WorldWideScience

Sample records for bh3-interacting domain death

  1. Interaction of a putative BH3 domain of clusterin with anti-apoptotic Bcl-2 family proteins as revealed by NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong-Hwa; Ha, Ji-Hyang [Medical Proteomics Research Center, KRIBB, Daejeon 305-806 (Korea, Republic of); Kim, Yul [Department of Bio and Brain Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Bae, Kwang-Hee [Medical Proteomics Research Center, KRIBB, Daejeon 305-806 (Korea, Republic of); Park, Jae-Yong [Department of Physiology, Institute of Health Science, School of Medicine, Gyeongsang National University, Jinju, Gyeongnam 660-751 (Korea, Republic of); Choi, Wan Sung [Department of Anatomy and Neurobiology, Institute of Health Science, School of Medicine, Gyeongsang National University, Jinju, Gyeongnam 660-751 (Korea, Republic of); Yoon, Ho Sup [Division of Structural and Computational Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637511 (Singapore); Park, Sung Goo; Park, Byoung Chul [Medical Proteomics Research Center, KRIBB, Daejeon 305-806 (Korea, Republic of); Yi, Gwan-Su, E-mail: gsyi@kaist.ac.kr [Department of Bio and Brain Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Chi, Seung-Wook, E-mail: swchi@kribb.re.kr [Medical Proteomics Research Center, KRIBB, Daejeon 305-806 (Korea, Republic of)

    2011-05-20

    Highlights: {yields} Identification of a conserved BH3 motif in C-terminal coiled coil region of nCLU. {yields} The nCLU BH3 domain binds to BH3 peptide-binding grooves in both Bcl-X{sub L} and Bcl-2. {yields} A conserved binding mechanism of nCLU BH3 and the other pro-apoptotic BH3 peptides with Bcl-X{sub L}. {yields} The absolutely conserved Leu323 and Asp328 of nCLU BH3 domain are critical for binding to Bcl-X{sub L.} {yields} Molecular understanding of the pro-apoptotic function of nCLU as a novel BH3-only protein. -- Abstract: Clusterin (CLU) is a multifunctional glycoprotein that is overexpressed in prostate and breast cancers. Although CLU is known to be involved in the regulation of apoptosis and cell survival, the precise molecular mechanism underlying the pro-apoptotic function of nuclear CLU (nCLU) remains unclear. In this study, we identified a conserved BH3 motif in C-terminal coiled coil (CC2) region of nCLU by sequence analysis and characterized the molecular interaction of the putative nCLU BH3 domain with anti-apoptotic Bcl-2 family proteins by nuclear magnetic resonance (NMR) spectroscopy. The chemical shift perturbation data demonstrated that the nCLU BH3 domain binds to pro-apoptotic BH3 peptide-binding grooves in both Bcl-X{sub L} and Bcl-2. A structural model of the Bcl-X{sub L}/nCLU BH3 peptide complex reveals that the binding mode is remarkably similar to those of other Bcl-X{sub L}/BH3 peptide complexes. In addition, mutational analysis confirmed that Leu323 and Asp328 of nCLU BH3 domain, absolutely conserved in the BH3 motifs of BH3-only protein family, are critical for binding to Bcl-X{sub L}. Taken altogether, our results suggest a molecular basis for the pro-apoptotic function of nCLU by elucidating the residue specific interactions of the BH3 motif in nCLU with anti-apoptotic Bcl-2 family proteins.

  2. B cell lymphoma-2 (BCL-2) homology domain 3 (BH3) mimetics demonstrate differential activities dependent upon the functional repertoire of pro- and anti-apoptotic BCL-2 family proteins.

    Science.gov (United States)

    Renault, Thibaud T; Elkholi, Rana; Bharti, Archana; Chipuk, Jerry E

    2014-09-19

    The B cell lymphoma-2 (BCL-2) family is the key mediator of cellular sensitivity to apoptosis during pharmacological interventions for numerous human pathologies, including cancer. There is tremendous interest to understand how the proapoptotic BCL-2 effector members (e.g. BCL-2-associated X protein, BAX) cooperate with the BCL-2 homology domain only (BH3-only) subclass (e.g. BCL-2 interacting mediator of death, BIM; BCL-2 interacting-domain death agonist, BID) to induce mitochondrial outer membrane permeabilization (MOMP) and apoptosis and whether these mechanisms may be pharmacologically exploited to enhance the killing of cancer cells. Indeed, small molecule inhibitors of the anti-apoptotic BCL-2 family members have been designed rationally. However, the success of these "BH3 mimetics" in the clinic has been limited, likely due to an incomplete understanding of how these drugs function in the presence of multiple BCL-2 family members. To increase our mechanistic understanding of how BH3 mimetics cooperate with multiple BCL-2 family members in vitro, we directly compared the activity of several BH3-mimetic compounds (i.e. ABT-263, ABT-737, GX15-070, HA14.1, TW-37) in biochemically defined large unilamellar vesicle model systems that faithfully recapitulate BAX-dependent mitochondrial outer membrane permeabilization. Our investigations revealed that the presence of BAX, BID, and BIM differentially regulated the ability of BH3 mimetics to derepress proapoptotic molecules from anti-apoptotic proteins. Using mitochondria loaded with fluorescent BH3 peptides and cells treated with inducers of cell death, these differences were supported. Together, these data suggest that although the presence of anti-apoptotic BCL-2 proteins primarily dictates cellular sensitivity to BH3 mimetics, additional specificity is conferred by proapoptotic BCL-2 proteins. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-X(L).

    Science.gov (United States)

    Maiuri, Maria Chiara; Criollo, Alfredo; Tasdemir, Ezgi; Vicencio, José Miguel; Tajeddine, Nicolas; Hickman, John A; Geneste, Olivier; Kroemer, Guido

    2007-01-01

    Beclin 1 has recently been identified as novel BH3-only protein, meaning that it carries one Bcl-2-homology-3 (BH3) domain. As other BH3-only proteins, Beclin 1 interacts with anti-apoptotic multidomain proteins of the Bcl-2 family (in particular Bcl-2 and its homologue Bcl-X(L)) by virtue of its BH3 domain, an amphipathic alpha-helix that binds to the hydrophobic cleft of Bcl-2/Bcl-X(L). The BH3 domains of other BH3-only proteins such as Bad, as well as BH3-mimetic compounds such as ABT737, competitively disrupt the inhibitory interaction between Beclin 1 and Bcl-2/Bcl-X(L). This causes autophagy of mitochondria (mitophagy) but not of the endoplasmic reticulum (reticulophagy). Only ER-targeted (not mitochondrion-targeted) Bcl-2/Bcl-X(L) can inhibit autophagy induced by Beclin 1, and only Beclin 1-Bcl-2/Bcl-X(L) complexes present in the ER (but not those present on heavy membrane fractions enriched in mitochondria) are disrupted by ABT737. These findings suggest that the Beclin 1-Bcl-2/Bcl-X(L) complexes that normally inhibit autophagy are specifically located in the ER and point to an organelle-specific regulation of autophagy. Furthermore, these data suggest a spatial organization of autophagy and apoptosis control in which BH3-only proteins exert two independent functions. On the one hand, they can induce apoptosis, by (directly or indirectly) activating the mitochondrion-permeabilizing function of pro-apoptotic multidomain proteins from the Bcl-2 family. On the other hand, they can activate autophagy by liberating Beclin 1 from its inhibition by Bcl-2/Bcl-X(L) at the level of the endoplasmic reticulum.

  4. Molecular interactions of prodiginines with the BH3 domain of anti-apoptotic Bcl-2 family members.

    Directory of Open Access Journals (Sweden)

    Ali Hosseini

    Full Text Available Prodigiosin and obatoclax, members of the prodiginines family, are small molecules with anti-cancer properties that are currently under preclinical and clinical trials. The molecular target(s of these agents, however, is an open question. Combining experimental and computational techniques we find that prodigiosin binds to the BH3 domain in some BCL-2 protein families, which play an important role in the apoptotic programmed cell death. In particular, our results indicate a large affinity of prodigiosin for MCL-1, an anti-apoptotic member of the BCL-2 family. In melanoma cells, we demonstrate that prodigiosin activates the mitochondrial apoptotic pathway by disrupting MCL-1/BAK complexes. Computer simulations with the PELE software allow the description of the induced fit process, obtaining a detailed atomic view of the molecular interactions. These results provide new data to understand the mechanism of action of these molecules, and assist in the development of more specific inhibitors of anti-apoptotic BCL-2 proteins.

  5. Non-Covalent Interactions in Hydrogen Storage Materials LiN(CH32BH3 and KN(CH32BH3

    Directory of Open Access Journals (Sweden)

    Filip Sagan

    2016-03-01

    Full Text Available In the present work, an in-depth, qualitative and quantitative description of non-covalent interactions in the hydrogen storage materials LiN(CH32BH3 and KN(CH32BH3 was performed by means of the charge and energy decomposition method (ETS-NOCV as well as the Interacting Quantum Atoms (IQA approach. It was determined that both crystals are stabilized by electrostatically dominated intra- and intermolecular M∙∙∙H–B interactions (M = Li, K. For LiN(CH32BH3 the intramolecular charge transfer appeared (B–H→Li to be more pronounced compared with the corresponding intermolecular contribution. We clarified for the first time, based on the ETS-NOCV and IQA methods, that homopolar BH∙∙∙HB interactions in LiN(CH32BH3 can be considered as destabilizing (due to the dominance of repulsion caused by negatively charged borane units, despite the fact that some charge delocalization within BH∙∙∙HB contacts is enforced (which explains H∙∙∙H bond critical points found from the QTAIM method. Interestingly, quite similar (to BH∙∙∙HB intermolecular homopolar dihydrogen bonds CH∙∙∙HC appared to significantly stabilize both crystals—the ETS-NOCV scheme allowed us to conclude that CH∙∙∙HC interactions are dispersion dominated, however, the electrostatic and σ/σ*(C–H charge transfer contributions are also important. These interactions appeared to be more pronounced in KN(CH32BH3 compared with LiN(CH32BH3.

  6. Alpha-helical destabilization of the Bcl-2-BH4-domain peptide abolishes its ability to inhibit the IP3 receptor.

    Directory of Open Access Journals (Sweden)

    Giovanni Monaco

    Full Text Available The anti-apoptotic Bcl-2 protein is the founding member and namesake of the Bcl-2-protein family. It has recently been demonstrated that Bcl-2, apart from its anti-apoptotic role at mitochondrial membranes, can also directly interact with the inositol 1,4,5-trisphosphate receptor (IP3R, the primary Ca(2+-release channel in the endoplasmic reticulum (ER. Bcl-2 can thereby reduce pro-apoptotic IP3R-mediated Ca(2+ release from the ER. Moreover, the Bcl-2 homology domain 4 (Bcl-2-BH4 has been identified as essential and sufficient for this IP3R-mediated anti-apoptotic activity. In the present study, we investigated whether the reported inhibitory effect of a Bcl-2-BH4 peptide on the IP 3R1 was related to the distinctive α-helical conformation of the BH4 domain peptide. We therefore designed a peptide with two glycine "hinges" replacing residues I14 and V15, of the wild-type Bcl-2-BH4 domain (Bcl-2-BH4-IV/GG. By comparing the structural and functional properties of the Bcl-2-BH4-IV/GG peptide with its native counterpart, we found that the variant contained reduced α-helicity, neither bound nor inhibited the IP 3R1 channel, and in turn lost its anti-apoptotic effect. Similar results were obtained with other substitutions in Bcl-2-BH4 that destabilized the α-helix with concomitant loss of IP3R inhibition. These results provide new insights for the further development of Bcl-2-BH4-derived peptides as specific inhibitors of the IP3R with significant pharmacological implications.

  7. The BH3 α-Helical Mimic BH3-M6 Disrupts Bcl-XL, Bcl-2, and MCL-1 Protein-Protein Interactions with Bax, Bak, Bad, or Bim and Induces Apoptosis in a Bax- and Bim-dependent Manner*

    Science.gov (United States)

    Kazi, Aslamuzzaman; Sun, Jiazhi; Doi, Kenichiro; Sung, Shen-Shu; Takahashi, Yoshinori; Yin, Hang; Rodriguez, Johanna M.; Becerril, Jorge; Berndt, Norbert; Hamilton, Andrew D.; Wang, Hong-Gang; Sebti, Saïd M.

    2011-01-01

    A critical hallmark of cancer cell survival is evasion of apoptosis. This is commonly due to overexpression of anti-apoptotic proteins such as Bcl-2, Bcl-XL, and Mcl-1, which bind to the BH3 α-helical domain of pro-apoptotic proteins such as Bax, Bak, Bad, and Bim, and inhibit their function. We designed a BH3 α-helical mimetic BH3-M6 that binds to Bcl-XL and Mcl-1 and prevents their binding to fluorescently labeled Bak- or Bim-BH3 peptides in vitro. Using several approaches, we demonstrate that BH3-M6 is a pan-Bcl-2 antagonist that inhibits the binding of Bcl-XL, Bcl-2, and Mcl-1 to multi-domain Bax or Bak, or BH3-only Bim or Bad in cell-free systems and in intact human cancer cells, freeing up pro-apoptotic proteins to induce apoptosis. BH3-M6 disruption of these protein-protein interactions is associated with cytochrome c release from mitochondria, caspase-3 activation and PARP cleavage. Using caspase inhibitors and Bax and Bak siRNAs, we demonstrate that BH3-M6-induced apoptosis is caspase- and Bax-, but not Bak-dependent. Furthermore, BH3-M6 disrupts Bcl-XL/Bim, Bcl-2/Bim, and Mcl-1/Bim protein-protein interactions and frees up Bim to induce apoptosis in human cancer cells that depend for tumor survival on the neutralization of Bim with Bcl-XL, Bcl-2, or Mcl-1. Finally, BH3-M6 sensitizes cells to apoptosis induced by the proteasome inhibitor CEP-1612. PMID:21148306

  8. The BH3 alpha-helical mimic BH3-M6 disrupts Bcl-X(L), Bcl-2, and MCL-1 protein-protein interactions with Bax, Bak, Bad, or Bim and induces apoptosis in a Bax- and Bim-dependent manner.

    Science.gov (United States)

    Kazi, Aslamuzzaman; Sun, Jiazhi; Doi, Kenichiro; Sung, Shen-Shu; Takahashi, Yoshinori; Yin, Hang; Rodriguez, Johanna M; Becerril, Jorge; Berndt, Norbert; Hamilton, Andrew D; Wang, Hong-Gang; Sebti, Saïd M

    2011-03-18

    A critical hallmark of cancer cell survival is evasion of apoptosis. This is commonly due to overexpression of anti-apoptotic proteins such as Bcl-2, Bcl-X(L), and Mcl-1, which bind to the BH3 α-helical domain of pro-apoptotic proteins such as Bax, Bak, Bad, and Bim, and inhibit their function. We designed a BH3 α-helical mimetic BH3-M6 that binds to Bcl-X(L) and Mcl-1 and prevents their binding to fluorescently labeled Bak- or Bim-BH3 peptides in vitro. Using several approaches, we demonstrate that BH3-M6 is a pan-Bcl-2 antagonist that inhibits the binding of Bcl-X(L), Bcl-2, and Mcl-1 to multi-domain Bax or Bak, or BH3-only Bim or Bad in cell-free systems and in intact human cancer cells, freeing up pro-apoptotic proteins to induce apoptosis. BH3-M6 disruption of these protein-protein interactions is associated with cytochrome c release from mitochondria, caspase-3 activation and PARP cleavage. Using caspase inhibitors and Bax and Bak siRNAs, we demonstrate that BH3-M6-induced apoptosis is caspase- and Bax-, but not Bak-dependent. Furthermore, BH3-M6 disrupts Bcl-X(L)/Bim, Bcl-2/Bim, and Mcl-1/Bim protein-protein interactions and frees up Bim to induce apoptosis in human cancer cells that depend for tumor survival on the neutralization of Bim with Bcl-X(L), Bcl-2, or Mcl-1. Finally, BH3-M6 sensitizes cells to apoptosis induced by the proteasome inhibitor CEP-1612.

  9. BH3-mimetics- and cisplatin-induced cell death proceeds through different pathways depending on the availability of death-related cellular components.

    Directory of Open Access Journals (Sweden)

    Vicente Andreu-Fernández

    Full Text Available BACKGROUND: Owing to their important function in regulating cell death, pharmacological inhibition of Bcl-2 proteins by dubbed BH3-mimetics is a promising strategy for apoptosis induction or sensitization to chemotherapy. However, the role of Apaf-1, the main protein constituent of the apoptosome, in the process has yet not been analyzed. Furthermore as new chemotherapeutics develop, the possible chemotherapy-induced toxicity to rapidly dividing normal cells, especially sensitive differentiated cells, has to be considered. Such undesirable effects would probably be ameliorated by selectively and locally inhibiting apoptosis in defined sensitive cells. METHODOLOGY AND PRINCIPAL FINDINGS: Mouse embryonic fibroblasts (MEFS from Apaf-1 knock out mouse (MEFS KO Apaf-1 and Bax/Bak double KO (MEFS KO Bax/Bak, MEFS from wild-type mouse (MEFS wt and human cervix adenocarcinoma (HeLa cells were used to comparatively investigate the signaling cell death-induced pathways of BH3-mimetics, like ABT737 and GX15-070, with DNA damage-inducing agent cisplatin (cis-diammineplatinum(II dichloride, CDDP. The study was performed in the absence or presence of apoptosis inhibitors namely, caspase inhibitors or apoptosome inhibitors. BH3-mimetic ABT737 required of Apaf-1 to exert its apoptosis-inducing effect. In contrast, BH3-mimetic GX15-070 and DNA damage-inducing CDDP induced cell death in the absence of both Bax/Bak and Apaf-1. GX15-070 induced autophagy-based cell death in all the cell lines analyzed. MEFS wt cells were protected from the cytotoxic effects of ABT737 and CDDP by chemical inhibition of the apoptosome through QM31, but not by using general caspase inhibitors. CONCLUSIONS: BH3-mimetic ABT737 not only requires Bax/Bak to exert its apoptosis-inducing effect, but also Apaf-1, while GX15-070 and CDDP induce different modalities of cell death in the absence of Bax/Bak or Apaf-1. Inclusion of specific Apaf-1 inhibitors in topical and well

  10. Cycloheximide Can Induce Bax/Bak Dependent Myeloid Cell Death Independently of Multiple BH3-Only Proteins.

    Directory of Open Access Journals (Sweden)

    Katharine J Goodall

    Full Text Available Apoptosis mediated by Bax or Bak is usually thought to be triggered by BH3-only members of the Bcl-2 protein family. BH3-only proteins can directly bind to and activate Bax or Bak, or indirectly activate them by binding to anti-apoptotic Bcl-2 family members, thereby relieving their inhibition of Bax and Bak. Here we describe a third way of activation of Bax/Bak dependent apoptosis that does not require triggering by multiple BH3-only proteins. In factor dependent myeloid (FDM cell lines, cycloheximide induced apoptosis by a Bax/Bak dependent mechanism, because Bax-/-Bak-/- lines were profoundly resistant, whereas FDM lines lacking one or more genes for BH3-only proteins remained highly sensitive. Addition of cycloheximide led to the rapid loss of Mcl-1 but did not affect the expression of other Bcl-2 family proteins. In support of these findings, similar results were observed by treating FDM cells with the CDK inhibitor, roscovitine. Roscovitine reduced Mcl-1 abundance and caused Bax/Bak dependent cell death, yet FDM lines lacking one or more genes for BH3-only proteins remained highly sensitive. Therefore Bax/Bak dependent apoptosis can be regulated by the abundance of anti-apoptotic Bcl-2 family members such as Mcl-1, independently of several known BH3-only proteins.

  11. A liquid-based eutectic system: LiBH4·NH 3-nNH3BH3 with high dehydrogenation capacity at moderate temperature

    KAUST Repository

    Tan, Yingbin

    2011-01-01

    A novel eutectic hydrogen storage system, LiBH4·NH 3-nNH3BH3, which exists in a liquid state at room temperature, was synthesized through a simple mixing of LiBH 4·NH3 and NH3BH3 (AB). In the temperature range of 90-110 °C, the eutectic system showed significantly improved dehydrogenation properties compared to the neat AB and LiBH 4·NH3 alone. For example, in the case of the LiBH4·NH3/AB with a mole ratio of 1:3, over 8 wt.% hydrogen could be released at 90 °C within 4 h, while only 5 wt.% hydrogen released from the neat AB at the same conditions. Through a series of experiments it has been demonstrated that the hydrogen release of the new system is resulted from an interaction of AB and the NH3 group in the LiBH4·NH3, in which LiBH4 works as a carrier of ammonia and plays a crucial role in promoting the interaction between the NH3 group and AB. The enhanced dehydrogenation of LiBH 4·NH3/AB may result from the polar liquid state reaction environments and the initially promoted formation of the diammoniate of diborane, which will facilitate the B-H⋯H-N interaction between LiBH4·NH3 and AB. Kinetics analysis revealed that the rate-controlling steps of the dehydrogenation process are three-dimensional diffusion of hydrogen at temperatures ranging from 90 to 110 °C. This journal is © The Royal Society of Chemistry.

  12. An Integrated Bioinformatics and Computational Biology Approach Identifies New BH3-Only Protein Candidates.

    Science.gov (United States)

    Hawley, Robert G; Chen, Yuzhong; Riz, Irene; Zeng, Chen

    2012-05-04

    In this study, we utilized an integrated bioinformatics and computational biology approach in search of new BH3-only proteins belonging to the BCL2 family of apoptotic regulators. The BH3 (BCL2 homology 3) domain mediates specific binding interactions among various BCL2 family members. It is composed of an amphipathic α-helical region of approximately 13 residues that has only a few amino acids that are highly conserved across all members. Using a generalized motif, we performed a genome-wide search for novel BH3-containing proteins in the NCBI Consensus Coding Sequence (CCDS) database. In addition to known pro-apoptotic BH3-only proteins, 197 proteins were recovered that satisfied the search criteria. These were categorized according to α-helical content and predictive binding to BCL-xL (encoded by BCL2L1) and MCL-1, two representative anti-apoptotic BCL2 family members, using position-specific scoring matrix models. Notably, the list is enriched for proteins associated with autophagy as well as a broad spectrum of cellular stress responses such as endoplasmic reticulum stress, oxidative stress, antiviral defense, and the DNA damage response. Several potential novel BH3-containing proteins are highlighted. In particular, the analysis strongly suggests that the apoptosis inhibitor and DNA damage response regulator, AVEN, which was originally isolated as a BCL-xL-interacting protein, is a functional BH3-only protein representing a distinct subclass of BCL2 family members.

  13. Hypoxic human cancer cells are sensitized to BH-3 mimetic–induced apoptosis via downregulation of the Bcl-2 protein Mcl-1

    OpenAIRE

    Harrison, Luke R.E.; Micha, Dimitra; Brandenburg, Martin; Simpson, Kathryn L.; Morrow, Christopher J.; Denneny, Olive; Hodgkinson, Cassandra; Yunus, Zaira; Dempsey, Clare; Roberts, Darren; Blackhall, Fiona; Makin, Guy; Dive, Caroline

    2011-01-01

    Solid tumors contain hypoxic regions in which cancer cells are often resistant to chemotherapy-induced apoptotic cell death. Therapeutic strategies that specifically target hypoxic cells and promote apoptosis are particularly appealing, as few normal tissues experience hypoxia. We have found that the compound ABT-737, a Bcl-2 homology domain 3 (BH-3) mimetic, promotes apoptotic cell death in human colorectal carcinoma and small cell lung cancer cell lines exposed to hypoxia. This hypoxic indu...

  14. Minor cell-death defects but reduced tumor latency in mice lacking the BH3-only proteins Bad and Bmf.

    Science.gov (United States)

    Baumgartner, F; Woess, C; Pedit, V; Tzankov, A; Labi, V; Villunger, A

    2013-01-31

    Proapoptotic Bcl-2 family members of the Bcl-2 homology (BH)3-only subgroup are critical for the establishment and maintenance of tissue homeostasis and can mediate apoptotic cell death in response to developmental cues or exogenously induced forms of cell stress. On the basis of the biochemical experiments as well as genetic studies in mice, the BH3-only proteins Bad and Bmf have been implicated in different proapoptotic events such as those triggered by glucose- or trophic factor-deprivation, glucocorticoids, or histone deacetylase inhibition, as well as suppression of B-cell lymphomagenesis upon aberrant expression of c-Myc. To address possible redundancies in cell death regulation and tumor suppression, we generated compound mutant mice lacking both genes. Our studies revealed lack of redundancy in most paradigms of lymphocyte apoptosis tested in tissue culture. Only spontaneous cell death of thymocytes kept in low glucose or that of pre-B cells deprived of cytokines was significantly delayed when both genes were lacking. Of note, despite these minor apoptosis defects we observed compromised lymphocyte homeostasis in vivo that affected mainly the B-cell lineage. Long-term follow-up revealed significantly reduced latency to spontaneous tumor formation in aged mice when both genes were lacking. Together our study suggests that Bad and Bmf co-regulate lymphocyte homeostasis and limit spontaneous transformation by mechanisms that may not exclusively be linked to the induction of lymphocyte apoptosis.

  15. DIMA 3.0: Domain Interaction Map.

    Science.gov (United States)

    Luo, Qibin; Pagel, Philipp; Vilne, Baiba; Frishman, Dmitrij

    2011-01-01

    Domain Interaction MAp (DIMA, available at http://webclu.bio.wzw.tum.de/dima) is a database of predicted and known interactions between protein domains. It integrates 5807 structurally known interactions imported from the iPfam and 3did databases and 46,900 domain interactions predicted by four computational methods: domain phylogenetic profiling, domain pair exclusion algorithm correlated mutations and domain interaction prediction in a discriminative way. Additionally predictions are filtered to exclude those domain pairs that are reported as non-interacting by the Negatome database. The DIMA Web site allows to calculate domain interaction networks either for a domain of interest or for entire organisms, and to explore them interactively using the Flash-based Cytoscape Web software.

  16. Behavior of solvent-exposed hydrophobic groove in the anti-apoptotic Bcl-XL protein: clues for its ability to bind diverse BH3 ligands from MD simulations.

    Directory of Open Access Journals (Sweden)

    Dilraj Lama

    Full Text Available Bcl-XL is a member of Bcl-2 family of proteins involved in the regulation of intrinsic pathway of apoptosis. Its overexpression in many human cancers makes it an important target for anti-cancer drugs. Bcl-XL interacts with the BH3 domain of several pro-apoptotic Bcl-2 partners. This helical bundle protein has a pronounced hydrophobic groove which acts as a binding region for the BH3 domains. Eight independent molecular dynamics simulations of the apo/holo forms of Bcl-XL were carried out to investigate the behavior of solvent-exposed hydrophobic groove. The simulations used either a twin-range cut-off or particle mesh Ewald (PME scheme to treat long-range interactions. Destabilization of the BH3 domain-containing helix H2 was observed in all four twin-range cut-off simulations. Most of the other major helices remained stable. The unwinding of H2 can be related to the ability of Bcl-XL to bind diverse BH3 ligands. The loss of helical character can also be linked to the formation of homo- or hetero-dimers in Bcl-2 proteins. Several experimental studies have suggested that exposure of BH3 domain is a crucial event before they form dimers. Thus unwinding of H2 seems to be functionally very important. The four PME simulations, however, revealed a stable helix H2. It is possible that the H2 unfolding might occur in PME simulations at longer time scales. Hydrophobic residues in the hydrophobic groove are involved in stable interactions among themselves. The solvent accessible surface areas of bulky hydrophobic residues in the groove are significantly buried by the loop LB connecting the helix H2 and subsequent helix. These observations help to understand how the hydrophobic patch in Bcl-XL remains stable in the solvent-exposed state. We suggest that both the destabilization of helix H2 and the conformational heterogeneity of loop LB are important factors for binding of diverse ligands in the hydrophobic groove of Bcl-XL.

  17. A liquid-based eutectic system: LiBH4·NH 3-nNH3BH3 with high dehydrogenation capacity at moderate temperature

    KAUST Repository

    Tan, Yingbin; Guo, Yanhui; Li, Shaofeng; Sun, Weiwei; Zhu, Yihan; Li, Qi; Yu, Xuebin

    2011-01-01

    A novel eutectic hydrogen storage system, LiBH4·NH 3-nNH3BH3, which exists in a liquid state at room temperature, was synthesized through a simple mixing of LiBH 4·NH3 and NH3BH3 (AB). In the temperature range of 90-110 °C, the eutectic system

  18. Solution structure of the isolated Pelle death domain.

    Science.gov (United States)

    Moncrieffe, Martin C; Stott, Katherine M; Gay, Nicholas J

    2005-07-18

    The interaction between the death domains (DDs) of Tube and the protein kinase Pelle is an important component of the Toll pathway. Published crystallographic data suggests that the Pelle-Tube DD interface is plastic and implies that in addition to the two predominant Pelle-Tube interfaces, a third interaction is possible. We present the NMR solution structure of the isolated death domain of Pelle and a study of the interaction between the DDs of Pelle and Tube. Our data suggests the solution structure of the isolated Pelle DD is similar to that of Pelle DD in complex with Tube. Additionally, they suggest that the plasticity observed in the crystal structure may not be relevant in the functioning death domain complex.

  19. Hydrogen generation behaviors of NaBH4-NH3BH3 composite by hydrolysis

    Science.gov (United States)

    Xu, Yanmin; Wu, Chaoling; Chen, Yungui; Huang, Zhifen; Luo, Linshan; Wu, Haiwen; Liu, Peipei

    2014-09-01

    In this work, NH3BH3 (AB) is used to induce hydrogen generation during NaBH4 (SB) hydrolysis in order to reduce the use of catalysts, simplify the preparation process, reduce the cost and improve desorption kinetics and hydrogen capacity as well. xNaBH4-yNH3BH3 composites are prepared by ball-milling in different proportions (from x:y = 1:1 to 8:1). The experimental results demonstrate that all composites can release more than 90% of hydrogen at 70 °C within 1 h, and their hydrogen yields can reach 9 wt% (taking reacted water into account). Among them, the composites in the proportion of 4:1 and 5:1, whose hydrogen yields reach no less than 10 wt%, show the best hydrogen generation properties. This is due to the impact of the following aspects: AB additive improves the dispersibility of SB particles, makes the composite more porous, hampers the generated metaborate from adhering to the surface of SB, and decreases the pH value of the composite during hydrolysis. The main solid byproduct of this hydrolysis system is NaBO2·2H2O. By hydrolytic kinetic simulation of the composites, the fitted activation energies of the complexes are between 37.2 and 45.6 kJ mol-1, which are comparable to the catalytic system with some precious metals and alloys.

  20. Hypoxia-Induced Autophagy Is Mediated through Hypoxia-Inducible Factor Induction of BNIP3 and BNIP3L via Their BH3 Domains▿ †

    OpenAIRE

    Bellot, Grégory; Garcia-Medina, Raquel; Gounon, Pierre; Chiche, Johanna; Roux, Danièle; Pouysségur, Jacques; Mazure, Nathalie M.

    2009-01-01

    While hypoxia-inducible factor (HIF) is a major actor in the cell survival response to hypoxia, HIF also is associated with cell death. Several studies implicate the HIF-induced putative BH3-only proapoptotic genes bnip3 and bnip3l in hypoxia-mediated cell death. We, like others, do not support this assertion. Here, we clearly demonstrate that the hypoxic microenvironment contributes to survival rather than cell death by inducing autophagy. The ablation of Beclin1, a major actor of autophagy,...

  1. Hypoxic human cancer cells are sensitized to BH-3 mimetic–induced apoptosis via downregulation of the Bcl-2 protein Mcl-1

    Science.gov (United States)

    Harrison, Luke R.E.; Micha, Dimitra; Brandenburg, Martin; Simpson, Kathryn L.; Morrow, Christopher J.; Denneny, Olive; Hodgkinson, Cassandra; Yunus, Zaira; Dempsey, Clare; Roberts, Darren; Blackhall, Fiona; Makin, Guy; Dive, Caroline

    2011-01-01

    Solid tumors contain hypoxic regions in which cancer cells are often resistant to chemotherapy-induced apoptotic cell death. Therapeutic strategies that specifically target hypoxic cells and promote apoptosis are particularly appealing, as few normal tissues experience hypoxia. We have found that the compound ABT-737, a Bcl-2 homology domain 3 (BH-3) mimetic, promotes apoptotic cell death in human colorectal carcinoma and small cell lung cancer cell lines exposed to hypoxia. This hypoxic induction of apoptosis was mediated through downregulation of myeloid cell leukemia sequence 1 (Mcl-1), a Bcl-2 family protein that serves as a biomarker for ABT-737 resistance. Downregulation of Mcl-1 in hypoxia was independent of hypoxia-inducible factor 1 (HIF-1) activity and was consistent with decreased global protein translation. In addition, ABT-737 induced apoptosis deep within tumor spheroids, consistent with an optimal hypoxic oxygen tension being necessary to promote ABT-737–induced cell death. Tumor xenografts in ABT-737–treated mice also displayed significantly more apoptotic cells within hypoxic regions relative to normoxic regions. Synergies between ABT-737 and other cytotoxic drugs were maintained in hypoxia, suggesting that this drug may be useful in combination with chemotherapeutic agents. Taken together, these findings suggest that Mcl-1–sparing BH-3 mimetics may induce apoptosis in hypoxic tumor cells that are resistant to other chemotherapeutic agents and may have a role in combinatorial chemotherapeutic regimens for treatment of solid tumors. PMID:21393866

  2. BH3-only protein Bim inhibits activity of antiapoptotic members of Bcl-2 family when expressed in yeast.

    Science.gov (United States)

    Juhásová, Barbora; Mentel, Marek; Bhatia-Kiššová, Ingrid; Zeman, Igor; Kolarov, Jordan; Forte, Michael; Polčic, Peter

    2011-09-02

    Proteins of the Bcl-2 family regulate programmed cell death in mammals by promoting the release of cytochrome c from mitochondria in response to various proapoptotic stimuli. The mechanism by which BH3-only members of the family activate multidomain proapoptotic proteins Bax and Bak to form a pore in mitochondrial membranes remains under dispute. We report that cell death promoting activity of BH3-only protein Bim can be reconstituted in yeast when both Bax and antiapoptotic protein Bcl-X(L) are present, suggesting that Bim likely activates Bax indirectly by inhibiting antiapoptotic proteins. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  3. Complementary roles of Fas-associated death domain (FADD) and receptor interacting protein kinase-3 (RIPK3) in T-cell homeostasis and antiviral immunity.

    Science.gov (United States)

    Lu, Jennifer V; Weist, Brian M; van Raam, Bram J; Marro, Brett S; Nguyen, Long V; Srinivas, Prathna; Bell, Bryan D; Luhrs, Keith A; Lane, Thomas E; Salvesen, Guy S; Walsh, Craig M

    2011-09-13

    Caspase-8 (casp8) is required for extrinsic apoptosis, and mice deficient in casp8 fail to develop and die in utero while ultimately failing to maintain the proliferation of T cells, B cells, and a host of other cell types. Paradoxically, these failures are not caused by a defect in apoptosis, but by a presumed proliferative function of this protease. Indeed, following mitogenic stimulation, T cells lacking casp8 or its adaptor protein FADD (Fas-associated death domain protein) develop a hyperautophagic morphology, and die a programmed necrosis-like death process termed necroptosis. Recent studies have demonstrated that receptor-interacting protein kinases (RIPKs) RIPK1 and RIPK3 together facilitate TNF-induced necroptosis, but the precise role of RIPKs in the demise of T cells lacking FADD or casp8 activity is unknown. Here we demonstrate that RIPK3 and FADD have opposing and complementary roles in promoting T-cell clonal expansion and homeostasis. We show that the defective proliferation of T cells bearing an interfering form of FADD (FADDdd) is rescued by crossing with RIPK3(-/-) mice, although such rescue ultimately leads to lymphadenopathy. Enhanced recovery of these double-mutant T cells following stimulation demonstrates that FADD, casp8, and RIPK3 are all essential for clonal expansion, contraction, and antiviral responses. Finally, we demonstrate that caspase-mediated cleavage of RIPK1-containing necrosis inducing complexes (necrosomes) is sufficient to prevent necroptosis in the face of death receptor signaling. These studies highlight the "two-faced" nature of casp8 activity, promoting clonal expansion in some situations and apoptotic demise in others.

  4. Increasing Hydrogen Density with the Cation-Anion Pair BH4−-NH4+ in Perovskite-Type NH4Ca(BH43

    Directory of Open Access Journals (Sweden)

    Pascal Schouwink

    2015-08-01

    Full Text Available A novel metal borohydride ammonia-borane complex Ca(BH42·NH3BH3 is characterized as the decomposition product of the recently reported perovskite-type metal borohydride NH4Ca(BH43, suggesting that ammonium-based metal borohydrides release hydrogen gas via ammonia-borane-complexes. For the first time the concept of proton-hydride interactions to promote hydrogen release is applied to a cation-anion pair in a complex metal hydride. NH4Ca(BH43 is prepared mechanochemically from Ca(BH42 and NH4Cl as well as NH4BH4 following two different protocols, where the synthesis procedures are modified in the latter to solvent-based ball-milling using diethyl ether to maximize the phase yield in chlorine-free samples. During decomposition of NH4Ca(BH43 pure H2 is released, prior to the decomposition of the complex to its constituents. As opposed to a previously reported adduct between Ca(BH42 and NH3BH3, the present complex is described as NH3BH3-stuffed α-Ca(BH42.

  5. Anti-apoptotic peptides protect against radiation-induced cell death

    International Nuclear Information System (INIS)

    McConnell, Kevin W.; Muenzer, Jared T.; Chang, Kathy C.; Davis, Chris G.; McDunn, Jonathan E.; Coopersmith, Craig M.; Hilliard, Carolyn A.; Hotchkiss, Richard S.; Grigsby, Perry W.; Hunt, Clayton R.

    2007-01-01

    The risk of terrorist attacks utilizing either nuclear or radiological weapons has raised concerns about the current lack of effective radioprotectants. Here it is demonstrated that the BH4 peptide domain of the anti-apoptotic protein Bcl-xL can be delivered to cells by covalent attachment to the TAT peptide transduction domain (TAT-BH4) and provide protection in vitro and in vivo from radiation-induced apoptotic cell death. Isolated human lymphocytes treated with TAT-BH4 were protected against apoptosis following exposure to 15 Gy radiation. In mice exposed to 5 Gy radiation, TAT-BH4 treatment protected splenocytes and thymocytes from radiation-induced apoptotic cell death. Most importantly, in vivo radiation protection was observed in mice whether TAT-BH4 treatment was given prior to or after irradiation. Thus, by targeting steps within the apoptosis signaling pathway it is possible to develop post-exposure treatments to protect radio-sensitive tissues

  6. Boo, a novel negative regulator of cell death, interacts with Apaf-1.

    OpenAIRE

    Song, Q; Kuang, Y; Dixit, V M; Vincenz, C

    1999-01-01

    In this report, we describe the cloning and characterization of Boo, a novel anti-apoptotic member of the Bcl-2 family. The expression of Boo was highly restricted to the ovary and epididymis implicating it in the control of ovarian atresia and sperm maturation. Boo contains the conserved BH1 and BH2 domains, but lacks the BH3 motif. Like Bcl-2, Boo possesses a hydrophobic C-terminus and localizes to intracellular membranes. Boo also has an N-terminal region with strong homology to the BH4 do...

  7. Conformations of 1,3,3,5,7,7-Hexamethyl-1,5-diazacyclooctane and Its Bis-BH(3) Adduct. Mono- and Bis-BH(3) Adducts of Di-Tertiary Amines.

    Science.gov (United States)

    Livant, P.; Majors, A. W.; Webb, T. R.

    1996-05-03

    A variable-temperature (1)H- and (13)C-NMR study revealed a conformational equilibrium for 1,3,3,5,7,7-hexamethyl-1,5-diazacyclooctane (4) having DeltaG() = 8.8 +/- 0.6 kcal/mol at 184 K. This activation barrier connects a major and a minor form of 4. Molecular mechanics calculations on 4 led to the conclusion that the major form is a set of twist-chair-chairs interconverting rapidly via the chair-chair and that the minor form is most likely a set of twist-boat-boats interconverting rapidly via the boat-boat. The proximity of the two nitrogen lone pairs in the major form of 4 made plausible the expectation that 4, as well as a related diamine with apposed nitrogens, 3,7-dimethyl-3,7-diazabicyclo[3.3.1]nonane (3), might bind a Lewis acid, namely BH(3), using both lone pairs simultaneously and equally. This proved not to be the case: for 3 only the bis-BH(3) adduct was found and for 4 the mono-BH(3) adduct utilized only one nitrogen lone pair. The structure of the bis-BH(3) adduct of 4 (12) was determined by X-ray crystallography to be a twist-boat-boat with BH(3)s cis. Molecular mechanics calculations on 12 were consistent with the solid state conformation found.

  8. Knockdown of BAG3 sensitizes bladder cancer cells to treatment with the BH3 mimetic ABT-737.

    Science.gov (United States)

    Mani, Jens; Antonietti, Patrick; Rakel, Stefanie; Blaheta, Roman; Bartsch, Georg; Haferkamp, Axel; Kögel, Donat

    2016-02-01

    BAG3 is overexpressed in several malignancies and mediates a non-canonical, selective form of (macro)autophagy. By stabilizing pro-survival Bcl-2 proteins in complex with HSP70, BAG3 can also exert an apoptosis-antagonizing function. ABT-737 is a high affinity Bcl-2 inhibitor that fails to target Mcl-1. This failure may confer resistance in various cancers. Urothelial cancer cells were treated with the BH3 mimetics ABT-737 and (-)-gossypol, a pan-Bcl-2 inhibitor which inhibits also Mcl-1. To clarify the importance of the core autophagy regulator ATG5 and BAG3 in ABT-737 treatment, cell lines carrying a stable lentiviral knockdown of ATG5 and BAG3 were created. The synergistic effect of ABT-737 and pharmaceutical inhibition of BAG3 with the HSF1 inhibitor KRIBB11 or sorafenib was also evaluated. Total cell death and apoptosis were quantified by FACS analysis of propidium iodide, annexin. Target protein analysis was conducted by Western blotting. Knockdown of BAG3 significantly downregulated Mcl-1 protein levels and sensitized urothelial cancer cells to apoptotic cell death induced by ABT-737, while inhibition of bulk autophagy through depletion of ATG5 had no discernible effect on cell death. Similar to knockdown of BAG3, pharmacological targeting of the BAG3/Mcl-1 pathway with KRIBB11 was capable to sensitize both cell lines to treatment with ABT-737. Our results show that BAG3, but not bulk autophagy has a major role in the response of bladder cancer cells to BH3 mimetics. They also suggest that BAG3 is a suitable target for combined therapies aimed at synergistically inducing apoptosis in bladder cancer.

  9. Higher risk of death among MEN1 patients with mutations in the JunD interacting domain: a Groupe d'etude des Tumeurs Endocrines (GTE) cohort study.

    Science.gov (United States)

    Thevenon, Julien; Bourredjem, Abderrahmane; Faivre, Laurence; Cardot-Bauters, Catherine; Calender, Alain; Murat, Arnaud; Giraud, Sophie; Niccoli, Patricia; Odou, Marie-Françoise; Borson-Chazot, Françoise; Barlier, Anne; Lombard-Bohas, Catherine; Clauser, Eric; Tabarin, Antoine; Parfait, Béatrice; Chabre, Olivier; Castermans, Emilie; Beckers, Albert; Ruszniewski, Philippe; Le Bras, Morgane; Delemer, Brigitte; Bouchard, Philippe; Guilhem, Isabelle; Rohmer, Vincent; Goichot, Bernard; Caron, Philippe; Baudin, Eric; Chanson, Philippe; Groussin, Lionel; Du Boullay, Hélène; Weryha, Georges; Lecomte, Pierre; Penfornis, Alfred; Bihan, Hélène; Archambeaud, Françoise; Kerlan, Véronique; Duron, Françoise; Kuhn, Jean-Marc; Vergès, Bruno; Rodier, Michel; Renard, Michel; Sadoul, Jean-Louis; Binquet, Christine; Goudet, Pierre

    2013-05-15

    Multiple endocrine neoplasia syndrome type 1 (MEN1), which is secondary to mutation of the MEN1 gene, is a rare autosomal-dominant disease that predisposes mutation carriers to endocrine tumors. Although genotype-phenotype studies have so far failed to identify any statistical correlations, some families harbor recurrent tumor patterns. The function of MENIN is unclear, but has been described through the discovery of its interacting partners. Mutations in the interacting domains of MENIN functional partners have been shown to directly alter its regulation abilities. We report on a cohort of MEN1 patients from the Groupe d'étude des Tumeurs Endocrines. Patients with a molecular diagnosis and a clinical follow-up, totaling 262 families and 806 patients, were included. Associations between mutation type, location or interacting factors of the MENIN protein and death as well as the occurrence of MEN1-related tumors were tested using a frailty Cox model to adjust for potential heterogeneity across families. Accounting for the heterogeneity across families, the overall risk of death was significantly higher when mutations affected the JunD interacting domain (adjusted HR = 1.88: 95%-CI = 1.15-3.07). Patients had a higher risk of death from cancers of the MEN1 spectrum (HR = 2.34; 95%-CI = 1.23-4.43). This genotype-phenotype correlation study confirmed the lack of direct genotype-phenotype correlations. However, patients with mutations affecting the JunD interacting domain had a higher risk of death secondary to a MEN1 tumor and should thus be considered for surgical indications, genetic counseling and follow-up.

  10. Canonical Bcl-2 motifs of the Na+/K+ pump revealed by the BH3 mimetic chelerythrine: early signal transducers of apoptosis?

    Science.gov (United States)

    Lauf, Peter K; Heiny, Judith; Meller, Jarek; Lepera, Michael A; Koikov, Leonid; Alter, Gerald M; Brown, Thomas L; Adragna, Norma C

    2013-01-01

    Chelerythrine [CET], a protein kinase C [PKC] inhibitor, is a prop-apoptotic BH3-mimetic binding to BH1-like motifs of Bcl-2 proteins. CET action was examined on PKC phosphorylation-dependent membrane transporters (Na+/K+ pump/ATPase [NKP, NKA], Na+-K+-2Cl+ [NKCC] and K+-Cl- [KCC] cotransporters, and channel-supported K+ loss) in human lens epithelial cells [LECs]. K+ loss and K+ uptake, using Rb+ as congener, were measured by atomic absorption/emission spectrophotometry with NKP and NKCC inhibitors, and Cl- replacement by NO3ˉ to determine KCC. 3H-Ouabain binding was performed on a pig renal NKA in the presence and absence of CET. Bcl-2 protein and NKA sequences were aligned and motifs identified and mapped using PROSITE in conjunction with BLAST alignments and analysis of conservation and structural similarity based on prediction of secondary and crystal structures. CET inhibited NKP and NKCC by >90% (IC50 values ~35 and ~15 μM, respectively) without significant KCC activity change, and stimulated K+ loss by ~35% at 10-30 μM. Neither ATP levels nor phosphorylation of the NKA α1 subunit changed. 3H-ouabain was displaced from pig renal NKA only at 100 fold higher CET concentrations than the ligand. Sequence alignments of NKA with BH1- and BH3-like motifs containing pro-survival Bcl-2 and BclXl proteins showed more than one BH1-like motif within NKA for interaction with CET or with BH3 motifs. One NKA BH1-like motif (ARAAEILARDGPN) was also found in all P-type ATPases. Also, NKA possessed a second motif similar to that near the BH3 region of Bcl-2. Findings support the hypothesis that CET inhibits NKP by binding to BH1-like motifs and disrupting the α1 subunit catalytic activity through conformational changes. By interacting with Bcl-2 proteins through their complementary BH1- or BH3-like-motifs, NKP proteins may be sensors of normal and pathological cell functions, becoming important yet unrecognized signal transducers in the initial phases of apoptosis. CET

  11. Bcl-2 family of proteins as drug targets for cancer chemotherapy: the long way of BH3 mimetics from bench to bedside.

    Science.gov (United States)

    Vela, Laura; Marzo, Isabel

    2015-08-01

    Bcl-2 proteins are key determinants in the life-death balance. In recent years, proteins in this family have been identified as drug targets in the design of new anti-tumor therapies. Advances in the knowledge of the mechanism of action of anti-apoptotic and pro-apoptotic members of the Bcl-2 family have enabled the development of the so-called 'BH3 mimetics'. These compounds act by inhibiting anti-apoptotic proteins of the family, imitating the function of the BH3-only subset of pro-apoptotic members. Combinations of BH3-mimetics with anti-tumor drugs are being evaluated in both preclinical models and clinical trials. Recent advances in these approaches will be reviewed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Canonical Bcl-2 Motifs of the Na+/K+ Pump Revealed by the BH3 Mimetic Chelerythrine: Early Signal Transducers of Apoptosis?

    Directory of Open Access Journals (Sweden)

    Peter K. Lauf

    2013-02-01

    Full Text Available Background/Aims: Chelerythrine [CET], a protein kinase C [PKC] inhibitor, is a prop-apoptotic BH3-mimetic binding to BH1-like motifs of Bcl-2 proteins. CET action was examined on PKC phosphorylation-dependent membrane transporters (Na+/K+ pump/ATPase [NKP, NKA], Na+-K+-2Cl+ [NKCC] and K+-Cl- [KCC] cotransporters, and channel-supported K+ loss in human lens epithelial cells [LECs]. Methods: K+ loss and K+ uptake, using Rb+ as congener, were measured by atomic absorption/emission spectrophotometry with NKP and NKCC inhibitors, and Cl- replacement by NO3ˉ to determine KCC. 3H-Ouabain binding was performed on a pig renal NKA in the presence and absence of CET. Bcl-2 protein and NKA sequences were aligned and motifs identified and mapped using PROSITE in conjunction with BLAST alignments and analysis of conservation and structural similarity based on prediction of secondary and crystal structures. Results: CET inhibited NKP and NKCC by >90% (IC50 values ∼35 and ∼15 µM, respectively without significant KCC activity change, and stimulated K+ loss by ∼35% at 10-30 µM. Neither ATP levels nor phosphorylation of the NKA α1 subunit changed. 3H-ouabain was displaced from pig renal NKA only at 100 fold higher CET concentrations than the ligand. Sequence alignments of NKA with BH1- and BH3-like motifs containing pro-survival Bcl-2 and BclXl proteins showed more than one BH1-like motif within NKA for interaction with CET or with BH3 motifs. One NKA BH1-like motif (ARAAEILARDGPN was also found in all P-type ATPases. Also, NKA possessed a second motif similar to that near the BH3 region of Bcl-2. Conclusion: Findings support the hypothesis that CET inhibits NKP by binding to BH1-like motifs and disrupting the α1 subunit catalytic activity through conformational changes. By interacting with Bcl-2 proteins through their complementary BH1- or BH3-like-motifs, NKP proteins may be sensors of normal and pathological cell functions, becoming important yet

  13. Recognition of ERK MAP kinase by PEA-15 reveals a common docking site within the death domain and death effector domain

    OpenAIRE

    Hill, Justine M.; Vaidyanathan, Hema; Ramos, Joe W.; Ginsberg, Mark H.; Werner, Milton H.

    2002-01-01

    PEA-15 is a multifunctional protein that modulates signaling pathways which control cell proliferation and cell death. In particular, PEA-15 regulates the actions of the ERK MAP kinase cascade by binding to ERK and altering its subcellular localization. The three-dimensional structure of PEA-15 has been determined using NMR spectroscopy and its interaction with ERK defined by characterization of mutants that modulate ERK function. PEA-15 is composed of an N-terminal death effector domain (DED...

  14. Assembly of Oligomeric Death Domain Complexes during Toll Receptor Signaling*

    Science.gov (United States)

    Moncrieffe, Martin C.; Grossmann, J. Günter; Gay, Nicholas J.

    2008-01-01

    The Drosophila Toll receptor is activated by the endogenous protein ligand Spätzle in response to microbial stimuli in immunity and spatial cues during embryonic development. Downstream signaling is mediated by the adaptor proteins Tube, the kinase Pelle, and the Drosophila homologue of myeloid differentiation primary response protein (dMyD88). Here we have characterized heterodimeric (dMyD88-Tube) and heterotrimeric (dMyD88-Tube-Pelle) death domain complexes. We show that both the heterodimeric and heterotrimeric complexes form kidney-shaped structures and that Tube is bivalent and has separate high affinity binding sites for dMyD88 and Pelle. Additionally we found no interaction between the isolated death domains of Pelle and dMyD88. These results indicate that the mode of assembly of the heterotrimeric dMyD88-Tube-Pelle complex downstream of the activated Toll receptor is unique. The measured dissociation constants for the interaction between the death domains of dMyD88 and Tube and of Pelle and a preformed dMyD88-Tube complex are used to propose a model of the early postreceptor events in Drosophila Toll receptor signaling. PMID:18829464

  15. Assembly of oligomeric death domain complexes during Toll receptor signaling.

    Science.gov (United States)

    Moncrieffe, Martin C; Grossmann, J Günter; Gay, Nicholas J

    2008-11-28

    The Drosophila Toll receptor is activated by the endogenous protein ligand Spätzle in response to microbial stimuli in immunity and spatial cues during embryonic development. Downstream signaling is mediated by the adaptor proteins Tube, the kinase Pelle, and the Drosophila homologue of myeloid differentiation primary response protein (dMyD88). Here we have characterized heterodimeric (dMyD88-Tube) and heterotrimeric (dMyD88-Tube-Pelle) death domain complexes. We show that both the heterodimeric and heterotrimeric complexes form kidney-shaped structures and that Tube is bivalent and has separate high affinity binding sites for dMyD88 and Pelle. Additionally we found no interaction between the isolated death domains of Pelle and dMyD88. These results indicate that the mode of assembly of the heterotrimeric dMyD88-Tube-Pelle complex downstream of the activated Toll receptor is unique. The measured dissociation constants for the interaction between the death domains of dMyD88 and Tube and of Pelle and a preformed dMyD88-Tube complex are used to propose a model of the early postreceptor events in Drosophila Toll receptor signaling.

  16. Phospho-BAD BH3 Mimicry Protects β Cells and Restores Functional β Cell Mass in Diabetes

    Directory of Open Access Journals (Sweden)

    Sanda Ljubicic

    2015-02-01

    Full Text Available Strategies that simultaneously enhance the survival and glucose responsiveness of insulin-producing β cells will greatly augment β cell replacement therapies in type 1 diabetes (T1D. We show that genetic and pharmacologic mimetics of the phosphorylated BCL-2 homology 3 (BH3 domain of BAD impart β-cell-autonomous protective effects in the face of stress stimuli relevant to β cell demise in T1D. Importantly, these benefits translate into improved engraftment of donor islets in transplanted diabetic mice, increased β cell viability in islet grafts, restoration of insulin release, and diabetes reversal. Survival of β cells in this setting is not merely due to the inability of phospho-BAD to suppress prosurvival BCL-2 proteins but requires its activation of the glucose-metabolizing enzyme glucokinase. Thus, BAD phospho-BH3 mimetics may prove useful in the restoration of functional β cell mass in diabetes.

  17. The BH3 Mimetic Obatoclax Accumulates in Lysosomes and Causes Their Alkalinization.

    Science.gov (United States)

    Stamelos, Vasileios A; Fisher, Natalie; Bamrah, Harnoor; Voisey, Carolyn; Price, Joshua C; Farrell, William E; Redman, Charles W; Richardson, Alan

    2016-01-01

    Obatoclax belongs to a class of compounds known as BH3 mimetics which function as antagonists of Bcl-2 family apoptosis regulators. It has undergone extensive preclinical and clinical evaluation as a cancer therapeutic. Despite this, it is clear that obatoclax has additional pharmacological effects that contribute to its cytotoxic activity. It has been claimed that obatoclax, either alone or in combination with other molecularly targeted therapeutics, induces an autophagic form of cell death. In addition, obatoclax has been shown to inhibit lysosomal function, but the mechanism of this has not been elucidated. We have evaluated the mechanism of action of obatoclax in eight ovarian cancer cell lines. Consistent with its function as a BH3 mimetic, obatoclax induced apoptosis in three cell lines. However, in the remaining cell lines another form of cell death was evident because caspase activation and PARP cleavage were not observed. Obatoclax also failed to show synergy with carboplatin and paclitaxel, chemotherapeutic agents which we have previously shown to be synergistic with authentic Bcl-2 family antagonists. Obatoclax induced a profound accumulation of LC-3 but knockdown of Atg-5 or beclin had only minor effects on the activity of obatoclax in cell growth assays suggesting that the inhibition of lysosomal function rather than stimulation of autophagy may play a more prominent role in these cells. To evaluate how obatoclax inhibits lysosomal function, confocal microscopy studies were conducted which demonstrated that obatoclax, which contains two basic pyrrole groups, accumulates in lysosomes. Studies using pH sensitive dyes demonstrated that obatoclax induced lysosomal alkalinization. Furthermore, obatoclax was synergistic in cell growth/survival assays with bafilomycin and chloroquine, two other drugs which cause lysosomal alkalinization. These studies explain, for the first time, how obatoclax inhibits lysosomal function and suggest that lysosomal

  18. Expression, purification and characterization of hepatitis B virus X protein BH3-like motif-linker-Bcl-xL fusion protein for structural studies

    Directory of Open Access Journals (Sweden)

    Hideki Kusunoki

    2017-03-01

    Full Text Available Hepatitis B virus X protein (HBx is a multifunctional protein that interacts directly with many host proteins. For example, HBx interacts with anti-apoptotic proteins, Bcl-2 and Bcl-xL, through its BH3-like motif, which leads to elevated cytosolic calcium levels, efficient viral DNA replication and the induction of apoptosis. To facilitate sample preparation and perform detailed structural characterization of the complex between HBx and Bcl-xL, we designed and purified a recombinant HBx BH3-like motif-linker-Bcl-xL fusion protein produced in E. coli. The fusion protein was characterized by size exclusion chromatography, circular dichroism and nuclear magnetic resonance experiments. Our results show that the fusion protein is a monomer in aqueous solution, forms a stable intramolecular complex, and likely retains the native conformation of the complex between Bcl-xL and the HBx BH3-like motif. Furthermore, the HBx BH3-like motif of the intramolecular complex forms an α-helix. These observations indicate that the fusion protein should facilitate structural studies aimed at understanding the interaction between HBx and Bcl-xL at the atomic level.

  19. Biochemical and biophysical investigations of the interaction between human glucokinase and pro-apoptotic BAD.

    Science.gov (United States)

    Rexford, Alix; Zorio, Diego A R; Miller, Brian G

    2017-01-01

    The glycolytic enzyme glucokinase (GCK) and the pro-apoptotic protein BAD reportedly reside within a five-membered complex that localizes to the mitochondria of mammalian hepatocytes and pancreatic β-cells. Photochemical crosslinking studies using a synthetic analog of BAD's BH3 domain and in vitro transcription/translation experiments support a direct interaction between BAD and GCK. To investigate the biochemical and biophysical consequences of the BAD:GCK interaction, we developed a method for the production of recombinant human BAD. Consistent with published reports, recombinant BAD displays high affinity for Bcl-xL (KD = 7 nM), and phosphorylation of BAD at S118, within the BH3 domain, abolishes this interaction. Unexpectedly, we do not detect association of recombinant, full-length BAD with recombinant human pancreatic GCK over a range of protein concentrations using various biochemical methods including size-exclusion chromatography, chemical cross-linking, analytical ultracentrifugation, and isothermal titration calorimetry. Furthermore, fluorescence polarization assays and isothermal titration calorimetry detect no direct interaction between GCK and BAD BH3 peptides. Kinetic characterization of GCK in the presence of high concentrations of recombinant BAD show modest (BAD BH3 peptides. These results raise questions as to the mechanism of action of stapled peptide analogs modeled after the BAD BH3 domain, which reportedly enhance the Vmax value of GCK and stimulate insulin release in BAD-deficient islets. Based on our results, we postulate that the BAD:GCK interaction, and any resultant regulatory effect(s) upon GCK activity, requires the participation of additional members of the mitochondrial complex.

  20. The Chloroplastic Protein THF1 Interacts with the Coiled-Coil Domain of the Disease Resistance Protein N' and Regulates Light-Dependent Cell Death.

    Science.gov (United States)

    Hamel, Louis-Philippe; Sekine, Ken-Taro; Wallon, Thérèse; Sugiwaka, Yuji; Kobayashi, Kappei; Moffett, Peter

    2016-05-01

    One branch of plant immunity is mediated through nucleotide-binding/Leu-rich repeat (NB-LRR) family proteins that recognize specific effectors encoded by pathogens. Members of the I2-like family constitute a well-conserved subgroup of NB-LRRs from Solanaceae possessing a coiled-coil (CC) domain at their N termini. We show here that the CC domains of several I2-like proteins are able to induce a hypersensitive response (HR), a form of programmed cell death associated with disease resistance. Using yeast two-hybrid screens, we identified the chloroplastic protein Thylakoid Formation1 (THF1) as an interacting partner for several I2-like CC domains. Co-immunoprecipitations and bimolecular fluorescence complementation assays confirmed that THF1 and I2-like CC domains interact in planta and that these interactions take place in the cytosol. Several HR-inducing I2-like CC domains have a negative effect on the accumulation of THF1, suggesting that the latter is destabilized by active CC domains. To confirm this model, we investigated N', which recognizes the coat protein of most Tobamoviruses, as a prototypical member of the I2-like family. Transient expression and gene silencing data indicated that THF1 functions as a negative regulator of cell death and that activation of full-length N' results in the destabilization of THF1. Consistent with the known function of THF1 in maintaining chloroplast homeostasis, we show that the HR induced by N' is light-dependent. Together, our results define, to our knowledge, novel molecular mechanisms linking light and chloroplasts to the induction of cell death by a subgroup of NB-LRR proteins. © 2016 American Society of Plant Biologists. All Rights Reserved.

  1. Structural and functional characterization of the recombinant death domain from death-associated protein kinase.

    Science.gov (United States)

    Dioletis, Evangelos; Dingley, Andrew J; Driscoll, Paul C

    2013-01-01

    Death-associated protein kinase (DAPk) is a calcium/calmodulin-regulated Ser/Thr-protein kinase that functions at an important point of integration for cell death signaling pathways. DAPk has a structurally unique multi-domain architecture, including a C-terminally positioned death domain (DD) that is a positive regulator of DAPk activity. In this study, recombinant DAPk-DD was observed to aggregate readily and could not be prepared in sufficient yield for structural analysis. However, DAPk-DD could be obtained as a soluble protein in the form of a translational fusion protein with the B1 domain of streptococcal protein G. In contrast to other DDs that adopt the canonical six amphipathic α-helices arranged in a compact fold, the DAPk-DD was found to possess surprisingly low regular secondary structure content and an absence of a stable globular fold, as determined by circular dichroism (CD), NMR spectroscopy and a temperature-dependent fluorescence assay. Furthermore, we measured the in vitro interaction between extracellular-regulated kinase-2 (ERK2) and various recombinant DAPk-DD constructs. Despite the low level of structural order, the recombinant DAPk-DD retained the ability to interact with ERK2 in a 1∶1 ratio with a K d in the low micromolar range. Only the full-length DAPk-DD could bind ERK2, indicating that the apparent 'D-motif' located in the putative sixth helix of DAPk-DD is not sufficient for ERK2 recognition. CD analysis revealed that binding of DAPk-DD to ERK2 is not accompanied by a significant change in secondary structure. Taken together our data argue that the DAPk-DD, when expressed in isolation, does not adopt a classical DD fold, yet in this state retains the capacity to interact with at least one of its binding partners. The lack of a stable globular structure for the DAPk-DD may reflect either that its folding would be supported by interactions absent in our experimental set-up, or a limitation in the structural bioinformatics

  2. Orphan Nuclear Receptor NR4A1 Binds a Novel Protein Interaction Site on Anti-apoptotic B Cell Lymphoma Gene 2 Family Proteins.

    Science.gov (United States)

    Godoi, Paulo H C; Wilkie-Grantham, Rachel P; Hishiki, Asami; Sano, Renata; Matsuzawa, Yasuko; Yanagi, Hiroko; Munte, Claudia E; Chen, Ya; Yao, Yong; Marassi, Francesca M; Kalbitzer, Hans R; Matsuzawa, Shu-Ichi; Reed, John C

    2016-07-01

    B cell lymphoma gene 2 (Bcl-2) family proteins are key regulators of programmed cell death and important targets for drug discovery. Pro-apoptotic and anti-apoptotic Bcl-2 family proteins reciprocally modulate their activities in large part through protein interactions involving a motif known as BH3 (Bcl-2 homology 3). Nur77 is an orphan member of the nuclear receptor family that lacks a BH3 domain but nevertheless binds certain anti-apoptotic Bcl-2 family proteins (Bcl-2, Bfl-1, and Bcl-B), modulating their effects on apoptosis and autophagy. We used a combination of NMR spectroscopy-based methods, mutagenesis, and functional studies to define the interaction site of a Nur77 peptide on anti-apoptotic Bcl-2 family proteins and reveal a novel interaction surface. Nur77 binds adjacent to the BH3 peptide-binding crevice, suggesting the possibility of cross-talk between these discrete binding sites. Mutagenesis of residues lining the identified interaction site on Bcl-B negated the interaction with Nur77 protein in cells and prevented Nur77-mediated modulation of apoptosis and autophagy. The findings establish a new protein interaction site with the potential to modulate the apoptosis and autophagy mechanisms governed by Bcl-2 family proteins. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Synthesis, Structure, and Li-Ion Conductivity of LiLa(BH4)3X, X = Cl, Br, I

    DEFF Research Database (Denmark)

    Payandeh GharibDoust, SeyedHosein; Brighi, Matteo; Sadikin, Yolanda

    2017-01-01

    In this work, a new type of addition reaction between La(BH4)3 and LiX, X = Cl, Br, I, is used to synthesize LiLa(BH4)3Cl and two new compounds LiLa(BH4)3X, X = Br, I. This method increases the amounts of LiLa(BH4)3X and the sample purity. The highest Li-ion conductivity is observed for LiLa(BH4)...

  4. BID Mediates Oxygen-Glucose Deprivation-Induced Neuronal Injury in Organotypic Hippocampal Slice Cultures and Modulates Tissue Inflammation in a Transient Focal Cerebral Ischemia Model without Changing Lesion Volume

    DEFF Research Database (Denmark)

    Martin, Nellie Anne; Bonner, Helena; Elkjær, Maria Louise

    2016-01-01

    The BH3 interacting-domain death agonist (BID) is a pro-apoptotic protein involved in death receptor-induced and mitochondria-mediated apoptosis. Recently, it has also been suggested that BID is involved in the regulation of inflammatory responses in the central nervous system. We found that BID...

  5. Dehydrogenation mechanism of LiBH{sub 4} by Poly(methyl methacrylate)

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jianmei [School of Materials Science and Engineering, and Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641 (China); China-Australia Joint Laboratory for Energy & Environmental Materials, South China University of Technology, Guangzhou 510641 (China); Yan, Yurong [School of Materials Science and Engineering, and Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641 (China); Ouyang, Liuzhang, E-mail: meouyang@scut.edu.cn [School of Materials Science and Engineering, and Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641 (China); China-Australia Joint Laboratory for Energy & Environmental Materials, South China University of Technology, Guangzhou 510641 (China); Key Laboratory for Fuel Cell Technology in Guangdong Province, South China University of Technology, Guangzhou 510641 (China); Wang, Hui [School of Materials Science and Engineering, and Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641 (China); China-Australia Joint Laboratory for Energy & Environmental Materials, South China University of Technology, Guangzhou 510641 (China); Zhu, Min, E-mail: memzhu@scut.edu.cn [School of Materials Science and Engineering, and Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641 (China); China-Australia Joint Laboratory for Energy & Environmental Materials, South China University of Technology, Guangzhou 510641 (China)

    2015-10-05

    Highlights: • LiBH{sub 4} is amorphous after modified with PMMA. • Dehydrogenation temperature of LiBH{sub 4} decreases by 120 °C after modifying with PMMA. • The LiBH{sub 4}@PMMA composite releases 10 wt.% hydrogen at 360 °C within 1 h. • C=O group of PMMA weakens the B−H bonds to lower dehydrogenation temperature. - Abstract: We investigated the dehydrogenation properties and mechanism of Poly(methyl methacrylate) (PMMA) confined LiBH{sub 4}. Thermal stability of LiBH{sub 4} was reduced by PMMA, with a decrease in dehydrogenation temperature by 120 °C. At 360 °C, the composite showed fast dehydrogenation kinetics with 10 wt.% of hydrogen released within 1 h. The improved dehydrogenation performance was mainly attributed to the reaction between LiBH{sub 4} and PMMA forming Li{sub 3}BO{sub 3} as a final product. Furthermore, the presence of electrostatic interaction between B atom of LiBH{sub 4} and O atom in the carbonyl group of PMMA may weaken the B−H bonding of [BH{sub 4}]{sup −} and lower the hydrogen desorption temperature.

  6. The Chloroplastic Protein THF1 Interacts with the Coiled-Coil Domain of the Disease Resistance Protein N′ and Regulates Light-Dependent Cell Death1[OPEN

    Science.gov (United States)

    Sekine, Ken-Taro; Wallon, Thérèse; Sugiwaka, Yuji; Kobayashi, Kappei

    2016-01-01

    One branch of plant immunity is mediated through nucleotide-binding/Leu-rich repeat (NB-LRR) family proteins that recognize specific effectors encoded by pathogens. Members of the I2-like family constitute a well-conserved subgroup of NB-LRRs from Solanaceae possessing a coiled-coil (CC) domain at their N termini. We show here that the CC domains of several I2-like proteins are able to induce a hypersensitive response (HR), a form of programmed cell death associated with disease resistance. Using yeast two-hybrid screens, we identified the chloroplastic protein Thylakoid Formation1 (THF1) as an interacting partner for several I2-like CC domains. Co-immunoprecipitations and bimolecular fluorescence complementation assays confirmed that THF1 and I2-like CC domains interact in planta and that these interactions take place in the cytosol. Several HR-inducing I2-like CC domains have a negative effect on the accumulation of THF1, suggesting that the latter is destabilized by active CC domains. To confirm this model, we investigated N′, which recognizes the coat protein of most Tobamoviruses, as a prototypical member of the I2-like family. Transient expression and gene silencing data indicated that THF1 functions as a negative regulator of cell death and that activation of full-length N′ results in the destabilization of THF1. Consistent with the known function of THF1 in maintaining chloroplast homeostasis, we show that the HR induced by N′ is light-dependent. Together, our results define, to our knowledge, novel molecular mechanisms linking light and chloroplasts to the induction of cell death by a subgroup of NB-LRR proteins. PMID:26951433

  7. Melting Behavior and Thermolysis of NaBH4−Mg(BH42 and NaBH4−Ca(BH42 Composites

    Directory of Open Access Journals (Sweden)

    Morten B. Ley

    2015-04-01

    Full Text Available The physical properties and the hydrogen release of NaBH4–Mg(BH42 and NaBH4−Ca(BH42 composites are investigated using in situ synchrotron radiation powder X-ray diffraction, thermal analysis and temperature programmed photographic analysis. The composite, xNaBH4–(1 − xMg(BH42, x = 0.4 to 0.5, shows melting/frothing between 205 and 220 °C. However, the sample does not become a transparent molten phase. This behavior is similar to other alkali-alkaline earth metal borohydride composites. In the xNaBH4–(1 − xCa(BH42 system, eutectic melting is not observed. Interestingly, eutectic melting in metal borohydrides systems leads to partial thermolysis and hydrogen release at lower temperatures and the control of sample melting may open new routes for obtaining high-capacity hydrogen storage materials.

  8. Vapor Pressure Measurements of LiBH4, NaBH 4 and Ca(BH4)2 using Knudsen Torsion Effusion Gravimetric Method

    Science.gov (United States)

    Danyan, Mohammad Masoumi

    Hydrogen storage is one of the critical technologies needed on the path towards commercialization for mobile applications. In the past few years, a range of new light weight hydrogen containing material has been discovered with good storage properties. Among them, lithium borohydride (LiBH 4) sodium borohydride (NaBH4) and calcium borohydride (Ca(BH 4)2) have shown promising results to be used as solid state hydrogen storage material. In this work, we have determined equilibrium vapor pressures of LiBH 4 NaBH4 and Ca(BH4)2 obtained by Torsion effusion thermogravimetric method. Results for all the three hydrides exhibited that a small fraction of the materials showed congruency, and sublimed as gaseous compound, but the majority of the material showed incongruent vaporization. Two Knudsen cells of 0.3 and 0.6mm orifice size was employed to measure the total vapor pressures. A Whitman-Motzfeldt method is used to extrapolate the measured vapor pressures to zero orifice size to calculate the equilibrium vapor pressures. In the case of LiBH4 we found that 2% of the material evaporated congruently (LiBH4(s) → LiBH4(g)) according to the equation: logPLiBH4/P 0 =-3263.5 +/-309/T + (1.079 +/-0.69) and rest as incongruent vaporization to LiH, B, and hydrogen gas according to the equation logPeq/P0 =(-3263.5 +/-309)/T+ (2.458 +/-0.69) with DeltaH evap.= 62.47+/-5.9 kJ/mol of H2, DeltaSevap. = 47.05+/-13 J/mol of H2.K. The NaBH4 also had somewhat similar behavior, with 9% congruent evaporation and equilibrium vapor pressure equation of logPLiBH4=-7700+/-335/ T+ (6.7+/-1.5) and 91% incongruent decomposition to Na and Boron metal, and hydrogen gas. The enthalpy of vaporization; DeltaHevap. = 147.2+/-6.4kJ/molH2 and DeltaSevap.= 142 +/-28 kJ/molH2.K (550-650K). The Ca(BH4) 2 exhibited similar vaporization behavior with congruency of 3.2%. The decomposition products are CaH2 and Boron metal with evolution of hydrogen gas varying with the pressure equation as logPeq /P0 =(-1562

  9. Synthesis, Structure, and Li-Ion Conductivity of LiLa(BH4)3X, X = Cl, Br, I

    DEFF Research Database (Denmark)

    GharibDoust, Seyed Hosein Payandeh; Brighi, Matteo; Sadikin, Yolanda

    2017-01-01

    In this work, a new type of addition reaction between La(BH4)3 and LiX, X = Cl, Br, I, is used to synthesize LiLa(BH4)3Cl and two new compounds LiLa(BH4)3X, X = Br, I. This method increases the amounts of LiLa(BH4)3X and the sample purity. The highest Li-ion conductivity is observed for LiLa(BH4...... with increasing lattice parameter, that is, increasing size of the halide ion in the structure. Thus, we conclude that the sizes of both windows are important for the lithium ion conduction in LiLa(BH4)3X compounds. The lithium ion conductivity is measured over one to three heating cycles and with different...

  10. Density functional theory study of neutral and singly-charged (NaBH{sub 4}){sub n} (n = 1–6) nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yongpeng [State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Wu, Xiangming [Ping Xiang Sports School, Jiangxi 337000 (China); Liu, Chuan [State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Huang, Shiping, E-mail: huangsp@mail.buct.edu.cn [State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China)

    2014-10-31

    Highlights: • Structures of (NaBH{sub 4}){sub n} (n = 1–6) clusters are optimized by DFT calculation. • The Kubas interaction is observed in each cationic cluster. • Hydrogen molecule interacts with attached boron atom by Kubas interaction. • Cationic NaBH{sub 4} nanoclusters exhibit more easily H{sub 2} desorption. - Abstract: We report the global minimum structures of (NaBH{sub 4}){sub n} (n = 1–6) clusters by combining the particle swarm optimization algorithm with density functional theory. A newly formed hydrogen molecule is observed in each cationic structure, and the H{sub 2} interacts with adjacent boron atom by Kubas interaction. The results of localized orbital locator and natural bond orbital analysis reveal that the hydrogen molecule interacts with attached boron atom by the σ-bond and σ{sup ∗}-antibond of H{sub 2} in [NaBH{sub 4}]{sub n}{sup +} (n = 1, 2, 3 and 5), and the σ{sup ∗}-antibond dominates this interaction in [NaBH{sub 4}]{sub 4}{sup +} and [NaBH{sub 4}]{sub 6}{sup +}. The desorption energy of the hydrogen molecule is relatively small for [NaBH{sub 4}]{sup +} (1.05 eV), [NaBH{sub 4}]{sub 2}{sup +} (0.99 eV) and [NaBH{sub 4}]{sub 3}{sup +} (0.97 eV). It is also found that the negative desorption energy of the [NaBH{sub 4}]{sub 4}{sup +} (−0.26 eV), [NaBH{sub 4}]{sub 5}{sup +} (−0.26 eV) and [NaBH{sub 4}]{sub 6}{sup +} (−0.54 eV) shows that the hydrogen molecule can be released easily.

  11. Identification of the interaction and interaction domains of chicken anemia virus VP2 and VP3 proteins.

    Science.gov (United States)

    Sun, Fenfen; Pan, Wei; Gao, Honglei; Qi, Xiaole; Qin, Liting; Wang, Yongqiang; Gao, Yulong; Wang, Xiaomei

    2018-01-01

    Chicken anemia virus (CAV) is a small, single-stranded DNA virus of Anelloviridae family. Its genome segments encode three proteins, VP1, VP2, and VP3. This study identified an interaction between VP2 and VP3 and mapped the interaction domains. Through the yeast two-hybrid (Y2H) system, VP2 was found to interact with VP3. The presence of the VP2-VP3 complex in CAV-infected chicken cells was confirmed by co-immunoprecipitation. Confocal microscopy showed that VP2 and VP3 were expressed in the cytoplasm in cotransfected Vero cells. In the Y2H system, the interaction domains were identified as being within the N-terminal aa 1-30 and C-terminal aa 17-60 for VP2 and the N-terminal aa 46-60 and C-terminal aa 1-7 for VP3. This study showed the interaction between VP2 and VP3 of CAV and identified multiple independent interactive domains within the two proteins. This provides novel information for investigating the biological functions of these proteins. Copyright © 2017. Published by Elsevier Inc.

  12. Melting Behavior and Thermolysis of NaBH4−Mg(BH4)2 and NaBH4−Ca(BH4)2 Composites

    OpenAIRE

    Ley, Morten; Roedern, Elsa; Thygesen, Peter; Jensen, Torben

    2015-01-01

    The physical properties and the hydrogen release of NaBH 4 –Mg(BH 4 ) 2 and NaBH 4 −Ca(BH 4 ) 2 composites are investigated using in situ synchrotron radiation powder X-ray diffraction, thermal analysis and temperature programmed photographic analysis. The composite, x NaBH 4 –(1 − x )Mg(BH 4 ) 2 , x = 0.4 to 0.5, shows melting/frothing between 205 and 220 °C. However, the sample does not become a transparent molten phase. This behavior is similar to other alkali-alkaline earth metal borohydr...

  13. RIPK3/Fas-Associated Death Domain Axis Regulates Pulmonary Immunopathology to Cryptococcal Infection Independent of Necroptosis

    Directory of Open Access Journals (Sweden)

    Zhenzong Fa

    2017-09-01

    Full Text Available Fas-associated death domain (FADD and receptor interacting protein kinase 3 (RIPK3 are multifunctional regulators of cell death and immune response. Using a mouse model of cryptococcal infection, the roles of FADD and RIPK3 in anti-cryptococcal defense were investigated. Deletion of RIPK3 alone led to increased inflammatory cytokine production in the Cryptococcus neoformans-infected lungs, but in combination with FADD deletion, it led to a robust Th1-biased response with M1-biased macrophage activation. Rather than being protective, these responses led to paradoxical C. neoformans expansion and rapid clinical deterioration in Ripk3−/− and Ripk3−/−Fadd−/− mice. The increased mortality of Ripk3−/− and even more accelerated mortality in Ripk3−/−Fadd−/− mice was attributed to profound pulmonary damage due to neutrophil-dominant infiltration with prominent upregulation of pro-inflammatory cytokines. This phenomenon was partially associated with selective alterations in the apoptotic frequency of some leukocyte subsets, such as eosinophils and neutrophils, in infected Ripk3−/−Fadd−/− mice. In conclusion, our study shows that RIPK3 in concert with FADD serve as physiological “brakes,” preventing the development of excessive inflammation and Th1 bias, which in turn contributes to pulmonary damage and defective fungal clearance. This novel link between the protective effect of FADD and RIPK3 in antifungal defense and sustenance of immune homeostasis may be important for the development of novel immunomodulatory therapies against invasive fungal infections.

  14. The electronic donation and frequency shifts on the YCCH⋯BH4- boron-bonded complexes (Y = H, CH3, CF3 and CCl3)

    Science.gov (United States)

    Pordeus, Renato Q.; Rego, Danilo G.; Oliveira, Boaz G.

    2015-06-01

    In this theoretical work, the tetrahydroborate ion (BH4-) was used as proton acceptor in the formation of the YCC-H⋯BH4- complexes (Y = H, CH3, CCl3 and CF3). Using B3LYP/6-311++G(d,p) level of theory, the results of structure corroborate with the analyses of infrared spectra showing that the changes in the bond lengths are in good agreement with the frequency shifts of the HCC-H, H3CCC-H, Cl3CCC-H and F3CCC-H proton donors. Based on the calculations carried out by the Quantum Theory of Atoms in Molecules (QTAIM), the reductions of electronic density corroborate with the red shifts in the frequencies of the C-H bonds. In addition to that, the C-H bonds are polarized because the contributions of s orbital diminish whereas of p increase. In line with this, the variations on the atomic radii computed via QTAIM calculations show that carbon outweigh hydrogen as follows (ΔrC > ΔrH). This scenario is indirectly supported by the Bent's rule of the chemical bonding. Although the interaction energies (corrected with BSSE and ZPE) vary between -19 and -67 kJ mol-1, these complexes interact without covalent character.

  15. Substantial conformational change mediated by charge-triad residues of the death effector domain in protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Edward C Twomey

    Full Text Available Protein conformational changes are commonly associated with the formation of protein complexes. The non-catalytic death effector domains (DEDs mediate protein-protein interactions in a variety of cellular processes, including apoptosis, proliferation and migration, and glucose metabolism. Here, using NMR residual dipolar coupling (RDC data, we report a conformational change in the DED of the phosphoprotein enriched in astrocytes, 15 kDa (PEA-15 protein in the complex with a mitogen-activated protein (MAP kinase, extracellular regulated kinase 2 (ERK2, which is essential in regulating ERK2 cellular distribution and function in cell proliferation and migration. The most significant conformational change in PEA-15 happens at helices α2, α3, and α4, which also possess the highest flexibility among the six-helix bundle of the DED. This crucial conformational change is modulated by the D/E-RxDL charge-triad motif, one of the prominent structural features of DEDs, together with a number of other electrostatic and hydrogen bonding interactions on the protein surface. Charge-triad motif promotes the optimal orientation of key residues and expands the binding interface to accommodate protein-protein interactions. However, the charge-triad residues are not directly involved in the binding interface between PEA-15 and ERK2.

  16. Studies of the effects of TiCl3 in LiBH4/CaH2/TiCl3 reversible hydrogen storage system

    International Nuclear Information System (INIS)

    Liu Dongan; Yang Jun; Ni Jun; Drews, Andy

    2012-01-01

    Highlights: ► We systematically studied the effects of TiCl 3 in LiBH 4 /CaH 2 /TiCl 3 hydrogen storage system. ► It is found that adding 0.25 TiCl 3 produces fully reversible hydrogen absorption and desorption and a lower desorption temperature. ► LiCl experiences four different states, i.e. “formed-solid solution-molten solution-precipitation”, in the whole desorption process of the system. ► The incorporation of LiCl into LiBH 4 forms more viscous molten LiBH 4 ·LiCl, leading to fast kinetics. ► The precipitation and re-incorporation of LiCl into LiBH 4 lead to a fully reversible complex hydrogen storage system. - Abstract: In the present study, the effects of TiCl 3 on desorption kinetics, absorption/desorption reversibility, and related phase transformation processes in LiBH 4 /CaH 2 /TiCl 3 hydrogen storage system was studied systematically by varying its concentration (x = 0, 0.05, 0.15 and 0.25). The results show that LiCl forms during ball milling of 6LiBH 4 /CaH 2 /xTiCl 3 and that as temperature increases, o-LiBH 4 transforms into h-LiBH 4 , into which LiCl incorporates, forming solid solution of LiBH 4 ·LiCl, which melts above 280 °C. Molten LiBH 4 ·LiCl is more viscous than molten LiBH 4 , preventing the clustering of LiBH 4 and the accompanied agglomeration of CaH 2 , and thus preserving the nano-sized phase arrangement formed during ball milling. Above 350 °C, the molten solution LiBH 4 ·LiCl further reacts with CaH 2 , precipitating LiCl. The main hydrogen desorption reaction is between molten LiBH 4 ·LiCl and CaH 2 and not between molten LiBH 4 and CaH 2 . This alters the hydrogen reaction thermodynamics and lowers the hydrogen desorption temperature. In addition, the solid–liquid nano-sized phase arrangement in the nano-composites improves the hydrogen reaction kinetics. The reversible incorporation/precipitation of LiCl at the hydrogen reaction temperature and during temperature cycling makes the 6LiBH 4 /CaH 2 /0.25TiCl 3

  17. Purification, crystallization and preliminary x-ray crystallographic studies of RAIDD Death-Domain (DD).

    Science.gov (United States)

    Jang, Tae-ho; Park, Hyun Ho

    2009-06-03

    Caspase-2 activation by formation of PIDDosome is critical for genotoxic stress induced apoptosis. PIDDosome is composed of three proteins, RAIDD, PIDD, and Caspase-2. RAIDD is an adaptor protein containing an N-terminal Caspase-Recruiting-Domain (CARD) and a C-terminal Death-Domain (DD). Its interactions with Caspase-2 and PIDD through CARD and DD respectively and formation of PIDDosome are important for the activation of Caspase-2. RAIDD DD cloned into pET26b vector was expressed in E. coli cells and purified by nickel affinity chromatography and gel filtration. Although it has been known that the most DDs are not soluble in physiological condition, RAIDD DD was soluble and interacts tightly with PIDD DD in physiological condition. The purified RAIDD DD alone has been crystallized. Crystals are trigonal and belong to space group P3(1)21 (or its enantiomorph P3(2)21) with unit-cell parameters a = 56.3, b = 56.3, c = 64.9 A and gamma = 120 degrees . The crystals were obtained at room temperature and diffracted to 2.0 A resolution.

  18. Y(BH4)3--an old-new ternary hydrogen store aka learning from a multitude of failures.

    Science.gov (United States)

    Jaroń, Tomasz; Grochala, Wojciech

    2010-01-07

    Fourteen different synthetic approaches towards pure solvent-free Y(BH(4))(3) have been tested, thirteen of which have failed. Attempted reactions of YCl(3) or Y(OC(4)H(9))(3) with LiBH(4) in THF, those of YCl(3) with (C(4)H(9))(4)N(+) BH(4)(-), as well as between YH(x approximately 3) and R(4)NBH(3) (R = CH(3), C(2)H(5)) in the presence or absence of a solvent (n-hexane or CH(2)Cl(2)) did not lead to the expected product. The mechanochemical solid/solid reactions (MBH(4) + 3 YX(3)--> Y(BH(4))(3) + 3 LiCl, where M = Li, Na; X = F, Cl) have succeeded only for the LiBH(4) and YCl(3) reagents, but the separation of the crystalline reaction products (Y(BH(4))(3) in its Pa3 phase and LiCl) by dissolution or flotation in various solvents has not been successful. The thermal decomposition process of Y(BH(4))(3) in a mixture with LiCl has been investigated with thermogravimetric (TGA) and calorimetric analysis (DSC) combined with spectroscopic evolved gas analysis (EGA). Three major endothermic steps could be distinguished in the DSC profile at ca. 232, 282, 475 degrees C (heating rate 10 K min(-1)) corresponding to a phase transition and two steps of thermal decomposition. Solid decomposition products are amorphous except for the new cubic polymorph of Y(BH(4))(3) overlooked in previous work. The high-temperature phase forms at the onset of thermal decomposition and it may be prepared by heating of the low-temperature phase up to a narrow temperature range (194-210 degrees C) followed by rapid quenching. Y(BH(4))(3) constitutes a novel highly efficient hydrogen storage material (theor. 9.0 wt% H) but, unfortunately, the evolved H(2) is contaminated by toxic boron hydrides and products of their pyrolysis.

