WorldWideScience

Sample records for bhabha atomic research center

  1. Bhabha Atomic Research Centre, Bombay

    International Nuclear Information System (INIS)

    Swarup, J.; Ganguly, A.K.

    1977-01-01

    The paper reports the preliminary results obtained on the sky-shine spectra from a 650 Ci 60 Co source located at the center of a gamma irradiation field of radius 90 m fenced by a stone wall of thickness approximately 75 cm and height 3.66 m. The source is in the form of a small pellet. The height of the source when raised for irradiation is 1.2 m above ground level and it is shielded on top by a lead cylinder of 10 cm diameter and 25 cm length. Thus, only the scattered radiation can reach the ground level beyond the fencing wall. There is a field of 100 mR/hr on the inner side and 2 mR/hr on the outer side of the wall with the source raised. Experiments are carried out for the measurement of sky-shine with a well-shielded NaI detector assembly coupled to a 400-channel analyzer. The detector is placed 55 cm above ground looking vertically up through a lead collimator of diameter 12 mm (or 20 mm) at distances from 150 to 325 m away from the source. Energy calibrations of the spectra have been carried out before and after each experiment using standard sources of gamma-energy ranging from 60 to 662 keV. It is found that the spectrum extends up to 400 keV with a pronounced peak at 72 keV for all the distances. There is no evidence of the presence of primary gamma-photons in the spectra. Total counts under the sky-shine are observed to follow an exponential decline with distance, with a slope of -0.50 +- 0.02 for both the collimators used. The ratio of peak counts (72 keV) to total sky-shine is 0.24 +- 0.02 for both the collimators. Also, the nature and intensity of the spectra remain unchanged when the lead shield around the detector is provided with an internal lining of 2.5 cm thick aluminium

  2. Radiological safety experience in nuclear fuel cycle operations at Bhabha Atomic Research Center, Trombay, Mumbai, India

    International Nuclear Information System (INIS)

    Pushparaja; Gopalakrishnan, R.K.; Subramaniam, G.

    2000-01-01

    Activities at Bhabha Atomic Research Centre (BARC), Mumbai, cover nuclear fuel cycle operations based on natural uranium as the fuel. The facilities include: plant for purification and production of nuclear grade uranium metal, fuel fabrication, research reactor operation, fuel reprocessing and radioactive waste management in each stage. Comprehensive radiation protection programmes for assessment and monitoring of radiological impact of these operations, both in occupational and public environment, have been operating in BARC since beginning. These programmes, based on the 1990 ICRP Recommendations as prescribed by national regulatory body, the Atomic Energy Regulatory Board (AERB), are being successfully implemented by the Health, Safety and Environment Group, BARC. Radiation Hazards Control Units attached to the nuclear fuel cycle facilities provide radiation safety surveillance to the various operations. The radiation monitoring programme consists of measurement and control of external exposures by thermoluminescent dosimeters (TLDs), hand-held and installed instruments, and internal exposures by bioassay and direct whole body counting using shadow shield counter for beta gamma emitters and phoswich detector based system for plutonium. In addition, an environmental monitoring programme is in place to assess public exposures resulting from the operation of these facilities. The programme involves analysis of various matrices in the environment such as bay water, salt, fish, sediment and computation of resulting public exposures. Based on the operating experience in these plants, improved educating and training programmes for plant operators, have been designed. This, together with the application of new technologies have brought down individual as well as average doses of occupational workers. The environmental releases remain a small fraction of the authorised limits. The operating health physics experience in some of these facilities is discussed in this paper

  3. Bhabha Atomic Research Centre : annual report 1990

    International Nuclear Information System (INIS)

    1992-01-01

    Research and development (R and D) activities of the Bhabha Atomic Research Centre (BARC) carried out during 1990 are reported. The main thrust of the R and D activities of BARC is on : (1)providing support to the nuclear power programme, (2)designing, building and utilising research reactors, (3)working in related frontline technologies, and also (4)basic research in frontier areas of science. These activities are described in brief under the chapters entitled : (1)Physical Sciences (2)Chemical Sciences (3)Materials and Material Science (4)Radioisotopes (5)Reactions (6)Fuel Cycle (7)Radiological Safety and Protection (8)Electronics and Instrumentation (9)Engineering Services (10)Life Sciences and (11)General. At the end of each chapter a list of papers and reports published in the subject field indicated by the title of the chapter is given. (N.B.). figs., tabs

  4. Bhabha Atomic Research Centre annual report : 1989

    International Nuclear Information System (INIS)

    1991-01-01

    The main thrust of the various research and development (R and D) activities of the Bhabha Atomic Research Centre (BARC), Bombay, is towards the implementation of India's nuclear power programme. To that end, its R and D activities cover the entire nuclear fuel cycle, reactor technology; applications of radioisotopes and radiations in agriculture, medicine and industries; and radiation protection in nuclear installations. The report presents in summarised form the R and D activities carried out during 1989 in the chapters entitled: Physical Sciences, Chemical Sciences, Materials and Materials Sciences, Radioisotopes, Reactors, Fuel Cycle, Radiological Safety and Protection, Electronics and Instrumentation, Engineering Services, Life Sciences and General. At the end of each chapter, a list of publications by the staff scientists in the corresponding subject field is given. The list includes published journal articles and technical reports, and papers presented at conferences, symposia etc. The report also covers the R and D activities of the outstation units of BARC, namely, Nuclear Research Laboratory, Srinagar; High Altitude Research Laboratory, Gulmarg; and Variable Energy Cyclotron Centre, Calcutta. BARC is also engaged in basic an applied research in frontier areas of science such as plasma and fusion physics, accelerators and lasers, high temperature superconductivity, condensed matter physics, high pressure physics, high resolution spectroscopy, chemical reaction dynamics and laser induced chemistry, electronics and robotics: radiation biology, and genetic engineering. Report is illustrated with a number of figures, graphs, and coloured pictures. (M.G.B.) figs., refs

  5. Bhabha Atomic Research Centre: annual report 1988

    International Nuclear Information System (INIS)

    1989-12-01

    The research and development (R and D) work carried out in the Bhabha Atomic Research Centre (BARC), Bombay during 1988 is summarised and presented in the sections entitled Physical Sciences, Chemical Sciences, Materials and Materials Science, Radioisotopes, Reactors, Fuel cycle, Radiological Safety and Protection, Electronics and Instrumentation, Engineering Services, Life Sciences and General. At the end of each section a list of publications is also given. The R and D work of the outstation units of BARC, namely, Nuclear Research Laboratory, Srinagar; High Altitute Research Laboratory, Gulmarg and Variable Energy Cyclotron Centre, Calcutta are also described in this report. Some of the highlights of the work during the year are: (1) Medium Energy Heavy Ion Accelerator (MEHIA) facility set up jointly by BARC and the Tata Institute of Fundamental Research (TIFR) at TIFR premises became fully operational in September 1988. A number of new compositions of high temperature supconducting materials were synthesized. The highest transition temperature achieved was 125 K. Research work to improve the quality of sintered uranium oxide pellets achieved the purpose. Nuclear fuels were fabricated by using sol-gel process. R and D work for 235 MWe and 500 MWe PHWR type reactors is continuing. Conceptual design of the fuel handling system for the prototype fast breeder reactor was finalised. 233 U+Al alloy fuel for Kamini reactor was fabricated. Progress has been made in industrial applications of enzymes. Various applications of radioisotopes are being continued. Certain technologies and processes developed in the Centre were transferred to commercial agencies for large scale exploitation. (M.G.B.)

  6. Bhabha Atomic Research Centre: annual report 1986-87

    International Nuclear Information System (INIS)

    1987-01-01

    The Research and Development (R and D) work and achievements of the Bhabha Atomic Research Centre, Bombay, during the financial year 1986-1987 are reported. The R and D activities of BARC cover the entire nuclear fuel cycle, production and use of radioisotopes, radiation protection and also basic research in several disciplines. The report is presented in the chapters entitled: Physical Sciences, Chemical Sciences, Materials and Materials Science, Life Sciences, Radioisotopes, Reactors, Fuel Cycle, Health and Safety, Electronics and Instrumentation, Engineering and General Services. At the end of each chapter are listed the journal articles published, the paper presented at conferences, symposia etc. and technical reports issued by the scientists of BARC in the subject field indicated by the title of the chapter. The R and D work of the outstation units of BARC, namely, Nuclear Research Laboratory at Srinagar, High Altitute Research Laboratory at Gulmarg, Variable Energy Cyclotron Centre at Calcutta and Gauribidanur Seismic Array near Bangalore are also described in the report. The report concludes with a brief account of: (1) transfer of technologies developed at the Centre, (2) activities related to human resource development for nuclear programmes of the country, and (3) progress of design and construction work of Centre for Advanced Technology at Indore. (M.G.B.)

  7. Bhabha Atomic Research Centre (BARC) annual report 1985-86

    International Nuclear Information System (INIS)

    1987-01-01

    The research and development (R and D) activities and accomplishments during the financial year 1985-86 of the Bhabha Atomic Research Centre, Bombay are reported. The BARC is a multidisciplinary laboratory engaged in R and D activities in the field of nuclear energy. The main thrust of the R and D activities of the Centre is aimed at: (1) achieving targets of India's nuclear power programme, (2) indigenisation of the various steps in the nuclear fuel cycle, (3) developing and propagating peaceful applications of nuclear science and technology in the country in fields such as agriculture, medicine and industry, (4) providing scientific support to regulatory functions associated with nuclear facilities and radiation protection activities in the country. The salient features of these R and D activities are described in the chapters entitled: (1) physical sciences, (2) chemical sciences, (3) materials and materials sciences, (4) life sciences, (5) radioisotopes, (6) reactors, (7) fuel cycle, (8) health and safety, (9) electronics and instrumentation, and (10) technical services. A list of publications by the staff-members during the report period is given at the end of each chapter. The R and D activities of the outstation units of BARC, namely, Nuclear Research Laboratory at Srinagar, High Altitude Research Laboratory at Gulmarg, Variable Energy Cyclotron Centre at Calcutta and Gauribidanur Seismic Array near Bangalore are also covered in the report. Other activities of the Centre include technology transfer and manpower training which are also described briefly. (M.G.B.)

  8. Use of radiation in grain legume improvement at Bhabha Atomic Research Centre

    International Nuclear Information System (INIS)

    Pawar, S.E.; Reddy, K.S.; Pandey, R.N.; Manjaya, J.G.; Souframanien, J.; Joshi, Archana

    2001-01-01

    Pulses are the cheapest source of protein for the predominantly vegetarian population of India. However per capita availability of pulses is reduced due to high growth of population and only marginal increase in pulses production. Development of varieties resistant to biotic and abiotic stresses will help to increase and stabilize pulse production in the country. Research work for the improvement of the three important pulse crops namely pigeon pea, mungbean and black gram was initiated using induced mutation approaches in early 70' and recently for cowpea and soybean at the Nuclear Agriculture and Biotechnology Division of the Bhabha Atomic Research Centre, Mumbai. The programme for developing disease resistant high yielding varieties is being pursued at NABTD, BARC using induced mutations and conventional breeding approaches

  9. Activities of the Corrosion and Electrometallurgy Section at Bhabha Atomic Research Centre, Trombay

    International Nuclear Information System (INIS)

    Elayaperumal, K.

    1978-01-01

    The Corrosion and Electrometallurgy Section, a part of the Metallurgy Division of the Bhabha Atomic Research Centre, Bombay, carries out research and development activities in the field of corrosion and electrometallurgy on problems connected with the materials of construction in nuclear reactors and also the associated units like heavy water plants, fuel reprocessing plants, desalination plants etc. The Section also renders consultancy services in the form of : (i) advice on materials selection for various applications, (ii) testing of components with respect to corrosion and fracture behaviour, (iii) investigation of specific problems of equipment and component failures in various units to find suitable solutions and (iv) development of protective coatings by electro-deposition on metals and alloys having high corrosion resistance, high hardness, high wear resistance and other special properties. (author)

  10. Analysis of radiation dose rate profile in the ambient Bhabha Atomic Research Centre, Trombay environment to evaluate radiation hazard

    International Nuclear Information System (INIS)

    Vikas; Anoj Kumar; Meena, T.R.; Vikas Kumar; Patra, R.P.; Patil, S.S.; Murali, S.; Singh, Rajvir; Pradeepkumar, K.S.

    2014-01-01

    Periodic radiological survey and its analysis are useful on a two way approach. First, it will be used to generate baseline dose profile that will be prominently important during any radiological emergency. Secondly, due to some unforeseen human acts if orphan/abandoned radioactive source were present across Bhabha Atomic Research Centre site, the same can be detected and retrieved from the incident location. Periodic radiation survey of Bhabha Atomic Research Centre, Trombay site primarily validate/serve as an indicator of integrity of the various safety measures at the different nuclear fuel cycle facilities and on the prevailing radiological status at the vicinity of the facilities at Bhabha Atomic Research Centre, Trombay site. Radiation dose profile as a quality information has been accumulated in the last five years. Analysis of data has led to the conclusion that there has been no increase in hazard over the years though the quantum of radioactivity processed at the various facilities has undergone wide increase and radiation hazard at the site continues to be very negligible. Nuclear fuel cycle activities at Bhabha Atomic Research Centre do not pose any excess radiation risk at the site

  11. Development of optically stimulated luminescence technology for personnel monitoring applications at Bhabha Atomic Research Centre

    International Nuclear Information System (INIS)

    Kulkarni, M.S.

    2012-01-01

    The popularity of optically stimulated luminescence (OSL) technology in the radiation dosimetry applications, in general, and personnel and environmental monitoring, in particular, has driven investigation and developmental programme using OSL technique for a viable system for personnel monitoring at Bhabha Atomic Research Centre. The OSL related phosphor materials and instrumentation development has a very recent history in Bhabha Atomic Research Centre. The OSL technique is more versatile and easy to use than thermoluminescence (TL) technique. The X- and gamma ray (both high and low energy) photons and beta particles can be measured with OSL technique. In the OSL technique, the phosphor (say á- Ai 2 O 3 :C) is optically stimulated by blue/green light and the resulting light emitted from Al 2 O 3 :C (410-420 nm) is measured and correlated to the amount of radiation exposure. For a fixed stimulation intensity, the emitted blue light from the Al 2 O 3 :C dosimeter is proportional to the radiation exposure. The OSL technology is being increasingly used in several applications in external radiation dosimetry, in-vivo medical dosimetry in radiotherapy, in-situ, long-term monitoring system for radioactive contaminants, geological and archaeological dating of sediments, etc. For the success of OSL technology for large scale countrywide personnel monitoring program, indigenous development of dosimetric grade sensitive detector material was a key issue. Therefore, since 2002, efforts were directed towards the development of OSL phosphors (like aluminum oxide doped with carbon, á- Al 2 O 3 :C) and related instrumentation. To begin with, simple low cost OSL readers were developed using blue (470 nm) and green (530 nm) LED clusters. New techniques were developed for the preparation of dosimetric grade á- Ai 2 O 3 :C and other OSL phosphors. With the success in the development of indigenous technique for the large scale preparation of á- Al 2 O 3 :C phosphor, a four

  12. Assessment of air mass ventilation potential in and around Bhabha Atomic Research Centre Trombay

    International Nuclear Information System (INIS)

    Jana, R.; Vinod Kumar, A.

    2016-01-01

    Aim of the present study is quantification of airborne pollutant dispersion potential in and around Bhabha Atomic Research Centre Trombay, a coastal belt of Arabian sea. Apart from synoptic atmospheric circulation, there is local land-sea interactive breezes diurnally in the area for which air mass ventilation potential is assessed here. For this purpose, a micro-meteorological station was established at Mandala hill top representing Trombay area to measure 3 dimensional wind components, i.e. Zonal: u, meridional: v and vertical: w, using ultrasonic anemometer. Hourly wind speed and wind direction are derived in this study for a period of 1 year, January-December 2013. Accuracy of wind components measurement is 0.1 m/s. This covers low wind condition too, i.e. wind speed below 1 m/s. Hourly statistics of year-long as well as seasonal period of wind field and associated parameters reveals the uniqueness of wind field phenomenon at the site being situated in west coast. Seasonal Wind Roses captures various frequencies of wind speed and wind direction for the respective periods

  13. Occupational radiation protection experience in radioactive waste management at Bhabha Atomic Research Centre, Trombay, Mumbai, India

    International Nuclear Information System (INIS)

    Ramchandran, V.; Jauhri, G.S.

    2000-01-01

    Waste Management Facilities, Trombay (WMFT) comprises Radioactive Solid waste Management Site (RSMS), an Effluent Treatment Plant (ETP), and a Decontamination Centre (DC). Radioactive wastes from the plants and laboratories in Mumbai are handled here. The wastes are categorized and classified as per International Atomic Energy Agency (IAEA) and Atomic Energy Regulatory Board (AERB) guidelines. RSMS is a near surface disposal facility, where assorted beta gamma solid waste is disposed off in appropriate disposal facilities. ETP is a centralized low level liquid waste treatment facility, where liquid effluent is chemically treated to remove the radionuclides present in it, monitored for radioactivity, and discharged into the Mumbai Harbour Bay. In DC, plant and laboratory used clothings and personnel protective wears are decontaminated, monitored and sent for reuse. A comprehensive radiation monitoring programme is in place in these facilities from the beginning of radioactive waste management operations at BARC. The per capita radiation dose of the occupational workers and individual maximum dose has been low. Radioactivity release through liquid effluent from ETP has been kept well below Authorized Limits (AL). There has been no safety related unusual occurrences during the facility operation, that had any significant radiological impact. (author)

  14. Earthquake engineering and structural dynamics studies at Bhabha Atomic Research Centre

    International Nuclear Information System (INIS)

    Reddy, G.R.; Parulekar, Y.M.; Sharma, A.; Dubey, P.N.; Vaity, K.N.; Kukreja, Mukhesh; Vaze, K.K.; Ghosh, A.K.; Kushwaha, H.S.

    2007-01-01

    Earthquake Engineering and structural Dynamics has gained the attention of many researchers throughout the world and extensive research work is performed. Linear behaviour of structures, systems and components (SSCs) subjected to earthquake/dynamic loading is clearly understood. However, nonlinear behaviour of SSCs subjected to earthquake/dynamic loading need to be understood clearly and design methods need to be validated experimentally. In view of this, three major areas in earthquake engineering and structural dynamics identified for research includes: design and development of passive devices to control the seismic/dynamic response of SSCs, nonlinear behaviour of piping systems subjected to earthquake loading and nonlinear behavior of RCC structures under seismic excitation or dynamic loading. BARC has performed extensive work and also being continued in the above-identified areas. The work performed is helping for clearer understanding of nonlinear behavior of SSCs as well as in developing new schemes, methodologies and devices to control the earthquake response of SSCs. (author)

  15. Summary of environmental study carried out by Bhabha Atomic Research Centre during 8th, 9th and 10th summer Indian expeditions to Antarctica

    International Nuclear Information System (INIS)

    Ramachandran, T.V.; Sathe, A.P.; Joshi, P.V.; Balani, M.C.

    1994-01-01

    The Bhabha Atomic Research Centre has participated in the 8th, 9th and 10th summer expeditions to Antarctica during 1988-91 period to carry out background radiation survey and to collect representative samples for radioactivity and heavy metal analyses. Spot measurements of ions as well as Radon daughter radionuclides were also carried out during the expeditions. Radon levels as well as heavy metal pollutant concentrations have been found to be quite low in general; however higher levels were observed at places where human activity is concentrated around the landing area as well as the laboratory site. The richness of the shelf waters at Antarctic were also realised through analysis of phytoplankton and zooplankton samples. (author). 25 refs., 5 figs., 26 tabs

  16. Studies on the possibility of seawater intrusion in and around central air conditioning plant site at Bhabha Atomic Research Centre, Trombay

    International Nuclear Information System (INIS)

    Sriraman, A.K.; Tirumalesh, K.; Shivanna, K.; Tyagi, A.K.; War, S.B.; Shetty, P.S.

    2008-01-01

    The central air conditioning plant (CAP) of Bhabha Atomic Research Centre (BARC) uses raw water from Mumbai Mahanagar Palika (MMP) for its condenser cooling purposes. The same raw water is also used for drinking purposes. In an effort to minimize the dependency of raw water from MMP the CAP authorities felt a need for locating an alternate source of usable raw water. In this context it was decided to use water from the nearby bore wells located within CAP premises near the coast. The CAP site is located [19 deg 30' N, 72 deg 6' E] on the slope between the lush green Trombay hills and Mumbai Harbor Bay (MHB), resulting in the outflow of the most of the rainwater into MHB. However, part of the rainfall seeps into the subsurface resulting in the availability of groundwater through the bore wells located on the coast. The location of the bore wells close to the sea coast (∼ 200 metres away from high tide line of the highly polluted MHB), in the middle of the lush green zone, raised a question on the possible intrusion of seawater into the groundwater and its adverse impact on the operational practices of CAP. In this connection there was a need to evaluate the water from three bore wells for their use as coolant water at CAP. This report reveals the detailed study carried out on the physico-chemical nature of the water from the bore wells, for two years and the implications of these findings on operational practices of CAP. In addition environmental isotope ( 2 H, 8 O and 3 H) study was also carried out to substantiate the findings of physico-chemical study. These studies revealed interesting features. Groundwater quality in this site is mainly influenced by precipitation and rock- water interaction. The minerals present in the Basalt rocks are the source materials for the dominant ions (Ca 2+ , Mg 2+ and HCO 3 - ) observed in the waters of bore well no 1 and 3, whereas high sodium in ground water from bore well no 2 may be due to ion exchange process. Characteristic

  17. Teaching and training programmes in nuclear medicine for medical and paramedical personnel at the Radiation Medicine Centre, Bhabha Atomic Research Centre

    International Nuclear Information System (INIS)

    Sharma, S.M.; Raikar, U.R.

    1986-01-01

    Prior to 1976, the Radiation Medicine Centre had conducted 12 short courses of five weeks' duration on medical uses of radioisotopes. A total of 162 medical and scientific personnel attended the courses from various parts of India. Owing to the rapid advances made in nuclear medicine these courses were becoming inadequate, and in 1973 the Centre introduced one-year full time training courses for doctors and science graduates, peparing them for examinations for the Diploma in Radiation Medicine (DRM) and the Diploma in Medical Radioisotope Techniques (DMRIT) of the University of Bombay. By March 1984, 64 doctors and 53 technologists had obtained the DRM and DMRIT. A recent survey indicated that 70% of the DRM physicians and 68% of the DMRIT technologists are employed in nuclear medicine departments. Besides the formal one-year training courses, the Centre has conducted advanced courses of two weeks' duration on scintigraphy and thyroid function tests. The Radiation Medicine Centre has been the regional reference centre in nuclear medicine for the World Health Organization and International Atomic Energy Agency for more than ten years. The Centre has trained sponsored personnel from other countries of the region. The Centre has also organized seven symposia, workshops and seminars, four of them in collaboration with WHO and one with the IAEA. (author)

  18. Atomic, Nuclear and Molecular Research Center CICANUM

    International Nuclear Information System (INIS)

    Loria Meneses, Luis Guillermo

    2011-01-01

    CICANUM has a Gamma Spectroscopy Laboratory, has been the laboratory official, appointed by the Ministerio de Agricultura in Costa Rica to analyze export products (for human consumption and animal), also, to determine radioactive contamination. The Laboratory has four systems using germanium detectors and canberra technology, including software Genie 2000 to establish the activity of cesium, iodine and natural gamma emitters in solid or liquid samples for food products, sediments and rocks. This Laboratory belongs to the Universidad de Costa Rica which has different institutes and research centers

  19. A new apparatus at hyper irradiation research facility at the Atomic Research Center, University of Tokyo

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Hiromi; Iwai, Takeo; Narui, Makoto; Omata, Takao [Tokyo Univ. (Japan). Research Center for Nuclear Science and Technology

    1996-12-01

    In the hyper irradiation research facility at the Atomic Research Center, the University of Tokyo, following apparatuses were newly installed for accelerator relating apparatus on 1995 fiscal year; (1) Hyper ion microbeam analysis apparatus, (2) Fourier conversion infrared microscopy, (3) Pico second two-dimensional fluorescence measuring apparatus, (4) Femto second wave-length reversible pulse laser radiation apparatus, and others. In addition to double irradiation, pulse beam irradiation experiment and so forth characteristic in conventional hyper irradiation research apparatus, upgrading of material irradiation experiments using these new apparatuses are intended. (G.K.)

  20. A new apparatus at hyper irradiation research facility at the Atomic Research Center, University of Tokyo

    International Nuclear Information System (INIS)

    Shibata, Hiromi; Iwai, Takeo; Narui, Makoto; Omata, Takao

    1996-01-01

    In the hyper irradiation research facility at the Atomic Research Center, the University of Tokyo, following apparatuses were newly installed for accelerator relating apparatus on 1995 fiscal year; 1) Hyper ion microbeam analysis apparatus, 2) Fourier conversion infrared microscopy, 3) Pico second two-dimensional fluorescence measuring apparatus, 4) Femto second wave-length reversible pulse laser radiation apparatus, and others. In addition to double irradiation, pulse beam irradiation experiment and so forth characteristic in conventional hyper irradiation research apparatus, upgrading of material irradiation experiments using these new apparatuses are intended. (G.K.)

  1. Fiber optic transmission system delivered to Fusion Research Center of Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Hayashida, Mutsuo; Hiramoto, Kiyoshi; Yamazaki, Kunihiro

    1983-01-01

    In general there are many electromagnetically induced noises in the premises of factories, power plants and substations. Under such electrically bad environments, for the computer data transmission that needs high speed processing and high reliability, the optical fiber cable is superion to the coaxial cable or the flat-type cable in aspects of the inductionlessness and a wide bandwidth. Showa Electric Wire and Cable Co., Ltd. has delivered and installed a computer data transmission system consisting of optical modems and optical fiber cables for connecting every experiment building in the premises of Fusion Research Center of Japan Atomic Energy Research Institute. This paper describes the outline of this system. (author)

  2. Present status and future plans of the National Atomic Research Center of Malaysia

    International Nuclear Information System (INIS)

    Rashid, N.K.

    1980-01-01

    The Malaysian Atomic Research Center (PUSPATI) was established in 1972 and operates under the Ministry of Science, Technology and the Environment. It is the first research center of this kind in Malaysia. Some of the objectives of this center are: operation and maintenance of the research reactor; research and development in reactor science and technology; production of short-lived radioisotopes for use in medicine, agriculture and industry; coordination of the utilization of the reactor and its experimental facilities among the various research institutes and universities; training in nuclear radiation field; personnel monitoring and environmental surveillance

  3. Gravitational Bhabha scattering

    International Nuclear Information System (INIS)

    Santos, A F; Khanna, Faqir C

    2017-01-01

    Gravitoelectromagnetism (GEM) as a theory for gravity has been developed similar to the electromagnetic field theory. A weak field approximation of Einstein theory of relativity is similar to GEM. This theory has been quantized. Traditional Bhabha scattering, electron–positron scattering, is based on quantized electrodynamics theory. Usually the amplitude is written in terms of one photon exchange process. With the development of quantized GEM theory, the scattering amplitude will have an additional component based on an exchange of one graviton at the lowest order of perturbation theory. An analysis will provide the relative importance of the two amplitudes for Bhabha scattering. This will allow an analysis of the relative importance of the two amplitudes as the energy of the exchanged particles increases. (paper)

  4. Nuclear Data Center (NDC) of Korea Atomic Energy Research Institute (KAERI). Progress Report to the IAEA Technical Meeting of Nuclear Reaction Data Centers (NRDC)

    International Nuclear Information System (INIS)

    Lee, Young-Ouk

    2012-01-01

    Nuclear Data Center (NDC, former Nuclear Data Evaluation Lab.) of Korea Atomic Energy Research Institute (KAERI) has a director, 10 permanent staffs (2 in evaluation, 1 in measurement, 2 in atomic and molecular data, 2 in processing and validation, 3 in applications), one PhD student and one secretary. KAERI/NDC recently expanded its scope of work into the atomic and molecular data where two permanent staffs are involved. Mission of KAERI/NDC is disseminating outcomes of international network as well as promoting domestic nuclear data activities and related applications.

  5. Homi Bhabha Centre for Science Education, Tata Institute of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 2. Homi Bhabha Centre for Science Education, Tata Institute of Fundamental Research (A Deemed University). Information and Announcements Volume 22 Issue 2 February 2017 pp 189-189 ...

  6. Atomic physics center in 1972. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, D

    1973-12-31

    The activities of the Toulouse Atomic Physics Center in 1972 are presented. Each research group of the atomic physics section is dealt with separately: atomic collisions, afterglow in gases, dc discharges in medium and high pressure gases, electric arcs, the physics of dielectrics, transport of radiation in matter, stimulated electronic emission, and pn semiconductor junctions. Because of its size, the aerosol and atmospheric exchanges section was not divided into different research groups; the work carried out by this section is presented as a single overall account. (auth)

  7. Tritium research and technology facilities for fusion inside the Bruyeres-le-Chatel Research Center of the French Atomic Energy Commission

    International Nuclear Information System (INIS)

    Hircq, B.

    1990-01-01

    Because of a large tritium experience in the Bruyeres-le-Chatel Research Center (Atomic Energy Commission-FRANCE), new activities could be undertaken in 1986 inside the European Fusion Technology Program, especially tritium studies within the frame work of the Next European Torus. After presenting the general tritium research program which concerns the Torus Exhaust Gas Processing (deuterium-tritium purification and storage) and involved materials (weldability of tritium-helium containing steels and corrosion of steels by tritiated water), major obtained results are given before describing the associated equipments. (orig.)

  8. Centering research

    DEFF Research Database (Denmark)

    Katan, Lina Hauge; Baarts, Charlotte

    Research-based teaching has long been a distinguishing trait of higher education. Engaging students in research-like processes has been employed to great effect in learning and continues to be encouraged by educational studies. The literature on this subject reflects how ‘technical’ or ‘field......’ exercises tend to dominate the common understandings of research-based learning. Here we address a specific area of inquiry overlooked by previous studies: whether and how reading, thinking and writing indeed share the same learning potentials as the practical foundation for research-based teaching....... In the humanities and social sciences, integrated acts of reading, writing and thinking account for an obvious and substantial overlap in student and researcher practices, creating a clear opportunity for research-based teaching. Moreover, our empirical data point to reading, thinking and writing as quintessential...

  9. Research and development of grid computing technology in center for computational science and e-systems of Japan Atomic Energy Agency

    International Nuclear Information System (INIS)

    Suzuki, Yoshio

    2007-01-01

    Center for Computational Science and E-systems of the Japan Atomic Energy Agency (CCSE/JAEA) has carried out R and D of grid computing technology. Since 1995, R and D to realize computational assistance for researchers called Seamless Thinking Aid (STA) and then to share intellectual resources called Information Technology Based Laboratory (ITBL) have been conducted, leading to construct an intelligent infrastructure for the atomic energy research called Atomic Energy Grid InfraStructure (AEGIS) under the Japanese national project 'Development and Applications of Advanced High-Performance Supercomputer'. It aims to enable synchronization of three themes: 1) Computer-Aided Research and Development (CARD) to realize and environment for STA, 2) Computer-Aided Engineering (CAEN) to establish Multi Experimental Tools (MEXT), and 3) Computer Aided Science (CASC) to promote the Atomic Energy Research and Investigation (AERI). This article reviewed achievements in R and D of grid computing technology so far obtained. (T. Tanaka)

  10. Accelerators for atomic energy research

    International Nuclear Information System (INIS)

    Shibata, Tokushi

    1999-01-01

    The research and educational activities accomplished using accelerators for atomic energy research were studied. The studied items are research subjects, facility operation, the number of master theses and doctor theses on atomic energy research using accelerators and the future role of accelerators in atomic energy research. The strategy for promotion of the accelerator facility for atomic energy research is discussed. (author)

  11. A study of Bhabha scattering at PETRA energies

    International Nuclear Information System (INIS)

    Braunschweig, W.; Gerhards, R.; Kirschfink, F.J.; Martyn, H.U.; Rosskamp, P.; Kolanoski, H.; Balkwill, C.; Bowler, M.G.; Burrows, P.N.; Cashmore, R.J.; Dauncey, P.; Heath, G.P.; Mellor, D.J.; Ratoff, P.; Tomalin, I.; Yelton, J.M.; Baranko, G.; Caldwell, A.; Izen, J.M.; Muller, D.; Ritz, S.; Strom, D.; Takashima, M.; Wicklund, E.; Wu Saulan; Zobernig, G.

    1988-01-01

    We report on high statistics Bhabha scattering data taken with the TASSO experiment at PETRA at center of mass energies from 12 GeV to 46.8 GeV. We present an analysis in terms of electroweak parameters of the standard model, give limits on QED cut-off parameters and look for possible signs of compositeness. (orig.)

  12. Tehran Nuclear Research Center

    International Nuclear Information System (INIS)

    Taherzadeh, M.

    1977-01-01

    The Tehran Nuclear Research Center was formerly managed by the University of Tehran. This Center, after its transformation to the AEOI, has now become a focal point for basic research in the area of Nuclear Energy in Iran

  13. The ORNL Controlled Fusion Atomic Data Center

    International Nuclear Information System (INIS)

    Schultz, D.R.; Krstic, P.S.; Ownby, F.M.; Meyer, F.W.; Havener, C.C.; Bannister, M.E.; Liu, W.; Jeffery, D.J.; Stancil, P.C.

    1997-01-01

    The principal mission of the Controlled Fusion Atomic Data Center is the collection evaluation, and dissemination of atomic collision data relevant to fusion energy development. With the advent of the widespread use of the World Wide Web, the data center's resources are being placed on-line to facilitate their use by end-users (cf. http://www-cfadc.phy.ornl.gov/). As this development continues, initially disparate, individually compiled resources will be transformed into integrated tools for retrieving recommended data, or displaying and manipulating the information available. The data center's present capabilities, recent data production/evaluation efforts, and goals for future development are highlighted here

  14. Guidelines for starting a nuclear medicine laboratory. Excerpts from a booklet published by Bhabha Atomic Research Centre, India

    International Nuclear Information System (INIS)

    1992-01-01

    A nuclear medicine department caters to the need of all clinical departments, and, therefore, should be located at a central place. At the same time, because of radiation hazard associated with the use of radionuclides, planning of the departments should be done in such a way that there is no radiation exposure to non-radiation workers and the general public, and also that radiation workers handling radioisotopes receive minimum exposure. When a decision to set up a nuclear medicine department is taken, the authorities are faced with a number of questions regarding the location, planning for the premises, equipment needed, availability of trained medical and paramedical personnel and the procedure for obtaining clearance from various authorities

  15. Guidelines for starting a nuclear medicine laboratory. Excerpts from a booklet published by Bhabha Atomic Research Centre, India

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    A nuclear medicine department caters to the need of all clinical departments, and, therefore, should be located at a central place. At the same time, because of radiation hazard associated with the use of radionuclides, planning of the departments should be done in such a way that there is no radiation exposure to non-radiation workers and the general public, and also that radiation workers handling radioisotopes receive minimum exposure. When a decision to set up a nuclear medicine department is taken, the authorities are faced with a number of questions regarding the location, planning for the premises, equipment needed, availability of trained medical and paramedical personnel and the procedure for obtaining clearance from various authorities

  16. The Atomic Physics Center of Toulouse

    International Nuclear Information System (INIS)

    Blanc, Daniel.

    The research program was concerned with the aerosol and atmospheric exchange physics and, in atomic physics essentially with: atomic collisions, postluminescence in gases, discharges in gases at medium and high pressure, the electric arc, dielectric physics, and radiation transport in matter [fr

  17. ATOMIC HYDROGEN IN A GALACTIC CENTER OUTFLOW

    Energy Technology Data Exchange (ETDEWEB)

    McClure-Griffiths, N. M.; Green, J. A.; Hill, A. S. [Australia Telescope National Facility, CSIRO Astronomy and Space Science, Marsfield, NSW 2122 (Australia); Lockman, F. J. [National Radio Astronomy Observatory, Green Bank, WV 24944 (United States); Dickey, J. M. [School of Physics and Mathematics, University of Tasmania, TAS 7001 (Australia); Gaensler, B. M.; Green, A. J., E-mail: naomi.mcclure-griffiths@csiro.au [Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006 (Australia)

    2013-06-10

    We describe a population of small, high-velocity, atomic hydrogen clouds, loops, and filaments found above and below the disk near the Galactic center. The objects have a mean radius of 15 pc, velocity widths of {approx}14 km s{sup -1}, and are observed at |z| heights up to 700 pc. The velocity distribution of the clouds shows no signature of Galactic rotation. We propose a scenario where the clouds are associated with an outflow from a central star-forming region at the Galactic center. We discuss the clouds as entrained material traveling at {approx}200 km s{sup -1} in a Galactic wind.

  18. ATOMIC HYDROGEN IN A GALACTIC CENTER OUTFLOW

    International Nuclear Information System (INIS)

    McClure-Griffiths, N. M.; Green, J. A.; Hill, A. S.; Lockman, F. J.; Dickey, J. M.; Gaensler, B. M.; Green, A. J.

    2013-01-01

    We describe a population of small, high-velocity, atomic hydrogen clouds, loops, and filaments found above and below the disk near the Galactic center. The objects have a mean radius of 15 pc, velocity widths of ∼14 km s –1 , and are observed at |z| heights up to 700 pc. The velocity distribution of the clouds shows no signature of Galactic rotation. We propose a scenario where the clouds are associated with an outflow from a central star-forming region at the Galactic center. We discuss the clouds as entrained material traveling at ∼200 km s –1 in a Galactic wind.

  19. Water Resources Research Center

    Science.gov (United States)

    Untitled Document  Search Welcome to the University of Hawai'i at Manoa Water Resources Research Center At WRRC we concentrate on addressing the unique water and wastewater management problems and issues elsewhere by researching water-related issues distinctive to these areas. We are Hawaii's link in a network

  20. H.J. Bhabha: A case study of synchronous references

    International Nuclear Information System (INIS)

    Swarna, T.; Kalyane, V.L.; Prakasan, E.R.; Kumar, V.

    2006-01-01

    Quantitative analysis of the events of synchronous references in the research papers followed throughout the publishing career of an individual scientist revealed interesting highlights on the knowledge-generating-system. In the case study of Homi Jehangir Bhabha, the first quinquennium and fifth quinquennium of his research career had low self-references; the third quinquennium and the fourth quinquennium had moderate self-references; whereas the second quinquennium had the highest number of self-references. The two major clusters of self-references occurring during the second and third quinquenniums were indicators of active periods of knowledge-generating and faster communications. (author)

  1. ORNL's Controlled Fusion Atomic Data Center

    International Nuclear Information System (INIS)

    Barnett, C.F.; Gregory, D.C.

    1983-01-01

    The Data Center maintains a detailed bibliography of atomic data measurements and calculations for processes of interest to the fusion community. One hundred nineteen journals are regularly searched for papers of interest, including back issues to 1950. Entries are categorized by author, process, reactants, energy range, and theory/experiment. Complete bibliographies have been published since 1978 and a computerized data retrieval system is available. In addition, an updated and extended multi-volume critical compilation of cross sections (the ORNL Redbooks) is under way

  2. Lorentz violation, gravitoelectromagnetic field and Bhabha scattering

    Science.gov (United States)

    Santos, A. F.; Khanna, Faqir C.

    2018-01-01

    Lorentz symmetry is a fundamental symmetry in the Standard Model (SM) and in General Relativity (GR). This symmetry holds true for all models at low energies. However, at energies near the Planck scale, it is conjectured that there may be a very small violation of Lorentz symmetry. The Standard Model Extension (SME) is a quantum field theory that includes a systematic description of Lorentz symmetry violations in all sectors of particle physics and gravity. In this paper, SME is considered to study the physical process of Bhabha Scattering in the Gravitoelectromagnetism (GEM) theory. GEM is an important formalism that is valid in a suitable approximation of general relativity. A new nonminimal coupling term that violates Lorentz symmetry is used in this paper. Differential cross-section for gravitational Bhabha scattering is calculated. The Lorentz violation contributions to this GEM scattering cross-section are small and are similar in magnitude to the case of the electromagnetic field.

  3. Harmonic polylogarithms for massive Bhabha scattering

    International Nuclear Information System (INIS)

    Czakon, M.; Riemann, T.

    2005-08-01

    One- and two-dimensional harmonic polylogarithms, HPLs and GPLs, appear in calculations of multi-loop integrals. We discuss them in the context of analytical solutions for two-loop master integrals in the case of massive Bhabha scattering in QED. For the GPLs we discuss analytical representations, conformal transformations, and also their transformations corresponding to relations between master integrals in the s- and t-channel. (orig.)

  4. Atomic collisions research with excited atomic species

    International Nuclear Information System (INIS)

    Hoogerland, M.D.; Gulley, R.J.; Colla, M.; Lu, W.; Milic, D.; Baldwin, K.G.H.; Buckman, S.J.

    1999-01-01

    Measurements and calculations of fundamental atomic collision and spectroscopic properties such as collision cross sections, reaction rates, transition probabilities etc. underpin the understanding and operation of many plasma and gas-discharge-based devices and phenomena, for example plasma processing and deposition. In almost all cases the complex series of reactions which sustains the discharge or plasma, or produces the reactive species of interest, has a precursor electron impact excitation, attachment, dissociation or ionisation event. These processes have been extensively studied in a wide range of atomic and molecular species and an impressive data base of collision cross sections and reaction rates now exists. However, most of these measurements are for collisions with stable atomic or molecular species which are initially in their ground electronic state. Relatively little information is available for scattering from excited states or for scattering from unstable molecular radicals. Examples of such species would be metastable excited rare gases, which are often used as buffer gases, or CF 2 radicals formed by electron impact dissociation in a CF 4 plasma processing discharge. We are interested in developing experimental techniques which will enable the quantitative study of such exotic atomic and molecular species. In this talk I would like to outline one such facility which is being used for studies of collisions with metastable He(2 3 S) atoms

  5. Virtual two-loop corrections to Bhabha scattering

    International Nuclear Information System (INIS)

    Bjoerkevoll, K.S.

    1992-03-01

    The author has developed methods for the calculation of contributions from six ladder-like diagrams to Bhabha scattering. The leading terms both for separate diagrams and for the sum of the gauge-invariant set of all diagrams have been calculated. The study has been limited to contributions from Feynman diagrams without real photons, and all calculations have been done with s>> |t| >>m 2 , where s is the center of mass energy squared, t is the square of the transferred four-momentum, and m is the electron mass. For the separate diagrams the results depend upon how λ 2 is related to s, |t| and m 2 , whereas the leading term of the sum of the six diagrams is the same in the cases that have been considered. The methods described should be valuable for calculations of contributions from other Feynman diagrams, in particular QED corrections to Bhabha scattering or pair production at small angles. 23 refs., 5 figs., 5 tabs

  6. Illinois Accelerator Research Center

    Science.gov (United States)

    Kroc, Thomas K.; Cooper, Charlie A.

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 Heavy Assembly Building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft2 Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, which contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. At IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.

  7. Pair production in small angle Bhabha scattering

    International Nuclear Information System (INIS)

    Arbuzov, A.B.; Kuraev, Eh.A.; Merenkov, N.P.; Trentadue, L.

    1995-01-01

    The radiative corrections due to a pair production in the small angle high energy e + e - Bhabha scattering are considered. The corrections due to the production of virtual pairs as well as real soft and hard ones are calculated analytically. The collinear and semi-collinear kinematical regions of the hard pair production are taken into account. The results in the leading and next-to-leading logarithmic approximations provide the accuracy of Ο (0.1%). The results of numerical calculations show that the effects of pairs production are to be taken into account in the precise luminosity determination at LEP. 9 refs., 3 figs., 2 tabs

  8. Fermionic NNLO contributions to Bhabha scattering

    International Nuclear Information System (INIS)

    Actis, S.; Riemann, T.; Czakon, M.; Uniwersytet Slaski, Katowice; Gluza, J.

    2007-10-01

    We derive the two-loop corrections to Bhabha scattering from heavy fermions using dispersion relations. The double-box contributions are expressed by three kernel functions. Convoluting the perturbative kernels with fermionic threshold functions or with hadronic data allows to determine numerical results for small electron mass m e , combined with arbitrary values of the fermion mass m f in the loop, m 2 e 2 f , or with hadronic insertions. We present numerical results for m f =m μ , m τ ,m top at typical small- and large-angle kinematics ranging from 1 GeV to 500 GeV. (orig.)

  9. Research Associate | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). KEY ROLES/RESPONSIBILITIES - Research Associate III Dr. Zbigniew Dauter is the head investigator of the Synchrotron Radiation Research Section (SRRS) of CCR’s Macromolecular Crystallography Laboratory. The Synchrotron Radiation Research Section is located at Argonne National Laboratory, Argonne, Illinois; this is the site of the largest U.S. synchrotron facility. The SRRS uses X-ray diffraction technique to solve crystal structures of various proteins and nucleic acids of biological and medical relevance. The section is also specializing in analyzing crystal structures at extremely high resolution and accuracy and in developing methods of effective diffraction data collection and in using weak anomalous dispersion effects to solve structures of macromolecules. The areas of expertise are: Structural and molecular biology Macromolecular crystallography Diffraction data collection Dr. Dauter requires research support in these areas, and the individual will engage in the purification and preparation of samples, crystallize proteins using various techniques, and derivatize them with heavy atoms/anomalous scatterers, and establish conditions for cryogenic freezing. Individual will also participate in diffraction data collection at the Advanced Photon Source. In addition, the candidate will perform spectroscopic and chromatographic analyses of protein and nucleic acid samples in the context of their purity, oligomeric state and photophysical properties.

  10. The DESY Research Center

    International Nuclear Information System (INIS)

    Waloschek, P.

    1988-01-01

    On November 12, 1964, the 6 GeV electrons synchrotron and the associated utility facilities were dedicated for regular operation. Since that date, the DESY Research Center, the German Electron Synchrotron in Hamburg, has offered to scientists from all over the world unique facilities in which to study the smallest constituents of matter. At present, some 580 physicists participate in DESY's research work on particle physics and high energy physics. Most of them are university teachers, a great many come from abroad. Their home institutions make considerable contributions to setting up the measuring equipment. Another 500 physicists annually make use of the extensive synchrotron radiation facilities available at DESY. DESY is one of the thirteen national research laboratories in the Federal Republic of Germany; its annual government grants for operation and personnel (1300 staff members in 1988) amount to some DM 150 million. In addition, some DM 950 million will be invested into the construction of the new HERA facility between 1984 and 1990, of which 15% will be contributed by foreign institutions. The ordinary budget of DESY is paid 90% by the German Federal Ministry for Research and Technology (BMFT) and 10% by the city of Hamburg. (orig.)

  11. Center for Prostate Disease Research

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Prostate Disease Research is the only free-standing prostate cancer research center in the U.S. This 20,000 square foot state-of-the-art basic science...

  12. Atomic Energy Research benchmark activity

    International Nuclear Information System (INIS)

    Makai, M.

    1998-01-01

    The test problems utilized in the validation and verification process of computer programs in Atomic Energie Research are collected into one bunch. This is the first step towards issuing a volume in which tests for VVER are collected, along with reference solutions and a number of solutions. The benchmarks do not include the ZR-6 experiments because they have been published along with a number of comparisons in the Final reports of TIC. The present collection focuses on operational and mathematical benchmarks which cover almost the entire range of reaktor calculation. (Author)

  13. Center for Rehabilitation Sciences Research

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Rehabilitation Sciences Research (CRSR) was established as a research organization to promote successful return to duty and community reintegration of...

  14. The complete electroweak effect and perfection of Bhabha scattering in the standard model

    International Nuclear Information System (INIS)

    Shi Chengye; Fang Zhenyun; Chen Xuewen

    2013-01-01

    In this paper, we make a close and systematic research on Bhabha scattering in the electroweak unification of the standard model (SM). In concrete research methods we make the quantum field theory of perturbation theory in a new computing mode -renormalization chain propagation theory, and do an application to the Bhabha scattering calculation research. In SM, in order to consider complete electrical weak effect about Bhabha scattering internal process, we seek out the complex renormalization mixing-loop chain propagators constituted by photon y and intermediate boson Z 0 , and then calculate the Bhabha scattering cross section about this kind of propagator by transfer complete electrical weak reaction. Within the observed errors, the calculation results are in good agreement with the experimental values. Also, the main research results not only confirm the action of the particle reaction accuracy by SM theory for describing the electrical weak effect; but also suggests the SM theory may be a per ect theory and that the theory prophecy's Higgs 'mysterious particles' (which is of particular concern in the field of academic) have the large possibility to be eventually found. (authors)

  15. Are Cancer incidence Rates Among Present And Past Workers Of The research Centers Of The Atomic Energy Commission higher Than The Rates Among The General Population?

    International Nuclear Information System (INIS)

    Litai, D.

    1999-01-01

    Cancer incidence rates among the workers of the AEC and its retirees have increased several fold in the last decade compared to the rates experienced in previous ones. This has brought about a wave of claims for compensation with negative repercussions in the media about the state of radiation safety in the nuclear research centers in the country. The Nuclear Research Center - Negev, being, generally closed to public and media visits, has taken the brunt of this criticism. Consequently, the question spelled out in the title has caused much concern and deserves to be discussed and explained. The purpose of this paper is to review what we know in this context and to show that the observed morbidity rates, worrying as they may be, are entirely natural, and, by and large, unrelated to the occupational exposures of the workers. It is well known that cancer incidence rates in the population rise steeply with age, especially over 50. As both research centers are approaching the age of 40, it is clear that a very large fraction of the workers and all retirees have passed this age and many are already in their sixties and even seventies. It is a well established fact that close to 40% of the population in this country (and many others as well) develop some type of cancer during their lifetime and close to a half of these succumb to it. As most of those cancers occur after the age of 50, this explains the increased rates alluded to above. Notably, numerous research centers around the globe have reached similar ages in the last decade and experience similar increases in morbidity, that have caused understandable concern and the initiation of epidemiological studies intended to identify the health effects of extended exposures to low doses, if any. Such studies have been carried out in several countries and followed, altogether, about 100,000 workers through 40 years. The studies showed no excess of cancer mortality among workers compared to the general population (adjusted

  16. Production and Distribution Research Center

    Science.gov (United States)

    1986-05-01

    Steel, Coca Cola , Standard Oil of Ohio, and Martin Marietta have been involved in joint research with members of the Center. The number of Faculty...permitted the establishment of the Center and supports its continuing development. The Center has also received research sponsorship from the Joint...published relating to results developed within the PDRC under Offce of Naval Research sponsorship . These reports are listed in Appendix A. Many of these

  17. Experimental atomic and molecular physics research

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The Atomic Physics research in the Physics Division consists of five ongoing experimental programs: dissociation and other interactions of energetic molecular ions in solid and gaseous targets; beam-foil research and collision dynamics of heavy ions; photoionization-photoelectron research; spectroscopy of free atoms and molecules, high precision laser-rf double-resonance spectroscopy with atomic and molecular beams; and Moessbauer effect research

  18. The Adirondack research center

    Science.gov (United States)

    Francis M. Rushmore

    1957-01-01

    Some of the first forest research done in North America was done in that lake-spangled land of forests and mountains in upper New York State that we know as the Adirondacks. The very name Adirondacks smacks of forest. The big Webster dictionary says that Adirondacks comes from a Mohawk Indian word, Hatirongtaks, which means literally, "they eat trees."

  19. Trends in exotic-atom research

    International Nuclear Information System (INIS)

    Lambrecht, R.M.; Horvath, D.

