition and identified favorable supports for the deposition. Two different zeolite Y particles with nominal sizes of 200 nm and 40 nm were investigated. To obtain a complete coverage of zeolite particles on the support surface with minimum defects and in a reproducible manner, a vacuum-assisted dip-coating technique was developed. Images obtained using both digital camera and optical microscope showed the presence of color patterns on the deposited surface which suggested that the coverage was complete. Electron microscopy revealed that the particle packing was dense with some drying cracks. Layer thickness with the larger zeolite Y particles was close to 1 μm while that with the smaller particles was reduced to less than 0.5 μm. In order to reduce drying cracks for layers with smaller zeolite Y particles, thickness was reduced by lowering the dispersion concentration. Transport measurement was used as an additional technique to characterize these layers. PMID:25950846

  8. Preparation and Characterization of Zeolite Membrane for Bioethanol Purification

    Directory of Open Access Journals (Sweden)

    Aprilina Purbasari

    2013-06-01

    Full Text Available The use of bioethanol as an alternative fuel with a purity of more than 99.5% wt has prompted research on bioethanol purification. One of the promising methods used for bioethanol purification is pervaporation membrane. This research is aimed to prepare and characterize zeolite membranes for pervaporation membrane. The membrane preparation consisted of two stages, namely support preparation and zeolite deposition on the support. In support preparation, α- alumina and kaolin with specific composition (50:30; 40:40; 50:30 was mixed with additives and water. After pugging and aging process, the mixture became paste and extruded into tubular shape. The tube was then calcined at temperature of 1250 °C for 3 hours. After that, zeolite 4A was deposited on the tubes using clear solution made of 10 %wt zeolite and 90 %wt water and heated at temperature of 80 °C for 3 hours. Furthermore, the resulting zeolite membranes was washed with deionized water for 5 minutes and dried in oven at temperature of 100 °C for 24 hours. Characterization of zeolite membranes included mechanical strength test, XRD, and SEM. In the mechanical strength test, the membrane sample with α- alumina:kaolin = 50:30 (membrane A has the highest mechanical strength of 46.65 N/mm2. Result of XRD analysis for the membrane A indicated that mullite and corundum phases were formed, which mullite phase was more dominant. Meanwhile the result of SEM analysis shows that zeolite crystals have been formed and covered the pores support, but the deposition of zeolite has not been optimal yet. The performance examination for bioethanol purification showed that the membrane could increase the purity of bioethanol from 95% to 98.5% wt. © 2013 BCREC UNDIP. All rights reservedReceived: 23rd October 2012; Revised: 15th February 2013; Accepted: 16th February 2013[How to Cite: Purbasari, A., Istirokhatun, T., Devi, A.M., Mahsunnah, L. , Susanto, H. (2013. Preparation and Characterization of Zeolite

  9. SO2 removal from flue gases using utility synthesized zeolites

    International Nuclear Information System (INIS)

    It is well known that natural and synthetic zeolites (molecular sieves) can adsorb gaseous SO2 from flue gas and do it more efficiently than lime based scrubbing materials. Unfortunately their cost ($500-$800 per ton) has deterred their use in this capacity. It is also known that zeolites are easy to synthesize from a variety of natural and man-made materials. The overall objective of the current work has been to evaluate the feasibility of having a utility synthesize its own zeolites, on-site, from fly ash and other recycled materials and then use these zeolites to adsorb SO2 from their flue gases. Work to date has shown that the efficiency of the capture process is related to the degree of crystallinity and the type of zeolite that forms in the samples. Normally, those samples cured at 150C contained a greater proportion of zeolite and as such were more SO2 adsorptive than their low-temperature counterparts. However, in order for the project to be successful, on site synthesis must remain an option, i.e. 100C synthesis. In light of this, the experimental focus now has two aspects. First, compositions of the starting materials are being altered by blending the current suite of fly ashes with other fly ashes, ground glass cullet and silica fume to promote the formation and growth of well crystallized and highly adsorptive zeolites. Second, greater degrees of reaction at significantly lower temperatures are being promote by ball milling the fly ash prior to use, by the use of more concentrated caustic solutions, and by the addition of zeolite seeds to the reactants. In all cases studies will focus on the effect of structure type and degree of conversion on SO2 adsorption. Future work will concentrate on the study of the effect of weathering on the suitability of converting fly ash into zeolites. This is an especially important study, considering the acres of fly ash now in storage throughout the country

  10. Characterization of Mexican zeolite minerals; Caracterizacion de minerales zeoliticos mexicanos

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez C, M.J

    2005-07-01

    50% of the Mexican territory is formed by volcanic sequences of the Pliocene type, which appear extensively in the northwest states (Sonora, Sinaloa, Chihuahua, Durango) and west of Mexico (Jalisco and Nayarit), in central Mexico (Zacatecas, Guanajuato, San Luis Potosi, Queretaro, Hidalgo) and south of Mexico (Guerrero, Oaxaca); therefore, it is to be expected that in our country big locations of natural zeolites exist in its majority of the clinoptilolite type. The present study was focused toward the characterization of two Mexican natural zeolite rocks presumably of the clinoptilolite and filipsite types, one of them comes from the state of Chihuahua and the other of a trader company of non metallic minerals, due that these materials are not characterized, its are not known their properties completely and therefore, the uses that can be given to these materials. In this investigation work it was carried out the characterization of two Mexican zeolite rocks, one coming from the Arroyo zone, municipality of La Haciendita, in the state of Chihuahua; and the other one was bought to a trader company of non metallic minerals. The two zeolites so much in their natural form as conditioned with sodium; they were characterized by means of X-ray diffraction, scanning electron microscopy of high vacuum and elementary microanalysis (EDS), surface area analysis (BET), thermal gravimetric analysis. To differentiate the heulandite crystalline phase of the other clinoptilolite rock, its were carried out thermal treatments. The quantification of Al, Na, Ca, K, Mg, Fe was carried out in solution, by means of atomic absorption spectroscopy and the quantity of Si was determined by gravimetry. The zeolite rocks presented for the major part the crystalline heulandite and clinoptilolite phases for the most part, and it was found that the zeolite coming from the state of Chihuahua possesses a bigger content of heulandite and the denominated filipsite it is really a zeolite

  11. Levered and unlevered Beta

    OpenAIRE

    Fernandez, Pablo

    2003-01-01

    We prove that in a world without leverage cost the relationship between the levered beta ( L) and the unlevered beta ( u) is the No-costs-of-leverage formula: L = u + ( u - d) D (1 - T) / E. We also analyze 6 alternative valuation theories proposed in the literature to estimate the relationship between the levered beta and the unlevered beta (Harris and Pringle (1985), Modigliani and Miller (1963), Damodaran (1994), Myers (1974), Miles and Ezzell (1980), and practitioners) and prove that all ...

  12. Zeolites for the selective adsorption of sulfur hexafluoride.

    Science.gov (United States)

    Matito-Martos, I; Álvarez-Ossorio, J; Gutiérrez-Sevillano, J J; Doblaré, M; Martin-Calvo, A; Calero, S

    2015-07-21

    Molecular simulations have been used to investigate at the molecular level the suitability of zeolites with different topology on the adsorption, diffusion and separation of a nitrogen-sulfur hexafluoride mixture containing the latter at low concentration. This mixture represents the best alternative for the sulfur hexafluoride in industry since it reduces the use of this powerful greenhouse gas. A variety of zeolites are tested with the aim to identify the best structure for the recycling of sulfur hexafluoride in order to avoid its emission to the atmosphere and to overcome the experimental difficulties of its handling. Even though all zeolites show preferential adsorption of sulfur hexafluoride, we identified local structural features that reduce the affinity for sulfur hexafluoride in zeolites such as MOR and EON, providing exclusive adsorption sites for nitrogen. Structures such as ASV and FER were initially considered as good candidates based on their adsorption features. However, they were further discarded based on their diffusion properties. Regarding operation conditions for separation, the range of pressure that spans from 3 × 10(2) to 3 × 10(3) kPa was identified as the optimal to obtain the highest adsorption loading and the largest SF6/N2 selectivity. Based on these findings, zeolites BEC, ITR, IWW, and SFG were selected as the most promising materials for this particular separation. PMID:26099734

  13. Dissolution of Iron During Biochemical Leaching of Natural Zeolite

    Directory of Open Access Journals (Sweden)

    Lengauer C.

    2004-12-01

    Full Text Available Natural zeolite, including clinoptilolite, often contains iron and manganese which decrease the whiteness of this sharp angular material.The biological treatment of zeolite enables its use as an substitute for tripolyphosphates in wash powders which have to comply with strict requirements as far as whiteness is concerned and rounded off grain content. Insoluble Fe3+ and Mn4+ in the zeolite could be reduced to soluble Fe2+ and Mn2+ by silicate bacteria of Bacillus spp. These metals were efficiently removed from zeolite as documented by Fe2O3 decrease (from 1.37% to 1.08% and MnO decrease (from 0.022% to 0.005% after bioleaching. The whiteness of zeolite was increased by 8%. The leaching effect, observed by scanning electron microscopy, caused also a chamfer of the edges of sharp angular grains. Despite the enrichment by fine-grained fraction, the decrease of the surface area of clinoptilolite grains from the value 24.94 m2/g to value 22.53 m2/g was observed. This fact confirms the activity of bacteria of Bacillus genus in the edge corrosion of mineral grains.Removal of iron and manganese as well as of sharp edges together with the whiteness increase would provide a product suitable for industrial applications.

  14. USE OF NATURAL ZEOLITES (KLINOPTILOLIT IN WATER SOFTENING PROCESS

    Directory of Open Access Journals (Sweden)

    Yurdanur SABAH

    1999-03-01

    Full Text Available In this work, the potential for the elimination of hardness of the water by using zeolitic tuff (klinoptilolit obtained from the upper layer tuff of Balıkesir-Bigadiç, where the richest deposits are located in our country, has been investigated; as a means of water supply, daily usage water of campus, Selçuk University, was utilized to wich none of the pre-refining process was applied apart from chloring. At first, zeolite samples of -0.85+0.60 mm were regenerated by NaOH and the change in the hardness of water passing through zeolitic bad in ion exchange column at a constant rate was abserved. After optimizing the regeneration conditions in this way, the effect of the velocity of water fed into zeolitic bad and the water left in the column on the elimination of water hardness were also searched. As a result, the lowest value of water hardness was obtained by taking the water feeding rates at 10 ml/sec. and using zeolite regenerated with 0.75 M NaOH. Additionally, it was seen that the highest working capacity will be reached under these circumstances.

  15. Copper removal using bio-inspired polydopamine coated natural zeolites.

    Science.gov (United States)

    Yu, Yang; Shapter, Joseph G; Popelka-Filcoff, Rachel; Bennett, John W; Ellis, Amanda V

    2014-05-30

    Herein, for the first time, natural clinoptilolite-rich zeolite powders modified with a bio-inspired adhesive, polydopamine (PDA), have been systematically studied as an adsorbent for copper cations (Cu(II)) from aqueous solution. Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) revealed successful grafting of PDA onto the zeolite surface. The effects of pH (2-5.5), PDA treatment time (3-24h), contact time (0 to 24h) and initial Cu(II) ion concentrations (1 to 500mgdm(-3)) on the adsorption of Cu(II) ions were studied using atomic absorption spectroscopy (AAS) and neutron activation analysis (NAA). The adsorption behavior was fitted to a Langmuir isotherm and shown to follow a pseudo-second-order reaction model. The maximum adsorption capacities of Cu(II) were shown to be 14.93mgg(-1) for pristine natural zeolite and 28.58mgg(-1) for PDA treated zeolite powders. This impressive 91.4% increase in Cu(II) ion adsorption capacity is attributed to the chelating ability of the PDA on the zeolite surface. Furthermore studies of recyclability using NAA showed that over 50% of the adsorbed copper could be removed in mild concentrations (0.01M or 0.1M) of either acid or base. PMID:24731937

  16. Ion exchangers in radioactive waste management: Natural Iranian zeolites

    International Nuclear Information System (INIS)

    Five samples of natural zeolites from different parts of Iran were chosen for this study. In order to characterize and determine their structures, X-ray diffraction and infrared spectrometry were carried out for each sample. The selective absorption properties of each zeolite were found by calculating the distribution coefficient (K d) of various simulated wastes which were prepared by spiking the radionuclides with 131I, 99Mo, 153Sm, 140La and 147Nd. All the zeolite samples used in this study had extremely high absorption value towards 140La; clinoptolite from Mianeh and analsite from Ghalehkhargoshi showed good absorption for 147Nd; clinoptolite from Semnan and clinoptolite from Firozkoh showed high absorption for 153Sm; mesolite from Arababad Tabas showed good absorption for 99Mo; and finally mesolite from Arababad Tabas, clinoptolite from Semnan and clinoptolite from Firozkoh could be used to selectively absorb 131I from the stimulated waste which was prepared. The natural zeolites chosen for these studies show a similar pattern to those synthetic ion exchangers in the literature and in some cases an extremely high selectivity towards certain radioactive elements. Hence the binary separation of radioactive elements could easily be carried out. Furthermore, these zeolites, which are naturally occurring ion exchangers, are viable economically and extremely useful alternatives in this industry

  17. Zeolite A effect on calcium homeostasis in growing goats.

    Science.gov (United States)

    Schwaller, D; Wilkens, M R; Liesegang, A

    2016-04-01

    The purpose of this study was to investigate the influence of 2 different concentrations of zeolite A on calcium homeostasis. Seventeen growing goats were divided into 3 groups. Whereas the control group (5 animals) received no supplementation, 2 treatment groups were supplemented with zeolite A at either 1.2 (6 animals) or 1.6 g/kg BW (6 animals), respectively. Blood and urine samples were continually drawn and bone mineral density was measured weekly by peripheral quantitative computed tomography. After 3 wks, the animals were slaughtered and samples were taken from the rumen, duodenum, and kidneys. Plasma concentrations of phosphate ( Ussing chamber technique and quantification of RNA and protein expression of genes known to be involved in active calcium absorption did not reveal any stimulating effect of zeolite. Plasma calcium concentrations were not altered, probably because of the sufficient dietary calcium supply. However due to the effects of zeolite on 1,25 dihydroxycholecalciferol, bone metabolism and serum concentrations of phosphate and magenesium shown in the present study, potential negative long-termin effects on the animals should be considered whenever rations with zeolite are designed. PMID:27136016

  18. Electron beam irradiation and zeolites adsorption applied to dyeing effluents

    Energy Technology Data Exchange (ETDEWEB)

    Higa, Marcela C.; Fungaro, Denise A.; Somessari, Elizabeth S.R.; Magdalena, Carina P.; Grosche, Lucas C.; NNeto, Antonio C.; Borrely, Sueli I. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2007-07-01

    Wastewater generated from the textile industries contain large amount of azo dyes and many of them present low biodegradability capability. Today several countries are facing with evidences that water pollution is related to toxicity, mutagenicity and carcinogenic nature. Once reactive dyes are commercial products they will be discharged to the waterways and rivers causing ecological damages and health problems. The aim of this paper was to consider the potential of two techniques for colour and toxicity removal: ionizing radiation and adsorption by zeolites synthesized from fly ash. Real effluents from chemical and textile industries (hardly coloured) were submitted to radiation and adsorption using zeolites. It was necessary to dilute some effluents prior the treatments in order to get any success. When electrons irradiation was performed radiation doses applied were from 0.5 kGy up to 20 kGy. This radiation process accounted for a partial decolouring as higher doses were implemented. Coal fly ashes were used as starting material for zeolite synthesis by means of hydrothermal treatment with alkaline medium. The adsorption was performed by batch experiments. It was obtained about 77% - 90% color removal from dye wastewater after 24h of contact time with two types of zeolite. The irradiation accounted for 72% of the initial toxicity. The ionizing radiation and adsorption by zeolites synthesized from fly ash can be used as an alternative for the treatment of aqueous waste containing dyes. (author)

  19. Impact protection behavior of a mordenite zeolite system

    Science.gov (United States)

    Xu, J.; Hu, R.; Chen, X.; Hu, D.

    2016-05-01

    By combining zeolite with water, a novel nanocomposite may exhibit extraordinary capability of energy absorption and impact mitigation. The multiple size of zeolite may lead to simultaneous yet different infiltration behaviors of water molecules, and thus multi-staged energy mitigation characteristics (which may benefit the scope of application). In this study, we investigate the dynamic infiltration behavior of water into mordenite zeolite (MOR) using molecular dynamics (MD) simulations. Thanks to its hydrophobicity and multi pore-sized structure, the MOR system has a decent energy mitigation performance upon high impact speed. Parametric studies are carried out to investigate the effects of various parameters, including the impact speed, mass, and water/zeolite ratio, on energy mitigating characteristics. The MOR/water mixture may perform better at a higher impact energy with higher MOR zeolite-water ratio. Upon unloading, the defiltration of water molecules is faster and more complete at higher impact speed. Results may guide the design and application of the energy mitigation nanosystem.

