Sample records for beta tc3 cells

  1. Effects of the hypoglycaemic drugs repaglinide and glibenclamide on ATP-sensitive potassium-channels and cytosolic calcium levels in beta TC3 cells and rat pancreatic beta cells

    DEFF Research Database (Denmark)

    Gromada, J; Dissing, S; Kofod, Hans;


    -maximal steady-state inhibition of the ATP-sensitive K+ currents is observed at 89 pmol/l repaglinide and at 47 pmol/l glibenclamide in whole-cell experiments of longer duration (30 min). Applying digital Ca2+ imaging on single beta TC3 cells we found that repaglinide and glibenclamide induced a concentration...

  2. Reversal of diabetes by βTC3 cells encapsulated in alginate beads generated by emulsion and internal gelation. (United States)

    Hoesli, Corinne A; Kiang, Roger L J; Mocinecová, Dušana; Speck, Madeleine; Mošková, Daniela Jochec; Donald-Hague, Christine; Lacík, Igor; Kieffer, Timothy J; Piret, James M


    Encapsulation of insulin-producing cells in alginate beads could improve the treatment of type 1 diabetes by reducing or eliminating the need for immunosuppression. We have recently adapted an emulsion and internal gelation process to β-cell encapsulation. This process has the advantages of being well suited for m(3)/h production rates and allowing the use of increased alginate concentrations. Compared with 1.5% alginate beads generated by a standard extrusion process, 5% alginate emulsion-generated beads demonstrated greater in vitro stability and greater volumetric exclusion of antibody-sized pullulan. When βTC3 cells were transplanted into streptozotocin-induced allogeneic diabetic mice, a significant decrease in the blood glucose levels was seen within 2 days with the 5% emulsion-generated beads but not until >16 days with the 1.5% extrusion-generated beads. This was correlated with higher cell survival and lower graft-specific plasma immunoglobulin levels. These results suggest that higher-concentration alginate beads generated by emulsion and internal gelation have improved graft immunoprotection. The emulsion process is a promising and scalable technology for cellular therapies requiring immune isolation.

  3. 利拉鲁肽下调游离脂肪酸作用下βTC3细胞PERK的表达%The Down-regulation Effect of Liraglutide (Lira) on the Expression of Double-stranded RNA-dependent Protein Kinase-like Endoplasmic Reticulum Kinase (PERK) in βTC3 Cells Induced by Free Fatty Acids (FFA)

    Institute of Scientific and Technical Information of China (English)

    彭红艳; 姬秋和; 周洁; 邢影; 高彬; 曹宏伟; 刘涛


    Objective: To investigate the expression of PERK in pTC3 cells exposed to different concentrations of FFA and the intervention effect of Lira on the expression of double-stranded RNA-dependent protein kinase-like endoplasmic reticulum kinase (PERK) induced by FFA. Methods: βTC3 cells were treated with different concentrations of FFA (0,0.125,0.25, 0.5 and 1.0 mmol/L). Western Blot analysis was used to determine the expression of PERK in (3TC3 cells after 24 hours. Afterwards, |JTC3 cells were prein-cubated with different concentrations of Lira(0,0,0.5,1 mg/L)for 6 hours, and different concentrations of FFA(0,l, 1,1 mmol/L) were then added and the cells were incubated for another 24 hours. The expression of PERK was detected. Results:1. After the cells were incubated with FFA of different concentrations for 24 hours, compared with the control group, the expression of PERK in pTC3 cells in the group with 1 mmol/L FFA increased (P<0.05). 2.Compared with that in the group with 1 mmol/L FFA, the expression of PERK decreased (P<0.05) in the group with 0.5 mg/L Lira+1 mmol/L FFA and the group with 1 mg/L Lira+1 mmol/L FFA, and there was statistical difference between the two groups (P<0.05). Conclusion: The expression of PERK in βTC3 cells is up-regulated by administration of FFA of certain concentration, while Lira can reverse this response to some extent, partly inhibiting endoplasmic reticulum stress.%目的:探讨游离脂肪酸(FFA)作用下胰岛βTC3细胞双链RNA依赖性蛋白样内质网激酶(PERK)的表达以及利拉鲁肽(Lira)对其表达的干预作用.方法:以βTC3细胞为研究对象,分为对照组和FFA组(0.125,0.25,0.5及1 mmol/L)孵育24h,Westernblot方法检测PERK的表达.然后,分为对照组,FFA组,和FFA+Lira组(0.5 mg/L和1 mg/L),Lira预孵育6h后,1mmol/L FFA 继续孵育24h,Western blot检测PERK的表达.结果:①不同浓度FFA孵育24h后,与对照组相比,1mmol/L FFA组PERK表达增加(P<0.05).②与1 mmo1/L FFA组相比,0

  4. Beta cell dynamics: beta cell replenishment, beta cell compensation and diabetes. (United States)

    Cerf, Marlon E


    Type 2 diabetes, characterized by persistent hyperglycemia, arises mostly from beta cell dysfunction and insulin resistance and remains a highly complex metabolic disease due to various stages in its pathogenesis. Glucose homeostasis is primarily regulated by insulin secretion from the beta cells in response to prevailing glycemia. Beta cell populations are dynamic as they respond to fluctuating insulin demand. Beta cell replenishment and death primarily regulate beta cell populations. Beta cells, pancreatic cells, and extra-pancreatic cells represent the three tiers for replenishing beta cells. In rodents, beta cell self-replenishment appears to be the dominant source for new beta cells supported by pancreatic cells (non-beta islet cells, acinar cells, and duct cells) and extra-pancreatic cells (liver, neural, and stem/progenitor cells). In humans, beta cell neogenesis from non-beta cells appears to be the dominant source of beta cell replenishment as limited beta cell self-replenishment occurs particularly in adulthood. Metabolic states of increased insulin demand trigger increased insulin synthesis and secretion from beta cells. Beta cells, therefore, adapt to support their physiology. Maintaining physiological beta cell populations is a strategy for targeting metabolic states of persistently increased insulin demand as in diabetes.

  5. Regulation of beta cell replication

    DEFF Research Database (Denmark)

    Lee, Ying C; Nielsen, Jens Høiriis


    Beta cell mass, at any given time, is governed by cell differentiation, neogenesis, increased or decreased cell size (cell hypertrophy or atrophy), cell death (apoptosis), and beta cell proliferation. Nutrients, hormones and growth factors coupled with their signalling intermediates have been...... suggested to play a role in beta cell mass regulation. In addition, genetic mouse model studies have indicated that cyclins and cyclin-dependent kinases that determine cell cycle progression are involved in beta cell replication, and more recently, menin in association with cyclin-dependent kinase...... inhibitors has been demonstrated to be important in beta cell growth. In this review, we consider and highlight some aspects of cell cycle regulation in relation to beta cell replication. The role of cell cycle regulation in beta cell replication is mostly from studies in rodent models, but whether...

  6. Beta cell adaptation in pregnancy

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis


    Pregnancy is associated with a compensatory increase in beta cell mass. It is well established that somatolactogenic hormones contribute to the expansion both indirectly by their insulin antagonistic effects and directly by their mitogenic effects on the beta cells via receptors for prolactin...... and growth hormone expressed in rodent beta cells. However, the beta cell expansion in human pregnancy seems to occur by neogenesis of beta cells from putative progenitor cells rather than by proliferation of existing beta cells. Claes Hellerström has pioneered the research on beta cell growth for decades......, but the mechanisms involved are still not clarified. In this review the information obtained in previous studies is recapitulated together with some of the current attempts to resolve the controversy in the field: identification of the putative progenitor cells, identification of the factors involved...

  7. Beta Cell Workshop 2013 Kyoto

    DEFF Research Database (Denmark)

    Heller, R Scott; Madsen, Ole D; Nielsen, Jens Høiriis


    The very modern Kyoto International Conference Center provided the site for the 8th workshop on Beta cells on April 23-26, 2013. The preceding workshops were held in Boston, USA (1991); Kyoto, Japan (1994); Helsingør, Denmark (1997); Helsinki, Finland (2003); El Perello, Spain (2006); Peebles...

  8. Clusters of conserved beta cell marker genes for assessment of beta cell phenotype

    DEFF Research Database (Denmark)

    Martens, Geert A; Jiang, Lei; Hellemans, Karine H;


    The aim of this study was to establish a gene expression blueprint of pancreatic beta cells conserved from rodents to humans and to evaluate its applicability to assess shifts in the beta cell differentiated state. Genome-wide mRNA expression profiles of isolated beta cells were compared to those...... of a large panel of other tissue and cell types, and transcripts with beta cell-abundant and -selective expression were identified. Iteration of this analysis in mouse, rat and human tissues generated a panel of conserved beta cell biomarkers. This panel was then used to compare isolated versus laser capture...... microdissected beta cells, monitor adaptations of the beta cell phenotype to fasting, and retrieve possible conserved transcriptional regulators....

  9. Clusters of conserved beta cell marker genes for assessment of beta cell phenotype

    DEFF Research Database (Denmark)

    Martens, Geert A; Jiang, Lei; Hellemans, Karine H;


    The aim of this study was to establish a gene expression blueprint of pancreatic beta cells conserved from rodents to humans and to evaluate its applicability to assess shifts in the beta cell differentiated state. Genome-wide mRNA expression profiles of isolated beta cells were compared to those...... microdissected beta cells, monitor adaptations of the beta cell phenotype to fasting, and retrieve possible conserved transcriptional regulators.......The aim of this study was to establish a gene expression blueprint of pancreatic beta cells conserved from rodents to humans and to evaluate its applicability to assess shifts in the beta cell differentiated state. Genome-wide mRNA expression profiles of isolated beta cells were compared to those...... of a large panel of other tissue and cell types, and transcripts with beta cell-abundant and -selective expression were identified. Iteration of this analysis in mouse, rat and human tissues generated a panel of conserved beta cell biomarkers. This panel was then used to compare isolated versus laser capture...

  10. Beta cell proliferation and growth factors

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis; Svensson, C; Møldrup, Annette


    Formation of new beta cells can take place by two pathways: replication of already differentiated beta cells or neogenesis from putative islet stem cells. Under physiological conditions both processes are most pronounced during the fetal and neonatal development of the pancreas. In adulthood little...... increase in the beta cell number seems to occur. In pregnancy, however, a marked hyperplasia of the beta cells is observed both in rodents and man. Increased mitotic activity has been seen both in vivo and in vitro in islets exposed to placental lactogen (PL), prolactin (PRL) and growth hormone (GH......). Receptors for both GH and PRL are expressed in islet cells and are upregulated during pregnancy. By mutational analysis we have identified different functional domains of the cytoplasmic part of the GH receptor. Thus the mitotic signaling only requires the membrane proximal part of the receptor...

  11. American ginseng modulates pancreatic beta cell activities

    Directory of Open Access Journals (Sweden)

    Luo Luguang


    Full Text Available Abstract The mechanism of the beneficial effects of Panax quinquefolius (Xiyangshen, American ginseng on diabetes is yet to be elucidated. Recent studies show that Panax quinquefolius increases insulin production and reduces the death of pancreatic beta cells. Mechanism studies indicate that Panax quinquefolius improves cell's immuno-reactivity and mitochondrial function through various factors. Clinical studies show that Panax quinquefolius improves postprandial glycemia in type 2 diabetic patients. Further studies to identify the component(s of Panax quinquefolius linked with pancreatic islets/beta cells in vitro and in vivo are warranted for better understanding of the full effects of Panax quinquefolius.

  12. Synthesis and evaluation of fluorine-18 labeled glyburide analogs as {beta}-cell imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, A.; Shiue, C.-Y. E-mail:; Feng, Q.; Shiue, G.G.; Deng, S.; Pourdehnad, M.T.; Schirrmacher, R.; Vatamaniuk, M.; Doliba, N.; Matschinsky, F.; Wolf, B.; Roesch, F.; Naji, A.; Alavi, A.A


    Glyburide is a prescribed hypoglycemic drug for the treatment of type 2 diabetic patients. We have synthesized two of its analogs, namely N-{l_brace}4-[{beta}-(2-(2'-fluoroethoxy)-5-chlorobenzenecarboxamido)ethyl] benzenesulfonyl{r_brace}-N'-cyclohexylurea (2-fluoroethoxyglyburide, 8b) and N-{l_brace}4-[{beta}-(2-(2'-fluoroethoxy)-5-iodobenzenecarboxamido)ethyl]benzenesulfonyl {r_brace}-N'-cyclohexylurea (2-fluoroethoxy-5-deschloro-5-iodoglyburide, 8a), and their fluorine-18 labeled analogs as {beta}-cell imaging agents. Both F-18 labeled compound 8a and compound 8b were synthesized by alkylation of the corresponding multistep synthesized hydroxy precursor 4a and 4b with 2-[{sup 18}F]fluoroethyl tosylate in DMSO at 120 degree sign C for 20 minutes followed by HPLC purification in an overall radiochemical yield of 5-10% with a synthesis time of 100 minutes from EOB. The octanol/water partition coefficients of compounds 8a and 8b were 141.21 {+-} 27.77 (n = 8) and 124.33 {+-} 21.61 (n = 8), respectively. Insulin secretion experiments of compounds 8a and 8b on rat islets showed that both compounds have a similar stimulating effect on insulin secretion as that of glyburide. In vitro binding studies showed that {approx}2% of compounds 8a and 8b bound to {beta}TC3 and Min6 cells and that the binding was saturable. Preliminary biodistribution studies in mice showed that the uptake of both compounds 8a and 8b in liver and small intestine were high, whereas the uptake in other organs studied including pancreas were low. Additionally, the uptake of compound 8b in vivo was nonsaturable. These results tend to suggest that compounds 8a and 8b may not be the ideal {beta}-cell imaging agents.

  13. Characterization of a Commercial Silicon Beta Cell

    Energy Technology Data Exchange (ETDEWEB)

    Foxe, Michael P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hayes, James C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mayer, Michael F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McIntyre, Justin I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sivels, Ciara B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Suarez, Rey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    Silicon detectors are of interest for the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) due to their enhanced energy resolution compared to plastic scintillators beta cells. Previous work developing a figure-of-merit (FOM) for comparison of beta cells suggests that the minimum detectable activity (MDA) could be reduced by a factor of two to three with the use of silicon detectors. Silicon beta cells have been developed by CEA (France) and Lares Ltd. (Russia), with the PIPSBox developed by CEA being commercially available from Canberra for approximately $35k, but there is still uncertainty about the reproducibility of the capabilities in the field. PNNL is developing a high-resolution beta-gamma detector system in the shallow underground laboratory, which will utilize and characterize the operation of the PIPSBox detector. Throughout this report, we examine the capabilities of the PIPSBox as developed by CEA. The lessons learned through the testing and use of the PIPSBox will allow PNNL to strategically develop a silicon detector optimized to better suit the communities needs in the future.

  14. In vitro proliferation of adult human beta-cells.

    Directory of Open Access Journals (Sweden)

    Sabine Rutti

    Full Text Available A decrease in functional beta-cell mass is a key feature of type 2 diabetes. Glucagon-like peptide 1 (GLP-1 analogues induce proliferation of rodent beta-cells. However, the proliferative capacity of human beta-cells and its modulation by GLP-1 analogues remain to be fully investigated. We therefore sought to quantify adult human beta-cell proliferation in vitro and whether this is affected by the GLP-1 analogue liraglutide.Human islets from 7 adult cadaveric organ donors were dispersed into single cells. Beta-cells were purified by FACS. Non-sorted cells and the beta-cell enriched ("beta-cells" population were plated on extracellular matrix from rat (804G and human bladder carcinoma cells (HTB9 or bovine corneal endothelial ECM (BCEC. Cells were maintained in culture+/-liraglutide for 4 days in the presence of BrdU.Rare human beta-cell proliferation could be observed either in the purified beta-cell population (0.051±0.020%; 22 beta-cells proliferating out of 84'283 beta-cells counted or in the non-sorted cell population (0.055±0.011%; 104 proliferating beta-cells out of 232'826 beta-cells counted, independently of the matrix or the culture conditions. Liraglutide increased human beta-cell proliferation on BCEC in the non-sorted cell population (0.082±0.034% proliferating beta-cells vs. 0.017±0.008% in control, p<0.05.These results indicate that adult human beta-cell proliferation can occur in vitro but remains an extremely rare event with these donors and particular culture conditions. Liraglutide increases beta-cell proliferation only in the non-sorted cell population and only on BCEC. However, it cannot be excluded that human beta-cells may proliferate to a greater extent in situ in response to natural stimuli.

  15. Metabolic Stress and Compromised Identity of Pancreatic Beta Cells (United States)

    Swisa, Avital; Glaser, Benjamin; Dor, Yuval


    Beta cell failure is a central feature of type 2 diabetes (T2D), but the molecular underpinnings of the process remain only partly understood. It has been suggested that beta cell failure in T2D involves massive cell death. Other studies ascribe beta cell failure to cell exhaustion, due to chronic oxidative or endoplasmic reticulum stress leading to cellular dysfunction. More recently it was proposed that beta cells in T2D may lose their differentiated identity, possibly even gaining features of other islet cell types. The loss of beta cell identity appears to be driven by glucotoxicity inhibiting the activity of key beta cell transcription factors including Pdx1, Nkx6.1, MafA and Pax6, thereby silencing beta cell genes and derepressing alternative islet cell genes. The loss of beta cell identity is at least partly reversible upon normalization of glycemia, with implications for the reversibility of T2D, although it is not known if beta cell failure reaches eventually a point of no return. In this review we discuss current evidence for metabolism-driven compromised beta cell identity, key knowledge gaps and opportunities for utility in the treatment of T2D.

  16. The impact of beta-elemene on beta-tubulin of human hepatoma hepg2 cells

    Institute of Scientific and Technical Information of China (English)

    Yuqiu Mao; Liying Ban; Jielin Zhang; Li Hou; Xiaonan Cui


    Objective:The aim of this study was to investigate the impact of beta-elemene injection on the growth and beta-tubulin of human hepatocarcinoma HepG2 cells. Methods:cellproliferation was assessed by MTT assay. cellcycle distribution was detected by flow cytometry (FCM). The mRNA expression of beta-tubulin was measured by RT-PCR. West-ern blot analysis was used to determine protein expression of beta-tubulin and the polymerization of beta-tubulin. Results:Beta-elemene injection inhibited HepG2 cells proliferation in a dose-and time-dependent manner;FCM analysis indicated beta-elemene injection induced cellcycle arrested at S phase. RT-PCR and western-blot analysis showed that beta-elemene injection down-regulated beta-tubulin expression at both mRNA and protein levels, presenting a dose-dependent manner. Moreover, beta-elemene injection reduced the polymerization of microtubules in a dose-dependent manner. Conclusion:Beta-elemene injection can inhibit the proliferation of hepatoma HepG2 cells, the mechanism might be partly related to the down-regulation of beta-tubulin and inhibition of microtubular polymerization.