    1983-01-01

    An attempt was made to analyze the trends in the development of exotic-atom research on the basis of a recently compiled bibliography. The analysis of nearly 4000 publications demonstrated that: (1) exotic atoms are nuclear probes used in every field of physics, from the test of quantum electrodynamics (QED) to chemical physics, to materials sciences; (2) the role of nuclear and atomic physics in exotic atom research is decreasing (although it is still significant), while that of materials sciences and chemial physics is exponentially increasing; and (3) prior to 1980 most investigators were mainly interested in atoms with negative muons, while during the last few years the positive muon (μSR) studies have dominated exotic atom research

  20. Achieving Homi Bhabha's vision for the future of India

    International Nuclear Information System (INIS)

    Lauvergeon, Anne

    2009-01-01

    Full text: More than four decades ago, as Dr Homi Jehangir Bhabha pronounced the concept of the 3-stage nuclear program, he was addressing the need for nuclear energy in developing countries. His vision was to develop Indian nuclear infrastructure, considering the lack of domestic energy resources and the need to develop new technology. Nuclear Energy has a great role to play in India and India can now play a key role in the development of nuclear energy. If the planned role of the thorium resource makes the 3-stage program unique, France and India share the same vision about the overall role of nuclear energy. They both consider nuclear as part of the solution for a sustained economic growth in a carbon-constrained world, addressing climate change issues. France and India share the same nuclear history: France was one of the first countries to start cooperation with Indian nuclear institutes in the early 50's (CEA-TIFR agreement in 1951) and when international nuclear trade with India eventually resumed at the end of 2008, AREVA was the first supplier of natural uranium to DAE for use in NPCIL safeguarded reactors. India has great plans to develop its infrastructure and add electric generation capacities. In addition to the domestic effort and the strengths of the existing nuclear industrial and scientific base in the country, India can draw great benefits from cooperating with foreign reactor vendors: It will help capacity addition going faster and keeps in line with the 3-stage program. Nuclear power is a long-term investment that India can afford. The intrinsic benefits of larger size imported reactors in rapidly growing economies are manifold: benefits to the grid, ability to meet pace of demand faster, ability to place reactors closer to power utilization centers-all this has a true value, also called positive externalities. Efficient cooperation between Indian and foreign industries and efficient cooperation in project management will be key to achieve these

  1. Transportation Research & Analysis Computing Center

    Data.gov (United States)

    Federal Laboratory Consortium — The technical objectives of the TRACC project included the establishment of a high performance computing center for use by USDOT research teams, including those from...

  2. Research and technology, 1991. Langley Research Center

    Science.gov (United States)

    1992-01-01

    The mission of the NASA Langley Research Center is to increase the knowledge and capability of the United States in a full range of aeronautics disciplines and in selected space disciplines. This mission will be accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other United States Government agencies, industry, and other NASA centers. Highlights are given of the major accomplishments and applications that have been made during the past year. The highlights illustrate both the broad range of the research and technology (R&T) activities at NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.

  3. Colorado Learning Disabilities Research Center.

    Science.gov (United States)

    DeFries, J. C.; And Others

    1997-01-01

    Results obtained from the center's six research projects are reviewed, including research on psychometric assessment of twins with reading disabilities, reading and language processes, attention deficit-hyperactivity disorder and executive functions, linkage analysis and physical mapping, computer-based remediation of reading disabilities, and…

  4. European Virtual Atomic And Molecular Data Center - VAMDC

    Science.gov (United States)

    Dimitrijevic, M. S.; Sahal-Brechot, S.; Kovacevic, A.; Jevremovic, D.; Popovic, L. C.

    2010-07-01

    Reliable atomic and molecular data are of great importance for different applications in astrophysics, atmospheric physics, fusion, environmental sciences, combustion chemistry, and in industrial applications from plasmas and lasers to lighting. Currently, very important resources of such data are highly fragmented, presented in different, nonstandardized ways, available through a variety of highly specialized and often poorly documented interfaces, so that the full exploitation of all their scientific worth is limited, hindering research in many topics like e.g. the characterization of extrasolar planets, understanding the chemistry of our local solar system and of the wider universe, the study of the terrestrial atmosphere and quantification of climate change; the development of the fusion rersearch, etc. The Virtual Atomic and Molecular Data Centre (http://www.vamdc.eu, VAMDC) is an European Union funded FP7 project aiming to build a secure, documented, flexible and interoperable e-science environment-based interface to existing atomic and molecular data. It will also provide a forum for training potential users and dissemination of expertise worldwide. Partners in the Consortium of the Project are: 1) Centre National de Recherche Scientifique - CNRS (Paris, Reims, Grenoble, Bordeaux, Dijon, Toulouse); 2) The Chancellor, Masters and Scholars of the University of Cambridge - CMSUC; 3) University College London - UCL; 4) Open University - OU; (Milton Keynes, England); 5) Universitaet Wien - UNIVIE; 6) Uppsala Universitet - UU; 7) Universitaet zu Koeln - KOLN; 8) Istituto Nazionale di Astrofisica - INAF (Catania, Cagliari); 9) Queen's University Belfast - QUB; 10) Astronomska Opservatorija - AOB (Belgrade, Serbia); 11) Institute of Spectroscopy RAS - ISRAN (Troitsk, Russia); 12) Russian Federal Nuclear Center - All-Russian Institute of Technical Physics - RFNC-VNIITF (Snezhinsk, Chelyabinsk Region, Russia; 13) Institute of Atmospheric Optics - IAO (Tomsk, Russia

  5. Engineer Research and Development Center's Materials Testing Center (MTC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Engineer Research and Development Center's Materials Testing Center (MTC) is committed to quality testing and inspection services that are delivered on time and...

  6. Introduction | Center for Cancer Research

    Science.gov (United States)

    Introduction In order to meet increasing demands from both NIH intramural and extramural communities for access to a small angle X-ray scattering (SAXS) resource, the Center for Cancer Research (CCR) under the leadership of Jeffrey Strathern and Bob Wiltrout established a partnership user program (PUP) with the Argonne National Laboratory Photon Source in October 2008.

  7. AWRE: Atomic Weapons Research Establishment

    International Nuclear Information System (INIS)

    1983-01-01

    This reviews the work of AWRE at Aldermaston and Foulness. The main programme is nuclear and is concerned with the design and development of warheads for strategic and tactical nuclear weapons for the British nuclear deterrent, including those for the Royal Navy's missile carrying submarine fleet. The work is described grouped as design physics, development and materials. Services to these groups and to the whole establishment are provided by Engineering, Safety and Administration. The work ranges from long-term fundamental research, the development of technology, design, prototype development to the environmental testing of engineered products. In materials research the emphasis is on plutonium, uranium and beryllium, on high explosives and a wide range of inorganic and organic materials. The physics of the earth's crust is studied to aid detection of underground nuclear explosions. Reactor research facilities include the two reactors, Herald and Viper. (U.K.)

  8. Activities of the JILA Atomic Collisions Cross Sections Data Center

    International Nuclear Information System (INIS)

    Gallagher, J.W.

    1983-01-01

    The JILA Atomic Collisions Cross Sections Data Center compiles, critically evaluates, and reviews cross sections and rates for low energy (<100 keV) collisions of electrons, photons, and heavy particles with atoms, ions, and simple molecules. Reports are prepared which provide easily accessible recommended data with error limits, list the fundamental literature related to specific topics, identify regions where data are missing, and point out inconsistencies in existing data. The general methodology used in producing evaluated compilations is described. Recently completed projects and work in progress are reported

  9. Studies on the measurement of differential luminosity using Bhabha events at the International Linear Collider

    Energy Technology Data Exchange (ETDEWEB)

    Sailer, Andre Philippe

    2009-04-15

    The International Linear Collider (ILC) is an electron-positron-collider with a variable center-of-mass energy {radical}(2) between 200 and 500 GeV. The small bunch sizes needed to reach the design luminosity of L{sub Peak}=2.10{sup 34} cm{sup -2}s{sup -1} necessary for the physics goals of the ILC, cause the particles to radiate beamstrahlung during the bunch crossings. Beamstrahlung reduces the center-of-mass energy from its nominal value to the effective center-of-mass energy {radical}(2'). The spectrum of the effective center-of-mass energy {radical}(2') is the differential luminosity dL/d{radical}(2'), which has to be known to precisely measure particle masses through threshold scans. The differential luminosity can be measured by using Bhabha events. The real differential luminosity is simulated by the GuineaPig software. The energy spectrum of the Bhabha events is measured by the detector and compared to the energy spectrum of Monte Carlo (MC) Bhabha events with a known differential luminosity given by an approximate parameterization. The parameterization is used to assign each MC event a weight. By re-weighting the events, until the energy spectra from the real and the MC Bhabha events match, the differential luminosity can be measured. The approximate parameterization of the differential luminosity is given by the Circe parameterization introduced by T. Ohl (1997), which does not include the correlation between the particle energies due to beamstrahlung. The Circe parameterization is extended to include the correlation and better describe the differential luminosity. With this new parameterization of the differential luminosity it is possible to predict the observed production cross section of a MC toy particle with a mass of 250 GeV/c{sup 2} to a precision better than 0.2%. Using the re-weighting fit with the extended parameterization also allows the measurement of the beam energy spreads of {sigma}{sub E}=0.0014 for electrons and {sigma

  10. Studies on the measurement of differential luminosity using Bhabha events at the International Linear Collider

    International Nuclear Information System (INIS)

    Sailer, Andre Philippe

    2009-04-01

    The International Linear Collider (ILC) is an electron-positron-collider with a variable center-of-mass energy √(2) between 200 and 500 GeV. The small bunch sizes needed to reach the design luminosity of L Peak =2.10 34 cm -2 s -1 necessary for the physics goals of the ILC, cause the particles to radiate beamstrahlung during the bunch crossings. Beamstrahlung reduces the center-of-mass energy from its nominal value to the effective center-of-mass energy √(2'). The spectrum of the effective center-of-mass energy √(2') is the differential luminosity dL/d√(2'), which has to be known to precisely measure particle masses through threshold scans. The differential luminosity can be measured by using Bhabha events. The real differential luminosity is simulated by the GuineaPig software. The energy spectrum of the Bhabha events is measured by the detector and compared to the energy spectrum of Monte Carlo (MC) Bhabha events with a known differential luminosity given by an approximate parameterization. The parameterization is used to assign each MC event a weight. By re-weighting the events, until the energy spectra from the real and the MC Bhabha events match, the differential luminosity can be measured. The approximate parameterization of the differential luminosity is given by the Circe parameterization introduced by T. Ohl (1997), which does not include the correlation between the particle energies due to beamstrahlung. The Circe parameterization is extended to include the correlation and better describe the differential luminosity. With this new parameterization of the differential luminosity it is possible to predict the observed production cross section of a MC toy particle with a mass of 250 GeV/c 2 to a precision better than 0.2%. Using the re-weighting fit with the extended parameterization also allows the measurement of the beam energy spreads of σ E =0.0014 for electrons and σ E = 0.0010 for positrons with a precision of a few percent. The total error

  11. Atomic physics research with synchrotron radiation

    International Nuclear Information System (INIS)

    Crasemann, B.

    1981-01-01

    Applications of synchrotron radiation to research in high-energy atomic physics are summarized. These lie in the areas of photoelectron spectrometry, photon scattering, x-ray absorption spectroscopy, time-resolved measurements, resonance spectroscopy and threshold excitation, and future, yet undefined studies

  12. NASA Airline Operations Research Center

    Science.gov (United States)

    Mogford, Richard H.

    2016-01-01

    This is a PowerPoint presentation NASA airline operations center (AOC) research. It includes information on using IBM Watson in the AOC. It also reviews a dispatcher decision support tool call the Flight Awareness Collaboration Tool (FACT). FACT gathers information about winter weather onto one screen and includes predictive abilities. It should prove to be useful for airline dispatchers and airport personnel when they manage winter storms and their effect on air traffic. This material is very similar to other previously approved presentations with the same title.

  13. Atomic data for controlled fusion research

    International Nuclear Information System (INIS)

    Barnett, C.F.; Ray, J.A.; Ricci, E.; Wilker, M.I.; McDaniel, E.W.; Thomas, E.W.; Gilbody, H.B.

    1977-02-01

    Presented is an evaluated graphical and tabular compilation of atomic and molecular cross sections of interest to controlled thermonuclear research. The cross sections are tabulated and graphed as a function of energy for collision processes involving heavy particles, electrons, and photons with atoms and ions. Also included are sections on data for particle penetration through macroscopic matter, particle transport properties, particle interactions with surfaces, and pertinent charged particle nuclear cross sections and reaction rates. In most cases estimates have been made of the data accuracy

  14. Electroweak coupling measurements from polarized Bhabha scattering at the Z0 resonance

    International Nuclear Information System (INIS)

    Pitts, K.T.

    1994-03-01

    The cross section for Bhabha scattering (e + e - → e + e - ) with polarized electrons at the center of mass energy of the Z 0 resonance has been measured with the SLD experiment at the Stanford Linear Accelerator Center during the 1992 and 1993 runs. The electroweak couplings of the electron are extracted. At small angles the measurement is done in the SLD Silicon/Tungsten Luminosity Monitor (LMSAT). A detailed description of the design, construction, commissioning and operation of the LMSAT is provided. The integrated luminosity for 1992 is measured to be L = 420.86±2.56 (stat)±4.23 (sys) nb -1 . The luminosity asymmetry for polarized beams is measured to be A LR (LUM) = (1.7 ± 6.4) x 10 -3 . The large angle polarized Bhabha scattering reveals the effective electron vector and axial vector couplings to the Z 0 through the measurement of the Z 0 → e + e - partial width, Γ ee , and the parity violation parameter, A e . From the combined 1992 and 1993 data the effective electron vector and axial vector couplings are measured to be bar g v e = -0.0495±0.0096±0.0030, and bar g α e = -0.4977±0.0035±0.0064 respectively. The effective weak mixing angle is measured to be sin 2 θ W eff = 0.2251±0.0049±0.0015. These results are compared with other experiments

  15. Symmetric Moeller/Bhabha luminosity monitor for the OLYMPUS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Capozza, Luigi; Maas, Frank; Perez Benito, Roberto; Rodriguez Pineiro, David [Helmholtz-Institut Mainz, Mainz (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); O' Connor, Colton [Massachusetts Institute of Technology, Cambridge, MA (United States); Diefenbach, Juergen; Glaeser, Boris [Institut fuer Kernphysik, Mainz (Germany); Khaneft, Dmitry [Johannes Gutenberg-Universitaet Mainz, Mainz (Germany); Helmholtz-Institut Mainz, Mainz (Germany); Ma, Yue [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2015-07-01

    The OLYMPUS experiment is motivated by the discrepancy between the proton electric to magnetic form factor ratio measured using unpolarized and polarized electron scattering. This discrepancy can be explained by a two-photon exchange (TPE) contribution in lepton-hadron scattering. Measuring the ratio of electron-proton and positron-proton elastic scattering cross sections the contribution of the TPE can be determined. For this purpose, very precise measurements of the relative luminosity have to be performed. The symmetric Moeller/Bhabha luminosity monitor, made of calorimetric lead fluoride (PbF{sub 2}) Cherenkov detectors, provides precise data from counting coincidences Moeller and Bhabha events. High sensitivity to the geometrical acceptance and alignment requires accurate study of systematic uncertainties.

  16. Labograph - a miniature radiography laboratory for education and research

    International Nuclear Information System (INIS)

    Krishnamurthy, K.; Muralidharan, P.; Aggarwal, K.S.

    1977-01-01

    The features of a compact self-contained low cost radiographic unit designed at the Bhabha Atomic Research Centre, Bombay, to meet the growing needs of educational and research requirements of colleges and engineering institutions within the country are described. Some of the regular applications and potential uses of the unit are discussed. (author)

  17. Hard pair production in large-angle Bhabha scattering

    International Nuclear Information System (INIS)

    Arbuzov, A.B.; Trentadue, L.

    1996-01-01

    The cross section of hard pair production in large-angle Bhabha scattering calculated in the leading and next-to-leading logarithmic approximations. Eight regions of the collinear kinematics, when the final particles imitate a process of the 2 →2 type, and three semicollinear regions, when the final particles imitate a process of the 2→3 type, are considered. Analytical formulae for differential cross sections are presented. (orig.)

  18. Large-angle Bhabha scattering at LEP 1

    Science.gov (United States)

    Beenakker, Wim; Passarino, Giampiero

    1998-04-01

    A critical assessment is given of the theoretical uncertainty in the predicted cross-sections for large-angle Bhabha scattering at LEP 1, with or without t-channel subtraction. To this end a detailed comparison is presented of the results obtained with the programs ALIBABA and TOPAZ0. Differences in the implementation of the radiative corrections and the effect of missing higher-order terms are critically discussed. © 1998

  19. Bolivia. The new nuclear research center in El Alto

    International Nuclear Information System (INIS)

    Nogarin, Mauro

    2016-01-01

    Research reactors in Latin America have become a priority in public policy in the last decade. Bolivia wants to become the 8th country to implement peaceful nuclear technology in this area with the new Center for Research and Development in the Nuclear Technology. The Center will be the most advanced in Latin America. It will provide for a wide use of radiation technologies in agriculture, medicine, and industry. After several negotiations Bolivia and the Russian Federation signed the Intergovernmental Agreement on cooperation in the peaceful use of atomic energy and the construction of the Nuclear Research and Technology Center.

  20. Bolivia. The new nuclear research center in El Alto

    Energy Technology Data Exchange (ETDEWEB)

    Nogarin, Mauro

    2016-05-15

    Research reactors in Latin America have become a priority in public policy in the last decade. Bolivia wants to become the 8th country to implement peaceful nuclear technology in this area with the new Center for Research and Development in the Nuclear Technology. The Center will be the most advanced in Latin America. It will provide for a wide use of radiation technologies in agriculture, medicine, and industry. After several negotiations Bolivia and the Russian Federation signed the Intergovernmental Agreement on cooperation in the peaceful use of atomic energy and the construction of the Nuclear Research and Technology Center.

  1. Virtual hadronic and heavy-fermion O({alpha}{sup 2}) corrections to Bhabha scattering

    Energy Technology Data Exchange (ETDEWEB)

    Actis, Stefano [Inst. fuer Theoretische Physik E, RWTH Aachen (Germany); Czakon, Michal [Wuerzburg Univ. (Germany). Inst. fuer Theoretische Physik und Astrophysik]|[Uniwersytet Slaski, Katowice (Poland). Inst. of Physics and Chemistry of Metals; Gluza, Janusz [Uniwersytet Slaski, Katowice (Poland). Inst. of Physics and Chemistry of Metals; Riemann, Tord [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2008-07-15

    Effects of vacuum polarization by hadronic and heavy-fermion insertions were the last unknown two-loop QED corrections to high-energy Bhabha scattering. Here we describe the corrections in detail and explore their numerical influence. The hadronic contributions to the virtual O({alpha}{sup 2}) QED corrections to the Bhabha-scattering cross-section are evaluated using dispersion relations and computing the convolution of hadronic data with perturbatively calculated kernel functions. The technique of dispersion integrals is also employed to derive the virtual O({alpha}{sup 2}) corrections generated by muon-, tau- and top-quark loops in the small electron-mass limit for arbitrary values of the internal-fermion masses. At a meson factory with 1 GeV center-of-mass energy the complete effect of hadronic and heavy-fermion corrections amounts to less than 0.5 per mille and reaches, at 10 GeV, up to about 2 per mille. At the Z resonance it amounts to 2.3 per mille at 3 degrees; overall, hadronic corrections are less than 4 per mille. For ILC energies (500 GeV or above), the combined effect of hadrons and heavy fermions becomes 6 per mille at 3 degrees; hadrons contribute less than 20 per mille in the whole angular region. (orig.)

  2. NDE research at NASA Langley Research Center

    International Nuclear Information System (INIS)

    Heyman, J.S.

    1989-01-01

    The Nondestructive Measurement Science Branch at NASA Langley is the Agency's lead Center for NDE research. The focus of the laboratory is to improve the science base for NDE, evolve a more quantitative, interpretable technology to insure safety and reliability, and transfer that technology to the commercial sector. To address the broad needs of the Agency, the program has developed expertise in many areas, some of which are in ultrasonics, nonlinear acoustics, nano and microstructure characterization, thermal NDE, x-ray tomography, optical fiber sensors, magnetic probing, process monitoring sensors, and image/signal processing. The authors laboratory has recently dedicated its new 20,000 square foot research facility bringing the lab space to 30,000 square feet. The new facility includes a high bay for the x-ray CAT scanner, a revolutionary new concept in materials measurement. The CAT scanner is called QUEST, for quantitative experimental stress tomography lab. This system combines for the first time a microfocus x-ray source and detector with a fatigue load frame. Three dimensional imaging of density/geometry of the tested sample is thus possible during tension/compression loading. This system provides the first 3-D view of crack initiation, crack growth, phase transformation, bonded surface failure, creep-all with a density sensitivity of 0.1% and a resolution of about 25 microns (detectability of about 1 micron)

  3. Micrometeorological study of the emplacement at the Ezeiza Atomic Center

    International Nuclear Information System (INIS)

    Berri, G.J.; Robbio, C.A.

    1986-01-01

    An evaluation of meteorological conditions searched at the Ezeiza Atomic Center is presented by means of the data obtained at the micrometeorological station of the Atomic Center during the period January-December 1979. The daily and yearly mean behaviour of the temperature, humidity and wind's directions and speed is shown as well as extreme values persistence of temperature and humidity, the annual behaviour of the precipitation and its relation with the wind's direction. Special attention is given to the atmospheric dispersion characteristic through the study of the low-wind-speed persistence, wind direction persistence and wind's direction distribution confronted with the stability classes. An evaluation of the dispersion factor or normalized concentration, both for short term releases (1 hour), as well as long term releases (time integrated concentration annual factor) is shown. Those factors are representative for mean situations; they can not be employed for isolated situations. Finally, it is emphasized that although the results were obtained by means of 1979 data, significative differences are no expected for other years. (M.E.L.) [es

  4. The law for the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    1985-01-01

    The Act for Japan Atomic Energy Research Institute has been promulgated anew. Contents are the following : general rules, officials, advisors and personnel, duties, financial affairs and accounts, supervision, miscellaneous rules, penal provisions, and additional rules. (In the additional rules, the merger into JAERI of Japan Nuclear Ship Research and Development Agency is treated.) Japan Atomic Energy Research Institute conducts research etc. for the development of atomic energy comprehensively and efficiently, thereby contributing to the promotion of atomic energy research, development and utilization, according to the Atomic Energy Fundamental Act. Duties are atomic energy basic and application research, reactor relation, training of the personnel, RIs relation, etc. (Mori, K.)

  5. The ORNL Controlled Fusion Atomic Data Center: Overview of Activities 2011

    International Nuclear Information System (INIS)

    Schultz, D.R.

    2011-01-01

    The Controlled Fusion Atomic Data Center (CFADC) of the Oak Ridge National Laboratory continued operation aimed at collecting, evaluating, and disseminating atomic, molecular, and particle-surface interaction (AM and PSI) data needed by both the U.S. and international plasma science communities. This work has been carried out within an overarching atomic physics research group which produces much of the required data through an active experimental and theoretical science program. The production of an annotated bibliography of AM and PSI literature relevant to plasma science continues to be among the most important activities of the data center, forming the basis for the CFADC on-line bibliographic search engine and a significant part of the IAEA A+M Data Unit's 'International Bulletin on Atomic and Molecular Data for Fusion.' Also chief among the data center's activities are responses to specific data requests from the plasma science community, leading to either rapid feedback using existing data resources or long term data production projects, as well as participation in IAEA Coordinated Research Programs including recently 'Data for Surface Composition Dynamics Relevant to Erosion Processes' and 'Atomic and Molecular Data for Plasma Modeling.' Highlights of recent data production projects include the following: Experimental and theoretical data for inelastic electron-hydrocarbon reactions, large scale computational results for particle reflection from surfaces, measurements of chemical sputtering from carbon, inaugural experiments considering molecular ion collisions with neutral hydrogen, and expansion of the database of elastic and related transport cross sections calculated for intrinsic and extrinsic impurities in hydrogen plasmas. Progress is being hampered owing to news from the US Department of Energy that it plans to close out the program after a ramp down of funding in 2012, following a distinguished 52 year history of contributions to the US and

  6. Innovation projects of atomic energy institute of national nuclear center RK in the area of peaceful use of atomic energy

    International Nuclear Information System (INIS)

    Kenzhin, E.; Tazhibayeva, I.; Vasiliyev, Y.; Kolodeshnikov, A.; Vurim, A.

    2010-01-01

    Institute of Atomic Energy of National Nuclear Center RK (IAE NNC RK) is located in Kurchatov. The city is situated at the border of former Semipalatinsk test site. The institute includes two reactor complexes - IGR and Baikal-1, which are rather distant from Kurchatov. Main activities of IAE NNC RK are: 1. Experimental researches of the nuclear power reactors safety; 2. Experimental researches of behavior of the structural materials for fusion and fission facilities under reactor irradiation; 3. Management of radioactive wastes; 4. Participation in the projects on decommissioning of the fast neutron reactor BN-350; 5. innovation projects: creation of first Kazakhstan's fusion reactor - tokamak KTM for materials; research and testing; development of new technologies (irradiated Be-recycling); development of new reactor technologies - project on creation of high temperature gas-cooled reactor KHTR. IAE NNC RK jointly with Japanese Atomic Energy Agency and with participation of Japanese Atomic Power Company is performing the activities on experimental substantiation of design of active core of prospective fast neutron reactor. Main goal of out-of-pile experiments at the EAGLE facility is obtaining of the information on fuel movement processes under conditions simulating the accident with melting of fast reactor core containing tube-design fuel assembly. Batch mixture is loaded into graphite crucible; then it is melded into electric melting furnace and poured into melt top trap. The outlet pipe is melted by the melt, which is poured into bottom melt trap through the pipe with sodium

  7. Research and development activities of the Neutron Physics Division for the period January 1977-December 1978

    International Nuclear Information System (INIS)

    Ramanadham, M.; Joneja, O.P.

    1979-01-01

    The research and development programmes of the Neutron Physics Division of the Bhabha Atomic Research Centre, Bombay, for the period 1977-1978 are outlined. The fields covered include reactor (neutron) physics, fusion and plasma neutronics, biological and high precision crystallography, solid state phenomena and seismology as well as the associated workshop facilities. (K.B.)

  8. National Rehabilitation Hospital Assistive Technology Research Center

    Science.gov (United States)

    1995-10-01

    Shoulder-Arm Orthoses Several years ago, the Rehabilitation Engineering Research Center (RERC) on Rehabilitation Robotics in Delaware1 identified a... exoskeletal applications for persons with disabilities. 2. Create a center of expertise in rehabilitation technology transfer that benefits persons with...AD COOPERATIVE AGREEMENT NUMBER: DAMD17-94-V-4036 TITLE: National Rehabilitation Hospital Assistive Technology- Research Center PRINCIPAL

  9. Two-loop ladder diagram contributions to Bhabha scattering. III

    International Nuclear Information System (INIS)

    Bjoerkevoll, K.S.; Osland, P.; Faeldt, G.

    1992-01-01

    The authors evaluate, in the high-energy limit, the sum of the Feynman amplitudes corresponding the six two-loop ladder-like diagrams in Bhabha scattering. This is the limit where s→∞, while t, the electron mass m and the photon mass λ are all being held fixed. In this limit the sum of the six Feynman amplitudes does not depend on the electron mass. When specialized to the region s>>t>>m 2 >>λ 2 , this result complements the one previously obtained. The connection with Φ 3 theory is also investigated. 6 refs

  10. NASA's engineering research centers and interdisciplinary education

    Science.gov (United States)

    Johnston, Gordon I.

    1990-01-01

    A new program of interactive education between NASA and the academic community aims to improve research and education, provide long-term, stable funding, and support cross-disciplinary and multi-disciplinary research. The mission of NASA's Office of Aeronautics, Exploration and Technology (OAET) is discussed and it is pointed out that the OAET conducts about 10 percent of its total R&D program at U.S. universities. Other NASA university-based programs are listed including the Office of Commercial Programs Centers for the Commercial Development of Space (CCDS) and the National Space Grant program. The importance of university space engineering centers and the selection of the nine current centers are discussed. A detailed composite description is provided of the University Space Engineering Research Centers. Other specialized centers are described such as the Center for Space Construction, the Mars Mission Research Center, and the Center for Intelligent Robotic Systems for Space Exploration. Approaches to educational outreach are discussed.

  11. High Energy Astrophysics Science Archive Research Center

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Energy Astrophysics Science Archive Research Center (HEASARC) is the primary archive for NASA missions dealing with extremely energetic phenomena, from...

  12. Building Technologies Research and Integration Center (BTRIC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Building Technologies Research and Integration Center (BTRIC), in the Energy and Transportation Science Division (ETSD) of Oak Ridge National Laboratory (ORNL),...

  13. Accelerator Center for Energy Research (ACER)

    Data.gov (United States)

    Federal Laboratory Consortium — The Accelerator Center for Energy Research (ACER) exploits radiation chemistry techniques to study chemical reactions (and other phenomena) by subjecting samples to...

  14. Electroweak coupling measurements from polarized Bhabha scattering at the Z{sup 0} resonance

    Energy Technology Data Exchange (ETDEWEB)

    Pitts, K.T.

    1994-03-01

    The cross section for Bhabha scattering (e{sup +}e{sup {minus}} {yields} e{sup +}e{sup {minus}}) with polarized electrons at the center of mass energy of the Z{sup 0} resonance has been measured with the SLD experiment at the Stanford Linear Accelerator Center during the 1992 and 1993 runs. The electroweak couplings of the electron are extracted. At small angles the measurement is done in the SLD Silicon/Tungsten Luminosity Monitor (LMSAT). A detailed description of the design, construction, commissioning and operation of the LMSAT is provided. The integrated luminosity for 1992 is measured to be L = 420.86{plus_minus}2.56 (stat){plus_minus}4.23 (sys) nb{sup {minus}1}. The luminosity asymmetry for polarized beams is measured to be A{sub LR}(LUM) = (1.7 {plus_minus} 6.4) {times} 10{sup {minus}3}. The large angle polarized Bhabha scattering reveals the effective electron vector and axial vector couplings to the Z{sup 0} through the measurement of the Z{sup 0} {yields} e{sup +}e{sup {minus}} partial width, {Gamma}{sub ee}, and the parity violation parameter, A{sub e}. From the combined 1992 and 1993 data the effective electron vector and axial vector couplings are measured to be {bar g}{sub v}{sup e} = {minus}0.0495{plus_minus}0.0096{plus_minus}0.0030, and {bar g}{sub {alpha}}{sup e} = {minus}0.4977{plus_minus}0.0035{plus_minus}0.0064 respectively. The effective weak mixing angle is measured to be sin{sup 2}{theta}{sub W}{sup eff} = 0.2251{plus_minus}0.0049{plus_minus}0.0015. These results are compared with other experiments.

  15. Information on the Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    Reuter, H.H.

    1980-01-01

    A short overview is given about the origins of Karlsruhe Nuclear Research Center. The historical development of the different companies operating the Center is shown. Because the original task assigned to the Center was the construction and testing of the first German reactor exclusively built by German companies, a detailed description of this reactor and the changes made afterwards is presented. Next, today's organizational structure of the Center is outlined and the development of the Center's financing since its foundation is shown. A short overview about the structure of employees from the Center's beginning up to now is also included as well as a short description of today's main activities. (orig.)

  16. Nuclear energy research in Germany 2008. Research centers and universities

    International Nuclear Information System (INIS)

    Tromm, Walter

    2009-01-01

    This summary report presents nuclear energy research at research centers and universities in Germany in 2008. Activities are explained on the basis of examples of research projects and a description of the situation of research and teaching in general. Participants are the - Karlsruhe Research Center, - Juelich Research Center (FZJ), - Dresden-Rossendorf Research Center (FZD), - Verein fuer Kernverfahrenstechnik und Analytik Rossendorf e.V. (VKTA), - Technical University of Dresden, - University of Applied Sciences, Zittau/Goerlitz, - Institute for Nuclear Energy and Energy Systems (IKE) at the University of Stuttgart, - Reactor Simulation and Reactor Safety Working Group at the Bochum Ruhr University. (orig.)

  17. Ames Research Center Research and Technology 2000

    Science.gov (United States)

    2002-01-01

    This report highlights the challenging work accomplished during fiscal year 2000 by Ames research scientists,engineers, and technologists. It discusses research and technologies that enable the Information Age, that expand the frontiers of knowledge for aeronautics and space, and that help to maintain U.S. leadership in aeronautics and space research and technology development. The accomplishments are grouped into four categories based on four of NASA's Strategic Enterprises: Aerospace Technology, Space Science, Biological and Physical Research, and Earth Science. The primary purpose of this report is to communicate knowledge-to inform our stakeholders, customer, and partners, and the people of the United States about the scope and diversity of Ames' mission,the nature of Ames' research and technolog) activities,and the stimulating challenges ahead. The accomplishments cited illustrate the contributions that Ames is willing to improve the quality of life for our citizens and the economic position of the United States in the world marketplace.

  18. Nuclear research center transformation experience

    International Nuclear Information System (INIS)

    Diaz, J. L.; Jimenez, J. M.

    2001-01-01

    As consequence of the changes in the energy polities of each countries in the 80th. many of the Nuclear Research Centres suffered a transformation (more of less deep) in other Research and Development Centres with a wider spectrum that the exclusively nuclear one. This year is the 50 anniversary of the Spanish Centre of Nuclear Research-Junta de Energia Nuclear.The JEN the same as other suffered a deep renovation to become the CIEMAT Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (Research Centre for Energy, Environment and Technology). This paper is focussed on the evolution of JEN to CIEMAT besides analysing the reach of this re-foundation considering the political reasons and technical aspect that justified it and the laws in those it is based on. (Author)

  19. The consolidation of the Bariloche Atomic Center: an approach from the development of the experimental physics

    International Nuclear Information System (INIS)

    Garcia, Marisa C.; Reising, Ailin M.

    2002-01-01

    The paper investigates the origins of the Center and of the Institute of Physics 'Jose Antonio Balseiro' from the reconstruction of the experimental research programs that were developed between the years 1955 and 1962 in those organizations of the Argentine Atomic Energy Commission (CNEA). Within that intention the paper analyzes the scientific policy of the Institute of Physics and its relations with the CNEA as well as the strategy of resolution of the economic and institutional crisis that affected them between 1958 and 1959. Its incidence in the consolidation of the research programs is also examined

  20. Lorentz violation, gravitoelectromagnetism and Bhabha scattering at finite temperature

    Science.gov (United States)

    Santos, A. F.; Khanna, Faqir C.

    2018-04-01

    Gravitoelectromagnetism (GEM) is an approach for the gravitation field that is described using the formulation and terminology similar to that of electromagnetism. The Lorentz violation is considered in the formulation of GEM that is covariant in its form. In practice, such a small violation of the Lorentz symmetry may be expected in a unified theory at very high energy. In this paper, a non-minimal coupling term, which exhibits Lorentz violation, is added as a new term in the covariant form. The differential cross-section for Bhabha scattering in the GEM framework at finite temperature is calculated that includes Lorentz violation. The Thermo Field Dynamics (TFD) formalism is used to calculate the total differential cross-section at finite temperature. The contribution due to Lorentz violation is isolated from the total cross-section. It is found to be small in magnitude.

  1. Two-loop fermionic corrections to massive Bhabha scattering

    Energy Technology Data Exchange (ETDEWEB)

    Actis, S.; Riemann, T. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Czakon, M. [Wuerzburg Univ. (Germany). Inst. fuer Theoretische Physik und Astrophysik]|[Institute of Nuclear Physics, NSCR DEMOKRITOS, Athens (Greece); Gluza, J. [Silesia Univ., Katowice (Poland). Inst. of Physics

    2007-05-15

    We evaluate the two-loop corrections to Bhabha scattering from fermion loops in the context of pure Quantum Electrodynamics. The differential cross section is expressed by a small number of Master Integrals with exact dependence on the fermion masses m{sub e}, m{sub f} and the Mandelstam invariants s, t, u. We determine the limit of fixed scattering angle and high energy, assuming the hierarchy of scales m{sup 2}{sub e}<

  2. Massive two-loop Bhabha scattering - the factorizable subset

    International Nuclear Information System (INIS)

    Fleischer, J.; Tarasov, O.V.; Werthenbach, A.

    2002-11-01

    The experimental precision that will be reached at the next generation of colliders makes it indispensable to improve theoretical predictions significantly. Bhabha scattering (e + e - → e + e - ) is one of the prime processes calling for a better theoretical precision, in particular for non-zero electron masses. We present a first subset of the full two-loop calculation, namely the factorizable subset. Our calculation is based on DIANA. We reduce tensor integrals to scalar integrals in shifted (increased) dimensions and additional powers of various propagators, so-called dots-on-lines. Recurrence relations remove those dots-on-lines as well as genuine dots-on-lines (originating from mass renormalization) and reduce the dimension of the integrals to the generic d=4-2ε dimensions. The resulting master integrals have to be expanded to O(ε) to ensure proper treatment of all finite terms. (orig.)

  3. Decorated-box-diagram contributions to Bhabha scattering. Pt. 1

    International Nuclear Information System (INIS)

    Faeldt, G.; Osland, P.

    1994-01-01

    We evaluate, in the light-energy limit, s>>vertical stroke tvertical stroke >>m 2 >>λ 2 , the sum of amplitudes corresponding to a class of Feynman diagrams describing two-loop virtual photonic corrections to Bhabha scattering. The diagrams considered are box and crossed-box diagrams with an extra photon decorating one of the fermion lines. The mathematical method employed is that of Mellin transforms. In the eikonal approximation, this sum of two-loop amplitudes has previously been evaluated, and found to be equal to the sum of the box and crossed-box amplitudes, multiplied by the electric form factor of the electron. We obtain a similar factorization, but with the form factor replaced by another expression involving the logarithms log(λ 2 /m 2 ) and log(λ 2 /vertical stroke tvertical stroke ). (orig.)

  4. Activity report of Computing Research Center

    Energy Technology Data Exchange (ETDEWEB)

    1997-07-01

    On April 1997, National Laboratory for High Energy Physics (KEK), Institute of Nuclear Study, University of Tokyo (INS), and Meson Science Laboratory, Faculty of Science, University of Tokyo began to work newly as High Energy Accelerator Research Organization after reconstructing and converting their systems, under aiming at further development of a wide field of accelerator science using a high energy accelerator. In this Research Organization, Applied Research Laboratory is composed of four Centers to execute assistance of research actions common to one of the Research Organization and their relating research and development (R and D) by integrating the present four centers and their relating sections in Tanashi. What is expected for the assistance of research actions is not only its general assistance but also its preparation and R and D of a system required for promotion and future plan of the research. Computer technology is essential to development of the research and can communize for various researches in the Research Organization. On response to such expectation, new Computing Research Center is required for promoting its duty by coworking and cooperating with every researchers at a range from R and D on data analysis of various experiments to computation physics acting under driving powerful computer capacity such as supercomputer and so forth. Here were described on report of works and present state of Data Processing Center of KEK at the first chapter and of the computer room of INS at the second chapter and on future problems for the Computing Research Center. (G.K.)

  5. Romi Bhabha and Cosmic Ray Research in India

    Indian Academy of Sciences (India)

    the era of 'elementary particle physics' at man-made accelerators. Even 86 ... to initiate work in a highly sophisticated and highly technology dependent field so ... education at the Cathedral and John Connon High School in. Bombay and· his ...

  6. Center for Information Systems Research Research Briefings 2002

    OpenAIRE

    ROSS, JEANNE W.

    2003-01-01

    This paper is comprised of research briefings from the MIT Sloan School of Management's Center for Information Systems Research (CISR). CISR's mission is to perform practical empirical research on how firms generate business value from IT.

  7. Center for Computing Research Summer Research Proceedings 2015.

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Andrew Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parks, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-18

    The Center for Computing Research (CCR) at Sandia National Laboratories organizes a summer student program each summer, in coordination with the Computer Science Research Institute (CSRI) and Cyber Engineering Research Institute (CERI).

  8. Senior Computational Scientist | Center for Cancer Research

    Science.gov (United States)

    The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). The Cancer & Inflammation Program (CIP),

  9. [Research on the laser atomization treatment machine].

    Science.gov (United States)

    Jiang, Bei-sheng; Tian, Rong-zhe; Zhang, Liang

    2005-07-01

    This text has introduces a new-type laser treatment device. It utilizes the ultrasound atomized gas passage as its optics and makes the laser beams together with the atomized medicine to be transmitted to the patient's respiratory track and lungs for treatment.

  10. Research Associate | Center for Cancer Research

    Science.gov (United States)

    The Basic Science Program (BSP) at the Frederick National Laboratory for Cancer Research (FNLCR) pursues independent, multidisciplinary research programs in basic or applied molecular biology, immunology, retrovirology, cancer biology or human genetics. As part of the BSP, the Microbiome and Genetics Core (the Core) characterizes microbiomes by next-generation sequencing to determine their composition and variation, as influenced by immune, genetic, and host health factors. The Core provides support across a spectrum of processes, from nucleic acid isolation through bioinformatics and statistical analysis. KEY ROLES/RESPONSIBILITIES The Research Associate II will provide support in the areas of automated isolation, preparation, PCR and sequencing of DNA on next generation platforms (Illumina MiSeq and NextSeq). An opportunity exists to join the Core’s team of highly trained experimentalists and bioinformaticians working to characterize microbiome samples. The following represent requirements of the position: A minimum of five (5) years related of biomedical experience. Experience with high-throughput nucleic acid (DNA/RNA) extraction. Experience in performing PCR amplification (including quantitative real-time PCR). Experience or familiarity with robotic liquid handling protocols (especially on the Eppendorf epMotion 5073 or 5075 platforms). Experience in operating and maintaining benchtop Illumina sequencers (MiSeq and NextSeq). Ability to evaluate experimental quality and to troubleshoot molecular biology protocols. Experience with sample tracking, inventory management and biobanking. Ability to operate and communicate effectively in a team-oriented work environment.

  11. 2010 Atomic & Molecular Interactions Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Todd Martinez

    2010-07-23

    The Atomic and Molecular Interactions Gordon Conferences is justifiably recognized for its broad scope, touching on areas ranging from fundamental gas phase and gas-condensed matter collision dynamics, to laser-molecule interactions, photophysics, and unimolecular decay processes. The meeting has traditionally involved scientists engaged in fundamental research in gas and condensed phases and those who apply these concepts to systems of practical chemical and physical interest. A key tradition in this meeting is the strong mixing of theory and experiment throughout. The program for 2010 conference continues these traditions. At the 2010 AMI GRC, there will be talks in 5 broadly defined and partially overlapping areas of intermolecular interactions and chemical dynamics: (1) Photoionization and Photoelectron Dynamics; (2) Quantum Control and Molecules in Strong Fields; (3) Photochemical Dynamics; (4) Complex Molecules and Condensed Phases; and (5) Clusters and Reaction Dynamics. These areas encompass many of the most productive and exciting areas of chemical physics, including both reactive and nonreactive processes, intermolecular and intramolecular energy transfer, and photodissociation and unimolecular processes. Gas phase dynamics, van der Waals and cluster studies, laser-matter interactions and multiple potential energy surface phenomena will all be discussed.

  12. International human cooperation in Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Shiba, Koreyuki; Kaieda, Keisuke; Makuuchi, Keizo; Takada, Kazuo; Nomura, Masayuki

    1997-01-01

    Rearing of talented persons in the area of nuclear energy is one of the important works in Japan Atomic Energy Research Institute. In this report, the present situations and future schedules of international human cooperation in this area wsere summarized. First, the recent activities of International Nuclear Technology Center were outlined in respect of international human cooperation. A study and training course which was started in cooperation with JICA and IAEA from the middle of eighties and the international nuclear safety seminar aiming at advancing the nuclear safety level of the world are now being put into practice. In addition, a study and training for rearing talented persons was started from 1996 to improve the nuclear safety level of the neighbouring countries. The activities of the nuclear research interchange system by Science and Technology Agency established in 1985 and Bilateral Co-operation Agreement from 1984 were explained and also various difficulties in the international cooperation were pointed out. (M.N.)

  13. DOE - BES Nanoscale Science Research Centers (NSRCs)

    Energy Technology Data Exchange (ETDEWEB)

    Beecher, Cathy Jo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-14

    These are slides from a powerpoint shown to guests during tours of Center for Integrated Nanotechnologies (CINT) at Los Alamos National Laboratory. It shows the five DOE-BES nanoscale science research centers (NSRCs), which are located at different national laboratories throughout the country. Then it goes into detail specifically about the Center for Integrated Nanotechnologies at LANL, including statistics on its user community and CINT's New Mexico industrial users.

  14. Alpha waste management at the Valduc Research Center

    International Nuclear Information System (INIS)

    Jouan, A.; Cartier, R.; Durec, J.P.; Flament, T.

    1995-01-01

    Operation of the reprocessing facilities at the Valduc Research Center of the French Atomic Energy Commission (CEA) generates waste with a variety of characteristics. The waste compatible with surface storage requirements is transferred to the French Radioactive Waste Management Agency (ANDRA); rest is reprocessed under a program which enables storage in compliance with the requirements of permits issued by safety Authorities. The waste reprocessing program provides for the construction of an incinerator capable of handling nearly all of the combustible waste generated by the Center and vitrification facility for treating liquid waste generated by the plutonium handling plant. (authors)

  15. THE CENTER FOR MILITARY BIOMECHANICS RESEARCH

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Military Biomechanics Research is a 7,500 ft2 dedicated laboratory outfitted with state-of-the-art equipment for 3-D analysis of movement, measurement...

  16. Johns Hopkins Particulate Matter Research Center

    Data.gov (United States)

    Federal Laboratory Consortium — The Johns Hopkins Particulate Matter Research Center will map health risks of PM across the US based on analyses of national databases on air pollution, mortality,...

  17. National Center on Sleep Disorders Research

    Science.gov (United States)

    ... Resources Register for Updates The National Center on Sleep Disorders Research (NCSDR) Located within the National Heart, Lung, ... 60 percent have a chronic disorder. Each year, sleep disorders, sleep deprivation, and sleepiness add an estimated $15. ...

  18. Center for Drug Evaluation and Research

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Drug Evaluation and Research(CDER) performs an essential public health task by making sure that safe and effective drugs are available to improve the...

  19. CCR Magazines | Center for Cancer Research

    Science.gov (United States)

    The Center for Cancer Research (CCR) has two magazines, MILESTONES and LANDMARKS, that highlight our annual advances and top contributions to the understanding, detection, treatment and prevention of cancer over the years.

  20. Research Centers: Ecstasies & Agonies [in HRD].

    Science.gov (United States)

    1995

    These four papers are from a symposium facilitated by Gene Roth on research centers at the 1995 Academy of Human Resource Development (HRD) conference. "Research: The Thin Blue Line between Rigor and Reality" (Michael Leimbach) discusses the need for HRD research to increase its speed and rigor and help organizations focus on capability…

  1. Department of Atomic Energy [India]: Annual report 1979-1980

    International Nuclear Information System (INIS)

    1980-01-01

    The work of the research establishments, projects undertaken and public sector undertakings of the Department of Atomic Energy during the financial year 1979-80 is surveyed. The research and development activities of the Bhabha Atomic Research Centre at Bombay, the Reactor Research Centre at Kalpakkam, the Tata Institute of Fundamental Research at Bombay, the Saha Institute of Nuclear Physics at Calcutta and the Tata Memorial Centre at Bombay are described. An account of the progress of heavy water production plant projects, the Madras and Narora Atomic Power Projects, the MHD project and the 100 MW thermal research reactor R-5 Project at Trombay is given. Performance of the Tarapur and Rajasthan Atomic Power Stations, Nuclear Fuel Complex at Hyderabad, Atomic Minerals Division, ISOMED (the radiation sterilisation plant for medical products) at Bombay, the Indian Rare Earths Ltd., the Uranium Corporation of India Ltd., and the Electronics Corporation of India Ltd., Hyderabad is reported. (M.G.B.)

  2. Polarized Bhabha scattering and a precision measurement of the electron neutral current couplings

    International Nuclear Information System (INIS)

    Abe, K.; Abt, I.; Ahn, C.J.; Akagi, T.; Ash, W.W.; Aston, D.; Bacchetta, N.; Baird, K.G.; Baltay, C.; Band, H.R.; Barakat, M.B.; Baranko, G.; Bardon, O.; Barklow, T.; Bazarko, A.O.; Ben-David, R.; Benvenuti, A.C.; Bienz, T.; Bilei, G.M.; Bisello, D.; Blaylock, G.; Bogart, J.R.; Bolton, T.; Bower, G.R.; Brau, J.E.; Breidenbach, M.; Bugg, W.M.; Burke, D.; Burnett, T.H.; Burrows, P.N.; Busza, W.; Calcaterra, A.; Caldwell, D.O.; Calloway, D.; Camanzi, B.; Carpinelli, M.; Cassell, R.; Castaldi, R.; Castro, A.; Cavalli-Sforza, M.; Church, E.; Cohn, H.O.; Coller, J.A.; Cook, V.; Cotton, R.; Cowan, R.F.; Coyne, D.G.; D'Oliveira, A.; Damerell, C.J.S.; Dasu, S.; De Sangro, R.; De Simone, P.; Dell'Orso, R.; Dima, M.; Du, P.Y.C.; Dubois, R.; Eisenstein, B.I.; Elia, R.; Falciai, D.; Fan, C.; Fero, M.J.; Frey, R.; Furuno, K.; Gillman, T.; Gladding, G.; Gonzalez, S.; Hallewell, G.D.; Hart, E.L.; Hasegawa, Y.; Hedges, S.; Hertzbach, S.S.; Hildreth, M.D.; Huber, J.; Huffer, M.E.; Hughes, E.W.; Hwang, H.; Iwasaki, Y.; Jacques, P.; Jaros, J.; Johnson, A.S.; Johnson, J.R.; Johnson, R.A.; Junk, T.; Kajikawa, R.; Kalelkar, M.; Karliner, I.; Kawahara, H.; Kendall, H.W.; Kim, Y.; King, M.E.; King, R.; Kofler, R.R.; Krishna, N.M.; Kroeger, R.S.; Labs, J.F.; Langston, M.; Lath, A.; Lauber, J.A.; Leith, D.W.G.; Liu, X.; Loreti, M.; Lu, A.; Lynch, H.L.; Ma, J.; Mancinelli, G.; Manly, S.; Mantovani, G.; Markiewicz, T.W.; Maruyama, T.; Massetti, R.; Masuda, H.; Mazzucato, E.; McKemey, A.K.; Meadows, B.T.; Messner, R.; Mockett, P.M.; Moffeit, K.C.; Mours, B.; Mueller, G.; Muller, D.; Nagamine, T.; Nauenberg, U.; Neal, H.; Nussbaum, M.; Ohnishi, Y.; Osborne, L.S.; Panvini, R.S.; Park, H.; Pavel, T.J.; Peruzzi, I.; Pescara, L.; Piccolo, M.; Piemontese, L.; Pieroni, E.; Pitts, K.T.; Plano, R.J.; Prepost, R.; Prescott, C.Y.; Punkar, G.D.; Quigley, J.; Ratcliff, B.N.; Reeves, T.W.; Rensing, P.E.; Rochester, L.S.; Rothberg, J.E.; Rowson, P.C.; Russell, J.J.; Saxton, O.H.; Schalk, T.

    1995-01-01

    Bhabha scattering with polarized electrons at the Z 0 resonance has been measured with the SLD experiment at the SLAC Linear Collider. The first measurement of the left-right asymmetry in Bhabha scattering is presented, yielding the effective weak mixing angle of sinθ eff W =0.2245±0.0049±0.0010. The effective electron couplings to the Z 0 are extracted from a combined analysis of polarized Bhabha scattering and the left-right asymmetry previously published: υ e =-0.0414±0.0020 and a e =-0.4977±0.0045

  3. Motion of guiding center drift atoms in the electric and magnetic field of a Penning trap

    International Nuclear Information System (INIS)

    Kuzmin, S.G.; O'Neil, T.M.

    2005-01-01

    The ApparaTus for High precision Experiment on Neutral Antimatter and antihydrogen TRAP collaborations have produced antihydrogen atoms by recombination in a cryogenic antiproton-positron plasma. This paper discusses the motion of the weakly bound atoms in the electric and magnetic field of the plasma and trap. The effective electric field in the moving frame of the atom polarizes the atom, and then gradients in the field exert a force on the atom. An approximate equation of motion for the atom center of mass is obtained by averaging over the rapid internal dynamics of the atom. The only remnant of the atom internal dynamics that enters this equation is the polarizability for the atom. This coefficient is evaluated for the weakly bound and strongly magnetized (guiding center drift) atoms understood to be produced in the antihydrogen experiments. Application of the approximate equation of motion shows that the atoms can be trapped radially in the large space charge field near the edge of the positron column. Also, an example is presented for which there is full three-dimensional trapping, not just radial trapping. Even untrapped atoms follow curved trajectories, and such trajectories are discussed for the important class of atoms that reach a field ionization diagnostic. Finally, the critical field for ionization is determined as an upper bound on the range of applicability of the theory

  4. Atomic physics research with synchrotron radiation

    International Nuclear Information System (INIS)

    Crasemann, B.; Wuilleumier, F.