  20. Zeolite and wollastonite synthesis from rice hull ash

    International Nuclear Information System (INIS)

    Rice hull ash (RHA) is a industry scrap rich in amorphous silica. A simple and low-energy cost method for the extraction of this silica was researched. A low level of impurity and high reactivity material was produced, which is appropriate for the synthesis of zeolites and wollastonite (CaSiO3). The synthetic zeolites has not similar structures in nature, and they have been more and more valued in the market due to their purity and efficiency in specific applications like ion exchange, molecular sieve and catalysis areas. High purity wollastonite has many applications in manufacturing and agriculture. The mineral wollastonite can be formed in nature in different ways; it is generally accepted two forming processes, both encompassing limestone metamorphism (heat and pressure). In this work, a new process for the synthesis of zeolites and wollastonite from RHA colloidal silica was developed. Moreover, the process is aimed at lower energy costs, fewer stages and fewer reactants consume. In this work, zeolite A used in detergent and zeolite ZSM-5, employed in the petrochemical industry due to its high selectivity in catalytic reactions and its high thermo and acid stability, were synthesized. The first step of the wollastonite synthesis was studied, with the purpose of obtaining calcium hydrosilicate. Eleven different hydrosilicates occur in the system Ca(OH)2-SiO2-H2O, in the second step it was annealed to form the wollastonite phase. (author)

  1. Synthesis of type A zeolite from calcinated kaolin

    International Nuclear Information System (INIS)

    The mineral production has caused great concern in environmental and industrial scenario due to the effects caused to the environment. The industries of processing kaolin for paper are important economically for the state of Para, but produce huge quantities of tailings, which depend on large areas to be stocked. This material is rich in silico-aluminates can be recycled and used as raw material for other industries. The objective is to synthesize zeolite A at different temperatures of calcination and synthesis. The starting materials and synthesis of zeolite A have been identified and characterized through analysis of X-ray diffraction (DRX) and scanning electron microscopy (MEV). The synthesis process of zeolite A, using as source of silica and the aluminum metakaolin, which was calcined at temperatures of 700 ° C and 800 ° C for 2 hours of landing in a burning furnace type muffle. Observed in relation to the calcination of kaolin as the main phase, the metakaolin. This is just a removal of water from its structure, so we opted for the lower temperature, less energy consumption. The synthesis process of zeolite A, produced good results for the formation of zeolites type A, which were characterized with high purities. (author)

  2. Electron beam irradiation and zeolites adsorption applied to dyeing effluents

    International Nuclear Information System (INIS)

    Wastewater generated from the textile industries contain large amount of azo dyes and many of them present low biodegradability capability. Today several countries are facing with evidences that water pollution is related to toxicity, mutagenicity and carcinogenic nature. Once reactive dyes are commercial products they will be discharged to the waterways and rivers causing ecological damages and health problems. The aim of this paper was to consider the potential of two techniques for colour and toxicity removal: ionizing radiation and adsorption by zeolites synthesized from fly ash. Real effluents from chemical and textile industries (hardly coloured) were submitted to radiation and adsorption using zeolites. It was necessary to dilute some effluents prior the treatments in order to get any success. When electrons irradiation was performed radiation doses applied were from 0.5 kGy up to 20 kGy. This radiation process accounted for a partial decolouring as higher doses were implemented. Coal fly ashes were used as starting material for zeolite synthesis by means of hydrothermal treatment with alkaline medium. The adsorption was performed by batch experiments. It was obtained about 77% - 90% color removal from dye wastewater after 24h of contact time with two types of zeolite. The irradiation accounted for 72% of the initial toxicity. The ionizing radiation and adsorption by zeolites synthesized from fly ash can be used as an alternative for the treatment of aqueous waste containing dyes. (author)

  3. Betting Against Beta

    DEFF Research Database (Denmark)

    Frazzini, Andrea; Heje Pedersen, Lasse

    .S. equities, 20 international equity markets, Treasury bonds, corporate bonds, and futures; (2) A betting-against-beta (BAB) factor, which is long leveraged low beta assets and short high-beta assets, produces significant positive risk-adjusted returns; (3) When funding constraints tighten, the return of the...

  4. Forward-Looking Betas

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Jacobs, Kris; Vainberg, Gregory

    Few issues are more important for finance practice than the computation of market betas. Existing approaches compute market betas using historical data. While these approaches differ in terms of statistical sophistication and the modeling of the time-variation in the betas, they are all backward-...

  5. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    Science.gov (United States)

    Nicholas, Christpher P; Boldingh, Edwin P

    2013-12-17

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and show to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hyrdocarbons into hydrocarbons removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  6. Conversion of dimethyl ether on zeolite catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Abramova, A.V.; Kulumbegov, R.V.; Khadzhiev, S.N. [Russian Academy of Sciences, Moscow (Russian Federation). A.V. Topchiev Inst. of Petrochemical Synthesis

    2006-07-01

    Catalytic conversion of dimethyl ether to hydrocarbons was investigated using zeolite catalyst ZSM-5 type. 2% MexOy - 60% HZVM(analogue of ZSM-5)/Al{sub 2}O{sub 3}, (Me = Zn, Ga, Fe, Co, V, Ni) catalyst samples have been obtained. The reaction was carried out in a fixed bed reaction set-up at 350-400 C, pressure 3 MPa, gas mix (% vol.): 24 DME, 76 N{sub 2}, WHSV=1300 l/l-{sub kat.}h. Most effective catalysts of DME conversion are pentasil based catalysts with promoter metals zinc, iron and cobalt by totality DME-conversion, gas and liquid hydrocarbon selectivity, ethylene and propylene content in gas. The best work temperatures are 350 and 375 C, thereupon increasing of temperature to 400 C leads to considerable growth of methane in hydrocarbon gas. Liquid hydrocarbons have high content of aromatics and iso-paraffins. Liquid hydrocarbon product is characterized by high octane number (RON) 90-98. (orig.)

  7. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas, Christopher P; Boldingh, Edwin P

    2014-10-07

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and shown to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub.1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  8. Advanced NMR characterization of zeolite catalysts

    Science.gov (United States)

    Welsh, L. B.

    1985-04-01

    The program discussed in this report is a two-year two-phase joint UOP-University of Illinois study of the application of improved high resolution solid state nuclear magnetic resonance (NMR) techniques to the characterization of zeolite catalysts. During the first phase of this program very pure, and in some cases isotopically enriched faujasites will be prepared and studied by magic angle sample spinning NMR (MASS NMR) and variable engine sample spinning NMR (VASS NMR) on 500 and 360 MHz (proton frequency) NMR spectrometers. The NMR techniques that will be emphasized are the measurement and analysis of the (17)O NMR properties, (27)Al NMR intensity quantitation, and (27)Al and (29)Si NMR relaxation rates. During the second phase of this program these NMR techniques will be used to study the effects of impurity concentration, dealumination treatments and cation exchange on the NMR properties of faujasites. The initial emphasis of this program during Phase I is on the preparation and measurement of the NMR properties of (17)O enriched Na-Y faujasties.

  9. Characterization and storage of radioactive zeolite waste

    International Nuclear Information System (INIS)

    For the safe storage of zeolite wastes generated by the treatment of radioactive saline water at the Fukushima Daiichi Nuclear Power Station, this study investigated the fundamental properties of herschelite adsorbent and evaluated its adsorption vessel for hydrogen production and corrosion. The hydrogen produced by the herschelite sample is oxidized by radicals as it diffuses to the water surface and thus depends on the sample's water level and dissolved species. The hydrogen production rate of herschelite submerged in seawater or pure water may be evaluated by accounting for the water depth. From the obtained fundamental properties, the hydrogen concentration of a reference vessel (decay heat = 504 W) with or without residual pure water was evaluated by thermal–hydraulic analysis. The maximum hydrogen concentration was below the lower explosive limit (4%). The steady-state corrosion potential of a stainless steel 316L increased with the absorbed dose rate, but the increase was repressed in the presence of herschelite. The temperature and absorbed dose at the bottom of the 504 W vessel were determined as 60 °C and 750 Gy/h, respectively. Under these conditions, localized corrosion of a herschelite-contacted 316L vessel would not immediately occur at Cl- concentrations of 20,000 ppm. (author)

  10. Performance of Simple Nano Zeolite Y and Modified Nano Zeolite Y in Phosphor Removal fromAqueous Solutions

    Directory of Open Access Journals (Sweden)

    M. Hadi

    2010-04-01

    Full Text Available "n "n "nBackgrounds and Objectives:Phosphate discharges from domestic and industrial waste water to water bodies. High concentrations of phosphate in water stimulate the eutrophication phenomenon that causes taste and odor in water, losing dissolved oxygen and aquatic life in rivers or surface waters. Aim of this study is survey of phosphate adsorption on simple nano zeolite Y and nano zeolite Y that was modified with a cationic surfactant (HDTMA-Br."nMaterials and Methods:In This study we used simple nano zeolite Y and nano zeolite Y in form of Surfactant Modified Zeolites (SMZs using batch tests to adsorption of Phosphate fromAqueous Solutions. The adsorbants were contacted with different initial phosphor concentrations (5, 10 and 15 mg/l, pH (4, 7, 12, contact time (30, 60, 90, 120, 150 and 180 minutes and weight of adsorbant (0.2, 0.4, 0.6, 0.8 and 1g. the extracted solution was determined for Phosphate concentration by the ammonium molybdate and tin chloride method with spectrophotometric detection at 680 nm. Results:Results of this study show that, with increase in contact time, decrease in pH, increase in zeolites concentration and decrease in initial phosphate concentration, the removal efficiency increased. And the Both isotherm of Langmuir and Freundlich models (r2 > 0.997 and r2 > 0.996 respectively were agreement with adsorption equilibrium of phosphate. Reduced Chi-Sqr For Langmuir and Freundlich models were (0.00079 and (0.0011 respectively. Pseudo first-order kinetic models fits well with experimental data (r2>0.963."nConclusion: From this survey, it is concluded that performance of modified nano zeolite Y for adsorption of phosphate in same conditions is better than non-modified zeolite Y. In general the modified nano zeolite Y presented a good profile for removal of phosphate. Therefore SMZs is a suitable candidate for removal of Phosphate molecules from contaminated solutions in contaminated waters.

  11. Coke formation over zeolites and CeO2-zeolites and its influence on selective catalytic reduction of NOx

    International Nuclear Information System (INIS)

    Selective catalytic reduction, various possible reasons of coke formation, and temperature programmed oxidation of coke deposits are studied over HFER, HZSM-5 and 15|wt% CeO2-H zeolites. The materials are characterised by TGA, NH3-TPD and in-situ FTIR measurements. HFER based catalysts showed superior NOx (NO+NO2) conversion in SCR with propene compared with HZSM-5 based catalysts. It is found that NO2 (formed by the oxidation of NO) is not the only important intermediate in determining the extent of NOx conversion. The topology and acidity of the zeolites play an important role in selective activation of propene and its reaction with NO2. Over HZSM-5 based catalysts the rate of deposition of carbonaceous compounds is higher than the rate of reaction of activated propene with NO2, leading to unselective reduction to NO. The nature and the amount of the carbonaceous products deposited over the zeolites are found to depend on the acidity, structure of the zeolite and reaction conditions (inert or oxidative atmosphere). Coke deposition rate is enhanced in the presence of oxygen and most of the coke is retained by the zeolite which is detrimental for NOx reduction. in-situ IR studies show that hydrocarbon deposits are more heterogeneous and carbon rich over HZSM-5 compared with HFER. TPO studies show that only a negligible fraction of hydrocarbon deposits are active in NOx conversion

  12. PERVAPORATION OF ETHANOL/WATER MIXTURES WITH HIGH FLUX BY ZEOLITE-FILLED PDMS/PVDF COMPOSITE MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    李继定

    2009-01-01

    Thin-film zeolite-filled silicone/PVDF composite membranes were fabricated by incorporating zeolite particles into PDMS(poly(dimethylsiloxane)) membranes.The morphology of zeolite particles and zeolite filled silicone composite membranes were characterized by SEM.The zeolite-filled PDMS/PVDF composite membranes were applied for the pervaporation of ethanol/water mixtures and showed higher flux compared with that reported in literatures.The effect of zeolite loading and Si/Al ratio of zeolite particles on...

  13. Wet gringing of zeolite in stirred media mill

    Science.gov (United States)

    Mucsi, G.; Bohács, K.

    2016-04-01

    In the present study the results of systematic experimental series are presented with the specific goal of optimizing the zeolite nanoparticles' production using a wet stirred media mill. The diameter of the grinding media as well as the rotor velocity were varied in the experiments. Particle size distribution and "outer" specific surface area of the ground samples were measured by a laser particle size analyser. Additionally, BET, XRD and FT-IR analyses were performed for the characterization of the "total" specific surface area as well as the crystalline and material structure, respectively. Based on the results of the laboratory experiments it was found that wet stirred media milling provided significant reductions in the particle size of zeolite. Furthermore, the crystallinity of the samples also decreased, so not only the physical but the mineralogical characteristics of zeolite can be controlled by stirred media milling.

  14. Rotational dynamics of propylene inside Na-Y zeolite cages

    Indian Academy of Sciences (India)

    V K Sharma; Mala N Rao; Siddharth Gautam; A K Tripathi; V S Kamble; S L Chaplot; R Mukhopadhyay

    2008-11-01

    We report here the quasielastic neutron scattering (QENS) studies on the dynamics of propylene inside Na-Y zeolite using triple axis spectrometer (TAS) at Dhruva reactor, Trombay. Molecular dynamics (MD) simulations performed on the system had shown that the rotational motion involves energy larger than that involved in the translational motion. Therefore, rotational motion was not observed in our earlier QENS studies on propylene adsorbed Na-Y zeolite using a higher resolution spectrometer at Dhruva. Analysis of the TAS spectra revealed that the quasielastic broadening observed in propylene-loaded zeolite spectra is due to the rotational motion of the propylene molecules. This is consistent with our simulation result. Further, the rotational motion is found to be isotropic. The rotational diffusion coefficient has been obtained.

  15. Inelastic neutron scattering studies of water in natural zeolites

    International Nuclear Information System (INIS)

    Results on the motion of water molecules in six natural zeolites (natrolite, phillipsite, harmotome, heulandite, stilbite and chabazite) from incoherent inelastic neutron scattering are presented. The spectra for five zeolite samples exhibit broad maxima and few resolved peaks. Only for natrolite with water molecules tightly bound to the alumosilicate framework a spectrum with well-resolved peaks is observed. A detailed interpretation is attempted for the Ba-zeolite harmotome where data were recorded at various temperatures and different amount of water. - Differential scanning calorimetry gave a broad dehydration peak for chabazite (T=443 K) and a sharp single peak for natrolite (T=633 K), whereas three maxima (T=433, 523 and 673 K) were observed for harmotome. (orig.)

  16. Cerium uptake by zeolite A synthesized from natural clinoptilolite tuffs

    International Nuclear Information System (INIS)

    Natural clinoptilolite tuffs from the Semnan region in Iran was used for the synthesis of zeolite A. The tuffs and synthesized zeolites were characterized by XRD and XRF. The sorption behavior of the synthesized zeolite toward cerium was studied. Using the Lagergren's equation, the absorption constant was calculated. The measured distribution coefficient values (Kd) indicated that cerium uptake is higher in lower initial concentrations, higher temperature and higher pH values. Thermodynamic parameters of the exchange were calculated through construction of ion-exchange isotherms at three temperatures of 298, 323 and 343 K. The dynamic absorption of cerium was also studied by passing the solution through a column in the presence and absence of sodium ions. (author)

  17. Zeolites and their utilizations in radioactive waste treatment

    International Nuclear Information System (INIS)

    Applications of natural zeolites make use of one or more of the following properties: (I) cation exchange, (II) adsorption and related molecular sieving, (III) catalytic, (IV) dehydration and rehydration, and (v) biological reactivity. Extrinsic properties of the rock (e.g., siliceous composition, color, porosity, attrition resistance, and bulk density) are also important in many applications. Thus, the ideal zeolitic tuff for both cation exchange and adsorption applications should be mechanically strong to resist abrasion and disintegration, highly porous to allow solutions and gases to diffuse readily in and out of the rock, and soft enough to be easily crushed. In the present work, the removal of cesium+, strontium-2 and UO2+2 from nuclear wastewaters were investigated under static and dynamic conditions using two Iranian natural Clinoptilolite, their modified forms as well as a relevant synthetic zeolite-P

  18. Methanol conversion to lower olefins over RHO type zeolite

    KAUST Repository

    Masih, Dilshad

    2013-07-01

    Eight-membered ring small-pore zeolite of RHO-type topology has been synthesized, characterized and tested for methanol-to-olefin (MTO) reaction. The zeolite was hydrothermally crystallized from the gel with Si/Al ratio of 5.0. It showed a high BET specific surface area (812 m2 g-1), micropore volume (0.429 cm3 g-1), and acid amount (2.53 mmol g-1). Scanning electron microscopy observations showed small crystallites of about 1 μm. The zeolite was active for MTO reaction with 100% methanol conversions at 623-723 K, whereas selectivity to lower olefins changed with time. © 2013 Elsevier B.V.