  17. Apoptosis of beta cells in diabetes mellitus. (United States)

    Anuradha, Rachakatla; Saraswati, Mudigonda; Kumar, Kishore G; Rani, Surekha H


    Diabetes mellitus is a multifactorial metabolic disorder characterized by hyperglycemia. Apoptosis in beta cells has been observed in response to diverse stimuli, such as glucose, cytokines, free fatty acids, leptin, and sulfonylureas, leading to the activation of polyol, hexosamine, and diacylglycerol/protein kinase-C (DAG/PKC) pathways that mediate oxidative and nitrosative stress causing the release of different cytokines. Cytokines induce the expression of Fas and tumor necrosis factor-alpha (TNF-α) by activating the transcription factor, nuclear factor-κb, and signal transducer and activator of transcription 1 (STAT-1) in the β cells in the extrinsic pathway of apoptosis. Cytokines produced in beta cells also induce proapoptotic members of the intrinsic pathway of apoptosis. The genetic alterations in apoptosis signaling machinery and the pathogenesis of diabetes include Fas, FasL, Akt, caspases, calpain-10, and phosphatase and tensin homolog (Pten). The other gene products that are involved in diabetes are nitric oxide synthase-2 (NOS2), small ubiquitin-like modifier (SUMO), apolipoprotein CIII (ApoCIII), forkhead box protein O1 (FOXO1), and Kruppel-like zinc finger protein Gli-similar 3 (GLIS3). The gene products having antiapoptotic nature are Bcl-2 and Bcl-XL. Epigenetic mechanisms play an important role in type I and type II diabetes. Further studies on the apoptotic genes and gene products in diabetics may be helpful in pharmacogenomics and individualized treatment along with antioxidants targeting apoptosis in diabetes.

  18. TGF-beta and BMP in breast cancer cell invasion

    NARCIS (Netherlands)

    Naber, Hildegonda Petronella Henriëtte


    TGF-beta and BMPs are members of the TGF-beta superfamily of cytokines which play an important role in a multitude of processes. In cancer, TGF-beta is known for its dual role: in early stages it inhibits cancer cell proliferation, whereas in later stages it promotes invasion and metastasis. In this

  19. Imaging the Beta-cell mass: why and how

    DEFF Research Database (Denmark)

    Saudek, Frantisek; Brogren, Carl-Henrik; Manohar, Srirang


    of the native beta-cell mass is still limited to autopsy studies. Endeavors to find a biological structure specific for beta-cells led to the discovery of potential candidates that have been tested for noninvasive imaging. Among them are the ligand to the vesicular monoamine transporter type 2 (VMAT-2), which......Diabetes is a disorder characterized by beta-cell loss or exhaustion and insulin deficiency. At present, knowledge is lacking on the underlying causes and for the therapeutic recovery of the beta-cell mass. A better understanding of diabetes pathogenesis could be obtained through exact monitoring...... of the fate of beta-cells under disease and therapy conditions. This could pave the way for a new era of intervention by islet replacement and regeneration regimens. Monitoring the beta-cell mass requires a reliable method for noninvasive in vivo imaging. Such a method is not available at present due...

  20. Expression of transforming growth factor beta (TGF beta) receptors and expression of TGF beta 1, TGF beta 2 and TGF beta 3 in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M;


    A panel of 21 small cell lung cancer cell (SCLC) lines were examined for the presence of Transforming growth factor beta receptors (TGF beta-r) and the expression of TGF beta mRNAs. By the radioreceptor assay we found high affinity receptors to be expressed in six cell lines. scatchard analysis...... of the binding data demonstrated that the cells bound between 4.5 and 27.5 fmol mg-1 protein with a KD ranging from 16 to 40 pM. TGF beta 1 binding to the receptors was confirmed by cross-linking TGF beta 1 to the TGF beta-r. Three classes of TGF beta-r were demonstrated, type I and type II receptors with M......(r) = 65,000 and 90,000 and the betaglycan (type III) with M(r) = 280,000. Northern blotting showed expression of TGF beta 1 mRNA in ten, TGF beta 2 mRNA in two and TGF beta 3 mRNA in seven cell lines. Our results provide, for the first time, evidence that a large proportion of a broad panel of SCLC cell...

  1. Mechanisms of pancreatic beta-cell growth and regeneration

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis


    Information about the mechanism of beta-cell growth and regeneration may be obtained by studies of insulinoma cells. In the present study the growth and function of the rat insulinoma cell lines RINm5F and 5AH were evaluated by addition of serum, hormones, and growth factors. It was found...... of insulin mRNA content showed that the insulinoma cells only contained about 2% of that of normal rat beta-cells. These results are discussed in relation to the role of growth factors, oncogenes, and differentiation in the growth and regeneration of beta-cells....

  2. Asteroid 2008 TC3 Breakup and Meteorite Fractions (United States)

    Goodrich, C.; Jenniskens, P.; Shaddad, M. H.; Zolensky, M. E.; Fioretti, A. M.


    The recovery of meteorites from the impact of asteroid 2008 TC3 in the Nubian Desert of Sudan on October 7, 2008, marked the first time meteorites were collected from an asteroid observed in space by astronomical techniques before impacting. Search teams from the University of Khartoum traced the location of the strewn field and collected about 660 meteorites in four expeditions to the fall region, all of which have known fall coordinates. Upon further study, the Almahata Sitta meteorites proved to be a mixed bag of mostly ureilites (course grained, fine grained, and sulfide-metal assemblages), enstatite chondrites (EL3-6, EH3, EH5, breccias) and ordinary chondrites (H5-6, L4-5). One bencubbinite-like carbonaceous chondrite was identified, as well as one unique Rumuruti-like chondrite and an Enstatite achondrite. New analysis: The analysed meteorites so far suggest a high 30-40 percent fraction of non-ureilites among the recovered samples, but that high fraction does not appear to be in agreement with the meteorites in the University of Khartoum (UoK) collection. Ureilites dominate the meteorites that were recovered by the Sudanese teams. To better understand the fraction of recovered materials that fell to Earth, a program has been initiated to type the meteorites in the UoK collection in defined search areas. At this meeting, we will present some preliminary results from that investigation.

  3. Proliferation of sorted human and rat beta cells

    DEFF Research Database (Denmark)

    Parnaud, G; Bosco, D; Berney, T;


    The aim of the study was to determine whether purified beta cells can replicate in vitro and whether this is enhanced by extracellular matrix (ECM) and growth factors.......The aim of the study was to determine whether purified beta cells can replicate in vitro and whether this is enhanced by extracellular matrix (ECM) and growth factors....

  4. Mitochondrial dynamics and morphology in beta-cells. (United States)

    Stiles, Linsey; Shirihai, Orian S


    Mitochondrial dynamics contribute to the regulation of mitochondrial shape as well as various mitochondrial functions and quality control. This is of particular interest in the beta-cell because of the key role mitochondria play in the regulation of beta-cell insulin secretion function. Moreover, mitochondrial dysfunction has been suggested to contribute to the development of Type 2 Diabetes. Genetic tools that shift the balance of mitochondrial fusion and fission result in alterations to beta-cell function and viability. Additionally, conditions that induce beta-cell dysfunction, such as exposure to a high nutrient environment, disrupt mitochondrial morphology and dynamics. While it has been shown that mitochondria display a fragmented morphology in islets of diabetic patients and animal models, the mechanism behind this is currently unknown. Here, we review the current literature on mitochondrial morphology and dynamics in the beta-cell as well as some of the unanswered question in this field.

  5. Deletion of the mitochondrial flavoprotein apoptosis inducing factor (AIF induces beta-cell apoptosis and impairs beta-cell mass.

    Directory of Open Access Journals (Sweden)

    Fabienne T Schulthess

    Full Text Available BACKGROUND: Apoptosis is a hallmark of beta-cell death in both type 1 and type 2 diabetes mellitus. Understanding how apoptosis contributes to beta-cell turnover may lead to strategies to prevent progression of diabetes. A key mediator of apoptosis, mitochondrial function, and cell survival is apoptosis inducing factor (AIF. In the present study, we investigated the role of AIF on beta-cell mass and survival using the Harlequin (Hq mutant mice, which are hypomorphic for AIF. METHODOLOGY/PRINCIPAL FINDINGS: Immunohistochemical evaluation of pancreata from Hq mutant mice displayed much smaller islets compared to wild-type mice (WT. Analysis of beta-cell mass in these mice revealed a greater than 4-fold reduction in beta-cell mass together with an 8-fold increase in beta-cell apoptosis. Analysis of cell cycle dynamics, using BrdU pulse as a marker for cells in S-phase, did not detect significant differences in the frequency of beta-cells in S-phase. In contrast, double staining for phosphorylated Histone H3 and insulin showed a 3-fold increase in beta-cells in the G2 phase in Hq mutant mice, but no differences in M-phase compared to WT mice. This suggests that the beta-cells from Hq mutant mice are arrested in the G2 phase and are unlikely to complete the cell cycle. beta-cells from Hq mutant mice display increased sensitivity to hydrogen peroxide-induced apoptosis, which was confirmed in human islets in which AIF was depleted by siRNA. AIF deficiency had no effect on glucose stimulated insulin secretion, but the impaired effect of hydrogen peroxide on beta-cell function was potentiated. CONCLUSIONS/SIGNIFICANCE: Our results indicate that AIF is essential for maintaining beta-cell mass and for oxidative stress response. A decrease in the oxidative phosphorylation capacity may counteract the development of diabetes, despite its deleterious effects on beta-cell survival.

  6. Detailed transcriptome atlas of the pancreatic beta cell

    Directory of Open Access Journals (Sweden)

    Eizirik Decio L


    Full Text Available Abstract Background Gene expression patterns provide a detailed view of cellular functions. Comparison of profiles in disease vs normal conditions provides insights into the processes underlying disease progression. However, availability and integration of public gene expression datasets remains a major challenge. The aim of the present study was to explore the transcriptome of pancreatic islets and, based on this information, to prepare a comprehensive and open access inventory of insulin-producing beta cell gene expression, the Beta Cell Gene Atlas (BCGA. Methods We performed Massively Parallel Signature Sequencing (MPSS analysis of human pancreatic islet samples and microarray analyses of purified rat beta cells, alpha cells and INS-1 cells, and compared the information with available array data in the literature. Results MPSS analysis detected around 7600 mRNA transcripts, of which around a third were of low abundance. We identified 2000 and 1400 transcripts that are enriched/depleted in beta cells compared to alpha cells and INS-1 cells, respectively. Microarray analysis identified around 200 transcription factors that are differentially expressed in either beta or alpha cells. We reanalyzed publicly available gene expression data and integrated these results with the new data from this study to build the BCGA. The BCGA contains basal (untreated conditions gene expression level estimates in beta cells as well as in different cell types in human, rat and mouse pancreas. Hierarchical clustering of expression profile estimates classify cell types based on species while beta cells were clustered together. Conclusion Our gene atlas is a valuable source for detailed information on the gene expression distribution in beta cells and pancreatic islets along with insulin producing cell lines. The BCGA tool, as well as the data and code used to generate the Atlas are available at the T1Dbase website (

  7. Re-exposure to beta cell autoantigens in pancreatic allograft recipients with preexisting beta cell autoantibodies. (United States)

    Mujtaba, Muhammad Ahmad; Fridell, Jonathan; Book, Benita; Faiz, Sara; Sharfuddin, Asif; Wiebke, Eric; Rigby, Mark; Taber, Tim


    Re-exposure to beta cell autoantigens and its relevance in the presence of donor-specific antibodies (DSA) in pancreatic allograft recipients is not well known. Thirty-three patients requiring a pancreas transplant were enrolled in an IRB approved study. They underwent prospective monitoring for DSA and beta cell autoantibody (BCAA) levels to GAD65, insulinoma-associated antigen 2 (IA-2), insulin (micro-IAA [mIAA]), and islet-specific zinc transporter isoform-8 (ZnT8). Twenty-five (75.7%) had pre-transplant BCAA. Twenty had a single antibody (mIAA n = 15, GAD65 n = 5); five had two or more BCAA (GAD65 + mIAA n = 2, GAD65 + mIAA+IA-2 n = 2, GA65 + mIAA+IA-2 + ZnT8 = 1). No changes in GAD65 (p > 0.29), IA-2 (>0.16), and ZnT8 (p > 0.07) were observed between pre-transplant and post-transplant at 6 or 12 months. A decrease in mIAA from pre- to post-6 months (p BCAA was observed at one yr. Seven (21.0%) developed de novo DSA. The incidence of DSA was 24% in patients with BCAA vs. 25% in patients without BCAA (p = 0.69). Pancreatic allograft function of patients with vs. without BCAA, and with and without BCAA + DSA was comparable until last follow-up (three yr). Re-exposure to beta cell autoantigens by pancreas transplant may not lead to increased levels or development of new BCAA or pancreatic allograft dysfunction.

  8. Cell therapies for pancreatic beta-cell replenishment. (United States)

    Okere, Bernard; Lucaccioni, Laura; Dominici, Massimo; Iughetti, Lorenzo


    The current treatment approach for type 1 diabetes is based on daily insulin injections, combined with blood glucose monitoring. However, administration of exogenous insulin fails to mimic the physiological activity of the islet, therefore diabetes often progresses with the development of serious complications such as kidney failure, retinopathy and vascular disease. Whole pancreas transplantation is associated with risks of major invasive surgery along with side effects of immunosuppressive therapy to avoid organ rejection. Replacement of pancreatic beta-cells would represent an ideal treatment that could overcome the above mentioned therapeutic hurdles. In this context, transplantation of islets of Langerhans is considered a less invasive procedure although long-term outcomes showed that only 10 % of the patients remained insulin independent five years after the transplant. Moreover, due to shortage of organs and the inability of islet to be expanded ex vivo, this therapy can be offered to a very limited number of patients. Over the past decade, cellular therapies have emerged as the new frontier of treatment of several diseases. Furthermore the advent of stem cells as renewable source of cell-substitutes to replenish the beta cell population, has blurred the hype on islet transplantation. Breakthrough cellular approaches aim to generate stem-cell-derived insulin producing cells, which could make diabetes cellular therapy available to millions. However, to date, stem cell therapy for diabetes is still in its early experimental stages. This review describes the most reliable sources of stem cells that have been developed to produce insulin and their most relevant experimental applications for the cure of diabetes.

  9. Strain-dependent differences in sensitivity of rat beta-cells to interleukin 1 beta in vitro and in vivo

    DEFF Research Database (Denmark)

    Reimers, J I; Andersen, H U; Mauricio, D


    The aim of this study was to investigate whether strain-dependent differences in beta-cell sensitivity to interleukin (IL) 1 beta exist in vitro and in vivo and if so, whether these differences correlate to variations in IL-1 beta-induced islet inducible nitric oxide synthase (iNOS) mRNA expression....../kg) or vehicle for 5 days. All the strains investigated were susceptible to IL-1 beta-induced changes in body weight, food intake, temperature, and plasma glucagon and corticosterone. However, IL-1 beta induced hyperglycemia and impairment of beta-cell glucose responsiveness in WK/Mol and LS/Mol rats...

  10. Transforming growth factor-beta (TGF-beta) and programmed cell death in the vertebrate retina. (United States)

    Duenker, Nicole


    Programmed cell death (PCD) is a precisely regulated phenomenon essential for the homeostasis of multicellular organisms. Developmental systems, particularly the nervous system, have provided key observations supporting the physiological role of PCD. We have recently shown that transforming growth factor-beta (TGF-beta) plays an important role in mediating ontogenetic PCD in the nervous system. As part of the central nervous system the developing retina serves as an ideal model system for investigating apoptotic processes during neurogenesis in vivo as it is easily accessible experimentally and less complex due to its limited number of different neurons. This review summarizes data indicating a pivotal role of TGF-beta in mediating PCD in the vertebrate retina. The following topics are discussed: expression of TGF-beta isoforms and receptors in the vertebrate retina, the TGF-beta signaling pathway, functions and molecular mechanisms of PCD in the nervous system, TGF-beta-mediated retinal apoptosis in vitro and in vivo, and interactions of TGF-beta with other pro- and anti-apoptotic factors.

  11. Stem cells to pancreatic beta-cells: new sources for diabetes cell therapy. (United States)

    Guo, Tingxia; Hebrok, Matthias


    The number of patients worldwide suffering from the chronic disease diabetes mellitus is growing at an alarming rate. Insulin-secreting beta-cells in the islet of Langerhans are damaged to different extents in diabetic patients, either through an autoimmune reaction present in type 1 diabetic patients or through inherent changes within beta-cells that affect their function in patients suffering from type 2 diabetes. Cell replacement strategies via islet transplantation offer potential therapeutic options for diabetic patients. However, the discrepancy between the limited number of donor islets and the high number of patients who could benefit from such a treatment reflects the dire need for renewable sources of high-quality beta-cells. Human embryonic stem cells (hESCs) are capable of self-renewal and can differentiate into components of all three germ layers, including all pancreatic lineages. The ability to differentiate hESCs into beta-cells highlights a promising strategy to meet the shortage of beta-cells. Here, we review the different approaches that have been used to direct differentiation of hESCs into pancreatic and beta-cells. We will focus on recent progress in the understanding of signaling pathways and transcription factors during embryonic pancreas development and how this knowledge has helped to improve the methodology for high-efficiency beta-cell differentiation in vitro.

  12. Generation of Transplantable Beta Cells for Patient-Specific Cell Therapy

    Directory of Open Access Journals (Sweden)

    Xiaojie Wang


    Full Text Available Islet cell transplantation offers a potential cure for type 1 diabetes, but it is challenged by insufficient donor tissue and side effects of current immunosuppressive drugs. Therefore, alternative sources of insulin-producing cells and isletfriendly immunosuppression are required to increase the efficiency and safety of this procedure. Beta cells can be transdifferentiated from precursors or another heterologous (non-beta-cell source. Recent advances in beta cell regeneration from somatic cells such as fibroblasts could circumvent the usage of immunosuppressive drugs. Therefore, generation of patient-specific beta cells provides the potential of an evolutionary treatment for patients with diabetes.

  13. Novel aspects on pancreatic beta-cell signal-transduction. (United States)

    Leibiger, Ingo B; Brismar, Kerstin; Berggren, Per-Olof


    Pancreatic beta-cells release insulin in appropriate amounts in order to keep blood glucose levels within physiological limits. Failure to do so leads to the most common metabolic disorder in man, diabetes mellitus. The glucose-stimulus/insulin-secretion coupling represents a sophisticated interplay between glucose and a variety of modulatory factors. These factors are provided by the blood supply (such as nutrients, vitamins, incretins etc.), the nerval innervations, cell-cell contacts as well as by paracrine and autocrine feedback loops within the pancreatic islet of Langerhans. However, the underlying mechanisms of their action remain poorly understood. In the present mini-review we discuss novel aspects of selective insulin signaling in the beta-cell and novel insights into the role of higher inositol phosphates in insulin secretion. Finally we present a newly developed experimental platform that allows non-invasive and longitudinal in vivo imaging of pancreatic islet/beta-cell biology at single-cell resolution.

  14. Present and future cell therapies for pancreatic beta cell replenishment. (United States)

    Domínguez-Bendala, Juan; Ricordi, Camillo


    If only at a small scale, islet transplantation has successfully addressed what ought to be the primary endpoint of any cell therapy: the functional replenishment of damaged tissue in patients. After years of less-than-optimal approaches to immunosuppression, recent advances consistently yield long-term graft survival rates comparable to those of whole pancreas transplantation. Limited organ availability is the main hurdle that stands in the way of the widespread clinical utilization of this pioneering intervention. Progress in stem cell research over the past decade, coupled with our decades-long experience with islet transplantation, is shaping the future of cell therapies for the treatment of diabetes. Here we review the most promising avenues of research aimed at generating an inexhaustible supply of insulin-producing cells for islet regeneration, including the differentiation of pluripotent and multipotent stem cells of embryonic and adult origin along the beta cell lineage and the direct reprogramming of non-endocrine tissues into insulin-producing cells.