  19. The ubiquitin-homology protein, DAP-1, associates with tumor necrosis factor receptor (p60) death domain and induces apoptosis.

    Science.gov (United States)

    Liou, M L; Liou, H C

    1999-04-09

    The tumor necrosis factor receptor, p60 (TNF-R1), transduces death signals via the association of its cytoplasmic domain with several intracellular proteins. By screening a mammalian cDNA library using the yeast two-hybrid cloning technique, we isolated a ubiquitin-homology protein, DAP-1, which specifically interacts with the cytoplasmic death domain of TNF-R1. Sequence analysis reveals that DAP-1 shares striking sequence homology with the yeast SMT3 protein that is essential for the maintenance of chromosome integrity during mitosis (Meluh, P. B., and Koshland, D. (1995) Mol. Biol. Cell 6, 793-807). DAP-1 is nearly identical to PIC1, a protein that interacts with the PML tumor suppressor implicated in acute promyelocytic leukemia (Boddy, M. N., Howe, K., Etkin, L. D., Solomon, E., and Freemont, P. S. (1996) Oncogene 13, 971-982), and the sentrin protein, which associates with the Fas death receptor (Okura, T., Gong, L., Kamitani, T., Wada, T., Okura, I., Wei, C. F., Chang, H. M., and Yeh, E. T. (1996) J. Immunol. 157, 4277-4281). The in vivo interaction between DAP-1 and TNF-R1 was further confirmed in mammalian cells. In transient transfection assays, overexpression of DAP-1 suppresses NF-kappaB/Rel activity in 293T cells, a human kidney embryonic carcinoma cell line. Overexpression of either DAP-1 or sentrin causes apoptosis of TNF-sensitive L929 fibroblast cell line, as well as TNF-resistant osteosarcoma cell line, U2OS. Furthermore, the dominant negative Fas-associated death domain protein (FADD) protein blocks the cell death induced by either DAP-1 or FADD. Collectively, these observations highly suggest a role for DAP-1 in mediating TNF-induced cell death signaling pathways, presumably through the recruitment of FADD death effector.

  20. Inferring domain-domain interactions from protein-protein interactions with formal concept analysis.

    Directory of Open Access Journals (Sweden)

    Susan Khor

    Full Text Available Identifying reliable domain-domain interactions will increase our ability to predict novel protein-protein interactions, to unravel interactions in protein complexes, and thus gain more information about the function and behavior of genes. One of the challenges of identifying reliable domain-domain interactions is domain promiscuity. Promiscuous domains are domains that can occur in many domain architectures and are therefore found in many proteins. This becomes a problem for a method where the score of a domain-pair is the ratio between observed and expected frequencies because the protein-protein interaction network is sparse. As such, many protein-pairs will be non-interacting and domain-pairs with promiscuous domains will be penalized. This domain promiscuity challenge to the problem of inferring reliable domain-domain interactions from protein-protein interactions has been recognized, and a number of work-arounds have been proposed. This paper reports on an application of Formal Concept Analysis to this problem. It is found that the relationship between formal concepts provides a natural way for rare domains to elevate the rank of promiscuous domain-pairs and enrich highly ranked domain-pairs with reliable domain-domain interactions. This piggybacking of promiscuous domain-pairs onto less promiscuous domain-pairs is possible only with concept lattices whose attribute-labels are not reduced and is enhanced by the presence of proteins that comprise both promiscuous and rare domains.

  1. Inferring Domain-Domain Interactions from Protein-Protein Interactions with Formal Concept Analysis

    Science.gov (United States)

    Khor, Susan

    2014-01-01

    Identifying reliable domain-domain interactions will increase our ability to predict novel protein-protein interactions, to unravel interactions in protein complexes, and thus gain more information about the function and behavior of genes. One of the challenges of identifying reliable domain-domain interactions is domain promiscuity. Promiscuous domains are domains that can occur in many domain architectures and are therefore found in many proteins. This becomes a problem for a method where the score of a domain-pair is the ratio between observed and expected frequencies because the protein-protein interaction network is sparse. As such, many protein-pairs will be non-interacting and domain-pairs with promiscuous domains will be penalized. This domain promiscuity challenge to the problem of inferring reliable domain-domain interactions from protein-protein interactions has been recognized, and a number of work-arounds have been proposed. This paper reports on an application of Formal Concept Analysis to this problem. It is found that the relationship between formal concepts provides a natural way for rare domains to elevate the rank of promiscuous domain-pairs and enrich highly ranked domain-pairs with reliable domain-domain interactions. This piggybacking of promiscuous domain-pairs onto less promiscuous domain-pairs is possible only with concept lattices whose attribute-labels are not reduced and is enhanced by the presence of proteins that comprise both promiscuous and rare domains. PMID:24586450

  2. Relationship between apoptosis and the BH2 domain sequence of the VP5 peptide of infectious pancreatic necrosis virus

    Directory of Open Access Journals (Sweden)

    Cesar Ortega S.

    2014-03-01

    Full Text Available Objective. To determine whether the level of apoptosis induced by infectious pancreatic necrosis virus (IPNV is related to the amino acid sequence of the BH2 domain of the VP5 protein and the level of infectivity. Materials and methods. Three IPNV strains were used, the VP2 protein gene was amplified for genotyping and the VP5 sequence was also obtained. The infectivity of the strains was calculated using the viral titer obtained at 12, 24, 36 and 45 hpi in CHSE-214 cells. The percentage of apoptosis in infected cells was visualized by TUNEL assay and immunohistochemistry (caspase 3 detection. Results. The V70/06 and V33/98 strains corresponded to genotype Sp, while V112/06 to VR-299; the amino acid analysis of the V70/06 strain allows its classification as middle virulent strain and V33/98 and V112/06 strains as low virulent ones; infection with the V112/06 strain produced a lower viral titer (p0.05. Conclusions. The results showed that the differences in the BH2 sequence of the VP5 protein, infectivity and the VP2 sequence are not associated with the modulation of apoptosis.

  3. The structure function of the death domain of human IRAK-M.

    Science.gov (United States)

    Du, Jiangfeng; Nicolaes, Gerry Af; Kruijswijk, Danielle; Versloot, Miranda; van der Poll, Tom; van 't Veer, Cornelis

    2014-12-07

    IRAK-M is an inhibitor of Toll-like receptor signaling that acts by re-directing IRAK-4 activity to TAK1 independent NF-κB activation and by inhibition of IRAK-1/IRAK-2 activity. IRAK-M is expressed in monocytes/macrophages and lung epithelial cells. Lack of IRAK-M in mice greatly improves the resistance to nosocomial pneumonia and lung tumors, which entices IRAK-M as a potential therapeutic target. IRAK-M consists of an N-terminal death domain (DD), a dysfunctional kinase domain and unstructured C-terminal domain. Little is known however on IRAK-M's structure-function relationships. Since death domains provide the important interactions of IRAK-1, IRAK-2 and IRAK-4 molecules, we generated a 3D structure model of the human IRAK-M-DD (residues C5-G119) to guide mutagenesis studies and predict protein-protein interaction points. First we identified the DD residues involved in the endogenous capacity of IRAK-M to activate NF-κB that is displayed upon overexpression in 293T cells. W74 and R97, at distinct interfaces of the IRAK-M-DD, were crucial for this endogenous NF-κB activating capacity, as well as the C-terminal domain (S445-E596) of IRAK-M. Resulting anti-inflammatory A20 and pro-inflammatory IL-8 transcription in 293T cells was W74 dependent, while IL-8 protein expression was dependent on R97 and the TRAF6 binding motif at P478. The IRAK-M-DD W74 and R97 binding interfaces are predicted to interact with opposite sides of IRAK-4-DD's. Secondly we identified DD residues important for the inhibitory action of IRAK-M by stable overexpression of mutants in THP-1 macrophages and H292 lung epithelial cells. IRAK-M inhibited TLR2/4-mediated cytokine production in macrophages in a manner that is largely dependent on W74. R97 was not involved in inhibition of TNF production but was engaged in IL-6 down-regulation by IRAK-M. Protein-interactive residues D19-A23, located in between W74 and R97, were also observed to be crucial for inhibition of TLR2/4 mediated cytokine

  4. Formation and biochemical characterization of tube/pelle death domain complexes: critical regulators of postreceptor signaling by the Drosophila toll receptor.

    Science.gov (United States)

    Schiffmann, D A; White, J H; Cooper, A; Nutley, M A; Harding, S E; Jumel, K; Solari, R; Ray, K P; Gay, N J

    1999-09-07

    In Drosophila, the Toll receptor signaling pathway is required for embryonic dorso-ventral patterning and at later developmental stages for innate immune responses. It is thought that dimerization of the receptor by binding of the ligand spätzle causes the formation of a postreceptor activation complex at the cytoplasmic surface of the membrane. Two components of this complex are the adaptor tube and protein kinase pelle. These proteins both have "death domains", protein interaction motifs found in a number of signaling pathways, particularly those involved in apoptotic cell death. It is thought that pelle is bound by tube during formation of the activation complexes, and that this interaction is mediated by the death domains. In this paper, we show using the yeast two-hybrid system that the wild-type tube and pelle death domains bind together. Mutant tube proteins which do not support signaling in the embryo are also unable to bind pelle in the 2-hybrid assay. We have purified proteins corresponding to the death domains of tube and pelle and show that these form corresponding heterodimeric complexes in vitro. Partial proteolysis reveals a smaller core consisting of the minimal death domain sequences. We have studied the tube/pelle interaction with the techniques of surface plasmon resonance, analytical ultracentrifugation and isothermal titration calorimetry. These measurements produce a value of K(d) for the complex of about 0.5 microM.

  5. Enhanced Hydrogen Storage Properties and Reversibility of LiBH4 Confined in Two-Dimensional Ti3C2.

    Science.gov (United States)

    Zang, Lei; Sun, Weiyi; Liu, Song; Huang, Yike; Yuan, Huatang; Tao, Zhanliang; Wang, Yijing

    2018-05-30

    LiBH 4 is of particular interest as one of the most promising materials for solid-state hydrogen storage. Herein, LiBH 4 is confined into a novel two-dimensional layered Ti 3 C 2 MXene through a facile impregnation method for the first time to improve its hydrogen storage performance. The initial desorption temperature of LiBH 4 is significantly reduced, and the de-/rehydrogenation kinetics are remarkably enhanced. It is found that the initial desorption temperature of LiBH 4 @2Ti 3 C 2 hybrid decreases to 172.6 °C and releases 9.6 wt % hydrogen at 380 °C within 1 h, whereas pristine LiBH 4 only releases 3.2 wt % hydrogen under identical conditions. More importantly, the dehydrogenated products can partially rehydrogenate at 300 °C and under 95 bar H 2 . The nanoconfined effect caused by unique layered structure of Ti 3 C 2 can hinder the particles growth and agglomeration of LiBH 4 . Meanwhile, Ti 3 C 2 could possess superior effect to destabilize LiBH 4 . The synergetic effect of destabilization and nanoconfinement contributes to the remarkably lowered desorption temperature and improved de-/rehydrogenation kinetics.

  6. Purification, Crystallization and Preliminary X-ray Crystallographic Studies of RAIDD Death-Domain (DD

    Directory of Open Access Journals (Sweden)

    Hyun Ho Park

    2009-06-01

    Full Text Available Caspase-2 activation by formation of PIDDosome is critical for genotoxic stress induced apoptosis. PIDDosome is composed of three proteins, RAIDD, PIDD, and Caspase-2. RAIDD is an adaptor protein containing an N-terminal Caspase-Recruiting-Domain (CARD and a C-terminal Death-Domain (DD. Its interactions with Caspase-2 and PIDD through CARD and DD respectively and formation of PIDDosome are important for the activation of Caspase-2. RAIDD DD cloned into pET26b vector was expressed in E. coli cells and purified by nickel affinity chromatography and gel filtration. Although it has been known that the most DDs are not soluble in physiological condition, RAIDD DD was soluble and interacts tightly with PIDD DD in physiological condition. The purified RAIDD DD alone has been crystallized. Crystals are trigonal and belong to space group P3121 (or its enantiomorph P3221 with unit-cell parameters a = 56.3, b = 56.3, c = 64.9 Å and γ = 120°. The crystals were obtained at room temperature and diffracted to 2.0 Å resolution.

  7. BH3 mimetics inhibit growth of chondrosarcoma--a novel targeted-therapy for candidate models.

    Science.gov (United States)

    Morii, Takeshi; Ohtsuka, Kouki; Ohnishi, Hiroaki; Mochizuki, Kazuo; Yoshiyama, Akira; Aoyagi, Takayuki; Hornicek, Francis J; Ichimura, Shoichi

    2014-11-01

    Chondrosarcoma is refractory to conventional chemotherapy. BH-3 mimetics ABT-737 and ABT-263 are synthetic small-molecule inhibitors of anti-apoptotic proteins B-cell lymphoma-2 (Bcl2) and Bcl-xL, which play a critical role in survival of chondrosarcoma cells. Chondrosarcoma cell lines SW-1353 and CS-1 were used as the disease model. We used immunoblotting to assess the expression of target molecules Bcl2 and Bcl-xL, and the apoptotic inducers Bcl2-associated X (Bax) and Bcl2-antagonist/killer (Bak). In vitro growth inhibition by BH-3 mimetics was confirmed by photomicroscopic cell counting and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay. Apoptotic induction was confirmed by Enzyme-Linked ImmunoSorbent Assay (ELISA). In vivo growth inhibition was assessed in a non-obese diabetic/severe combined immunodeficient (NOD/SCID) mouse model. Expression of the target and effector molecules was confirmed in chondrosarcoma cell lines. BH3 mimetics significantly inhibited cell growth and induced apoptosis in vitro. Administration of ABT-263 inhibited chondrosarcoma growth and improved survival in a mouse model. BH3 mimetics represent a novel treatment modality for chondrosarcoma. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  8. BTB-BACK Domain Protein POB1 Suppresses Immune Cell Death by Targeting Ubiquitin E3 ligase PUB17 for Degradation.

    Directory of Open Access Journals (Sweden)

    Beatriz Orosa

    2017-01-01

    Full Text Available Hypersensitive response programmed cell death (HR-PCD is a critical feature in plant immunity required for pathogen restriction and prevention of disease development. The precise control of this process is paramount to cell survival and an effective immune response. The discovery of new components that function to suppress HR-PCD will be instrumental in understanding the regulation of this fundamental mechanism. Here we report the identification and characterisation of a BTB domain E3 ligase protein, POB1, that functions to suppress HR-PCD triggered by evolutionarily diverse pathogens. Nicotiana benthamiana and tobacco plants with reduced POB1 activity show accelerated HR-PCD whilst those with increased POB1 levels show attenuated HR-PCD. We demonstrate that POB1 dimerization and nuclear localization are vital for its function in HR-PCD suppression. Using protein-protein interaction assays, we identify the Plant U-Box E3 ligase PUB17, a well established positive regulator of plant innate immunity, as a target for POB1-mediated proteasomal degradation. Using confocal imaging and in planta immunoprecipitation assays we show that POB1 interacts with PUB17 in the nucleus and stimulates its degradation. Mutated versions of POB1 that show reduced interaction with PUB17 fail to suppress HR-PCD, indicating that POB1-mediated degradation of PUB17 U-box E3 ligase is an important step for negative regulation of specific immune pathways in plants. Our data reveals a new mechanism for BTB domain proteins in suppressing HR-PCD in plant innate immune responses.

  9. BCL2-BH4 antagonist BDA-366 suppresses human myeloma growth.

    Science.gov (United States)

    Deng, Jiusheng; Park, Dongkyoo; Wang, Mengchang; Nooka, Ajay; Deng, Qiaoya; Matulis, Shannon; Kaufman, Jonathan; Lonial, Sagar; Boise, Lawrence H; Galipeau, Jacques; Deng, Xingming

    2016-05-10

    Multiple myeloma (MM) is a heterogeneous plasma cell malignancy and remains incurable. B-cell lymphoma-2 (BCL2) protein correlates with the survival and the drug resistance of myeloma cells. BH3 mimetics have been developed to disrupt the binding between BCL2 and its pro-apoptotic BCL2 family partners for the treatment of MM, but with limited therapeutic efficacy. We recently identified a small molecule BDA-366 as a BCL2 BH4 domain antagonist, converting it from an anti-apoptotic into a pro-apoptotic molecule. In this study, we demonstrated that BDA-366 induces robust apoptosis in MM cell lines and primary MM cells by inducing BCL2 conformational change. Delivery of BDA-366 substantially suppressed the growth of human MM xenografts in NOD-scid/IL2Rγnull mice, without significant cytotoxic effects on normal hematopoietic cells or body weight. Thus, BDA-366 functions as a novel BH4-based BCL2 inhibitor and offers an entirely new tool for MM therapy.

  10. Identification of the Calmodulin-Binding Domains of Fas Death Receptor.

    Directory of Open Access Journals (Sweden)

    Bliss J Chang

    Full Text Available The extrinsic apoptotic pathway is initiated by binding of a Fas ligand to the ectodomain of the surface death receptor Fas protein. Subsequently, the intracellular death domain of Fas (FasDD and that of the Fas-associated protein (FADD interact to form the core of the death-inducing signaling complex (DISC, a crucial step for activation of caspases that induce cell death. Previous studies have shown that calmodulin (CaM is recruited into the DISC in cholangiocarcinoma cells and specifically interacts with FasDD to regulate the apoptotic/survival signaling pathway. Inhibition of CaM activity in DISC stimulates apoptosis significantly. We have recently shown that CaM forms a ternary complex with FasDD (2:1 CaM:FasDD. However, the molecular mechanism by which CaM binds to two distinct FasDD motifs is not fully understood. Here, we employed mass spectrometry, nuclear magnetic resonance (NMR, biophysical, and biochemical methods to identify the binding regions of FasDD and provide a molecular basis for the role of CaM in Fas-mediated apoptosis. Proteolytic digestion and mass spectrometry data revealed that peptides spanning residues 209-239 (Fas-Pep1 and 251-288 (Fas-Pep2 constitute the two CaM-binding regions of FasDD. To determine the molecular mechanism of interaction, we have characterized the binding of recombinant/synthetic Fas-Pep1 and Fas-Pep2 peptides with CaM. Our data show that both peptides engage the N- and C-terminal lobes of CaM simultaneously. Binding of Fas-Pep1 to CaM is entropically driven while that of Fas-Pep2 to CaM is enthalpically driven, indicating that a combination of electrostatic and hydrophobic forces contribute to the stabilization of the FasDD-CaM complex. Our data suggest that because Fas-Pep1 and Fas-Pep2 are involved in extensive intermolecular contacts with the death domain of FADD, binding of CaM to these regions may hinder its ability to bind to FADD, thus greatly inhibiting the initiation of apoptotic signaling

  11. Development of Al2O3 carrier-Ru composite catalyst for hydrogen generation from alkaline NaBH4 hydrolysis

    International Nuclear Information System (INIS)

    Huang, Yao-Hui; Su, Chia-Chi; Wang, Shu-Ling; Lu, Ming-Chun

    2012-01-01

    A recyclable and reusable Ru/Al 2 O 3 catalyst is prepared for hydrogen generation from the hydrolysis process of alkaline sodium borohydride (NaBH 4 ) solution. The hydrogen generation rate by the hydrolysis and methanolysis of alkaline NaBH 4 was explored as a function of NaOH concentration. Meantime, the byproducts derived from the spent alkaline NaBH 4 solution were characterized by X-ray diffraction (XRD), scanning electro microscope/energy dispersive spectrometer (SEM/EDS) and NMR (Nuclear Magnetic Resonance). The effect of NaOH concentration on the hydrogen generation from the hydrolysis of NaBH 4 significantly depends on the type of catalysts. With increasing NaOH concentration, the hydrogen generation rates decrease when using ruthenium (Ru) composite as a catalyst. The hydrogen generation rate of the methanolysis of NaBH 4 is significantly inhibited in the presence of NaOH as compared with the hydrolysis of NaBH 4 . The durability test of the Ru/Al 2 O 3 catalyst shows that the hydrogen generation rate decreases with recycling and reuse. The XRD and NMR analysis results show that the borate hydrate (NaBO 2 H 2 O) was derived from the hydrolysis of 20 wt% and 30 wt% NaBH 4 . -- Highlights: ► A recyclable Ru/Al 2 O 3 catalyst was synthesized for hydrogen generation. ► Ru/Al 2 O 3 significantly promotes the hydrogen generation rate from alkaline NaBH 4 solution. ► The prepared Ru/Al 2 O 3 catalyst can easily collect from the spent alkaline NaBH 4 solution.

  12. Theoretical investigation of structure and stability of molecules of borohydrides B2H6, AlBH6 and ScBH6

    International Nuclear Information System (INIS)

    Musaev, D.G.; Zyubin, A.S.; Charkin, O.P.; Bonakkorsi, R.; Tomazi, Ya.

    1988-01-01

    Geometry of alternative structures of M 3+ BH 6 molecules are optimized on the two-exponent bases; their energies are refined with a fuller basis DEHD taking into account electron correlation within the frames of the MP3 method. The tendencies in the change of relative energies of the structures and their stability to decomposition are analyzed. It is noted that AlBH 6 and ScBH 6 molecules are not rigid to migration of M 3+ H 2 + ''cation'' round BH 4 - anion, as well ScBH 6 molecules are flexible to rotation of H 2 Sc group round the Sc-B axis. The data are compared with the results of previous similar calculations of borohydrides of elements in the first two groups (Li-Cu and Be-Zn)

  13. Studies of the effects of TiCl{sub 3} in LiBH{sub 4}/CaH{sub 2}/TiCl{sub 3} reversible hydrogen storage system

    Energy Technology Data Exchange (ETDEWEB)

    Liu Dongan [Ford Motor Company, Research and Advanced Engineering, MD 1170/RIC, Dearborn, MI 48121 (United States); Department of Mechanical Engineering, University of Michigan, 1023 H. H. Dow Building 2350 Hayward Street, Ann Arbor, MI 48109-2125 (United States); Yang Jun, E-mail: jyang27@ford.com [Ford Motor Company, Research and Advanced Engineering, MD 1170/RIC, Dearborn, MI 48121 (United States); Ni Jun [Department of Mechanical Engineering, University of Michigan, 1023 H. H. Dow Building 2350 Hayward Street, Ann Arbor, MI 48109-2125 (United States); Drews, Andy [Ford Motor Company, Research and Advanced Engineering, MD 1170/RIC, Dearborn, MI 48121 (United States)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer We systematically studied the effects of TiCl{sub 3} in LiBH{sub 4}/CaH{sub 2}/TiCl{sub 3} hydrogen storage system. Black-Right-Pointing-Pointer It is found that adding 0.25 TiCl{sub 3} produces fully reversible hydrogen absorption and desorption and a lower desorption temperature. Black-Right-Pointing-Pointer LiCl experiences four different states, i.e. 'formed-solid solution-molten solution-precipitation', in the whole desorption process of the system. Black-Right-Pointing-Pointer The incorporation of LiCl into LiBH{sub 4} forms more viscous molten LiBH{sub 4}{center_dot}LiCl, leading to fast kinetics. Black-Right-Pointing-Pointer The precipitation and re-incorporation of LiCl into LiBH{sub 4} lead to a fully reversible complex hydrogen storage system. - Abstract: In the present study, the effects of TiCl{sub 3} on desorption kinetics, absorption/desorption reversibility, and related phase transformation processes in LiBH{sub 4}/CaH{sub 2}/TiCl{sub 3} hydrogen storage system was studied systematically by varying its concentration (x = 0, 0.05, 0.15 and 0.25). The results show that LiCl forms during ball milling of 6LiBH{sub 4}/CaH{sub 2}/xTiCl{sub 3} and that as temperature increases, o-LiBH{sub 4} transforms into h-LiBH{sub 4}, into which LiCl incorporates, forming solid solution of LiBH{sub 4}{center_dot}LiCl, which melts above 280 Degree-Sign C. Molten LiBH{sub 4}{center_dot}LiCl is more viscous than molten LiBH{sub 4}, preventing the clustering of LiBH{sub 4} and the accompanied agglomeration of CaH{sub 2}, and thus preserving the nano-sized phase arrangement formed during ball milling. Above 350 Degree-Sign C, the molten solution LiBH{sub 4}{center_dot}LiCl further reacts with CaH{sub 2}, precipitating LiCl. The main hydrogen desorption reaction is between molten LiBH{sub 4}{center_dot}LiCl and CaH{sub 2} and not between molten LiBH{sub 4} and CaH{sub 2}. This alters the hydrogen reaction thermodynamics and

  14. The TIR domain of TIR-NB-LRR resistance proteins is a signaling domain involved in cell death induction.

    Science.gov (United States)

    Swiderski, Michal R; Birker, Doris; Jones, Jonathan D G

    2009-02-01

    In plants, the TIR (toll interleukin 1 receptor) domain is found almost exclusively in nucleotide-binding (NB) leucine-rich repeat resistance proteins and their truncated homologs, and has been proposed to play a signaling role during resistance responses mediated by TIR containing R proteins. Transient expression in Nicotiana benthamiana leaves of "TIR + 80", the RPS4 truncation without the NB-ARC domain, leads to EDS1-, SGT1-, and HSP90-dependent cell death. Transgenic Arabidopsis plants expressing the RPS4 TIR+80 from either dexamethasone or estradiol-inducible promoters display inducer-dependent cell death. Cell death is also elicited by transient expression of similarly truncated constructs from two other R proteins, RPP1A and At4g19530, but is not elicited by similar constructs representing RPP2A and RPP2B proteins. Site-directed mutagenesis of the RPS4 TIR domain identified many loss-of-function mutations but also revealed several gain-of function substitutions. Lack of cell death induction by the E160A substitution suggests that amino acids outside of the TIR domain contribute to cell death signaling in addition to the TIR domain itself. This is consistent with previous observations that the TIR domain itself is insufficient to induce cell death upon transient expression.

  15. Regulation of the interaction between the neuronal BIN1 isoform 1 and Tau proteins - role of the SH3 domain.

    Science.gov (United States)

    Malki, Idir; Cantrelle, François-Xavier; Sottejeau, Yoann; Lippens, Guy; Lambert, Jean-Charles; Landrieu, Isabelle

    2017-10-01

    Bridging integrator 1 (bin1) gene is a genetic determinant of Alzheimer's disease (AD) and has been reported to modulate Alzheimer's pathogenesis through pathway(s) involving Tau. The functional impact of Tau/BIN1 interaction as well as the molecular details of this interaction are still not fully resolved. As a consequence, how BIN1 through its interaction with Tau affects AD risk is also still not determined. To progress in this understanding, interaction of Tau with two BIN1 isoforms was investigated using Nuclear Magnetic Resonance spectroscopy. 1 H, 15 N spectra showed that the C-terminal SH3 domain of BIN1 isoform 1 (BIN1Iso1) is not mobile in solution but locked with the core of the protein. In contrast, the SH3 domain of BIN1 isoform 9 (BIN1Iso9) behaves as an independent mobile domain. This reveals an equilibrium between close and open conformations for the SH3 domain. Interestingly, a 334-376 peptide from the clathrin and AP-2-binding domain (CLAP) domain of BIN1Iso1, which contains a SH3-binding site, is able to compete with BIN1-SH3 intramolecular interaction. For both BIN1 isoforms, the SH3 domain can interact with Tau(210-240) sequence. Tau(210-240) peptide can indeed displace the intramolecular interaction of the BIN1-SH3 of BIN1Iso1 and form a complex with the released domain. The measured K d were in agreement with a stronger affinity of Tau peptide. Both CLAP and Tau peptides occupied the same surface on the BIN1-SH3 domain, showing that their interaction is mutually exclusive. These results emphasize an additional level of complexity in the regulation of the interaction between BIN1 and Tau dependent of the BIN1 isoforms. © 2017 Federation of European Biochemical Societies.

  16. The serine protease inhibitor TLCK attenuates intrinsic death pathways in neurons upstream of mitochondrial demise.

    Science.gov (United States)

    Reuther, C; Ganjam, G K; Dolga, A M; Culmsee, C

    2014-11-01

    It is well-established that activation of proteases, such as caspases, calpains and cathepsins are essential components in signaling pathways of programmed cell death (PCD). Although these proteases have also been linked to mechanisms of neuronal cell death, they are dispensable in paradigms of intrinsic death pathways, e.g. induced by oxidative stress. However, emerging evidence implicated a particular role for serine proteases in mechanisms of PCD in neurons. Here, we investigated the role of trypsin-like serine proteases in a model of glutamate toxicity in HT-22 cells. In these cells glutamate induces oxytosis, a form of caspase-independent cell death that involves activation of the pro-apoptotic protein BH3 interacting-domain death agonist (Bid), leading to mitochondrial demise and ensuing cell death. In this model system, the trypsin-like serine protease inhibitor Nα-tosyl-l-lysine chloromethyl ketone hydrochloride (TLCK) inhibited mitochondrial damage and cell death. Mitochondrial morphology alterations, the impairment of the mitochondrial membrane potential and ATP depletion were prevented and, moreover, lipid peroxidation induced by glutamate was completely abolished. Strikingly, truncated Bid-induced cell death was not affected by TLCK, suggesting a detrimental activity of serine proteases upstream of Bid activation and mitochondrial demise. In summary, this study demonstrates the protective effect of serine protease inhibition by TLCK against oxytosis-induced mitochondrial damage and cell death. These findings indicate that TLCK-sensitive serine proteases play a crucial role in cell death mechanisms upstream of mitochondrial demise and thus, may serve as therapeutic targets in diseases, where oxidative stress and intrinsic pathways of PCD mediate neuronal cell death.

  17. Molecular epidemiology, genotype-phenotype correlation and BH4 responsiveness in Spanish patients with phenylketonuria.

    Science.gov (United States)

    Aldámiz-Echevarría, Luis; Llarena, Marta; Bueno, María A; Dalmau, Jaime; Vitoria, Isidro; Fernández-Marmiesse, Ana; Andrade, Fernando; Blasco, Javier; Alcalde, Carlos; Gil, David; García, María C; González-Lamuño, Domingo; Ruiz, Mónica; Ruiz, María A; Peña-Quintana, Luis; González, David; Sánchez-Valverde, Felix; Desviat, Lourdes R; Pérez, Belen; Couce, María L

    2016-08-01

    Phenylketonuria (PKU), the most common inborn error of amino acid metabolism, is caused by mutations in the phenylalanine-4-hydroxylase (PAH) gene. This study aimed to assess the genotype-phenotype correlation in the PKU Spanish population and the usefulness in establishing genotype-based predictions of BH4 responsiveness in our population. It involved the molecular characterization of 411 Spanish PKU patients: mild hyperphenylalaninemia non-treated (mild HPA-NT) (34%), mild HPA (8.8%), mild-moderate (20.7%) and classic (36.5%) PKU. BH4 responsiveness was evaluated using a 6R-BH4 loading test. We assessed genotype-phenotype associations and genotype-BH4 responsiveness in our population according to literature and classification of the mutations. The mutational spectrum analysis showed 116 distinct mutations, most missense (70.7%) and located in the catalytic domain (62.9%). The most prevalent mutations were c.1066-11G>A (9.7%), p.Val388Met (6.6%) and p.Arg261Gln (6.3%). Three novel mutations (c.61-13del9, p.Ile283Val and p.Gly148Val) were reported. Although good genotype-phenotype correlation was observed, there was no exact correlation for some genotypes. Among the patients monitored for the 6R-BH4 loading test: 102 were responders (87, carried either one or two BH4-responsive alleles) and 194 non-responders (50, had two non-responsive mutations). More discrepancies were observed in non-responders. Our data reveal a great genetic heterogeneity in our population. Genotype is quite a good predictor of phenotype and BH4 responsiveness, which is relevant for patient management, treatment and follow-up.

  18. DCD – a novel plant specific domain in proteins involved in development and programmed cell death

    Directory of Open Access Journals (Sweden)

    Doerks Tobias

    2005-07-01

    Full Text Available Abstract Background Recognition of microbial pathogens by plants triggers the hypersensitive reaction, a common form of programmed cell death in plants. These dying cells generate signals that activate the plant immune system and alarm the neighboring cells as well as the whole plant to activate defense responses to limit the spread of the pathogen. The molecular mechanisms behind the hypersensitive reaction are largely unknown except for the recognition process of pathogens. We delineate the NRP-gene in soybean, which is specifically induced during this programmed cell death and contains a novel protein domain, which is commonly found in different plant proteins. Results The sequence analysis of the protein, encoded by the NRP-gene from soybean, led to the identification of a novel domain, which we named DCD, because it is found in plant proteins involved in development and cell death. The domain is shared by several proteins in the Arabidopsis and the rice genomes, which otherwise show a different protein architecture. Biological studies indicate a role of these proteins in phytohormone response, embryo development and programmed cell by pathogens or ozone. Conclusion It is tempting to speculate, that the DCD domain mediates signaling in plant development and programmed cell death and could thus be used to identify interacting proteins to gain further molecular insights into these processes.

  19. Computational analysis and prediction of the binding motif and protein interacting partners of the Abl SH3 domain.

    Directory of Open Access Journals (Sweden)

    Tingjun Hou

    2006-01-01

    Full Text Available Protein-protein interactions, particularly weak and transient ones, are often mediated by peptide recognition domains, such as Src Homology 2 and 3 (SH2 and SH3 domains, which bind to specific sequence and structural motifs. It is important but challenging to determine the binding specificity of these domains accurately and to predict their physiological interacting partners. In this study, the interactions between 35 peptide ligands (15 binders and 20 non-binders and the Abl SH3 domain were analyzed using molecular dynamics simulation and the Molecular Mechanics/Poisson-Boltzmann Solvent Area method. The calculated binding free energies correlated well with the rank order of the binding peptides and clearly distinguished binders from non-binders. Free energy component analysis revealed that the van der Waals interactions dictate the binding strength of peptides, whereas the binding specificity is determined by the electrostatic interaction and the polar contribution of desolvation. The binding motif of the Abl SH3 domain was then determined by a virtual mutagenesis method, which mutates the residue at each position of the template peptide relative to all other 19 amino acids and calculates the binding free energy difference between the template and the mutated peptides using the Molecular Mechanics/Poisson-Boltzmann Solvent Area method. A single position mutation free energy profile was thus established and used as a scoring matrix to search peptides recognized by the Abl SH3 domain in the human genome. Our approach successfully picked ten out of 13 experimentally determined binding partners of the Abl SH3 domain among the top 600 candidates from the 218,540 decapeptides with the PXXP motif in the SWISS-PROT database. We expect that this physical-principle based method can be applied to other protein domains as well.

  20. Dehydrogenation of Surface-Oxidized Mixtures of 2LiBH4 + Al/Additives (TiF3 or CeO2

    Directory of Open Access Journals (Sweden)

    Juan Luis Carrillo-Bucio

    2017-11-01

    Full Text Available Research for suitable hydrogen storage materials is an important ongoing subject. LiBH4–Al mixtures could be attractive; however, several issues must be solved. Here, the dehydrogenation reactions of surface-oxidized 2LiBH4 + Al mixtures plus an additive (TiF3 or CeO2 at two different pressures are presented. The mixtures were produced by mechanical milling and handled under welding-grade argon. The dehydrogenation reactions were studied by means of temperature programmed desorption (TPD at 400 °C and at 3 or 5 bar initial hydrogen pressure. The milled and dehydrogenated materials were characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD, and Fourier transformed infrared spectroscopy (FT-IR The additives and the surface oxidation, promoted by the impurities in the welding-grade argon, induced a reduction in the dehydrogenation temperature and an increase in the reaction kinetics, as compared to pure (reported LiBH4. The dehydrogenation reactions were observed to take place in two main steps, with onsets at 100 °C and 200–300 °C. The maximum released hydrogen was 9.3 wt % in the 2LiBH4 + Al/TiF3 material, and 7.9 wt % in the 2LiBH4 + Al/CeO2 material. Formation of CeB6 after dehydrogenation of 2LiBH4 + Al/CeO2 was confirmed.

  1. SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins.

    Science.gov (United States)

    Koch, C A; Anderson, D; Moran, M F; Ellis, C; Pawson, T

    1991-05-03

    Src homology (SH) regions 2 and 3 are noncatalytic domains that are conserved among a series of cytoplasmic signaling proteins regulated by receptor protein-tyrosine kinases, including phospholipase C-gamma, Ras GTPase (guanosine triphosphatase)-activating protein, and Src-like tyrosine kinases. The SH2 domains of these signaling proteins bind tyrosine phosphorylated polypeptides, implicated in normal signaling and cellular transformation. Tyrosine phosphorylation acts as a switch to induce the binding of SH2 domains, thereby mediating the formation of heteromeric protein complexes at or near the plasma membrane. The formation of these complexes is likely to control the activation of signal transduction pathways by tyrosine kinases. The SH3 domain is a distinct motif that, together with SH2, may modulate interactions with the cytoskeleton and membrane. Some signaling and transforming proteins contain SH2 and SH3 domains unattached to any known catalytic element. These noncatalytic proteins may serve as adaptors to link tyrosine kinases to specific target proteins. These observations suggest that SH2 and SH3 domains participate in the control of intracellular responses to growth factor stimulation.

  2. Molecular dissection of the interaction between the SH3 domain and the SH2-Kinase Linker region in PTK6.

    Science.gov (United States)

    Kim, Han Ie; Jung, Jinwon; Lee, Eun-Saem; Kim, Yong-Chul; Lee, Weontae; Lee, Seung-Taek

    2007-11-03

    PTK6 (also known as Brk) is an intracellular tyrosine kinase that contains SH3, SH2, and tyrosine kinase catalytic (Kinase) domains. The SH3 domain of PTK6 interacts with the N-terminal half of the linker (Linker) region between the SH2 and Kinase domains. Site-directed mutagenesis and surface plasmon resonance studies showed that a tryptophan residue (Trp44) in the SH3 domain and proline residues in the Linker region, in the order of Pro177, Pro175, and Pro179, contribute to the interaction. The three-dimensional modeled structure of the SH3-Linker complex was in agreement with the biochemical data. Disruption of the intramolecular interaction between the SH3 domain and the Linker region by mutation of Trp44, Pro175, Pro177, and Pro179 markedly increased the catalytic activity of PTK6 in HEK 293 cells. These results demonstrate that Trp44 in the SH3 domain and Pro177, Pro175, and Pro179 in the N-terminal half of the Linker region play important roles in the SH3-Linker interaction to maintain the protein in an inactive conformation along with the phosphorylated Tyr447-SH2 interaction.

  3. Nanostructured graphite-induced destabilization of LiBH4 for reversible hydrogen storage

    CSIR Research Space (South Africa)

    Wang, K

    2016-11-01

    Full Text Available been conducted to gain insight into the promoting effect of nano-G on the reversible dehydrogenation of the LiBH(sub4). Our study found that nano-G exerts its promoting effect via interaction with LiBH(sub4) and as grinding aid....

  4. BIM-Mediated Membrane Insertion of the BAK Pore Domain Is an Essential Requirement for Apoptosis

    Directory of Open Access Journals (Sweden)

    Kathrin Weber

    2013-10-01

    Full Text Available BAK activation represents a key step during apoptosis, but how it converts into a mitochondria-permeabilizing pore remains unclear. By further delineating the structural rearrangements involved, we reveal that BAK activation progresses through a series of independent steps: BH3-domain exposure, N-terminal change, oligomerization, and membrane insertion. Employing a “BCL-XL-addiction” model, we show that neutralization of BCL-XL by the BH3 mimetic ABT-737 resulted in death only when cells were reconstituted with BCL-XL:BAK, but not BCL-2/ BCL-XL:BIM complexes. Although this resembles the indirect model, release of BAK from BCL-XL did not result in spontaneous adoption of the pore conformation. Commitment to apoptosis required association of the direct activator BIM with oligomeric BAK promoting its conversion to a membrane-inserted pore. The sequential nature of this cascade provides multiple opportunities for other BCL-2 proteins to interfere with or promote BAK activation and unites aspects of the indirect and direct activation models.

  5. Gefitinib-induced killing of NSCLC cell lines expressing mutant EGFR requires BIM and can be enhanced by BH3 mimetics.

    Directory of Open Access Journals (Sweden)

    Mark S Cragg

    2007-10-01

    activating mutations in the EGFR kinase domain, but the mechanisms of tumor cell killing are still unclear. In this paper, we demonstrate that activation of the proapoptotic BH3-only protein BIM is essential for tumor cell killing and that shutdown of the EGFR-MEK-ERK signaling cascade is critical for BIM activation. Moreover, we demonstrate that addition of a BH3 mimetic significantly enhances killing of NSCLC cells by the EGFR tyrosine kinase inhibitor gefitinib. It appears likely that this approach represents a paradigm shared by many, and perhaps all, oncogenic tyrosine kinases and suggests a powerful new strategy for cancer therapy.

  6. Multinuclear NMR spectroscopy of the tetrahedral uranium(IV) complex U(BH3CH3)4

    International Nuclear Information System (INIS)

    Gamp, E.; Shinomoto, R.; Edelstein, N.; McGarvey, B.R.

    1987-01-01

    The temperature dependence of the 1 H, 11 B, and 13 C NMR spectra of T/sub d/ U(BH 3 CH 3 ) 4 in solution is reported. The paramagnetic shifts are interpreted as originating purely from spin delocalization mechanisms with no contribution from the metal-orbital dipolar interaction. It is shown that the temperature dependence of both 1 H shifts (bridging and terminal protons) is identical with that calculated from a polarization theory which assumes the shift is proportional to the average value of electron spin in the inner 5f orbitals. The proportionality constant is -5.64 MHz for the bridging protons and -0.59 MHz for the terminal protons. The temperature dependences of 11 B and 13 shifts are found to depart significantly from that predicted by the polarization theory with the largest deviations shown by the 11 B shifts. It is shown how those deviations can be accounted for by postulating a second spin delocalization through direct covalency involving molecular orbitals formed from the uranium 5f orbitals and ligand s and p orbitals. 29 references, 4 figures, 3 tables

  7. Recovering protein-protein and domain-domain interactions from aggregation of IP-MS proteomics of coregulator complexes.

    Directory of Open Access Journals (Sweden)

    Amin R Mazloom

    2011-12-01

    Full Text Available Coregulator proteins (CoRegs are part of multi-protein complexes that transiently assemble with transcription factors and chromatin modifiers to regulate gene expression. In this study we analyzed data from 3,290 immuno-precipitations (IP followed by mass spectrometry (MS applied to human cell lines aimed at identifying CoRegs complexes. Using the semi-quantitative spectral counts, we scored binary protein-protein and domain-domain associations with several equations. Unlike previous applications, our methods scored prey-prey protein-protein interactions regardless of the baits used. We also predicted domain-domain interactions underlying predicted protein-protein interactions. The quality of predicted protein-protein and domain-domain interactions was evaluated using known binary interactions from the literature, whereas one protein-protein interaction, between STRN and CTTNBP2NL, was validated experimentally; and one domain-domain interaction, between the HEAT domain of PPP2R1A and the Pkinase domain of STK25, was validated using molecular docking simulations. The scoring schemes presented here recovered known, and predicted many new, complexes, protein-protein, and domain-domain interactions. The networks that resulted from the predictions are provided as a web-based interactive application at http://maayanlab.net/HT-IP-MS-2-PPI-DDI/.

  8. Hindered rotational energy barriers of BH4- tetrahedra in β-Mg(BH4)2 from quasielastic neutron scattering and DFT calculations

    DEFF Research Database (Denmark)

    Blanchard, Didier; Maronsson, Jon Bergmann; Riktor, M.D.

    2012-01-01

    , around the 2-fold (C2) and 3-fold (C3) axes were observed at temperatures from 120 to 440 K. The experimentally obtained activation energies (EaC2 = 39 and 76 meV and EaC3 = 214 meV) and mean residence times between reorientational jumps are comparable with the energy barriers obtained from DFT......In this work, hindered rotations of the BH4- tetrahedra in Mg(BH4)2 were studied by quasielastic neutron scattering, using two instruments with different energy resolution, in combination with density functional theory (DFT) calculations. Two thermally activated reorientations of the BH4- units...... calculations. A linear dependency of the energy barriers for rotations around the C2 axis parallel to the Mg-Mg axis with the distance between these two axes was revealed by the DFT calculations. At the lowest temperature (120 K) only 15% of the BH4- units undergo rotational motion and from comparison with DFT...

  9. Hydrolysis mechanism of BH4- in moist acetonitrile. III. Kinetic isotope effects

    International Nuclear Information System (INIS)

    Meeks, B.S. Jr.; Kreevoy, M.M.

    1979-01-01

    The present work and a concurrent paper show that, in the presence of acetic acid, BH 4 - in acetonitrile is rapidly converted to BH 3 OCOCH 3 - and that previous kinetic studies of the hydrolysis of BH 4 - in such solutions actually referred to the hydrolysis of BH 3 OCOCH 3 - . As previously shown, the substrate (now shown to be BH 3 OCOCH 3 - ) complexes with acetic acid, with a complexing constant of about 160. That complex hydrolyzes by spontaneous and water-catalyzed paths. The present paper shows that the latter reaction is accelerated 15 to 40% by the substitution of D for H on boron. The rate is reduced, by a factor of approx. 1.75, by replacing all the hydroxylic hydrogen with deuterium. These results are consistent with BH 3 OC(CH 3 )O . HOCOCH 3 as the acetic acid-substrate complex. The displacement of the incipient biacetate ion by water is rate determining in this process. Isotopic substitution at either position reduces the rate of the spontaneous process. Its mechanism is uncertain. 2 figures, 3 tables

  10. Senescence-associated barley NAC (NAM, ATAF1,2, CUC) transcription factor interacts with radical-induced cell death 1 through a disordered regulatory domain

    DEFF Research Database (Denmark)

    Kjaersgaard, Trine; Jensen, Michael K; Christiansen, Michael W

    2011-01-01

    as a transcriptional activator suggesting that an involvement of HvNAC013 and HvNAC005 in senescence will be different. HvNAC013 interacted with barley radical-induced cell death 1 (RCD1) via the very C-terminal part of its TRD, outside of the region containing the LP motif. No significant secondary structure...... (NAM, ATAF1,2, CUC) TF family are up-regulated during senescence in barley (Hordeum vulgare). Both HvNAC005 and HvNAC013 bound the conserved NAC DNA target sequence. Computational and biophysical analyses showed that both proteins are intrinsically disordered in their large C-terminal domains, which...... was induced in the HvNAC013 TRD upon interaction with RCD1. RCD1 also interacted with regions dominated by intrinsic disorder in TFs of the MYB and basic helix-loop-helix families. We propose that RCD1 is a regulatory protein capable of interacting with many different TFs by exploiting their intrinsic...

  11. Cell Death in C. elegans Development.

    Science.gov (United States)

    Malin, Jennifer Zuckerman; Shaham, Shai

    2015-01-01

    Cell death is a common and important feature of animal development, and cell death defects underlie many human disease states. The nematode Caenorhabditis elegans has proven fertile ground for uncovering molecular and cellular processes controlling programmed cell death. A core pathway consisting of the conserved proteins EGL-1/BH3-only, CED-9/BCL2, CED-4/APAF1, and CED-3/caspase promotes most cell death in the nematode, and a conserved set of proteins ensures the engulfment and degradation of dying cells. Multiple regulatory pathways control cell death onset in C. elegans, and many reveal similarities with tumor formation pathways in mammals, supporting the idea that cell death plays key roles in malignant progression. Nonetheless, a number of observations suggest that our understanding of developmental cell death in C. elegans is incomplete. The interaction between dying and engulfing cells seems to be more complex than originally appreciated, and it appears that key aspects of cell death initiation are not fully understood. It has also become apparent that the conserved apoptotic pathway is dispensable for the demise of the C. elegans linker cell, leading to the discovery of a previously unexplored gene program promoting cell death. Here, we review studies that formed the foundation of cell death research in C. elegans and describe new observations that expand, and in some cases remodel, this edifice. We raise the possibility that, in some cells, more than one death program may be needed to ensure cell death fidelity. © 2015 Elsevier Inc. All rights reserved.

  12. Theoretical study of the properties of BH3NH3

    International Nuclear Information System (INIS)

    Binkley, J.S.; Thorne, L.R.

    1983-01-01

    Borane monoammoniate (BH 3 NH 3 ) has been studied using several ab initio electronic structure methods and Gaussian basis sets. Equilibrium geometries have been computed at the Hartree--Fock level and, using the electron-correlated Moller--Plesset perturbation method, carried out to third order (MP3) with double-zeta polarized quality basis sets. The computed MP3 geometry is in close agreement with recent microwave data; electron correlation is found to be necessary for a proper description of the B--N distance. Hartree--Fock dipole moments and harmonic vibrational frequencies are presented and discussed. Moller--Plesset perturbation theory carried out to fourth order with triple-zeta plus polarization basis sets is used to compute a B--N dissociation energy of 34.7 kcal mol -1 and a (Hartree--Fock zero-point corrected) rotational barrier of 2.065 kcal mol -1 , which is in excellent agreement with the experimental value. Analysis of the dissociation energy as a function of perturbation order indicates that terms involving triple and quadruple substitutions are required in the dissociation energy

  13. Overcoming EMT-driven therapeutic resistance by BH3 mimetics.

    Science.gov (United States)

    Keitel, Ulrike; Scheel, Christina; Dobbelstein, Matthias

    2014-01-01

    Epithelial-mesenchymal transition (EMT) contributes to the progression of cancer through enhanced invasion and stem-like properties of cancer cells. Additionally, EMT confers resistance towards many chemotherapeutics. We recently described a mechanism that mediates EMT-driven chemoresistance through augmented levels of Bcl-xL, an anti-apoptotic member of the Bcl-2 family (Keitel et al., Oncotarget, in press). Here, we elaborate on how these findings pertain to cancer cells dispersed in the tumor-adjacent stroma of breast cancer tissues, and how BH3-mimetics may provide a therapeutic strategy to eliminate cancer cell populations that have passed through an EMT.

  14. Preferred SH3 domain partners of ADAM metalloproteases include shared and ADAM-specific SH3 interactions.

    Directory of Open Access Journals (Sweden)

    Iivari Kleino

    Full Text Available A disintegrin and metalloproteinases (ADAMs constitute a protein family essential for extracellular signaling and regulation of cell adhesion. Catalytic activity of ADAMs and their predicted potential for Src-homology 3 (SH3 domain binding show a strong correlation. Here we present a comprehensive characterization of SH3 binding capacity and preferences of the catalytically active ADAMs 8, 9, 10, 12, 15, 17, and 19. Our results revealed several novel interactions, and also confirmed many previously reported ones. Many of the identified SH3 interaction partners were shared by several ADAMs, whereas some were ADAM-specific. Most of the ADAM-interacting SH3 proteins were adapter proteins or kinases, typically associated with sorting and endocytosis. Novel SH3 interactions revealed in this study include TOCA1 and CIP4 as preferred partners of ADAM8, and RIMBP1 as a partner of ADAM19. Our results suggest that common as well as distinct mechanisms are involved in regulation and execution of ADAM signaling, and provide a useful framework for addressing the pathways that connect ADAMs to normal and aberrant cell behavior.

  15. JNK Promotes Epithelial Cell Anoikis by Transcriptional and Post-translational Regulation of BH3-Only Proteins

    Directory of Open Access Journals (Sweden)

    Nomeda Girnius

    2017-11-01

    Full Text Available Summary: Developmental morphogenesis, tissue injury, and oncogenic transformation can cause the detachment of epithelial cells. These cells are eliminated by a specialized form of apoptosis (anoikis. While the processes that contribute to this form of cell death have been studied, the underlying mechanisms remain unclear. Here, we tested the role of the cJUN NH2-terminal kinase (JNK signaling pathway using murine models with compound JNK deficiency in mammary and kidney epithelial cells. These studies demonstrated that JNK is required for efficient anoikis in vitro and in vivo. Moreover, JNK-promoted anoikis required pro-apoptotic members of the BCL2 family of proteins. We show that JNK acts through a BAK/BAX-dependent apoptotic pathway by increasing BIM expression and phosphorylating BMF, leading to death of detached epithelial cells. : Developmental morphogenesis, tissue injury, and oncogenic transformation can cause epithelial cell detachment. These cells are eliminated by a specialized form of apoptosis termed anoikis. Girnius and Davis show that anoikis is mediated by the cJUN NH2-terminal kinase (JNK, which increases BIM expression and phosphorylates BMF to engage BAK/BAX-dependent apoptosis. Keywords: apoptosis, anoikis, epithelial cell, mammary gland, JNK, BAX, BAK, BH3-only protein, BIM, BMF

  16. Cytoskeleton-interacting LIM-domain protein CRP1 suppresses cell proliferation and protects from stress-induced cell death

    International Nuclear Information System (INIS)

    Latonen, Leena; Jaervinen, Paeivi M.; Laiho, Marikki

    2008-01-01

    Members of the cysteine-rich protein (CRP) family are actin cytoskeleton-interacting LIM-domain proteins known to act in muscle cell differentiation. We have earlier found that CRP1, a founding member of this family, is transcriptionally induced by UV radiation in human diploid fibroblasts [M. Gentile, L. Latonen, M. Laiho, Cell cycle arrest and apoptosis provoked by UV radiation-induced DNA damage are transcriptionally highly divergent responses, Nucleic Acids Res. 31 (2003) 4779-4790]. Here we show that CRP1 is induced by growth-inhibitory signals, such as increased cellular density, and cytotoxic stress induced by UV radiation or staurosporine. We found that high levels of CRP1 correlate with differentiation-associated morphology towards the myofibroblast lineage and that expression of ectopic CRP1 suppresses cell proliferation. Following UV- and staurosporine-induced stresses, expression of CRP1 provides a survival advantage evidenced by decreased cellular death and increased cellular metabolic activity and attachment. Our studies identify that CRP1 is a novel stress response factor, and provide evidence for its growth-inhibitory and cytoprotective functions

  17. Solution structure of the first SH3 domain of human vinexin and its interaction with vinculin peptides

    International Nuclear Information System (INIS)

    Zhang, Jiahai; Li, Xiang; Yao, Bo; Shen, Weiqun; Sun, Hongbin; Xu, Chao; Wu, Jihui; Shi, Yunyu

    2007-01-01

    Solution structure of the first Src homology (SH) 3 domain of human vinexin (V S H3 1 ) was determined using nuclear magnetic resonance (NMR) method and revealed that it was a canonical SH3 domain, which has a typical β-β-β-β-α-β fold. Using chemical shift perturbation and surface plasmon resonance experiments, we studied the binding properties of the SH3 domain with two different peptides from vinculin hinge regions: P856 and P868. The observations illustrated slightly different affinities of the two peptides binding to V S H3 1 . The interaction between P868 and V S H3 1 belonged to intermediate exchange with a modest binding affinity, while the interaction between P856 and V S H3 1 had a low binding affinity. The structure and ligand-binding interface of V S H3 1 provide a structural basis for the further functional study of this important molecule

  18. A protein domain interaction interface database: InterPare

    Directory of Open Access Journals (Sweden)

    Lee Jungsul

    2005-08-01

    Full Text Available Abstract Background Most proteins function by interacting with other molecules. Their interaction interfaces are highly conserved throughout evolution to avoid undesirable interactions that lead to fatal disorders in cells. Rational drug discovery includes computational methods to identify the interaction sites of lead compounds to the target molecules. Identifying and classifying protein interaction interfaces on a large scale can help researchers discover drug targets more efficiently. Description We introduce a large-scale protein domain interaction interface database called InterPare http://interpare.net. It contains both inter-chain (between chains interfaces and intra-chain (within chain interfaces. InterPare uses three methods to detect interfaces: 1 the geometric distance method for checking the distance between atoms that belong to different domains, 2 Accessible Surface Area (ASA, a method for detecting the buried region of a protein that is detached from a solvent when forming multimers or complexes, and 3 the Voronoi diagram, a computational geometry method that uses a mathematical definition of interface regions. InterPare includes visualization tools to display protein interior, surface, and interaction interfaces. It also provides statistics such as the amino acid propensities of queried protein according to its interior, surface, and interface region. The atom coordinates that belong to interface, surface, and interior regions can be downloaded from the website. Conclusion InterPare is an open and public database server for protein interaction interface information. It contains the large-scale interface data for proteins whose 3D-structures are known. As of November 2004, there were 10,583 (Geometric distance, 10,431 (ASA, and 11,010 (Voronoi diagram entries in the Protein Data Bank (PDB containing interfaces, according to the above three methods. In the case of the geometric distance method, there are 31,620 inter-chain domain-domain

  19. The pro-apoptotic BH3-only protein Bim interacts with components of the translocase of the outer mitochondrial membrane (TOM.

    Directory of Open Access Journals (Sweden)

    Daniel O Frank

    Full Text Available The pro-apoptotic Bcl-2-family protein Bim belongs to the BH3-only proteins known as initiators of apoptosis. Recent data show that Bim is constitutively inserted in the outer mitochondrial membrane via a C-terminal transmembrane anchor from where it can activate the effector of cytochrome c-release, Bax. To identify regulators of Bim-activity, we conducted a search for proteins interacting with Bim at mitochondria. We found an interaction of Bim with Tom70, Tom20 and more weakly with Tom40, all components of the Translocase of the Outer Membrane (TOM. In vitro import assays performed on tryptically digested yeast mitochondria showed reduced Bim insertion into the outer mitochondrial membrane (OMM indicating that protein receptors may be involved in the import process. However, RNAi against components of TOM (Tom40, Tom70, Tom22 or Tom20 by siRNA, individually or in combination, did not consistently change the amount of Bim on HeLa mitochondria, either at steady state or upon de novo-induction. In support of this, the individual or combined knock-downs of TOM receptors also failed to alter the susceptibility of HeLa cells to Bim-induced apoptosis. In isolated yeast mitochondria, lack of Tom70 or the TOM-components Tom20 or Tom22 alone did not affect the import of Bim into the outer mitochondrial membrane. In yeast, expression of Bim can sensitize the cells to Bax-dependent killing. This sensitization was unaffected by the absence of Tom70 or by an experimental reduction in Tom40. Although thus the physiological role of the Bim-TOM-interaction remains unclear, TOM complex components do not seem to be essential for Bim insertion into the OMM. Nevertheless, this association should be noted and considered when the regulation of Bim in other cells and situations is investigated.

  20. The pro-apoptotic BH3-only protein Bim interacts with components of the translocase of the outer mitochondrial membrane (TOM).

    Science.gov (United States)

    Frank, Daniel O; Dengjel, Jörn; Wilfling, Florian; Kozjak-Pavlovic, Vera; Häcker, Georg; Weber, Arnim

    2015-01-01

    The pro-apoptotic Bcl-2-family protein Bim belongs to the BH3-only proteins known as initiators of apoptosis. Recent data show that Bim is constitutively inserted in the outer mitochondrial membrane via a C-terminal transmembrane anchor from where it can activate the effector of cytochrome c-release, Bax. To identify regulators of Bim-activity, we conducted a search for proteins interacting with Bim at mitochondria. We found an interaction of Bim with Tom70, Tom20 and more weakly with Tom40, all components of the Translocase of the Outer Membrane (TOM). In vitro import assays performed on tryptically digested yeast mitochondria showed reduced Bim insertion into the outer mitochondrial membrane (OMM) indicating that protein receptors may be involved in the import process. However, RNAi against components of TOM (Tom40, Tom70, Tom22 or Tom20) by siRNA, individually or in combination, did not consistently change the amount of Bim on HeLa mitochondria, either at steady state or upon de novo-induction. In support of this, the individual or combined knock-downs of TOM receptors also failed to alter the susceptibility of HeLa cells to Bim-induced apoptosis. In isolated yeast mitochondria, lack of Tom70 or the TOM-components Tom20 or Tom22 alone did not affect the import of Bim into the outer mitochondrial membrane. In yeast, expression of Bim can sensitize the cells to Bax-dependent killing. This sensitization was unaffected by the absence of Tom70 or by an experimental reduction in Tom40. Although thus the physiological role of the Bim-TOM-interaction remains unclear, TOM complex components do not seem to be essential for Bim insertion into the OMM. Nevertheless, this association should be noted and considered when the regulation of Bim in other cells and situations is investigated.

  1. Fluoride substitution in LiBH4; destabilization and decomposition

    DEFF Research Database (Denmark)

    Richter, Bo; Ravnsbaek, Dorthe B.; Sharma, Manish

    2017-01-01

    Fluoride substitution in LiBH4 is studied by investigation of LiBH4-LiBF4 mixtures (9:1 and 3:1). Decomposition was followed by in situ synchrotron radiation X-ray diffraction (in situ SR-PXD), thermogravimetric analysis and differential scanning calorimetry with gas analysis (TGA/DSC-MS) and in ......Fluoride substitution in LiBH4 is studied by investigation of LiBH4-LiBF4 mixtures (9:1 and 3:1). Decomposition was followed by in situ synchrotron radiation X-ray diffraction (in situ SR-PXD), thermogravimetric analysis and differential scanning calorimetry with gas analysis (TGA...

  2. Interaction of the phosphorylated DNA-binding domain in nuclear receptor CAR with its ligand-binding domain regulates CAR activation.

    Science.gov (United States)

    Shizu, Ryota; Min, Jungki; Sobhany, Mack; Pedersen, Lars C; Mutoh, Shingo; Negishi, Masahiko

    2018-01-05

    The nuclear protein constitutive active/androstane receptor (CAR or NR1I3) regulates several liver functions such as drug and energy metabolism and cell growth or death, which are often involved in the development of diseases such as diabetes and hepatocellular carcinoma. CAR undergoes a conversion from inactive homodimers to active heterodimers with retinoid X receptor α (RXRα), and phosphorylation of the DNA-binding domain (DBD) at Thr-38 in CAR regulates this conversion. Here, we uncovered the molecular mechanism by which this phosphorylation regulates the intramolecular interaction between CAR's DBD and ligand-binding domain (LBD), enabling the homodimer-heterodimer conversion. Phosphomimetic substitution of Thr-38 with Asp increased co-immunoprecipitation of the CAR DBD with CAR LBD in Huh-7 cells. Isothermal titration calorimetry assays also revealed that recombinant CAR DBD-T38D, but not nonphosphorylated CAR DBD, bound the CAR LBD peptide. This DBD-LBD interaction masked CAR's dimer interface, preventing CAR homodimer formation. Of note, EGF signaling weakened the interaction of CAR DBD T38D with CAR LBD, converting CAR to the homodimer form. The DBD-T38D-LBD interaction also prevented CAR from forming a heterodimer with RXRα. However, this interaction opened up a CAR surface, allowing interaction with protein phosphatase 2A. Thr-38 dephosphorylation then dissociated the DBD-LBD interaction, allowing CAR heterodimer formation with RXRα. We conclude that the intramolecular interaction of phosphorylated DBD with the LBD enables CAR to adapt a transient monomer configuration that can be converted to either the inactive homodimer or the active heterodimer.

  3. Characteristics of Al Alloy as a Material for Hydrolysis Reactor of NaBH4

    International Nuclear Information System (INIS)

    Jung, Hyeon-Seong; Oh, Sung-June; Jeong, Jae-Jin; Na, Il-Chai; Chu, Cheun-Ho; Park, Kwon-Pil; Chu, Cheun-Ho

    2015-01-01

    Aluminum alloy was examined as a material of low weight reactor for hydrolysis of NaBH 4 . Aluminum is dissolved with alkali, but there is NaOH as a stabilizer in NaBH 4 solution. To decrease corrosion rate of aluminum, decrease NaOH concentration and this result in loss of NaBH 4 during storage of NaBH 4 solution. Therefore stability of NaBH 4 and corrosion of aluminum should be considered in determining the optimum NaOH concentration. NaBH 4 stability and corrosion rate of aluminum were measured by hydrogen evolution rate. NaBH 4 stability was tested at 20-50 .deg. C and aluminum corrosion was measured at 60-90 .deg. C. The optimum concentration of NaOH was 0.3 wt%, considering both NaBH 4 stability and aluminun corrosion. NaBH 4 hydrolysis reaction continued 200min in aluminum No 6061 alloy reactor with 0.3 wt% NaOH at 80-90 .deg. C.

  4. SH3 domain tyrosine phosphorylation--sites, role and evolution.

    Directory of Open Access Journals (Sweden)

    Zuzana Tatárová

    Full Text Available BACKGROUND: SH3 domains are eukaryotic protein domains that participate in a plethora of cellular processes including signal transduction, proliferation, and cellular movement. Several studies indicate that tyrosine phosphorylation could play a significant role in the regulation of SH3 domains. RESULTS: To explore the incidence of the tyrosine phosphorylation within SH3 domains we queried the PhosphoSite Plus database of phosphorylation sites. Over 100 tyrosine phosphorylations occurring on 20 different SH3 domain positions were identified. The tyrosine corresponding to c-Src Tyr-90 was by far the most frequently identified SH3 domain phosphorylation site. A comparison of sequences around this tyrosine led to delineation of a preferred sequence motif ALYD(Y/F. This motif is present in about 15% of human SH3 domains and is structurally well conserved. We further observed that tyrosine phosphorylation is more abundant than serine or threonine phosphorylation within SH3 domains and other adaptor domains, such as SH2 or WW domains. Tyrosine phosphorylation could represent an important regulatory mechanism of adaptor domains. CONCLUSIONS: While tyrosine phosphorylation typically promotes signaling protein interactions via SH2 or PTB domains, its role in SH3 domains is the opposite - it blocks or prevents interactions. The regulatory function of tyrosine phosphorylation is most likely achieved by the phosphate moiety and its charge interfering with binding of polyproline helices of SH3 domain interacting partners.

  5. Insulin receptor substrate-3, interacting with Bcl-3, enhances p50 NF-{kappa}B activity

    Energy Technology Data Exchange (ETDEWEB)

    Kabuta, Tomohiro [Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657 (Japan); Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502 (Japan); Hakuno, Fumihiko; Cho, Yoshitake; Yamanaka, Daisuke; Chida, Kazuhiro [Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657 (Japan); Asano, Tomoichiro [Graduate School of Biomedical Science, Hiroshima University, Hiroshima 734-8551 (Japan); Wada, Keiji [Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502 (Japan); Takahashi, Shin-Ichiro, E-mail: atkshin@mail.ecc.u-tokyo.ac.jp [Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657 (Japan)

    2010-04-09

    The insulin receptor substrate (IRS) proteins are major substrates of both insulin receptor and insulin-like growth factor (IGF)-I receptor tyrosine kinases. Previously, we reported that IRS-3 is localized to both cytosol and nucleus, and possesses transcriptional activity. In the present study, we identified Bcl-3 as a novel binding protein to IRS-3. Bcl-3 is a nuclear protein, which forms a complex with the homodimer of p50 NF-{kappa}B, leading to enhancement of transcription through p50 NF-{kappa}B. We found that Bcl-3 interacts with the pleckstrin homology domain and the phosphotyrosine binding domain of IRS-3, and that IRS-3 interacts with the ankyrin repeat domain of Bcl-3. In addition, IRS-3 augmented the binding activity of p50 to the NF-{kappa}B DNA binding site, as well as the tumor necrosis factor (TNF)-{alpha}-induced transcriptional activity of NF-{kappa}B. Lastly, IRS-3 enhanced NF-{kappa}B-dependent anti-apoptotic gene induction and consequently inhibited TNF-{alpha}-induced cell death. This series of results proposes a novel function for IRS-3 as a transcriptional regulator in TNF-{alpha} signaling, distinct from its function as a substrate of insulin/IGF receptor kinases.

  6. Structures of the NLRP14 pyrin domain reveal a conformational switch mechanism regulating its molecular interactions

    International Nuclear Information System (INIS)

    Eibl, Clarissa; Hessenberger, Manuel; Wenger, Julia; Brandstetter, Hans

    2014-01-01

    Pyrin domains (PYDs) recruit downstream effector molecules in NLR signalling. A specific charge-relay system suggests a the formation of a signalling complex involving a PYD dimer. The cytosolic tripartite NLR receptors serve as important signalling platforms in innate immunity. While the C-terminal domains act as sensor and activation modules, the N-terminal death-like domain, e.g. the CARD or pyrin domain, is thought to recruit downstream effector molecules by homotypic interactions. Such homotypic complexes have been determined for all members of the death-domain superfamily except for pyrin domains. Here, crystal structures of human NLRP14 pyrin-domain variants are reported. The wild-type protein as well as the clinical D86V mutant reveal an unexpected rearrangement of the C-terminal helix α6, resulting in an extended α5/6 stem-helix. This reordering mediates a novel symmetric pyrin-domain dimerization mode. The conformational switching is controlled by a charge-relay system with a drastic impact on protein stability. How the identified charge relay allows classification of NLRP receptors with respect to distinct recruitment mechanisms is discussed

  7. In situ Fourier transform infrared spectroscopy and on-line differential electrochemical mass spectrometry study of the NH3BH3 oxidation reaction on gold electrodes

    International Nuclear Information System (INIS)

    Belén Molina Concha, M.; Chatenet, Marian; Lima, Fabio H.B.; Ticianelli, Edson A.

    2013-01-01

    The ammonia borane (NH 3 BH 3 ) oxidation reaction (ABOR) was studied on gold electrodes using the rotating disk electrode (RDE) setup and coupled physical techniques: on-line differential electrochemical mass spectrometry (DEMS) and in situ Fourier transform infrared spectroscopy (FTIR). Non-negligible heterogeneous hydrolysis in the low-potential region was asserted via molecular H 2 detection. As a consequence, the number of electron exchanged per BH 3 OH − species is ca. 3 at low potential, and only reaches ca. 6 above 0.6 V vs. RHE. These figures were confirmed by Levich and Koutecki–Levich calculations using the RDE experiments data. The nature of the ABOR intermediates and products was determined using in situ FTIR. While BH 2 species were detected during the ABOR, it seems that its adsorption onto the Au electrode proceeds via the O atom, in opposition to what happens during the borohydride oxidation reaction (BOR). Therefore, it is likely that the mechanism of the ABOR differs from that of the BOR. From the whole set of data (RDE, DEMS, FTIR), a relevant reaction pathway was proposed, including competition between the BH 3 OH − heterogeneous hydrolysis and oxidation at low potential, and preponderant oxidation at higher potential. Finally, a simplified kinetic modeling accounting with this reaction pathway was proposed, which nicely fits the stationary (i vs. E) ABOR plot

  8. The apolipoprotein L family of programmed cell death and immunity genes rapidly evolved in primates at discrete sites of host-pathogen interactions.

    Science.gov (United States)

    Smith, Eric E; Malik, Harmit S

    2009-05-01

    Apolipoprotein L1 (APOL1) is a human protein that confers immunity to Trypanosoma brucei infections but can be countered by a trypanosome-encoded antagonist SRA. APOL1 belongs to a family of programmed cell death genes whose proteins can initiate host apoptosis or autophagic death. We report here that all six members of the APOL gene family (APOL1-6) present in humans have rapidly evolved in simian primates. APOL6, furthermore, shows evidence of an adaptive sweep during recent human evolution. In each APOL gene tested, we found rapidly evolving codons in or adjacent to the SRA-interacting protein domain (SID), which is the domain of APOL1 that interacts with SRA. In APOL6, we also found a rapidly changing 13-amino-acid cluster in the membrane-addressing domain (MAD), which putatively functions as a pH sensor and regulator of cell death. We predict that APOL genes are antagonized by pathogens by at least two distinct mechanisms: SID antagonists, which include SRA, that interact with the SID of various APOL proteins, and MAD antagonists that interact with the MAD hinge base of APOL6. These antagonists either block or prematurely cause APOL-mediated programmed cell death of host cells to benefit the infecting pathogen. These putative interactions must occur inside host cells, in contrast to secreted APOL1 that trafficks to the trypanosome lysosome. Hence, the dynamic APOL gene family appears to be an important link between programmed cell death of host cells and immunity to pathogens.

  9. B-H Bond Activation by an Amidinate-Stabilized Amidosilylene: Non-Innocent Amidinate Ligand.

    Science.gov (United States)

    Khoo, Sabrina; Shan, Yu-Liang; Yang, Ming-Chung; Li, Yongxin; Su, Ming-Der; So, Cheuk-Wai

    2018-05-21

    The activation of B-H and B-Cl bonds in boranes by base-stabilized low-valent silicon compounds is described. The reaction of the amidinato amidosilylene-borane adduct [L{Ar(Me 3 Si)N}SiBH 3 ] [1; L = PhC(N tBu) 2 , and Ar = 2,6- iPr 2 C 6 H 3 ] with MeOTf in toluene at room temperature formed [L{Ar(Me 3 Si)N}SiBH 2 OTf] (2). [LSiN(SiMe 3 )Ar] in compound 2 then underwent a B-H bond activation with BH 2 OTf in refluxing toluene to afford the B-H bond activation product [LB(H)Si(H)(OTf){N(SiMe 3 )Ar}] (3). On the other hand, when compound 2 was reacted with 4-dimethylaminopyridine in refluxing toluene, another B-H bond activation product [(μ-κ1:κ1-L)B(H)(DMAP)Si(H){N(Ar)SiMe 3 }]OTf (4) was afforded. Mechanistic studies show that "(μ-κ1:κ1-L)B(H)(OTf)Si(H){N(Ar)SiMe 3 }" (2A) is the key intermediate in the reactions mentioned above. The formation of 2A is further evidenced by the activation of the B-Cl bond in PhBCl 2 by the amidinato silicon(I) dimer [LSi:] 2 to form the B-Cl bond activation product [(μ-κ1:κ1-L)B(Cl)(Ph)Si(Cl)] 2 (6). Compounds 2-4 and 6 were characterized by nuclear magnetic resonance spectroscopy and X-ray crystallography.

  10. Apoptosis signaling and radiation protection

    International Nuclear Information System (INIS)

    Morita, Akinori; Suzuki, Norio; Hosoi, Yoshio

    2005-01-01

    Radiation protection by apoptosis control is the suppression of cell death in highly radiosensitive tissues. This paper describes the outline of radiation-induced apoptosis framework, apoptosis-concerned target molecules possibly related to apoptosis by radiation and their inhibitors. Although there are intrinsic (via mitochondria) and extrinsic (via death receptor) pathways in apoptosis, this review mainly mentions the former which is more important in radiation-induced apoptosis. Those molecules known at present in the apoptosis are caspase, Bcl-2 family and p53. Caspase, a group of cystein proteases, initiates apoptosis but its inhibition is known not always to result in apoptosis suppression, suggesting the existence of caspase-independent pathways. Bcl-2 family involves apoptosis-suppressing (possessing BH domains) and -promoting (lacking BH domains or possessing BH3 domain alone/BH3-only protein) groups. Two p53-transcription-dependent and one -independent pathways in p53-induced apoptosis are known and p53 can be a most possible target molecule since it positions at the start of apoptosis. Authors have found a vanadate inactivates p53. Inhibitors affecting upstream molecules of apoptosis will be the most useful candidate for apoptosis suppression/radiation protection. (S.I.) 106 refs

  11. Interactions of polyomavirus middle T with the SH2 domains of the pp85 subunit of phosphatidylinositol-3-kinase.

    Science.gov (United States)

    Yoakim, M; Hou, W; Liu, Y; Carpenter, C L; Kapeller, R; Schaffhausen, B S

    1992-01-01

    The binding of phosphatidylinositol-3-kinase to the polyomavirus middle T antigen is facilitated by tyrosine phosphorylation of middle T on residue 315. The pp85 subunit of phosphatidylinositol-3-kinase contains two SH2 domains, one in the middle of the molecule and one at the C terminus. When assayed by blotting with phosphorylated middle T, the more N-terminal SH2 domain is responsible for binding to middle T. When assayed in solution with glutathione S transferase fusions, both SH2s are capable of binding phosphorylated middle T. While both SH2 fusions can compete with intact pp85 for binding to middle T, the C-terminal SH2 is the more efficient of the two. Interaction between pp85 or its SH2 domains and middle T can be blocked by a synthetic peptide comprising the tyrosine phosphorylation sequence around middle T residue 315. Despite the fact that middle T can interact with both SH2s, these domains are not equivalent. Only the C-terminal SH2-middle T interaction was blocked by anti-SH2 antibody; the two SH2 fusions also interact with different cellular proteins. Images PMID:1380095

  12. Dual role of proapoptotic BAD in insulin secretion and beta cell survival.

    Science.gov (United States)

    Danial, Nika N; Walensky, Loren D; Zhang, Chen-Yu; Choi, Cheol Soo; Fisher, Jill K; Molina, Anthony J A; Datta, Sandeep Robert; Pitter, Kenneth L; Bird, Gregory H; Wikstrom, Jakob D; Deeney, Jude T; Robertson, Kirsten; Morash, Joel; Kulkarni, Ameya; Neschen, Susanne; Kim, Sheene; Greenberg, Michael E; Corkey, Barbara E; Shirihai, Orian S; Shulman, Gerald I; Lowell, Bradford B; Korsmeyer, Stanley J

    2008-02-01

    The proapoptotic BCL-2 family member BAD resides in a glucokinase-containing complex that regulates glucose-driven mitochondrial respiration. Here, we present genetic evidence of a physiologic role for BAD in glucose-stimulated insulin secretion by beta cells. This novel function of BAD is specifically dependent upon the phosphorylation of its BH3 sequence, previously defined as an essential death domain. We highlight the pharmacologic relevance of phosphorylated BAD BH3 by using cell-permeable, hydrocarbon-stapled BAD BH3 helices that target glucokinase, restore glucose-driven mitochondrial respiration and correct the insulin secretory response in Bad-deficient islets. Our studies uncover an alternative target and function for the BAD BH3 domain and emphasize the therapeutic potential of phosphorylated BAD BH3 mimetics in selectively restoring beta cell function. Furthermore, we show that BAD regulates the physiologic adaptation of beta cell mass during high-fat feeding. Our findings provide genetic proof of the bifunctional activities of BAD in both beta cell survival and insulin secretion.

  13. Survival advantages conferred to colon cancer cells by E-selectin-induced activation of the PI3K-NFκB survival axis downstream of Death receptor-3

    International Nuclear Information System (INIS)

    Porquet, Nicolas; Huot, Jacques; Poirier, Andrée; Houle, François; Pin, Anne-Laure; Gout, Stéphanie; Tremblay, Pierre-Luc; Paquet, Éric R; Klinck, Roscoe; Auger, François A

    2011-01-01

    Extravasation of circulating cancer cells is a key event of metastatic dissemination that is initiated by the adhesion of cancer cells to endothelial cells. It requires interactions between adhesion receptors on endothelial cells and their counter-receptors on cancer cells. Notably, E-selectin, a major endothelial adhesion receptor, interacts with Death receptor-3 present on metastatic colon carcinoma cells. This interaction confers metastatic properties to colon cancer cells by promoting the adhesion of cancer cells to endothelial cells and triggering the activation of the pro-migratory p38 and pro-survival ERK pathways in the cancer cells. In the present study, we investigated further the mechanisms by which the E-selectin-activated pathways downstream of DR3 confer a survival advantage to colon cancer cells. Cell survival has been ascertained by using the WST-1 assay and by evaluating the activation of the PI3 kinase/NFκB survival axis. Apoptosis has been assayed by determining DNA fragmentation by Hoechst staining and by measuring cleavage of caspases-8 and -3. DR3 isoforms have been identified by PCR. For more precise quantification, targeted PCR reactions were carried out, and the amplified products were analyzed by automated chip-based microcapillary electrophoresis on an Agilent 2100 Bioanalyzer instrument. Interaction between DR3-expressing HT29 colon carcinoma cells and E-selectin induces the activation of the PI3K/Akt pathway. Moreover, p65/RelA, the anti-apoptotic subunit of NFκB, is rapidly translocated to the nucleus in response to E-selectin. This translocation is impaired by the PI3K inhibitor LY294002. Furthermore, inhibition of the PI3K/Akt pathway increases the cleavage of caspase 8 in colon cancer cells treated with E-selectin and this effect is still further increased when both ERK and PI3K pathways are concomitantly inhibited. Intriguingly, metastatic colon cancer cell lines such as HT29 and SW620 express higher levels of a splice variant of

  14. Survival advantages conferred to colon cancer cells by E-selectin-induced activation of the PI3K-NFκB survival axis downstream of Death receptor-3

    Directory of Open Access Journals (Sweden)

    Paquet Éric R

    2011-07-01

    Full Text Available Abstract Background Extravasation of circulating cancer cells is a key event of metastatic dissemination that is initiated by the adhesion of cancer cells to endothelial cells. It requires interactions between adhesion receptors on endothelial cells and their counter-receptors on cancer cells. Notably, E-selectin, a major endothelial adhesion receptor, interacts with Death receptor-3 present on metastatic colon carcinoma cells. This interaction confers metastatic properties to colon cancer cells by promoting the adhesion of cancer cells to endothelial cells and triggering the activation of the pro-migratory p38 and pro-survival ERK pathways in the cancer cells. In the present study, we investigated further the mechanisms by which the E-selectin-activated pathways downstream of DR3 confer a survival advantage to colon cancer cells. Methods Cell survival has been ascertained by using the WST-1 assay and by evaluating the activation of the PI3 kinase/NFκB survival axis. Apoptosis has been assayed by determining DNA fragmentation by Hoechst staining and by measuring cleavage of caspases-8 and -3. DR3 isoforms have been identified by PCR. For more precise quantification, targeted PCR reactions were carried out, and the amplified products were analyzed by automated chip-based microcapillary electrophoresis on an Agilent 2100 Bioanalyzer instrument. Results Interaction between DR3-expressing HT29 colon carcinoma cells and E-selectin induces the activation of the PI3K/Akt pathway. Moreover, p65/RelA, the anti-apoptotic subunit of NFκB, is rapidly translocated to the nucleus in response to E-selectin. This translocation is impaired by the PI3K inhibitor LY294002. Furthermore, inhibition of the PI3K/Akt pathway increases the cleavage of caspase 8 in colon cancer cells treated with E-selectin and this effect is still further increased when both ERK and PI3K pathways are concomitantly inhibited. Intriguingly, metastatic colon cancer cell lines such as HT

  15. A graph kernel approach for alignment-free domain-peptide interaction prediction with an application to human SH3 domains.

    Science.gov (United States)

    Kundu, Kousik; Costa, Fabrizio; Backofen, Rolf

    2013-07-01

    State-of-the-art experimental data for determining binding specificities of peptide recognition modules (PRMs) is obtained by high-throughput approaches like peptide arrays. Most prediction tools applicable to this kind of data are based on an initial multiple alignment of the peptide ligands. Building an initial alignment can be error-prone, especially in the case of the proline-rich peptides bound by the SH3 domains. Here, we present a machine-learning approach based on an efficient graph-kernel technique to predict the specificity of a large set of 70 human SH3 domains, which are an important class of PRMs. The graph-kernel strategy allows us to (i) integrate several types of physico-chemical information for each amino acid, (ii) consider high-order correlations between these features and (iii) eliminate the need for an initial peptide alignment. We build specialized models for each human SH3 domain and achieve competitive predictive performance of 0.73 area under precision-recall curve, compared with 0.27 area under precision-recall curve for state-of-the-art methods based on position weight matrices. We show that better models can be obtained when we use information on the noninteracting peptides (negative examples), which is currently not used by the state-of-the art approaches based on position weight matrices. To this end, we analyze two strategies to identify subsets of high confidence negative data. The techniques introduced here are more general and hence can also be used for any other protein domains, which interact with short peptides (i.e. other PRMs). The program with the predictive models can be found at http://www.bioinf.uni-freiburg.de/Software/SH3PepInt/SH3PepInt.tar.gz. We also provide a genome-wide prediction for all 70 human SH3 domains, which can be found under http://www.bioinf.uni-freiburg.de/Software/SH3PepInt/Genome-Wide-Predictions.tar.gz. Supplementary data are available at Bioinformatics online.

  16. Structural Phase Transitions of Mg(BH4)2 under Pressure

    International Nuclear Information System (INIS)

    George, L.; Drozd, V.; Saxena, S.; Bardaji, E.; Fichtner, M.

    2009-01-01

    The structural stability of Mg(BH4)2, a promising hydrogen storage material, under pressure has been investigated in a diamond anvil cell up to 22 GPa with combined synchrotron X-ray diffraction and Raman spectroscopy. The analyses show a structural phase transition around 2.5 GPa and again around 14.4 GPa. An ambient-pressure phase of Mg(BH4)2 has a hexagonal structure (space group P61, a = 10.047(3) A, c = 36.34(1) A, and V = 3176(1) A3 at 0.2 GPa), which agrees well with early reports. The structure of high-pressure phase is found to be different from reported theoretical predictions; it also does not match the high-temperature phase. The high-pressure polymorph of Mg(BH4)2 is found to be stable on decompression, similar to the case of the high-temperature phase. Raman spectroscopic study shows a similarity in high-pressure behavior of as-prepared Mg(BH4)2 and its high-temperature phase.

  17. Characteristics of Al Alloy as a Material for Hydrolysis Reactor of NaBH{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hyeon-Seong; Oh, Sung-June; Jeong, Jae-Jin; Na, Il-Chai; Chu, Cheun-Ho; Park, Kwon-Pil [Sunchon National University, Suncheon (Korea, Republic of); Chu, Cheun-Ho [ETIS Co, Gimpo (Korea, Republic of)

    2015-12-15

    Aluminum alloy was examined as a material of low weight reactor for hydrolysis of NaBH{sub 4}. Aluminum is dissolved with alkali, but there is NaOH as a stabilizer in NaBH{sub 4} solution. To decrease corrosion rate of aluminum, decrease NaOH concentration and this result in loss of NaBH{sub 4} during storage of NaBH{sub 4} solution. Therefore stability of NaBH{sub 4} and corrosion of aluminum should be considered in determining the optimum NaOH concentration. NaBH{sub 4} stability and corrosion rate of aluminum were measured by hydrogen evolution rate. NaBH{sub 4} stability was tested at 20-50 .deg. C and aluminum corrosion was measured at 60-90 .deg. C. The optimum concentration of NaOH was 0.3 wt%, considering both NaBH{sub 4} stability and aluminun corrosion. NaBH{sub 4} hydrolysis reaction continued 200min in aluminum No 6061 alloy reactor with 0.3 wt% NaOH at 80-90 .deg. C.

  18. A novel cervical cancer suppressor 3 (CCS-3) interacts with the BTB domain of PLZF and inhibits the cell growth by inducing apoptosis.

    Science.gov (United States)

    Rho, Seung Bae; Park, Young Gyo; Park, Kyoungsook; Lee, Seung-Hoon; Lee, Je-Ho

    2006-07-24

    Promyelocytic leukemia zinc finger protein (PLZF) is a sequence-specific, DNA binding, transcriptional repressor differentially expressed during embryogenesis and in adult tissues. PLZF is known to be a negative regulator of cell cycle progression. We used PLZF as bait in a yeast two-hybrid screen with a cDNA library from the human ovary tissue. A novel cervical cancer suppressor 3 (CCS-3) was identified as a PLZF interacting partner. Further characterization revealed the BTB domain as an interacting domain of PLZF. Interaction of CCS-3 with PLZF in mammalian cells was also confirmed by co-immunoprecipitation and in vitro binding assays. It was found that, although CCS-3 shares similar homology with eEF1A, the study determined CCS-3 to be an isoform. CCS-3 was observed to be downregulated in human cervical cell lines as well as in cervical tumors when compared to those from normal tissues. Overexpression of CCS-3 in human cervical cell lines inhibits cell growth by inducing apoptosis and suppressing human cyclin A2 promoter activity. These combined results suggest that the potential tumor suppressor activity of CCS-3 may be mediated by its interaction with PLZF.