  19. Study of sulfur dioxide adsorption on Y zeolite

    Directory of Open Access Journals (Sweden)

    IOAN SANDULESCU

    2004-07-01

    Full Text Available Sulfur dioxide adsorptive properties of Y zeolite, the structure of which was confirmed by XRD, were investigated at temperatures within the 25–200 ºC range and sulfur dioxide concentrations between 0.9 to 6 % (vol./vol.. It was found that this sorbent possesses a relatively high adsorption capacity. The Y zeolite did not lose its activity during 20 adsorption-desorption-regeneration cycles. The manner in which sulfur dioxide is adsorbed on Y type zeolite was also investigated by analyzing the sample with and without adsorbed SO2, using IR spectroscopy, as well as total and Lewis acidity measurements. The sulfur dioxide molecule is probably adsorbed by hydrogen bonding to one or two conveniently positioned surface hydroxyl groups.

  20. Long n-alkanes isomerization by medium pore zeolites with pore mouth and key lock mechanisms; Isomerisation des paraffines longues par des zeolithes a pores moyens selon les mecanismes ouverture de pore et cle serrure

    Energy Technology Data Exchange (ETDEWEB)

    Claude, M.

    1999-10-01

    Skeletal isomerization of long n-alkanes is practiced to improve cold flow properties of diesel and lubricant fractions. In this work, model long n-alkanes (n-C{sub 10} - n-C{sub 24}) were hydro-isomerized in a fixed bed down flow vapour phase reactor loaded with bifunctional Pt/H-ZSM-22 zeolite catalyst. The skeletal isomers were analysed and identified with GC/MS. High isomer yields were obtained. The distribution of positional mono-methyl-branched isomers obtained from n-C{sub 12} to n-C{sub 24} are typically bimodal. This is explained by adsorption and reaction of the alkanes in pore mouths and locks on the external surface of the zeolite crystals. The pore mouth mode favours branching at C{sub 2} and C{sub 3}. The 'key lock' type proceeds by penetration of the two ends of the hydrocarbon chain into a different pore opening and favours more central mono-branching of the chain. The contribution of the key lock mode increases with increasing chain length and with the reaction temperature. The preferentially formed dimethyl-branched isomers have a separation between branchings of three up to fourteen carbon atoms. The formation of the second methyl-branching occurs preferentially from a centrally branched mono-methyl-branched isomer, so that the second branching is generated always more toward the end of the chain. Owing to the differences in adsorption entropy among the locks, at higher temperatures the largest lock is preferred and the distance between the two branching along the carbon chain in the preferred isomers is biggest. Thus the work resulted in the formulation of structure-selectivity relationships. n-C{sub 18} was hydro-isomerized on other zeolites. The nature and distribution of the isomers obtained suggest that the tubular 10-ring zeolites ZSM-23, ZSM-35 and SAPO-11 also operate according to pore mouth and key lock concepts. Zeolites with 12-rings show typical product patterns for catalysis in absence of steric hindrance. (author)

  1. Mechanochemical approach for selective deactivation of external surface acidity of ZSM-5 zeolite catalyst.

    Science.gov (United States)

    Inagaki, Satoshi; Sato, Koki; Hayashi, Shunsuke; Tatami, Junichi; Kubota, Yoshihiro; Wakihara, Toru

    2015-03-01

    The acid sites associated with the external surface of zeolite particles are responsible for undesirable consecutive reactions, such as isomerization, alkylation, and oligomerization, resulting in a lower selectivity to a target product; therefore, the selective modification (deactivation) of the external surface of zeolite particles has been an important issue in zeolite science. Here, a new method for surface deactivation of zeolite catalyst was tested via a mechanochemical approach using powder composer. Postsynthetic mechanochemical treatment of ZSM-5 zeolite causes a selective deactivation of catalytically active sites existing only on the external surface, as a potentially useful catalyst for highly selective production of p-xylene. PMID:25654542

  2. Fabrication of Macro-porous β-zeolite by Using Colloidal Polystyrene Spheres as a Template

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A β-zeolite/polystyrene composite material was synthesized by co-deposition of mono-disperse polystyrene spheres and nano β-zeolite particles in aqueous suspension on a vertical substrate. Macro-porous β-zeolite was obtained after the polystyrene template was removed by calcination. The micro/macro-pore structure of the prepared β-zeolite was highly ordered. In comparison with other assembly methods, the co-deposition method could obtain a highly ordered macro-porous material with relatively large zeolite filling particles, and therefore the co-deposition of particles with different size is a promising method for the fabrication of macro-porous materials.

  3. The use of clinoptilolite olite and synthetic zeolites for removal of petroleum subtances

    OpenAIRE

    Bandura, L.; Panek, R; Franus, W.

    2014-01-01

    In the present paper the sorption of petroleum substances such as diesel fuels on zeolite beds was investigated. A natural occurring zeolite clinoptilolite, and mixtures of clinoptilolite and synthetic zeolites Na-P1 and Na-X type, in the ratio 3:1, were used in this study. Natural zeolite acquired from the mine tuffs in Sokyrnytsya (Ukraine). In order to obtain synthetic zeolites, F-class fly ash (Kozienice Power Plant, Poland) with sodium hydroxide was used and later it under...

  4. Solidification of radioactive resins by using ASC cement and zeolite blends

    International Nuclear Information System (INIS)

    The solidification of simulated spent radioactive resins is investigated using ASC cement and zeolite blends. The compress strengths and leaching rates of the solidified objects with various added amount of zeolite were compared. The microstructures of the matrix were investigated by SEM in order to explain the effect of zeolite amount on the performance of solidified object. The experimental results indicate that the addition of zeolite causes a structural shift of solidified object from pinhead crystal to layer crystal, and addition of 10%-20% zeolite can decrease the leaching rate of Cs greatly, however, it had little influence on the compress strengths. (authors)

  5. Bifunctional Nb/Ti-MCM-41 catalyst in oxidative acidic reaction of cyclohexene to diol

    International Nuclear Information System (INIS)

    Bifunctional oxidative and acidic catalyst was prepared by incorporating titanium ion (Ti4+) and niobic acid in meso porous molecular sieves MCM-41 structure. The catalyst is active both in oxidation, and acid-catalyzed reaction of olefin to diol. Nb/ Ti-MCM-41 catalyst was prepared by first synthesizing Ti-MCM-41 by hydrothermal method, followed by subsequent impregnation of niobic acid (Nb) into Ti-MCM-41 at various % wt Nb loading. The framework structure of Ti-MCM-41 collapsed after incorporation of Nb but the tetrahedral form of Ti4+ still maintained with octahedral Nb species. Both Bronsted and Lewis acid sites are present in all Nb/ Ti-MCM-41 samples. The formation of cyclohexanediol in the epoxidation of cyclohexene proved the bifunctional oxidative and acidic catalyst through the formation of cyclohexane oxide. The yield increased with the increase amount of the Bronsted acid sites provided by niobium species. (author)

  6. Tethering metal ions to photocatalyst particulate surfaces by bifunctional molecular linkers for efficient hydrogen evolution

    KAUST Repository

    Yu, Weili

    2014-08-19

    A simple and versatile method for the preparation of photocatalyst particulates modified with effective cocatalysts is presented; the method involves the sequential soaking of photocatalyst particulates in solutions containing bifunctional organic linkers and metal ions. The modification of the particulate surfaces is a universal and reproducible method because the molecular linkers utilize strong covalent bonds, which in turn result in modified monolayer with a small but controlled quantity of metals. The photocatalysis results indicated that the CdS with likely photochemically reduced Pd and Ni, which were initially immobilized via ethanedithiol (EDT) as a linker, were highly efficient for photocatalytic hydrogen evolution from Na2S-Na2SO3-containing aqueous solutions. The method developed in this study opens a new synthesis route for the preparation of effective photocatalysts with various combinations of bifunctional linkers, metals, and photocatalyst particulate materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. First-Principles Study of Structure Property Relationships of Monolayer (Hydroxy)Oxide-Metal Bifunctional Electrocatalysts

    DEFF Research Database (Denmark)

    Zeng, Zhenhua; Kubal, Joseph; Greeley, Jeffrey Philip

    2015-01-01

    information that is inaccessible by purely experimental means, and these structures, in turn, strongly suggest that a bifunctional reaction mechanism for alkaline HER will be operative at the interface between the films, the metal substrates, and the surrounding aqueous medium. This bifunctionality produces...... under alkaline electrochemical conditions. We demonstrate that the structure and oxidation state of the films can be systematically tuned by changing the applied electrode potential and/or the nature of substrates. Structural features determined from the theoretical calculations provide a wealth of...... important changes in the calculated barriers of key elementary reaction steps, including water activation and dissociation, as compared to traditional monofunctional Pt surfaces. The successful identification of the structures of thin metal films and three-phase boundary catalysts is not only an important...

  8. Sorption of Pu(IV) from nitric acid by bifunctional anion-exchange resins

    International Nuclear Information System (INIS)

    Anion exchange is attractive for separating plutonium because the Pu(IV) nitrate complex is very strongly sorbed and few other metal ions form competing anionic nitrate complexes. The major disadvantage of this process has been the unusually slow rate at which the Pu(IV) nitrate complex is sorbed by the resin. The paper summarizes the concept of bifunctional anion-exchange resins, proposed mechanism for Pu(IV) sorption, synthesis of the alkylating agent, calculation of Kd values from Pu(IV) sorption results, and conclusions from the study of Pu(IV) sorption from 7M nitric acid by macroporous anion-exchange resins including level of crosslinking, level of alkylation, length of spacer, and bifunctional vs. monofunctional anion-exchange resins

  9. Novel modified zeolites for energy-efficient hydrocarbon separations.

    Energy Technology Data Exchange (ETDEWEB)

    Arruebo, Manuel (University of Colorado, Boulder, CO); Dong, Junhang; Anderson, Thomas (Burns and McDonnell, Kansas City, MO); Gu, Xuehong; Gray, Gary (Goodyear Chemical Company, Akron, OH); Bennett, Ron (Goodyear Chemical Company, Akron, OH); Nenoff, Tina Maria; Kartin, Mutlu; Johnson, Kaylynn (Goodyear Chemical Company, Akron, OH); Falconer, John (University of Colorado, Boulder, CO); Noble, Richard (University of Colorado, Boulder, CO)

    2006-11-01

    We present synthesis, characterization and testing results of our applied research project, which focuses on the effects of surface and skeletal modification of zeolites for significant enhancements in current hydrocarbon (HC) separations. Zeolites are commonly used by the chemical and petroleum industries as catalysts and ion-exchangers. They have high potential for separations owing to their unique pore structures and adsorption properties and their thermal, mechanical and chemical properties. Because of zeolites separation properties, low cost, and robustness in industrial process, they are natural choice for use as industrial adsorbents. This is a multidisciplinary effort to research, design, develop, engineer, and test new and improved materials for the separation of branched vs. linear organic molecules found in commercially important HC streams via adsorption based separations. The focus of this project was the surface and framework modification of the commercially available zeolites, while tuning the adsorption properties and the selectivities of the bulk and membrane separations. In particular, we are interested with our partners at Goodyear Chemical, on how to apply the modified zeolites to feedstock isoprene purification. For the characterization and the property measurements of the new and improved materials powder X-ray diffraction (PXRD), Residual Gas Analyzer-Mass Spectroscopy (RGA-MS), Electron Microscopy (SEM/EDAX), temperature programmed desorption (TPD) and surface area techniques were utilized. In-situ carbonization of MFI zeolite membranes allowed for the maximum separation of isoprene from n-pentane, with a 4.1% enrichment of the binary stream with n-pentane. In four component streams, a modified MFI membrane had high selectivities for n-pentane and 1-3-pentadiene over isoprene but virtually no separation for the 2-methyl-2-butene/isoprene pair.

  10. Copper removal using bio-inspired polydopamine coated natural zeolites

    International Nuclear Information System (INIS)

    Highlights: • Natural zeolites were modified with bio-inspired polydopamine. • A 91.4% increase in Cu(II) ion adsorption capacity was observed. • Atomic absorption and neutron activation analysis gave corroborative results. • Neutron activation analysis was used to provide accurate information on 30+ elements. • Approximately 90% of the adsorbed copper could be recovered by 0.1 M HCl treatment. - Abstract: Herein, for the first time, natural clinoptilolite-rich zeolite powders modified with a bio-inspired adhesive, polydopamine (PDA), have been systematically studied as an adsorbent for copper cations (Cu(II)) from aqueous solution. Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) revealed successful grafting of PDA onto the zeolite surface. The effects of pH (2–5.5), PDA treatment time (3–24 h), contact time (0 to 24 h) and initial Cu(II) ion concentrations (1 to 500 mg dm−3) on the adsorption of Cu(II) ions were studied using atomic absorption spectroscopy (AAS) and neutron activation analysis (NAA). The adsorption behavior was fitted to a Langmuir isotherm and shown to follow a pseudo-second-order reaction model. The maximum adsorption capacities of Cu(II) were shown to be 14.93 mg g−1 for pristine natural zeolite and 28.58 mg g−1 for PDA treated zeolite powders. This impressive 91.4% increase in Cu(II) ion adsorption capacity is attributed to the chelating ability of the PDA on the zeolite surface. Furthermore studies of recyclability using NAA showed that over 50% of the adsorbed copper could be removed in mild concentrations (0.01 M or 0.1 M) of either acid or base

  11. Sorption of Lithium on Bentonite, Kaolin and Zeolite

    Directory of Open Access Journals (Sweden)

    Mandy Hoyer

    2015-04-01

    Full Text Available Li sorption was studied on natural bentonite, kaolin and zeolite in batch experiments at variable Li and Na concentrations (0, 1.5, 15, 150, 750 mM LiCl and 0.01, 0.1, 1, 3, 5 M NaCl. The solid-to-solution ratio was 1:4 and pH ranged from 2 to 10. Maximum Li sorption was determined at 0.01 M NaCl and 750 mM LiCl concentration in solution. It was 3800 ± 380 ppm, 1300 ± 130 ppm and 3900 ± 390 ppm on bentonite, kaolin and zeolite, respectively, which is in the average to upper range typical for clay minerals. Under these conditions, kaolin was saturated with Li, whereas Li in bentonite and zeolite occupied only about 55%–79% and 9%–26% of the typical cation exchange capacity (CEC of smectites and zeolites, respectively. This is explained by differences in the way Li is bound in the materials studied. Li sorption on bentonite was independent of pH due to strong pH buffering. Above pH 5, kaolin was transformed to gibbsite, which completely changed its Li sorption capabilities. Extremely low as well as extremely high pH destabilized the crystal lattice of zeolite. All in all it was shown that, under the studied conditions, Li sorption on the studied materials occurs in detectable quantities. So, clay minerals and zeolites can act as a sink for Li if Li concentrations in solution are sufficiently high.

  12. Copper removal using bio-inspired polydopamine coated natural zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yang; Shapter, Joseph G. [Flinders Centre for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide 5042, SA (Australia); Popelka-Filcoff, Rachel [School of Chemical and Physical Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide 5042, SA (Australia); Bennett, John W. [Centre for Nuclear Applications, Australian Nuclear Science and Technology Organisation, Lucas Heights 2234, NSW (Australia); Ellis, Amanda V., E-mail: Amanda.Ellis@flinders.edu.au [Flinders Centre for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide 5042, SA (Australia)

    2014-05-01

    Highlights: • Natural zeolites were modified with bio-inspired polydopamine. • A 91.4% increase in Cu(II) ion adsorption capacity was observed. • Atomic absorption and neutron activation analysis gave corroborative results. • Neutron activation analysis was used to provide accurate information on 30+ elements. • Approximately 90% of the adsorbed copper could be recovered by 0.1 M HCl treatment. - Abstract: Herein, for the first time, natural clinoptilolite-rich zeolite powders modified with a bio-inspired adhesive, polydopamine (PDA), have been systematically studied as an adsorbent for copper cations (Cu(II)) from aqueous solution. Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) revealed successful grafting of PDA onto the zeolite surface. The effects of pH (2–5.5), PDA treatment time (3–24 h), contact time (0 to 24 h) and initial Cu(II) ion concentrations (1 to 500 mg dm{sup −3}) on the adsorption of Cu(II) ions were studied using atomic absorption spectroscopy (AAS) and neutron activation analysis (NAA). The adsorption behavior was fitted to a Langmuir isotherm and shown to follow a pseudo-second-order reaction model. The maximum adsorption capacities of Cu(II) were shown to be 14.93 mg g{sup −1} for pristine natural zeolite and 28.58 mg g{sup −1} for PDA treated zeolite powders. This impressive 91.4% increase in Cu(II) ion adsorption capacity is attributed to the chelating ability of the PDA on the zeolite surface. Furthermore studies of recyclability using NAA showed that over 50% of the adsorbed copper could be removed in mild concentrations (0.01 M or 0.1 M) of either acid or base.