    1985-01-01

    This chapter discusses applications of synchrotron light in atomic and molecular physics. Use of the radiation from storage rings has expanded and lent access to new areas of absorption and photoemission spectroscopy and scattering experiments. Techniques applied in connection with synchrotron radiation are discussed including absorption spectroscopy, photoelectron spectroscopy, fluorescence spectroscopy and X-ray scattering. Problem areas that are being studied by the techniques mentioned above are discussed. Synchrotron radiation has provided the means for measuring the threshold-excitation and interference effects that signal the breakdown of the two-step model of atomic excitation/deexcitation. Synchrotron radiation provides more means of excited-state photoionization measurements

  5. Karlsruhe nuclear research center. Main activities

    International Nuclear Information System (INIS)

    The article reports on problems of securing the fuel supply for nuclear power generation, on reprocessing and ultimate storage of radioactive material, on the safety of nuclear facilities, on new technologies and basic research, and on the infrastructure of the Karlsruhe nuclear research center, as well as finance and administration. (HK) [de

  6. Proceeding of the Seminar of Research Result of Multipurpose Reactor Center Year of 1997/1998

    International Nuclear Information System (INIS)

    Jujuratisbela, U.

    1998-08-01

    The proceeding contained papers presented in seminar on research results of Multipurpose Reactor Center year 1997/1998 held on June 9-10, 1998 in Serpong, Indonesia. These papers are the significant result of research activities conducted in the Multipurpose Reactor Center, National Atomic Energy Agency during fiscal year of 1997/1998. There are 37 article which have separated index. (ID)

  7. CCR Interns | Center for Cancer Research

    Science.gov (United States)

    The Cancer Research Interns (CRI) Summer Program was inaugurated in 2004 to provide an open door for students looking for an initial training opportunity. The goal is to enhance diversity within the CCR (Center for Cancer Research) training program and we have placed 338 students from 2004 to 2017, in labs and branches across the division.  The CCR and the Center for Cancer Training’s Office of Training and Education provide stipend support, some Service & Supply funds, and travel support for those students who meet the financial eligibility criteria (

  8. Synthesis centers as critical research infrastructure

    Science.gov (United States)

    Baron, Jill S.; Specht, Alison; Garnier, Eric; Bishop, Pamela; Campbell, C. Andrew; Davis, Frank W.; Fady, Bruno; Field, Dawn; Gross, Louis J.; Guru, Siddeswara M.; Halpern, Benjamin S; Hampton, Stephanie E.; Leavitt, Peter R.; Meagher, Thomas R.; Ometto, Jean; Parker, John N.; Price, Richard; Rawson, Casey H.; Rodrigo, Allen; Sheble, Laura A.; Winter, Marten

    2017-01-01

    investment to maximize benefits to science and society is justified. In particular, we argue that synthesis centers represent community infrastructure more akin to research vessels than to term-funded centers of science and technology (e.g., NSF Science and Technology Centers). Through our experience running synthesis centers and, in some cases, developing postfederal funding models, we offer our perspective on the purpose and value of synthesis centers. We present case studies of different outcomes of transition plans and argue for a fundamental shift in the conception of synthesis science and the strategic funding of these centers by government funding agencies.

  9. Report on atomic structure research 1961-1990

    International Nuclear Information System (INIS)

    Fawcett, B.C.

    1990-07-01

    This report documents the atomic-structure research carried out during the period 1961-90. The contributions are in two main areas. The first comprises original line classifications of spectra of highly ionized atoms including identifications of a major proportion of newly observed lines in the solar far ultraviolet and soft X-ray spectrum. The second consists of theoretical calculations of atomic data such as oscillator strengths, wavelengths, energy levels and their composition. These were calculated with advanced atomic-structure codes and cover most solar abundant ions. A new method was applied to collision calculations. Research in this field, presently conducted at Rutherford Appleton Laboratory (RAL), was initiated in the United Kingdom Atomic Energy Authority (UKAEA) at Harwell in 1960. It continued under the UKAEA at Culham Laboratory in 1962 and until 1986 when staff were taken over by Science and Engineering Research Council (SERC) and later transferred to RAL in 1981. (author)

  10. Start up of the Tandem Accelerator in the Ezeiza Atomic Center

    International Nuclear Information System (INIS)

    Bianchini, R.; Consorti, S.; Roldan, M.; Llovera, R.; Arenilla, P.; Alvarez, D.E.; Ugarte, R.

    2010-01-01

    A High Voltage tandem electrostatic accelerator FN model was installed and started up by the Nuclear Regulatory Authority (ARN) on the campus of Ezeiza Atomic Center. Subsequently, the facility was transferred to the National Atomic Energy Commission for a new start up, re-engineering, maintenance, and operation [es

  11. A model for the interaction between F centers and H atoms in ionic crystals

    International Nuclear Information System (INIS)

    Dumke, V.R.; Souza, M. de

    1975-01-01

    The interaction between an F center and neutral hydrogen atoms, the most simple paramagnetic defects in ionic crystals, is described in terms of a perturbation theory of two square potential wells. The good agreement with experimental data indicates that lattice distortion due to the presence of the hydrogen atoms is negligible [pt

  12. Current research in Radiation Biology and Biochemistry Division

    International Nuclear Information System (INIS)

    Tarachand, U.; Singh, B.B.

    1995-01-01

    The Radiation Biology and Biochemistry Division, Bhabha Atomic Research Centre, Bombay has been engaged in research in the frontier areas of (i) radiation biology related to tumour therapy and injury caused by free radicals; (ii) molecular basis of diseases of physiological origin; (iii) molecular aspects of chemical carcinogenesis and (iv) structure of genome and genome related functions. The gist of research and development activities carried out in the Division during the last two years are documented

  13. Current research in Radiation Biology and Biochemistry Division

    Energy Technology Data Exchange (ETDEWEB)

    Tarachand, U; Singh, B B [eds.; Bhabha Atomic Research Centre, Bombay (India). Radiation Biology and Biochemistry Div.

    1996-12-31

    The Radiation Biology and Biochemistry Division, Bhabha Atomic Research Centre, Bombay has been engaged in research in the frontier areas of (i) radiation biology related to tumour therapy and injury caused by free radicals; (ii) molecular basis of diseases of physiological origin; (iii) molecular aspects of chemical carcinogenesis and (iv) structure of genome and genome related functions. The gist of research and development activities carried out in the Division during the last two years are documented.

  14. Summary of informal meeting on ''facilities for atomic physics research with highly ionized atoms''

    International Nuclear Information System (INIS)

    Cocke, C.L.; Jones, K.W.

    1984-01-01

    An informal meeting to discuss ''Facilities for Atomic Physics Research with Highly Ionized Atoms'' was held during the APS DEAP meeting at the University of Connecticut on May 30, 1984. The meeting was motivated by the realization that the status of facilities for studies of highly ionized atoms is unsettled and that it might be desirable to take action to ensure adequate resources for research over the whole range of charge states and energies of interest. It was assumed that the science to be done with these beams has been amply documented in the literature

  15. Managing a Modern University Research Center.

    Science.gov (United States)

    Veres, John G., III

    1988-01-01

    The university research center of the future will function best to serve the rapidly changing public and private demand for services with a highly trained core staff, adequately funded and equipped, whose morale and quality of work performance is a prime consideration. (MSE)

  16. Role Strain in University Research Centers

    Science.gov (United States)

    Boardman, Craig; Bozeman, Barry

    2007-01-01

    One way in which university faculty members' professional lives have become more complex with the advent of contemporary university research centers is that many faculty have taken on additional roles. The authors' concern in this article is to determine the extent to which role strain is experienced by university faculty members who are…

  17. The Strategic Electrochemical Research Center in Denmark

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Hansen, Karin Vels

    2011-01-01

    A 6-year strategic electrochemistry research center (SERC) in fundamental and applied aspects of electrochemical cells with a main emphasis on solid oxide cells was started in Denmark on January 1st, 2007 in cooperation with other Danish and Swedish Universities. Furthermore, 8 Danish companies...... are presented. ©2011 COPYRIGHT ECS - The Electrochemical Society...

  18. Staff Clinician | Center for Cancer Research

    Science.gov (United States)

    The Neuro-Oncology Branch (NOB), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH) is seeking staff clinicians to provide high-quality patient care for individuals with primary central nervous system (CNS) malignancies.  The NOB is comprised of a multidisciplinary team of physicians, healthcare providers, and scientists who

  19. Lewis Research Center R and D Facilities

    Science.gov (United States)

    1991-01-01

    The NASA Lewis Research Center (LeRC) defines and develops advanced technology for high priority national needs. The work of the Center is directed toward new propulsion, power, and communications technologies for application to aeronautics and space, so that U.S. leadership in these areas is ensured. The end product is knowledge, usually in a report, that is made fully available to potential users--the aircraft engine industry, the energy industry, the automotive industry, the space industry, and other NASA centers. In addition to offices and laboratories for almost every kind of physical research in such fields as fluid mechanics, physics, materials, fuels, combustion, thermodynamics, lubrication, heat transfer, and electronics, LeRC has a variety of engineering test cells for experiments with components such as compressors, pumps, conductors, turbines, nozzles, and controls. A number of large facilities can simulate the operating environment for a complete system: altitude chambers for aircraft engines; large supersonic wind tunnels for advanced airframes and propulsion systems; space simulation chambers for electric rockets or spacecraft; and a 420-foot-deep zero-gravity facility for microgravity experiments. Some problems are amenable to detection and solution only in the complete system and at essentially full scale. By combining basic research in pertinent disciplines and generic technologies with applied research on components and complete systems, LeRC has become one of the most productive centers in its field in the world. This brochure describes a number of the facilities that provide LeRC with its exceptional capabilities.

  20. AHPCRC - Army High Performance Computing Research Center

    Science.gov (United States)

    2010-01-01

    computing. Of particular interest is the ability of a distrib- uted jamming network (DJN) to jam signals in all or part of a sensor or communications net...and reasoning, assistive technologies. FRIEDRICH (FRITZ) PRINZ Finmeccanica Professor of Engineering, Robert Bosch Chair, Department of Engineering...High Performance Computing Research Center www.ahpcrc.org BARBARA BRYAN AHPCRC Research and Outreach Manager, HPTi (650) 604-3732 bbryan@hpti.com Ms

  1. Nuclear Research Center IRT reactor dynamics calculation

    International Nuclear Information System (INIS)

    Aleman Fernandez, J.R.

    1990-01-01

    The main features of the code DIRT, for dynamical calculations are described in the paper. With the results obtained by the program, an analysis of the dynamic behaviour of the Research Reactor IRT of the Nuclear Research Center (CIN) is performed. Different transitories were considered such as variation of the system reactivity, coolant inlet temperature variation and also variations of the coolant velocity through the reactor core. 3 refs

  2. Interaction Modeling at PROS Research Center

    OpenAIRE

    Panach , José ,; Aquino , Nathalie; PASTOR , Oscar

    2011-01-01

    Part 1: Long and Short Papers; International audience; This paper describes how the PROS Research Center deals with interaction in the context of a model-driven approach for the development of information systems. Interaction is specified in a conceptual model together with the structure and behavior of the system. Major achievements and current research challenges of PROS in the field of interaction modeling are presented.

  3. The law for the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    1977-01-01

    The law establishes the Japan Atomic Energy Research Institute in accordance with the Basic Act on Atomic Energy as a government corporation for the purpose of promoting R and D and utilizations of atomic energy (first chapter). The second chapter concerns the directors, advisers and personnel of the institute, namely a chairman of the board of directors, a vice-chairman, directors not more than seven persons, and auditors not more than two persons. The chairman represents and supervises the intitute, whom the prime minister appoints with the agreement of Atomic Energy Commission. The vice-chairman and other directors are nominated by the chairman with the approval of the prime minister, while the auditors are appointed by the prime minister with the advice of the Atomic Energy Commission. Their terms of office are 4 years for directors and 2 years for auditors. The third chapter defines the scope of activities of the institute as follows: basic and applied researches on atomic energy; design, construction and operation of nuclear reactors; training of researchers and technicians; and import, production and distribution of radioisotopes. Those activities should be done in accordance with the basic development and utilization plans of atomic energy established by the prime minister with the determination of Atomic Energy Commission. The fourth chapter provides for the finance and accounting of the institute, and the fifth chapter requires the supervision of the institute by the prime minister. (Matsushima, A.)

  4. Annual report April 1974-March 1975 of the Gama Research Centre National Atomic Energy Agency

    International Nuclear Information System (INIS)

    1975-01-01

    Activities at the Gama Research Centre for the period of April 1974-March 1975, covering works at the Laboratory of Nuclear and Atomic Physics, at the Reactor Laboratory, at the Laboratory of Chemistry, and at the Laboratory of Process Technology, are described. The Center's personnel and financial accounts are also given. (RUW)

  5. Scientific activities 1980 Nuclear Research Center ''Democritos''

    International Nuclear Information System (INIS)

    1982-01-01

    The scientific activities and achievements of the Nuclear Research Center Democritos for the year 1980 are presented in the form of a list of 76 projects giving title, objectives, responsible of each project, developed activities and the pertaining lists of publications. The 16 chapters of this work cover the activities of the main Divisions of the Democritos NRC: Electronics, Biology, Physics, Chemistry, Health Physics, Reactor, Scientific Directorate, Radioisotopes, Environmental Radioactivity, Soil Science, Computer Center, Uranium Exploration, Medical Service, Technological Applications, Radioimmunoassay and Training. (N.C.)

  6. AHPCRC (Army High Performance Computing Research Center) Bulletin. Volume 1, Issue 2

    Science.gov (United States)

    2011-01-01

    area and the researchers working on these projects. Also inside: news from the AHPCRC consortium partners at Morgan State University and the NASA ...Computing Research Center is provided by the supercomputing and research facilities at Stanford University and at the NASA Ames Research Center at...atomic and molecular level, he said. He noted that “every general would like to have” a Star Trek -like holodeck, where holographic avatars could

  7. Use of research reactors in Soviet atomic centres

    International Nuclear Information System (INIS)

    1964-01-01

    The manner of controlling and directing research reactors in the USSR was described in October at the IAEA seminar for atomic energy administrators by Dr. U. V. Archangelski, Department Chief, State Committee for Utilization of Atomic Energy, USSR. He also enumerated the research reactors in operation. In addition to the portions of the paper which are quoted below, he gave details of the scientific work being carried out in these reactors.

  8. Atomic energy

    International Nuclear Information System (INIS)

    Ramanna, R.

    1978-01-01

    Development of nuclear science in India, particularly the research and development work at the Bhabha Atomic Research Centre (BARC), Bombay, is described. Among the wide range of materials developed for specific functions under rigorous conditions are nuclear pure grade uranium, zirconium and beryllium, and conventional materials like aluminium, carbon steel and stainless steels. Radioisotopes are produced and used for tracer studies in various fields. Various types of nuclear gauges and nuclear instruments are produced. Radiations have been used to develop new high yielding groundnut mutants with large kernals. The sterile male technique for pest control and radiosterilization technique to process potatoes, onions and marine foods for storage are ready for exploitation. Processes and equipment have been developed for production of electrolytic hydrogen, electrothermal phosphorus and desalinated water. Indigenously manufactured components and materials are now being used for the nuclear energy programme. Indian nuclear power programme strategy is to build heavy water reactors and to utilise their byproduct plutonium and depleted uranium to feed fast breeder reactors which will produce more fissile material than burnt. Finally a special mention has been made of the manpower development programme of the BARC. BARC has established a training school in 1957 giving advanced training in physics, chemistry and various branches of engineering and metallurgy

  9. Internationally Safeguarded Atomic Fuel Exchange Center for the Asian Pacific Basin

    International Nuclear Information System (INIS)

    Selvaduray, G.; Anderson, R.N.; Goldstein, M.K.

    1979-01-01

    The concept of an Internationally Safeguarded Atomic Fuel Exchange Center (ISAFE) for the Asia-Pacific Basin is examined. The geography and nuclear capabilitiy of the countries that comprise the Asia-Pacific Basin is described in full length. The incentives and the limitations for the establishment of the ISAFE center in the Asia-Pacific Basin are discussed in detail. 34 refs

  10. Proceedings of RIKEN BNL Research Center Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Samios, Nicholas P. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2013-01-24

    The twelfth evaluation of the RIKEN BNL Research Center (RBRC) took place on November 6 – 8, 2012 at Brookhaven National Laboratory. The members of the Scientific Review Committee (SRC), present at the meeting, were: Prof. Wit Busza, Prof. Miklos Gyulassy, Prof. Kenichi Imai, Prof. Richard Milner (Chair), Prof. Alfred Mueller, Prof. Charles Young Prescott, and Prof. Akira Ukawa. We are pleased that Dr. Hideto En’yo, the Director of the Nishina Institute of RIKEN, Japan, participated in this meeting both in informing the committee of the activities of the RIKEN Nishina Center for Accelerator- Based Science and the role of RBRC and as an observer of this review. In order to illustrate the breadth and scope of the RBRC program, each member of the Center made a presentation on his/her research efforts. This encompassed three major areas of investigation: theoretical, experimental and computational physics. In addition, the committee met privately with the fellows and postdocs to ascertain their opinions and concerns. Although the main purpose of this review is a report to RIKEN management on the health, scientific value, management and future prospects of the Center, the RBRC management felt that a compendium of the scientific presentations are of sufficient quality and interest that they warrant a wider distribution. Therefore we have made this compilation and present it to the community for its information and enlightenment.

  11. Data Curation Education in Research Centers (DCERC)

    Science.gov (United States)

    Marlino, M. R.; Mayernik, M. S.; Kelly, K.; Allard, S.; Tenopir, C.; Palmer, C.; Varvel, V. E., Jr.

    2012-12-01

    Digital data both enable and constrain scientific research. Scientists are enabled by digital data to develop new research methods, utilize new data sources, and investigate new topics, but they also face new data collection, management, and preservation burdens. The current data workforce consists primarily of scientists who receive little formal training in data management and data managers who are typically educated through on-the-job training. The Data Curation Education in Research Centers (DCERC) program is investigating a new model for educating data professionals to contribute to scientific research. DCERC is a collaboration between the University of Illinois at Urbana-Champaign Graduate School of Library and Information Science, the University of Tennessee School of Information Sciences, and the National Center for Atmospheric Research. The program is organized around a foundations course in data curation and provides field experiences in research and data centers for both master's and doctoral students. This presentation will outline the aims and the structure of the DCERC program and discuss results and lessons learned from the first set of summer internships in 2012. Four masters students participated and worked with both data mentors and science mentors, gaining first hand experiences in the issues, methods, and challenges of scientific data curation. They engaged in a diverse set of topics, including climate model metadata, observational data management workflows, and data cleaning, documentation, and ingest processes within a data archive. The students learned current data management practices and challenges while developing expertise and conducting research. They also made important contributions to NCAR data and science teams by evaluating data management workflows and processes, preparing data sets to be archived, and developing recommendations for particular data management activities. The master's student interns will return in summer of 2013

  12. 70 Years of Aeropropulsion Research at NASA Glenn Research Center

    Science.gov (United States)

    Reddy, Dhanireddy R.

    2013-01-01

    This paper presents a brief overview of air-breathing propulsion research conducted at the NASA Glenn Research Center (GRC) over the past 70 years. It includes a historical perspective of the center and its various stages of propulsion research in response to the countrys different periods of crises and growth opportunities. GRCs research and technology development covered a broad spectrum, from a short-term focus on improving the energy efficiency of aircraft engines to advancing the frontier technologies of high-speed aviation in the supersonic and hypersonic speed regimes. This paper highlights major research programs, showing their impact on industry and aircraft propulsion, and briefly discusses current research programs and future aeropropulsion technology trends in related areas

  13. Molecular Science Research Center 1992 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, M.L.

    1994-01-01

    The Molecular Science Research Center is a designated national user facility, available to scientists from universities, industry, and other national laboratories. After an opening section, which includes conferences hosted, appointments, and projects, this document presents progress in the following fields: chemical structure and dynamics; environmental dynamics and simulation; macromolecular structure and dynamics; materials and interfaces; theory, modeling, and simulation; and computing and information sciences. Appendices are included: MSRC staff and associates, 1992 publications and presentations, activities, and acronyms and abbreviations.

  14. Realizing vision of Dr. Homi Bhabha - first stage of nuclear power programme

    International Nuclear Information System (INIS)

    Bhardwaj, S.A.

    2009-01-01

    Full text: Dr. Homi Bhabha had a vision to harness nuclear energy for peaceful uses of mankind. Considering typical nuclear resources in the country, Dr Bhabha conceptualized the three stage nuclear power programme and gave a road map for its implementation. The robustness of the vision is such that the programme has not undergone a change in last five decades. The first stage of the three-stage programme, based on natural uranium fuelled Pressurised Heavy Water Reactors (PHWRs) has been precursor to the nuclear power programme in India. This paper describes the developments in the last five decades. The establishment of research laboratories and reactors, training school for the manpower needs, industrial infrastructure and establishment of regulatory framework are briefly described. Setting up of first nuclear power reactor in the country as turnkey project and experience on operation of these reactors in India are discussed. The learning phase consisting of setting up of first PHWR in technical collaboration with Canada and design of 220 MWe PHWRs for MAPS is described. The safety features consistent with development of nuclear power globally were incorporated in Narora design and this became a standardized 220 MWe reactor of which many PHWRs of 220 MWe were set up. The experiences with operation of these small size reactors leading to internationally best operational experience in the year 2002 are discussed. The efforts of plant life extension, in-core maintenance jobs and other renovation and modernization jobs are discussed. The increase in unit size of 540 MWe, of which two reactors have been already set up, is explained in detail. The economies of scale demanded increase in the unit size and design of 700 MWe PHWR has been established and the salient features of this design are also discussed in detail. Eight reactors of 700 MWe each would complete the first stage of about 10,000 MWe PHWR programme and plans for setting up of these reactors are discussed

  15. RCOP: Research Center for Optical Physics

    Science.gov (United States)

    Tabibi, Bagher M. (Principal Investigator)

    1996-01-01

    During the five years since its inception, Research Center for Optical Physics (RCOP) has excelled in the goals stated in the original proposal: 1) training of the scientists and engineers needed for the twenty-first century with special emphasis on underrepresented citizens and 2) research and technological development in areas of relevance to NASA. In the category of research training, there have been 16 Bachelors degrees and 9 Masters degrees awarded to African American students working in RCOP during the last five years. RCOP has also provided research experience to undergraduate and high school students through a number of outreach programs held during the summer and the academic year. RCOP has also been instrumental in the development of the Ph.D. program in physics which is in its fourth year at Hampton. There are currently over 40 graduate students in the program and 9 African American graduate students, working in RCOP, that have satisfied all of the requirements for Ph.D. candidancy and are working on their dissertation research. At least three of these students will be awarded their doctoral degrees during 1997. RCOP has also excelled in research and technological development. During the first five years of existence, RCOP researchers have generated well over $3 M in research funding that directly supports the Center. Close ties with NASA Langley and NASA Lewis have been established, and collaborations with NASA scientists, URC's and other universities as well as with industry have been developed. This success is evidenced by the rate of publishing research results in refereed journals, which now exceeds that of the goals in the original proposal (approx. 2 publications per faculty per year). Also, two patents have been awarded to RCOP scientists.

  16. Unique life sciences research facilities at NASA Ames Research Center

    Science.gov (United States)

    Mulenburg, G. M.; Vasques, M.; Caldwell, W. F.; Tucker, J.

    1994-01-01

    The Life Science Division at NASA's Ames Research Center has a suite of specialized facilities that enable scientists to study the effects of gravity on living systems. This paper describes some of these facilities and their use in research. Seven centrifuges, each with its own unique abilities, allow testing of a variety of parameters on test subjects ranging from single cells through hardware to humans. The Vestibular Research Facility allows the study of both centrifugation and linear acceleration on animals and humans. The Biocomputation Center uses computers for 3D reconstruction of physiological systems, and interactive research tools for virtual reality modeling. Psycophysiological, cardiovascular, exercise physiology, and biomechanical studies are conducted in the 12 bed Human Research Facility and samples are analyzed in the certified Central Clinical Laboratory and other laboratories at Ames. Human bedrest, water immersion and lower body negative pressure equipment are also available to study physiological changes associated with weightlessness. These and other weightlessness models are used in specialized laboratories for the study of basic physiological mechanisms, metabolism and cell biology. Visual-motor performance, perception, and adaptation are studied using ground-based models as well as short term weightlessness experiments (parabolic flights). The unique combination of Life Science research facilities, laboratories, and equipment at Ames Research Center are described in detail in relation to their research contributions.

  17. A Measurement of the Effective Electron Neutral Current Coupling Parameters from Polarized Bhabha Scattering at the Z0 Resonance

    Energy Technology Data Exchange (ETDEWEB)

    Langston, Matthew D

    2003-07-15

    The effective electron neutral current coupling parameters, {bar g}{sub V}{sup 3} and {bar g}{sub A}{sup c}, have been measured from analyzing 43,222 polarized Bhabha scattered events (e{sup +}e{sup -} {yields} e{sup +}e{sup -}) using the SLAC Large Detector (SLD) experiment at the Stanford Linear Accelerator Center (SLAC). The SLAC Linear Collider (SLC) produced the Bhabha scattered events by colliding polarized electrons, with an average polarization of 74%, with unpolarized positrons at an average center-of-mass energy of 91.25 GeV. The analysis used the entire SLD data sample collected between 1994 and 1998 (the last year the SLD detector collected data). The results are {bar g}{sub V}{sup e} = -0.0469 {+-} 0.0024 (stat.) {+-} 0.0004 (sys.); {bar g}{sub A}{sup e} = -0.5038 {+-} 0.0010 (stat.) {+-} 0.0043 (sys.). All Bhabha scattered events within the angular acceptance of the SLD calorimeter subsystems were used in this analysis, including both small-angle events (28 mrad. {le} theta {le} 68 mrad.) measured by the Silicon/Tungsten Luminosity Monitor (LUM), and large angle events (0 {le} |cos{theta}| {le} 0.9655) measured by the Liquid Argon Calorimeter (LAC). Using all of the data in this manner allows for the high-precision measurement of the luminosity provided by the LUM to constrain the uncertainty on {bar g}{sub V}{sup e} and {bar g}{sub A}{sup e}. The measured integrated luminosity for the combined 1993 through 1998 SLD data sample is L{sub Integrated} = 19,247 {+-} 17 (stat.) {+-} 146 (sys.) nb{sup -1}. In contrast with other SLD precision measurements of the effective weak mixing angle, which are sensitive to the ratio {bar g}{sub V}{sup e}/{bar g}{sub A}{sup e}, this result independently determines {bar g}{sub V}{sup 3} and {bar g}{sub A}{sup c}. The analysis techniques to measure {bar g}{sub V}{sup 3} and {bar g}{sub A}{sup c} are described, and the results are compared with other SLD measurements as well as other experiments.

  18. Electron Microscopist | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Cancer Research Technology Program (CRTP) develops and implements emerging technology, cancer biology expertise and research capabilities to accomplish NCI research objectives. The CRTP is an outward-facing, multi-disciplinary hub purposed to enable the external cancer research community and provides dedicated support to NCI’s intramural Center for Cancer Research (CCR). The dedicated units provide electron microscopy, protein characterization, protein expression, optical microscopy and genetics. These research efforts are an integral part of CCR at the Frederick National Laboratory for Cancer Research (FNLCR). CRTP scientists also work collaboratively with intramural NCI investigators to provide research technologies and expertise. KEY ROLES/RESPONSIBILITIES - THIS POSITION IS CONTINGENT UPON FUNDING APPROVAL The Electron Microscopist will: Operate ultramicrotomes (Leica) and other instrumentation related to the preparation of embedded samples for EM (TEM and SEM) Operate TEM microscopes, (specifically Hitachi, FEI T20 and FEI T12) as well as SEM microscopes (Hitachi); task will include loading samples, screening, and performing data collection for a variety of samples: from cells to proteins Manage maintenance for the TEM and SEM microscopes Provide technical advice to investigators on sample preparation and data collection

  19. The Atomic Energy Control Board's regulatory research and support program

    International Nuclear Information System (INIS)

    1988-04-01

    The purpose of the Regulatory Research and Support Program is to augment and extend the capability of the Atomic Energy Control Board's (AECB) regulatory program beyond the capability of in-house resources. The overall objective of the program is to produce pertinent and independent scientific and other knowledge and expertise that will assist the AECB in making correct, timely and credible decisions on regulating the development, application and use of atomic energy. The objectives are achieved through contracted research, development, studies, consultant and other kinds of projects administered by the Research and Radiation Protection Branch (RRB) of the AECB

  20. Ongkharak Nuclear Research Center-the role of the consultant

    International Nuclear Information System (INIS)

    Jacobi, A.; De Haller, L.

    1998-01-01

    The Ongkharak Nuclear Research Center Project is known to have started on 26 June 1997. At that date the Contract for the turnkey delivery of the three nuclear facilities, the Reactor Island [RI] , Isotope Production Facility [IPF] and the Waste Processing and Storage Facilities [WPSF], was signed by the Office of the Atomic Energy for Peace [OAEP] with General Atomics [GA]. The involvement of Atomic Consultant - Electrowatt Engineering Ltd. (EWE) - already started more than 2 years earlier than the official start of this ambitious project. Since mid 1995 EWE has been serving in a variety of functions and has been requested to perform numerous tasks in support of OAEP. By acting in the function of the Consultant, EWE was aiming firstly to help the project to proceed as quickly as possible. Secondly EWE was overseeing constantly that the quality of the Center, once finished, will meet the present state of the art, will be licensable in Thailand (or elsewhere) and will be internationally recognised as a safe, reliable and modern research and production installation. The role of EWE covers a multitude of engineering disciplines, such as architecture; civil, mechanical, nuclear, I and C and electrical engineering; nuclear and reactor physics; chemistry and radiopharmacy; economy and price estimation. Besides, EWE has to use its skills in conducting and/or supervising large projects, e.g., by appropriate scheduling, QA surveys, licensing support, document control, etc. Furthermore, EWE is actively involved in know-how transfer to Thai engineers and scientists by working in close co-operation with OAEP's project personnel and - if required - by giving special training courses. This paper presents some highlights as well as routine activities performed by EWE so far in the Project

  1. Flow Cytometry Technician | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). KEY ROLES/RESPONSIBILITIES The Flow Cytometry Core (Flow Core) of the Cancer and Inflammation Program (CIP) is a service core which supports the research efforts of the CCR by providing expertise in the field of flow cytometry (using analyzers and sorters) with the goal of gaining a more thorough understanding of the biology of cancer and cancer cells. The Flow Core provides service to 12-15 CIP laboratories and more than 22 non-CIP laboratories. Flow core staff provide technical advice on the experimental design of applications, which include immunological phenotyping, cell function assays, and cell cycle analysis. Work is performed per customer requirements, and no independent research is involved. The Flow Cytometry Technician will be responsible for: Monitor performance of and maintain high dimensional flow cytometer analyzers and cell sorters Operate high dimensional flow cytometer analyzers and cell sorters Monitoring lab supply levels and order lab supplies, perform various record keeping responsibilities Assist in the training of scientific end users on the use of flow cytometry in their research, as well as how to operate and troubleshoot the bench-top analyzer instruments Experience with sterile technique and tissue culture

  2. Radiation protection at the Cadarache research center

    International Nuclear Information System (INIS)

    Anon.

    2015-01-01

    This article recalls the French law about radiation protection and its evolution due to the implementation of the 2013/59-EURATOM directive that separates the missions of counsel from the more operative missions of the person appointed as 'competent in radiation protection'. The organisation of the radiation protection of the Cadarache research center is presented. The issue of sub-contracting and the respect of an adequate standard of radioprotection is detailed since 2 facilities operated by AREVA are being dismantled on the site. (A.C.)

  3. NASA Langley Research Center tethered balloon systems

    Science.gov (United States)

    Owens, Thomas L.; Storey, Richard W.; Youngbluth, Otto

    1987-01-01

    The NASA Langley Research Center tethered balloon system operations are covered in this report for the period of 1979 through 1983. Meteorological data, ozone concentrations, and other data were obtained from in situ measurements. The large tethered balloon had a lifting capability of 30 kilograms to 2500 meters. The report includes descriptions of the various components of the balloon systems such as the balloons, the sensors, the electronics, and the hardware. Several photographs of the system are included as well as a list of projects including the types of data gathered.

  4. Atomization of U3Si2 for research reactor fuel

    International Nuclear Information System (INIS)

    Kim, C.K.; Kim, K.H.; Lee, C.T.; Kuk, I.H.

    1995-01-01

    Rotating disk atomization technique is applied to KMRR (Korea Multi-purpose Research Reactor) fuel fabrication. A rotating disk atomizer is designed and manufactured locally and U-4.0 wt. % Si alloy powders are produced. The atomized powders are heat-treated to transform into U 3 Si and the mixture of U 3 Si and Al are extruded to fuel meat. Most of the atomized powders are spherical in shape. The microstructure of the powder is fine due to the rapid solidification. The time required for peritectoid reaction is reduced due to the fine microstructures and the resultant U 3 Si grain size is finer than ever obtained from ingot process. The mechanical properties of the fuel meat are improved: yield strength about 30 %, tensile strength 10% and elongation 250 % increased. (author)

  5. Statistical Analysis of Research Data | Center for Cancer Research

    Science.gov (United States)

    Recent advances in cancer biology have resulted in the need for increased statistical analysis of research data. The Statistical Analysis of Research Data (SARD) course will be held on April 5-6, 2018 from 9 a.m.-5 p.m. at the National Institutes of Health's Natcher Conference Center, Balcony C on the Bethesda Campus. SARD is designed to provide an overview on the general principles of statistical analysis of research data.  The first day will feature univariate data analysis, including descriptive statistics, probability distributions, one- and two-sample inferential statistics.

  6. The Research Results of Radioactive Waste Management Technology Center Year 1997/1998

    International Nuclear Information System (INIS)

    1998-12-01

    The research results of Radioactive Waste Management Technology Center, National Atomic Energy Agency of Indonesia year 1997/1998 contain paper as form of research results on radioactive waste management related fields. There were included many aspects such as radioactive waste processing, storage, decontamination, decommissioning, safety and environmental aspects. There are 26 papers indexed individually (ID)

  7. The Research Results of Radioactive Waste Management Technology Center Year 1996/1997

    International Nuclear Information System (INIS)

    Budiman, P.; Martono, H.; Las, T.; Lubis, E.; Mulyanto; Wisnubroto, D. S.; Sucipta

    1997-12-01

    The research results of Radioactive Waste Management Technology Center, National Atomic Energy Agency of Indonesia year 1996/1997 contain paper as form of research results on radioactive waste management related fields. There were included many aspects such as radioactive waste processing, storage, decontamination, decommissioning, safety and environmental aspects. There are 24 papers and 12 short communications indexed individually(ID)

  8. Nuclear Criticality Experimental Research Center (NCERC) Overview

    Energy Technology Data Exchange (ETDEWEB)

    Goda, Joetta Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Grove, Travis Justin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hayes, David Kirk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, William L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sanchez, Rene Gerardo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-03

    The mission of the National Criticality Experiments Research Center (NCERC) at the Device Assembly Facility (DAF) is to conduct experiments and training with critical assemblies and fissionable material at or near criticality in order to explore reactivity phenomena, and to operate the assemblies in the regions from subcritical through delayed critical. One critical assembly, Godiva-IV, is designed to operate above prompt critical. The Nuclear Criticality Experimental Research Center (NCERC) is our nation’s only general-purpose critical experiments facility and is only one of a few that remain operational throughout the world. This presentation discusses the history of NCERC, the general activities that makeup work at NCERC, and the various government programs and missions that NCERC supports. Recent activities at NCERC will be reviewed, with a focus on demonstrating how NCERC meets national security mission goals using engineering fundamentals. In particular, there will be a focus on engineering theory and design and applications of engineering fundamentals at NCERC. NCERC activities that relate to engineering education will also be examined.

  9. The law for the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    1979-01-01

    The institute is established under the atomic energy basic law to make effectively research of development of atomic energy in general and help to promote investigation, development and utilization of it. The institute is a legal person and has its main office in Tokyo. Its capital is the amount of yen 2,500 million plus contributions by persons other than the government. The government invests the said yen 2,500 million at the time of its establishment. The articles of the institute shall prescribe matters, such as: capital, contributions and assets; officer and meeting; business and its execution; accounting, etc. The officers are consisted of a chief director, a deputy chief director and less than 7 directors and less than 2 auditors. The chief director is appointed by the Prime Minister with the consent of the atomic energy commission. The term of the chief director, the deputy chief director and directors is 4 years and that of auditors is 2 years. Functions of the institute include basic and application research of atomic energy, planning, building and operation of reactors, training of researchers and engineers of atomic energy, etc. The budget, the business program and the financial project shall be prepared each business year and authorized by the Prime Minister. The institute is subject to the supervision of the Prime Minister. (Okada, K.)

  10. Current research and development at the Nuclear Research Center Karlsruhe

    International Nuclear Information System (INIS)

    Kuesters, H.

    1982-01-01

    The Nuclear Research Center Karlsruhe (KfK) is funded to 90% by the Federal Republic of Germany and to 10% by the State of Baden-Wuerttemberg. Since its foundation in 1956 the main objective of the Center is research and development (R and D) in the aera of the nuclear technology and about 2/3 of the research capacity is now devoted to this field. Since 1960 a major activity of KfK is R and D work for the design of fast breeder reactors, including material research, physics, and safety investigations; a prototype of 300 MWe is under construction now in the lower Rhine Valley. For enrichment of 235 U fissile material KfK developed the separation nozzle process; its technical application is realized within an international contract between the Federal Republic of Germany and Brazil. Within the frame of the European Programme on fusion technology KfK develops and tests superconducting magnets for toroidal fusion systems; a smaller activity deals with research on inertial confinement fusion. A broad research programme is carried through for safety investigations of nuclear installations, especially for PWRs; this activity is supplemented by research and development in the field of nuclear materials' safeguards. Development of fast reactors has to initiate research for the reprocessing of spent fuel and waste disposal. In the pilot plant WAK spent fuel from LKWs is reprocessed; research especially tries e.g. to improve the PUREX-process by electrochemical means, vitrification of high active waste is another main activity. First studies are being performed now to clarify the necessary development for reprocessing fast reactor fuel. About 1/3 of the research capacity of KfK deals with fundamental research in nuclear physics, solid state physics, biology and studies on the impact of technology on environment. Promising new technologies as e.g. the replacement of gasoline by hydrogen cells as vehicle propulsion are investigated. (orig.)

  11. Research Center Renaming Will Honor Senator Domenici

    Science.gov (United States)

    2008-05-01

    New Mexico Tech and the National Radio Astronomy Observatory (NRAO) will rename the observatory's research center on the New Mexico Tech campus to honor retiring U.S. Senator Pete V. Domenici in a ceremony on May 30. The building that serves as the scientific, technical, and administrative center for the Very Large Array (VLA) and Very Long Baseline Array (VLBA) radio telescopes will be named the "Pete V. Domenici Science Operations Center." The building previously was known simply as the "Array Operations Center." Sen. Pete V. Domenici Sen. Pete V. Domenici "The new name recognizes the strong and effective support for science that has been a hallmark of Senator Domenici's long career in public service," said Dr. Fred Lo, NRAO Director. New Mexico Tech President Daniel H. Lopez said Sen. Domenici has always been a supporter of science and research in Socorro and throughout the state. "He's been a statesman for New Mexico, the nation -- and without exaggeration -- for the world," Lopez said. "Anyone with that track record deserves this recognition." Van Romero, Tech vice president of research and economic development, has served as the university's main lobbyist in Washington, D.C., for more than a decade. He said Sen. Domenici has always been receptive to new ideas and willing to take risks. "Over the years, Sen. Domenici has always had time to listen to our needs and goals," Romero said. "He has served as a champion of New Mexico Tech's causes and we owe him a debt of gratitude for all his efforts over the decades." Originally dedicated in 1988, the center houses offices and laboratories that support VLA and VLBA operations. The center also supports work on the VLA modernization project and on the international Atacama Large Millimeter/submillimeter Array (ALMA) project. Work on ALMA at the Socorro center and at the ALMA Test Facility at the VLA site west of Socorro has focused on developing and testing equipment to be deployed at the ALMA site in Chile's Atacama

  12. Research and development activities of High Pressure Physics Division (October 1993 - March 1996)

    Energy Technology Data Exchange (ETDEWEB)

    Gyanchandani, Jyoti; Gangrade, B K [eds.; High Pressure Physics Div., Bhabha Atomic Research Centre, Mumbai (India)

    1996-07-01

    The research and development activities of the High Pressure Physics Division during the period October 1993-March 1996 are reported in the form of collection of papers presented in journals, conference proceedings and abstracts in conferences and Bhabha Atomic Research Centre (BARC) technical reports. The report is organised in two sections: (A) High Pressure Physics Division, and (B) Seismology Section. A list of staff members is enclosed at the end.

  13. Research and development activities of High Pressure Physics Division (October 1993 - March 1996)

    International Nuclear Information System (INIS)

    Gyanchandani, Jyoti; Gangrade, B.K.

    1996-07-01

    The research and development activities of the High Pressure Physics Division during the period October 1993-March 1996 are reported in the form of collection of papers presented in journals, conference proceedings and abstracts in conferences and Bhabha Atomic Research Centre (BARC) technical reports. The report is organised in two sections: (A) High Pressure Physics Division, and (B) Seismology Section. A list of staff members is enclosed at the end

  14. Research and development activities of the Neutron Physics Division for the period January 1980 - December 1980

    International Nuclear Information System (INIS)

    Basu, T.K.; Bhakay-Tamhane, S.

    1981-01-01

    The highlights of the research and development (R and D) activities of the Neutron Physics Division of the Bhabha Atomic Research Centre, Bombay, during January - December 1980 are summarised. The R and D activities are in the fields of critical and subcritical fission systems, the plasma focus device, applied neutron physics, neutron and X-ray crystallography, materials physics and seismology. (M.G.B.)

  15. Goods and services from the activities of the Constituyentes Atomic Center

    International Nuclear Information System (INIS)

    Hermida, Jorge D.

    2001-01-01

    Technologies developed and used at the Constituyentes Atomic Center (CAC) are applied in Argentina in different fields, such as seamless pipes industry, non-destructive testing and quality assurance, food industry, microalloyed steels, medicine, space activities, air pollution studies, etc. The CAC has also a wide program of technical assistance to the industry

  16. Solar Energy Research Center Instrumentation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Thomas, J.; Papanikolas, John, P.

    2011-11-11

    SOLAR ENERGY RESEARCH CENTER INSTRUMENTATION FACILITY The mission of the Solar Energy Research Center (UNC SERC) at the University of North Carolina at Chapel Hill (UNC-CH) is to establish a world leading effort in solar fuels research and to develop the materials and methods needed to fabricate the next generation of solar energy devices. We are addressing the fundamental issues that will drive new strategies for solar energy conversion and the engineering challenges that must be met in order to convert discoveries made in the laboratory into commercially available devices. The development of a photoelectrosynthesis cell (PEC) for solar fuels production faces daunting requirements: (1) Absorb a large fraction of sunlight; (2) Carry out artificial photosynthesis which involves multiple complex reaction steps; (3) Avoid competitive and deleterious side and reverse reactions; (4) Perform 13 million catalytic cycles per year with minimal degradation; (5) Use non-toxic materials; (6) Cost-effectiveness. PEC efficiency is directly determined by the kinetics of each reaction step. The UNC SERC is addressing this challenge by taking a broad interdisciplinary approach in a highly collaborative setting, drawing on expertise across a broad range of disciplines in chemistry, physics and materials science. By taking a systematic approach toward a fundamental understanding of the mechanism of each step, we will be able to gain unique insight and optimize PEC design. Access to cutting-edge spectroscopic tools is critical to this research effort. We have built professionally-staffed facilities equipped with the state-of the-art instrumentation funded by this award. The combination of staff, facilities, and instrumentation specifically tailored for solar fuels research establishes the UNC Solar Energy Research Center Instrumentation Facility as a unique, world-class capability. This congressionally directed project funded the development of two user facilities: TASK 1: SOLAR

  17. ECR-based atomic collision physics research at ORNL

    International Nuclear Information System (INIS)

    Meyer, F.W.; Bannister, M.E.; Hale, J.W.; Havener, C.C.

    1997-01-01

    After a brief summary of the present capability and configuration of the ORNL Multicharged Ion Research Facility (MIRF), and of upcoming upgrades and expansions, the presently on-line atomic collisions experiments are described. In the process, the utility of intense, cw ion beams extracted from ECR ion sources for low-signal rate experiments is illustrated

  18. Idaho national laboratory - a nuclear research center

    International Nuclear Information System (INIS)

    Zaidi Mohammed, K.

    2006-01-01

    Full text: The Idaho National Laboratory (INL) is committed to providing international nuclear leadership for the 21st Century, developing and demonstrating compelling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multi program national laboratories. INL runs three major programs - Nuclear, Security and Science. Nuclear programs covers the Advanced test reactor, Six Generation IV technology concepts selected for Rand D, targeting tumors - Boron Neutron Capture therapy. Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (INSE) under the Center for Advanced Energy Studies (CAES) and the Idaho State University (ISU). INSE will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer INSE is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'. (author)

  19. Patient Care Coordinator | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION Within the Leidos Biomedical Research Inc.’s Clinical Research Directorate, the Clinical Monitoring Research Program (CMRP) provides high-quality comprehensive and strategic operational support to the high-profile domestic and international clinical research initiatives of the National Cancer Institute (NCI), National Institute of Allergy and Infectious Diseases (NIAID), Clinical Center (CC), National Institute of Heart, Lung and Blood Institute (NHLBI), National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Center for Advancing Translational Sciences (NCATS), National Institute of Neurological Disorders and Stroke (NINDS), and the National Institute of Mental Health (NIMH). Since its inception in 2001, CMRP’s ability to provide rapid responses, high-quality solutions, and to recruit and retain experts with a variety of backgrounds to meet the growing research portfolios of NCI, NIAID, CC, NHLBI, NIAMS, NCATS, NINDS, and NIMH has led to the considerable expansion of the program and its repertoire of support services. CMRP’s support services are strategically aligned with the program’s mission to provide comprehensive, dedicated support to assist National Institutes of Health researchers in providing the highest quality of clinical research in compliance with applicable regulations and guidelines, maintaining data integrity, and protecting human subjects. For the scientific advancement of clinical research, CMRP services include comprehensive clinical trials, regulatory, pharmacovigilance, protocol navigation and development, and programmatic and project management support for facilitating the conduct of 400+ Phase I, II, and III domestic and international trials on a yearly basis. These trials investigate the prevention, diagnosis, treatment of, and therapies for cancer, influenza, HIV, and other infectious diseases and viruses such as hepatitis C, tuberculosis, malaria, and Ebola virus; heart, lung, and

  20. Investigation of vacuum polarization in t-channel radiative Bhabha scattering

    CERN Document Server

    Karlen, D A

    2001-01-01

    We discuss the possibility of a precision measurement of vacuum polarization in t-channel radiative Bhabha scattering at a high luminosity collider. For illustration, the achievable precision is estimated for the BaBar experiment at PEP-II and for the OPAL experiment at LEP.

  1. Present state of research and development of atomic energy in five Asian countries

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The survey group for Asian atomic energy cooperation was dispatched by the Japanese government, and toured Philippines, Indonesia, Malaysia, Thailand and Bangladesh from September 7 to 19, 1980. The present state of atomic energy development and the energy situation in respective countries were surveyed through the exchange of opinion and the inspection of related facilities. The Regional Cooperative Agreement for Research, Development and Training Related to Nuclear Science and Technology was concluded in June, 1972, and 12 countries have participated in it. It was impressive that respective countries have the peculiar energy policies corresponding to their objective conditions. They regard atomic energy as the important substitute energy for petroleum, but the fear about the safety of atomic energy and the movement against nuclear power generation have been growing considerably. The research and development on atomic energy are carried out very actively in respective countries, and the construction of large-scale research centers was commenced in Indonesia, Malaysia and Bangladesh. Research reactors have been operated in Philippines, Indonesia and Thailand since about 20 years ago, and the utilization of radioisotopes and radiation has been studied. The cooperation of Japan with these countries is far behind that of other advanced countries.

  2. Suborbital Science Program: Dryden Flight Research Center

    Science.gov (United States)

    DelFrate, John

    2008-01-01

    This viewgraph presentation reviews the suborbital science program at NASA Dryden Flight Research Center. The Program Objectives are given in various areas: (1) Satellite Calibration and Validation (Cal/val)--Provide methods to perform the cal/val requirements for Earth Observing System satellites; (2) New Sensor Development -- Provide methods to reduce risk for new sensor concepts and algorithm development prior to committing sensors to operations; (3) Process Studies -- Facilitate the acquisition of high spatial/temporal resolution focused measurements that are required to understand small atmospheric and surface structures which generate powerful Earth system effects; and (4) Airborne Networking -- Develop disruption-tolerant networking to enable integrated multiple scale measurements of critical environmental features. Dryden supports the NASA Airborne Science Program and the nation in several elements: ER-2, G-3, DC-8, Ikhana (Predator B) & Global Hawk and Reveal. These are reviewed in detail in the presentation.

  3. Superconducting microwave electronics at Lewis Research Center

    Science.gov (United States)

    Warner, Joseph D.; Bhasin, Kul B.; Leonard, Regis F.

    Over the last three years, NASA Lewis Research Center has investigated the application of newly discovered high temperature superconductors to microwave electronics. Using thin films of YBa2Cu3O7-delta and Tl2Ca2Ba2Cu3Ox deposited on a variety of substrates, including strontium titanate, lanthanum gallate, lanthanum aluminate and magnesium oxide, a number of microwave circuits have been fabricated and evaluated. These include a cavity resonator at 60 GHz, microstrip resonators at 35 GHz, a superconducting antenna array at 35 GHz, a dielectric resonator at 9 GHz, and a microstrip filter at 5 GHz. Performance of some of these circuits as well as suggestions for other applications are reported.

  4. Superconducting Microwave Electronics at Lewis Research Center

    Science.gov (United States)

    Warner, Joseph D.; Bhasin, Kul B.; Leonard, Regis F.

    1991-01-01

    Over the last three years, NASA Lewis Research Center has investigated the application of newly discovered high temperature superconductors to microwave electronics. Using thin films of YBa2Cu3O7-delta and Tl2Ca2Ba2Cu3Ox deposited on a variety of substrates, including strontium titanate, lanthanum gallate, lanthanum aluminate and magnesium oxide, a number of microwave circuits have been fabricated and evaluated. These include a cavity resonator at 60 GHz, microstrip resonators at 35 GHz, a superconducting antenna array at 35 GHz, a dielectric resonator at 9 GHz, and a microstrip filter at 5 GHz. Performance of some of these circuits as well as suggestions for other applications are reported.

  5. Molecular Science Research Center, 1991 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, M.L.

    1992-03-01

    During 1991, the Molecular Science Research Center (MSRC) experienced solid growth and accomplishment and the Environmental, and Molecular Sciences Laboratory (EMSL) construction project moved forward. We began with strong programs in chemical structure and dynamics and theory, modeling, and simulation, and both these programs continued to thrive. We also made significant advances in the development of programs in materials and interfaces and macromolecular structure and dynamics, largely as a result of the key staff recruited to lead these efforts. If there was one pervasive activity for the past year, however, it was to strengthen the role of the EMSL in the overall environmental restoration and waste management (ER/WM) mission at Hanford. These extended activities involved not only MSRC and EMSL staff but all PNL scientific and technical staff engaged in ER/WM programs.