  19. Dehydriding and rehydriding reactions of LiBH4

    International Nuclear Information System (INIS)

    Orimo, S.; Nakamori, Y.; Kitahara, G.; Miwa, K.; Ohba, N.; Towata, S.; Zuettel, A.

    2005-01-01

    Structural differences in LiBH 4 before and after the melting reaction at approximately 550-bar K were investigated to clarify the experimental method for the confirmation of reversible dehydriding and rehydriding reactions. Since the long-range order of LiBH 4 begins to disappear after the melting reaction was achieved, investigation of the atomistic vibrations of the [BH 4 ]-anion in LiBH 4 was found to be effective for the confirmation of the reversibility. In the present study, LiBH 4 was successively dehydrided (decomposed) into LiH and B under 1-bar MPa of hydrogen at 873-bar K, and then rehydrided (recombined) into LiBH 4 under 35-bar MPa of hydrogen at the same temperature (873-bar K). The temperatures at the beginning and ending of the dehydriding reaction are lowered, by approximately 30-bar K, for LiBH 4 substituted (or mixed) with Mg (atomic ratio of Li:Mg=9:1) as compared to those for LiBH 4 alone. This is similar to the tendency exhibited by LiNH 2

  20. Chalepin: A Compound from Ruta angustifolia L. Pers Exhibits Cell Cycle Arrest at S phase, Suppresses Nuclear Factor-Kappa B (NF-κB) Pathway, Signal Transducer and Activation of Transcription 3 (STAT3) Phosphorylation and Extrinsic Apoptotic Pathway in Non-small Cell Lung Cancer Carcinoma (A549).

    Science.gov (United States)

    Richardson, Jaime Stella Moses; Aminudin, Norhaniza; Abd Malek, Sri Nurestri

    2017-10-01

    Plants have been a major source of inspiration in developing novel drug compounds in the treatment of various diseases that afflict human beings worldwide. Ruta angustifolia L. Pers known locally as Garuda has been conventionally used for various medicinal purposes such as in the treatment of cancer. A dihydrofuranocoumarin named chalepin, which was isolated from the chloroform extract of the plant, was tested on its ability to inhibit molecular pathways of human lung carcinoma (A549) cells. Cell cycle analysis and caspase 8 activation were conducted using a flow cytometer, and protein expressions in molecular pathways were determined using Western blot technique. Cell cycle analysis showed that cell cycle was arrested at the S phase. Further studies using Western blotting technique showed that cell cycle-related proteins such as cyclins, cyclin-dependent kinases (CDKs), and inhibitors of CDKs correspond to a cell cycle arrest at the S phase. Chalepin also showed inhibition in the expression of inhibitors of apoptosis proteins. Nuclear factor-kappa B (NF-κB) pathway, signal transducer and activation of transcription 3 (STAT-3), cyclooxygenase-2, and c-myc were also downregulated upon treatment with chalepin. Chalepin was found to induce extrinsic apoptotic pathway. Death receptors 4 and 5 showed a dramatic upregulation at 24 h. Analysis of activation of caspase 8 with the flow cytometer showed an increase in activity in a dose- and time-dependent manner. Activation of caspase 8 induced cleavage of BH3-interacting domain death agonist, which initiated a mitochondrial-dependent or -independent apoptosis. Chalepin causes S phase cell cycle arrest, NF-κB pathway inhibition, and STAT-3 inhibition, induces extrinsic apoptotic pathway, and could be an excellent chemotherapeutic agent. This study reports the capacity of an isolated bioactive compound known as chalepin to suppress the nuclear factor kappa-light-chain-enhancer of activated B cells pathway, signal

  1. Genealogical electronic coupling procedure incorporating the Hartree--Fock interacting space and suitable for degenerate point groups. Application to excited states of BH3

    International Nuclear Information System (INIS)

    Swope, W.C.; Schaefer, H.F. III; Yarkony, D.R.

    1980-01-01

    The use of Clebsch--Gordan-type coupling coefficients for finite point groups is applied to the problem of constructing symmetrized N-electron wave functions (configurations) for use by the Hartree--Fock SCF and CI methods of determining electronic wave functions for molecular systems. The configurations are eigenfunctions of electronic spin operators, and transform according to a particular irreducible representation of the relevant group of spatial operations which leave the Born--Oppenheimer Hamiltonian invariant. The method proposed for constructing the configurations involves a genealogical coupling procedure. It is particularly useful for studies of molecules which belong to a group which has multiply degenerate irreducible representations. The advantage of the method is that it results in configurations which are real linear combinations of determinants of real symmetry orbitals. This procedure for constructing configurations also allows for the identification of configurations which have no matrix element of the Hamiltonian with a reference configuration. It is therefore possible to construct a Hartree--Fock interacting space of configurations which can speed the convergence of a CI wave function. The coupling method is applied to a study of the ground and two excited electronic states of BH 3 in its D/sub 3h/ geometry. The theoretical approach involved Hartree--Fock SCF calculations followed by single and double substitution CI calculations, both of which employed double-zeta plus polarization quality basis sets

  2. The death effector domains of caspase-8 induce terminal differentiation.

    Directory of Open Access Journals (Sweden)

    Ainhoa Mielgo

    2009-11-01

    Full Text Available The differentiation and senescence programs of metazoans play key roles in regulating normal development and preventing aberrant cell proliferation, such as cancer. These programs are intimately associated with both the mitotic and apoptotic pathways. Caspase-8 is an apical apoptotic initiator that has recently been appreciated to coordinate non-apoptotic roles in the cell. Most of these functions are attributed to the catalytic domain, however, the amino-terminal death effector domains (DEDs, which belong to the death domain superfamily of proteins, can also play key roles during development. Here we describe a novel role for caspase-8 DEDs in regulating cell differentiation and senescence. Caspase-8 DEDs accumulate during terminal differentiation and senescence of epithelial, endothelial and myeloid cells; genetic deletion or shRNA suppression of caspase-8 disrupts cell differentiation, while re-expression of DEDs rescues this phenotype. Among caspase-8 deficient neuroblastoma cells, DED expression attenuated tumor growth in vivo and proliferation in vitro via disruption of mitosis and cytokinesis, resulting in upregulation of p53 and induction of differentiation markers. These events occur independent of caspase-8 catalytic activity, but require a critical lysine (K156 in a microtubule-binding motif in the second DED domain. The results demonstrate a new function for the DEDs of caspase-8, and describe an unexpected mechanism that contributes to cell differentiation and senescence.

  3. BAX/BAK–Independent Mitoptosis during Cell Death Induced by Proteasome Inhibition?

    OpenAIRE

    Lomonosova, Elena; Ryerse, Jan; Chinnadurai, G.

    2009-01-01

    Proteasome inhibitors induce rapid death of cancer cells. We show that in epithelial cancer cells, such death is associated with dramatic and simultaneous up-regulation of several BH3-only proteins, including BIK, BIM, MCL-1S, NOXA, and PUMA, as well as p53. Elevated levels of these proteins seem to be the result of direct inhibition of their proteasomal degradation, induction of transcription, and active translation. Subsequent cell death is independent of BAX, and probably BAK, and proceeds...

  4. Interactions between the S-domain receptor kinases and AtPUB-ARM E3 ubiquitin ligases suggest a conserved signaling pathway in Arabidopsis.

    Science.gov (United States)

    Samuel, Marcus A; Mudgil, Yashwanti; Salt, Jennifer N; Delmas, Frédéric; Ramachandran, Shaliny; Chilelli, Andrea; Goring, Daphne R

    2008-08-01

    The Arabidopsis (Arabidopsis thaliana) genome encompasses multiple receptor kinase families with highly variable extracellular domains. Despite their large numbers, the various ligands and the downstream interacting partners for these kinases have been deciphered only for a few members. One such member, the S-receptor kinase, is known to mediate the self-incompatibility (SI) response in Brassica. S-receptor kinase has been shown to interact and phosphorylate a U-box/ARM-repeat-containing E3 ligase, ARC1, which, in turn, acts as a positive regulator of the SI response. In an effort to identify conserved signaling pathways in Arabidopsis, we performed yeast two-hybrid analyses of various S-domain receptor kinase family members with representative Arabidopsis plant U-box/ARM-repeat (AtPUB-ARM) E3 ligases. The kinase domains from S-domain receptor kinases were found to interact with ARM-repeat domains from AtPUB-ARM proteins. These kinase domains, along with M-locus protein kinase, a positive regulator of SI response, were also able to phosphorylate the ARM-repeat domains in in vitro phosphorylation assays. Subcellular localization patterns were investigated using transient expression assays in tobacco (Nicotiana tabacum) BY-2 cells and changes were detected in the presence of interacting kinases. Finally, potential links to the involvement of these interacting modules to the hormone abscisic acid (ABA) were investigated. Interestingly, AtPUB9 displayed redistribution to the plasma membrane of BY-2 cells when either treated with ABA or coexpressed with the active kinase domain of ARK1. As well, T-DNA insertion mutants for ARK1 and AtPUB9 lines were altered in their ABA sensitivity during germination and acted at or upstream of ABI3, indicating potential involvement of these proteins in ABA responses.

  5. Electrostatics and Flexibility Drive Membrane Recognition and Early Penetration by Antimicrobial Peptide Dendrimer bH1

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, Harish Kumar; Stach, Michaela; Soares, Thereza A.; Darbre, Tamis; Reymond, Jean-Louis; Cascella, Michele

    2013-08-01

    Molecular dynamics simulation of polycationic antimicrobial peptide dendrimer bH1 (Leu)8(DapLeu)4(DapPhe)2DapLys- NH2 binding to membranes suggest that electrostatic 10 interactions with the polyanionic lipopolysaccharide (LPS) and conformational flexibility of the 2,3-diaminopropanoic acid (Dap) branching units drive its selective insertion into microbial membranes.

  6. The SH2 Domain Interaction Landscape

    Directory of Open Access Journals (Sweden)

    Michele Tinti

    2013-04-01

    Full Text Available Members of the SH2 domain family modulate signal transduction by binding to short peptides containing phosphorylated tyrosines. Each domain displays a distinct preference for the sequence context of the phosphorylated residue. We have developed a high-density peptide chip technology that allows for probing of the affinity of most SH2 domains for a large fraction of the entire complement of tyrosine phosphopeptides in the human proteome. Using this technique, we have experimentally identified thousands of putative SH2-peptide interactions for more than 70 different SH2 domains. By integrating this rich data set with orthogonal context-specific information, we have assembled an SH2-mediated probabilistic interaction network, which we make available as a community resource in the PepspotDB database. A predicted dynamic interaction between the SH2 domains of the tyrosine phosphatase SHP2 and the phosphorylated tyrosine in the extracellular signal-regulated kinase activation loop was validated by experiments in living cells.

  7. Functional interaction between hMYH and hTRADD in the TNF-α-mediated survival and death pathways of HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Vy Tran, An Hue; Hahm, Soo-Hyun; Han, Se Hee [Department of Advanced Technology Fusion, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701 (Korea, Republic of); Chung, Ji Hyung [Department of Applied Bioscience, College of Life Science, CHA University, Gyeonggi-do 463-836 (Korea, Republic of); Park, Geon Tae [Cornell University, Ithaca, NY 14850 (United States); Han, Ye Sun, E-mail: yshan@konkuk.ac.kr [College of Global Integrated Studies, Division of Interdisciplinary Studies, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701 (Korea, Republic of)

    2015-07-15

    Highlights: • We determine the interaction between hMYH and hTRADD. • We examine changes in the level of hMYH–hTRADD interaction under TNF-α treatment. • hTRADD–hMYH association is involved in the nuclear translocation of NFκB. • hTRADD–hMYH complex influences the TNFR1–TRADD association. - Abstract: The tumor necrosis factor (TNF) signaling pathway is a classical immune system pathway that plays a key role in regulating cell survival and apoptosis. The TNF receptor-associated death domain (TRADD) protein is recruited to the death domain of TNF receptor 1 (TNFR1), where it interacts with TNF receptor-associated factor 2 (TRAF2) and receptor-interacting protein (RIP) for the induction of apoptosis, necrosis, nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), and mitogen-activated protein (MAP) kinase activation. In this study, we found that the human MutY homolog (hMYH) interacted with human TRADD (hTRADD) via the C-terminal domain of hMYH. Moreover, under conditions promoting TNF-α-induced cell death or survival in HeLa cells, this interaction was weakened or enhanced, respectively. The interaction between hMYH and hTRADD was important for signaling pathways mediated by TNF-α. Our results also suggested that the hTRADD–hMYH association was involved in the nuclear translocation of NFκB and formation of the TNFR1–TRADD complex. Thus, this study identified a novel mechanism through which the hMYH–hTRADD interaction may affect the TNF-α signaling pathway. Implications: In HeLa cells, the hTRADD–hMYH interaction functioned in both cell survival and apoptosis pathways following TNF-α stimulation.

  8. Configuration and local elastic interaction of ferroelectric domains and misfit dislocation in PbTiO3/SrTiO3 epitaxial thin films

    Directory of Open Access Journals (Sweden)

    Takanori Kiguchi, Kenta Aoyagi, Yoshitaka Ehara, Hiroshi Funakubo, Tomoaki Yamada, Noritaka Usami and Toyohiko J Konno

    2011-01-01

    Full Text Available We have studied the strain field around the 90° domains and misfit dislocations in PbTiO3/SrTiO3 (001 epitaxial thin films, at the nanoscale, using the geometric phase analysis (GPA combined with high-resolution transmission electron microscopy (HRTEM and high-angle annular dark field––scanning transmission electron microscopy (HAADF-STEM. The films typically contain a combination of a/c-mixed domains and misfit dislocations. The PbTiO3 layer was composed from the two types of the a-domain (90° domain: a typical a/c-mixed domain configuration where a-domains are 20–30 nm wide and nano sized domains with a width of about 3 nm. In the latter case, the nano sized a-domain does not contact the film/substrate interface; it remains far from the interface and stems from the misfit dislocation. Strain maps obtained from the GPA of HRTEM images show the elastic interaction between the a-domain and the dislocations. The normal strain field and lattice rotation match each other between them. Strain maps reveal that the a-domain nucleation takes place at the misfit dislocation. The lattice rotation around the misfit dislocation triggers the nucleation of the a-domain; the normal strains around the misfit dislocation relax the residual strain in a-domain; then, the a-domain growth takes place, accompanying the introduction of the additional dislocation perpendicular to the misfit dislocation and the dissociation of the dislocations into two pairs of partial dislocations with an APB, which is the bottom boundary of the a-domain. The novel mechanism of the nucleation and growth of 90° domain in PbTiO3/SrTiO3 epitaxial system has been proposed based on above the results.

  9. Birth and death of protein domains: A simple model of evolution explains power law behavior

    Directory of Open Access Journals (Sweden)

    Berezovskaya Faina S

    2002-10-01

    Full Text Available Abstract Background Power distributions appear in numerous biological, physical and other contexts, which appear to be fundamentally different. In biology, power laws have been claimed to describe the distributions of the connections of enzymes and metabolites in metabolic networks, the number of interactions partners of a given protein, the number of members in paralogous families, and other quantities. In network analysis, power laws imply evolution of the network with preferential attachment, i.e. a greater likelihood of nodes being added to pre-existing hubs. Exploration of different types of evolutionary models in an attempt to determine which of them lead to power law distributions has the potential of revealing non-trivial aspects of genome evolution. Results A simple model of evolution of the domain composition of proteomes was developed, with the following elementary processes: i domain birth (duplication with divergence, ii death (inactivation and/or deletion, and iii innovation (emergence from non-coding or non-globular sequences or acquisition via horizontal gene transfer. This formalism can be described as a birth, death and innovation model (BDIM. The formulas for equilibrium frequencies of domain families of different size and the total number of families at equilibrium are derived for a general BDIM. All asymptotics of equilibrium frequencies of domain families possible for the given type of models are found and their appearance depending on model parameters is investigated. It is proved that the power law asymptotics appears if, and only if, the model is balanced, i.e. domain duplication and deletion rates are asymptotically equal up to the second order. It is further proved that any power asymptotic with the degree not equal to -1 can appear only if the hypothesis of independence of the duplication/deletion rates on the size of a domain family is rejected. Specific cases of BDIMs, namely simple, linear, polynomial and rational

  10. Abl N-terminal cap stabilization of SH3 domain dynamics.

    Science.gov (United States)

    Chen, Shugui; Dumitrescu, Teodora Pene; Smithgall, Thomas E; Engen, John R

    2008-05-27

    Crystal structures and other biochemical data indicate that the N-terminal cap (NCap) region of the Abelson tyrosine kinase (c-Abl) is important for maintaining the downregulated conformation of the kinase domain. The exact contributions that the NCap makes in stabilizing the various intramolecular interactions within c-Abl are less clear. While the NCap appears to be important for locking the SH3 and SH2 domains to the back of the kinase domain, there may be other more subtle elements of regulation. Hydrogen exchange (HX) and mass spectrometry (MS) were used to determine if the NCap contributes to intramolecular interactions involving the Abl SH3 domain. Under physiological conditions, the Abl SH3 domain underwent partial unfolding and its unfolding half-life was slowed during binding to the SH2 kinase linker, providing a unique assay for testing NCap-induced stabilization of the SH3 domain in various constructs. The results showed that the NCap stabilizes the dynamics of the SH3 domain in certain constructs but does not increase the relative affinity of the SH3 domain for the native SH2 kinase linker. The stabilization effect was absent in constructs of just the NCap and SH3 but was obvious when the SH2 domain and the SH2 kinase linker were present. These results suggest that interactions between the NCap and the SH3 domain can contribute to c-Abl stabilization in constructs that contain at least the SH2 domain, an effect that may partially compensate for the absence of the negative regulatory C-terminal tail found in the related Src family of kinases.

  11. Ionic conductivity and the formation of cubic CaH2 in the LiBH4-Ca(BH4)2 composite

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn; Blanchard, Didier; Mýrdal, Jón Steinar Garðarsson

    2014-01-01

    LiBH4–Ca(BH4)2 composites were prepared by ball milling. Their crystal structures and phase composition were investigated using synchrotron X-ray diffraction and Rietveld refinement, and their ionic conductivity was measured using impedance spectroscopy. The materials were found to form a physical...... treatment. Concurrent formation of elemental boron may also occur. The ionic conductivity of the composites was measured using impedance spectroscopy, and was found to be lower than that of ball milled LiBH4. Electronic band structure calculations indicate that cubic CaH2 with hydrogen defects...... is electronically conducting. Its formation along with the possible precipitation of boron therefore has an effect on the measured conductivity of the LiBH4–Ca(BH4)2 composites and may increase the risk of an internal short-circuit in the cells....

  12. The SH2 domain interaction landscape.

    Science.gov (United States)

    Tinti, Michele; Kiemer, Lars; Costa, Stefano; Miller, Martin L; Sacco, Francesca; Olsen, Jesper V; Carducci, Martina; Paoluzi, Serena; Langone, Francesca; Workman, Christopher T; Blom, Nikolaj; Machida, Kazuya; Thompson, Christopher M; Schutkowski, Mike; Brunak, Søren; Mann, Matthias; Mayer, Bruce J; Castagnoli, Luisa; Cesareni, Gianni

    2013-04-25

    Members of the SH2 domain family modulate signal transduction by binding to short peptides containing phosphorylated tyrosines. Each domain displays a distinct preference for the sequence context of the phosphorylated residue. We have developed a high-density peptide chip technology that allows for probing of the affinity of most SH2 domains for a large fraction of the entire complement of tyrosine phosphopeptides in the human proteome. Using this technique, we have experimentally identified thousands of putative SH2-peptide interactions for more than 70 different SH2 domains. By integrating this rich data set with orthogonal context-specific information, we have assembled an SH2-mediated probabilistic interaction network, which we make available as a community resource in the PepspotDB database. A predicted dynamic interaction between the SH2 domains of the tyrosine phosphatase SHP2 and the phosphorylated tyrosine in the extracellular signal-regulated kinase activation loop was validated by experiments in living cells. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Modulation of NO and ROS production by AdiNOS transduced vascular cells through supplementation with L-Arg and BH4: implications for gene therapy of restenosis.

    Science.gov (United States)

    Forbes, Scott P; Alferiev, Ivan S; Chorny, Michael; Adamo, Richard F; Levy, Robert J; Fishbein, Ilia

    2013-09-01

    Gene therapy with viral vectors encoding for NOS enzymes has been recognized as a potential therapeutic approach for the prevention of restenosis. Optimal activity of iNOS is dependent on the intracellular availability of L-Arg and BH4 via prevention of NOS decoupling and subsequent ROS formation. Herein, we investigated the effects of separate and combined L-Arg and BH4 supplementation on the production of NO and ROS in cultured rat arterial smooth muscle and endothelial cells transduced with AdiNOS, and their impact on the antirestenotic effectiveness of AdiNOS delivery to balloon-injured rat carotid arteries. Supplementation of AdiNOS transduced endothelial and vascular smooth muscle cells with L-Arg (3.0 mM), BH4 (10 μM) and especially their combination resulted in a significant increase in NO production as measured by nitrite formation in media. Formation of ROS was dose-dependently increased following transduction with increasing MOIs of AdiNOS. Exposure of RASMC to AdiNOS tethered to meshes via a hydrolyzable cross-linker, modeling viral delivery from stents, resulted in increased ROS production, which was decreased by supplementation with BH4 but not L-Arg or L-Arg/BH4. Enhanced cell death, caused by AdiNOS transduction, was also preventable with BH4 supplementation. In the rat carotid model of balloon injury, intraluminal delivery of AdiNOS in BH4-, L-Arg-, and especially in BH4 and L-Arg supplemented animals was found to significantly enhance the antirestenotic effects of AdiNOS-mediated gene therapy. Fine-tuning of iNOS function by L-Arg and BH4 supplementation in the transduced vasculature augments the therapeutic potential of gene therapy with iNOS for the prevention of restenosis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Photochemistry of U(BH4)4 and U(BD4)4

    International Nuclear Information System (INIS)

    Paine, R.T.; Schonberg, P.R.; Light, R.W.; Danen, W.C.; Freund, S.M.

    1979-01-01

    U(BH 4 ) 4 and U(BD 4 ) 4 are observed to undergo complex degradation reactions promoted by broadband UV radiation. The primary products of these reactions appear to be U(BH 4 ) 3 , B 2 H 6 , H 2 , U(BD 4 ) 3 , B 2 D 6 and D 2 . Further, U(BD 4 ) 4 undergoes a related decomposition reaction under the influence of CO 2 laser irradiation at 924.97 cm -1 . (author)

  15. A STAT3-decoy oligonucleotide induces cell death in a human colorectal carcinoma cell line by blocking nuclear transfer of STAT3 and STAT3-bound NF-κB

    Directory of Open Access Journals (Sweden)

    Le Coquil Stéphanie

    2011-04-01

    Full Text Available Abstract Background The transcription factor STAT3 (signal transducer and activator of transcription 3 is frequently activated in tumor cells. Activated STAT3 forms homodimers, or heterodimers with other TFs such as NF-κB, which becomes activated. Cytoplasmic STAT3 dimers are activated by tyrosine phosphorylation; they interact with importins via a nuclear localization signal (NLS one of which is located within the DNA-binding domain formed by the dimer. In the nucleus, STAT3 regulates target gene expression by binding a consensus sequence within the promoter. STAT3-specific decoy oligonucleotides (STAT3-decoy ODN that contain this consensus sequence inhibit the transcriptional activity of STAT3, leading to cell death; however, their mechanism of action is unclear. Results The mechanism of action of a STAT3-decoy ODN was analyzed in the colon carcinoma cell line SW 480. These cells' dependence on activated STAT3 was verified by showing that cell death is induced by STAT3-specific siRNAs or Stattic. STAT3-decoy ODN was shown to bind activated STAT3 within the cytoplasm, and to prevent its translocation to the nucleus, as well as that of STAT3-associated NF-κB, but it did not prevent the nuclear transfer of STAT3 with mutations in its DNA-binding domain. The complex formed by STAT3 and the STAT3-decoy ODN did not associate with importin, while STAT3 alone was found to co-immunoprecipitate with importin. Leptomycin B and vanadate both trap STAT3 in the nucleus. They were found here to oppose the cytoplasmic trapping of STAT3 by the STAT3-decoy ODN. Control decoys consisting of either a mutated STAT3-decoy ODN or a NF-κB-specific decoy ODN had no effect on STAT3 nuclear translocation. Finally, blockage of STAT3 nuclear transfer correlated with the induction of SW 480 cell death. Conclusions The inhibition of STAT3 by a STAT3-decoy ODN, leading to cell death, involves the entrapment of activated STAT3 dimers in the cytoplasm. A mechanism is

  16. Preparation of Zn(BH4)2 and diborane and hydrogen release properties of Zn(BH4)2+xMgH2 (x=1, 5, 10, and 15)

    Science.gov (United States)

    Kwak, Young Jun; Kwon, Sung Nam; Song, Myoung Youp

    2015-09-01

    Zn(BH4)2 was prepared by milling ZnCl2 and NaBH4 in a planetary ball mill under Ar atmosphere, and Zn(BH4)2+xMgH2 (x=1, 5, 10, and 15) samples were prepared. Diborane (B2H6) and hydrogen release characteristics of the Zn(BH4)2 and Zn(BH4)2+xMgH2 samples were studied. The samples synthesized by milling ZnCl2 and NaBH4 contained Zn(BH4)2 and NaCl, together with small amounts of ZnCl2 and NaBH4. We designated these samples as Zn(BH4)2(+NaCl). The weight loss up to 400 °C of the Zn(BH4)2(+NaCl) sample synthesized by milling 4 h was 11.2 wt%. FT-IR analysis showed that Zn(BH4)2 was formed in the Zn(BH4)2(+NaCl) samples. MgH2 was also milled in a planetary ball mill, and mixed with the Zn(BH4)2(+NaCl) synthesized by milling for 4 h in a mortar and pestle. The weight loss up to 400 °C of Zn(BH4)2(+NaCl)+MgH2 was 8.2 wt%, corresponding to the weight % of diborane and hydrogen released from the Zn(BH4)2(+NaCl)+MgH2 sample, with respect to the sample weight. DTA results of Zn(BH4)2(+NaCl)+xMgH2 showed that the decomposition peak of Zn(BH4)2 was at about 61 °C, and that of MgH2 was at about 370-389 °C.

  17. Autophagy capacity and sub-mitochondrial heterogeneity shape Bnip3-induced mitophagy regulation of apoptosis.

    Science.gov (United States)

    Choe, Sehyo Charley; Hamacher-Brady, Anne; Brady, Nathan Ryan

    2015-08-08

    Mitochondria are key regulators of apoptosis. In response to stress, BH3-only proteins activate pro-apoptotic Bcl2 family proteins Bax and Bak, which induce mitochondrial outer membrane permeabilization (MOMP). While the large-scale mitochondrial release of pro-apoptotic proteins activates caspase-dependent cell death, a limited release results in sub-lethal caspase activation which promotes tumorigenesis. Mitochondrial autophagy (mitophagy) targets dysfunctional mitochondria for degradation by lysosomes, and undergoes extensive crosstalk with apoptosis signaling, but its influence on apoptosis remains undetermined. The BH3-only protein Bnip3 integrates apoptosis and mitophagy signaling at different signaling domains. Bnip3 inhibits pro-survival Bcl2 members via its BH3 domain and activates mitophagy through its LC3 Interacting Region (LIR), which is responsible for binding to autophagosomes. Previously, we have shown that Bnip3-activated mitophagy prior to apoptosis induction can reduce mitochondrial activation of caspases, suggesting that a reduction to mitochondrial levels may be pro-survival. An outstanding question is whether organelle dynamics and/or recently discovered subcellular variations of protein levels responsible for both MOMP sensitivity and crosstalk between apoptosis and mitophagy can influence the cellular apoptosis decision event. To that end, here we undertook a systems biology analysis of mitophagy-apoptosis crosstalk at the level of cellular mitochondrial populations. Based on experimental findings, we developed a multi-scale, hybrid model with an individually adaptive mitochondrial population, whose actions are determined by protein levels, embedded in an agent-based model (ABM) for simulating subcellular dynamics and local feedback via reactive oxygen species signaling. Our model, supported by experimental evidence, identified an emergent regulatory structure within canonical apoptosis signaling. We show that the extent of mitophagy is

  18. Dual role of proapoptotic BAD in insulin secretion and beta cell survival

    OpenAIRE

    Danial, Nika N.; Walensky, Loren D.; Zhang, Chen-Yu; Choi, Cheol Soo; Fisher, Jill K.; Molina, Anthony J. A.; Datta, Sandeep Robert; Pitter, Kenneth L.; Bird, Gregory H.; Wikstrom, Jakob D.; Deeney, Jude T.; Robertson, Kirsten; Morash, Joel; Kulkarni, Ameya; Neschen, Susanne

    2008-01-01

    The proapoptotic BCL-2 family member BAD resides in a glucokinase-containing complex that regulates glucose-driven mitochondrial respiration. Here, we present genetic evidence of a physiologic role for BAD in glucose-stimulated insulin secretion by beta cells. This novel function of BAD is specifically dependent upon the phosphorylation of its BH3 sequence, previously defined as an essential death domain. We highlight the pharmacologic relevance of phosphorylated BAD BH3 by using cell-permeab...

  19. Drug-domain interaction networks in myocardial infarction.

    Science.gov (United States)

    Wang, Haiying; Zheng, Huiru; Azuaje, Francisco; Zhao, Xing-Ming

    2013-09-01

    It has been well recognized that the pace of the development of new drugs and therapeutic interventions lags far behind biological knowledge discovery. Network-based approaches have emerged as a promising alternative to accelerate the discovery of new safe and effective drugs. Based on the integration of several biological resources including two recently published datasets i.e., Drug-target interactions in myocardial infarction (My-DTome) and drug-domain interaction network, this paper reports the association between drugs and protein domains in the context of myocardial infarction (MI). A MI drug-domain interaction network, My-DDome, was firstly constructed, followed by topological analysis and functional characterization of the network. The results show that My-DDome has a very clear modular structure, where drugs interacting with the same domain(s) within each module tend to have similar therapeutic effects. Moreover it has been found that drugs acting on blood and blood forming organs (ATC code B) and sensory organs (ATC code S) are significantly enriched in My-DDome (p drugs, their known targets, and seemingly unrelated proteins can be revealed.

  20. Co-{alpha}Al{sub 2}O{sub 3}-Cu as shaped catalyst in NaBH{sub 4} hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Chamoun, R. [Universite Lyon 1, CNRS, UMR 5615, Laboratoire des Multimateriaux et Interfaces, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne (France); Universite Libanaise, Faculte des Sciences II, Laboratoire de physique appliquee, 90656 Jdeidet El Metn (Lebanon); Demirci, U.B.; Miele, P. [Universite Lyon 1, CNRS, UMR 5615, Laboratoire des Multimateriaux et Interfaces, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne (France); Zaatar, Y.; Khoury, A. [Universite Libanaise, Faculte des Sciences II, Laboratoire de physique appliquee, 90656 Jdeidet El Metn (Lebanon)

    2010-07-15

    A study about catalytic films of Co-supported-over-{alpha}Al{sub 2}O{sub 3} fabricated by electrophoretic deposition (EPD) is reported, the as-prepared shaped catalysts being intended to catalyze NaBH{sub 4} hydrolysis. Co-{alpha}Al{sub 2}O{sub 3} supported over Cu substrate can be prepared by a 2-step route: (i) preparation of the supported catalyst Co-{alpha}Al{sub 2}O{sub 3} (in powder form) by wet impregnation of CoCl{sub 2} over {alpha}Al{sub 2}O{sub 3}, followed by a reduction, and (ii) fabrication of Co-{alpha}Al{sub 2}O{sub 3}-Cu (thin film over Cu) by EPD. Both types of catalysts, whatever their form, are highly efficient in hydrolyzing NaBH{sub 4}, conversions of 100% and HGRs of tens of mL(H{sub 2}) min{sup -1} being achieved at 60-80 C. The Co-{alpha}Al{sub 2}O{sub 3}-Cu catalysts are even more reactive than the Co-{alpha}Al{sub 2}O{sub 3} catalysts because the surface of the former materials becomes much more acid than that of the latter ones in the course of the EPD process. The respective rate laws and reaction kinetics have been determined. Independently on the catalyst form, apparent activation energies of about 52 kJ mol{sup -1} and positive reaction orders versus the initial NaBH{sub 4} concentration (i.e. 0.3-0.7) were calculated, suggesting that the EPD does not affect the reaction mechanisms. Besides, it is showed that the hydrolysis is really catalytic as well as typical of a heterogeneous process. For example, an apparent reaction order versus the Co content of 0.9 was calculated. All of these results among others are reported and discussed in the present article. (author)

  1. Complete genome sequence of the biofilm-forming Microbacterium sp. strain BH-3-3-3, isolated from conventional field-grown lettuce (Lactuca sativa) in Norway.

    Science.gov (United States)

    Dees, Merete Wiken; Brurberg, May Bente; Lysøe, Erik

    2017-03-01

    The genus Microbacterium contains bacteria that are ubiquitously distributed in various environments and includes plant-associated bacteria that are able to colonize tissue of agricultural crop plants. Here, we report the 3,508,491 bp complete genome sequence of Microbacterium sp. strain BH-3-3-3, isolated from conventionally grown lettuce ( Lactuca sativa ) from a field in Vestfold, Norway. The nucleotide sequence of this genome was deposited into NCBI GenBank under the accession CP017674.

  2. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized

    OpenAIRE

    van Delft, Mark F.; Wei, Andrew H.; Mason, Kylie D.; Vandenberg, Cassandra J.; Chen, Lin; Czabotar, Peter E.; Willis, Simon N.; Scott, Clare L.; Day, Catherine L.; Cory, Suzanne; Adams, Jerry M.; Roberts, Andrew W.; Huang, David C.S.

    2006-01-01

    Since apoptosis is impaired in malignant cells overexpressing pro-survival Bcl-2 proteins, drugs mimicking their natural antagonists, BH3-only proteins, might overcome chemoresistance. Of seven putative BH3 mimetics tested, only ABT-737 triggered Bax/Bak-mediated apoptosis. Despite its high affinity for Bcl-2, Bcl-xL and Bcl-w, many cell types proved refractory to ABT-737. We show that this resistance reflects its inability to target another pro-survival relative, Mcl-1. Down-regulation of Mc...

  3. Chemical Shift Assignments of the C-terminal Eps15 Homology Domain-3 EH Domain*

    Science.gov (United States)

    Caplan, Steve; Sorgen, Paul L.

    2013-01-01

    The C-terminal Eps15 homology (EH) domain 3 (EHD3) belongs to a eukaryotic family of endocytic regulatory proteins and is involved in the recycling of various receptors from the early endosome to the endocytic recycling compartment or in retrograde transport from the endosomes to the Golgi. EH domains are highly conserved in the EHD family and function as protein-protein interaction units that bind to Asn-Pro-Phe (NPF) motif-containing proteins. The EH domain of EHD1 was the first C-terminal EH domain from the EHD family to be solved by NMR. The differences observed between this domain and proteins with N-terminal EH domains helped describe a mechanism for the differential binding of NPF-containing proteins. Here, structural studies were expanded to include the EHD3 EH domain. While the EHD1 and EHD3 EH domains are highly homologous, they have different protein partners. A comparison of these structures will help determine the selectivity in protein binding between the EHD family members and lead to a better understanding of their unique roles in endocytic regulation. PMID:23754701

  4. A domain-based approach to predict protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Resat Haluk

    2007-06-01

    Full Text Available Abstract Background Knowing which proteins exist in a certain organism or cell type and how these proteins interact with each other are necessary for the understanding of biological processes at the whole cell level. The determination of the protein-protein interaction (PPI networks has been the subject of extensive research. Despite the development of reasonably successful methods, serious technical difficulties still exist. In this paper we present DomainGA, a quantitative computational approach that uses the information about the domain-domain interactions to predict the interactions between proteins. Results DomainGA is a multi-parameter optimization method in which the available PPI information is used to derive a quantitative scoring scheme for the domain-domain pairs. Obtained domain interaction scores are then used to predict whether a pair of proteins interacts. Using the yeast PPI data and a series of tests, we show the robustness and insensitivity of the DomainGA method to the selection of the parameter sets, score ranges, and detection rules. Our DomainGA method achieves very high explanation ratios for the positive and negative PPIs in yeast. Based on our cross-verification tests on human PPIs, comparison of the optimized scores with the structurally observed domain interactions obtained from the iPFAM database, and sensitivity and specificity analysis; we conclude that our DomainGA method shows great promise to be applicable across multiple organisms. Conclusion We envision the DomainGA as a first step of a multiple tier approach to constructing organism specific PPIs. As it is based on fundamental structural information, the DomainGA approach can be used to create potential PPIs and the accuracy of the constructed interaction template can be further improved using complementary methods. Explanation ratios obtained in the reported test case studies clearly show that the false prediction rates of the template networks constructed

  5. Domain Specific Languages for Interactive Web Services

    DEFF Research Database (Denmark)

    Brabrand, Claus

    This dissertation shows how domain specific languages may be applied to the domain of interactive Web services to obtain flexible, safe, and efficient solutions. We show how each of four key aspects of interactive Web services involving sessions, dynamic creation of HTML/XML documents, form field......, , that supports virtually all aspects of the development of interactive Web services and provides flexible, safe, and efficient solutions....

  6. Bovine exome sequence analysis and targeted SNP genotyping of recessive fertility defects BH1, HH2, and HH3 reveal a putative causative mutation in SMC2 for HH3.

    Science.gov (United States)

    McClure, Matthew C; Bickhart, Derek; Null, Dan; Vanraden, Paul; Xu, Lingyang; Wiggans, George; Liu, George; Schroeder, Steve; Glasscock, Jarret; Armstrong, Jon; Cole, John B; Van Tassell, Curtis P; Sonstegard, Tad S

    2014-01-01

    The recent discovery of bovine haplotypes with negative effects on fertility in the Brown Swiss, Holstein, and Jersey breeds has allowed producers to identify carrier animals using commercial single nucleotide polymorphism (SNP) genotyping assays. This study was devised to identify the causative mutations underlying defective bovine embryo development contained within three of these haplotypes (Brown Swiss haplotype 1 and Holstein haplotypes 2 and 3) by combining exome capture with next generation sequencing. Of the 68,476,640 sequence variations (SV) identified, only 1,311 genome-wide SNP were concordant with the haplotype status of 21 sequenced carriers. Validation genotyping of 36 candidate SNP identified only 1 variant that was concordant to Holstein haplotype 3 (HH3), while no variants located within the refined intervals for HH2 or BH1 were concordant. The variant strictly associated with HH3 is a non-synonymous SNP (T/C) within exon 24 of the Structural Maintenance of Chromosomes 2 (SMC2) on Chromosome 8 at position 95,410,507 (UMD3.1). This polymorphism changes amino acid 1135 from phenylalanine to serine and causes a non-neutral, non-tolerated, and evolutionarily unlikely substitution within the NTPase domain of the encoded protein. Because only exome capture sequencing was used, we could not rule out the possibility that the true causative mutation for HH3 might lie in a non-exonic genomic location. Given the essential role of SMC2 in DNA repair, chromosome condensation and segregation during cell division, our findings strongly support the non-synonymous SNP (T/C) in SMC2 as the likely causative mutation. The absence of concordant variations for HH2 or BH1 suggests either the underlying causative mutations lie within a non-exomic region or in exome regions not covered by the capture array.

  7. Bovine exome sequence analysis and targeted SNP genotyping of recessive fertility defects BH1, HH2, and HH3 reveal a putative causative mutation in SMC2 for HH3.

    Directory of Open Access Journals (Sweden)

    Matthew C McClure

    Full Text Available The recent discovery of bovine haplotypes with negative effects on fertility in the Brown Swiss, Holstein, and Jersey breeds has allowed producers to identify carrier animals using commercial single nucleotide polymorphism (SNP genotyping assays. This study was devised to identify the causative mutations underlying defective bovine embryo development contained within three of these haplotypes (Brown Swiss haplotype 1 and Holstein haplotypes 2 and 3 by combining exome capture with next generation sequencing. Of the 68,476,640 sequence variations (SV identified, only 1,311 genome-wide SNP were concordant with the haplotype status of 21 sequenced carriers. Validation genotyping of 36 candidate SNP identified only 1 variant that was concordant to Holstein haplotype 3 (HH3, while no variants located within the refined intervals for HH2 or BH1 were concordant. The variant strictly associated with HH3 is a non-synonymous SNP (T/C within exon 24 of the Structural Maintenance of Chromosomes 2 (SMC2 on Chromosome 8 at position 95,410,507 (UMD3.1. This polymorphism changes amino acid 1135 from phenylalanine to serine and causes a non-neutral, non-tolerated, and evolutionarily unlikely substitution within the NTPase domain of the encoded protein. Because only exome capture sequencing was used, we could not rule out the possibility that the true causative mutation for HH3 might lie in a non-exonic genomic location. Given the essential role of SMC2 in DNA repair, chromosome condensation and segregation during cell division, our findings strongly support the non-synonymous SNP (T/C in SMC2 as the likely causative mutation. The absence of concordant variations for HH2 or BH1 suggests either the underlying causative mutations lie within a non-exomic region or in exome regions not covered by the capture array.

  8. iPfam: a database of protein family and domain interactions found in the Protein Data Bank.

    Science.gov (United States)

    Finn, Robert D; Miller, Benjamin L; Clements, Jody; Bateman, Alex

    2014-01-01

    The database iPfam, available at http://ipfam.org, catalogues Pfam domain interactions based on known 3D structures that are found in the Protein Data Bank, providing interaction data at the molecular level. Previously, the iPfam domain-domain interaction data was integrated within the Pfam database and website, but it has now been migrated to a separate database. This allows for independent development, improving data access and giving clearer separation between the protein family and interactions datasets. In addition to domain-domain interactions, iPfam has been expanded to include interaction data for domain bound small molecule ligands. Functional annotations are provided from source databases, supplemented by the incorporation of Wikipedia articles where available. iPfam (version 1.0) contains >9500 domain-domain and 15 500 domain-ligand interactions. The new website provides access to this data in a variety of ways, including interactive visualizations of the interaction data.

  9. XIAP Restricts TNF- and RIP3-Dependent Cell Death and Inflammasome Activation

    DEFF Research Database (Denmark)

    Yabal, Monica; Müller, Nicole; Adler, Heiko

    2014-01-01

    of XIAP or deletion of its RING domain lead to excessive cell death and IL-1β secretion from dendritic cells triggered by diverse Toll-like receptor stimuli. Aberrant IL-1β secretion is TNF dependent and requires RIP3 but is independent of cIAP1/cIAP2. The observed cell death also requires TNF and RIP3...... but proceeds independently of caspase-1/caspase-11 or caspase-8 function. Loss of XIAP results in aberrantly elevated ubiquitylation of RIP1 outside of TNFR complex I. Virally infected Xiap(-/-) mice present with symptoms reminiscent of XLP-2. Our data show that XIAP controls RIP3-dependent cell death and IL-1...

  10. Transactivation of the Brassica napus napin promoter by ABI3 requires interaction of the conserved B2 and B3 domains of ABI3 with different cis-elements: B2 mediates activation through an ABRE, whereas B3 interacts with an RY/G-box.

    Science.gov (United States)

    Ezcurra, I; Wycliffe, P; Nehlin, L; Ellerström, M; Rask, L

    2000-10-01

    The transcriptional activator ABI3 is a key regulator of gene expression during embryo maturation in crucifers. In monocots, the related VP1 protein regulates the Em promoter synergistically with abscisic acid (ABA). We identified cis-elements in the Brassica napus napin napA promoter mediating regulation by ABI3 and ABA, by analyzing substitution mutation constructs of napA in transgenic tobacco plantlets ectopically expressing ABI3. In transient analysis using particle bombardment of tobacco leaf sections, a tetramer of the distB ABRE (abscisic acid-responsive element) mediated transactivation by ABI3 and ABI3-dependent response to ABA, whereas a tetramer of the composite RY/G complex, containing RY repeats and a G-box, mediated only ABA-independent transactivation by ABI3. Deletion of the conserved B2 and B3 domains of ABI3 abolished transactivation of napA by ABI3. The two domains of ABI3 interact with different cis-elements: B2 is necessary for ABA-independent and ABA-dependent activations through the distB ABRE, whereas B3 interacts with the RY/G complex. Thus B2 mediates the interaction of ABI3 with the protein complex at the ABRE. The regulation of napA by ABI3 differs from Em regulation by VP1, in that the B3 domain of ABI3 is essential for the ABA-dependent regulation of napA.

  11. Co@MWNTs-Plastic: A novel electrode for NaBH4 oxidation

    International Nuclear Information System (INIS)

    Zhang, Dongming; Ye, Ke; Cao, Dianxue; Wang, Bin; Cheng, Kui; Li, Yiju; Wang, Guiling; Xu, Yang

    2015-01-01

    Highlights: • MP substrate was fabricated by adhering MWNTs on a piece of obsoleted plastic bag. • Co nano-thorns were prepared by a simple electrodeposition method on the MP surface. • MP owns a superior stability in strong alkaline environment. • CMP exhibits a high catalytic activity for NaBH 4 electrooxidation. • The possible mechanisms of NaBH 4 electrooxidation on CMP was discussed. - Abstract: A novel multi-walled carbon nanotubes (MWNTs)-Plastic (MP) substrate was first fabricated by adhering MWNTs on a piece of obsoleted plastic bag, and Co nano-thorns were subsequently prepared by a simple electrodeposition method on the MP surface. The morphology and phase structure of the as-prepared Co@MWNTs-Plastic (CMP) catalytic electrode are characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffractometer. The catalytic activity of the CMP electrode for NaBH 4 electrooxidation is investigated by means of cyclic voltammetry and chronoamperometry. The employing of waste plastic bags reduces white pollution and the MP substrate exhibits superior stability in alkaline solution. The 3D CMP catalytic electrode owns a high electrochemical activity for NaBH 4 oxidation. Moreover, we discussed the possible mechanisms of NaBH 4 electrooxidation on the CMP

  12. Population death sequences and Cox processes driven by interacting Feller diffusions

    CERN Document Server

    Wei Gang; Feng Jian Feng

    2002-01-01

    We carry out a complete study on the relationship between Cox processes driven by interacting Feller diffusions and death sequences of immigration-emigration linked population networks. It is first proved that the Cox process driven by a Feller diffusion is equivalent to the death sequence of a birth and death process. The conclusion is then generalized to the case of Cox processes driven by interacting Feller diffusions and death sequences of interacting populations.

  13. Population death sequences and Cox processes driven by interacting Feller diffusions

    International Nuclear Information System (INIS)

    Wei Gang; Clifford, Peter; Feng Jianfeng

    2002-01-01

    We carry out a complete study on the relationship between Cox processes driven by interacting Feller diffusions and death sequences of immigration-emigration linked population networks. It is first proved that the Cox process driven by a Feller diffusion is equivalent to the death sequence of a birth and death process. The conclusion is then generalized to the case of Cox processes driven by interacting Feller diffusions and death sequences of interacting populations

  14. Population death sequences and Cox processes driven by interacting Feller diffusions

    Energy Technology Data Exchange (ETDEWEB)

    Wei Gang [Department of Mathematics, Baptist University, Hong Kong (China); Clifford, Peter [Department of Statistics, 1 South Parks Road, Oxford (United Kingdom); Feng Jianfeng [COGS, Sussex University, Brighton (United Kingdom)

    2002-11-08

    We carry out a complete study on the relationship between Cox processes driven by interacting Feller diffusions and death sequences of immigration-emigration linked population networks. It is first proved that the Cox process driven by a Feller diffusion is equivalent to the death sequence of a birth and death process. The conclusion is then generalized to the case of Cox processes driven by interacting Feller diffusions and death sequences of interacting populations.

  15. Interactions between the S-Domain Receptor Kinases and AtPUB-ARM E3 Ubiquitin Ligases Suggest a Conserved Signaling Pathway in Arabidopsis1[W][OA

    Science.gov (United States)

    Samuel, Marcus A.; Mudgil, Yashwanti; Salt, Jennifer N.; Delmas, Frédéric; Ramachandran, Shaliny; Chilelli, Andrea; Goring, Daphne R.

    2008-01-01

    The Arabidopsis (Arabidopsis thaliana) genome encompasses multiple receptor kinase families with highly variable extracellular domains. Despite their large numbers, the various ligands and the downstream interacting partners for these kinases have been deciphered only for a few members. One such member, the S-receptor kinase, is known to mediate the self-incompatibility (SI) response in Brassica. S-receptor kinase has been shown to interact and phosphorylate a U-box/ARM-repeat-containing E3 ligase, ARC1, which, in turn, acts as a positive regulator of the SI response. In an effort to identify conserved signaling pathways in Arabidopsis, we performed yeast two-hybrid analyses of various S-domain receptor kinase family members with representative Arabidopsis plant U-box/ARM-repeat (AtPUB-ARM) E3 ligases. The kinase domains from S-domain receptor kinases were found to interact with ARM-repeat domains from AtPUB-ARM proteins. These kinase domains, along with M-locus protein kinase, a positive regulator of SI response, were also able to phosphorylate the ARM-repeat domains in in vitro phosphorylation assays. Subcellular localization patterns were investigated using transient expression assays in tobacco (Nicotiana tabacum) BY-2 cells and changes were detected in the presence of interacting kinases. Finally, potential links to the involvement of these interacting modules to the hormone abscisic acid (ABA) were investigated. Interestingly, AtPUB9 displayed redistribution to the plasma membrane of BY-2 cells when either treated with ABA or coexpressed with the active kinase domain of ARK1. As well, T-DNA insertion mutants for ARK1 and AtPUB9 lines were altered in their ABA sensitivity during germination and acted at or upstream of ABI3, indicating potential involvement of these proteins in ABA responses. PMID:18552232

  16. Hydrogen storage properties of rare earth (RE) borohydrides (RE = La, Er) in composite mixtures with LiBH{sub 4} and LiH

    Energy Technology Data Exchange (ETDEWEB)

    Frommen, Christoph; Heere, Michael [Institute for Energy Technology, Physics Department, P.O. Box 40, NO-2027 Kjeller (Norway); Riktor, Marit D. [Institute for Energy Technology, Physics Department, P.O. Box 40, NO-2027 Kjeller (Norway); SINTEF Materials and Chemistry, Forskningsveien 1, NO-0314 Oslo (Norway); Sørby, Magnus H. [Institute for Energy Technology, Physics Department, P.O. Box 40, NO-2027 Kjeller (Norway); Hauback, Bjørn C., E-mail: bjorn.hauback@ife.no [Institute for Energy Technology, Physics Department, P.O. Box 40, NO-2027 Kjeller (Norway)

    2015-10-05

    Highlights: • 6LiBH{sub 4}–RECl{sub 3}–3LiH composites (RE = La, Er) studied for the first time. • Drastically reduced decomposition temperature (300 {sup o}C) compared to LiBH{sub 4} (>400 °C). • Partial reversibility for 6LiBH{sub 4}–LaCl{sub 3}–3LiH: (19% at 340 °C, 10 MPa). • Excellent reversibility for 6LiBH{sub 4}–ErCl{sub 3}–3LiH: (80% at 340 °C, 10 MPa). • Reversibility comparable to that obtained for pure LiBH{sub 4} (76% at 600 °C and 15.5 MPa). - Abstract: Mixtures of 6LiBH{sub 4}–RECl{sub 3}–3LiH (RE = La, Er) have been produced by mechanochemical milling and their structure, thermal decomposition and reversibility have been studied. Hydrogen desorption starts around 300 °C in both composites. Heating to 400 °C yields LaB{sub 6}, ErB{sub 4} and REH{sub 2+δ} as major decomposition products. LiBH{sub 4} is destabilized by REH{sub 2+δ} formed through decomposition of the parent borohydrides LiLa(BH{sub 4}){sub 3}Cl and Er(BH{sub 4}){sub 3}, respectively, and its hydrogen release temperature is reduced by 100 °C as compared to pure ball-milled LiBH{sub 4}. The lanthanum-containing composite releases 4.2 wt.% H between 300 and 350 °C and shows a limited reversibility of ∼20% (340 °C, 10 MPa) probably due to hydrogen uptake by some amorphous boron-containing phases. For 6LiBH{sub 4}–ErCl{sub 3}–3LiH about 3 wt.% H is evolved up to 400 °C. Desorption against 0.5 MPa backpressure results in an increased reversibility (∼80%) as compared to vacuum (∼66%). Rehydrogenation (340 °C, 10 MPa) shows the formation of ErH{sub 3} and LiBH{sub 4} at drastically reduced conditions compared to pure LiBH{sub 4} (>400 °C, >10 MPa)

  17. The phosphoCTD-interacting domain of Topoisomerase I

    International Nuclear Information System (INIS)

    Wu, Jianhong; Phatnani, Hemali P.; Hsieh, Tao-Shih; Greenleaf, Arno L.

    2010-01-01

    The N-terminal domain (NTD) of Drosophila melanogaster (Dm) Topoisomerase I has been shown to bind to RNA polymerase II, but the domain of RNAPII with which it interacts is not known. Using bacterially-expressed fusion proteins carrying all or half of the NTDs of Dm and human (Homo sapiens, Hs) Topo I, we demonstrate that the N-terminal half of each NTD binds directly to the hyperphosphorylated C-terminal repeat domain (phosphoCTD) of the largest RNAPII subunit, Rpb1. Thus, the amino terminal segment of metazoan Topo I (1-157 for Dm and 1-114 for Hs) contains a novel phosphoCTD-interacting domain that we designate the Topo I-Rpb1 interacting (TRI) domain. The long-known in vivo association of Topo I with active genes presumably can be attributed, wholly or in part, to the TRI domain-mediated binding of Topo I to the phosphoCTD of transcribing RNAPII.

  18. The phosphoCTD-interacting domain of Topoisomerase I

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jianhong; Phatnani, Hemali P.; Hsieh, Tao-Shih [Department of Biochemistry, Duke University Medical Center, Durham, NC 27710 (United States); Greenleaf, Arno L., E-mail: arno.greenleaf@duke.edu [Department of Biochemistry, Duke University Medical Center, Durham, NC 27710 (United States)

    2010-06-18

    The N-terminal domain (NTD) of Drosophila melanogaster (Dm) Topoisomerase I has been shown to bind to RNA polymerase II, but the domain of RNAPII with which it interacts is not known. Using bacterially-expressed fusion proteins carrying all or half of the NTDs of Dm and human (Homo sapiens, Hs) Topo I, we demonstrate that the N-terminal half of each NTD binds directly to the hyperphosphorylated C-terminal repeat domain (phosphoCTD) of the largest RNAPII subunit, Rpb1. Thus, the amino terminal segment of metazoan Topo I (1-157 for Dm and 1-114 for Hs) contains a novel phosphoCTD-interacting domain that we designate the Topo I-Rpb1 interacting (TRI) domain. The long-known in vivo association of Topo I with active genes presumably can be attributed, wholly or in part, to the TRI domain-mediated binding of Topo I to the phosphoCTD of transcribing RNAPII.

  19. Inhibition of Wnt/β-catenin signaling by a soluble collagen-derived frizzled domain interacting with Wnt3a and the receptors frizzled 1 and 8.

    Directory of Open Access Journals (Sweden)

    Ismaïl Hendaoui

    Full Text Available The Wnt/β-catenin pathway controls cell proliferation, death and differentiation. Several families of extracellular proteins can antagonize Wnt/β-catenin signaling, including the decoy receptors known as secreted frizzled related proteins (SFRPs, which have a cysteine-rich domain (CRD structurally similar to the extracellular Wnt-binding domain of the frizzled receptors. SFRPs inhibit Wnt signaling by sequestering Wnts through the CRD or by forming inactive complexes with the frizzled receptors. Other endogenous molecules carrying frizzled CRDs inhibit Wnt signaling, such as V3Nter, which is proteolytically derived from the cell surface component collagen XVIII and contains a biologically active frizzled domain (FZC18 inhibiting in vivo cell proliferation and tumor growth in mice. We recently showed that FZC18 expressing cells deliver short-range signals to neighboring cells, decreasing their proliferation in vitro and in vivo through the Wnt/β-catenin signaling pathway. Here, using low concentrations of soluble FZC18 and Wnt3a, we show that they physically interact in a cell-free system. In addition, soluble FZC18 binds the frizzled 1 and 8 receptors' CRDs, reducing cell sensitivity to Wnt3a. Conversely, inhibition of Wnt/β-catenin signaling was partially rescued by the expression of full-length frizzled 1 and 8 receptors, but enhanced by the expression of a chimeric cell-membrane-tethered frizzled 8 CRD. Moreover, soluble, partially purified recombinant FZC18_CRD inhibited Wnt3a-induced β-catenin activation. Taken together, the data indicate that collagen XVIII-derived frizzled CRD shifts Wnt sensitivity of normal cells to a lower pitch and controls their growth.

  20. Topology and weights in a protein domain interaction network--a novel way to predict protein interactions.

    Science.gov (United States)

    Wuchty, Stefan

    2006-05-23

    While the analysis of unweighted biological webs as diverse as genetic, protein and metabolic networks allowed spectacular insights in the inner workings of a cell, biological networks are not only determined by their static grid of links. In fact, we expect that the heterogeneity in the utilization of connections has a major impact on the organization of cellular activities as well. We consider a web of interactions between protein domains of the Protein Family database (PFAM), which are weighted by a probability score. We apply metrics that combine the static layout and the weights of the underlying interactions. We observe that unweighted measures as well as their weighted counterparts largely share the same trends in the underlying domain interaction network. However, we only find weak signals that weights and the static grid of interactions are connected entities. Therefore assuming that a protein interaction is governed by a single domain interaction, we observe strong and significant correlations of the highest scoring domain interaction and the confidence of protein interactions in the underlying interactions of yeast and fly. Modeling an interaction between proteins if we find a high scoring protein domain interaction we obtain 1, 428 protein interactions among 361 proteins in the human malaria parasite Plasmodium falciparum. Assessing their quality by a logistic regression method we observe that increasing confidence of predicted interactions is accompanied by high scoring domain interactions and elevated levels of functional similarity and evolutionary conservation. Our results indicate that probability scores are randomly distributed, allowing to treat static grid and weights of domain interactions as separate entities. In particular, these finding confirms earlier observations that a protein interaction is a matter of a single interaction event on domain level. As an immediate application, we show a simple way to predict potential protein interactions

  1. Bayesian modeling of the yeast SH3 domain interactome predicts spatiotemporal dynamics of endocytosis proteins.

    Directory of Open Access Journals (Sweden)

    Raffi Tonikian

    2009-10-01

    Full Text Available SH3 domains are peptide recognition modules that mediate the assembly of diverse biological complexes. We scanned billions of phage-displayed peptides to map the binding specificities of the SH3 domain family in the budding yeast, Saccharomyces cerevisiae. Although most of the SH3 domains fall into the canonical classes I and II, each domain utilizes distinct features of its cognate ligands to achieve binding selectivity. Furthermore, we uncovered several SH3 domains with specificity profiles that clearly deviate from the two canonical classes. In conjunction with phage display, we used yeast two-hybrid and peptide array screening to independently identify SH3 domain binding partners. The results from the three complementary techniques were integrated using a Bayesian algorithm to generate a high-confidence yeast SH3 domain interaction map. The interaction map was enriched for proteins involved in endocytosis, revealing a set of SH3-mediated interactions that underlie formation of protein complexes essential to this biological pathway. We used the SH3 domain interaction network to predict the dynamic localization of several previously uncharacterized endocytic proteins, and our analysis suggests a novel role for the SH3 domains of Lsb3p and Lsb4p as hubs that recruit and assemble several endocytic complexes.

  2. The Abl SH2-kinase linker naturally adopts a conformation competent for SH3 domain binding.

    Science.gov (United States)

    Chen, Shugui; Brier, Sébastien; Smithgall, Thomas E; Engen, John R

    2007-04-01

    The core of the Abelson tyrosine kinase (c-Abl) is structurally similar to Src-family kinases where SH3 and SH2 domains pack against the backside of the kinase domain in the down-regulated conformation. Both kinase families depend upon intramolecular association of SH3 with the linker joining the SH2 and kinase domains for suppression of kinase activity. Hydrogen deuterium exchange (HX) and mass spectrometry (MS) were used to probe intramolecular interaction of the c-Abl SH3 domain with the linker in recombinant constructs lacking the kinase domain. Under physiological conditions, the c-Abl SH3 domain undergoes partial unfolding, which is stabilized by ligand binding, providing a unique assay for SH3:linker interaction in solution. Using this approach, we observed dynamic association of the SH3 domain with the linker in the absence of the kinase domain. Truncation of the linker before W254 completely prevented cis-interaction with SH3, while constructs containing amino acids past this point showed SH3:linker interactions. The observation that the Abl linker sequence exhibits SH3-binding activity in the absence of the kinase domain is unique to Abl and was not observed with Src-family kinases. These results suggest that SH3:linker interactions may have a more prominent role in Abl regulation than in Src kinases, where the down-regulated conformation is further stabilized by a second intramolecular interaction between the C-terminal tail and the SH2 domain.

  3. Epstein-Barr virus nuclear protein 3C binds to the N-terminal (NTD) and beta trefoil domains (BTD) of RBP/CSL; Only the NTD interaction is essential for lymphoblastoid cell growth

    International Nuclear Information System (INIS)

    Calderwood, Michael A.; Lee, Sungwook; Holthaus, Amy M.; Blacklow, Stephen C.; Kieff, Elliott; Johannsen, Eric

    2011-01-01

    Association of EBV nuclear proteins EBNA2, EBNA3A and EBNA3C with RBP/CSL, is essential for lymphoblastoid cell line (LCL) proliferation. Conserved residues in the EBNA3 homology domain, required for RBP/CSL interaction, lack the WΦP motif that mediates EBNA2 and Notch binding to the RBP/CSL beta-trefoil domain (BTD). We map RBP/CSL interacting residues within EBNA3A(aa128-204) and EBNA3C(aa211-233). The EBNA3A results are consistent with an earlier report (aa125-222), but the EBNA3C domain is unexpectedly small and includes a 'WTP' sequence. This EBNA3C WTP motif confers RBP/CSL binding in vitro, in yeast, and in mammalian cells. Further, an EBNA3C WTP → STP(W227S) mutation impaired BTD binding whereas EBNA3 homology domain mutations disrupted RBP/CSL N-terminal domain (NTD) binding. WTP was not essential for EBNA3C repression of EBNA2 in reporter assays or for maintenance of LCL growth. Our results indicate that EBNA3 proteins interact with multiple RBP/CSL domains, but only NTD interactions are required for LCL growth.

  4. Multivalent Chromatin Engagement and Inter-domain Crosstalk Regulate MORC3 ATPase

    Directory of Open Access Journals (Sweden)

    Forest H. Andrews

    2016-09-01

    Full Text Available MORC3 is linked to inflammatory myopathies and cancer; however, the precise role of MORC3 in normal cell physiology and disease remains poorly understood. Here, we present detailed genetic, biochemical, and structural analyses of MORC3. We demonstrate that MORC3 is significantly upregulated in Down syndrome and that genetic abnormalities in MORC3 are associated with cancer. The CW domain of MORC3 binds to the methylated histone H3K4 tail, and this interaction is essential for recruitment of MORC3 to chromatin and accumulation in nuclear bodies. We show that MORC3 possesses intrinsic ATPase activity that requires DNA, but it is negatively regulated by the CW domain, which interacts with the ATPase domain. Natively linked CW impedes binding of the ATPase domain to DNA, resulting in a decrease in the DNA-stimulated enzymatic activity. Collectively, our studies provide a molecular framework detailing MORC3 functions and suggest that its modulation may contribute to human disease.

  5. 38 CFR 3.211 - Death.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Death. 3.211 Section 3..., Compensation, and Dependency and Indemnity Compensation Evidence Requirements § 3.211 Death. Death should be... community where death occurred. (2) A copy of a coroner's report of death or a verdict of a coroner's jury...

  6. SH3 Domains Differentially Stimulate Distinct Dynamin I Assembly Modes and G Domain Activity.

    Directory of Open Access Journals (Sweden)

    Sai Krishnan

    Full Text Available Dynamin I is a highly regulated GTPase enzyme enriched in nerve terminals which mediates vesicle fission during synaptic vesicle endocytosis. One regulatory mechanism involves its interactions with proteins containing Src homology 3 (SH3 domains. At least 30 SH3 domain-containing proteins bind dynamin at its proline-rich domain (PRD. Those that stimulate dynamin activity act by promoting its oligomerisation. We undertook a systematic parallel screening of 13 glutathione-S-transferase (GST-tagged endocytosis-related SH3 domains on dynamin binding, GTPase activity and oligomerisation. No correlation was found between dynamin binding and their potency to stimulate GTPase activity. There was limited correlation between the extent of their ability to stimulate dynamin activity and the level of oligomerisation, indicating an as yet uncharacterised allosteric coupling of the PRD and G domain. We examined the two variants, dynamin Iab and Ibb, which differ in the alternately splice middle domain α2 helix. They responded differently to the panel of SH3s, with the extent of stimulation between the splice variants varying greatly between the SH3s. This study reveals that SH3 binding can act as a heterotropic allosteric regulator of the G domain via the middle domain α2 helix, suggesting an involvement of this helix in communicating the PRD-mediated allostery. This indicates that SH3 binding both stabilises multiple conformations of the tetrameric building block of dynamin, and promotes assembly of dynamin-SH3 complexes with distinct rates of GTP hydrolysis.

  7. The Drosophila melanogaster Eip74EF-PA transcription factor directly binds the sciarid BhC4-1 promoter.

    Science.gov (United States)

    Frank, Henrique Oliveira; Sanchez, Danilo Garcia; de Freitas Oliveira, Lucas; Kobarg, Jörg; Monesi, Nadia

    2017-11-01

    The DNA puff BhC4-1 gene of Bradysia hygida (Diptera, Sciaridae) is amplified and expressed in the salivary glands at the end of the last larval instar. Even though there are no BhC4-1 orthologs in Drosophila melanogaster, the mechanisms that regulate BhC4-1 gene expression in B. hygida are for the most part conserved in D. melanogaster. The BhC4-1 promoter contains a 129bp (-186/-58) cis-regulatory module (CRM) that drives developmentally regulated expression in transgenic salivary glands at the onset of metamorphosis. Both in the sciarid and in transgenic D. melanogaster, BhC4-1 gene expression is induced by the increase in ecdysone titers that triggers metamorphosis. Genetic interaction experiments revealed that in the absence of the Eip74EF-PA early gene isoform BhC4-1-lacZ levels of expression in the salivary gland are severely reduced. Here we show that the overexpression of the Eip74EF-PA transcription factor is sufficient to anticipate BhC4-1-lacZ expression in transgenic D. melanogaster. Through yeast one-hybrid assays we confirm that the Eip74EF-PA transcription factor directly binds to the 129 bp sciarid CRM. Together, these results contribute to the characterization of an insect CRM and indicate that the ecdysone gene regulatory network that promotes metamorphosis is conserved between D. melanogaster and the sciarid B. hygida. © 2017 Wiley Periodicals, Inc.

  8. Peptides derived from human galectin-3 N-terminal tail interact with its carbohydrate recognition domain in a phosphorylation-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Berbís, M. Álvaro [Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid (Spain); André, Sabine [Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians University, 80539 Munich (Germany); Cañada, F. Javier [Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid (Spain); Pipkorn, Rüdiger [Central Peptide Synthesis Unit, German Cancer Research Center, 69120 Heidelberg (Germany); Ippel, Hans [Department of Biochemistry, CARIM, University of Maastricht, Maastricht (Netherlands); Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Mayo, Kevin H. [Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Kübler, Dieter [Biomolecular Interactions, German Cancer Research Center, 69120 Heidelberg (Germany); Gabius, Hans-Joachim [Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians University, 80539 Munich (Germany); Jiménez-Barbero, Jesús, E-mail: jjbarbero@cib.csic.es [Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid (Spain)

    2014-01-03

    Highlights: •Galectin-3 is composed of a carbohydrate recognition domain and an N-terminal tail. •Synthetic peptides derived from the tail are shown to interact with the CRD. •This interaction is modulated by Ser- and Tyr-phosphorylation of the peptides. -- Abstract: Galectin-3 (Gal-3) is a multi-functional effector protein that functions in the cytoplasm and the nucleus, as well as extracellularly following non-classical secretion. Structurally, Gal-3 is unique among galectins with its carbohydrate recognition domain (CRD) attached to a rather long N-terminal tail composed mostly of collagen-like repeats (nine in the human protein) and terminating in a short non-collagenous terminal peptide sequence unique in this lectin family and not yet fully explored. Although several Ser and Tyr sites within the N-terminal tail can be phosphorylated, the physiological significance of this post-translational modification remains unclear. Here, we used a series of synthetic (phospho)peptides derived from the tail to assess phosphorylation-mediated interactions with {sup 15}N-labeled Gal-3 CRD. HSQC-derived chemical shift perturbations revealed selective interactions at the backface of the CRD that were attenuated by phosphorylation of Tyr 107 and Tyr 118, while phosphorylation of Ser 6 and Ser 12 was essential. Controls with sequence scrambling underscored inherent specificity. Our studies shed light on how phosphorylation of the N-terminal tail may impact on Gal-3 function and prompt further studies using phosphorylated full-length protein.

  9. Peptides derived from human galectin-3 N-terminal tail interact with its carbohydrate recognition domain in a phosphorylation-dependent manner

    International Nuclear Information System (INIS)

    Berbís, M. Álvaro; André, Sabine; Cañada, F. Javier; Pipkorn, Rüdiger; Ippel, Hans; Mayo, Kevin H.; Kübler, Dieter; Gabius, Hans-Joachim; Jiménez-Barbero, Jesús

    2014-01-01

    Highlights: •Galectin-3 is composed of a carbohydrate recognition domain and an N-terminal tail. •Synthetic peptides derived from the tail are shown to interact with the CRD. •This interaction is modulated by Ser- and Tyr-phosphorylation of the peptides. -- Abstract: Galectin-3 (Gal-3) is a multi-functional effector protein that functions in the cytoplasm and the nucleus, as well as extracellularly following non-classical secretion. Structurally, Gal-3 is unique among galectins with its carbohydrate recognition domain (CRD) attached to a rather long N-terminal tail composed mostly of collagen-like repeats (nine in the human protein) and terminating in a short non-collagenous terminal peptide sequence unique in this lectin family and not yet fully explored. Although several Ser and Tyr sites within the N-terminal tail can be phosphorylated, the physiological significance of this post-translational modification remains unclear. Here, we used a series of synthetic (phospho)peptides derived from the tail to assess phosphorylation-mediated interactions with 15 N-labeled Gal-3 CRD. HSQC-derived chemical shift perturbations revealed selective interactions at the backface of the CRD that were attenuated by phosphorylation of Tyr 107 and Tyr 118, while phosphorylation of Ser 6 and Ser 12 was essential. Controls with sequence scrambling underscored inherent specificity. Our studies shed light on how phosphorylation of the N-terminal tail may impact on Gal-3 function and prompt further studies using phosphorylated full-length protein

  10. Structure and bonding of transition metal-boryl compounds. Theoretical study of [(PH3)2(CO)ClOs-BR2] and [(PH3)2(CO)2ClOs-BR2] (BR2 = BH2, BF2, B(OH)2, B(OCH=CHO), Bcat).

    Science.gov (United States)

    Giju, K T; Bickelhaupt, F M; Frenking, G

    2000-10-16

    Quantum chemical DFT calculations using the B3LYP functionals have been carried out for the electronically unsaturated 16 VE five-coordinate osmium boryl-complexes [(PH3)2(CO)ClOs-BR2] and the 18 VE six-coordinate complexes [(PH3)2(CO)2ClOs-BR2] with BR2 = BH2, BF2, B(OH)2, B(OHC=CHO), and Bcat (cat = catecholate O2C6H4). The bonding situation of the Os-BR2 bond was analyzed with the help of the NBO partitioning scheme. The Os-B bond dissociation energies of the 16 VE complexes are very high, and they do not change very much for the different boryl ligands. The 18 VE complexes have only slightly lower bond energies than the 16 VE species. The Os-B bond in both classes of compounds is provided by a covalent sigma-bond which is polarized toward osmium and by strong charge attraction. Os-->B pi-donation is not important for the Os-B binding interactions, except for the Os-BH2 complexes. The stability of the boryl complexes [Os]-BR2 comes mainly from BB pi-donation. The intraligand charge distribution of the BR2 group changes little when the Os-B bond is formed, except for BH2. The CO ligand in [(PH3)2(CO)2ClOs-BR2] which is trans to BR2 has a relatively weak bond to the osmium atom.

  11. Topology and weights in a protein domain interaction network – a novel way to predict protein interactions

    Directory of Open Access Journals (Sweden)

    Wuchty Stefan

    2006-05-01

    Full Text Available Abstract Background While the analysis of unweighted biological webs as diverse as genetic, protein and metabolic networks allowed spectacular insights in the inner workings of a cell, biological networks are not only determined by their static grid of links. In fact, we expect that the heterogeneity in the utilization of connections has a major impact on the organization of cellular activities as well. Results We consider a web of interactions between protein domains of the Protein Family database (PFAM, which are weighted by a probability score. We apply metrics that combine the static layout and the weights of the underlying interactions. We observe that unweighted measures as well as their weighted counterparts largely share the same trends in the underlying domain interaction network. However, we only find weak signals that weights and the static grid of interactions are connected entities. Therefore assuming that a protein interaction is governed by a single domain interaction, we observe strong and significant correlations of the highest scoring domain interaction and the confidence of protein interactions in the underlying interactions of yeast and fly. Modeling an interaction between proteins if we find a high scoring protein domain interaction we obtain 1, 428 protein interactions among 361 proteins in the human malaria parasite Plasmodium falciparum. Assessing their quality by a logistic regression method we observe that increasing confidence of predicted interactions is accompanied by high scoring domain interactions and elevated levels of functional similarity and evolutionary conservation. Conclusion Our results indicate that probability scores are randomly distributed, allowing to treat static grid and weights of domain interactions as separate entities. In particular, these finding confirms earlier observations that a protein interaction is a matter of a single interaction event on domain level. As an immediate application, we

  12. Assembly of Oligomeric Death Domain Complexes during Toll Receptor Signaling*

    OpenAIRE

    Moncrieffe, Martin C.; Grossmann, J. Günter; Gay, Nicholas J.

    2008-01-01

    The Drosophila Toll receptor is activated by the endogenous protein ligand Spätzle in response to microbial stimuli in immunity and spatial cues during embryonic development. Downstream signaling is mediated by the adaptor proteins Tube, the kinase Pelle, and the Drosophila homologue of myeloid differentiation primary response protein (dMyD88). Here we have characterized heterodimeric (dMyD88-Tube) and heterotrimeric (dMyD88-Tube-Pelle) death domain complexes. We show ...

  13. First-principles calculated decomposition pathways for LiBH4 nanoclusters

    Science.gov (United States)

    Huang, Zhi-Quan; Chen, Wei-Chih; Chuang, Feng-Chuan; Majzoub, Eric H.; Ozoliņš, Vidvuds

    2016-05-01

    We analyze thermodynamic stability and decomposition pathways of LiBH4 nanoclusters using grand-canonical free-energy minimization based on total energies and vibrational frequencies obtained from density-functional theory (DFT) calculations. We consider (LiBH4)n nanoclusters with n = 2 to 12 as reactants, while the possible products include (Li)n, (B)n, (LiB)n, (LiH)n, and Li2BnHn; off-stoichiometric LinBnHm (m ≤ 4n) clusters were considered for n = 2, 3, and 6. Cluster ground-state configurations have been predicted using prototype electrostatic ground-state (PEGS) and genetic algorithm (GA) based structural optimizations. Free-energy calculations show hydrogen release pathways markedly differ from those in bulk LiBH4. While experiments have found that the bulk material decomposes into LiH and B, with Li2B12H12 as a kinetically inhibited intermediate phase, (LiBH4)n nanoclusters with n ≤ 12 are predicted to decompose into mixed LinBn clusters via a series of intermediate clusters of LinBnHm (m ≤ 4n). The calculated pressure-composition isotherms and temperature-pressure isobars exhibit sloping plateaus due to finite size effects on reaction thermodynamics. Generally, decomposition temperatures of free-standing clusters are found to increase with decreasing cluster size due to thermodynamic destabilization of reaction products.

  14. Hydrogen Generation from Al-NiCl2/NaBH4 Mixture Affected by Lanthanum Metal

    Directory of Open Access Journals (Sweden)

    Wen Qiang Sun

    2012-01-01

    Full Text Available The effect of La on Al/NaBH4 hydrolysis was elaborated in the present paper. Hydrogen generation amount increases but hydrogen generation rate decreases with La content increasing. There is an optimized composition that Al-15 wt% La-5 wt% NiCl2/NaBH4 mixture (Al-15 wt% La-5 wt% NiCl2/NaBH4 weight ratio, 1 : 3 has 126 mL g−1 min−1 maximum hydrogen generation rate and 1764 mL g−1 hydrogen generation amount within 60 min. The efficiency is 88%. Combined with NiCl2, La has great effect on NaBH4 hydrolysis but has little effect on Al hydrolysis. Increasing La content is helpful to decrease the particle size of Al-La-NiCl2 in the milling process, which induces that the hydrolysis byproduct Ni2B is highly distributed into Al(OH3 and the catalytic reactivity of Ni2B/Al(OH3 is increased therefore. But hydrolysis byproduct La(OH3 deposits on Al surface and leads to some side effect. The Al-La-NiCl2/NaBH4 mixture has good stability in low temperature and its hydrolytic performance can be improved with increasing global temperature. Therefore, the mixture has good safety and can be applied as on board hydrogen generation material.

  15. Hydrogen generation from Al-NiCl2/NaBH4 mixture affected by lanthanum metal.

    Science.gov (United States)

    Sun, Wen Qiang; Fan, Mei-Qiang; Fei, Yong; Pan, Hua; Wang, Liang Liang; Yao, Jun

    2012-01-01

    The effect of La on Al/NaBH(4) hydrolysis was elaborated in the present paper. Hydrogen generation amount increases but hydrogen generation rate decreases with La content increasing. There is an optimized composition that Al-15 wt% La-5 wt% NiCl(2)/NaBH(4) mixture (Al-15 wt% La-5 wt% NiCl(2)/NaBH(4) weight ratio, 1 : 3) has 126 mL g(-1 )min(-1) maximum hydrogen generation rate and 1764 mL g(-1) hydrogen generation amount within 60 min. The efficiency is 88%. Combined with NiCl(2), La has great effect on NaBH(4) hydrolysis but has little effect on Al hydrolysis. Increasing La content is helpful to decrease the particle size of Al-La-NiCl(2) in the milling process, which induces that the hydrolysis byproduct Ni(2)B is highly distributed into Al(OH)(3) and the catalytic reactivity of Ni(2)B/Al(OH)(3) is increased therefore. But hydrolysis byproduct La(OH)(3) deposits on Al surface and leads to some side effect. The Al-La-NiCl(2)/NaBH(4) mixture has good stability in low temperature and its hydrolytic performance can be improved with increasing global temperature. Therefore, the mixture has good safety and can be applied as on board hydrogen generation material.

  16. Modes of Interaction of Pleckstrin Homology Domains with Membranes: Toward a Computational Biochemistry of Membrane Recognition.

    Science.gov (United States)

    Naughton, Fiona B; Kalli, Antreas C; Sansom, Mark S P

    2018-02-02

    Pleckstrin homology (PH) domains mediate protein-membrane interactions by binding to phosphatidylinositol phosphate (PIP) molecules. The structural and energetic basis of selective PH-PIP interactions is central to understanding many cellular processes, yet the molecular complexities of the PH-PIP interactions are largely unknown. Molecular dynamics simulations using a coarse-grained model enables estimation of free-energy landscapes for the interactions of 12 different PH domains with membranes containing PIP 2 or PIP 3 , allowing us to obtain a detailed molecular energetic understanding of the complexities of the interactions of the PH domains with PIP molecules in membranes. Distinct binding modes, corresponding to different distributions of cationic residues on the PH domain, were observed, involving PIP interactions at either the "canonical" (C) and/or "alternate" (A) sites. PH domains can be grouped by the relative strength of their C- and A-site interactions, revealing that a higher affinity correlates with increased C-site interactions. These simulations demonstrate that simultaneous binding of multiple PIP molecules by PH domains contributes to high-affinity membrane interactions, informing our understanding of membrane recognition by PH domains in vivo. Copyright © 2017. Published by Elsevier Ltd.

  17. Understanding the role of BAR and SH3 domain-containing proteins in fungi

    NARCIS (Netherlands)

    Gkourtsa, A.

    2017-01-01

    This thesis addresses the role of SH3 and BAR domain-containing proteins in different fungal species. SH3 domains are small modules that mediate protein-protein interactions and BAR domains are dimerization domains with membrane binding and bending properties. It is known that the ScRvs167 protein

  18. Ascorbyl Stearate Promotes Apoptosis Through Intrinsic Mitochondrial Pathway in HeLa Cancer Cells.

    Science.gov (United States)

    Mane, Shirish D; Thoh, Maikho; Sharma, Deepak; Sandur, Santosh K; Naidu, K Akhilender

    2016-12-01

    Ascorbic acid is proposed to have antitumor potential against certain cancer types but has the limitation of requiring high doses for treating cancer. Ascorbyl stearate (ASC-S) is a fatty acid ester derivative of ascorbic acid with comparable potent apoptotic activity. The present study was aimed at understanding the pathway involved in apoptotic activity of ASC-S in cervical cancer cells. The effect of ASC-S on reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) was studied in HeLa cells. Furthermore, the dose-dependent effect of ASC-S on release of cytochrome c, pro-caspase-9, caspase-3, BH3 interacting-domain death agonist (BID), truncated BH3 interacting-domain death agonist (t-BID), FAS ligand (FASL) and transcription factors nuclear factor-kappa B (NF-ĸB), nuclear factor of activated T-cells (NFAT) and activator protein-1 (AP1) were studied in HeLa cells. Treatment of HeLa cells with ASC-S significantly increased the MMP. The modulation of MMP resulted in cleavage of BID, expression of FAS, cleavage of pro-caspase-9 and release of cytochrome c into cytosol. In addition, ASC-S treatment resulted in deregulation of transcription factors NF-ĸB, NFAT and AP1, which play an important role in the development of inflammation and cancer. Our data, for the first time, suggest that ASC-S has an apoptotic effect against HeLa cells by inducing change in mitochondrial membrane permeability, cytochrome c release and subsequent activation of caspase-3 and NF-ĸB. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  19. Structural interactions between lipids, water and S1-S4 voltage-sensing domains.

    Science.gov (United States)

    Krepkiy, Dmitriy; Gawrisch, Klaus; Swartz, Kenton J

    2012-11-02

    Membrane proteins serve crucial signaling and transport functions, yet relatively little is known about their structures in membrane environments or how lipids interact with these proteins. For voltage-activated ion channels, X-ray structures suggest that the mobile voltage-sensing S4 helix would be exposed to the membrane, and functional studies reveal that lipid modification can profoundly alter channel activity. Here, we use solid-state NMR to investigate structural interactions of lipids and water with S1-S4 voltage-sensing domains and to explore whether lipids influence the structure of the protein. Our results demonstrate that S1-S4 domains exhibit extensive interactions with lipids and that these domains are heavily hydrated when embedded in a membrane. We also find evidence for preferential interactions of anionic lipids with S1-S4 domains and that these interactions have lifetimes on the timescale of ≤ 10(-3)s. Arg residues within S1-S4 domains are well hydrated and are positioned in close proximity to lipids, exhibiting local interactions with both lipid headgroups and acyl chains. Comparative studies with a positively charged lipid lacking a phosphodiester group reveal that this lipid modification has only modest effects on the structure and hydration of S1-S4 domains. Taken together, our results demonstrate that Arg residues in S1-S4 voltage-sensing domains reside in close proximity to the hydrophobic interior of the membrane yet are well hydrated, a requirement for carrying charge and driving protein motions in response to changes in membrane voltage. Published by Elsevier Ltd.

  20. Destabilized LiBH4-NaAlH4 Mixtures Doped with Titanium Based Catalysts

    DEFF Research Database (Denmark)

    Shi, Qing; Yu, Xuebin; Feidenhans'l, Robert

    2008-01-01

    We investigate the hydrogen storage properties of the mixed complex hydride LiBH4-NaAlH4 system, both undoped and doped with a TiCl3 additive. The mixed system is found to initiate a transformation to LiBH4-NaAlH4 after ball-milling, and the doped system is found to have a significant lower hydro...

  1. Hydrophobic interaction between the SH2 domain and the kinase domain is required for the activation of Csk.

    Science.gov (United States)

    Mikkola, Esa T; Gahmberg, Carl G

    2010-06-18

    The protein tyrosine kinase C-terminal Src kinase (Csk) is activated by the engagement of its Src homology (SH) 2 domain. However, the molecular mechanism required for this is not completely understood. The crystal structure of the active Csk indicates that Csk could be activated by contact between the SH2 domain and the beta3-alphaC loop in the N-terminal lobe of the kinase domain. To study the importance of this interaction for the SH2-domain-mediated activation of Csk, we mutated the amino acid residues forming the contacts between the SH2 domain and the beta3-alphaC loop. The mutation of the beta3-alphaC loop Ala228 to glycine and of the SH2 domain Tyr116, Tyr133, Leu138, and Leu149 to alanine resulted in the inability of the SH2 domain ligand to activate Csk. Furthermore, the overexpressed Csk mutants A228G, Y133A/Y116A, L138A, and L149A were unable to efficiently inactivate endogenous Src in human embryonic kidney 293 cells. The results suggest that the SH2-domain-mediated activation of Csk is dependent on the binding of the beta3-alphaC loop Ala228 to the hydrophobic pocket formed by the side chains of Tyr116, Tyr133, Leu138, and Leu149 on the surface of the SH2 domain. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. Interacting mechanism of ID3 HLH domain towards E2A/E12 transcription factor – An Insight through molecular dynamics and docking approach

    Directory of Open Access Journals (Sweden)

    Nishith Saurav Topno

    2016-03-01

    Full Text Available Inhibitor of DNA binding protein 3 (ID3 has long been characterized as an oncogene that implicates its functional role through its Helix–Loop–Helix (HLH domain upon protein–protein interaction. An insight into the dimerization brought by this domain helps in identifying the key residues that favor the mechanism behind it. Molecular dynamics (MD simulations were performed for the HLH proteins ID3 and Transcription factor E2-alpha (E2A/E12 and their ensemble complex (ID3-E2A/E12 to gather information about the HLH domain region and its role in the interaction process. Further evaluation of the results by Principal Component Analysis (PCA and Free Energy Landscape (FEL helped in revealing residues of E2A/E12: Lys570, Ala595, Val598, and Ile599 and ID3: Glu53, Gln63, and Gln66 buried in their HLH motifs imparting key roles in dimerization process. Furthermore the T-pad analysis results helped in identifying the key fluctuations and conformational transitions using the intrinsic properties of the residues present in the domain region of the proteins thus specifying their crucial role towards molecular recognition. The study provides an insight into the interacting mechanism of the ID3-E2A/E12 complex and maps the structural transitions arising in the essential conformational space indicating the key structural changes within the helical regions of the motif. It thereby describes how the internal dynamics of the proteins might regulate their intrinsic structural features and its subsequent functionality.