  13. Regeneration of clinoptilolite zeolite used for the ammonium removal

    International Nuclear Information System (INIS)

    The use of zeolites has been increased in the last years with different applications and with a great boom in the environmental area, but a little had been make about the regeneration of such zeolites. The presence of nitrogen-ammonia in water may cause serious pollution problems since it results to be toxic for fishes and other aquatic life forms, also it provokes the algae growing. The natural clinoptilolite contains interchangeable ions such as the sodium (Na+), potassium (K+), magnesium (Mg2+) and calcium (Ca2+) in different proportions depending on the mineral origin When the zeolite is upgraded to its sodium form, the cation exchange capacity and the preference by the nitrogen-ammonia are increased, allowing the reversible process of sorption. In this work it was proposed the regeneration to its sodium form about the ammonia clinoptilolite zeolite. The natural mineral was characterized using the methods such as: X-ray diffraction, Infrared spectroscopy, Thermal gravimetric analysis and surface area. The results show that the ammonium sorption was between 95% and 98.7% such an ambient temperature as a flow back. the zeolite was regenerated approximately from 60% in the first cycle up to 97% in the last cycle at flow back temperature and of 59.2% up to 96.9% at ambient temperature, it was not presented any significant effect which could be attributed to the temperature. During the exchange process, the cations present in the natural zeolite were exchanged with the ammonium ions, this process was not completed due to that retained ammonium quantity was major that of the desorpted ions, what shows that in addition of ion exchange, another type of sorption process exists. (Author)

  14. Radiation Induced Crosslinking of Polyethylene in the Presence of Bifunctional Vinyl Monomers

    DEFF Research Database (Denmark)

    Joshi, M. S.; Singer, Klaus Albert Julius; Silverman, J.

    Several reports have been published showing that the radiation induced grafting of bifunctional vinyl monomers to low density polyethylene results in a product with an unusually high density of crosslinks. The same grafting reactions are shown to reduce the incipient gel dose by more than a factor...... of fifty. This paper is concerned with the apparent crosslinking produced by the radiation grafting of two monomers to polyethylene: acrylic acid and acrylonitrile....

  15. Bifunctional silica nanoparticles for the exploration of biofilms of Pseudomonas aeruginosa

    OpenAIRE

    Mauline, Léïla; Gressier, Marie; Roques, Christine; Hammer, Peter,; Ribeiro, Sidney J. L.; Caiut, José Maurício A.; Menu, Marie-Joëlle

    2013-01-01

    Luminescent silica nanoparticles are frequently employed for biotechnology applications mainly because of their easy functionalization, photo-stability, and biocompatibility. Bifunctional silica nanoparticles (BSNPs) are described here as new efficient tools for investigating complex biological systems such as biofilms. Photoluminescence is brought about by the incorporation of a silylated ruthenium (II) complex. The surface properties of the silica particles were designed by reaction with am...

  16. L-Proline Derived Bifunctional Organocatalysts: Enantioselective Michael Addition of Dithiomalonates to trans-β-Nitroolefins.

    Science.gov (United States)

    Jin, Hui; Kim, Seung Tae; Hwang, Geum-Sook; Ryu, Do Hyun

    2016-04-15

    A series of novel L-proline derived tertiary amine bifunctional organocatalysts 9 are reported, which were applied to the asymmetric Michael addition of dithiomalonates 2 to trans-β-nitroolefins 1. The reaction proceeded in high yields (up to 99%) with high enantioselectivities (up to 97% ee). The synthetic utility of this methodology was demonstrated in the short synthesis of (R)-phenibut in high yield. PMID:26989804

  17. GST-TAT-SOD: Cell Permeable Bifunctional Antioxidant Enzyme—A Potential Selective Radioprotector

    OpenAIRE

    Jianru Pan; Huocong He; Ying Su; Guangjin Zheng; Junxin Wu; Shutao Liu; Pingfan Rao

    2016-01-01

    Superoxide dismutase (SOD) fusion of TAT was proved to be radioprotective in our previous work. On that basis, a bifunctional recombinant protein which was the fusion of glutathione S-transferase (GST), SOD, and TAT was constructed and named GST-TAT-SOD. Herein we report the investigation of the cytotoxicity, cell-penetrating activity, and in vitro radioprotective effect of GST-TAT-SOD compared with wild SOD, single-function recombinant protein SOD-TAT, and amifostine. We demonstrated that wi...

  18. 3D Ordered Mesoporous Bifunctional Oxygen Catalyst for Electrically Rechargeable Zinc-Air Batteries.

    Science.gov (United States)

    Park, Moon Gyu; Lee, Dong Un; Seo, Min Ho; Cano, Zachary Paul; Chen, Zhongwei

    2016-05-01

    To enhance energy efficiency and durability, a highly active and durable 3D ordered mesoporous cobalt oxide framework has been developed for rechargeable zinc-air batteries. The bifunctional air electrode consisting of 3DOM Co3 O4 having high active surface area and robust structure, results in superior charge and discharge battery voltages, and durable performance for electrically rechargeable zinc-air batteries. PMID:27043451

  19. Synthesis of acid-base bifunctional mesoporous materials by oxidation and thermolysis

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiaofang [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023 (China); Zou, Yongcun [State Key Laboratory of Inoranic Synthesis and Preparative Chemistryg, College of Chemistry, Jilin University, Changchun 130012 (China); Wu, Shujie; Liu, Heng [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023 (China); Guan, Jingqi, E-mail: guanjq@jlu.edu.cn [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023 (China); Kan, Qiubin, E-mail: qkan@jlu.edu.cn [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023 (China)

    2011-06-15

    Graphical abstract: A novel and efficient method has been developed for the synthesis of acid-base bifunctional catalyst. The obtained sample of SO{sub 3}H-MCM-41-NH{sub 2} containing amine and sulfonic acids exhibits excellent catalytic activity in aldol condensation reaction. Research highlights: {yields} Synthesize acid-base bifunctional mesoporous materials SO{sub 3}H-MCM-41-NH{sub 2}. {yields} Oxidation and then thermolysis to generate acidic site and basic site. {yields} Exhibit good catalytic performance in aldol condensation reaction between acetone and various aldehydes. -- Abstract: A novel and efficient method has been developed for the synthesis of acid-base bifunctional catalyst SO{sub 3}H-MCM-41-NH{sub 2}. This method was achieved by co-condensation of tetraethylorthosilicate (TEOS), 3-mercaptopropyltrimethoxysilane (MPTMS) and (3-triethoxysilylpropyl) carbamicacid-1-methylcyclohexylester (3TAME) in the presence of cetyltrimethylammonium bromide (CTAB), followed by oxidation and then thermolysis to generate acidic site and basic site. X-ray diffraction (XRD) and transmission electron micrographs (TEM) show that the resultant materials keep mesoporous structure. Thermogravimetric analysis (TGA), X-ray photoelectron spectra (XPS), back titration, solid-state {sup 13}C CP/MAS NMR and solid-state {sup 29}Si MAS NMR confirm that the organosiloxanes were condensed as a part of the silica framework. The bifunctional sample (SO{sub 3}H-MCM-41-NH{sub 2}) containing amine and sulfonic acids exhibits excellent acid-basic properties, which make it possess high activity in aldol condensation reaction between acetone and various aldehydes.

  20. 67Ga(NODASA): a new potential bifunctional radioligand for coupling to peptides

    International Nuclear Information System (INIS)

    A new bifunctional chelator NODASA (1,4,7-triazacyclononane-1-succinic acid-4,7-diacetic acid) has been synthesised and its Ga(III) complex was crystallographically characterized by X-ray diffraction. The complex showed to be stable in serum and in acidic conditions and its stability constant was determined using a competition method with an auxiliary ligand. The conjugation of Ga(NODASA) to a model aminoacidamide proved the feasibility of a prelabelling approach. (author)

  1. Bifunctional catalysts for the direct production of liquid fuels from syngas

    OpenAIRE

    Sartipi, S.

    2014-01-01

    Design and development of catalyst formulations that maximize the direct production of liquid fuels by combining Fischer-Tropsch synthesis (FTS), hydrocarbon cracking, and isomerization into one single catalyst particle (bifunctional FTS catalyst) have been investigated in this thesis. To achieve this aim, a second functionality (other than FTS) has to be added to the catalyst formulation to break the limitation of a classical Anderson-Schulz-Flory (ASF) distribution of FTS products. Since up...

  2. A new bifunctional hybrid nanostructure as an active platform for photothermal therapy and MR imaging

    OpenAIRE

    Mona Khafaji; Manouchehr Vossoughi; M. Reza Hormozi-Nezhad; Rassoul Dinarvand; Felix Börrnert; Azam Irajizad

    2016-01-01

    As a bi-functional cancer treatment agent, a new hybrid nanostructure is presented which can be used for photothermal therapy by exposure to one order of magnitude lower laser powers compared to similar nanostructures in addition to substantial enhancment in magnetic resonance imaging (MRI) contrast. This gold-iron oxide hybrid nanostructure (GIHN) is synthesized by a cost-effective and high yield water-based approach. The GIHN is sheilded by PEG. Therefore, it shows high hemo and biocompatib...

  3. Radiation Induced Crosslinking of Polyethylene in the Presence of Bifunctional Vinyl Monomers

    DEFF Research Database (Denmark)

    Joshi, M. S.; Singer, Klaus Albert Julius; Silverman, J.

    Several reports have been published showing that the radiation induced grafting of bifunctional vinyl monomers to low density polyethylene results in a product with an unusually high density of crosslinks. The same grafting reactions are shown to reduce the incipient gel dose by more than a facto...... of fifty. This paper is concerned with the apparent crosslinking produced by the radiation grafting of two monomers to polyethylene: acrylic acid and acrylonitrile....

  4. Bifunctional Metamaterials with Simultaneous and Independent Manipulation of Thermal and Electric Fields

    OpenAIRE

    Lan, Chuwen; Li, Bo; Zhou, Ji

    2015-01-01

    Metamaterials offer a powerful way to manipulate a variety of physical fields ranging from wave fields (electromagnetic field, acoustic field, elastic wave, etc.), static fields (static magnetic field, static electric field) to diffusive fields (thermal field, diffusive mass). However, the relevant reports and studies are usually conducted on a single physical field or functionality. In this study, we proposed and experimentally demonstrated a bifunctional metamaterial which can manipulate th...

  5. Zeolites replacing plant fossils in the Denver formation, Lakewood, Colorado.

    Science.gov (United States)

    Modreski, P.J.; Verbeek, E.R.; Grout, M.A.

    1984-01-01

    Well-developed crystals of heulandite and stilbite, within fossil wood, occur in sedimentary rocks in Lakewood, Jefferson County. The rocks belong to the Denver formation, a locally fossiliferous deposit of fluvial claystone, siltstone, sandstone and conglomerate, containing some volcanic mudflows (andesitic) of late Cretaceous to Palaeocene age. Altered volcanic glass released Na and Ca into the ground-water and subsequently zeolites were crystallized in the open spaces between grains and within fossil plant structures. Minor pyrite, quartz (jasper), calcite and apatite also occur as replacements of fossil wood. Similar zeolite occurrences in other areas are reviewed.-R.S.M.

  6. Mesoporous zeolite single crystals for catalytic hydrocarbon conversion

    DEFF Research Database (Denmark)

    Schmidt, I.; Christensen, C.H.; Hasselriis, Peter; Kustova, Marina; Nielsen, Michael Brorson; Dahl, Søren; Johannsen, K.; Christensen, Claus H.

    , alkylation of aromatics and present new results on isomerization of aromatics. Specifically, the shape-selective isomerization of meta-xylenc into para-xylene and ortho-xylene is studied. In all these reactions, rnesoporous zeolite single crystals prove to be unique catalysts since they provide easy...... transport to and from active sites and at the same time maintain the shape-selectivity required. Thus, all these results support the idea that the beneficial effect of the mesopores system in the mesoporous zeolite single crystals call be solely attributed to enhanced mass transport....

  7. Exploring Mass Transfer in Mesoporous Zeolites by NMR Diffusometry

    Directory of Open Access Journals (Sweden)

    Ryong Ryoo

    2012-04-01

    Full Text Available With the advent of mesoporous zeolites, the exploration of their transport properties has become a task of primary importance for the auspicious application of such materials in separation technology and heterogeneous catalysis. After reviewing the potential of the pulsed field gradient method of NMR (PFG NMR for this purpose in general, in a case study using a specially prepared mesoporous zeolite NaCaA as a host system and propane as a guest molecule, examples of the attainable information are provided.

  8. Adsorption of cobalt on some natural zeolites occuring in CSFR

    International Nuclear Information System (INIS)

    The subject of this paper was to study Co2+-ion removal from aqueous solutions by means of natural mordenite and clinoptilolite. The mentioned zeolites were of Slovak origin (CSFR). The static and dynamic equilibrium adsorption of Co2+-ions by zeolites, the influence of pH, quality and quantity of interfering ions on adsorbate/adsorbent system were investigated. The influence of flow rate, activation and initial concentration on the shape of the breakthrough curve was examined in dynamic regime. Mathematical expression was found for the breakthrough curve description. (author) 4 refs.; 6 figs.; 3 tabs

  9. Synthesis of high ion exchange zeolites from coal fly ash

    OpenAIRE

    Ayora, Carlos; Querol, Xavier; Moreno, N.; Alastuey, Andrés; Juan Mainar, Roberto; Andrés Gimeno, José Manuel; López Soler, Ángel; Medinaceli, Alejandro; Valero, Antonio

    2007-01-01

    This study focuses on the synthesis at a pilot plant scale of zeolitic material obtained from the coal fly ashes of the Teruel and Narcea power plants in Spain. After the optimisation of the synthesis parameters at laboratory scale, the Teruel and Narcea fly ashes were selected as low and high glass fly ashes. The pilot plant scale experiments were carried out in a 10 m3 reactor of Clariant SA (Barcelona, Spain). The results allowed obtaining 1.1 and 2.2 tonnes of zeolitic material with 40 an...

  10. Effect of zeolite on health condition of canines

    Directory of Open Access Journals (Sweden)

    Vučićević Ivana

    2008-01-01

    Full Text Available The paper shows the results of investigations of elementary hematological and biochemical blood parameters of German Shepherd dogs administered zeolite through feed daily for a period of 50 days. No undesired effects were established during the period of observation, and in fact there was a full normalization of the condition of the dogs that previously exhibited transitory symptoms of gastrointestinal tract disorders. No significant digressions were observed in the examined biochemical parameters of blood, either, that could indicate any harmful effects of zeolite, with the exception of the tendency toward a reduction in the concentrations of phosphorus and calcium, which was not manifest clinically as well during this period.

  11. Experimental adsorption equilibrium study and comparison of zeolite with water and ethanol for cooling systems

    Institute of Scientific and Technical Information of China (English)

    MAIGA Abdoulaye Siddeye; CHEN Guang-ming; WANG Qin

    2007-01-01

    Two adsorption refrigeration working pairs of zeolite with water and ethanol were studied and the parameters of Dubinin-Astakhov model were regressed using the experimental data of equilibrium. The coefficient of heterogeneity varied from 1.305 to 1.52 for the zeolite-water pair and from 1.73 to 2.128 for zeolite-ethanol pair. The maximum adsorption capacity varied from 0.315 to 0.34 for zeolite-water and 0.23 to 0.28 for zeolite-ethanol, respectively. The results showed that the zeolite-water pair is suitable for solar energy cooling not only because of the high latent heat of vaporization of water but also because of the better equilibrium performance. On the other hand, zeolite-ethanol gives a high adsorption capacity at high regeneration temperature, which means it can be used in heat engine systems like buses and cars.

  12. Methods of using structures including catalytic materials disposed within porous zeolite materials to synthesize hydrocarbons

    Science.gov (United States)

    Rollins, Harry W.; Petkovic, Lucia M.; Ginosar, Daniel M.

    2011-02-01

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  13. Bifunctional Catalysts for Upgrading of Biomass-Derived Oxygenates: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Allison M.; Hensley, Jesse E.; Medlin, J. Will

    2016-08-05

    Deoxygenation is an important reaction in the conversion of biomass-derived oxygenates to fuels and chemicals. A key route for biomass refining involves the production of pyrolysis oil through rapid heating of the raw biomass feedstock. Pyrolysis oil as produced is highly oxygenated, so the feasibility of this approach depends in large part on the ability to selectively deoxygenate pyrolysis oil components to create a stream of high-value finished products. Identification of catalytic materials that are active and selective for deoxygenation of pyrolysis oil components has therefore represented a major research area. One catalyst is rarely capable of performing the different types of elementary reaction steps required to deoxygenate biomass-derived compounds. For this reason, considerable attention has been placed on bifunctional catalysts, where two different active materials are used to provide catalytic sites for diverse reaction steps. Here, we review recent trends in the development of catalysts, with a focus on catalysts for which a bifunctional effect has been proposed. We summarize recent studies of hydrodeoxygenation (HDO) of pyrolysis oil and model compounds for a range of materials, including supported metal and bimetallic catalysts as well as transition-metal oxides, sulfides, carbides, nitrides, and phosphides. Particular emphasis is placed on how catalyst structure can be related to performance via molecular-level mechanisms. These studies demonstrate the importance of catalyst bifunctionality, with each class of materials requiring hydrogenation and C-O scission sites to perform HDO at reasonable rates.