  15. Present and future cell therapies for pancreatic beta cell replenishment

    Institute of Scientific and Technical Information of China (English)

    Juan Domínguez-Bendala; Camillo Ricordi


    If only at a small scale,islet transplantation has successfully addressed what ought to be the primary endpoint of any cell therapy:the functional replenishment of damaged tissue in patients.After years of less-thanoptimal approaches to immunosuppression,recent advances consistently yield long-term graft survival rates comparable to those of whole pancreas transplantation.Limited organ availability is the main hurdle that stands in the way of the widespread clinical utilization of this pioneering intervention.Progress in stem cell research over the past decade,coupled with our decades-long experience with islet transplantation,is shaping the future of cell therapies for the treatment of diabetes.Here we review the most promising avenues of research aimed at generating an inexhaustible supply of insulin-producing cells for islet regeneration,including the differentiation of pluripotent and multipotent stem cells of embryonic and adult origin along the beta cell lineage and the direct reprogramming of non-endocrine tissues into insulin-producing cells.

  16. Topologically heterogeneous beta cell adaptation in response to high-fat diet in mice

    NARCIS (Netherlands)

    Ellenbroek, J.H.; Tons, H.A.; de Graaf, N.; Loomans, C.J.; Engelse, M.A.; Vrolijk, H.; Voshol, P.J.; Rabelink, T.J.; Carlotti, F.; de Koning, E.J.


    AIMS: Beta cells adapt to an increased insulin demand by enhancing insulin secretion via increased beta cell function and/or increased beta cell number. While morphological and functional heterogeneity between individual islets exists, it is unknown whether regional differences in beta cell adaptati

  17. Foodborne cereulide causes beta-cell dysfunction and apoptosis.

    Directory of Open Access Journals (Sweden)

    Roman Vangoitsenhoven

    Full Text Available To study the effects of cereulide, a food toxin often found at low concentrations in take-away meals, on beta-cell survival and function.Cell death was quantified by Hoechst/Propidium Iodide in mouse (MIN6 and rat (INS-1E beta-cell lines, whole mouse islets and control cell lines (HepG2 and COS-1. Beta-cell function was studied by glucose-stimulated insulin secretion (GSIS. Mechanisms of toxicity were evaluated in MIN6 cells by mRNA profiling, electron microscopy and mitochondrial function tests.24 h exposure to 5 ng/ml cereulide rendered almost all MIN6, INS-1E and pancreatic islets apoptotic, whereas cell death did not increase in the control cell lines. In MIN6 cells and murine islets, GSIS capacity was lost following 24 h exposure to 0.5 ng/ml cereulide (P<0.05. Cereulide exposure induced markers of mitochondrial stress including Puma (p53 up-regulated modulator of apoptosis, P<0.05 and general pro-apoptotic signals as Chop (CCAAT/-enhancer-binding protein homologous protein. Mitochondria appeared swollen upon transmission electron microscopy, basal respiration rate was reduced by 52% (P<0.05 and reactive oxygen species increased by more than twofold (P<0.05 following 24 h exposure to 0.25 and 0.50 ng/ml cereulide, respectively.Cereulide causes apoptotic beta-cell death at low concentrations and impairs beta-cell function at even lower concentrations, with mitochondrial dysfunction underlying these defects. Thus, exposure to cereulide even at concentrations too low to cause systemic effects appears deleterious to the beta-cell.

  18. Human Beta Cells Produce and Release Serotonin to Inhibit Glucagon Secretion from Alpha Cells


    Joana Almaça; Judith Molina; Danusa Menegaz; Pronin, Alexey N.; Alejandro Tamayo; Vladlen Slepak; Per-Olof Berggren; Alejandro Caicedo


    In the pancreatic islet, serotonin is an autocrine signal increasing beta cell mass during metabolic challenges such as those associated with pregnancy or high-fat diet. It is still unclear whether serotonin is relevant for regular islet physiology and hormone secretion. Here, we show that human beta cells produce and secrete serotonin when stimulated with increases in glucose concentration. Serotonin secretion from beta cells decreases cyclic AMP (cAMP) levels in neighboring alpha cells via ...

  19. On the origin of the Almahata-Sitta meteorite and 2008TC3 asteroid

    CERN Document Server

    Gayon-Markt, Julie; Morbidelli, Alessandro; Marchi, Simone


    Asteroid 2008TC3 was a Near Earth Asteroid that impacted the Earth on 2008 October 7. Meteorites were produced by the break-up of 2008TC3 in the high atmosphere and at present, about 600 meteorites - called Almahata Sitta - coming from 2008TC3 have been recovered. A mineralogical study of Almahata Sitta fragments shows that the asteroid 2008TC3 was made of meteorites of different types (ureilites, H, L, and E chondrites). Understanding the origin of this body and how it was put together remain a challenge. Here we perform a detailed spectroscopical and dynamical investigation to show that the most likely source region of 2008TC3 is in the inner Main Belt at low inclination (i<8 degrees). We show that asteroids with spectroscopic classes that can be associated with the different meteorite types of Almahata Sitta are present in the region of the Main Belt that includes the Nysa-Polana family and objects of the Background at low inclination. Searching for a possible scenario of formation for 2008TC3, we show ...

  20. Mechanisms of Beta Cell Dysfunction Associated With Viral Infection. (United States)

    Petzold, Antje; Solimena, Michele; Knoch, Klaus-Peter


    Type 1 diabetes (T1D) results from genetic predisposition and environmental factors leading to the autoimmune destruction of pancreatic beta cells. Recently, a rapid increase in the incidence of childhood T1D has been observed worldwide; this is too fast to be explained by genetic factors alone, pointing to the spreading of environmental factors linked to the disease. Enteroviruses (EVs) are perhaps the most investigated environmental agents in relationship to the pathogenesis of T1D. While several studies point to the likelihood of such correlation, epidemiological evidence in its support is inconclusive or in some instances even against it. Hence, it is still unknown if and how EVs are involved in the development of T1D. Here we review recent findings concerning the biology of EV in beta cells and the potential implications of this knowledge for the understanding of beta cell dysfunction and autoimmune destruction in T1D.

  1. The CC chemokine CK beta-11/MIP-3 beta/ELC/Exodus 3 mediates tumor rejection of murine breast cancer cells through NK cells. (United States)

    Braun, S E; Chen, K; Foster, R G; Kim, C H; Hromas, R; Kaplan, M H; Broxmeyer, H E; Cornetta, K


    CK beta-11 chemoattracts T cells, B cells, dendritic cells, macrophage progenitors, and NK cells and facilitates dendritic cell and T cell interactions in secondary lymphoid tissues. We hypothesized that expression of CK beta-11 in tumor cells may generate antitumor immunity through these interactions. After transduction with the retroviral vector L(CK beta 11)SN, the murine breast cancer cell line C3L5 (C3L5-CK beta 11) showed expression of retroviral mRNA by Northern analysis and production of functional CK beta-11 by chemotaxis of human NK cells to C3L5-CK beta 11 supernatant. Only 10% of mice injected with C3L5-CK beta 11 developed tumors, compared with 100% of mice injected with a transduced control C3L5 line (C3L5-G1N). Importantly, the in vitro growth characteristics of the CK beta-11-transduced cell line were unaffected, suggesting the difference in growth in vivo was a result of chemokine production. Vaccination with C3L5-CK beta 11 partially protected animals from parental C3L5 challenge. Immunodepletion with anti-asialo-GM1 or anti-CD4 during C3L5-CK beta 11 vaccination significantly reduced CK beta-11 antitumor activity compared with control and anti-CD8-treated groups. Splenocytes from NK-depleted animals transferred the acquired immunity generated with C3L5-CK beta 11 vaccination, while splenocytes from the CD4-depleted animals did not. These results indicate, for the first time, that expression of CK beta-11 in a breast cancer cell line mediates rejection of the transduced tumor through a mechanism involving NK and CD4+ cells. Furthermore, CK beta-11-transduced tumor cells generate long-term antitumor immunity that requires CD4+ cells. These studies demonstrate the potential role of CK beta-11 as an adjuvant in stimulating antitumor responses.

  2. Is Transforming Stem Cells to Pancreatic Beta Cells Still the Holy Grail for Type 2 Diabetes? (United States)

    Kahraman, Sevim; Okawa, Erin R; Kulkarni, Rohit N


    Diabetes is a progressive disease affecting millions of people worldwide. There are several medications and treatment options to improve the life quality of people with diabetes. One of the strategies for the treatment of diabetes could be the use of human pluripotent stem cells or induced pluripotent stem cells. The recent advances in differentiation of stem cells into insulin-secreting beta-like cells in vitro make the transplantation of the stem cell-derived beta-like cells an attractive approach for treatment of type 1 and type 2 diabetes. While stem cell-derived beta-like cells provide an unlimited cell source for beta cell replacement therapies, these cells can also be used as a platform for drug screening or modeling diseases.

  3. beta-Catenin signaling is required for TGF-beta(1)-induced extracellular matrix production by airway smooth muscle cells

    NARCIS (Netherlands)

    Baarsma, Hoeke A.; Menzen, Mark H.; Halayko, Andrew J.; Meurs, Herman; Kerstjens, Huib A. M.; Gosens, Reinoud


    Baarsma HA, Menzen MH, Halayko AJ, Meurs H, Kerstjens HA, Gosens R. beta-Catenin signaling is required for TGF-beta(1)-induced extracellular matrix production by airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 301: L956-L965, 2011. First published September 9, 2011; doi: 10.1152/ajplu

  4. A Figure-of-Merit for Beta Cell Detector Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Foxe, Michael P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Miller, Brian W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Suarez, Rey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hayes, James C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    In order to decrease the minimum detectable activities (MDAs) of beta-gamma radioxenon detectors, it is important to increase the ability to resolve the individual isotopes. One proposed method for doing this is to increase the energy resolution of the beta cell through the use of silicon detectors. While silicon detectors can improve the energy resolution, it is accompanied with a decrease in detection efficiency compared to plastic scintillator beta cells. Due to the uncertainty on the impact of the competing variables, we have developed a figure-of-merit (FOM) capable of determining the impact of detector parameters on the MDAs. By utilizing the FOM to analyze different detectors, we are able to directly compare current and future detectors and estimate their impact on the radioxenon MDAs.

  5. Effect of fluoroquinolones on mitochondrial function in pancreatic beta cells. (United States)

    Ghaly, Hany; Jörns, Anne; Rustenbeck, Ingo


    Hyper- and hypoglycaemias are known side effects of fluoroquinolone antibiotics, resulting in a number of fatalities. Fluoroquinolone-induced hypoglycaemias are due to stimulated insulin release by the inhibition of the KATP channel activity of the beta cell. Recently, it was found that fluoroquinolones were much less effective on metabolically intact beta cells than on open cell preparations. Thus the intracellular effects of gatifloxacin, moxifloxacin and ciprofloxacin were investigated by measuring NAD(P)H- and FAD-autofluorescence, the mitochondrial membrane potential, and the adenine nucleotide content of isolated pancreatic islets and beta cells. 100 μM of moxifloxacin abolished the NAD(P)H increase elicited by 20mM glucose, while gatifloxacin diminished it and ciprofloxacin had no significant effect. This pattern was also seen with islets from SUR1 Ko mice, which have no functional KATP channels. Moxifloxacin also diminished the glucose-induced decrease of FAD-fluorescence, which reflects the intramitochondrial production of reducing equivalents. Moxifloxacin, but not ciprofloxacin or gatifloxacin significantly reduced the effect of 20mM glucose on the ATP/ADP ratio. The mitochondrial hyperpolarization caused by 20mM glucose was partially antagonized by moxifloxacin, but not by ciprofloxacin or gatifloxacin. Ultrastructural analyses after 20 h tissue culture showed that all three compounds (at 10 and 100 μM) diminished the number of insulin secretory granules and that gatifloxacin and ciprofloxacin, but not moxifloxacin induced fission/fusion configurations of the beta cell mitochondria. In conclusion, fluoroquinolones affect the function of the mitochondria in pancreatic beta cells which may diminish the insulinotropic effect of KATP channel closure and contribute to the hyperglycaemic episodes.

  6. Workshop on programming beta cell development, impairment and regeneration

    DEFF Research Database (Denmark)

    Heller, Scott; Nielsen, Jens Høiriis


    Helsingør, the city of Hamlet in Denmark, provided the site for the workshop "Programming Beta Cell Development, Impairment and Regeneration" on October 23-26th, 2011. The same location has held two EASD Islet study group meetings, while the previous three workshops were held in Helsinki, Finland...

  7. Insulin-like growth factors and pancreas beta cells.

    NARCIS (Netherlands)

    Haeften, T.W. van; Twickler, M.


    Abstract Insulin-like growth factors (IGFs) have been implicated in normal growth, and especially foetal pancreas beta-cell development. As low birth weight has been implicated in the development of obesity and type 2 diabetes, much research has evolved into the importance of IGF and their signallin

  8. Insulin-like growth factors and pancreas beta cells

    NARCIS (Netherlands)

    van Haeften, TW; Twickler, TB


    Insulin-like growth factors (IGFs) have been implicated in normal growth, and especially foetal pancreas beta-cell development. As low birth weight has been implicated in the development of obesity and type 2 diabetes, much research has evolved into the importance of IGF and their signalling pathway

  9. Pancreatic beta-cell overexpression of the glucagon receptor gene results in enhanced beta-cell function and mass

    DEFF Research Database (Denmark)

    Gelling, Richard W; Vuguin, Patricia M; Du, Xiu Quan


    in response to glucagon and glucose, the glucose excursion resulting from both a glucagon challenge and intraperitoneal glucose tolerance test (IPGTT) was significantly reduced in RIP-Gcgr mice compared with controls. However, RIP-Gcgr mice display similar glucose responses to an insulin challenge. beta...... in vivo, we generated mice overexpressing the Gcgr specifically on pancreatic beta-cells (RIP-Gcgr). In vivo and in vitro insulin secretion in response to glucagon and glucose was increased 1.7- to 3.9-fold in RIP-Gcgr mice compared with controls. Consistent with the observed increase in insulin release...... and impaired glucose tolerance (IGT) were reduced in RIP-Gcgr mice compared with controls. Furthermore, the insulin response of RIP-Gcgr mice to an IPGTT was twice that of controls when fed the HFD. These data indicate that increased pancreatic beta-cell expression of the Gcgr increased insulin secretion...

  10. Exploring functional beta-cell heterogeneity in vivo using PSA-NCAM as a specific marker.

    Directory of Open Access Journals (Sweden)

    Melis Karaca

    Full Text Available BACKGROUND: The mass of pancreatic beta-cells varies according to increases in insulin demand. It is hypothesized that functionally heterogeneous beta-cell subpopulations take part in this process. Here we characterized two functionally distinct groups of beta-cells and investigated their physiological relevance in increased insulin demand conditions in rats. METHODS: Two rat beta-cell populations were sorted by FACS according to their PSA-NCAM surface expression, i.e. beta(high and beta(low-cells. Insulin release, Ca(2+ movements, ATP and cAMP contents in response to various secretagogues were analyzed. Gene expression profiles and exocytosis machinery were also investigated. In a second part, beta(high and beta(low-cell distribution and functionality were investigated in animal models with decreased or increased beta-cell function: the Zucker Diabetic Fatty rat and the 48 h glucose-infused rat. RESULTS: We show that beta-cells are heterogeneous for PSA-NCAM in rat pancreas. Unlike beta(low-cells, beta(high-cells express functional beta-cell markers and are highly responsive to various insulin secretagogues. Whereas beta(low-cells represent the main population in diabetic pancreas, an increase in beta(high-cells is associated with gain of function that follows sustained glucose overload. CONCLUSION: Our data show that a functional heterogeneity of beta-cells, assessed by PSA-NCAM surface expression, exists in vivo. These findings pinpoint new target populations involved in endocrine pancreas plasticity and in beta-cell defects in type 2 diabetes.

  11. Co-culture of clonal beta cells with GLP-1 and glucagon-secreting cell line impacts on beta cell insulin secretion, proliferation and susceptibility to cytotoxins. (United States)

    Green, Alastair D; Vasu, Srividya; Moffett, R Charlotte; Flatt, Peter R


    We investigated the direct effects on insulin releasing MIN6 cells of chronic exposure to GLP-1, glucagon or a combination of both peptides secreted from GLUTag L-cell and αTC1.9 alpha-cell lines in co-culture. MIN6, GLUTag and αTC1.9 cell lines exhibited high cellular hormone content and release of insulin, GLP-1 and glucagon, respectively. Co-culture of MIN6 cells with GLUTag cells significantly increased cellular insulin content, beta-cell proliferation, insulin secretory responses to a range of established secretogogues and afforded protection against exposure cytotoxic concentrations of glucose, lipid, streptozotocin or cytokines. Benefits of co-culture of MIN6 cells with αTC1.9 alphacells were limited to enhanced beta-cell proliferation with marginal positive actions on both insulin secretion and cellular protection. In contrast, co-culture of MIN6 with GLUTag cells plus αTC1.9 cells, markedly enhanced both insulin secretory responses and protection against beta-cell toxins compared with co-culture with GLUTag cells alone. These data indicate important long-term effects of conjoint GLP-1 and glucagon exposure on beta-cell function. This illustrates the possible functional significance of alpha-cell GLP-1 production as well as direct beneficial effects of dual agonism at beta-cell GLP-1 and glucagon receptors.

  12. Insulin-producing cells generated from dedifferentiated human pancreatic beta cells expanded in vitro.

    Directory of Open Access Journals (Sweden)

    Holger A Russ

    Full Text Available BACKGROUND: Expansion of beta cells from the limited number of adult human islet donors is an attractive prospect for increasing cell availability for cell therapy of diabetes. However, attempts at expanding human islet cells in tissue culture result in loss of beta-cell phenotype. Using a lineage-tracing approach we provided evidence for massive proliferation of beta-cell-derived (BCD cells within these cultures. Expansion involves dedifferentiation resembling epithelial-mesenchymal transition (EMT. Epigenetic analyses indicate that key beta-cell genes maintain open chromatin structure in expanded BCD cells, although they are not transcribed. Here we investigated whether BCD cells can be redifferentiated into beta-like cells. METHODOLOGY/PRINCIPAL FINDING: Redifferentiation conditions were screened by following activation of an insulin-DsRed2 reporter gene. Redifferentiated cells were characterized for gene expression, insulin content and secretion assays, and presence of secretory vesicles by electron microscopy. BCD cells were induced to redifferentiate by a combination of soluble factors. The redifferentiated cells expressed beta-cell genes, stored insulin in typical secretory vesicles, and released it in response to glucose. The redifferentiation process involved mesenchymal-epithelial transition, as judged by changes in gene expression. Moreover, inhibition of the EMT effector SLUG (SNAI2 using shRNA resulted in stimulation of redifferentiation. Lineage-traced cells also gave rise at a low rate to cells expressing other islet hormones, suggesting transition of BCD cells through an islet progenitor-like stage during redifferentiation. CONCLUSIONS/SIGNIFICANCE: These findings demonstrate for the first time that expanded dedifferentiated beta cells can be induced to redifferentiate in culture. The findings suggest that ex-vivo expansion of adult human islet cells is a promising approach for generation of insulin-producing cells for

  13. A subset of human pancreatic beta cells express functional CD14 receptors: a signaling pathway for beta cell-related glycolipids, sulfatide and ß-galactosylceramide

    DEFF Research Database (Denmark)

    Østerbye, Thomas; Funda, David P; Fundová, Petra;


    T1DM is a T-cell-mediated autoimmune disease targeting insulin-producing beta-cells. Multiple factors may contribute to the development of T1DM. Among these, the metabolic state of beta-cells and pro-inflammatory cytokines, produced by infiltrating immune cells, have been implicated in the precip...