  3. Characterization of a novel weak interaction between MUC1 and Src-SH3 using nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gunasekara, Nirosha [Department of Laboratory Medicine and Pathology, University of Alberta, 5B4.21 WCM Health Science Centre, 8440-112th Street, Edmonton, Alberta, Canada T6G 2R7 (Canada); Sykes, Brian, E-mail: brian.sykes@ualberta.ca [Department of Biochemistry, 4-19B Medical Sciences Bldg., University of Alberta Edmonton, Alberta, Canada T6G 2H7 (Canada); Hugh, Judith, E-mail: judithh@ualberta.ca [Department of Laboratory Medicine and Pathology, University of Alberta, 5B4.21 WCM Health Science Centre, 8440-112th Street, Edmonton, Alberta, Canada T6G 2R7 (Canada)

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer MUC1 binds the Src-SH3 domain potentially triggering Src dependent cell migration. Black-Right-Pointing-Pointer NMR Spectroscopy was used to monitor MUC1-CD and Src SH3 domain titrations. Black-Right-Pointing-Pointer MUC1-CD peptides bind with a low affinity (K{sub d} of 2-3 mM) to a non-canonical site. Black-Right-Pointing-Pointer Weak interactions may mediate dynamic processes like migration. Black-Right-Pointing-Pointer The MUC1-CD and Src-SH3 interaction may be a prime target to inhibit cell migration. -- Abstract: Breast cancer causes death through cancer cell migration and subsequent metastasis to distant organs. In vitro, the MUC1 mucin can mediate breast cancer cell migration by binding to intercellular adhesion molecule-1 (ICAM-1). This migration is dependent on MUC1 cytoplasmic domain (MUC1-CD) activation of the non-receptor tyrosine kinase, Src, possibly through competitive displacement of an inhibitory Src intramolecular SH3 binding. Therefore, we characterized the binding site and affinity of the MUC1-CD for Src-SH3 using multidimensional nuclear magnetic resonance (NMR) spectroscopy to monitor the titration of the {sup 15}N labeled Src-SH3 domain with synthetic native and mutant peptides of MUC1-CD. The results revealed that the dissociation constant (K{sub d}) for the interaction of the native MUC1-CD peptides and Src-SH3 domain was weak with a K{sub d} of 2-3 mM. Notably, the SH3 residues most perturbed upon peptide binding were located outside the usual hydrophobic binding cleft in a previously described alternate binding site on the Src-SH3, suggesting that MUC1-CD binds to a non-canonical site. The binding characteristics outlined here suggest that the interaction between Src-SH3 and MUC1-CD represents a novel weak electrostatic interaction of the type which is increasingly recognized as important in transient and dynamic protein complexes required for cell migration and signal transduction. As such, this

  4. Structures of the Gasdermin D C-Terminal Domains Reveal Mechanisms of Autoinhibition.

    Science.gov (United States)

    Liu, Zhonghua; Wang, Chuanping; Rathkey, Joseph K; Yang, Jie; Dubyak, George R; Abbott, Derek W; Xiao, Tsan Sam

    2018-05-01

    Pyroptosis is an inflammatory form of programmed cell death that plays important roles in immune protection against infections and in inflammatory disorders. Gasdermin D (GSDMD) is an executor of pyroptosis upon cleavage by caspases-1/4/5/11 following canonical and noncanonical inflammasome activation. GSDMD N-terminal domain assembles membrane pores to induce cytolysis, whereas its C-terminal domain inhibits cell death through intramolecular association with the N domain. The molecular mechanisms of autoinhibition for GSDMD are poorly characterized. Here we report the crystal structures of the human and murine GSDMD C-terminal domains, which differ from those of the full-length murine GSDMA3 and the human GSDMB C-terminal domain. Mutations of GSDMD C-domain residues predicted to locate at its interface with the N-domain enhanced pyroptosis. Our results suggest that GSDMDs may employ a distinct mode of intramolecular domain interaction and autoinhibition, which may be relevant to its unique role in pyroptosis downstream of inflammasome activation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Potyvirus helper component-proteinase self-interaction in the yeast two-hybrid system and delineation of the interaction domain involved.

    Science.gov (United States)

    Urcuqui-Inchima, S; Walter, J; Drugeon, G; German-Retana, S; Haenni, A L; Candresse, T; Bernardi, F; Le Gall, O

    1999-05-25

    Using the yeast two-hybrid system, a screen was performed for possible interactions between the proteins encoded by the 5' region of potyviral genomes [P1, helper component-proteinase (HC-Pro), and P3]. A positive self-interaction involving HC-Pro was detected with lettuce mosaic virus (LMV) and potato virus Y (PVY). The possibility of heterologous interaction between the HC-Pro of LMV and of PVY was also demonstrated. No interaction involving either the P1 or the P3 proteins was detected. A series of ordered deletions from either the N- or C-terminal end of the LMV HC-Pro was used to map the domain involved in interaction to the 72 N-terminal amino acids of the protein, a region known to be dispensable for virus viability but necessary for aphid transmission. A similar but less detailed analysis mapped the interacting domain to the N-terminal half of the PVY HC-Pro. Copyright 1999 Academic Press.

  6. Phactr3/scapinin, a member of protein phosphatase 1 and actin regulator (phactr family, interacts with the plasma membrane via basic and hydrophobic residues in the N-terminus.

    Directory of Open Access Journals (Sweden)

    Akihiro Itoh

    Full Text Available Proteins that belong to the protein phosphatase 1 and actin regulator (phactr family are involved in cell motility and morphogenesis. However, the mechanisms that regulate the actin cytoskeleton are poorly understood. We have previously shown that phactr3, also known as scapinin, localizes to the plasma membrane, including lamellipodia and membrane ruffles. In the present study, experiments using deletion and point mutants showed that the basic and hydrophobic residues in the N-terminus play crucial roles in the localization to the plasma membrane. A BH analysis (http://helixweb.nih.gov/bhsearch is a program developed to identify membrane-binding domains that comprise basic and hydrophobic residues in membrane proteins. We applied this program to phactr3. The results of the BH plot analysis agreed with the experimentally determined region that is responsible for the localization of phactr3 to the plasma membrane. In vitro experiments showed that the N-terminal itself binds to liposomes and acidic phospholipids. In addition, we showed that the interaction with the plasma membrane via the N-terminal membrane-binding sequence is required for phactr3-induced morphological changes in Cos7 cells. The membrane-binding sequence in the N-terminus is highly conserved in all members of the phactr family. Our findings may provide a molecular basis for understanding the mechanisms that allow phactr proteins to regulate cell morphogenesis.

  7. New fundamental experimental studies on α-Mg(BH4)2 and other borohydrides

    International Nuclear Information System (INIS)

    Hagemann, Hans; D'Anna, Vincenza; Rapin, Jean-Philippe; Cerny, Radovan; Filinchuk, Yaroslav; Kim, Ki Chul; Sholl, David S.; Parker, Stewart F.

    2011-01-01

    Research highlights: → Eutectic behavior is observed in the LiBH4 -Mg(BH4)2 system. → New INS data show good agreement with theoretical DFT calculations. → Temperature dependent Raman spectra complement previous NMR studies. - Abstract: Several new studies of Mg(BH 4 ) 2 are reported. A 1:1 LiBH 4 :Mg(BH 4 ) 2 mixture was studied by in situ synchrotron X-ray diffraction and reveals an eutectic behavior with the eutectic composition more rich in Mg(BH 4 ) 2 , and the eutectic temperature lower than 456 K. No dual cation compound was observed in this experiment. New vibrational spectra including INS data have been obtained and are compared with theoretical DFT calculations and recent NMR studies, showing good agreement.

  8. Hydrolysis of Mg(BH4)2 and its coordination compounds as a way to obtain hydrogen

    Science.gov (United States)

    Solovev, Mikhail V.; Chashchikhin, Oleg V.; Dorovatovskii, Pavel V.; Khrustalev, Victor N.; Zyubin, A. S.; Zyubina, T. S.; Kravchenko, O. V.; Zaytsev, Alexey A.; Dobrovolsky, Yu. A.

    2018-02-01

    Three ligand-stabilized Mg(BH4)2-based complexes have been synthesized and evaluated as potential hydrogen storage media for portable fuel cell applications. The new borohydrides: Mg(BH4)2 × 0.5Et2O and Mg(BH4)2 × diglyme (diglyme - CH3O(CH2)2O(CH2)2OCH3) have been synthesized and examined by X-ray single crystal diffraction method. Hydrolysis reactions of the compounds liberate hydrogen in quantities ranging from 46 to 96% of the theoretical yield. The hydrolysis of Mg(BH4)2 and other borohydrides is also accompanied by the diborane formation. The amount of liberated diborane depends on the Mg-coordination environment. To explain this fact quantum-chemical calculations have been performed. It is shown that formation of Mg-O-Mg-bridges enables the side process of diborane generation. It means that the size and denticity of the ligand directly affects the amount of released diborane. In general, the larger the ligand and the higher its denticity, the smaller is amount of diborane produced. The new compound Mg(BH4)2 × diglyme decomposes without diborane formation that allows one to be considered as a new promising chemical hydrogen storage compound for the practical usage.

  9. The C-type lectin of the aggrecan G3 domain activates complement.

    Directory of Open Access Journals (Sweden)

    Camilla Melin Fürst

    Full Text Available Excessive complement activation contributes to joint diseases such as rheumatoid arthritis and osteoarthritis during which cartilage proteins are fragmented and released into the synovial fluid. Some of these proteins and fragments activate complement, which may sustain inflammation. The G3 domain of large cartilage proteoglycan aggrecan interacts with other extracellular matrix proteins, fibulins and tenascins, via its C-type lectin domain (CLD and has important functions in matrix organization. Fragments containing G3 domain are released during normal aggrecan turnover, but increasingly so in disease. We now show that the aggrecan CLD part of the G3 domain activates the classical and to a lesser extent the alternative pathway of complement, via binding of C1q and C3, respectively. The complement control protein (CCP domain adjacent to the CLD showed no effect on complement initiation. The binding of C1q to G3 depended on ionic interactions and was decreased in D2267N mutant G3. However, the observed complement activation was attenuated due to binding of complement inhibitor factor H to CLD and CCP domains. This was most apparent at the level of deposition of terminal complement components. Taken together our observations indicate aggrecan CLD as one factor involved in the sustained inflammation of the joint.

  10. Insight to the Thermal Decomposition and Hydrogen Desorption Behaviors of NaNH2-NaBH4 Hydrogen Storage Composite.

    Science.gov (United States)

    Pei, Ziwei; Bai, Ying; Wang, Yue; Wu, Feng; Wu, Chuan

    2017-09-20

    The lightweight compound material NaNH 2 -NaBH 4 is regarded as a promising hydrogen storage composite due to the high hydrogen density. Mechanical ball milling was employed to synthesize the composite NaNH 2 -NaBH 4 (2/1 molar ratio), and the samples were investigated utilizing thermogravimetric-differential thermal analysis-mass spectroscopy (TG-DTA-MS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analyses. The full-spectrum test (range of the ratio of mass to charge: 0-200) shows that the released gaseous species contain H 2 , NH 3 , B 2 H 6 , and N 2 in the heating process from room temperature to 400 °C, and possibly the impurity gas B 6 H 12 also exists. The TG/DTA analyses show that the composite NaNH 2 -NaBH 4 (2/1 molar ratio) is conductive to generate hydrogen so that the dehydrogenation process can be finished before 400 °C. Moreover, the thermal decomposition process from 200 to 400 °C involves two-step dehydrogenation reactions: (1) Na 3 (NH 2 ) 2 BH 4 hydride decomposes into Na 3 BN 2 and H 2 (200-350 °C); (2) remaining Na 3 (NH 2 ) 2 BH 4 reacts with NaBH 4 and Na 3 BN 2 , generating Na, BN, NH 3 , N 2 , and H 2 (350-400 °C). The better mechanism understanding of the thermal decomposition pathway lays a foundation for tailoring the hydrogen storage performance of the composite complex hydrides system.

  11. Structure and function of the TIR domain from the grape NLR protein RPV1

    Directory of Open Access Journals (Sweden)

    Simon John Williams

    2016-12-01

    Full Text Available The N-terminal Toll/interleukin-1 receptor/resistance protein (TIR domain has been shown to be both necessary and sufficient for defence signalling in the model plants flax and Arabidopsis. In examples from these organisms, TIR domain self-association is required for signalling function, albeit through distinct interfaces. Here, we investigate these properties in the TIR domain containing resistance protein RPV1 from the wild grapevine Muscadinia rotundifolia. The RPV1 TIR domain, without additional flanking sequence present, is autoactive when transiently expressed in tobacco, demonstrating that the TIR domain alone is capable of cell-death signalling. We determined the crystal structure of the RPV1 TIR domain at 2.3 Å resolution. In the crystals, the RPV1 TIR domain forms a dimer, mediated predominantly through residues in the αA and αE helices (AE interface. This interface is shared with the interface discovered in the dimeric complex of the TIR domains from the Arabidopsis RPS4/RRS1 resistance protein pair. We show that surface-exposed residues in the AE interface that mediate the dimer interaction in the crystals are highly conserved among plant TIR domain-containing proteins. While we were unable to demonstrate self-association of the RPV1 TIR domain in solution or using yeast 2-hybrid, mutations of surface-exposed residues in the AE interface prevent the cell-death autoactive phenotype. In addition, mutation of residues known to be important in the cell-death signalling function of the flax L6 TIR domain were also shown to be required for RPV1 TIR domain mediated cell-death. Our data demonstrate that multiple TIR domain surfaces control the cell-death function of the RPV1 TIR domain and we suggest that the conserved AE interface may have a general function in TIR-NLR signalling.

  12. Micro poly(3-sulfopropyl methacrylate) hydrogel synthesis for in situ metal nanoparticle preparation and hydrogen generation from hydrolysis of NaBH4

    International Nuclear Information System (INIS)

    Turhan, Tugce; Güvenilir, Yuksel Avcıbası; Sahiner, Nurettin

    2013-01-01

    Polymeric hydrogels derived from SPM (3-sulfopropyl methacrylate) of micrometer size were used in the preparation of a composite-catalyst system for hydrogen generation from hydrolysis of NaBH 4 . In situ Co and Ni nanoparticles were prepared by chemical reduction of absorbed Co (II) and Ni (II) ions inside the hydrogel networks, and the whole composite was used as a catalyst system. The catalytic activity of the metal nanoparticles within the p(SPM) hydrogel matrix was better and faster using Co than with Ni. Additionally, other parameters that affect the hydrogen generation rate, such as temperature, metal reloading, the catalyst amounts as well as reusability, were also investigated. It was found that p(SPM)–Co micro hydrogels were even effective for hydrogen generation at 0 °C with a hydrogen generation rate of 966 (mL H 2 ) (min) −1 (g of Co) −1 . The activation energy, activation enthalpy, and activation entropy for the hydrolysis reaction of NaBH 4 with micro p(SPM)–Co catalyst system were calculated as 44.3 kJ/mol, 43.26 kJ/mol K, and −150.93 J/mol K, respectively. - Highlights: ► Microgel embedding metal catalyst for H 2 production. ► Advanced materials for green energy. ► Soft microgel reactors for H 2 production from NaBH 4 hydrolysis

  13. Solution structure, dynamics and thermodynamics of the three SH3 domains of CD2AP

    Energy Technology Data Exchange (ETDEWEB)

    Roldan, Jose L. Ortega [Universidad de Granada, Departamento de Quimica Fisica e Instituto de Biotecnologia, Facultad de Ciencias (Spain); Blackledge, Martin [Institut de Biologie Structurale Jean-Pierre Ebel, CEA, CNRS, UJF UMR 5075, Protein Dynamics and Flexibility by NMR (France); Nuland, Nico A. J. van, E-mail: nvnuland@vub.ac.be [Vrije Universiteit Brussel, Structural Biology Brussels (Belgium); Azuaga, Ana I. [Universidad de Granada, Departamento de Quimica Fisica e Instituto de Biotecnologia, Facultad de Ciencias (Spain)

    2011-06-15

    CD2 associated protein (CD2AP) is an adaptor protein that plays an important role in cell to cell union needed for the kidney function. It contains three N-terminal SH3 domains that are able to interact among others with CD2, ALIX, c-Cbl and Ubiquitin. To understand the role of the individual SH3 domains of this adaptor protein we have performed a complete structural, thermodynamic and dynamic characterization of the separate domains using NMR and DSC. The energetic contributions to the stability and the backbone dynamics have been related to the structural features of each domain using the structure-based FoldX algorithm. We have found that the N-terminal SH3 domain of both adaptor proteins CD2AP and CIN85 are the most stable SH3 domains that have been studied until now. This high stability is driven by a more extensive network of intra-molecular interactions. We believe that this increased stabilization of N-terminal SH3 domains in adaptor proteins is crucial to maintain the necessary conformation to establish the proper interactions critical for the recruitment of their natural targets.

  14. All-MOCVD-grown BH laser on P-InP substrates

    Science.gov (United States)

    Nishimura, Tadashi; Ishimura, E.; Nakajima, Yasuo; Tada, Hitoshi; Kimura, T.; Ohkura, Y.; Goto, Katsuhiko; Omura, Etsuji; Aiga, Masao

    1993-07-01

    A very low cw threshold current of 2.5 mA ( 25 degree(s)C) and 8.0 mA ( 80 degree(s)C) with high reliability has been realized in the all-MOCVD grown BH lasers on p-InP substrates. A strained MQW active layer of 1.3 micrometers wavelength and the precise carrier confinement buried structure by MOCVD is employed for the BH lasers. The excellent potential of long lifetime of the all-MOCVD grown laser has also been confirmed. After the high temperature and the high current (100 degree(s)C, 200 mA) aging test, no significant degradation is observed which is comparable with the well-established LPE grown lasers. The BH laser is also operating stably over 3700 hrs under the APC condition of 50 degree(s)C, 10 mW. Finally, an extremely uniform 10-element all-MOCVD grown LD array is demonstrated, which has the threshold current uniformity of 2.4 +/- 0.1 mA ( 25 degree(s)C) and 9.2 +/- 0.2 mA ( 80 degree(s)C). The growth mechanism in the MOCVD is also described.

  15. Li7(BH)5(+): a new thermodynamically favored star-shaped molecule.

    Science.gov (United States)

    Torres-Vega, Juan J; Vásquez-Espinal, Alejandro; Beltran, Maria J; Ruiz, Lina; Islas, Rafael; Tiznado, William

    2015-07-15

    The potential energy surfaces (PESs) of Lin(BH)5(n-6) systems (where n = 5, 6, and 7) were explored using the gradient embedded genetic algorithm (GEGA) program, in order to find their global minima conformations. This search predicts that the lowest-energy isomers of Li6(BH)5 and Li7(BH)5(+) contain a (BH)5(6-) pentagonal fragment, which is isoelectronic and structurally analogous to the prototypical aromatic hydrocarbon anion C5H5(-). Li7(BH)5(+), along with Li7C5(+), Li7Si5(+) and Li7Ge5(+), joins a select group of clusters that adopt a seven-peak star-shape geometry, which is favored by aromaticity in the central five-membered ring, and by the preference of Li atoms for bridging positions. The theoretical analysis of chemical bonding, based on magnetic criteria, supports the notion that electronic delocalization is an important stabilization factor in all these star-shaped clusters.

  16. Interference with the HSF1/HSP70/BAG3 Pathway Primes Glioma Cells to Matrix Detachment and BH3 Mimetic-Induced Apoptosis.

    Science.gov (United States)

    Antonietti, Patrick; Linder, Benedikt; Hehlgans, Stephanie; Mildenberger, Iris C; Burger, Michael C; Fulda, Simone; Steinbach, Joachim P; Gessler, Florian; Rödel, Franz; Mittelbronn, Michel; Kögel, Donat

    2017-01-01

    Malignant gliomas exhibit a high intrinsic resistance against stimuli triggering apoptotic cell death. HSF1 acts as transcription factor upstream of HSP70 and the HSP70 co-chaperone BAG3 that is overexpressed in glioblastoma. To specifically target this resistance mechanism, we applied the selective HSF1 inhibitor KRIBB11 and the HSP70/BAG3 interaction inhibitor YM-1 in combination with the pan-Bcl-2 inhibitor AT-101. Here, we demonstrate that lentiviral BAG3 silencing significantly enhances AT-101-induced cell death and reactivates effector caspase-mediated apoptosis in U251 glioma cells with high BAG3 expression, whereas these sensitizing effects were less pronounced in U343 cells expressing lower BAG3 levels. KRIBB11 decreased protein levels of HSP70, BAG3, and the antiapoptotic Bcl-2 protein Mcl-1, and both KRIBB11 and YM-1 elicited significantly increased mitochondrial dysfunction, effector caspase activity, and apoptotic cell death after combined treatment with AT-101 and ABT-737. Depletion of BAG3 also led to a pronounced loss of cell-matrix adhesion, FAK phosphorylation, and in vivo tumor growth in an orthotopic mouse glioma model. Furthermore, it reduced the plating efficiency of U251 cells in three-dimensional clonogenic assays and limited clonogenic survival after short-term treatment with AT-101. Collectively, our data suggest that the HSF1/HSP70/BAG3 pathway plays a pivotal role for overexpression of prosurvival Bcl-2 proteins and cell death resistance of glioma. They also support the hypothesis that interference with BAG3 function is an effective novel approach to prime glioma cells to anoikis. Mol Cancer Ther; 16(1); 156-68. ©2016 AACR. ©2016 American Association for Cancer Research.

  17. Human I-mfa domain proteins specifically interact with KSHV LANA and affect its regulation of Wnt signaling-dependent transcription

    Energy Technology Data Exchange (ETDEWEB)

    Kusano, Shuichi, E-mail: skusano@m2.kufm.kagoshima-u.ac.jp [Division of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Eizuru, Yoshito [Division of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan)

    2010-06-04

    Kaposi's sarcoma-associated herpes virus (KSHV)-encoded latency-associated nuclear antigen (LANA) protein has been reported to interact with glycogen synthase kinase 3{beta} (GSK-3{beta}) and to negatively regulate its activity, leading to stimulation of GSK-3{beta}-dependent {beta}-catenin degradation. We show here that the I-mfa domain proteins, HIC (human I-mfa domain-containing protein) and I-mfa (inhibitor of MyoD family a), interacted in vivo with LANA through their C-terminal I-mfa domains. This interaction affected the intracellular localization of HIC, inhibited the LANA-dependent transactivation of a {beta}-catenin-regulated reporter construct, and decreased the level of the LANA.GSK-3{beta} complex. These data reveal for the first time that I-mfa domain proteins interact with LANA and negatively regulate LANA-mediated activation of Wnt signaling-dependent transcription by inhibiting the formation of the LANA.GSK-3{beta} complex.

  18. The First Simultaneous X-Ray/Radio Detection of the First Be/BH System MWC 656

    Energy Technology Data Exchange (ETDEWEB)

    Ribó, M.; Paredes, J. M.; Marcote, B.; Moldón, J.; Paredes-Fortuny, X. [Departament de Física Quàntica i Astrofísica, Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, IEEC-UB, Martí i Franquès 1, E08028 Barcelona (Spain); Munar-Adrover, P. [INAF/IAPS-Roma, I-00133 Roma (Italy); Iwasawa, K. [ICREA, Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, IEEC-UB, Martí i Franquès 1, E-08028 Barcelona (Spain); Casares, J. [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Migliari, S. [European Space Astronomy Centre, Apartado/P.O. Box 78, Villanueva de la Canada, E-28691 Madrid (Spain)

    2017-02-01

    MWC 656 is the first known Be/black hole (BH) binary system. Be/BH binaries are important in the context of binary system evolution and sources of detectable gravitational waves because they are possible precursors of coalescing neutron star/BH binaries. X-ray observations conducted in 2013 revealed that MWC 656 is a quiescent high-mass X-ray binary (HMXB), opening the possibility to explore X-ray/radio correlations and the accretion/ejection coupling down to low luminosities for BH HMXBs. Here we report on a deep joint Chandra /VLA observation of MWC 656 (and contemporaneous optical data) conducted in 2015 July that has allowed us to unambiguously identify the X-ray counterpart of the source. The X-ray spectrum can be fitted with a power law with Γ ∼ 2, providing a flux of ≃4 × 10{sup −15} erg cm{sup −2} s{sup −1} in the 0.5–8 keV energy range and a luminosity of L {sub X} ≃ 3 × 10{sup 30} erg s{sup −1} at a 2.6 kpc distance. For a 5 M{sub ⊙} BH this translates into ≃5 × 10{sup −9} L {sub Edd}. These results imply that MWC 656 is about 7 times fainter in X-rays than it was two years before and reaches the faintest X-ray luminosities ever detected in stellar-mass BHs. The radio data provide a detection with a peak flux density of 3.5 ± 1.1 μ Jy beam{sup −1}. The obtained X-ray/radio luminosities for this quiescent BH HMXB are fully compatible with those of the X-ray/radio correlations derived from quiescent BH low-mass X-ray binaries. These results show that the accretion/ejection coupling in stellar-mass BHs is independent of the nature of the donor star.

  19. Birth, growth and death of an antivortex during the propagation of a transverse domain wall in magnetic nanostrips

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, H.Y. [Physics Department, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); HKUST Shenzhen Research Institute, Shenzhen 518057 (China); Wang, X.R., E-mail: phxwan@ust.hk [Physics Department, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); HKUST Shenzhen Research Institute, Shenzhen 518057 (China)

    2014-11-15

    Antivortex birth, growth and death accompanying the propagation of a transverse domain wall (DW) in magnetic nanostrips are observed and analyzed. Antivortex formation is an intrinsic process of a strawberry-like transverse DW originated from magnetostatic interaction. Under an external magnetic field, the wider width region of a DW tends to move faster than the narrower one. This speed mismatch tilts and elongates DW center line. As a result, an antivortex with a well-defined polarity is periodically born near the tail of the DW center line. The antivortex either moves along the center line and dies on the other side of the nanostrip, or grows to its maximum size, detaches itself from the DW, and vanishes eventually. The former route reverses the polarity of DW while the later keeps the DW polarity unchanged. The evolution of the DW structures is analyzed using winding numbers assigned to each topological defects. The phase diagram in the field-width plane is obtained and the damping constant's influence on the phase diagram is discussed. - Highlights: • The magnetostatic interaction leads to a strawberry-like domain wall. • Two types of antivortices evolutions are identified. • Antivortex generation can cause decrease of Walker breakdown field. • The phase diagrams on the field-width plane are obtained.

  20. Jasmonate ZIM-domain (JAZ protein regulates host and nonhost pathogen-induced cell death in tomato and Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Ishiga

    Full Text Available The nonhost-specific phytotoxin coronatine (COR produced by several pathovars of Pseudomonas syringae functions as a jasmonic acid-isoleucine (JA-Ile mimic and contributes to disease development by suppressing plant defense responses and inducing reactive oxygen species in chloroplast. It has been shown that the F-box protein CORONATINE INSENSITIVE 1 (COI1 is the receptor for COR and JA-Ile. JASMONATE ZIM DOMAIN (JAZ proteins act as negative regulators for JA signaling in Arabidopsis. However, the physiological significance of JAZ proteins in P. syringae disease development and nonhost pathogen-induced hypersensitive response (HR cell death is not completely understood. In this study, we identified JAZ genes from tomato, a host plant for P. syringae pv. tomato DC3000 (Pst DC3000, and examined their expression profiles in response to COR and pathogens. Most JAZ genes were induced by COR treatment or inoculation with COR-producing Pst DC3000, but not by the COR-defective mutant DB29. Tomato SlJAZ2, SlJAZ6 and SlJAZ7 interacted with SlCOI1 in a COR-dependent manner. Using virus-induced gene silencing (VIGS, we demonstrated that SlJAZ2, SlJAZ6 and SlJAZ7 have no effect on COR-induced chlorosis in tomato and Nicotiana benthamiana. However, SlJAZ2-, SlJAZ6- and SlJAZ7-silenced tomato plants showed enhanced disease-associated cell death to Pst DC3000. Furthermore, we found delayed HR cell death in response to the nonhost pathogen Pst T1 or a pathogen-associated molecular pattern (PAMP, INF1, in SlJAZ2- and SlJAZ6-silenced N. benthamiana. These results suggest that tomato JAZ proteins regulate the progression of cell death during host and nonhost interactions.

  1. Evolution of a protein domain interaction network

    International Nuclear Information System (INIS)

    Li-Feng, Gao; Jian-Jun, Shi; Shan, Guan

    2010-01-01

    In this paper, we attempt to understand complex network evolution from the underlying evolutionary relationship between biological organisms. Firstly, we construct a Pfam domain interaction network for each of the 470 completely sequenced organisms, and therefore each organism is correlated with a specific Pfam domain interaction network; secondly, we infer the evolutionary relationship of these organisms with the nearest neighbour joining method; thirdly, we use the evolutionary relationship between organisms constructed in the second step as the evolutionary course of the Pfam domain interaction network constructed in the first step. This analysis of the evolutionary course shows: (i) there is a conserved sub-network structure in network evolution; in this sub-network, nodes with lower degree prefer to maintain their connectivity invariant, and hubs tend to maintain their role as a hub is attached preferentially to new added nodes; (ii) few nodes are conserved as hubs; most of the other nodes are conserved as one with very low degree; (iii) in the course of network evolution, new nodes are added to the network either individually in most cases or as clusters with relative high clustering coefficients in a very few cases. (general)

  2. NMR characterization of foldedness for the production of E3 RING domains

    NARCIS (Netherlands)

    Huang, A.; de Jong, R.N.; Folkers, G.E.; Boelens, R.

    2010-01-01

    We summarize the use of NMR spectroscopy in the production and the screening of stability and foldedness of protein domains, and apply it to the RING domains of E3 ubiquitin-ligases. RING domains are involved in specific interactions with E2 ubiquitin-conjugating enzymes and thus play an essential

  3. Apoptosis-promoted tumorigenesis: γ-irradiation-induced thymic lymphomagenesis requires Puma-driven leukocyte death

    OpenAIRE

    Michalak, Ewa M.; Vandenberg, Cassandra J.; Delbridge, Alex R.D.; Wu, Li; Scott, Clare L.; Adams, Jerry M.; Strasser, Andreas

    2010-01-01

    Although tumor development requires impaired apoptosis, we describe a novel paradigm of apoptosis-dependent tumorigenesis. Because DNA damage triggers apoptosis through p53-mediated induction of BH3-only proteins Puma and Noxa, we explored their roles in γ-radiation-induced thymic lymphomagenesis. Surprisingly, whereas Noxa loss accelerated it, Puma loss ablated tumorigenesis. Tumor suppression by Puma deficiency reflected its protection of leukocytes from γ-irradiation-induced death, because...

  4. Rip3 knockdown rescues photoreceptor cell death in blind pde6c zebrafish.

    Science.gov (United States)

    Viringipurampeer, I A; Shan, X; Gregory-Evans, K; Zhang, J P; Mohammadi, Z; Gregory-Evans, C Y

    2014-05-01

    Achromatopsia is a progressive autosomal recessive retinal disease characterized by early loss of cone photoreceptors and later rod photoreceptor loss. In most cases, mutations have been identified in CNGA3, CNGB3, GNAT2, PDE6C or PDE6H genes. Owing to this genetic heterogeneity, mutation-independent therapeutic schemes aimed at preventing cone cell death are very attractive treatment strategies. In pde6c(w59) mutant zebrafish, cone photoreceptors expressed high levels of receptor-interacting protein kinase 1 (RIP1) and receptor-interacting protein kinase 3 (RIP3) kinases, key regulators of necroptotic cell death. In contrast, rod photoreceptor cells were alternatively immunopositive for caspase-3 indicating activation of caspase-dependent apoptosis in these cells. Morpholino gene knockdown of rip3 in pde6c(w59) embryos rescued the dying cone photoreceptors by inhibiting the formation of reactive oxygen species and by inhibiting second-order neuron remodelling in the inner retina. In rip3 morphant larvae, visual function was restored in the cones by upregulation of the rod phosphodiesterase genes (pde6a and pde6b), compensating for the lack of cone pde6c suggesting that cones are able to adapt to their local environment. Furthermore, we demonstrated through pharmacological inhibition of RIP1 and RIP3 activity that cone cell death was also delayed. Collectively, these results demonstrate that the underlying mechanism of cone cell death in the pde6c(w59) mutant retina is through necroptosis, whereas rod photoreceptor bystander death occurs through a caspase-dependent mechanism. This suggests that targeting the RIP kinase signalling pathway could be an effective therapeutic intervention in retinal degeneration patients. As bystander cell death is an important feature of many retinal diseases, combinatorial approaches targeting different cell death pathways may evolve as an important general principle in treatment.

  5. The Capsicum annuum class IV chitinase ChitIV interacts with receptor-like cytoplasmic protein kinase PIK1 to accelerate PIK1-triggered cell death and defence responses

    Science.gov (United States)

    Kim, Dae Sung; Kim, Nak Hyun; Hwang, Byung Kook

    2015-01-01

    The pepper receptor-like cytoplasmic protein kinase, CaPIK1, which mediates signalling of plant cell death and defence responses was previously identified. Here, the identification of a class IV chitinase, CaChitIV, from pepper plants (Capsicum annuum), which interacts with CaPIK1 and promotes CaPIK1-triggered cell death and defence responses, is reported. CaChitIV contains a signal peptide, chitin-binding domain, and glycol hydrolase domain. CaChitIV expression was up-regulated by Xanthomonas campestris pv. vesicatoria (Xcv) infection. Notably, avirulent Xcv infection rapidly induced CaChitIV expression in pepper leaves. Bimolecular fluorescence complementation and co-immunoprecipitation revealed that CaPIK1 interacts with CaChitIV in planta, and that the CaPIK1–CaChitIV complex is localized mainly in the cytoplasm and plasma membrane. CaChitIV is also localized in the endoplasmic reticulum. Transient co-expression of CaChitIV with CaPIK1 enhanced CaPIK1-triggered cell death response and reactive oxygen species (ROS) and nitric oxide (NO) bursts. Co-silencing of both CaChitIV and CaPIK1 in pepper plants conferred enhanced susceptibility to Xcv infection, which was accompanied by a reduced induction of cell death response, ROS and NO bursts, and defence response genes. Ectopic expression of CaPIK1 in Arabidopsis enhanced basal resistance to Hyaloperonospora arabidopsidis infection. Together, the results suggest that CaChitIV positively regulates CaPIK1-triggered cell death and defence responses through its interaction with CaPIK1. PMID:25694549

  6. Chemical shift assignments of the partially deuterated Fyn SH2-SH3 domain.

    Science.gov (United States)

    Kieken, Fabien; Loth, Karine; van Nuland, Nico; Tompa, Peter; Lenaerts, Tom

    2018-04-01

    Src Homology 2 and 3 (SH2 and SH3) are two key protein interaction modules involved in regulating the activity of many proteins such as tyrosine kinases and phosphatases by respective recognition of phosphotyrosine and proline-rich regions. In the Src family kinases, the inactive state of the protein is the direct result of the interaction of the SH2 and the SH3 domain with intra-molecular regions, leading to a closed structure incompetent with substrate modification. Here, we report the 1 H, 15 N and 13 C backbone- and side-chain chemical shift assignments of the partially deuterated Fyn SH3-SH2 domain and structural differences between tandem and single domains. The BMRB accession number is 27165.

  7. The ER stress sensor PERK luminal domain functions as a molecular chaperone to interact with misfolded proteins

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng; Li, Jingzhi; Sha, Bingdong

    2016-11-29

    PERK is one of the major sensor proteins which can detect the protein-folding imbalance generated by endoplasmic reticulum (ER) stress. It remains unclear how the sensor protein PERK is activated by ER stress. It has been demonstrated that the PERK luminal domain can recognize and selectively interact with misfolded proteins but not native proteins. Moreover, the PERK luminal domain may function as a molecular chaperone to directly bind to and suppress the aggregation of a number of misfolded model proteins. The data strongly support the hypothesis that the PERK luminal domain can interact directly with misfolded proteins to induce ER stress signaling. To illustrate the mechanism by which the PERK luminal domain interacts with misfolded proteins, the crystal structure of the human PERK luminal domain was determined to 3.2 Å resolution. Two dimers of the PERK luminal domain constitute a tetramer in the asymmetric unit. Superimposition of the PERK luminal domain molecules indicated that the β-sandwich domain could adopt multiple conformations. It is hypothesized that the PERK luminal domain may utilize its flexible β-sandwich domain to recognize and interact with a broad range of misfolded proteins.

  8. MERTK interactions with SH2-domain proteins in the retinal pigment epithelium.

    Science.gov (United States)

    Shelby, Shameka J; Colwill, Karen; Dhe-Paganon, Sirano; Pawson, Tony; Thompson, Debra A

    2013-01-01

    The receptor tyrosine kinase MERTK plays an essential role in the phagocytic uptake of shed photoreceptor membranes by the retinal pigment epithelium (RPE). A fundamental aspect of signal transduction by receptor tyrosine kinases involves autophosphorylation of tyrosine residues that recruit Src-homology 2 (SH2)-domain proteins to the receptor intracellular domain. The goal of the current study was to evaluate the interactions of human MERTK with SH2-domain proteins present in the RPE. The MERTK intracellular domain was expressed as a 6xHis-fusion protein (6xHis-rMERTK(571-999)), purified and phosphorylated. Ni(2+)-NTA pull downs were performed using 6xHis-rMERTK(571-999) in incubations with recombinant phosphotyrosine-recognition sequences expressed as GST-fusion proteins. In addition, pull downs of native SH2-domain proteins were performed using 6xHis-rMERTK(571-999) and protein homogenates from rat RPE/choroid. For both recombinant and native proteins, western analysis detected MERTK interactions with GRB2, PIK3R1 (P85α), VAV3, and SRC. Immunohistochemical analysis localized each protein to mouse RPE. In cultured RPE-J cells incubated with rod outer segments (OS), siRNA knockdown of Grb2 had no effect on OS binding, but significantly reduced OS uptake. Pik3r1 localized to early phagosomes along with Rab5 and Eea1. Phosphorylation and activation of Src was detected downstream of phagocytosis and Mertk activation. These findings suggest that MERTK signaling in the RPE involves a cohort of SH2-domain proteins with the potential to regulate both cytoskeletal rearrangement and membrane movement. Identification of the SH2-domain signaling partners of MERTK is an important step toward further defining the mechanism of RPE phagocytosis that is central to the function and survival of the retina.

  9. MERTK interactions with SH2-domain proteins in the retinal pigment epithelium.

    Directory of Open Access Journals (Sweden)

    Shameka J Shelby

    Full Text Available The receptor tyrosine kinase MERTK plays an essential role in the phagocytic uptake of shed photoreceptor membranes by the retinal pigment epithelium (RPE. A fundamental aspect of signal transduction by receptor tyrosine kinases involves autophosphorylation of tyrosine residues that recruit Src-homology 2 (SH2-domain proteins to the receptor intracellular domain. The goal of the current study was to evaluate the interactions of human MERTK with SH2-domain proteins present in the RPE. The MERTK intracellular domain was expressed as a 6xHis-fusion protein (6xHis-rMERTK(571-999, purified and phosphorylated. Ni(2+-NTA pull downs were performed using 6xHis-rMERTK(571-999 in incubations with recombinant phosphotyrosine-recognition sequences expressed as GST-fusion proteins. In addition, pull downs of native SH2-domain proteins were performed using 6xHis-rMERTK(571-999 and protein homogenates from rat RPE/choroid. For both recombinant and native proteins, western analysis detected MERTK interactions with GRB2, PIK3R1 (P85α, VAV3, and SRC. Immunohistochemical analysis localized each protein to mouse RPE. In cultured RPE-J cells incubated with rod outer segments (OS, siRNA knockdown of Grb2 had no effect on OS binding, but significantly reduced OS uptake. Pik3r1 localized to early phagosomes along with Rab5 and Eea1. Phosphorylation and activation of Src was detected downstream of phagocytosis and Mertk activation. These findings suggest that MERTK signaling in the RPE involves a cohort of SH2-domain proteins with the potential to regulate both cytoskeletal rearrangement and membrane movement. Identification of the SH2-domain signaling partners of MERTK is an important step toward further defining the mechanism of RPE phagocytosis that is central to the function and survival of the retina.

  10. Differential sensitivity of Src-family kinases to activation by SH3 domain displacement.

    Directory of Open Access Journals (Sweden)

    Jamie A Moroco

    Full Text Available Src-family kinases (SFKs are non-receptor protein-tyrosine kinases involved in a variety of signaling pathways in virtually every cell type. The SFKs share a common negative regulatory mechanism that involves intramolecular interactions of the SH3 domain with the PPII helix formed by the SH2-kinase linker as well as the SH2 domain with a conserved phosphotyrosine residue in the C-terminal tail. Growing evidence suggests that individual SFKs may exhibit distinct activation mechanisms dictated by the relative strengths of these intramolecular interactions. To elucidate the role of the SH3:linker interaction in the regulation of individual SFKs, we used a synthetic SH3 domain-binding peptide (VSL12 to probe the sensitivity of downregulated c-Src, Hck, Lyn and Fyn to SH3-based activation in a kinetic kinase assay. All four SFKs responded to VSL12 binding with enhanced kinase activity, demonstrating a conserved role for SH3:linker interaction in the control of catalytic function. However, the sensitivity and extent of SH3-based activation varied over a wide range. In addition, autophosphorylation of the activation loops of c-Src and Hck did not override regulatory control by SH3:linker displacement, demonstrating that these modes of activation are independent. Our results show that despite the similarity of their downregulated conformations, individual Src-family members show diverse responses to activation by domain displacement which may reflect their adaptation to specific signaling environments in vivo.

  11. Defining the functional domain of programmed cell death 10 through its interactions with phosphatidylinositol-3,4,5-trisphosphate.

    Directory of Open Access Journals (Sweden)

    Christopher F Dibble

    2010-07-01

    Full Text Available Cerebral cavernous malformations (CCM are vascular abnormalities of the central nervous system predisposing blood vessels to leakage, leading to hemorrhagic stroke. Three genes, Krit1 (CCM1, OSM (CCM2, and PDCD10 (CCM3 are involved in CCM development. PDCD10 binds specifically to PtdIns(3,4,5P3 and OSM. Using threading analysis and multi-template modeling, we constructed a three-dimensional model of PDCD10. PDCD10 appears to be a six-helical-bundle protein formed by two heptad-repeat-hairpin structures (alpha1-3 and alpha4-6 sharing the closest 3D homology with the bacterial phosphate transporter, PhoU. We identified a stretch of five lysines forming an amphipathic helix, a potential PtdIns(3,4,5P3 binding site, in the alpha5 helix. We generated a recombinant wild-type (WT and three PDCD10 mutants that have two (Delta2KA, three (Delta3KA, and five (Delta5KA K to A mutations. Delta2KA and Delta3KA mutants hypothetically lack binding residues to PtdIns(3,4,5P3 at the beginning and the end of predicted helix, while Delta5KA completely lacks all predicted binding residues. The WT, Delta2KA, and Delta3KA mutants maintain their binding to PtdIns(3,4,5P3. Only the Delta5KA abolishes binding to PtdIns(3,4,5P3. Both Delta5KA and WT show similar secondary and tertiary structures; however, Delta5KA does not bind to OSM. When WT and Delta5KA are co-expressed with membrane-bound constitutively-active PI3 kinase (p110-CAAX, the majority of the WT is co-localized with p110-CAAX at the plasma membrane where PtdIns(3,4,5P3 is presumably abundant. In contrast, the Delta5KA remains in the cytoplasm and is not present in the plasma membrane. Combining computational modeling and biological data, we propose that the CCM protein complex functions in the PI3K signaling pathway through the interaction between PDCD10 and PtdIns(3,4,5P3.

  12. A graph kernel approach for alignment-free domain–peptide interaction prediction with an application to human SH3 domains

    Science.gov (United States)

    Kundu, Kousik; Costa, Fabrizio; Backofen, Rolf

    2013-01-01

    Motivation: State-of-the-art experimental data for determining binding specificities of peptide recognition modules (PRMs) is obtained by high-throughput approaches like peptide arrays. Most prediction tools applicable to this kind of data are based on an initial multiple alignment of the peptide ligands. Building an initial alignment can be error-prone, especially in the case of the proline-rich peptides bound by the SH3 domains. Results: Here, we present a machine-learning approach based on an efficient graph-kernel technique to predict the specificity of a large set of 70 human SH3 domains, which are an important class of PRMs. The graph-kernel strategy allows us to (i) integrate several types of physico-chemical information for each amino acid, (ii) consider high-order correlations between these features and (iii) eliminate the need for an initial peptide alignment. We build specialized models for each human SH3 domain and achieve competitive predictive performance of 0.73 area under precision-recall curve, compared with 0.27 area under precision-recall curve for state-of-the-art methods based on position weight matrices. We show that better models can be obtained when we use information on the noninteracting peptides (negative examples), which is currently not used by the state-of-the art approaches based on position weight matrices. To this end, we analyze two strategies to identify subsets of high confidence negative data. The techniques introduced here are more general and hence can also be used for any other protein domains, which interact with short peptides (i.e. other PRMs). Availability: The program with the predictive models can be found at http://www.bioinf.uni-freiburg.de/Software/SH3PepInt/SH3PepInt.tar.gz. We also provide a genome-wide prediction for all 70 human SH3 domains, which can be found under http://www.bioinf.uni-freiburg.de/Software/SH3PepInt/Genome-Wide-Predictions.tar.gz. Contact: backofen@informatik.uni-freiburg.de Supplementary

  13. Abl N-terminal Cap stabilization of SH3 domain dynamics†

    OpenAIRE

    Chen, Shugui; Dumitrescu, Teodora Pene; Smithgall, Thomas E.; Engen, John R.

    2008-01-01

    Crystal structures and other biochemical data indicate that the N-terminal cap (NCap) region of the Abelson tyrosine kinase (c-Abl) is important for maintaining the downregulated conformation of the kinase domain. The exact contributions that NCap makes in stabilizing the various intramolecular interactions within c-Abl are less clear. While the NCap appears important for locking the SH3/SH2 domains to the back of the kinase domain, there may be other more subtle elements of regulation. Hydro...

  14. 38 CFR 3.460 - Death pension.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Death pension. 3.460 Section 3.460 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS ADJUDICATION Pension, Compensation, and Dependency and Indemnity Compensation Apportionments § 3.460 Death pension. Death pension...

  15. Photochemistry of U(BH/sub 4/)/sub 4/ and U(BD/sub 4/)/sub 4/

    Energy Technology Data Exchange (ETDEWEB)

    Paine, R T; Schonberg, P R; Light, R W [New Mexico Univ., Albuquerque (USA). Dept. of Chemistry; Danen, W C; Freund, S M

    1979-01-01

    U(BH/sub 4/)/sub 4/ and U(BD/sub 4/)/sub 4/ are observed to undergo complex degradation reactions promoted by broadband UV radiation. The primary products of these reactions appear to be U(BH/sub 4/)/sub 3/, B/sub 2/H/sub 6/, H/sub 2/, U(BD/sub 4/)/sub 3/, B/sub 2/D/sub 6/ and D/sub 2/. Further, U(BD/sub 4/)/sub 4/ undergoes a related decomposition reaction under the influence of CO/sub 2/ laser irradiation at 924.97 cm/sup -1/.

  16. Inhibition of αIIbβ3 Ligand Binding by an αIIb Peptide that Clasps the Hybrid Domain to the βI Domain of β3.

    Directory of Open Access Journals (Sweden)

    Wen Hwa Lee

    Full Text Available Agonist-stimulated platelet activation triggers conformational changes of integrin αIIbβ3, allowing fibrinogen binding and platelet aggregation. We have previously shown that an octapeptide, p1YMESRADR8, corresponding to amino acids 313-320 of the β-ribbon extending from the β-propeller domain of αIIb, acts as a potent inhibitor of platelet aggregation. Here we have performed in silico modelling analysis of the interaction of this peptide with αIIbβ3 in its bent and closed (not swing-out conformation and show that the peptide is able to act as a substitute for the β-ribbon by forming a clasp restraining the β3 hybrid and βI domains in a closed conformation. The involvement of species-specific residues of the β3 hybrid domain (E356 and K384 and the β1 domain (E297 as well as an intrapeptide bond (pE315-pR317 were confirmed as important for this interaction by mutagenesis studies of αIIbβ3 expressed in CHO cells and native or substituted peptide inhibitory studies on platelet functions. Furthermore, NMR data corroborate the above results. Our findings provide insight into the important functional role of the αIIb β-ribbon in preventing integrin αIIbβ3 head piece opening, and highlight a potential new therapeutic approach to prevent integrin ligand binding.

  17. Investigation of the role of NaBH4 in the chemical synthesis of gold nanorods

    International Nuclear Information System (INIS)

    Samal, Akshaya K.; Sreeprasad, Theruvakkattil S.; Pradeep, Thalappil

    2010-01-01

    An improvement in the previously reported seed-mediated chemical synthesis of gold nanorods (GNRs) is reported. Monodisperse GNRs have been synthesized in a one-step protocol. The addition of controlled quantity of sodium borohydride (NaBH 4 ) directly into the growth solution produced uniform GNRs, formed by in situ nucleation and growth. In order to arrive at the conclusion, we studied the formation of GNRs with various seeds, of metals of widely differing crystal structures, and there were no variations in the properties of the GNRs formed. The role of NaBH 4 in the growth of GNR, which has not been covered in previous reports, is discussed in detail. The dependence of longitudinal plasmon peak on the concentration of NaBH 4 is compared with the dependence of residual concentration of NaBH 4 in the seed solution, which is added to the growth solution in seed-mediated synthesis. The study shows that NaBH 4 plays an important role in the formation of GNRs. This proposed protocol offers a number of advantages: one-step preparation of GNRs, significant reduction in the preparation time to 10 min, high monodispersity of GNRs, and tailorability of the aspect ratio depending on NaBH 4 concentration. It is suggested that NaBH 4 added to the growth solution leads to in situ formation of the seed particles of the size of 3-5 nm which enables the growth of GNRs. The growth of GNRs suggested here is likely to have an impact on the preparation of other anisotropic structures. Our single-pot methodology makes the procedure directly adaptable for commercial-scale production of GNRs and for their synthesis even in undergraduate laboratories.

  18. Synthesis of Zn(BH{sub 4}){sub 2} and Gas Absorption and Release Characteristics of Zn(BH{sub 4}){sub 2}, Ni, or Ti-Added MgH{sub 2}–Based Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Young Jun; Lee, Seong Ho; Kwon, Sung Nam; Park Il Woo; Song, Myoung Youp [Chonbuk National University, Jeonju (Korea, Republic of)

    2015-07-15

    A sample [named Zn(BH{sub 4}){sub 2}(+NaCl)] was synthesized by milling ZnCl{sub 2} and NaBH{sub 4} at 400 rpm under argon gas for 2 h. And Zn(BH{sub 4}){sub 2}(+NaCl)+MgH{sub 2} sample was prepared by milling MgH{sub 2} in a planetary ball mill and mixing with the Zn(BH{sub 4}){sub 2}(+NaCl) synthesized by milling for 4 h in a mortar with a pestle. Then the gas-release characteristics of the two samples were investrigated. Analyses of XRD patterns and FT-IR spectra, as well as TGA, DTA, and SEM observations, were also performed. After heating the samples to 400 ℃, the weight losses of Zn(BH{sub 4}){sub 2}(+NaCl) and Zn(BH{sub 4}){sub 2}(+NaCl)+MgH{sub 2} were 11.2 and 8.2 wt%, respectively, with respect to the sample weight. The DTA results for the two samples showed a decomposition peak for Zn(BH{sub 4}){sub 2} at about 61 ℃. The DTA result of Zn(BH{sub 4}){sub 2}(+NaCl) + MgH{sub 2} showed a decomposition peak for MgH{sub 2} at about 374 ℃. A sample of Zn(BH{sub 4}){sub 2}(+NaCl)+MgH{sub 2} to which Ni, and Ti were added, with a composition of 90 wt% MgH{sub 2}-5 wt% Zn(BH{sub 4}){sub 2}(+NaCl)-2.5 wt% Ni-2.5 wt% Ti, in which a large amount of MgH2 is contained in order to make a large quantity of hydrogen be absorbed and released reversibly, was also prepared. The experimental results showed that addition of Zn(BH{sub 4}){sub 2}(+NaCl), Ni, or Ti increased the dehydriding rate of MgH{sub 2}, while decreased its initial hydriding rate.

  19. BH5047 type depth sand moisture-meter of high sensitivity

    International Nuclear Information System (INIS)

    Ji Changsong; Xie Liangnian; Zhang Shulan; Zhang Shuheng

    2000-01-01

    A new depth neutron moisture meter BH5047 has been developed. BH5047 neutron moisture meter is characterised by it is high sensitivity and used for sand water content measurement at concrete mixer. Calibration function is obtained by the Method of Least Squares. Linear correlation efficiency is as good as 0.9977

  20. Post-translational control of RIPK3 and MLKL mediated necroptotic cell death [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    James M. Murphy

    2015-11-01

    Full Text Available Several programmed lytic and necrotic-like cell death mechanisms have now been uncovered, including the recently described receptor interacting protein kinase-3 (RIPK3-mixed lineage kinase domain-like (MLKL-dependent necroptosis pathway. Genetic experiments have shown that programmed necrosis, including necroptosis, can play a pivotal role in regulating host-resistance against microbial infections. Alternatively, excess or unwarranted necroptosis may be pathological in autoimmune and autoinflammatory diseases. This review highlights the recent advances in our understanding of the post-translational control of RIPK3-MLKL necroptotic signaling. We discuss the critical function of phosphorylation in the execution of necroptosis, and highlight the emerging regulatory roles for several ubiquitin ligases and deubiquitinating enzymes. Finally, based on current evidence, we discuss the potential mechanisms by which the essential, and possibly terminal, necroptotic effector, MLKL, triggers the disruption of cellular membranes to cause cell lysis.

  1. Effect of Mg, Ca, and Zn on stability of LiBH{sub 4} through computational thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Hoon; Manga, Venkateswara Rao; Liu, Zi-Kui [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)

    2010-07-15

    The effect of divalent metal-dopants, Mg, Ca, and Zn, on the stability of LiBH{sub 4} is studied by using the first-principles calculations and CALPHAD (CALculation of PHAse Diagram) modeling. The ground states of Mg{sub 1/2}BH{sub 4}, Ca{sub 1/2}BH{sub 4}, and Zn{sub 1/2}BH{sub 4} are shown to be I anti 4m2, F2dd, and I anti 4m2, respectively, through first-principles calculations. Positive enthalpy of mixing between Li and the alloying element is predicted, indicating unfavorable solubility of alloying elements in LiBH{sub 4} and thus offering possibility to decrease the stability of LiBH{sub 4}. The ionic sublattice model of (Li{sup +}, M{sup 2+}, Va){sub 1}(BH{sub 4}{sup -}){sub 1} is adopted for the metal substituted LiBH{sub 4} phase. It is observed that the addition of Mg or Zn has limited effect as the decomposition temperature is between those of LiBH{sub 4} and M{sub 1/2}BH{sub 4} for Mg and Zn substitutions. LiBH{sub 4} is destabilized with magnesium borides or LiZn{sub 4} formation but its decomposition temperature is higher than that of M{sub 1/2}BH{sub 4}. On the other hand, the addition of Ca significantly reduces the H{sub 2} releasing temperature due to the formation of highly stable CaB{sub 6}. (author)

  2. Prediction of Cancer Proteins by Integrating Protein Interaction, Domain Frequency, and Domain Interaction Data Using Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Chien-Hung Huang

    2015-01-01

    Full Text Available Many proteins are known to be associated with cancer diseases. It is quite often that their precise functional role in disease pathogenesis remains unclear. A strategy to gain a better understanding of the function of these proteins is to make use of a combination of different aspects of proteomics data types. In this study, we extended Aragues’s method by employing the protein-protein interaction (PPI data, domain-domain interaction (DDI data, weighted domain frequency score (DFS, and cancer linker degree (CLD data to predict cancer proteins. Performances were benchmarked based on three kinds of experiments as follows: (I using individual algorithm, (II combining algorithms, and (III combining the same classification types of algorithms. When compared with Aragues’s method, our proposed methods, that is, machine learning algorithm and voting with the majority, are significantly superior in all seven performance measures. We demonstrated the accuracy of the proposed method on two independent datasets. The best algorithm can achieve a hit ratio of 89.4% and 72.8% for lung cancer dataset and lung cancer microarray study, respectively. It is anticipated that the current research could help understand disease mechanisms and diagnosis.

  3. Tyr721 regulates specific binding of the CSF-1 receptor kinase insert to PI 3'-kinase SH2 domains: a model for SH2-mediated receptor-target interactions.

    Science.gov (United States)

    Reedijk, M; Liu, X; van der Geer, P; Letwin, K; Waterfield, M D; Hunter, T; Pawson, T

    1992-01-01

    Efficient binding of active phosphatidylinositol (PI) 3'-kinase to the autophosphorylated macrophage colony stimulating factor receptor (CSF-1R) requires the noncatalytic kinase insert (KI) region of the receptor. To test whether this region could function independently to bind PI 3'-kinase, the isolated CSF-1R KI was expressed in Escherichia coli, and was inducibly phosphorylated on tyrosine. The tyrosine phosphorylated form of the CSF-1R KI bound PI 3'-kinase in vitro, whereas the unphosphorylated form had no binding activity. The p85 alpha subunit of PI 3'-kinase contains two Src homology (SH)2 domains, which are implicated in the interactions of signalling proteins with activated receptors. Bacterially expressed p85 alpha SH2 domains complexed in vitro with the tyrosine phosphorylated CSF-1R KI. Binding of the CSF-1R KI to PI 3'-kinase activity, and to the p85 alpha SH2 domains, required phosphorylation of Tyr721 within the KI domain, but was independent of phosphorylation at Tyr697 and Tyr706. Tyr721 was also critical for the association of activated CSF-1R with PI 3'-kinase in mammalian cells. Complex formation between the CSF-1R and PI 3'-kinase can therefore be reconstructed in vitro in a specific interaction involving the phosphorylated receptor KI and the SH2 domains of p85 alpha. Images PMID:1314163

  4. The K Domain Mediates Homologous and Heterologous Interactions Between FLC and SVP Proteins of Brassica juncea

    Directory of Open Access Journals (Sweden)

    Ma Guanpeng

    2015-07-01

    Full Text Available The transcription factors FLOWERING LOCUS C (FLC and SHORT VEGETATIVE PHASE (SVP can interact to form homologous and heterologous protein complexes that regulate flowering time in Brassica juncea Coss. (Mustard.Previous studies showed that protein interactions were mediated by the K domain, which contains the subdomains K1, K2 and K3. However, it remains unknown how the subdomains mediate the interactions between FLC and SVP. In the present study, we constructed several mutants of subdomains K1–K3 and investigated the mechanisms involved in the heterologous interaction of BjFLC/BjSVP and in the homologous interaction of BjFLC/BjFLC or BjSVP/BjSVP. Yeast two-hybrid and β-Galactosidase activity assays showed that the 19 amino acids of the K1 subdomain in BjSVP and the 17 amino acids of the K1 subdomain in BjFLC were functional subdomains that interact with each other to mediate hetero-dimerization. The heterologous interaction was enhanced by the K2 subdomain of BjSVP protein, but weakened by its interhelical domain L2. The heterologous interaction was also enhanced by the K2 subdomain of BjFLC protein, but weakened by its K3 subdomain. The homologous interaction of BjSVP was mediated by the full K-domain. However, the homologous interaction of BjFLC was regulated only by its K1 and weakened by its K2 and K3 subdomains. The results provided new insights into the interactions between FLC and SVP, which will be valuable for further studies on the molecular regulation mechanisms of the regulation of flowering time in B. juncea and other Brassicaceae.

  5. The deprotonation energies of BH5 and AlH5: Comparisons to GaH5

    International Nuclear Information System (INIS)

    Speakman, Lucas D.; Turney, Justin M.; Schaefer, Henry F.

    2007-01-01

    Hypercoordinate boron is most unusual, leading to considerable theoretical and experimental research on the parent BH 5 molecule. The deprotonation energies of BH 5 and the related molecules AlH 5 and GaH 5 have been of particular interest. Here the energy differences for XH 5 ->XH 4 - +H(X=BandAl) are computed to be 332.4 and 326.3kcalmol -1 , respectively, with an aug-cc-pVQZ basis set at the CCSD(T) level of theory. Vibrational frequencies for BH 4 - and AlH 4 - are also reported as 1098, 1210, 2263, and 2284cm -1 and 760, 779, 1658, and 1745cm -1 , respectively, again at the CCSD(T) aug-cc-pVQZ level of theory. Comparisons with the valence isoelectronic GaH 5 molecule are made

  6. Cooperative interactions between paired domain and homeodomain.

    Science.gov (United States)

    Jun, S; Desplan, C

    1996-09-01

    The Pax proteins are a family of transcriptional regulators involved in many developmental processes in all higher eukaryotes. They are characterized by the presence of a paired domain (PD), a bipartite DNA binding domain composed of two helix-turn-helix (HTH) motifs,the PAI and RED domains. The PD is also often associated with a homeodomain (HD) which is itself able to form homo- and hetero-dimers on DNA. Many of these proteins therefore contain three HTH motifs each able to recognize DNA. However, all PDs recognize highly related DNA sequences, and most HDs also recognize almost identical sites. We show here that different Pax proteins use multiple combinations of their HTHs to recognize several types of target sites. For instance, the Drosophila Paired protein can bind, in vitro, exclusively through its PAI domain, or through a dimer of its HD, or through cooperative interaction between PAI domain and HD. However, prd function in vivo requires the synergistic action of both the PAI domain and the HD. Pax proteins with only a PD appear to require both PAI and RED domains, while a Pax-6 isoform and a new Pax protein, Lune, may rely on the RED domain and HD. We propose a model by which Pax proteins recognize different target genes in vivo through various combinations of their DNA binding domains, thus expanding their recognition repertoire.

  7. 7 CFR 707.3 - Death.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Death. 707.3 Section 707.3 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE AGRICULTURAL... Death. (a) Where any person who is otherwise eligible to receive a payment dies before the payment is...

  8. Hydrogen dynamics in the low temperature phase of LiBH{sub 4} probed by quasielastic neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Remhof, Arndt, E-mail: arndt.remhof@empa.ch [Empa, Swiss Federal Institute for Materials Science and Technology, Hydrogen and Energy, CH-8600 Dübendorf (Switzerland); Züttel, Andreas [Empa, Swiss Federal Institute for Materials Science and Technology, Hydrogen and Energy, CH-8600 Dübendorf (Switzerland); Ramirez-Cuesta, Timmy; García-Sakai, Victoria [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Frick, Bernhard [Institut Laue-Langevin, F-38002 Grenoble (France)

    2013-12-12

    Highlights: • Inelastic fixed window sans offer new possibilities in neutron backscattering spectrometers. • Two different kind of reorientational motion were identified in the low temperature phase of LiBH{sub 4}. • Thermally activated jump rotation. - Abstract: LiBH{sub 4} contains 18.5 wt% hydrogen and undergoes a structural phase transition (orthorhombic → hexagonal) at 381 K which is associated with a large increase in hydrogen and lithium solid-state mobility. We investigated the hydrogen dynamics in the low temperature phase of LiBH{sub 4} by quasielastic neutron scattering, including a new kind of inelastic fixed window scan (IFWS). In the temperature range from 175 to 380 K the H-dynamics is dominated by thermally activated rotational jumps of the [BH{sub 4}]{sup −} anion around the c3 axis with an activation energy of about 162 meV. In agreement with earlier NMR data, a second type of thermally activated motion with an activation energy of about 232 meV could be identified using the IFWS. The present study of hydrogen dynamics in LiBH{sub 4} illustrates the feasibility of using IFWS on neutron backscattering spectrometers as a probe of localised motion.

  9. Lacking deoxygenation-linked interaction between cytoplasmic domain of band 3 and HbF from fetal red blood cells

    DEFF Research Database (Denmark)

    Weber, Roy E.

    2007-01-01

    Aim: Several of the red blood cell's metabolic and membrane functions display dependence on haemoglobin oxygenation. In adult human red cells, the increased glycolytic rate at low O2 tension results from binding of deoxygenated HbA at negatively charged, N-terminal, cytoplasmic domain of the memb......Aim: Several of the red blood cell's metabolic and membrane functions display dependence on haemoglobin oxygenation. In adult human red cells, the increased glycolytic rate at low O2 tension results from binding of deoxygenated HbA at negatively charged, N-terminal, cytoplasmic domain...... of the membrane protein band 3, which liberates glycolytic enzymes from this site. This study aims to investigate the role of fetal HbF (that has lower anion-binding capacity than HbA) in fetal red cells (that are subjected to low O2 tensions), and to elucidate possible linkage (e.g. via the major red cell...... membrane organising centre, band 3) between the individual oxygenation-linked reactions encountered in red cells. Methods: The interaction between band 3 and Hb is analysed in terms of the effects, measured under different conditions, of a 10-mer peptide that corresponds to the N-terminus of human band 3...

  10. Solution Structure and Backbone Dynamics of the Pleckstrin Homology Domain of the Human Protein Kinase B (PKB/Akt). Interaction with Inositol Phosphates

    International Nuclear Information System (INIS)

    Auguin, Daniel; Barthe, Philippe; Auge-Senegas, Marie-Therese; Stern, Marc-Henri; Noguchi, Masayuki; Roumestand, Christian

    2004-01-01

    The programmed cell death occurs as part of normal mammalian development. The induction of developmental cell death is a highly regulated process and can be suppressed by a variety of extracellular stimuli. Recently, the ability of trophic factors to promote survival have been attributed, at least in part, to the phosphatidylinositide 3'-OH kinase (PI3K)/Protein Kinase B (PKB, also named Akt) cascade. Several targets of the PI3K/PKB signaling pathway have been identified that may underlie the ability of this regulatory cascade to promote cell survival. PKB possesses a N-terminal Pleckstrin Homology (PH) domain that binds specifically and with high affinity to PtIns(3,4,5)P 3 and PtIns(3,4)P 2 , the PI3K second messengers. PKB is then recruited to the plasma membrane by virtue of its interaction with 3'-OH phosphatidylinositides and activated. Recent evidence indicates that PKB is active in various types of human cancer; constitutive PKB signaling activation is believed to promote proliferation and increased cell survival, thereby contributing to cancer progression. Thus, it has been shown that induction of PKB activity is augmented by the TCL1/MTCP1 oncoproteins through a physical association requiring the PKB PH domain. Here we present the three-dimensional solution structure of the PH domain of the human protein PKB (isoform β). PKBβ-PH is an electrostatically polarized molecule that adopts the same fold and topology as other PH-domains, consisting of a β-sandwich of seven strands capped on one top by an α-helix. The opposite face presents three variable loops that appear poorly defined in the NMR structure. Measurements of 15 N spin relaxation times and heteronuclear 15 N{ 1 H}NOEs showed that this poor definition is due to intrinsic flexibility, involving complex motions on different time scales. Chemical shift mapping studies correctly defined the binding site of Ins(1,3,4,5)P 4 (the head group of PtIns(3,4,5)P 3 ), as was previously proposed from a

  11. New fundamental experimental studies on {alpha}-Mg(BH{sub 4}){sub 2} and other borohydrides

    Energy Technology Data Exchange (ETDEWEB)

    Hagemann, Hans, E-mail: Hans-Rudolf.Hagemann@unige.ch [Dept. de Chim. Phys, Univ. of Geneva (Switzerland); D' Anna, Vincenza [Dept. de Chim. Phys, Univ. of Geneva (Switzerland); Rapin, Jean-Philippe; Cerny, Radovan [Lab. Crystallography, Univ. of Geneva (Switzerland); Filinchuk, Yaroslav [Swiss-Norwegian Beam Lines at ESRF, Grenoble (France); Kim, Ki Chul; Sholl, David S. [School of Chemical and Biomolecular Engineering, Georgia Inst. Technol., Atlanta (United States); Parker, Stewart F. [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom)

    2011-09-15

    Research highlights: > Eutectic behavior is observed in the LiBH4 -Mg(BH4)2 system. > New INS data show good agreement with theoretical DFT calculations. > Temperature dependent Raman spectra complement previous NMR studies. - Abstract: Several new studies of Mg(BH{sub 4}){sub 2} are reported. A 1:1 LiBH{sub 4}:Mg(BH{sub 4}){sub 2} mixture was studied by in situ synchrotron X-ray diffraction and reveals an eutectic behavior with the eutectic composition more rich in Mg(BH{sub 4}){sub 2}, and the eutectic temperature lower than 456 K. No dual cation compound was observed in this experiment. New vibrational spectra including INS data have been obtained and are compared with theoretical DFT calculations and recent NMR studies, showing good agreement.

  12. Cytoprophet: a Cytoscape plug-in for protein and domain interaction networks inference.

    Science.gov (United States)

    Morcos, Faruck; Lamanna, Charles; Sikora, Marcin; Izaguirre, Jesús

    2008-10-01

    Cytoprophet is a software tool that allows prediction and visualization of protein and domain interaction networks. It is implemented as a plug-in of Cytoscape, an open source software framework for analysis and visualization of molecular networks. Cytoprophet implements three algorithms that predict new potential physical interactions using the domain composition of proteins and experimental assays. The algorithms for protein and domain interaction inference include maximum likelihood estimation (MLE) using expectation maximization (EM); the set cover approach maximum specificity set cover (MSSC) and the sum-product algorithm (SPA). After accepting an input set of proteins with Uniprot ID/Accession numbers and a selected prediction algorithm, Cytoprophet draws a network of potential interactions with probability scores and GO distances as edge attributes. A network of domain interactions between the domains of the initial protein list can also be generated. Cytoprophet was designed to take advantage of the visual capabilities of Cytoscape and be simple to use. An example of inference in a signaling network of myxobacterium Myxococcus xanthus is presented and available at Cytoprophet's website. http://cytoprophet.cse.nd.edu.

  13. Effect of MoS2 on hydrogenation storage properties of LiBH4

    International Nuclear Information System (INIS)

    Liang, Dan; Han, Shumin; Wang, Jiasheng; Zhang, Wei; Zhao, Xin; Zhao, Ziyang

    2014-01-01

    The hydrogen storage properties of LiBH 4 ball milled with 20 wt% MoS 2 have been investigated. It shows that the LiBH 4 doped with MoS 2 exhibits favorable hydrogenation and dehydrogenation properties in terms of decomposition temperature and hydriding/dehydriding reversibility. The sample with MoS 2 starts to release hydrogen at 230 °C and has a decrease of 80 °C in contrast with pristine LiBH 4 . Furthermore, for the second cycle, the LiBH 4 with MoS 2 maintains a reversible hydrogen storage capacity of about 8.0 wt% which is almost identical with the first cycle under 5 MPa at 550 °C. Analyzed by the XRD and the FTIR results, LiBH 4 can be regenerated after re-hydrogenation under a relatively mild condition by adding MoS 2 . The improvement of the hydrogenation and dehydrogenation properties mainly results from the formation of Li 2 S and MoB 2 during ball milling. -- Graphical abstract: Hydrogen absorption curves of LiBH 4 doped with MoS 2 for five cycles at 400 °C. Highlights: • The hydrogen absorption capacity is nearly the same for 5 cycles at 400 °C. • The sample with MoS 2 starts to release hydrogen at 230 °C. • The coexistence of MoB 2 and Li 2 S catalyzes the decomposition of LiBH 4

  14. A novel form of the membrane protein CD147 that contains an extra Ig-like domain and interacts homophilically

    Directory of Open Access Journals (Sweden)

    Brown Marion H

    2003-11-01

    Full Text Available Abstract Background CD147 is a broadly distributed integral membrane glycoprotein with two Ig-like domains implicated in a wide range of functions. It is associated at the cell surface with the monocarboxylate transporters MCT1 and 4 but interactions of the extracellular region have not been characterised. Results We report the characterisation of a form of CD147 with an additional membrane-distal Ig-like domain. In contrast to the two domain form, this three domain form of CD147 interacts homophilically. Surface plasmon resonance analysis using recombinant proteins showed that the interaction was of low affinity (KD ~ 40 μM and this is typical of many interactions between membrane proteins. cDNA for the 3 domain form are rare but have been identified in human and mouse retina. Conclusion The finding that the three domain form of CD147 has an extracellular ligand, that is it interacts homophilically, suggests this interaction may be important in aligning lactate transporters in the retina where lactate is an important metabolite.

  15. From the chromatin interaction network to the organization of the human genome into replication N/U-domains

    International Nuclear Information System (INIS)

    Boulos, Rasha E; Julienne, Hanna; Baker, Antoine; Jensen, Pablo; Arneodo, Alain; Audit, Benjamin; Chen, Chun-Long; D'Aubenton-Carafa, Yves; Thermes, Claude; Petryk, Nataliya; Kahli, Malik; Hyrien, Olivier; Goldar, Arach

    2014-01-01

    The three-dimensional (3D) architecture of the mammalian nucleus is now being unraveled thanks to the recent development of chromatin conformation capture (3C) technologies. Here we report the results of a combined multiscale analysis of genome-wide mean replication timing and chromatin conformation data that reveal some intimate relationships between chromatin folding and human DNA replication. We previously described megabase replication N/U-domains as mammalian multiorigin replication units, and showed that their borders are ‘master’ replication initiation zones that likely initiate cascades of origin firing responsible for the stereotypic replication of these domains. Here, we demonstrate that replication N/U-domains correspond to the structural domains of self-interacting chromatin, and that their borders act as insulating regions both in high-throughput 3C (Hi-C) data and high-resolution 3C (4C) experiments. Further analyses of Hi-C data using a graph-theoretical approach reveal that N/U-domain borders are long-distance, interconnected hubs of the chromatin interaction network. Overall, these results and the observation that a well-defined ordering of chromatin states exists from N/U-domain borders to centers suggest that ‘master’ replication initiation zones are at the heart of a high-order, epigenetically controlled 3D organization of the human genome. (paper)

  16. Crotamine and crotoxin interact with tumor cells and trigger cell death

    International Nuclear Information System (INIS)

    Soares, Marcella Araugio; Pujatti, Priscilla Brunelli; Santos, Raquel Gouvea dos; Dias, Consuelo Latorre Fortes; Chavez Olortegui, Carlos Delfin; Santos, Wagner Gouvea dos

    2007-01-01

    Crotoxin (Crtx) and Crotamine (Crota) are polypeptides isolated from Crotalus durissus terrificus snake venom (CV). Previous reports have been shown therapeutic effects of Crotalus durissus terrificus venom and Crtx on skin, breast and lung tumours, although, the mechanisms of this antitumoral effect are still unknown. The aim of this work was to investigate the antitumoral effect of Crtx and Crota on brain tumours cells (GH3 and RT2) in vitro and their capacity of interaction with these tumour cells membranes. Cell survival after Crtx and Crota treatment was evaluated by MTT assay in different times post-treatment and apoptosis was evaluated by DAPI staining. In order to evaluate the specific interaction of Crtx and Crota, these polypeptides were radiolabelled, using 125 I as radiotracer and binding assays were performed. The results were compared with the binding in nontumoral brain tissue. Crtx and Crota induced apoptosis on both tumour cells lineages but, Crota was more powerful than Crtx 90% and 20% cell death for RT2 cells; 80% and 20% cell death for GH3 cells, respectively). Both 125 I-Crtx and 125 I-Crota bound specifically in glioblastoma membranes. Nonetheless, CV polypeptides recognised glioblastoma cells with higher specificity than normal brain tissue. These results suggest that the Crtx and Crota interactions with the plasmatic membrane of tumour cells may be the first step of the cascade of signalling that trigger their antitumoral effect. (author)

  17. A dental perspective on the taxonomic affinity of the Balanica mandible (BH-1).

    Science.gov (United States)

    Skinner, Matthew M; de Vries, Dorien; Gunz, Philipp; Kupczik, Kornelius; Klassen, R Paul; Hublin, Jean-Jacques; Roksandic, Mirjana

    2016-04-01

    The Middle Pleistocene represents a period of critical importance in human evolution, marked by encephalisation and dental reduction, and increasing diversification of temporally and spatially distributed hominin lineages in Africa, Asia and Europe. New specimens, especially from areas less well represented in the fossil record, can inform the debate on morphological changes to the skeleton and teeth and the phylogenetic course of human evolution during this period. The mandible from the cave of Mala Balanica, Serbia has recently been re-dated to at least 400 ka, and its well-preserved dentition presents an excellent opportunity to characterize molar crown morphology at this time period, and re-examine claims for a lack of Neandertal affinities in the specimen. In this study we employ microtomography to image the internal structure of the mandibular molars (focusing on the morphology of the enamel-dentine junction, or EDJ) of the BH-1 specimen and a comparative sample (n = 141) of Homo erectus sensu lato, Homo neanderthalensis, Pleistocene Homo sapiens, and recent H. sapiens. We quantitatively assess EDJ morphology using 3D geometric morphometrics and examine the expression of discrete dental traits at the dentine surface. We also compare third molar enamel thickness in BH-1 to those of H. neanderthalensis and both Pleistocene and recent H. sapiens, and document previously unreported morphology of the BH-1 premolar and molar roots. Our results highlight the reliability of the EDJ surface for classifying hominin taxa, indicate a primitive dental morphology for BH-1 molars, and confirm a general lack of derived Neandertal features for the Balanica individual. The plesiomorphic character of BH-1 is consistent with several competing models of Middle Pleistocene hominin evolution and provides an important regional and temporal example for reconstructing morphological changes in the mandible and teeth during this time period. Copyright © 2016 Elsevier Ltd. All

  18. New hydrogen-rich ammonium metal borohydrides, NH4[M(BH4)4], M = Y, Sc, Al, as potential H2 sources.

    Science.gov (United States)

    Starobrat, A; Jaroń, T; Grochala, W

    2018-03-26

    Three metal-ammonium borohydrides, NH4[M(BH4)4] M = Y, Sc, Al, denoted 1, 2, 3, respectively, were prepared via a low temperature mechanochemical synthesis and characterized using PXRD, FTIR and TGA/DSC/MS. The compounds 1 and 2 adopt the P21/c space group while the compound 3 crystallizes in an orthorhombic unit cell (Fddd). The first decomposition step of all three derivatives of ammonium borohydride has the maximum rate at 48 °C, 53 °C and 35 °C for 1, 2 and 3, respectively, which are comparable to that for NH4BH4 (53 °C). The thermal decomposition of these metal-ammonium borohydrides is a multistep process, with predominantly exothermic low-temperature stages. The compound 1 decomposes via known Y(BH4)3, however, some of the solid decomposition products of the other two compounds have not been fully identified. In the system containing compound 2, a new, more dense polymorph of the previously reported LiSc(BH4)4 has been detected as the intermediate of slow decomposition at room temperature.

  19. Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) Is Pyruvylated during 3-Bromopyruvate Mediated Cancer Cell Death

    Science.gov (United States)

    Ganapathy-Kanniappan, Shanmugasundaram; Geschwind, Jean-Francois H.; Kunjithapatham, Rani; Buijs, Manon; Vossen, Josephina A.; Tchernyshyov, Irina; Cole, Robert N.; Syed, Labiq H.; Rao, Pramod P.; Ota, Shinichi; Vali, Mustafa

    2013-01-01

    Background The pyruvic acid analog 3-bromopyruvate (3BrPA) is an alkylating agent known to induce cancer cell death by blocking glycolysis. The anti-glycolytic effect of 3BrPA is considered to be the inactivation of glycolytic enzymes. Yet, there is a lack of experimental documentation on the direct interaction of 3BrPA with any of the suggested targets during its anticancer effect. Methods and Results In the current study, using radiolabeled (14C) 3BrPA in multiple cancer cell lines, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was identified as the primary intracellular target of 3BrPA, based on two-dimensional (2D) gel electrophoretic autoradiography, mass spectrometry and immunoprecipitation. Furthermore, in vitro enzyme kinetic studies established that 3BrPA has marked affinity to GAPDH. Finally, Annexin V staining and active caspase-3 immunoblotting demonstrated that apoptosis was induced by 3BrPA. Conclusion GAPDH pyruvylation by 3BrPA affects its enzymatic function and is the primary intracellular target in 3BrPA mediated cancer cell death. PMID:20044597

  20. Virulence patterns in a murine sepsis model of ST131 Escherichia coli clinical isolates belonging to serotypes O25b:H4 and O16:H5 are associated to specific virotypes.

    Directory of Open Access Journals (Sweden)

    Azucena Mora

    Full Text Available Escherichia coli sequence type (ST131 is an emerging disseminated public health threat implicated in multidrug-resistant extraintestinal infections worldwide. Although the majority of ST131 isolates belong to O25b:H4 serotype, new variants with different serotypes, STs using the discriminative multilocus sequence typing scheme of Pasteur Institute, and virulence-gene profiles (virotypes have been reported with unknown implications on the pattern of spread, persistence and virulence. The aim of the present study was to compare virulence in a mouse subcutaneous sepsis model of representative ST131 clinical isolates belonging to 2 serotypes (O25b:H4, O16:H5 and nine virotypes and subtypes (A, B, C, D1, D2, D3, D4, D5 and E. Fourteen out of the 23 ST131 isolates tested (61% killed 90 to 100% of mice challenged, and 18 of 23 (78% at least 50%. Interestingly, different virulence patterns in association with virotypes were observed, from highly rapid lethality (death in less than 24 h to low final lethality (death at 7 days but with presence of an acute inflammation. This is the first study to assess virulence of ST131 isolates belonging to serotype O16:H5, which exhibited virotype C. In spite of their low virulence-gene score, O16:H5 isolates did not show significant differences in final lethality compared with highly virulent O25b:H4 isolates of virotypes A, B and C, but killed mice less rapidly. Significant differences were found, however, between virotypes A, B, C (final lethality ≥80% of mice challenged and virotypes D, E. Particularly unexpected was the low lethality of the newly assigned virotype E taking into account that it exhibited high virulence-gene score, and the same clonotype H30 as highly virulent O25b:H4 isolates of virotypes A, B and C. In vivo virulence diversity reported in this study would reflect the genetic variability within ST131 clonal group evidenced by molecular typing.

  1. Core--strategy leading to high reversible hydrogen storage capacity for NaBH4.

    Science.gov (United States)

    Christian, Meganne L; Aguey-Zinsou, Kondo-François

    2012-09-25

    Owing to its high storage capacity (10.8 mass %), sodium borohydride (NaBH(4)) is a promising hydrogen storage material. However, the temperature for hydrogen release is high (>500 °C), and reversibility of the release is unachievable under reasonable conditions. Herein, we demonstrate the potential of a novel strategy leading to high and stable hydrogen absorption/desorption cycling for NaBH(4) under mild pressure conditions (4 MPa). By an antisolvent precipitation method, the size of NaBH(4) particles was restricted to a few nanometers (hydrogen at 400 °C. Further encapsulation of these nanoparticles upon reaction of nickel chloride at their surface allowed the synthesis of a core--shell nanostructure, NaBH(4)@Ni, and this provided a route for (a) the effective nanoconfinement of the melted NaBH(4) core and its dehydrogenation products, and (b) reversibility and fast kinetics owing to short diffusion lengths, the unstable nature of nickel borohydride, and possible modification of reaction paths. Hence at 350 °C, a reversible and steady hydrogen capacity of 5 mass % was achieved for NaBH(4)@Ni; 80% of the hydrogen could be desorbed or absorbed in less than 60 min, and full capacity was reached within 5 h. To the best of our knowledge, this is the first time that such performances have been achieved with NaBH(4). This demonstrates the potential of the strategy in leading to major advancements in the design of effective hydrogen storage materials from pristine borohydrides.

  2. Induced motion of domain walls in multiferroics with quadratic interaction

    Energy Technology Data Exchange (ETDEWEB)

    Gerasimchuk, Victor S., E-mail: viktor.gera@gmail.com [National Technical University of Ukraine “Kyiv Polytechnic Institute”, Peremohy Avenue 37, 03056 Kiev (Ukraine); Shitov, Anatoliy A., E-mail: shitov@mail.ru [Donbass National Academy of Civil Engineering, Derzhavina Street 2, 86123 Makeevka, Donetsk Region (Ukraine)

    2013-10-15

    We theoretically study the dynamics of 180-degree domain wall of the ab-type in magnetic materials with quadratic magnetoelectric interaction in external alternating magnetic and electric fields. The features of the oscillatory and translational motions of the domain walls and stripe structures depending on the parameters of external fields and characteristics of the multiferroics are discussed. The possibility of the domain walls drift in a purely electric field is established. - Highlights: • We study DW and stripe DS in multiferroics with quadratic magnetoelectric interaction. • We build up the theory of oscillatory and translational (drift) DW and DS motion. • DW motion can be caused by crossed alternating electric and magnetic fields. • DW motion can be caused by alternating “pure” electric field. • DW drift velocity is formed by the AFM and Dzyaloshinskii interaction terms.

  3. Biofouling inhibition in MBR by Rhodococcus sp. BH4 isolated from real MBR plant.

    Science.gov (United States)

    Oh, Hyun-Suk; Kim, Sang-Ryoung; Cheong, Won-Suk; Lee, Chung-Hak; Lee, Jung-Kee

    2013-12-01

    It has been reported that an indigenous quorum quenching bacterium, Rhodococcus sp. BH4, which was isolated from a real plant of membrane bioreactor (MBR) has promising potential to control biofouling in MBR. However, little is known about quorum quenching mechanisms by the strain BH4. In this study, various characteristics of strain BH4 were investigated to elucidate its behavior in more detail in the mixed liquor of MBR. The N-acyl homoserine lactone hydrolase (AHL-lactonase) gene of strain BH4 showed a high degree of identity to qsdA in Rhodococcus erythropolis W2. The LC-ESI-MS analysis of the degradation product by strain BH4 confirmed that it inactivated AHL activity by hydrolyzing the lactone bond of AHL. It degraded a wide range of N-acyl homoserine lactones (AHLs), but there was a large difference in the degradation rate of each AHL compared to other reported AHL-lactonase-producing strains belonging to Rhodococcus genus. Its quorum quenching activity was confirmed not only in the Luria-Bertani medium, but also in the synthetic wastewater. Furthermore, the amount of strain BH4 encapsulated in the vessel as well as the material of the vessel substantially affected the quorum quenching activity of strain BH4, which provides useful information, particularly for the biofouling control in a real MBR plant from an engineering point of view.

  4. Near infrared magnetic circular dichroism of uranium borohydride, U(BH4)4

    International Nuclear Information System (INIS)

    Keiderling, T.A.; Schulz, W.C.

    1980-01-01

    The magnetic circular dichroism of U(BH 4 ) 4 in Hf(BH 4 ) 4 at low temperatures has been measured in the near. The A terms resulting can be interpreted to confirm the E symmetry ground state and three excited state assignments. (orig.)