  14. Comparison of Dynamical Behaviors Between Monofunctional and Bifunctional Two-Component Signaling Modules

    Science.gov (United States)

    Yang, Xiyan; Wu, Yahao; Yuan, Zhanjiang

    2015-06-01

    Two-component signaling modules exist extensively in bacteria and microbes. These modules can be, based on their distinct network structures, divided into two types: the monofunctional system (denoted by MFS) where the sensor kinase (SK) modulates only phosphorylation of the response regulator (RR), and the bifunctional system (denoted by BFS) where the SK catalyzes both phosphorylation and dephosphorylation of the RR. Here, we analyze dynamical behaviors of these two systems based on stability theory, focusing on differences between them. The analysis of the deterministic behavior indicates that there is no difference between the two modules, that is, each system has the unique stable steady state. However, there are significant differences in stochastic behavior between them. Specifically, if the mean phosphorylated SK level is kept the same for the two modules, then the variance and the Fano factor for the phosphorylated RR in the BFS are always no less than those in the MFS, indicating that bifunctionality always enhances fluctuations. The correlation between the phosphorylated SK and the phosphorylated RR in the BFS is always positive mainly due to competition between system components, but this correlation in the MFS may be positive, almost zero, or negative, depending on the ratio between two rate constants. Our overall analysis indicates that differences between dynamical behaviors of monofunctional and bifunctional signaling modules are mainly in the stochastic rather than deterministic aspect.

  15. Collagen/chitosan based two-compartment and bi-functional dermal scaffolds for skin regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng [Department of Plastic Surgery and Burns, Shenzhen Second People' s Hospital, Shenzhen 518035 (China); Wang, Mingbo [Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); She, Zhending [Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Shenzhen Lando Biomaterials Co., Ltd., Shenzhen 518057 (China); Fan, Kunwu; Xu, Cheng [Department of Plastic Surgery and Burns, Shenzhen Second People' s Hospital, Shenzhen 518035 (China); Chu, Bin; Chen, Changsheng [Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Shi, Shengjun, E-mail: shengjunshi@yahoo.com [The Burns Department of Zhujiang Hospital, Southern Medical University, Guangzhou 510280 (China); Tan, Rongwei, E-mail: tanrw@landobiom.com [Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Shenzhen Lando Biomaterials Co., Ltd., Shenzhen 518057 (China)

    2015-07-01

    Inspired from the sophisticated bilayer structures of natural dermis, here, we reported collagen/chitosan based two-compartment and bi-functional dermal scaffolds. Two functions refer to mediating rapid angiogenesis based on recombinant human vascular endothelial growth factor (rhVEGF) and antibacterial from gentamicin, which were encapsulated in PLGA microspheres. The gentamicin and rhVEGF encapsulated PLGA microspheres were further combined with collagen/chitosan mixtures in low (lower layer) and high (upper layer) concentrations, and molded to generate the two-compartment and bi-functional scaffolds. Based on morphology and pore structure analyses, it was found that the scaffold has a distinct double layered porous and connective structure with PLGA microspheres encapsulated. Statistical analysis indicated that the pores in the upper layer and in the lower layer have great variations in diameter, indicative of a two-compartment structure. The release profiles of gentamicin and rhVEGF exceeded 28 and 49 days, respectively. In vitro culture of mouse fibroblasts showed that the scaffold can facilitate cell adhesion and proliferation. Moreover, the scaffold can obviously inhibit proliferation of Staphylococcus aureus and Serratia marcescens, exhibiting its unique antibacterial effect. The two-compartment and bi-functional dermal scaffolds can be a promising candidate for skin regeneration. - Highlights: • The dermal scaffold is inspired from the bilayer structures of natural dermis. • The dermal scaffold has two-compartment structures. • The dermal scaffold containing VEGF and gentamicin encapsulated PLGA microspheres • The dermal scaffold can facilitate cell adhesion and proliferation.

  16. Bifunctional Perovskite Oxide Catalysts for Oxygen Reduction and Evolution in Alkaline Media.

    Science.gov (United States)

    Gupta, Shiva; Kellogg, William; Xu, Hui; Liu, Xien; Cho, Jaephil; Wu, Gang

    2016-01-01

    Oxygen electrocatalysis, namely of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), governs the performance of numerous electrochemical energy systems such as reversible fuel cells, metal-air batteries, and water electrolyzers. However, the sluggish kinetics of these two reactions and their dependency on expensive noble metal catalysts (e.g, Pt or Ir) prohibit the sustainable commercialization of these highly innovative and in-demand technologies. Bifunctional perovskite oxides have emerged as a new class of highly efficient non-precious metal catalysts (NPMC) for oxygen electrocatalysis in alkaline media. In this review, we discuss the state-of-the-art understanding of bifunctional properties of perovskites with regards to their OER/ORR activity in alkaline media and review the associated reaction mechanisms on the oxides surface and the related activity descriptors developed in the recent literature. We also summarize the present strategies to modify their electronic structure and to further improve their performance for the ORR/OER through highlighting the new concepts relating to the role of surface redox chemistry and oxygen deficiency of perovskite oxides for the ORR/OER activity. In addition, we provide a brief account of recently developed advanced perovskite-nanocarbon hybrid bifunctional catalysts with much improved performances. PMID:26247625

  17. Collagen/chitosan based two-compartment and bi-functional dermal scaffolds for skin regeneration

    International Nuclear Information System (INIS)

    Inspired from the sophisticated bilayer structures of natural dermis, here, we reported collagen/chitosan based two-compartment and bi-functional dermal scaffolds. Two functions refer to mediating rapid angiogenesis based on recombinant human vascular endothelial growth factor (rhVEGF) and antibacterial from gentamicin, which were encapsulated in PLGA microspheres. The gentamicin and rhVEGF encapsulated PLGA microspheres were further combined with collagen/chitosan mixtures in low (lower layer) and high (upper layer) concentrations, and molded to generate the two-compartment and bi-functional scaffolds. Based on morphology and pore structure analyses, it was found that the scaffold has a distinct double layered porous and connective structure with PLGA microspheres encapsulated. Statistical analysis indicated that the pores in the upper layer and in the lower layer have great variations in diameter, indicative of a two-compartment structure. The release profiles of gentamicin and rhVEGF exceeded 28 and 49 days, respectively. In vitro culture of mouse fibroblasts showed that the scaffold can facilitate cell adhesion and proliferation. Moreover, the scaffold can obviously inhibit proliferation of Staphylococcus aureus and Serratia marcescens, exhibiting its unique antibacterial effect. The two-compartment and bi-functional dermal scaffolds can be a promising candidate for skin regeneration. - Highlights: • The dermal scaffold is inspired from the bilayer structures of natural dermis. • The dermal scaffold has two-compartment structures. • The dermal scaffold containing VEGF and gentamicin encapsulated PLGA microspheres • The dermal scaffold can facilitate cell adhesion and proliferation

  18. The growth of zeolites A, X and mordenite in space

    Science.gov (United States)

    Sacco, Albert, Jr.; Bac, N.; Coker, E. N.; Dixon, A. G.; Warzywoda, J.; Thompson, R. W.

    1994-01-01

    Zeolites are a class of crystalline aluminosilicate materials that form the backbone of the chemical process industry worldwide. They are used primarily as adsorbents and catalysts and support to a significant extent the positive balance of trade realized by the chemical industry in the United States (around $19 billion in 1991). The magnitude of their efforts can be appreciated when one realizes that since their introduction as 'cracking catalysts' in the early 1960's, they have saved the equivalent of 60 percent of the total oil production from Alaska's North Slope. Thus the performance of zeolite catalysts can have a profound effect on the U.S. economy. It is estimated that a 1 percent increase in yield of the gasoline fraction per barrel of oil would represent a savings of 22 million barrels of crude oil per year, representing a reduction of $400 million in the United States' balance of payments. Thus any activity that results in improvement in zeolite catalyst performance is of significant scientific and industrial interest. In addition, due to their 'stability,' uniformity, and, within limits, their 'engineerable' structures, zeolites are being tested as potential adsorbents to purify gases and liquids at the parts-per-billion levels needed in today's electronic, biomedical, and biotechnology industries and for the environment. Other exotic applications, such as host materials for quantum-confined semiconductor atomic arrays, are also being investigated. Because of the importance of this class of material, extensive efforts have been made to characterize their structures and to understand their nucleation and growth mechanisms, so as to be able to custom-make zeolites for a desired application. To date, both the nucleation mechanics and chemistry (such as what are the 'key' nutrients) are, as yet, still unknown for many, if not all, systems. The problem is compounded because there is usually a 'gel' phase present that is assumed to control the degree of

  19. Evaluation of synthetic zeolite as engineering passive permeable reactive barrier

    International Nuclear Information System (INIS)

    The presence of toxic pollutants in groundwater brings about significant changes in the properties of water resources and has to be avoided in order to preserve the environmental quality. Heavy metals are among the most dangerous inorganic water pollutants, that related to many anthropogenic sources and their compounds are extremely toxic. The treatment of contaminated groundwater is among the most difficult and expensive environmental problems. Over the past years, permeable reactive barriers have provided an increasingly important role in the passive insitu treatment of contaminated groundwater. There are a large number of materials that are able to immobilize contaminants by sorption, including granulated active carbon, zeolite, montmorillonite, peat, compost, sawdust, etc. Zeolite X is a synthetic counterpart of the naturally occurring mineral Faujasite. It has one of the largest cavities and cavity entrances of any known zeolites. The main aim of this work is to examine the possibility of using synthetic zeolite X as an engineering permeable reactive barrier to remove heavy metals from a contaminated groundwater. Within this context, the following investigations were carried out: 1. Review on the materials most commonly used as engineered permeable reactive barriers to identify the important features to be considered in the examination of the proposed permeable reactive barrier material (zeolite X). 2. Synthesis of zeolite X and characterization of the synthesized material using different techniques. 3. Batch tests were carried out to characterize the equilibrium and kinetic sorption properties of the synthesized zeolite X towards the concerned heavy metals; zinc and cadmium ions. 4. Column tests were also performed to determine the design factors for permeable reactive barrier against zinc and cadmium ions solutions.Breakthrough curves measured in such experiments used to determine the hydrodynamic dispersion coefficients for both metal ions. 5. Analytical

  20. Structural and Catalytic Properties of Sodium and Cesium Exchanged X and Y Zeolites, and Germanium-Substituted X Zeolite

    OpenAIRE

    Concepcion-Heydorn, P.; Jia, C.; Herein, Daniel; Pfänder, Norbert; Karge, Hellmut G.; Jentoft, Friederike C.

    2000-01-01

    The conversion of isopropanol in a fixed bed flow reactor was used as a test reaction for a number of faujasite-type zeolites which were modified in order to increase their basicity. Samples included a CsY zeolite with an intact faujasite structure and an exchange degree of nearly 100% prepared by solid-state ion exchange, a CsNaY obtained from CsY through exchange with aqueous NaCl solution, a CsNaX obtained from NaX and aqueous CsCl solution, and a Na(Ge)X, with ...

  1. Les zéolithes: supports des complexes des métaux de transition Using Zeolites As Supports for Transition-Metal Complexes

    Directory of Open Access Journals (Sweden)

    Le Van Mao R.

    2006-11-01

    Full Text Available On met en évidence dans cet article les principales caractéristiques structurales et superficielles des zéolithes qui peuvent être avantageusement utilisées comme catalyseurs acides ou bifonctionnels et comme supports présentant une grande dispersion de métal de transition et d'intéressants effets sélectifs. Les résultats plutôt encourageants, obtenus dans l'hétérogénéisation de certains complexes des métaux de transition sur des polymères organiques ou sur la silice, ont servi à mesurer les progrès réalisés dans le domaine de leur introduction dans les zéolithes : l'intérêt scientifique et pratique d'une telle opération augmenterait considérablement si l'on pouvait « encager s directement ces complexes dans les cavités - de dimensions moléculaires - des zéolithes ou des silicates récemment synthétisés et dont la cristallisation est caractérisée par une cinétique très lente. This article describes the leading structural and superficial properties of zeolites which can be advantageously used as acid or bifunctional catalysts and as supports offering a considerable capacity for dispersing transition metal as well as interesting selective effects.The rather encouraging results obtained in heterogenizing various transition-metal complexes on org anic polymers or on silica have been used to measure the advances made in the field of incorporating them in zeolites. The scientific and pratical impor-tance of such an operation would be considerably enhanced if such complexes could be « encaged » in molecular-size cavities in zeolites or in recently-synthetized silicates whose crystallization is characterized by very slow kinetics.

  2. Aldol condensation of furfural and acetone on zeolites

    Czech Academy of Sciences Publication Activity Database

    Kikhtyanin, O.; Kelbichová, V.; Vitvarová, Dana; Kubů, Martin; Kubička, D.

    2014-01-01

    Roč. 227, MAY 2014 (2014), s. 154-162. ISSN 0920-5861 R&D Projects: GA ČR GBP106/12/G015 Institutional support: RVO:61388955 Keywords : aldol condensation * oligomerization * zeolites Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.893, year: 2014

  3. Sorption of Cs-137 and Co-60 in Natural Zeolites

    International Nuclear Information System (INIS)

    The sorption of Cs-137 and Co-60 in natural zeolites under different conditions was studied. The behaviour of samples of mineral and rock from different deposit of the country was obtained and the decontamination of radioactive waters containing both radionuclides was performed; as part of the research to determine its application in the treatment of radioactive wastes in the country

  4. Synthesis and Separating Performance of SAPO-44 Zeolite Membrance

    Institute of Scientific and Technical Information of China (English)

    Zan LIU; Zhi Lin CHENG

    2005-01-01

    A defect-free SAPO-44 zeolite membrane firmly anchored the porous α-Al2O3 plate substrate was successfully synthesized. The separating results showed that the H2/N2 and H2/CO permselectivities were higher than those of the corresponding Knudsen diffusion and the substrate,attaining 5.78 and 7.15 respectively.

  5. Biogas cleaning and upgrading with natural zeolites from tuffs.

    Science.gov (United States)

    Paolini, Valerio; Petracchini, Francesco; Guerriero, Ettore; Bencini, Alessandro; Drigo, Serena

    2016-01-01

    CO2 adsorption on synthetic zeolites has become a consolidated approach for biogas upgrading to biomethane. As an alternative to synthetic zeolites, tuff waste from building industry was investigated in this study: indeed, this material is available at a low price and contains a high fraction of natural zeolites. A selective adsorption of CO2 and H2S towards CH4 was confirmed, allowing to obtain a high-purity biomethane (CO2 <2 g m(-3), i.e. 0.1%; H2S <1.5 mg m(-3)), suitable for injection in national grids or as vehicle fuel. The loading capacity was found to be 45 g kg(-1) and 40 mg kg(-1), for CO2 and H2S, respectively. Synthetic gas mixtures and real biogas samples were used, and no significant effects due to biogas impurities (e.g. humidity, dust, moisture, etc.) were observed. Thermal and vacuum regenerations were also optimized and confirmed to be possible, without significant variations in efficiency. Hence, natural zeolites from tuffs may successfully be used in a pressure/vacuum swing adsorption process. PMID:26563442

  6. Intercalation chemistry of layered zeolite precursor IPC-1P

    Czech Academy of Sciences Publication Activity Database

    Mazur, Michal; Eliášová, Pavla; Roth, Wieslaw Jerzy; Čejka, Jiří

    2014-01-01

    Roč. 227, MAY 2014 (2014), s. 37-44. ISSN 0920-5861 R&D Projects: GA ČR(CZ) GAP106/12/0189 Institutional support: RVO:61388955 Keywords : UTL germanosilicate * IPC-1P layered precursor * Two-dimensional zeolites Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.893, year: 2014

  7. High-pressure alchemy on a small-pore zeolite

    Science.gov (United States)

    Lee, Y.

    2011-12-01

    While an ever-expanding variety of zeolites with a wide range of framework topology is available, it is desirable to have a way to tailor the chemistry of the zeolitic nanopores for a given framework topology via controlling both the coordination-inclusion chemistry and framework distortion/relaxation. This is, however, subjected to the ability of a zeolitic nanopore to allow the redistribution of cations-water assembly and/or insertion of foreign molecules into the pores and channels. Small-pore zeolites such as natrolite (Na16Al16Si24O80x16H2O), however, have been known to show very limited capacity for any changes in the confinement chemistry. We have recently shown that various cation-exchanged natrolites can be prepared under modest conditions from natural sodium natrolite and exhibit cation-dependent volume expansions by up to 18.5% via converting the elliptical channels into progressively circular ones. Here, we show that pressure can be used as a unique and clean tool to further manipulate the chemistry of the natrolite nanopores. Our recent crystallographic and spectroscopic studies of pressure-insertion of foreign molecules, trivalent-cation exchange under pressure, and pressure-induced inversion of cation-water coordination and pore geometry in various cation-exchanged natrolites will be presented.