  14. Induction of human pancreatic beta cell replication by inhibitors of dual specificity tyrosine regulated kinase (United States)

    Wang, Peng; Alvarez-Perez, Juan-Carlos; Felsenfeld, Dan P.; Liu, Hongtao; Sivendran, Sharmila; Bender, Aaron; Kumar, Anil; Sanchez, Roberto; Scott, Donald K.; Garcia-Ocaña, Adolfo; Stewart, Andrew F.


    Types 1 and 2 diabetes affect some 380 million people worldwide. Both result ultimately from a deficiency of functional pancreatic insulin-producing beta cells. Beta cells proliferate in humans during a brief temporal window beginning around the time of birth, with peak beta cell labeling indices achieving approximately 2% in first year of life1-4. In embryonic life and after early childhood, beta cell replication rates are very low. While beta cell expansion seems an obvious therapeutic approach to beta cell deficiency, adult human beta cells have proven recalcitrant to such efforts1-8. Hence, there remains an urgent need for diabetes therapeutic agents that can induce regeneration and expansion of adult human beta cells in vivo or ex vivo. Here, we report the results of a high-throughput small molecule screen (HTS) revealing a novel class of human beta cell mitogenic compounds, analogues of the small molecule, harmine. We also define dual specificity tyrosine-regulated kinase-1a (DYRK1A) as the likely target of harmine, and the Nuclear Factors of activated T-cells (NFAT) family of transcription factors as likely mediators of human beta cell proliferation as well as beta cell differentiation. These observations suggest that harmine analogues (“harmalogs”) may have unique therapeutic promise for human diabetes therapy. Enhancing potency and beta cell specificity are important future challenges. PMID:25751815

  15. File list: Oth.Pan.05.AllAg.Pancreatic_beta_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.05.AllAg.Pancreatic_beta_cells mm9 TFs and others Pancreas Pancreatic beta ...cells SRX445035,SRX445033,SRX445034 ...

  16. File list: DNS.Pan.50.AllAg.Pancreatic_beta_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Pan.50.AllAg.Pancreatic_beta_cells mm9 DNase-seq Pancreas Pancreatic beta cells... ...

  17. File list: DNS.Pan.05.AllAg.Pancreatic_beta_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Pan.05.AllAg.Pancreatic_beta_cells mm9 DNase-seq Pancreas Pancreatic beta cells... ...

  18. File list: Oth.Pan.20.AllAg.Pancreatic_beta_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.20.AllAg.Pancreatic_beta_cells mm9 TFs and others Pancreas Pancreatic beta ...cells SRX445035,SRX445033,SRX445034 ...

  19. File list: Pol.Pan.50.AllAg.Pancreatic_beta_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Pan.50.AllAg.Pancreatic_beta_cells mm9 RNA polymerase Pancreas Pancreatic beta ...cells ...

  20. File list: His.Pan.50.AllAg.Pancreatic_beta_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.50.AllAg.Pancreatic_beta_cells mm9 Histone Pancreas Pancreatic beta cells S...RX1035141,SRX1035146,SRX1035144,SRX1035145,SRX1035140 ...

  1. File list: DNS.Pan.20.AllAg.Pancreatic_beta_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Pan.20.AllAg.Pancreatic_beta_cells mm9 DNase-seq Pancreas Pancreatic beta cells... ...

  2. File list: Pol.Pan.20.AllAg.Pancreatic_beta_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Pan.20.AllAg.Pancreatic_beta_cells mm9 RNA polymerase Pancreas Pancreatic beta ...cells ...

  3. File list: Pol.Pan.05.AllAg.Pancreatic_beta_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Pan.05.AllAg.Pancreatic_beta_cells mm9 RNA polymerase Pancreas Pancreatic beta ...cells ...

  4. File list: His.Pan.20.AllAg.Pancreatic_beta_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.20.AllAg.Pancreatic_beta_cells mm9 Histone Pancreas Pancreatic beta cells S...RX1035141,SRX1035146,SRX1035144,SRX1035145,SRX1035140 ...

  5. File list: DNS.Pan.10.AllAg.Pancreatic_beta_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Pan.10.AllAg.Pancreatic_beta_cells mm9 DNase-seq Pancreas Pancreatic beta cells... ...

  6. File list: Unc.Pan.50.AllAg.Pancreatic_beta_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Pan.50.AllAg.Pancreatic_beta_cells mm9 Unclassified Pancreas Pancreatic beta ce...lls ...

  7. File list: Oth.Pan.50.AllAg.Pancreatic_beta_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.50.AllAg.Pancreatic_beta_cells mm9 TFs and others Pancreas Pancreatic beta ...cells SRX445035,SRX445033,SRX445034 ...

  8. File list: Unc.Pan.20.AllAg.Pancreatic_beta_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Pan.20.AllAg.Pancreatic_beta_cells mm9 Unclassified Pancreas Pancreatic beta ce...lls ...

  9. File list: His.Pan.05.AllAg.Pancreatic_beta_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.05.AllAg.Pancreatic_beta_cells mm9 Histone Pancreas Pancreatic beta cells S...RX1035144,SRX1035146,SRX1035141,SRX1035140,SRX1035145 ...

  10. File list: His.Pan.10.AllAg.Pancreatic_beta_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.10.AllAg.Pancreatic_beta_cells mm9 Histone Pancreas Pancreatic beta cells S...RX1035146,SRX1035141,SRX1035144,SRX1035140,SRX1035145 ...

  11. File list: Unc.Pan.05.AllAg.Pancreatic_beta_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Pan.05.AllAg.Pancreatic_beta_cells mm9 Unclassified Pancreas Pancreatic beta ce...lls ...

  12. File list: Pol.Pan.10.AllAg.Pancreatic_beta_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Pan.10.AllAg.Pancreatic_beta_cells mm9 RNA polymerase Pancreas Pancreatic beta ...cells ...

  13. File list: Unc.Pan.10.AllAg.Pancreatic_beta_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Pan.10.AllAg.Pancreatic_beta_cells mm9 Unclassified Pancreas Pancreatic beta ce...lls ...

  14. TGF-{beta}-stimulated aberrant expression of class III {beta}-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eun Jee [Department of Ophthalmology, National Health Insurance Corporation Ilsan Hospital, Gyeonggi-do (Korea, Republic of); Chun, Ji Na; Jung, Sun-Ah [Konyang University Myunggok Medical Research Institute, Kim' s Eye Hospital, Konyang University College of Medicine, Seoul (Korea, Republic of); Cho, Jin Won [Department of Biology, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Lee, Joon H., E-mail: [Konyang University Myunggok Medical Research Institute, Kim' s Eye Hospital, Konyang University College of Medicine, Seoul (Korea, Republic of)


    Highlights: Black-Right-Pointing-Pointer TGF-{beta} induces aberrant expression of {beta}III in RPE cells via the ERK pathway. Black-Right-Pointing-Pointer TGF-{beta} increases O-GlcNAc modification of {beta}III in RPE cells. Black-Right-Pointing-Pointer Mature RPE cells have the capacity to express a neuron-associated gene by TGF-{beta}. -- Abstract: The class III {beta}-tubulin isotype ({beta}{sub III}) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III {beta}-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology in pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-{beta} (TGF-{beta}) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-{beta} on the aberrant expression of class III {beta}-tubulin and the intracellular signaling pathway mediating these changes. TGF-{beta}-induced aberrant expression and O-linked-{beta}-N-acetylglucosamine (O-GlcNac) modification of class III {beta}-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-{beta} also stimulated phosphorylation of ERK. TGF-{beta}-induced aberrant expression of class III {beta}-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-{beta} stimulated aberrant expression of class III {beta}-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-{beta} stimulation and provide useful information

  15. Regulation of laminin beta2 chain gene expression in human cancer cell lines

    DEFF Research Database (Denmark)

    Durkin, M E; Nielsen, F C; Loechel, F;


    The laminin beta2 chain is a basement membrane component expressed in a tissue- and developmental stage-specific manner. In this report we have examined the transcriptional and post-transcriptional regulation of the human laminin beta2 chain in human tumor cell lines. Both the A204 rhabdomyosarcoma...... and clone A colon carcinoma cells express the laminin beta2 chain mRNA, but only the A204 cells secrete laminin heterotrimers containing the beta2 chain. Segments of the beta2 chain gene promoter region were cloned into luciferase reporter vectors, and their ability to stimulate transcription was tested...... of the human laminin beta2 chain gene generates two isoforms of the 5' untranslated region of the beta2 chain mRNA. The translational efficiencies of the two laminin beta2 chain leaders did not differ significantly, when assayed by polysome profile analysis of endogenous clone A cell beta2 chain m...

  16. Beta4 tubulin identifies a primitive cell source for oligodendrocytes in the mammalian brain. (United States)

    Wu, Chuanshen; Chang, Ansi; Smith, Maria C; Won, Roy; Yin, Xinghua; Staugaitis, Susan M; Agamanolis, Dimitri; Kidd, Grahame J; Miller, Robert H; Trapp, Bruce D


    We have identified a novel population of cells in the subventricular zone (SVZ) of the mammalian brain that expresses beta4 tubulin (betaT4) and has properties of primitive neuroectodermal cells. betaT4 cells are scattered throughout the SVZ of the lateral ventricles in adult human brain and are significantly increased in the SVZs bordering demyelinated white matter in multiple sclerosis brains. In human fetal brain, betaT4 cell densities peak during the latter stages of gliogenesis, which occurs in the SVZ of the lateral ventricles. betaT4 cells represent 95% of cells in neurospheres treated with the anti-mitotic agent Ara C. betaT4 cells produce oligodendrocytes, neurons, and astrocytes in vitro. We compared the myelinating potential of betaT4-positive cells with A2B5-positive oligodendrocyte progenitor cells after transplantation (25,000 cells) into postnatal day 3 (P3) myelin-deficient rat brains. At P20, the progeny of betaT4 cells myelinated up to 4 mm of the external capsule, which significantly exceeded that of transplanted A2B5-positive progenitor cells. Such extensive and rapid mature CNS cell generation by a relatively small number of transplanted cells provides in vivo support for the therapeutic potential of betaT4 cells. We propose that betaT4 cells are an endogenous cell source that can be recruited to promote neural repair in the adult telencephalon.

  17. Thymosin beta 4 induces hair growth via stem cell migration and differentiation. (United States)

    Philp, Deborah; St-Surin, Sharleen; Cha, Hee-Jae; Moon, Hye-Sung; Kleinman, Hynda K; Elkin, Michael


    Thymosin beta 4 is a small 43-amino-acid molecule that has multiple biological activities, including promotion of cell migration angiogenesis, cell survival, protease production, and wound healing. We have found that thymosin beta 4 promotes hair growth in various rat and mice models including a transgenic thymosin beta 4 overexpressing mouse. We have also determined the mechanism by which thymosin beta 4 acts to promote hair growth by examining its effects on follicle stem cell growth, migration, differentiation, and protease production.

  18. T cell precursor migration towards beta 2-microglobulin is involved in thymus colonization of chicken embryos

    DEFF Research Database (Denmark)

    Dunon, D; Kaufman, J; Salomonsen, J;


    beta 2-microglobulin (beta 2m) attracts hemopoietic precursors from chicken bone marrow cells in vitro. The cell population responding to beta 2m increases during the second period of thymus colonization, which takes place at days 12-14 of incubation. The precursors from 13.5 day old embryos were...... isolated after migration towards beta 2m in vitro and shown to be able to colonize a 13 day old thymus in ovo, where they subsequently acquire thymocyte markers. In contrast these beta 2m responsive precursors did not colonize embryonic bursa, i.e. differentiate into B lymphocytes. During chicken...... embryogenesis, peaks of beta 2m transcripts and of free beta 2m synthesis can only be detected in the thymus. The peak of free beta 2m synthesis in the thymus and the increase of beta 2m responding bone marrow cells both occur concomitantly with the second wave of thymus colonization in chicken embryo, facts...

  19. RLIM interacts with Smurf2 and promotes TGF-{beta} induced U2OS cell migration

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yongsheng [State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433 (China); State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084 (China); Yang, Yang; Gao, Rui; Yang, Xianmei [State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433 (China); Yan, Xiaohua [State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084 (China); Wang, Chenji; Jiang, Sirui [State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433 (China); Yu, Long, E-mail: [State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433 (China)


    Highlights: {yields} RLIM directly binds to Smurf2. {yields} RLIM enhances TGF-{beta} responsiveness in U2OS cells. {yields} RLIM promotes TGF-{beta} driven migration of osteosarcoma U2OS cells. -- Abstract: TGF-{beta} (transforming growth factor-{beta}), a pleiotropic cytokine that regulates diverse cellular processes, has been suggested to play critical roles in cell proliferation, migration, and carcinogenesis. Here we found a novel E3 ubiquitin ligase RLIM which can directly bind to Smurf2, enhancing TGF-{beta} responsiveness in osteosarcoma U2OS cells. We constructed a U2OS cell line stably over-expressing RLIM and demonstrated that RLIM promoted TGF-{beta}-driven migration of U2OS cells as tested by wound healing assay. Our results indicated that RLIM is an important positive regulator in TGF-{beta} signaling pathway and cell migration.

  20. Modulation of estrogen receptor-beta isoforms by phytoestrogens in breast cancer cells. (United States)

    Cappelletti, Vera; Miodini, Patrizia; Di Fronzo, Giovanni; Daidone, Maria Grazia


    High consumption of phytoestrogen-rich food correlates with reduced incidence of breast cancer. However, the effect of phytoestrogens on growth of pre-existing breast tumors presents concerns when planning the use of phytoestrogens as chemoprevention st rategy. Genistein, the active phytoestrogen in soy, displays weak estrogenic activity mediated by estrogen receptor (ER) with a preferential binding for the ER-beta species. However, no information is at present available on the interaction between phytoestrogens and the various isoforms generated by alternative splicing. In two human breast cancer cell lines, T47D and BT20, which express variable levels of ER-beta, the effect of genistein and quercetin was evaluated singly and in comparison with 17beta-estradiol, on mRNA expression of estrogen receptor-beta (ER-beta) isoforms evaluated by a triple primer RT-PCR assay. In T47D cells estradiol caused a 6-fold up-regulation of total ER-beta, and modified the relative expression pattern of the various isoforms, up-regulating the beta2 and down-regulating the beta5 isoform. Genistein up-regulated ER-beta2 and ER-beta1 in T47D cells, and after treatment the ER-beta2 isoform became prevalent, while in BT20 cells it almost doubled the percent contribution of ER-beta1 and ER-beta2 to total ER-beta. Quercetin did not alter the total levels nor the percent distribution of ER-beta isoforms in either cell line. Genistein, through the modulation of ER-beta isoform RNA expression inhibited estrogen-promoted cell growth, without interfering on estrogen-regulated transcription. ER-beta and its ER-beta mRNA isoforms may be involved in a self-limiting mechanism of estrogenic stimulation promoted either by the natural hormone or by weaker estrogen agonists like genistein.

  1. File list: ALL.Pan.10.AllAg.Pancreatic_beta_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.10.AllAg.Pancreatic_beta_cells mm9 All antigens Pancreas Pancreatic beta ce...3,SRX1035140,SRX1035148,SRX1035145 ...

  2. File list: ALL.Pan.05.AllAg.Pancreatic_beta_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.05.AllAg.Pancreatic_beta_cells mm9 All antigens Pancreas Pancreatic beta ce...2,SRX1035148,SRX1035140,SRX1035145 ...

  3. File list: ALL.Pan.20.AllAg.Pancreatic_beta_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.20.AllAg.Pancreatic_beta_cells mm9 All antigens Pancreas Pancreatic beta ce...2,SRX1035144,SRX1035145,SRX1035140 ...

  4. File list: ALL.Pan.50.AllAg.Pancreatic_beta_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.50.AllAg.Pancreatic_beta_cells mm9 All antigens Pancreas Pancreatic beta ce...6,SRX1035143,SRX1035140,SRX1035142 ...

  5. TRPM4 controls insulin secretion in pancreatic beta-cells. (United States)

    Cheng, Henrique; Beck, Andreas; Launay, Pierre; Gross, Stefan A; Stokes, Alexander J; Kinet, Jean-Pierre; Fleig, Andrea; Penner, Reinhold


    TRPM4 is a calcium-activated non-selective cation channel that is widely expressed and proposed to be involved in cell depolarization. In excitable cells, TRPM4 may regulate calcium influx by causing the depolarization that drives the activation of voltage-dependent calcium channels. We here report that insulin-secreting cells of the rat pancreatic beta-cell line INS-1 natively express TRPM4 proteins and generate large depolarizing membrane currents in response to increased intracellular calcium. These currents exhibit the characteristics of TRPM4 and can be suppressed by expressing a dominant negative TRPM4 construct, resulting in significantly decreased insulin secretion in response to a glucose stimulus. Reduced insulin secretion was also observed with arginine vasopressin stimulation, a Gq-coupled receptor agonist in beta-cells. Moreover, the recruitment of TRPM4 currents was biphasic in both INS-1 cells as well as HEK-293 cells overexpressing TRPM4. The first phase is due to activation of TRPM4 channels localized within the plasma membrane followed by a slower secondary phase, which is caused by the recruitment of TRPM4-containing vesicles to the plasma membrane during exocytosis. The secondary phase can be observed during perfusion of cells with increasing [Ca(2+)](i), replicated with agonist stimulation, and coincides with an increase in cell capacitance, loss of FM1-43 dye, and vesicle fusion. Our data suggest that TRPM4 may play a key role in the control of membrane potential and electrical activity of electrically excitable secretory cells and the dynamic translocation of TRPM4 from a vesicular pool to the plasma membrane via Ca(2+)-dependent exocytosis may represent a key short- and midterm regulatory mechanism by which cells regulate electrical activity.

  6. Stochastic and coherent dynamics of single and coupled beta cells

    DEFF Research Database (Denmark)

    phenomenon, modeled by a slow-fast nonlinear system of ordinary differential equations (ODEs). The single cell oscillations are complex as the dynamical behavior is a result of traversing a series of saddle node and homoclinic bifurcations, controlled by the slow variable. We shall present results...... is the simplest reaction-diffusion partial differential equation....... on the burst period as function of an external applied stochastic term and use a technique for reducing the stochastic differential equations to ODEs for the average and higher order moments. The later method is approximate and we shall discuss the limits of validity. The individual beta cells are coupled...

  7. Proliferative Effect of sTRAIL on Mouse Pancreatic Beta Cells

    Directory of Open Access Journals (Sweden)

    Sevim Kahraman


    Full Text Available Beta cell loss/impairment of function appears as a significant problem in both type 1 and type 2 diabetes. TRAIL (TNF-related apoptosis-inducing ligand was recently correlated with both types of diabetes with a proposed protective effect. TRAIL was also shown to promote survival and proliferation in different cells such as vascular smooth muscle cells and human vascular endothelial cells. Recently, TRAIL was claimed to protect pancreatic beta cells against cytokine-related harm. We hypothesized a proliferative effect for TRAIL on beta cells, and used Min6 mouse pancreatic beta cell line to test our hypothesis.