  5. ErbB4 Overexpression as an Antagonist of ErbB2/HER2/Neu Induced Human Breast Cancer Cell Proliferation

    Science.gov (United States)

    2006-08-01

    advantage and evade therapeutic eradication. Death decisions within mammalian cells are primarily regulated by the interplay between proapoptotic and...BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics . Cancer Cell 2002;2:183–92. 28. Bouillet P...Agricultural University, P. R. China, BS, Horticulture Positions and Honors 2005.5-Present Postdoctoral Fellow, Department of Molecular and Cellular

  6. DomPep--a general method for predicting modular domain-mediated protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Lei Li

    Full Text Available Protein-protein interactions (PPIs are frequently mediated by the binding of a modular domain in one protein to a short, linear peptide motif in its partner. The advent of proteomic methods such as peptide and protein arrays has led to the accumulation of a wealth of interaction data for modular interaction domains. Although several computational programs have been developed to predict modular domain-mediated PPI events, they are often restricted to a given domain type. We describe DomPep, a method that can potentially be used to predict PPIs mediated by any modular domains. DomPep combines proteomic data with sequence information to achieve high accuracy and high coverage in PPI prediction. Proteomic binding data were employed to determine a simple yet novel parameter Ligand-Binding Similarity which, in turn, is used to calibrate Domain Sequence Identity and Position-Weighted-Matrix distance, two parameters that are used in constructing prediction models. Moreover, DomPep can be used to predict PPIs for both domains with experimental binding data and those without. Using the PDZ and SH2 domain families as test cases, we show that DomPep can predict PPIs with accuracies superior to existing methods. To evaluate DomPep as a discovery tool, we deployed DomPep to identify interactions mediated by three human PDZ domains. Subsequent in-solution binding assays validated the high accuracy of DomPep in predicting authentic PPIs at the proteome scale. Because DomPep makes use of only interaction data and the primary sequence of a domain, it can be readily expanded to include other types of modular domains.

  7. INVESTIGATING THE ROLE OF PDZ-DOMAIN INTERACTIONS FOR DOPAMINE TRANSPORTER FUNCTION

    DEFF Research Database (Denmark)

    Fog, Jacob; Vægter, Christian Bjerggaard; Gether, Ulrik

    canonical PDZ domain interactions with proteins such as PICK1. To clarify the actual role of PDZ domain interactions for DAT function we have expressed the wild type DAT and a number of C-terminal mutants either alone or together with PICK1 in HEK293, N2A neuroblastoma and PC12 cells. Data obtained from...

  8. Withaferin A Inhibits STAT3 and Induces Tumor Cell Death in Neuroblastoma and Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Lisette P. Yco

    2014-01-01

    Full Text Available Signal transducer and activator of transcription 3 (STAT3 is an oncogenic transcription factor that has been implicated in many human cancers and has emerged as an ideal target for cancer therapy. Withaferin A (WFA is a natural product with promising antiproliferative properties through its association with a number of molecular targets including STAT3. However, the effect of WFA in pediatric neuroblastoma (NB and its interaction with STAT3 have not been reported. In this study, we found that WFA effectively induces dose-dependent cell death in high-risk and drug-resistant NB as well as multiple myeloma (MM tumor cells, prevented interleukin-6 (IL-6–mediated and persistently activated STAT3 phosphorylation at Y705, and blocked the transcriptional activity of STAT3. We further provide computational models that show that WFA binds STAT3 near the Y705 phosphotyrosine residue of the STAT3 Src homology 2 (SH2 domain, suggesting that WFA prevents STAT3 dimer formation similar to BP-1-102, a well-established STAT3 inhibitor. Our findings propose that the antitumor activity of WFA is mediated at least in part through inhibition of STAT3 and provide a rationale for further drug development and clinical use in NB and MM.

  9. Regulation of abiotic stress signalling by Arabidopsis C-terminal domain phosphatase-like 1 requires interaction with a k-homology domain-containing protein.

    Directory of Open Access Journals (Sweden)

    In Sil Jeong

    Full Text Available Arabidopsis thaliana CARBOXYL-TERMINAL DOMAIN (CTD PHOSPHATASE-LIKE 1 (CPL1 regulates plant transcriptional responses to diverse stress signals. Unlike typical CTD phosphatases, CPL1 contains two double-stranded (ds RNA binding motifs (dsRBMs at its C-terminus. Some dsRBMs can bind to dsRNA and/or other proteins, but the function of the CPL1 dsRBMs has remained obscure. Here, we report identification of REGULATOR OF CBF GENE EXPRESSION 3 (RCF3 as a CPL1-interacting protein. RCF3 co-purified with tandem-affinity-tagged CPL1 from cultured Arabidopsis cells and contains multiple K-homology (KH domains, which were predicted to be important for binding to single-stranded DNA/RNA. Yeast two-hybrid, luciferase complementation imaging, and bimolecular fluorescence complementation analyses established that CPL1 and RCF3 strongly associate in vivo, an interaction mediated by the dsRBM1 of CPL1 and the KH3/KH4 domains of RCF3. Mapping of functional regions of CPL1 indicated that CPL1 in vivo function requires the dsRBM1, catalytic activity, and nuclear targeting of CPL1. Gene expression profiles of rcf3 and cpl1 mutants were similar during iron deficiency, but were distinct during the cold response. These results suggest that tethering CPL1 to RCF3 via dsRBM1 is part of the mechanism that confers specificity to CPL1-mediated transcriptional regulation.

  10. Crystal structure of Src-like adaptor protein 2 reveals close association of SH3 and SH2 domains through β-sheet formation.

    Science.gov (United States)

    Wybenga-Groot, Leanne E; McGlade, C Jane

    2013-12-01

    The Src-like adaptor proteins (SLAP/SLAP2) are key components of Cbl-dependent downregulation of antigen receptor, cytokine receptor, and receptor tyrosine kinase signaling in hematopoietic cells. SLAP and SLAP2 consist of adjacent SH3 and SH2 domains that are most similar in sequence to Src family kinases (SFKs). Notably, the SH3-SH2 connector sequence is significantly shorter in SLAP/SLAP2 than in SFKs. To understand the structural implication of a short SH3-SH2 connector sequence, we solved the crystal structure of a protein encompassing the SH3 domain, SH3-SH2 connector, and SH2 domain of SLAP2 (SLAP2-32). While both domains adopt typical folds, the short SH3-SH2 connector places them in close association. Strand βe of the SH3 domain interacts with strand βA of the SH2 domain, resulting in the formation of a continuous β sheet that spans the length of the protein. Disruption of the SH3/SH2 interface through mutagenesis decreases SLAP-32 stability in vitro, consistent with inter-domain binding being an important component of SLAP2 structure and function. The canonical peptide binding pockets of the SH3 and SH2 domains are fully accessible, in contrast to other protein structures that display direct interaction between SH3 and SH2 domains, in which either peptide binding surface is obstructed by the interaction. Our results reveal potential sites of novel interaction for SH3 and SH2 domains, and illustrate the adaptability of SH2 and SH3 domains in mediating interactions. As well, our results suggest that the SH3 and SH2 domains of SLAP2 function interdependently, with implications on their mode of substrate binding. © 2013.

  11. Insight into molecular interactions between two PB1 domains

    NARCIS (Netherlands)

    van Drogen-Petit, A.; Zwahlen, C.; Peter, M.; Bonvin, A.M.J.J.

    2004-01-01

    Specific protein–protein interactions play crucial roles in the regulation of any biological process. Recently, a new protein–protein interaction domain termed PB1 (Phox and Bem1) was identified, which is conserved throughout evolution and present in diverse proteins functioning in signal

  12. Interaction between Pseudomonas and CXC Chemokines Increases Risk of Bronchiolitis Obliterans Syndrome and Death in Lung Transplantation

    Science.gov (United States)

    Wang, Xiaoyan; Weigt, S. Sam; Palchevskiy, Vyacheslav; Lynch, Joseph P.; Ross, David J.; Kubak, Bernard M.; Saggar, Rajan; Fishbein, Michael C.; Ardehali, Abbas; Li, Gang; Elashoff, Robert; Belperio, John A.

    2013-01-01

    Rationale: Pseudomonas aeruginosa is the most commonly isolated gram-negative bacterium after lung transplantation and has been shown to up-regulate glutamic acid–leucine–arginine–positive (ELR+) CXC chemokines associated with bronchiolitis obliterans syndrome (BOS), but the effect of pseudomonas on BOS and death has not been well defined. Objectives: To determine if the influence of pseudomonas isolation and ELR+ CXC chemokines on the subsequent development of BOS and the occurrence of death is time dependent. Methods: A three-state model was developed to assess the likelihood of transitioning from lung transplant (state 1) to BOS (state 2), from transplant (state 1) to death (state 3), and from BOS (state 2) to death (state 3). This Cox semi-Markovian approach determines state survival rates and cause-specific hazards for movement from one state to another. Measurements and Main Results: The likelihood of transition from transplant to BOS was increased by acute rejection, CXCL5, and the interaction between pseudomonas and CXCL1. The pseudomonas effect in this transition was due to infection rather than colonization. Movement from transplant to death was facilitated by pseudomonas infection and single lung transplant. Transition from BOS to death was affected by the length of time in state 1 and by the interactions between any pseudomonas isolation and CXCL5 and aspergillus, either independently or in combination. Conclusions: Our model demonstrates that common post-transplantation events drive movement from one post-transplantation state to another and influence outcomes differently depending upon when after transplantation they occur. Pseudomonas and the ELR+ CXC chemokines may interact to negatively influence lung transplant outcomes. PMID:23328531

  13. Functional Interaction Map of Lyssavirus Phosphoprotein: Identification of the Minimal Transcription Domains

    Science.gov (United States)

    Jacob, Yves; Real, Eléonore; Tordo, Noël

    2001-01-01

    Lyssaviruses, the causative agents of rabies encephalitis, are distributed in seven genotypes. The phylogenetically distant rabies virus (PV strain, genotype 1) and Mokola virus (genotype 3) were used to develop a strategy to identify functional homologous interactive domains from two proteins (P and N) which participate in the viral ribonucleoprotein (RNP) transcription-replication complex. This strategy combined two-hybrid and green fluorescent protein–reverse two-hybrid assays in Saccharomyces cerevisiae to analyze protein-protein interactions and a reverse genetic assay in mammalian cells to study the transcriptional activity of the reconstituted RNP complex. Lyssavirus P proteins contain two N-binding domains (N-BDs), a strong one encompassing amino acid (aa) 176 to the C terminus and a weak one in the 189 N-terminal aa. The N-terminal portion of P (aa 52 to 189) also contains a homomultimerization site. Here we demonstrate that N-P interactions, although weaker, are maintained between proteins of the different genotypes. A minimal transcriptional module of the P protein was obtained by fusing the first 60 N-terminal aa containing the L protein binding site to the C-terminal strong N-BD. Random mutation of the strong N-BD on P protein identified three highly conserved K residues crucial for N-P interaction. Their mutagenesis in full-length P induced a transcriptionally defective RNP. The analysis of homologous interactive domains presented here and previously reported dissections of the P protein allowed us to propose a model of the functional interaction network of the lyssavirus P protein. This model underscores the central role of P at the interface between L protein and N-RNA template. PMID:11559793

  14. 6-Pyruvoyltetrahydropterin synthase orthologs of either a single or dual domain structure are responsible for tetrahydrobiopterin synthesis in bacteria.

    Science.gov (United States)

    Kong, Jin Sun; Kang, Ji-Youn; Kim, Hye Lim; Kwon, O-Seob; Lee, Kon Ho; Park, Young Shik

    2006-09-04

    6-Pyruvoyltetrahydropterin synthase (PTPS) catalyzes the second step of tetrahydrobiopterin (BH4) synthesis. We previously identified PTPS orthologs (bPTPS-Is) in bacteria which do not produce BH4. In this study we disrupted the gene encoding bPTPS-I in Synechococcus sp. PCC 7942, which produces BH4-glucoside. The mutant was normal in BH4-glucoside production, demonstrating that bPTPS-I does not participate in BH4 synthesis in vivo and bringing us a new PTPS ortholog (bPTPS-II) of a bimodular polypeptide. The recombinant Synechococcus bPTPS-II was assayed in vitro to show PTPS activity higher than human enzyme. Further computational analysis revealed the presence of mono and bimodular bPTPS-II orthologs mostly in green sulfur bacteria and cyanobacteria, respectively, which are well known for BH4-glycoside production. In summary we found new bacterial PTPS orthologs, having either a single or dual domain structure and being responsible for BH4 synthesis in vivo, thereby disclosing all the bacterial PTPS homologs.

  15. Distinct ubiquitin binding modes exhibited by SH3 domains: molecular determinants and functional implications.

    Directory of Open Access Journals (Sweden)

    Jose L Ortega Roldan

    Full Text Available SH3 domains constitute a new type of ubiquitin-binding domains. We previously showed that the third SH3 domain (SH3-C of CD2AP binds ubiquitin in an alternative orientation. We have determined the structure of the complex between first CD2AP SH3 domain and ubiquitin and performed a structural and mutational analysis to decipher the determinants of the SH3-C binding mode to ubiquitin. We found that the Phe-to-Tyr mutation in CD2AP and in the homologous CIN85 SH3-C domain does not abrogate ubiquitin binding, in contrast to previous hypothesis and our findings for the first two CD2AP SH3 domains. The similar alternative binding mode of the SH3-C domains of these related adaptor proteins is characterised by a higher affinity to C-terminal extended ubiquitin molecules. We conclude that CD2AP/CIN85 SH3-C domain interaction with ubiquitin constitutes a new ubiquitin-binding mode involved in a different cellular function and thus changes the previously established mechanism of EGF-dependent CD2AP/CIN85 mono-ubiquitination.

  16. Human alpha2-macroglobulin is composed of multiple domains, as predicted by homology with complement component C3.

    Science.gov (United States)

    Doan, Ninh; Gettins, Peter G W

    2007-10-01

    Human alpha2M (alpha2-macroglobulin) and the complement components C3 and C4 are thiol ester-containing proteins that evolved from the same ancestral gene. The recent structure determination of human C3 has allowed a detailed prediction of the location of domains within human alpha2M to be made. We describe here the expression and characterization of three alpha(2)M domains predicted to be involved in the stabilization of the thiol ester in native alpha2M and in its activation upon bait region proteolysis. The three newly expressed domains are MG2 (macroglobulin domain 2), TED (thiol ester-containing domain) and CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domain. Together with the previously characterized RBD (receptor-binding domain), they represent approx. 42% of the alpha2M polypeptide. Their expression as folded domains strongly supports the predicted domain organization of alpha2M. An X-ray crystal structure of MG2 shows it to have a fibronectin type-3 fold analogous to MG1-MG8 of C3. TED is, as predicted, an alpha-helical domain. CUB is a spliced domain composed of two stretches of polypeptide that flank TED in the primary structure. In intact C3 TED interacts with RBD, where it is in direct contact with the thiol ester, and with MG2 and CUB on opposite, flanking sides. In contrast, these alpha2M domains, as isolated species, show negligible interaction with one another, suggesting that the native conformation of alpha2M, and the consequent thiol ester-stabilizing domain-domain interactions, result from additional restraints imposed by the physical linkage of these domains or by additional domains in the protein.

  17. New approaches to high-throughput structure characterization of SH3 complexes: the example of Myosin-3 and Myosin-5 SH3 domains from S. cerevisiae.

    Science.gov (United States)

    Musi, Valeria; Birdsall, Berry; Fernandez-Ballester, Gregorio; Guerrini, Remo; Salvatori, Severo; Serrano, Luis; Pastore, Annalisa

    2006-04-01

    SH3 domains are small protein modules that are involved in protein-protein interactions in several essential metabolic pathways. The availability of the complete genome and the limited number of clearly identifiable SH3 domains make the yeast Saccharomyces cerevisae an ideal proteomic-based model system to investigate the structural rules dictating the SH3-mediated protein interactions and to develop new tools to assist these studies. In the present work, we have determined the solution structure of the SH3 domain from Myo3 and modeled by homology that of the highly homologous Myo5, two myosins implicated in actin polymerization. We have then implemented an integrated approach that makes use of experimental and computational methods to characterize their binding properties. While accommodating their targets in the classical groove, the two domains have selectivity in both orientation and sequence specificity of the target peptides. From our study, we propose a consensus sequence that may provide a useful guideline to identify new natural partners and suggest a strategy of more general applicability that may be of use in other structural proteomic studies.

  18. A localized interaction surface for voltage-sensing domains on the pore domain of a K+ channel.

    Science.gov (United States)

    Li-Smerin, Y; Hackos, D H; Swartz, K J

    2000-02-01

    Voltage-gated K+ channels contain a central pore domain and four surrounding voltage-sensing domains. How and where changes in the structure of the voltage-sensing domains couple to the pore domain so as to gate ion conduction is not understood. The crystal structure of KcsA, a bacterial K+ channel homologous to the pore domain of voltage-gated K+ channels, provides a starting point for addressing this question. Guided by this structure, we used tryptophan-scanning mutagenesis on the transmembrane shell of the pore domain in the Shaker voltage-gated K+ channel to localize potential protein-protein and protein-lipid interfaces. Some mutants cause only minor changes in gating and when mapped onto the KcsA structure cluster away from the interface between pore domain subunits. In contrast, mutants producing large changes in gating tend to cluster near this interface. These results imply that voltage-sensing domains interact with localized regions near the interface between adjacent pore domain subunits.

  19. The Fanconi Anemia DNA Repair Pathway Is Regulated by an Interaction between Ubiquitin and the E2-like Fold Domain of FANCL.

    Science.gov (United States)

    Miles, Jennifer A; Frost, Mark G; Carroll, Eilis; Rowe, Michelle L; Howard, Mark J; Sidhu, Ateesh; Chaugule, Viduth K; Alpi, Arno F; Walden, Helen

    2015-08-21

    The Fanconi Anemia (FA) DNA repair pathway is essential for the recognition and repair of DNA interstrand crosslinks (ICL). Inefficient repair of these ICL can lead to leukemia and bone marrow failure. A critical step in the pathway is the monoubiquitination of FANCD2 by the RING E3 ligase FANCL. FANCL comprises 3 domains, a RING domain that interacts with E2 conjugating enzymes, a central domain required for substrate interaction, and an N-terminal E2-like fold (ELF) domain. The ELF domain is found in all FANCL homologues, yet the function of the domain remains unknown. We report here that the ELF domain of FANCL is required to mediate a non-covalent interaction between FANCL and ubiquitin. The interaction involves the canonical Ile44 patch on ubiquitin, and a functionally conserved patch on FANCL. We show that the interaction is not necessary for the recognition of the core complex, it does not enhance the interaction between FANCL and Ube2T, and is not required for FANCD2 monoubiquitination in vitro. However, we demonstrate that the ELF domain is required to promote efficient DNA damage-induced FANCD2 monoubiquitination in vertebrate cells, suggesting an important function of ubiquitin binding by FANCL in vivo. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Mitochondrial protection impairs BET bromodomain inhibitor-mediated cell death and provides rationale for combination therapeutic strategies.

    Science.gov (United States)

    Lasorsa, E; Smonksey, M; Kirk, J S; Rosario, S; Hernandez-Ilizaliturri, F J; Ellis, L

    2015-12-10

    Inhibitors of the bromodomain and extraterminal domain family (BETI) have recently entered phase I clinical trials. In patients with advanced leukemia's, potent antileukemia activity was displayed with minimum dose-limiting toxicity. In preclinical models of hematological malignancies, including aggressive B-cell lymphomas, BETI induced cell-cycle arrest and apoptosis. However, the underlying cell death mechanisms are still not well understood. Dissecting the mechanisms required by BETI to mediate cell death would provide strong direction on how to best utilize BETI to treat patients with aggressive hematological malignancies. Herein, we provide understanding of the molecular mechanisms underlying BETI-mediated cell death using I-BET762. Induction of cell death occurred in primary murine and human B-cell lymphomas through apoptosis. Genetic dissection using Eμ-myc B-cell lymphoma compound mutants demonstrated that I-BET762-induced apoptosis does not require the p53 pathway. Furthermore, deletion of Apaf1, and thus the absence of a functional apoptosome, is associated with a delayed drug response but do not provide long-term resistance. Prolonged treatment of this model in fact fails to suppress the therapeutic efficacy of the drug and is associated with biochemical features of autophagy. However, lack of mitochondrial permeability completely inhibited I-BET762-mediated tumor cell death, indicating mitochondrial damage as key events for its activity. Combination of I-BET762 with BH3-only mimetics ABT-263 or obatoclax, restored sensitivity to I-BET762 lymphoma killing; however, success was determined by expression of Bcl-2 family antiapoptotic proteins. Our study provides critical insight for clinical decisions regarding the appropriate strategy for using BETI as a single agent or in combination to treat patients with aggressive B-cell lymphomas.

  1. Human α2-macroglobulin is composed of multiple domains, as predicted by homology with complement component C3

    Science.gov (United States)

    Doan, Ninh; Gettins, Peter G. W.

    2007-01-01

    Human α2M (α2-macroglobulin) and the complement components C3 and C4 are thiol ester-containing proteins that evolved from the same ancestral gene. The recent structure determination of human C3 has allowed a detailed prediction of the location of domains within human α2M to be made. We describe here the expression and characterization of three α2M domains predicted to be involved in the stabilization of the thiol ester in native α2M and in its activation upon bait region proteolysis. The three newly expressed domains are MG2 (macroglobulin domain 2), TED (thiol ester-containing domain) and CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domain. Together with the previously characterized RBD (receptor-binding domain), they represent approx. 42% of the α2M polypeptide. Their expression as folded domains strongly supports the predicted domain organization of α2M. An X-ray crystal structure of MG2 shows it to have a fibronectin type-3 fold analogous to MG1–MG8 of C3. TED is, as predicted, an α-helical domain. CUB is a spliced domain composed of two stretches of polypeptide that flank TED in the primary structure. In intact C3 TED interacts with RBD, where it is in direct contact with the thiol ester, and with MG2 and CUB on opposite, flanking sides. In contrast, these α2M domains, as isolated species, show negligible interaction with one another, suggesting that the native conformation of α2M, and the consequent thiol ester-stabilizing domain–domain interactions, result from additional restraints imposed by the physical linkage of these domains or by additional domains in the protein. PMID:17608619

  2. Getting the sigma in the M_BH - sigma relation right

    Science.gov (United States)

    van der Marel, Roeland

    2017-08-01

    The relation between the mass of the central supermassive black hole (M_BH) and the velocity dispersion of its host spheroid (sigma) is fundamental for our understanding of galaxy evolution and its relation to their nuclei. Correspondingly many HST orbits have been invested in determining accurate M_BH masses. Surprisingly little has been done on standardizing the other axis, i.e. sigma measurements. These values are often derived from various long-slit datasets at different physical radii of the galaxy and no homogeneous definition has been given. We propose to remedy this situation by using our dataset of MUSE and PPAK kinematic maps out to 1 R_e of galaxies with a secure black hole mass. These data are useful for large scale kinematics, however, obtaining velocity dispersions at small radii is not possible. To measure velocity dispersions at small radii we require high-spatial resolution spectroscopy as provided by HST/STIS. In addtion, high-resolution photometric data is needed to define consistent apertures in each galaxy. We therefore propose to use the unique capabilities of HST and harvest years of efforts to collect archival spectroscopic and imaging data for BH host galaxies. This will allow creating a catalog of sigma values, calculated in various ways and at various radii and to re-calibrate the M_BH - sigma relation.

  3. Integral UBL domain proteins: a family of proteasome interacting proteins

    DEFF Research Database (Denmark)

    Hartmann-Petersen, Rasmus; Gordon, Colin

    2004-01-01

    The family of ubiquitin-like (UBL) domain proteins (UDPs) comprises a conserved group of proteins involved in a multitude of different cellular activities. However, recent studies on UBL-domain proteins indicate that these proteins appear to share a common property in their ability to interact...

  4. Conformational flexibility of BECN1: Essential to its key role in autophagy and beyond: BECN1 Structure and Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Yang [Department of Chemistry and Biochemistry, North Dakota State University, Fargo North Dakota 58108-6050; Glover, Karen [Department of Chemistry and Biochemistry, North Dakota State University, Fargo North Dakota 58108-6050; Su, Minfei [Department of Chemistry and Biochemistry, North Dakota State University, Fargo North Dakota 58108-6050; Sinha, Sangita C. [Department of Chemistry and Biochemistry, North Dakota State University, Fargo North Dakota 58108-6050

    2016-08-13

    BECN1 (Beclin 1), a highly conserved eukaryotic protein, is a key regulator of autophagy, a cellular homeostasis pathway, and also participates in vacuolar protein sorting, endocytic trafficking, and apoptosis. BECN1 is important for embryonic development, the innate immune response, tumor suppression, and protection against neurodegenerative disorders, diabetes, and heart disease. BECN1 mediates autophagy as a core component of the class III phosphatidylinositol 3-kinase complexes. However, the exact mechanism by which it regulates the activity of these complexes, or mediates its other diverse functions is unclear. BECN1 interacts with several diverse protein partners, perhaps serving as a scaffold or interaction hub for autophagy. Based on extensive structural, biophysical and bioinformatics analyses, BECN1 consists of an intrinsically disordered region (IDR), which includes a BH3 homology domain (BH3D); a flexible helical domain (FHD); a coiled-coil domain (CCD); and a β-α-repeated autophagy-specific domain (BARAD). Each of these BECN1 domains mediates multiple diverse interactions that involve concomitant conformational changes. Thus, BECN1 conformational flexibility likely plays a key role in facilitating diverse protein interactions. Further, BECN1 conformation and interactions are also modulated by numerous post-translational modifications. A better structure-based understanding of the interplay between different BECN1 conformational and binding states, and the impact of post-translational modifications will be essential to elucidating the mechanism of its multiple biological roles.

  5. Domain-Specific Activation of Death-Associated Intracellular Signalling Cascades by the Cellular Prion Protein in Neuroblastoma Cells.

    Science.gov (United States)

    Vilches, Silvia; Vergara, Cristina; Nicolás, Oriol; Mata, Ágata; Del Río, José A; Gavín, Rosalina

    2016-09-01

    The biological functions of the cellular prion protein remain poorly understood. In fact, numerous studies have aimed to determine specific functions for the different protein domains. Studies of cellular prion protein (PrP(C)) domains through in vivo expression of molecules carrying internal deletions in a mouse Prnp null background have provided helpful data on the implication of the protein in signalling cascades in affected neurons. Nevertheless, understanding of the mechanisms underlying the neurotoxicity induced by these PrP(C) deleted forms is far from complete. To better define the neurotoxic or neuroprotective potential of PrP(C) N-terminal domains, and to overcome the heterogeneity of results due to the lack of a standardized model, we used neuroblastoma cells to analyse the effects of overexpressing PrP(C) deleted forms. Results indicate that PrP(C) N-terminal deleted forms were properly processed through the secretory pathway. However, PrPΔF35 and PrPΔCD mutants led to death by different mechanisms sharing loss of alpha-cleavage and activation of caspase-3. Our data suggest that both gain-of-function and loss-of-function pathogenic mechanisms may be associated with N-terminal domains and may therefore contribute to neurotoxicity in prion disease. Dissecting the molecular response induced by PrPΔF35 may be the key to unravelling the physiological and pathological functions of the prion protein.

  6. Orphan nuclear receptor TR3 acts in autophagic cell death via mitochondrial signaling pathway.

    Science.gov (United States)

    Wang, Wei-jia; Wang, Yuan; Chen, Hang-zi; Xing, Yong-zhen; Li, Feng-wei; Zhang, Qian; Zhou, Bo; Zhang, Hong-kui; Zhang, Jie; Bian, Xue-li; Li, Li; Liu, Yuan; Zhao, Bi-xing; Chen, Yan; Wu, Rong; Li, An-zhong; Yao, Lu-ming; Chen, Ping; Zhang, Yi; Tian, Xu-yang; Beermann, Friedrich; Wu, Mian; Han, Jiahuai; Huang, Pei-qiang; Lin, Tianwei; Wu, Qiao

    2014-02-01

    Autophagy is linked to cell death, yet the associated mechanisms are largely undercharacterized. We discovered that melanoma, which is generally resistant to drug-induced apoptosis, can undergo autophagic cell death with the participation of orphan nuclear receptor TR3. A sequence of molecular events leading to cellular demise is launched by a specific chemical compound, 1-(3,4,5-trihydroxyphenyl)nonan-1-one, newly acquired from screening a library of TR3-targeting compounds. The autophagic cascade comprises TR3 translocation to mitochondria through interaction with the mitochondrial outer membrane protein Nix, crossing into the mitochondrial inner membrane through Tom40 and Tom70 channel proteins, dissipation of mitochondrial membrane potential by the permeability transition pore complex ANT1-VDAC1 and induction of autophagy. This process leads to excessive mitochondria clearance and irreversible cell death. It implicates a new approach to melanoma therapy through activation of a mitochondrial signaling pathway that integrates a nuclear receptor with autophagy for cell death.

  7. Crystallization and preliminary X-ray characterization of Epstein–Barr virus BHRF1 in complex with a benzoylurea peptidomimetic

    International Nuclear Information System (INIS)

    Caria, Sofia; Chugh, Srishti; Nhu, Duong; Lessene, Guillaume; Kvansakul, Marc

    2012-01-01

    The expression and purification of Epstein–Barr virus BHRF1 as well as its co-crystallization with a peptidomimetic are described. BHRF1 is a pro-survival Bcl-2 homologue encoded by Epstein–Barr virus (EBV) that plays a key role in preventing premature host cell death during viral infection and may contribute to the development of malignancies associated with chronic EBV infections. The anti-apoptotic action of BHRF1 is based on its ability to sequester pro-apoptotic Bcl-2 family proteins, in particular Bim and Bak. These interactions have been previously studied in three dimensions by determining crystal structures of BHRF1 in complex with both Bim and Bak BH3 domains. Screening of a library of peptidomimetic compounds based on the benzoylurea scaffold that mimics critical Bim BH3 domain side chains against BHRF1 led to the identification of an inhibitor of BHRF1 that displays micromolar affinity. Single crystals were obtained from the co-crystallization of recombinant BHRF1 protein with this peptidomimetic compound. The crystals belonged to the orthorhombic space group P2 1 2 1 2 1 , with unit-cell parameters a = 66.8, b = 91.1, c = 151.9 Å. Diffraction data were collected to 2.11 Å resolution on the MX2 beamline at the Australian Synchrotron

  8. BAG3 directly interacts with mutated alphaB-crystallin to suppress its aggregation and toxicity.

    Directory of Open Access Journals (Sweden)

    Akinori Hishiya

    Full Text Available A homozygous disruption or genetic mutation of the bag3 gene causes progressive myofibrillar myopathy in mouse and human skeletal and cardiac muscle disorder while mutations in the small heat shock protein αB-crystallin gene (CRYAB are reported to be responsible for myofibrillar myopathy. Here, we demonstrate that BAG3 directly binds to wild-type αB-crystallin and the αB-crystallin mutant R120G, via the intermediate domain of BAG3. Peptides that inhibit this interaction in an in vitro binding assay indicate that two conserved Ile-Pro-Val regions of BAG3 are involved in the interaction with αB-crystallin, which is similar to results showing BAG3 binding to HspB8 and HspB6. BAG3 overexpression increased αB-crystallin R120G solubility and inhibited its intracellular aggregation in HEK293 cells. BAG3 suppressed cell death induced by αB-crystallin R120G overexpression in differentiating C2C12 mouse myoblast cells. Our findings indicate a novel function for BAG3 in inhibiting protein aggregation caused by the genetic mutation of CRYAB responsible for human myofibrillar myopathy.

  9. BAG3 Directly Interacts with Mutated alphaB-Crystallin to Suppress Its Aggregation and Toxicity

    Science.gov (United States)

    Hishiya, Akinori; Salman, Mortada Najem; Carra, Serena; Kampinga, Harm H.; Takayama, Shinichi

    2011-01-01

    A homozygous disruption or genetic mutation of the bag3 gene causes progressive myofibrillar myopathy in mouse and human skeletal and cardiac muscle disorder while mutations in the small heat shock protein αB-crystallin gene (CRYAB) are reported to be responsible for myofibrillar myopathy. Here, we demonstrate that BAG3 directly binds to wild-type αB-crystallin and the αB-crystallin mutant R120G, via the intermediate domain of BAG3. Peptides that inhibit this interaction in an in vitro binding assay indicate that two conserved Ile-Pro-Val regions of BAG3 are involved in the interaction with αB-crystallin, which is similar to results showing BAG3 binding to HspB8 and HspB6. BAG3 overexpression increased αB-crystallin R120G solubility and inhibited its intracellular aggregation in HEK293 cells. BAG3 suppressed cell death induced by αB-crystallin R120G overexpression in differentiating C2C12 mouse myoblast cells. Our findings indicate a novel function for BAG3 in inhibiting protein aggregation caused by the genetic mutation of CRYAB responsible for human myofibrillar myopathy. PMID:21423662

  10. Numerical modeling of time domain 3-D problems in accelerator physics

    International Nuclear Information System (INIS)

    Harfoush, F.A.; Jurgens, T.G.

    1990-06-01

    Time domain analysis is relevant in particle accelerators to study the electromagnetic field interaction of a moving source particle on a lagging test particle as the particles pass an accelerating cavity or some other structure. These fields are called wake fields. The travelling beam inside a beam pipe may undergo more complicated interactions with its environment due to the presence of other irregularities like wires, thin slots, joints and other types of obstacles. Analytical solutions of such problems is impossible and one has to resort to a numerical method. In this paper we present results of our first attempt to model these problems in 3-D using our finite difference time domain (FDTD) code. 10 refs., 9 figs

  11. Molecular LEGO by domain-imprinting of cytochrome P450 BM3.

    Science.gov (United States)

    Jetzschmann, K J; Yarman, A; Rustam, L; Kielb, P; Urlacher, V B; Fischer, A; Weidinger, I M; Wollenberger, U; Scheller, F W

    2018-04-01

    Electrosynthesis of the MIP nano-film after binding of the separated domains or holo-cytochrome BM3 via an engineered anchor should result in domain-specific cavities in the polymer layer. Both the two domains and the holo P450 BM3 have been bound prior polymer deposition via a N-terminal engineered his6-anchor to the electrode surface. Each step of MIP preparation was characterized by cyclic voltammetry of the redox-marker ferricyanide. Rebinding after template removal was evaluated by quantifying the suppression of the diffusive permeability of the signal for ferricyanide and by the NADH-dependent reduction of cytochrome c by the reductase domain (BMR). The working hypothesis is verified by the discrimination of the two domains by the respective MIPs: The holoenzyme P450 BM3 was ca. 5.5 times more effectively recognized by the film imprinted with the oxidase domain (BMO) as compared to the BMR-MIP or the non-imprinted polymer (NIP). Obviously, a cavity is formed during the imprinting process around the his 6 -tag-anchored BMR which cannot accommodate the broader BMO or the P450 BM3. The affinity of the MIP towards P450 BM3 is comparable with that to the monomer in solution. The his 6 -tagged P450 BM3 binds (30 percent) stronger which shows the additive effect of the interaction with the MIP and the binding to the electrode. Copyright © 2018. Published by Elsevier B.V.

  12. 3D Structure and Interaction of p24β and p24δ Golgi Dynamics Domains: Implication for p24 Complex Formation and Cargo Transport.

    Science.gov (United States)

    Nagae, Masamichi; Hirata, Tetsuya; Morita-Matsumoto, Kana; Theiler, Romina; Fujita, Morihisa; Kinoshita, Taroh; Yamaguchi, Yoshiki

    2016-10-09

    The p24 family consists of four subfamilies (p24α, p24β, p24γ, and p24δ), and the proteins are thought to form hetero-oligomeric complexes for efficient transport of cargo proteins from the endoplasmic reticulum to the Golgi apparatus. The proteins possess a conserved luminal Golgi dynamics (GOLD) domain, whose functions are largely unknown. Here, we present structural and biochemical studies of p24β1 and p24δ1 GOLD domains. Use of GOLD domain-deleted mutants revealed that the GOLD domain of p24δ1 is required for proper p24 hetero-oligomeric complex formation and efficient transport of GPI-anchored proteins. The p24β1 and p24δ1 GOLD domains share a common β-sandwich fold with a characteristic intrasheet disulfide bond. The GOLD domain of p24δ1 crystallized as dimers, allowing the analysis of a homophilic interaction site. Surface plasmon resonance and solution NMR analyses revealed that p24β1 and p24δ1 GOLD domains interact weakly (K d = ~10 -4 M). Bi-protein titration provided interaction site maps. We propose that the heterophilic interaction of p24 GOLD domains contributes to the formation of the p24 hetero-oligomeric complex and to efficient cargo transport. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Engineering of kinase-based protein interacting devices: active expression of tyrosine kinase domains

    KAUST Repository

    Diaz Galicia, Miriam Escarlet

    2018-05-01

    Protein-protein interactions modulate cellular processes in health and disease. However, tracing weak or rare associations or dissociations of proteins is not a trivial task. Kinases are often regulated through interaction partners and, at the same time, themselves regulate cellular interaction networks. The use of kinase domains for creating a synthetic sensor device that reads low concentration protein-protein interactions and amplifies them to a higher concentration interaction which is then translated into a FRET (Fluorescence Resonance Energy Transfer) signal is here proposed. To this end, DNA constructs for interaction amplification (split kinases), positive controls (intact kinase domains), scaffolding proteins and phosphopeptide - SH2-domain modules for the reading of kinase activity were assembled and expression protocols for fusion proteins containing Lyn, Src, and Fak kinase domains in bacterial and in cell-free systems were optimized. Also, two non-overlapping methods for measuring the kinase activity of these proteins were stablished and, finally, a protein-fragment complementation assay with the split-kinase constructs was tested. In conclusion, it has been demonstrated that features such as codon optimization, vector design and expression conditions have an impact on the expression yield and activity of kinase-based proteins. Furthermore, it has been found that the defined PURE cell-free system is insufficient for the active expression of catalytic kinase domains. In contrast, the bacterial co-expression with phosphatases produced active kinase fusion proteins for two out of the three tested Tyrosine kinase domains.

  14. Interaction of Arabidopsis Trihelix-Domain Transcription Factors VFP3 and VFP5 with Agrobacterium Virulence Protein VirF.

    Directory of Open Access Journals (Sweden)

    Elena García-Cano

    Full Text Available Agrobacterium is a natural genetic engineer of plants that exports several virulence proteins into host cells in order to take advantage of the cell machinery to facilitate transformation and support bacterial growth. One of these effectors is the F-box protein VirF, which presumably uses the host ubiquitin/proteasome system (UPS to uncoat the packaging proteins from the invading bacterial T-DNA. By analogy to several other bacterial effectors, VirF most likely has several functions in the host cell and, therefore, several interacting partners among host proteins. Here we identify one such interactor, an Arabidopsis trihelix-domain transcription factor VFP3, and further show that its very close homolog VFP5 also interacted with VirF. Interestingly, interactions of VirF with either VFP3 or VFP5 did not activate the host UPS, suggesting that VirF might play other UPS-independent roles in bacterial infection. To better understand the potential scope of VFP3 function, we used RNAi to reduce expression of the VFP3 gene. Transcriptome profiling of these VFP3-silenced plants using high-throughput cDNA sequencing (RNA-seq revealed that VFP3 substantially affected plant gene expression; specifically, 1,118 genes representing approximately 5% of all expressed genes were significantly either up- or down-regulated in the VFP3 RNAi line compared to wild-type Col-0 plants. Among the 507 up-regulated genes were genes implicated in the regulation of transcription, protein degradation, calcium signaling, and hormone metabolism, whereas the 611 down-regulated genes included those involved in redox regulation, light reactions of photosynthesis, and metabolism of lipids, amino acids, and cell wall. Overall, this pattern of changes in gene expression is characteristic of plants under stress. Thus, VFP3 likely plays an important role in controlling plant homeostasis.

  15. Interaction of Arabidopsis Trihelix-Domain Transcription Factors VFP3 and VFP5 with Agrobacterium Virulence Protein VirF

    Science.gov (United States)

    García-Cano, Elena; Magori, Shimpei; Sun, Qi; Ding, Zehong; Lazarowitz, Sondra G.; Citovsky, Vitaly

    2015-01-01

    Agrobacterium is a natural genetic engineer of plants that exports several virulence proteins into host cells in order to take advantage of the cell machinery to facilitate transformation and support bacterial growth. One of these effectors is the F-box protein VirF, which presumably uses the host ubiquitin/proteasome system (UPS) to uncoat the packaging proteins from the invading bacterial T-DNA. By analogy to several other bacterial effectors, VirF most likely has several functions in the host cell and, therefore, several interacting partners among host proteins. Here we identify one such interactor, an Arabidopsis trihelix-domain transcription factor VFP3, and further show that its very close homolog VFP5 also interacted with VirF. Interestingly, interactions of VirF with either VFP3 or VFP5 did not activate the host UPS, suggesting that VirF might play other UPS-independent roles in bacterial infection. To better understand the potential scope of VFP3 function, we used RNAi to reduce expression of the VFP3 gene. Transcriptome profiling of these VFP3-silenced plants using high-throughput cDNA sequencing (RNA-seq) revealed that VFP3 substantially affected plant gene expression; specifically, 1,118 genes representing approximately 5% of all expressed genes were significantly either up- or down-regulated in the VFP3 RNAi line compared to wild-type Col-0 plants. Among the 507 up-regulated genes were genes implicated in the regulation of transcription, protein degradation, calcium signaling, and hormone metabolism, whereas the 611 down-regulated genes included those involved in redox regulation, light reactions of photosynthesis, and metabolism of lipids, amino acids, and cell wall. Overall, this pattern of changes in gene expression is characteristic of plants under stress. Thus, VFP3 likely plays an important role in controlling plant homeostasis. PMID:26571494

  16. An Efficient Semi-supervised Learning Approach to Predict SH2 Domain Mediated Interactions.

    Science.gov (United States)

    Kundu, Kousik; Backofen, Rolf

    2017-01-01

    Src homology 2 (SH2) domain is an important subclass of modular protein domains that plays an indispensable role in several biological processes in eukaryotes. SH2 domains specifically bind to the phosphotyrosine residue of their binding peptides to facilitate various molecular functions. For determining the subtle binding specificities of SH2 domains, it is very important to understand the intriguing mechanisms by which these domains recognize their target peptides in a complex cellular environment. There are several attempts have been made to predict SH2-peptide interactions using high-throughput data. However, these high-throughput data are often affected by a low signal to noise ratio. Furthermore, the prediction methods have several additional shortcomings, such as linearity problem, high computational complexity, etc. Thus, computational identification of SH2-peptide interactions using high-throughput data remains challenging. Here, we propose a machine learning approach based on an efficient semi-supervised learning technique for the prediction of 51 SH2 domain mediated interactions in the human proteome. In our study, we have successfully employed several strategies to tackle the major problems in computational identification of SH2-peptide interactions.

  17. Crystal structure of the Candida albicans Kar3 kinesin motor domain fused to maltose-binding protein

    International Nuclear Information System (INIS)

    Delorme, Caroline; Joshi, Monika; Allingham, John S.

    2012-01-01

    Highlights: ► The Candida albicans Kar3 motor domain structure was solved as a maltose-binding protein fusion. ► The electrostatic surface and part of the ATPase pocket of the motor domain differs markedly from other kinesins. ► The MBP–Kar3 interface highlights a new site for intramolecular or intermolecular interactions. -- Abstract: In the human fungal pathogen Candida albicans, the Kinesin-14 motor protein Kar3 (CaKar3) is critical for normal mitotic division, nuclear fusion during mating, and morphogenic transition from the commensal yeast form to the virulent hyphal form. As a first step towards detailed characterization of this motor of potential medical significance, we have crystallized and determined the X-ray structure of the motor domain of CaKar3 as a maltose-binding protein (MBP) fusion. The structure shows strong conservation of overall motor domain topology to other Kar3 kinesins, but with some prominent differences in one of the motifs that compose the nucleotide-binding pocket and the surface charge distribution. The MBP and Kar3 modules are arranged such that MBP interacts with the Kar3 motor domain core at the same site where the neck linker of conventional kinesins docks during the “ATP state” of the mechanochemical cycle. This site differs from the Kar3 neck–core interface in the recent structure of the ScKar3Vik1 heterodimer. The position of MBP is also completely distinct from the Vik1 subunit in this complex. This may suggest that the site of MBP interaction on the CaKar3 motor domain provides an interface for the neck, or perhaps a partner subunit, at an intermediate state of its motile cycle that has not yet been observed for Kinesin-14 motors.

  18. Crystal structure of the Candida albicans Kar3 kinesin motor domain fused to maltose-binding protein

    Energy Technology Data Exchange (ETDEWEB)

    Delorme, Caroline; Joshi, Monika [Department of Biomedical and Molecular Sciences, Queen' s University, Kingston, ON, Canada K7L 3N6 (Canada); Allingham, John S., E-mail: allinghj@queensu.ca [Department of Biomedical and Molecular Sciences, Queen' s University, Kingston, ON, Canada K7L 3N6 (Canada)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer The Candida albicans Kar3 motor domain structure was solved as a maltose-binding protein fusion. Black-Right-Pointing-Pointer The electrostatic surface and part of the ATPase pocket of the motor domain differs markedly from other kinesins. Black-Right-Pointing-Pointer The MBP-Kar3 interface highlights a new site for intramolecular or intermolecular interactions. -- Abstract: In the human fungal pathogen Candida albicans, the Kinesin-14 motor protein Kar3 (CaKar3) is critical for normal mitotic division, nuclear fusion during mating, and morphogenic transition from the commensal yeast form to the virulent hyphal form. As a first step towards detailed characterization of this motor of potential medical significance, we have crystallized and determined the X-ray structure of the motor domain of CaKar3 as a maltose-binding protein (MBP) fusion. The structure shows strong conservation of overall motor domain topology to other Kar3 kinesins, but with some prominent differences in one of the motifs that compose the nucleotide-binding pocket and the surface charge distribution. The MBP and Kar3 modules are arranged such that MBP interacts with the Kar3 motor domain core at the same site where the neck linker of conventional kinesins docks during the 'ATP state' of the mechanochemical cycle. This site differs from the Kar3 neck-core interface in the recent structure of the ScKar3Vik1 heterodimer. The position of MBP is also completely distinct from the Vik1 subunit in this complex. This may suggest that the site of MBP interaction on the CaKar3 motor domain provides an interface for the neck, or perhaps a partner subunit, at an intermediate state of its motile cycle that has not yet been observed for Kinesin-14 motors.

  19. Mass spectrometric identification of proteins that interact through specific domains of the poly(A) binding protein.

    Science.gov (United States)

    Richardson, Roy; Denis, Clyde L; Zhang, Chongxu; Nielsen, Maria E O; Chiang, Yueh-Chin; Kierkegaard, Morten; Wang, Xin; Lee, Darren J; Andersen, Jens S; Yao, Gang

    2012-09-01

    Poly(A) binding protein (PAB1) is involved in a number of RNA metabolic functions in eukaryotic cells and correspondingly is suggested to associate with a number of proteins. We have used mass spectrometric analysis to identify 55 non-ribosomal proteins that specifically interact with PAB1 from Saccharomyces cerevisiae. Because many of these factors may associate only indirectly with PAB1 by being components of the PAB1-mRNP structure, we additionally conducted mass spectrometric analyses on seven metabolically defined PAB1 deletion derivatives to delimit the interactions between these proteins and PAB1. These latter analyses identified 13 proteins whose associations with PAB1 were reduced by deleting one or another of PAB1's defined domains. Included in this list of 13 proteins were the translation initiation factors eIF4G1 and eIF4G2, translation termination factor eRF3, and PBP2, all of whose previously known direct interactions with specific PAB1 domains were either confirmed, delimited, or extended. The remaining nine proteins that interacted through a specific PAB1 domain were CBF5, SLF1, UPF1, CBC1, SSD1, NOP77, yGR250c, NAB6, and GBP2. In further study, UPF1, involved in nonsense-mediated decay, was confirmed to interact with PAB1 through the RRM1 domain. We additionally established that while the RRM1 domain of PAB1 was required for UPF1-induced acceleration of deadenylation during nonsense-mediated decay, it was not required for the more critical step of acceleration of mRNA decapping. These results begin to identify the proteins most likely to interact with PAB1 and the domains of PAB1 through which these contacts are made.

  20. Mg{sub x}Mn{sub (1-x)}(BH{sub 4}){sub 2} (x = 0-0.8), a cation solid solution in a bimetallic borohydride

    Energy Technology Data Exchange (ETDEWEB)

    Cerny, Radovan, E-mail: radovan.cerny@unige.ch [Laboratory of Crystallography, University of Geneva, 1211 Geneva (Switzerland); Penin, Nicolas [Laboratory of Crystallography, University of Geneva, 1211 Geneva (Switzerland); CNRS, Universite de Bordeaux 1, ICMCB, 87 Avenue du Docteur Albert Schweitzer, F-33608 Pessac Cedex (France); D' Anna, Vincenza; Hagemann, Hans [Department of Physical Chemistry, University of Geneva, 1211 Geneva (Switzerland); Durand, Etienne [CNRS, Universite de Bordeaux 1, ICMCB, 87 Avenue du Docteur Albert Schweitzer, F-33608 Pessac Cedex (France); Ruzicka, Jakub [Charles University, Faculty of Science, Department of Inorganic Chemistry, Hlavova 2030, 128 40, Prague 2 (Czech Republic)

    2011-08-15

    Highlights: {yields} The magnesium and manganese borohydrides form a solid solution Mg{sub x}Mn{sub (1-x)}(BH{sub 4}){sub 2} (x = 0-0.8) which conserves the trigonal structure of Mn{sub (}(BH{sub 4}){sub 2}. {yields} Coexistence of both trigonal and hexagonal borohydrides occurs within nominal composition ranging from x{sub Mg} = 0.8-0.9. {yields} The decomposition temperature of trigonal Mg{sub x}Mn{sub (1-x)}(BH{sub 4}){sub 2} (x = 0-0.8) does not vary significantly with magnesium content (433-453 K). {yields} The desorbed gas contains mostly hydrogen and 3-7.5 mol.% of diborane B{sub 2}H{sub 6}. - Abstract: A solid solution of magnesium and manganese borohydrides was studied by in situ synchrotron radiation X-ray powder diffraction and infrared spectroscopy. A combination of thermogravimetry, mass and infrared spectroscopy, and atomic emission spectroscopy were applied to clarify the thermal gas desorption of pure Mn(BH{sub 4}){sub 2} and a solid solution of composition Mg{sub 0.5}Mn{sub 0.5}(BH{sub 4}){sub 2}. Mg{sub x}Mn{sub (1-x)}(BH{sub 4}){sub 2} (x = 0-0.8) conserves the trigonal structure of Mn(BH{sub 4}){sub 2} at room temperature. Manganese is dissolved in the hexagonal structure of {alpha}-Mg(BH{sub 4}){sub 2}, with the upper solubility limit not exceeding 10 mol.% at room temperature. There exists a two-phase region of trigonal and hexagonal borohydrides within the compositional range x = 0.8-0.9 at room temperature. Infrared spectra show splitting of various vibrational modes, indicating the presence of two cations in the trigonal Mg{sub x}Mn{sub (1-x)}(BH{sub 4}){sub 2} solid solutions, as well as the appearance of a second phase, hexagonal {alpha}-Mg(BH{sub 4}){sub 2}, at higher magnesium contents. All vibrational frequencies are shifted to higher values with increasing magnesium content. The decomposition temperature of the trigonal Mg{sub x}Mn{sub (1-x)}(BH{sub 4}){sub 2} (x = 0-0.8) does not vary significantly as a function of the magnesium

  1. Lytic cell death induced by melittin bypasses pyroptosis but induces NLRP3 inflammasome activation and IL-1β release.

    Science.gov (United States)

    Martín-Sánchez, Fátima; Martínez-García, Juan José; Muñoz-García, María; Martínez-Villanueva, Miriam; Noguera-Velasco, José A; Andreu, David; Rivas, Luís; Pelegrín, Pablo

    2017-08-10

    The nucleotide-binding domain and leucine-rich repeat-containing receptor with a pyrin domain 3 (NLRP3) inflammasome is a sensor for different types of infections and alterations of homeostatic parameters, including abnormally high levels of the extracellular nucleotide ATP or crystallization of different metabolites. All NLRP3 activators trigger a similar intracellular pathway, where a decrease in intracellular K + concentration and permeabilization of plasma membrane are key steps. Cationic amphipathic antimicrobial peptides and peptide toxins permeabilize the plasma membrane. In fact, some of them have been described to activate the NLRP3 inflammasome. Among them, the bee venom antimicrobial toxin peptide melittin is known to elicit an inflammatory reaction via the NLRP3 inflammasome in response to bee venom. Our study found that melittin induces canonical NLRP3 inflammasome activation by plasma membrane permeabilization and a reduction in the intracellular K + concentration. Following melittin treatment, the apoptosis-associated speck-like protein, an adaptor protein with a caspase recruitment domain (ASC), was necessary to activate caspase-1 and induce IL-1β release. However, cell death induced by melittin prevented the formation of large ASC aggregates, amplification of caspase-1 activation, IL-18 release and execution of pyroptosis. Therefore, melittin-induced activation of the NLRP3 inflammasome results in an attenuated inflammasome response that does not result in caspase-1 dependent cell death.

  2. Interaction domains in high-performance NdFeB thick films

    Energy Technology Data Exchange (ETDEWEB)

    Woodcock, T.G. [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany)], E-mail: t.woodcock@ifw-dresden.de; Khlopkov, K. [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany); Walther, A. [Insitut Neel, CNRS-UJF, 25 avenue de Martyrs, 38042 Grenoble (France); CEA Leti - MINATEC, 17 rue des Martyrs, 38054 Grenoble (France); Dempsey, N.M.; Givord, D. [Insitut Neel, CNRS-UJF, 25 avenue de Martyrs, 38042 Grenoble (France); Schultz, L.; Gutfleisch, O. [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany)

    2009-05-15

    The magnetic domain structure in sputtered NdFeB thick films has been imaged by magnetic force microscopy. The local texture of the films was investigated by electron backscatter diffraction. The average misorientation of the grains was shown to decrease with increasing substrate temperature during deposition. Interaction domains were observed and are discussed with reference (i) to the sample grain size compared to the single domain particle size and (ii) to sample texture.

  3. SlBIR3 Negatively Regulates PAMP Responses and Cell Death in Tomato

    Directory of Open Access Journals (Sweden)

    Shuhua Huang

    2017-09-01

    Full Text Available Bri1-associated kinase 1 (BAK1-interacting receptor-like kinase (BIR proteins have been shown to play important roles in regulating growth and development, pathogen associated molecular pattern (PAMP-triggered immunity (PTI responses, and cell death in the model plant, Arabidopsis thaliana. We identified four BIR family members in tomato (Solanum lycopersicum, including SlBIR3, an ortholog of AtBIR3 from A. thaliana. SlBIR3 is predicted to encode a membrane localized non-arginine-aspartate (non-RD kinase that, based on protein sequence, does not have autophosphorylation activity but that can be phosphorylated in vivo. We established that SlBIR3 interacts with SlBAK1 and AtBAK1 using yeast two-hybrid assays and co-immunoprecipitation and maltose-binding protein pull down assays. We observed that SlBIR3 overexpression in tomato (cv. micro-tom and A. thaliana has weak effect on growth and development through brassinosteroid (BR signaling. SlBIR3 overexpression in A. thaliana suppressed flg22-induced defense responses, but did not affect infection with the bacterial pathogen Pseudomonas syringae (PstDC3000. This result was confirmed using virus-induced gene silencing (VIGS in tomato in conjunction with PstDC3000 infection. Overexpression of SlBIR3 in tomato (cv. micro-tom and A. thaliana resulted in enhanced susceptibility to the necrotrophic fungus Botrytis cinerea. In addition, co-silencing SlBIR3 with SlSERK3A or SlSERK3B using VIGS and the tobacco rattle virus (TRV-RNA2 vector containing fragments of both the SlSERK3 and SlBIR3 genes induced spontaneous cell death, indicating a cooperation between the two proteins in this process. In conclusion, our study revealed that SlBIR3 is the ortholog of AtBIR3 and that it participates in BR, PTI, and cell death signaling pathways.

  4. The role of the BH3-only protein Noxa in bone homeostasis.

    Science.gov (United States)

    Idrus, Erik; Nakashima, Tomoki; Wang, Ling; Hayashi, Mikihito; Okamoto, Kazuo; Kodama, Tatsuhiko; Tanaka, Nobuyuki; Taniguchi, Tadatsugu; Takayanagi, Hiroshi

    2011-07-08

    Bone homeostasis is maintained by a dynamic balance between bone resorption by osteoclasts and bone formation by osteoblasts. Since excessive osteoclast activity is implicated in pathological bone resorption, understanding the mechanism underlying osteoclast differentiation, function and survival is of both scientific and clinical importance. Osteoclasts are monocyte/macrophage lineage cells with a short life span that undergo rapid apoptosis, the rate of which critically determines the level of bone resorption in vivo. However, the molecular basis of rapid osteoclast apoptosis remains obscure. Here we report the role of a BH3-only protein, Noxa (encoded by the Pmaip1 gene), in bone homeostasis using Noxa-deficient mice. Among the Bcl-2 family members, Noxa was selectively induced during osteoclastogenesis. Mice lacking Noxa exhibit a severe osteoporotic phenotype due to an increased number of osteoclasts. Noxa deficiency did not have any effect on the number of osteoclast precursor cells or the expression of osteoclast-specific genes, but led to a prolonged survival of osteoclasts. Furthermore, adenovirus-mediated Noxa overexpression remarkably reduced bone loss in a model of inflammation-induced bone destruction. This study reveals Noxa to be a crucial regulator of osteoclast apoptosis, and may provide a molecular basis for a new therapeutic approach to bone diseases. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Receptor-interacting protein (RIP) kinase family

    OpenAIRE

    Zhang, Duanwu; Lin, Juan; Han, Jiahuai

    2010-01-01

    Receptor-interacting protein (RIP) kinases are a group of threonine/serine protein kinases with a relatively conserved kinase domain but distinct non-kinase regions. A number of different domain structures, such as death and caspase activation and recruitment domain (CARD) domains, were found in different RIP family members, and these domains should be keys in determining the specific function of each RIP kinase. It is known that RIP kinases participate in different biological processes, incl...

  6. Precise mapping of the CD95 pre-ligand assembly domain.

    Directory of Open Access Journals (Sweden)

    Valérie Edmond

    Full Text Available Pre-association of CD95 at the plasma membrane is mandatory for efficient death receptor signaling. This homotrimerization occurs through self-association of an extracellular domain called the pre-ligand assembly domain (PLAD. Using novel molecular and cellular tools, we confirmed that CD95-PLAD is necessary to promote CD95 multimerization and plays a pivotal role in the transmission of apoptotic signals. However, while a human CD95 mutant deleted of the previously described PLAD domain (amino acids 1 to 66 fails to interact with its wild-type counterpart and trigger autonomous cell death, deletion of amino acids 1 to 42 does not prevent homo- or hetero (human/mouse-oligomerization of CD95, and thus does not alter transmission of the apoptotic signal. Overall, these findings indicate that the region between amino acids 43 to 66 corresponds to the minimal motif involved in CD95 homotypic interaction and is necessary to convey an efficient apoptotic signal. Interfering with this PLAD may represent a new therapeutic strategy for altering CD95-induced apoptotic and non-apoptotic signals.

  7. OsBRI1 Activates BR Signaling by Preventing Binding between the TPR and Kinase Domains of OsBSK3 via Phosphorylation.

    Science.gov (United States)

    Zhang, Baowen; Wang, Xiaolong; Zhao, Zhiying; Wang, Ruiju; Huang, Xiahe; Zhu, Yali; Yuan, Li; Wang, Yingchun; Xu, Xiaodong; Burlingame, Alma L; Gao, Yingjie; Sun, Yu; Tang, Wenqiang

    2016-02-01

    Many plant receptor kinases transduce signals through receptor-like cytoplasmic kinases (RLCKs); however, the molecular mechanisms that create an effective on-off switch are unknown. The receptor kinase BR INSENSITIVE1 (BRI1) transduces brassinosteroid (BR) signal by phosphorylating members of the BR-signaling kinase (BSK) family of RLCKs, which contain a kinase domain and a C-terminal tetratricopeptide repeat (TPR) domain. Here, we show that the BR signaling function of BSKs is conserved in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) and that the TPR domain of BSKs functions as a "phospho-switchable" autoregulatory domain to control BSKs' activity. Genetic studies revealed that OsBSK3 is a positive regulator of BR signaling in rice, while in vivo and in vitro assays demonstrated that OsBRI1 interacts directly with and phosphorylates OsBSK3. The TPR domain of OsBSK3, which interacts directly with the protein's kinase domain, serves as an autoinhibitory domain to prevent OsBSK3 from interacting with bri1-SUPPRESSOR1 (BSU1). Phosphorylation of OsBSK3 by OsBRI1 disrupts the interaction between its TPR and kinase domains, thereby increasing the binding between OsBSK3's kinase domain and BSU1. Our results not only demonstrate that OsBSK3 plays a conserved role in regulating BR signaling in rice, but also provide insight into the molecular mechanism by which BSK family proteins are inhibited under basal conditions but switched on by the upstream receptor kinase BRI1. © 2016 American Society of Plant Biologists. All Rights Reserved.

  8. Up-regulated Ectonucleotidases in Fas-Associated Death Domain Protein- and Receptor-Interacting Protein Kinase 1-Deficient Jurkat Leukemia Cells Counteract Extracellular ATP/AMP Accumulation via Pannexin-1 Channels during Chemotherapeutic Drug-Induced Apoptosis.

    Science.gov (United States)

    Boyd-Tressler, Andrea M; Lane, Graham S; Dubyak, George R

    2017-07-01

    Pannexin-1 (Panx1) channels mediate the efflux of ATP and AMP from cancer cells in response to induction of extrinsic apoptosis by death receptors or intrinsic apoptosis by chemotherapeutic agents. We previously described the accumulation of extracellular ATP /AMP during chemotherapy-induced apoptosis in Jurkat human leukemia cells. In this study, we compared how different signaling pathways determine extracellular nucleotide pools in control Jurkat cells versus Jurkat lines that lack the Fas-associated death domain (FADD) or receptor-interacting protein kinase 1 (RIP1) cell death regulatory proteins. Tumor necrosis factor- α induced extrinsic apoptosis in control Jurkat cells and necroptosis in FADD-deficient cells; treatment of both lines with chemotherapeutic drugs elicited similar intrinsic apoptosis. Robust extracellular ATP/AMP accumulation was observed in the FADD-deficient cells during necroptosis, but not during apoptotic activation of Panx1 channels. Accumulation of extracellular ATP/AMP was similarly absent in RIP1-deficient Jurkat cells during apoptotic responses to chemotherapeutic agents. Apoptotic activation triggered equivalent proteolytic gating of Panx1 channels in all three Jurkat cell lines. The differences in extracellular ATP/AMP accumulation correlated with cell-line-specific expression of ectonucleotidases that metabolized the released ATP/AMP. CD73 mRNA, and α β -methylene-ADP-inhibitable ecto-AMPase activity were elevated in the FADD-deficient cells. In contrast, the RIP1-deficient cells were defined by increased expression of tartrate-sensitive prostatic acid phosphatase as a broadly acting ectonucleotidase. Thus, extracellular nucleotide accumulation during regulated tumor cell death involves interplay between ATP/AMP efflux pathways and different cell-autonomous ectonucleotidases. Differential expression of particular ectonucleotidases in tumor cell variants will determine whether chemotherapy-induced activation of Panx1 channels

  9. Expanding the Cancer Arsenal with Targeted Therapies: Disarmament of the Antiapoptotic Bcl-2 Proteins by Small Molecules.

    Science.gov (United States)

    Yap, Jeremy L; Chen, Lijia; Lanning, Maryanna E; Fletcher, Steven

    2017-02-09

    A hallmark of cancer is the evasion of apoptosis, which is often associated with the upregulation of the antiapoptotic members of the Bcl-2 family of proteins. The prosurvival function of the antiapoptotic Bcl-2 proteins is manifested by capturing and neutralizing the proapoptotic Bcl-2 proteins via their BH3 death domains. Accordingly, strategies to antagonize the antiapoptotic Bcl-2 proteins have largely focused on the development of low-molecular-weight, synthetic BH3 mimetics ("magic bullets") to disrupt the protein-protein interactions between anti- and proapoptotic Bcl-2 proteins. In this way, apoptosis has been reactivated in malignant cells. Moreover, several such Bcl-2 family inhibitors are presently being evaluated for a range of cancers in clinical trials and show great promise as new additions to the cancer armamentarium. Indeed, the selective Bcl-2 inhibitor venetoclax (Venclexta) recently received FDA approval for the treatment of a specific subset of patients with chronic lymphocytic leukemia. This review focuses on the major developments in the field of Bcl-2 inhibitors over the past decade, with particular emphasis on binding modes and, thus, the origins of selectivity for specific Bcl-2 family members.

  10. Hydrolysis and regeneration of sodium borohydride (NaBH4) - A combination of hydrogen production and storage

    Science.gov (United States)

    Chen, W.; Ouyang, L. Z.; Liu, J. W.; Yao, X. D.; Wang, H.; Liu, Z. W.; Zhu, M.

    2017-08-01

    Sodium borohydride (NaBH4) hydrolysis is a promising approach for hydrogen generation, but it is limited by high costs, low efficiency of recycling the by-product, and a lack of effective gravimetric storage methods. Here we demonstrate the regeneration of NaBH4 by ball milling the by-product, NaBO2·2H2O or NaBO2·4H2O, with MgH2 at room temperature and atmospheric pressure without any further post-treatment. Record yields of NaBH4 at 90.0% for NaBO2·2H2O and 88.3% for NaBO2·4H2O are achieved. This process also produces hydrogen from the splitting of coordinate water in hydrated sodium metaborate. This compensates the need for extra hydrogen for generating MgH2. Accordingly, we conclude that our unique approach realizes an efficient and cost-effective closed loop system for hydrogen production and storage.

  11. 38 CFR 3.312 - Cause of death.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Cause of death. 3.312... Cause of death. (a) General. The death of a veteran will be considered as having been due to a service... contributory cause of death. The issue involved will be determined by exercise of sound judgment, without...

  12. Impairment of endothelial-myocardial interaction increases the susceptibility of cardiomyocytes to ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Thorsten M Leucker

    Full Text Available Endothelial-myocardial interactions may be critically important for ischemia/reperfusion injury. Tetrahydrobiopterin (BH4 is a required cofactor for nitric oxide (NO production by endothelial NO synthase (eNOS. Hyperglycemia (HG leads to significant increases in oxidative stress, oxidizing BH4 to enzymatically incompetent dihydrobiopterin. How alterations in endothelial BH4 content impact myocardial ischemia/reperfusion injury remains elusive. The aim of this study was to examine the effect of endothelial-myocardial interaction on ischemia/reperfusion injury, with an emphasis on the role of endothelial BH4 content. Langendorff-perfused mouse hearts were treated by triton X-100 to produce endothelial dysfunction and subsequently subjected to 30 min of ischemia followed by 2 h of reperfusion. The recovery of left ventricular systolic and diastolic function during reperfusion was impaired in triton X-100 treated hearts compared with vehicle-treated hearts. Cardiomyocytes (CMs were co-cultured with endothelial cells (ECs and subsequently subjected to 2 h of hypoxia followed by 2 h of reoxygenation. Addition of ECs to CMs at a ratio of 1∶3 significantly increased NO production and decreased lactate dehydrogenase activity compared with CMs alone. This EC-derived protection was abolished by HG. The addition of 100 µM sepiapterin (a BH4 precursor or overexpression of GTP cyclohydrolase 1 (the rate-limiting enzyme for BH4 biosynthesis in ECs by gene trasfer enhanced endothelial BH4 levels, the ratio of eNOS dimer/monomer, eNOS phosphorylation, and NO production and decreased lactate dehydrogenase activity in the presence of HG. These results demonstrate that increased BH4 content in ECs by either pharmacological or genetic approaches reduces myocardial damage during hypoxia/reoxygenation in the presence of HG. Maintaining sufficient endothelial BH4 is crucial for cardioprotection against hypoxia/reoxygenation injury.

  13. The measles virus phosphoprotein interacts with the linker domain of STAT1

    International Nuclear Information System (INIS)

    Devaux, Patricia; Priniski, Lauren; Cattaneo, Roberto

    2013-01-01

    The measles virus (MV) phosphoprotein (P) and V proteins block the interferon (IFN) response by impeding phosphorylation of the signal transducer and activator of transcription 1 (STAT1) by the Janus kinase 1 (JAK1). We characterized how STAT1 mutants interact with P and JAK1 phosphorylation. Certain mutants of the linker, the Src-homology 2 domain (SH2), or the transactivation domain had reduced or abolished phosphorylation through JAK1 after IFN treatment. Other mutants, mainly localized in the linker, failed to interact with P as documented by the lack of interference with nuclear translocation. Thus the functional footprint of P on STAT1 localizes mainly to the linker domain; there is also some overlap with the STAT1 phosphorylation functional footprint on the SH2 domain. Based on these observations, we discuss how the MV-P might operate to inhibit the JAK/STAT pathway. - Highlights: • Residue in the linker and SH2 domains of STAT1 are important for MV-P interaction. • Residue in the linker and SH2 domains of STAT1 are important for STAT1 phosphorylation. • Residues interferring with both functions have similar location on STAT1. • The viral P and V proteins may operate in concert to inhibit the JAK/STAT pathway

  14. The measles virus phosphoprotein interacts with the linker domain of STAT1

    Energy Technology Data Exchange (ETDEWEB)

    Devaux, Patricia, E-mail: devaux.patricia@mayo.edu; Priniski, Lauren; Cattaneo, Roberto

    2013-09-15

    The measles virus (MV) phosphoprotein (P) and V proteins block the interferon (IFN) response by impeding phosphorylation of the signal transducer and activator of transcription 1 (STAT1) by the Janus kinase 1 (JAK1). We characterized how STAT1 mutants interact with P and JAK1 phosphorylation. Certain mutants of the linker, the Src-homology 2 domain (SH2), or the transactivation domain had reduced or abolished phosphorylation through JAK1 after IFN treatment. Other mutants, mainly localized in the linker, failed to interact with P as documented by the lack of interference with nuclear translocation. Thus the functional footprint of P on STAT1 localizes mainly to the linker domain; there is also some overlap with the STAT1 phosphorylation functional footprint on the SH2 domain. Based on these observations, we discuss how the MV-P might operate to inhibit the JAK/STAT pathway. - Highlights: • Residue in the linker and SH2 domains of STAT1 are important for MV-P interaction. • Residue in the linker and SH2 domains of STAT1 are important for STAT1 phosphorylation. • Residues interferring with both functions have similar location on STAT1. • The viral P and V proteins may operate in concert to inhibit the JAK/STAT pathway.

  15. Interaction Between the Biotin Carboxyl Carrier Domain and the Biotin Carboxylase Domain in Pyruvate Carboxylase from Rhizobium etli†

    Science.gov (United States)

    Lietzan, Adam D.; Menefee, Ann L.; Zeczycki, Tonya N.; Kumar, Sudhanshu; Attwood, Paul V.; Wallace, John C.; Cleland, W. Wallace; Maurice, Martin St.

    2011-01-01

    Pyruvate carboxylase (PC) catalyzes the ATP-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in mammalian tissues. To effect catalysis, the tethered biotin of PC must gain access to active sites in both the biotin carboxylase domain and the carboxyl transferase domain. Previous studies have demonstrated that a mutation of threonine 882 to alanine in PC from Rhizobium etli renders the carboxyl transferase domain inactive and favors the positioning of biotin in the biotin carboxylase domain. We report the 2.4 Å resolution X-ray crystal structure of the Rhizobium etli PC T882A mutant which reveals the first high-resolution description of the domain interaction between the biotin carboxyl carrier protein domain and the biotin carboxylase domain. The overall quaternary arrangement of Rhizobium etli PC remains highly asymmetrical and is independent of the presence of allosteric activator. While biotin is observed in the biotin carboxylase domain, its access to the active site is precluded by the interaction between Arg353 and Glu248, revealing a mechanism for regulating carboxybiotin access to the BC domain active site. The binding location for the biotin carboxyl carrier protein domain demonstrates that tethered biotin cannot bind in the biotin carboxylase domain active site in the same orientation as free biotin, helping to explain the difference in catalysis observed between tethered biotin and free biotin substrates in biotin carboxylase enzymes. Electron density located in the biotin carboxylase domain active site is assigned to phosphonoacetate, offering a probable location for the putative carboxyphosphate intermediate formed during biotin carboxylation. The insights gained from the T882A Rhizobium etli PC crystal structure provide a new series of catalytic snapshots in PC and offer a revised perspective on catalysis in the biotin-dependent enzyme family. PMID:21958016

  16. Calsyntenin-3 molecular architecture and interaction with neurexin 1α.

    Science.gov (United States)

    Lu, Zhuoyang; Wang, Yun; Chen, Fang; Tong, Huimin; Reddy, M V V V Sekhar; Luo, Lin; Seshadrinathan, Suchithra; Zhang, Lei; Holthauzen, Luis Marcelo F; Craig, Ann Marie; Ren, Gang; Rudenko, Gabby

    2014-12-12

    Calsyntenin 3 (Cstn3 or Clstn3), a recently identified synaptic organizer, promotes the development of synapses. Cstn3 localizes to the postsynaptic membrane and triggers presynaptic differentiation. Calsyntenin members play an evolutionarily conserved role in memory and learning. Cstn3 was recently shown in cell-based assays to interact with neurexin 1α (n1α), a synaptic organizer that is implicated in neuropsychiatric disease. Interaction would permit Cstn3 and n1α to form a trans-synaptic complex and promote synaptic differentiation. However, it is contentious whether Cstn3 binds n1α directly. To understand the structure and function of Cstn3, we determined its architecture by electron microscopy and delineated the interaction between Cstn3 and n1α biochemically and biophysically. We show that Cstn3 ectodomains form monomers as well as tetramers that are stabilized by disulfide bonds and Ca(2+), and both are probably flexible in solution. We show further that the extracellular domains of Cstn3 and n1α interact directly and that both Cstn3 monomers and tetramers bind n1α with nanomolar affinity. The interaction is promoted by Ca(2+) and requires minimally the LNS domain of Cstn3. Furthermore, Cstn3 uses a fundamentally different mechanism to bind n1α compared with other neurexin partners, such as the synaptic organizer neuroligin 2, because Cstn3 does not strictly require the sixth LNS domain of n1α. Our structural data suggest how Cstn3 as a synaptic organizer on the postsynaptic membrane, particularly in tetrameric form, may assemble radially symmetric trans-synaptic bridges with the presynaptic synaptic organizer n1α to recruit and spatially organize proteins into networks essential for synaptic function. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. 3D, parallel fluid-structure interaction code

    CSIR Research Space (South Africa)

    Oxtoby, Oliver F

    2011-01-01

    Full Text Available The authors describe the development of a 3D parallel Fluid–Structure–Interaction (FSI) solver and its application to benchmark problems. Fluid and solid domains are discretised using and edge-based finite-volume scheme for efficient parallel...

  18. BAG3 sensitizes cancer cells exposed to DNA damaging agents via direct interaction with GRP78.

    Science.gov (United States)

    Kong, De-Hui; Zhang, Qiang; Meng, Xin; Zong, Zhi-Hong; Li, Chao; Liu, Bao-Qin; Guan, Yifu; Wang, Hua-Qin

    2013-12-01

    Bcl-2 associated athanogene 3 (BAG3) has a modular structure that contains a BAG domain, a WW domain, a proline-rich (PxxP) domain to mediate potential interactions with chaperons and other proteins that participate in more than one signal transduction. In search for novel interacting partners, the current study identified that 78kDa glucose-regulated protein (GRP78) was a novel partner interacting with BAG3. Interaction between GRP78 and BAG3 was confirmed by coimmunoprecipitation and glutathione S-transferase (GST) pulldown. We also identified that the ATPase domain of GRP78 and BAG domain of BAG3 mediated their interaction. Counterintuitive for a prosurvival protein, BAG3 was found to promote the cytotoxicity of breast cancer MCF7, thyroid cancer FRO and glioma U87 cells subjected to genotoxic stress. In addition, the current study demonstrated that BAG3 interfered with the formation of the antiapoptotic GRP78-procaspase-7 complex, which resulted in an increased genotoxic stress-induced cytotoxicity in cancer cells. Furthermore, overexpression of GRP78 significantly blocked the enhancing effects of BAG3 on activation of caspase-7 and induction of apoptosis by genotoxic stress. Overall, these results suggested that through direct interaction BAG3 could prevent the antiapoptotic effect of GRP78 upon genotoxic stress. © 2013.

  19. Measurement of 3H in soil cores from the Hyrax Event (U3bh) subsidence crater

    Energy Technology Data Exchange (ETDEWEB)

    Kreek, S.; Hudson, G.B.; Ruth, M.

    1996-07-01

    Core samples were collected from two boreholes drilled in the subsidence crater of the Hyrax event (U3bh). The moisture in the core samples was extracted via freeze drying and tritiw-n was measured in the extracted moisture via `He accumulation mass spectrometry or liquid scintillation counting. Elevated tritium concentrations (IE4 - IE6 pCi/L extracted moisture as of the time of measurement) were observed in the extracted moisture from virtually all of the core samples with significant increases beginning at about 30 ft depth. No longer-lived fission products (144 Ce) or activation products (`OCo, `Eu, 114 En) were observed by gamma-ray spectroscopy in a subset of the core samples. This likely indicates that a catastrophic failure of containment (if it occurred) did not release significant radioactivities to this shallow depth (30 ft). The presence of `Cs at much greater depths (@210 ft, 64 m) may indicate that gaseous and/or vapor products were released shortly after the Hyrax event to a depth of about 210 ft. The relatively shallow depth where the elevated tritium is observed makes highly improbable any significant linkage between the elevated tritium concentrations and a Hyrax event containment failure. This may indicate that an additional source of enriched `H was introduced at this site.

  20. Interaction between the PH and START domains of ceramide transfer protein competes with phosphatidylinositol 4-phosphate binding by the PH domain.

    Science.gov (United States)

    Prashek, Jennifer; Bouyain, Samuel; Fu, Mingui; Li, Yong; Berkes, Dusan; Yao, Xiaolan

    2017-08-25

    De novo synthesis of the sphingolipid sphingomyelin requires non-vesicular transport of ceramide from the endoplasmic reticulum to the Golgi by the multidomain protein ceramide transfer protein (CERT). CERT's N-terminal pleckstrin homology (PH) domain targets it to the Golgi by binding to phosphatidylinositol 4-phosphate (PtdIns(4)P) in the Golgi membrane, whereas its C-terminal StAR-related lipid transfer domain (START) carries out ceramide transfer. Hyperphosphorylation of a serine-rich motif immediately after the PH domain decreases both PtdIns(4)P binding and ceramide transfer by CERT. This down-regulation requires both the PH and START domains, suggesting a possible inhibitory interaction between the two domains. In this study we show that isolated PH and START domains interact with each other. The crystal structure of a PH-START complex revealed that the START domain binds to the PH domain at the same site for PtdIns(4)P-binding, suggesting that the START domain competes with PtdIns(4)P for association with the PH domain. We further report that mutations disrupting the PH-START interaction increase both PtdIns(4)P-binding affinity and ceramide transfer activity of a CERT-serine-rich phosphorylation mimic. We also found that these mutations increase the Golgi localization of CERT inside the cell, consistent with enhanced PtdIns(4)P binding of the mutant. Collectively, our structural, biochemical, and cellular investigations provide important structural insight into the regulation of CERT function and localization. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Solution NMR investigation of the CD95/FADD homotypic death domain complex suggests lack of engagement of the CD95 C terminus.

    Science.gov (United States)

    Esposito, Diego; Sankar, Andrew; Morgner, Nina; Robinson, Carol V; Rittinger, Katrin; Driscoll, Paul C

    2010-10-13

    We have addressed complex formation between the death domain (DD) of the death receptor CD95 (Fas/APO-1) with the DD of immediate adaptor protein FADD using nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, and size-exclusion chromatography with in-line light scattering. We find complexation to be independent of the C-terminal 12 residues of CD95 and insensitive to mutation of residues that engage in the high-order clustering of CD95-DD molecules in a recently reported crystal structure obtained at pH 4. Differential NMR linewidths indicate that the C-terminal region of the CD95 chains remains in a disordered state and (13)C-methyl TROSY data are consistent with a lack of high degree of symmetry for the complex. The overall molecular mass of the complex is inconsistent with that in the crystal structure, and the complex dissociates at pH 4. We discuss these findings using sequence analysis of CD95 orthologs and the effect of FADD mutations on the interaction with CD95. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Soil-structure interaction analysis of NPP containments: substructure and frequency domain methods

    International Nuclear Information System (INIS)

    Venancio-Filho, F.; Almeida, M.C.F.; Ferreira, W.G.; De Barros, F.C.P.

    1997-01-01

    Substructure and frequency domain methods for soil-structure interaction are addressed in this paper. After a brief description of mathematical models for the soil and of excitation, the equations for dynamic soil-structure interaction are developed for a rigid surface foundation and for an embedded foundation. The equations for the frequency domain analysis of MDOF systems are provided. An example of soil-structure interaction analysis with frequency-dependent soil properties is given and examples of identification of foundation impedance functions and soil properties are presented. (orig.)

  3. THE M bh-σ DIAGRAM AND THE OFFSET NATURE OF BARRED ACTIVE GALAXIES

    International Nuclear Information System (INIS)

    Graham, Alister W.; Li Ihui

    2009-01-01

    From a sample of 50 predominantly inactive galaxies with direct supermassive black hole mass measurements, it has recently been established that barred galaxies tend to reside rightward of the M bh -σ relation defined by nonbarred galaxies. Either black holes in barred galaxies tend to be anemic or the central velocity dispersions in these galaxies have a tendency to be elevated by the presence of the bar. The latter option is in accord with studies connecting larger velocity dispersions in galaxies with old bars, while the former scenario is at odds with the observation that barred galaxies do not deviate from the M bh -luminosity relation. Using a sample of 88 galaxies with active galactic nuclei, whose supermassive black hole masses have been estimated from their associated emission lines, we reveal for the first time that they also display this same general behavior in the M bh -σ diagram depending on the presence of a bar or not. A new symmetrical and nonsymmetrical 'barless' M bh -σ relation is derived using 82 nonbarred galaxies. The barred galaxies are shown to reside on or up to ∼1 dex below this relation. This may explain why narrow-line Seyfert 1 galaxies appear offset from the 'barless' M bh -σ relation, and has far-reaching implications given that over half of the disk galaxy population are barred.

  4. Gemini spectroscopy of the outer disk star cluster BH176

    Science.gov (United States)

    Sharina, M. E.; Donzelli, C. J.; Davoust, E.; Shimansky, V. V.; Charbonnel, C.

    2014-10-01

    Context. BH176 is an old metal-rich star cluster. It is spatially and kinematically consistent with belonging to the Monoceros Ring. It is larger in size and more distant from the Galactic plane than typical open clusters, and it does not belong to the Galactic bulge. Aims: Our aim is to determine the origin of this unique object by accurately determining its distance, metallicity, and age. The best way to reach this goal is to combine spectroscopic and photometric methods. Methods: We present medium-resolution observations of red clump and red giant branch stars in BH176 obtained with the Gemini South Multi-Object Spectrograph. We derive radial velocities, metallicities, effective temperatures, and surface gravities of the observed stars and use these parameters to distinguish member stars from field objects. Results: We determine the following parameters for BH176: Vh = 0 ± 15 km s-1, [Fe/H] = -0.1 ± 0.1, age 7 ± 0.5 Gyr, E(V - I) = 0.79 ± 0.03, distance 15.2 ± 0.2 kpc, α-element abundance [α/Fe] ~ 0.25 dex (the mean of [Mg/Fe], and [Ca/Fe]). Conclusions: BH176 is a member of old Galactic open clusters that presumably belong to the thick disk. It may have originated as a massive star cluster after the encounter of the forming thin disk with a high-velocity gas cloud or as a satellite dwarf galaxy. Appendix A is available in electronic form at http://www.aanda.org

  5. A study of interaction effect theoretical with combination size grain on magnetics in of permanent magnet

    International Nuclear Information System (INIS)

    Tarihoran, Doansi; Manaf, Azwar

    2002-01-01

    Stoner-Wohlfarth theory, SW shows a deviation around 30-40% to the measurement result of a permanent magnetic material with nanometer-sized grains. This is caused by this theory neglecting the interacting grain factor. This research modifies SW theory by calculating the grain interacting effect. The modification is made by assuming the interacting energy of a mono-domain grain has ellipsoidal shaped focused at the edge of the grain. SW grain in this calculation model is a box-shaped in a grain with edges of the box placed in the skin's grain. The result shows that interacting effect make remanent polarization increasing drastically and coercive field value decreasing when grain's size reaches 20% of size of the first mono-domain grain. For material with ND 2 Fe 14 B phase, the optimum coercive field value and remanent polarization that producing maximum product energy, (BH) m ax obtained in a material with 5 nanometer-size grains. Qualitatively there is as appropriate result between the calculation and measurement

  6. Analysis of the thermodynamics of binding of an SH3 domain to proline-rich peptides using a chimeric fusion protein.

    Science.gov (United States)

    Candel, Adela M; van Nuland, Nico A J; Martin-Sierra, Francisco M; Martinez, Jose C; Conejero-Lara, Francisco

    2008-03-14

    A complete understanding of the thermodynamic determinants of binding between SH3 domains and proline-rich peptides is crucial to the development of rational strategies for designing ligands for these important domains. Recently we engineered a single-chain chimeric protein by fusing the alpha-spectrin Src homology region 3 (SH3) domain to the decapeptide APSYSPPPPP (p41). This chimera mimics the structural and energetic features of the interaction between SH3 domains and proline-rich peptides. Here we show that analysing the unfolding thermodynamics of single-point mutants of this chimeric fusion protein constitutes a very useful approach to deciphering the thermodynamics of SH3-ligand interactions. To this end, we investigated the contribution of each proline residue of the ligand sequence to the SH3-peptide interaction by producing six single Pro-Ala mutants of the chimeric protein and analysing their unfolding thermodynamics by differential scanning calorimetry (DSC). Structural analyses of the mutant chimeras by circular dichroism, fluorescence and NMR together with NMR-relaxation measurements indicate conformational flexibility at the binding interface, which is strongly affected by the different Pro-Ala mutations. An analysis of the DSC thermograms on the basis of a three-state unfolding model has allowed us to distinguish and separate the thermodynamic magnitudes of the interaction at the binding interface. The model assumes equilibrium between the "unbound" and "bound" states at the SH3-peptide binding interface. The resulting thermodynamic magnitudes classify the different proline residues according to their importance in the interaction as P2 approximately P7 approximately P10>P9 approximately P6>P8, which agrees well with Lim's model for the interaction between SH3 domains and proline-rich peptides. In addition, the thermodynamic signature of the interaction is the same as that usually found for this type of binding, with a strong enthalpy

  7. THE LICK AGN MONITORING PROJECT: THE M BH-σ* RELATION FOR REVERBERATION-MAPPED ACTIVE GALAXIES

    International Nuclear Information System (INIS)

    Woo, Jong-Hak; Treu, Tommaso; Bennert, Vardha N.; Barth, Aaron J.; Walsh, Jonelle L.; Bentz, Misty C.; Wright, Shelley A.; Filippenko, Alexei V.; Li, Weidong; Martini, Paul; Canalizo, Gabriela; Gates, Elinor; Greene, Jenny; Malkan, Matthew A.; Stern, Daniel; Minezaki, Takeo

    2010-01-01

    To investigate the black hole mass versus stellar velocity dispersion (M BH -σ * ) relation of active galaxies, we measured the velocity dispersions of a sample of local Seyfert 1 galaxies, for which we have recently determined black hole masses using reverberation mapping. For most objects, stellar velocity dispersions were measured from high signal-to-noise ratio optical spectra centered on the Ca II triplet region (∼8500 A), obtained at the Keck, Palomar, and Lick Observatories. For two objects, in which the Ca II triplet region was contaminated by nuclear emission, the measurement was based on high-quality H-band spectra obtained with the OH-Suppressing Infrared Imaging Spectrograph at the Keck-II telescope. Combining our new measurements with data from the literature, we assemble a sample of 24 active galaxies with stellar velocity dispersions and reverberation-based black hole mass measurements in the range of black hole mass 10 6 BH /M sun 9 . We use this sample to obtain reverberation-mapping constraints on the slope and intrinsic scatter of the M BH -σ * relation of active galaxies. Assuming a constant virial coefficient f for the reverberation-mapping black hole masses, we find a slope β = 3.55 ± 0.60 and the intrinsic scatter σ int = 0.43 ± 0.08 dex in the relation log(M BH /M sun ) = α + β log(σ * /200 km s -1 ), which are consistent with those found for quiescent galaxies. We derive an updated value of the virial coefficient f by finding the value which places the reverberation masses in best agreement with the M BH -σ * relation of quiescent galaxies; using the quiescent M BH -σ * relation determined by Gueltekin et al., we find log f = 0.72 +0.09 -0.10 with an intrinsic scatter of 0.44 ± 0.07 dex. No strong correlations between f and parameters connected to the physics of accretion (such as the Eddington ratio or line-shape measurements) are found. The uncertainty of the virial coefficient remains one of the main sources of the

  8. Interaction of HP1 and Brg1/Brm with the globular domain of histone H3 is required for HP1-mediated repression.

    Directory of Open Access Journals (Sweden)

    Marc Lavigne

    2009-12-01

    Full Text Available The heterochromatin-enriched HP1 proteins play a critical role in regulation of transcription. These proteins contain two related domains known as the chromo- and the chromoshadow-domain. The chromo-domain binds histone H3 tails methylated on lysine 9. However, in vivo and in vitro experiments have shown that the affinity of HP1 proteins to native methylated chromatin is relatively poor and that the opening of chromatin occurring during DNA replication facilitates their binding to nucleosomes. These observations prompted us to investigate whether HP1 proteins have additional histone binding activities, envisioning also affinity for regions potentially occluded by the nucleosome structure. We find that the chromoshadow-domain interacts with histone H3 in a region located partially inside the nucleosomal barrel at the entry/exit point of the nucleosome. Interestingly, this region is also contacted by the catalytic subunits of the human SWI/SNF complex. In vitro, efficient SWI/SNF remodeling requires this contact and is inhibited in the presence of HP1 proteins. The antagonism between SWI/SNF and HP1 proteins is also observed in vivo on a series of interferon-regulated genes. Finally, we show that SWI/SNF activity favors loading of HP1 proteins to chromatin both in vivo and in vitro. Altogether, our data suggest that HP1 chromoshadow-domains can benefit from the opening of nucleosomal structures to bind chromatin and that HP1 proteins use this property to detect and arrest unwanted chromatin remodeling.