  8. Acetalization of furfural with zeolites under benign reaction conditions

    DEFF Research Database (Denmark)

    Rubio-Caballeroa, Juan Miguel; Shunmugavel, Saravanamurugan; Maireles-Torres, Pedro;

    2014-01-01

    Acetalization is a viable method to protect carbonyl functionalities in organic compounds and offers apotential synthetic strategy for synthesizing derived chemicals. In this work, several families of commer-cial zeolites have been employed as solid acid catalysts in the acetalization of furfural...

  9. The Density Functional Study of Thiophene Adsorption on Zeolite Clusters

    Institute of Scientific and Technical Information of China (English)

    Lü Renqing; Cao Zuogang; Shen Guoping

    2007-01-01

    The density functional theory and the cluster model methods have been employed to investigate the interactions between thiophene and the HZSM-5 zeolites. The molecular complexes formed by the adsorption of thiophene on silanol H3SiOH with two coordination forms, and the model Br(o)nsted acid sites of zeolite cluster H3Si(OH)Al(OH)2SiH3 upon the interaction with thiophene have been comparatively studied.Full optimization and frequency analysis of all cluster models have been carried out using the B3LYP hybrid method at 6-31G basis level for hydrogen atoms and 6-31+G(d) basis set level for silicon, aluminum, oxygen,carbon, and sulfur atoms. The calculated results showed that the nature of interactions leading to the formation of the zeolite cluster-thiophene and silanol-thiophene complexes was associated with the van der Waals force confirmed by a slight change of geometric structures and properties. Thiophene is adsorbed on bridging hydroxyl group prior to silanol OH group judging from the magnitude of adsorption heat. The cluster model calculation reproducing the experimental prediction to form the experimental adsorption spectra of thiophene in HZSM-5 zeolite has illustrated the validity of the proposed adsorption models.

  10. Phase transitions on dehydration of the natural zeolite thomsonite

    DEFF Research Database (Denmark)

    Ståhl, Kenny

    2001-01-01

    The dehydration of the natural zeolite thomsonite, Na4CasAl20Si20O80 24H(2)O, has been studied using a combination of conventional and synchrotron X-ray powder diffraction. A preliminary in situ dehydration study revealed two distinct unit cell changes at approximately 540 and 570 K, respectively...

  11. SYNTHESIS AND CHARACTERIZATION OF POLYIMIDE-ZEOLITE MIXED MATRIX MEMBRANE

    Directory of Open Access Journals (Sweden)

    Budiyono Budiyono

    2012-02-01

    Full Text Available Biogas has become an attractive alternative energy source due to the limitation of energy from fossil. In this study, a new type of mixed matrix membrane (MMM consisting of polyimide-zeolite was synthesized and characterized for biogas purification. The MMM consists of medium concentration of polymer (20% wt polyimide, 80% N-Methyl-2-pyrrolidone (NMP and 25% zeolite 4A in total solid were prepared by a dry/wet phase inversion technique.  The fabricated MMM was characterized using SEM, DSC, TGA and gas permeation. Post treatment coating procedure was also conducted. The research showed that surface coating by 3% silicone rubber toward MMM PI 20% gave the significant effect to improve membrane selectivity. The ideal selectivity for CO2/CH4 separation increased from 0.99 for before coating to 7.9 after coating for PI-Zeolite MMM, respectively. The results suggest that PI-Zeolite MMM with good post treatment procedure will increase the membrane selectivity and permeability with more saver polymer requirement as well as energy saving due to low energy for mixing.

  12. Enriching the diet of dairy cows natural zeolite

    OpenAIRE

    Svetlana Dejatkina; Ekaterina Goryacheva; Vladimir Kozlov; Mihail Dejatkin

    2016-01-01

    Analysis of economic rations of dairy cows reveals a lack of these minerals, it found that the data on the nutritional diets meet the necessary requirements. Introduction to the diet of natural zeolite cows completely fills the mineral deficiency and enhances milk production.

  13. Enriching the diet of dairy cows natural zeolite

    Directory of Open Access Journals (Sweden)

    Svetlana Dejatkina

    2016-02-01

    Full Text Available Analysis of economic rations of dairy cows reveals a lack of these minerals, it found that the data on the nutritional diets meet the necessary requirements. Introduction to the diet of natural zeolite cows completely fills the mineral deficiency and enhances milk production.

  14. Preparation and gas separation properties of zeolite T membrane.

    Science.gov (United States)

    Cui, Ying; Kita, Hidetoshi; Okamoto, Ken-ichi

    2003-09-01

    Zeolite T membranes were synthesized on tubular porous mullite tubes by hydrothermal synthesis. The membranes selectively permeated carbon dioxide from CO2/CH4 and CO2/N2 mixtures with high separation performances, which were due to combined effects of molecular sieving and competitive adsorption. PMID:13678177

  15. Preparation and gas separation properties of zeolite T membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ying Cui; Hidetoshi Kita; Ken-ichi Okamoto [Yamaguchi University (Japan)

    2003-07-01

    Zeolite T membranes were synthesized on tubular porous mullite tubes by hydrothermal synthesis. The membranes selectively permeated carbon dioxide from CO{sub 2}/CH{sub 4} and CO{sub 2}/N{sub 2} mixtures with high separation performances, which were due to combined effects of molecular sieving and competitive adsorption.

  16. Phosphatation of Zeolites : A Combined Spectroscopy, Microscopy and Catalysis Study

    NARCIS (Netherlands)

    van der Bij, Hendrik

    2014-01-01

    The scope of this dissertation is to gain a fundamental understanding of phosphorus interaction with zeolites. These interactions can be either promotional or poisonous. Therefore, the main focus of this PhD thesis will be on the understanding of the physicochemical effects that occur upon phosphoru

  17. [Supplementation of swine feed rations with zeolite during cage rearing].

    Science.gov (United States)

    Bartko, P; Chabada, J; Vrzgula, L; Solár, I; Blazovský, J

    1983-07-01

    The effect of the addition of zeolite to pig feed ration was studied in the cage rearing system under production conditions. Zeolite was mixed in the COS I and COS II feed mixtures directly in the feed plant, the mixing ratio being 100 kg feed mixture + 5 kg zeolite. The feed mixture was administered in granular form ad libitum. The test group had 648 weanlings and the control group 674 weanlings; the piglets, kept in two-story cages in four sections, were arranged so that the test group could be a mirror-like reflection of the control group. The trial lasted 45 days. The piglets given the fortified feed ration had daily weight gains higher by 0.017 kg and feed consumption lower by 0.234 kg per 1 kg of gain, as compared with the control animals. The costs of the feed ration required for producing a kilogram of gain were 8.55 Cz. crowns in the zeolite group and 9.422 crowns in the control group. PMID:6312666

  18. Characterization of natural zeolite clinoptilolite for sorption of contaminants

    Science.gov (United States)

    Xingu-Contreras, E.; García-Rosales, G.; García-Sosa, I.; Cabral-Prieto, A.; Solache-Ríos, M.

    2015-06-01

    The nanoparticles technology has received considerable attention for its potential applications in groundwater treatment for the removal of various pollutants as Cadmium. In this work, iron boride nanoparticles were synthesized in pure form and in presence of homo-ionized zeolite clinoptilolite, as support material. These materials were used for removing Cd (II) from aqueous solutions containing 10, 50, 100, 150, 200, 250, 300 and 400 mg/L. The characterization of these materials was made by using X-ray Diffraction, Scanning Electron Microscopy and Mössbauer Spectroscopy. Pure iron boride particles show a broad X-ray diffraction peak centered at 45∘ (2 𝜃), inferring the presence of nanocrystals of Fe2B as identified from Mössbauer Spectroscopy. The size of these Fe2B particles was within the range of 50 and 120 nm. The maximum sorption capacities for Cd (II) of iron boride particles and supported iron boride particles in homo-ionized zeolitic material were nearly 100 %. For homo-ionized zeolite and homo-ionized zeolite plus sodium borohydride was ≥ 95 %.

  19. Characterization of natural zeolite clinoptilolite for sorption of contaminants

    International Nuclear Information System (INIS)

    The nanoparticles technology has received considerable attention for its potential applications in groundwater treatment for the removal of various pollutants as Cadmium. In this work, iron boride nanoparticles were synthesized in pure form and in presence of homo-ionized zeolite clinoptilolite, as support material. These materials were used for removing Cd (II) from aqueous solutions containing 10, 50, 100, 150, 200, 250, 300 and 400 mg/L. The characterization of these materials was made by using X-ray Diffraction, Scanning Electron Microscopy and Mössbauer Spectroscopy. Pure iron boride particles show a broad X-ray diffraction peak centered at 45∘ (2θ), inferring the presence of nanocrystals of Fe2B as identified from Mössbauer Spectroscopy. The size of these Fe2B particles was within the range of 50 and 120 nm. The maximum sorption capacities for Cd (II) of iron boride particles and supported iron boride particles in homo-ionized zeolitic material were nearly 100 %. For homo-ionized zeolite and homo-ionized zeolite plus sodium borohydride was ≥ 95 %

  20. Study on Thermal Insulation Zeolite by Coal Fly Ash

    Directory of Open Access Journals (Sweden)

    Huiping Song

    2014-01-01

    Full Text Available This paper takes the coal fly ash as the material and makes zeolite with low thermal conductivity under a two-step synthesis for the purpose of thermal insulation. It studies main factors affecting zeolite such as the different concentration of NaOH, the solid-liquid ratio, the silica-alumina ratio, and the crystallization temperature. The optimal conditions were obtained that the NaOH concentration was 3 mol/L, the solid-liquid ratio was 10 : 1, the silica-alumina ratio was 2, and the crystallization temperature was 12°C. Zeolites have multiple pores and skeletal structures under SEM observation. The mean particle size was 2.78 um of concentrated distribution. The pore volume was 0.148 m3/g measured by BET analysis, the specific surface was 118.6 m2/g, and the thermal conductivity was 0.153 W/(m·K. Zeolite was proved to be a qualified insulation material which can be used in thermal insulation coating as a new material of energy conservation.

  1. Characterization of natural zeolite clinoptilolite for sorption of contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Xingu-Contreras, E., E-mail: nyleve-18@hotmail.com; García-Rosales, G., E-mail: gegaromx@yahoo.com.mx [Instituto Tecnológico de Toluca (Mexico); García-Sosa, I., E-mail: irma.garcia@inin.gob.mx; Cabral-Prieto, A., E-mail: agustin.cabral@inin.gob.mx; Solache-Ríos, M., E-mail: marcos.solache@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Departamento de Química (Mexico)

    2015-06-15

    The nanoparticles technology has received considerable attention for its potential applications in groundwater treatment for the removal of various pollutants as Cadmium. In this work, iron boride nanoparticles were synthesized in pure form and in presence of homo-ionized zeolite clinoptilolite, as support material. These materials were used for removing Cd (II) from aqueous solutions containing 10, 50, 100, 150, 200, 250, 300 and 400 mg/L. The characterization of these materials was made by using X-ray Diffraction, Scanning Electron Microscopy and Mössbauer Spectroscopy. Pure iron boride particles show a broad X-ray diffraction peak centered at 45{sup ∘} (2θ), inferring the presence of nanocrystals of Fe{sub 2}B as identified from Mössbauer Spectroscopy. The size of these Fe{sub 2}B particles was within the range of 50 and 120 nm. The maximum sorption capacities for Cd (II) of iron boride particles and supported iron boride particles in homo-ionized zeolitic material were nearly 100 %. For homo-ionized zeolite and homo-ionized zeolite plus sodium borohydride was ≥ 95 %.

  2. Mobil/Badger to market zeolite-based cumene technology

    International Nuclear Information System (INIS)

    Badger (Cambridge, MA) and Mobil (Fairfax, VA) are ready to jointly license a new cumene technology that they say achieves higher yields and product purity than existing processes. The zeolite-based technology is scheduled to be introduced at next month's DeWitt Petrochemical Review in Houston. The Mobil/Badger technology aims to challenge the dominant position of UOP's (Des Plaines, IL) solid phosphoric acid (SPA) catalyst process - which accounts for 80%-90% of the world's cumene production. In addition, Monsanto/Kellogg's aluminum chloride-based technology has gained significant momentum since its introduction in the 1980s. And late last year, ABB Lummus Crest (Bloomfield, NJ) also began marketing a zeolite-based cumene technology. While all the technologies make cumene via the alkylation of benzene with propylene, the Mobil/Badger process uses a zeolite-containing catalyst designed by Mobil to selectively catalyze the benzene/propylene reaction, avoiding unwanted propylene oligomerization. Because the olefin reactions are so fast, says Frank A. Demers, Badger's v.p./technology development and marketing, other zeolite technologies are forced to use complex reactor arrangements to stop the propylene-propylene reactions. However, he says, 'Mobil has designed a catalyst that wants to react benzene with propylene to make cumene.'

  3. Synthesis of mesoporous zeolite single crystals with cheap porogens

    Science.gov (United States)

    Tao, Haixiang; Li, Changlin; Ren, Jiawen; Wang, Yanqin; Lu, Guanzhong

    2011-07-01

    Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals have been successfully synthesized by adding soluble starch or sodium carboxymethyl cellulose (CMC) to a conventional zeolite synthesis system. The obtained samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen sorption analysis, 27Al magic angle spinning nuclear magnetic resonance ( 27Al MAS NMR), temperature-programmed desorption of ammonia (NH 3-TPD) and ultraviolet-visible spectroscopy (UV-vis). The SEM images clearly show that all zeolite crystals possess the similar morphology with particle size of about 300 nm, the TEM images reveal that irregular intracrystal pores are randomly distributed in the whole crystal. 27Al MAS NMR spectra indicate that nearly all of the Al atoms are in tetrahedral co-ordination in ZSM-5, UV-vis spectra confirm that nearly all of titanium atoms are incorporated into the framework of TS-1. The catalytic activity of meso-ZSM-5 in acetalization of cyclohexanone and meso-TS-1 in hydroxylation of phenol was also studied. The synthesis method reported in this paper is cost-effective and environmental friendly, can be easily expended to prepare other hierarchical structured zeolites.

  4. [Denitrification water treatment with zeolite composite filter by intermittent operation].

    Science.gov (United States)

    Qing, Cheng-Song; Bao, Tao; Chen, Tian-Hu; Chen, Dong; Xie, Jing-Jing

    2012-12-01

    The zeolite composite filters (ZCF) with the size of4-8 mm were prepared using raw zeolite (0.15-0.18 mm) as the main material and the cement as binder. After a combination of material characterizations, such as the void fraction, apparent density, compression strength and surface area, the optimal prepared conditions of composite filters were obtained as follow: weight ratio of m (zeolite): m (cement) = 7 : 3, curing for 15 d under the moisture condition and ambient temperature. Through upflow low-concentration ammonia nitrogen wastewater, ZCF filled in the experimental column was hung with the biological membrane. Thus, intermittent dynamic experiments were conducted, the intermittent operation cycle included adsorption, biological regeneration and drip washing. Until concentration of ammonia nitrogen was more than 2 mg x L(-1) of effluent standards, water in experiment column was firstly emptied, and then blast biological regeneration was conducted. After the filters were bathed with water, the zeolite adsorption-biological regeneration cycle was performed repeatedly. The experimental results show that under conditions of 24 h blast and 5 d of continuous operation period, ammonia nitrogen removal rate is up to 87.6% on average, total nitrogen removal rate reaches 51.2% on average. PMID:23379168

  5. Synthesis of Zeolites by Alkaline Activation of Fly Ash

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In terms of mineral transformation, and chemical composition of acid-soluble component as a function of reaction time, the effect of alkaline solution on zeolite-like fly ash was studied by employing fly ash and NaOH solution as starting materials. When fly ash and 1€? 0mol/L NaOH solution were processed at 100℃ for 24h with 1:10 W/S rat io in a relatively closed system, powder XRD patterns of resulting pro ducts indicated the formation of various zeolites. Zeolite P crystalli zed early at low alkaline concentration, which was replaced then by ze olites X and A. At high concentration, hydroxy sodalite was the only n ew phase. Quartz, in fly ash and NaOH solution system, gradually disso lved, and mullite, however, remained stable. It was concluded that, wi th Al/Si and Na/Si finally reaching equilibrium in molar ratio, compos ition of starting mixtures affects the crystallization of zeolite from fly ash.