  8. The replication of beta cells in normal physiology, in disease and for therapy. (United States)

    Butler, Peter C; Meier, Juris J; Butler, Alexandra E; Bhushan, Anil


    Replication of beta cells is an important source of beta-cell expansion in early childhood. The recent linkage of type 2 diabetes with several transcription factors involved in cell cycle regulation implies that growth of the beta-cell mass in early childhood might be an important determinant of risk for type 2 diabetes. Under some circumstances, including obesity and pregnancy, the beta-cell mass is adaptively increased in adult humans. The mechanisms by which this adaptive growth occurs and the relative contributions of beta-cell replication or of mechanisms independent of beta-cell replication are unknown. Also, although there is interest in the potential for beta-cell regeneration as a therapeutic approach in both type 1 and 2 diabetes, little is yet known about the potential sources of new beta cells in adult humans. In common with other cell types, replicating beta cells have an increased vulnerability to apoptosis, which is likely to limit the therapeutic value of inducing beta-cell replication in the proapoptotic environment of type 1 and 2 diabetes unless applied in conjunction with a strategy to suppress increased apoptosis.

  9. Structure of the T cell receptor in a Ti alpha V beta 2, alpha V beta 8-positive T cell line

    DEFF Research Database (Denmark)

    Hou, X; Dietrich, J; Kuhlmann, J


    alpha V beta 2 in the lysate, and likewise, depleting the lysate of Ti alpha V beta with anti-V beta 2 mAb did not reduce the amount of Ti alpha V beta 8. Comodulation experiments showed that V beta 8 and V beta 2 did not comodulate with each other. Furthermore, functional tests demonstrated that Tc......The T cell receptor (TcR) is composed of at least six different polypeptide chains consisting of the clonotypic Ti heterodimer (Ti alpha beta or Ti gamma delta) and the noncovalently associated CD3 chains (CD3 gamma delta epsilon zeta). The exact number of subunits constituting the TcR is still...... not known; however, it has been suggested that each TcR contains two Ti dimers. To gain insight into the structure of the TcR we constructed a Ti alpha V beta 2, alpha V beta 8-positive T cell line which expressed the endogenous human TiV beta 8 and the transfected mouse TiV beta 2 both in association...

  10. Alpha cells secrete acetylcholine as a non-neuronal paracrine signal priming human beta cell function (United States)

    Rodriguez-Diaz, Rayner; Dando, Robin; Jacques-Silva, M. Caroline; Fachado, Alberto; Molina, Judith; Abdulreda, Midhat; Ricordi, Camillo; Roper, Stephen D.; Berggren, Per-Olof; Caicedo, Alejandro


    Acetylcholine is a neurotransmitter that plays a major role in the function of the insulin secreting pancreatic beta cell1,2. Parasympathetic innervation of the endocrine pancreas, the islets of Langerhans, has been shown to provide cholinergic input to the beta cell in several species1,3,4, but the role of autonomic innervation in human beta cell function is at present unclear. Here we show that, in contrast to mouse islets, cholinergic innervation of human islets is sparse. Instead, we find that the alpha cells of the human islet provide paracrine cholinergic input to surrounding endocrine cells. Human alpha cells express the vesicular acetylcholine transporter and release acetylcholine when stimulated with kainate or a lowering in glucose concentration. Acetylcholine secretion by alpha cells in turn sensitizes the beta cell response to increases in glucose concentration. Our results demonstrate that in human islets acetylcholine is a paracrine signal that primes the beta cell to respond optimally to subsequent increases in glucose concentration. We anticipate these results to revise models about neural input and cholinergic signaling in the endocrine pancreas. Cholinergic signaling within the islet represents a potential therapeutic target in diabetes5, highlighting the relevance of this advance to future drug development. PMID:21685896

  11. Role of MicroRNAs in Islet Beta-Cell Compensation and Failure during Diabetes

    Directory of Open Access Journals (Sweden)

    Valérie Plaisance


    Full Text Available Pancreatic beta-cell function and mass are markedly adaptive to compensate for the changes in insulin requirement observed during several situations such as pregnancy, obesity, glucocorticoids excess, or administration. This requires a beta-cell compensation which is achieved through a gain of beta-cell mass and function. Elucidating the physiological mechanisms that promote functional beta-cell mass expansion and that protect cells against death, is a key therapeutic target for diabetes. In this respect, several recent studies have emphasized the instrumental role of microRNAs in the control of beta-cell function. MicroRNAs are negative regulators of gene expression, and are pivotal for the control of beta-cell proliferation, function, and survival. On the one hand, changes in specific microRNA levels have been associated with beta-cell compensation and are triggered by hormones or bioactive peptides that promote beta-cell survival and function. Conversely, modifications in the expression of other specific microRNAs contribute to beta-cell dysfunction and death elicited by diabetogenic factors including, cytokines, chronic hyperlipidemia, hyperglycemia, and oxidized LDL. This review underlines the importance of targeting the microRNA network for future innovative therapies aiming at preventing the beta-cell decline in diabetes.

  12. Glucose activates prenyltransferases in pancreatic islet {beta}-cells

    Energy Technology Data Exchange (ETDEWEB)

    Goalstone, Marc [Department of Medicine, University of Colorado, VA Medical Center, Denver, CO 80220 (United States); Kamath, Vasudeva [Department of Pharmaceutical Sciences, Wayne State University, VA Medical Center, Detroit, MI 48201 (United States); Kowluru, Anjaneyulu, E-mail: [Department of Pharmaceutical Sciences, Wayne State University, VA Medical Center, Detroit, MI 48201 (United States)


    A growing body of evidence implicates small G-proteins [e.g., Cdc42 and Rac1] in glucose-stimulated insulin secretion [GSIS] in the islet {beta}-cell. These signaling proteins undergo post-translational modifications [e.g., prenylation] at their C-terminal cysteine residue and appear to be essential for the transport and fusion of insulin-containing secretory granules with the plasma membrane and the exocytotic secretion of insulin. However, potential regulation of the prenylating enzymes by physiological insulin secretogues [e.g., glucose] has not been investigated thus far. Herein, we report immunological localization, sub-cellular distribution and regulation of farnesyltransferases [FTases] and geranylgeranyltransferase [GGTase] by glucose in insulin-secreting INS 832/13 {beta}-cells and normal rat islets. Our findings suggest that an insulinotropic concentration of glucose [20 mM] markedly stimulated the expression of the {alpha}-subunits of FTase/GGTase-1, but not the {beta}-subunits of FTase or GGTase-1 without significantly affecting the predominantly cytosolic distribution of these holoenzymes in INS 832/13 cells and rodent islets. Under these conditions, glucose significantly stimulated [2.5- to 4.0-fold over basal] the activities of both FTase and GGTase-1 in both cell types. Together, these findings provide the first evidence to suggest that GSIS involves activation of the endogenous islet prenyltransferases by glucose, culminating in the activation of their respective G-protein substrates, which is necessary for cytoskeletal rearrangement, vesicular transport, fusion and secretion of insulin.

  13. DJ-1 Protects Pancreatic Beta Cells from Cytokine- and Streptozotocin-Mediated Cell Death.

    Directory of Open Access Journals (Sweden)

    Deepak Jain

    Full Text Available A hallmark feature of type 1 and type 2 diabetes mellitus is the progressive dysfunction and loss of insulin-producing pancreatic beta cells, and inflammatory cytokines are known to trigger beta cell death. Here we asked whether the anti-oxidant protein DJ-1 encoded by the Parkinson's disease gene PARK7 protects islet cells from cytokine- and streptozotocin-mediated cell death. Wild type and DJ-1 knockout mice (KO were treated with multiple low doses of streptozotocin (MLDS to induce inflammatory beta cell stress and cell death. Subsequently, glucose tolerance tests were performed, and plasma insulin as well as fasting and random blood glucose concentrations were monitored. Mitochondrial morphology and number of insulin granules were quantified in beta cells. Moreover, islet cell damage was determined in vitro after streptozotocin and cytokine treatment of isolated wild type and DJ-1 KO islets using calcein AM/ethidium homodimer-1 staining and TUNEL staining. Compared to wild type mice, DJ-1 KO mice became diabetic following MLDS treatment. Insulin concentrations were substantially reduced, and fasting blood glucose concentrations were significantly higher in MLDS-treated DJ-1 KO mice compared to equally treated wild type mice. Rates of beta cell apoptosis upon MLDS treatment were twofold higher in DJ-1 KO mice compared to wild type mice, and in vitro inflammatory cytokines led to twice as much beta cell death in pancreatic islets from DJ-1 KO mice versus those of wild type mice. In conclusion, this study identified the anti-oxidant protein DJ-1 as being capable of protecting pancreatic islet cells from cell death induced by an inflammatory and cytotoxic setting.

  14. DJ-1 Protects Pancreatic Beta Cells from Cytokine- and Streptozotocin-Mediated Cell Death. (United States)

    Jain, Deepak; Weber, Gesine; Eberhard, Daniel; Mehana, Amir E; Eglinger, Jan; Welters, Alena; Bartosinska, Barbara; Jeruschke, Kay; Weiss, Jürgen; Päth, Günter; Ariga, Hiroyoshi; Seufert, Jochen; Lammert, Eckhard


    A hallmark feature of type 1 and type 2 diabetes mellitus is the progressive dysfunction and loss of insulin-producing pancreatic beta cells, and inflammatory cytokines are known to trigger beta cell death. Here we asked whether the anti-oxidant protein DJ-1 encoded by the Parkinson's disease gene PARK7 protects islet cells from cytokine- and streptozotocin-mediated cell death. Wild type and DJ-1 knockout mice (KO) were treated with multiple low doses of streptozotocin (MLDS) to induce inflammatory beta cell stress and cell death. Subsequently, glucose tolerance tests were performed, and plasma insulin as well as fasting and random blood glucose concentrations were monitored. Mitochondrial morphology and number of insulin granules were quantified in beta cells. Moreover, islet cell damage was determined in vitro after streptozotocin and cytokine treatment of isolated wild type and DJ-1 KO islets using calcein AM/ethidium homodimer-1 staining and TUNEL staining. Compared to wild type mice, DJ-1 KO mice became diabetic following MLDS treatment. Insulin concentrations were substantially reduced, and fasting blood glucose concentrations were significantly higher in MLDS-treated DJ-1 KO mice compared to equally treated wild type mice. Rates of beta cell apoptosis upon MLDS treatment were twofold higher in DJ-1 KO mice compared to wild type mice, and in vitro inflammatory cytokines led to twice as much beta cell death in pancreatic islets from DJ-1 KO mice versus those of wild type mice. In conclusion, this study identified the anti-oxidant protein DJ-1 as being capable of protecting pancreatic islet cells from cell death induced by an inflammatory and cytotoxic setting.

  15. Thymosin {beta}4 promotes the migration of endothelial cells without intracellular Ca{sup 2+} elevation

    Energy Technology Data Exchange (ETDEWEB)

    Selmi, Anna [Department of Molecular and Medical Biophysics, Medical University of Lodz, 92-215 Lodz (Poland); Malinowski, Mariusz [Institute of Medical Biology, Polish Academy of Sciences, Lodz (Poland); Brutkowski, Wojciech [Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw (Poland); Bednarek, Radoslaw [Department of Molecular and Medical Biophysics, Medical University of Lodz, 92-215 Lodz (Poland); Cierniewski, Czeslaw S., E-mail: [Department of Molecular and Medical Biophysics, Medical University of Lodz, 92-215 Lodz (Poland); Institute of Medical Biology, Polish Academy of Sciences, Lodz (Poland)


    Numerous studies have demonstrated the effects of T{beta}4 on cell migration, proliferation, apoptosis and inflammation after exogenous treatment, but the mechanism by which T{beta}4 functions is still unclear. Previously, we demonstrated that incubation of endothelial cells with T{beta}4 induced synthesis and secretion of various proteins, including plasminogen activator inhibitor type 1 and matrix metaloproteinases. We also showed that T{beta}4 interacts with Ku80, which may operate as a novel receptor for T{beta}4 and mediates its intracellular activity. In this paper, we provide evidence that T{beta}4 induces cellular processes without changes in the intracellular Ca{sup 2+} concentration. External treatment of HUVECs with T{beta}4 and its mutants deprived of the N-terminal tetrapeptide AcSDKP (T{beta}4{sub AcSDKPT/4A}) or the actin-binding sequence KLKKTET (T{beta}4{sub KLKKTET/7A}) resulted in enhanced cell migration and formation of tubular structures in Matrigel. Surprisingly, the increased cell motility caused by T{beta}4 was not associated with the intracellular Ca{sup 2+} elevation monitored with Fluo-4 NW or Fura-2 AM. Therefore, it is unlikely that externally added T{beta}4 induces HUVEC migration via the surface membrane receptors known to generate Ca{sup 2+} influx. Our data confirm the concept that externally added T{beta}4 must be internalized to induce intracellular mechanisms supporting endothelial cell migration.

  16. Pancreatic Beta-Cell Purification by Altering FAD and NAD(P)H Metabolism

    NARCIS (Netherlands)

    Smelt, M. J.; Faas, M. M.; de Haan, B. J.; de Vos, P.


    Isolation of primary beta cells from other cells within in the pancreatic islets is of importance for many fields of islet research. However, up to now, no satisfactory method has been developed that gained high numbers of viable beta cells, without considerable alpha-cell contamination. In this stu

  17. DJ-1 Protects Pancreatic Beta Cells from Cytokine- and Streptozotocin-Mediated Cell Death


    Deepak Jain; Gesine Weber; Daniel Eberhard; Mehana, Amir E; Jan Eglinger; Alena Welters; Barbara Bartosinska; Kay Jeruschke; Jürgen Weiss; Günter Päth; Hiroyoshi Ariga; Jochen Seufert; Eckhard Lammert


    A hallmark feature of type 1 and type 2 diabetes mellitus is the progressive dysfunction and loss of insulin-producing pancreatic beta cells, and inflammatory cytokines are known to trigger beta cell death. Here we asked whether the anti-oxidant protein DJ-1 encoded by the Parkinson's disease gene PARK7 protects islet cells from cytokine- and streptozotocin-mediated cell death. Wild type and DJ-1 knockout mice (KO) were treated with multiple low doses of streptozotocin (MLDS) to induce inflam...

  18. Dynamics and Synchrony of Pancreatic beta-cells and Islets

    DEFF Research Database (Denmark)

    Pedersen, Morten Gram


    biological hypotheses. The subjects addressed are: Quasi-steady-state approximations of enzyme reactions, the effect of noise on bursting electrical behavior, exciation wave propagation in pancreatic islets, intra- and inter-islet synchronization and pulsatile insulin secretion, and mitochondrial dynamics.......Pancreatic beta-cells secrete insulin in response to raised glucose levels. Malfunctioning of this system plays an important role in the metabolic disease diabetes. The biological steps from glucose stimulus to the final release of insulin are incompletely understood, and a more complete...

  19. Acquired TGF beta 1 sensitivity and TGF beta 1 expression in cell lines established from a single small cell lung cancer patient during clinical progression

    DEFF Research Database (Denmark)

    Nørgaard, P; Damstrup, L; Rygaard, K;


    was found in GLC 16 and GLC 19. These cell lines were also growth inhibited by exogenously administrated TGF beta 1. TGF beta 1 mRNA and protein in its latent form was only expressed in the radiotherapy-resistant cell line, GLC 19. The results indicate that disease progression in this patient was paralleled...... by a gain in sensitivity to the growth inhibition by TGF beta 1 due to type II TGF beta receptor, and a gain of latent TGF beta 1 protein. Lack of type II receptor expression in GLC 14, which was also resistant to growth inhibition by exogenous TGF beta 1, was not due to gross structural changes in the type...

  20. Beta-interferon inhibits cell infection by Trypanosoma cruzi (United States)

    Kierszenbaum, F.; Sonnenfeld, G.


    Beta interferon has been shown to inhibit the capacity of bloodstream forms of the flagellate Trypanosoma cruzi, the causative agent of Chagas' disease, to associate with and infect mouse peritoneal macrophages and rat heart myoblasts. The inhibitory effect was abrogated in the presence of specific antibodies to the interferon. Pretreatment of the parasites with interferon reduced their infectivity for untreated host cells, whereas pretreament of either type of host cell did not affect the interaction. The effect of interferon on the trypanosomes was reversible; the extent of the inhibitory effect was significantly reduced afer 20 min, and was undetectable after 60 min when macrophages were used as host cells. For the myoblasts, 60 min elapsed before the inhibitory effect began to subside and 120 min elapsed before it became insignificant or undetectable.

  1. Cocoa phenolic extract protects pancreatic beta cells against oxidative stress. (United States)

    Martín, María Angeles; Ramos, Sonia; Cordero-Herrero, Isabel; Bravo, Laura; Goya, Luis


    Diabetes mellitus is associated with reductions in glutathione, supporting the critical role of oxidative stress in its pathogenesis. Antioxidant food components such as flavonoids have a protective role against oxidative stress-induced degenerative and age-related diseases. Flavonoids constitute an important part of the human diet; they can be found in most plant foods, including green tea, grapes or cocoa and possess multiple biological activities. This study investigates the chemo-protective effect of a cocoa phenolic extract (CPE) containing mainly flavonoids against oxidative stress induced by tert-butylhydroperoxide (t-BOOH) on Ins-1E pancreatic beta cells. Cell viability and oxidative status were evaluated. Ins-1E cells treatment with 5-20 μg/mL CPE for 20 h evoked no cell damage and did not alter ROS production. Addition of 50 μM t-BOOH for 2 h increased ROS and carbonyl groups content and decreased reduced glutathione level. Pre-treatment of cells with CPE significantly prevented the t-BOOH-induced ROS and carbonyl groups and returned antioxidant defences to adequate levels. Thus, Ins-1E cells treated with CPE showed a remarkable recovery of cell viability damaged by t-BOOH, indicating that integrity of surviving machineries in the CPE-treated cells was notably protected against the oxidative insult.

  2. Cocoa Phenolic Extract Protects Pancreatic Beta Cells against Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Laura Bravo


    Full Text Available Diabetes mellitus is associated with reductions in glutathione, supporting the critical role of oxidative stress in its pathogenesis. Antioxidant food components such as flavonoids have a protective role against oxidative stress-induced degenerative and age-related diseases. Flavonoids constitute an important part of the human diet; they can be found in most plant foods, including green tea, grapes or cocoa and possess multiple biological activities. This study investigates the chemo-protective effect of a cocoa phenolic extract (CPE containing mainly flavonoids against oxidative stress induced by tert-butylhydroperoxide (t-BOOH on Ins-1E pancreatic beta cells. Cell viability and oxidative status were evaluated. Ins-1E cells treatment with 5–20 μg/mL CPE for 20 h evoked no cell damage and did not alter ROS production. Addition of 50 μM t-BOOH for 2 h increased ROS and carbonyl groups content and decreased reduced glutathione level. Pre-treatment of cells with CPE significantly prevented the t-BOOH-induced ROS and carbonyl groups and returned antioxidant defences to adequate levels. Thus, Ins-1E cells treated with CPE showed a remarkable recovery of cell viability damaged by t-BOOH, indicating that integrity of surviving machineries in the CPE-treated cells was notably protected against the oxidative insult.