  6. Mississippi State University Sustainable Energy Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Steele, W. Glenn [Mississippi State Univ., Mississippi State, MS (United States)

    2014-09-26

    The Sustainable Energy Research Center (SERC) project at Mississippi State University included all phases of biofuel production from feedstock development, to conversion to liquid transportation fuels, to engine testing of the fuels. The feedstocks work focused on non-food based crops and yielded an increased understanding of many significant Southeastern feedstocks. an emphasis was placed on energy grasses that could supplement the primary feedstock, wood. Two energy grasses, giant miscanthus and switchgrass, were developed that had increased yields per acre. Each of these grasses was patented and licensed to companies for commercialization. The fuels work focused on three different technologies that each led to a gasoline, diesel, or jet fuel product. The three technologies were microbial oil, pyrolysis oil, and syngas-to liquid-hydrocarbons

  7. Developmental Scientist | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION Within the Leidos Biomedical Research Inc.’s Clinical Research Directorate, the Clinical Monitoring Research Program (CMRP) provides high-quality comprehensive and strategic operational support to the high-profile domestic and international clinical research initiatives of the National Cancer Institute (NCI), National Institute of Allergy and Infectious Diseases (NIAID), Clinical Center (CC), National Institute of Heart, Lung and Blood Institute (NHLBI), National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Center for Advancing Translational Sciences (NCATS), National Institute of Neurological Disorders and Stroke (NINDS), and the National Institute of Mental Health (NIMH). Since its inception in 2001, CMRP’s ability to provide rapid responses, high-quality solutions, and to recruit and retain experts with a variety of backgrounds to meet the growing research portfolios of NCI, NIAID, CC, NHLBI, NIAMS, NCATS, NINDS, and NIMH has led to the considerable expansion of the program and its repertoire of support services. CMRP’s support services are strategically aligned with the program’s mission to provide comprehensive, dedicated support to assist National Institutes of Health researchers in providing the highest quality of clinical research in compliance with applicable regulations and guidelines, maintaining data integrity, and protecting human subjects. For the scientific advancement of clinical research, CMRP services include comprehensive clinical trials, regulatory, pharmacovigilance, protocol navigation and development, and programmatic and project management support for facilitating the conduct of 400+ Phase I, II, and III domestic and international trials on a yearly basis. These trials investigate the prevention, diagnosis, treatment of, and therapies for cancer, influenza, HIV, and other infectious diseases and viruses such as hepatitis C, tuberculosis, malaria, and Ebola virus; heart, lung, and

  8. Together with Research Centers and Universities

    Directory of Open Access Journals (Sweden)

    Nuno Domingos Garrido

    2016-10-01

    Full Text Available The Journal Motricidade has always been walking in parallel with the scientific communities. We found that the affiliation of most authors has, nearly always, a University (Uni or a Research Center (RC. In fact it is almost impossible to conduct research outside these two universes. In this sense, Uni and RC feed the most, if not all, of scientific journals worldwide. By this I mean that is in the interest of Motricidade to be associated with high-quality RC and Uni equally recognized. With regard to RC, Motricidade will publish this year a supplement of the International Congress of Research Centre in Sports Sciences, Health Sciences and Human Development (CIDESD. This RC has conducted research in a variety of areas within the Sport Sciences and Health and always with high recognition and associated publications. It was not by chance that this RC was evaluated with ‘very good’ by the Portuguese Foundation for Science and Technology (FCT panel and has been granted funding. This Congress, which takes place every two years, targets to converge research and high level practices within these three areas: Sports, Health and Human Development. The 2016 CIDESD edition is dedicated to "Exercise and Health, Sports and Human Development" and will be held at the University of Évora, between 11 and 12 November of 2016. The readers can check the program in the following link http://gdoc.uevora.pt/450120 and get more information in the Congress Site available at http://www.cidesd2016.uevora.pt/. With regard to Uni, Motricidade signed a cooperation protocol with the University of Beira Interior (UBI in May of 2016, involving the development and dissemination of scientific knowledge in Sports Sciences, Psychology, Human Development and Health. At the present, UBI hosts more than 6,000 students spread across five faculties - Arts & Letters, Sciences, Health Sciences, Humanities and Social Sciences and Engineering. When looking at the rankings, for instance

  9. The role of atomic and molecular processes in fusion research

    International Nuclear Information System (INIS)

    Harrison, M.F.A.

    1977-01-01

    This paper considers the relevance of atomic and molecular processes to research into controlled nuclear fusion and in particular their effects upon the magnetically confined plasma in Tokamak experiments and conceptual Tokamak reactors. The relative significance of collective phenomena and of single particle collisions to both plasma heating and loss processes are discussed and the pertinent principles of plasma refuelling and plasma diagnostics are outlined. The methods by which atomic and molecular data are applied to these problems, the contributing effects of surface interactions and the consequent implications upon the accuracy and the type of data needed are described in a qualitative manner. Whilst particular atomic and molecular processes are not discussed in detail, sufficient information is given of the physical environments of Tokamak devices for significant processes to be self evident. (author)

  10. Louisiana Transportation Research Center : Annual report, 2016-2017

    Science.gov (United States)

    2017-10-11

    This publication is a report of the transportation research, technology transfer, education, and training activities of the Louisiana Transportation Research Center for July 1, 2016 - June 30, 2017. The center is sponsored jointly by the Louisiana De...

  11. Cellular Imaging | Center for Cancer Research

    Science.gov (United States)

    Innovative imaging methods developed and refined within CCR revealed atomic-level structures of biological molecules and unveiled dynamic views of a cell’s interior that are driving the design of new treatments and diagnostics for cancer.

  12. Langley Research Center Strategic Plan for Education

    Science.gov (United States)

    Proctor, Sandra B.

    1994-01-01

    Research assignment centered on the preparation of final draft of the NASA Langley Strategic Plan for Education. Primary research activity consisted of data collection, through interviews with LaRC Office of Education and NASA Headquarters staff, university administrators and faculty, and school administrators / teachers; and documentary analysis. Pre-college and university programs were critically reviewed to assure effectiveness, support of NASA and Langley's mission and goals; National Education Goals; and educational reform strategies. In addition to these mandates, pre-college programs were reviewed to address present and future LaRC activities for teacher enhancement and preparation. University programs were reviewed with emphasis on student support and recruitment; faculty development and enhancement; and LaRC's role in promoting the utilization of educational technologies and distance learning. The LaRC Strategic Plan for Education will enable the Office of Education to provide a focused and well planned continuum of education programs for students, teachers and faculty. It will serve to direct and focus present activities and programs while simultaneously offering the flexibility to address new and emerging directions based on changing national, state, and agency trends.

  13. Center for Ecotoxicological Research of Montenegro

    International Nuclear Information System (INIS)

    Vucinic, Z.

    2006-01-01

    PI Center for Ecotoxicological Research of Montenegro (CETI) is founded 1996's in accordance with Government policy, for the purpose to: Unite the problems of protecting the environment in one institution, Organize the monitoring of the all segments of environment (air, waters soils, waste, ionizing and non-ionizing radiation, noise measurements etc.), Organize control of human and animal food and toxicological analysis of all kind of samples, forensic analyses etc. To concentrate the expensive instrumental equipment and human resources in one institution. December 1996 - CETI founded by decision of Montenegrin government 1997-CETI starting with acquisition of equipment and education of the staff March of 1998 - Officially starting with the job and realization with Program's September 2004 - Took the ISO 9001:2000 Certificate and Accreditation under ISO/IEC 17025 in November 2004 Organisation Scheme of CETI: Laboratory For Ecotoxicological Research And Radiation Protection I. Department For Laboratory Diagnostic And Monitoring II. Department For Radiation Protection And Monitoring Sector For Administration Department For Economy Department For Administration Total number of Employs is 63 of permanent staff

  14. Overview of Stirling Technology Research at NASA Glenn Research Center

    Science.gov (United States)

    Wilson, Scott D.; Schifer, Nicholas A.; Williams, Zachary D.; Metscher, Jonathan F.

    2016-01-01

    Stirling Radioisotope Power Systems (RPSs) are under development to provide power on future space science missions where robotic spacecraft will orbit, fly by, land, or rove using less than a quarter of the plutonium the currently available RPS uses to produce about the same power. NASA Glenn Research Center's newly formulated Stirling Cycle Technology Development Project (SCTDP) continues development of Stirling-based systems and subsystems, which include a flight-like generator and related housing assembly, controller, and convertors. The project also develops less mature technologies under Stirling Technology Research, with a focus on demonstration in representative environments to increase the technology readiness level (TRL). Matured technologies are evaluated for selection in future generator designs. Stirling Technology Research tasks focus on a wide variety of objectives, including increasing temperature capability to enable new environments, reducing generator mass and/or size, improving reliability and system fault tolerance, and developing alternative designs. The task objectives and status are summarized.

  15. Future atomic physics researches at HIRFL-CSR

    International Nuclear Information System (INIS)

    Cai Xiaohong; Xia Jiawen; Zhan Wenlong

    1999-01-01

    A new storage ring system, HIRFL-CSR, is now in construction in the National Laboratory of Heavy Ion Research Facility of Lanzhou, China. The new facility consists of a main ring (CSRm) and an experimental ring (CSRe). With the flexibility of the production and the investigation of highly charged ions and radioactive ion beams the new HIRFL-CSR facility will make many frontier atomic physics researches possible in near future. The future physics researches at the HIRFL-CSR are now under consideration. In this paper an overview of the HIRFL-CSR project is given, and the main atomic physics programs to be carried at the HIRFL-CSR are presented. (orig.)

  16. Idaho National Laboratory - Nuclear Research Center

    International Nuclear Information System (INIS)

    Zaidi, M.K.

    2005-01-01

    Full text: The Idaho National Laboratory is committed to the providing international nuclear leadership for the 21st Century, developing and demonstrating compiling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multiprogram national laboratories. INL runs three major programs - Nuclear, Security and Science. nuclear programs covers the Advanced test reactor, Six Generation technology concepts selected for R and D, Targeting tumors - Boron Neutron capture therapy. Homeland security - Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science - INL facility established for Geocentrifuge Research, Idaho Laboratory, a Utah company achieved major milestone in hydrogen research and INL uses extremophile bacteria to ease bleaching's environmental cost. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (Inset). The institute will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer Inset is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'

  17. Atomic-scale processes revealing dynamic twin boundary strengthening mechanisms in face-centered cubic materials

    International Nuclear Information System (INIS)

    Yang, Z.Q.; Chisholm, M.F.; He, L.L.; Pennycook, S.J.; Ye, H.Q.

    2012-01-01

    We report experimental investigations on interactions/reactions between dislocations and twin boundaries in Al. The absorption of screw dislocations via cross-slip and the production of stair-rods via reactions with non-screw dislocations were verified by atomic resolution imaging. Importantly, the resulting partial dislocations moving along twin boundaries can produce secondary sessile defects. These immobile defects act as obstacles to other dislocations and also serve to pin the twin boundaries. These findings show the atomic-level dynamics of the dislocation–twin boundary processes and the unique strengthening mechanism of twin boundaries in face-centered cubic metals.

  18. Compilation and evaluation of atomic and molecular data relevant to controlled thermonuclear research needs: USA programs

    International Nuclear Information System (INIS)

    Barnett, C.F.

    1976-01-01

    The U.S. role in the compilation and evaluation of atomic data for controlled thermonuclear research is discussed in the following three areas: (1) atomic structure data, (2) atomic collision data, and (3) surface data

  19. 2004 Atomic and Molecular Interactions Gordon Research Conference

    International Nuclear Information System (INIS)

    Dr. Paul J. Dagdigian

    2004-01-01

    The 2004 Gordon Research Conference on Atomic and Molecular Interactions was held July 11-16 at Colby-Sawyer College, New London, New Hampshire. This latest edition in a long-standing conference series featured invited talks and contributed poster papers on dynamics and intermolecular interactions in a variety of environments, ranging from the gas phase through surfaces and condensed media. A total of 90 conferees participated in the conference

  20. 2004 Atomic and Molecular Interactions Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Paul J. Dagdigian

    2004-10-25

    The 2004 Gordon Research Conference on Atomic and Molecular Interactions was held July 11-16 at Colby-Sawyer College, New London, New Hampshire. This latest edition in a long-standing conference series featured invited talks and contributed poster papers on dynamics and intermolecular interactions in a variety of environments, ranging from the gas phase through surfaces and condensed media. A total of 90 conferees participated in the conference.

  1. Organizing Committee Advisory Committee 187

    Indian Academy of Sciences (India)

    Organizing Committee. V M Datar (Chairman). Bhabha Atomic Research Centre, Mumbai, India. D C Biswas (Convener). Bhabha Atomic Research Centre, Mumbai, India. K Mahata (Secretary). Bhabha Atomic Research Centre, Mumbai, India. Z Ahmed. Bhabha Atomic Research Centre, Mumbai, India. P V Bhagwat.

  2. On-going research projects at Ankara Nuclear Research Center in Agriculture and Animal Science

    International Nuclear Information System (INIS)

    Tukenmez, I.

    2004-01-01

    Full text: The research and development activities of Ankara Nuclear Research Center in Agriculture and Animal Science(ANRCAA) are concentrated on the contribution of atomic energy to peace by the use of nuclear and related techniques in food, agriculture and animal science. Nuclear techniques are used in the above fields in two ways: in vitro or in vivo radio tracing the substances and processes of biological importance, and irradiation of biological materials for preservation and quality modification. Research projects are carried out by interdisciplinary studies with well equipped laboratories at the Center. The projects in progress conducted by the Center comprises nuclear-aided researches in soil fertility, plant nutrition, plant protection, improvement of field crops, improvement of horticultural plants and forest trees by mutation breeding, in vitro culture technique with mutagen treatments, use of phosphogypsum in soil amelioration, sterilization of medical supplies, wastewater treatment, animal nutrition, animal health and productivity and accreditation. The on-going projects with the above subjects will be summarized for possible collaborations

  3. On-going research projects at Ankara Nuclear research center in agriculture and animal science

    International Nuclear Information System (INIS)

    Tukenmez, I.

    2004-01-01

    Full text:The research and development activities of Ankara Nuclear Research Center in Agriculture and Animal Science(ANRCAA) are concentrated on the contribution of atomic energy to peace by the use of nuclear and related techniques in food, agriculture and animal science. Nuclear techniques are used in the above fields in two ways: in vitro or in vivo radio tracing the substances and processes of biological importance, and irradiation of biological materials for preservation and quality modification. Research projects are carried out by interdisciplinary studies with well equipped laboratories at the Center. The projects in progress conducted by the Center comprises nuclear-aided researches in soil fertility, plant nutrition, plant protection, improvement of field crops, improvement of horticultural plants and forest trees by mutation breeding, in vitro culture technique with mutagen treatments, use of phosphogypsum in soil amelioration, sterilization of medical supplies, wastewater treatment, animal nutrition, animal health and productivity and accreditation. The on-going projects with the above subjects will be summarized for possible collaborations

  4. Cooperative research with CHECIR (CHErnobyl Center for International Research)

    International Nuclear Information System (INIS)

    Nagaoka, T.; Saito, K.; Sakamoto, R.; Tsutsumi, M.; Moriuchi, S.

    1994-01-01

    The Chernobyl Center for International Research (CHECIR) has been established under an agreement among IAEA. Russia, Byelorussia and Ukraine in order to implement various studies on the reactor facilities and on the environment near and around the reactor. JAERI started discussions with a view to join the idea on the research project of study on assessment and analysis of environmental consequences in contaminated area. On June, 1992, JAERI and CHECIR concluded an agreement on the Implementation of Research at the CHECIR. Under the agreement, JAERI has started 'Study on Assessment and Analysis of Environmental Radiological Consequences and Verification of an Assessment System'. This project is scheduled to last until 1996. This study consists of following two subjects. Subject-1: Study on Measurements and Evaluation of Environmental External Exposure after Nuclear Accident. Subject-2: Study on the Validation of Assessment Models in an Environmental Consequence Assessment Methodology for Nuclear Accidents. Subject-3: Study on Migration of Radionuclides Released into Rivers adjacent to the Chernobyl Nuclear Power Plant (planned to start from FY1994). In this workshop, research activity will be introduced with actually measured data. (J.P.N.)

  5. Instrumentation at the National Center for Electron Microscopy: the Atomic Resolution Microscope

    International Nuclear Information System (INIS)

    Gronsky, R.; Thomas, G.

    1983-01-01

    The Atomic Resolution Microscope (ARM) is one of two unique high voltage electron microscopes at the Lawrence Berkeley Laboratory's National Center for Electron Microscopy (NCEM). The latest results from this new instrument which was manufactured by JEOL, Ltd. to the performance specifications of the NCEM, delivered in January of 1983, and soon to be open to access by the entire microscopy community are given. Details of its history and development are given and its performance specifications are reviewed

  6. Armstrong Flight Research Center Research Technology and Engineering 2017

    Science.gov (United States)

    Voracek, David F. (Editor)

    2018-01-01

    I am delighted to present this report of accomplishments at NASA's Armstrong Flight Research Center. Our dedicated innovators possess a wealth of performance, safety, and technical capabilities spanning a wide variety of research areas involving aircraft, electronic sensors, instrumentation, environmental and earth science, celestial observations, and much more. They not only perform tasks necessary to safely and successfully accomplish Armstrong's flight research and test missions but also support NASA missions across the entire Agency. Armstrong's project teams have successfully accomplished many of the nation's most complex flight research projects by crafting creative solutions that advance emerging technologies from concept development and experimental formulation to final testing. We are developing and refining technologies for ultra-efficient aircraft, electric propulsion vehicles, a low boom flight demonstrator, air launch systems, and experimental x-planes, to name a few. Additionally, with our unique location and airborne research laboratories, we are testing and validating new research concepts. Summaries of each project highlighting key results and benefits of the effort are provided in the following pages. Technology areas for the projects include electric propulsion, vehicle efficiency, supersonics, space and hypersonics, autonomous systems, flight and ground experimental test technologies, and much more. Additional technical information is available in the appendix, as well as contact information for the Principal Investigator of each project. I am proud of the work we do here at Armstrong and am pleased to share these details with you. We welcome opportunities for partnership and collaboration, so please contact us to learn more about these cutting-edge innovations and how they might align with your needs.

  7. University of Kentucky Center for Applied Energy Research

    Science.gov (United States)

    University of Kentucky Center for Applied Energy Research Search Help Research Our Expertise University of Kentucky Center for Applied Energy Research | An Equal Opportunity University All Rights Remediation Power Generation CAER TechFacts CAER Factsheets CAER Affiliations Research Contacts Publications

  8. 'Bhabhatron'- a step in realizing Bhabha's vision for cancer radiotherapy

    International Nuclear Information System (INIS)

    Shrivastava, S.K.; Gupta, T.; Sarin, R.; Dinshaw, K.A.; Deshpande, D.D.; Phurailatpam, R.; Singh, M.; Kar, D.C.; Jayarajan, K.

    2009-01-01

    Currently there is a huge shortfall in the availability of Radiotherapy equipment in the entire developing world. While in the developed countries there are 2-4 teletherapy machines available per million population considering the prevailing socio-economic conditions, the WHO has recommended 1 teletherapy unit per million population for the developing countries to provide essential cancer services. There are several developing countries, which do not have a single teletherapy machine and most others fall way short of the WHO recommendation of one machine per million population. The number of new teletherapy machine installation in India has increased rapidly in the last 5 years. However with approximately 400 teletherapy units existing for a population of over a billion, we still need another 800 teletherapy machines to reach a very modest target of 1 machine per million population. Among other reasons the cost of the imported teletherapy equipment is one of the important deterrent towards fulfilling this huge shortfall of 800 teletherapy units in our country. 'Bhabhatron' can be considered a small but significant step in the whole programme of 'Atoms for Peace'

  9. Center for Biologics Evaluation and Research (CBER)

    Data.gov (United States)

    Federal Laboratory Consortium — CBER is the Center within FDA that regulates biological products for human use under applicable federal laws, including the Public Health Service Act and the Federal...

  10. Fisher Center for Alzheimer's Research Foundation

    Science.gov (United States)

    ... Hear Kent Karosen, President and CEO of the Fisher Center, describe his new book and the power ... Signs of Alzheimer's Clinical Stages of Alzheimer’s About Fisher About Us Board of Trustees Financials Terms of ...

  11. Center Independent Research & Developments: JSC IRAD Program

    Data.gov (United States)

    National Aeronautics and Space Administration — JSC provides and applies its preeminent capabilities in science and technology to develop, operate, and integrate human exploration missions.  The center...

  12. The status of shielding research at Tajoura research center

    International Nuclear Information System (INIS)

    El-Bakkoush, F.A.

    2005-01-01

    This paper gives a description to the shielding research activities which have been carried-out at the radiation shielding group ,Tajoura Research Center. This includes the design of different types of concrete shields made from local aggregates which have suitable radiation attenuation properties. These include, Ordinary Concrete(with density p = 2.3 ton/m3) heavy weight concrete (with density p =3.6 ton/m3) and heat resistant concrete with aggregates having bound- in water. Investigation have been carried -out by measuring the neutron and gamma-rays spectra which have been transmitted through barriers having different thickness. These were performed using a collimated beam of reactor neutrons and gamma-ray transmitted from the horizontal channel no 1 of Tajoura-Research reactor with 10 MW Max ape rating power. The transmitted fast neutron and gamma spectra were measured by neutron-gamma spectrometer employing NE-213 liquid organic scintillater. Discrimination of against undesired pulses of neutrons or gamma-ray was achieved by a pulse shape discrimination method based on differences in the shape of the decay part of the emitted pulses. The obtained results are presented in the form of displayed neutron and gamma spectra measured behind different thickness of the investigated concrete shield. These spectra were used to derive the macroscopic cross section for at different energy for material under investigation

  13. Armstrong Flight Research Center Research Technology and Engineering Report 2015

    Science.gov (United States)

    Voracek, David F.

    2016-01-01

    I am honored to endorse the 2015 Neil A. Armstrong Flight Research Center’s Research, Technology, and Engineering Report. The talented researchers, engineers, and scientists at Armstrong are continuing a long, rich legacy of creating innovative approaches to solving some of the difficult problems and challenges facing NASA and the aerospace community.Projects at NASA Armstrong advance technologies that will improve aerodynamic efficiency, increase fuel economy, reduce emissions and aircraft noise, and enable the integration of unmanned aircraft into the national airspace. The work represented in this report highlights the Center’s agility to develop technologies supporting each of NASA’s core missions and, more importantly, technologies that are preparing us for the future of aviation and space exploration.We are excited about our role in NASA’s mission to develop transformative aviation capabilities and open new markets for industry. One of our key strengths is the ability to rapidly move emerging techniques and technologies into flight evaluation so that we can quickly identify their strengths, shortcomings, and potential applications.This report presents a brief summary of the technology work of the Center. It also contains contact information for the associated technologists responsible for the work. Don’t hesitate to contact them for more information or for collaboration ideas.

  14. Breast Cancer Translational Research Center of Excellence

    Science.gov (United States)

    2015-09-01

    CBCP) Breast Center is the Army-recognized and Military-recognized specialty referral center for t r i - se rv ice active duty personnel from around...development of customized treatment options in patients with HER2+ breast cancer. Objective 1 Evaluate differences in the molecular profiles of...2014CBCP & CCBB Analysis of Errors & Corrections 11/7/2014Customer Satisfaction Results Analysis 1/7/2015Audit of signed-out tissue samples in -80 freezer

  15. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    Science.gov (United States)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  16. Homi Bhabha Centre for Science Education Tata Institute of ...

    Indian Academy of Sciences (India)

    Tata Institute of Fundamental Research (A Deemed University) ... level • Innovative curricula, laboratories, teaching and assessment methods • Development ... subject), M Tech or a Master's degree (MA/MSW) in any of the social/ behavioural.

  17. Violation of the factorization theorem in large-angle radiative Bhabha scattering

    International Nuclear Information System (INIS)

    Arbuzov, A.B.; Kuraev, Eh.A.; Shajkhatdenov, B.G.

    1998-01-01

    The lowest order QED radiative corrections to the radiative large-angle Bhabha scattering process in the region where all the kinematical invariants are large compared to the electron mass are considered. We show that the leading logarithmic corrections do not factor before the Born cross section, contrary to the picture assumed in the renormalization group approach. Estimation of the leading and nonleading contributions for typical kinematics of the hard process for energy of Φ factory is done

  18. Atoms

    International Nuclear Information System (INIS)

    Fuchs, Alain; Villani, Cedric; Guthleben, Denis; Leduc, Michele; Brenner, Anastasios; Pouthas, Joel; Perrin, Jean

    2014-01-01

    Completed by recent contributions on various topics (atoms and the Brownian motion, the career of Jean Perrin, the evolution of atomic physics since Jean Perrin, relationship between scientific atomism and philosophical atomism), this book is a reprint of a book published at the beginning of the twentieth century in which the author addressed the relationship between atomic theory and chemistry (molecules, atoms, the Avogadro hypothesis, molecule structures, solutes, upper limits of molecular quantities), molecular agitation (molecule velocity, molecule rotation or vibration, molecular free range), the Brownian motion and emulsions (history and general features, statistical equilibrium of emulsions), the laws of the Brownian motion (Einstein's theory, experimental control), fluctuations (the theory of Smoluchowski), light and quanta (black body, extension of quantum theory), the electricity atom, the atom genesis and destruction (transmutations, atom counting)

  19. Wave Energy Research, Testing and Demonstration Center

    Energy Technology Data Exchange (ETDEWEB)

    Batten, Belinda [Oregon State Univ., Corvallis, OR (United States)

    2014-09-30

    The purpose of this project was to build upon the research, development and testing experience of the Northwest National Marine Renewable Energy Center (NNMREC) to establish a non-grid connected open-ocean testing facility for wave energy converters (WECs) off the coast of Newport, Oregon. The test facility would serve as the first facility of its kind in the continental US with a fully energetic wave resource where WEC technologies could be proven for west coast US markets. The test facility would provide the opportunity for self-contained WEC testing or WEC testing connected via an umbilical cable to a mobile ocean test berth (MOTB). The MOTB would act as a “grid surrogate” measuring energy produced by the WEC and the environmental conditions under which the energy was produced. In order to realize this vision, the ocean site would need to be identified through outreach to community stakeholders, and then regulatory and permitting processes would be undertaken. Part of those processes would require environmental baseline studies and site analysis, including benthic, acoustic and wave resource characterization. The MOTB and its myriad systems would need to be designed and constructed.The first WEC test at the facility with the MOTB was completed within this project with the WET-NZ device in summer 2012. In summer 2013, the MOTB was deployed with load cells on its mooring lines to characterize forces on mooring systems in a variety of sea states. Throughout both testing seasons, studies were done to analyze environmental effects during testing operations. Test protocols and best management practices for open ocean operations were developed. As a result of this project, the non-grid connected fully energetic WEC test facility is operational, and the MOTB system developed provides a portable concept for WEC testing. The permitting process used provides a model for other wave energy projects, especially those in the Pacific Northwest that have similar

  20. Juelich Research Center. Annual report 1991

    International Nuclear Information System (INIS)

    1991-10-01

    The Research Centre Juelich (KFA) as one of the thirteen national research centres in the Federal Republic of Germany is probably unique in that it concentrates equally on four essentials for mankind - energy, health and environment, materials and matter as well as information. These basic requirements are reflected by the four priority programmes characterizing research at the KFA in the nineties. The research priorities are: Properties of Matter and Material Research; Basic Research on Information Technology; Health, Environment, Biotechnology; Energy Research and Technology; Nuclear Fusion; Basic Nuclear Research; Interdisciplinary Analyses and Methods. (orig./HSCH) [de

  1. Bastyr/UW Oncomycology Translational Research Center

    Data.gov (United States)

    Federal Laboratory Consortium — Research Area: FungiProgram: Partnerships for CAM Clinical Translational ResearchDescription:Trametes versicolor is an immunologically active medicinal mushroom that...

  2. Earth Radiation Budget Research at the NASA Langley Research Center

    Science.gov (United States)

    Smith, G. Louis; Harrison, Edwin F.; Gibson, Gary G.

    2014-01-01

    In the 1970s research studies concentrating on satellite measurements of Earth's radiation budget started at the NASA Langley Research Center. Since that beginning, considerable effort has been devoted to developing measurement techniques, data analysis methods, and time-space sampling strategies to meet the radiation budget science requirements for climate studies. Implementation and success of the Earth Radiation Budget Experiment (ERBE) and the Clouds and the Earth's Radiant Energy System (CERES) was due to the remarkable teamwork of many engineers, scientists, and data analysts. Data from ERBE have provided a new understanding of the effects of clouds, aerosols, and El Nino/La Nina oscillation on the Earth's radiation. CERES spacecraft instruments have extended the time coverage with high quality climate data records for over a decade. Using ERBE and CERES measurements these teams have created information about radiation at the top of the atmosphere, at the surface, and throughout the atmosphere for a better understanding of our climate. They have also generated surface radiation products for designers of solar power plants and buildings and numerous other applications

  3. Physician Assistant | Center for Cancer Research

    Science.gov (United States)

    counseling within the boundaries of his/her specialty area of education and clinical preparation (pediatrics, adults, urologic, surgical, etc.). Review assigned patient resident reports and carry and answer the resident pager. Provide coverage for the post-call resident’s patients, while working closely with the Inpatient/Fellowship staff.  Support in-patient and out-patient care of subjects enrolled in experimental protocols and clinical trials. Work as a member of a multidisciplinary clinical team to provide comprehensive care to patients in a research environment. Write prescriptions. Explain the care management/discharge plan to all members of the covering team (inpatient NPs, attendings) at signout. This position is located in Bethesda, Maryland in support of the Center for Cancer Research (CCR).

  4. Density functional theory calculations establish the experimental evidence of the DX center atomic structure in CdTe.

    Science.gov (United States)

    Lany, Stephan; Wolf, Herbert; Wichert, Thomas

    2004-06-04

    The In DX center and the DX-like configuration of the Cd host atom in CdTe are investigated using density functional theory. The simultaneous calculation of the atomic structure and the electric field gradient (EFG) allows one to correlate the theoretically predicted structure of the DX center with an experimental observable, namely, the EFG obtained from radioactive 111In/111Cd probe atoms in In doped CdTe. In this way, the experimental identification of the DX center structure is established.

  5. Quality Control Specialist | Center for Cancer Research

    Science.gov (United States)

    Within the Leidos Biomedical Research Inc.’s Clinical Research Directorate, the Clinical Monitoring Research Program (CMRP) provides high-quality comprehensive and strategic operational support to the high-profile domestic and international clinical research initiatives of the National Cancer Institute (NCI), National Institute of Allergy and Infectious Diseases (NIAID),

  6. Multi-Institution Research Centers: Planning and Management Challenges

    Science.gov (United States)

    Spooner, Catherine; Lavey, Lisa; Mukuka, Chilandu; Eames-Brown, Rosslyn

    2016-01-01

    Funding multi-institution centers of research excellence (CREs) has become a common means of supporting collaborative partnerships to address specific research topics. However, there is little guidance for those planning or managing a multi-institution CRE, which faces specific challenges not faced by single-institution research centers. We…

  7. Naval Health Research Center 1985 Annual Report

    Science.gov (United States)

    1985-01-01

    strengthening programs for the entire crew. Aerobic programs for select populations (e.g., overweight personnel), however, were found on 20% of the...Institute, Lima Detachment, Peru (Command) 25-26 UCOR R. Kallal, CUP W. J. Lambert, & M. Nave, Naval Data Services Center, Bethesda, Maryland (Dr

  8. Veterinary Oncologist | Center for Cancer Research

    Science.gov (United States)

    The NCI is implementing a program intended to connect and closely coordinate the Division of Cancer Treatment and Diagnosis’ (DCTD’s) immunotherapeutics and other drug development activities with the translational oriented clinical trials of the Center for Cancer Research’s (CCR’s) Comparative Oncology Program (COP), especially the treatment of dogs with natural occurring

  9. Proceedings of the fifteenth Symposium of Atomic Energy Research

    International Nuclear Information System (INIS)

    Vidovszky, I.

    2005-11-01

    The present volume contains 59 papers, presented on the fifteenth Symposium of Atomic Energy Research, held in Znojmo, Czech Republic, 3-7 October 2005. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Spectral and Core Calculation Methods, Core Design, Operation and Fuel Management, Core Monitoring, Surveillance and Testing, Neutron Kinetics and Reactor Dynamics Methods, Criticality Safety, Spent Fuel, and CFD Codes Application - according to the presentation sequence on the Symposium

  10. Proceedings of the eighth Symposium of Atomic Energy Research

    International Nuclear Information System (INIS)

    Vidovszky, I.

    1998-10-01

    These are the remaining 9 papers, presented on the eighth Symposium of Atomic Energy Research, held in Bystrice nad Perstejnem, Czech Republic, 21-25 September 1998. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Spectral and Core Calculation Methods, Core Design, Operation and Fuel Management, Core Monitoring, Surveillance and Testing, Neutron Kinetics and reactor Dynamics Methods, Safety Issues and Analysis, Rod Drop Reactivity Measurements, Criticality safety, Spent Fuel and Decommissioning, - according to the presentation sequence on the Symposium

  11. Proceedings of the thirteenth Symposium of Atomic Energy Research

    International Nuclear Information System (INIS)

    Vidovszky, Istvan

    2003-11-01

    The present volume contains 58 papers, presented on the thirteenth Symposium of Atomic Energy Research, held in Dresden, Germany, 22-26 September 2003. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Core Monitoring, Surveillance and Testing, Safety Issues, Spectral and Core Calculation Methods, Core Operation and Fuel Management, Spent Fuel Transmutations and Decommissioning, Neutron Kinetics and reactor Dynamics Methods, Poster Session - according to the presentation sequence on the Symposium

  12. Proceedings of the twelfth Symposium of Atomic Energy Research

    International Nuclear Information System (INIS)

    Vidovszky, Istvan

    2002-11-01

    The present volume contains 45 papers, presented on the twelfth Symposium of Atomic Energy Research, held in Sunny Beach, Bulgaria, 22-28 September 2002. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Core Monitoring, Surveillance and Testing, Safety Issues, Core Operation and Fuel Management, Spectral and Core Calculation Methods, Spent Fuel Transmutations and Decommissioning, Neutron Kinetics and reactor Dynamics Methods, Poster Session - according to the presentation sequence on the Symposium

  13. Proceedings of the eleventh Symposium of Atomic Energy Research

    International Nuclear Information System (INIS)

    Vidovszky, Istvan

    2001-12-01

    The present volume contains 57 papers, presented on the eleventh Symposium of Atomic Energy Research, held in Csopak, Hungary, 24-28 September 2001. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Improvement of Neutron Physical Codes and Methods, Reactor Kinetics and Dynamics, Thermal-Hydraulics, Spent Fuel - Criticality Radiation, Fuel Behaviour, Spent Fuel Transmutation, Evaluation of Reactor Physical Measurements, Core Design-Core Calculations-according to the presentation sequence on the Symposium (Author)

  14. Cooperation in research in the European Atomic Energy Community (EURATOM)

    International Nuclear Information System (INIS)

    Marka, Philippe.

    1977-01-01

    This work studies the legal instruments for cooperative research granted to Euratom under the Treaty establishing the European Atomic Energy Community, and the conditions whereby concrete use was made of these instruments. This assessment of Euratom's efforts to launch a community nuclear industry is accompanied by an analysis of the respective roles of the bodies of the Community, the Council and the Commission, as well as of the circumstances which, according to the author, have led to a paralysis of this institution. (NEA) [fr

  15. Proceedings of the 16. Symposium of Atomic Energy Research

    International Nuclear Information System (INIS)

    Vidovszky, Istvan

    2006-10-01

    The present volume contains 56 papers, presented on the sixteenth Symposium of Atomic Energy Research, held in Bratislava, Slovakia, 25-29 September 2006. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Spectral and Core Calculation, Core Operation Experiments and Code Validation, Fuel Management, Core Surveillance and Monitoring, Reactor Dynamics Thermal Hydraulics and Safety Analysis, Physical Problems of Spent Fuel Decommissioning, and Radwaste, Actinide Transmutation and Spent Fuel Disposal - according to the presentation sequence on the Symposium (Author)

  16. Proceedings of the twentieth symposium of atomic energy research

    International Nuclear Information System (INIS)

    Vidovszky, I.

    2010-10-01

    The present volume contains 69 papers, presented on the twentieth symposium of atomic energy research, held in Hanasaari, Espoo, Finland, 20-24 September 2010. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Fuel Management, Spectral and Core Calculations, Core Surveillance and Monitoring, CFD Analysis, Reactor Dynamics Thermal Hydraulics and Safety Analysis, Physical Problems of Spent Fuel Decommissioning and Radwaste, Actinide Transmutation and Spent Fuel Disposal, Core Operation, Experiments and Code Validation - according to the presentation sequence on the Symposium. (Author)

  17. A model for the stabilization of atomic hydrogen centers in borate glasses

    International Nuclear Information System (INIS)

    Pontuschka, W.M.; Isotani, S.; Furtado, W.W.; Piccini, A.; Rabbani, S.R.

    1989-04-01

    A model describing the trapping site of the interstitial atomic hydrogen (H sup(0) sub(i) in borate glasses x-irradiated at 77 K is proposed. The hydrogen atom is stabilized at the centers of oxygen polygons belonging to B-O ring structures in the glass network by van der Waals forces. The previously reported H sup(0) sub(i) isothermal decay experimental data are discussed in the light of this microscopic model. A coupled differential equation system describing the possible reactions was numerically solved by means of Runge-Kutta's method. The parameter best fit was found by trial and error. The untrapping parameter provided an activation energy of 0.7 x 10 sup(-19) J, in good agreement with the calculated results for dispersion interactions between the stabilized atomic hydrogen and the neighbouring oxygen atoms at the vertices of hexagonal and heptagonal structures. The retrapping and recombination parameters were found to be correlated to (T sup1/2) - T sup(1/2) sub(0)) where t sub(0)=179 K is a cutoff temperature for the kinetics process. (author)

  18. Research and development of fusion grid infrastructure based on atomic energy grid infrastructure (AEGIS)

    International Nuclear Information System (INIS)

    Suzuki, Y.; Nakajima, K.; Kushida, N.; Kino, C.; Aoyagi, T.; Nakajima, N.; Iba, K.; Hayashi, N.; Ozeki, T.; Totsuka, T.; Nakanishi, H.; Nagayama, Y.

    2008-01-01

    In collaboration with the Naka Fusion Institute of Japan Atomic Energy Agency (NFI/JAEA) and the National Institute for Fusion Science of National Institute of Natural Science (NIFS/NINS), Center for Computational Science and E-systems of Japan Atomic Energy Agency (CCSE/JAEA) aims at establishing an integrated framework for experiments and analyses in nuclear fusion research based on the atomic energy grid infrastructure (AEGIS). AEGIS has been being developed by CCSE/JAEA aiming at providing the infrastructure that enables atomic energy researchers in remote locations to carry out R and D efficiently and collaboratively through the Internet. Toward establishing the integrated framework, we have been applying AEGIS to pre-existing three systems: experiment system, remote data acquisition system, and integrated analysis system. For the experiment system, the secure remote experiment system with JT-60 has been successfully accomplished. For the remote data acquisition system, it will be possible to equivalently operate experimental data obtained from LHD data acquisition and management system (LABCOM system) and JT-60 Data System. The integrated analysis system has been extended to the system executable in heterogeneous computers among institutes

  19. NASA Langley Research Center outreach in astronautical education

    Science.gov (United States)

    Duberg, J. E.

    1976-01-01

    The Langley Research Center has traditionally maintained an active relationship with the academic community, especially at the graduate level, to promote the Center's research program and to make graduate education available to its staff. Two new institutes at the Center - the Joint Institute for Acoustics and Flight Sciences, and the Institute for Computer Applications - are discussed. Both provide for research activity at the Center by university faculties. The American Society of Engineering Education Summer Faculty Fellowship Program and the NASA-NRC Postdoctoral Resident Research Associateship Program are also discussed.

  20. University of Washington Center for Child Environmental Health Risks Research

    Data.gov (United States)

    Federal Laboratory Consortium — The theme of the University of Washington based Center for Child Environmental Health Risks Research (CHC) is understanding the biochemical, molecular and exposure...

  1. Statistical Tutorial | Center for Cancer Research

    Science.gov (United States)

    Recent advances in cancer biology have resulted in the need for increased statistical analysis of research data.  ST is designed as a follow up to Statistical Analysis of Research Data (SARD) held in April 2018.  The tutorial will apply the general principles of statistical analysis of research data including descriptive statistics, z- and t-tests of means and mean

  2. Annual report of the Department of Atomic Energy 1975-76

    International Nuclear Information System (INIS)

    1976-01-01

    The activities of the various constituent units of the Department of Atomic Energy such as the Bhabha Atomic Research Centre, Reactor Research Centre, Variable Energy Cyclotron, the power stations and a few others during the year 1975-76 are reported. The progress achieved in the field of atomic minerals, nuclear medicine, nuclear power, development of radioisotopes etc. are presented in detail. The responsibilities and achievements of the public sector undertakings under Department of Atomic Energy such as the Indian Rare Earth Ltd., Electronics Corporation of India Ltd., Uranium Corporation of India Ltd., are highlighted. Other activities such as planning and execution, economic and personnel health aspects, international relations etc. are also mentioned. (A.K.)

  3. The Ongkharak Nuclear Research Center (ONRC) research reactor project: a status review

    International Nuclear Information System (INIS)

    Rusch, R.; Jacobi, A. Jr.; Yamkate, P.

    2001-01-01

    The new Ongkharak Nuclear Research Center in the vicinity of Bangkok, Thailand is planned to replace the more than 30 years old facilities located in the Chatuchak district, Bangkok. An international team led by general atomics (GA) is designing and constructing the new research complex. It comprises a 10 MW TRIGA type reactor, an isotope production and a centralized waste processing and storage facility. Electrowatt-Ekono Ltd. was hired by the Thai Government Agency, the Office of Atomic Energy for Peace (OAEP), as a consultant to the project. As the project is now approaching the end of its 4 th year, it now stands at a decisive turning point. Basic design is nearly completed and detailed design is well advanced. The turnkey part of the contract including the reactor island, the isotope and waste facilities are still awaiting the issuance of the Construction Permit. Significant progress has been made on the other part of the project, which includes all the supporting infrastructure facilities. The Preliminary Safety Analysis Report (PSAR), prepared by GA, has been reviewed by various parties, including by nuclear safety experts from the IAEA, which has provided continuous support to the OAEP. Experts from the Argonne National Laboratory have been involved in the reviews as well. The PSAR is now under consideration at the Nuclear Facility Safety Sub-Committee (NFSS) of the Thai Atomic Energy for Peace Commission for issuing the Construction Permit of the ONRC Research Reactor. The following paper gives an overview of the project and its present status, outlining the features of the planned facilities and the issues the project is presently struggling with. Major lessons of the past 4 years are highlighted and an outlook into the future is attempted. (orig.)

  4. Japan Atomic Energy Research Institute in the 21st century

    International Nuclear Information System (INIS)

    Sato, Y.

    2001-01-01

    Major nuclear research institutes in Japan are the Japan Atomic Energy Research Institute (JAERI), Nuclear Cycle Development Institute (JNC), National Research Institute of Radiological Science (NIRS), and the Institute of Physical and Chemical Research (RIKEN). In the 50s and 60s JAERI concentrated on the introduction of nuclear technology from overseas. Energy security issues led to the development of a strong nuclear power programme in the next two decades resulting in Japan having 50 light water cooled nuclear power plants in operation. Japan also worked on other reactor concepts. The current emphasis of JAERI is on advanced reactors and nuclear fusion. Its budget of 270 million US$ supports five research establishments. JAERI has strong collaboration with industry and university system on nuclear and other advanced research topics (neutron science, photon science). In many areas Japan has strong international links. JAERI has also been transferring know-how on radioisotope and radiation applications to the developing countries particularly through IAEA-RCA mechanisms. (author)

  5. U.S. DAIRY FORAGE RESEARCH CENTER

    Data.gov (United States)

    Federal Laboratory Consortium — Vision: Leading the world in integrated dairy forage systems research. Mission: Providing dairy industry solutions for food security, environmental sustainability,...

  6. University of Maryland Energy Research Center |

    Science.gov (United States)

    breakthroughs into commercial, clean energy solutions. The Clark School Celebrates Women's History Month The Clark School is featuring our female engineering faculty members throughout March. UMD Researchers

  7. U.S. Dairy Forage Research Center

    Data.gov (United States)

    Federal Laboratory Consortium — Vision: Leading the world in integrated dairy forage systems research. Mission: Providing dairy industry solutions for food security, environmental sustainability,...

  8. Report on application results of the nuclear reactor in Atomic Energy Research Laboratory, Rikkyo University. April 1994 - March 1995

    International Nuclear Information System (INIS)

    1995-01-01

    This report is on researching action state, application state, management state, and others of 1994 fiscal year at the Atomic Energy Research Laboratory, Rikkyo University. The experimental reactor has been used for the studies such as application of neutron radioactivity analysis to multi fields, application of fission and alpha track method to age determination and metallurgy, hot atom chemistry, neutron radiation effect on semiconductors and others, nuclear data measurement, organism, materials and products using neutron radiography, and development and application to inspection of radiation detectors such as neutron detector. This report was a report shown as a shape of research results of actions of the researchers. And, another report of colaborate research results using the Rikkyo University reactor was also published from the Atomic Energy Center, the University of Tokyo begun since April, 1974. (G.K.)

  9. Fusion Research Center, theory program. Progress report

    International Nuclear Information System (INIS)

    1982-01-01

    The Texas FRC theory program is directed primarily toward understanding the initiation, heating, and confinement of tokamak plasmas. It supports and complements the experimental programs on the TEXT and PRETEXT devices, as well as providing information generally applicable to the national tokamak program. A significant fraction of the Center's work has been carried out in collaboration with, or as a part of, the program of the Institute for Fusion Studies (IFS). During the past twelve months, 14 FRC theory reports and 12 IFS reports with partial FRC support have been issued

  10. Laboratory Animal Technician | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Laboratory Animal Sciences Program (LASP) provides exceptional quality animal care and technical support services for animal research performed at the National Cancer Institute at the Frederick National Laboratory for Cancer Research. LASP executes this mission by providing a broad spectrum of state-of-the-art technologies and services that are focused

  11. Communications Specialist | Center for Cancer Research

    Science.gov (United States)

    Be part of our mission to support research against cancer. We have an exciting opportunity for a talented communicator to join our team and be part of the effort to find cures for cancer. We are looking for a creative, team-oriented communications professional, with strong writing skills to publicize our research advances, employment and training opportunities and clinical

  12. Partial thorium loading in the initial core of Kakrapar atomic power reactor

    International Nuclear Information System (INIS)

    Balakrishnan, M.R.

    1993-01-01

    The first unit of Kakrapar nuclear power station has gone critical with some thorium oxide fuel bundles loaded in its core. The thorium helps to flatten the power by reducing neutron flux in the centre of the reactor. However, the placing of the thorium had to be planned with care, because if the neutron flux at a point where a safety rod is located is depressed, the reactivity worth of the safety rod gets reduced. Using a dynamic programing approach, the Reactor Engineering Division of Bhabha Atomic Research Centre worked out a satisfactory configuration for loading the thorium bundles

  13. History for fifty years of Korea Atomic Energy Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-15

    This introduces establishment, foundation, technical independent, puberty and preview of KAERI. It is divided six chapters, which deals with research and development on nuclear fission and nuclear fusion, cycle of nuclear fuel and research of nuclear safety, nuclear business and technical development, activity on nuclear safe regulation like establishment and role module for nuclear safety center and check of the safety of nuclear power plant, study of radio therapeutics and cancer treatment, development of human resources for nuclear power and training, general management about regulations, organization, person, contract, facility and building, welfare and establishment and activity of labor union.

  14. Nuclear safety research collaborations between the US and Russian Federation international nuclear safety centers

    International Nuclear Information System (INIS)

    Hill, D.J; Braun, J.C; Klickman, A.E.; Bugaenko, S.E; Kabanov, L.P; Kraev, A.G.

    2000-01-01

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the U.S. Department of Energy (USDOE) have formed International Nuclear Safety Centers to collaborate on nuclear safety research. USDOE established the U. S. Center at Argonne National Laboratory in October 1995. MINATOM established the Russian Center at the Research and Development Institute of Power Engineering in Moscow in July 1996. In April 1998 the Russian center became an independent, autonomous organization under MINATOM. The goals of the centers are to: cooperate in the development of technologies associated with nuclear safety in nuclear power engineering. be international centers for the collection of information important for safety and technical improvements in nuclear power engineering. maintain a base for fundamental knowledge needed to design nuclear reactors.The strategic approach that is being used to accomplish these goals is for the two centers to work together to use the resources and the talents of the scientists associated with the US Center and the Russian Center to do collaborative research to improve the safety of Russian-designed nuclear reactors

  15. NASA Lewis Research Center's materials and structures division

    International Nuclear Information System (INIS)

    Weymueller, C.R.

    1976-01-01

    Research activities at the NASA Lewis Research Center on materials and structures are discussed. Programs are noted on powder metallurgy superalloys, eutectic alloys, dispersion strengthened alloys and composite materials. Discussions are included on materials applications, coatings, fracture mechanics, and fatigue

  16. Annual report of the Management Research Center

    International Nuclear Information System (INIS)

    1987-01-01

    Research on the management of new forms of automation; industrial management; the definition of a new product range; economic management; personnel management; and management of cultural enterprises is presented [fr

  17. Center for Cold Spray Research and Development

    Data.gov (United States)

    Federal Laboratory Consortium — This is the only DoD facility capable of cold spray research and development, production, and field-repair. It features three stationary cold spray systems used for...

  18. Team Members | Center for Cancer Research

    Science.gov (United States)

    Our Team Members The Foregut Team includes experts in the diagnosis and treatment of the diseases listed below. Our clinical experience and active research offers patients the highest quality care in the setting of groundbreaking clinical trials.

  19. A National Coordinating Center for Trauma Research

    Science.gov (United States)

    2016-10-01

    subcommittee. Several existing platforms have been reviewed in-depth with online demonstrations (such as Research Electronic Data Capture (REDCap), FITBIR...to maximize its ability to advertise the existence of data, promote re-use and assist in data management. It is interesting to note that: Most...just as ethics forms are normal for many now. We present two scenarios here: one when a grant starts, and the researcher is prompted to finish and

  20. Breast Cancer Translational Research Center of Excellence

    Science.gov (United States)

    2017-11-01

    FACS, COL MC USA CONTRACTING ORGANIZATION: Henry M. Jackson Foundation for the Advancement of Military Medicine 6720-A Rockledge Drive Bethesda...reported to other officials or ethically requires action, e.g., child or spouse abuse ii. When will you destroy the research source documents, data file...requires to be reported to other officials or ethically requires action, e.g., child or spouse abuse When will you destroy the research source documents

  1. Nuclear safety research collaborations between the U.S. and Russian Federation International Nuclear Safety Centers

    International Nuclear Information System (INIS)

    Hill, D. J.; Braun, J. C.; Klickman, A. E.; Bougaenko, S. E.; Kabonov, L. P.; Kraev, A. G.

    2000-01-01

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) have formed International Nuclear Safety Centers to collaborate on nuclear safety research. USDOE established the US Center (ISINSC) at Argonne National Laboratory (ANL) in October 1995. MINATOM established the Russian Center (RINSC) at the Research and Development Institute of Power Engineering (RDIPE) in Moscow in July 1996. In April 1998 the Russian center became a semi-independent, autonomous organization under MINATOM. The goals of the center are to: Cooperate in the development of technologies associated with nuclear safety in nuclear power engineering; Be international centers for the collection of information important for safety and technical improvements in nuclear power engineering; and Maintain a base for fundamental knowledge needed to design nuclear reactors. The strategic approach is being used to accomplish these goals is for the two centers to work together to use the resources and the talents of the scientists associated with the US Center and the Russian Center to do collaborative research to improve the safety of Russian-designed nuclear reactors. The two centers started conducting joint research and development projects in January 1997. Since that time the following ten joint projects have been initiated: INSC databases--web server and computing center; Coupled codes--Neutronic and thermal-hydraulic; Severe accident management for Soviet-designed reactors; Transient management and advanced control; Survey of relevant nuclear safety research facilities in the Russian Federation; Computer code validation for transient analysis of VVER and RBMK reactors; Advanced structural analysis; Development of a nuclear safety research and development plan for MINATOM; Properties and applications of heavy liquid metal coolants; and Material properties measurement and assessment. Currently, there is activity in eight of these projects. Details on each of these

  2. The National Center for Atmospheric Research (NCAR) Research Data Archive: a Data Education Center

    Science.gov (United States)

    Peng, G. S.; Schuster, D.