  6. Synthesis and properties of porous zeolite aluminosilicate adsorbents

    International Nuclear Information System (INIS)

    Environmentally safe non-energy-intensive methods of the synthesis have been developed and the properties of solid inorganic nanostructured zeolite-like adsorbents of a broad spectrum have been studied. The sorption capacities of the adsorbents with respect to various components of water pollution have been determined

  7. Unraveling the perplexing structure of the zeolite SSZ-57

    Czech Academy of Sciences Publication Activity Database

    Baerlocher, Ch.; Weber, T.; McCusker, L.B.; Palatinus, Lukáš; Zones, S. I.

    2011-01-01

    Roč. 333, č. 6046 (2011), 1134-1137. ISSN 0036-8075 Institutional research plan: CEZ:AV0Z10100521 Keywords : zeolite * disorder * superspace * Monte Carlo simulation * diffuse scattering Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 31.201, year: 2011

  8. The ADOR synthesis of new zeolites: In silico investigation

    Czech Academy of Sciences Publication Activity Database

    Trachta, Michal; Nachtigal, P.; Bludský, Ota

    2015-01-01

    Roč. 243, Apr (2015), s. 32-38. ISSN 0920-5861 R&D Projects: GA ČR GBP106/12/G015 Institutional support: RVO:61388963 Keywords : ADOR * DFT calculations * zeolites * synthesis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.893, year: 2014

  9. Phase transitions on dehydration of the natural zeolite thomsonite

    DEFF Research Database (Denmark)

    Ståhl, Kenny

    The dehydration of the natural zeolite thomsonite, Na4CasAl20Si20O80 24H(2)O, has been studied using a combination of conventional and synchrotron X-ray powder diffraction. A preliminary in situ dehydration study revealed two distinct unit cell changes at approximately 540 and 570 K, respectively...

  10. Two-Dimensional Zeolites: Current Status and Perspectives

    Czech Academy of Sciences Publication Activity Database

    Roth, Wieslaw Jerzy; Nachtigall, P.; Morris, R. E.; Čejka, Jiří

    2014-01-01

    Roč. 114, č. 9 (2014), s. 4807-4837. ISSN 0009-2665 R&D Projects: GA ČR GBP106/12/G015 Institutional support: RVO:61388955 Keywords : zeolites * mesoporous molecular sieves * Fischer-Tropsch synthesis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 46.568, year: 2014

  11. Zeolitic imidazolate frameworks for kinetic separation of propane and propene

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing; Li, Kunhao; Olson, David H.

    2014-08-05

    Zeolitic Imidazolate Frameworks (ZIFs) characterized by organic ligands consisting of imidazole ligands that are either essentially all 2-chloroimidazole ligands or essentially all 2-bromoimidazole ligands are disclosed. Methods for separating propane and propene with the ZIFs of the present invention, as well as other ZIFs, are also disclosed.

  12. Abatement of NOx and N2O using zeolite catalysts

    Czech Academy of Sciences Publication Activity Database

    Sobalík, Zdeněk

    Amsterdam : Elsevier, 2013 - (Suib, S.), s. 155-194 ISBN 978-0-444-53870-3 R&D Projects: GA ČR GAP106/11/0624; GA TA ČR TA01021377 Institutional support: RVO:61388955 Keywords : zeolites * NOx * N2O Subject RIV: CF - Physical ; Theoretical Chemistry

  13. A continuous flow strategy for the coupled transfer hydrogenation and etherification of 5-(hydroxymethyl)furfural using Lewis acid zeolites.

    Science.gov (United States)

    Lewis, Jennifer D; Van de Vyver, Stijn; Crisci, Anthony J; Gunther, William R; Michaelis, Vladimir K; Griffin, Robert G; Román-Leshkov, Yuriy

    2014-08-01

    Hf-, Zr- and Sn-Beta zeolites effectively catalyze the coupled transfer hydrogenation and etherification of 5-(hydroxymethyl)furfural with primary and secondary alcohols into 2,5-bis(alkoxymethyl)furans, thus making it possible to generate renewable fuel additives without the use of external hydrogen sources or precious metals. Continuous flow experiments reveal nonuniform changes in the relative deactivation rates of the transfer hydrogenation and etherification reactions, which impact the observed product distribution over time. We found that the catalysts undergo a drastic deactivation for the etherification step while maintaining catalytic activity for the transfer hydrogenation step. (119) Sn and (29) Si magic angle spinning (MAS) NMR studies show that this deactivation can be attributed to changes in the local environment of the metal sites. Additional insights were gained by studying effects of various alcohols and water concentration on the catalytic reactivity. PMID:25045144

  14. Koedam {beta} factors revisited

    Energy Technology Data Exchange (ETDEWEB)

    Lawler, J.E. [Physics Department, University of Wisconsin, Madison, WI (United States); Doughty, D.A. [Perkin-Elmer Optoelectronics, Santa Clara, CA (United States); Lister, G.G. [OSRAM SYLVANIA Inc., Beverly, MA (United States)

    2002-07-21

    A Koedam {beta} factor makes it possible to compute the total output power in line radiation from a positive column discharge using a single radiance measurement normal to an aperture in the wall. The results of analytic derivations of {beta} factors are presented for columns with uniform ({beta}=1.0) and parabolic ({beta}=0.75) excitation rates per unit volume and with negligible opacity. A Monte Carlo code for simulating radiation trapping with a spatially uniform density of absorbing atoms is then used to determine {beta} factors as a function of opacity. The code includes partial frequency redistribution and a Voigt line shape with radiative broadening, resonance collisional broadening, and Doppler broadening. The resulting {beta} factors are found to be nearly independent of opacity over a wide range of column radii for spectral line shapes dominated by Doppler broadening or by resonance collisional broadening. Additional Monte Carlo simulations are used to study {beta} factors as a function of a non-uniform density of absorbing atoms from radial cataphoresis with line shapes dominated by Doppler broadening, foreign gas broadening, and resonance collisional broadening. Radial cataphoresis is found to increase {beta} factors in all cases. Geometrical effects, refraction, and imperfect transmission at the glass wall are studied and found to decrease {beta} factors. (author)

  15. Beta-energy averaging and beta spectra

    International Nuclear Information System (INIS)

    A simple yet highly accurate method for approximately calculating spectrum-averaged beta energies and beta spectra for radioactive nuclei is presented. This method should prove useful for users who wish to obtain accurate answers without complicated calculations of Fermi functions, complex gamma functions, and time-consuming numerical integrations as required by the more exact theoretical expressions. Therefore, this method should be a good time-saving alternative for investigators who need to make calculations involving large numbers of nuclei (e.g., fission products) as well as for occasional users interested in restricted number of nuclides. The average beta-energy values calculated by this method differ from those calculated by ''exact'' methods by no more than 1 percent for nuclides with atomic numbers in the 20 to 100 range and which emit betas of energies up to approximately 8 MeV. These include all fission products and the actinides. The beta-energy spectra calculated by the present method are also of the same quality

  16. Exploitation of Unique Properties of Zeolites in the Development of Gas Sensors

    Directory of Open Access Journals (Sweden)

    Prabir K. Dutta

    2012-04-01

    Full Text Available The unique properties of microporous zeolites, including ion-exchange properties, adsorption, molecular sieving, catalysis, conductivity have been exploited in improving the performance of gas sensors. Zeolites have been employed as physical and chemical filters to improve the sensitivity and selectivity of gas sensors. In addition, direct interaction of gas molecules with the extraframework cations in the nanoconfined space of zeolites has been explored as a basis for developing new impedance-type gas/vapor sensors. In this review, we summarize how these properties of zeolites have been used to develop new sensing paradigms. There is a considerable breadth of transduction processes that have been used for zeolite incorporated sensors, including frequency measurements, optical and the entire gamut of electrochemical measurements. It is clear from the published literature that zeolites provide a route to enhance sensor performance, and it is expected that commercial manifestation of some of the approaches discussed here will take place. The future of zeolite-based sensors will continue to exploit its unique properties and use of other microporous frameworks, including metal organic frameworks. Zeolite composites with electronic materials, including metals will lead to new paradigms in sensing. Use of nano-sized zeolite crystals and zeolite membranes will enhance sensor properties and make possible new routes of miniaturized sensors.

  17. Facile synthesis of hollow zeolite microspheres through dissolution–recrystallization procedure in the presence of organosilanes

    International Nuclear Information System (INIS)

    Hollow zeolite microspheres have been hydrothermally synthesized in the presence of organosilanes via a dissolution–recrystallization procedure. In the presence of organosilanes, zeolite particles with a core/shell structure formed at the first stage of hydrothermal treatment, then the core was consumed and recrystallized into zeolite framework to form the hollow structure during the second hydrothermal process. The influence of organosilanes was discussed, and a related dissolution–recrystallization mechanism was proposed. In addition, the hollow zeolite microspheres exhibited an obvious advantage in catalytic reactions compared to conventional ZSM-5 catalysts, such as in the alkylation of toluene with benzyl chloride. - Graphical abstract: Hollow zeolite spheres with aggregated zeolite nanocrystals were synthesized via a dissolution–recrystallization procedure in the presence of organosiline. Highlights: ► Hollow zeolite spheres with aggregated zeolite nanocrystals were synthesized via a dissolution–recrystallization procedure. ► Organosilane influences both the morphology and hollow structure of zeolite spheres. ► Hollow zeolite spheres showed an excellent catalytic performance in alkylation of toluene with benzyl chloride

  18. Synthesis of highly effective adsorbents from natural raw materials (zeolites)

    International Nuclear Information System (INIS)

    Natural raw materials bentonite, silica tuff and diatomaceous earth from Macedonia were used in synthesis of zeolites type A, ZSM-5 and multilayer silicate magadiite-adsorbents. The bentonite was subject to pretreatment with acids (HCl and H2SO4 - 5, 10, 15 and W%) or NaOH, and used in synthesis of zeolite type A having molar ratio of: 2Na2O : Al2O3 : 2SiO2 : 100H2O. Silicate tuff was applied (without any pretreatment, in a two stage reaction) in a high temperature synthesis, using butylamine as an organic 'template' component in order to get high silica zeolite type ZSM-5 having molar ratio of: 59.37SiO2 : Al2O3 : 3.84Na2O : 1.90R2O : 2025.10H2O. Multilayer silicate magadiite MS-H was synthesized from natural raw material diatomaceous earth. The product with a molar ratio of: 8SiO2 : Na2O : 75H2O showed the best characteristics. The proposed method of alkaline pretreatment is a new one and it is acceptable from the economy point of view due to low energy consumption. The conclusion shows that the final result of the synthesis was not perfect, i.e. it has 70% of zeolite ZSM-5 and the rest were some amorphous phases. This product is suitable for industrial application in catalytic processes due to the fact that commercial catalyst contain typically 20 to 50% of zeolite type ZSM-5. On the other hand, the magadiite being multilayer silicate with no aluminium inside, is well suited as a carrier due to its ability of intercalation. The experimental results indicate that natural raw materials from Macedonia could be used for synthesis of synthetical silicates with high qualities and acceptable overall costs, specially when alkaline pretreatment is used. 14 refs., 4 tabs., 11 figs

  19. Hydrothermal interactions of cement or mortar with zeolites or montmorillonites

    International Nuclear Information System (INIS)

    Concretes, grouts, clays and/or zeolites are candidate borehole, shaft or tunnel plugging materials for any nuclear waste repository. Interactions between these plugging materials may take place under mild hydrothermal conditions during the life of a repository. Class H cement or motar (PSU/WES mixture) was reacted with one of two montmorillonites, clinoptilolite or mordenite at 1000 and 2000C for different periods under a confining pressure of 30 MPa. The solid reaction products were characterized by x-ray powder diffraction and scanning electron microscopy after the hydrothermal treatments. When zeolites were in contact (not intimate mixture) with class H cement, they did not seem to alter but clinoptilolite altered to analcime, and mordenite became poorly crystalline in the presence of mortar (containing NaCl) at both 1000 and 2000C. When cement or mortar was intimately mixed with zeolites or montmorillonites and reacted hydrothermally, the reaction resulted in the formation of Al substituted tobermorite (11A type) in all cases (this type of reaction is expected at the interface) at both 1000 and 2000C. The mechanism of tobermorite formation includes the decomposition of zeolites or montmorillonites in the presence of alkaline (pH approx. = 12) cement or mortar and recrystallization to form Al substituted tobermorite. Cesium sorption measurements in 0.01N CaCl2 on the reaction products revealed that selective Cs sorption increased in most cases, even though little or none of the original zeolites and montmorillonites remained in the products. For example, Cs sorption K/sub d/ (mL/g) increased from 80 in the untreated mortar + Ca montmorillonite mixture to 1700 in the interaction product which is Al substituted tobermorite. Thus, we discover here that Al substituted tobermorite has good selectivity for Cs

  20. Possibility of Modification of Zeolites by Iron Oxides and its Utilization for Removal of Pb(II from Water Solutions

    Directory of Open Access Journals (Sweden)

    Michal Lovás

    2004-12-01

    Full Text Available Ion-exchange properties of cations from lattice and ions from solutions are characteristic for zeolites. Zeolites as sorbents are used in many branches of industry. Ion-exchange reactions of cations on zeolites have been a theme of many works. With the exception of using natural zeolites as the sorbent, a modification of surface of zeolites and preparation of synthetic zeolites has received interest lately. One of the common modification of zeolites is modification by iron oxides, which increases capacity of adsorption. In this work, we prepared a modified zeolite by the precipitation of magnetite on the surface of zeolite. This new adsorbent was used to remove of Pb(II from waste water. The maximum adsorption capacity was 73,25 mg/g from the solution of Pb with the concentration of 400 mg/l.

  1. Preparation and characteristics of Fe3O4-YVO4:Eu3+ bifunctional magnetic-luminescent nanocomposites

    International Nuclear Information System (INIS)

    Graphical abstract: Highlights: → Bifunctional magnetic-luminescent nanocomposites with Fe3O4 nanoparticles as the core and YVO4:Eu3+ as the shell. → A cubic spinel structrue of Fe3O4 core and a tetragonal phase of YVO4 shell were obtained. → The nanocomposites displayed a strong red emission and superparamagnetic behavior at room temperature. - Abstract: A facile direct precipitation method has been developed for the synthesis of bifunctional magnetic-luminescent nanocomposites with Fe3O4 nanoparticles as the core and YVO4:Eu3+ as the shell. Transmission electron microscopy (TEM) images revealed that the obtained bifunctional nanocomposites had a core-shell structure and a spherical morphology. The average size was ∼150 nm, and the thickness of the shell was ∼15 nm. The X-ray diffraction (XRD) patterns showed that a cubic spinel structure of Fe3O4 core and a tetragonal phase of YVO4 shell were obtained. Fourier transform infrared (FT-IR) spectra confirmed that the YVO4:Eu3+ had been successfully deposited on the surface of Fe3O4 nanoparticles. Photoluminescence (PL) spectra indicated that the nanocomposites displayed a strong red characteristic emission of Eu3+. Magnetic measurements showed that the obtained bifunctional nanocomposites exhibited superparamagnetic behavior at room temperature. Therefore, the bifunctional nanocomposites are expected to develop many potential applications in biomedical fields.

  2. The use of natural zeolites for radioactive waste treatment. Studies on leaching from zeolite/cement composites

    International Nuclear Information System (INIS)

    Samples of the natural zeolites chabazite, clinoptilolite and a clinoptilolite-rich tuff, were loaded with the isotope 137Cs. Composites of these labeled materials were made with cement and blast furnace slag. Standard leaching experiments were carried out with synthetic sea, ground and 'pond' waters, as well as distilled water. Rates of leaching were calculated and compared to similar systems. (author)

  3. Double beta decay experiments

    OpenAIRE

    Barabash, A. S.

    2011-01-01

    The present status of double beta decay experiments is reviewed. The results of the most sensitive experiments are discussed. Proposals for future double beta decay experiments with a sensitivity to the $$ at the level of (0.01--0.1) eV are considered.

  4. Negative Beta Encoder

    CERN Document Server

    Kohda, Tohru; Aihara, Kazuyuki

    2008-01-01

    A new class of analog-digital (A/D), digital-analog (D/A) converters as an alternative to conventional ones, called $\\beta$-encoder, has been shown to have exponential accuracy in the bit rates while possessing self-correction property for fluctuations of amplifier factor $\\beta$ and quantizer threshold $\

  5. Betting against Beta

    DEFF Research Database (Denmark)

    Frazzini, Andrea; Heje Pedersen, Lasse

    2014-01-01

    We present a model with leverage and margin constraints that vary across investors and time. We find evidence consistent with each of the model's five central predictions: (1) Because constrained investors bid up high-beta assets, high beta is associated with low alpha, as we find empirically for...