  3. Occurrence of thymosin beta4 in human breast cancer cells and in other cell types of the tumor microenvironment

    DEFF Research Database (Denmark)

    Larsson, L.-I.; Holck, Susanne


    that there is a considerable heterogeneity in the cellular distribution of thymosin beta4 in breast cancer. In most tumors examined, cancer cells showed low or intermediate reactivity for thymosin beta4, whereas leukocytes and macrophages showed intense reactivity. In addition, endothelial cells showed variable reactivity...... the tumor microenvironment produce thymosin beta4 and that such expression varies from tumor to tumor. Such heterogeneity of expression should be taken into account when the role of thymosin beta4 in tumor biology is assessed....

  4. Massive parallel gene expression profiling of RINm5F pancreatic islet beta-cells stimulated with interleukin-1beta

    DEFF Research Database (Denmark)

    Rieneck, K; Bovin, L F; Josefsen, K


    Interleukin 1 (IL-1) is a pleiotropic cytokine with the potential to kill pancreatic beta-cells, and this unique property is thought to be involved in the pathogenesis of type I diabetes mellitus. We therefore determined the quantitative expression of 24,000 mRNAs of RINm5F, an insulinoma cell line...

  5. Endoglin promotes endothelial cell proliferation and TGF-beta/ALK1 signal transduction

    NARCIS (Netherlands)

    Lebrin, F; Goumans, MJ; Jonker, L; Carvalho, RLC; Valdimarsdottir, G; Thorikay, M; Mummery, C; Arthur, HM; ten Dijke, P


    Endoglin is a transmembrane accessory receptor for transforming growth factor-beta (TGF-beta) that is predominantly expressed on proliferating endothelial cells in culture and on angiogenic blood vessels in vivo. Endoglin, as well as other TGF-beta signalling components, is essential during angiogen

  6. Importance of Beta Cell Function for the Treatment of Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Yoshifumi Saisho


    Full Text Available Type 2 diabetes (T2DM is characterized by insulin resistance and beta cell dysfunction. Recent evidence has emerged that beta cell dysfunction is a common pathogenetic feature of both type 1 and type 2 diabetes, and T2DM never develops without beta cell dysfunction. Therefore, treatment of T2DM should aim to restore beta cell function. Although the treatment of T2DM has greatly improved over the past few decades, remaining issues in the current treatment of T2DM include (1 hypoglycemia; (2 body weight gain; (3 peripheral hyperinsulinemia and (4 postprandial hyperglycemia, which are all associated with inappropriate insulin supplementation, again underpinning the important role of endogenous and physiological insulin secretion in the management of T2DM. This review summarizes the current knowledge on beta cell function in T2DM and discusses the treatment strategy for T2DM in relation to beta cell dysfunction.

  7. MST1 is a novel regulator of apoptosis in pancreatic beta-cells (United States)

    Ardestani, Amin; Khobragade, Vrushali; Yuan, Ting; Frogne, Thomas; Tao, Wufan; Oberholzer, Jose; Pattou, Francois; Conte, Julie Kerr; Maedler, Kathrin


    Apoptotic cell death is a hallmark of the loss of insulin producing beta-cells in all forms of diabetes mellitus. Current treatment fails to halt the decline in functional beta-cell mass. Strategies to prevent beta-cell apoptosis and dysfunction are urgently needed. Here, we identified Mammalian Sterile 20-like kinase 1 (MST1) as a critical regulator of apoptotic beta-cell death and function. MST1 was strongly activated in beta-cells under diabetogenic conditions and correlated with beta-cell apoptosis. MST1 specifically induced the mitochondrial-dependent pathway of apoptosis in beta-cells through up-regulation of the BH3-only protein Bim. MST1 directly phosphorylated PDX1 at Thr11, resulting in its ubiquitination, degradation and impaired insulin secretion. Mst1 deficiency completely restored normoglycemia, beta-cell function and survival in vitro and in vivo. We show MST1 as novel pro-apoptotic kinase and key mediator of apoptotic signaling and beta-cell dysfunction, which may serve as target for the development of novel therapies for diabetes. PMID:24633305

  8. Alterations of expression and regulation of transforming growth factor beta in human cancer prostate cell lines. (United States)

    Blanchère, M; Saunier, E; Mestayer, C; Broshuis, M; Mowszowicz, I


    TGF beta can promote and/or suppress prostate tumor growth through multiple and opposing actions. Alterations of its expression, secretion, regulation or of the sensitivity of target cells can lead to a favorable environment for tumor development. To gain a better insight in TGF beta function during cancer progression, we have used different cultured human prostate cells: preneoplastic PNT2 cells, the androgen-dependent LNCaP and the androgen-independent PC3 and DU145 prostate cancer cell lines. We have studied by specific ELISA assays in conditioned media (CM), the secretion of TGF beta 1 and TGF beta 2 in basal conditions and after hormonal treatment (DHT or E2) and the expression of TGF beta 1 mRNA by Northern blot. We have also compared the effect of fibroblast CM on TGF beta secretion by the different cell types. Compared to PNT2 cells, cancer cell lines secrete lower levels of active TGF beta which are not increased in the presence of fibroblast CM. LNCaP cells respond to androgen or estrogen treatment by a 10-fold increase of active TGF beta secretion while PC3 and DU145 are unresponsive. In conclusion, prostate cancer cell lines have lost part of their ability to secrete and activate TGF beta, and to regulate this secretion through stromal-epithelial interactions. Androgen-sensitive cancer cells may compensate this loss by hormonal regulation.

  9. Cocaine- and amphetamine-regulated transcript (CART) protects beta cells against glucotoxicity and increases cell proliferation. (United States)

    Sathanoori, Ramasri; Olde, Björn; Erlinge, David; Göransson, Olga; Wierup, Nils


    Cocaine- and amphetamine-regulated transcript (CART) is an islet peptide that promotes glucose-stimulated insulin secretion in beta cells via cAMP/PKA-dependent pathways. In addition, CART is a regulator of neuronal survival. In this study, we examined the effect of exogenous CART 55-102 on beta cell viability and dissected its signaling mechanisms. Evaluation of DNA fragmentation and chromatin condensation revealed that CART 55-102 reduced glucotoxicity-induced apoptosis in both INS-1 (832/13) cells and isolated rat islets. Glucotoxicity in INS-1 (832/13) cells also caused a 50% reduction of endogenous CART protein. We show that CART increased proliferation in INS-1 (832/13) cells, an effect that was blocked by PKA, PKB, and MEK1 inhibitors. In addition, CART induced phosphorylation of CREB, IRS, PKB, FoxO1, p44/42 MAPK, and p90RSK in INS-1 (832/13) cells and isolated rat islets, all key mediators of cell survival and proliferation. Thus, we demonstrate that CART 55-102 protects beta cells against glucotoxicity and promotes proliferation. Taken together our data point to the potential use of CART in therapeutic interventions targeted at enhancing functional beta cell mass and long-term insulin secretion in T2D.

  10. Beta-lactamase induction and cell wall metabolism in Gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Ximin eZeng


    Full Text Available Production of beta-lactamases, the enzymes that degrade beta-lactam antibiotics, is the most widespread and threatening mechanism of antibiotic resistance. In the past, extensive research has focused on the structure, function, and ecology of beta-lactamases while limited efforts were placed on the regulatory mechanisms of beta-lactamases. Recently, increasing evidence demonstrate a direct link between beta-lactamase induction and cell wall metabolism in Gram-negative bacteria. Specifically, expression of beta-lactamase could be induced by the liberated murein fragments, such as muropeptides. This article summarizes current knowledge on cell wall metabolism, beta-lactam, and beta lactamases. In particular, we comprehensively reviewed recent studies on the beta-lactamase induction by muropeptides via two major molecular mechanisms (the AmpG-AmpR-AmpC pathway and BlrAB-like two-component regulatory system in Gram-negative bacteria. The signaling pathways for beta-lactamase induction offer a broad array of promising targets for the discovery of new antibacterial drugs used for combination therapies. Therefore, to develop effective mitigation strategies against the widespread beta-lactam resistance, examination of the molecular basis of beta-lactamase induction by cell wall fragment is highly warranted.

  11. Crystalline structures in human pancreatic beta cell adenoma. (United States)

    Mori, H; Kawai, T; Tanaka, T; Fujii, M; Takahashi, M; Miyashita, T


    An electron microscopic observation on a pancreatic tumor removed from a 34-year-old woman revealed the fine structural morphology of a functional beta cell adenoma. Characteristic PAS positive crystalline structures were frequently observed in the cytoplasm of the tumor cells. They were not bounded by a membrane and had a rectangular or irregular hexagonal shape. Highly regular patterns were seen as such as lattice or honeycomb and parallel ripple structures. They are similar to the Reinke's crystal or crystalline structures reported in human hepatocytes suffering from several different diseases and considered as a protein-carbohydrate complex. Occasionally, small paracrystalline structures appeared to indicate an immature type of these structures in the opaque fine fibrillar mass. Crystalline or paracrystalline structures were not detected in the normal pancreatic tissue removed with the tumor from the patient.

  12. LGR5 and Nanog identify stem cell signature of pancreas beta cells which initiate pancreatic cancer. (United States)

    Amsterdam, Abraham; Raanan, Calanit; Schreiber, Letizia; Polin, Nava; Givol, David


    Pancreas cancer, is the fourth leading cause of cancer death but its cell of origin is controversial. We compared the localization of stem cells in normal and cancerous pancreas using antibodies to the stem cell markers Nanog and LGR5. Here we show, for the first time, that LGR5 is expressed in normal pancreas, exclusively in the islets of Langerhans and it is co-localized, surprisingly, with Nanog and insulin in clusters of beta cells. In cancerous pancreas Nanog and LGR5 are expressed in the remaining islets and in all ductal cancer cells. We observed insulin staining among the ductal cancer cells, but not in metastases. This indicates that the islet's beta cells, expressing LGR5 and Nanog markers are the initiating cells of pancreas cancer, which migrated from the islets to form the ductal cancerous tissue, probably after mutation and de-differentiation. This discovery may facilitate treatment of this devastating cancer.

  13. The vicious cycle of apoptotic beta-cell death in type 1 diabetes. (United States)

    Kaminitz, Ayelet; Stein, Jerry; Yaniv, Isaac; Askenasy, Nadir


    Autoimmune insulitis, the cause of type 1 diabetes, evolves through several discrete stages that culminate in beta-cell death. In the first stage, antigenic epitopes of B-cell-specific peptides are processed by antigen presenting cells in local lymph nodes, and auto-reactive lymphocyte clones are propagated. Subsequently, cell-mediated and direct cytokine-mediated reactions are generated against the beta-cells, and the beta-cells are sensitized to apoptosis. Ironically, the beta-cells themselves contribute some of the cytokines and chemokines that provoke the immune reaction within the islets. Once this vicious cycle of autoimmunity is fully developed, the fate of the beta-cells in the islets is sealed, and clinical diabetes inevitably ensues. Differences in various aspects of these concurrent events appear to underlie the significant discrepancies in experimental data observed in experimental models that simulate autoimmune insulitis.

  14. Thermophysical properties of Almahata Sitta meteorites (asteroid 2008 TC3) for high-fidelity entry modeling (United States)

    Loehle, Stefan; Jenniskens, Peter; Böhrk, Hannah; Bauer, Thomas; Elsäßer, Henning; Sears, Derek W.; Zolensky, Michael E.; Shaddad, Muawia H.


    Asteroid 2008 TC3 was characterized in a unique manner prior to impacting Earth's atmosphere, making its October 7, 2008, impact a suitable field test for or validating the application of high-fidelity re-entry modeling to asteroid entry. The accurate modeling of the behavior of 2008 TC3 during its entry in Earth's atmosphere requires detailed information about the thermophysical properties of the asteroid's meteoritic materials at temperatures ranging from room temperature up to the point of ablation (T 1400 K). Here, we present measurements of the thermophysical properties up to these temperatures (in a 1 atm. pressure of argon) for two samples of the Almahata Sitta meteorites from asteroid 2008 TC3: a thick flat-faced ureilite suitably shaped for emissivity measurements and a thin flat-faced EL6 enstatite chondrite suitable for diffusivity measurements. Heat capacity was determined from the elemental composition and density from a 3-D laser scan of the sample. We find that the thermal conductivity of the enstatite chondrite material decreases more gradually as a function of temperature than expected, while the emissivity of the ureilitic material decreases at a rate of 9.5 × 10-5 K-1 above 770 K. The entry scenario is the result of the actual flight path being the boundary to the load the meteorite will be affected with when entering. An accurate heat load prediction depends on the thermophysical properties. Finally, based on these data, the breakup can be calculated accurately leading to a risk assessment for ground damage.

  15. 99mTc-3PRGD2 Scintimammography in Palpable and Nonpalpable Breast Lesions

    Directory of Open Access Journals (Sweden)

    Lin Liu


    Full Text Available The aim of this study was to explore the diagnostic performance of 99mTc-3(poly-(ethylene glycol,PEG4-RGD2 (99mTc-3PRGD2 scintimammography (SMM in patients with either palpable or nonpalpable breast lesions and compare SMM to mammography to assess the possible incremental value of SMM in breast cancer detection. We also investigated the αvβ3 expression in malignant and benign breast lesions. Ninety-four patients with 110 lesions were included in this study. Mammograms were evaluated according to the Breast Imaging Reporting and Data System (BI-RADS by a specialized imaging radiologist. Prone SMM was performed 1 hour after injection of 99mTc-3PRGD2. Scintigraphic images were interpreted independently by two experienced nuclear medicine physicians using a three-point system, and the kappa value was calculated to determine the interreader agreement. The McNemar test was used to compare SMM and mammography with respect to sensitivity, specificity, and accuracy. Diagnostic values for breast cancer detection were evaluated for each lesion. Immunohistochemistry was performed to evaluate integrin αvβ3 expression. Histopathology revealed 46 malignant lesions and 64 benign lesions. The overall sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of SMM were 83%, 73%, 77%, 69%, and 85%, respectively. The kappa value between the two reviewers was 0.63. The diagnostic values of SMM were higher than those of mammography in evaluating overall breast lesions. A sensitivity of 91% was achieved when SMM and mammography results were combined with 60% of all false-negative mammography findings classified as true-positive results by SMM. Integrin αvβ3 expression was positively identified using SMM imaging. SMM is a promising tool to avoid unnecessary biopsies when used in addition to mammography and can be used to image αvβ3 expression in breast cancer with good image quality.

  16. Balsamic Vinegar Improves High Fat-Induced Beta Cell Dysfunction via Beta Cell ABCA1

    Directory of Open Access Journals (Sweden)

    Hannah Seok


    Full Text Available BackgroundThe aim of this study was to investigate the effects of balsamic vinegar on β-cell dysfunction.MethodsIn this study, 28-week-old Otsuka Long-Evans Tokushima Fatty (OLETF rats were fed a normal chow diet or a high-fat diet (HFD and were provided with tap water or dilute balsamic vinegar for 4 weeks. Oral glucose tolerance tests and histopathological analyses were performed thereafter.ResultsIn rats fed both the both chow diet and the HFD, the rats given balsamic vinegar showed increased insulin staining in islets compared with tap water administered rats. Balsamic vinegar administration also increased β-cell ATP-binding cassette transporter subfamily A member 1 (ABCA1 expression in islets and decreased cholesterol levels.ConclusionThese findings provide the first evidence for an anti-diabetic effect of balsamic vinegar through improvement of β-cell function via increasing β-cell ABCA1 expression.

  17. Dysregulation of Dicer1 in Beta Cells Impairs Islet Architecture and Glucose Metabolism

    Directory of Open Access Journals (Sweden)

    Amitai D. Mandelbaum


    Full Text Available microRNAs (miRNAs play important roles in pancreas development and in regulation of insulin expression in the adult. Here we show that loss of miRNAs activity in beta-cells during embryonic development results in lower beta-cell mass and in impaired glucose tolerance. Dicer1-null cells initially constitute a significant portion of the total beta-cell population. However, during postnatal development, Dicer1-null cells are depleted. Furthermore, wild-type beta cells are repopulating the islets in complex compensatory dynamics. Because loss of Dicer1 is also associated with changes in the distribution of membranous E-cadherin, we hypothesized that E-cadherin activity may play a role in beta cell survival or islet architecture. However, genetic loss of E-cadherin function does not impair islet architecture, suggesting that miRNAs likely function through other or redundant effectors in the endocrine pancreas.

  18. Pancreas and beta-cell development: from the actual to the possible. (United States)

    Murtaugh, L Charles


    The development of insulin-producing pancreatic beta (beta)-cells represents the culmination of a complex developmental program. Cells of the posterior foregut assume a pancreatic identity, cells within the expanding pancreatic primordia adopt an endocrine fate, and a subset of these precursors becomes competent to generate beta-cells. Postnatally, beta-cells are primarily maintained by self-duplication rather than new differentiation. Although major gaps in our knowledge still persist, experiments across several organisms have shed increasing light on the steps of beta-cell specification and differentiation. Increasing our understanding of the extrinsic, as well as intrinsic, mechanisms that control these processes should facilitate efforts to regenerate this important cell type in humans.

  19. Conversion of embryonic stem cells into pancreatic beta-cell surrogates guided by ontogeny. (United States)

    Lees, Justin G; Tuch, Bernard E


    Cellular therapies to treat Type 1 diabetes are being devised and the use of human embryonic stem cells (hESCs) offers a solution to the issue of supply, because hESCs can be maintained in a pluripotent state indefinitely. Furthermore, hESCs have advantages in terms of their plasticity and reduced immunogenicity. Several strategies that have so far been investigated indicate that hESCs are capable of differentiating into insulin producing beta-cell surrogates. However the efficiency of the differentiation procedures used is generally quite low and the cell populations derived are often highly heterogenous. A strategy that appears to have long term potential is to design differentiation procedures based on the ontogeny of the beta-cell. The focus of this strategy is to replicate signaling processes that are known to be involved in the maturation of a beta-cell. The earliest pancreatic progenitors found in the developing vertebrate fetus are produced via a process known as gastrulation and form part of the definitive endoderm germ layer. hESCs have recently been differentiated into definitive endoderm with high efficiency using a differentiation procedure that mimics the signaling that occurs during gastrulation and the formation of the definitive endoderm. Subsequent events during pancreas development involve a section of the definitive endoderm forming into pancreatic epithelium, which then branches into the pancreatic mesenchyme to form islet clusters of endocrine cells. A proportion of the endocrine precursor cells within islets develop into insulin producing beta-cells. The challenge currently is to design hESC differentiation procedures that mimic the combined events of these stages of beta-cell development.

  20. In vitro reprogramming of pancreatic alpha cells towards a beta cell phenotype following ectopic HNF4α expression. (United States)

    Sangan, Caroline B; Jover, Ramiro; Heimberg, Harry; Tosh, David


    There is currently a shortage of organ donors available for pancreatic beta cell transplantation into diabetic patients. An alternative source of beta cells is pre-existing pancreatic cells. While we know that beta cells can arise directly from alpha cells during pancreatic regeneration we do not understand the molecular basis for the switch in phenotype. The aim of the present study was to investigate if hepatocyte nuclear factor 4 alpha (HNF4α), a transcription factor essential for a normal beta cell phenotype, could induce the reprogramming of alpha cells towards potential beta cells. We utilised an in vitro model of pancreatic alpha cells, the murine αTC1-9 cell line. We initially characterised the αTC1-9 cell line before and following adenovirus-mediated ectopic expression of HNF4α. We analysed the phenotype at transcript and protein level and assessed its glucose-responsiveness. Ectopic HNF4α expression in the αTC1-9 cell line induced a change in morphology (1.7-fold increase in size), suppressed glucagon expression, induced key beta cell-specific markers (insulin, C-peptide, glucokinase, GLUT2 and Pax4) and pancreatic polypeptide (PP) and enabled the cells to secrete insulin in a glucose-regulated manner. In conclusion, HNF4α reprograms alpha cells to beta-like cells.