    2015-12-01

    The National Center for Atmospheric Research (NCAR) Research Data Archive (RDA), rda.ucar.edu, is not just another data center or data archive. It is a data education center. We not only serve data, we TEACH data. Weather and climate data is the original "Big Data" dataset and lessons learned while playing with weather data are applicable to a wide range of data investigations. Erroneous data assumptions are the Achilles heel of Big Data. It doesn't matter how much data you crunch if the data is not what you think it is. Each dataset archived at the RDA is assigned to a data specialist (DS) who curates the data. If a user has a question not answered in the dataset information web pages, they can call or email a skilled DS for further clarification. The RDA's diverse staff—with academic training in meteorology, oceanography, engineering (electrical, civil, ocean and database), mathematics, physics, chemistry and information science—means we likely have someone who "speaks your language." Data discovery is another difficult Big Data problem; one can only solve problems with data if one can find the right data. Metadata, both machine and human-generated, underpin the RDA data search tools. Users can quickly find datasets by name or dataset ID number. They can also perform a faceted search that successively narrows the options by user requirements or simply kick off an indexed search with a few words. Weather data formats can be difficult to read for non-expert users; it's usually packed in binary formats requiring specialized software and parameter names use specialized vocabularies. DSs create detailed information pages for each dataset and maintain lists of helpful software, documentation and links of information around the web. We further grow the level of sophistication of the users with tips, tutorials and data stories on the RDA Blog, http://ncarrda.blogspot.com/. How-to video tutorials are also posted on the NCAR Computational and Information Systems

  3. Atomic and Molecular Data Activities for Fusion Research in JAEA

    International Nuclear Information System (INIS)

    Nakano, T.

    2011-01-01

    The Japan Atomic Energy Agency (JAEA) has been producing, collecting and compiling cross-section data for atomic and molecular collisions and spectral data relevant to fusion research. In this talk, an overview of our activities since the last meeting in September 2009 will be presented. The state selective charge transfer cross-section data of Be 4+ , C 4+ and C 6+ by collision with H(n=2) in the collision energy range between 62 eV/amu and 6.2 keV/amu have been calculated with a molecular-bases close-coupling method. The calculated charge transfer data of C 4+ was implemented in a collisional-radiative model code for C 3+ , and it is shown that in some cases the charge transfer from C 4+ to H(n=2) populates predominantly C 3+ (n = 6, 7). The cross-section data of dissociative recombination and excitation of HD + , D 2+ , DT + , T 2+ 3 HeH + and 4 HeH + were produced by theoretical calculation. The principal quantum number of dissociated H atom isotopes was also given. The analytical expressions for the cross-section data for 26 processes of He-collision systems were produced in order to facilitate practical use of the data. The compiled data are in preparation for the web site at the URL of http://www-jt60.naka.jaea.go.jp/engish/JEAMDL/. The chemical sputtering yield data of CFC materials with hydrogen isotope collisions have been compiled. The ionization rate of W 44+ and the radiative and the dielectronic recombination rates of W 45+ were calculated with FAC. The ratio of these rates was compared with experimentally measured ratio of W 45+ density to W 44+ density in JT-60U, showing that the calculated ratio of the recombination ratio of W 45+ to the ionization rate of W 44+ is accurate within the experimental uncertainty (∼ 30%). The atomic and molecular data activities in JAEA are pursued in collaboration with Japanese universities, and other department of JAEA. (author)

  4. Regimes of spray formation in gas-centered swirl coaxial atomizers

    Energy Technology Data Exchange (ETDEWEB)

    Sivakumar, D.; Kulkarni, V. [Indian Institute of Science, Department of Aerospace Engineering, Bangalore (India)

    2011-09-15

    Spray formation in ambient atmosphere from gas-centered swirl coaxial atomizers is described by carrying out experiments in a spray test facility. The atomizer discharges a circular air jet and an axisymmetric swirling water sheet from its coaxially arranged inner and outer orifices. A high-speed digital imaging system along with a backlight illumination arrangement is employed to record the details of liquid sheet breakup and spray development. Spray regimes exhibiting different sheet breakup mechanisms are identified and their characteristic features presented. The identified spray regimes are wave-assisted sheet breakup, perforated sheet breakup, segmented sheet breakup, and pulsation spray regime. In the regime of wave-assisted sheet breakup, the sheet breakup shows features similar to the breakup of two-dimensional planar air-blasted liquid sheets. At high air-to-liquid momentum ratios, the interaction process between the axisymmetric swirling liquid sheet and the circular air jet develops spray processes which are more specific to the atomizer studied here. The spray exhibits a periodic ejection of liquid masses whose features are dominantly controlled by the central air jet. (orig.)

  5. wACSF—Weighted atom-centered symmetry functions as descriptors in machine learning potentials

    Science.gov (United States)

    Gastegger, M.; Schwiedrzik, L.; Bittermann, M.; Berzsenyi, F.; Marquetand, P.

    2018-06-01

    We introduce weighted atom-centered symmetry functions (wACSFs) as descriptors of a chemical system's geometry for use in the prediction of chemical properties such as enthalpies or potential energies via machine learning. The wACSFs are based on conventional atom-centered symmetry functions (ACSFs) but overcome the undesirable scaling of the latter with an increasing number of different elements in a chemical system. The performance of these two descriptors is compared using them as inputs in high-dimensional neural network potentials (HDNNPs), employing the molecular structures and associated enthalpies of the 133 855 molecules containing up to five different elements reported in the QM9 database as reference data. A substantially smaller number of wACSFs than ACSFs is needed to obtain a comparable spatial resolution of the molecular structures. At the same time, this smaller set of wACSFs leads to a significantly better generalization performance in the machine learning potential than the large set of conventional ACSFs. Furthermore, we show that the intrinsic parameters of the descriptors can in principle be optimized with a genetic algorithm in a highly automated manner. For the wACSFs employed here, we find however that using a simple empirical parametrization scheme is sufficient in order to obtain HDNNPs with high accuracy.

  6. Atom

    International Nuclear Information System (INIS)

    Auffray, J.P.

    1997-01-01

    The atom through centuries, has been imagined, described, explored, then accelerated, combined...But what happens truly inside the atom? And what are mechanisms who allow its stability? Physicist and historian of sciences, Jean-Paul Auffray explains that these questions are to the heart of the modern physics and it brings them a new lighting. (N.C.)

  7. Proceedings of the ninth Symposium of Atomic Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-01

    The present volume contains 57 papers. Most of the papers were presented on the ninth Symposium of Atomic Energy Research, held in Demanovska Dolina, Slovakia, 4-6 October 1999. The rest of the papers (intended to be presented but not presented due to difficulties) is included based on the decision of the organizers. The papers are in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Spectral and Core Calculation Methods, Core Operation and Fuel Management, Core Monitoring, Surveillance and Testing, Safety Issues, Neutron Kinetics and Reactor Dynamics, Reactivity Evaluation, High Subcriticality, Critical Safety and Spent Fuel and Spent Fuel Transmutations - according to the presentation sequence on the Symposium. At the end of the volume an alphabetical author index is given.

  8. Proceedings of the ninth Symposium of Atomic Energy Research

    International Nuclear Information System (INIS)

    1999-10-01

    The present volume contains 57 papers. Most of the papers were presented on the ninth Symposium of Atomic Energy Research, held in Demanovska Dolina, Slovakia, 4-6 October 1999. The rest of the papers (intended to be presented but not presented due to difficulties) is included based on the decision of the organizers. The papers are in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Spectral and Core Calculation Methods, Core Operation and Fuel Management, Core Monitoring, Surveillance and Testing, Safety Issues, Neutron Kinetics and Reactor Dynamics, Reactivity Evaluation, High Subcriticality, Critical Safety and Spent Fuel and Spent Fuel Transmutations - according to the presentation sequence on the Symposium. At the end of the volume an alphabetical author index is given

  9. Proceedings of the eighth Symposium of Atomic Energy Research

    International Nuclear Information System (INIS)

    Vidovszky, I.

    1998-10-01

    The present volume contains 53 papers, presented on the eighth Symposium of Atomic Energy Research, held in Bystrice nad Perstejnem, Czech Republic, 21-25 September 1998. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Spectral and Core Calculation Methods, Core Design, Operation and Fuel Management, Core Monitoring, Surveillance and Testing, Neutron Kinetics and reactor Dynamics Methods, Safety Issues and Analysis, Rod Drop Reactivity Measurements, Criticality safety, Spent Fuel and Decommissioning, - according to the presentation sequence on the Symposium. At the end of the volume a list of the participants and an alphabetical author index is given as well

  10. Proton Therapy Research and Treatment Center

    Energy Technology Data Exchange (ETDEWEB)

    Goodnight, J.E. Jr. (University of California Davis Medical Center, Sacramento, CA (United States). Cancer Center); Alonso, J.R. (Lawrence Berkeley Lab., CA (United States))

    1992-05-01

    This Grant proposal outlines the steps that will be undertaken to bring the UC Davis Proton Therapy Research and Treatment, known locally as the Proton Therapy Facility (PTF), through its design and construction phases. This application concentrates on the design phase of the PTF project.

  11. Animal Resource Program | Center for Cancer Research

    Science.gov (United States)

    CCR Animal Resource Program The CCR Animal Resource Program plans, develops, and coordinates laboratory animal resources for CCR’s research programs. We also provide training, imaging, and technology development in support of moving basic discoveries to the clinic. The ARP Manager:

  12. Writing Essentials | Center for Cancer Research

    Science.gov (United States)

    To effectively communicate research results, the manuscript should be carefully structured to tell a compelling story. As a rule, the introduction should bring the reader from a broad understanding of the topic to the specific question being addressed. In contrast, the discussion should transition the reader from the specific results to their broader implications.

  13. Animal Resource Program | Center for Cancer Research

    Science.gov (United States)

    CCR Animal Resource Program The CCR Animal Resource Program plans, develops, and coordinates laboratory animal resources for CCR’s research programs. We also provide training, imaging, and technology development in support of moving basic discoveries to the clinic. The ARP Office:

  14. TRIGA International - History of Training Research Isotope production General Atomics

    International Nuclear Information System (INIS)

    2008-01-01

    TRIGA conceived at GA in 1956 by a distinguished group of scientists including Edward Teller and Freeman Dyson. First TRIGA reactor Mk-1 was commissioned on 3 may 1958 at G.A. Characteristic feature of TRIGA reactors is inherent safety: Sitting can be confinement or conventional building. TRIGA reactors are the most prevalent in the world: 67 reactors in 24 countries. Steady state powers up to 14 MWt, pulsing up to 22,000 MWt. To enlarge the scope of its manufactured products, CERCA engaged in a Joint Venture with General Atomics, and in July 1995 a new Company was founded: TRIGA INTERNATIONAL SAS (50% GA, 50% CERCA; Head Office: Paris (France); Sales offices: GA San Diego (Ca, USA) and CERCA Lyon (France); Manufacturing plant: CERCA Romans. General Atomics ID: founded in 1955 at San Diego, California, by General Dynamics; status: Privately held corporation; owners: Neal and Linden Blue; business: High technology research, design, manufacturing, and production for industry and Government in the U.S. and overseas; locations: U.S., Germany, Japan, Australia, Thailand, Morocco; employees: 5,000. TRIGA's ID: CERCA is a subsidiary of AREVA, born in November 05, 1957. Activities: fuel manufacture for research reactor, equipment and components for high-energy physics, radioactive sources and reference sources; plants locations: Romans and Pierrelatte (France); total strength: 180. Since the last five years TRIGA has manufactured and delivered more than 800 fuel elements with a door to door service. TRIGA International has the experience to manufacture all types of TRIGA fuel: standard fuel elements, instrumented fuel elements, fuel followed control rods, geometry: 37.3 mm (1.47 in.), 35.8 mm (1.4 in), 13 mm (0.5 in), chemical Composition: U w% 8.5, 12, 20, 30 and 45 w/o, erbium and no erbium. TRIGA International is on INL's approved vendor list (ISO 9000/NQA) and is ready to meet any TRIGA fuel needs either in the US or worldwide

  15. The prevention research centers' managing epilepsy well network.

    Science.gov (United States)

    DiIorio, Colleen K; Bamps, Yvan A; Edwards, Ariele L; Escoffery, Cam; Thompson, Nancy J; Begley, Charles E; Shegog, Ross; Clark, Noreen M; Selwa, Linda; Stoll, Shelley C; Fraser, Robert T; Ciechanowski, Paul; Johnson, Erica K; Kobau, Rosemarie; Price, Patricia H

    2010-11-01

    The Managing Epilepsy Well (MEW) Network was created in 2007 by the Centers for Disease Control and Prevention's (CDC) Prevention Research Centers and Epilepsy Program to promote epilepsy self-management research and to improve the quality of life for people with epilepsy. MEW Network membership comprises four collaborating centers (Emory University, University of Texas Health Science Center at Houston, University of Michigan, and University of Washington), representatives from CDC, affiliate members, and community stakeholders. This article describes the MEW Network's background, mission statement, research agenda, and structure. Exploratory and intervention studies conducted by individual collaborating centers are described, as are Network collaborative projects, including a multisite depression prevention intervention and the development of a standard measure of epilepsy self-management. Communication strategies and examples of research translation programs are discussed. The conclusion outlines the Network's role in the future development and dissemination of evidence-based epilepsy self-management programs. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. A Community - Centered Astronomy Research Program

    Science.gov (United States)

    Boyce, Pat; Boyce, Grady

    2017-06-01

    The Boyce Research Initiatives and Education Foundation (BRIEF) is providing semester-long, hands-on, astronomy research experiences for students of all ages that results in their publishing peer-reviewed papers. The course in astronomy and double star research has evolved from a face-to-face learning experience with two instructors to an online - hybrid course that simultaneously supports classroom instruction at a variety of schools in the San Diego area. Currently, there are over 65 students enrolled in three community colleges, seven high schools, and one university as well as individual adult learners. Instructional experience, courseware, and supporting systems were developed and refined through experience gained in classroom settings from 2014 through 2016. Topics of instruction include Kepler's Laws, basic astrometry, properties of light, CCD imaging, use of filters for varying stellar spectral types, and how to perform research, scientific writing, and proposal preparation. Volunteer instructors were trained by taking the course and producing their own research papers. An expanded program was launched in the fall semester of 2016. Twelve papers from seven schools were produced; eight have been accepted for publication by the Journal of Double Observations (JDSO) and the remainder are in peer review. Three additional papers have been accepted by the JDSO and two more are in process papers. Three college professors and five advanced amateur astronomers are now qualified volunteer instructors. Supporting tools are provided by a BRIEF server and other online services. The server-based tools range from Microsoft Office and planetarium software to top-notch imaging programs and computational software for data reduction for each student team. Observations are performed by robotic telescopes worldwide supported by BRIEF. With this success, student demand has increased significantly. Many of the graduates of the first semester course wanted to expand their

  17. Electron Microscopy-Data Analysis Specialist | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Cancer Research Technology Program (CRTP) develops and implements emerging technology, cancer biology expertise and research capabilities to accomplish NCI research objectives.  The CRTP is an outward-facing, multi-disciplinary hub purposed to enable the external cancer research community and provides dedicated support to NCI’s intramural Center for

  18. Postdoctoral Fellow | Center for Cancer Research

    Science.gov (United States)

    Highly motivated postdoctoral fellows sought to work on tumor immunology with a strong background in biology preferentially cellular immunology. The tumor immunology group in the laboratory is exploring mechanisms of improving vaccines and immunotherapy for cancer, especially by discovering new principles to enhance and steer T cell immune responses. The group is focusing on negative immunoregulatory mechanisms used for immune evasion by cancer cells. The postdoctoral fellow will work on a project to understand the negative regulatory mechanisms of tumor immunity especially the mechanisms initiated by NKT cells. Group members also have an opportunity to gain knowledge of HIV/mucosal immunology by interacting with the HIV research group in the lab.

  19. Research & Technology Report Goddard Space Flight Center

    Science.gov (United States)

    Soffen, Gerald A. (Editor); Truszkowski, Walter (Editor); Ottenstein, Howard (Editor); Frost, Kenneth (Editor); Maran, Stephen (Editor); Walter, Lou (Editor); Brown, Mitch (Editor)

    1995-01-01

    The main theme of this edition of the annual Research and Technology Report is Mission Operations and Data Systems. Shifting from centralized to distributed mission operations, and from human interactive operations to highly automated operations is reported. The following aspects are addressed: Mission planning and operations; TDRSS, Positioning Systems, and orbit determination; hardware and software associated with Ground System and Networks; data processing and analysis; and World Wide Web. Flight projects are described along with the achievements in space sciences and earth sciences. Spacecraft subsystems, cryogenic developments, and new tools and capabilities are also discussed.

  20. Molecular Science Research Center annual report

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, M.L.

    1991-01-01

    The Chemical Structure and Dynamics group is studying chemical kinetics and reactions dynamics of terrestrial and atmospheric processes as well as the chemistry of complex waste forms and waste storage media. Staff are using new laser systems and surface-mapping techniques in combination with molecular clusters that mimic adsorbate/surface interactions. The Macromolecular Structure and Dynamics group is determining biomolecular structure/function relationships for processes the control the biological transformation of contaminants and the health effects of toxic substances. The Materials and Interfaces program is generating information needed to design and synthesize advanced materials for the analysis and separation of mixed chemical waste, the long-term storage of concentrated hazardous materials, and the development of chemical sensors for environmental monitoring of various organic and inorganic species. The Theory, Modeling, and Simulation group is developing detailed molecular-level descriptions of the chemical, physical, and biological processes in natural and contaminated systems. Researchers are using the full spectrum of computational techniques. The Computer and Information Sciences group is developing new approaches to handle vast amounts of data and to perform calculations for complex natural systems. The EMSL will contain a high-performance computing facility, ancillary computing laboratories, and high-speed data acquisition systems for all major research instruments.

  1. Atomic Center interactions in BaO; Al2O3; B2O3 glasses containing silver

    International Nuclear Information System (INIS)

    Pontuschka, W.M.; Piccini, A.

    1979-01-01

    The EPR study of borate glasses, with 30% of BaO and 5% mole of silver, X-irradiated at 77 0 K, showed Ag 0 and Ag ++ centers. In addition were detected the boron electron center (BEC) and the boron hole center. The silver centers and BEC were studied in detail and the spin Hamiltonian parameters are given. The different Al 2 O 3 concentrations exerted only little influence on the tabulated constants. The Ag + 2 center was not observed, indicating that the collisions between Ag atoms are not very frequent in these glasses, even during the process of thermal bleaching. The hfs of the boron electron center suffered severe variation as one compared the spectra of base glasses and those containing silver. This is an evidence of the action of silver as a glass modifier like the alkali atoms [pt

  2. Human resource development strategies adopted by the Department of Atomic Energy, India

    International Nuclear Information System (INIS)

    Grover, R.B.

    2007-01-01

    In view of the knowledge intensive nature of the nuclear technology and the state of hi-tech industrial infrastructure in India, Bhabha Atomic Research Centre (BARC) has been designed to have a composite character. It is a large institution and has been pursuing activities starting from basic research to technology development. At BARC, we have also put in place a very effective human resource development programme and this programme is run by faculty drawn from within the organization. As a result, BARC has attributes of an institute, a research laboratory and also an industrial organization. The composite character is confined not only to BARC but also extends to the Department of Atomic Energy (DAE) as a whole. Simultaneous with research centres, we have been setting up industrial units. The fountainhead of success of the atomic energy programme in India is the fact that both the research centres, which generate knowledge and the industrial units, which generate wealth from the knowledge, are under one umbrella and that is the DAE working under the policy framework laid by the Atomic Energy Commission. The two sets of institutions maintain an organic linkage permitting seamless interaction and facilitating technology transfer without any cumbersome formalities. The common policy framework followed by all the institutions enables the department to follow an integrated approach towards human resource development and this further strengthens the linkages between the institutions. This has enabled the country to be self-reliant in all aspects of nuclear fuel cycle, starting with prospecting and mining of uranium and ending with the back-end of the fuel cycle, which involves reprocessing of the spent fuel and nuclear waste management. Most of the R and D work, which led to realization of this capability, was done or initiated at BARC at Trombay. Some of the activities have now been taken over by other research centers: IGCAR at Kalpakkam for fast reactors, Centre for

  3. Role of national centers of research and development in nuclear technology transfer

    International Nuclear Information System (INIS)

    Graf, J.-J.; Millies, Pierre.

    1977-01-01

    National Research Centers are shown to play a leading role in nuclear technology transfer, whatever may be the directing scheme of nuclear development in the country envisaged. The first act of the Center consists in training specialists in the various nuclear fields. It must ensure the transfer of technological knowledge towards industry (in metallurgy, mechanics, electronics) and other nuclear auxiliary techniques, together with the transfer towards administration (laws). A simplified scheme of nuclear development strategy based on the French scheme (the French Atomic Energy Commission (CEA) with its subsidiary Companies) is presented that is usable for developing countries [fr

  4. Grand Canyon Monitoring and Research Center

    Science.gov (United States)

    Hamill, John F.

    2009-01-01

    The Grand Canyon of the Colorado River, one of the world's most spectacular gorges, is a premier U.S. National Park and a World Heritage Site. The canyon supports a diverse array of distinctive plants and animals and contains cultural resources significant to the region's Native Americans. About 15 miles upstream of Grand Canyon National Park sits Glen Canyon Dam, completed in 1963, which created Lake Powell. The dam provides hydroelectric power for 200 wholesale customers in six western States, but it has also altered the Colorado River's flow, temperature, and sediment-carrying capacity. Over time this has resulted in beach erosion, invasion and expansion of nonnative species, and losses of native fish. Public concern about the effects of Glen Canyon Dam operations prompted the passage of the Grand Canyon Protection Act of 1992, which directs the Secretary of the Interior to operate the dam 'to protect, mitigate adverse impacts to, and improve values for which Grand Canyon National Park and Glen Canyon National Recreation Area were established...' This legislation also required the creation of a long-term monitoring and research program to provide information that could inform decisions related to dam operations and protection of downstream resources.

  5. Postdoctoral Fellow | Center for Cancer Research

    Science.gov (United States)

    Dr. St. Croix’s laboratory at the Mouse Cancer Genetics Program (MCGP), National Cancer Institute, USA has an open postdoctoral position. We seek a highly motivated, creative and bright individual to participate in a collaborative project that involves the targeting of tumor-associated stroma using T-cells engineered to express chimeric antigen receptors (CARs). The laboratory focuses on the characterization and exploitation of molecules associated with tumor angiogenesis. The successful candidate would be involved in developing, producing and characterizing new therapeutic antibodies and CARs that recognize cancer cells or its associated stroma, and preclinical testing of these agents using mouse tumor models. The tumor angiogenesis lab is located at the National Cancer Institute in Frederick with access to state-of-the-art facilities for antibody engineering, genomic analysis, pathology, and small animal imaging, among others. Detailed information about Dr. St. Croix’s research and publications can be accessed at https://ccr.cancer.gov/Mouse-Cancer-Genetics-Program/brad-st-croix.

  6. Long-term atomic energy research, development and utilization program

    International Nuclear Information System (INIS)

    1980-01-01

    This is the revised version of the last long-range program (June, 1972), and covers the measures and plans for promoting the research, development and utilization of nuclear power in some in some ten years ahead. The basic policy lines include the assurance of peaceful use of atomic energy, safety assurence and public support, independence and international cooperation and the planned implementation of nuclear research and development projects. The target scale of nuclear power development is estimated at 33 million kilowatts by fiscal 1985 and 60 million kilowatts by fiscal 1990, respectively. The improvement and standardization of light water reactors are to be further carried on till fiscal 1980 and after. Sodium-cooled reactors, which use the oxide fuel based on the mixture of plutonium and uranium, will be developed. A prototype reactor of about 300,000 kilowatt electric capacity will reach criticality in the second half of 1980's. The research and development of the advanced thermal reactors, for which plutonium and depleted uranium are used, will be encouraged. Multipurpose high-temperature gas-cooled reactors are also to be developed. The measures for establishing the nuclear fuel cycle including the procurement of natural and enriched uranium, the reprocessing of spent fuel, the use of plutonium and the treatment and disposal of radioactive wastes are described. Nuclear fusion, nuclear ships, the use of radiation, safety studies, fundamental studies and the training of scientists and technicians are stipulated, respectively. The promotion of nuclear research and development projects is explained in detail. (Okada, K.)

  7. Karlsruhe Nuclear Research Center. Research and development program 1991

    International Nuclear Information System (INIS)

    1990-01-01

    The R and D activities of the KfK are classified in 8 main research activities: 1) project nuclear fusion; 2) project pollutant mitigation in the environment; 3) solid state and materials research; 4) nuclear and elementary particle physics; 5) microtechnics e.g. X-ray lithography; 6) materials handling; 7) project nuclear safety research; 8) radioactive waste management. (orig.) [de

  8. Atomization Performance Predictions of Gas-Centered Swirl-Coaxial Injectors

    National Research Council Canada - National Science Library

    Lightfoot, Malissa D; Danczyk, Stephen A; Talley, Douglas G

    2007-01-01

    .... The theory relates the mass of film lost via atomization to the mass of liquid introduced into the atomizer to predict atomization efficiency and offers some estimations of primary droplet diameter...

  9. Physical Measurement Profile at Gilgel Gibe Field Research Center ...

    African Journals Online (AJOL)

    Physical Measurement Profile at Gilgel Gibe Field Research Center, ... hip circumference in under 35 years and body mass index in under 45 year age groups were ... Comparison with findings in other parts of the world showed that Ethiopians ...

  10. Small UAS Test Area at NASA's Dryden Flight Research Center

    Science.gov (United States)

    Bauer, Jeffrey T.

    2008-01-01

    This viewgraph presentation reviews the areas that Dryden Flight Research Center has set up for testing small Unmanned Aerial Systems (UAS). It also reviews the requirements and process to use an area for UAS test.

  11. San Joaquin Valley Aerosol Health Effects Research Center (SAHERC)

    Data.gov (United States)

    Federal Laboratory Consortium — At the San Joaquin Valley Aerosol Health Effects Center, located at the University of California-Davis, researchers will investigate the properties of particles that...

  12. Center for Urban Environmental Research and Education (CUERE)

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Urban Environmental Research and Education (CUERE) at UMBC was created in 2001 with initial support from the U.S. Environmental Protection Agency and...

  13. Translational Partnership Development Lead | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Frederick National Laboratory for Cancer Research (FNLCR) is a Federally Funded Research and Development Center operated by Leidos Biomedical Research, Inc on behalf of the National Cancer Institute (NCI). The staff of FNLCR support the NCI’s mission in the fight against cancer and HIV/AIDS. Currently we are seeking a Translational Partnership

  14. The Creation and Role of the USDA Biomass Research Centers

    Science.gov (United States)

    William F. Anderson; Jeffery Steiner; Randy Raper; Ken Vogel; Terry Coffelt; Brenton Sharratt; Bob Rummer; Robert L. Deal; Alan Rudie

    2011-01-01

    The Five USDA Biomass Research Centers were created to facilitate coordinated research to enhance the establishment of a sustainable feedstock production for bio-based renewable energy in the United States. Scientists and staff of the Agricultural Research Service (ARS) and Forest Service (FS) within USDA collaborate with other federal agencies, universities and...

  15. Convergence of configuration-interaction single-center calculations of positron-atom interactions

    International Nuclear Information System (INIS)

    Mitroy, J.; Bromley, M. W. J.

    2006-01-01

    The configuration interaction (CI) method using orbitals centered on the nucleus has recently been applied to calculate the interactions of positrons interacting with atoms. Computational investigations of the convergence properties of binding energy, phase shift, and annihilation rate with respect to the maximum angular momentum of the orbital basis for the e + Cu and PsH bound states, and the e + -H scattering system were completed. The annihilation rates converge very slowly with angular momentum, and moreover the convergence with radial basis dimension appears to be slower for high angular momentum. A number of methods of completing the partial wave sum are compared; an approach based on a ΔX J =a(J+(1/2)) -n +b(J+(1/2)) -(n+1) form [with n=4 for phase shift (or energy) and n=2 for the annihilation rate] seems to be preferred on considerations of utility and underlying physical justification

  16. Research and development prospects for the atomic uranium laser isotope separation process. Research report 442

    International Nuclear Information System (INIS)

    Janes, G.S.; Forsen, H.K.; Levy, R.H.

    1977-06-01

    Research and development activities are being conducted on many aspects of the atomic uranium laser isotope separation process. Extensive laser spectroscopy studies have been made in order to identify attractive multi-step selective ionization schemes. Using low density (10 10 atoms/cm 3 ) apparatus, the excited state spectra of atomic uranium have been investigated via multiple step laser excitation and photoionization studies using two, three and four pulsed lasers. Observation of the spectra was accomplished by observing the yield of 235 U and 238 U ions as a function of the wavelength, intensities and delays of the various lasers. These data yielded information on the photoexcitation and photoionizatin cross sections, and on the location, J values, lifetimes, isotope shifts and hyperfine structure of the various atomic levels of uranium. Experiments on selective ionization of uranium vapor by multiple step laser excitation followed by ion extraction at 10 13 atoms/cm 3 density have produced 6% enriched 235 U. These indicate that this process is well adapted to produce light water reactor fuel but less suitable for highly enriched material. Application has been made for license for a 1979 experimental facility to provide data for a mid-1980 commercial plant

  17. Feasibility of ISO 14000 certification for the RA-6 reactor of the Bariloche Atomic Center

    International Nuclear Information System (INIS)

    Gho, Carlos J.

    2003-01-01

    The strengths and weaknesses of a proposal to set up a System for the Environmental Management of RA-6 reactor are reviewed. With this aim: The facility, its surroundings, its institutional frame, and the links of both the National Atomic Energy Commission and the Bariloche Atomic Center with the environmental issues are described. The RA-6 past and present regarding the environment is analyzed. The existence of an abundant documentation on procedures and manuals for administrative and technical management, as well as records of environmental behavior is determined. A summary is made of the work done with the staff in order to assess their motivation to develop this type of initiative, and their degree of knowledge and awareness of environmental issues. It is worthy to point out the high professional training of the RA-6 staff. This information is analyzed under the point of view of ISO 14001 both text and philosophy. It is shown that there exist important strengths that enable to face a concrete project, and that the weaknesses are few, most of them can be overcome somehow easily. The opportunity is remarkable. Conclusion is made that RA-6 is not only in optimal conditions to face successfully the implementation of an Environmental Management System, but it has already a rudimentary one

  18. An Information Building on Radioactivity and Nuclear Energy for the French CEA Cadarache Research Center - 13492

    Energy Technology Data Exchange (ETDEWEB)

    Brunel, Guy; Denis, Dominique; Boulet, Alain [Commissariat a l' energie Atomique et aux Energies Alternatives - CEA-Cadarache, DEN/CEACAD/UCAP, 13108 Saint Paul lez Durance Cedex (France)

    2013-07-01

    The CEA Cadarache research center is one of the 10 research centers of the French Alternative Energies and Atomic Energy Commission (CEA). Distributed throughout various research platforms, it focuses on nuclear fission, nuclear fusion, new energy technologies (hydrogen, solar, biomass) and fundamental research in the field of vegetal biology. It is the most important technological research and development centers for energy in Europe. Considering the sensitive nature of nuclear activities, the questions surrounding the issue of radioactive waste, the nuclear energy and the social, economic and environmental concerns for present and future generations, the French Government asked nuclear actors to open communication and to give all the information asked by the Local Information Commission (CLI) and the public [1]. In this context, the CEA Cadarache has decided to better show and explain its expertise and experience in the area of nuclear energy and nuclear power plant design, and to make it available to stakeholders and to the public. CEA Cadarache receives each year more than 9000 visitors. To complete technical visits of the research facilities and laboratories, a scientific cultural center has been built in 2011 to inform the public on CEA Cadarache research activities and to facilitate the acceptance of nuclear energy in a way suited to the level of knowledge of the visitors. A modern interactive exhibition of 150 m{sup 2} allows visitors to find out more about energy, CEA Cadarache research programs, radioactive waste management and radiological impact on the research center activities. It also offers an auditorium for group discussions and for school groups to discover science through enjoyment. This communication center has received several thousand visitors since its opening on October 2011; the initial results of this experience are now available. It's possible to explain the design of this exhibition, to give some statistics on the number of the

  19. An Information Building on Radioactivity and Nuclear Energy for the French CEA Cadarache Research Center - 13492

    International Nuclear Information System (INIS)

    Brunel, Guy; Denis, Dominique; Boulet, Alain

    2013-01-01

    The CEA Cadarache research center is one of the 10 research centers of the French Alternative Energies and Atomic Energy Commission (CEA). Distributed throughout various research platforms, it focuses on nuclear fission, nuclear fusion, new energy technologies (hydrogen, solar, biomass) and fundamental research in the field of vegetal biology. It is the most important technological research and development centers for energy in Europe. Considering the sensitive nature of nuclear activities, the questions surrounding the issue of radioactive waste, the nuclear energy and the social, economic and environmental concerns for present and future generations, the French Government asked nuclear actors to open communication and to give all the information asked by the Local Information Commission (CLI) and the public [1]. In this context, the CEA Cadarache has decided to better show and explain its expertise and experience in the area of nuclear energy and nuclear power plant design, and to make it available to stakeholders and to the public. CEA Cadarache receives each year more than 9000 visitors. To complete technical visits of the research facilities and laboratories, a scientific cultural center has been built in 2011 to inform the public on CEA Cadarache research activities and to facilitate the acceptance of nuclear energy in a way suited to the level of knowledge of the visitors. A modern interactive exhibition of 150 m 2 allows visitors to find out more about energy, CEA Cadarache research programs, radioactive waste management and radiological impact on the research center activities. It also offers an auditorium for group discussions and for school groups to discover science through enjoyment. This communication center has received several thousand visitors since its opening on October 2011; the initial results of this experience are now available. It's possible to explain the design of this exhibition, to give some statistics on the number of the visitors

  20. Karlsruhe Nuclear Research Center. Research and development program 1992

    International Nuclear Information System (INIS)

    1991-01-01

    The KfK R and D activities are classified by ten point-of-main-effort projects: 1) low-pollution/low-waste methods, 2) environmental energy and mass transfers, 3) nuclear fusion, 4) nuclear saftey research, 5) radioactive waste management, 6) superconduction, 7) microtechnics, 8) materials handling, 9) materials and interfaces, 10) basic physical research. (orig.) [de

  1. Diagnosis and improvement proposals for the Ezeiza Atomic Center quality management system by carrying out the third laboratories workshop

    International Nuclear Information System (INIS)

    Eliosoff, Nilda M.

    2003-01-01

    By the end of 2001 the management of the Ezeiza Atomic Center (EAC) under the National Atomic Energy Commission of Argentina, stated the necessity of carrying out a survey of its laboratories. The purpose of this survey was to get information that would allow to assess the quality of the laboratories and the services they perform, including the degree of implementation of the management systems. In order to comply with this purpose fourteen EAC's laboratories were studied. The information obtained was related to the staff, their training, the kind of tasks they perform as services or as research and development, the customers, the amount of invoicing, the premises, the equipment and the adapting and implementation of the quality management system. With the results obtained from the survey a report was issued. Economic, Financial, Commercial and Human Resources workshops as well as Technical Aspects and Quality Management workshops were organized. These workshops were to go deep into the analysis of the information obtained and to generate improvement proposals of the different subjects. (author)

  2. Ultralow temperature helium compressor for Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Asakura, Hiroshi

    1988-01-01

    Ishikawajima Harima Heavy Industries Co., Ltd. started the development of an ultralow temperature helium compressor for helium liquefaction in 1984 jointly with Japan Atomic Energy Research Institute, and has delivered the first practical machine to the Superconductive Magnet Laboratory of JAERI. For a large superconductive magnet to be used in the stable state for a fusion reactor, conventional superconductive materials (NbTi, NbTi 3 Sn, etc.) must be used, being cooled forcibly with supercritical helium. The supercritical helium which is compressed above the critical pressure of 228 kPa has a stable cooling effect since the thermal conductivity does not change due to the evaporation of liquid helium. In order to maintain the temperature of the supercritical helium below 4 K before it enters a magnet, a heat exchanger is used. The compressor that IHI has developed has the ability to reduce the vapor pressure of liquid helium from atmospheric pressure to 50.7 kPa, and can attain the temperature of 3.5 K. The specification of this single stage centrifugal compressor is: mass flow rate 25 - 64 g/s, speed 80,000 rpm, adiabatic efficiency 62 - 69 %. The structure and the performance are reported. (K.I.)

  3. Research briefing on selected opportunities in atomic, molecular, and optical sciences

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses research on the following topics: The Laser-Atom Revolution; Controlling Dynamical Pathways; Nonclassical States of Light; Transient States of Atomic Systems; New Light Generation and Handling; Clusters; Atomic Physics at User Facilities; and Impacts of AMO Sciences on Modern Technologies

  4. Karlsruhe Nuclear Research Center. Research and development programme 1988

    International Nuclear Information System (INIS)

    1987-01-01

    A general survey of planned activities and developmental trends of the nuclear research centre is followed by a more detailed account of projects and goals. The various institutes and laboratories are presented together with their specific task schedules. (UA) [de

  5. Joint nuclear safety research projects between the US and Russian Federation International Nuclear Safety Centers

    International Nuclear Information System (INIS)

    Bougaenko, S.E.; Kraev, A.E.; Hill, D.L.; Braun, J.C.; Klickman, A.E.

    1998-01-01

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) formed international Nuclear Safety Centers in October 1995 and July 1996, respectively, to collaborate on nuclear safety research. Since January 1997, the two centers have initiated the following nine joint research projects: (1) INSC web servers and databases; (2) Material properties measurement and assessment; (3) Coupled codes: Neutronic, thermal-hydraulic, mechanical and other; (4) Severe accident management for Soviet-designed reactors; (5) Transient management and advanced control; (6) Survey of relevant nuclear safety research facilities in the Russian Federation; (8) Advanced structural analysis; and (9) Development of a nuclear safety research and development plan for MINATOM. The joint projects were selected on the basis of recommendations from two groups of experts convened by NEA and from evaluations of safety impact, cost, and deployment potential. The paper summarizes the projects, including the long-term goals, the implementing strategy and some recent accomplishments for each project

  6. Karlsruhe Nuclear Research Center. Research and development programme 1989

    International Nuclear Information System (INIS)

    1988-01-01

    The R and D activities of the KfK are classified in 10 main research activities: 1) Project fast breeder; 2) separation nozzle method; 3) project nuclear fusion; 4) project reprocessing and waste processing; 5) ultimate storage; 6) environment and safety; 7) solid-state and materials research; 8) nuclear and elementary particle physics; 9) microtechnics e.g. X-ray lithography; 10) materials handling. (HP) [de

  7. Northwest Hazardous Waste Research, Development, and Demonstration Center: Program Plan

    International Nuclear Information System (INIS)

    1988-02-01

    The Northwest Hazardous Waste Research, Development, and Demonstration Center was created as part of an ongoing federal effort to provide technologies and methods that protect human health and welfare and environment from hazardous wastes. The Center was established by the Superfund Amendments and Reauthorization Act (SARA) to develop and adapt innovative technologies and methods for assessing the impacts of and remediating inactive hazardous and radioactive mixed-waste sites. The Superfund legislation authorized $10 million for Pacific Northwest Laboratory to establish and operate the Center over a 5-year period. Under this legislation, Congress authorized $10 million each to support research, development, and demonstration (RD and D) on hazardous and radioactive mixed-waste problems in Idaho, Montana, Oregon, and Washington, including the Hanford Site. In 1987, the Center initiated its RD and D activities and prepared this Program Plan that presents the framework within which the Center will carry out its mission. Section 1.0 describes the Center, its mission, objectives, organization, and relationship to other programs. Section 2.0 describes the Center's RD and D strategy and contains the RD and D objectives, priorities, and process to be used to select specific projects. Section 3.0 contains the Center's FY 1988 operating plan and describes the specific RD and D projects to be carried out and their budgets and schedules. 9 refs., 18 figs., 5 tabs

  8. The four decades of Korea Atomic Energy Research Institute through pictures

    International Nuclear Information System (INIS)

    2000-04-01

    This reports the process and development of Korea Atomic Energy Research Institute with a lot of photos. It is divided five parts, which includes the introduction of the purpose of publication, the quickening period of nuclear Atomic Energy during 1960s the period of building foundation on nuclear power during 1970s the period for technical independence for nuclear atomic energy during 1980s and maturity on technical independence for nuclear atomic energy during 1990s. It deals with the history of Korea Atomic Energy Research Institute from 1959 to 1990.

  9. Technologies and experimental approaches in the NIH Botanical Research Centers

    Science.gov (United States)

    Barnes, Stephen; Birt, Diane F; Cassileth, Barrie R; Cefalu, William T; Chilton, Floyd H; Farnsworth, Norman R; Raskin, Ilya; van Breemen, Richard B; Weaver, Connie M

    2009-01-01

    There are many similarities between research on combinatorial chemistry and natural products and research on dietary supplements and botanicals in the NIH Botanical Research Centers. The technologies in the centers are similar to those used by other NIH-sponsored investigators. All centers rigorously examine the authenticity of botanical dietary supplements and determine the composition and concentrations of the phytochemicals therein, most often by liquid chromatography–mass spectrometry. Several of the centers specialize in fractionation and high-throughput evaluation to identify the individual bioactive agent or a combination of agents. Some centers are using DNA microarray analyses to determine the effects of botanicals on gene transcription with the goal of uncovering the important biochemical pathways they regulate. Other centers focus on bioavailability and uptake, distribution, metabolism, and excretion of the phytochemicals as for all xenobiotics. Because phytochemicals are often complex molecules, synthesis of isotopically labeled forms is carried out by plant cells in culture, followed by careful fractionation. These labeled phytochemicals allow the use of accelerator mass spectrometry to trace the tissue distribution of 14C-labeled proanthocyanidins in animal models of disease. State-of-the-art proteomics and mass spectrometry are also used to identify proteins in selected tissues whose expression and posttranslational modification are influenced by botanicals and dietary supplements. In summary, the skills needed to carry out botanical centers’ research are extensive and may exceed those practiced by most NIH investigators. PMID:18258642

  10. Pursuing Personal Passion: Learner-Centered Research Mentoring.

    Science.gov (United States)

    Phillips, William R

    2018-01-01

    New researchers often face difficulty finding and focusing research questions. I describe a new tool for research mentoring, the Pursuing Personal Passion (P3) interview, and a systematic approach to help learners organize their curiosity and develop researchable questions aligned with their personal and professional priorities. The learner-centered P3 research interview parallels the patient-centered clinical interview. This paper reviews experience with 27 research mentees over the years 2009 to 2016, using the P3 approach to identify their initial research topics, classify their underlying passions and track the evolution into their final research questions. These researchers usually identified one of three personal passions that provided lenses to focus their research: problem, person, or process. Initial research topics focused on: problem (24%, 6), person (48%, 12) and process (28%, 7). Final research questions evolved into: problem (20%, 5), person (32%, 8) and process (48%, 12). Identification of the underlying passion can lead researchers who start with one general topic to develop it into very different research questions. Using this P3 approach, mentors can help new researchers focus their interests into researchable questions, successful studies, and organized programs of scholarship.

  11. Research on the Method of Noise Error Estimation of Atomic Clocks

    Science.gov (United States)

    Song, H. J.; Dong, S. W.; Li, W.; Zhang, J. H.; Jing, Y. J.

    2017-05-01

    The simulation methods of different noises of atomic clocks are given. The frequency flicker noise of atomic clock is studied by using the Markov process theory. The method for estimating the maximum interval error of the frequency white noise is studied by using the Wiener process theory. Based on the operation of 9 cesium atomic clocks in the time frequency reference laboratory of NTSC (National Time Service Center), the noise coefficients of the power-law spectrum model are estimated, and the simulations are carried out according to the noise models. Finally, the maximum interval error estimates of the frequency white noises generated by the 9 cesium atomic clocks have been acquired.

  12. NASA Space Engineering Research Center for VLSI systems design

    Science.gov (United States)

    1991-01-01

    This annual review reports the center's activities and findings on very large scale integration (VLSI) systems design for 1990, including project status, financial support, publications, the NASA Space Engineering Research Center (SERC) Symposium on VLSI Design, research results, and outreach programs. Processor chips completed or under development are listed. Research results summarized include a design technique to harden complementary metal oxide semiconductors (CMOS) memory circuits against single event upset (SEU); improved circuit design procedures; and advances in computer aided design (CAD), communications, computer architectures, and reliability design. Also described is a high school teacher program that exposes teachers to the fundamentals of digital logic design.

  13. Moving from Damage-Centered Research through Unsettling Reflexivity

    Science.gov (United States)

    Calderon, Dolores

    2016-01-01

    The author revisits autoethnographic work in order to examine how she unwittingly incorporated damage-centered (Tuck 2009) research approaches that reproduce settler colonial understandings of marginalized communities. The paper examines the reproduction of settler colonial knowledge in ethnographic research by unearthing the inherent surveillance…

  14. Staff Scientist - RNA Bioinformatics | Center for Cancer Research

    Science.gov (United States)

    The newly established RNA Biology Laboratory (RBL) at the Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH) in Frederick, Maryland is recruiting a Staff Scientist with strong expertise in RNA bioinformatics to join the Intramural Research Program’s mission of high impact, high reward science. The RBL is the equivalent of an

  15. Bibliography of Lewis Research Center Technical Publications announced in 1991

    Science.gov (United States)

    1992-01-01

    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific engineering work performed and managed by the Lewis Research Center in 1991. All the publications were announced in the 1991 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses.

  16. Interdisciplinary research center devoted to molecular environmental science opens

    Science.gov (United States)

    Vaughan, David J.

    In October, a new research center opened at the University of Manchester in the United Kingdom. The center is the product of over a decade of ground-breaking interdisciplinary research in the Earth and related biological and chemical sciences at the university The center also responds to the British governments policy of investing in research infrastructure at key universities.The Williamson Research Centre, the first of its kind in Britain and among the first worldwide, is devoted to the emerging field of molecular environmental science. This field also aims to bring about a revolution in understanding of our environment. Though it may be a less violent revolution than some, perhaps, its potential is high for developments that could affect us all.

  17. Spacecraft Fire Safety Research at NASA Glenn Research Center

    Science.gov (United States)

    Meyer, Marit

    2016-01-01

    Appropriate design of fire detection systems requires knowledge of both the expected fire signature and the background aerosol levels. Terrestrial fire detection systems have been developed based on extensive study of terrestrial fires. Unfortunately there is no corresponding data set for spacecraft fires and consequently the fire detectors in current spacecraft were developed based upon terrestrial designs. In low gravity, buoyant flow is negligible which causes particles to concentrate at the smoke source, increasing their residence time, and increasing the transport time to smoke detectors. Microgravity fires have significantly different structure than those in 1-g which can change the formation history of the smoke particles. Finally the materials used in spacecraft are different from typical terrestrial environments where smoke properties have been evaluated. It is critically important to detect a fire in its early phase before a flame is established, given the fixed volume of air on any spacecraft. Consequently, the primary target for spacecraft fire detection is pyrolysis products rather than soot. Experimental investigations have been performed at three different NASA facilities which characterize smoke aerosols from overheating common spacecraft materials. The earliest effort consists of aerosol measurements in low gravity, called the Smoke Aerosol Measurement Experiment (SAME), and subsequent ground-based testing of SAME smoke in 55-gallon drums with an aerosol reference instrument. Another set of experiments were performed at NASAs Johnson Space Center White Sands Test Facility (WSTF), with additional fuels and an alternate smoke production method. Measurements of these smoke products include mass and number concentration, and a thermal precipitator was designed for this investigation to capture particles for microscopic analysis. The final experiments presented are from NASAs Gases and Aerosols from Smoldering Polymers (GASP) Laboratory, with selected

  18. The role of architectural research centers in addressing climate change

    Directory of Open Access Journals (Sweden)

    John Carmody

    2012-10-01

    Full Text Available ABSTRACT: It is clear that an urgent, major transformation needs to happen in the design of the built environment to respond to impending climate change and other environmental degradation. This paper will explain the potential role of architectural research centers in this transformation and provide examples from the Center for Sustainable Building Research (CSBR at the University of Minnesota. A research center can become a regional hub to coordinate and disseminate critical information. CSBR is leading the establishment of Architecture 2030 standards in Minnesota, assisting local governments in writing green building policy, providing design assistance to local government, developing tools to assist design decision making, providing technical assistance to the affordable housing community inMinnesota, and establishing a regional case study database that includes actual performance information. CSBR is creating a publicly accessible, credible knowledge base on new approaches, technologies and actual performance outcomes. Research centers such as CSBR can be a critical component of the necessary feedback loop often lacking in the building industry. A research center can also fill major gaps in providing in depth professional education as well as be a catalyst for demonstration projects and public education.

  19. Qualitative Methods in Patient-Centered Outcomes Research.

    Science.gov (United States)

    Vandermause, Roxanne; Barg, Frances K; Esmail, Laura; Edmundson, Lauren; Girard, Samantha; Perfetti, A Ross

    2017-02-01

    The Patient-Centered Outcomes Research Institute (PCORI), created to fund research guided by patients, caregivers, and the broader health care community, offers a new research venue. Many (41 of 50) first funded projects involved qualitative research methods. This study was completed to examine the current state of the science of qualitative methodologies used in PCORI-funded research. Principal investigators participated in phenomenological interviews to learn (a) how do researchers using qualitative methods experience seeking funding for, implementing and disseminating their work; and (b) how may qualitative methods advance the quality and relevance of evidence for patients? Results showed the experience of doing qualitative research in the current research climate as "Being a bona fide qualitative researcher: Staying true to research aims while negotiating challenges," with overlapping patterns: (a) researching the elemental, (b) expecting surprise, and (c) pushing boundaries. The nature of qualitative work today was explicitly described and is rendered in this article.

  20. Establishing a national research center on day care

    DEFF Research Database (Denmark)

    Ellegaard, Tomas

    The paper presents and discusses the current formation of a national research center on ECEC. The center is currently being established. It is partly funded by the Danish union of early childhood and youth educators. It is based on cooperation between a number of Danish universities and this nati...... current new public management policies. However there is also more conflicting issues that emerge in this enterprise – especially on interests, practice relevance and knowledge paradigms....

  1. NNLO leptonic and hadronic corrections to Bhabha scattering and luminosity monitoring at meson factories

    Energy Technology Data Exchange (ETDEWEB)

    Carloni Calame, C. [Southampton Univ. (United Kingdom). School of Physics; Czyz, H.; Gluza, J.; Gunia, M. [Silesia Univ., Katowice (Poland). Dept. of Field Theory and Particle Physics; Montagna, G. [Pavia Univ. (Italy). Dipt. di Fisica Nucleare e Teorica; INFN, Sezione di Pavia (Italy); Nicrosini, O.; Piccinini, F. [INFN, Sezione di Pavia (Italy); Riemann, T. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Worek, M. [Wuppertal Univ. (Germany). Fachbereich C Physik

    2011-07-15

    Virtual fermionic N{sub f}=1 and N{sub f}=2 contributions to Bhabha scattering are combined with realistic real corrections at next-to-next-to-leading order in QED. The virtual corrections are determined by the package BHANNLOHF, and real corrections with the Monte Carlo generators BHAGEN-1PH, HELAC-PHEGAS and EKHARA. Numerical results are discussed at the energies of and with realistic cuts used at the {phi} factory DA{phi}NE, at the B factories PEP-II and KEK, and at the charm/{tau} factory BEPC II. We compare these complete calculations with the approximate ones realized in the generator BABAYAGA rate at NLO used at meson factories to evaluate their luminosities. For realistic reference event selections we find agreement for the NNLO leptonic and hadronic corrections within 0.07% or better and conclude that they are well accounted for in the generator by comparison with the present experimental accuracy. (orig.)

  2. NNLO massive corrections to Bhabha scattering and theoretical precision of BabaYaga rate at NLO

    International Nuclear Information System (INIS)

    Carloni Calame, C.M.; Nicrosini, O.; Piccinini, F.; Riemann, T.; Worek, M.

    2011-12-01

    We provide an exact calculation of next-to-next-to-leading order (NNLO) massive corrections to Bhabha scattering in QED, relevant for precision luminosity monitoring at meson factories. Using realistic reference event selections, exact numerical results for leptonic and hadronic corrections are given and compared with the corresponding approximate predictions of the event generator BabaYaga rate at NLO. It is shown that the NNLO massive corrections are necessary for luminosity measurements with per mille precision. At the same time they are found to be well accounted for in the generator at an accuracy level below the one per mille. An update of the total theoretical precision of BabaYaga rate at NLO is presented and possible directions for a further error reduction are sketched. (orig.)