  9. Fluctuation and dipolar interaction effects on the pinning of domain walls

    International Nuclear Information System (INIS)

    Chui, S.T.

    2001-01-01

    We discuss the effect of the dipolar interaction on the pinning of domain walls. Domain walls are usually pinned near the boundaries between grains. Magnetic charges accumulated at the domain wall make the wall more unstable and easier to depin. We discuss how the grain-orientation and thermal fluctuations affect these magnetic charges and hence the depinning of the domain walls. Our results are illustrated by finite temperature Monte Carlo simulation on periodic arrays of large cells separated by walls consisting of faces of pyramids

  10. Suppression of phospho-p85α-GTP-Rac1 lipid raft interaction by bichalcone analog attenuates cancer cell invasion.

    Science.gov (United States)

    Lu, Hui-Li; Chen, Shih-Shun; Hsu, Wen-Tung; Lu, Yao-Cheng; Lee, Chuan-Chun; Wu, Tian-Shung; Lin, Meng-Liang

    2016-12-01

    The p85α subunit of phosphatidylinositol 3-kinase (PI3K) acts as a key regulator of cell proliferation and motility, which mediates signals that confer chemoresistance to many human cancer cells. Using small interfering RNAs against matrix metalloproteinase-2 (MMP-2) and the MMP-2 promoter-driven luciferase assay, we showed that the new synthetic bichalcone analog TSWU-CD4 inhibits the invasion of human cancer cells by down-regulating MMP-2 expression. Treatment with TSWU-CD4 inhibited MMP-2 expression and cell invasion, which were restored by ectopic wild type (wt) p85α or a constitutively active form of MAPK kinase 3 (CA MKK3), CA MKK6, or CA p38α mitogen-activated protein kinase (MAPK). The attenuated formation of lipid raft-associated phospho (p)-p85α-GTP-Rac1 complexes, protein kinase B (Akt) Ser 473 phosphorylation, and cell invasion by TSWU-CD4 was reversed by overexpression of wt p85α or the p85α Brc-homology (BH) domain. The ectopic expression of CA Rac1 L61 (but not wt Rac1) could overcome the suppression of Ser 473 phosphorylation, lipid raft association of Akt, the interaction between GTP-bound Rac1 and p85α in lipid rafts, and cell invasion by TSWU-CD4. The involvement of Akt activity in the functions of NF-κB-mediated MMP-2 was further confirmed through the attenuation of Akt phosphorylation signaling using the Akt-specific inhibitor MK-2206 and ectopic expression of NF-κB p65. Collectively, the inhibitory effect of TSWU-CD4 on cancer cell invasion was likely to suppress the p-p85α-GTP-Rac1 interaction in lipid rafts by targeting the p85α BH domain, which resulted in the suppression of MMP-2 expression via the PI3K-Akt-mediated ERK-MKK3/MKK6-p38 MAPK-NF-κB signaling pathway. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Additive Interaction between Heterogeneous Environmental Quality Domains (Air, Water, Land, Sociodemographic, and Built Environment) on Preterm Birth.

    Science.gov (United States)

    Grabich, Shannon C; Rappazzo, Kristen M; Gray, Christine L; Jagai, Jyotsna S; Jian, Yun; Messer, Lynne C; Lobdell, Danelle T

    2016-01-01

    Environmental exposures often occur in tandem; however, epidemiological research often focuses on singular exposures. Statistical interactions among broad, well-characterized environmental domains have not yet been evaluated in association with health. We address this gap by conducting a county-level cross-sectional analysis of interactions between Environmental Quality Index (EQI) domain indices on preterm birth in the Unites States from 2000 to 2005. The EQI, a county-level index constructed for the 2000-2005 time period, was constructed from five domain-specific indices (air, water, land, built, and sociodemographic) using principal component analyses. County-level preterm birth rates ( n  = 3141) were estimated using live births from the National Center for Health Statistics. Linear regression was used to estimate prevalence differences (PDs) and 95% confidence intervals (CIs) comparing worse environmental quality to the better quality for each model for (a) each individual domain main effect, (b) the interaction contrast, and (c) the two main effects plus interaction effect (i.e., the "net effect") to show departure from additivity for the all U.S. counties. Analyses were also performed for subgroupings by four urban/rural strata. We found the suggestion of antagonistic interactions but no synergism, along with several purely additive (i.e., no interaction) associations. In the non-stratified model, we observed antagonistic interactions, between the sociodemographic/air domains [net effect (i.e., the association, including main effects and interaction effects) PD: -0.004 (95% CI: -0.007, 0.000), interaction contrast: -0.013 (95% CI: -0.020, -0.007)] and built/air domains [net effect PD: 0.008 (95% CI 0.004, 0.011), interaction contrast: -0.008 (95% CI: -0.015, -0.002)]. Most interactions were between the air domain and other respective domains. Interactions differed by urbanicity, with more interactions observed in non-metropolitan regions. Observed

  12. Additive interaction between heterogeneous environmental quality domains (air, water, land, sociodemographic and built environment on preterm birth

    Directory of Open Access Journals (Sweden)

    Shannon Grabich

    2016-10-01

    Full Text Available BACKGROUND Environmental exposures often occur in tandem; however, epidemiological research often focuses on singular exposures. Statistical interactions among broad, well-characterized environmental domains have not yet been evaluated in association with health. We address this gap by conducting a county-level cross-sectional analysis of interactions between Environmental Quality Index (EQI domain indices on preterm birth in the Unites States from 2000-2005.METHODS: The EQI, a county-level index constructed for the 2000-2005 time period, was constructed from five domain-specific indices (air, water, land, built and sociodemographic using principal component analyses. County-level preterm birth rates (n=3141 were estimated using live births from the National Center for Health Statistics. Linear regression was used to estimate prevalence differences (PD and 95% confidence intervals (CI comparing worse environmental quality to the better quality for each model for a each individual domain main effect b the interaction contrast and c the two main effects plus interaction effect (i.e., the net effect to show departure from additivity for the all U.S counties. Analyses were also performed for subgroupings by four urban/rural strata. RESULTS: We found the suggestion of antagonistic interactions but no synergism, along with several purely additive (i.e., no interaction associations. In the non-stratified model, we observed antagonistic interactions, between the sociodemographic/air domains (net effect (i.e. the association including main effects and interaction effects PD: -0.004 (95% CI:-0.007, 0.000, interaction contrast: -0.013 (95% CI:-0.020, -0.007 and built/air domains (net effect PD: 0.008 (95% CI 0.004, 0.011, interaction contrast: -0.008 (95% CI:-0.015, -0.002. Most interactions were between the air domain and other respective domains. Interactions differed by urbanicity, with more interactions observed in non-metropolitan regions

  13. Signatures of pleiotropy, economy and convergent evolution in a domain-resolved map of human-virus protein-protein interaction networks.

    Science.gov (United States)

    Garamszegi, Sara; Franzosa, Eric A; Xia, Yu

    2013-01-01

    A central challenge in host-pathogen systems biology is the elucidation of general, systems-level principles that distinguish host-pathogen interactions from within-host interactions. Current analyses of host-pathogen and within-host protein-protein interaction networks are largely limited by their resolution, treating proteins as nodes and interactions as edges. Here, we construct a domain-resolved map of human-virus and within-human protein-protein interaction networks by annotating protein interactions with high-coverage, high-accuracy, domain-centric interaction mechanisms: (1) domain-domain interactions, in which a domain in one protein binds to a domain in a second protein, and (2) domain-motif interactions, in which a domain in one protein binds to a short, linear peptide motif in a second protein. Analysis of these domain-resolved networks reveals, for the first time, significant mechanistic differences between virus-human and within-human interactions at the resolution of single domains. While human proteins tend to compete with each other for domain binding sites by means of sequence similarity, viral proteins tend to compete with human proteins for domain binding sites in the absence of sequence similarity. Independent of their previously established preference for targeting human protein hubs, viral proteins also preferentially target human proteins containing linear motif-binding domains. Compared to human proteins, viral proteins participate in more domain-motif interactions, target more unique linear motif-binding domains per residue, and contain more unique linear motifs per residue. Together, these results suggest that viruses surmount genome size constraints by convergently evolving multiple short linear motifs in order to effectively mimic, hijack, and manipulate complex host processes for their survival. Our domain-resolved analyses reveal unique signatures of pleiotropy, economy, and convergent evolution in viral-host interactions that are

  14. Reducing agent (NaBH4) dependent structure, morphology and magnetic properties of nickel ferrite (NiFe2O4) nanorods

    International Nuclear Information System (INIS)

    Saravanakumar, B.; Rani, B. Jansi; Ravi, G.; Thambidurai, M.; Yuvakkumar, R.

    2017-01-01

    Nickel ferrite (Ni-Fe 2 O 4 ) nanorods were synthesized employing a simple chemical reduction method. Reducing agent (NaBH 4 ) influence on structural, morphological and magnetic properties of NiFe 2 O 4 nanorods was investigated. XRD results clearly revealed the presence of inverse cubic spinel nickel ferrite structure characteristic peaks and confirmed the site inversion of inverse spinel structure of Fe 3+ tetrahedral A site and Ni 2+ octahedral B site. The observed Raman characteristic peak at 488 and 683 cm −1 were corresponded to E 1 g and A 1 g mode whereas A and B site respectively corresponded to tetrahedral and octahedral site of NiFe 2 O 4 inverse spinel structure. The obtained PL peaks at 530 and 542 nm were attributed to the emission spectra of Fe 3+ ions in site A of inverse spinel structure and Ni 2+ ions in site B of inverse spinel structure respectively. SEM result clearly revealed that increase in NaBH 4 concentration had remarkable impact on nanorods formation, nano-octahedron structure, homogeneity and regularity of Ni-Ferrites. VSM studies clearly revealed the soft ferromagnetic nature of NiFe 2 O 4 and increase in NaBH 4 concentration further induced raise in metal cations concentration in A- and B- site which might impact the resultant magnetization of ferrites. - Highlights: • Nano rod formation has been initiated while increase of NaBH 4 concentration. • Further increasing NaBH 4 concentration favors nano-octahedron formation. • VSM studies revealed soft ferromagnetic nature of NiFe 2 O 4 .

  15. The conservation pattern of short linear motifs is highly correlated with the function of interacting protein domains

    Directory of Open Access Journals (Sweden)

    Wang Yiguo

    2008-10-01

    Full Text Available Abstract Background Many well-represented domains recognize primary sequences usually less than 10 amino acids in length, called Short Linear Motifs (SLiMs. Accurate prediction of SLiMs has been difficult because they are short (often Results Our combined approach revealed that SLiMs are highly conserved in proteins from functional classes that are known to interact with a specific domain, but that they are not conserved in most other protein groups. We found that SLiMs recognized by SH2 domains were highly conserved in receptor kinases/phosphatases, adaptor molecules, and tyrosine kinases/phosphatases, that SLiMs recognized by SH3 domains were highly conserved in cytoskeletal and cytoskeletal-associated proteins, that SLiMs recognized by PDZ domains were highly conserved in membrane proteins such as channels and receptors, and that SLiMs recognized by S/T kinase domains were highly conserved in adaptor molecules, S/T kinases/phosphatases, and proteins involved in transcription or cell cycle control. We studied Tyr-SLiMs recognized by SH2 domains in more detail, and found that SH2-recognized Tyr-SLiMs on the cytoplasmic side of membrane proteins are more highly conserved than those on the extra-cellular side. Also, we found that SH2-recognized Tyr-SLiMs that are associated with SH3 motifs and a tyrosine kinase phosphorylation motif are more highly conserved. Conclusion The interactome of protein domains is reflected by the evolutionary conservation of SLiMs recognized by these domains. Combining scoring matrixes derived from peptide libraries and conservation analysis, we would be able to find those protein groups that are more likely to interact with specific domains.

  16. Sequence-specific interaction between the disintegrin domain of mouse ADAM 3 and murine eggs: role of beta1 integrin-associated proteins CD9, CD81, and CD98.

    Science.gov (United States)

    Takahashi, Y; Bigler, D; Ito, Y; White, J M

    2001-04-01

    ADAM 3 is a sperm surface glycoprotein that has been implicated in sperm-egg adhesion. Because little is known about the adhesive activity of ADAMs, we investigated the interaction of ADAM 3 disintegrin domains, made in bacteria and in insect cells, with murine eggs. Both recombinant proteins inhibited sperm-egg binding and fusion with potencies similar to that which we recently reported for the ADAM 2 disintegrin domain. Alanine scanning mutagenesis revealed a critical importance for the glutamine at position 7 of the disintegrin loop. Fluorescent beads coated with the ADAM 3 disintegrin domain bound to the egg surface. Bead binding was inhibited by an authentic, but not by a scrambled, peptide analog of the disintegrin loop. Bead binding was also inhibited by the function-blocking anti-alpha6 monoclonal antibody (mAb) GoH3, but not by a nonfunction blocking anti-alpha6 mAb, or by mAbs against either the alphav or beta3 integrin subunits. We also present evidence that in addition to the tetraspanin CD9, two other beta1-integrin-associated proteins, the tetraspanin CD81 as well as the single pass transmembrane protein CD98 are expressed on murine eggs. Antibodies to CD9 and CD98 inhibited in vitro fertilization and binding of the ADAM 3 disintegrin domain. Our findings are discussed in terms of the involvement of multiple sperm ADAMs and multiple egg beta1 integrin-associated proteins in sperm-egg binding and fusion. We propose that an egg surface "tetraspan web" facilitates fertilization and that it may do so by fostering ADAM-integrin interactions.

  17. Sequence-Specific Interaction between the Disintegrin Domain of Mouse ADAM 3 and Murine Eggs: Role of β1 Integrin-associated Proteins CD9, CD81, and CD98

    Science.gov (United States)

    Takahashi, Yuji; Bigler, Dora; Ito, Yasuhiko; White, Judith M.

    2001-01-01

    ADAM 3 is a sperm surface glycoprotein that has been implicated in sperm-egg adhesion. Because little is known about the adhesive activity of ADAMs, we investigated the interaction of ADAM 3 disintegrin domains, made in bacteria and in insect cells, with murine eggs. Both recombinant proteins inhibited sperm-egg binding and fusion with potencies similar to that which we recently reported for the ADAM 2 disintegrin domain. Alanine scanning mutagenesis revealed a critical importance for the glutamine at position 7 of the disintegrin loop. Fluorescent beads coated with the ADAM 3 disintegrin domain bound to the egg surface. Bead binding was inhibited by an authentic, but not by a scrambled, peptide analog of the disintegrin loop. Bead binding was also inhibited by the function-blocking anti-α6 monoclonal antibody (mAb) GoH3, but not by a nonfunction blocking anti-α6 mAb, or by mAbs against either the αv or β3 integrin subunits. We also present evidence that in addition to the tetraspanin CD9, two other β1-integrin-associated proteins, the tetraspanin CD81 as well as the single pass transmembrane protein CD98 are expressed on murine eggs. Antibodies to CD9 and CD98 inhibited in vitro fertilization and binding of the ADAM 3 disintegrin domain. Our findings are discussed in terms of the involvement of multiple sperm ADAMs and multiple egg β1 integrin-associated proteins in sperm-egg binding and fusion. We propose that an egg surface “tetraspan web” facilitates fertilization and that it may do so by fostering ADAM–integrin interactions. PMID:11294888

  18. Experimental evidence for amplitude death induced by a time-varying interaction

    Energy Technology Data Exchange (ETDEWEB)

    Suresh, K. [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India); Shrimali, M.D. [Department of Physics, Central University of Rajasthan, NH-8, Bandar Sindri, Ajmer 305 801 (India); Prasad, Awadhesh [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Thamilmaran, K., E-mail: maran.cnld@gmail.com [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India)

    2014-08-01

    In this paper, we study the time-varying interaction in coupled oscillatory systems. For this purpose, we have designed a novel time-varying resistive network using an analog switch and inverter circuits. We have applied this time-varying resistive network to mutually coupled identical Chua's oscillators. When the resistances are varied in time, we find that amplitude death arises in coupled identical oscillators. This has been observed numerically as well as verified through hardware experiments. - Highlights: • We have implemented the time-varying interaction in coupled oscillatory systems. • We have designed a novel time-varying resistive network using an analog switch and inverter circuits. • When the resistances are varied in time, we find that amplitude death arises in coupled identical oscillators.

  19. An Energy Dense-AI-NaBH4-PEMFC Based Power Generator for Unmanned Undersea Vehicles

    Science.gov (United States)

    2016-03-01

    From- To) 03/01/2016 Final 01/28/2013-12/31/2015 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER An Energy-Dense AI-NaBH4- PEMFC Based Power Generator for...combination of polymer electrolyte membrane fuel cell ( PEMFC ) with a compact hydrogen generator util izing AI-NaBH4 composite fuel. The conditions...ANSI Std. Z39.18 FLORIDA SOLAR ENERGY CENTER. Crl’nrmg EnPrgy lnrll’pendrnr£’ An Energy-Dense Al-NaBH4- PEMFC Based Power Generator for Unmanned

  20. The deprotonation energies of BH{sub 5} and AlH{sub 5}: Comparisons to GaH{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Speakman, Lucas D. [Center for Computational Chemistry, University of Georgia, 1004 Cedar Street, Athens, GA 30602-2556 (United States)], E-mail: speakman@ccqc.uga.edu; Turney, Justin M. [Center for Computational Chemistry, University of Georgia, 1004 Cedar Street, Athens, GA 30602-2556 (United States); Schaefer, Henry F. [Center for Computational Chemistry, University of Georgia, 1004 Cedar Street, Athens, GA 30602-2556 (United States)

    2007-01-08

    Hypercoordinate boron is most unusual, leading to considerable theoretical and experimental research on the parent BH{sub 5} molecule. The deprotonation energies of BH{sub 5} and the related molecules AlH{sub 5} and GaH{sub 5} have been of particular interest. Here the energy differences for XH{sub 5}->XH{sub 4}{sup -}+H(X=BandAl) are computed to be 332.4 and 326.3kcalmol{sup -1}, respectively, with an aug-cc-pVQZ basis set at the CCSD(T) level of theory. Vibrational frequencies for BH{sub 4}{sup -} and AlH{sub 4}{sup -} are also reported as 1098, 1210, 2263, and 2284cm{sup -1} and 760, 779, 1658, and 1745cm{sup -1}, respectively, again at the CCSD(T) aug-cc-pVQZ level of theory. Comparisons with the valence isoelectronic GaH{sub 5} molecule are made.

  1. Exploring interaction with 3D volumetric displays

    Science.gov (United States)

    Grossman, Tovi; Wigdor, Daniel; Balakrishnan, Ravin

    2005-03-01

    Volumetric displays generate true volumetric 3D images by actually illuminating points in 3D space. As a result, viewing their contents is similar to viewing physical objects in the real world. These displays provide a 360 degree field of view, and do not require the user to wear hardware such as shutter glasses or head-trackers. These properties make them a promising alternative to traditional display systems for viewing imagery in 3D. Because these displays have only recently been made available commercially (e.g., www.actuality-systems.com), their current use tends to be limited to non-interactive output-only display devices. To take full advantage of the unique features of these displays, however, it would be desirable if the 3D data being displayed could be directly interacted with and manipulated. We investigate interaction techniques for volumetric display interfaces, through the development of an interactive 3D geometric model building application. While this application area itself presents many interesting challenges, our focus is on the interaction techniques that are likely generalizable to interactive applications for other domains. We explore a very direct style of interaction where the user interacts with the virtual data using direct finger manipulations on and around the enclosure surrounding the displayed 3D volumetric image.

  2. Signatures of pleiotropy, economy and convergent evolution in a domain-resolved map of human-virus protein-protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Sara Garamszegi

    Full Text Available A central challenge in host-pathogen systems biology is the elucidation of general, systems-level principles that distinguish host-pathogen interactions from within-host interactions. Current analyses of host-pathogen and within-host protein-protein interaction networks are largely limited by their resolution, treating proteins as nodes and interactions as edges. Here, we construct a domain-resolved map of human-virus and within-human protein-protein interaction networks by annotating protein interactions with high-coverage, high-accuracy, domain-centric interaction mechanisms: (1 domain-domain interactions, in which a domain in one protein binds to a domain in a second protein, and (2 domain-motif interactions, in which a domain in one protein binds to a short, linear peptide motif in a second protein. Analysis of these domain-resolved networks reveals, for the first time, significant mechanistic differences between virus-human and within-human interactions at the resolution of single domains. While human proteins tend to compete with each other for domain binding sites by means of sequence similarity, viral proteins tend to compete with human proteins for domain binding sites in the absence of sequence similarity. Independent of their previously established preference for targeting human protein hubs, viral proteins also preferentially target human proteins containing linear motif-binding domains. Compared to human proteins, viral proteins participate in more domain-motif interactions, target more unique linear motif-binding domains per residue, and contain more unique linear motifs per residue. Together, these results suggest that viruses surmount genome size constraints by convergently evolving multiple short linear motifs in order to effectively mimic, hijack, and manipulate complex host processes for their survival. Our domain-resolved analyses reveal unique signatures of pleiotropy, economy, and convergent evolution in viral

  3. Eukaryotic ribonucleases P/MRP: the crystal structure of the P3 domain.

    Science.gov (United States)

    Perederina, Anna; Esakova, Olga; Quan, Chao; Khanova, Elena; Krasilnikov, Andrey S

    2010-02-17

    Ribonuclease (RNase) P is a site-specific endoribonuclease found in all kingdoms of life. Typical RNase P consists of a catalytic RNA component and a protein moiety. In the eukaryotes, the RNase P lineage has split into two, giving rise to a closely related enzyme, RNase MRP, which has similar components but has evolved to have different specificities. The eukaryotic RNases P/MRP have acquired an essential helix-loop-helix protein-binding RNA domain P3 that has an important function in eukaryotic enzymes and distinguishes them from bacterial and archaeal RNases P. Here, we present a crystal structure of the P3 RNA domain from Saccharomyces cerevisiae RNase MRP in a complex with RNase P/MRP proteins Pop6 and Pop7 solved to 2.7 A. The structure suggests similar structural organization of the P3 RNA domains in RNases P/MRP and possible functions of the P3 domains and proteins bound to them in the stabilization of the holoenzymes' structures as well as in interactions with substrates. It provides the first insight into the structural organization of the eukaryotic enzymes of the RNase P/MRP family.

  4. Measurement of 3H in soil cores from the Hyrax Event (U3bh) subsidence crater

    International Nuclear Information System (INIS)

    Kreek, S.; Hudson, G.B.; Ruth, M.

    1996-01-01

    Core samples were collected from two boreholes drilled in the subsidence crater of the Hyrax event (U3bh). The moisture in the core samples was extracted via freeze drying and tritiw-n was measured in the extracted moisture via 'He accumulation mass spectrometry or liquid scintillation counting. Elevated tritium concentrations (IE4 - IE6 pCi/L extracted moisture as of the time of measurement) were observed in the extracted moisture from virtually all of the core samples with significant increases beginning at about 30 ft depth. No longer-lived fission products (144 Ce) or activation products ('OCo, 'Eu, 114 En) were observed by gamma-ray spectroscopy in a subset of the core samples. This likely indicates that a catastrophic failure of containment (if it occurred) did not release significant radioactivities to this shallow depth (30 ft). The presence of 'Cs at much greater depths (at sign 210 ft, 64 m) may indicate that gaseous and/or vapor products were released shortly after the Hyrax event to a depth of about 210 ft. The relatively shallow depth where the elevated tritium is observed makes highly improbable any significant linkage between the elevated tritium concentrations and a Hyrax event containment failure. This may indicate that an additional source of enriched 'H was introduced at this site

  5. Elucidation of relaxin-3 binding interactions in the extracellular loops of RXFP3

    Directory of Open Access Journals (Sweden)

    Ross eBathgate

    2013-02-01

    Full Text Available Relaxin-3 is a highly conserved neuropeptide in vertebrate species and binds to the Class A G protein-coupled receptor RXFP3. Relaxin-3 is involved in a wide range of behaviours, including feeding, stress responses, arousal and cognitive processes and therefore targeting of RXFP3 may be relevant for a range of neurological diseases. Structural knowledge of RXFP3 and its interaction with relaxin-3 would both increase our understanding of ligand recognition in GPCRs that respond to protein ligands and enable acceleration of the design of drug leads. In this study we have used comparative sequence analysis, molecular modelling and receptor mutagenesis to investigate the binding site of the native ligand human relaxin-3 (H3 relaxin on the human RXFP3 receptor. Previous structure function studies have demonstrated that arginine residues in the H3 relaxin B-chain are critical for binding interactions with the receptor extracellular loops and/or N-terminal domain. Hence we have concentrated on determining the ligand interacting sites in these domains and have focussed on glutamic (E and aspartic acid (D residues in these regions that may form electrostatic interactions with these critical arginine residues. Conserved D/E residues identified from vertebrate species multiple sequence alignments were mutated to Ala in human RXFP3 to test the effect of loss of amino acid side chain on receptor binding using both Eu-labelled relaxin-3 agonist. Finally data from mutagenesis experiments have been used in ligand docking simulations to a homology model of human RXFP3 based on the peptide-bound CXCR4 structure. These studies have resulted in a model of the relaxin-3 interaction with RXFP3 which will inform further interrogation of the agonist binding site.

  6. Monopoles, vortices, domain walls and D-branes: The rules of interaction

    International Nuclear Information System (INIS)

    Sakai, Norisuke; Tong, David

    2005-01-01

    Non-abelian gauge theories in the Higgs phase admit a startling variety of BPS solitons. These include domain walls, vortex strings, confined monopoles threaded on vortex strings, vortex strings ending on domain walls, monopoles threaded on strings ending on domain walls, and more. After presenting a self-contained review of these objects, including several new results on the dynamics of domain walls, we go on to examine the possible interactions of solitons of various types. We point out the existence of a classical binding energy when the string ends on the domain wall which can be thought of as a BPS boojum with negative mass. We present an index theorem for domain walls in non-abelian gauge theories. We also answer questions such as: Which strings can end on which walls? What happens when monopoles pass through domain walls? What happens when domain walls pass through each other? (author)

  7. All-Solid-State Lithium-Sulfur Battery based on a nanoconfined LiBH 4 Electrolyte

    NARCIS (Netherlands)

    Das, Supti; Ngene, Peter; Norby, Poul; Vegge, Tejs; de Jongh, P.E.; Blanchard, Didier

    2016-01-01

    In this work we characterize all-solid-state lithium-sulfur batteries based on nano-confined LiBH4in mesoporous silica as solid electrolytes. The nano-confined LiBH4has fast ionic lithium conductivity at room temperature, 0.1 mScm-1, negligible electronic conductivity and its cationic transport

  8. Disruption of Fyn SH3 domain interaction with a proline-rich motif in liver kinase B1 results in activation of AMP-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Eijiro Yamada

    Full Text Available Fyn-deficient mice display increased AMP-activated Protein Kinase (AMPK activity as a result of Fyn-dependent regulation of Liver Kinase B1 (LKB1 in skeletal muscle. Mutation of Fyn-specific tyrosine sites in LKB1 results in LKB1 export into the cytoplasm and increased AMPK activation site phosphorylation. This study characterizes the structural elements responsible for the physical interaction between Fyn and LKB1. Effects of point mutations in the Fyn SH2/SH3 domains and in the LKB1 proline-rich motif on 1 Fyn and LKB1 binding, 2 LKB1 subcellular localization and 3 AMPK phosphorylation were investigated in C2C12 muscle cells. Additionally, novel LKB1 proline-rich motif mimicking cell permeable peptides were generated to disrupt Fyn/LKB1 binding and investigate the consequences on AMPK activity in both C2C12 cells and mouse skeletal muscle. Mutation of either Fyn SH3 domain or the proline-rich motif of LKB1 resulted in the disruption of Fyn/LKB1 binding, re-localization of 70% of LKB1 signal in the cytoplasm and a 2-fold increase in AMPK phosphorylation. In vivo disruption of the Fyn/LKB1 interaction using LKB1 proline-rich motif mimicking cell permeable peptides recapitulated Fyn pharmacological inhibition. We have pinpointed the structural elements within Fyn and LKB1 that are responsible for their binding, demonstrating the functionality of this interaction in regulating AMPK activity.

  9. Scandium and vanadium borohydride ammoniates: Enhanced dehydrogenation behavior upon coordinative expansion and establishment of Hδ+⋯−δH interactions

    International Nuclear Information System (INIS)

    Tang, Ziwei; Yuan, Feng; Gu, Qinfen; Tan, Yingbin; Chen, Xiaowei; Jensen, Craig M.; Yu, Xuebin

    2013-01-01

    Graphical abstract: Two novel metal borohydride ammoniates—ScLi(BH 4 ) 4 ·4NH 3 and V(BH 4 ) 3 ·3NH 3 are shown to exhibit superior dehydrogenation performances established upon intensive interactions and balanced stoichiometry of dihydrogen. -- Abstract: LiSc(BH 4 ) 4 ·4NH 3 and V(BH 4 ) 3 ·3NH 3 , two novel metal borohydride ammoniates (MBAs), have been successfully synthesized via ball-milling the mixtures of MCl 3 ·xNH 3 (M = Sc, V and x = 3, 4) with LiBH 4 . Structure analysis reveals that LiSc(BH 4 ) 4 ·4NH 3 crystallizes in an orthorhombic structure with lattice parameters of a = 7.4376(3) Å, b = 11.1538(5) Å and c = 14.5132(7) Å and space group of Pc2 1 n, in which the base octahedral units are composed of central metal and an equivalent number of BH 4 and NH 3 units, distinct from other reported MBAs. Base units with the above constitution are also observed in the crystal structure of V(BH 4 ) 3 ·3NH 3 , which is identified as a cubic structure with lattice parameters of a = 10.78060(25) Å and space group of F23. These two compounds exhibit a favorable dehydrogenation capability, releasing 15.1 and 14.3 wt.% high-purity hydrogen, respectively, below 300 °C. Isothermal measurements reveal that, at a constant temperature of 110 °C, which meets the operation requirement of fuel cells, >8 and >10 wt.% pure hydrogen is released from the two compounds with favorable kinetics, respectively. Moreover, by reacting with N 2 H 4 in liquid ammonia, the decomposed LiSc(BH 4 ) 4 ·4NH 3 can be partly hydrogenated and can possibly establish a system that will undergo reversible dehydrogenation. These favorable properties point to potential on-board application. The dehydrogenation capacity, purity and temperature of the two systems can be adjusted, by tuning the ratios of the starting reagents LiBH 4 and MCl 3 ·xNH 3 , to achieve expected stoichiometric proportions of BH 4 and NH 3 units, which provides a facile and viable strategy for the synthesis of

  10. Amelioration of behavioral abnormalities in BH(4-deficient mice by dietary supplementation of tyrosine.

    Directory of Open Access Journals (Sweden)

    Sang Su Kwak

    Full Text Available This study reports an amelioration of abnormal motor behaviors in tetrahydrobiopterin (BH4-deficient Spr (-/- mice by the dietary supplementation of tyrosine. Since BH4 is an essential cofactor for the conversion of phenylalanine into tyrosine as well as the synthesis of dopamine neurotransmitter within the central nervous system, the levels of tyrosine and dopamine were severely reduced in brains of BH4-deficient Spr (-/- mice. We found that Spr (-/- mice display variable 'open-field' behaviors, impaired motor functions on the 'rotating rod', and dystonic 'hind-limb clasping'. In this study, we report that these aberrant motor deficits displayed by Spr (-/- mice were ameliorated by the therapeutic tyrosine diet for 10 days. This study also suggests that dopamine deficiency in brains of Spr (-/- mice may not be the biological feature of aberrant motor behaviors associated with BH4 deficiency. Brain levels of dopamine (DA and its metabolites in Spr (-/- mice were not substantially increased by the dietary tyrosine therapy. However, we found that mTORC1 activity severely suppressed in brains of Spr (-/- mice fed a normal diet was restored 10 days after feeding the mice the tyrosine diet. The present study proposes that brain mTORC1 signaling pathway is one of the potential targets in understanding abnormal motor behaviors associated with BH4-deficiency.

  11. Membrane association of the Arabidopsis ARF exchange factor GNOM involves interaction of conserved domains

    DEFF Research Database (Denmark)

    Anders, Nadine; Nielsen, Michael M.; Keicher, Jutta

    2008-01-01

    vesicle formation by activating ARF GTPases on specific membranes in animals, plants, and fungi. However, apart from the catalytic exchange activity of the SEC7 domain, the functional significance of other conserved domains is virtually unknown. Here, we show that a distinct N-terminal domain of GNOM......The GNOM protein plays a fundamental role in Arabidopsis thaliana development by regulating endosome-to-plasma membrane trafficking required for polar localization of the auxin efflux carrier PIN1. GNOM is a family member of large ARF guanine nucleotide exchange factors (ARF-GEFs), which regulate...... mediates dimerization and in addition interacts heterotypically with two other conserved domains in vivo. In contrast with N-terminal dimerization, the heterotypic interaction is essential for GNOM function, as mutations abolishing this interaction inactivate the GNOM protein and compromise its membrane...

  12. Computational Identification of Genomic Features That Influence 3D Chromatin Domain Formation.

    Science.gov (United States)

    Mourad, Raphaël; Cuvier, Olivier

    2016-05-01

    Recent advances in long-range Hi-C contact mapping have revealed the importance of the 3D structure of chromosomes in gene expression. A current challenge is to identify the key molecular drivers of this 3D structure. Several genomic features, such as architectural proteins and functional elements, were shown to be enriched at topological domain borders using classical enrichment tests. Here we propose multiple logistic regression to identify those genomic features that positively or negatively influence domain border establishment or maintenance. The model is flexible, and can account for statistical interactions among multiple genomic features. Using both simulated and real data, we show that our model outperforms enrichment test and non-parametric models, such as random forests, for the identification of genomic features that influence domain borders. Using Drosophila Hi-C data at a very high resolution of 1 kb, our model suggests that, among architectural proteins, BEAF-32 and CP190 are the main positive drivers of 3D domain borders. In humans, our model identifies well-known architectural proteins CTCF and cohesin, as well as ZNF143 and Polycomb group proteins as positive drivers of domain borders. The model also reveals the existence of several negative drivers that counteract the presence of domain borders including P300, RXRA, BCL11A and ELK1.

  13. Synthesis and characterizations of CoPt nanoparticles supported on poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) functionalized multi-walled carbon nanotubes with superior activity for NaBH{sub 4} hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao; Zhao, Yanchun, E-mail: yanchunzhao@aliyun.com; Peng, Xinglan; Wang, Jing; Jing, Chen; Tian, Jianniao, E-mail: birdtjn@sina.com

    2015-10-15

    Highlights: • Simple strategy for the synthesis of CoPt-PEDOT:PSS/MWCNTs. • PEDOT:PSS as a modifier of MWCNTs can improve the particles dispersion. • Superior catalytic activities for the NaBH{sub 4} hydrolysis reaction. - Abstract: We present here a facile strategy for synthesis of CoPt nanoparticles supported on poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) functionalized multi-walled carbon nanotubes (MWCNTs). The as-prepared CoPt-PEDOT:PSS/MWCNT catalyst was characterized with UV–vis spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron. The well-supported and low-Pt-content nanostructure catalyst exhibits superior catalytic activity for the NaBH{sub 4} hydrolysis reaction with a 47.3 kJ mol{sup −1} of activation energy. The maximum hydrogen generation rate is 6900 mL min{sup −1} g{sup −1} at 298 K.

  14. Role of mitochondria-associated hexokinase II in cancer cell death induced by 3-Bromopyruvate

    Science.gov (United States)

    Chen, Zhao; Zhang, Hui; Lu, Weiqin; Huang, Peng

    2009-01-01

    Summary It has long been observed that cancer cells rely more on glycolysis to generate ATP and actively use certain glycolytic metabolic intermediates for biosynthesis. Hexokinase II (HKII) is a key glycolytic enzyme that plays a role in the regulation of the mitochondria-initiated apoptotic cell death. As a potent inhibitor of hexokinase, 3-bromopyruvate (3-BrPA) is known to inhibit cancer cell energy metabolism and trigger cell death, supposedly through depletion of cellular ATP. The current study showed that 3-BrPA caused a covalent modification of HKII protein and directly triggered its dissociation from mitochondria, leading to a specific release of apoptosis-inducing factor (AIF) from the mitochondria to cytosol and eventual cell death. Co-immunoprecipitation revealed a physical interaction between HKII and AIF. Using a competitive peptide of HKII, we showed that the dissociation of hexokinase II from mitochondria alone could cause apoptotic cell death, especially in the mitochondria-deficient ρ0 cells that highly express HKII. Interestingly, the dissociation of HKII itself did no directly affect the mitochondrial membrane potential, ROS generation, and oxidative phosphorylation. Our study suggests that the physical association between HKII and AIF is important for the normal localization of AIF in the mitochondria, and disruption of this protein complex by 3-BrPA leads to their release from the mitochondria and eventual cell death. PMID:19285479

  15. Alkaline sodium borohydride gel as a hydrogen source for PEMFC or an energy carrier for NaBH 4-air battery

    Science.gov (United States)

    Liu, B. H.; Li, Z. P.; Chen, L. L.

    In this preliminary study, we tried to use sodium polyacrylate as the super absorbent polymer to form alkaline NaBH 4 gel and explored its possibilities for borohydride hydrolysis and borohydride electro-oxidation. It was found that the absorption capacity of sodium polyacrylate decreased with increasing NaBH 4 concentration. The formed gel was rather stable in the sealed vessel but tended to slowly decompose in open air. Hydrogen generation from the gel was carried out using CoCl 2 catalyst precursor solutions. Hydrogen generation rate from the alkaline NaBH 4 gel was found to be higher and impurities in hydrogen were less than that from the alkaline NaBH 4 solution. The NaBH 4 gel also successfully powered a NaBH 4-air battery.

  16. The combination of BH3-mimetic ABT-737 with the alkylating agent temozolomide induces strong synergistic killing of melanoma cells independent of p53.

    Directory of Open Access Journals (Sweden)

    Steven N Reuland

    Full Text Available Metastatic melanoma has poor prognosis and is refractory to most conventional chemotherapies. The alkylating agent temozolomide (TMZ is commonly used in treating melanoma but has a disappointing response rate. Agents that can act cooperatively with TMZ and improve its efficacy are thus highly sought after. The BH3 mimetic ABT-737, which can induce apoptosis by targeting pro-survival Bcl-2 family members, has been found to enhance the efficacy of many conventional chemotherapeutic agents in multiple cancers. We found that combining TMZ and ABT-737 induced strong synergistic apoptosis in multiple human melanoma cell lines. When the drugs were used in combination in a mouse xenograft model, they drastically reduced tumor growth at concentrations where each individual drug had no significant effect. We found that TMZ treatment elevated p53 levels, and that the pro-apoptotic protein Noxa was elevated in TMZ/ABT-737 treated cells. Experiments with shRNA demonstrated that the synergistic effect of TMZ and ABT-737 was largely dependent on Noxa. Experiments with nutlin-3, a p53 inducer, demonstrated that p53 induction was sufficient for synergistic cell death with ABT-737 in a Noxa-dependent fashion. However, p53 was not necessary for TMZ/ABT-737 synergy as demonstrated by a p53-null line, indicating that TMZ and ABT-737 together induce Noxa in a p53-independent fashion. These results demonstrate that targeting anti-apoptotic Bcl-2 members is a promising method for treating metastatic melanoma, and that clinical trials with TMZ and Bcl-2 inhibitors are warranted.

  17. Crystal structure of a PFU-PUL domain pair of Saccharomyces cerevisiae Doa1/Ufd3.

    Science.gov (United States)

    Nishimasu, Rieko; Komori, Hirofumi; Higuchi, Yoshiki; Nishimasu, Hiroshi; Hiroaki, Hidekazu

    2010-10-21

    Doa1/Ufd3 is involved in ubiquitin (Ub)-dependent cellular processes in Saccharomyces cerevisiae, and consists of WD40, PFU, and PUL domains. Previous studies showed that the PFU and PUL domains interact with Ub and Hse1, and Cdc48, respectively. However, their detailed functional interactions with Doa1 remained elusive. We report the crystal structure of the PFU-PUL domain pair of yeast Doa1 at 1.9 Å resolution. The conserved surface of the PFU domain may be involved in binding to Ub and Hse1. Unexpectedly, the PUL domain consists of an Armadillo (ARM)-like repeat structure. The positively charged concave surface of the PUL domain may bind to the negatively charged C-terminal region of Cdc48. A structural comparison of Doa1 with Ufd2 revealed that they share a similar ARM-like repeat, supporting a model in which Doa1 and Ufd2 compete for Cdc48 binding and may dictate the fate of ubiquitinated proteins in the proteasome pathway.

  18. Dehydriding Process and Hydrogen–Deuterium Exchange of LiBH4–Mg2FeD6 Composites

    Directory of Open Access Journals (Sweden)

    Guanqiao Li

    2015-06-01

    Full Text Available The dehydriding process and hydrogen–deuterium exchange (H–D exchange of xLiBH4 + (1 − xMg2FeD6 (x = 0.25, 0.75 composites has been studied in detail. For the composition with x = 0.25, only one overlapping mass peak of all hydrogen and deuterium related species was observed in mass spectrometry. This implied the simultaneous dehydriding of LiBH4 and Mg2FeD6, despite an almost 190 °C difference in the dehydriding temperatures of the respective discrete complex hydrides. In situ infrared spectroscopy measurements indicated that H–D exchange between [BH4]− and [FeD6]4− had occurred during ball-milling and was promoted upon heating. The extent of H–D exchange was estimated from the areas of the relevant mass signals: immediately prior to the dehydriding, more than two H atoms in [BH4]− was replaced by D atoms. For x = 0.75, H–D exchange also occurred and about one to two H atoms in [BH4]− was replaced by D atoms immediately before the dehydriding. In contrast to the situation for x = 0.25, firstly LiBH4 and Mg2FeD6 dehydrided simultaneously with a special molar ratio = 1:1 at x = 0.75, and then the remaining LiBH4 reacted with the Mg and Fe derived from the dehydriding of Mg2FeD6.

  19. Comprehensive Binary Interaction Mapping of SH2 Domains via Fluorescence Polarization Reveals Novel Functional Diversification of ErbB Receptors

    Science.gov (United States)

    Ciaccio, Mark F.; Chuu, Chih-pin; Jones, Richard B.

    2012-01-01

    First-generation interaction maps of Src homology 2 (SH2) domains with receptor tyrosine kinase (RTK) phosphosites have previously been generated using protein microarray (PM) technologies. Here, we developed a large-scale fluorescence polarization (FP) methodology that was able to characterize interactions between SH2 domains and ErbB receptor phosphosites with higher fidelity and sensitivity than was previously achieved with PMs. We used the FP assay to query the interaction of synthetic phosphopeptides corresponding to 89 ErbB receptor intracellular tyrosine sites against 93 human SH2 domains and 2 phosphotyrosine binding (PTB) domains. From 358,944 polarization measurements, the affinities for 1,405 unique biological interactions were determined, 83% of which are novel. In contrast to data from previous reports, our analyses suggested that ErbB2 was not more promiscuous than the other ErbB receptors. Our results showed that each receptor displays unique preferences in the affinity and location of recruited SH2 domains that may contribute to differences in downstream signaling potential. ErbB1 was enriched versus the other receptors for recruitment of domains from RAS GEFs whereas ErbB2 was enriched for recruitment of domains from tyrosine and phosphatidyl inositol phosphatases. ErbB3, the kinase inactive ErbB receptor family member, was predictably enriched for recruitment of domains from phosphatidyl inositol kinases and surprisingly, was enriched for recruitment of domains from tyrosine kinases, cytoskeletal regulatory proteins, and RHO GEFs but depleted for recruitment of domains from phosphatidyl inositol phosphatases. Many novel interactions were also observed with phosphopeptides corresponding to ErbB receptor tyrosines not previously reported to be phosphorylated by mass spectrometry, suggesting the existence of many biologically relevant RTK sites that may be phosphorylated but below the detection threshold of standard mass spectrometry procedures. This

  20. Comprehensive binary interaction mapping of SH2 domains via fluorescence polarization reveals novel functional diversification of ErbB receptors.

    Directory of Open Access Journals (Sweden)

    Ronald J Hause

    Full Text Available First-generation interaction maps of Src homology 2 (SH2 domains with receptor tyrosine kinase (RTK phosphosites have previously been generated using protein microarray (PM technologies. Here, we developed a large-scale fluorescence polarization (FP methodology that was able to characterize interactions between SH2 domains and ErbB receptor phosphosites with higher fidelity and sensitivity than was previously achieved with PMs. We used the FP assay to query the interaction of synthetic phosphopeptides corresponding to 89 ErbB receptor intracellular tyrosine sites against 93 human SH2 domains and 2 phosphotyrosine binding (PTB domains. From 358,944 polarization measurements, the affinities for 1,405 unique biological interactions were determined, 83% of which are novel. In contrast to data from previous reports, our analyses suggested that ErbB2 was not more promiscuous than the other ErbB receptors. Our results showed that each receptor displays unique preferences in the affinity and location of recruited SH2 domains that may contribute to differences in downstream signaling potential. ErbB1 was enriched versus the other receptors for recruitment of domains from RAS GEFs whereas ErbB2 was enriched for recruitment of domains from tyrosine and phosphatidyl inositol phosphatases. ErbB3, the kinase inactive ErbB receptor family member, was predictably enriched for recruitment of domains from phosphatidyl inositol kinases and surprisingly, was enriched for recruitment of domains from tyrosine kinases, cytoskeletal regulatory proteins, and RHO GEFs but depleted for recruitment of domains from phosphatidyl inositol phosphatases. Many novel interactions were also observed with phosphopeptides corresponding to ErbB receptor tyrosines not previously reported to be phosphorylated by mass spectrometry, suggesting the existence of many biologically relevant RTK sites that may be phosphorylated but below the detection threshold of standard mass spectrometry

  1. New CCD photometric investigation of the early-type overcontact binary BH Cen in the young star-forming Galactic cluster IC 2944

    Science.gov (United States)

    Zhao, Er-Gang; Qian, Sheng-Bang; Zejda, Miloslav; Zhang, Bin; Zhang, Jia

    2018-05-01

    BH Cen is a short-period early-type binary with a period of 0.792d in the extremely young star-forming cluster IC 2944. New multi-color CCD photometric light curves in U, B, V, R and I bands are presented and are analyzed by using the Wilson-Devinney code. It is detected that BH Cen is a high-mass-ratio overcontact binary with a fill-out factor of 46.4% and a mass ratio of 0.89. The derived orbital inclination i is 88.9 degrees, indicating that it is a totally eclipsing binary and the photometric parameters can be determined reliably. By adding new eclipse times, the orbital period changes in the binary are analyzed. It is confirmed that the period of BH Cen shows a long-term increase while it undergoes a cyclic oscillation with an amplitude of A 3 = 0.024 d and a period of P 3 = 50.3 yr. The high mass ratio, overcontact configuration and long-term continuous increase in the orbital period all suggest that BH Cen is in the evolutionary state after the shortest-period stage of Case A mass transfer. The continuous increase in period can be explained by mass transfer from the secondary component to the primary one at a rate of Ṁ 2 = 2.8 × 10‑6 M ⊙ per year. The cyclic change can be plausibly explained by the presence of a third body because both components in the BH Cen system are early-type stars. Its mass is determined to be no less than 2.2 M ⊙ at an orbital separation of about 32.5 AU. Since no third light was found during the photometric solution, it is possible that the third body may be a candidate for a compact object.

  2. Formation of CaB6 in the thermal decomposition of the hydrogen storage material Ca(BH4)2.

    Science.gov (United States)

    Sahle, Christoph J; Sternemann, Christian; Giacobbe, Carlotta; Yan, Yigang; Weis, Christopher; Harder, Manuel; Forov, Yury; Spiekermann, Georg; Tolan, Metin; Krisch, Michael; Remhof, Arndt

    2016-07-20

    Using a combination of high resolution X-ray powder diffraction and X-ray Raman scattering spectroscopy at the B K- and Ca L2,3-edges, we analyzed the reaction products of Ca(BH4)2 after annealing at 350 °C and 400 °C under vacuum conditions. We observed the formation of nanocrystalline/amorphous CaB6 mainly and found only small contributions from amorphous B for annealing times larger than 2 h. For short annealing times of 0.5 h at 400 °C we observed neither CaB12H12 nor CaB6. The results indicate a reaction pathway in which Ca(BH4)2 decomposes to B and CaH2 and finally reacts to form CaB6. These findings confirm the potential of using Ca(BH4)2 as a hydrogen storage medium and imply the desired cycling capabilities for achieving high-density hydrogen storage materials.

  3. Solution structure of tensin2 SH2 domain and its phosphotyrosine-independent interaction with DLC-1.

    Directory of Open Access Journals (Sweden)

    Kun Dai

    Full Text Available Src homology 2 (SH2 domain is a conserved module involved in various biological processes. Tensin family member was reported to be involved in tumor suppression by interacting with DLC-1 (deleted-in-liver-cancer-1 via its SH2 domain. We explore here the important questions that what the structure of tensin2 SH2 domain is, and how it binds to DLC-1, which might reveal a novel binding mode.Tensin2 SH2 domain adopts a conserved SH2 fold that mainly consists of five β-strands flanked by two α-helices. Most SH2 domains recognize phosphorylated ligands specifically. However, tensin2 SH2 domain was identified to interact with nonphosphorylated ligand (DLC-1 as well as phosphorylated ligand.We determined the solution structure of tensin2 SH2 domain using NMR spectroscopy, and revealed the interactions between tensin2 SH2 domain and its ligands in a phosphotyrosine-independent manner.

  4. Identification of human and mouse CatSper3 and CatSper4 genes: Characterisation of a common interaction domain and evidence for expression in testis

    Directory of Open Access Journals (Sweden)

    Reynolds Lindsey

    2003-08-01

    Full Text Available Abstract Background CatSper1 and CatSper2 are two recently identified channel-like proteins, which show sperm specific expression patterns. Through targeted mutagenesis in the mouse, CatSper1 has been shown to be required for fertility, sperm motility and for cAMP induced Ca2+ current in sperm. Both channels resemble a single pore forming repeat from a four repeat voltage dependent Ca2+ /Na+ channel. However, neither CatSper1 or CatSper2 have been shown to function as cation channels when transfected into cells, singly or in conjunction. As the pore forming units of voltage gated cation channels form a tetramer it has been suggested that the known CatSper proteins require additional subunits and/or interaction partners to function. Results Using in silico gene identification and prediction techniques, we have identified two further members of the CatSper family, CatSper3 and Catsper4. Each carries a single channel-forming domain with the predicted pore-loop containing the consensus sequence T×D×W. Each of the new CatSper genes has evidence for expression in the testis. Furthermore we identified coiled-coil protein-protein interaction domains in the C-terminal tails of each of the CatSper channels, implying that CatSper channels 1,2,3 and 4 may interact directly or indirectly to form a functional tetramer. Conclusions The topological and sequence relationship of CatSper1 and CatSper2 to the four repeat Ca2+ /Na+ channels suggested other members of this family may exist. We have identified a further two novel CatSper genes, conserved in both the human and mouse genomes. Furthermore, all four of the CatSper proteins are predicted to contain a common coiled-coil protein-protein interaction domain in their C-terminal tail. Coupled with expression data this leads to the hypothesis that the CatSper proteins form a functional hetero-tetrameric channel in sperm.

  5. Theoretical Insights Reveal Novel Motions in Csk's SH3 Domain That Control Kinase Activation.

    Directory of Open Access Journals (Sweden)

    Sulyman Barkho

    Full Text Available The Src family of tyrosine kinases (SFKs regulate numerous aspects of cell growth and differentiation and are under the principal control of the C-terminal Src Kinase (Csk. Although Csk and SFKs share conserved kinase, SH2 and SH3 domains, they differ considerably in three-dimensional structure, regulatory mechanism, and the intrinsic kinase activities. Although the SH2 and SH3 domains are known to up- or down-regulate tyrosine kinase function, little is known about the global motions in the full-length kinase that govern these catalytic variations. We use a combination of accelerated Molecular Dynamics (aMD simulations and experimental methods to provide a new view of functional motions in the Csk scaffold. These computational studies suggest that high frequency vibrations in the SH2 domain are coupled through the N-terminal lobe of the kinase domain to motions in the SH3 domain. The effects of these reflexive movements on the kinase domain can be viewed using both Deuterium Exchange Mass Spectrometry (DXMS and steady-state kinetic methods. Removal of several contacts, including a crystallographically unobserved N-terminal segment, between the SH3 and kinase domains short-circuit these coupled motions leading to reduced catalytic efficiency and stability of N-lobe motifs within the kinase domain. The data expands the model of Csk's activation whereby separate domains productively interact with two diametrically opposed surfaces of the kinase domain. Such reversible transitions may organize the active structure of the tyrosine kinase domain of Csk.

  6. XRF 100316D/SN 2010bh and the nature of gamma-ray burst supernovae

    NARCIS (Netherlands)

    Cano, Z.; Bersier, D.; Guidorzi, C.; Kobayashi, S.; Levan, A.J.; Tanvir, N.R.; Wiersema, K.; D'Avanzo, P.; Fruchter, A.S.; Garnavich, P.; Gomboc, A.; Gorosabel, J.; Kasen, D.; Kopač, D.; Margutti, R.; Mazzali, P.A.; Melandri, A.; Mundell, C.G.; Nugent, P.E.; Pian, E.; Smith, R.J.; Steele, I.; Wijers, R.A.M.J.; Woosley, S.E.

    2011-01-01

    We present ground-based and Hubble Space Telescope optical and infrared observations of Swift XRF 100316D/SN 2010bh. It is seen that the optical light curves of SN 2010bh evolve at a faster rate than the archetype gamma-ray burst supernova (GRB-SN) 1998bw, but at a similar rate to SN 2006aj, an SN

  7. Comparing domain interactions within antibody Fabs with kappa and lambda light chains.

    Science.gov (United States)

    Toughiri, Raheleh; Wu, Xiufeng; Ruiz, Diana; Huang, Flora; Crissman, John W; Dickey, Mark; Froning, Karen; Conner, Elaine M; Cujec, Thomas P; Demarest, Stephen J

    2016-10-01

    IgG antibodies are multi-domain proteins with complex inter-domain interactions. Human IgG heavy chains (HCs) associate with light chains (LCs) of the κ or λ isotype to form mature antibodies capable of binding antigen. The HC/LC interaction involves 4 domains: VH and CH1 from the HC and VL and CL from the LC. Human Fabs with κ LCs have been well characterized for their unfolding behaviors and demonstrate a significant level of cooperativity and stabilization when all 4 domains are intact. Very little is known regarding the thermodynamic properties of human Fabs with λ LCs. Here, we dissect the domain contributions to Fab stability for both κ and λ LC-containing Fabs. We find the cooperativity of unfolding between the constant domains, CH1/Cλ, and variable domains, VH/Vλ, within λ LC-containing Fabs is significantly weaker than that of κ LC-containing Fabs. The data suggests there may not be an evolutionary necessity for strong variable/constant domain cooperativity within λ LC-containing Fabs. After investigating the biophysical properties of Fabs with mismatched variable and constant domain subunits (e.g., VH/Vκ paired with CH1/Cλ or T cell receptor Cα/Cβ), the major role of the constant domains for both κ- and λ-containing Fabs may be to reduce the hydrophobic exposure at the VH/VL interface. Even though Fabs with these non-native pairings were thermodynamically less stable, they secreted well from mammalian cells as well behaved monodisperse proteins, which was in contrast to what was observed with the VH/Vκ and VH/Vλ scFvs that secreted as a mixture of monomer and aggregates.

  8. Mutations in the DNA-binding domain of NR2E3 affect in vivo dimerization and interaction with CRX.

    Directory of Open Access Journals (Sweden)

    Raphael Roduit

    Full Text Available BACKGROUND: NR2E3 (PNR is an orphan nuclear receptor essential for proper photoreceptor determination and differentiation. In humans, mutations in NR2E3 have been associated with the recessively inherited enhanced short wavelength sensitive (S- cone syndrome (ESCS and, more recently, with autosomal dominant retinitis pigmentosa (adRP. NR2E3 acts as a suppressor of the cone generation program in late mitotic retinal progenitor cells. In adult rod photoreceptors, NR2E3 represses cone-specific gene expression and acts in concert with the transcription factors CRX and NRL to activate rod-specific genes. NR2E3 and CRX have been shown to physically interact in vitro through their respective DNA-binding domains (DBD. The DBD also contributes to homo- and heterodimerization of nuclear receptors. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed NR2E3 homodimerization and NR2E3/CRX complex formation in an in vivo situation by Bioluminescence Resonance Energy Transfer (BRET(2. NR2E3 wild-type protein formed homodimers in transiently transfected HEK293T cells. NR2E3 homodimerization was impaired in presence of disease-causing mutations in the DBD, except for the p.R76Q and p.R104W mutant proteins. Strikingly, the adRP-linked p.G56R mutant protein interacted with CRX with a similar efficiency to that of NR2E3 wild-type and p.R311Q proteins. In contrast, all other NR2E3 DBD-mutant proteins did not interact with CRX. The p.G56R mutant protein was also more effective in abolishing the potentiation of rhodospin gene transactivation by the NR2E3 wild-type protein. In addition, the p.G56R mutant enhanced the transrepression of the M- and S-opsin promoter, while all other NR2E3 DBD-mutants did not. CONCLUSIONS/SIGNIFICANCE: These results suggest different disease mechanisms in adRP- and ESCS-patients carrying NR2E3 mutations. Titration of CRX by the p.G56R mutant protein acting as a repressor in trans may account for the severe clinical phenotype in adRP patients.

  9. Electrostatic effects in the folding of the SH3 domain of the c-Src tyrosine kinase: pH-dependence in 3D-domain swapping and amyloid formation.

    Directory of Open Access Journals (Sweden)

    Julio Bacarizo

    Full Text Available The SH3 domain of the c-Src tyrosine kinase (c-Src-SH3 aggregates to form intertwined dimers and amyloid fibrils at mild acid pHs. In this work, we show that a single mutation of residue Gln128 of this SH3 domain has a significant effect on: (i its thermal stability; and (ii its propensity to form amyloid fibrils. The Gln128Glu mutant forms amyloid fibrils at neutral pH but not at mild acid pH, while Gln128Lys and Gln128Arg mutants do not form these aggregates under any of the conditions assayed. We have also solved the crystallographic structures of the wild-type (WT and Gln128Glu, Gln128Lys and Gln128Arg mutants from crystals obtained at different pHs. At pH 5.0, crystals belong to the hexagonal space group P6₅22 and the asymmetric unit is formed by one chain of the protomer of the c-Src-SH3 domain in an open conformation. At pH 7.0, crystals belong to the orthorhombic space group P2₁2₁2₁, with two molecules at the asymmetric unit showing the characteristic fold of the SH3 domain. Analysis of these crystallographic structures shows that the residue at position 128 is connected to Glu106 at the diverging β-turn through a cluster of water molecules. Changes in this hydrogen-bond network lead to the displacement of the c-Src-SH3 distal loop, resulting also in conformational changes of Leu100 that might be related to the binding of proline rich motifs. Our findings show that electrostatic interactions and solvation of residues close to the folding nucleation site of the c-Src-SH3 domain might play an important role during the folding reaction and the amyloid fibril formation.

  10. Crystallization and preliminary X-ray diffraction analysis of the MIF4G domain of DAP5

    International Nuclear Information System (INIS)

    Frank, Filipp; Virgili, Geneviève; Sonenberg, Nahum; Nagar, Bhushan

    2009-01-01

    The MIF4G domain of DAP5 was crystallized in two distinct crystal forms. Diffraction patterns have been analyzed and preliminary analysis, including molecular replacement, is presented here. Death-associated protein 5 (DAP5) is a member of the eIF4G family of scaffolding proteins that mediate cap-independent translation initiation by recruiting the translational machinery to internal ribosomal entry sites (IRESs) on mRNA. The MIF4G domain of DAP5 directly interacts with the eukaryotic initiation factors eIF4A and eIF3 and enhances the translation of several viral and cellular IRESs. Here, the crystallization and preliminary X-ray diffraction analysis of the MIF4G domain of DAP5 is presented

  11. Engineering of kinase-based protein interacting devices: active expression of tyrosine kinase domains

    KAUST Repository

    Diaz Galicia, Miriam Escarlet

    2018-01-01

    is then translated into a FRET (Fluorescence Resonance Energy Transfer) signal is here proposed. To this end, DNA constructs for interaction amplification (split kinases), positive controls (intact kinase domains), scaffolding proteins and phosphopeptide - SH2-domain

  12. Changes in signal transducer and activator of transcription 3 (STAT3) dynamics induced by complexation with pharmacological inhibitors of Src homology 2 (SH2) domain dimerization.

    Science.gov (United States)

    Resetca, Diana; Haftchenary, Sina; Gunning, Patrick T; Wilson, Derek J

    2014-11-21

    The activity of the transcription factor signal transducer and activator of transcription 3 (STAT3) is dysregulated in a number of hematological and solid malignancies. Development of pharmacological STAT3 Src homology 2 (SH2) domain interaction inhibitors holds great promise for cancer therapy, and a novel class of salicylic acid-based STAT3 dimerization inhibitors that includes orally bioavailable drug candidates has been recently developed. The compounds SF-1-066 and BP-1-102 are predicted to bind to the STAT3 SH2 domain. However, given the highly unstructured and dynamic nature of the SH2 domain, experimental confirmation of this prediction was elusive. We have interrogated the protein-ligand interaction of STAT3 with these small molecule inhibitors by means of time-resolved electrospray ionization hydrogen-deuterium exchange mass spectrometry. Analysis of site-specific evolution of deuterium uptake induced by the complexation of STAT3 with SF-1-066 or BP-1-102 under physiological conditions enabled the mapping of the in silico predicted inhibitor binding site to the STAT3 SH2 domain. The binding of both inhibitors to the SH2 domain resulted in significant local decreases in dynamics, consistent with solvent exclusion at the inhibitor binding site and increased rigidity of the inhibitor-complexed SH2 domain. Interestingly, inhibitor binding induced hot spots of allosteric perturbations outside of the SH2 domain, manifesting mainly as increased deuterium uptake, in regions of STAT3 important for DNA binding and nuclear localization. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Lipid raft involvement in yeast cell growth and death

    Energy Technology Data Exchange (ETDEWEB)

    Mollinedo, Faustino, E-mail: fmollin@usal.es [Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas - Universidad de Salamanca, Salamanca (Spain)

    2012-10-10

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na{sup +}, K{sup +}, and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  14. Lipid raft involvement in yeast cell growth and death

    International Nuclear Information System (INIS)

    Mollinedo, Faustino

    2012-01-01

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na + , K + , and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  15. Discovery and molecular characterization of a Bcl-2-regulated cell death pathway in schistosomes.

    Science.gov (United States)

    Lee, Erinna F; Clarke, Oliver B; Evangelista, Marco; Feng, Zhiping; Speed, Terence P; Tchoubrieva, Elissaveta B; Strasser, Andreas; Kalinna, Bernd H; Colman, Peter M; Fairlie, W Douglas

    2011-04-26

    Schistosomiasis is an infectious disease caused by parasites of the phylum platyhelminthe. Here, we describe the identification and characterization of a Bcl-2-regulated apoptosis pathway in Schistosoma japonicum and S. mansoni. Genomic, biochemical, and cell-based mechanistic studies provide evidence for a tripartite pathway, similar to that in humans including BH3-only proteins that are inhibited by prosurvival Bcl-2-like molecules, and Bax/Bak-like proteins that facilitate mitochondrial outer-membrane permeabilization. Because Bcl-2 proteins have been successfully targeted with "BH3 mimetic" drugs, particularly in the treatment of cancer, we investigated whether schistosome apoptosis pathways could provide targets for future antischistosomal drug discovery efforts. Accordingly, we showed that a schistosome prosurvival protein, sjA, binds ABT-737, a well-characterized BH3 mimetic. A crystal structure of sjA bound to a BH3 peptide provides direct evidence for the feasibility of developing BH3 mimetics to target Bcl-2 prosurvival proteins in schistosomes, suggesting an alternative application for this class of drugs beyond cancer treatment.

  16. Characterization and modeling of magnetic domain wall dynamics using reconstituted hysteresis loops from Barkhausen noise

    Energy Technology Data Exchange (ETDEWEB)

    Ducharne, B., E-mail: Benjamin.ducharne@insa-lyon.fr; Le, M.Q.; Sebald, G.; Cottinet, P.J.; Guyomar, D.; Hebrard, Y.

    2017-06-15

    Highlights: • Barkhausen noise energy versus excitation field hysteresis cycles MBN{sub energy}(H). • Difference in the dynamics of the induction field B and of the MBN{sub energy}. • Dynamic behavior of MBN{sub energy}(H) cycles is first-order. • Dynamic behavior of B(H) cycles is non-entire order. - Abstract: By means of a post-processing technique, we succeeded in plotting magnetic Barkhausen noise energy hysteresis cycles MBN{sub energy}(H). These cycles were compared to the usual hysteresis cycles, displaying the evolution of the magnetic induction field B versus the magnetic excitation H. The divergence between these comparisons as the excitation frequency was increased gave rise to the conclusion that there was a difference in the dynamics of the induction field and of the MBN{sub energy} related to the domain wall movements. Indeed, for the MBN{sub energy} hysteresis cycle, merely the domain wall movements were involved. On the other hand, for the usual B(H) cycle, two dynamic contributions were observed: domain wall movements and diffusion of the magnetic field excitation. From a simulation point of view, it was demonstrated that over a large frequency bandwidth a correct dynamic behavior of the domain wall movement MBN{sub energy}(H) cycle could be taken into account using first-order derivation whereas fractional orders were required for the B(H) cycles. The present article also gives a detailed description of how to use the developed process to obtain the MBN{sub energy}(H) hysteresis cycle as well as its evolution as the frequency increases. Moreover, this article provides an interesting explanation of the separation of magnetic loss contributions through a magnetic sample: a wall movement contribution varying according to first-order dynamics and a diffusion contribution which in a lump model can be taken into account using fractional order dynamics.

  17. Carbon-13 NMR study of switch variant anti-dansyl antibodies: Antigen binding and domain-domain interactions

    International Nuclear Information System (INIS)

    Kato, Koichi; Matsunaga, Chigusa; Odaka, Asano; Yamato, Sumie; Takaha, Wakana; Shimada, Ichio; Arata, Yoji

    1991-01-01

    A 13 C NMR study is reported of switch variant anti-dansyl antibodies, which possess the identical V H , V L , and C L domains in conjunction with highly homologous but not identical heavy-chain constant regions. Each of the antibodies has been selectively labeled with 13 C at the carbonyl carbon of Trp, Tyr, His, or Cys residue by growing hybridoma cells in serum-free medium. Spectral assignments have been made by folowing the procedure described previously for the switch variant antibodies labeled with [1- 13 C]Met. On the basis of the spectral data collected for the antibodies and their proteolytic fragments, the authors discuss how 13 C NMR spectroscopy can be used for the structural analyses of antigen binding and also of domain-domain interactions in the antibody molecule

  18. C2 Domains as Protein-Protein Interaction Modules in the Ciliary Transition Zone

    Directory of Open Access Journals (Sweden)

    Kim Remans

    2014-07-01

    Full Text Available RPGR-interacting protein 1 (RPGRIP1 is mutated in the eye disease Leber congenital amaurosis (LCA and its structural homolog, RPGRIP1-like (RPGRIP1L, is mutated in many different ciliopathies. Both are multidomain proteins that are predicted to interact with retinitis pigmentosa G-protein regulator (RPGR. RPGR is mutated in X-linked retinitis pigmentosa and is located in photoreceptors and primary cilia. We solved the crystal structure of the complex between the RPGR-interacting domain (RID of RPGRIP1 and RPGR and demonstrate that RPGRIP1L binds to RPGR similarly. RPGRIP1 binding to RPGR affects the interaction with PDEδ, the cargo shuttling factor for prenylated ciliary proteins. RPGRIP1-RID is a C2 domain with a canonical β sandwich structure that does not bind Ca2+ and/or phospholipids and thus constitutes a unique type of protein-protein interaction module. Judging from the large number of C2 domains in most of the ciliary transition zone proteins identified thus far, the structure presented here seems to constitute a cilia-specific module that is present in multiprotein transition zone complexes.

  19. Identification of five novel 14-3-3 isoforms interacting with the GPIb-IX complex in platelets.

    Science.gov (United States)

    Mangin, P H; Receveur, N; Wurtz, V; David, T; Gachet, C; Lanza, F

    2009-09-01

    Binding of von Willebrand factor to the platelet glycoprotein (GP)Ib-IX complex initiates a signaling cascade leading to integrin alpha(IIb)beta(3) activation, a key process in hemostasis and thrombosis. Interaction of 14-3-3zeta with the intracytoplasmic domain of GPIb appears to be a major effector of this activation pathway. The aim of our study was to determine whether other members of the 14-3-3 family bind to GPIb-IX. In this study, western blot analyses showed that platelets also contain the 14-3-3beta, 14-3-3gamma, 14-3-3epsilon, 14-3-3eta and 14-3-3theta isoforms, but lack 14-3-3sigma. Coimmunoprecipitation studies in platelets and CHO transfectants demonstrated that all six 14-3-3 isoforms expressed in platelets, including, as previously reported, 14-3-3zeta, bind to GPIb-IX. In addition, their interaction was found to critically require the same GPIbalpha domains (580-590 and 605-610) already identified as essential for 14-3-3zeta binding, in agreement with the conservation of the sequence of the I-helix among these different isoforms. Pull-down experiments indicated that all six 14-3-3 isoforms present in platelets bind to GPIbbeta. In contrast, deletion or mutation of the GPIbbeta intracytoplasmic tail did not affect the interaction of GPIb-IX with the 14-3-3 isoforms, questioning the importance of this domain. Our study suggests that, to inhibit GPIb-induced integrin alpha(IIb)beta(3) activation, a more appropriate strategy than inhibiting individual 14-3-3 isoforms would be to target the 14-3-3-binding motif on GPIb or, alternatively, the conserved 14-3-3 I-helix.

  20. Structure of metabotropic glutamate receptor C-terminal domains in contact with interacting proteins

    Directory of Open Access Journals (Sweden)

    Ralf eEnz

    2012-04-01

    Full Text Available Metabotropic glutamate receptors (mGluRs regulate intracellular signal pathways that control several physiological tasks, including neuronal excitability, learning and memory. This is achieved by the formation of synaptic signal complexes, in which mGluRs assemble with functionally related proteins such as enzymes, scaffolds and cytoskeletal anchor proteins. Thus, mGluR associated proteins actively participate in the regulation of glutamatergic neurotransmission. Importantly, dysfunction of mGluRs and interacting proteins may lead to impaired signal transduction and finally result in neurological disorders, e.g. night blindness, addiction, epilepsy, schizophrenia, autism spectrum disorders and Parkinson´s disease. In contrast to solved crystal structures of extracellular N-terminal domains of some mGluR types, only a few studies analyzed the conformation of intracellular receptor domains. Intracellular C-termini of most mGluR types are subject to alternative splicing and can be further modified by phosphorylation and SUMOylation. In this way, diverse interaction sites for intracellular proteins that bind to and regulate the glutamate receptors are generated. Indeed, most of the known mGluR binding partners interact with the receptors´ C-terminal domains. Within the last years, different laboratories analyzed the structure of these domains and described the geometry of the contact surface between mGluR C-termini and interacting proteins. Here, I will review recent progress in the structure characterization of mGluR C-termini and provide an up-to-date summary of the geometry of these domains in contact with binding partners.

  1. Dharmawangśa’s heritage On the appreciation of the Old Javanese Mahābhārata

    Directory of Open Access Journals (Sweden)

    Willem van der Molen

    2010-10-01

    Full Text Available As we all know, the Old Javanese Mahābhārata was not created from scratch by a Javanese author but was translated (in some sense from the Sanskrit. The story of Hiḍimbī reveals an interesting difference between the Old Javanese version and the Sanskrit version of the text. In the latter2 Hiḍimbī appeals to Kuntī, Bhīma’s mother, after Bhīma keeps rejecting her. However, it is not Kuntī who gives the answer but Yudhiṣṭhira, her son: he is the one who gives permission to Hiḍimbī to take Bhīma as her husband. We should remember that Kuntī at this point in the story is a widow; her husband died a long time ago. Yudhiṣṭhira is her eldest son. In the Old Javanese version it is Kuntī herself who answers Hiḍimbī.This difference between the Sanskrit Mahābhārata and the Old Javanese Mahābhārata is interesting, because it reflects a well-known difference between traditional Indian and Indonesian societies concerning the position of women. It is archetypical for the difference between the two versions of the text in general: the Old Javanese version follows the story faithfully but gives its own twist to it. This interpretation, I have to admit, is not generally accepted. The established scholarly opinion has it that the Old Javanese Mahābhārata is a shortened derivative, meaning that it copies or imitates the Sanskrit story, shortening it without adding anything new to the story.

  2. XRF 100316D/SN 2010bh AND THE NATURE OF GAMMA-RAY BURST SUPERNOVAE

    International Nuclear Information System (INIS)

    Cano, Z.; Bersier, D.; Guidorzi, C.; Kobayashi, S.; Melandri, A.; Mundell, C. G.; Levan, A. J.; Tanvir, N. R.; Wiersema, K.; D'Avanzo, P.; Margutti, R.; Fruchter, A. S.; Garnavich, P.; Gomboc, A.; Kopac, D.; Gorosabel, J.; Kasen, D.; Mazzali, P. A.; Nugent, P. E.; Pian, E.

    2011-01-01

    We present ground-based and Hubble Space Telescope optical and infrared observations of Swift XRF 100316D/SN 2010bh. It is seen that the optical light curves of SN 2010bh evolve at a faster rate than the archetype gamma-ray burst supernova (GRB-SN) 1998bw, but at a similar rate to SN 2006aj, an SN that was spectroscopically linked with XRF 060218, and at a similar rate to the non-GRB associated Type Ic SN 1994I. We estimate the rest-frame extinction of this event from our optical data to be E(B - V) = 0.18 ± 0.08 mag. We find the V-band absolute magnitude of SN 2010bh to be M V = -18.62 ± 0.08, which is the faintest peak V-band magnitude observed to date for spectroscopically confirmed GRB-SNe. When we investigate the origin of the flux at t - t 0 = 0.598 days, it is shown that the light is not synchrotron in origin, but is likely coming from the SN shock breakout. We then use our optical and infrared data to create a quasi-bolometric light curve of SN 2010bh, which we model with a simple analytical formula. The results of our modeling imply that SN 2010bh synthesized a nickel mass of M Ni ∼ 0.1 M sun , ejected M ej ∼ 2.2 M sun , and has an explosion energy of E k ∼ 1.4 x 10 52 erg. Thus, while SN 2010bh is an energetic explosion, the amount of nickel created during the explosion is much less than that of SN 1998bw and only marginally more than SN 1994I. Finally, for a sample of 22 GRB-SNe we check for a correlation between the stretch factors and luminosity factors in the R band and conclude that no statistically significant correlation exists.

  3. Positive Modulatory Interactions of NMDA Receptor GluN1/2B Ligand Binding Domains Attenuate Antagonists Activity

    Directory of Open Access Journals (Sweden)

    Douglas Bledsoe

    2017-05-01

    Full Text Available N-methyl D-aspartate receptors (NMDAR play crucial role in normal brain function and pathogenesis of neurodegenerative and psychiatric disorders. Functional tetra-heteromeric NMDAR contains two obligatory GluN1 subunits and two identical or different non-GluN1 subunits that include six different gene products; four GluN2 (A–D and two GluN3 (A–B subunits. The heterogeneity of subunit combination facilities the distinct function of NMDARs. All GluN subunits contain an extracellular N-terminal Domain (NTD and ligand binding domain (LBD, transmembrane domain (TMD and an intracellular C-terminal domain (CTD. Interaction between the GluN1 and co-assembling GluN2/3 subunits through the LBD has been proven crucial for defining receptor deactivation mechanisms that are unique for each combination of NMDAR. Modulating the LBD interactions has great therapeutic potential. In the present work, by amino acid point mutations and electrophysiology techniques, we have studied the role of LBD interactions in determining the effect of well-characterized pharmacological agents including agonists, competitive antagonists, and allosteric modulators. The results reveal that agonists (glycine and glutamate potency was altered based on mutant amino acid sidechain chemistry and/or mutation site. Most antagonists inhibited mutant receptors with higher potency; interestingly, clinically used NMDAR channel blocker memantine was about three-fold more potent on mutated receptors (N521A, N521D, and K531A than wild type receptors. These results provide novel insights on the clinical pharmacology of memantine, which is used for the treatment of mild to moderate Alzheimer's disease. In addition, these findings demonstrate the central role of LBD interactions that can be exploited to develop novel NMDAR based therapeutics.

  4. Data describing the solution structure of the WW3* domain from human Nedd4-1

    Directory of Open Access Journals (Sweden)

    Vineet Panwalkar

    2016-09-01

    Full Text Available The third WW domain (WW3* of human Nedd4-1 (Neuronal precursor cell expressed developmentally down-regulated gene 4-1 interacts with the poly-proline (PY motifs of the human epithelial Na+ channel (hENaC subunits at micromolar affinity. This data supplements the article (Panwalkar et al., 2015 [1]. We describe the NMR experiments used to solve the solution structure of the WW3* domain. We also present NOE network data for defining the rotameric state of side chains of peptide binding residues, and complement this data with χ1 dihedral angles derived from 3J couplings and molecular dynamics simulations data. Keywords: Chemical shift, Neuronal precursor cell expressed developmentally down-regulated gene 4-1, NMR, NOE distance restraints, WW domain

  5. Alkaline sodium borohydride gel as a hydrogen source for PEMFC or an energy carrier for NaBH{sub 4}-air battery

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B.H. [Department of Materials and Engineering, Zhejiang University (China); Li, Z.P.; Chen, L.L. [Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027 (China)

    2008-05-15

    In this preliminary study, we tried to use sodium polyacrylate as the super absorbent polymer to form alkaline NaBH{sub 4} gel and explored its possibilities for borohydride hydrolysis and borohydride electro-oxidation. It was found that the absorption capacity of sodium polyacrylate decreased with increasing NaBH{sub 4} concentration. The formed gel was rather stable in the sealed vessel but tended to slowly decompose in open air. Hydrogen generation from the gel was carried out using CoCl{sub 2} catalyst precursor solutions. Hydrogen generation rate from the alkaline NaBH{sub 4} gel was found to be higher and impurities in hydrogen were less than that from the alkaline NaBH{sub 4} solution. The NaBH{sub 4} gel also successfully powered a NaBH{sub 4}-air battery. (author)

  6. A Point Mutation in an F-Box Domain-Containing Protein Is Responsible for Brown Hull Phenotype in Rice

    Directory of Open Access Journals (Sweden)

    Xu Xia

    2016-01-01

    Full Text Available The accumulation of pigments affects the color of rice hulls while only limited information is known about its underlying mechanisms. In the present study, a rice brown hull 6 (bh6 mutant was isolated from an ethane methyl sulfonate (EMS-induced IR64 mutant bank. Brown pigments started to accumulate in bh6 rice hulls after heading and reached a higher level in mature seeds. Some major agronomic traits including panicle length and 1000-grain weight in bh6 were significantly lower than those in its corresponding wild type IR64, while other agronomic traits such as plant height, growth duration and seed-setting rate were largely similar between the two genotypes. The analysis of pigment content showed that the contents of total flavonoids and anthocyanin in bh6 hulls were significantly higher than those in IR64 hulls. Our results showed that the brown hull phenotype in bh6 was controlled by a single recessive gene which locates on the long arm of chromosome 9. Sequencing analysis detected a single base substitution (G/A at position 1013 of the candidate gene (LOC_Os09g12150 encoding an F-box domain-containing protein (FBX310. Functional complementation experiment using the wild type allele can rescue the phenotype in bh6. Thus, we named this mutated gene as OsFBX310bh6, an allele of OsFBX310 functioning as an inhibitor of brown hull. The isolation of OsFBX310bh6 and its wild type allele can provide useful experimental materials and will facilitate the studies on revealing the mechanisms of flavonoid metabolism in monocot plants.

  7. Molecular Logic of Neuronal Self-Recognition through Protocadherin Domain Interactions

    DEFF Research Database (Denmark)

    Rubinstein, Rotem; Thu, Chan Aye; Goodman, Kerry Marie

    2015-01-01

    Self-avoidance, a process preventing interactions of axons and dendrites from the same neuron during development, is mediated in vertebrates through the stochastic single-neuron expression of clustered protocadherin protein isoforms. Extracellular cadherin (EC) domains mediate isoform-specific ho...

  8. Requirement of Sequences outside the Conserved Kinase Domain of Fission Yeast Rad3p for Checkpoint Control

    Science.gov (United States)

    Chapman, Carolyn Riley; Evans, Sarah Tyler; Carr, Antony M.; Enoch, Tamar

    1999-01-01

    The fission yeast Rad3p checkpoint protein is a member of the phosphatidylinositol 3-kinase-related family of protein kinases, which includes human ATMp. Mutation of the ATM gene is responsible for the disease ataxia-telangiectasia. The kinase domain of Rad3p has previously been shown to be essential for function. Here, we show that although this domain is necessary, it is not sufficient, because the isolated kinase domain does not have kinase activity in vitro and cannot complement a rad3 deletion strain. Using dominant negative alleles of rad3, we have identified two sites N-terminal to the conserved kinase domain that are essential for Rad3p function. One of these sites is the putative leucine zipper, which is conserved in other phosphatidylinositol 3-kinase-related family members. The other is a novel motif, which may also mediate Rad3p protein–protein interactions. PMID:10512862

  9. Molecular basis for H3K36me3 recognition by the Tudor domain of PHF1

    Science.gov (United States)

    Musselman, Catherine A.; Avvakumov, Nikita; Watanabe, Reiko; Abraham, Christopher G.; Lalonde, Marie-Eve; Hong, Zehui; Allen, Christopher; Roy, Siddhartha; Nuñez, James K.; Nickoloff, Jac; Kulesza, Caroline A.; Yasui, Akira; Côté, Jacques; Kutateladze, Tatiana G.

    2013-01-01

    The PHD finger protein 1 (PHF1) is essential in epigenetic regulation and genome maintenance. Here, we demonstrate that the Tudor domain of human PHF1 binds to histone H3 trimethylated at Lys36 (H3K36me3). We report a 1.9 Å resolution crystal structure of the Tudor domain in complex with H3K36me3 and describe the molecular mechanism of H3K36me3 recognition using NMR analysis. Binding of PHF1 to H3K36me3 inhibits the ability of the Polycomb PRC2 complex to methylate H3K27 in vitro and in vivo. Laser micro-irradiation data reveal that PHF1 is transiently recruited to DNA double-strand breaks (DSBs), and PHF1 mutants impaired in the H3K36me3 interaction exhibit reduced retention at DSB sites. Together, our findings suggest that PHF1 can mediate deposition of the repressive H3K27me3 mark and acts as an early DNA damage response cofactor. PMID:23142980

  10. Carbon-13 NMR study of switch variant anti-dansyl antibodies: Antigen binding and domain-domain interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Koichi; Matsunaga, Chigusa; Odaka, Asano; Yamato, Sumie; Takaha, Wakana; Shimada, Ichio; Arata, Yoji (Univ. of Tokyo (Japan))

    1991-07-02

    A {sup 13}C NMR study is reported of switch variant anti-dansyl antibodies, which possess the identical V{sub H}, V{sub L}, and C{sub L} domains in conjunction with highly homologous but not identical heavy-chain constant regions. Each of the antibodies has been selectively labeled with {sup 13}C at the carbonyl carbon of Trp, Tyr, His, or Cys residue by growing hybridoma cells in serum-free medium. Spectral assignments have been made by folowing the procedure described previously for the switch variant antibodies labeled with (1-{sup 13}C)Met. On the basis of the spectral data collected for the antibodies and their proteolytic fragments, the authors discuss how {sup 13}C NMR spectroscopy can be used for the structural analyses of antigen binding and also of domain-domain interactions in the antibody molecule.