  1. Enhancing pancreatic Beta-cell regeneration in vivo with pioglitazone and alogliptin.

    Directory of Open Access Journals (Sweden)

    Hao Yin

    Full Text Available AIMS/HYPOTHESIS: Pancreatic beta-cells retain limited ability to regenerate and proliferate after various physiologic triggers. Identifying therapies that are able to enhance beta-cell regeneration may therefore be useful for the treatment of both type 1 and type 2 diabetes. METHODS: In this study we investigated endogenous and transplanted beta-cell regeneration by serially quantifying changes in bioluminescence from beta-cells from transgenic mice expressing firefly luciferase under the control of the mouse insulin I promoter. We tested the ability of pioglitazone and alogliptin, two drugs developed for the treatment of type 2 diabetes, to enhance beta-cell regeneration, and also defined the effect of the immunosuppression with rapamycin and tacrolimus on transplanted islet beta mass. RESULTS: Pioglitazone is a stimulator of nuclear receptor peroxisome proliferator-activated receptor gamma while alogliptin is a selective dipeptidyl peptidase IV inhibitor. Pioglitazone alone, or in combination with alogliptin, enhanced endogenous beta-cell regeneration in streptozotocin-treated mice, while alogliptin alone had modest effects. In a model of syngeneic islet transplantation, immunosuppression with rapamycin and tacrolimus induced an early loss of beta-cell mass, while treatment with insulin implants to maintain normoglycemia and pioglitazone plus alogliptin was able to partially promote beta-cell mass recovery. CONCLUSIONS/INTERPRETATION: These data highlight the utility of bioluminescence for serially quantifying functional beta-cell mass in living mice. They also demonstrate the ability of pioglitazone, used either alone or in combination with alogliptin, to enhance regeneration of endogenous islet beta-cells as well as transplanted islets into recipients treated with rapamycin and tacrolimus.

  2. Implications for the offspring of circulating factors involved in beta cell adaptation in pregnancy

    DEFF Research Database (Denmark)

    Nalla, Amarnadh; Ringholm, Lene; Søstrup, Birgitte


    OBJECTIVE: Several studies have shown an increase in beta cell mass during pregnancy. Somatolactogenic hormones are known to stimulate the proliferation of existing beta cells in rodents whereas the mechanism in humans is still unclear. We hypothesize that in addition to somatolactogenic hormones...... there are other circulating factors involved in beta cell adaptation to pregnancy. This study aimed at screening for potential pregnancy-associated circulating beta cell growth factors. SAMPLES: Serum samples from nonpregnant and pregnant women. METHODS: The effect of serum from pregnant women...... for mitogenic activity in INS-1E cells. Proteins and peptides in mitogenic active serum fractions were identified by amino acid sequencing and mass spectrometry. MAIN OUTCOME MEASURES: Presence of circulating beta cell proliferating factors. RESULTS: Late gestational pregnancy serum significantly increased...

  3. Repetitive in vivo treatment with human recombinant interleukin-1 beta modifies beta-cell function in normal rats

    DEFF Research Database (Denmark)

    Wogensen, L D; Reimers, J; Nerup, J


    It is unknown whether interleukin-1 exerts a bimodal effect on Beta-cell function in vivo, and whether interleukin-1 has a diabetogenic action in normal animals. We therefore studied: (a) acute effects 2 h after an intraperitoneal bolus injection of 4 micrograms of recombinant human interleukin-1...

  4. Suppressor of cytokine signalling (SOCS)-3 protects beta cells against IL-1beta-mediated toxicity through inhibition of multiple nuclear factor-kappaB-regulated proapoptotic pathways

    DEFF Research Database (Denmark)

    Karlsen, Allan Ertman; Heding, P E; Frobøse, H;


    The proinflammatory cytokine IL-1beta induces apoptosis in pancreatic beta cells via pathways dependent on nuclear factor-kappaB (NF-kappaB), mitogen-activated protein kinase, and protein kinase C. We recently showed suppressor of cytokine signalling (SOCS)-3 to be a natural negative feedback...... regulator of IL-1beta- and IFN-gamma-mediated signalling in rat islets and beta cell lines, preventing their deleterious effects. However, the mechanisms underlying SOCS-3 inhibition of IL-1beta signalling and prevention against apoptosis remain unknown....

  5. Cocoa-rich diet attenuates beta cell mass loss and function in young Zucker diabetic fatty rats by preventing oxidative stress and beta cell apoptosis. (United States)

    Fernández-Millán, Elisa; Cordero-Herrera, Isabel; Ramos, Sonia; Escrivá, Fernando; Alvarez, Carmen; Goya, Luis; Martín, María Angeles


    We have recently shown that cocoa flavanols may have anti-diabetic potential by promoting survival and function of pancreatic beta-cells in vitro. In this work, we investigated if a cocoa-rich diet is able to preserve beta-cell mass and function in an animal model of type 2 diabetes and the mechanisms involved. Our results showed that cocoa feeding during the prediabetic state attenuates hyperglycaemia, reduces insulin resistant, and increases beta cell mass and function in obese Zucker diabetic rats. At the molecular level, cocoa-rich diet prevented beta-cell apoptosis by increasing the levels of Bcl-xL and decreasing Bax levels and caspase-3 activity. Cocoa diet enhanced the activity of endogenous antioxidant defenses, mainly glutathione peroxidase, preventing thus oxidative injury induced by the pre-diabetic condition and leading to apoptosis prevention. These findings provide the first in vivo evidence that a cocoa-rich diet may delay the loss of functional beta-cell mass and delay the progression of diabetes by preventing oxidative stress and beta-cell apoptosis.

  6. Regulation of pancreatic islet beta-cell mass by growth factor and hormone signaling. (United States)

    Huang, Yao; Chang, Yongchang


    Dysfunction and destruction of pancreatic islet beta cells is a hallmark of diabetes. Better understanding of cellular signals in beta cells will allow development of therapeutic strategies for diabetes, such as preservation and expansion of beta-cell mass and improvement of beta-cell function. During the past several decades, the number of studies analyzing the molecular mechanisms, including growth factor/hormone signaling pathways that impact islet beta-cell mass and function, has increased exponentially. Notably, somatolactogenic hormones including growth hormone (GH), prolactin (PRL), and insulin-like growth factor-1 (IGF-1) and their receptors (GHR, PRLR, and IGF-1R) are critically involved in beta-cell growth, survival, differentiation, and insulin secretion. In this chapter, we focus more narrowly on GH, PRL, and IGF-1 signaling, and GH-IGF-1 cross talk. We also discuss how these signaling aspects contribute to the regulation of beta-cell proliferation and apoptosis. In particular, our novel findings of GH-induced formation of GHR-JAK2-IGF-1R protein complex and synergistic effects of GH and IGF-1 on beta-cell signaling, proliferation, and antiapoptosis lead to a new concept that IGF-1R may serve as a proximal component of GH/GHR signaling.

  7. Do post-translational beta cell protein modifications trigger type 1 diabetes?

    DEFF Research Database (Denmark)

    Størling, Joachim; Overgaard, Anne Julie; Brorsson, Caroline Anna;


    forms capable of specifically triggering beta cell destruction. In other immune-mediated diseases, autoantigens targeted by the immune system have undergone post-translational modification (PTM), thereby creating tissue-specific neo-epitopes. In a similar manner, PTM of beta cell proteins might create...

  8. The Fas pathway is involved in pancreatic beta cell secretory function

    DEFF Research Database (Denmark)

    Schumann, Desiree M; Maedler, Kathrin; Franklin, Isobel


    Pancreatic beta cell mass and function increase in conditions of enhanced insulin demand such as obesity. Failure to adapt leads to diabetes. The molecular mechanisms controlling this adaptive process are unclear. Fas is a death receptor involved in beta cell apoptosis or proliferation, depending...

  9. NOX, NOX who is there?, The contribution of NADPH Oxidase to beta cell dysfunction.

    Directory of Open Access Journals (Sweden)

    David eTaylor-Fishwick


    Full Text Available Predictions of diabetes prevalence over the next decades warrant the aggressive discovery of new approaches to stop or reverse loss of functional beta cell mass. Beta cells are recognized to have a relatively high sensitivity to reactive oxygen species (ROS and become dysfunctional under oxidative stress conditions. New discoveries have identified NADPH oxidases in beta cells as contributors to elevated cellular ROS. Reviewed are recent reports that evidence a role for NADPH oxidase-1 (NOX-1 in beta cell dysfunction. NOX-1 is stimulated by inflammatory cytokines that are elevated in diabetes. First, regulation of cytokine-stimulated NOX-1 expression has been linked to inflammatory lipid mediators derived from 12-lipoxyganase activity. For the first time in beta cells these data integrate distinct pathways associated with beta cell dysfunction. Second, regulation of NOX-1 in beta cells involves feed-forward control linked to elevated ROS and Src-kinase activation. This potentially results in unbridled ROS generation and identifies candidate targets for pharmacologic intervention. Third, consideration is provided of new, first-in-class, selective inhibitors of NOX-1. These compounds could have an important role in assessing a disruption of NOX-1/ROS signaling as a new approach to preserve and protect beta cell mass in diabetes.

  10. Cx36 makes channels coupling human pancreatic beta-cells, and correlates with insulin expression

    NARCIS (Netherlands)

    Serre-Beinier, Veronique; Bosco, Domenico; Zulianello, Laurence; Charollais, Anne; Caille, Dorothee; Charpantier, Eric; Gauthier, Benoit R.; Diaferia, Giuseppe R.; Giepmans, Ben N.; Lupi, Roberto; Marchetti, Piero; Deng, Shaoping; Buhler, Leo; Berney, Thierry; Cirulli, Vincenzo; Meda, Paolo


    Previous studies have documented that the insulin-producing beta-cells of laboratory rodents are coupled by gap junction channels made solely of the connexin36 (Cx36) protein, and have shown that loss of this protein desynchronizes beta-cells, leading to secretory defects reminiscent of those observ

  11. Possible Role of DNA Polymerase beta in Protecting Human Bronchial Epithelial Cells Against Cytotoxicity of Hydroquinone

    Institute of Scientific and Technical Information of China (English)



    Objective To explore the toxicological mechanism of hydroquinone in human bronchial epithelial cells and to investigate whether DNA polymerase beta is involved in protecting cells from damage caused by hydroquinone. Methods DNA polymerase beta knock-down cell line was established via RNA interference as an experimental group. Normal human bronchial epithelial cells and cells transfected with the empty vector of pEGFP-Cl were used as controls. Cells were treated with different concentrations of hydroquinone (ranged from 10 μmol/L to 120 μmol/L) for 4 hours. MTT assay and Comet assay [single-cell gel electrophoresis (SCGE)] were performed respectively to detect the toxicity of hydroquinone. Results MTT assay showed that DNA polymerase beta knock-down cells treated with different concentrations of hydroquinone had a lower absorbance value at 490 nm than the control cells in a dose-dependant manner. Comet assay revealed that different concentrations of hydroquinone caused more severe DNA damage in DNA polymerase beta knock-down cell line than in control cells and there was no significant difference in the two control groups. Conclusions Hydroquinone has significant toxicity to human bronchial epithelial cells and causes DNA damage. DNA polymerase beta knock-down cell line appears more sensitive to hydroquinone than the control cells. The results suggest that DNA polymerase beta is involved in protecting cells from damage caused by hydroquinone.

  12. Legionella pneumophila induces human beta Defensin-3 in pulmonary cells

    Directory of Open Access Journals (Sweden)

    Hippenstiel Stefan


    Full Text Available Abstract Background Legionella pneumophila is an important causative agent of severe pneumonia in humans. Human alveolar epithelium and macrophages are effective barriers for inhaled microorganisms and actively participate in the initiation of innate host defense. The beta defensin-3 (hBD-3, an antimicrobial peptide is an important component of the innate immune response of the human lung. Therefore we hypothesize that hBD-3 might be important for immune defense towards L. pneumophila. Methods We investigated the effects of L. pneumophila and different TLR agonists on pulmonary cells in regard to hBD-3 expression by ELISA. Furthermore, siRNA-mediated inhibition of TLRs as well as chemical inhibition of potential downstream signaling molecules was used for functional analysis. Results L. pneumophila induced release of hBD-3 in pulmonary epithelium and alveolar macrophages. A similar response was observed when epithelial cells were treated with different TLR agonists. Inhibition of TLR2, TLR5, and TLR9 expression led to a decreased hBD-3 expression. Furthermore expression of hBD-3 was mediated through a JNK dependent activation of AP-1 (c-Jun but appeared to be independent of NF-κB. Additionally, we demonstrate that hBD-3 elicited a strong antimicrobial effect on L. pneumophila replication. Conclusions Taken together, human pulmonary cells produce hBD-3 upon L. pneumophila infection via a TLR-JNK-AP-1-dependent pathway which may contribute to an efficient innate immune defense.

  13. Hyperinsulinism induced by targeted suppression of beta cell KATP channels. (United States)

    Koster, J C; Remedi, M S; Flagg, T P; Johnson, J D; Markova, K P; Marshall, B A; Nichols, C G


    ATP-sensitive K+ (K(ATP)) channels couple cell metabolism to electrical activity. To probe the role of K(ATP) in glucose-induced insulin secretion, we have generated transgenic mice expressing a dominant-negative, GFP-tagged K(ATP) channel subunit in which residues 132-134 (Gly-Tyr-Gly) in the selectivity filter were replaced by Ala-Ala-Ala, under control of the insulin promoter. Transgene expression was confirmed by both beta cell-specific green fluorescence and complete suppression of channel activity in those cells ( approximately 70%) that did fluoresce. Transgenic mice developed normally with no increased mortality and displayed normal body weight, blood glucose levels, and islet architecture. However, hyperinsulinism was evident in adult mice as (i) a disproportionately high level of circulating serum insulin for a given glucose concentration ( approximately 2-fold increase in blood insulin), (ii) enhanced glucose-induced insulin release from isolated islets, and (iii) mild yet significant enhancement in glucose tolerance. Enhanced glucose-induced insulin secretion results from both increased glucose sensitivity and increased release at saturating glucose concentration. The results suggest that incomplete suppression of K(ATP) channel activity can give rise to a maintained hyperinsulinism.

  14. Beta1 integrins differentially control extravasation of inflammatory cell subsets into the CNS during autoimmunity

    DEFF Research Database (Denmark)

    Bauer, Martina; Brakebusch, Cord; Coisne, Caroline;


    Inhibiting the alpha(4) subunit of the integrin heterodimers alpha(4)beta(1) and alpha(4)beta(7) with the monoclonal antibody natalizumab is an effective treatment for multiple sclerosis (MS). However, the pharmacological action of natalizumab is not understood conclusively. Previous studies...... suggested that natalizumab inhibits activation, proliferation, or extravasation of inflammatory cells. To specify which mechanisms, cell types, and alpha(4) heterodimers are affected by the antibody treatment, we studied MS-like experimental autoimmune encephalomyelitis (EAE) in mice lacking the beta(1......)-integrin gene either in all hematopoietic cells or selectively in T lymphocytes. Our results show that T cells critically rely on beta(1) integrins to accumulate in the central nervous system (CNS) during EAE, whereas CNS infiltration of beta(1)-deficient myeloid cells remains unaffected, suggesting that T...

  15. Pancreatic beta-cell lipotoxicity induced by overexpression of hormone-sensitive lipase

    DEFF Research Database (Denmark)

    Winzell, Maria Sörhede; Svensson, Håkan; Enerbäck, Sven;


    Lipid perturbations associated with triglyceride overstorage in beta-cells impair insulin secretion, a process termed lipotoxicity. To assess the role of hormone-sensitive lipase, which is expressed and enzymatically active in beta-cells, in the development of lipotoxicity, we generated transgenic...... mice overexpressing hormone-sensitive lipase specifically in beta-cells. Transgenic mice developed glucose intolerance and severely blunted glucose-stimulated insulin secretion when challenged with a high-fat diet. As expected, both lipase activity and forskolin-stimulated lipolysis was increased...... results highlight the importance of mobilization of the islet triglyceride pool in the development of beta-cell lipotoxicity. We propose that hormone-sensitive lipase is involved in mediating beta-cell lipotoxicity by providing ligands for peroxisome proliferator-activated receptors and other lipid...

  16. Inhibition of beta cell growth and function by bone morphogenetic proteins

    DEFF Research Database (Denmark)

    Bruun, Christine; Christensen, Gitte Lund; Jacobsen, Marie L B;


    : BMP2 and -4 were found to inhibit basal as well as growth factor-stimulated proliferation of primary beta cells from rats and mice. Bmp2 and Bmp4 mRNA and protein were expressed in islets and regulated by inflammatory cytokines. Neutralisation of endogenous BMP activity resulted in enhanced....../INTERPRETATION: These data show that BMP2 and -4 exert inhibitory actions on beta cells in vitro and suggest that BMPs exert regulatory roles of beta cell growth and function.......AIMS/HYPOTHESIS: Impairment of beta cell mass and function is evident in both type 1 and type 2 diabetes. In healthy physiological conditions pancreatic beta cells adapt to the body's increasing insulin requirements by proliferation and improved function. We hypothesised that during the development...

  17. beta-Sitosterol inhibits HT-29 human colon cancer cell growth and alters membrane lipids. (United States)

    Awad, A B; Chen, Y C; Fink, C S; Hennessey, T


    The purpose of the present study was to examine the effect of beta-sitosterol, the main dietary phytosterol on the growth of HT-29 cells, a human colon cancer cell line. In addition, the incorporation of this phytosterol into cellular membranes and how this might influence the lipid composition of the membranes were investigated. Tumor cells were grown in DMEM containing 10% FBS and supplemented with sterols (cholesterol or beta-sitosterol) at final concentrations up to 16 microM. The sterols were supplied to the media in the form of sterol cyclodextrin complexes. The cyclodextrin used was 2-hydroxypropyl-beta-cyclodextrin. The sterol to cyclodextrin molar ratio was maintained at 1:300. The study indicated that 8 and 16 microM beta-sitosterol were effective at cel growth inhibition as compared to cholesterol or to the control (no sterol supplementation). After supplementation with 16 microM beta-sitosterol for 9 days, cell growth was only one-third that of cells supplemented with equimolar concentration of cholesterol. No effect was observed on total membrane phospholipid concentration. At 16 microM beta-sitosterol supplementation, membrane cholesterol was reduced by 26%. Cholesterol supplementation resulted in a significant increase in the cholesterol/phospholipid ratio compared to either beta-sitosterol supplemented cells or controls. There was a 50% reduction in membrane sphingomyelin (SM) of cells grown in 16 microM beta-sitosterol. Additional changes were observed in the fatty acid composition of minor phospholipids of beta-sitosterol supplemented cells, such as SM, phosphatidylserine (PS), and phosphatidylinositol (PI). Only in the case of PI, was there an effect of these fatty acid changes on the unsaturation index, beta-sitosterol incorporation resulted in an increase in the U.I. It is possible that the observed growth inhibition by beta-sitosterol may be mediated through the influence of signal transduction pathways that involve membrane phospholipids.