  3. CUBED: South Dakota 2010 Research Center For Dusel Experiments

    International Nuclear Information System (INIS)

    Keller, Christina; Alton, Drew; Bai Xinhau; Durben, Dan; Heise, Jaret; Hong Haiping; Howard, Stan; Jiang Chaoyang; Keeter, Kara; McTaggart, Robert; Medlin, Dana; Mei Dongming; Petukhov, Andre; Rauber, Joel; Roggenthen, Bill; Spaans, Jason; Sun Yongchen; Szczerbinska, Barbara; Thomas, Keenan; Zehfus, Michael

    2010-01-01

    With the selection of the Homestake Mine in western South Dakota by the National Science Foundation (NSF) as the site for a national Deep Underground Science and Engineering Laboratory (DUSEL), the state of South Dakota has sought ways to engage its faculty and students in activities planned for DUSEL. One such effort is the creation of a 2010 Research Center focused on ultra-low background experiments or a Center for Ultra-low Background Experiments at DUSEL (CUBED). The goals of this center include to 1) bring together the current South Dakota faculty so that one may begin to develop a critical mass of expertise necessary for South Dakota's full participation in large-scale collaborations planned for DUSEL; 2) to increase the number of research faculty and other research personnel in South Dakota to complement and supplement existing expertise in nuclear physics and materials sciences; 3) to be competitive in pursuit of external funding through the creation of a center which focuses on areas of interest to experiments planned for DUSEL such as an underground crystal growth lab, a low background counting facility, a purification/depletion facility for noble liquids, and an electroforming copper facility underground; and 4) to train and educate graduate and undergraduate students as a way to develop the scientific workforce of the state. We will provide an update on the activities of the center and describe in more detail the scientific foci of the center.

  4. Accomplishments of LOCA/ECCS experimental research at Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Tasaka, Kanji; Murao, Yoshio; Koizumi, Yasuo

    1984-01-01

    Japan Atomic Energy Research Institute has investigated loss-of-coolant accident (LOCA)/emergency core cooling system (ECCS) from 1970. Major results of the LOCA/ECCS research are summarized in this report. ROSA-II program was LOCA/ECCS research for a pressurized water reactor (PWR) and ROSA-III program was for a boiling water reactor (BWR). The both test facilities were scaled at approximately 1/400 of the respective reference PWR and BWR. Large scale reflood test is research on reflood phenomena during a large break LOCA of PWR. The test facility is scaled at approximately 1/20 of the reference PWR and the research is still being continued. (author)

  5. Research within the coordinated programme on neutron scattering techniques in applied research

    International Nuclear Information System (INIS)

    Satya Murthy, N.S.

    1982-02-01

    This paper reviews developments of neutron scattering studies at Bhabha Atomic Research Centre (BARC) over the past two decades through utilisation of Apsara and Circus reactor facilities. Salient results in neutron crystallography, magnetic diffraction and inelastic neutron scattering will be presented highlighting progressive involvement in more and more complex studies. The growth of non-neutronic activities as a natural outcome of overall necessity and interest of investigators will be indicated. A description of facilities planned at R5 and the nature of studies that are likely to be taken up at R5 will be briefly discussed. (author)

  6. 76 FR 37085 - Applications for New Awards; Rehabilitation Engineering Research Centers (RERCs)

    Science.gov (United States)

    2011-06-24

    ... DEPARTMENT OF EDUCATION Applications for New Awards; Rehabilitation Engineering Research Centers...)--Disability and Rehabilitation Research Projects and Centers Program--Rehabilitation Engineering Research... (Rehabilitation Act). Rehabilitation Engineering Research Centers Program (RERCs) The purpose of the RERC program...

  7. A projection-free method for representing plane-wave DFT results in an atom-centered basis

    International Nuclear Information System (INIS)

    Dunnington, Benjamin D.; Schmidt, J. R.

    2015-01-01

    Plane wave density functional theory (DFT) is a powerful tool for gaining accurate, atomic level insight into bulk and surface structures. Yet, the delocalized nature of the plane wave basis set hinders the application of many powerful post-computation analysis approaches, many of which rely on localized atom-centered basis sets. Traditionally, this gap has been bridged via projection-based techniques from a plane wave to atom-centered basis. We instead propose an alternative projection-free approach utilizing direct calculation of matrix elements of the converged plane wave DFT Hamiltonian in an atom-centered basis. This projection-free approach yields a number of compelling advantages, including strict orthonormality of the resulting bands without artificial band mixing and access to the Hamiltonian matrix elements, while faithfully preserving the underlying DFT band structure. The resulting atomic orbital representation of the Kohn-Sham wavefunction and Hamiltonian provides a gateway to a wide variety of analysis approaches. We demonstrate the utility of the approach for a diverse set of chemical systems and example analysis approaches

  8. Activities of the data centers on atomic spectroscopy at the National Institute of Standards and Technology

    International Nuclear Information System (INIS)

    Wiese, W.L.

    1990-01-01

    The activities concerning Atomic Energy Levels and Wavelengths, Atomic Transition Probabilities and Spectral Line Shapes and Shifts at the National Institute of Standards and Technology (Gaithersburg, USA) are listed together with the corresponding lists of publications

  9. Energy Frontier Research Centers: Impact Report, January 2017

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-01-31

    Since its inception in 2009, the U. S. Department of Energy’s Energy Frontier Research Center (EFRC) program has become an important research modality in the Department’s portfolio, enabling high impact research that addresses key scientific challenges for energy technologies. Funded by the Office of Science’s Basic Energy Sciences program, the EFRCs are located across the United States and are led by universities, national laboratories, and private research institutions. These multi-investigator, multidisciplinary centers bring together world-class teams of researchers, often from multiple institutions, to tackle the toughest scientific challenges preventing advances in energy technologies. The EFRCs’ fundamental scientific advances are having a significant impact that is being translated to industry. In 2009 five-year awards were made to 46 EFRCs, including 16 that were fully funded by the American Recovery and Reinvestment Act (ARRA). An open recompetition of the program in 2014 resulted in fouryear awards to 32 centers, 22 of which are renewals of existing EFRCs and 10 of which are new EFRCs. In 2016, DOE added four new centers to accelerate the scientific breakthroughs needed to support the Department’s environmental management and nuclear cleanup mission, bringing the total number of active EFRCs to 36. The impact reports in this document describe some of the many scientific accomplishments and greater impacts of the class of 2009 – 2018 EFRCs and early outcomes from a few of the class of 2014 – 2018 EFRCs.

  10. National Nuclear Research Institute, Ghana Atomic Energy Commission: Annual Report 2014

    International Nuclear Information System (INIS)

    2014-01-01

    This annual report covers the research and commercial activities of the National Nuclear Research Institute of the Ghana Atomic Energy Commission for the year 2014. Also listed are the scientific and technical publications issued by staff.

  11. Twenty-fifth anniversary of the Juelich Nuclear Research Center

    International Nuclear Information System (INIS)

    Haefele, W.

    1982-01-01

    On December 10, 1981, KFA Juelich celebrated its 25th year of existence; on December 11, 1956, the land parliament of North Rhine Westphalia had decided in favour of the erection of a joint nuclear research facility of the land of North Rhine Westphalia. In contrast to other nuclear research centers, the Juelich centre was to develop and operate large-scale research equipment and infrastructure for joint use by the universities of the land. This cooperation has remained an important characteristic in spite of the independent scientific work of KFA institutes, Federal government majorities, and changes in research fields and tasks. KFA does fundamental research in nuclear and plasma physics, solid state research, medicine, life sciences, and environmental research; other activities are R + D tasks for the HTR reactor and its specific applications as well as energy research in general. (orig.) [de

  12. Center for modeling of turbulence and transition: Research briefs, 1995

    Science.gov (United States)

    1995-10-01

    This research brief contains the progress reports of the research staff of the Center for Modeling of Turbulence and Transition (CMOTT) from July 1993 to July 1995. It also constitutes a progress report to the Institute of Computational Mechanics in Propulsion located at the Ohio Aerospace Institute and the Lewis Research Center. CMOTT has been in existence for about four years. In the first three years, its main activities were to develop and validate turbulence and combustion models for propulsion systems, in an effort to remove the deficiencies of existing models. Three workshops on computational turbulence modeling were held at LeRC (1991, 1993, 1994). At present, CMOTT is integrating the CMOTT developed/improved models into CFD tools which can be used by the propulsion systems community. This activity has resulted in an increased collaboration with the Lewis CFD researchers.

  13. List of scientific publications, Nuclear Research Center Karlsruhe 1984

    International Nuclear Information System (INIS)

    1985-04-01

    The report abstracted contains a list of works published in 1984. Papers not in print yet are listed separately. Patent entries take account of all patent rights granted or published in 1984, i.e. patents or patent specifications. The list of publications is classified by institutes. The project category lists but the respective reports and studies carried out and published by members of the project staff concerned. Also listed are publications related to research and development projects of the 'product engineering project' (PFT/Projekt 'Fertigungstechnik'). With different companies and institutes cooperating, PFT is sponsored by Nuclear Research Center Karlsruhe GmbH. The latter is also responsible for printing above publications. Moreover the list contains the publications of a branch of the Bundesforschungsanstalt fuer Ernaehrung which is located on the KfK-premises. The final chapter of the list summarizes publications dealing with guest-experiments and research at Nuclear Research Center Karlsruhe. (orig./PW) [de

  14. A Program of Research and Education in Astronautics at the NASA Langley Research Center

    Science.gov (United States)

    Tolson, Robert H.

    2000-01-01

    The objectives of the Program were to conduct research at the NASA Langley Research Center in the area of astronautics and to provide a comprehensive education program at the Center leading to advanced degrees in Astronautics. We believe that the program has successfully met the objectives and has been of significant benefit to NASA LaRC, the GWU and the nation.

  15. Scientist, Single Cell Analysis Facility | Center for Cancer Research

    Science.gov (United States)

    The Cancer Research Technology Program (CRTP) develops and implements emerging technology, cancer biology expertise and research capabilities to accomplish NCI research objectives.  The CRTP is an outward-facing, multi-disciplinary hub purposed to enable the external cancer research community and provides dedicated support to NCI’s intramural Center for Cancer Research (CCR).  The dedicated units provide electron microscopy, protein characterization, protein expression, optical microscopy and nextGen sequencing. These research efforts are an integral part of CCR at the Frederick National Laboratory for Cancer Research (FNLCR).  CRTP scientists also work collaboratively with intramural NCI investigators to provide research technologies and expertise. KEY ROLES AND RESPONSIBILITIES We are seeking a highly motivated Scientist II to join the newly established Single Cell Analysis Facility (SCAF) of the Center for Cancer Research (CCR) at NCI. The SCAF will house state of the art single cell sequencing technologies including 10xGenomics Chromium, BD Genomics Rhapsody, DEPPArray, and other emerging single cell technologies. The Scientist: Will interact with close to 200 laboratories within the CCR to design and carry out single cell experiments for cancer research Will work on single cell isolation/preparation from various tissues and cells and related NexGen sequencing library preparation Is expected to author publications in peer reviewed scientific journals

  16. Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs

    International Nuclear Information System (INIS)

    1980-08-01

    A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described

  17. Scholarly Citadel in Chicago: The Center for Research Libraries.

    Science.gov (United States)

    Boylan, Ray

    1979-01-01

    The Center provides access to infrequently used research materials in three interrelated ways: (1) it provides a deposit library for such materials from the collections of member libraries; (2) it acquires such materials at members' shared expense and for their common use; and (3) it provides rapid access to its collection materials. (Author/JD)

  18. Re:Centering Adult Education Research: Whose World Is First?

    Science.gov (United States)

    Hall, Budd L.

    1993-01-01

    The discourse of adult education research needs to be reframed to place at the center the issues and concerns of the majority of the world's people who live in poverty, ill health, and insecurity and at the margins the concerns of the rich and powerful. (SK)

  19. Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Ronald C.

    1980-08-01

    A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described. (MOW)

  20. ADVANCED COMPOSITES TECHNOLOGY CASE STUDY AT NASA LANGLEY RESEARCH CENTER

    Science.gov (United States)

    This report summarizes work conducted at the National Aeronautics and Space Administration's Langley Research Center (NASA-LaRC) in Hampton, VA, under the U.S. Environmental Protection Agency’s (EPA) Waste Reduction Evaluations at Federal Sites (WREAFS) Program. Support for...

  1. The Amistad Research Center: Documenting the African American Experience.

    Science.gov (United States)

    Chepesiuk, Ron

    1993-01-01

    Describes the Amistad Research Center housed at Tulane University which is a repository of primary documents on African-American history. Topics addressed include the development and growth of the collection; inclusion of the American Missionary Association archives; sources of support; civil rights; and collecting for the future. (LRW)

  2. Does Every Research Library Need a Digital Humanities Center?

    Science.gov (United States)

    Schaffner, Jennifer; Erway, Ricky

    2014-01-01

    The digital humanities (DH) are attracting considerable attention and funding at the same time that this nascent field is striving for an identity. Some research libraries are making significant investments by creating digital humanities centers. However, questions about whether such investments are warranted persist across the cultural heritage…

  3. Bituminization of radioactive wastes at the Nuclear Research Center Karlsruhe

    International Nuclear Information System (INIS)

    Hild, W.; Kluger, W.; Krause, H.

    1976-05-01

    A summary is given of the main operational experience gained at the Nuclear Research Center Karlsruhe in 4 years operation of the bituminization plant for evaporator concentrates from low- and medium level wastes. At the same time some of the essential results are compiled that have been obtained in the R + D activities on bituminization. (orig.) [de

  4. Research Centers & Consortia | College of Engineering & Applied Science

    Science.gov (United States)

    Academics Admission Student Life Research Schools & Colleges Libraries Athletics Centers & ; Applied Science Powerful Ideas. Proven Results. Search for: Go This site All UWM Search Site Menu Skip to content Academics Undergraduate Programs Majors Minors Integrated Bachelor/Master Degree Applied Computing

  5. Scientific and technical information output of the Langley Research Center

    Science.gov (United States)

    1984-01-01

    Scientific and technical information that the Langley Research Center produced during the calendar year 1983 is compiled. Included are citations for Formal Reports, Quick-Release Technical Memorandums, Contractor Reports, Journal Articles and other Publications, Meeting Presentations, Technical Talks, Computer Programs, Tech Briefs, and Patents.

  6. Nuclear research center looks for 4000 pressure-cookers

    International Nuclear Information System (INIS)

    Anon.

    2013-01-01

    The CEA/Valduc research center has recently made a strange bid for the purchase of 4000 stainless steel pressure-cookers. In fact pressure-cookers are economical containers perfectly fitted for keeping radioactive materials. About 10.000 pressure-cookers have been bought in the last 50 years by CEA/Valduc. (A.C.)

  7. Meharry-Johns Hopkins Center for Prostate Cancer Research

    Science.gov (United States)

    2015-11-01

    formerly at the Institute for Health, Social, and Community Research (IHSCR) Center for Survey Research ( CSR ) at Shaw University in Raleigh, NC...survey will be conducted at CSR which is now located at Johns Hopkins Bloomberg School of Public Health (JHBSPH) located in Raleigh, NC. The Sons...the strategy to contact sons for whom she had no address or phone number. It was hoped that the father will notify the son to contact the study

  8. The materials processing research base of the Materials Processing Center

    Science.gov (United States)

    Latanision, R. M.

    1986-01-01

    An annual report of the research activities of the Materials Processing Center of the Massachusetts Institute of Technology is given. Research on dielectrophoresis in the microgravity environment, phase separation kinetics in immiscible liquids, transport properties of droplet clusters in gravity-free fields, probes and monitors for the study of solidification of molten semiconductors, fluid mechanics and mass transfer in melt crystal growth, and heat flow control and segregation in directional solidification are discussed.

  9. Bibliography of Lewis Research Center technical publications announced in 1990

    Science.gov (United States)

    1991-01-01

    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1990. All the publications were announced in the 1990 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses.

  10. Bibliography of Lewis Research Center technical publications announced in 1992

    Science.gov (United States)

    1993-01-01

    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1992. All the publications were announced in the 1992 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses.

  11. Bibliography of Lewis Research Center technical publications announced in 1993

    Science.gov (United States)

    1994-01-01

    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1993. All the publications were announced in the 1993 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses.

  12. Bibliography of Lewis Research Center technical publications announced in 1989

    Science.gov (United States)

    1990-01-01

    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1989. All the publications were announced in the 1989 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses.

  13. Implementing multidisciplinary research center infrastructure - A trendsetting example: SUNUM

    OpenAIRE

    Birkan, Burak; Özgüz, Volkan Hüsnü; Ozguz, Volkan Husnu

    2014-01-01

    Sabanci University Nanotechnology Research and Application Center (SUNUM) became operational in January 2012. SUNUM is a trendsetting example of a green and flexible research facility that is a test bed for the cost-effective operation of a Centralized Demand-Controlled Ventilation (CDCV) system, a state-of-the-art cleanroom, and world-class high technology equipment. The total investment in the facility was US$35 million.

  14. Annual report of the Japan Atomic Energy Research Institute, for fiscal 1988

    International Nuclear Information System (INIS)

    1989-01-01

    At present, a half century has elapsed since the discovery of nuclear fission, and atomic energy has taken the position of basic energy already, accordingly the development and utilization of atomic energy is very important as the energy source which can supply energy for long term economically and stably. Along the long term plan of atomic energy development and utilization decided in 1987, Japan Atomic Energy Research Institute (JAERI) advanced the research and development, thus it has borne the role as the nucleus general research institute in atomic energy fields. It has exerted efforts to obtain the understanding and trust of the nation on atomic energy, and has promoted the pioneering project research, such as safety research, high temperature engineering test and research, the research and development of nuclear fusion, the research on radiation utilization and the research and development of nuclear-powered ships. In the safety research, in order to contribute to the further rooting of LWRs and the establishment of nuclear fuel cycle, the research on the engineering safety of nuclear facilities and environmental safety has been advanced. The activities in respective research fields are summarized. Also the international cooperation with USA, FRG, China and others were carried out smoothly. (K.I.)

  15. Atomic Force Microscopy Application in Biological Research: A Review Study

    Directory of Open Access Journals (Sweden)

    Surena Vahabi

    2013-06-01

    Full Text Available Atomic force microscopy (AFM is a three-dimensional topographic technique with a high atomic resolution to measure surface roughness. AFM is a kind of scanning probe microscope, and its near-field technique is based on the interaction between a sharp tip and the atoms of the sample surface. There are several methods and many ways to modify the tip of the AFM to investigate surface properties, including measuring friction, adhesion forces and viscoelastic properties as well as determining the Young modulus and imaging magnetic or electrostatic properties. The AFM technique can analyze any kind of samples such as polymers, adsorbed molecules, films or fibers, and powders in the air whether in a controlled atmosphere or in a liquid medium. In the past decade, the AFM has emerged as a powerful tool to obtain the nanostructural details and biomechanical properties of biological samples, including biomolecules and cells. The AFM applications, techniques, and -in particular- its ability to measure forces, are not still familiar to most clinicians. This paper reviews the literature on the main principles of the AFM modality and highlights the advantages of this technique in biology, medicine, and- especially- dentistry. This literature review was performed through E-resources, including Science Direct, PubMed, Blackwell Synergy, Embase, Elsevier, and Scholar Google for the references published between 1985 and 2010.

  16. A Scenario to Provide Atomic Data for Fusion Research in the Stage of Precision Physics

    International Nuclear Information System (INIS)

    Li Jiaming; Gao Xiang; Cheng Cheng; Zhang Xiaole; Qing Bo

    2010-01-01

    In order to provide abundant atomic data for fusion research in the stage of precision physics, a scenario, being a combination of indispensable theoretical calculations and bench-mark experimental measurements, is proposed. Such abundant atomic data are compiled mainly by theoretical calculations. Accuracies of such abundant data (i.e., atomic energy levels and corresponding cross sections) are ascertained only by a finite number of bench-mark experimental measurements based on analytical calculation of scattering matrices.

  17. The Atomic Spectroscopy Data Center at the National Institute of Standards and Technology (NIST). Activities 1999-2001

    International Nuclear Information System (INIS)

    Wiese, W.L.

    2001-01-01

    Dr. Wiese discussed activities and trends at the NIST Data Centers in the last two years. He reviewed priorities covered in data work and reviewed the bibliographic and numerical databases now on their website. The Atomic Spectra Database (ASD) is their main atomic physics web database and this is a reference data, e.g., the wavelength data is generally accurate to six significant figures and transition probability data is certain to with less than ±50%. Dr. Wiese also reported about recent work on the compilation and evaluation of data for wavelengths and energy levels of elements Cu, Kr and Mo (and several others), which are fusion relevant

  18. The Atomic Spectroscopy Data Center at the National Institute of Standards and Technology (NIST). Activities 1999-2001

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, W L

    2001-12-01

    Dr. Wiese discussed activities and trends at the NIST Data Centers in the last two years. He reviewed priorities covered in data work and reviewed the bibliographic and numerical databases now on their website. The Atomic Spectra Database (ASD) is their main atomic physics web database and this is a reference data, e.g., the wavelength data is generally accurate to six significant figures and transition probability data is certain to with less than {+-}50%. Dr. Wiese also reported about recent work on the compilation and evaluation of data for wavelengths and energy levels of elements Cu, Kr and Mo (and several others), which are fusion relevant.

  19. Waste management at the Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    Hoehlein, G.; Lins, W.

    1982-01-01

    In the Karlsruhe Nuclear Research Center the responsibility for waste management is concentrated in the Decontamination Department which serves to collect and transport all liquid waste and solid material from central areas in the center for further waste treatment, clean radioactive equipment for repair and re-use or for recycling of material, remove from the liquid effluents any radioactive and chemical pollutants as specified in legislation on the protection of waters, convert radioactive wastes into mechanically and chemically stable forms allowing them to be transported into a repository. (orig./RW)

  20. Applied wind energy research at the National Wind Technology Center

    International Nuclear Information System (INIS)

    Robinson, M.C.; Tu, P.

    1997-01-01

    Applied research activities currently being undertaken at the National Wind Technology Center, part of the National Renewable Energy Laboratory, in the United States, are divided into several technical disciplines. An integrated multi-disciplinary approach is urged for the future in order to evaluate advanced turbine designs. The risk associated with any new turbine development program can thus be mitigated through the provision of the advanced technology, analysis tools and innovative designs available at the Center, and wind power can be promoted as a viable renewable energy alternative. (UK)

  1. SWOT analysis in Sina Trauma and Surgery Research Center.

    Science.gov (United States)

    Salamati, Payman; ashraf Eghbali, Ali; Zarghampour, Manijeh

    2014-01-01

    The present study was conducted with the aim of identifying and evaluating the internal and external factors, affecting the Sina Trauma and Surgery Research Center, affiliated to Tehran University of Medical Sciences and propose some of related strategies to senior managers. We used a combined quantitative and qualitative methodology. Our study population consisted of personnel (18 individuals) at Sina Trauma and Surgery Research Center. Data-collection tools were the group discussions and the questionnaires. Data were analyzed with descriptive statistics and SWOT (Strength, Weakness, Opportunities and Threats) analysis. 18 individuals participated in sessions, consisting of 8 women (44.4%) and 10 men (55.6%). The final scores were 2.45 for internal factors (strength-weakness) and 2.17 for external factors (opportunities-threats). In this study, we proposed 36 strategies (10 weakness-threat strategies, 10 weakness-opportunity strategies, 7 strength-threat strategies, and 9 strength-opportunity strategies). The current status of Sina Trauma and Surgery Research Center is threatened weak. We recommend the center to implement the proposed strategies.

  2. Nuclear Research Center Karlsruhe, Central Safety Department. Annual report 1992

    International Nuclear Information System (INIS)

    Koelzer, W.

    1993-05-01

    The Central Safety Department is responsible for handling all problems of radiation protection, safety and security of the institutes and departments of the Karlsruhe Nuclear Research Center, for waste water activity measurements and environmental monitoring of the whole area of the Center, and for research and development work mainly focusing on nuclear safety and radiation protection measures. The research and development work concentrates on the following aspects: Physical and chemical behavior of trace elements in the environment, biophysics of multicellular systems, behavior of tritium in the air/soil-plant system, improvement in radiation protection measurement and personnel dosimetry. This report gives details of the different duties, indicates the results of 1992 routine tasks and reports about results of investigations and developments of the working groups of the Department. The reader is referred to the English translation of Chapter 1 describing the duties and organization of the Central Safety Department. (orig.) [de

  3. Project 'European Research Center for Air Pollution Abatement Measures'

    International Nuclear Information System (INIS)

    1985-04-01

    During the 5-7th of March 1985 the first status report of the project 'European Research Center for Air Pollution Control Measures' took place in the Nuclear Research Center, Karlsruhe. Progress reports on the following topics assessment and analysis of the impacts of airborne pollutants on forest trees; distinction from other potential causes of recent forest dieback, research into atmospheric dispersion, conversion and deposition of airborne pollutants, development and optimization of industrial-technical processes to reduce or avoid emissions and providing instruments and making recommendations to the industrial and political sectors were presented. This volume is a collection of the work reported there. 42 papers were entered separately. (orig./MG) [de

  4. Karlsruhe Nuclear Research Center, Central Safety Department. Annual report 1993

    International Nuclear Information System (INIS)

    Koelzer, W.

    1994-04-01

    The Central Safety Department is responsible for handling all tasks of radiation protection, safety and security of the institutes and departments of the Karlsruhe Nuclear Research Center, for waste water activity measurements and environmental monitoring of the whole area of the Center, and for research and development work mainly focusing on nuclear safety and radiation protection measures. The research and development work concentrates on the following aspects: behavior of trace elements in the environment and decontamination of soil, behavior of tritium in the air/soil-plant system, improvement in radiation protection measurements and personnel dosimetry. This report gives details of the different duties, indicates the results of 1993 routine tasks and reports about results of investigations and developments of the working groups of the Department. (orig.) [de

  5. Dose control in semi industrial irradiation plant at the Ezeiza Atomic Center

    International Nuclear Information System (INIS)

    Dorda, E.M.

    1987-01-01

    In 1975 a study was initiated at the Division of Dosimetry to develop a technique and a system of dosimetry to be applied to the radiosterilization processes in the semi industrial irradiation plant of Ezeiza Atomic Center. The result of this study was the potassium nitrate/nitrite dosimeter used as routine dosimeter for control processes in food conservation, with a dose range of 0.2 kGy-1 kGy and in radiosterilization processes of disposable medical products of 1 kGy-150kGy. The potassium nitrate crystals undergo a radiolytic reduction. A linear correlation between the dose applied to the solid and the production of potassium nitrite was observed. After the irradiation of solid, the produced nitrite solution is colorimetrically titrated by measuring the absorbency in a spectrophotometer at 504 nm. The color is due to the formation of a diazonium salt and its later copulation with N-1 naphtylethylendiamine hydrochloride in acid medium. In 1980 a postal survey was organized presenting this dosimeter to standardize the irradiation dose in industrial process for Latin America. This dosimeter was presented in 1984 at the International Symposium on High Doses of the IAEA that took place in Vienna. Since them, comparative studies were performed between this dosimeter and those internationally considered and accepted: cerium(IV)/cerium(III) sulphate, ionization chamber of parallel plates, alanine. The results of comparison with the alanine dosimeter, which was used by Dr. Regula of the GSF of Munich, were the following: February 1985: 0% deviation; February 1986: 0.43% deviation. (Author)

  6. Outline of renovation for Mihama Public Relations (PR) Center on atomic power generation and nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    1983-05-01

    The Mihama PR Center of Kansai Electric Power Co. on atomic power generation and nuclear applications is now under entire renovation. It was constructed accompanying the construction of No. 1 unit in Mihama Nuclear Power Station, and opened in November, 1967, as the only PR facility of open house system. Since then, more than 1.9 million persons visited there in 15 years. Recently the space has become difficult to provide satisfactorily sophisticated exhibits because the importance of nuclear power generation has increased, and the diversified contents have been required. On the other hand, its building was cramped since many rooms were accommodated in the single round building of total area 815 m/sup 2/. In addition, the building has required drastic looking-over because of its deterioration and damages due to aging. The promotion of the understanding for the early securing of nuclear power plant location has been decided as the principal promotion item. The plan includes the modification of the existing building to the exhibition hall only as well as the completion and re-arrangement of the exhibits. It has been determined to construct a new building connected to the existing building, which accommodates a meeting hall, offices, utility machine room, etc., a total area being increased to 1457 m/sup 2/. The fund required is about 600 million yen. The construction work has started on December 1, 1982, aiming at the opening in July, 1983. The meeting hall is designed to seat about 120 persons and to employ multi-screen image techniques.

  7. Double Star Research: A Student-Centered Community of Practice

    Science.gov (United States)

    Johnson, Jolyon

    2016-06-01

    Project and team-based pedagogies are increasingly augmenting lecture-style science classrooms. Occasionally, university professors will invite students to tangentially partcipate in their research. Since 2006, Dr. Russ Genet has led an astronomy research seminar for community college and high school students that allows participants to work closely with a melange of professional and advanced amatuer researchers. The vast majority of topics have centered on measuring the position angles and searations of double stars which can be readily published in the Journal of Double Star Observations. In the intervening years, a collaborative community of practice (Wenger, 1998) formed with the students as lead researchers on their projects with the guidance of experienced astronomers and educators. The students who join the research seminar are often well prepared for further STEM education in college and career. Today, the research seminar involves multile schools in multiple states with a volunteer educator acting as an assistant instructor at each location. These assistant instructors interface with remote observatories, ensure progress is made, and recruit students. The key deliverables from each student team include a published research paper and a public presentation online or in-person. Citing a published paper on scholarship and college applications gives students' educational carreers a boost. Recently the Journal of Double Star Observations published its first special issue of exlusively student-centered research.

  8. Decommissioning Operations at the Cadarache Nuclear Research Center

    International Nuclear Information System (INIS)

    Gouhier, E.

    2008-01-01

    Among the different activities of the CEA research center of Cadarache, located in the south of France, one of the most important involves decommissioning. As old facilities close, decommissioning activity increases. This presentation will give an overview of the existing organization and the different ongoing decommissioning and cleanup operations on the site. We shall also present some of the new facilities under construction the purpose of which is to replace the decommissioned ones. Cadarache research center was created on October 14, 1959. Today, the activities of the research center are shared out among several technological R and D platforms, essentially devoted to nuclear energy (fission and fusion) Acting as a support to these R and D activities, the center of Cadarache has a platform of services which groups the auxiliary services required by the nuclear facilities and those necessary to the management of nuclear materials, waste, nuclear facility releases and decommissioning. Many old facilities have shut down in recent years (replaced by new facilities) and a whole decommissioning program is now underway involving the dismantling of nuclear reactors (Rapsodie, Harmonie), processing facilities (ATUE uranium treatment facility, LECA UO 2 facility) as well as waste treatment and storage facilities (INB37, INB 56. In conclusion: other dismantling and cleanup operations that are now underway in Cadarache include the following: - Waste treatment and storage facilities, - Historical VLLW and HLW storage facility, - Fissile material storage building, - Historical spent fuel storage facility. Thanks to the project organization: - Costs and risks on these projects can be reduced. - Engineers and technicians can easily move from one project to another. In some cases, when a new facility is under construction for the purpose of replacing a decommissioned one, some of the project team can integrate the new facility as members of the operation team. Today

  9. Large space antenna communications systems: Integrated Langley Research Center/Jet Propulsion Laboratory development activities. 2: Langley Research Center activities

    Science.gov (United States)

    Cambell, T. G.; Bailey, M. C.; Cockrell, C. R.; Beck, F. B.

    1983-01-01

    The electromagnetic analysis activities at the Langley Research Center are resulting in efficient and accurate analytical methods for predicting both far- and near-field radiation characteristics of large offset multiple-beam multiple-aperture mesh reflector antennas. The utilization of aperture integration augmented with Geometrical Theory of Diffraction in analyzing the large reflector antenna system is emphasized.

  10. European Facility for Antiproton and Ion Research (FAIR): the new international center for fundamental physics and its research program

    International Nuclear Information System (INIS)

    Fortov, Vladimir E; Sharkov, Boris Yu; Stöker, H

    2012-01-01

    The Facility for Antiproton and Ion Research (FAIR) accelerator center at Darmstadt, Germany, will provide the international scientific community with unique experimental opportunities of a scope and scale out of reach for any other large-scale facility in the world. With its staff of over 2500, it is expected to fundamentally expand our knowledge of hadron, nuclear, and atomic physics and their application to cosmology, astrophysics, and technology. In this review, the design details of the accelerator complex are discussed and the experimental research program for FAIR is presented. Particular attention is paid to experiments on the extreme state of matter arising from the isochoric heating of a material by heavy-ion beams. One of the largest facilities of its kind in Europe, FAIR is a part of the strategic development roadmap for the European Strategic Forum on Research Infrastructures (ESFRI). (physics of our days)

  11. The main activities and scientific collaboration possibilities at Ankara Nuclear research and training center

    International Nuclear Information System (INIS)

    Yucel, H.; Turhan, S.; Zararsiz, A.; Oksuz, B.S.

    2004-01-01

    Full text: Founded in 1964, Ankara Nuclear Research and Training Center (ANRTC) conducts and facilitates the scientific activities including training (summer practice, MSc and Ph D studies in physics and chemistry, IAEA fellowship programs etc.), research and other studies in nuclear and related fields. As it's a part of main duties, ANRTC has analysis on the variety of samples, and radiation protection services commercially, for radiation workers in state, public and private sectors. Research, development and application projects implemented in this Center have mostly been supported by State Planning Organization (SPO) and Turkish Atomic Energy Authority (TAEA). In addition to the projects there are on going collaborative studies with some national Universities and International Atomic Energy Agency. The main activities carried out in ANRTC can be summarized as: studies on experimental nuclear physics, application of nuclear techniques such as XRF, XRD, Gamma, Alpha, etc. for environmental pollutants, archaeological and geological dating, elemental and crystal structural analyses, studies on the detection of irradiated foodstuff by ESR, development of accident dosimeters to be used in the case of a nuclear or radiological accident, and radiation matter interaction studies. In near future, for young scientists, there will be new collaboration possibilities related to accelerator-based applications, especially the new production methods of radioisotopes and their radiopharmaceuticals by using a cyclotron when our 30 MeV p / 15MeV d cyclotron facility project is underway

  12. Patient-centered prioritization of bladder cancer research.

    Science.gov (United States)

    Smith, Angela B; Chisolm, Stephanie; Deal, Allison; Spangler, Alejandra; Quale, Diane Z; Bangs, Rick; Jones, J Michael; Gore, John L

    2018-05-04

    Patient-centered research requires the meaningful involvement of patients and caregivers throughout the research process. The objective of this study was to create a process for sustainable engagement for research prioritization within oncology. From December 2014 to 2016, a network of engaged patients for research prioritization was created in partnership with the Bladder Cancer Advocacy Network (BCAN): the BCAN Patient Survey Network (PSN). The PSN leveraged an online bladder cancer community with additional recruitment through print advertisements and social media campaigns. Prioritized research questions were developed through a modified Delphi process and were iterated through multidisciplinary working groups and a repeat survey. In year 1 of the PSN, 354 patients and caregivers responded to the research prioritization survey; the number of responses increased to 1034 in year 2. The majority of respondents had non-muscle-invasive bladder cancer (NMIBC), and the mean time since diagnosis was 5 years. Stakeholder-identified questions for noninvasive, invasive, and metastatic disease were prioritized by the PSN. Free-text questions were sorted with thematic mapping. Several questions submitted by respondents were among the prioritized research questions. A final prioritized list of research questions was disseminated to various funding agencies, and a highly ranked NMIBC research question was included as a priority area in the 2017 Patient-Centered Outcomes Research Institute announcement of pragmatic trial funding. Patient engagement is needed to identify high-priority research questions in oncology. The BCAN PSN provides a successful example of an engagement infrastructure for annual research prioritization in bladder cancer. The creation of an engagement network sets the groundwork for additional phases of engagement, including design, conduct, and dissemination. Cancer 2018. © 2018 American Cancer Society. © 2018 American Cancer Society.

  13. Architectural Design of a Nuclear Research Center with Radiation Safety Considerations, in North Western Coast of Egypt (Using Auto CAD and 3ds Max Programs)

    International Nuclear Information System (INIS)

    Farahat, M.A.Z.

    2016-01-01

    This research discusses the design of nuclear research centers to help architects and engineers who will design these centers. Also, the research covers the site characteristics which are used in site selection of nuclear research centers. It covers the principles and standards used in design and planning of nuclear research centers. The master plan of a nuclear research center should be designed based on the system of segregation according to the level of radioactivity. Radiation safety is an important aspect in the design of nuclear research centers. The Egyptian Atomic Energy Authority consists of three nuclear research centers, namely, the Nuclear Research Center in Inshas (Grid Planning Concept), the Hot Laboratories and Waste Management Center in Inshas (Grid Planning Concept) and The National Center for Radiation Research and Technology in Nasr City (Linear Planning Concept). The Radial Planning Concept is the best among all the Planning Concepts as regard radiation safety considerations. Therefore, an architectural design of a new nuclear research center was proposed in a suitable site in North Western Coast of Egypt (Radial Planning Concept) using Auto CAD and 3ds Max programs. This site is suitable and satisfies many of the site requirements. It is recommended that the architectural design of nuclear research centers should be supervised by an architectural engineer experienced in architectural design of nuclear facilities

  14. Annual report of the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    1993-01-01

    JAERI has conducted nuclear safety research in conformity with the national five year plan for safety research on nuclear installations, radioactive waste management and environmental radiation, and the research on engineering safety and environmental safety is described. In the research on high temperature engineering, the construction of the high temperature test reactor, the research on its fuel and materials, the reactor engineering, high temperature structures, safety and heat transfer, and nuclear heat application are reported. On the research and development of nuclear fusion, core plasma, core engineering technology and so on have been studied, and the engineering design activities for the international thermonuclear experimental reactor are in progress. On the research and development of radiation application, radiation processing, advanced radiation application and radioisotope production have been researched. The experiment on the nuclear ship 'Mutsu' was completed, and the research on the design of improved marine reactors has been advanced. Fundamental and related researches on various subjects are also reported. (K.I.)

  15. Hot atom chemistry of mixed crystals. 35 years of research

    International Nuclear Information System (INIS)

    Mueller, H.

    1993-01-01

    When this contribution was prepared, the author decided to present the more personal aspects of his work and the concepts that directed him. Since the time when the author interested in solid state hot atom chemistry more than 30 years ago, still now the generally accepted theory has not been existed. The irradiation test by using the BEPO pile in Harwell is reported. The use of glass fiber paper instead of cellulose paper was investigated. The real problem of the different models of primary retention should be solved. The idea of mixed crystal systems was the result of an experimental accident. The attempt of preparing mixed crystals, the papers that the author has written, the procedures of the experiment such as electrophoresis, the results of the electrophoretic separation are discussed. The next step was obviously the investigation of the ligand recoil. The production of the transient ligand vacancy complexes and their final fate resulted in mixed hexachlorobromometallate species is shown for the system K 2 O s Cl 6 -K 2 O s Br 6 (n,γ) 38 Cl. The reaction of the 38 Cl, the information about recoil atom reactions which increased with the complexity of target substances, and the resulted informations are reported. (K.I.)71 refs

  16. The use of muonic atoms in biomedical researches (review)

    International Nuclear Information System (INIS)

    Sabirov, E.M.

    1984-01-01

    The review based on the experimental works of USA, West Germany scientists, the scientists of LNP JINR, shows the possibilities of muon atom application for comparative element analysis in biology and medicine. The unique and wide possibilities of muon diagnosis method are shown. Experiments both in vitro and in vivo were conducted. Investigation resulted in demonstration of variation of C, N, O amount in investigated tissue samples; the relative oxygen content grows in progression: adipose tissue, muscular tissue, liuer, blood. It is shown that the method enables to determine the content of any element no matter in what chemical compound this element enters. The method of muon atoms has some advantages as compared with other nuclear physics methods. Method restriction lies in the absence of high-intensive meson beams, which is related to method sensitivity. Another disadvantage consists in impossibility to register hydrogen therefore the method must be expanded by other methods of analysis for the purpose of investigation of different functional changes in organism

  17. Workshop of Advanced Science Research Center, JAERI. Nuclear physics and nuclear chemistry of superheavy elements

    International Nuclear Information System (INIS)

    Nishio, Katsuhisa; Nishinaka, Ichiro; Ikezoe, Hiroshi; Nagame, Yuichiro

    2004-03-01

    A liquid drop model predicts that the fission barrier of a nucleus whose atomic number (Z) is larger than 106 disappears, so that such heavier nuclei as Z > 106 cannot exist. The shell effect, however, drastically changes structure of the fission barrier and stabilizes nucleus against fission, predicting the presence of super heavy element (SHE, Z=114-126) with measurable half-life. In the SHE region, a wave function of outermost electron of an atom, which controls chemical properties of an elements, is disturbed or changed by relativistic effects compared to the one from the non-relativistic model. This suggests that the SHEs have different chemical properties from those of lighter elements belonging to the same family. The chemistry of SHEs requires event by event analysis to reveal their chemical properties, thus is called 'atom-at-a-time chemistry'. Japan Atomic Energy Research Institute (JAERI) has been investigating fusion mechanism between heavy nuclei to find out favorable reactions to produce SHE by using JAERI-tandem and booster accelerator. In the JAERI-tandem facility, isotopes of Rf and Db are produced by using actinide targets such as 248 Cm in order to investigate their chemical properties. The present workshop was held in Advanced Science Research Center of JAERI at February 27-28 (2003) in order to discuss current status and future plans for the heavy element research. The workshop also included topics of the radioactive nuclear beam project forwarded by the JAERI-KEK cooperation and the nuclear transmutation facility of J-PARC. Also included is the nuclear fission process as a decay characteristic of heavy elements. There were sixty participants in the workshop including graduate and undergraduate eleven students. We had guests from Germany and Hungary. Through the workshop, we had a common knowledge that researches on SHE in Japan should fill an important role in the world. (author)

  18. Enhanced Electromagnetic and Chemical/Biological Sensing. Properties of Atomic Cluster-Derived Materials

    National Research Council Canada - National Science Library

    Schatz, George

    2003-01-01

    The Center for Atomic Clusters-derived Materials performed a broad range of research concerned with synthesizing, characterizing and utilizing atomic and molecular clusters, nanoparticles and nanomaterial...

  19. Annual report 1984-85 [of the Department of Atomic Energy, of the Government of India

    International Nuclear Information System (INIS)

    1985-01-01

    Research and Development (R and D) activities of the research establishments of the Department of Atomic Energy (DAE), performance of various production units and public sector undertakings of DAE and progress of various projects underway are reported. The report covers the period of the financial year 1984-85. The research establishments of DAE are the Bhabha Atomic Research Centre at Bombay and the Reactor Research Centre at Kalpakkam. DAE production units include atomic power stations for electricity generation at Tarapur, Kota and Kalpakkam; heavy water plants around the country and the Nuclear Fuel Complex at Hyderabad. Public sector undertaking of the Department are Indian Rare Earths Ltd., Electronic Corporation of India Ltd., and Uranium Corporation of India Ltd. The Atomic Minerals Division of the Department is mainly engaged in the R and D activities pertaining to exploration, prospecting and development of mineral resources needed for nuclear power programme. The Department's objective is to achieve the target of 10,000 MWe of nuclear power generating capacity by the year 2000. The Department's Nuclear Power Board operates the atomic power stations and is charged with the responsibility of design, construction and commissioning of atomic power projects at Narora and Kakrapar. The Department also financially supports the Tata Institute of Fundamental Research, the Tata Memorial Centre, both at Bombay and the Saha Institute of Nuclear Physics at Calcutta. The R and D activities of these institutions are also described in brief in this report. (M.G.B.)

  20. Public relations activities of the Karlsruhe Nuclear Research Center - a national research center contributes to opinion forming

    International Nuclear Information System (INIS)

    Koerting, K.

    1988-01-01

    At the Karlsruhe Nuclear Research Center, the Public Relations Department directly reports to the Chief Executive Officer. The head of the Public Relation Department acts as spokesman of the center in the public, which requires him to be fully informed of the work of all units and of the policy goals of the executive board. The key tools used by the Public Relations Department are KfK-Hausmitteilungen, accident information, the scientific journal KfK-Nachrichten, press releases, exhibitions, fairs, guided tours, and nuclear energy information staff. (DG)

  1. New York can be our nation's center for Alzheimer's research.

    Science.gov (United States)

    Vann, Allan S

    2014-09-01

    More than 5 million people in this country have Alzheimer's disease, and more than 300,000 of those with Alzheimer's live in New York. By 2025, it is estimated that there will be 350,000 residents living with Alzheimer's in New York. Congressman Steve Israel and New York Assemblyman Charles Lavine issued a joint proposal in June, 2013 suggesting that New York become this country's center for Alzheimer's research. Obviously, they would both like to see increased federal funding, but they also know that we cannot count on that happening. So Israel and Lavine have proposed a $3 billion state bonding initiative to secure sufficient funding to tackle this disease. It would be similar to the bonding initiatives that have made California and Texas this nation's centers for stem cell and cancer research. The bond would provide a dedicated funding stream to support research to find effective means to treat, cure, and eventually prevent Alzheimer's, and fund programs to help people currently dealing with Alzheimer's and their caregivers. New York already has some of the major "ingredients" to make an Alzheimer's bond initiative a success, including 3 of our nation's 29 Alzheimer's Disease Research Centers and some of the finest research facilities in the nation for genetic and neuroscience research. One can only imagine the synergy of having these world class institutions working on cooperative grants and projects with sufficient funding to attract even more world class researchers and scientists to New York to find ways to prevent, treat, and cure Alzheimer's. © The Author(s) 2014.

  2. 34 CFR 350.34 - Which Rehabilitation Engineering Research Centers must have an advisory committee?

    Science.gov (United States)

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false Which Rehabilitation Engineering Research Centers must... Engineering Research Centers Does the Secretary Assist? § 350.34 Which Rehabilitation Engineering Research Centers must have an advisory committee? A Rehabilitation Engineering Research Center conducting research...

  3. Using curriculum vitae to compare some impacts of NSF research grants with research center funding

    OpenAIRE

    Monica Gaughan; Barry Bozeman

    2002-01-01

    While traditional grants remain central in US federal support of academic scientists and engineers, the role of multidisciplinary NSF Centers is growing. Little is known about how funding through these Centers affects scientific output or (as is an NSF aim) increases academic collaboration with industry. This paper tests the use of CVs to examine how Center funding affects researchers' publication rates and their obtaining industry grants. Copyright , Beech Tree Publishing.

  4. Tennessee Valley Authority National Fertilizer and Environmental Research Center

    International Nuclear Information System (INIS)

    Gautney, J.

    1991-01-01

    The National Fertilizer and Environmental Research Center (NFERC) is a unique part of the Tennessee Valley Authority (TVA), a government agency created by an Act of Congress in 1933. The Center, located in Muscle Shoals, Alabama, is a national laboratory for research, development, education and commercialization for fertilizers and related agricultural chemicals including their economic and environmentally safe use, renewable fuel and chemical technologies, alternatives for solving environmental/waste problems, and technologies which support national defense- NFERC projects in the pesticide waste minimization/treatment/disposal areas include ''Model Site Demonstrations and Site Assessments,'' ''Development of Waste Treatment and Site Remediation Technologies for Fertilizer/Agrichemical Dealers,'' ''Development of a Dealer Information/Education Program,'' and ''Constructed Wetlands.''

  5. The NIH-NIAID Filariasis Research Reagent Resource Center.

    Directory of Open Access Journals (Sweden)

    Michelle L Michalski

    2011-11-01

    Full Text Available Filarial worms cause a variety of tropical diseases in humans; however, they are difficult to study because they have complex life cycles that require arthropod intermediate hosts and mammalian definitive hosts. Research efforts in industrialized countries are further complicated by the fact that some filarial nematodes that cause disease in humans are restricted in host specificity to humans alone. This potentially makes the commitment to research difficult, expensive, and restrictive. Over 40 years ago, the United States National Institutes of Health-National Institute of Allergy and Infectious Diseases (NIH-NIAID established a resource from which investigators could obtain various filarial parasite species and life cycle stages without having to expend the effort and funds necessary to maintain the entire life cycles in their own laboratories. This centralized resource (The Filariasis Research Reagent Resource Center, or FR3 translated into cost savings to both NIH-NIAID and to principal investigators by freeing up personnel costs on grants and allowing investigators to divert more funds to targeted research goals. Many investigators, especially those new to the field of tropical medicine, are unaware of the scope of materials and support provided by the FR3. This review is intended to provide a short history of the contract, brief descriptions of the fiilarial species and molecular resources provided, and an estimate of the impact the resource has had on the research community, and describes some new additions and potential benefits the resource center might have for the ever-changing research interests of investigators.

  6. Lewis Research Center space station electric power system test facilities

    Science.gov (United States)

    Birchenough, Arthur G.; Martin, Donald F.

    1988-01-01

    NASA Lewis Research Center facilities were developed to support testing of the Space Station Electric Power System. The capabilities and plans for these facilities are described. The three facilities which are required in the Phase C/D testing, the Power Systems Facility, the Space Power Facility, and the EPS Simulation Lab, are described in detail. The responsibilities of NASA Lewis and outside groups in conducting tests are also discussed.

  7. Development of laser technology in Research Center of Laser Fusion

    International Nuclear Information System (INIS)

    Zheng Wanguo; Deng Ying; Zhou Wei

    2013-01-01

    This paper reviews the progress in the construction of SG-Ⅲ laser facility, integrated Testbed and XG-Ⅲ laser facility and that in the upgrade of the prototype of SG-Ⅲ, and the development in assembling and installing technology, and the achievements in maintaining cleanliness project and metrology in Laser Fusion Research Center, China Academy of Engineering Physics in China in 2012. (authors)

  8. List of scientific publications of Nuclear Research Center Karlsruhe 1983

    International Nuclear Information System (INIS)

    1984-04-01

    This report contains the titles of the publications edited in the year 1983. The scientific and technical-scientific publications of the Nuclear Research Center Karlsruhe are printed as books, as original contributions in scientific or technical specialists' journals, as scripts for habilitation, thesis, scripts for diploma, as patents, as KfK-Reports (KfK=Kernforschungszentrum Karlsruhe) and are being presented as lectures on scientific meetings. No further separate abstracts of this list of publications were prepared. (orig./HBR) [de

  9. Nuclear research and development: a program of the Atomic Energy Corporation of South Africa Limited

    International Nuclear Information System (INIS)

    Sonnekus, D.

    1985-01-01

    The research and development activities of the Atomic Energy Corporation of South Africa are briefly discussed. The activities consists of the following components: geotecnics, research and development, reactor development, research reactor, radiation technology, post-reactor fuel service, safety, research computers and library service

  10. Energy Frontier Research Centers: Science for Our Nation's Energy Future, September 2016

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-09-01

    As world demand for energy rapidly expands, transforming the way energy is collected, stored, and used has become a defining challenge of the 21st century. At its heart, this challenge is a scientific one, inspiring the U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) to establish the Energy Frontier Research Center (EFRC) program in 2009. The EFRCs represent a unique approach, bringing together creative, multidisciplinary scientific teams to perform energy-relevant basic research with a complexity beyond the scope of single-investigator projects. These centers take full advantage of powerful new tools for characterizing, understanding, modeling, and manipulating matter from atomic to macroscopic length scales. They also train the next-generation scientific workforce by attracting talented students and postdoctoral researchers interested in energy science. The EFRCs have collectively demonstrated the potential to substantially advance the scientific understanding underpinning transformational energy technologies. Both a BES Committee of Visitors and a Secretary of Energy Advisory Board Task Force have found the EFRC program to be highly successful in meeting its goals. The scientific output from the EFRCs is impressive, and many centers have reported that their results are already impacting both technology research and industry. This report on the EFRC program includes selected highlights from the initial 46 EFRCs and the current 36 EFRCs.