  11. Distinct Mechanisms of Recognizing Endosomal Sorting Complex Required for Transport III (ESCRT-III) Protein IST1 by Different Microtubule Interacting and Trafficking (MIT) Domains*

    Science.gov (United States)

    Guo, Emily Z.; Xu, Zhaohui

    2015-01-01

    The endosomal sorting complex required for transport (ESCRT) machinery is responsible for membrane remodeling in a number of biological processes including multivesicular body biogenesis, cytokinesis, and enveloped virus budding. In mammalian cells, efficient abscission during cytokinesis requires proper function of the ESCRT-III protein IST1, which binds to the microtubule interacting and trafficking (MIT) domains of VPS4, LIP5, and Spartin via its C-terminal MIT-interacting motif (MIM). Here, we studied the molecular interactions between IST1 and the three MIT domain-containing proteins to understand the structural basis that governs pairwise MIT-MIM interaction. Crystal structures of the three molecular complexes revealed that IST1 binds to the MIT domains of VPS4, LIP5, and Spartin using two different mechanisms (MIM1 mode versus MIM3 mode). Structural comparison revealed that structural features in both MIT and MIM contribute to determine the specific binding mechanism. Within the IST1 MIM sequence, two phenylalanine residues were shown to be important in discriminating MIM1 versus MIM3 binding. These observations enabled us to deduce a preliminary binding code, which we applied to provide CHMP2A, a protein that normally only binds the MIT domain in the MIM1 mode, the additional ability to bind the MIT domain of Spartin in the MIM3 mode. PMID:25657007

  12. Distinct mechanisms of recognizing endosomal sorting complex required for transport III (ESCRT-III) protein IST1 by different microtubule interacting and trafficking (MIT) domains.

    Science.gov (United States)

    Guo, Emily Z; Xu, Zhaohui

    2015-03-27

    The endosomal sorting complex required for transport (ESCRT) machinery is responsible for membrane remodeling in a number of biological processes including multivesicular body biogenesis, cytokinesis, and enveloped virus budding. In mammalian cells, efficient abscission during cytokinesis requires proper function of the ESCRT-III protein IST1, which binds to the microtubule interacting and trafficking (MIT) domains of VPS4, LIP5, and Spartin via its C-terminal MIT-interacting motif (MIM). Here, we studied the molecular interactions between IST1 and the three MIT domain-containing proteins to understand the structural basis that governs pairwise MIT-MIM interaction. Crystal structures of the three molecular complexes revealed that IST1 binds to the MIT domains of VPS4, LIP5, and Spartin using two different mechanisms (MIM1 mode versus MIM3 mode). Structural comparison revealed that structural features in both MIT and MIM contribute to determine the specific binding mechanism. Within the IST1 MIM sequence, two phenylalanine residues were shown to be important in discriminating MIM1 versus MIM3 binding. These observations enabled us to deduce a preliminary binding code, which we applied to provide CHMP2A, a protein that normally only binds the MIT domain in the MIM1 mode, the additional ability to bind the MIT domain of Spartin in the MIM3 mode. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Reduction of Nitroarenes into Aryl Amines and N-Aryl hydroxylamines via Activation of NaBH4 and Ammonia-Borane Complexes by Ag/TiO2 Catalyst

    Directory of Open Access Journals (Sweden)

    Dimitrios Andreou

    2016-03-01

    Full Text Available In this study, we report the fabrication of mesoporous assemblies of silver and TiO2 nanoparticles (Ag/MTA and demonstrate their catalytic efficiency for the selective reduction of nitroarenes. The Ag/TiO2 assemblies, which show large surface areas (119–128 m2·g−1 and narrow-sized mesopores (ca. 7.1–7.4 nm, perform as highly active catalysts for the reduction of nitroarenes, giving the corresponding aryl amines and N-aryl hydroxylamines with NaBH4 and ammonia-borane (NH3BH3, respectively, in moderate to high yields, even in large scale reactions (up to 5 mmol. Kinetic studies indicate that nitroarenes substituted with electron-withdrawing groups reduced faster than those with electron-donating groups. The measured positive ρ values from the formal Hammett-type kinetic analysis of X-substituted nitroarenes are consistent with the proposed mechanism that include the formation of possible [Ag]-H hybrid species, which are responsible for the reduction process. Because of the high observed chemo selectivities and the clean reaction processes, the present catalytic systems, i.e., Ag/MTA-NaBH4 and Ag/MTA-NH3BH3, show promise for the efficient synthesis of aryl amines and N-aryl hydroxylamines at industrial levels.

  14. Prevalence, specificity and determinants of lipid-interacting PDZ domains from an in-cell screen and in vitro binding experiments.

    Directory of Open Access Journals (Sweden)

    Ylva Ivarsson

    Full Text Available BACKGROUND: PDZ domains are highly abundant protein-protein interaction modules involved in the wiring of protein networks. Emerging evidence indicates that some PDZ domains also interact with phosphoinositides (PtdInsPs, important regulators of cell polarization and signaling. Yet our knowledge on the prevalence, specificity, affinity, and molecular determinants of PDZ-PtdInsPs interactions and on their impact on PDZ-protein interactions is very limited. METHODOLOGY/PRINCIPAL FINDINGS: We screened the human proteome for PtdInsPs interacting PDZ domains by a combination of in vivo cell-localization studies and in vitro dot blot and Surface Plasmon Resonance (SPR experiments using synthetic lipids and recombinant proteins. We found that PtdInsPs interactions contribute to the cellular distribution of some PDZ domains, intriguingly also in nuclear organelles, and that a significant subgroup of PDZ domains interacts with PtdInsPs with affinities in the low-to-mid micromolar range. In vitro specificity for the head group is low, but with a trend of higher affinities for more phosphorylated PtdInsPs species. Other membrane lipids can assist PtdInsPs-interactions. PtdInsPs-interacting PDZ domains have generally high pI values and contain characteristic clusters of basic residues, hallmarks that may be used to predict additional PtdInsPs interacting PDZ domains. In tripartite binding experiments we established that peptide binding can either compete or cooperate with PtdInsPs binding depending on the combination of ligands. CONCLUSIONS/SIGNIFICANCE: Our screen substantially expands the set of PtdInsPs interacting PDZ domains, and shows that a full understanding of the biology of PDZ proteins will require a comprehensive insight into the intricate relationships between PDZ domains and their peptide and lipid ligands.

  15. Discovery and molecular characterization of a Bcl-2–regulated cell death pathway in schistosomes

    Science.gov (United States)

    Lee, Erinna F.; Clarke, Oliver B.; Evangelista, Marco; Feng, Zhiping; Speed, Terence P.; Tchoubrieva, Elissaveta B.; Strasser, Andreas; Kalinna, Bernd H.; Colman, Peter M.; Fairlie, W. Douglas

    2011-01-01

    Schistosomiasis is an infectious disease caused by parasites of the phylum platyhelminthe. Here, we describe the identification and characterization of a Bcl-2–regulated apoptosis pathway in Schistosoma japonicum and S. mansoni. Genomic, biochemical, and cell-based mechanistic studies provide evidence for a tripartite pathway, similar to that in humans including BH3-only proteins that are inhibited by prosurvival Bcl-2–like molecules, and Bax/Bak-like proteins that facilitate mitochondrial outer-membrane permeabilization. Because Bcl-2 proteins have been successfully targeted with “BH3 mimetic” drugs, particularly in the treatment of cancer, we investigated whether schistosome apoptosis pathways could provide targets for future antischistosomal drug discovery efforts. Accordingly, we showed that a schistosome prosurvival protein, sjA, binds ABT-737, a well-characterized BH3 mimetic. A crystal structure of sjA bound to a BH3 peptide provides direct evidence for the feasibility of developing BH3 mimetics to target Bcl-2 prosurvival proteins in schistosomes, suggesting an alternative application for this class of drugs beyond cancer treatment. PMID:21444803

  16. Immunohistochemical expression study of proapoptotic BH3-only protein bad in canine nonneoplastic tissues and canine lymphomas.

    Science.gov (United States)

    Dettwiler, M; Croci, M; Vaughan, L; Guscetti, F

    2013-09-01

    The BH3-only protein Bad is a proapoptotic Bcl-2 family member that acts as a sensitizer in intrinsic apoptosis by inactivating antiapoptotic members through heterodimer formation. Bad has been shown to contribute to tumorigenesis, including lymphoma formation in humans and mice, through alteration in expression or functional status. Here, its immunohistochemical expression was analyzed in canine nonneoplastic and lymphoma tissues using tissue microarrays. Bad was expressed in the cytoplasm of a wide range of nonneoplastic tissues, especially epithelial cells. Nonneoplastic lymph nodes displayed weak immunostaining in the follicular germinal centers only. Immunoblotting supported these observations but also revealed presence of nonspecific labeling in some organs. Of 81 lymphomas, 29 (35.8%) displayed moderate to strong immunohistochemical Bad labeling, and a significant expression increase was found in lymphomas (especially B cell and double negative) compared to nonneoplastic lymph nodes. These findings warrant further investigations of the functional status, the involvement of partner proteins, and a possible impact of Bad on prognosis in canine lymphoma.

  17. On an aggregation in birth-and-death stochastic dynamics

    Science.gov (United States)

    Finkelshtein, Dmitri; Kondratiev, Yuri; Kutoviy, Oleksandr; Zhizhina, Elena

    2014-06-01

    We consider birth-and-death stochastic dynamics of particle systems with attractive interaction. The heuristic generator of the dynamics has a constant birth rate and density-dependent decreasing death rate. The corresponding statistical dynamics is constructed. Using the Vlasov-type scaling we derive the limiting mesoscopic evolution and prove that this evolution propagates chaos. We study a nonlinear non-local kinetic equation for the first correlation function (density of population). The existence of uniformly bounded solutions as well as solutions growing inside of a bounded domain and expanding in the space are shown. These solutions describe two regimes in the mesoscopic system: regulation and aggregation.

  18. On an aggregation in birth-and-death stochastic dynamics

    International Nuclear Information System (INIS)

    Finkelshtein, Dmitri; Kondratiev, Yuri; Kutoviy, Oleksandr; Zhizhina, Elena

    2014-01-01

    We consider birth-and-death stochastic dynamics of particle systems with attractive interaction. The heuristic generator of the dynamics has a constant birth rate and density-dependent decreasing death rate. The corresponding statistical dynamics is constructed. Using the Vlasov-type scaling we derive the limiting mesoscopic evolution and prove that this evolution propagates chaos. We study a nonlinear non-local kinetic equation for the first correlation function (density of population). The existence of uniformly bounded solutions as well as solutions growing inside of a bounded domain and expanding in the space are shown. These solutions describe two regimes in the mesoscopic system: regulation and aggregation. (paper)

  19. Mutations in actin used for structural studies partially disrupt β-thymosin/WH2 domains interaction.

    Science.gov (United States)

    Deville, Célia; Girard-Blanc, Christine; Assrir, Nadine; Nhiri, Naïma; Jacquet, Eric; Bontems, François; Renault, Louis; Petres, Stéphane; van Heijenoort, Carine

    2016-10-01

    Understanding the structural basis of actin cytoskeleton remodeling requires stabilization of actin monomers, oligomers, and filaments in complex with partner proteins, using various biochemical strategies. Here, we report a dramatic destabilization of the dynamic interaction with a model β-thymosin/WH2 domain induced by mutations in actin. This result underlines that mutant actins should be used with prudence to characterize interactions with intrinsically disordered partners as destabilization of dynamic interactions, although identifiable by NMR, may be invisible to other structural techniques. It also highlights how both β-thymosin/WH2 domains and actin tune local structure and dynamics in regulatory processes involving intrinsically disordered domains. © 2016 Federation of European Biochemical Societies.

  20. Interaction domains in high performance NdFeB thick films

    Energy Technology Data Exchange (ETDEWEB)

    Woodcock, Tom; Khlopkov, Kirill; Schultz, Ludwig; Gutfleisch, Oliver [IFW Dresden, IMW, Dresden (Germany); Walther, Arno [Insitut Neel, CNRS-UJF, Grenoble (France); CEA Leti - MINATEC, Grenoble (France); Dempsey, Nora; Givord, Dominique [Insitut Neel, CNRS-UJF, Grenoble (France)

    2009-07-01

    Thick sputtered films (5-300 micron) of NdFeB have excellent hard magnetic properties which make them attractive for applications in micro-electro-mechanical systems (MEMS). A two step process consisting of triode sputtering and high temperature annealing produced films with energy densities approaching those of sintered NdFeB magnets. Magnetic force microscopy (MFM) using hard magnetic tips showed that the films deposited without substrate heating and at 300 C exhibited magnetic domains typical of low anisotropy materials. These films were amorphous in the as-deposited state. The film deposited at 500 C was crystalline and displaid hard magnetic properties. This was reflected in the magnetic microstructure which showed interaction domains typical of highly textured and high magnetic anisotropy materials with a grain size below or equal to the critical single-domain particle limit. With increasing substrate temperature, the domain patterns of the annealed films became coarser, indicating higher degrees of texture.

  1. Unidirectional Magnon-Driven Domain Wall Motion due to Interfacial Dzyaloshinskii-Moriya Interaction

    KAUST Repository

    Lee, Seo-Won

    2018-03-28

    We theoretically study magnon-driven motion of a tranverse domain wall in the presence of interfacial Dzyaloshinskii-Moriya interaction (DMI). Contrary to previous studies, the domain wall moves along the same direction regardless of the magnon-flow direction. Our symmetry analysis reveals that the odd order DMI contributions to the domain wall velocity are independent of the magnon-flow direction. Corresponding DMI-induced asymmetric transitions from a spin-wave state to another give rise to a large momentum transfer to the domain wall without nonreciprocity and much reflection. This counterintuitive unidirectional motion occurs not only for a spin wave with a single wavevector but also for thermal magnons with distributed wavevectors.

  2. Unidirectional Magnon-Driven Domain Wall Motion due to Interfacial Dzyaloshinskii-Moriya Interaction

    KAUST Repository

    Lee, Seo-Won; Kim, Kyoung-Whan; Moon, Jung-Hwan; Go, Gyungchoon; Manchon, Aurelien; Lee, Hyun-Woo; Everschor-Sitte, Karin; Lee, Kyung-Jin

    2018-01-01

    We theoretically study magnon-driven motion of a tranverse domain wall in the presence of interfacial Dzyaloshinskii-Moriya interaction (DMI). Contrary to previous studies, the domain wall moves along the same direction regardless of the magnon-flow direction. Our symmetry analysis reveals that the odd order DMI contributions to the domain wall velocity are independent of the magnon-flow direction. Corresponding DMI-induced asymmetric transitions from a spin-wave state to another give rise to a large momentum transfer to the domain wall without nonreciprocity and much reflection. This counterintuitive unidirectional motion occurs not only for a spin wave with a single wavevector but also for thermal magnons with distributed wavevectors.

  3. Non-covalent interaction between polyubiquitin and GTP cyclohydrolase 1 dictates its degradation.

    Directory of Open Access Journals (Sweden)

    Yu Zhao

    Full Text Available GTP cyclohydrolase 1 (GTPCH1 is the rate-limiting enzyme in the de novo synthesis of tetrahydrobiopterin (BH4. GTPCH1 protein degradation has been reported in animal models of several diseases, including diabetes mellitus and hypertension. However, the molecular mechanisms by which GTPCH1 is degraded remain uncharacterized. Here we report a novel non-covalent interaction between polyubiquitin and GTPCH1 in vitro and in vivo. The non-covalent binding of GTPCH1 to polyubiquitin via an ubiquitin-binding domain (UBD results in ubiquitination and degradation. Ectopic expression of ubiquitin in cultured cells accelerated GTPCH1 degradation. In cultured cells and in vitro assays, Lys48-linked ubiquitin chains, but not Lys63-linked chains, interacted with GTPCH1 and targeted it for degradation. Consistently, proteasome inhibition attenuated GTPCH1 degradation. Finally, direct mutagenesis of an isoleucine (Ile131 in the hydrophobic patch of the GTPCH1 UBD affected its ubiquitin binding and the enzyme stability. Taken together, we conclude that GTPCH1 non-covalently interacts with polyubiquitin via an ubiquitin-binding domain. The polyubiquitin binding directs GTPCH1 ubiquitination and proteasome degradation.

  4. Importance of a Conserved Lys/Arg Residue for Ligand/PDZ Domain Interactions as Examined by Protein Semisynthesis

    DEFF Research Database (Denmark)

    Pedersen, Søren W; Moran, Griffin E; Sereikaité, Vita

    2016-01-01

    PDZ domains are ubiquitous small protein domains that are mediators of numerous protein-protein interactions, and play a pivotal role in protein trafficking, synaptic transmission, and the assembly of signaling-transduction complexes. In recent years, PDZ domains have emerged as novel and exciting...... drug targets for diseases (in the brain in particular), so understanding the molecular details of PDZ domain interactions is of fundamental importance. PDZ domains bind to a protein partner at either a C-terminal peptide or internal peptide motifs. Here, we examined the importance of a conserved Lys...

  5. Structure of the caspase-recruitment domain from a zebrafish guanylate-binding protein

    International Nuclear Information System (INIS)

    Jin, Tengchuan; Huang, Mo; Smith, Patrick; Jiang, Jiansheng; Xiao, T. Sam

    2013-01-01

    The crystal structure of the first zebrafish caspase-recruitment domain at 1.47 Å resolution illustrates a six-helix bundle fold similar to that of the human NLRP1 CARD. The caspase-recruitment domain (CARD) mediates homotypic protein–protein interactions that assemble large oligomeric signaling complexes such as the inflammasomes during innate immune responses. Structural studies of the mammalian CARDs demonstrate that their six-helix bundle folds belong to the death-domain superfamily, whereas such studies have not been reported for other organisms. Here, the zebrafish interferon-induced guanylate-binding protein 1 (zIGBP1) was identified that contains an N-terminal GTPase domain and a helical domain typical of the mammalian guanylate-binding proteins, followed by a FIIND domain and a C-terminal CARD similar to the mammalian inflammasome proteins NLRP1 and CARD8. The structure of the zIGBP1 CARD as a fusion with maltose-binding protein was determined at 1.47 Å resolution. This revealed a six-helix bundle fold similar to the NLRP1 CARD structure with the bent α1 helix typical of all known CARD structures. The zIGBP1 CARD surface contains a positively charged patch near its α1 and α4 helices and a negatively charged patch near its α2, α3 and α5 helices, which may mediate its interaction with partner domains. Further studies using binding assays and other analyses will be required in order to address the physiological function(s) of this zebrafish protein

  6. Interaction of calmodulin with the calmodulin binding domain of the plasma membrane Ca2+ pump

    International Nuclear Information System (INIS)

    Vorherr, T.; James, P.; Krebs, J.; Carafoli, E.; McCormick, D.J.; Penniston, J.T.; Enyedi, A.

    1990-01-01

    Peptides corresponding to the calmodulin binding domain of the plasma membrane Ca 2+ pump were synthesized, and their interaction with calmodulin was studied with circular dichroism, infrared spectroscopy, nuclear magnetic resonance, and fluorescence techniques. They corresponded to the complete calmodulin binding domain (28 residues), to its first 15 or 20 amino acids, and to its C-terminal 14 amino acids. The first three peptides interacted with calmodulin. The K value was similar to that of the intact enzyme in the 28 and 20 amino acid peptides, but increased substantially in the shorter 15 amino acid peptide. The 14 amino acid peptide corresponding to the C-terminal portion of the domain failed to bind calmodulin. 2D NMR experiments on the 20 amino acid peptides have indicated that the interaction occurred with the C-terminal half of calmodulin. A tryptophan that is conserved in most calmodulin binding domains of proteins was replaced by other amino acids, giving rise to modified peptides which had lower affinity for calmodulin. An 18 amino acid peptide corresponding to an acidic sequence immediately N-terminal to the calmodulin binding domain which is likely to be a Ca 2+ binding site in the pump was also synthesized. Circular dichroism experiments have shown that it interacted with calmodulin binding domain, supporting the suggestion that the latter, or a portion of it, may act as a natural inhibitor of the pump

  7. The Janus Kinase (JAK) FERM and SH2 Domains: Bringing Specificity to JAK-Receptor Interactions.

    Science.gov (United States)

    Ferrao, Ryan; Lupardus, Patrick J

    2017-01-01

    The Janus kinases (JAKs) are non-receptor tyrosine kinases essential for signaling in response to cytokines and interferons and thereby control many essential functions in growth, development, and immune regulation. JAKs are unique among tyrosine kinases for their constitutive yet non-covalent association with class I and II cytokine receptors, which upon cytokine binding bring together two JAKs to create an active signaling complex. JAK association with cytokine receptors is facilitated by N-terminal FERM and SH2 domains, both of which are classical mediators of peptide interactions. Together, the JAK FERM and SH2 domains mediate a bipartite interaction with two distinct receptor peptide motifs, the proline-rich "Box1" and hydrophobic "Box2," which are present in the intracellular domain of cytokine receptors. While the general sidechain chemistry of Box1 and Box2 peptides is conserved between receptors, they share very weak primary sequence homology, making it impossible to posit why certain JAKs preferentially interact with and signal through specific subsets of cytokine receptors. Here, we review the structure and function of the JAK FERM and SH2 domains in light of several recent studies that reveal their atomic structure and elucidate interaction mechanisms with both the Box1 and Box2 receptor motifs. These crystal structures demonstrate how evolution has repurposed the JAK FERM and SH2 domains into a receptor-binding module that facilitates interactions with multiple receptors possessing diverse primary sequences.

  8. Identification of the NC1 domain of {alpha}3 chain as critical for {alpha}3{alpha}4{alpha}5 type IV collagen network assembly.

    Science.gov (United States)

    LeBleu, Valerie; Sund, Malin; Sugimoto, Hikaru; Birrane, Gabriel; Kanasaki, Keizo; Finan, Elizabeth; Miller, Caroline A; Gattone, Vincent H; McLaughlin, Heather; Shield, Charles F; Kalluri, Raghu

    2010-12-31

    The network organization of type IV collagen consisting of α3, α4, and α5 chains in the glomerular basement membrane (GBM) is speculated to involve interactions of the triple helical and NC1 domain of individual α-chains, but in vivo evidence is lacking. To specifically address the contribution of the NC1 domain in the GBM collagen network organization, we generated a mouse with specific loss of α3NC1 domain while keeping the triple helical α3 chain intact by connecting it to the human α5NC1 domain. The absence of α3NC1 domain leads to the complete loss of the α4 chain. The α3 collagenous domain is incapable of incorporating the α5 chain, resulting in the impaired organization of the α3α4α5 chain-containing network. Although the α5 chain can assemble with the α1, α2, and α6 chains, such assembly is incapable of functionally replacing the α3α4α5 protomer. This novel approach to explore the assembly type IV collagen in vivo offers novel insights in the specific role of the NC1 domain in the assembly and function of GBM during health and disease.

  9. Seizure-like activity leads to the release of BAD from 14-3-3 protein and cell death in hippocampal neurons in vitro.

    Science.gov (United States)

    Meller, R; Schindler, C K; Chu, X P; Xiong, Z G; Cameron, J A; Simon, R P; Henshall, D C

    2003-05-01

    Seizure-induced neuronal death may involve engagement of the BCL-2 family of apoptosis-regulating proteins. In the present study we examined the activation of proapoptotic BAD in cultured hippocampal neurons following seizures induced by removal of chronic glutamatergic transmission blockade. Kynurenic acid withdrawal elicited an increase in seizure-like electrical activity, which was inhibited by blockers of AMPA (CNQX) and NMDA (MK801 and AP5) receptor function. However, only NMDA receptor antagonists inhibited calcium entry as assessed by fura-2, and cell death of hippocampal neurons. Seizures increased proteolysis of caspase-3 and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) of cells. Seizure-like activity induced dephosphorylation of BAD and the disruption of its constitutive interaction with 14-3-3 proteins. In turn, BAD dimerized with antiapoptotic BCL-Xl after seizures. However, the absence of neuroprotective effects of pathway intervention suggests that BAD may perform a reinforcement rather than instigator role in cell death following seizures in vitro.

  10. BH3-only protein Bim is associated with the degree of Helicobacter pylori-induced gastritis and is localized to the mitochondria of inflammatory cells in the gastric mucosa.

    Science.gov (United States)

    Akazawa, Yuko; Matsuda, Katsuya; Isomoto, Hajime; Matsushima, Kayoko; Kido, Yoko; Urabe, Shigetoshi; Yamaghchi, Naoyuki; Ohnita, Ken; Takeshima, Fuminao; Kondo, Hisayoshi; Tsugawa, Hitoshi; Suzuki, Hidekazu; Moss, Joel; Nakao, Kazuhiko; Nakashima, Masahiro

    2015-09-01

    BH3-only protein, Bim, is a pro-apoptotic protein that mediates mitochondria-dependent cell death. However, the role of Bim in Helicobacter pylori-associated gastritis remains unclear. This study aimed to assess the cellular localization of Bim and its possible role in H. pylori-induced gastritis. The study was conducted on biopsy specimens obtained from 80 patients who underwent upper gastrointestinal endoscopy (H. pylori-negative: n=30, positive: n=50). Association between Bim mRNA expression and severity of gastritis was evaluated and the localization of Bim was examined by immunofluorescence. Bim mRNA expression was positively correlated with the degree of gastritis, as defined by the Sydney system. Immunohistochemical analysis confirmed increased Bim expression in H. pylori-infected gastric mucosa compared with uninfected mucosa in both humans and mice. Bim localized in myeloperoxidase- and CD138-positive cells of H. pylori-infected lamina propria and submucosa of the gastric tract, indicating that this protein is predominantly expressed in neutrophils and plasma cells. In contrast, Bim did not localize in CD20-, CD3-, or CD68-positive cells. Bim was expressed in the mitochondria, where it was partially co-localized with activated Bax and cleaved-PARP. In conclusion, Bim is expressed in neutrophils and plasma cells in H. pylori-associated gastritis, where it may participate in the termination of inflammatory response by causing mitochondria-mediated apoptosis in specific leucocytes. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. SH3 domain-mediated recruitment of host cell amphiphysins by alphavirus nsP3 promotes viral RNA replication.

    Directory of Open Access Journals (Sweden)

    Maarit Neuvonen

    2011-11-01

    Full Text Available Among the four non-structural proteins of alphaviruses the function of nsP3 is the least well understood. NsP3 is a component of the viral replication complex, and composed of a conserved aminoterminal macro domain implicated in viral RNA synthesis, and a poorly conserved carboxyterminal region. Despite the lack of overall homology we noted a carboxyterminal proline-rich sequence motif shared by many alphaviral nsP3 proteins, and found it to serve as a preferred target site for the Src-homology 3 (SH3 domains of amphiphysin-1 and -2. Nsp3 proteins of Semliki Forest (SFV, Sindbis (SINV, and Chikungunya viruses all showed avid and SH3-dependent binding to amphiphysins. Upon alphavirus infection the intracellular distribution of amphiphysin was dramatically altered and colocalized with nsP3. Mutations in nsP3 disrupting the amphiphysin SH3 binding motif as well as RNAi-mediated silencing of amphiphysin-2 expression resulted in impaired viral RNA replication in HeLa cells infected with SINV or SFV. Infection of Balb/c mice with SFV carrying an SH3 binding-defective nsP3 was associated with significantly decreased mortality. These data establish SH3 domain-mediated binding of nsP3 with amphiphysin as an important host cell interaction promoting alphavirus replication.

  12. Direct Rehydrogenation of LiBH4 from H-Deficient Li2B12H12−x

    Directory of Open Access Journals (Sweden)

    Yigang Yan

    2018-03-01

    Full Text Available Li2B12H12 is commonly considered as a boron sink hindering the reversible hydrogen sorption of LiBH4. Recently, in the dehydrogenation process of LiBH4 an amorphous H-deficient Li2B12H12−x phase was observed. In the present study, we investigate the rehydrogenation properties of Li2B12H12−x to form LiBH4. With addition of nanostructured cobalt boride in a 1:1 mass ratio, the rehydrogenation properties of Li2B12H12−x are improved, where LiBH4 forms under milder conditions (e.g., 400 °C, 100 bar H2 with a yield of 68%. The active catalytic species in the reversible sorption reaction is suggested to be nonmetallic CoxB (x = 1 based on 11B MAS NMR experiments and its role has been discussed.

  13. Anomalous B-H behaviour of electrical steels at very low flux density

    Energy Technology Data Exchange (ETDEWEB)

    Zurek, Stan [Wolfson Centre for Magnetics, School of Engineering, Cardiff University, Cardiff CF24 3AA (United Kingdom)], E-mail: ZurekS@cardiff.ac.uk; Al-Naemi, Faris; Moses, Anthony J.; Marketos, Philip [Wolfson Centre for Magnetics, School of Engineering, Cardiff University, Cardiff CF24 3AA (United Kingdom)

    2008-10-15

    The behaviour of ferromagnetic materials under very low magnetic field was investigated more than a century ago by Lord Rayleigh. However, it has been shown since that the so-called Rayleigh law fails for very low magnetic fields, although the explanation for this phenomenon was not given. An anomalous B-H behaviour at very low alternating peak flux density in conventional grain-oriented (GO) and non-oriented (NO) electrical steels is reported. It has been found that the initial permeability is constant for all the measured frequencies (from 20 to 400 Hz) at peak flux density below 0.1 mT, and in this region the magnetisation is almost reversible (for both GO and NO). At higher flux density the B-H loops become visibly irreversible, with a relatively narrow (for GO) or very wide (for NO) transition region. For GO the B-H loop becomes visibly 'distorted' for all frequencies at around 2 mT. The eddy current loss calculated from the so-called 'classical' equation gives values higher than the measured total losses at lower frequencies. Both these measured results are difficult to explain.

  14. What is a good death? Minority and non-minority perspectives.

    Science.gov (United States)

    Tong, Elizabeth; McGraw, Sarah A; Dobihal, Edward; Baggish, Rosemary; Cherlin, Emily; Bradley, Elizabeth H

    2003-01-01

    While much attention has been directed at improving the quality of care at the end of life, few studies have examined what determines a good death in different individuals. We sought to identify common domains that characterize a good death in a diverse range of community-dwelling individuals, and to describe differences that might exist between minority and non-minority community-dwelling individuals' views. Using data from 13 focus groups, we identified 10 domains that characterize the quality of the death experience: 1) physical comfort, 2) burdens on family, 3) location and environment, 4) presence of others, 5) concerns regarding prolongation of life, 6) communication, 7) completion and emotional health, 8) spiritual care, 9) cultural concerns, 10) individualization. Differences in minority compared to non-minority views were apparent within the domains of spiritual concerns, cultural concerns, and individualization. The findings may help in efforts to encourage more culturally sensitive and humane end-of-life care for both minority and non-minority individuals.

  15. WW domain of BAG3 is required for the induction of autophagy in glioma cells.

    Science.gov (United States)

    Merabova, Nana; Sariyer, Ilker Kudret; Saribas, A Sami; Knezevic, Tijana; Gordon, Jennifer; Turco, M Caterina; Rosati, Alessandra; Weaver, Michael; Landry, Jacques; Khalili, Kamel

    2015-04-01

    Autophagy is an evolutionarily conserved, selective degradation pathway of cellular components that is important for cell homeostasis under healthy and pathologic conditions. Here we demonstrate that an increase in the level of BAG3 results in stimulation of autophagy in glioblastoma cells. BAG3 is a member of a co-chaperone family of proteins that associates with Hsp70 through a conserved BAG domain positioned near the C-terminus of the protein. Expression of BAG3 is induced by a variety of environmental changes that cause stress to cells. Our results show that BAG3 overexpression induces autophagy in glioma cells. Interestingly, inhibition of the proteasome caused an increase in BAG3 levels and induced autophagy. Further analysis using specific siRNA against BAG3 suggests that autophagic activation due to proteosomal inhibition is mediated by BAG3. Analyses of BAG3 domain mutants suggest that the WW domain of BAG3 is crucial for the induction of autophagy. BAG3 overexpression also increased the interaction between Bcl2 and Beclin-1, instead of disrupting them, suggesting that BAG3 induced autophagy is Beclin-1 independent. These observations reveal a novel role for the WW domain of BAG3 in the regulation of autophagy. © 2014 Wiley Periodicals, Inc.

  16. The combinatorial PP1-binding consensus Motif (R/Kx( (0,1V/IxFxx(R/Kx(R/K is a new apoptotic signature.

    Directory of Open Access Journals (Sweden)

    Angélique N Godet

    Full Text Available BACKGROUND: Previous studies established that PP1 is a target for Bcl-2 proteins and an important regulator of apoptosis. The two distinct functional PP1 consensus docking motifs, R/Kx((0,1V/IxF and FxxR/KxR/K, involved in PP1 binding and cell death were previously characterized in the BH1 and BH3 domains of some Bcl-2 proteins. PRINCIPAL FINDINGS: In this study, we demonstrate that DPT-AIF(1, a peptide containing the AIF(562-571 sequence located in a c-terminal domain of AIF, is a new PP1 interacting and cell penetrating molecule. We also showed that DPT-AIF(1 provoked apoptosis in several human cell lines. Furthermore, DPT-APAF(1 a bi-partite cell penetrating peptide containing APAF-1(122-131, a non penetrating sequence from APAF-1 protein, linked to our previously described DPT-sh1 peptide shuttle, is also a PP1-interacting death molecule. Both AIF(562-571 and APAF-1(122-131 sequences contain a common R/Kx((0,1V/IxFxxR/KxR/K motif, shared by several proteins involved in control of cell survival pathways. This motif combines the two distinct PP1c consensus docking motifs initially identified in some Bcl-2 proteins. Interestingly DPT-AIF(2 and DPT-APAF(2 that carry a F to A mutation within this combinatorial motif, no longer exhibited any PP1c binding or apoptotic effects. Moreover the F to A mutation in DPT-AIF(2 also suppressed cell penetration. CONCLUSION: These results indicate that the combinatorial PP1c docking motif R/Kx((0,1V/IxFxxR/KxR/K, deduced from AIF(562-571 and APAF-1(122-131 sequences, is a new PP1c-dependent Apoptotic Signature. This motif is also a new tool for drug design that could be used to characterize potential anti-tumour molecules.

  17. Self-association and domain rearrangements between complement C3 and C3u provide insight into the activation mechanism of C3.

    Science.gov (United States)

    Li, Keying; Gor, Jayesh; Perkins, Stephen J

    2010-10-01

    Component C3 is the central protein of the complement system. During complement activation, the thioester group in C3 is slowly hydrolysed to form C3u, then the presence of C3u enables the rapid conversion of C3 into functionally active C3b. C3u shows functional similarities to C3b. To clarify this mechanism, the self-association properties and solution structures of C3 and C3u were determined using analytical ultracentrifugation and X-ray scattering. Sedimentation coefficients identified two different dimerization events in both proteins. A fast dimerization was observed in 50 mM NaCl but not in 137 mM NaCl. Low amounts of a slow dimerization was observed for C3u and C3 in both buffers. The X-ray radius of gyration RG values were unchanged for both C3 and C3u in 137 mM NaCl, but depend on concentration in 50 mM NaCl. The C3 crystal structure gave good X-ray fits for C3 in 137 mM NaCl. By randomization of the TED (thioester-containing domain)/CUB (for complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domains in the C3b crystal structure, X-ray fits showed that the TED/CUB domains in C3u are extended and differ from the more compact arrangement of C3b. This TED/CUB conformation is intermediate between those of C3 and C3b. The greater exposure of the TED domain in C3u (which possesses the hydrolysed reactive thioester) accounts for the greater self-association of C3u in low-salt conditions. This conformational variability of the TED/CUB domains would facilitate their interactions with a broad range of antigenic surfaces. The second dimerization of C3 and C3u may correspond to a dimer observed in one of the crystal structures of C3b.

  18. Contribution of the LIM domain and nebulin-repeats to the interaction of Lasp-2 with actin filaments and focal adhesions.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Nakagawa

    Full Text Available Lasp-2 binds to actin filaments and concentrates in the actin bundles of filopodia and lamellipodia in neural cells and focal adhesions in fibroblastic cells. Lasp-2 has three structural regions: a LIM domain, a nebulin-repeat region, and an SH3 domain; however, the region(s responsible for its interactions with actin filaments and focal adhesions are still unclear. In this study, we revealed that the N-terminal fragment from the LIM domain to the first nebulin-repeat module (LIM-n1 retained actin-binding activity and showed a similar subcellular localization to full-length lasp-2 in neural cells. The LIM domain fragment did not interact with actin filaments or localize to actin filament bundles. In contrast, LIM-n1 showed a clear subcellular localization to filopodial actin bundles. Although truncation of the LIM domain caused the loss of F-actin binding activity and the accumulation of filopodial actin bundles, these truncated fragments localized to focal adhesions. These results suggest that lasp-2 interactions with actin filaments are mediated through the cooperation of the LIM domain and the first nebulin-repeat module in vitro and in vivo. Actin filament binding activity may be a major contributor to the subcellular localization of lasp-2 to filopodia but is not crucial for lasp-2 recruitment to focal adhesions.

  19. Surface targeting of the dopamine transporter involves discrete epitopes in the distal C terminus but does not require canonical PDZ domain interactions.

    Science.gov (United States)

    Bjerggaard, Christian; Fog, Jacob U; Hastrup, Hanne; Madsen, Kenneth; Loland, Claus J; Javitch, Jonathan A; Gether, Ulrik

    2004-08-04

    The human dopamine transporter (hDAT) contains a C-terminal type 2 PDZ (postsynaptic density 95/Discs large/zona occludens 1) domain-binding motif (LKV) known to interact with PDZ domain proteins such as PICK1 (protein interacting with C-kinase 1). As reported previously, we found that, after deletion of this motif, hDAT was retained in the endoplasmic reticulum (ER) of human embryonic kidney (HEK) 293 and Neuro2A cells, suggesting that PDZ domain interactions might be critical for hDAT targeting. Nonetheless, substitution of LKV with SLL, the type 1 PDZ-binding sequence from the beta2-adrenergic receptor, did not disrupt plasma membrane targeting. Moreover, the addition of an alanine to the hDAT C terminus (+Ala), resulting in an LKVA termination sequence, or substitution of LKV with alanines (3xAla_618-620) prevented neither plasma membrane targeting nor targeting into sprouting neurites of differentiated N2A cells. The inability of +Ala and 3xAla_618-620 to bind PDZ domains was confirmed by lack of colocalization with PICK1 in cotransfected HEK293 cells and by the inability of corresponding C-terminal fusion proteins to pull down purified PICK1. Thus, although residues in the hDAT C terminus are indispensable for proper targeting, PDZ domain interactions are not required. By progressive substitutions with beta2-adrenergic receptor sequence, and by triple-alanine substitutions in the hDAT C terminus, we examined the importance of epitopes preceding the LKV motif. Substitution of RHW(615-617) with alanines caused retention of the transporter in the ER despite preserved ability of this mutant to bind PICK1. We propose dual roles of the hDAT C terminus: a role independent of PDZ interactions for ER export and surface targeting, and a not fully clarified role involving PDZ interactions with proteins such as PICK1.

  20. Hetero-interaction between Gouy-Stern double layers : charge and potential regulation

    NARCIS (Netherlands)

    Lyklema, J.; Duval, J.F.L.

    2005-01-01

    This issue of Advances is devoted to the memory of Hans-Joachim Schulze who, before his untimely death, made substantial contributions in the domains of flotation, wetting and particle interaction, often under adverse working conditions. Many of his publications involve hetero-interaction between

  1. Amino-terminal domain of classic cadherins determines the specificity of the adhesive interactions

    DEFF Research Database (Denmark)

    Klingelhöfer, Jörg; Troyanovsky, R B; Laur, O Y

    2000-01-01

    Classic cadherins are transmembrane receptors involved in cell type-specific calcium-dependent intercellular adhesion. The specificity of adhesion is mediated by homophilic interactions between cadherins extending from opposing cell surfaces. In addition, classic cadherins can self-associate form......Classic cadherins are transmembrane receptors involved in cell type-specific calcium-dependent intercellular adhesion. The specificity of adhesion is mediated by homophilic interactions between cadherins extending from opposing cell surfaces. In addition, classic cadherins can self....... To study lateral and adhesive intercadherin interactions, we examined interactions between two classic cadherins, E- and P-cadherins, in epithelial A-431 cells co-producing both proteins. We showed that these cells exhibited heterocomplexes consisting of laterally assembled E- and P....... The specificity of adhesive interaction was localized to the amino-terminal (EC1) domain of both cadherins. Thus, EC1 domain of classic cadherins exposes two determinants responsible for nonspecific lateral and cadherin type-specific adhesive dimerization....

  2. DnaA protein DNA-binding domain binds to Hda protein to promote inter-AAA+ domain interaction involved in regulatory inactivation of DnaA.

    Science.gov (United States)

    Keyamura, Kenji; Katayama, Tsutomu

    2011-08-19

    Chromosomal replication is initiated from the replication origin oriC in Escherichia coli by the active ATP-bound form of DnaA protein. The regulatory inactivation of DnaA (RIDA) system, a complex of the ADP-bound Hda and the DNA-loaded replicase clamp, represses extra initiations by facilitating DnaA-bound ATP hydrolysis, yielding the inactive ADP-bound form of DnaA. However, the mechanisms involved in promoting the DnaA-Hda interaction have not been determined except for the involvement of an interaction between the AAA+ domains of the two. This study revealed that DnaA Leu-422 and Pro-423 residues within DnaA domain IV, including a typical DNA-binding HTH motif, are specifically required for RIDA-dependent ATP hydrolysis in vitro and that these residues support efficient interaction with the DNA-loaded clamp·Hda complex and with Hda in vitro. Consistently, substitutions of these residues caused accumulation of ATP-bound DnaA in vivo and oriC-dependent inhibition of cell growth. Leu-422 plays a more important role in these activities than Pro-423. By contrast, neither of these residues is crucial for DNA replication from oriC, although they are highly conserved in DnaA orthologues. Structural analysis of a DnaA·Hda complex model suggested that these residues make contact with residues in the vicinity of the Hda AAA+ sensor I that participates in formation of a nucleotide-interacting surface. Together, the results show that functional DnaA-Hda interactions require a second interaction site within DnaA domain IV in addition to the AAA+ domain and suggest that these interactions are crucial for the formation of RIDA complexes that are active for DnaA-ATP hydrolysis.

  3. DnaA Protein DNA-binding Domain Binds to Hda Protein to Promote Inter-AAA+ Domain Interaction Involved in Regulatory Inactivation of DnaA*

    Science.gov (United States)

    Keyamura, Kenji; Katayama, Tsutomu

    2011-01-01

    Chromosomal replication is initiated from the replication origin oriC in Escherichia coli by the active ATP-bound form of DnaA protein. The regulatory inactivation of DnaA (RIDA) system, a complex of the ADP-bound Hda and the DNA-loaded replicase clamp, represses extra initiations by facilitating DnaA-bound ATP hydrolysis, yielding the inactive ADP-bound form of DnaA. However, the mechanisms involved in promoting the DnaA-Hda interaction have not been determined except for the involvement of an interaction between the AAA+ domains of the two. This study revealed that DnaA Leu-422 and Pro-423 residues within DnaA domain IV, including a typical DNA-binding HTH motif, are specifically required for RIDA-dependent ATP hydrolysis in vitro and that these residues support efficient interaction with the DNA-loaded clamp·Hda complex and with Hda in vitro. Consistently, substitutions of these residues caused accumulation of ATP-bound DnaA in vivo and oriC-dependent inhibition of cell growth. Leu-422 plays a more important role in these activities than Pro-423. By contrast, neither of these residues is crucial for DNA replication from oriC, although they are highly conserved in DnaA orthologues. Structural analysis of a DnaA·Hda complex model suggested that these residues make contact with residues in the vicinity of the Hda AAA+ sensor I that participates in formation of a nucleotide-interacting surface. Together, the results show that functional DnaA-Hda interactions require a second interaction site within DnaA domain IV in addition to the AAA+ domain and suggest that these interactions are crucial for the formation of RIDA complexes that are active for DnaA-ATP hydrolysis. PMID:21708944

  4. Role of the vaccinia virus O3 protein in cell entry can be fulfilled by its Sequence flexible transmembrane domain

    Energy Technology Data Exchange (ETDEWEB)

    Satheshkumar, P.S.; Chavre, James; Moss, Bernard, E-mail: bmoss@nih.gov

    2013-09-15

    The vaccinia virus O3 protein, a component of the entry–fusion complex, is encoded by all chordopoxviruses. We constructed truncation mutants and demonstrated that the transmembrane domain, which comprises two-thirds of this 35 amino acid protein, is necessary and sufficient for interaction with the entry–fusion complex and function in cell entry. Nevertheless, neither single amino acid substitutions nor alanine scanning mutagenesis revealed essential amino acids within the transmembrane domain. Moreover, replication-competent mutant viruses were generated by randomization of 10 amino acids of the transmembrane domain. Of eight unique viruses, two contained only two amino acids in common with wild type and the remainder contained one or none within the randomized sequence. Although these mutant viruses formed normal size plaques, the entry–fusion complex did not co-purify with the mutant O3 proteins suggesting a less stable interaction. Thus, despite low specific sequence requirements, the transmembrane domain is sufficient for function in entry. - Highlights: • The 35 amino acid O3 protein is required for efficient vaccinia virus entry. • The transmembrane domain of O3 is necessary and sufficient for entry. • Mutagenesis demonstrated extreme sequence flexibility compatible with function.

  5. Viral Interactions with PDZ Domain-Containing Proteins-An Oncogenic Trait?

    Science.gov (United States)

    James, Claire D; Roberts, Sally

    2016-01-18

    Many of the human viruses with oncogenic capabilities, either in their natural host or in experimental systems (hepatitis B and C, human T cell leukaemia virus type 1, Kaposi sarcoma herpesvirus, human immunodeficiency virus, high-risk human papillomaviruses and adenovirus type 9), encode in their limited genome the ability to target cellular proteins containing PSD95/ DLG/ZO-1 (PDZ) interaction modules. In many cases (but not always), the viruses have evolved to bind the PDZ domains using the same short linear peptide motifs found in host protein-PDZ interactions, and in some cases regulate the interactions in a similar fashion by phosphorylation. What is striking is that the diverse viruses target a common subset of PDZ proteins that are intimately involved in controlling cell polarity and the structure and function of intercellular junctions, including tight junctions. Cell polarity is fundamental to the control of cell proliferation and cell survival and disruption of polarity and the signal transduction pathways involved is a key event in tumourigenesis. This review focuses on the oncogenic viruses and the role of targeting PDZ proteins in the virus life cycle and the contribution of virus-PDZ protein interactions to virus-mediated oncogenesis. We highlight how many of the viral associations with PDZ proteins lead to deregulation of PI3K/AKT signalling, benefitting virus replication but as a consequence also contributing to oncogenesis.

  6. Viral Interactions with PDZ Domain-Containing Proteins—An Oncogenic Trait?

    Directory of Open Access Journals (Sweden)

    Claire D. James

    2016-01-01

    Full Text Available Many of the human viruses with oncogenic capabilities, either in their natural host or in experimental systems (hepatitis B and C, human T cell leukaemia virus type 1, Kaposi sarcoma herpesvirus, human immunodeficiency virus, high-risk human papillomaviruses and adenovirus type 9, encode in their limited genome the ability to target cellular proteins containing PSD95/ DLG/ZO-1 (PDZ interaction modules. In many cases (but not always, the viruses have evolved to bind the PDZ domains using the same short linear peptide motifs found in host protein-PDZ interactions, and in some cases regulate the interactions in a similar fashion by phosphorylation. What is striking is that the diverse viruses target a common subset of PDZ proteins that are intimately involved in controlling cell polarity and the structure and function of intercellular junctions, including tight junctions. Cell polarity is fundamental to the control of cell proliferation and cell survival and disruption of polarity and the signal transduction pathways involved is a key event in tumourigenesis. This review focuses on the oncogenic viruses and the role of targeting PDZ proteins in the virus life cycle and the contribution of virus-PDZ protein interactions to virus-mediated oncogenesis. We highlight how many of the viral associations with PDZ proteins lead to deregulation of PI3K/AKT signalling, benefitting virus replication but as a consequence also contributing to oncogenesis.

  7. The rat IgGFcγBP and Muc2 C-terminal domains and TFF3 in two intestinal mucus layers bind together by covalent interaction.

    Directory of Open Access Journals (Sweden)

    Hao Yu

    Full Text Available The secreted proteins from goblet cells compose the intestinal mucus. The aims of this study were to determine how they exist in two intestinal mucus layers.The intestinal mucosa was fixed with Carnoy solution and immunostained. Mucus from the loose layer, the firm layer was gently suctioned or scraped, respectively, lysed in SDS sample buffer with or without DTT, then subjected to the western blotting of rTFF3, rIgGFcγBP or rMuc2. The non-reduced or reduced soluble mucus samples in RIPA buffer were co-immunoprecipitated to investigate their possible interactions. Polyclonal antibodies for rTFF3, the rIgGFcγBP C-terminal domain and the rMuc2 C-terminal domain confirmed their localization in the mucus layer and in the mucus collected from the rat intestinal loose layer or firm layer in both western blot and immunoprecipitation experiments. A complex of rTFF3, which was approximately 250 kDa, and a monomer of 6 kDa were present in both layers of the intestinal mucus; rIgGFcγBP was present in the complex (250-280 kDa under non-reducing conditions, but shifted to 164 kDa under reducing conditions in both of the layers. rMuc2 was found mainly in a complex of 214-270 kDa under non-reducing conditions, but it shifted to 140 kDa under reducing conditions. The co-immunoprecipitation experiments showed that binding occurs among rTFF3, rIgGFcγBP and rMuc2 in the RIPA buffer soluble intestinal mucus. Blocking the covalent interaction by 100 mM DTT in the RIPA buffer soluble intestinal mucus disassociated their binding.Rat goblet cell-secreted TFF3, IgGFcγBP and Muc2, existing in the two intestinal mucus layers, are bound together by covalent interactions in the soluble fraction of intestinal mucus and form heteropolymers to be one of the biochemical mechanisms of composing the net-like structure of mucus.

  8. In situ characterization of the decomposition behavior of Mg(BH4)2 by X-ray Raman scattering spectroscopy.

    Science.gov (United States)

    Sahle, Christoph J; Kujawski, Simon; Remhof, Arndt; Yan, Yigang; Stadie, Nicholas P; Al-Zein, Ali; Tolan, Metin; Huotari, Simo; Krisch, Michael; Sternemann, Christian

    2016-02-21

    We present an in situ study of the thermal decomposition of Mg(BH4)2 in a hydrogen atmosphere of up to 4 bar and up to 500 °C using X-ray Raman scattering spectroscopy at the boron K-edge and the magnesium L2,3-edges. The combination of the fingerprinting analysis of both edges yields detailed quantitative information on the reaction products during decomposition, an issue of crucial importance in determining whether Mg(BH4)2 can be used as a next-generation hydrogen storage material. This work reveals the formation of reaction intermediate(s) at 300 °C, accompanied by a significant hydrogen release without the occurrence of stable boron compounds such as amorphous boron or MgB12H12. At temperatures between 300 °C and 400 °C, further hydrogen release proceeds via the formation of higher boranes and crystalline MgH2. Above 400 °C, decomposition into the constituting elements takes place. Therefore, at moderate temperatures, Mg(BH4)2 is shown to be a promising high-density hydrogen storage material with great potential for reversible energy storage applications.

  9. BH3105 type neutron dose equivalent meter of high sensitivity

    International Nuclear Information System (INIS)

    Ji Changsong; Zhang Enshan; Yang Jianfeng; Zhang Hong; Huang Jiling

    1995-10-01

    It is noted that to design a neutron dose meter of high sensitivity is almost impossible in the frame of traditional designing principle--'absorption net principle'. Based on a newly proposed principle of obtaining neutron dose equi-biological effect adjustment--' absorption stick principle', a brand-new neutron dose-equivalent meter with high neutron sensitivity BH3105 has been developed. Its sensitivity reaches 10 cps/(μSv·h -1 ), which is 18∼40 times higher than one of foreign products of the same kind and is 10 4 times higher than that of domestic FJ342 neutron rem-meter. BH3105 has a measurement range from 0.1μSv/h to 1 Sv/h which is 1 or 2 orders wider than that of the other's. It has the advanced properties of gamma-resistance, energy response, orientation, etc. (6 tabs., 5 figs.)

  10. Interaction between Na-K-ATPase and Bcl-2 proteins BclXL and Bak.

    Science.gov (United States)

    Lauf, Peter K; Alqahtani, Tariq; Flues, Karin; Meller, Jaroslaw; Adragna, Norma C

    2015-01-01

    In silico analysis predicts interaction between Na-K-ATPase (NKA) and Bcl-2 protein canonical BH3- and BH1-like motifs, consistent with NKA inhibition by the benzo-phenanthridine alkaloid chelerythrine, a BH3 mimetic, in fetal human lens epithelial cells (FHLCs) (Lauf PK, Heiny J, Meller J, Lepera MA, Koikov L, Alter GM, Brown TL, Adragna NC. Cell Physiol Biochem 31: 257-276, 2013). This report establishes proof of concept: coimmunoprecipitation and immunocolocalization showed unequivocal and direct physical interaction between NKA and Bcl-2 proteins. Specifically, NKA antibodies (ABs) coimmunoprecipitated BclXL (B-cell lymphoma extra large) and BAK (Bcl-2 antagonist killer) proteins in FHLCs and A549 lung cancer cells. In contrast, both anti-Bcl-2 ABs failed to pull down NKA. Notably, the molecular mass of BAK1 proteins pulled down by NKA and BclXL ABs appeared to be some 4-kDa larger than found in input monomers. In silico analysis predicts these higher molecular mass BAK1 proteins as alternative splicing variants, encoding 42 amino acid (aa) larger proteins than the known 211-aa long canonical BAK1 protein. These BAK1 variants may constitute a pool separate from that forming mitochondrial pores by specifically interacting with NKA and BclXL proteins. We propose a NKA-Bcl-2 protein ternary complex supporting our hypothesis for a special sensor role of NKA in Bcl-2 protein control of cell survival and apoptosis. Copyright © 2015 the American Physiological Society.

  11. 3D Mapping of the SPRY2 domain of ryanodine receptor 1 by single-particle cryo-EM.

    Directory of Open Access Journals (Sweden)

    Alex Perálvarez-Marín

    Full Text Available The type 1 skeletal muscle ryanodine receptor (RyR1 is principally responsible for Ca(2+ release from the sarcoplasmic reticulum and for the subsequent muscle contraction. The RyR1 contains three SPRY domains. SPRY domains are generally known to mediate protein-protein interactions, however the location of the three SPRY domains in the 3D structure of the RyR1 is not known. Combining immunolabeling and single-particle cryo-electron microscopy we have mapped the SPRY2 domain (S1085-V1208 in the 3D structure of RyR1 using three different antibodies against the SPRY2 domain. Two obstacles for the image processing procedure; limited amount of data and signal dilution introduced by the multiple orientations of the antibody bound in the tetrameric RyR1, were overcome by modifying the 3D reconstruction scheme. This approach enabled us to ascertain that the three antibodies bind to the same region, to obtain a 3D reconstruction of RyR1 with the antibody bound, and to map SPRY2 to the periphery of the cytoplasmic domain of RyR1. We report here the first 3D localization of a SPRY2 domain in any known RyR isoform.

  12. Comparison of SH3 and SH2 domain dynamics when expressed alone or in an SH(3+2) construct: the role of protein dynamics in functional regulation.

    Science.gov (United States)

    Engen, J R; Smithgall, T E; Gmeiner, W H; Smith, D L

    1999-04-02

    Protein dynamics play an important role in protein function and regulation of enzymatic activity. To determine how additional interactions with surrounding structure affects local protein dynamics, we have used hydrogen exchange and mass spectrometry to investigate the SH2 and SH3 domains of the protein tyrosine kinase Hck. Exchange rates of isolated Hck SH3 and SH2 domains were compared with rates for the same domains when part of a larger SH(3+2) construct. Increased deuterium incorporation was observed for the SH3 domain in the joint construct, particularly near the SH2 interface and the short sequence that connects SH3 to SH2, implying greater flexibility of SH3 when it is part of SH(3+2). Slow cooperative unfolding of the SH3 domain occurred at the same rate in isolated SH3 as in the SH(3+2) construct, suggesting a functional significance for this unfolding. The SH2 domain displayed relatively smaller changes in flexibility when part of the SH(3+2) construct. These results suggest that the domains influence each other. Further, our results imply a link between functional regulation and structural dynamics of SH3 and SH2 domains. Copyright 1999 Academic Press.

  13. Vibration-rotation spectrum of BH X1Σ+ by Fourier transform emission spectroscopy

    Science.gov (United States)

    Pianalto, F. S.; O'Brien, L. C.; Keller, P. C.; Bernath, P. F.

    1988-06-01

    The vibration-rotation emission spectrum of the BH X1Σ+ state was observed with the McMath Fourier transform spectrometer at Kitt Peak. The 1-0, 2-1, and 3-2 bands were observed in a microwave discharge of B2H6 in He. Spectroscopic constants of the individual vibrational levels and equilibrium molecular constants were determined. An RKR potential curve was calculated from the equilibrium constants. Alfred P. Sloan Fellow; Camille and Henry Dreyfus Teacher-Scholar.

  14. A 3D, fully Eulerian, VOF-based solver to study the interaction between two fluids and moving rigid bodies using the fictitious domain method

    Science.gov (United States)

    Pathak, Ashish; Raessi, Mehdi

    2016-04-01

    We present a three-dimensional (3D) and fully Eulerian approach to capturing the interaction between two fluids and moving rigid structures by using the fictitious domain and volume-of-fluid (VOF) methods. The solid bodies can have arbitrarily complex geometry and can pierce the fluid-fluid interface, forming contact lines. The three-phase interfaces are resolved and reconstructed by using a VOF-based methodology. Then, a consistent scheme is employed for transporting mass and momentum, allowing for simulations of three-phase flows of large density ratios. The Eulerian approach significantly simplifies numerical resolution of the kinematics of rigid bodies of complex geometry and with six degrees of freedom. The fluid-structure interaction (FSI) is computed using the fictitious domain method. The methodology was developed in a message passing interface (MPI) parallel framework accelerated with graphics processing units (GPUs). The computationally intensive solution of the pressure Poisson equation is ported to GPUs, while the remaining calculations are performed on CPUs. The performance and accuracy of the methodology are assessed using an array of test cases, focusing individually on the flow solver and the FSI in surface-piercing configurations. Finally, an application of the proposed methodology in simulations of the ocean wave energy converters is presented.

  15. The M BH versus M Gσ2 relation and the accretion of supermassive black holes

    International Nuclear Information System (INIS)

    Feoli, A.

    2014-01-01

    We propose a possible scenario that can explain the physical processes underlying the relation log 10 (M BH ) = b + mlog 10 (M G σ 2 /c 2 ) between the mass M BH of supermassive black holes, growing in the center of many galaxies, and the kinetic energy of the corresponding bulges (M G being the bulge mass and σ the velocity dispersion). In a series of papers, this scaling law proved to be very useful to describe the evolution of galaxies thanks to its close similarity to the Hertzsprung-Russell diagram. Studying the relation with different samples of galaxies, we have generally found a slope that can vary between two extremal theoretical possibilities, m = 3/4 and m = 1. We will try to describe a possible scenario compatible with the second one. Finally, we also examine a case of a relation that is linear, not in kinetic energy, but in momentum parameter.

  16. Mechanisms underlying 3-bromopyruvate-induced cell death in colon cancer.

    Science.gov (United States)

    Sun, Yiming; Liu, Zhe; Zou, Xue; Lan, Yadong; Sun, Xiaojin; Wang, Xiu; Zhao, Surong; Jiang, Chenchen; Liu, Hao

    2015-08-01

    3-Bromopyruvate (3BP) is an energy-depleting drug that inhibits Hexokinase II activity by alkylation during glycolysis, thereby suppressing the production of ATP and inducing cell death. As such, 3BP can potentially serve as an anti-tumorigenic agent. Our previous research showed that 3BP can induce apoptosis via AKT /protein Kinase B signaling in breast cancer cells. Here we found that 3BP can also induce colon cancer cell death by necroptosis and apoptosis at the same time and concentration in the SW480 and HT29 cell lines; in the latter, autophagy was also found to be a mechanism of cell death. In HT29 cells, combined treatment with 3BP and the autophagy inhibitor 3-methyladenine (3-MA) exacerbated cell death, while viability in 3BP-treated cells was enhanced by concomitant treatment with the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethylketone (z-VAD-fmk) and the necroptosis inhibitor necrostatin (Nec)-1. Moreover, 3BP inhibited tumor growth in a SW480 xenograft mouse model. These results indicate that 3BP can suppress tumor growth and induce cell death by multiple mechanisms at the same time and concentration in different types of colon cancer cell by depleting cellular energy stores.

  17. Stability, interaction and influence of domain boundaries in Ge/Si(111)-5 × 5

    International Nuclear Information System (INIS)

    Ondráček, Martin; Mutombo, Pingo; Chvoj, Zdeněk; Chromcová, Zdeňka; Jelínek, Pavel; Mark, Andrew G; McLean, Alastair B

    2012-01-01

    We present a theoretical investigation of the influence of domain boundaries on the Ge/Si(111)-5 × 5 phase using both large-scale DFT simulations and an analytical model. It is shown that different boundary types modify the atomic and electronic structure of the adjoining 5 × 5 domains in very different ways. A simple theoretical model, that describes the energy interaction J between the boundaries and the 5 × 5 phase, is presented and the interaction energy decay J(x) ≈ x -n for different domain boundaries is estimated. Additionally, the influence of the boundaries on the atomic and electronic structure of adatoms in the parental 5 × 5 phase is analyzed and it is argued that the presence of domain boundaries may strongly affect not only the physical but also the chemical properties of the Ge/Si(111)-5 × 5 phase.

  18. Promoter-enhancer interactions identified from Hi-C data using probabilistic models and hierarchical topological domains.

    Science.gov (United States)

    Ron, Gil; Globerson, Yuval; Moran, Dror; Kaplan, Tommy

    2017-12-21

    Proximity-ligation methods such as Hi-C allow us to map physical DNA-DNA interactions along the genome, and reveal its organization into topologically associating domains (TADs). As the Hi-C data accumulate, computational methods were developed for identifying domain borders in multiple cell types and organisms. Here, we present PSYCHIC, a computational approach for analyzing Hi-C data and identifying promoter-enhancer interactions. We use a unified probabilistic model to segment the genome into domains, which we then merge hierarchically and fit using a local background model, allowing us to identify over-represented DNA-DNA interactions across the genome. By analyzing the published Hi-C data sets in human and mouse, we identify hundreds of thousands of putative enhancers and their target genes, and compile an extensive genome-wide catalog of gene regulation in human and mouse. As we show, our predictions are highly enriched for ChIP-seq and DNA accessibility data, evolutionary conservation, eQTLs and other DNA-DNA interaction data.

  19. iDoRNA: An Interacting Domain-based Tool for Designing RNA-RNA Interaction Systems

    Directory of Open Access Journals (Sweden)

    Jittrawan Thaiprasit

    2016-03-01

    Full Text Available RNA-RNA interactions play a crucial role in gene regulation in living organisms. They have gained increasing interest in the field of synthetic biology because of their potential applications in medicine and biotechnology. However, few novel regulators based on RNA-RNA interactions with desired structures and functions have been developed due to the challenges of developing design tools. Recently, we proposed a novel tool, called iDoDe, for designing RNA-RNA interacting sequences by first decomposing RNA structures into interacting domains and then designing each domain using a stochastic algorithm. However, iDoDe did not provide an optimal solution because it still lacks a mechanism to optimize the design. In this work, we have further developed the tool by incorporating a genetic algorithm (GA to find an RNA solution with maximized structural similarity and minimized hybridized RNA energy, and renamed the tool iDoRNA. A set of suitable parameters for the genetic algorithm were determined and found to be a weighting factor of 0.7, a crossover rate of 0.9, a mutation rate of 0.1, and the number of individuals per population set to 8. We demonstrated the performance of iDoRNA in comparison with iDoDe by using six RNA-RNA interaction models. It was found that iDoRNA could efficiently generate all models of interacting RNAs with far more accuracy and required far less computational time than iDoDe. Moreover, we compared the design performance of our tool against existing design tools using forty-four RNA-RNA interaction models. The results showed that the performance of iDoRNA is better than RiboMaker when considering the ensemble defect, the fitness score and computation time usage. However, it appears that iDoRNA is outperformed by NUPACK and RNAiFold 2.0 when considering the ensemble defect. Nevertheless, iDoRNA can still be an useful alternative tool for designing novel RNA-RNA interactions in synthetic biology research. The source code of i

  20. Li2 NH-LiBH4 : a Complex Hydride with Near Ambient Hydrogen Adsorption and Fast Lithium Ion Conduction.

    Science.gov (United States)

    Wang, Han; Cao, Hujun; Zhang, Weijin; Chen, Jian; Wu, Hui; Pistidda, Claudio; Ju, Xiaohua; Zhou, Wei; Wu, Guotao; Etter, Martin; Klassen, Thomas; Dornheim, Martin; Chen, Ping

    2018-01-26

    Complex hydrides have played important roles in energy storage area. Here a complex hydride made of Li 2 NH and LiBH 4 was synthesized, which has a structure tentatively indexed using an orthorhombic cell with a space group of Pna2 1 and lattice parameters of a=10.121, b=6.997, and c=11.457 Å. The Li 2 NH-LiBH 4 sample (in a molar ratio of 1:1) shows excellent hydrogenation kinetics, starting to absorb H 2 at 310 K, which is more than 100 K lower than that of pristine Li 2 NH. Furthermore, the Li + ion conductivity of the Li 2 NH-LiBH 4 sample is about 1.0×10 -5  S cm -1 at room temperature, and is higher than that of either Li 2 NH or LiBH 4 at 373 K. Those unique properties of the Li 2 NH-LiBH 4 complex render it a promising candidate for hydrogen storage and Li ion conduction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Dehydriding and re-hydriding properties of high-energy ball milled LiBH{sub 4}+MgH{sub 2} mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, Kyle; Shaw, Leon L. [Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, 97 North Eagleville Road, U-3136, Storrs, CT 06269 (United States)

    2010-07-15

    Here we report the first investigation of the dehydriding and re-hydriding properties of 2LiBH{sub 4} + MgH{sub 2} mixtures in the solid state. Such a study is made possible by high-energy ball milling of 2LiBH{sub 4}+MgH{sub 2} mixtures at liquid nitrogen temperature with the addition of graphite. The 2LiBH{sub 4}+MgH{sub 2} mixture ball milled under this condition exhibits a 5-fold increase in the released hydrogen at 265 C when compared with ineffectively ball milled counterparts. Furthermore, both LiBH{sub 4} and MgH{sub 2} contribute to hydrogen release in the solid state. The isothermal dehydriding/re-hydriding cycles at 265 C reveal that re-hydriding is dominated by re-hydriding of Mg. These unusual phenomena are explained based on the formation of nanocrystalline and amorphous phases, the increased defect concentration in crystalline compounds, and possible catalytic effects of Mg,MgH{sub 2} and LiBH{sub 4} on their dehydriding and re-hydriding properties. (author)

  2. Three-dimensional (3D) structure prediction and function analysis of the chitin-binding domain 3 protein HD73_3189 from Bacillus thuringiensis HD73.

    Science.gov (United States)

    Zhan, Yiling; Guo, Shuyuan

    2015-01-01

    Bacillus thuringiensis (Bt) is capable of producing a chitin-binding protein believed to be functionally important to bacteria during the stationary phase of its growth cycle. In this paper, the chitin-binding domain 3 protein HD73_3189 from B. thuringiensis has been analyzed by computer technology. Primary and secondary structural analyses demonstrated that HD73_3189 is negatively charged and contains several α-helices, aperiodical coils and β-strands. Domain and motif analyses revealed that HD73_3189 contains a signal peptide, an N-terminal chitin binding 3 domains, two copies of a fibronectin-like domain 3 and a C-terminal carbohydrate binding domain classified as CBM_5_12. Moreover, analysis predicted the protein's associated localization site to be the cell wall. Ligand site prediction determined that amino acid residues GLU-312, TRP-334, ILE-341 and VAL-382 exposed on the surface of the target protein exhibit polar interactions with the substrate.

  3. Roles of the SH2 and SH3 domains in the regulation of neuronal Src kinase functions.

    Science.gov (United States)

    Groveman, Bradley R; Xue, Sheng; Marin, Vedrana; Xu, Jindong; Ali, Mohammad K; Bienkiewicz, Ewa A; Yu, Xian-Min

    2011-02-01

    Previous studies demonstrated that intra-domain interactions between Src family kinases (SFKs), stabilized by binding of the phosphorylated C-terminus to the SH2 domain and/or binding of the SH2 kinase linker to the SH3 domain, lock the molecules in a closed conformation, disrupt the kinase active site, and inactivate SFKs. Here we report that the up-regulation of N-methyl-D-aspartate receptors (NMDARs) induced by expression of constitutively active neuronal Src (n-Src), in which the C-terminus tyrosine is mutated to phenylalanine (n-Src/Y535F), is significantly reduced by dysfunctions of the SH2 and/or SH3 domains of the protein. Furthermore, we found that dysfunctions of SH2 and/or SH3 domains reduce auto-phosphorylation of the kinase activation loop, depress kinase activity, and decrease NMDAR phosphorylation. The SH2 domain plays a greater regulatory role than the SH3 domain. Our data also show that n-Src binds directly to the C-terminus of the NMDAR NR2A subunit in vitro, with a K(D) of 108.2 ± 13.3 nM. This binding is not Src kinase activity-dependent, and dysfunctions of the SH2 and/or SH3 domains do not significantly affect the binding. These data indicate that the SH2 and SH3 domains may function to promote the catalytic activity of active n-Src, which is important in the regulation of NMDAR functions. © 2010 The Authors Journal compilation © 2010 FEBS.

  4. Swapping the N- and C-terminal domains of human apolipoprotein E3 and AI reveals insights into their structure/activity relationship.

    Directory of Open Access Journals (Sweden)

    Mark T Lek

    Full Text Available Apolipoprotein (apo E3 and apoAI are exchangeable apolipoproteins that play a dominant role in regulating plasma lipoprotein metabolism. ApoE3 (299 residues is composed of an N-terminal (NT domain bearing a 4-helix bundle and a C-terminal (CT domain bearing a series of amphipathic α-helices. ApoAI (243 residues also comprises a highly helical NT domain and a less structured CT tail. The objective of this study was to understand their structural and functional role by generating domain swapped chimeras: apoE3-NT/apoAI-CT and apoAI-NT/apoE-CT. The bacterially overexpressed chimeras were purified by affinity chromatography and their identity confirmed by immunoblotting and mass spectrometry. Their α-helical content was comparable to that of the parent proteins. ApoE3-NT/apoAI-CT retained the denaturation profile of apoE3 NT domain, with apoAI CT tail eliciting a relatively unstructured state; its lipid binding ability improved dramatically compared to apoE3 indicative of a significant role of apoAI CT tail in lipid binding interaction. The LDL receptor interaction and ability to promote ABCA1-mediated cholesterol efflux of apoE3-NT/apoAI-CT was comparable to that of apoE3. In contrast, apoAI-NT/apoE-CT elicited an unfolding pattern and lipid binding ability that were similar to that of apoAI. As expected, DMPC/apoAI-NT/apoE-CT discoidal particles did not elicit LDLr binding ability, and promoted SR-B1 mediated cellular uptake of lipids to a limited extent. However, apoAI-NT/apoE-CT displayed an enhanced ability to promote cholesterol efflux compared to apoAI, indicative of a significant role for apoE CT domain in mediating this function. Together, these results indicate that the functional attributes of apoAI and apoE3 can be conferred on each other and that NT-CT domain interactions significantly modulate their structure and function.

  5. Effect of the SH3-SH2 domain linker sequence on the structure of Hck kinase.

    Science.gov (United States)

    Meiselbach, Heike; Sticht, Heinrich

    2011-08-01

    The coordination of activity in biological systems requires the existence of different signal transduction pathways that interact with one another and must be precisely regulated. The Src-family tyrosine kinases, which are found in many signaling pathways, differ in their physiological function despite their high overall structural similarity. In this context, the differences in the SH3-SH2 domain linkers might play a role for differential regulation, but the structural consequences of linker sequence remain poorly understood. We have therefore performed comparative molecular dynamics simulations of wildtype Hck and of a mutant Hck in which the SH3-SH2 domain linker is replaced by the corresponding sequence from the homologous kinase Lck. These simulations reveal that linker replacement not only affects the orientation of the SH3 domain itself, but also leads to an alternative conformation of the activation segment in the Hck kinase domain. The sequence of the SH3-SH2 domain linker thus exerts a remote effect on the active site geometry and might therefore play a role in modulating the structure of the inactive kinase or in fine-tuning the activation process itself.

  6. Receptor-interacting protein (RIP) kinase family

    Science.gov (United States)

    Zhang, Duanwu; Lin, Juan; Han, Jiahuai

    2010-01-01

    Receptor-interacting protein (RIP) kinases are a group of threonine/serine protein kinases with a relatively conserved kinase domain but distinct non-kinase regions. A number of different domain structures, such as death and caspase activation and recruitment domain (CARD) domains, were found in different RIP family members, and these domains should be keys in determining the specific function of each RIP kinase. It is known that RIP kinases participate in different biological processes, including those in innate immunity, but their downstream substrates are largely unknown. This review will give an overview of the structures and functions of RIP family members, and an update of recent progress in RIP kinase research. PMID:20383176

  7. Mass spectrometric identification of proteins that interact through specific domains of the poly(A) binding protein

    DEFF Research Database (Denmark)

    Richardson, Roy; Denis, Clyde L; Zhang, Chongxu

    2012-01-01

    previously known direct interactions with specific PAB1 domains were either confirmed, delimited, or extended. The remaining nine proteins that interacted through a specific PAB1 domain were CBF5, SLF1, UPF1, CBC1, SSD1, NOP77, yGR250c, NAB6, and GBP2. In further study, UPF1, involved in nonsense...

  8. Expression, refolding and crystallizations of the Grb2-like (GADS) C-terminal SH3 domain complexed with a SLP-76 motif peptide

    International Nuclear Information System (INIS)

    Faravelli, Alessandro; Dimasi, Nazzareno

    2005-01-01

    Several crystals of the Grb2-like C-terminal SH3 domain in complex with a motif peptide from the SLP-76 protein were obtained and characterized. The Grb2-like adaptor protein GADS is composed of an N-terminal SH3 domain, an SH2 domain, a proline-rich region and a C-terminal SH3 domain. GADS interacts through its C-terminal SH3 domain with the adaptor protein SLP-76, thus recruiting this protein and other associated molecules to the linker for activation of T-cell (LAT) protein. The DNA encoding the C-terminal SH3 domain of GADS (GADS-cSH3) was assembled synthetically using a recursive PCR technique and the protein was overexpressed in Escherichia coli, refolded and purified. Several crystals of this domain in complex with the SLP-76 peptide were obtained and characterized

  9. Reducing agent (NaBH{sub 4}) dependent structure, morphology and magnetic properties of nickel ferrite (NiFe{sub 2}O{sub 4}) nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Saravanakumar, B.; Rani, B. Jansi; Ravi, G. [Nanomaterials Laboratory, Department of Physics, Alagappa University, Karaikudi 630 004, Tamil Nadu (India); Thambidurai, M. [Luminous Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical & Electronic Engineering, The Photonics Institute (TPI), Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Yuvakkumar, R., E-mail: yuvakkumar@gmail.com [Nanomaterials Laboratory, Department of Physics, Alagappa University, Karaikudi 630 004, Tamil Nadu (India)

    2017-04-15

    Nickel ferrite (Ni-Fe{sub 2}O{sub 4}) nanorods were synthesized employing a simple chemical reduction method. Reducing agent (NaBH{sub 4}) influence on structural, morphological and magnetic properties of NiFe{sub 2}O{sub 4} nanorods was investigated. XRD results clearly revealed the presence of inverse cubic spinel nickel ferrite structure characteristic peaks and confirmed the site inversion of inverse spinel structure of Fe{sup 3+} tetrahedral A site and Ni{sup 2+} octahedral B site. The observed Raman characteristic peak at 488 and 683 cm{sup −1} were corresponded to E{sub 1} {sub g} and A{sub 1} {sub g} mode whereas A and B site respectively corresponded to tetrahedral and octahedral site of NiFe{sub 2}O{sub 4} inverse spinel structure. The obtained PL peaks at 530 and 542 nm were attributed to the emission spectra of Fe{sup 3+} ions in site A of inverse spinel structure and Ni{sup 2+} ions in site B of inverse spinel structure respectively. SEM result clearly revealed that increase in NaBH{sub 4} concentration had remarkable impact on nanorods formation, nano-octahedron structure, homogeneity and regularity of Ni-Ferrites. VSM studies clearly revealed the soft ferromagnetic nature of NiFe{sub 2}O{sub 4} and increase in NaBH{sub 4} concentration further induced raise in metal cations concentration in A- and B- site which might impact the resultant magnetization of ferrites. - Highlights: • Nano rod formation has been initiated while increase of NaBH{sub 4} concentration. • Further increasing NaBH{sub 4} concentration favors nano-octahedron formation. • VSM studies revealed soft ferromagnetic nature of NiFe{sub 2}O{sub 4}.

  10. Functional interaction between the glucocorticoid receptor and GANP/MCM3AP

    International Nuclear Information System (INIS)

    Osman, Waffa; Laine, Sanna; Zilliacus, Johanna

    2006-01-01

    Glucocorticoids are widely used to treat inflammatory diseases but have a number of side effects that partly are connected to inhibition of cell proliferation. Glucocorticoids mediated their action by binding to the glucocorticoid receptor. In the present study, we have identified by two-hybrid screens the germinal center-associated protein (GANP) and MCM3-associated protein (MCM3AP), a splicing variant of GANP, as glucocorticoid receptor interacting proteins. GANP and MCM3AP can bind to the MCM3 protein involved in initiation of DNA replication. Glutathione-S-transferase-pull-down and co-immunoprecipitation assays showed that the C-terminal domain of GANP, encompassing MCM3AP, interacts with the ligand-binding domain of the glucocorticoid receptor. Characterization of the intracellular localization of GANP revealed that GANP is shuttling between the nucleus and the cytoplasm. Furthermore, we show that glucocorticoids are unable to inhibit DNA replication in HeLa cells overexpressing MCM3AP suggesting a role for both glucocorticoid receptor and GANP/MCM3AP in regulating cell proliferation

  11. Mosquito Rasputin interacts with chikungunya virus nsP3 and determines the infection rate in Aedes albopictus.

    Science.gov (United States)

    Fros, Jelke J; Geertsema, Corinne; Zouache, Karima; Baggen, Jim; Domeradzka, Natalia; van Leeuwen, Daniël M; Flipse, Jacky; Vlak, Just M; Failloux, Anna-Bella; Pijlman, Gorben P

    2015-09-17

    Chikungunya virus (CHIKV) is an arthritogenic alphavirus (family Togaviridae), transmitted by Aedes species mosquitoes. CHIKV re-emerged in 2004 with multiple outbreaks worldwide and recently reached the Americas where it has infected over a million individuals in a rapidly expanding epidemic. While alphavirus replication is well understood in general, the specific function (s) of non-structural protein nsP3 remain elusive. CHIKV nsP3 modulates the mammalian stress response by preventing stress granule formation through sequestration of G3BP. In mosquitoes, nsP3 is a determinant of vector specificity, but its functional interaction with mosquito proteins is unclear. In this research we studied the domains required for localization of CHIKV nsP3 in insect cells and demonstrated its molecular interaction with Rasputin (Rin), the mosquito homologue of G3BP. The biological involvement of Rin in CHIKV infection was investigated in live Ae. albopictus mosquitoes. In insect cells, nsP3 localized as cytoplasmic granules, which was dependent on the central domain and the C-terminal variable region but independent of the N-terminal macrodomain. Ae. albopictus Rin displayed a diffuse, cytoplasmic localization, but was effectively sequestered into nsP3-granules upon nsP3 co-expression. Site-directed mutagenesis showed that the Rin-nsP3 interaction involved the NTF2-like domain of Rin and two conserved TFGD repeats in the C-terminal variable domain of nsP3. Although in vitro silencing of Rin did not impact nsP3 localization or CHIKV replication in cell culture, Rin depletion in vivo significantly decreased the CHIKV infection rate and transmissibility in Ae.albopictus. We identified the nsP3 hypervariable C-terminal domain as a critical factor for granular localization and sequestration of mosquito Rin. Our study offers novel insight into a conserved virus-mosquito interaction at the molecular level, and reveals a strong proviral role for G3BP homologue Rin in live mosquitoes

  12. Nonlinear time-domain soil–structure interaction analysis of embedded reactor structures subjected to earthquake loads

    Energy Technology Data Exchange (ETDEWEB)

    Solberg, Jerome M., E-mail: solberg2@llnl.gov [Methods Development Group, Lawrence Livermore Nat’l Lab, P.O. Box 808, Mailstop L-125, Livermore, CA 94550 (United States); Hossain, Quazi, E-mail: hossain1@llnl.gov [Structural and Applied Mechanics Group, Lawrence Livermore Nat’l Lab, P.O. Box 808, Mailstop L-129, Livermore, CA 94550 (United States); Mseis, George, E-mail: george.mseis@gmail.com [Structural and Applied Mechanics Group, Lawrence Livermore Nat’l Lab, P.O. Box 808, Mailstop L-129, Livermore, CA 94550 (United States)

    2016-08-01

    Highlights: • Derived modified version of Bielak’s SSI method for nonlinear time-domain analysis. • Utilized a Ramberg–Osgood material with parameters that can be fit to EPRI data. • Matched vertically propagating shear wave results from CARES. • Applied this technique to a representative SMR, compared well with SASSI. • The technique is extensible to other material models and nonlinear effects. - Abstract: A generalized time-domain method for soil–structure interaction analysis is developed, based upon an extension of the work of the domain reduction method of Bielak et al. The methodology is combined with the use of a simple hysteretic soil model based upon the Ramberg–Osgood formulation and applied to a notional Small Modular Reactor. These benchmark results compare well (with some caveats) with those obtained by using the industry-standard frequency-domain code SASSI. The methodology provides a path forward for investigation of other sources of nonlinearity, including those associated with the use of more physically-realistic material models incorporating pore-pressure effects, gap opening/closing, the effect of nonlinear structural elements, and 3D seismic inputs.

  13. The Bcl-2-Beclin 1 interaction in (-)-gossypol-induced autophagy versus apoptosis in prostate cancer cells.

    Science.gov (United States)

    Lian, Jiqin; Karnak, David; Xu, Liang

    2010-11-01

    Bcl-2 is a key dual regulator of autophagy and apoptosis, but how the level of Bcl-2 influences the cellular decision between autophagy and apoptosis is unclear. The natural BH3-mimetic (-)-gossypol preferentially induces autophagy in androgen-independent (AI) prostate cancer cells that have high levels of Bcl-2 and are resistant to apoptosis, whereas apoptosis is preferentially induced in androgen-dependent or -independent cells with low Bcl-2. (-)-Gossypol induces autophagy via blocking Bcl-2-Beclin 1 interaction at the endoplasmic reticulum (ER), together with downregulating Bcl-2, upregulating Beclin 1 and activating the autophagic pathway. Furthermore, (-)-gossypol-induced autophagy is Beclin 1- and Atg5-dependent. These results provide new insights into the mode of cell death induced by Bcl-2 inhibitors, which could facilitate the rational design of clinical trials by selecting patients who are most likely to benefit from the Bcl-2-targeted molecular therapy.

  14. Lipid-protein interaction induced domains: Kinetics and conformational changes in multicomponent vesicles

    Science.gov (United States)

    Sreeja, K. K.; Sunil Kumar, P. B.

    2018-04-01

    The spatio-temporal organization of proteins and the associated morphological changes in membranes are of importance in cell signaling. Several mechanisms that promote the aggregation of proteins at low cell surface concentrations have been investigated in the past. We show, using Monte Carlo simulations, that the affinity of proteins for specific lipids can hasten their aggregation kinetics. The lipid membrane is modeled as a dynamically triangulated surface with the proteins defined as in-plane fields at the vertices. We show that, even at low protein concentrations, strong lipid-protein interactions can result in large protein clusters indicating a route to lipid mediated signal amplification. At high protein concentrations, the domains form buds similar to that seen in lipid-lipid interaction induced phase separation. Protein interaction induced domain budding is suppressed when proteins act as anisotropic inclusions and exhibit nematic orientational order. The kinetics of protein clustering and resulting conformational changes are shown to be significantly different for the isotropic and anisotropic curvature inducing proteins.

  15. An Aminopyridazine Inhibitor of Death Associated Protein Kinase Attenuates Hypoxia-Ischemia Induced Brain Damage

    Energy Technology Data Exchange (ETDEWEB)

    Velentza, A.V.; Wainwright, M.S.; Zasadzki, M.; Mirzoeva, S.; Haiech, J.; Focia, P.J.; Egli, M.; Watterson, D.M.

    2010-03-08

    Death associated protein kinase (DAPK) is a calcium and calmodulin regulated enzyme that functions early in eukaryotic programmed cell death, or apoptosis. To validate DAPK as a potential drug discovery target for acute brain injury, the first small molecule DAPK inhibitor was synthesized and tested in vivo. A single injection of the aminopyridazine-based inhibitor administered 6 h after injury attenuated brain tissue or neuronal biomarker loss measured, respectively, 1 week and 3 days later. Because aminopyridazine is a privileged structure in neuropharmacology, we determined the high-resolution crystal structure of a binary complex between the kinase domain and a molecular fragment of the DAPK inhibitor. The co-crystal structure describes a structural basis for interaction and provides a firm foundation for structure-assisted design of lead compounds with appropriate molecular properties for future drug development.

  16. Interaction domains in die-upset NdFeB magnets in dependence on the degree of deformation

    International Nuclear Information System (INIS)

    Khlopkov, K.; Gutfleisch, O.; Schaefer, R.; Hinz, D.; Mueller, K.-H.; Schultz, L.

    2004-01-01

    The magnetic domain structure of NdFeB magnets has been studied using high resolution, digitally enhanced Kerr-microscopy. Melt-spun NdFeB powder (MQU-F TM ) was hot pressed into fully dense samples and then hot deformed to axially textured magnets. Various degrees of deformation (height reduction) up to 76% have been realized. Pronounced interaction domains have been observed only in magnets, which were deformed to a degree of deformation of at least 52%. With increasing alignment of the grains the interaction domains become more and more visible and their size increases

  17. BWR - Spent Fuel Transport and Storage with the TNTM9/4 and TNTM24BH Casks

    International Nuclear Information System (INIS)

    Wattez, L.; Marguerat, Y.; Hoesli, C.

    2006-01-01

    The Swiss Nuclear Utilities have started in 2001 to store spent fuel in dry metallic dual-purpose casks at ZWILAG, the Swiss interim storage facility. BKW FMB Energy Ltd., the Muehleberg Nuclear Power Plant owner, is involved in this process and has elected to store its BWR spent fuel in a new high capacity dual-purpose cask, the TNeTeM24BH from the COGEMA Logistics/TRANSNUCLEAR TN TM 24 family. The Muehleberg BWR spent fuels are transported by road in a medium size shuttle transport cask and then transferred to a heavy transport/storage cask (dry transfer) in the hot cell of ZWILAG site. For that purpose, COGEMA Logistics designed and supplied: - Two shuttle casks, TN TM 9/4, mainly devoted to transport of spent fuel from Muehleberg NPP to ZWILAG. Licensed according to IAEA 1996, the TN TM 9/4 is a 40 ton transport cask, for 7 BWR high bum-up spent fuel assemblies. - A series of new high capacity dual-purpose casks, TN TM 24BH, holding 69 BWR spent fuels. Two transport campaigns took place in 2003 and 2004. For each campaign, ten TN TM 9/4 round trips are performed, and one TN TM 24BH is loaded. 5 additional TN TM 24BH are being manufactured for BKW, and the next transport campaigns are scheduled from 2006. The TN TM 24BH high capacity dual purpose cask and the TN TM 9/4 transport cask characteristics and capabilities will then be detailed. (authors)

  18. CX3CL1, a chemokine finely tuned to adhesion: critical roles of the stalk glycosylation and the membrane domain

    Directory of Open Access Journals (Sweden)

    Mariano A. Ostuni

    2014-11-01

    Full Text Available The multi-domain CX3CL1 transmembrane chemokine triggers leukocyte adherence without rolling and migration by presenting its chemokine domain (CD to its receptor CX3CR1. Through the combination of functional adhesion assays with structural analysis using FRAP, we investigated the functional role of the other domains of CX3CL1, i.e., its mucin stalk, transmembrane domain, and cytosolic domain. Our results indicate that the CX3CL1 molecular structure is finely adapted to capture CX3CR1 in circulating cells and that each domain has a specific purpose: the mucin stalk is stiffened by its high glycosylation to present the CD away from the membrane, the transmembrane domain generates the permanent aggregation of an adequate amount of monomers to guarantee adhesion and prevent rolling, and the cytosolic domain ensures adhesive robustness by interacting with the cytoskeleton. We propose a model in which quasi-immobile CX3CL1 bundles are organized to quickly generate adhesive patches with sufficiently high strength to capture CX3CR1+ leukocytes but with sufficiently low strength to allow their patrolling behavior.