  6. The study on effect of zeolite on nitrogen use efficiency of corn by 15N-isotope dilution method

    International Nuclear Information System (INIS)

    A pot experiment was carried out to study the effect of natural zeolite on nitrogen use efficiency of corn by using 15N-isotope dilution method. The results showed that application of zeolite could improve the corn growth and enhance the biomass of the corn seedling. By using zeolite, nitrogen use efficiency (NUE) of corn was increased by 23.2%-33.1% as compared with no-zeolite treatment; and the residual nitrogen has no significant difference between zeolite treatment and no-zeolite treatment

  7. Studies of zeolite-based artificial photosynthetic systems

    Science.gov (United States)

    Zhang, Haoyu

    Two ruthenium polypyridyl compounds of structural formula [(bpy) 2RuL]2+ (RuL) and [(bpy)2RuLDQ]4+ (RuLDQ) (where bpy = bipyridine, L = trans-1,2-bis-4-(4'-methyl)-2,2'-bipyridyl) ethane, LDQ = 1-[4-(4'-methyl)-2,2'-bipyridyl)]-2-[4-(4'-N,N'-tetramethylene-2,2'-bipyridinium)] ethene) were synthesized and purified. From pH titrations, it was found that the Ru complex was a stronger base (pKa* = 6) in the excited state than in the ground state (pKa = 4). Photolysis of the RuL complex in solutions at pH 7 and 12 led to formation of species with increased emission quantum yields, ˜55 nm blue-shift of the emission maximum to 625 nm and disappearance of the absorption band at 330 nm, the latter arising from the olefinic bond of the L ligand. Photoproducts formed at neutral pH have been analyzed. It was found that the major product was a dimer of RuL, dimerizing around the double bond. Photoreactions did not occur in the dark or in the aprotic solvent acetonitrile. We proposed that a Ru(III) radical intermediate was formed by photoinduced excited-state electron and proton transfer, which initiated the dimerization. The radical intermediate also underwent photochemical degradative reductions. Below pH 4, the emission quenching was proposed to arise via protonation of the monoprotonated RuLH + followed by electron transfer to the viologen-type moiety created by protonation. The products of photodegradation at pH > 12 were different from those of pH 7, but the mechanism of the degradation at pH > 12 was not elucidated. RuLDQ was stable under visible irradiation. We examined nanocrystalline zeolite as a host for light absorbing sensitizers (electron donors) and electron acceptors. Nanocrystalline zeolite Y (NanoY) with uniform particle size, pure phase was prepared. NanoY was obtained by periodically removing nanocrystals from the mother liquor and recycling the unused reagents. The nanoparicles were characterized by XRD and TEM. Optically clear colloidal solutions of Nano

  8. Nanostructured Perovskite LaCo1-xMnxO3 as Bifunctional Catalysts for Rechargeable Metal-Air Batteries

    Science.gov (United States)

    Ge, Xiaoming; Li, Bing; Wuu, Delvin; Sumboja, Afriyanti; An, Tao; Hor, T. S. Andy; Zong, Yun; Liu, Zhaolin

    2015-09-01

    Bifunctional catalyst that is active for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is one of the most important components of rechargeable metal-air batteries. Nanostructured perovskite bifunctional catalysts comprising La, Co and Mn(LaCo1-xMnxO3, LCMO) are synthesized by hydrothermal methods. The morphology, structure and electrochemical activity of the perovskite bifunctional catalysts are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and rotating disk electrode (RDE) techniques. Nanorod, nanodisc and nanoparticle are typical morphologies of LCMO. The electrocatalytic activity of LCMO is significantly improved by the addition of conductive materials such as carbon nanotube. To demonstrate the practical utilization, LCMO in the composition of LaCo0.8Mn0.2O3(LCMO82) is used as air cathode catalysts for rechargeable zinc-air batteries. The battery prototype can sustain 470 h or 40 discharge-charge cycles equivalent.

  9. Understanding Mechanism and Designing Strategies for Sustainable Synthesis of Zeolites: A Personal Story.

    Science.gov (United States)

    Wang, Yeqing; Xiao, Feng-Shou

    2016-06-01

    Zeolites with intricate micropores have been widely studied for a long time as an important class of porous materials in different areas of industrial processes such as gas adsorption and separation, ion exchange, and shape-selective catalysis. However, their industrial syntheses are not sustainable, and normally require the presence of expensive organic templates and a large amount of solvents such as water. The presence of organic templates not only increases zeolite cost but also produces harmful gases during the removal of these templates by calcination, while the use of solvents significantly increases the amount of polluted water. This Personal Account briefly summarizes recent sustainable routes for the synthesis of zeolites in our group according to our understanding of the synthetic mechanism, and mainly focuses on the organotemplate-free synthesis of zeolites in the presence of zeolite seeds, the design of environmentally friendly templates, and solvent-free synthesis of zeolites. PMID:27009872

  10. Synthesis of Na-A and faujasitic zeolites from high silicon fly ash

    International Nuclear Information System (INIS)

    High silicon fly ash (HSFA) utilized as a source of silicon in synthesizing of Na-A, -X and -Y zeolites through alkali fusion followed by hydrothermal treatment at 100 deg. C for 12 h. Various types of zeolites with different degrees of purity were prepared by changing Si/Al ratio of the reaction mixture from 1.6 to 3.0. In addition, exact boundaries of this ratio for synthesis of each zeolite type were determined. Furthermore, the effect of NaOH amount utilized in alkaline fusion step on crystalinity of samples investigated. The synthesized zeolites were characterized using various techniques including; XRD, TGA, FTIR, SEM and BET. The ion-exchange behaviors of zeolitic samples tested with Co2+. The obtained Na-X zeolite was crystaline, had a very high cation-exchange capability of 4.9 mequiv. g-1 and possessed relatively high specific surface area of about 434 m2 g-1

  11. In Situ Synthesis of NaY Zeolite with Coal-Based Kaolin

    Institute of Scientific and Technical Information of China (English)

    Xinmei Liu; Zifeng Yan; Huaiping Wang; Yantuo Luo

    2003-01-01

    NaY zeolites were in-situ synthesized from coal-based kaolin via the hydrothermal method.The effects of various factors on the structure of the samples were extensively investigated. The sampleswere characterized by N2 adsorption, XRD, IR and DTG-DTA methods, and the results show that thecrystallization temperature and amount of added water play an important role in the formation of the zeo-lite structure. The 4A and P zeolites are the competitive phase present in the resulting product. However,NaY zeolites with a higher relative crystallinity, excluding impure crystals and the well hydrothermal sta-bility, can be synthesized from coal-based kaolin. These zeolites possess a larger surface area and a narrowpore size distribution, and this means that optimization of this process might result in a commercial routeto synthesize NaY zeolites from coal-based kaolin.

  12. Obtaining of supports macro and micro nutrients with base in zeolites mexicans

    International Nuclear Information System (INIS)

    Study the effect of application of the zeolites modified by the ionico interchange with fertilizers (NPK), N-p in the production of tomatos. The cultive of tomatos was made in lands of the Benemerita Autonoma Universidad de Puebla, Mexico, taking equal quadrants with the following ground treatments: 1) zeolite interchanged with fertilizers, 2) zeolite interchanged with a solution that contained only N-p, 3) natural zeolite without ionica modification and a quadrant witness represented by the ground without treatment. The collected data show an increase in the harvest of tomatos, as well as the retention of the decomposition of the harvested tomatos. In addition, it determinated that the optimal concentrations in the case of the zeolite dealt with 3% of fertilizer NPK are: 0,91% of potassium and 0.61% of nitrogen. These results allow to suggest the use of zeolites modified by ionico interchange in agriculture to elevate the level of the harvests of the tomato

  13. Sorption and desorption of Fe(III) on natural and chemically modified zeolite

    International Nuclear Information System (INIS)

    The Fe(III) uptake from aqueous solutions by natural and chemically modified zeolites was investigated using a gradual radioexchange method and AAS technique. The leachability of Fe(III) from loaded zeolites was studied too. The Fe-uptake reached the value of 60 mg x g-1 for the zeolite chemically treated with 6 mol x l-1 solution of NaOH and it is more than twelve times higher than that of the raw zeolite. The leachability of the loaded zeolite samples in water and alkaline solution was up 5%. The leachability of the same zeolites in acid solution depended on the concentration of modifying solution. The leachability at pH = 2.6 in the range 2-20% at pH = 1.9 was many times higher. The results of the radioexchange and AAS methods were compared. (author)

  14. Characterization of natural and modified zeolites using ion beam analysis techniques

    International Nuclear Information System (INIS)

    Zeolites are very important materials in catalytic and industrial processes. Natural, modified and synthetic zeolites have a wide range of uses because of their good adsorption, ion exchange capacity and catalytic properties. Mexico is an import source of natural zeolites, however their utilization in the natural form is limited due to the presence of trace metallic impurities. For example, metals such as vanadium and chromium inhibit the elimination of sulfur in hydrocarbons. Therefore, it is important to know the precise composition of the zeolite material. In this work, we report the elemental characterization of zeolites using various IBA techniques. 3He+ and 2H+ beams were used to measure the major element concentrations (Si, Al, O, C) by RBS and NRA. PIXE and SEM-EDS were used to measure the total trace element content (V, Cr, Fe, Ni, Cu, Zn, Rb, Sr, Zr, Pb, etc). Additionally, XRD was used to study the zeolite crystal structure

  15. Effects of ultrasonic treatment on zeolite NaA synthesized from by-product silica.

    Science.gov (United States)

    Vaičiukynienė, Danutė; Kantautas, Aras; Vaitkevičius, Vitoldas; Jakevičius, Leonas; Rudžionis, Žymantas; Paškevičius, Mantas

    2015-11-01

    The synthesis of zeolite NaA from silica by-product was carried out in the presence of 20 kHz ultrasound at room temperature. Zeolites obtained in this type of synthesis were compared to zeolites obtained by performing conventional static syntheses under similar conditions. The sonication effects on zeolite NaA synthesis were characterized by phase identification, crystallinity etc. The effects of different parameters such as crystallization time and initial materials preparation methods on the crystallinity and morphology of the synthesized zeolites were investigated. The final products were characterized by XRD and FT-IR. It was possible to obtain crystalline zeolite NaA from by-product silica in the presence of ultrasound. PMID:26186874

  16. Bench-scale synthesis of zeolite A from subbituminous coal ashes with high crystalline silica content

    Energy Technology Data Exchange (ETDEWEB)

    Chareonpanich, M.; Jullaphan, O.; Tang, C. [Kasetsart University, Bangkok (Thailand). Dept. of Chemical Engineering

    2011-01-15

    In this present work, fly ash and bottom ash with high crystalline silica content were obtained from the coal-fired boilers within the paper industries in Thailand. These coal ashes were used as the basic raw materials for synthetic zeolite production. The crystal type and crystallinity, specific surface area and pore size, and textural properties of zeolite products were characterized by using X-ray diffraction spectroscopy (XRD), N{sub 2} sorption analysis, and Scanning Electron Microscopy (SEM), respectively. It was found that sodalite octahydrate was selectively formed via the direct conventional (one-step) synthesis, whereas through a two-step, sodium silicate preparation and consecutive zeolite A synthesis process, 94 and 72 wt.% zeolite A products could be produced from the fly ash and bottom ash, respectively. The cation-exchange capacity (CEC) of fly ash and bottom ash-derived zeolite A products were closely similar to that of the commercial grade zeolite A.

  17. Effects of Surface and Morphological Properties of Zeolite on Impedance Spectroscopy-Based Sensing Performance

    Directory of Open Access Journals (Sweden)

    Prabir K. Dutta

    2012-10-01

    Full Text Available Measurement by impedance spectroscopy of the changes in intrazeolitic cation motion of pressed pellets of zeolite particles upon adsorption of dimethylmethylphosphonate (DMMP provides a strategy for sensing DMMP, a commonly used simulant for highly toxic organophosphate nerve agents. In this work, two strategies for improving the impedance spectroscopy based sensing of DMMP on zeolites were investigated. The first one is the use of cerium oxide (CeO2 coated on the zeolite surface to neutralize acidic groups that may cause the decomposition of DMMP, and results in better sensor recovery. The second strategy was to explore the use of zeolite Y membrane. Compared to pressed pellets, the membranes have connected supercages of much longer length scales. The zeolite membranes resulted in higher sensitivity to DMMP, but recovery of the device was significantly slower as compared to pressed zeolite pellets.

  18. Influence of zeolite structure on the activity and durability of Co-Pd-zeolite catalysts in the reduction of NOx with methane

    International Nuclear Information System (INIS)

    Selective catalytic reduction of NO with CH4 was studied over ZSM-5, MOR, FER and BEA zeolite-based cobalt (Co) and palladium (Pd) catalysts in the presence of oxygen and water. As compared to other catalytic systems reported in literature for CH-4-SCR in the presence of water, zeolite supported Co-Pd combination catalysts are very active and selective. The most active catalysts, based on MOR and ZSM-5, are characterised by well-dispersed Pd ions in the zeolite that activate methane. Wet ion-exchange is a good method to achieve high dispersion of Pd provided that it is carried out in a competitive manner. The presence of cobalt (Co3O4, Co-oxo ions) boosts SCR activity by oxidising NO to NO2. The activity of the zeolite-based Co-Pd combination catalysts decreases with prolonged times on stream. The severity of the deactivation was found to be different for different zeolite topologies. The characterisation and evaluation of freshly calcined catalysts and spent catalysts show two things that occur during reaction: (1) zeolite solvated metal cations disappear in favour of (inactive) metal oxides and presumably larger metal entities, i.e. loss of dispersion, (2) loss of crystallinity affiliated with steam-dealumination and the concomitant formation of extra-framework aluminium in the presence of water. Both phenomena strongly depend on the (reaction) temperature. The deactivation of Co-Pd-zeolite resembles the deactivation of Pd-zeolite. Hence, future research could encompass the stabilisation of Pd (cations) in the zeolite pores by exploring additives other than cobalt. For this, detailed understanding on the siting of Pd in zeolites is important

  19. Influence of zeolite structure on the activity and durability of Co-Pd-zeolite catalysts in the reduction of NOx with methane

    International Nuclear Information System (INIS)

    Selective catalytic reduction of NO with CH4 was studied over ZSM-5, MOR, FER and BEA zeolite-based cobalt (Co) and palladium (Pd) catalysts in the presence of oxygen and water. As compared to other catalytic systems reported in literature for CH4-SCR in the presence of water, zeolite supported Co-Pd combination catalysts are very active and selective. The most active catalysts, based on MOR and ZSM-5, are characterised by well-dispersed Pd ions in the zeolite that activate methane. Wet ion exchange is a good method to achieve high dispersion of Pd provided that it is carried out in a competitive manner. The presence of cobalt (Co3O4, Co-oxo ions) boosts SCR activity by oxidising NO to NO2. The activity of the zeolite-based Co-Pd combination catalysts decreases with prolonged times on stream. The severity of the deactivation was found to be different for different zeolite topologies. The characterisation and evaluation of freshly calcined catalysts and spent catalysts show two things that occur during reaction: (1) zeolite solvated metal cations disappear in favour of (inactive) metal oxides and presumably larger metal entities, i.e. loss of dispersion; (2) loss of crystallinity affiliated with steam-dealumination and the concomitant formation of extra-framework aluminium (EFAL) in the presence of water. Both phenomena strongly depend on the (reaction) temperature. The deactivation of Co-Pd-zeolite resembles the deactivation of Pd-zeolite. Hence, future research could encompass the stabilisation of Pd (cations) in the zeolite pores by exploring additives other than cobalt. For this, detailed understanding on the siting of Pd in zeolites is important

  20. Mechanical characterization of a bifunctional Tetronic hydrogel adhesive for soft tissues.

    Science.gov (United States)

    Sanders, Lindsey; Stone, Roland; Webb, Kenneth; Mefford, Thompson; Nagatomi, Jiro

    2015-03-01

    Although a number of tissue adhesives and sealants for surgical use are currently available, attaining a useful balance in high strength, high compliance, and low swelling has proven difficult. Recent studies have demonstrated that a four-arm poly(propylene oxide)-poly(ethylene oxide) block copolymer, Tetronic, can be chemically modified to form a hydrogel tissue adhesive (Cho et al., Acta Biomater 2012;8:2223-2232; Barrett et al., Adv Health Mater 2012;1-11; Balakrishnan, Evaluating mechanical performance of hydrogel-based adhesives for soft tissue applications. Clemson University, All Theses, Paper 1574: Tiger Prints; 2013). Building on the success of these studies, this study explored bifunctionalization of Tetronic with acrylates for chemical crosslinking of the hydrogel and N-hydroxysuccinimide (NHS) for reaction with tissue amines. The adhesive bond strengths of various uni and bifunctional Tetronic blends (T1107 ACR: T1107 ACR/NHS) determined by lap shear testing ranged between 8 and 74 kPa, with the 75:25 (T1107 ACR: T1107 ACR/NHS) blend displaying the highest value. These results indicated that addition of NHS led to improvement of tissue bond strength over acrylation alone. Furthermore, ex vivo pressure tests using the rat bladder demonstrated that the bifunctional Tetronic adhesive exhibited high compliance and maintained pressures under hundreds of filling and emptying cycles. Together, the results of this study provided evidence that the bifunctional Tetronic adhesive with a proper blend ratio may be used to achieve an accurate balance in bulk and tissue bond strengths, as well as the compliance and durability for soft tissue such as the bladder. PMID:25111445