  11. Supermultiplets and relativistic problems: II. The Bhabha equation of arbitrary spin and its properties

    CERN Document Server

    Moshinsky, M; Nikitin, A G; Smirnov, Yu F

    1998-01-01

    In 1945 Bhabha was probably the first to discuss the problem of a free relativistic particle with arbitrary spin in terms of a single linear equation in the four-momentum vector p subnu, but substituting the gamma supnu matrices of Dirac by other ones. He determined the latter by requiring that their appropriate Lorentz transformations lead to their formulation in terms of the generators of the O(5) group. His program was later extensively amplified by Krajcik, Nieto and others. We returned to this problem because we had an ab-initio procedure for deriving a Lorentz-invariant equation of arbitrary spin and furthermore could express the matrices appearing in them in terms of ordinary and what we called sign spins. Our procedure was similar to that of the ordinary and isotopic spin in nuclear physics that give rise to supermultiplets, hence the appearance of this word in the title. In the ordinary and sign spin formulation it is easy to transform our equation into one linear in both the p subnu and some of the ...

  12. High-sensitivity measurements of the excitation function for Bhabha scattering at MeV energies

    International Nuclear Information System (INIS)

    Tsertos, H.; Kozhuharov, C.; Armbruster, P.; Kienle, P.; Krusche, B.; Schreckenbach, K.

    1989-02-01

    Using a monochromatic e + beam scattered on a Be foil and a high-resolution detector device, the excitation function for elastic e + e - scattering was measured with a statistical accuracy of 0.25% in 1.4 keV steps in the c.m.-energy range between 770 keV and 840 keV (1.79 - 1.86 MeV/c 2 ) at c.m. scattering angles between 80 0 and 100 0 (FWHM). Within the experimental sensitivity of 0.5 b.eV/sr (c.m.) for the energy-integrated differential cross section no resonances were observed (97% CL). From this limit we infer that a hypothetical spinless resonant state should have a width of less than 1.9 meV corresponding to a lifetime limit of 3.5x10 -13 s. This limit establishes the most stringent bound for new particles in this mass range derived from Bhabha scattering and is independent of assumptions about the internal structure of the hypothetical particles. Less sensitivite limits were, in addition, derived around 520 keV c.m. energy (≅ 1.54 MeV/c 2 ) from an investigation with a thorium and a mylar foil as scatterers. (orig.)

  13. Measurement of the running of the QED coupling in small-angle Bhabha scattering at LEP

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Anagnostou, G.; Anderson, K.J.; Asai, S.; Axen, D.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brown, Robert M.; Burckhart, H.J.; Campana, S.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, D.G.; Ciocca, C.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallavalle, G.M.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Gagnon, P.; Gary, John William; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giacomelli, R.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harel, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herten, G.; Heuer, R.D.; Hill, J.C.; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanzaki, J.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kramer, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lellouch, D.; Lettso, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, A.; Ludwig, J.; Mader, W.; Marcellini, S.; Martin, A.J.; Mashimo, T.; Mattig, Peter; McKenna, J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Meyer, Niels T.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; ONeale, S.W.; Oh, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schorner-Sadenius, T.; Schroder, Matthias; Schumacher, M.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2006-01-01

    Using the OPAL detector at LEP, the running of the effective QED coupling alpha(t) is measured for space-like momentum transfer through its effect on the angular spectrum of small-angle Bhabha scattering. In an almost ideal QED framework, with very favourable experimental conditions, we obtain: Delta alpha(-6.07GeV^2) - Delta alpha(-1.81GeV^2) = (440 pm 58 pm 43 pm 30) X 10^-5, where the first error is statistical, the second is the experimental systematic and the third is the theoretical uncertainty. This is the strongest direct evidence ever presented that the running of alpha is consistent with Standard Model expectations. The null hypothesis that alpha remains constant within the above interval of -t is excluded with a significance above 5sigma. Similarly, our results are inconsistent at the level of 3sigma with the hypothesis that only leptonic loops contribute to the running, and therefore provide the first clear experimental evidence that hadronic loops also contribute.

  14. Reports of the research results for the peaceful uses of atomic energy, no. 19

    International Nuclear Information System (INIS)

    1980-01-01

    Many valuable results have been obtained by the tests and researches concerning the peaceful utilization of atomic energy, and they accomplished major role in the promotion of the peaceful utilization of atomic energy in Japan. In this report, the results of the tests and researches on the peaceful utilization of atomic energy carried out by national research institutes and others in 1978 fiscal year are outlined. It is desirable to deepen understandings further on the recent trend and results of the tests and researches with this book. The report is divided into the following chapters: nuclear fusion, safety research (technological safety research, environmental radioactivity safety research), food irradiation, countermeasures to cancers, agriculture, forestry and fishery (fertilized soil, quality improvement, farm product protection, breeding improvement), medicine (diagnosis and therapy, pharmaceuticals, environmental hygiene, application to living body pathology), mining and industry (radiation chemistry, radiation measurement, process analysis), power utilization (nuclear reactor materials, nuclear ships), civil engineering, radioactivation analysis, and injury prevention research. (Kako, I.)

  15. Search for the Single Production of Doubly-Charged Higgs Bosons and Constraints on their Couplings from Bhabha Scattering

    CERN Document Server

    Abbiendi, G; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Csilling, A.; Cuffiani, M.; Dado, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Groll, M.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kramer, T.; Krieger, P.; von Krogh, J.; Kruger, K.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Lettso, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, G.W.; Wilson, D.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2003-01-01

    A search for single production of doubly-charged Higgs bosons has been performed using 600.7 pb^-1 of e+e- collision data with sqrt(s)=189--209GeV collected by the OPAL detector at LEP. No evidence for the existence of H++/-- is observed. Upper limits on the Yukawa coupling of the H++/-- to like-signed electron pairs are derived. Additionally, indirect constraints on the Yukawa coupling from Bhabha scattering, where the H++/-- would contribute via t-channel exchange, are derived for M(H++/--) < 2TeV. These are the first results for both a single production search and constraints from Bhabha scattering reported from LEP.

  16. Report of test and research results on atomic energy obtained in national institutes in fiscal 1982

    International Nuclear Information System (INIS)

    1983-01-01

    As for the test and research on the utilization of atomic energy by national organizations, the budget was appropriated for the first time in fiscal year 1956. Since then, many valuable results of research have been produced in the diverse fields of nuclear fusion, safety research, food irradiation, medicine and others, in this way, the test and research have played large roles in the promotion of the utilization of atomic energy in Japan. This is the 23rd report, in which the results of the test and research on the utilization of atomic energy carried out in fiscal year 1982 by national organizations are summarized. 5 researches on nuclear fusion, 12 researches on engineering safety, 5 researches on environmental radioactivity safety, 3 researches on food irradiation, 5 researches on the countermeasures to cancer, 8 researches on soil fertilization, 4 researches on quality improvement, 7 researches on crop protection, 5 researches on the improvement of breeding, 8 researches on diagnosis and treatment, 8 researches on pharmaceuticals, 10 researches on the application to pathology, 6 researches on mining and industry, 6 researches on power reactors and nuclear ships, 1 research on underground water, 6 researches on activation analysis and 3 researches on injury prevention are reported. (Kako, I.)

  17. NASA Space Weather Center Services: Potential for Space Weather Research

    Science.gov (United States)

    Zheng, Yihua; Kuznetsova, Masha; Pulkkinen, Antti; Taktakishvili, A.; Mays, M. L.; Chulaki, A.; Lee, H.; Hesse, M.

    2012-01-01

    The NASA Space Weather Center's primary objective is to provide the latest space weather information and forecasting for NASA's robotic missions and its partners and to bring space weather knowledge to the public. At the same time, the tools and services it possesses can be invaluable for research purposes. Here we show how our archive and real-time modeling of space weather events can aid research in a variety of ways, with different classification criteria. We will list and discuss major CME events, major geomagnetic storms, and major SEP events that occurred during the years 2010 - 2012. Highlights of major tools/resources will be provided.

  18. NASA Glenn Research Center Experience with "LENR Phenomenon"

    Science.gov (United States)

    Wrbanek, Susan Y.; Fralick, Gustave C.; Wrbanek, John D.; Niedra, Janis M.

    2012-01-01

    Since 1989 NASA Glenn Research Center (GRC) has performed some small-scale limited experiments that show evidence of effects claimed by some to be evidence of Low Energy Nuclear Reactions (LENR). The research at GRC has involved observations and work on measurement techniques for observing the temperature effects in reactions of isotopes of hydrogen with palladium hydrides. The various experiments performed involved loading Pd with gaseous H2 and D2, and exposing Pd thin films to multi-bubble sonoluminescence in regular and deuterated water. An overview of these experiments and their results will be presented.

  19. NASA Glenn Research Center Experience with LENR Phenomenon

    Science.gov (United States)

    Wrbanek, Susan Y.; Fralick, Gustave C.; Wrbanek, John D.; Niedra, Janis M.

    2012-01-01

    Since 1989 NASA Glenn Research Center (GRC) has performed some small-scale limited experiments that show evidence of effects claimed by some to be evidence of Low Energy Nuclear Reactions (LENR). The research at GRC has involved observations and work on measurement techniques for observing the temperature effects in reactions of isotopes of hydrogen with palladium hydrides. The various experiments performed involved loading Pd with gaseous H2 and D2, and exposing Pd thin films to multi-bubble sonoluminescence in regular and deuterated water. An overview of these experiments and their results will be presented.

  20. Annual report 1982-83 [of the Department of Atomic Energy, India

    International Nuclear Information System (INIS)

    1983-01-01

    The annual report of the Department of Atomic Energy (DAE) of the Government of India for the financial year 1982-83 surveys the work of its various establishments. The major thrust of the DAE's programme is directed towards peaceful uses of atomic ener%y - primarily for electric power generation and applications of radiation and radioisotopes in medicine, agriculture and industry. The Bhabha Atomic Research Centre at Bombay is the major R and D establishment of the DAE and its activities in the fields of nuclear physics, chemistry and materials science, radiochemistry, nuclear fuels, reactor engineering, radiation protection, radioactive waste management and applications of radiation and radioactive isotopes are described in detail. The R and D activities of the Reactor Research Centre at Kanpakkam, the Tata Institute of Fundamental Research and the Tata A1emorial Centre, both at Bombay, and the Saha Institute of Nuclear Physics at Calcutta are described in brief. The performance of the Tarapur Atomic Power Station, the Rajasthan Atomic Power Station, the Nuclear Fuel Complex at Hyderabad, the Atomic Minerals Division, Uranium Corporation of India Ltd at Jaduguda, various heavy water plants and other industrial units of DAE is reported. Progress of nuclear power projects at Narora and Kakrapar, R-5 Project at Bombay and FBTR Project at Kalpakkam is described. India's participation in the activities of the International Atomic Energy Agency is also mentioned. (M.G.B.)

  1. The 10 MW multipurpose TRIGA reactor at Ongkharak Nuclear Research Center, Thailand

    International Nuclear Information System (INIS)

    Thurgood, B.E.; Razvi, J.; Whittemore, J.L.; Bhadrakom, K.

    1997-01-01

    General Atomics (GA), has been selected to lead a team of firms from the United States, Japan, Australia and Thailand to design, build and commission the Ongkharak Nuclear Research Center near Bangkok, Thailand, for the Office of Atomic Energy for Peace. The facilities to be provided comprise of: A Reactor Island, consisting of a 10 MW TRIGA reactor that takes full advantage of the inherent safety characteristics of uranium-zirconium hydride (UZrH) fuel; An Isotope Production Facility for the production of radioisotopes and radiopharmaceuticals using the TRIGA reactor; A Waste Processing and Storage Facility for the processing and storage of radioactive waste from the facility as well as other locations in Thailand. The centerpiece of the Center will be the TRIGA reactor, fueled with low-enriched UZrH fuel, cooled and moderated by light water, and reflected by beryllium and heavy water. The UZrH fueled reactor will have a rated steady state thermal power output of 10 MW, and will be capable of performing the following: Radioisotope production for medical, industrial and agricultural uses; Neutron transmutation doping of silicon; Beam experiments such as Neutron Scattering, Neutron Radiography (NR), and Prompt Gamma Neutron Activation Analysis (PGNAA); Medical therapy of patients using Boron Neutron Capture Therapy (BNCT); Applied research and technology development in the nuclear field; Training in principles of reactor operation, reactor physics, reactor experiments, etc. (author)

  2. A future perspective on technological obsolescenceat NASA, Langley Research Center

    Science.gov (United States)

    Mcintyre, Robert M.

    1990-01-01

    The present research effort was the first phase of a study to forecast whether technological obsolescence will be a problem for the engineers, scientists, and technicians at NASA Langley Research Center (LaRC). There were four goals of the research: to review the literature on technological obsolescence; to determine through interviews of division chiefs and branch heads Langley's perspective on future technological obsolescence; to begin making contacts with outside industries to find out how they view the possibility of technological obsolescence; and to make preliminary recommendations for dealing with the problem. A complete description of the findings of this research can be reviewed in a technical report in preparation. The following are a small subset of the key findings of the study: NASA's centers and divisions vary in their missions and because of this, in their capability to control obsolescence; research-oriented organizations within NASA are believed by respondents to keep up to date more than the project-oriented organizations; asked what are the signs of a professional's technological obsolescence, respondents had a variety of responses; top performing scientists were viewed as continuous learners, keeping up to date by a variety of means; when asked what incentives were available to aerospace technologists for keeping up to data, respondents specified a number of ideas; respondents identified many obstacles to professionals' keeping up to date in the future; and most respondents expressed some concern for the future of the professionals at NASA vis a vis the issue of professional obsolescence.

  3. Natural and Accelerated Bioremediation Research (NABIR) Field Research Center (FRC) Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Watson, D.B.

    2002-02-28

    The Environmental Sciences Division at Oak Ridge National Laboratory has established a Field Research Center (FRC) to support the Natural and Accelerated Bioremediation Research (NABIR) Program on the U.S. Department of Energy (DOE) Oak Ridge Reservation in Oak Ridge, Tennessee for the DOE Headquarters Office of Biological and Environmental Research within the Office of Science.

  4. Software development agreement between CERN and the Indian Department of Atomic Energy

    CERN Multimedia

    Patrice Loïez

    2003-01-01

    The development and prototyping work for the LHC computing facility is being organised as a project that includes many scientific institutes and industrial partners, coordinated by CERN. The project is nicknamed LCG (after LHC Computing Grid). Addendum No. 1 to the Protocol dated 24/09/02 to the 1991 co-operation agreement between CERN and the Department of Atomic Energy (DAE) of the Government of India defines the collaboration between CERN and DAE on software development for the LCG Prototype Project. Signing the addendum are G. Govindrajan (left), Director of the Electronics and Instrumentation Group at the Bhabha Atomic Research Centre, Mumbai, India and Dr. Hans Hoffmann, CERN Director for Technology Transfer and for Scientific Computing.

  5. Software development agreement between CERN and the Indian Department of Atomic Energy

    CERN Multimedia

    Patrice Loïez

    2003-01-01

    The development and prototyping work for the LHC computing facility is being organised as a project that includes many scientific institutes and industrial partners, coordinated by CERN. The project is nicknamed LCG (after LHC Computing Grid). Addendum No. 1 to the Protocol dated 24/09/02 to the 1991 co-operation agreement between CERN and the Department of Atomic Energy (DAE) of the Government of India defines the collaboration between CERN and DAE on software development for the LCG Prototype Project. Photo 01: Signing the addendum are G. Govindrajan (left), Director of the Electronics and Instrumentation Group at the Bhabha Atomic Research Centre, Mumbai, India and Dr. Hans Hoffmann, CERN Director for Technology Transfer and for Scientific Computing. Looking on are Christoph Eck (far left), resource manager of the LCG Project and Les Robertson, LCG Project Leader. Photo 02: (left to right) Christoph Eck, resource manager of the LCG Project; G. Govindrajan, Director of the Electronics and Instrumentation G...

  6. Coordinated Research Projects of the IAEA Atomic and Molecular Data Unit

    Science.gov (United States)

    Braams, B. J.; Chung, H.-K.

    2011-05-01

    The IAEA Atomic and Molecular Data Unit is dedicated to the provision of databases for atomic, molecular and plasma-material interaction (AM/PMI) data that are relevant for nuclear fusion research. IAEA Coordinated Research Projects (CRPs) are the principal mechanism by which the Unit encourages data evaluation and the production of new data. Ongoing and planned CRPs on AM/PMI data are briefly described here.

  7. Coordinated Research Projects of the IAEA Atomic and Molecular Data Unit

    International Nuclear Information System (INIS)

    Braams, B. J.; Chung, H.-K.

    2011-01-01

    The IAEA Atomic and Molecular Data Unit is dedicated to the provision of databases for atomic, molecular and plasma-material interaction (AM/PMI) data that are relevant for nuclear fusion research. IAEA Coordinated Research Projects (CRPs) are the principal mechanism by which the Unit encourages data evaluation and the production of new data. Ongoing and planned CRPs on AM/PMI data are briefly described here.

  8. Genomics:GTL Bioenergy Research Centers White Paper

    Energy Technology Data Exchange (ETDEWEB)

    Mansfield, Betty Kay [ORNL; Alton, Anita Jean [ORNL; Andrews, Shirley H [ORNL; Bownas, Jennifer Lynn [ORNL; Casey, Denise [ORNL; Martin, Sheryl A [ORNL; Mills, Marissa [ORNL; Nylander, Kim [ORNL; Wyrick, Judy M [ORNL; Drell, Dr. Daniel [Office of Science, Department of Energy; Weatherwax, Sharlene [U.S. Department of Energy; Carruthers, Julie [U.S. Department of Energy

    2006-08-01

    In his Advanced Energy Initiative announced in January 2006, President George W. Bush committed the nation to new efforts to develop alternative sources of energy to replace imported oil and fossil fuels. Developing cost-effective and energy-efficient methods of producing renewable alternative fuels such as cellulosic ethanol from biomass and solar-derived biofuels will require transformational breakthroughs in science and technology. Incremental improvements in current bioenergy production methods will not suffice. The Genomics:GTL Bioenergy Research Centers will be dedicated to fundamental research on microbe and plant systems with the goal of developing knowledge that will advance biotechnology-based strategies for biofuels production. The aim is to spur substantial progress toward cost-effective production of biologically based renewable energy sources. This document describes the rationale for the establishment of the centers and their objectives in light of the U.S. Department of Energy's mission and goals. Developing energy-efficient and cost-effective methods of producing alternative fuels such as cellulosic ethanol from biomass will require transformational breakthroughs in science and technology. Incremental improvements in current bioenergy-production methods will not suffice. The focus on microbes (for cellular mechanisms) and plants (for source biomass) fundamentally exploits capabilities well known to exist in the microbial world. Thus 'proof of concept' is not required, but considerable basic research into these capabilities remains an urgent priority. Several developments have converged in recent years to suggest that systems biology research into microbes and plants promises solutions that will overcome critical roadblocks on the path to cost-effective, large-scale production of cellulosic ethanol and other renewable energy from biomass. The ability to rapidly sequence the DNA of any organism is a critical part of these new

  9. Research reactor DHRUVA

    International Nuclear Information System (INIS)

    Veeraraghaven, N.

    1990-01-01

    DHRUVA, a 100 MWt research reactor located at the Bhabha Atomic Research Centre, Bombay, attained first criticality during August, 1985. The reactor is fuelled with natural uranium and is cooled, moderated and reflected by heavy water. Maximum thermal neutron flux obtained in the reactor is 1.8 X 10 14 n/cm 2 /sec. Some of the salient design features of the reactor are discussed in this paper. Some important features of the reactor coolant system, regulation and protection systems and experimental facilities are presented. A short account of the engineered safety features is provided. Some of the problems that were faced during commissioning and the initial phase of power operation are also dealt upon

  10. Federal Research: Opportunities Exist to Improve the Management and Oversight of Federally Funded Research and Development Centers

    National Research Council Canada - National Science Library

    Woods, William; Mittal, Anu; Neumann, John; Williams, Cheryl; Candon, Sharron; Sterling, Suzanne; Wade, Jacqueline; Zwanzig, Peter

    2008-01-01

    .... FFRDCs -- including laboratories, studies and analyses centers, and systems engineering centers -- conduct research in military space programs, nanotechnology, microelectronics, nuclear warfare...

  11. Applied Physics Research at the Idaho Accelerator Center

    International Nuclear Information System (INIS)

    Date, D. S.; Hunt, A. W.; Chouffani, K.; Wells, D. P.

    2011-01-01

    The Idaho Accelerator Center, founded in 1996 and based at Idaho State University, supports research, education, and high technology economic development in the United States. The research center currently has eight electron linear accelerators ranging in energy from 6 to 44 MeV with the latter linear accelerator capable of picosecond pulses, a 2 MeV positive-ion Van de Graaff, a 4 MV Nec tandem Pelletron, and a pulsed-power 8 k A, 10 MeV electron induction accelerator. Current research emphases include, accelerator physics research, accelerator based medical isotope production, active interrogation techniques for homeland security and nuclear nonproliferation applications, non destructive testing and materials science studies in support of industry as well as the development of advanced nuclear fuels, pure and applied radio-biology, and medical physics. This talk will highlight three of these areas including the production of the isotopes 99 Tc and 67 Cu for medical diagnostics and therapy, as well as two new technologies currently under development for nuclear safeguards and homeland security - namely laser Compton scattering and the polarized photofission of actinides

  12. The Wetland and Aquatic Research Center strategic science plan

    Science.gov (United States)

    ,

    2017-02-02

    IntroductionThe U.S. Geological Survey (USGS) Wetland and Aquatic Research Center (WARC) has two primary locations (Gainesville, Florida, and Lafayette, Louisiana) and field stations throughout the southeastern United States and Caribbean. WARC’s roots are in U.S. Fish and Wildlife Service (USFWS) and National Park Service research units that were brought into the USGS as the Biological Research Division in 1996. Founded in 2015, WARC was created from the merger of two long-standing USGS biology science Centers—the Southeast Ecological Science Center and the National Wetlands Research Center—to bring together expertise in biology, ecology, landscape science, geospatial applications, and decision support in order to address issues nationally and internationally. WARC scientists apply their expertise to a variety of wetland and aquatic research and monitoring issues that require coordinated, integrated efforts to better understand natural environments. By increasing basic understanding of the biology of important species and broader ecological and physiological processes, this research provides information to policymakers and aids managers in their stewardship of natural resources and in regulatory functions.This strategic science plan (SSP) was developed to guide WARC research during the next 5–10 years in support of Department of the Interior (DOI) partnering bureaus such as the USFWS, the National Park Service, and the Bureau of Ocean Energy Management, as well as other Federal, State, and local natural resource management agencies. The SSP demonstrates the alignment of the WARC goals with the USGS mission areas, associated programs, and other DOI initiatives. The SSP is necessary for workforce planning and, as such, will be used as a guide for future needs for personnel. The SSP also will be instrumental in developing internal funding priorities and in promoting WARC’s capabilities to both external cooperators and other groups within the USGS.

  13. Actions Needed to Ensure Scientific and Technical Information is Adequately Reviewed at Goddard Space Flight Center, Johnson Space Center, Langley Research Center, and Marshall Space Flight Center

    Science.gov (United States)

    2008-01-01

    This audit was initiated in response to a hotline complaint regarding the review, approval, and release of scientific and technical information (STI) at Johnson Space Center. The complainant alleged that Johnson personnel conducting export control reviews of STI were not fully qualified to conduct those reviews and that the reviews often did not occur until after the STI had been publicly released. NASA guidance requires that STI, defined as the results of basic and applied scientific, technical, and related engineering research and development, undergo certain reviews prior to being released outside of NASA or to audiences that include foreign nationals. The process includes technical, national security, export control, copyright, and trade secret (e.g., proprietary data) reviews. The review process was designed to preclude the inappropriate dissemination of sensitive information while ensuring that NASA complies with a requirement of the National Aeronautics and Space Act of 1958 (the Space Act)1 to provide for the widest practicable and appropriate dissemination of information resulting from NASA research activities. We focused our audit on evaluating the STI review process: specifically, determining whether the roles and responsibilities for the review, approval, and release of STI were adequately defined and documented in NASA and Center-level guidance and whether that guidance was effectively implemented at Goddard Space Flight Center, Johnson Space Center, Langley Research Center, and Marshall Space Flight Center. Johnson was included in the review because it was the source of the initial complaint, and Goddard, Langley, and Marshall were included because those Centers consistently produce significant amounts of STI.

  14. Overview of research in progress at the Center of Excellence

    Science.gov (United States)

    Wandell, Brian A.

    1993-01-01

    The Center of Excellence (COE) was created nine years ago to facilitate active collaboration between the scientists at Ames Research Center and the Stanford Psychology Department. Significant interchange of ideas and personnel continues between Stanford and participating groups at NASA-Ames; the COE serves its function well. This progress report is organized into sections divided by project. Each section contains a list of investigators, a background statement, progress report, and a proposal for work during the coming year. The projects are: Algorithms for development and calibration of visual systems, Visually optimized image compression, Evaluation of advanced piloting displays, Spectral representations of color, Perception of motion in man and machine, Automation and decision making, and Motion information used for navigation and control.

  15. Current NDT activities at Cekmece Nuclear Research and Training Center

    International Nuclear Information System (INIS)

    Ekinci, S.

    2004-01-01

    Nondestructive testing (NDT) activities at Cekmece Nuclear Research and Training Center (CNAEM) has been initiated in the Industrial Application Department of the Center which was established in 1976 as the Radioisotope Applications Group for Industry. The Department started its first NDT activity with industrial radiography. The NDT activities have been developed by the support of various national (State Planning Organization (DPT)) and international (IAEA and UNDP) projects. Today, there are five basic NDT techniques (radiography, ultrasonic, magnetic particle, liquid penetrant and eddy current) used in the Industrial Application Department. The Department arranges routinely NDT qualification courses according to ISO 9712 and TS EN 473 standards for level 1 and 2 for Turkish Industry. It also carries out national DPT and IAEA Technical Co-operation projects and gives NDT services in the laboratory and in the field. Digital radiography and digital ultrasonic techniques are being used in advanced NDT applications. This paper describes the NDT activities of CNAEM. (author)

  16. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    International Nuclear Information System (INIS)

    Allen, Todd R.

    2011-01-01

    The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the center's investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The center's research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

  17. Atom and life - History of a research issued from nuclear

    International Nuclear Information System (INIS)

    Griset, Pascal; Picard, Jean-Francois

    2015-01-01

    As many examples illustrate the commitment of the French CEA in biology (development of medical imagery technologies, of the first prion test for the detection of the Creutzfeldt-Jakob disease), this book proposes an insight into those specific researches in life sciences performed within this institution initially devoted to nuclear sciences. This history comprises researches performed in Fontenay aux Roses at the initiative of Frederic Joliot on basic physiological processes, the development of a scientific library in Saclay where physicists, chemists and biologists worked together, the building of a medical department within the Saclay hospital, research activities in Grenoble, the regrouping of biology laboratories, the increasingly important mission of the Life Sciences Directorate within the CEA in four domains (radiobiology and radio-pathology, protein engineering and structural biology, medical imagery and pharmacology, eco-physiology and vegetal ecosystems). This research field is now characterized by its international dimension

  18. Technical report from Radioactive Waste Management Funding and Research Center

    International Nuclear Information System (INIS)

    2007-10-01

    As the only one Japanese organization specialized in radioactive waste, RWMC (Radioactive Waste Management Funding and Research Center) has been conducting the two major roles; R and D and the fund administration for radioactive waste management. The focus of its studies includes land disposal of LLW (Low-level radioactive wastes) and it has gradually extended to research on management and disposal techniques for high-level (HLW) and TRU wastes and studies on securing and managing the funds required for disposal of these wastes. The present document is the yearly progress report of 2006 and the main activities and research results are included on spent fuel disposal techniques including radon diffusion and emanation problem, performance studies on underground facilities for radioactive waste disposal and its management, technical assessment for geological environment, remote control techniques, artificial barrier systems proposed and its monitoring systems, and TRU disposals. (S. Ohno)

  19. Applied Computational Fluid Dynamics at NASA Ames Research Center

    Science.gov (United States)

    Holst, Terry L.; Kwak, Dochan (Technical Monitor)

    1994-01-01

    The field of Computational Fluid Dynamics (CFD) has advanced to the point where it can now be used for many applications in fluid mechanics research and aerospace vehicle design. A few applications being explored at NASA Ames Research Center will be presented and discussed. The examples presented will range in speed from hypersonic to low speed incompressible flow applications. Most of the results will be from numerical solutions of the Navier-Stokes or Euler equations in three space dimensions for general geometry applications. Computational results will be used to highlight the presentation as appropriate. Advances in computational facilities including those associated with NASA's CAS (Computational Aerosciences) Project of the Federal HPCC (High Performance Computing and Communications) Program will be discussed. Finally, opportunities for future research will be presented and discussed. All material will be taken from non-sensitive, previously-published and widely-disseminated work.

  20. MedAustron - Ion-Beam Therapy and Research Center

    International Nuclear Information System (INIS)

    Schreiner, Thomas; Seemann, Rolf

    2015-01-01

    MedAustron is a synchrotron-based light-ion beam therapy center for cancer treatment as well as for clinical and non-clinical research, currently in the commissioning phase in Wiener Neustadt, Austria. Recently, the first proton beam was transported successfully to one of the four irradiation rooms. Whilst the choice of basic machine parameters was driven by medical requirements, i.e. 60 MeV protons and 120 MeV/A to 400 MeV/A carbon ions, the accelerator complex design was also optimized to offer flexibility for research operation. The potential of the synchrotron is being exploited to increase the maximum proton energy far beyond the medical needs to up to 800 MeV, for experimental physics applications, mainly in the areas of proton scattering and detector research. The accelerator layout allows for the installation of up to four ion source-spectrometer units, to provide various ion types besides the clinical used protons and carbon ions. Besides experimental physics, the two main non-clinical research disciplines are medical radiation physics and radiation biology. To decouple research and medical operation, a dedicated irradiation room for non-clinical research was included providing the installation of different experiments. In addition, several labs have been equipped with appropriate devices for preparing and analyzing radio-biological samples. This presentation gives a status overview over the whole project and highlights the non-clinical research opportunities at MedAustron. (Author)

  1. Annual report of the Japan Atomic Energy Research Institute, for fiscal 1989

    International Nuclear Information System (INIS)

    1990-01-01

    Japan Atomic Energy Research Institute has promoted the research on nuclear safety, the research and development of high temperature engineering and nuclear fusion which are the leading projects bringing about the breakthrough in atomic energy technology, the research on radiation utilization and the research and development of nuclear-powered ships, following the 'Plan of development and long term utilization of atomic energy' decided in 1987, as the central, general research institute in atomic energy field in Japan. Also the advanced basic research for opening atomic energy frontier and various international cooperation as well as the cooperation in Japan have been promoted. The engineering safety of nuclear facilities and environmental safety, the construction of the Nuclear Fuel Cycle Safety Engineering Research Facility, the design of the High Temperature Engineering Test Reactor and the various tests related to it, the reconstruction of JT-60 for increasing the current, the design of a nuclear fusion reactor, the high utilization of radiation using ion beam, the construction of Sekinehama Port for the nuclear-powered ship 'Mutsu', the power increasing test of the reactor of the Mutsu, the reconstruction of JRR-3 and others are reported. (K.I.)

  2. High Fidelity Preparation of a Single Atom in Its 2D Center of Mass Ground State

    Science.gov (United States)

    Sompet, Pimonpan; Fung, Yin Hsien; Schwartz, Eyal; Hunter, Matthew D. J.; Phrompao, Jindaratsamee; Andersen, Mikkel F.

    2017-04-01

    Complete control over quantum states of individual atoms is important for the study of the microscopic world. Here, we present a push button method for high fidelity preparation of a single 85Rb atom in the vibrational ground state of tightly focused optical tweezers. The method combines near-deterministic preparation of a single atom with magnetically-insensitive Raman sideband cooling. We achieve 2D cooling in the radial plane with a ground state population of 0.85, which provides a fidelity of 0.7 for the entire procedure (loading and cooling). The Raman beams couple two sublevels (| F = 3 , m = 0 〉 and | F = 2 , m = 0 〉) that are indifferent to magnetic noise to first order. This leads to long atomic coherence times, and allows us to implement the cooling in an environment where magnetic field fluctuations prohibit previously demonstrated variations. Additionally, we implement the trapping and manipulation of two atoms confined in separate dynamically reconfigurable optical tweezers, to study few-body dynamics.

  3. Smoking in uranium enrichment research building in Tokai Research Establishment, Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    1990-01-01

    On the smoking occurred on May 30, 1989 in the uranium enrichment research building, the investigation has been carried out about the presumed cause and the countermeasures for preventing the recurrence, and the following report was presented. In the uranium scrap after the oxidation treatment of vapor-deposited metallic uranium was carried out, a small quantity of unoxidized part having reactivity remained. This unoxidized part existing locally reacts with air in a container, and there is the possibility of generating heat after about one day. In this accident, unoxidized part existed near the wall of a polyethylene vessel, and the oxidation and heat generation reaction advanced. The vessel broke, air supply increased, and heat generation spread. After the temperature reached 300degC, the oxidation of UO 2 to U 3 O 8 took part, thus the polyethylene vessel and others generated smoke. As the countermeasures, for the preservation of uranium scrap, metallic vessels are used, and the atmosphere of inert gas or vacuum is maintained. The uranium scrap containing unoxidized part is rapidly oxidized. The uranium enrichment research building was decontamination. (K.I.)

  4. Atoms: for war or peace

    Energy Technology Data Exchange (ETDEWEB)

    Subrahmanyam, K V

    1981-08-01

    History of nuclear power generation starting from the experimental split of uranium atom in 1938 to the establishment of the International Atomic Energy Agency is traced. In India, the Atomic Energy Commission was established with the major objective of developing nuclear power to make up India's deficiencies in energy sources. It is noted that from the very beginning the commission's activities were covered under a blanket of secrecy. According to the author, India's atomic energy programme stagnated after Dr. Bhabha's death. The Department of Atomic Energy diverted its attention to the nuclear explosion which was carried out in 1974. This event caused a great setback to the collaboration with Canada and USA in the nuclear power programme. The resulting problems are still not fully solved. The author maintains that the Department of Atomic Energy should have confined its efforts to the reactor development with special reference to the fast breeder reactor so that thorium can be utilised to the maximum advantage.

  5. The Austrian Research Centers activities in energy risks

    International Nuclear Information System (INIS)

    Sdouz, Gert

    1998-01-01

    Among the institutions involved in energy analyses in Austria the risk context is being treated by three different entities: the Energy Consumption Agency, internationally known as EVA, the Federal Environmental Protection Agency, or Urnweltbundesarnt assessing mainly the environmental risks involved and the Austrian Research Centers, working on safety and risk evaluation. The Austrian Research Center Seibersdorf draws form its proficiency in Reactor Safety and Fusion Research, two fields of experience it has been involved in since its foundation, for some 40 years now. Nuclear energy is not well accepted by the Austrian population. Therefore in our country only energy systems with advanced safety level might be accepted in the far future. This means that the development of methods to compare risks is an important task. The characteristics of energy systems featuring advanced safety levels are: A very low hazard potential and a focus on deterministic safety instead of probabilistic safety, meaning to rely on inherently safe physics concepts, confirmed by probabilistic safety evaluation results. This can be achieved by adequate design of fusion reactors, advanced fission reactors and all different renewable sources of energy

  6. Final priority; National Institute on Disability and Rehabilitation Research--Disability and Rehabilitation Research Projects and Centers Program--Rehabilitation Engineering Research Centers. Final priority.

    Science.gov (United States)

    2013-06-14

    The Assistant Secretary for Special Education and Rehabilitative Services announces a priority for a Rehabilitation Engineering Research Center (RERC) on Universal Interfaces and Information Technology Access under the Disability and Rehabilitation Research Projects and Centers Program administered by the National Institute on Disability and Rehabilitation Research (NIDRR). The Assistant Secretary may use this priority for a competition in fiscal year (FY) 2013 and later years. We take this action to focus research attention on areas of national need. We intend to use this priority to improve outcomes for individuals with disabilities.

  7. Oklahoma State University proposed Advanced Technology Research Center. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA) evaluating the construction and equipping of the proposed Advanced Technology Research Center (ATRC) at Oklahoma State University (OSU) in Stillwater, Oklahoma. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement is not required.

  8. Telecommuting (Work-At-Home) at NASA Lewis Research Center

    Science.gov (United States)

    Srinidhi, Saragur M.

    1994-01-01

    This report presents a study in evaluating the viability of providing a work-at-home (telecommuting) program for Lewis Research Center's corporate employees using Integrated Services Digital Network (ISDN). Case studies have been presented for a range of applications from casual data access to interactive access. The network performance of telemedia applications were studied against future requirements for such level of remote connectivity. Many of the popular ISDN devices were characterized for network and service functionality. A set of recommendations to develop a telecommuting policy have been proposed.

  9. Surface modification and characterization Collaborative Research Center at ORNL

    International Nuclear Information System (INIS)

    1986-01-01

    The Surface Modification and Characterization Collaborative Research Center (SMAC/CRC) is a unique facility for the alteration and characterization of the near-surface properties of materials. The SMAC/CRC facility is equipped with particle accelerators and high-powered lasers which can be used to improve the physical, electrical, and/or chemical properties of solids and to create unique new materials not possible to obtain with conventional ''equilibrium'' processing techniques. Surface modification is achieved using such techniques as ion implantation doping, ion beam mixing, laser mixing, ion deposition, and laser annealing

  10. Researches carried out by Japan Atomic Energy Research Institute in the field of environmental protection

    International Nuclear Information System (INIS)

    Kavakami, Yu.

    2000-01-01

    The results of works, accomplished by the Japanese Atomic Energy Research Institute, related to evaluation of the nuclear facilities effect on the environmental medium, are considered. The analytical results of studies on the environmental radioactivity with an account of meteorological aspects, evaluation of the nuclear facilities impact on the environmental medium are presented. Studies on the radionuclide behavior in the environmental medium cover large range of problems: distribution of natural and artificial radionuclides in the surface medium and their migration; evaluation of the human radiation doses on the account of radionuclides; environmental medium protection and risk evaluation. The method for measuring the 90 Sr concentrations with application of ion-exchange tars and a simple method for determining the radon activity with application of liquid scintillators were developed in the process of the study on creation of the environmental medium monitoring. The studies, related to the content and behavior of tritium, Pu, 137 Cs, 247 Am, as well as mercury and other heavy metals in the environmental medium were carried out. The methods for evaluating the NPPs radiation effect on the population with an account of the radioactive substances releases both by normal operation and in the emergency situations, were developed. Attention is also paid to research programs and developed codes [ru

  11. Report of test and research results on atomic energy obtained in national institutes in fiscal 1983

    International Nuclear Information System (INIS)

    1984-01-01

    As for the test and research on the utilization of atomic energy by national organizations, the budget was appropriated for the first time in fiscal year 1956. Since then, many valuable results of research have been produced in the diverse fields of nuclear fusion, safety research, food irradiation, medicine and others, in this way, the test and research have played large roles in the promotion of the utilization of atomic energy in Japan. This is the 24th report, in which the results of the test and research on the utilization of atomic energy carried out in fiscal year 1983 by national organizations are summarized. 5 researches on nuclear fusion, 19 researches on engineering safety and environmental radioactivity safety, 3 researches on food irradiation, 6 researches on the countermeasures to cancer, 19 researches on agriculture, forestry and fishery, 30 researches on medicine, pharmaceuticals and environmental hygiene, 6 researches on mining and industry, 6 researches on power reactors and nuclear ships, 1 research on agricultural water, 7 researches on activation analysis and 4 researches on injury prevention are reported. (Kako, I.)

  12. UI researchers celebrate latest milestone in construction of atom smasher

    CERN Multimedia

    2007-01-01

    University of Iowa researchers joined their U.S. and international colleagues Dec. 19 in celebrating a major construction mile-stone that brings them one step closer to the completion of the most powerful device ever designed to search for the basic build-ing blocks of matter.

  13. UI researchers celebrate latest milestone in construction of atom smasher

    CERN Multimedia

    2007-01-01

    "University of Iowa researchers joined their U.S. and international colleagues De. 19 in celebrating a major construction mile-stone that brings them one step closer to the completion of the most powerful device ever designed to search for the basic build-ing blocks of matter." (1/2 page)

  14. Collaborative Mission Design at NASA Langley Research Center

    Science.gov (United States)

    Gough, Kerry M.; Allen, B. Danette; Amundsen, Ruth M.

    2005-01-01

    NASA Langley Research Center (LaRC) has developed and tested two facilities dedicated to increasing efficiency in key mission design processes, including payload design, mission planning, and implementation plan development, among others. The Integrated Design Center (IDC) is a state-of-the-art concurrent design facility which allows scientists and spaceflight engineers to produce project designs and mission plans in a real-time collaborative environment, using industry-standard physics-based development tools and the latest communication technology. The Mission Simulation Lab (MiSL), a virtual reality (VR) facility focused on payload and project design, permits engineers to quickly translate their design and modeling output into enhanced three-dimensional models and then examine them in a realistic full-scale virtual environment. The authors were responsible for envisioning both facilities and turning those visions into fully operational mission design resources at LaRC with multiple advanced capabilities and applications. In addition, the authors have created a synergistic interface between these two facilities. This combined functionality is the Interactive Design and Simulation Center (IDSC), a meta-facility which offers project teams a powerful array of highly advanced tools, permitting them to rapidly produce project designs while maintaining the integrity of the input from every discipline expert on the project. The concept-to-flight mission support provided by IDSC has shown improved inter- and intra-team communication and a reduction in the resources required for proposal development, requirements definition, and design effort.

  15. Continuing training program in radiation protection in biological research centers

    International Nuclear Information System (INIS)

    Escudero, R.; Hidalgo, R.M.; Usera, F.; Macias, M.T.; Mirpuri, E.; Perez, J.; Sanchez, A.

    2008-01-01

    The use of ionizing radiation in biological research has many specific characteristics. A great variety of radioisotopic techniques involve unsealed radioactive sources, and their use not only carries a risk of irradiation, but also a significant risk of contamination. Moreover, a high proportion of researchers are in training and the labor mobility rate is therefore high. Furthermore, most newly incorporated personnel have little or no previous training in radiological protection, since most academic qualifications do not include training in this discipline. In a biological research center, in addition to personnel whose work is directly associated with the radioactive facility (scientific-technical personnel, operators, supervisors), there are also groups of support personnel The use of ionizing radiation in biological research has many specific characteristics. A great variety of radioisotopic techniques involve unsealed radioactive sources, and their use not only carries a risk of irradiation, but also a significant risk of contamination. Moreover, a high proportion of researchers are in training and the labor mobility rate is therefore high. Furthermore, most newly incorporated personnel have little or no previous training in radiological protection, since most academic qualifications do not include training in this discipline. In a biological research center, in addition to personnel whose work is directly associated with the radioactive facility (scientific-technical personnel, operators, supervisors), there are also groups of support personnel maintenance and instrumentation workers, cleaners, administrative personnel, etc. who are associated with the radioactive facility indirectly. These workers are affected by the work in the radioactive facility to varying degrees, and they therefore also require information and training in radiological protection tailored to their level of interaction with the installation. The aim of this study was to design a

  16. Development and Testing of the Glenn Research Center Visitor's Center Grid-Tied Photovoltaic Power System

    Science.gov (United States)

    Eichenberg, Dennis J.

    2009-01-01

    The NASA Glenn Research Center (GRC) has developed, installed, and tested a 12 kW DC grid-tied photovoltaic (PV) power system at the GRC Visitor s Center. This system utilizes a unique ballast type roof mount for installing the photovoltaic panels on the roof of the Visitor s Center with no alterations or penetrations to the roof. The PV system has generated in excess of 15000 kWh since operation commenced in August 2008. The PV system is providing power to the GRC grid for use by all. Operation of the GRC Visitor s Center PV system has been completely trouble free. A grid-tied PV power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. The project transfers space technology to terrestrial use via nontraditional partners. GRC personnel glean valuable experience with PV power systems that are directly applicable to various space power systems, and provides valuable space program test data. PV power systems help to reduce harmful emissions and reduce the Nation s dependence on fossil fuels. Power generated by the PV system reduces the GRC utility demand, and the surplus power aids the community. Present global energy concerns reinforce the need for the development of alternative energy systems. Modern PV panels are readily available, reliable, efficient, and economical with a life expectancy of at least 25 years. Modern electronics has been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy of at least 25 years. Based upon the success of the GRC Visitor s Center PV system, additional PV power system expansion at GRC is under consideration. The GRC Visitor s Center grid-tied PV power system was successfully designed and developed which served to validate the basic principles

  17. The Role of Computers in Research and Development at Langley Research Center

    Science.gov (United States)

    Wieseman, Carol D. (Compiler)

    1994-01-01

    This document is a compilation of presentations given at a workshop on the role cf computers in research and development at the Langley Research Center. The objectives of the workshop were to inform the Langley Research Center community of the current software systems and software practices in use at Langley. The workshop was organized in 10 sessions: Software Engineering; Software Engineering Standards, methods, and CASE tools; Solutions of Equations; Automatic Differentiation; Mosaic and the World Wide Web; Graphics and Image Processing; System Design Integration; CAE Tools; Languages; and Advanced Topics.

  18. A RESEARCH REPORT ON OPERATIONAL PLANS FOR DEVELOPING REGIONAL EDUCATIONAL MEDIA RESEARCH CENTERS.

    Science.gov (United States)

    CARPENTER, C.R.; AND OTHERS

    THE NEED AND FEASIBILITY OF ESTABLISHING A NUMBER OF "REGIONAL EDUCATIONAL MEDIA RESEARCH CENTERS WITH A PROGRAMMATIC ORIENTATION" WERE INVESTIGATED. A PLANNING GROUP WAS ESTABLISHED TO SERVE AS A STEERING COMMITTEE. CONFERENCES IN WHICH GROUPS IN RESEARCH AND EDUCATION IN WIDELY DISTRIBUTED REGIONS OF THE COUNTRY PARTICIPATED WERE HELD…

  19. Pinon-juniper management research at Corona Range and Livestock Research Center in Central New Mexico

    Science.gov (United States)

    Andres Cibils; Mark Petersen; Shad Cox; Michael Rubio

    2008-01-01

    Description: New Mexico State University's Corona Range and Livestock Research Center (CRLRC) is located in a pinon-juniper (PJ)/grassland ecotone in the southern Basin and Range Province in south central New Mexico. A number of research projects conducted at this facility revolve around soil, plant, livestock, and wildlife responses to PJ woodland management. The...

  20. 1998 researchers' conference proceedings, Amarillo College Business and Industry Center

    International Nuclear Information System (INIS)

    1998-01-01

    The first Strategic Arms Reduction Treaties (START 1 and 2) signed by the US and the Soviet Union call for a reduction in strategic nuclear warheads to about one-third of 1990 levels and a complete elimination of land-based, multiple-warhead missiles. As a consequence of dismantling nuclear warheads, a significant portion of the inventory of nuclear materials that were formerly parts of deployed weapon systems was designated to be handled and/or stored at the Pantex Plant near Amarillo, Texas. To facilitate research integration between the national laboratories and the universities, the Center has divided its technical activities into seven focus areas. For Nuclear and Other Materials Studies, the focus areas are Materials Science, Plutonium Processing and handling, Nuclear Materials Storage, and analytical Development. The Environment, Safety and Health focus areas are Environmental Restoration and Protection, Safety and Health, and Waste Management. Research projects within each area are presented

  1. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 66

    International Nuclear Information System (INIS)

    OGAWA, A.

    2005-01-01

    The RIKEN BNL Research Center (RSRC) was established in April 1997 at Brookhaven National Laboratory. It is funded by the 'Rikagaku Kenkyusho (RIKEN, The Institute of Physical and Chemical Research) of Japan. The Center is dedicated to the study of strong interactions, including spin physics, lattice QCD, and RHIC physics through the nurturing of a new generation of young physicists. The RBRC has both a theory and experimental component. At present the theoretical group has 4 Fellows and 3 Research Associates as well as 11 RHIC Physics/University Fellows (academic year 2003-2004). To date there are approximately 30 graduates from the program of which 13 have attained tenure positions at major institutions worldwide. The experimental group is smaller and has 2 Fellows and 3 RHIC Physics/University Fellows and 3 Research Associates, and historically 6 individuals have attained permanent positions. Beginning in 2001 a new RIKEN Spin Program (RSP) category was implemented at RBRC. These appointments are joint positions of RBRC and RIKEN and include the following positions in theory and experiment: RSP Researchers, RSP Research Associates, and Young Researchers, who are mentored by senior RBRC Scientists, A number of RIKEN Jr. Research Associates and Visiting Scientists also contribute to the physics program at the Center. RBRC has an active workshop program on strong interaction physics with each workshop focused on a specific physics problem. Each workshop speaker is encouraged to select a few of the most important transparencies from his or her presentation, accompanied by a page of explanation. This material is collected at the end of the workshop by the organizer to form proceedings, which can therefore be available within a short time. To date there are sixty nine proceedings volumes available. The construction of a 0.6 teraflops parallel processor, dedicated to lattice QCD, begun at the Center on February 19, 1998, was completed on August 28, 1998 and is still

  2. Two Micron Laser Technology Advancements at NASA Langley Research Center

    Science.gov (United States)

    Singh, Upendra N.

    2010-01-01

    An Independent Laser Review Panel set up to examine NASA s space-based lidar missions and the technology readiness of lasers appropriate for space-based lidars indicated a critical need for an integrated research and development strategy to move laser transmitter technology from low technical readiness levels to the higher levels required for space missions. Based on the review, a multiyear Laser Risk Reduction Program (LRRP) was initiated by NASA in 2002 to develop technologies that ensure the successful development of the broad range of lidar missions envisioned by NASA. This presentation will provide an overview of the development of pulsed 2-micron solid-state laser technologies at NASA Langley Research Center for enabling space-based measurement of wind and carbon dioxide.

  3. Joint development utility and university and utility and research center

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Roberto del Giudice R.; Valgas, Helio Moreira [Companhia Energetica de Minas Gerais (CEMIG), Belo Horizonte, MG (Brazil)

    1994-12-31

    This paper shows the background acquired by CEMIG in dealing with projects associated with R and D (Research and Development), carried out as a result of the establishment of contracts or governants with universities and research center for direct application on the solution of problems related to the operation of the system, within the scope of electrical operation planning. The various aspects of a project of this nature such as legal questions, characterization of a contract or a covenant, main developments and new opportunity areas should be covered. Finally the subject shall be dealt with under the Total Quality approach, involving the proposition of control items associated to the process and goals to be reached. (author) 7 refs., 2 figs.

  4. The Rise of Federally Funded Research and Development Centers

    Energy Technology Data Exchange (ETDEWEB)

    DALE,BRUCE C.; MOY,TIMOTHY D.

    2000-09-01

    Federally funded research and development centers (FFRDCS) area unique class of research and development (R and D) facilities that share aspects of private and public ownership. Some FFRDCS have been praised as national treasures, but FFRDCS have also been the focus of much criticism through the years. This paper traces the history of FFRDCS through four periods: (1) the World War II era, which saw the birth of federal R and D centers that would eventually become FFRDCS; (2) the early Cold War period, which exhibited a proliferation of FFRDCS despite their unclear legislative status and growing tension with an increasingly capable and assertive defense industry, (3) there-evaluation and retrenchment of FFRDCS in the 1960s and early 1970s, which resulted in a dramatic decline in the number of FFRDCS; and (4) the definition and codification of the FFRDC entity in the late 1970s and 1980s, when Congress and the executive branch worked together to formalize regulations to control FFRDCS. The paper concludes with observations on the status of FFRDCS at the end of the twentieth century.

  5. Dryden Flight Research Center Critical Chain Project Management Implementation

    Science.gov (United States)

    Hines, Dennis O.

    2012-01-01

    In Fiscal Year 2011 Dryden Flight Research Center (DFRC) implemented a new project management system called Critical Chain Project Management (CCPM). Recent NASA audits have found that the Dryden workforce is strained under increasing project demand and that multi-tasking has been carried to a whole new level at Dryden. It is very common to have an individual work on 10 different projects during a single pay period. Employee surveys taken at Dryden have identified work/life balance as the number one issue concerning employees. Further feedback from the employees indicated that project planning is the area needing the most improvement. In addition, employees have been encouraged to become more innovative, improve job skills, and seek ways to improve overall job efficiency. In order to deal with these challenges, DFRC management decided to adopt the CCPM system that is specifically designed to operate in a resource constrained multi-project environment. This paper will discuss in detail the rationale behind the selection of CCPM and the goals that will be achieved through this implementation. The paper will show how DFRC is tailoring the CCPM system to the flight research environment as well as laying out the implementation strategy. Results of the ongoing implementation will be discussed as well as change management challenges and organizational cultural changes. Finally this paper will present some recommendations on how this system could be used by selected NASA projects or centers.