  19. Drosophila CTCF tandemly aligns with other insulator proteins at the borders of H3K27me3 domains.

    Science.gov (United States)

    Van Bortle, Kevin; Ramos, Edward; Takenaka, Naomi; Yang, Jingping; Wahi, Jessica E; Corces, Victor G

    2012-11-01

    Several multiprotein DNA complexes capable of insulator activity have been identified in Drosophila melanogaster, yet only CTCF, a highly conserved zinc finger protein, and the transcription factor TFIIIC have been shown to function in mammals. CTCF is involved in diverse nuclear activities, and recent studies suggest that the proteins with which it associates and the DNA sequences that it targets may underlie these various roles. Here we show that the Drosophila homolog of CTCF (dCTCF) aligns in the genome with other Drosophila insulator proteins such as Suppressor of Hairy wing [SU(HW)] and Boundary Element Associated Factor of 32 kDa (BEAF-32) at the borders of H3K27me3 domains, which are also enriched for associated insulator proteins and additional cofactors. RNAi depletion of dCTCF and combinatorial knockdown of gene expression for other Drosophila insulator proteins leads to a reduction in H3K27me3 levels within repressed domains, suggesting that insulators are important for the maintenance of appropriate repressive chromatin structure in Polycomb (Pc) domains. These results shed new insights into the roles of insulators in chromatin domain organization and support recent models suggesting that insulators underlie interactions important for Pc-mediated repression. We reveal an important relationship between dCTCF and other Drosophila insulator proteins and speculate that vertebrate CTCF may also align with other nuclear proteins to accomplish similar functions.

  20. All-solid-state lithium-sulfur battery based on a nanoconfined LiBH4 electrolyte

    DEFF Research Database (Denmark)

    Das, Supti; Ngene, Peter; Norby, Poul

    2016-01-01

    In this work we characterize all-solid-state lithium-sulfur batteries based on nano-confined LiBH4 in mesoporous silica as solid electrolytes. The nano-confined LiBH4 has fast ionic lithium conductivity at room temperature, 0.1 mScm-1, negligible electronic conductivity and its cationic transport...... number (t+ = 0.96), close to unity, demonstrates a purely cationic conductor. The electrolyte has an excellent stability against lithium metal. The behavior of the batteries is studied by cyclic voltammetry and repeated charge/discharge cycles in galvanostatic conditions. The batteries show very good...

  1. Water adsorption induced in-plane domain switching on BaTiO{sub 3} surface

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.; Bai, Y.; Su, Y. J., E-mail: yjsu@ustb.edu.cn [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing 100083 (China); Wang, B. C. [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing 100083 (China); Multiscale Materials Modelling group, Department of Materials and Engineering, Royal Institute of Technology, SE-10044 Stockholm (Sweden)

    2015-09-07

    In this study, the influences of the adsorption of water molecules on the changes in the atomic and electric structures of BaTiO{sub 3} surface were investigated using ab initio calculation. Water molecules are molecularly and dissociatively adsorbed on the BaTiO{sub 3} surface, which makes electrons transfer from water molecules to the BaTiO{sub 3} surface. The redistribution of electrons in the BaTiO{sub 3} surface layers weakens the Ba-O interactions and strengthens the Ti-O interactions, so that the Ti atom shifts in TiO{sub 2} plane, i.e., an in-plane domain switching. The adsorption of water molecules on BaTiO{sub 3} surfaces also results in a reduction in the surface rumpling.

  2. Symmetrical refolding of protein domains and subunits: example of the dimeric two-domain 3-isopropylmalate dehydrogenases.

    Science.gov (United States)

    Gráczer, Eva; Varga, Andrea; Melnik, Bogdan; Semisotnov, Gennady; Závodszky, Péter; Vas, Mária

    2009-02-10

    The refolding mechanism of the homodimeric two-domain 3-isopropylmalate dehydrogenase (IPMDH) from the organisms adapted to different temperatures, Thermus thermophilus (Tt), Escherichia coli (Ec), and Vibrio sp. I5 (Vib), is described. In all three cases, instead of a self-template mechanism, the high extent of symmetry and cooperativity in folding of subunits and domains have been concluded from the following experimental findings: The complex time course of refolding, monitored by Trp fluorescence, consists of a fast (the rate constant varies as 16.5, 25.0, and 11.7 min-1 in the order of Tt, Ec, and Vib IPMDHs) and a slow (the rate constants are 0.11, 0.80, and 0.23 min-1 for the three different species) first-order process. However, a burst increase of Trp fluorescence anisotropy to the value of the native states indicates that in all three cases the association of the two polypeptide chains occurs at the beginning of refolding. This dimeric species binds the substrate IPM, but the native-like interactions of the tertiary and quaternary structures are only formed during the slow phase of refolding, accompanied by further increase of protein fluorescence and appearance of FRET between Trp side chain(s) and the bound NADH. Joining the contacting arms of each subunit also takes place exclusively during this slow phase. To monitor refolding of each domain within the intact molecule of T. thermophilus IPMDH, Trp's (located in separate domains) were systematically replaced with Phe's. The refolding processes of the mutants were followed by measuring changes in Trp fluorescence and in FRET between the particular Trp and NADH. The high similarity of time courses (both in biphasicity and in their rates) strongly suggests cooperative folding of the domains during formation of the native three-dimensional structure of IPMDH.

  3. Interaction of moving domain boundaries with a magnetic field in GdΛ2 (MoOΛ4)Λ3

    International Nuclear Information System (INIS)

    Popov, S.A.; Tikhomirova, N.A.; Phlerova, S.A.

    1985-01-01

    Results obtained during the investigation of gadolinium molybdate Gd 2 (MoO 4 ) 3 (GMo) crystal repolarization by the electric field at the background of simultaneous action of permanent magnetic fields with a strength up to 20kOe are presented. The magnetic field is oriented in different directions in respect to crystallographic sample directions. Polarization- optical control of a domain structure was conducted in synchronism with sample repolarization. Study of the effect of magnetic field on integral rate of domain boundaries motion in GMO has shown, that a speed of domain wall motion changes as a function of magnetic field orientation with respect to moving domain wall. So, if the wall is oriented paralled to magnetic field force lines, at H=20kOe speed of its motion increases a 1.2-1.5 times, and decreases a 2-2.5 times in the case of perpendicular orientation

  4. Induction of Apoptosis by the Severe Acute Respiratory Syndrome Coronavirus 7a Protein Is Dependent on Its Interaction with the Bcl-XL Protein▿

    Science.gov (United States)

    Tan, Ying-Xim; Tan, Timothy H. P.; Lee, Marvin J.-R.; Tham, Puay-Yoke; Gunalan, Vithiagaran; Druce, Julian; Birch, Chris; Catton, Mike; Fu, Nai Yang; Yu, Victor C.; Tan, Yee-Joo

    2007-01-01

    The severe acute respiratory syndrome coronavirus (SARS-CoV) 7a protein, which is not expressed by other known coronaviruses, can induce apoptosis in various cell lines. In this study, we show that the overexpression of Bcl-XL, a prosurvival member of the Bcl-2 family, blocks 7a-induced apoptosis, suggesting that the mechanism for apoptosis induction by 7a is at the level of or upstream from the Bcl-2 family. Coimmunoprecipitation experiments showed that 7a interacts with Bcl-XL and other prosurvival proteins (Bcl-2, Bcl-w, Mcl-1, and A1) but not with the proapoptotic proteins (Bax, Bak, Bad, and Bid). A good correlation between the abilities of 7a deletion mutants to induce apoptosis and to interact with Bcl-XL was observed, suggesting that 7a triggers apoptosis by interfering directly with the prosurvival function of Bcl-XL. Interestingly, amino acids 224 and 225 within the C-terminal transmembrane domain of Bcl-XL are essential for the interaction with the 7a protein, although the BH3 domain of Bcl-XL also contributes to this interaction. In addition, fractionation experiments showed that 7a colocalized with Bcl-XL at the endoplasmic reticulum as well as the mitochondria, suggesting that they may form complexes in different membranous compartments. PMID:17428862

  5. Photometry of the SW Sextantis-type nova-like BH Lyncis in high state

    Science.gov (United States)

    Stanishev, V.; Kraicheva, Z.; Genkov, V.

    2006-08-01

    Aims.We present a photometric study of the deeply eclipsing SW Sex-type nova-like cataclysmic variable star BH Lyn. Methods: .Time-resolved V-band CCD photometry was obtained for seven nights between 1999 and 2004. Results: .We determined 11 new eclipse timings of BH Lyn and derived a refined orbital ephemeris with an orbital period of 0.155875577(14) °. During the observations, BH Lyn was in high-state with V≃15.5 mag. The star presents ~1.5 mag deep eclipses with mean full-width at half-flux of 0.0683(±0.0054)P_orb. The eclipse shape is highly variable, even changing form cycle to cycle. This is most likely due to accretion disc surface brightness distribution variations, most probably caused by strong flickering. Time-dependent accretion disc self-occultation or variations of the hot spot(s) intensity are also possible explanations. Negative superhumps with period of ˜0.145 ° are detected in two long runs in 2000. A possible connection between SW Sex and negative superhump phenomena through the presence of tilted accretion disc is discussed, and a way to observationally test this is suggested.

  6. Studies of biological effects of fluoride stannous and UV short in Escherichia coli BH110

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira da C, R., E-mail: rogercosta1@hotmail.com [Federal Institute of Education, Science and Technology of Goias, Campus Uruacu, Rua Formosa Qd 28 e 29, Loteamento Santana, 76400-000 Uruacu, Goias (Brazil)

    2015-10-15

    Full text: The amount of UV rays on the Earth's surface has increased due to depletion of the ozone layer, and this has worried society, since these radiation although not considered ionizing can cause damage to biological membrane and especially to DNA. The DNA has cell repair mechanisms that can work in lesions caused by electromagnetic radiation such as ultraviolet -short (UV C)and agents causing oxidative stress, such as tin salts. Among the repair mechanisms can highlight the adaptive repair, which consists of smaller doses to cells pre-exposure of an oxidizing agent, and when these cells are exposed to larger doses of the agent even if there is a reduction in mortality rate which leads to complete that repair mechanisms are activated in the pre-exposure reducing cell mortality. Several publications have shown the genotoxic effects of stannous salts such as stannous fluoride (SnF{sub 2}), which shows the importance of the study, since these salts are widely used in industry as components in toothpastes and mouthwashes. So we check whether pretreatment with UV C is able to induce adaptive response reducing the cytotoxic effects caused by exposure of the strains to SnF{sub 2}. We use a strain of Escherichia coli BH110 (BH110 E. coli) deficient in three genes (fpg, nfo and xth) involved in the excision repair bases. To verify the induction of adaptive response to strain BH110 was exposed to various doses of UV C and then treated with SnF{sub 2} a concentration of 110 u M. Our results showed that the LD10 of strain BH110 is 20 J/m{sup 2} and pre-treatment with UV C does not seem to induce adaptive repair in BH110 strains. (Author)

  7. Discovery of novel interacting partners of PSMD9, a proteasomal chaperone: Role of an Atypical and versatile PDZ-domain motif interaction and identification of putative functional modules

    Directory of Open Access Journals (Sweden)

    Nikhil Sangith

    2014-01-01

    Full Text Available PSMD9 (Proteasome Macropain non-ATPase subunit 9, a proteasomal assembly chaperone, harbors an uncharacterized PDZ-like domain. Here we report the identification of five novel interacting partners of PSMD9 and provide the first glimpse at the structure of the PDZ-domain, including the molecular details of the interaction. We based our strategy on two propositions: (a proteins with conserved C-termini may share common functions and (b PDZ domains interact with C-terminal residues of proteins. Screening of C-terminal peptides followed by interactions using full-length recombinant proteins, we discovered hnRNPA1 (an RNA binding protein, S14 (a ribosomal protein, CSH1 (a growth hormone, E12 (a transcription factor and IL6 receptor as novel PSMD9-interacting partners. Through multiple techniques and structural insights, we clearly demonstrate for the first time that human PDZ domain interacts with the predicted Short Linear Sequence Motif (SLIM at the C-termini of the client proteins. These interactions are also recapitulated in mammalian cells. Together, these results are suggestive of the role of PSMD9 in transcriptional regulation, mRNA processing and editing, hormone and receptor activity and protein translation. Our proof-of-principle experiments endorse a novel and quick method for the identification of putative interacting partners of similar PDZ-domain proteins from the proteome and for discovering novel functions.

  8. Investigating CFTR and KCa3.1 Protein/Protein Interactions.

    Directory of Open Access Journals (Sweden)

    Hélène Klein

    Full Text Available In epithelia, Cl- channels play a prominent role in fluid and electrolyte transport. Of particular importance is the cAMP-dependent cystic fibrosis transmembrane conductance regulator Cl- channel (CFTR with mutations of the CFTR encoding gene causing cystic fibrosis. The bulk transepithelial transport of Cl- ions and electrolytes needs however to be coupled to an increase in K+ conductance in order to recycle K+ and maintain an electrical driving force for anion exit across the apical membrane. In several epithelia, this K+ efflux is ensured by K+ channels, including KCa3.1, which is expressed at both the apical and basolateral membranes. We show here for the first time that CFTR and KCa3.1 can physically interact. We first performed a two-hybrid screen to identify which KCa3.1 cytosolic domains might mediate an interaction with CFTR. Our results showed that both the N-terminal fragment M1-M40 of KCa3.1 and part of the KCa3.1 calmodulin binding domain (residues L345-A400 interact with the NBD2 segment (G1237-Y1420 and C- region of CFTR (residues T1387-L1480, respectively. An association of CFTR and F508del-CFTR with KCa3.1 was further confirmed in co-immunoprecipitation experiments demonstrating the formation of immunoprecipitable CFTR/KCa3.1 complexes in CFBE cells. Co-expression of KCa3.1 and CFTR in HEK cells did not impact CFTR expression at the cell surface, and KCa3.1 trafficking appeared independent of CFTR stimulation. Finally, evidence is presented through cross-correlation spectroscopy measurements that KCa3.1 and CFTR colocalize at the plasma membrane and that KCa3.1 channels tend to aggregate consequent to an enhanced interaction with CFTR channels at the plasma membrane following an increase in intracellular Ca2+ concentration. Altogether, these results suggest 1 that the physical interaction KCa3.1/CFTR can occur early during the biogenesis of both proteins and 2 that KCa3.1 and CFTR form a dynamic complex, the formation of which

  9. The BARD1 C-Terminal Domain Structure and Interactions with Polyadenylation Factor CstF-50

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Ross A.; Lee, Megan S.; Tsutakawa, Susan E.; Williams, R. Scott; Tainer, John A.; Glover, J. N. Mark

    2009-07-13

    The BARD1 N-terminal RING domain binds BRCA1 while the BARD1 C-terminal ankyrin and tandem BRCT repeat domains bind CstF-50 to modulate mRNA processing and RNAP II stability in response to DNA damage. Here we characterize the BARD1 structural biochemistry responsible for CstF- 50 binding. The crystal structure of the BARD1 BRCT domain uncovers a degenerate phosphopeptide binding pocket lacking the key arginine required for phosphopeptide interactions in other BRCT proteins.Small angle X-ray scattering together with limited proteolysis results indicates that ankyrin and BRCT domains are linked by a flexible tether and do not adopt a fixed orientation relative to one another. Protein pull-down experiments utilizing a series of purified BARD1 deletion mutants indicate that interactions between the CstF-50 WD-40 domain and BARD1 involve the ankyrin-BRCT linker but do not require ankyrin or BRCT domains. The structural plasticity imparted by the ANK-BRCT linker helps to explain the regulated assembly of different protein BARD1 complexes with distinct functions in DNA damage signaling including BARD1-dependent induction of apoptosis plus p53 stabilization and interactions. BARD1 architecture and plasticity imparted by the ANK-BRCT linker are suitable to allow the BARD1 C-terminus to act as a hub with multiple binding sites to integrate diverse DNA damage signals directly to RNA polymerase.

  10. Interactions of polyomavirus middle T with the SH2 domains of the pp85 subunit of phosphatidylinositol-3-kinase.

    OpenAIRE

    Yoakim, M; Hou, W; Liu, Y; Carpenter, C L; Kapeller, R; Schaffhausen, B S

    1992-01-01

    The binding of phosphatidylinositol-3-kinase to the polyomavirus middle T antigen is facilitated by tyrosine phosphorylation of middle T on residue 315. The pp85 subunit of phosphatidylinositol-3-kinase contains two SH2 domains, one in the middle of the molecule and one at the C terminus. When assayed by blotting with phosphorylated middle T, the more N-terminal SH2 domain is responsible for binding to middle T. When assayed in solution with glutathione S transferase fusions, both SH2s are ca...

  11. Interaction of the superconducting domains induced by external electric field with electromagnetic waves

    International Nuclear Information System (INIS)

    Shapiro, B.Y.

    1992-01-01

    The behavior of a superconductor in time-independent electric field perpendicular to the surface and in the external electromagnetic wave is theoretically investigated. A new type of the resonance interaction between superconducting domains localized along the magnetic field (if the superconducting phase transition takes place in the external magnetic field perpendicular to the surface) and electromagnetic waves is predicted. The surface impedance of the superconductor with domains is calculated. It is shown that the real part of the impedance has a saturation if the skin length equals the domain size. (orig.)

  12. The intervening domain from MeCP2 enhances the DNA affinity of the methyl binding domain and provides an independent DNA interaction site.

    Science.gov (United States)

    Claveria-Gimeno, Rafael; Lanuza, Pilar M; Morales-Chueca, Ignacio; Jorge-Torres, Olga C; Vega, Sonia; Abian, Olga; Esteller, Manel; Velazquez-Campoy, Adrian

    2017-01-31

    Methyl-CpG binding protein 2 (MeCP2) preferentially interacts with methylated DNA and it is involved in epigenetic regulation and chromatin remodelling. Mutations in MeCP2 are linked to Rett syndrome, the leading cause of intellectual retardation in girls and causing mental, motor and growth impairment. Unstructured regions in MeCP2 provide the plasticity for establishing interactions with multiple binding partners. We present a biophysical characterization of the methyl binding domain (MBD) from MeCP2 reporting the contribution of flanking domains to its structural stability and dsDNA interaction. The flanking disordered intervening domain (ID) increased the structural stability of MBD, modified its dsDNA binding profile from an entropically-driven moderate-affinity binding to an overwhelmingly enthalpically-driven high-affinity binding. Additionally, ID provided an additional site for simultaneously and autonomously binding an independent dsDNA molecule, which is a key feature linked to the chromatin remodelling and looping activity of MeCP2, as well as its ability to interact with nucleosomes replacing histone H1. The dsDNA interaction is characterized by an unusually large heat capacity linked to a cluster of water molecules trapped within the binding interface. The dynamics of disordered regions together with extrinsic factors are key determinants of MeCP2 global structural properties and functional capabilities.

  13. The Fas-associated death domain protein/caspase-8/c-FLIP signaling pathway is involved in TNF-induced activation of ERK

    International Nuclear Information System (INIS)

    Lueschen, Silke; Falk, Markus; Scherer, Gudrun; Ussat, Sandra; Paulsen, Maren; Adam-Klages, Sabine

    2005-01-01

    The cytokine TNF activates multiple signaling pathways leading to cellular responses ranging from proliferation and survival to apoptosis. While most of these pathways have been elucidated in detail over the past few years, the molecular mechanism leading to the activation of the MAP kinases ERK remains ill defined and is controversially discussed. Therefore, we have analyzed TNF-induced ERK activation in various human and murine cell lines and show that it occurs in a cell-type-specific manner. In addition, we provide evidence for the involvement of the signaling components Fas-associated death domain protein (FADD), caspase-8, and c-FLIP in the pathway activating ERK in response to TNF. This conclusion is based on the following observations: (I) Overexpression of FADD, caspase-8, or a c-FLIP protein containing the death effector domains only leads to enhanced and prolonged ERK activation after TNF treatment. (II) TNF-induced ERK activation is strongly diminished in the absence of FADD. Interestingly, the enzymatic function of caspase-8 is not required for TNF-induced ERK activation. Additional evidence suggests a role for this pathway in the proliferative response of murine fibroblasts to TNF

  14. Endophilin-A1 BAR domain interaction with arachidonyl CoA.

    Science.gov (United States)

    Petoukhov, Maxim V; Weissenhorn, Winfried; Svergun, Dmitri I

    2014-01-01

    Endophilin-A1 belongs to the family of BAR domain containing proteins that catalyze membrane remodeling processes via sensing, inducing and stabilizing membrane curvature. We show that the BAR domain of endophilin-A1 binds arachidonic acid and molds its coenzyme A (CoA) activated form, arachidonyl-CoA into a defined structure. We studied low resolution structures of endophilin-A1-BAR and its complex with arachidonyl-CoA in solution using synchrotron small-angle X-ray scattering (SAXS). The free endophilin-A1-BAR domain is shown to be dimeric at lower concentrations but builds tetramers and higher order complexes with increasing concentrations. Extensive titration SAXS studies revealed that the BAR domain produces a homogenous complex with the lipid micelles. The structural model of the complexes revealed two arachidonyl-CoA micelles bound to the distal arms of an endophilin-A1-BAR dimer. Intriguingly, the radius of the bound micelles significantly decreases compared to that of the free micelles, and this structural result may provide hints on the potential biological relevance of the endophilin-A1-BAR interaction with arachidonyl CoA.

  15. Investigating the Role of Large-Scale Domain Dynamics in Protein-Protein Interactions.

    Science.gov (United States)

    Delaforge, Elise; Milles, Sigrid; Huang, Jie-Rong; Bouvier, Denis; Jensen, Malene Ringkjøbing; Sattler, Michael; Hart, Darren J; Blackledge, Martin

    2016-01-01

    Intrinsically disordered linkers provide multi-domain proteins with degrees of conformational freedom that are often essential for function. These highly dynamic assemblies represent a significant fraction of all proteomes, and deciphering the physical basis of their interactions represents a considerable challenge. Here we describe the difficulties associated with mapping the large-scale domain dynamics and describe two recent examples where solution state methods, in particular NMR spectroscopy, are used to investigate conformational exchange on very different timescales.

  16. Repeated Exposure of Epithelial Cells to Apoptotic Cells Induces the Specific Selection of an Adaptive Phenotype: Implications for Tumorigenesis.

    Science.gov (United States)

    Feng, Lanfei; Vujicic, Snezana; Dietrich, Michael E; Litbarg, Natalia; Setty, Suman; Antoni, Angelika; Rauch, Joyce; Levine, Jerrold S

    2018-05-16

    The consequences of apoptosis extend beyond mere death of the cell. We have shown that receptor-mediated recognition of apoptotic target cells by viable kidney proximal tubular epithelial cells (PTECs) inhibits PTEC proliferation, growth, and survival. Here we tested the hypothesis that continual exposure to apoptotic targets can induce a phenotypic change in responding PTECs, as in other instances of natural selection. In particular, we demonstrate that repeated exposure to apoptotic targets leads to emergence of a PTEC line (denoted BU.MPT SEL ) resistant to apoptotic target-induced death. Resistance is exquisitely specific. Not only are BU.MPT SEL responders fully resistant to apoptotic target-induced death (~85% survival versus exposure in selected versus non-selected responders indicated that the acquired resistance of BU.MPT SEL cells lies in a regulatory step affecting the generation of the pro-apoptotic protein, truncated BH3 interacting-domain death agonist (tBID), most likely at the level of BID cleavage by caspase-8. This specific adaptation has especial relevance for cancer, in which the prominence and persistence of cell death entail magnification of the post-mortem effects of apoptotic cells. Just as cancer cells acquire specific resistance to chemotherapeutic agents, we propose that cancer cells may also adapt to their ongoing exposure to apoptotic targets. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Dynamic domains of amyloid fibrils can be site-specifically assigned with proton detected 3D NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Falk, Alexander S.; Siemer, Ansgar B., E-mail: asiemer@usc.edu [Keck School of Medicine of USC, Department of Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute (United States)

    2016-11-15

    Several amyloid fibrils have cores framed by highly dynamic, intrinsically disordered, domains that can play important roles for function and toxicity. To study these domains in detail using solid-state NMR spectroscopy, site-specific resonance assignments are required. Although the rapid dynamics of these domains lead to considerable averaging of orientation-dependent NMR interactions and thereby line-narrowing, the proton linewidths observed in these samples is far larger than what is regularly observed in solution. Here, we show that it is nevertheless possible to record 3D HNCO, HNCA, and HNcoCA spectra on these intrinsically disordered domains and to obtain site-specific assignments.

  18. Dynamic domains of amyloid fibrils can be site-specifically assigned with proton detected 3D NMR spectroscopy

    International Nuclear Information System (INIS)

    Falk, Alexander S.; Siemer, Ansgar B.

    2016-01-01

    Several amyloid fibrils have cores framed by highly dynamic, intrinsically disordered, domains that can play important roles for function and toxicity. To study these domains in detail using solid-state NMR spectroscopy, site-specific resonance assignments are required. Although the rapid dynamics of these domains lead to considerable averaging of orientation-dependent NMR interactions and thereby line-narrowing, the proton linewidths observed in these samples is far larger than what is regularly observed in solution. Here, we show that it is nevertheless possible to record 3D HNCO, HNCA, and HNcoCA spectra on these intrinsically disordered domains and to obtain site-specific assignments.

  19. Transcriptional profiling of nitrogen fixation and the role of NifA in the diazotrophic endophyte Azoarcus sp. strain BH72.

    Directory of Open Access Journals (Sweden)

    Abhijit Sarkar

    Full Text Available BACKGROUND: The model endophyte Azoarcus sp. strain BH72 is known to contribute fixed nitrogen to its host Kallar grass and also expresses nitrogenase genes endophytically in rice seedlings. Availability of nitrogen is a signal regulating the transcription of nitrogenase genes. Therefore, we analysed global transcription in response to differences in the nitrogen source. METHODOLOGY/PRINCIPAL FINDINGS: A DNA microarray, comprising 70-mer oligonucleotides representing 3989 open reading frames of the genome of strain BH72, was used for transcriptome studies. Transcription profiles of cells grown microaerobically on N2 versus ammonium were compared. Expression of 7.2% of the genes was significantly up-regulated, and 5.8% down-regulated upon N2 fixation, respectively. A parallel genome-wide prediction of σ(54-type promoter elements mapped to the upstream region of 38 sequences of which 36 were modulated under the N2 response. In addition to modulation of genes related to N2 fixation, the expressions of gene clusters that might be related to plant-microbe interaction and of several transcription factors were significantly enhanced. While comparing under N2-fixation conditions the transcriptome of wild type with a nifLA(- insertion mutant, NifA being the essential transcriptional activator for nif genes, 24.5% of the genome was found to be affected in expression. A genome-wide prediction of 29 NifA binding sequences matched to 25 of the target genes whose expression was differential during microarray analysis, some of which were putatively negatively regulated by NifA. For selected genes, differential expression was corroborated by real time RT-PCR studies. CONCLUSION/SIGNIFICANCE: Our data suggest that life under conditions of nitrogen fixation is an important part of the lifestyle of strain BH72 in roots, as a wide range of genes far beyond the nif regulon is modulated. Moreover, the NifA regulon in strain BH72 appears to encompass a wider range of

  20. STAR-JET INTERACTIONS AND GAMMA-RAY OUTBURSTS FROM 3C454.3

    Energy Technology Data Exchange (ETDEWEB)

    Khangulyan, D. V. [Institute of Space and Astronautical Science/JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Barkov, M. V. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Bosch-Ramon, V. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E-08028 Barcelona (Spain); Aharonian, F. A. [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Dorodnitsyn, A. V. [Laboratory for High Energy Astrophysics, NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States)

    2013-09-10

    We propose a model to explain the ultra-bright GeV gamma-ray flares observed from the blazar 3C454.3. The model is based on the concept of a relativistic jet interacting with compact gas condensations produced when a star (a red giant) crosses the jet close to the central black hole. The study includes an analytical treatment of the evolution of the envelope lost by the star within the jet, and calculations of the related high-energy radiation. The model readily explains the day-long that varies on timescales of hours, GeV gamma-ray flare from 3C454.3, observed during 2010 November on top of a plateau lasting weeks. In the proposed scenario, the plateau state is caused by a strong wind generated by the heating of the stellar atmosphere due to nonthermal particles accelerated at the jet-star interaction region. The flare itself could be produced by a few clouds of matter lost by the red giant after the initial impact of the jet. In the framework of the proposed scenario, the observations constrain the key model parameters of the source, including the mass of the central black hole: M{sub BH} {approx_equal} 10{sup 9} M{sub Sun }, the total jet power: L{sub j} {approx_equal} 10{sup 48} erg s{sup -1}, and the Doppler factor of the gamma-ray emitting clouds: {delta} {approx_equal} 20. Whereas we do not specify the particle acceleration mechanisms, the potential gamma-ray production processes are discussed and compared in the context of the proposed model. We argue that synchrotron radiation of protons has certain advantages compared to other radiation channels of directlyaccelerated electrons. An injected proton distribution {proportional_to}E {sup -1} or harder below the relevant energies would be favored to alleviate the tight energetic constraints and to avoid the violation of the observational low-energy constraints.

  1. Time-domain soil-structure interaction analysis of nuclear facilities

    International Nuclear Information System (INIS)

    Coleman, Justin L.; Bolisetti, Chandrakanth; Whittaker, Andrew S.

    2016-01-01

    The Nuclear Regulatory Commission (NRC) regulation 10 CFR Part 50 Appendix S requires consideration of soil-structure interaction (SSI) in nuclear power plant (NPP) analysis and design. Soil-structure interaction analysis for NPPs is routinely carried out using guidance provided in the ASCE Standard 4-98 titled “Seismic Analysis of Safety-Related Nuclear Structures and Commentary”. This Standard, which is currently under revision, provides guidance on linear seismic soil-structure-interaction (SSI) analysis of nuclear facilities using deterministic and probabilistic methods. A new appendix has been added to the forthcoming edition of ASCE Standard 4 to provide guidance for time-domain, nonlinear SSI (NLSSI) analysis. Nonlinear SSI analysis will be needed to simulate material nonlinearity in soil and/or structure, static and dynamic soil pressure effects on deeply embedded structures, local soil failure at the foundation-soil interface, nonlinear coupling of soil and pore fluid, uplift or sliding of the foundation, nonlinear effects of gaps between the surrounding soil and the embedded structure and seismic isolation systems, none of which can be addressed explicitly at present. Appendix B of ASCE Standard 4 provides general guidance for NLSSI analysis but will not provide a methodology for performing the analysis. This paper provides a description of an NLSSI methodology developed for application to nuclear facilities, including NPPs. This methodology is described as series of sequential steps to produce reasonable results using any time-domain numerical code. These steps require some numerical capabilities, such as nonlinear soil constitutive models, which are also described in the paper.

  2. Organization of functional domains in the docking protein p130Cas

    International Nuclear Information System (INIS)

    Nasertorabi, Fariborz; Garcia-Guzman, Miguel; Briknarova, Klara; Larsen, Elise; Havert, Marnie L.; Vuori, Kristiina; Ely, Kathryn R.

    2004-01-01

    The docking protein p130Cas becomes phosphorylated upon cell adhesion to extracellular matrix proteins, and is thought to play an essential role in cell transformation. Cas transmits signals through interactions with the Src-homology 3 (SH3) and Src-homology 2 domains of FAK or v-Crk signaling molecules, or with 14-3-3 protein, as well as phosphatases PTP1B and PTP-PEST. The large (130 kDa), multi-domain Cas molecule contains an SH3 domain, a Src-binding domain, a serine-rich protein interaction region, and a C-terminal region that participates in protein interactions implicated in antiestrogen resistance in breast cancer. In this study, as part of a long-term goal to examine the protein interactions of Cas by X-ray crystallography and nuclear magnetic resonance spectroscopy, molecular constructs were designed to express two adjacent domains, the serine-rich domain and the Src-binding domain, that each participate in intermolecular contacts dependent on protein phosphorylation. The protein products are soluble, homogeneous, monodisperse, and highly suitable for structural studies to define the role of Cas in integrin-mediated cell signaling

  3. Casp8p41: The Protean Mediator of Death in CD4 T-cells that Replicate HIV

    Directory of Open Access Journals (Sweden)

    Rahul Sampath

    2016-01-01

    Full Text Available HIV cure is now the focus of intense research after Timothy Ray Brown (the Berlin patient set the precedent of being the first and only person cured. A major barrier to achieving this goal on a meaningful scale is an elimination of the latent reservoir, which is thought to comprise CD4-positive cells that harbor integrated, replication-competent HIV provirus. These cells do not express viral proteins, are indistinguishable from uninfected CD4 cells, and are thought to be responsible for HIV viral rebound–-that occurs within weeks of combination anti retroviral therapy (cART interruption. Modalities to engineer transcriptional stimulation (reactivation of this dormant integrated HIV provirus, leading to expression of cytotoxic viral proteins, are thought to be a specific way to eradicate the latently infected CD4 pool and are becoming increasingly relevant in the era of HIV cure. HIV protease is one such protein produced after HIV reactivation that cleaves procaspase-8 to generate a novel protein Casp8p41. Casp8p41 then binds to the BH3 domain of BAK, leading to BAK oligomerization, mitochondrial depolarization, and apoptosis. In central memory T cells (TCMs from HIV-infected patients, an elevated Bcl-2/procaspase-8 ratio was observed, and Casp8p41 binding to Bcl-2 was associated with a lack of reactivation-induced cell death. This was reversed by priming cells with a specific Bcl-2 antagonist prior to reactivation, resulting in increased cell death and decreased HIV DNA in a Casp8p41-dependent pathway. This review describes the biology, clinical relevance, and implications of Casp8p41 for a potential cure.

  4. Improved metabolic control in tetrahydrobiopterin (BH4), responsive phenylketonuria with sapropterin administered in two divided doses vs. a single daily dose.

    Science.gov (United States)

    Kör, Deniz; Yılmaz, Berna Şeker; Bulut, Fatma Derya; Ceylaner, Serdar; Mungan, Neslihan Önenli

    2017-07-26

    Phenylketonuria (PKU) often requires a lifelong phenylalanine (Phe)-restricted diet. Introduction of 6R-tetrahydrobiopterin (BH4) has made a huge difference in the diets of patients with PKU. BH4 is the co-factor of the enzyme phenylalanine hydroxylase (PAH) and improves PAH activity and, thus, Phe tolerance in the diet. A limited number of published studies suggest a pharmacodynamic profile of BH4 more suitable to be administered in divided daily doses. After a 72-h BH4 loading test, sapropterin was initiated in 50 responsive patients. This case-control study was conducted by administering the same daily dose of sapropterin in group 1 (n=24) as a customary single dose or in two divided doses in group 2 (n=26) over 1 year. Mean daily consumption of Phe increased significantly after the first year of BH4 treatment in group 2 compared to group 1 (p<0.05). At the end of the first year of treatment with BH4, another dramatic difference observed between the two groups was the ability to transition to a Phe-free diet. Eight patients from group 2 and two from group 1 could quit dietary restriction. When given in two divided daily doses, BH4 was more efficacious than a single daily dose in increasing daily Phe consumption, Phe tolerance and the ability to transition to a Phe-unrestricted diet at the end of the first year of treatment.

  5. Preparation of Au nanosheets supported on Ni foam and its electrocatalytic performance towards NaBH4 oxidation

    International Nuclear Information System (INIS)

    Yang, Fan; Cheng, Kui; Wang, Guiling; Cao, Dianxue

    2015-01-01

    Highlights: • The unique Au nanosheets are electrodeposited uniformly on Ni foam substrate. • Au NSs/Ni foam electrode shows high catalytic activity for NaBH 4 electrooxidation. • The surface of a single Au sheet is consisted of many nano-scale corrugations. - Abstract: The unique Au nanosheets (Au NSs) are electrodeposited uniformly on Ni foam substrate via a one-step potentiostatic electrodeposition technique. The electrode is characterized by scanning electron microscopy equipped with energy dispersive X-ray spectrometer and X-ray diffractometer. It shows a unique open structure allowing the full utilization of Au surface active sites. NaBH 4 electrooxidation in KOH solution on the Au NSs/Ni foam electrode are studied by linear sweep voltammetry and chronoamperometry. The electrode exhibits a high catalytic performance outperforming the Au particles made by the same method. At the oxidation potential of 0 V, the current density of 827 mA cm −2 can be achieved on Au NSs/Ni foam electrode, and only 219 mA cm −2 was obtained on Au NPs/Ni foam electrode, indicating that the catalytic activity is increased by 278%, which is attributed to the porous 3D structure, ensuring the full utilization of Au surfaces. Besides, H 2 generated by NaBH 4 hydrolysis can quickly diffuse away from the electrode, preventing surface active sites of Au from blocking by adsorbed gas bubbles

  6. FH3, a domain found in formins, targets the fission yeast formin Fus1 to the projection tip during conjugation

    DEFF Research Database (Denmark)

    Petersen, J; Nielsen, O; Egel, R

    1998-01-01

    of the late G2 cells in a vegetatively growing population. Expression of both FH3-GFP fusions also affected cytokinesis. Overexpression of the spindle pole body component Sad1 altered the distribution of both Sad1 and the FH3-GFP domain. Together these data suggest that proteins at multiple sites can interact...... is required for conjugation, and is localized to the projection tip in cells of mating pairs. We replaced genomic fus1+ with green fluorescent protein (GFP)- tagged versions that lacked either the FH1, FH2, or FH3 domain. Deletion of any FH domain essentially abolished mating. FH3, but neither FH1 nor FH2......, was required for Fus1 localization. An FH3 domain-GFP fusion protein localized to the projection tips of mating pairs. Thus, the FH3 domain alone can direct protein localization. The FH3 domains of both Fus1 and the S. pombe cytokinesis formin Cdc12 were able to localize GFP to the spindle pole body in half...

  7. Enhanced catalytic performance in hydrogen generation from NaBH4 hydrolysis by super porous cryogel supported Co and Ni catalysts

    Science.gov (United States)

    Seven, Fahriye; Sahiner, Nurettin

    2014-12-01

    The neutral 3-D superporous cryogel is prepared from a poly(acrylamide) (p(AAm)) hydrogel network modified with an amidoximation reaction to induce chemical changes to produce superporous amidoximated-p(AAm) (amid-p(AAm)) cryogel. The newly-formed strongly ionizable matrices can readily absorb metal ions such as Co(II) and Ni(II) enabling in situ preparation of corresponding metal nanoparticles by NaBH4 treatments. It is found that the superporous amid-p(AAm)-Co cryogel composite is very effective as a catalyst for H2 generation from hydrolysis of NaBH4 in alkaline medium. Furthermore, it is demonstrated that the metal ion loading capacity and catalytic activity of superporous amid-p(AAm)-Co cryogel composites increased with 2nd and 3rd Co(II) ion loading and reduction cycles. The hydrogen generation rate of p(AAm)-Co metal composites is increased to 1926.3 ± 1.1 from 1130.2 ± 1.5 (mL H2) (min)-1 (g of M)-1. The effect of various parameters such as porosity, metal type, the number of reloading and reduction cycles of the metal ion, and temperature are investigated for the hydrolysis of NaBH4. The kinetic parameters such as energy, enthalpy and entropy are determined as Ea = 39.7 ± 0.2 kJ mol-1, ΔH = 37.2 ± 0.1 kJ mol-1 and ΔS = -171.9 ± 0.5 J mol-1 K-1, respectively.

  8. Structure of FGFR3 transmembrane domain dimer: implications for signaling and human pathologies.

    Science.gov (United States)

    Bocharov, Eduard V; Lesovoy, Dmitry M; Goncharuk, Sergey A; Goncharuk, Marina V; Hristova, Kalina; Arseniev, Alexander S

    2013-11-05

    Fibroblast growth factor receptor 3 (FGFR3) transduces biochemical signals via lateral dimerization in the plasma membrane, and plays an important role in human development and disease. Eight different pathogenic mutations, implicated in cancers and growth disorders, have been identified in the FGFR3 transmembrane segment. Here, we describe the dimerization of the FGFR3 transmembrane domain in membrane-mimicking DPC/SDS (9/1) micelles. In the solved NMR structure, the two transmembrane helices pack into a symmetric left-handed dimer, with intermolecular stacking interactions occurring in the dimer central region. Some pathogenic mutations fall within the helix-helix interface, whereas others are located within a putative alternative interface. This implies that although the observed dimer structure is important for FGFR3 signaling, the mechanism of FGFR3-mediated transduction across the membrane is complex. We propose an FGFR3 signaling mechanism that is based on the solved structure, available structures of isolated soluble FGFR domains, and published biochemical and biophysical data. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. The BRCT domain is a phospho-protein binding domain.

    Science.gov (United States)

    Yu, Xiaochun; Chini, Claudia Christiano Silva; He, Miao; Mer, Georges; Chen, Junjie

    2003-10-24

    The carboxyl-terminal domain (BRCT) of the Breast Cancer Gene 1 (BRCA1) protein is an evolutionarily conserved module that exists in a large number of proteins from prokaryotes to eukaryotes. Although most BRCT domain-containing proteins participate in DNA-damage checkpoint or DNA-repair pathways, or both, the function of the BRCT domain is not fully understood. We show that the BRCA1 BRCT domain directly interacts with phosphorylated BRCA1-Associated Carboxyl-terminal Helicase (BACH1). This specific interaction between BRCA1 and phosphorylated BACH1 is cell cycle regulated and is required for DNA damage-induced checkpoint control during the transition from G2 to M phase of the cell cycle. Further, we show that two other BRCT domains interact with their respective physiological partners in a phosphorylation-dependent manner. Thirteen additional BRCT domains also preferentially bind phospho-peptides rather than nonphosphorylated control peptides. These data imply that the BRCT domain is a phospho-protein binding domain involved in cell cycle control.

  10. At the Perphery of the Amidohydrolase Superfamily: Bh0493 from Bacillus halodurans Catalyzes the Isomerization of D-Galacturonate to D-Tagaturonate

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen,T.; Brown, S.; Fedorov, A.; Fedorov, E.; Babbitt, P.; Almo, S.; Raushel, F.

    2008-01-01

    The amidohydrolase superfamily is a functionally diverse set of enzymes that catalyzes predominantly hydrolysis reactions involving sugars, nucleic acids, amino acids, and organophosphate esters. One of the most divergent members of this superfamily, uronate isomerase from Escherichia coli, catalyzes the isomerization of d-glucuronate to d-fructuronate and d-galacturonate to d-tagaturonate and is the only uronate isomerase in this organism. A gene encoding a putative uronate isomerase in Bacillus halodurans (Bh0705) was identified based on sequence similarity to uronate isomerases from other organisms. Kinetic evidence indicates that Bh0705 is relatively specific for the isomerization of d-glucuronate to d-fructuronate, confirming this functional assignment. Despite a low sequence identity to all other characterized uronate isomerases, phylogenetic and network-based analysis suggests that a second gene in this organism, Bh0493, is also a uronate isomerase, although it is an outlier in the group, with <20% sequence identity to any other characterized uronate isomerase from another species. The elucidation of the X-ray structure at a resolution of 2.0 Angstroms confirms that Bh0493 is a member of the amidohydrolase superfamily with conserved residues common to other members of the uronate isomerase family. Functional characterization of this protein shows that unlike Bh0705, Bh0493 can utilize both d-glucuronate and d-galacturonate as substrates. In B. halodurans, Bh0705 is found in an operon for the metabolism of d-glucuronate, whereas Bh0493 is in an operon for the metabolism of d-galacturonate. These results provide the first identification of a uronate isomerase that operates in a pathway distinct from that for d-glucuronate. While most organisms that contain this pathway have only one gene for a uronate isomerase, sequence analysis and operon context show that five other organisms also appear to have two genes and one organism appears to have three genes for

  11. Mechanism for formation of NaBH4 proposed as low-pressure ...

    Indian Academy of Sciences (India)

    hydrogen cell. It was determined that ... catalyst was studied in batch reactors. It was suggested ... NaBH4 is a non-reversible chemical hydride that was used ... Based on reaction chemistry, when hydrogen gas was to be stored in .... The solid–liquid.

  12. SMYD3 interacts with HTLV-1 Tax and regulates subcellular localization of Tax.

    Science.gov (United States)

    Yamamoto, Keiyu; Ishida, Takaomi; Nakano, Kazumi; Yamagishi, Makoto; Yamochi, Tadanori; Tanaka, Yuetsu; Furukawa, Yoichi; Nakamura, Yusuke; Watanabe, Toshiki

    2011-01-01

    HTLV-1 Tax deregulates signal transduction pathways, transcription of genes, and cell cycle regulation of host cells, which is mainly mediated by its protein-protein interactions with host cellular factors. We previously reported an interaction of Tax with a histone methyltransferase (HMTase), SUV39H1. As the interaction was mediated by the SUV39H1 SET domain that is shared among HMTases, we examined the possibility of Tax interaction with another HMTase, SMYD3, which methylates histone H3 lysine 4 and activates transcription of genes, and studied the functional effects. Expression of endogenous SMYD3 in T cell lines and primary T cells was confirmed by immunoblotting analysis. Co-immuno-precipitaion assays and in vitro pull-down assay indicated interaction between Tax and SMYD3. The interaction was largely dependent on the C-terminal 180 amino acids of SMYD3, whereas the interacting domain of Tax was not clearly defined, although the N-terminal 108 amino acids were dispensable for the interaction. In the cotransfected cells, colocalization of Tax and SMYD3 was indicated in the cytoplasm or nuclei. Studies using mutants of Tax and SMYD3 suggested that SMYD3 dominates the subcellular localization of Tax. Reporter gene assays showed that nuclear factor-κB activation promoted by cytoplasmic Tax was enhanced by the presence of SMYD3, and attenuated by shRNA-mediated knockdown of SMYD3, suggesting an increased level of Tax localization in the cytoplasm by SMYD3. Our study revealed for the first time Tax-SMYD3 direct interaction, as well as apparent tethering of Tax by SMYD3, influencing the subcellular localization of Tax. Results suggested that SMYD3-mediated nucleocytoplasmic shuttling of Tax provides one base for the pleiotropic effects of Tax, which are mediated by the interaction of cellular proteins localized in the cytoplasm or nucleus. © 2010 Japanese Cancer Association.

  13. Investigating the Role of Large-Scale Domain Dynamics in Protein-Protein Interactions

    Directory of Open Access Journals (Sweden)

    Elise Delaforge

    2016-09-01

    Full Text Available Intrinsically disordered linkers provide multi-domain proteins with degrees of conformational freedom that are often essential for function. These highly dynamic assemblies represent a significant fraction of all proteomes, and deciphering the physical basis of their interactions represents a considerable challenge. Here we describe the difficulties associated with mapping the large-scale domain dynamics and describe two recent examples where solution state methods, in particular NMR spectroscopy, are used to investigate conformational exchange on very different timescales.

  14. Functional interactions at the interface between voltage-sensing and pore domains in the Shaker K(v) channel.

    Science.gov (United States)

    Soler-Llavina, Gilberto J; Chang, Tsg-Hui; Swartz, Kenton J

    2006-11-22

    Voltage-activated potassium (K(v)) channels contain a central pore domain that is partially surrounded by four voltage-sensing domains. Recent X-ray structures suggest that the two domains lack extensive protein-protein contacts within presumed transmembrane regions, but whether this is the case for functional channels embedded in lipid membranes remains to be tested. We investigated domain interactions in the Shaker K(v) channel by systematically mutating the pore domain and assessing tolerance by examining channel maturation, S4 gating charge movement, and channel opening. When mapped onto the X-ray structure of the K(v)1.2 channel the large number of permissive mutations support the notion of relatively independent domains, consistent with crystallographic studies. Inspection of the maps also identifies portions of the interface where residues are sensitive to mutation, an external cluster where mutations hinder voltage sensor activation, and an internal cluster where domain interactions between S4 and S5 helices from adjacent subunits appear crucial for the concerted opening transition.

  15. The pilus usher controls protein interactions via domain masking and is functional as an oligomer.

    Science.gov (United States)

    Werneburg, Glenn T; Henderson, Nadine S; Portnoy, Erica B; Sarowar, Samema; Hultgren, Scott J; Li, Huilin; Thanassi, David G

    2015-07-01

    The chaperone-usher (CU) pathway assembles organelles termed pili or fimbriae in Gram-negative bacteria. Type 1 pili expressed by uropathogenic Escherichia coli are prototypical structures assembled by the CU pathway. Biogenesis of pili by the CU pathway requires a periplasmic chaperone and an outer-membrane protein termed the usher (FimD). We show that the FimD C-terminal domains provide the high-affinity substrate-binding site but that these domains are masked in the resting usher. Domain masking requires the FimD plug domain, which serves as a switch controlling usher activation. We demonstrate that usher molecules can act in trans for pilus biogenesis, providing conclusive evidence for a functional usher oligomer. These results reveal mechanisms by which molecular machines such as the usher regulate and harness protein-protein interactions and suggest that ushers may interact in a cooperative manner during pilus assembly in bacteria.

  16. Magnetic properties, domain-wall creep motion, and the Dzyaloshinskii-Moriya interaction in Pt/Co/Ir thin films

    Science.gov (United States)

    Shepley, Philippa M.; Tunnicliffe, Harry; Shahbazi, Kowsar; Burnell, Gavin; Moore, Thomas A.

    2018-04-01

    We study the magnetic properties of perpendicularly magnetized Pt/Co/Ir thin films and investigate the domain-wall creep method of determining the interfacial Dzyaloshinskii-Moriya (DM) interaction in ultrathin films. Measurements of the Co layer thickness dependence of saturation magnetization, perpendicular magnetic anisotropy, and symmetric and antisymmetric (i.e., DM) exchange energies in Pt/Co/Ir thin films have been made to determine the relationship between these properties. We discuss the measurement of the DM interaction by the expansion of a reverse domain in the domain-wall creep regime. We show how the creep parameters behave as a function of in-plane bias field and discuss the effects of domain-wall roughness on the measurement of the DM interaction by domain expansion. Whereas modifications to the creep law with DM field and in-plane bias fields have taken into account changes in the energy barrier scaling parameter α , we find that both α and the velocity scaling parameter v0 change as a function of in-plane bias field.

  17. TRAIL enhances paracetamol-induced liver sinusoidal endothelial cell death in a Bim- and Bid-dependent manner

    Science.gov (United States)

    Badmann, A; Langsch, S; Keogh, A; Brunner, T; Kaufmann, T; Corazza, N

    2012-01-01

    Paracetamol (acetaminophen, APAP) is a universally used analgesic and antipyretic agent. Considered safe at therapeutic doses, overdoses cause acute liver damage characterized by centrilobular hepatic necrosis. One of the major clinical problems of paracetamol-induced liver disease is the development of hemorrhagic alterations. Although hepatocytes represent the main target of the cytotoxic effect of paracetamol overdose, perturbations within the endothelium involving morphological changes of liver sinusoidal endothelial cells (LSECs) have also been described in paracetamol-induced liver disease. Recently, we have shown that paracetamol-induced liver damage is synergistically enhanced by the TRAIL signaling pathway. As LSECs are constantly exposed to activated immune cells expressing death ligands, including TRAIL, we investigated the effect of TRAIL on paracetamol-induced LSEC death. We here demonstrate for the first time that TRAIL strongly enhances paracetamol-mediated LSEC death with typical features of apoptosis. Inhibition of caspases using specific inhibitors resulted in a strong reduction of cell death. TRAIL appears to enhance paracetamol-induced LSEC death via the activation of the pro-apoptotic BH3-only proteins Bid and Bim, which initiate the mitochondrial apoptotic pathway. Taken together this study shows that the liver endothelial layer, mainly LSECs, represent a direct target of the cytotoxic effect of paracetamol and that activation of TRAIL receptor synergistically enhances paracetamol-induced LSEC death via the mitochondrial apoptotic pathway. TRAIL-mediated acceleration of paracetamol-induced cell death may thus contribute to the pathogenesis of paracetamol-induced liver damage. PMID:23254290

  18. 3DSwap: Curated knowledgebase of proteins involved in 3D domain swapping

    KAUST Repository

    Shameer, Khader

    2011-09-29

    Three-dimensional domain swapping is a unique protein structural phenomenon where two or more protein chains in a protein oligomer share a common structural segment between individual chains. This phenomenon is observed in an array of protein structures in oligomeric conformation. Protein structures in swapped conformations perform diverse functional roles and are also associated with deposition diseases in humans. We have performed in-depth literature curation and structural bioinformatics analyses to develop an integrated knowledgebase of proteins involved in 3D domain swapping. The hallmark of 3D domain swapping is the presence of distinct structural segments such as the hinge and swapped regions. We have curated the literature to delineate the boundaries of these regions. In addition, we have defined several new concepts like \\'secondary major interface\\' to represent the interface properties arising as a result of 3D domain swapping, and a new quantitative measure for the \\'extent of swapping\\' in structures. The catalog of proteins reported in 3DSwap knowledgebase has been generated using an integrated structural bioinformatics workflow of database searches, literature curation, by structure visualization and sequence-structure-function analyses. The current version of the 3DSwap knowledgebase reports 293 protein structures, the analysis of such a compendium of protein structures will further the understanding molecular factors driving 3D domain swapping. The Author(s) 2011.

  19. Interaction between NBS1 and the mTOR/Rictor/SIN1 complex through specific domains.

    Directory of Open Access Journals (Sweden)

    Jian-Qiu Wang

    Full Text Available Nijmegen breakage syndrome (NBS is a chromosomal-instability syndrome. The NBS gene product, NBS1 (p95 or nibrin, is a part of the Mre11-Rad50-NBS1 complex. SIN1 is a component of the mTOR/Rictor/SIN1 complex mediating the activation of Akt. Here we show that NBS1 interacted with mTOR, Rictor, and SIN1. The specific domains of mTOR, Rictor, or SIN1 interacted with the internal domain (a.a. 221-402 of NBS1. Sucrose density gradient showed that NBS1 was located in the same fractions as the mTOR/Rictor/SIN1 complex. Knockdown of NBS1 decreased the levels of phosphorylated Akt and its downstream targets. Ionizing radiation (IR increased the NBS1 levels and activated Akt activity. These results demonstrate that NBS1 interacts with the mTOR/Rictor/SIN1 complex through the a.a. 221-402 domain and contributes to the activation of Akt activity.

  20. The DEAD-Box RNA Helicase DDX3 Interacts with m6A RNA Demethylase ALKBH5

    Directory of Open Access Journals (Sweden)

    Abdullah Shah

    2017-01-01

    Full Text Available DDX3 is a member of the family of DEAD-box RNA helicases. DDX3 is a multifaceted helicase and plays essential roles in key biological processes such as cell cycle, stress response, apoptosis, and RNA metabolism. In this study, we found that DDX3 interacted with ALKBH5, an m6A RNA demethylase. The ATP domain of DDX3 and DSBH domain of ALKBH5 were indispensable to their interaction with each other. Furthermore, DDX3 could modulate the demethylation of mRNAs. We also showed that DDX3 regulated the methylation status of microRNAs and there was an interaction between DDX3 and AGO2. The dynamics of m6A RNA modification is still a field demanding further investigation, and here, we add a link by showing that RNA demethylation can be regulated by proteins such as DDX3.

  1. The eukaryotic translation initiation factor 3 subunit L protein interacts with Flavivirus NS5 and may modulate yellow fever virus replication.

    Science.gov (United States)

    Morais, Ana Ts; Terzian, Ana Cb; Duarte, Danilo Vb; Bronzoni, Roberta Vm; Madrid, Maria Cfs; Gavioli, Arieli F; Gil, Laura Hvg; Oliveira, Amanda G; Zanelli, Cleslei F; Valentini, Sandro R; Rahal, Paula; Nogueira, Mauricio L

    2013-06-22

    Yellow fever virus (YFV) belongs to the Flavivirus genus and causes an important disease. An alarming resurgence of viral circulation and the expansion of YFV-endemic zones have been detected in Africa and South America in recent years. NS5 is a viral protein that contains methyltransferase and RNA-dependent RNA polymerase (RdRp) domains, which are essential for viral replication, and the interactions between NS5 and cellular proteins have been studied to better understand viral replication. The aim of this study was to characterize the interaction of the NS5 protein with eukaryotic translation initiation factor 3 subunit L (eIF3L) and to evaluate the role of eIF3L in yellow fever replication. To identify interactions of YFV NS5 with cellular proteins, we performed a two-hybrid screen using the YFV NS5 RdRp domain as bait with a human cDNA library, and RNApol deletion mutants were generated and analyzed using the two-hybrid system for mapping the interactions. The RNApol region involved was segmented into three fragments and analyzed using an eIF3L-expressing yeast strain. To map the NS5 residues that are critical for the interactions, we performed site-direct mutagenesis in segment 3 of the interaction domain (ID) and confirmed the interaction using in vitro assays and in vivo coimmunoprecipitation. The significance of eIF3L for YFV replication was investigated using eIF3L overexpression and RNA interference. In this work, we describe and characterize the interaction of NS5 with the translation factor eIF3L. The interaction between NS5 and eIF3L was confirmed using in vitro binding and in vivo coimmunoprecipitation assays. This interaction occurs at a region (the interaction domain of the RNApol domain) that is conserved in several flaviviruses and that is, therefore, likely to be relevant to the genus. eIF3L overexpression and plaque reduction assays showed a slight effect on YFV replication, indicating that the interaction of eIF3L with YFV NS5 may play a role

  2. Molecular basis of Bcl-X(L-p53 interaction: insights from molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Nagakumar Bharatham

    Full Text Available Bcl-X(L, an antiapoptotic Bcl-2 family protein, plays a central role in the regulation of the apoptotic pathway. Heterodimerization of the antiapoptotic Bcl-2 family proteins with the proapoptotic family members such as Bad, Bak, Bim and Bid is a crucial step in the apoptotic regulation. In addition to these conventional binding partners, recent evidences reveal that the Bcl-2 family proteins also interact with noncanonical binding partners such as p53. Our previous NMR studies showed that Bcl-X(L: BH3 peptide and Bcl-X(L: SN15 peptide (a peptide derived from residues S15-N29 of p53 complex structures share similar modes of bindings. To further elucidate the molecular basis of the interactions, here we have employed molecular dynamics simulations coupled with MM/PBSA approach. Bcl-X(L and other Bcl-2 family proteins have 4 hydrophobic pockets (p1-p4, which are occupied by four systematically spaced hydrophobic residues (h1-h4 of the proapoptotic Bad and Bak BH3 peptides. We observed that three conserved hydrophobic residues (F19, W23 and L26 of p53 (SN15 peptide anchor into three hydrophobic pockets (p2-p4 of Bcl-X(L in a similar manner as BH3 peptide. Our results provide insights into the novel molecular recognition by Bcl-X(L with p53.

  3. Characterizing SH2 Domain Specificity and Network Interactions Using SPOT Peptide Arrays.

    Science.gov (United States)

    Liu, Bernard A

    2017-01-01

    Src Homology 2 (SH2) domains are protein interaction modules that recognize and bind tyrosine phosphorylated ligands. Their ability to distinguish binding to over thousands of potential phosphotyrosine (pTyr) ligands within the cell is critical for the fidelity of receptor tyrosine kinase (RTK) signaling. Within humans there are over a hundred SH2 domains with more than several thousand potential ligands across many cell types and cell states. Therefore, defining the specificity of individual SH2 domains is critical for predicting and identifying their physiological ligands. Here, in this chapter, I describe the broad use of SPOT peptide arrays for examining SH2 domain specificity. An orientated peptide array library (OPAL) approach can uncover both favorable and non-favorable residues, thus providing an in-depth analysis to SH2 specificity. Moreover, I discuss the application of SPOT arrays for paneling SH2 ligand binding with physiological peptides.

  4. Improvement of the dehydrogenating kinetics of the Mg(NH{sub 2}){sub 2}/LiH materials by inducing LiBH{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingchuan, E-mail: wangjingchuan@caep.cn; Song, Jiangfeng; Chen, Changan; Luo, Deli

    2016-12-15

    Highlights: • This work indicates that inducing 10 wt.% LiBH{sub 4} into the Mg(NH{sub 2}){sub 2}/LiH mixture significantly improves the dehydrogenating kinetics. It has a near 40 times as large as the effect of the Ti{sub 3}Cr{sub 3}V{sub 4} nanoparticles catalyst under the 200 °C and 0.1 MPa dehydrogenating environment. • Based on diffusion model, the dehydrogenating kinetic curve was fitted for illuminating the mechanism of dehydrogenation improvement. • The mechanism is proposed that the eutectic reaction takes a big role in the catalysis process as the arising of nanorods inside of the matrix after several re-/dehydrogenation cycles. - Abstract: The lightweight high-capacity Li-Mg-N-H system is a promising candidate for the hydrogen energy storage materials. Nevertheless, the slow dehydrogenating process limits its application. This work is focusing on the effect of LiBH{sub 4} on the dehydrogenating kinetics of the Mg(NH{sub 2}){sub 2}/LiH mixture. It indicates that inducing 10 wt.% LiBH{sub 4} into the Mg(NH{sub 2}){sub 2}/LiH mixture significantly improves the dehydrogenating kinetics. As a result, it has a near 40 times as large as the effect of the Ti alloy nanoparticles catalyst, under the 200 °C and 0.1 MPa dehydrogenating environment. Based on our previous dehydrogenating kinetics model, the mechanism of this improving effect of LiBH{sub 4} is discussed as well, which shows that the eutectic reaction takes a big role in the catalysis process as the arising of nanorods inside of the matrix after several re-/dehydrogenation cycles.

  5. MPP1 directly interacts with flotillins in erythrocyte membrane - Possible mechanism of raft domain formation.

    Science.gov (United States)

    Biernatowska, Agnieszka; Augoff, Katarzyna; Podkalicka, Joanna; Tabaczar, Sabina; Gajdzik-Nowak, Weronika; Czogalla, Aleksander; Sikorski, Aleksander F

    2017-11-01

    Flotillins are prominent, oligomeric protein components of erythrocyte (RBC) membrane raft domains and are considered to play an important structural role in lateral organization of the plasma membrane. In our previous work on erythroid membranes and giant plasma membrane vesicles (GPMVs) derived from them we have shown that formation of functional domains (resting state rafts) depends on the presence of membrane palmitoylated protein 1 (MPP1/p55), pointing to its new physiological role. Exploration of the molecular mechanism of MPP1 function in organizing membrane domains described here, through searching for its molecular partners in RBC membrane by using different methods, led to the identification of the raft-marker proteins, flotillin 1 and flotillin 2, as hitherto unreported direct MPP1 binding-partners in the RBC membrane. These proteins are found in high molecular-weight complexes in native RBC membrane and, significantly, their presence was shown to be separate from the well-known protein 4.1-dependent interactions of MPP1 with membrane proteins. Furthermore, FLIM analysis revealed that loss of the endogenous MPP1-flotillins interactions resulted in significant changes in RBC membrane-fluidity, emphasizing the physiological importance of such interactions in vivo. Therefore, our data establish a new perspective on the role of MPP1 in erythroid cells and suggests that direct MPP1-flotillins interactions could be the major driving-force behind the formation of raft domains in RBC. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  6. Glucose Metabolism and AMPK Signaling Regulate Dopaminergic Cell Death Induced by Gene (α-Synuclein)-Environment (Paraquat) Interactions.

    Science.gov (United States)

    Anandhan, Annadurai; Lei, Shulei; Levytskyy, Roman; Pappa, Aglaia; Panayiotidis, Mihalis I; Cerny, Ronald L; Khalimonchuk, Oleh; Powers, Robert; Franco, Rodrigo

    2017-07-01

    While environmental exposures are not the single cause of Parkinson's disease (PD), their interaction with genetic alterations is thought to contribute to neuronal dopaminergic degeneration. However, the mechanisms involved in dopaminergic cell death induced by gene-environment interactions remain unclear. In this work, we have revealed for the first time the role of central carbon metabolism and metabolic dysfunction in dopaminergic cell death induced by the paraquat (PQ)-α-synuclein interaction. The toxicity of PQ in dopaminergic N27 cells was significantly reduced by glucose deprivation, inhibition of hexokinase with 2-deoxy-D-glucose (2-DG), or equimolar substitution of glucose with galactose, which evidenced the contribution of glucose metabolism to PQ-induced cell death. PQ also stimulated an increase in glucose uptake, and in the levels of glucose transporter type 4 (GLUT4) and Na + -glucose transporters isoform 1 (SGLT1) proteins, but only inhibition of GLUT-like transport with STF-31 or ascorbic acid reduced PQ-induced cell death. Importantly, while autophagy protein 5 (ATG5)/unc-51 like autophagy activating kinase 1 (ULK1)-dependent autophagy protected against PQ toxicity, the inhibitory effect of glucose deprivation on cell death progression was largely independent of autophagy or mammalian target of rapamycin (mTOR) signaling. PQ selectively induced metabolomic alterations and adenosine monophosphate-activated protein kinase (AMPK) activation in the midbrain and striatum of mice chronically treated with PQ. Inhibition of AMPK signaling led to metabolic dysfunction and an enhanced sensitivity of dopaminergic cells to PQ. In addition, activation of AMPK by PQ was prevented by inhibition of the inducible nitric oxide syntase (iNOS) with 1400W, but PQ had no effect on iNOS levels. Overexpression of wild type or A53T mutant α-synuclein stimulated glucose accumulation and PQ toxicity, and this toxic synergism was reduced by inhibition of glucose metabolism

  7. Identification of Bax-Interacting Proteins in Oligodendrocyte Progenitors during Glutamate Excitotoxicity and Perinatal Hypoxia–Ischemia

    Directory of Open Access Journals (Sweden)

    Sopio Simonishvili

    2013-11-01

    Full Text Available OPC (oligodendrocyte progenitor cell death contributes significantly to the pathology and functional deficits following hypoxic-ischemic injury in the immature brain and to deficits resulting from demyelinating diseases, trauma and degenerative disorders in the adult CNS. Glutamate toxicity is a major cause of oligodendroglial death in diverse CNS disorders, and previous studies have demonstrated that AMPA/kainate receptors require the pro-apoptotic protein Bax in OPCs undergoing apoptosis. The goal of the present study was to define the pro-apoptotic and anti-apoptotic effectors that regulate Bax in healthy OPCs and after exposure to excess glutamate in vitro and following H–I (hypoxia–ischemia in the immature rat brain. We show that Bax associates with a truncated form of Bid, a BH3-only domain protein, subsequent to glutamate treatment. Furthermore, glutamate exposure reduces Bax association with the anti-apoptotic Bcl family member, Bcl-xL. Cell fractionation studies demonstrated that both Bax and Bid translocate from the cytoplasm to mitochondria during the early stages of cell death consistent with a role for Bid as an activator, whereas Bcl-xL, which normally complexes with both Bax and Bid, disassociates from these complexes when OPCs are exposed to excess glutamate. Bax remained unactivated in the presence of insulin-like growth factor-1, and the Bcl-xL complexes were protected. Our data similarly demonstrate loss of Bcl-xL–Bax association in white matter following H–I and implicate active Bad in Bax-mediated OPC death. To identify other Bax-binding partners, we used proteomics and identified cofilin as a Bax-associated protein in OPCs. Cofilin and Bax associated in healthy OPCs, whereas the Bax–cofilin association was disrupted during glutamate-induced OPC apoptosis.

  8. METALLICITY IN THE GRB 100316D/SN 2010bh HOST COMPLEX

    International Nuclear Information System (INIS)

    Levesque, Emily M.; Berger, Edo; Soderberg, Alicia M.; Chornock, Ryan

    2011-01-01

    The recent long-duration GRB 100316D, associated with supernova SN 2010bh and detected by Swift, is one of the nearest gamma-ray burst (GRB)-supernovae (SNe) ever observed (z = 0.059). This provides us with a unique opportunity to study the explosion environment on ∼kpc scale in relation to the host galaxy complex. Here we present spatially resolved spectrophotometry of the host galaxy, focusing on both the explosion site and the brightest star-forming regions. Using these data, we extract the spatial profiles of the relevant emission features (Hα, Hβ, [O III]λ5007, and [N II]λ6584) and use these profiles to examine variations in metallicity and star formation rate (SFR) as a function of position in the host galaxy. We conclude that GRB 100316D/SN2010bh occurred in a low-metallicity host galaxy, and that the GRB-SN explosion site corresponds to the region with the lowest metallicity and highest SFR sampled by our observations.

  9. Alba-domain proteins of Trypanosoma brucei are cytoplasmic RNA-binding proteins that interact with the translation machinery.

    Directory of Open Access Journals (Sweden)

    Jan Mani

    Full Text Available Trypanosoma brucei and related pathogens transcribe most genes as polycistronic arrays that are subsequently processed into monocistronic mRNAs. Expression is frequently regulated post-transcriptionally by cis-acting elements in the untranslated regions (UTRs. GPEET and EP procyclins are the major surface proteins of procyclic (insect midgut forms of T. brucei. Three regulatory elements common to the 3' UTRs of both mRNAs regulate mRNA turnover and translation. The glycerol-responsive element (GRE is unique to the GPEET 3' UTR and regulates its expression independently from EP. A synthetic RNA encompassing the GRE showed robust sequence-specific interactions with cytoplasmic proteins in electromobility shift assays. This, combined with column chromatography, led to the identification of 3 Alba-domain proteins. RNAi against Alba3 caused a growth phenotype and reduced the levels of Alba1 and Alba2 proteins, indicative of interactions between family members. Tandem-affinity purification and co-immunoprecipitation verified these interactions and also identified Alba4 in sub-stoichiometric amounts. Alba proteins are cytoplasmic and are recruited to starvation granules together with poly(A RNA. Concomitant depletion of all four Alba proteins by RNAi specifically reduced translation of a reporter transcript flanked by the GPEET 3' UTR. Pulldown of tagged Alba proteins confirmed interactions with poly(A binding proteins, ribosomal protein P0 and, in the case of Alba3, the cap-binding protein eIF4E4. In addition, Alba2 and Alba3 partially cosediment with polyribosomes in sucrose gradients. Alba-domain proteins seem to have exhibited great functional plasticity in the course of evolution. First identified as DNA-binding proteins in Archaea, then in association with nuclear RNase MRP/P in yeast and mammalian cells, they were recently described as components of a translationally silent complex containing stage-regulated mRNAs in Plasmodium. Our results are

  10. Crystallization and preliminary X-ray analysis of the N-terminal domain of human thioredoxin-interacting protein

    International Nuclear Information System (INIS)

    Polekhina, Galina; Ascher, David Benjamin; Kok, Shie Foong; Waltham, Mark

    2011-01-01

    The N-terminal domain of thioredoxin-interacting protein has been expressed, purified and crystallized. The crystals belonged to a monoclinic space group and diffracted to 3 Å resolution using synchrotron radiation. Thioredoxin-interacting protein (TXNIP) is a negative regulator of thioredoxin and its roles in the pathologies of diabetes and cardiovascular diseases have marked it out as a potential drug target. Expression of TXNIP is robustly induced under various stress conditions such as high glucose, heat shock, UV, H 2 O 2 and mechanical stress amongst others. Elevated levels of TXNIP result in the sequestration and inactivation of thioredoxin, leading to cellular oxidative stress. For some time, this was the only known function of TXNIP; however, more recently the protein has been shown to play a role in regulation of glucose uptake and activation of the inflammasome. Based on the primary sequence, TXNIP is remotely related to β-arrestins, which include the visual arrestins. TXNIP has thus been classified as a member of the α-arrestin family, which to date includes five other members. None of the other α-arrestins are known to interact with thioredoxin, although curiously one has been implicated in glucose uptake. In order to gain insight into the structure–function relationships of the α-arrestin protein family, and particularly that of TXNIP, the N-terminal domain of TXNIP has been crystallized. The crystals belonged to a monoclinic space group and diffracted to 3 Å resolution using synchrotron radiation

  11. Shapes of isolated domains and field induced evolution of regular and random 2D domain structures in LiNbO3 and LiTaO3

    International Nuclear Information System (INIS)

    Chernykh, A.; Shur, V.; Nikolaeva, E.; Shishkin, E.; Shur, A.; Terabe, K.; Kurimura, S.; Kitamura, K.; Gallo, K.

    2005-01-01

    The variety of the shapes of isolated domains, revealed in congruent and stoichiometric LiTaO 3 and LiNbO 3 by chemical etching and visualized by optical and scanning probe microscopy, was obtained by computer simulation. The kinetic nature of the domain shape was clearly demonstrated. The kinetics of domain structure with the dominance of the growth of the steps formed at the domain walls as a result of domain merging was investigated experimentally in slightly distorted artificial regular two-dimensional (2D) hexagonal domain structure and random natural one. The artificial structure has been realized in congruent LiNbO 3 by 2D electrode pattern produced by photolithography. The polarization reversal in congruent LiTaO 3 was investigated as an example of natural domain growth limited by merging. The switching process defined by domain merging was studied by computer simulation. The crucial dependence of the switching kinetics on the nuclei concentration has been revealed

  12. Analysis of the decomposition gases from α and β-Cd(BH4)2 synthesized by temperature controlled mechanical milling

    DEFF Research Database (Denmark)

    Blanchard, Didier; Zatti, Matteo; Vegge, Tejs

    2013-01-01

    We present a comprehensive study on the controlled phase synthesis and thermal decomposition of Cd(BH2)4, a material for solid state hydrogen storage obtained via the metathesis reaction of LiBH4 with CdCl2. By adjusting the stochiometry of the reactants and controlling the mechanical milling vial...... temperature, we have isolated the tetragonal (P42mn) low temperature phase and the cubic (View the MathML source) high temperature phase of the cadmium borohydride. Cd(BH2)4 has a low thermodynamic stability and decomposes with fast kinetic at 348 K, when heated at 1 K min−1 against a backpressure of 1 bar H2...

  13. FY1995 ultrafast photonic devices using dielectric domain superlattice; 1995 nendo yudentai domain chokoshi wo mochiita chokosoku photonic device

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-31

    All optical wavelength conversion around 1550nm is of great importance for the wavelength division multiplexing optical communication system. A dielectric domain superlattice, which has a periodically domain inverted structure, has a wide potential for the various nonlinear interactions such as second harmonic generation (SHG) and difference frequency generation (DFG). The purpose of our research is to establish the theoretical bases and fabrication processes of the guided-wave wavelength converter based on the DFG by domain-inverted LiTaO{sub 3}. We have investigated basic characteristics of guided-wave DFG devices and developed the domain-inversion process by an electric field poling utilizing a liquid electrolyte consisting of LiCI in deionized water as a electrode for applying the electric field to LiTaO{sub 3} substrate. By controlling the injection current for the domain inversion precisely, we fabricated successfully uniform domain-inverted structures. 0.5mm-thick domain-inverted LiTaO{sub 3} of 7.8, 17.2 and 21.3 {mu}m periods and 0.5 duty ratio were obtained by optimizing electrode structure and the domain-inversion process. Waveguide structures can increase the conversion efficiency of DFG by several orders of magnitude over bulk interactions. We have also developed waveguide fabrication process for the domain-inverted LiTaO{sub 3} substrate. Low loss proton-exchanged waveguides were formed by annealed proton exchange technique without a degradation of the domain inversion structure. Domain-controlled nonlinear optics by designing the ferroelectric domain structure of LiTaO{sub 3} and LiNbO{sub 3} make it possible to extend all the spectral range from ultra-violet to far-infrared and THz wave region. (NEDO)

  14. 3.3 Å structure of Niemann–Pick C1 protein reveals insights into the function of the C-terminal luminal domain in cholesterol transport

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaochun; Lu, Feiran; Trinh, Michael N.; Schmiege, Philip; Seemann, Joachim; Wang, Jiawei; Blobel, Günter

    2017-08-07

    Niemann–Pick C1 (NPC1) and NPC2 proteins are indispensable for the export of LDL-derived cholesterol from late endosomes. Mutations in these proteins result in Niemann–Pick type C disease, a lysosomal storage disease. Despite recent reports of the NPC1 structure depicting its overall architecture, the function of its C-terminal luminal domain (CTD) remains poorly understood even though 45% of NPC disease-causing mutations are in this domain. Here, we report a crystal structure at 3.3 Å resolution of NPC1* (residues 314–1,278), which—in contrast to previous lower resolution structures—features the entire CTD well resolved. Notably, all eight cysteines of the CTD form four disulfide bonds, one of which (C909–C914) enforces a specific loop that in turn mediates an interaction with a loop of the N-terminal domain (NTD). Importantly, this loop and its interaction with the NTD were not observed in any previous structures due to the lower resolution. Our mutagenesis experiments highlight the physiological relevance of the CTD–NTD interaction, which might function to keep the NTD in the proper orientation for receiving cholesterol from NPC2. Additionally, this structure allows us to more precisely map all of the disease-causing mutations, allowing future molecular insights into the pathogenesis of NPC disease.

  15. Interactions between Metal-binding Domains Modulate Intracellular Targeting of Cu(I)-ATPase ATP7B, as Revealed by Nanobody Binding*

    Science.gov (United States)

    Huang, Yiping; Nokhrin, Sergiy; Hassanzadeh-Ghassabeh, Gholamreza; Yu, Corey H.; Yang, Haojun; Barry, Amanda N.; Tonelli, Marco; Markley, John L.; Muyldermans, Serge; Dmitriev, Oleg Y.; Lutsenko, Svetlana

    2014-01-01

    The biologically and clinically important membrane transporters are challenging proteins to study because of their low level of expression, multidomain structure, and complex molecular dynamics that underlies their activity. ATP7B is a copper transporter that traffics between the intracellular compartments in response to copper elevation. The N-terminal domain of ATP7B (N-ATP7B) is involved in binding copper, but the role of this domain in trafficking is controversial. To clarify the role of N-ATP7B, we generated nanobodies that interact with ATP7B in vitro and in cells. In solution NMR studies, nanobodies revealed the spatial organization of N-ATP7B by detecting transient functionally relevant interactions between metal-binding domains 1–3. Modulation of these interactions by nanobodies in cells enhanced relocalization of the endogenous ATP7B toward the plasma membrane linking molecular and cellular dynamics of the transporter. Stimulation of ATP7B trafficking by nanobodies in the absence of elevated copper provides direct evidence for the important role of N-ATP7B structural dynamics in regulation of ATP7B localization in a cell. PMID:25253690

  16. I-mfa domain proteins specifically interact with HTLV-1 Tax and repress its transactivating functions

    International Nuclear Information System (INIS)

    Kusano, Shuichi; Yoshimitsu, Makoto; Hachiman, Miho; Ikeda, Masanori

    2015-01-01

    The I-mfa domain proteins HIC (also known as MDFIC) and I-mfa (also known as MDFI) are candidate tumor suppressor genes that are involved in cellular and viral transcriptional regulation. Here, we show that HIC and I-mfa directly interact with human T-cell leukemia virus type-1 (HTLV-1) Tax protein in vitro. In addition, HIC and I-mfa repress Tax-dependent transactivation of an HTLV-1 long terminal repeat (LTR) reporter construct in COS-1, Jurkat and high-Tax-producing HTLV-1-infected T cells. HIC also interacts with Tax through its I-mfa domain in vivo and represses Tax-dependent transactivation of HTLV-1 LTR and NF-κB reporter constructs in an interaction-dependent manner. Furthermore, we show that HIC decreases the nuclear distribution and stimulates the proteasomal degradation of Tax. These data reveal that HIC specifically interacts with HTLV-1 Tax and negatively regulates Tax transactivational activity by altering its subcellular distribution and stability. - Highlights: • I-mfa domain proteins, HIC and I-mfa, specifically interact with HTLV-1 Tax. • HIC and I-mfa repress the Tax-dependent transactivation of HTLV-1 LTR. • HIC represses the Tax-dependent transactivation of NF-κΒ. • HIC decreases the nuclear distribution of Tax. • HIC stimulates the proteasomal degradation of Tax.

  17. I-mfa domain proteins specifically interact with HTLV-1 Tax and repress its transactivating functions

    Energy Technology Data Exchange (ETDEWEB)

    Kusano, Shuichi, E-mail: skusano@m2.kufm.kagoshima-u.ac.jp [Division of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Yoshimitsu, Makoto; Hachiman, Miho [Division of Hematology and Immunology, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Ikeda, Masanori [Division of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan)

    2015-12-15

    The I-mfa domain proteins HIC (also known as MDFIC) and I-mfa (also known as MDFI) are candidate tumor suppressor genes that are involved in cellular and viral transcriptional regulation. Here, we show that HIC and I-mfa directly interact with human T-cell leukemia virus type-1 (HTLV-1) Tax protein in vitro. In addition, HIC and I-mfa repress Tax-dependent transactivation of an HTLV-1 long terminal repeat (LTR) reporter construct in COS-1, Jurkat and high-Tax-producing HTLV-1-infected T cells. HIC also interacts with Tax through its I-mfa domain in vivo and represses Tax-dependent transactivation of HTLV-1 LTR and NF-κB reporter constructs in an interaction-dependent manner. Furthermore, we show that HIC decreases the nuclear distribution and stimulates the proteasomal degradation of Tax. These data reveal that HIC specifically interacts with HTLV-1 Tax and negatively regulates Tax transactivational activity by altering its subcellular distribution and stability. - Highlights: • I-mfa domain proteins, HIC and I-mfa, specifically interact with HTLV-1 Tax. • HIC and I-mfa repress the Tax-dependent transactivation of HTLV-1 LTR. • HIC represses the Tax-dependent transactivation of NF-κΒ. • HIC decreases the nuclear distribution of Tax. • HIC stimulates the proteasomal degradation of Tax.

  18. THE M BH-L SPHEROID RELATION AT HIGH AND LOW MASSES, THE QUADRATIC GROWTH OF BLACK HOLES, AND INTERMEDIATE-MASS BLACK HOLE CANDIDATES

    International Nuclear Information System (INIS)

    Graham, Alister W.; Scott, Nicholas

    2013-01-01

    From a sample of 72 galaxies with reliable supermassive black hole masses M bh , we derive the M bh -(host spheroid luminosity, L) relation for (1) the subsample of 24 core-Sérsic galaxies with partially depleted cores, and (2) the remaining subsample of 48 Sérsic galaxies. Using K s -band Two Micron All Sky Survey data, we find the near-linear relation M bh ∝L 1.10±0.20 K s for the core-Sérsic spheroids thought to be built in additive dry merger events, while we find the relation M bh ∝L 2.73±0.55 K s for the Sérsic spheroids built from gas-rich processes. After converting literature B-band disk galaxy magnitudes into inclination- and dust-corrected bulge magnitudes, via a useful new equation presented herein, we obtain a similar result. Unlike with the M bh -(velocity dispersion) diagram, which is also updated here using the same galaxy sample, it remains unknown whether barred and non-barred Sérsic galaxies are offset from each other in the M bh -L diagram. While black hole feedback has typically been invoked to explain what was previously thought to be a nearly constant M bh /M Spheroid mass ratio of ∼0.2%, we advocate that the near-linear M bh -L and M bh -M Spheroid relations observed at high masses may have instead arisen largely from the additive dry merging of galaxies. We argue that feedback results in a dramatically different scaling relation, such that black hole mass scales roughly quadratically with the spheroid mass in Sérsic galaxies. We therefore introduce a revised cold-gas 'quasar' mode feeding equation for semi-analytical models to reflect what we dub the quadratic growth of black holes in Sérsic galaxies built amidst gas-rich processes. Finally, we use our new Sérsic M bh -L equations to predict the masses of candidate intermediate mass black holes in almost 50 low-luminosity spheroids containing active galactic nuclei, finding many masses between that of stellar mass black holes and supermassive black holes.

  19. Thermodynamic dissection of the binding energetics of proline-rich peptides to the Abl-SH3 domain: implications for rational ligand design.

    Science.gov (United States)

    Palencia, Andrés; Cobos, Eva S; Mateo, Pedro L; Martínez, Jose C; Luque, Irene

    2004-02-13

    The inhibition of the interactions between SH3 domains and their targets is emerging as a promising therapeutic strategy. To date, rational design of potent ligands for these domains has been hindered by the lack of understanding of the origins of the binding energy. We present here a complete thermodynamic analysis of the binding energetics of the p41 proline-rich decapeptide (APSYSPPPPP) to the SH3 domain of the c-Abl oncogene. Isothermal titration calorimetry experiments have revealed a thermodynamic signature for this interaction (very favourable enthalpic contributions opposed by an unfavourable binding entropy) inconsistent with the highly hydrophobic nature of the p41 ligand and the Abl-SH3 binding site. Our structural and thermodynamic analyses have led us to the conclusion, having once ruled out any possible ionization events or conformational changes coupled to the association, that the establishment of a complex hydrogen-bond network mediated by water molecules buried at the binding interface is responsible for the observed thermodynamic behaviour. The origin of the binding energetics for proline-rich ligands to the Abl-SH3 domain is further investigated by a comparative calorimetric analysis of a set of p41-related ligands. The striking effects upon the enthalpic and entropic contributions provoked by conservative substitutions at solvent-exposed positions in the ligand confirm the complexity of the interaction. The implications of these results for rational ligand design are discussed.

  20. Resistance to mitomycin C requires direct interaction between the Fanconi anemia proteins FANCA and FANCG in the nucleus through an arginine-rich domain.

    Science.gov (United States)

    Kruyt, F A; Abou-Zahr, F; Mok, H; Youssoufian, H

    1999-11-26

    Fanconi anemia (FA) is a genetically heterogeneous disorder characterized by bone marrow failure, birth defects, and chromosomal instability. Because FA cells are sensitive to mitomycin C (MMC), FA gene products could be involved in cellular defense mechanisms. The FANCA and FANCG proteins deficient in FA groups A and G interact directly with each other. We have localized the mutual interaction domains of these proteins to amino acids 18-29 of FANCA and to two noncontiguous carboxyl-terminal domains of FANCG encompassing amino acids 400-475 and 585-622. Site-directed mutagenesis of FANCA residues 18-29 revealed a novel arginine-rich interaction domain (RRRAWAELLAG). By alanine mutagenesis, Arg(1), Arg(2), and Leu(8) but not Arg(3), Trp(5), and Glu(7) appeared to be critical for binding to FANCG. Similar immunolocalization for FANCA and FANCG suggested that these proteins interact in vivo. Moreover, targeting of FANCA to the nucleus or the cytoplasm with nuclear localization and nuclear export signals, respectively, showed concordance between the localization patterns of FANCA and FANCG. The complementation function of FANCA was abolished by mutations in its FANCG-binding domain. Conversely, stable expression of FANCA mutants encoding intact FANCG interaction domains induced hypersensitivity to MMC in HeLa cells. These results demonstrate that FANCA-FANCG complexes are required for cellular resistance to MMC. Because the FANCC protein deficient in FA group C works within the cytoplasm, we suggest that FANCC and the FANCA-FANCG complexes suppress MMC cytotoxicity within distinct cellular compartments.