  6. Research in atomic and applied physics using a 6-GeV synchrotron source

    International Nuclear Information System (INIS)

    Jones, K.W.

    1985-12-01

    The Division of Atomic and Applied Physics in the Department of Applied Science at Brookhaven National Laboratory conducts a broad program of research using ion beams and synchrotron radiation for experiments in atomic physics and nuclear analytical techniques and applications. Many of the experiments would benefit greatly from the use of high energy, high intensity photon beams from a 6-GeV synchrotron source. A survey of some of the specific scientific possibilities is presented

  7. Spare parts management for nuclear research reactors [Paper No.: I-14

    International Nuclear Information System (INIS)

    Kini, M.P.

    1981-01-01

    Most of the equipment installed at CIRUS and other reactors are imported units. CIRUS reactor is 20 years old and with present problems for obtaining spare parts for this equipment, indigenous effort in procurement has become imperative. In the absence of specifications and drawings for most of the components, the task of indigenous procurement has become quite demanding. The efforts put by Reactor Operations Division of the Bhabha Atomic Research Centre, Bombay in locating local manufacturers who are willing to fabricate in small quantities of spare parts to specifications and the difficulties involved is the theme of this paper. The paper also covers the efforts on equipment replacement, its success and failures. (author)

  8. Japan Atomic Energy Research Institute, Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1981-09-01

    Research activities in the Division of Reactor Engineering in fiscal 1980 are described. The work of the Division is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and fusion reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and fusion reactor technology, and activities of the Committee on Reactor Physics. (author)

  9. Japan Atomic Energy Research Institute, Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1979-09-01

    Research activities in the Division of Reactor Engineering in fiscal 1978 are described. Works of the Division are development of multi-purpose Very High Temperature Gas Cooled Reactor, fusion reactor engineering, and development of Liquid Metal Fast Breeder Reactor for Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology, and Committees on Reactor Physics and in Decommissioning of Nuclear Facilities. (author)

  10. Annual report of the Japan Atomic Energy Research Institute for fiscal 1992

    International Nuclear Information System (INIS)

    1993-01-01

    Japan Atomic Energy Research Institute has promoted the research on high temperature engineering, the research and development of nuclear fusion, the research on radiation utilization and the research and development of nuclear powered ships as the advanced project researches which bring about the breakthrough of atomic energy technology as well as the research on the safety, following the long term plan of atomic energy development and utilization which was decided in 1987, as the general research institute in Japanese atomic energy field. The progress of the above mentioned researches in fiscal 1992 is reported. The operation of JRR-2, JRR-3M, JRR-4 and JMTR was carried out as scheduled. 9 cases of the medical irradiation on brain tumors were performed at JRR-2. As to the practical test of the disassembling of JPDR, the machinery and equipment in the reactor containment vessel were removed, and the development of a high performance decontamination testing device and others was advanced. The efficient operation of the large computer system, the production and sales of radioisotopes and radioactive waste business were continued. (K.I.)

  11. Long-term program on research, development and application of atomic energy

    International Nuclear Information System (INIS)

    2000-01-01

    As the Committee of Atomic Energy in Japan has established eight times of the 'long-term basic program on development and application of atomic energy at every five years since 1956, these have consistently done every important roles as a leader of programmable promotion of policies on research, development and application of atomic energy in Japan. And, they also have showed some basic concepts on its research, development and application such as safety security, keeping of peaceful application, and so on, and also done a role as a strength with universality for promotion of their sure practices. Then, the Committee requested some surveys and discussions on establishment decided as a new long-term program on May, 1999, to a meeting on establishment of the long-term program, so as to clearly show a basic plan and its promoting measures on research, development and application of atomic energy to be adopted by Japan through the 21st Century under understanding of changes of various affairs after establishment of the previous program, to Japanese peoples, international society and nuclear relatives. The finished program is composed of two parts which are the first part of describing some messages toward Japanese peoples and society and international society and the second part of expressing concrete indications and promoting measures for practicing research, development and application of atomic energy. Here was shown on all sentences of the establishment containing the two parts of present condition and future way on research, development and application of atomic energy' and 'future evolution of research, development and application of atomic energy'. (G.K.)

  12. The Center for Aerospace Research: A NASA Center of Excellence at North Carolina Agricultural and Technical State University

    Science.gov (United States)

    Lai, Steven H.-Y.

    1992-01-01

    This report documents the efforts and outcomes of our research and educational programs at NASA-CORE in NCA&TSU. The goal of the center was to establish a quality aerospace research base and to develop an educational program to increase the participation of minority faculty and students in the areas of aerospace engineering. The major accomplishments of this center in the first year are summarized in terms of three different areas, namely, the center's research programs area, the center's educational programs area, and the center's management area. In the center's research programs area, we focus on developing capabilities needed to support the development of the aerospace plane and high speed civil transportation system technologies. In the educational programs area, we developed an aerospace engineering option program ready for university approval.

  13. Translational Partnership Development Lead | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Frederick National Laboratory for Cancer Research (FNLCR) is a Federally Funded Research and Development Center operated by Leidos Biomedical Research, Inc on behalf of the National Cancer Institute (NCI). The staff of FNLCR support the NCI’s mission in the fight against cancer and HIV/AIDS. Currently we are seeking a Translational Partnership Development Lead (TPDL) who will work closely with the Office of Translational Resources (OTR) within the Office of the Director (OD) of NCI’s Center for Cancer Research (CCR) to facilitate the successful translation of CCR’s basic and preclinical research advances into new therapeutics and diagnostics. The TPDL with be strategically aligned within FNLCR’s Partnership Development Office (PDO), to maximally leverage the critical mass of expertise available within the PDO. CCR comprises the basic and clinical components of the NCI’s Intramural Research Program (IRP) and consists of ~230 basic and clinical Investigators located at either the NIH main campus in Bethesda or the NCI-Frederick campus. CCR Investigators are focused primarily on cancer and HIV/AIDS, with special emphasis on the most challenging and important high-risk/high-reward problems driving the fields. (See https://ccr.cancer.gov for a full delineation of CCR Investigators and their research activities.) The process of developing research findings into new clinical applications is high risk, complex, variable, and requires multiple areas of expertise seldom available within the confines of a single Investigator’s laboratory. To accelerate this process, OTR serves as a unifying force within CCR for all aspects of translational activities required to achieve success and maintain timely progress. A key aspect of OTR’s function is to develop and strengthen essential communications and collaborations within NIH, with extramural partners and with industry to bring together experts in chemistry, human subjects research

  14. Atomic physics at the future facility for antiproton and ion research: a status report

    International Nuclear Information System (INIS)

    Gumberidze, A

    2013-01-01

    The new international accelerator Facility for Antiproton and Ion Research (FAIR) which is currently under construction in Darmstadt has key features that offer a wide range of exciting new opportunities in the field of atomic physics and related fields. The facility will provide highest intensities of relativistic beams of both stable and unstable heavy nuclei, in combination with the strong electromagnetic fields generated by high-power lasers, thus allowing to widen atomic physics research into completely new domains. In the current contribution, a short overview of the SPARC (Stored Particle Atomic physics Research Collaboration) research programme at the FAIR facility is given. Furthermore, we present the current strategy for the realization of the envisioned SPARC physics programme at the modularized start version of the FAIR facility. (paper)

  15. Atomic physics at the future facility for antiproton and ion research: status report 2014

    International Nuclear Information System (INIS)

    Gumberidze, A; Stöhlker, Th; Litvinov, Yu A

    2015-01-01

    In this contribution, a brief overview of the Stored Particle Atomic physics Research Collaboration scientific program at the upcoming Facility for Antiproton and Ion Research (FAIR) is given. The program comprises a very broad range of research topics addressing atomic structure and dynamics in hitherto unexplored regimes, light–matter interactions, lepton pair production phenomena, precision tests of quantum electrodynamics and standard model in the regime of extreme fields and many more. We also present the current strategy for the realization of the envisioned physics program within the modularized start version (MSV) of FAIR. (paper)

  16. JRCAT - A Nanotechnology Center in Tsukuba

    International Nuclear Information System (INIS)

    Tanaka, Kazunobu

    2000-01-01

    Joint Research Center for Atom Technology (JRCAT) and its Atom Technology Project are described. The project covers a wide range of research subjects; manipulation of atoms and molecules, formation of nanostructures of semiconductors, spin electronics and first-principles calculation of dynamic processes of atoms and molecules on solid-state surfaces. Several recent achievements on nanotechnology and nanoscience are roughly sketched

  17. Twenty-fifth anniversary of the Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    Harde, R.

    1981-01-01

    The Karlsruhe Nuclear Research Center was founded on July 19, 1956. The initial company, in which the Federal Republic of Germany held a 30% interest, the State of Baden-Wuerttemberg 20%, and German industry 50%, was founded mainly for the purposes of building and operating a German-designed research reactor. In 1959, the Gesellschaft fuer Kernforschung mbH was founded for execution of the research and development activities, in which the Federal Republic of Germany held 75%, the State of Baden-Wuerttemberg 25% of the shares. The two companies were merged in 1963, after industry had donated its holdings in the initial company to the new company. In 1972, the financial holdings of the Federal Government were raised to 90%. On January 1, 1978, the company was named Kernforschungszentrum Karlsruhe GmbH (KfK). Over the past 25 years, KfK has received approx. DM 7 billion out of public funds. Important milestones in the development of nuclear technology in the Federal Republic contributed by KfK include the development of the fast breeder line and responsibility for construction of the first German fast breeder reactor, KNK; development of reprocessing technologies and responsibility for construction of the first German reprocessing plant, WAK; development of a uranium enrichment technique (separation nozzle method); important contributions to reactor safety, fusion research, and training in nuclear technology. (orig.) [de

  18. Current and anticipated uses of thermal hydraulic codes at the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Akimoto, Hajime; Kukita; Ohnuki, Akira

    1997-01-01

    The Japan Atomic Energy Research Institute (JAERI) is conducting several research programs related to thermal-hydraulic and neutronic behavior of light water reactors (LWRs). These include LWR safety research projects, which are conducted in accordance with the Nuclear Safety Commission's research plan, and reactor engineering projects for the development of innovative reactor designs or core/fuel designs. Thermal-hydraulic and neutronic codes are used for various purposes including experimental analysis, nuclear power plant (NPP) safety analysis, and design assessment

  19. Nurse Practitioner/Physician Assistant | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION Within the Leidos Biomedical Research Inc.’s Clinical Research Directorate, the Clinical Monitoring Research Program (CMRP) provides high-quality comprehensive and strategic operational support to the high-profile domestic and international clinical research initiatives of the National Cancer Institute (NCI), National Institute of Allergy and Infectious Diseases (NIAID), Clinical Center (CC), National Institute of Heart, Lung and Blood Institute (NHLBI), National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Center for Advancing Translational Sciences (NCATS), National Institute of Neurological Disorders and Stroke (NINDS), and the National Institute of Mental Health (NIMH). Since its inception in 2001, CMRP’s ability to provide rapid responses, high-quality solutions, and to recruit and retain experts with a variety of backgrounds to meet the growing research portfolios of NCI, NIAID, CC, NHLBI, NIAMS, NCATS, NINDS, and NIMH has led to the considerable expansion of the program and its repertoire of support services. CMRP’s support services are strategically aligned with the program’s mission to provide comprehensive, dedicated support to assist National Institutes of Health researchers in providing the highest quality of clinical research in compliance with applicable regulations and guidelines, maintaining data integrity, and protecting human subjects. For the scientific advancement of clinical research, CMRP services include comprehensive clinical trials, regulatory, pharmacovigilance, protocol navigation and development, and programmatic and project management support for facilitating the conduct of 400+ Phase I, II, and III domestic and international trials on a yearly basis. These trials investigate the prevention, diagnosis, treatment of, and therapies for cancer, influenza, HIV, and other infectious diseases and viruses such as hepatitis C, tuberculosis, malaria, and Ebola virus; heart, lung, and

  20. Reconstructive surgery for male stress urinary incontinence: Experiences using the ATOMS system at a single center

    Directory of Open Access Journals (Sweden)

    Krause, Jens

    2014-12-01

    Full Text Available Objective: To propose possible success-driven solutions for problem and complication rates encountered with the ATOMS sling system, based on first-hand experience; and to provide possible actual alternative scenarios for the treatment of male . Patients and methods: During the defined period (between 4/2010 and 04/2014, 36 patients received ATOMS system implants at our clinic. We collected pre- and post-operative evaluation data using the International Consultation on Incontinence Questionnaire Short Form (ICIQ SF. As an expansion of the questionnaire, we added questions about post-operative perineal pain, the general satisfaction with the results of the intervention and willingness to recommend the operation to a best friend. Results: Our data shows a relatively high explantation rate, but a surprisingly high patient satisfaction rate. Explantation was required mainly due to late onset infections or other symptomatic factors. Compared to other studies early onset infections were rare. Conclusion: A non-invasive, uncomplicated adjustable system to alleviate male stress urinary incontinence remains a challenge. Although there are various systems available for the treatment of male stress urinary incontinence, it seems that despite the advantages of the ATOMS system, an artificial sphincter system may pose more advantages based on our experience, understanding and knowledge of its well-documented long-term solutions and problems.

  1. Multi-Vehicle Cooperative Control Research at the NASA Armstrong Flight Research Center, 2000-2014

    Science.gov (United States)

    Hanson, Curt

    2014-01-01

    A brief introductory overview of multi-vehicle cooperative control research conducted at the NASA Armstrong Flight Research Center from 2000 - 2014. Both flight research projects and paper studies are included. Since 2000, AFRC has been almost continuously pursuing research in the areas of formation flight for drag reduction and automated cooperative trajectories. An overview of results is given, including flight experiments done on the FA-18 and with the C-17. Other multi-vehicle cooperative research is discussed, including small UAV swarming projects and automated aerial refueling.

  2. A research on the enhancement of research management efficiency for the division of research, Korea cancer center hospital

    International Nuclear Information System (INIS)

    Lee, S. W.; Ma, K. H.; Kim, J. R.; Lee, D. C.; Lee, J. H.

    1999-06-01

    The research activities of Korea Cancer Center Hospital have increased for the past a few years just in proportion to the increase of research budget, but the assisting manpower of the office of research management has never been increased and the indications are that the internal and external circumstances will not allow the recruitment for a fairly long time. It has, therefore, become inevitable to enhance the work efficiency of the office by analyzing the administrative research assistance system, finding out problems and inefficiency factors, and suggesting possible answers to them. The office of research management and international cooperation has conducted this research to suggest possible ways to facilitate the administrative support for the research activities of Korea Cancer Center Hospital By analyzing the change of research budget, organization of the division of research and administrative support, manpower, and the administrative research supporting system of other institutes, we suggested possible ways to enhance the work efficiency for administrative research support and developed a relative database program. The research report will serve as a data for the organization of research support division when the Radiation Medicine Research Center is established. The database program has already been used for research budget management

  3. Reorganizing the General Clinical Research Center to improve the clinical and translational research enterprise.

    Science.gov (United States)

    Allen, David; Ripley, Elizabeth; Coe, Antoinette; Clore, John

    2013-12-01

    In 2010, Virginia Commonwealth University (VCU) was granted a Clinical and Translational Science Award which prompted reorganization and expansion of their clinical research infrastructure. A case study approach is used to describe the implementation of a business and cost recovery model for clinical and translational research and the transformation of VCU's General Clinical Research Center and Clinical Trials Office to a combined Clinical Research Services entity. We outline the use of a Plan, Do, Study, Act cycle that facilitated a thoughtful transition process, which included the identification of required changes and cost recovery processes for implementation. Through this process, the VCU Center for Clinical and Translational Research improved efficiency, increased revenue recovered, reduced costs, and brought a high level of fiscal responsibility through financial reporting.

  4. Time for atomic and molecular data bases is now (an overview of data management research at LLL)

    International Nuclear Information System (INIS)

    Hampel, V.E.; Henry, E.A.

    1977-01-01

    Two numerical data bases of atomic and molecular (A and M) data required for laser-induced fusion studies were created. One file contains primarily atomic energy levels and atomic transition data released by Charlotte E. Moore in NBS publications. The second file is based on the spectroscopic constants for more than 1000 molecular levels of approximately 160 heteronuclear diatomic molecules prepared by S. N. Suchard. Additional data bases are contemplated in support of the accelerating research activities in these fields. The present paucity of authenticated, computer-readable A and M data is not unlike that observed two decades ago in nuclear fission research. At that time, emphasis was also given to the accurate measurement of physical parameters and to reaction rates which eventually led to the ENDF/B series of evaluated neutron cross sections. Today, powerful computers have a more dominant role in modeling and predicting the results of promising experiments. Their effective use, however, depends more than ever before upon the availability of comprehensive and accurate files of A and M data. At the Lawrence Livermore Laboratory (LLL), these requirements are accentuated by the heavy reliance on computers. Also, trends are presently becoming apparent among users of the national computer network for Magnetic Fusion Energy, with its center at LLL, to coalesce organization-dependent data files into central data bases containing bibliographic information and numerical data as a common resource. The Data Management Research Project is collaborating with the National Bureau of Standards (NBS/NSRDS) to be able to respond to the emerging requirements. This should contribute to a ''Public Well'' of atomic and molecular data, unencumbered by legal or monetary constraints. 14 figures

  5. The time for atomic and molecular data bases is now. An overview of data management research at LLL

    International Nuclear Information System (INIS)

    Hampel, V.E.; Henry, E.A.

    1977-01-01

    We have created two numerical data bases of atomic and molecular (A+M) data required for laser induced fusion studies. One file contains primarily atomic energy levels and atomic transition data released by Charlotte E. Moore in NBS publications. The second file is based on the spectroscopic constants for more than 1000 molecular levels of approximately 160 heteronuclear diatomic molecules prepared by S. N. Suchard. Additional data bases are contemplated in support of the accelerating research activities in these fields. The present paucity of authenticated, computer-readable A+M data is not unlike that observed two decades ago in nuclear fission research. At that time, emphasis was also given to the accurate measurement of physical parameters and to reaction rates which eventually led to the ENDF/B series of evaluated neutron cross sections. Today, powerful computers have a more dominant role in modeling and predicting the results of promising experiments. Their effective use, however, depends more than ever before upon the availability of comprehensive and accurate files of A+M data. At the Lawrence Livermore Laboratory (LLL), these requirements are accentuated by the heavy reliance on computers. Also, trends are presently becoming apparent among users of the national computer network for Magnetic Fusion Energy (MFE), with its center at LLL, to coalesce organization-dependent data files into central data bases containing bibliographic information and numerical data as a common resource. The Data Management Research Project (LLL/DMRP) is collaborating with the National Bureau of Standards (NBS/NSRDS) to be able to respond to the emerging requirements. This should contribute to a ''Public Well'' of atomic and molecular data, unencumbered by legal or monetary constraints. (author)

  6. Building research infrastructure in community health centers: a Community Health Applied Research Network (CHARN) report.

    Science.gov (United States)

    Likumahuwa, Sonja; Song, Hui; Singal, Robbie; Weir, Rosy Chang; Crane, Heidi; Muench, John; Sim, Shao-Chee; DeVoe, Jennifer E

    2013-01-01

    This article introduces the Community Health Applied Research Network (CHARN), a practice-based research network of community health centers (CHCs). Established by the Health Resources and Services Administration in 2010, CHARN is a network of 4 community research nodes, each with multiple affiliated CHCs and an academic center. The four nodes (18 individual CHCs and 4 academic partners in 9 states) are supported by a data coordinating center. Here we provide case studies detailing how CHARN is building research infrastructure and capacity in CHCs, with a particular focus on how community practice-academic partnerships were facilitated by the CHARN structure. The examples provided by the CHARN nodes include many of the building blocks of research capacity: communication capacity and "matchmaking" between providers and researchers; technology transfer; research methods tailored to community practice settings; and community institutional review board infrastructure to enable community oversight. We draw lessons learned from these case studies that we hope will serve as examples for other networks, with special relevance for community-based networks seeking to build research infrastructure in primary care settings.

  7. Report of test and research results on atomic energy obtained in national institutes in fiscal 1987

    International Nuclear Information System (INIS)

    1989-01-01

    The test and research regarding the utilization of atomic energy carried out in national institutions have produced many valuable results in diverse fields so far, such as nuclear fusion, safety research, food irradiation and medicine, since the budget had been appropriated for the first time in 1956. It has accomplished large role in the promotion of atomic energy utilization in Japan. This report is volume 28, in which the results of the test and research on atomic energy utilization carried out by national institutions in fiscal year 1987 are summarized. It is hoped that the understanding about the recent trend and the results of the test and research on atomic energy utilization is further promoted by this report. The contents of this report are nuclear fusion; the research on engineering safety and environmental radioactivity safety; food irradiation; the countermeasures against cancer; fertilized soil, the improvement of quality, the protection of plants and the improvement of breeding in agriculture and fishery fields; diagnosis and medical treatment, pharmaceuticals, environmental hygiene and the application to physiology and pathology in medical field; radiation measurement and process analysis in mining and industry fields; nuclear reactor materials and nuclear-powered ships; civil engineering; radioactivation analysis; the research on the prevention of injuries; and the basic researches on materials and acessment and reduction of irradiation risk. (J.P.N.)

  8. Report of test and research results on atomic energy obtained in national institutes in fiscal 1985

    International Nuclear Information System (INIS)

    1986-01-01

    As for the test and research on the utilization of atomic energy in national institutes, the budget was appropriated for the first time in fiscal year 1956, and since then, the many valuable results of research have been obtained so far in the diversified fields of nuclear fusion, safety research, the irradiation of foods, medicine and others, thus the test and research accomplished the large role for promoting the utilization of atomic energy in Japan. In this report, the gists of the results of the test and research on the utilization of atomic energy carried out by national institutes in fiscal year 1985 are collected. No.1 of this report was published in 1960, and this is No.26. It is desired to increase the understanding about the recent trend and the results of the test and research on atomic energy utilization with this book. The researches on nuclear fusion, engineering safety and environmental radioactivity safety, the irradiation of foods, the countermeasures against cancer, fertilized soil, the quality improvement of brewing and farm products, the protection of farm products and the improvement of breeding, diagnosis and medical treatment, pharmaceuticals, environmental hygiene, the application to physiology and pathology, radiochemistry, radiation measurement, process analysis, nuclear reactor materials, nuclear powered ships, civil engineering, radioactivation analysis and injury prevention are reported. (Kako, I.)

  9. Report of test and research results on atomic energy obtained in national institutes in fiscal 1992

    International Nuclear Information System (INIS)

    1994-01-01

    The tests and researches on the development and utilization of atomic energy in national laboratories were begun in 1956, and have accomplished the great role for the advance of the development and utilization of atomic energy in Japan by having produced many valuable results so far. Atomic energy has been utilized not only in the field of nuclear power but also in diverse fields, and in national laboratories, the research for expanding the development and utilization of atomic energy in medicine, agriculture, forestry, fishery, radioactivation analysis and others in addition the basic research on nuclear fusion have been advanced. Further expecting the pervasive effect to general science and technology, the development of integrated research are promoted from the viewpoint of new technical innovation and creative technology. The safety research of nuclear facilities have been carried out to keep them high level on the basis of the yearly program enacted by Nuclear Safety Commission. This is the report No. 33, in which the results of the test and research in the fields of nuclear fusion safety research, food irradiation, cancer countermeasures, agriculture, forestry, fishery, medicine, mining and manufacture, power utilization, construction, radioactivation analysis carried on in fiscal 1992 are summarized. (J.P.N.)

  10. Information center as a link between basic and applied research

    International Nuclear Information System (INIS)

    Pearlstein, S.

    1976-01-01

    The National Neutron Cross Section Center (NNCSC) concerns itself with neutron physics information of a basic and applied nature. Computerized files of bibliography to the neutron physics literature, and of experimental and evaluated neutron data are maintained. The NNCSC coordinates a national effort, the Cross Section Evaluation Working Group (CSEWG) with participants from government, private, and academic institutions, to establish a computerized reference data base Evaluated Nuclear Data File (ENDF/B) for national programs. The ENDF/B is useful to basic research because it contains recommended values based on the best available measurements and is often used as reference data for normalization and analysis of experiments. For applied use the reference data are extended through nuclear model calculations or nuclear systematics to include all data of interest with standardized processing codes facilitating the use of ENDF/B in certain types of computations. Initially the main application of ENDF/B was power reactor and shield design and only neutron data were evaluated but due to the fact that for many applications both neutron and nonneutron data are required, ENDF/B has been extended in scope to include radioactive decay data and radiation spectra for the burnup and after decay heat of fission products and photon interaction data for gamma ray transport calculations. Cooperation with other centers takes place both nationally and internationally

  11. Langley Research Center Utility Risk from Future Climate Change

    Science.gov (United States)

    De Young, Russell J.; Ganoe, Rene

    2015-01-01

    The successful operation of NASA Langley Research Center (LaRC) depends on services provided by several public utility companies. These include Newport News Waterworks, Dominion Virginia Power, Virginia Natural Gas and Hampton Roads Sanitation District. LaRC's plan to respond to future climate change should take into account how these companies plan to avoid interruption of services while minimizing cost to the customers. This report summarizes our findings from publicly available documents on how each company plans to respond. This will form the basis for future planning for the Center. Our preliminary findings show that flooding and severe storms could interrupt service from the Waterworks and Sanitation District but the potential is low due to plans in place to address climate change on their system. Virginia Natural Gas supplies energy to produce steam but most current steam comes from the Hampton trash burning plant, thus interruption risk is low. Dominion Virginia Power does not address climate change impacts on their system in their public reports. The potential interruption risk is considered to be medium. The Hampton Roads Sanitation District is projecting a major upgrade of their system to mitigate clean water inflow and infiltration. This will reduce infiltration and avoid overloading the pump stations and treatment plants.

  12. Operating The Central Process Systems At Glenn Research Center

    Science.gov (United States)

    Weiler, Carly P.

    2004-01-01

    As a research facility, the Glenn Research Center (GRC) trusts and expects all the systems, controlling their facilities to run properly and efficiently in order for their research and operations to occur proficiently and on time. While there are many systems necessary for the operations at GRC, one of those most vital systems is the Central Process Systems (CPS). The CPS controls operations used by GRC's wind tunnels, propulsion systems lab, engine components research lab, and compressor, turbine and combustor test cells. Used widely throughout the lab, it operates equipment such as exhausters, chillers, cooling towers, compressors, dehydrators, and other such equipment. Through parameters such as pressure, temperature, speed, flow, etc., it performs its primary operations on the major systems of Electrical Dispatch (ED), Central Air Dispatch (CAD), Central Air Equipment Building (CAEB), and Engine Research Building (ERB). In order for the CPS to continue its operations at Glenn, a new contract must be awarded. Consequently, one of my primary responsibilities was assisting the Source Evaluation Board (SEB) with the process of awarding the recertification contract of the CPS. The job of the SEB was to evaluate the proposals of the contract bidders and then to present their findings to the Source Selecting Official (SSO). Before the evaluations began, the Center Director established the level of the competition. For this contract, the competition was limited to those companies classified as a small, disadvantaged business. After an industry briefing that explained to qualified companies the CPS and type of work required, each of the interested companies then submitted proposals addressing three components: Mission Suitability, Cost, and Past Performance. These proposals were based off the Statement of Work (SOW) written by the SEB. After companies submitted their proposals, the SEB reviewed all three components and then presented their results to the SSO. While the

  13. The beginnings of our research on the laser cooling of atomic gases

    International Nuclear Information System (INIS)

    Wang Yuzhu

    2011-01-01

    Reminiscences of the beginning of our research on the laser cooling of atomic gases are recounted, describing what motivated us to progress from atomic clocks to laser cooling. At the beginning, we pondered upon the mechanism of laser cooling, such as the cooling of atoms in red shifted diffuse light in an integrating sphere and using light frequency shifting (the A.C. Stark effect). A description of the atomic beam experimental equipment in our lab, which was used in laser cooling, is given, and some experimental results that we obtained are displayed. Finally, we summarize our experiences and lessons learnt. In looking back on our arduous beginnings, we cherish the present, and look forward to a bright future. (authors)

  14. Karlsruhe Nuclear Research Center. Progress report on research and development work in 1987

    International Nuclear Information System (INIS)

    1988-01-01

    This summary of R and D work is the scientific annual report to be prepared by the research center in compliance with its statutes. The material is arranged by items of main activities, as given in the overall R and D programme set up for the research center. The various reports prepared by the individual institutes and principal departments are presented under their relevant subject headings. The annual report is intended to demonstrate the progress achieved in the tasks and activities assigned by the R and D programme of the research center, by referring to the purposes and goals stated in the programme, showing the joint or separate efforts and achievements of the institutes. Details and results of activities are found in the scientific-technical publications given in the bibliographical survey, and in the internal primary surveys. The main activities of the research center include the following: Fast Breeder Project (PSB), Nuclear Fusion Project (PKF), Separation Nozzle Project (TDV), and Reprocessing and Waste Treatment Project (PWA), Ultimate Disposal of Radioactive Waste (ELA), Environment and Safety (U and S), Solids and Materials (FM), Nuclear and Particle Physics (KTP), Microtechniques (MT), Materials Handling (HT), Other Research Activities (SF). Organisational aspects and institutes and the list of publications conclude the report. (orig./HK) [de

  15. 2004 research briefs :Materials and Process Sciences Center.

    Energy Technology Data Exchange (ETDEWEB)

    Cieslak, Michael J.

    2004-01-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  16. An example of a United States Nuclear Research Center

    International Nuclear Information System (INIS)

    Bhattacharyya, S. K.

    1999-01-01

    Under the likely scenario in which public support for nuclear energy remains low and fossil fuels continue to be abundant and cheap, government supported nuclear research centers must adapt their missions to ensure that they tackle problems of current significance. It will be critical to be multidisciplinary, to generate economic value, and to apply nuclear competencies to current problems. Addressing problems in nuclear safety, D and D, nuclear waste management, nonproliferation, isotope production are a few examples of current needs in the nuclear arena. Argonne's original mission, to develop nuclear reactor technology, was a critical need for the U.S. in 1946. It would be wise to recognize that this mission was a special instance of a more general one--to apply unique human and physical capital to long term, high risk technology development in response to society's needs. International collaboration will enhance the collective chances for success as the world moves into the 21st century

  17. New research resources at the Bloomington Drosophila Stock Center.

    Science.gov (United States)

    Cook, Kevin R; Parks, Annette L; Jacobus, Luke M; Kaufman, Thomas C; Matthews, Kathleen A

    2010-01-01

    The Bloomington Drosophila Stock Center (BDSC) is a primary source of Drosophila stocks for researchers all over the world. It houses over 27,000 unique fly lines and distributed over 160,000 samples of these stocks this past year. This report provides a brief overview of significant recent events at the BDSC with a focus on new stock sets acquired in the past year, including stocks for phiC31 transformation, RNAi knockdown of gene expression, and SNP and quantitative trait loci discovery. We also describe additions to sets of insertions and molecularly defined chromosomal deficiencies, the creation of a new Deficiency Kit, and planned additions of X chromosome duplication sets.

  18. Quality management system of Saraykoy Nuclear Research and Training center

    International Nuclear Information System (INIS)

    Gurellier, R.; Akchay, S.; Zararsiz, S.

    2014-01-01

    Full text : Technical competence and national/international acceptance of independency of laboratories is ensured by going through accreditations. It provides decreasing the risk of a slowdown in international trade due to unnecessary repetition of testing and analyses. It also eliminates the cost of additional experiments and analyses. Saraykoy Nuclear Research and Training Center (SANAEM) has performed intensive studies to establish an effective and well-functioning QMS (Quality Management System) by full accordance with the requirements of ISO/IEC 17025, since the begining of 2006. Laboratories, especially serving to public health studies and important trade duties require urgent accreditation. In this regard, SANAEM has established a quality management system and performed accreditation studies

  19. Distance Learning With NASA Lewis Research Center's Learning Technologies Project

    Science.gov (United States)

    Petersen, Ruth

    1998-01-01

    The NASA Lewis Research Center's Learning Technologies Project (LTP) has responded to requests from local school district technology coordinators to provide content for videoconferencing workshops. Over the past year we have offered three teacher professional development workshops that showcase NASA Lewis-developed educational products and NASA educational Internet sites. In order to determine the direction of our involvement with distance learning, the LTP staff conducted a survey of 500 U.S. schools. We received responses from 72 schools that either currently use distance learning or will be using distance learning in 98-99 school year. The results of the survey are summarized in the article. In addition, the article provides information on distance learners, distance learning technologies, and the NASA Lewis LTP videoconferencing workshops. The LTP staff will continue to offer teacher development workshops through videoconferencing during the 98-99 school year. We hope to add workshops on new educational products as they are developed at NASA Lewis.

  20. Quality in research centers; Calidad en centros de investigacion

    Energy Technology Data Exchange (ETDEWEB)

    Colin Orozco, Leticia [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    2000-07-01

    In order to be able to survive and to have successful in the globalized market, all the organizations must make an effort in learning and understanding the language of the international trade, of the standards that govern it and the technical specifications that are handled for the quality assurance of products and services. In this paper the importance that the implementation of standards ISO-9000 in the research centers has, is presented. [Spanish] Para poder sobrevivir y tener exito en el mercado globalizado todas las organizaciones tienen que esforzarse en el aprendizaje y comprension del lenguaje del comercio internacional, de las normas que lo rigen y de las especificaciones tecnicas que se manejan para asegurar la calidad de los productos y servicios. En este articulo se presenta la importancia que tiene la implantacion de las normas ISO-9000 en los centros de investigacion.

  1. Sustainability indicators to nuclear research centers in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Simone F.; Feliciano, Vanusa Maria D.; Barreto, Alberto A., E-mail: symonfonseca@yahoo.com.br, E-mail: vmfj@cdtn.br, E-mail: aab@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The relevance and applicability of sustainability indicators have been discussed in various international and national debates through forums, conferences, seminars and lectures. The information obtained from the use of these indicators is essential to the decision-making process, contributing to the creation of discussion channels and interaction with society; also it is useful for the design and implementation of environmental education programs, perception and risk communication. So far, at least in Brazil, existing indicators for the nuclear area are related only to power generation, as performance and safety in radioactive waste management. According to this reality we see the need to build indicators that contribute to the assessment of environmental, social, cultural, economic and institutional performance of a nuclear innovation and research institute in Brazil. This work aims to highlight, through literature review, the importance of developing sustainability indicators appropriate to nuclear research centers in Brazil, revealing how much they are strategic to measuring the sustainability of these endeavours. The main finding, after the literature review, is that this type of indicator is important not only to identify positive or negative impacts of a project focused on the research and innovation of nuclear area, but also for assessment of his commitment to the sustainable development. (author)

  2. Molecularly Engineered Energy Materials, an Energy Frontier Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Ozolins, Vidvuds [Univ. of California, Los Angeles, CA (United States). Materials Science and Engineering Dept.

    2016-09-28

    Molecularly Engineered Energy Materials (MEEM) was established as an interdisciplinary cutting-edge UCLA-based research center uniquely equipped to attack the challenge of rationally designing, synthesizing and testing revolutionary new energy materials. Our mission was to achieve transformational improvements in the performance of materials via controlling the nano-and mesoscale structure using selectively designed, earth-abundant, inexpensive molecular building blocks. MEEM has focused on materials that are inherently abundant, can be easily assembled from intelligently designed building blocks (molecules, nanoparticles), and have the potential to deliver transformative economic benefits in comparison with the current crystalline-and polycrystalline-based energy technologies. MEEM addressed basic science issues related to the fundamental mechanisms of carrier generation, energy conversion, as well as transport and storage of charge and mass in tunable, architectonically complex materials. Fundamental understanding of these processes will enable rational design, efficient synthesis and effective deployment of novel three-dimensional material architectures for energy applications. Three interrelated research directions were initially identified where these novel architectures hold great promise for high-reward research: solar energy generation, electrochemical energy storage, and materials for CO2 capture. Of these, the first two remained throughout the project performance period, while carbon capture was been phased out in consultation and with approval from BES program manager.

  3. Sustainability indicators to nuclear research centers in Brazil

    International Nuclear Information System (INIS)

    Alves, Simone F.; Feliciano, Vanusa Maria D.; Barreto, Alberto A.

    2015-01-01

    The relevance and applicability of sustainability indicators have been discussed in various international and national debates through forums, conferences, seminars and lectures. The information obtained from the use of these indicators is essential to the decision-making process, contributing to the creation of discussion channels and interaction with society; also it is useful for the design and implementation of environmental education programs, perception and risk communication. So far, at least in Brazil, existing indicators for the nuclear area are related only to power generation, as performance and safety in radioactive waste management. According to this reality we see the need to build indicators that contribute to the assessment of environmental, social, cultural, economic and institutional performance of a nuclear innovation and research institute in Brazil. This work aims to highlight, through literature review, the importance of developing sustainability indicators appropriate to nuclear research centers in Brazil, revealing how much they are strategic to measuring the sustainability of these endeavours. The main finding, after the literature review, is that this type of indicator is important not only to identify positive or negative impacts of a project focused on the research and innovation of nuclear area, but also for assessment of his commitment to the sustainable development. (author)

  4. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Todd R. Allen, Director

    2011-04-01

    The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the center’s investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The center’s research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

  5. Combined Neutron Center for European Research and Technology

    International Nuclear Information System (INIS)

    Lagniel, Jean-Michel

    2002-01-01

    High-power proton linacs are needed as driver for several applications, namely transmutation of nuclear waste using Accelerator Driven Systems (ADS), spallation neutron sources (ESS in Europe) and other fields of basic and applied research (next generation of radioactive ion beam facilities, neutrino factories, muon colliders, irradiation facilities for material testing...). The possible synergies among these projects will be pointed out and the feasibility study of high-power proton linac used as driver of a multi-user facility (CONCERT) will be presented. There was excellent scientific, technical and economic reasons to study a Combined Neutron Center for European Research and Technology (CONCERT) based on a high-power proton accelerator. Such an installation would serve condensed matter studies by spallation neutron scattering, a technological irradiation tool and R and D facility for an hybrid reactor demonstrator, a radioactive ion beam facility for nuclear physics, R and D developments for a muon/neutrino facility. The installation could therefore constitute a European center of excellence in the field of neutronics where a large number of scientific and technical executives could be trained. The CONCERT Project Team has performed the feasibility study of such a multi-user facility with: - a review of the beam needs for the different applications, - an analyze of their compatibility, - the definition of the scope of a site-independent project, - a selection of the most appropriate options regarding scientific, technical, financial, organizational and administrative aspects, - an estimation of the costs for construction, operation and the needs in manpower. The conceptual design report [17] is sufficiently detailed to minimize contingencies on those parts of the project having a large potential impact in terms of performances, costs or delays. (author)

  6. Research Problems in Data Curation: Outcomes from the Data Curation Education in Research Centers Program

    Science.gov (United States)

    Palmer, C. L.; Mayernik, M. S.; Weber, N.; Baker, K. S.; Kelly, K.; Marlino, M. R.; Thompson, C. A.

    2013-12-01

    The need for data curation is being recognized in numerous institutional settings as national research funding agencies extend data archiving mandates to cover more types of research grants. Data curation, however, is not only a practical challenge. It presents many conceptual and theoretical challenges that must be investigated to design appropriate technical systems, social practices and institutions, policies, and services. This presentation reports on outcomes from an investigation of research problems in data curation conducted as part of the Data Curation Education in Research Centers (DCERC) program. DCERC is developing a new model for educating data professionals to contribute to scientific research. The program is organized around foundational courses and field experiences in research and data centers for both master's and doctoral students. The initiative is led by the Graduate School of Library and Information Science at the University of Illinois at Urbana-Champaign, in collaboration with the School of Information Sciences at the University of Tennessee, and library and data professionals at the National Center for Atmospheric Research (NCAR). At the doctoral level DCERC is educating future faculty and researchers in data curation and establishing a research agenda to advance the field. The doctoral seminar, Research Problems in Data Curation, was developed and taught in 2012 by the DCERC principal investigator and two doctoral fellows at the University of Illinois. It was designed to define the problem space of data curation, examine relevant concepts and theories related to both technical and social perspectives, and articulate research questions that are either unexplored or under theorized in the current literature. There was a particular emphasis on the Earth and environmental sciences, with guest speakers brought in from NCAR, National Snow and Ice Data Center (NSIDC), and Rensselaer Polytechnic Institute. Through the assignments, students

  7. Automating the Analytical Laboratories Section, Lewis Research Center, National Aeronautics and Space Administration: a feasibility study

    International Nuclear Information System (INIS)

    Boyle, W.G.; Barton, G.W.

    1979-01-01

    We studied the feasibility of computerized automation of the Analytical Laboratories Section at NASA's Lewis Research Center. Since that laboratory's duties are not routine, we set our automation goals with that in mind. We selected four instruments as the most likely automation candidates: an atomic absorption spectrophotometer, an emission spectrometer, an x-ray fluorescence spectrometer, and an x-ray diffraction unit. Our study describes two options for computer automation: a time-shared central computer and a system with microcomputers for each instrument connected to a central computer. A third option, presented for future planning, expands the microcomputer version. We determine costs and benefits for each option. We conclude that the microcomputer version best fits the goals and duties of the laboratory and that such an automated system is needed to meet the laboratory's future requirements

  8. Using Airborne In-Situ Profiles to Evaluate TCCON Data from Armstrong Flight Research Center

    Science.gov (United States)

    Iraci, L. T.; Hillyard, P. W.; Podolske, J. R.; Roehl, C. M.; Wunch, D.; Wennberg, P. O.; Albertson, R.

    2016-12-01

    A Fourier Transform Spectrometer (FTS) was deployed to the Armstrong Flight Research Center (AFRC) in Edwards, CA as a member of the Total Carbon Column Observing Network (TCCON) and has now been in operation for over 3 years. The data record from AFRC will be presented as well as airborne validation profiles obtained during the NASA SEAC4RS, SARP, KORUS-AQ, and ATom missions utilizing various NASA aircraft. One of the reasons that the AFRC location was selected is due to its proximity to a highly reflective lakebed, which has proven to be difficult for accurate satellite retrievals. As such, the data from AFRC has been used for OCO-2 calibration. In order for accurate calibration of OCO-2, the validity of the TCCON measurements must be established. To this end, integrated airborne in-situ vertical profiles will be presented and compared with the TCCON FTS measurements, where good agreement has been found.

  9. Electron paramagnetic resonance of atomic hydrogen (H0) centers in pink tourmaline from Brazil

    International Nuclear Information System (INIS)

    Camargo, M.B.

    1985-01-01

    A model for explaining the atom of hydrogen (H 0 ) in pink tourmaline irradiated with gamma rays is presented. The concentration of H 0 was evaluated and the H 0 lines using the electron paramagnetic resonance were analysed. The g factor and the hyperfine interaction constant were measured with accuracy and determined by matrix diagonalization of spin hamiltonian in vetor space of four dimensions, followed by an iterative calculation with quick convergence the local electric field produced by charges in the lattice was calculated and compared with the value obtained experimentally. (M.C.K.) [pt

  10. Calculation of the fifth atomic energy research dynamic benchmark with APROS

    International Nuclear Information System (INIS)

    Puska Eija Karita; Kontio Harii

    1998-01-01

    The band-out presents the model used for calculation of the fifth atomic energy research dynamic benchmark with APROS code. In the calculation of the fifth atomic energy research dynamic benchmark the three-dimensional neutronics model of APROS was used. The core was divided axially into 20 nodes according to the specifications of the benchmark and each six identical fuel assemblies were placed into one one-dimensional thermal hydraulic channel. The five-equation thermal hydraulic model was used in the benchmark. The plant process and automation was described with a generic WWER-440 plant model created by IVO Power Engineering Ltd. - Finland. (Author)

  11. Report of test and research results on atomic energy obtained in national institutes in fiscal 1990

    International Nuclear Information System (INIS)

    1991-01-01

    The tests and researches on the development and utilization of atomic energy in national laboratories were begun in 1956, and have accomplished the great role for the advance of the development and utilization of atomic energy in Japan by having produced many valuable results so far. Atomic energy has been utilized in diverse fields, and also in national laboratories, the research for expanding the development and utilization of atomic energy in food irradiation, medicine, agriculture, forestry, fishery and others in addition to the basic research on nuclear fusion and safety have been advanced. Further expecting the pervasive effect to general science and technology, the development of basic technology and integrated research are promoted from the viewpoint of new techical innovation and creative technology. This is 31st report in which the results of the tests and researches carried out by national laboratories in fiscal year 1990 are summarized. Nuclear fusion, safety research, food irradiation, cancer countermeasures, agriculture, forestry, fishery, medicine, mining and manufacture, power utilization, construction, radioactivation analysis and so on were the main subjects. (K.I.)

  12. Report of test and research results on atomic energy obtained in national institutes in fiscal 1986

    International Nuclear Information System (INIS)

    1988-01-01

    The test and research regarding the utilization of atomic energy carried out in national institutions have produced many valuable results in diverse fields so far, such as nuclear fusion, safety research, food irradiation and medicine, since the budget had been appropriated for the first time in 1956. It has accomplished large role in the promotion of atomic energy utilization in Japan. This report is volume 27, in which the results of the test and research on atomic energy utilization carried out by national institutions in fiscal year 1986 are summarized. It is hoped that the understanding about the recent trend and the results of the test and research on atomic energy utilization is further promoted by this report. The contents of this report are nuclear fusion; the research on engineering safety and environmental radioactivity safety; food irradiation; the countermeasures against cancer; fertilized soil, the improvement of quality, the protection of plants and the improvement of breeding in agriculture and fishery fields; diagnosis and medical treatment, pharmaceuticals, environmental hygiene and the application to physiology and pathology in medical field; radiation chemistry and radiation measurement in mining and industry fields; nuclear reactor materials and nuclear-powered ships; civil engineering; radioactivation analysis; and the research on the prevention of injuries. (Kako, I.)

  13. Report of test and research results on atomic energy obtained in national institutes in fiscal 1984

    International Nuclear Information System (INIS)

    1985-01-01

    The test and research regarding the utilization of atomic energy carried out in national institutions have produced many valuable results in diverse fields so far, such as nuclear fusion, safety research, food irradiation and medicine, since the budget had been appropriated for the first time in 1956. It has accomplished large role in the promotion of atomic energy utilization in Japan. This report is Volume 25, in which the results of the test and research on atomic energy utilization carried out by national institutions in fiscal year 1984 are summarized. It is hoped that the understanding about the recent trend and the results of the test and research on atomic energy utilization is further promoted by this report. The contents of this report are nuclear fusion; the research on engineering safety and environmental radioactivity safety; food irradiation; the countermeasures against cancer; fertilized soil, the improvement of quality, the protection of plants and the improvement of breeding in agriculture and fishery fields; diagnosis and medical treatment, pharmaceuticals, environmental hygiene and the application to physiology and pathology in medical field; radiation chemistry and radiation measurement in mining and industry fields; nuclear reactor materials and nuclear-powered ships; civil engineering; radioactivation analysis; and the research on the prevention of injuries. (Kako, I.)

  14. Final priority; National Institute on Disability and Rehabilitation Research--Rehabilitation Engineering Research Centers. Final priority.

    Science.gov (United States)

    2014-07-09

    The Assistant Secretary for Special Education and Rehabilitative Services announces a priority under the Disability and Rehabilitation Research Projects and Centers Program administered by the National Institute on Disability and Rehabilitation Research (NIDRR). Specifically, we announce a priority for a Rehabilitation Engineering Research Center (RERC) on Improving the Accessibility, Usability, and Performance of Technology for Individuals who are Deaf or Hard of Hearing. The Assistant Secretary may use this priority for competitions in fiscal year (FY) 2014 and later years. We take this action to focus research attention on an area of national need. We intend the priority to contribute to improving the accessibility, usability, and performance of technology for individuals who are deaf or hard of hearing.

  15. A research plan based on high intensity proton accelerator Neutron Science Research Center

    International Nuclear Information System (INIS)

    Mizumoto, Motoharu

    1997-01-01

    A plan called Neutron Science Research Center (NSRC) has been proposed in JAERI. The center is a complex composed of research facilities based on a proton linac with an energy of 1.5GeV and an average current of 10mA. The research facilities will consist of Thermal/Cold Neutron Facility, Neutron Irradiation Facility, Neutron Physics Facility, OMEGA/Nuclear Energy Facility, Spallation RI Beam Facility, Meson/Muon Facility and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutron, pion, muon and unstable radio isotope (RI) beams generated from the proton beam will be utilized for innovative researches in the fields on nuclear engineering and basic sciences. (author)

  16. A research plan based on high intensity proton accelerator Neutron Science Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, Motoharu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    A plan called Neutron Science Research Center (NSRC) has been proposed in JAERI. The center is a complex composed of research facilities based on a proton linac with an energy of 1.5GeV and an average current of 10mA. The research facilities will consist of Thermal/Cold Neutron Facility, Neutron Irradiation Facility, Neutron Physics Facility, OMEGA/Nuclear Energy Facility, Spallation RI Beam Facility, Meson/Muon Facility and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutron, pion, muon and unstable radio isotope (RI) beams generated from the proton beam will be utilized for innovative researches in the fields on nuclear engineering and basic sciences. (author)

  17. Applied high-speed imaging for the icing research program at NASA Lewis Research Center

    Science.gov (United States)

    Slater, Howard; Owens, Jay; Shin, Jaiwon

    1992-01-01

    The Icing Research Tunnel at NASA Lewis Research Center provides scientists a scaled, controlled environment to simulate natural icing events. The closed-loop, low speed, refrigerated wind tunnel offers the experimental capability to test for icing certification requirements, analytical model validation and calibration techniques, cloud physics instrumentation refinement, advanced ice protection systems, and rotorcraft icing methodology development. The test procedures for these objectives all require a high degree of visual documentation, both in real-time data acquisition and post-test image processing. Information is provided to scientific, technical, and industrial imaging specialists as well as to research personnel about the high-speed and conventional imaging systems will be on the recent ice protection technology program. Various imaging examples for some of the tests are presented. Additional imaging examples are available from the NASA Lewis Research Center's Photographic and Printing Branch.

  18. Department of Atomic Energy [India]: Annual report 1978-79

    International Nuclear Information System (INIS)

    1979-01-01

    The research and development activities and achievements of the research organizations of the Department of Atomic Energy (DAE, India), progress of various DAE projects underway and performance of nuclear power plants and other public sector underking of DAE have been reported. The report covers the financial year 1978-79. Some of the major achievements during the year have been: (1) development of a portable local vacuum electron beam welding machine, (2) commissioning of the Variable Energy Cyclotron, Calcutta for obtaining an external beam of 30 MeV alphas, (4) locating minute leaks by tracer techniques on the 140 km. Koyali-Viramgam Oil pipeline and (5) investigation by tracer technique of geological fault at the Lakya dam site of the Kudremukh Iron Ore Project in Karnataka. The R and D work of the Bhabha Atomic Research Centre, Bombay; Reactor Research Centre, Kalpakkam; Tata Institute of Fundamental Research, Bombay; Saha Institute of Nuclear Physics, Calcutta, Tata Memorial Centre and Cancer Research Centre both at Bombay is summarised. (M.G.B.)

  19. Innovation in Flight: Research of the NASA Langley Research Center on Revolutionary Advanced Concepts for Aeronautics

    Science.gov (United States)

    Chambers, Joseph R.

    2005-01-01

    The goal of this publication is to provide an overview of the topic of revolutionary research in aeronautics at Langley, including many examples of research efforts that offer significant potential benefits, but have not yet been applied. The discussion also includes an overview of how innovation and creativity is stimulated within the Center, and a perspective on the future of innovation. The documentation of this topic, especially the scope and experiences of the example research activities covered, is intended to provide background information for future researchers.

  20. Assessment team report on flight-critical systems research at NASA Langley Research Center

    Science.gov (United States)

    Siewiorek, Daniel P. (Compiler); Dunham, Janet R. (Compiler)

    1989-01-01

    The quality, coverage, and distribution of effort of the flight-critical systems research program at NASA Langley Research Center was assessed. Within the scope of the Assessment Team's review, the research program was found to be very sound. All tasks under the current research program were at least partially addressing the industry needs. General recommendations made were to expand the program resources to provide additional coverage of high priority industry needs, including operations and maintenance, and to focus the program on an actual hardware and software system that is under development.