  18. Beta-cell function and mass in type 2 diabetes. (United States)

    Larsen, Marianne O


    The aim of the work described here was to improve our understanding of beta-cell function (BCF) and beta-cell mass (BCM) and their relationship in vivo using the minipig as a model for some of the aspects of human type 2 diabetes (T2DM). More specifically, the aim was to evaluate the following questions: How is BCF, especially high frequency pulsatile insulin secretion, affected by a primary reduction in BCM or by primary obesity or a combination of the two in the minipig? Can evaluation of BCF in vivo be used as a surrogate measure to predict BCM in minipigs over a range of BCM and body weight? We first developed a minipig model of reduced BCM and mild diabetes using administration of a combination of streptozotocin (STZ) and nicotinamide (NIA) as a tool to study effects of a primary reduction of BCM on BCF. The model was characterized using a mixed-meal oral glucose tolerance test and intravenous stimulation with glucose and arginine as well as by histology of the pancreas after euthanasia. It was shown that stable, moderate diabetes can be induced and that the model is characterized by fasting and postprandial hyperglycemia, reduced insulin secretion and reduced BCM. Several defects in insulin secretion are well documented in human T2DM; however, the role in the pathogenesis and the possible clinical relevance of high frequency (rapid) pulsatile insulin secretion is still debated. We therefore investigated this phenomenon in normal minipigs and found easily detectable pulses in peripheral vein plasma samples that were shown to be correlated with pulses found in portal vein plasma. Furthermore, the rapid kinetics of insulin in the minipig strongly facilitates pulse detection. These characteristics make the minipig particularly suitable for studying the occurrence of disturbed pulsatility in relation to T2DM. Disturbances of rapid pulsatile insulin secretion have been reported to be a very early event in the development of T2DM and include disorderliness of pulses


    NARCIS (Netherlands)



    Pancreatic beta-cell function was studied in adult female rats, in which endogenous insulin demand was fully met by SC infusion of human insulin (4.8 IU/24 h) for 6 days, resulting in hyperinsulinaemia and severe hypoglycaemia. The amount of pancreatic endocrine tissue declined by 40%, (pro)insulin

  20. Balancing needs and means: the dilemma of the beta-cell in the modern world. (United States)

    Leibowitz, G; Kaiser, N; Cerasi, E


    The insulin resistance of type 2 diabetes mellitus (T2DM), although important for its pathophysiology, is not sufficient to establish the disease unless major deficiency of beta-cell function coexists. This is demonstrated by the fact that near-physiological administration of insulin (CSII) achieved excellent blood glucose control with doses similar to those used in insulin-deficient type 1 diabetics. The normal beta-cell adapts well to the demands of insulin resistance. Also in hyperglycaemic states some degree of adaptation does exist and helps limit the severity of disease. We demonstrate here that the mammalian target of rapamycin (mTOR) system might play an important role in this adaptation, because blocking mTORC1 (complex 1) by rapamycin in the nutritional diabetes model Psammomys obesus caused severe impairment of beta-cell function, increased beta-cell apoptosis and progression of diabetes. On the other hand, under exposure to high glucose and FFA (gluco-lipotoxicity), blocking mTORC1 in vitro reduced endoplasmic reticulum (ER) stress and beta-cell death. Thus, according to the conditions of stress, mTOR may have beneficial or deleterious effects on the beta-cell. beta-Cell function in man can be reduced without T2DM/impaired glucose tolerance (IGT). Prospective studies have shown subjects with reduced insulin response to present, several decades later, an increased incidence of IGT/T2DM. From these and other studies we conclude that T2DM develops on the grounds of beta-cells whose adaptation capacity to increased nutrient intake and/or insulin resistance is in the lower end of the normal variation. Inborn and acquired factors that limit beta-cell function are diabetogenic only in a nutritional/metabolic environment that requires high functional capabilities from the beta-cell.

  1. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells. (United States)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes.

  2. Planar Cell Polarity Controls Pancreatic Beta Cell Differentiation and Glucose Homeostasis

    DEFF Research Database (Denmark)

    Cortijo, Cedric; Gouzi, Mathieu; Tissir, Fadel


    Planar cell polarity (PCP) refers to the collective orientation of cells within the epithelial plane. We show that progenitor cells forming the ducts of the embryonic pancreas express PCP proteins and exhibit an active PCP pathway. Planar polarity proteins are acquired at embryonic day 11.......5 synchronously to apicobasal polarization of pancreas progenitors. Loss of function of the two PCP core components Celsr2 and Celsr3 shows that they control the differentiation of endocrine cells from polarized progenitors, with a prevalent effect on insulin-producing beta cells. This results in a decreased...

  3. Leptin upregulates beta3-integrin expression and interleukin-1beta, upregulates leptin and leptin receptor expression in human endometrial epithelial cell cultures. (United States)

    Gonzalez, R R; Leavis, P


    Human endometrium and endometrial epithelial cells (EECs) either cultured alone or cocultured with human embryos express leptin and leptin receptor. This study compares the effect of leptin with that of interleukin-1beta (IL-1beta) on the expression of beta3-EEC integrin, a marker of endometrial receptivity. Both cytokines increased the expression of beta3-EEC at concentrations in the range of 0.06-3 nM; however, leptin exhibited a significantly greater effect than IL-1beta. We also determined the regulatory effects of IL-1beta on leptin secretion and on the expression of leptin and leptin receptor at the protein level in both EEC and endometrial stromal cell (ESC) cultures. In EEC cultures, IL-1beta upregulated secretion of leptin and expression of both leptin and leptin receptors. No effect of IL-1beta was found in the ESC cultures. However, leptin exhibited marginal upregulation of leptin receptor. The upregulation of beta3-integrin and leptin/leptin receptor expression by IL-1beta in EEC cultures indicates that both cytokines may be implicated in embryonic-maternal cross-talk during the early phase of human implantation. Our present data also raise the possibility that leptin is an endometrial molecular effector of IL-1beta action on beta3-integrin upregulation. Thus, a new role for leptin in human reproduction as an autocrine/paracrine regulator of endometrial receptivity is proposed.

  4. Stringent V beta requirement for the development of NK1.1+ T cell receptor-alpha/beta+ cells in mouse liver. (United States)

    Ohteki, T; MacDonald, H R


    The liver of C57BL/6 mice contains a major subset of CD4+8- and CD4-8- T cell receptor (TCR)-alpha/beta+ cells expressing the polymorphic natural killer NK1.1 surface marker. Liver NK1.1+TCR-alpha/beta+ (NK1+ T) cells require interaction with beta2-microglobulin-associated, major histocompatibility complex I-like molecules on hematopoietic cells for their development and have a TCR repertoire that is highly skewed to Vbeta8.2, Vbeta7, and Vbeta2. We show here that congenic C57BL/6.Vbeta(a) mice, which lack Vbeta8- expressing T cells owing to a genomic deletion at the Vbeta locus, maintain normal levels of liver NK1+ T cells owing to a dramatic increase in the proportion of cells expressing Vbeta7 and Vbeta2 (but not other Vbetas). Moreover, in C57BL/6 congenic TCR-V Vbeta3 and -Vbeta8.1 transgenic mice (which in theory should not express other Vbeta, owing to allelic exclusion at the TCR-beta locus), endogenous TCR-Vbeta8.2, Vbeta7, and Vbeta2 (but not other Vbetas) are frequently expressed on liver NK1+T cells but absent on lymph node T cells. Finally, when endogenous V beta expression is prevented in TCR-Vbeta3 and Vbeta8.1 transgenic mice (by introduction of a null allele at the C beta locus), the development of liver NK1+T cells is totally abrogated. Collectively, our data indicate that liver NK1+T cells have a stringent requirement for expression of TCR-Vbeta8.2, Vbeta7, or Vbeta2 for their development.

  5. Expression profiling of genes regulated by TGF-beta: Differential regulation in normal and tumour cells

    Directory of Open Access Journals (Sweden)

    Takahashi Takashi


    Full Text Available Abstract Background TGF-beta is one of the key cytokines implicated in various disease processes including cancer. TGF-beta inhibits growth and promotes apoptosis in normal epithelial cells and in contrast, acts as a pro-tumour cytokine by promoting tumour angiogenesis, immune-escape and metastasis. It is not clear if various actions of TGF-beta on normal and tumour cells are due to differential gene regulations. Hence we studied the regulation of gene expression by TGF-beta in normal and cancer cells. Results Using human 19 K cDNA microarrays, we show that 1757 genes are exclusively regulated by TGF-beta in A549 cells in contrast to 733 genes exclusively regulated in HPL1D cells. In addition, 267 genes are commonly regulated in both the cell-lines. Semi-quantitative and real-time qRT-PCR analysis of some genes agrees with the microarray data. In order to identify the signalling pathways that influence TGF-beta mediated gene regulation, we used specific inhibitors of p38 MAP kinase, ERK kinase, JNK kinase and integrin signalling pathways. The data suggest that regulation of majority of the selected genes is dependent on at least one of these pathways and this dependence is cell-type specific. Interestingly, an integrin pathway inhibitor, RGD peptide, significantly affected TGF-beta regulation of Thrombospondin 1 in A549 cells. Conclusion These data suggest major differences with respect to TGF-beta mediated gene regulation in normal and transformed cells and significant role of non-canonical TGF-beta pathways in the regulation of many genes by TGF-beta.

  6. Pancreatic beta cells synthesize neuropeptide Y and can rapidly release peptide co-transmitters.

    Directory of Open Access Journals (Sweden)

    Matthew D Whim

    Full Text Available BACKGROUND: In addition to polypeptide hormones, pancreatic endocrine cells synthesize a variety of bioactive molecules including classical transmitters and neuropeptides. While these co-transmitters are thought to play a role in regulating hormone release little is known about how their secretion is regulated. Here I investigate the synthesis and release of neuropeptide Y from pancreatic beta cells. METHODOLOGY/PRINCIPAL FINDINGS: NPY appears to be an authentic co-transmitter in neonatal, but not adult, beta cells because (1 early in mouse post-natal development, many beta cells are NPY-immunoreactive whereas no staining is observed in beta cells from NPY knockout mice; (2 GFP-expressing islet cells from an NPY(GFP transgenic mouse are insulin-ir; (3 single cell RT-PCR experiments confirm that the NPY(GFP cells contain insulin mRNA, a marker of beta cells. The NPY-immunoreactivity previously reported in alpha and delta cells is therefore likely to be due to the presence of NPY-related peptides. INS-1 cells, a beta cell line, are also NPY-ir and contain NPY mRNA. Using the FMRFamide tagging technique, NPY secretion was monitored from INS-1 beta cells with high temporal resolution. Peptide release was evoked by brief depolarizations and was potentiated by activators of adenylate cyclase and protein kinase A. Following a transient depolarization, NPY-containing dense core granules fused with the cell membrane and discharged their contents within a few milliseconds. CONCLUSIONS: These results indicate that after birth, NPY expression in pancreatic islets is restricted to neonatal beta cells. The presence of NPY suggests that peptide co-transmitters could mediate rapid paracrine or autocrine signaling within the endocrine pancreas. The FMRFamide tagging technique may be useful in studying the release of other putative islet co-transmitters in real time.

  7. Adaptation and failure of pancreatic beta cells in murine models with different degrees of metabolic syndrome. (United States)

    Medina-Gomez, Gema; Yetukuri, Laxman; Velagapudi, Vidya; Campbell, Mark; Blount, Margaret; Jimenez-Linan, Mercedes; Ros, Manuel; Oresic, Matej; Vidal-Puig, Antonio


    The events that contribute to the expansion of beta-cell mass and enhanced beta-cell function in insulin-resistant states have not been elucidated fully. Recently, we showed that beta-cell adaptation failed dramatically in adult, insulin-resistant POKO mice, which contrasts with the appropriate expansion of beta cells in their ob/ob littermates. Thus, we hypothesised that characterisation of the islets in these mouse models at an early age should provide a unique opportunity to: (1) identify mechanisms involved in sensing insulin resistance at the level of the beta cells, (2) identify molecular effectors that contribute to increasing beta-cell mass and function, and (3) distinguish primary events from secondary events that are more likely to be present at more advanced stages of diabetes. Our results define the POKO mouse as a model of early lipotoxicity. At 4 weeks of age, it manifests with inappropriate beta-cell function and defects in proliferation markers. Other well-recognised pathogenic effectors that were observed previously in 16-week-old mice, such as increased reactive oxygen species (ROS), macrophage infiltration and endoplasmic reticulum (ER) stress, are also present in both young POKO and young ob/ob mice, indicating the lack of predictive power with regards to the severity of beta-cell failure. Of interest, the relatively preserved lipidomic profile in islets from young POKO mice contrasted with the large changes in lipid composition and the differences in the chain length of triacylglycerols in the serum, liver, muscle and adipose tissue in adult POKO mice. Later lipotoxic insults in adult beta cells contribute to the failure of the POKO beta cell. Our results indicate that the rapid development of insulin resistance and beta-cell failure in POKO mice makes this model a useful tool to study early molecular events leading to insulin resistance and beta-cell failure. Furthermore, comparisons with ob/ob mice might reveal important adaptive mechanisms

  8. The responses of I beta cells to increases in the rate of lung inflation. (United States)

    Marino, P L; Davies, R O; Pack, A I


    The activity of inspiratory cells in the region of the nucleus of the tractus solitarius (NTS) was recorded extracellularly in paralyzed, artificially ventilated cats either during chloralose-urethane anesthesia or following midcollicular decerebration. Twenty-three of the 68 inspiratory cells recorded in the region of the NTS were classified as I beta cells on the basis of their response to withholding lung inflation. The dynamic sensitivity of I beta cells was determined by studying their response to increases in the rate of lung inflation at constant peak volume. The I beta cells in this study showed 3 distinct patterns of response to increases in the rate of inflation. Five cells showed no change in firing pattern (fixed firing pattern). Ten cells showed an increase in the rate of rise of cell activity but no change in peak frequency (low dynamic sensitivity). Eight cells showed increases in both the rate of rise of cell activity and peak frequency (high dynamic sensitivity). It was concluded that I beta cells are not a functionally homogeneous population, at least in terms of their dynamic sensitivity. Cells showing fixed firing patterns have the characteristics of off-switch neurons. Cells with low levels of dynamic sensitivity may receive afferents from pulmonary stretch receptors. Cells showing a high degree of dynamic sensitivity may receive afferents from rapidly adapting receptors. The fact that I beta cells are not a functionally homogeneous population may explain the many divergent observations reported from studies of these cells.

  9. p16(Ink4a)-induced senescence of pancreatic beta cells enhances insulin secretion. (United States)

    Helman, Aharon; Klochendler, Agnes; Azazmeh, Narmen; Gabai, Yael; Horwitz, Elad; Anzi, Shira; Swisa, Avital; Condiotti, Reba; Granit, Roy Z; Nevo, Yuval; Fixler, Yaakov; Shreibman, Dorin; Zamir, Amit; Tornovsky-Babeay, Sharona; Dai, Chunhua; Glaser, Benjamin; Powers, Alvin C; Shapiro, A M James; Magnuson, Mark A; Dor, Yuval; Ben-Porath, Ittai


    Cellular senescence is thought to contribute to age-associated deterioration of tissue physiology. The senescence effector p16(Ink4a) is expressed in pancreatic beta cells during aging and limits their proliferative potential; however, its effects on beta cell function are poorly characterized. We found that beta cell-specific activation of p16(Ink4a) in transgenic mice enhances glucose-stimulated insulin secretion (GSIS). In mice with diabetes, this leads to improved glucose homeostasis, providing an unexpected functional benefit. Expression of p16(Ink4a) in beta cells induces hallmarks of senescence--including cell enlargement, and greater glucose uptake and mitochondrial activity--which promote increased insulin secretion. GSIS increases during the normal aging of mice and is driven by elevated p16(Ink4a) activity. We found that islets from human adults contain p16(Ink4a)-expressing senescent beta cells and that senescence induced by p16(Ink4a) in a human beta cell line increases insulin secretion in a manner dependent, in part, on the activity of the mechanistic target of rapamycin (mTOR) and the peroxisome proliferator-activated receptor (PPAR)-γ proteins. Our findings reveal a novel role for p16(Ink4a) and cellular senescence in promoting insulin secretion by beta cells and in regulating normal functional tissue maturation with age.

  10. Selective activation of beta3-adrenoceptors by octopamine: comparative studies in mammalian fat cells. (United States)

    Carpéné, C; Galitzky, J; Fontana, E; Atgié, C; Lafontan, M; Berlan, M


    Numerous synthetic agonists selectively stimulate beta3-adrenoceptors (ARs). The endogenous catecholamines, noradrenaline and adrenaline, however, stimulate all the beta-AR subtypes, and no selective physiological agonist for beta3-ARs has been described so far. The aim of this study was to investigate whether any naturally occurring amine can stimulate selectively beta3-ARs. Since activation of lipolysis is a well-known beta-adrenergic function, the efficacy and potency of various biogenic amines were compared with those of noradrenaline, isoprenaline, and beta3-AR agonists 4-(-{[2-hydroxy-(3-chlorophenyl)ethyl]-amino} propyl)phenoxyacetate (BRL 37,344) and (R,R)-5-(2-{[2-(3-chlorophenyl )-2-hydroxyethyl]-amino} propyl)-1,3-benzo-dioxole-2,2-dicarboxylate (CL 316,243) by testing their lipolytic action in white fat cells. Five mammalian species were studied: rat, hamster and dog, in which selective beta-AR agonists act as full lipolytic agents, and guinea-pigs and humans, in which beta3-AR agonists are less potent activators of lipolysis. Several biogenic amines were inefficient (e.g. dopamine, tyramine and beta-phenylethylamine) while others (synephrine, phenylethanolamine, epinine) were partially active in stimulating lipolysis in all species studied. Their actions were inhibited by all the beta-AR antagonists tested, including those selective for beta1- or beta2-ARs. Octopamine was the only amine fully stimulating lipolysis in rat, hamster and dog fat cells, while inefficient in guinea-pig or human fat cells, like the beta3-AR agonists. In rat white fat cells, beta-AR antagonists inhibited the lipolytic effect of octopamine with a relative order of potency very similar to that observed against CL 316,243. Competitive antagonism of octopamine effect resulted in the following apparent pA2 [-log(IC50), where IC50 is the antagonist concentration eliciting half-maximal inhibition] values: 7.77 (bupranolol), 6.48 [3-(2-ethyl-phenoxy)-1[(1 S)-1,2,3,4-tetrahydronaphth-1

  11. Co-culture of neural crest stem cells (NCSC and insulin producing beta-TC6 cells results in cadherin junctions and protection against cytokine-induced beta-cell death.

    Directory of Open Access Journals (Sweden)

    Anongnad Ngamjariyawat

    Full Text Available PURPOSE: Transplantation of pancreatic islets to Type 1 diabetes patients is hampered by inflammatory reactions at the transplantation site leading to dysfunction and death of insulin producing beta-cells. Recently we have shown that co-transplantation of neural crest stem cells (NCSCs together with the islet cells improves transplantation outcome. The aim of the present investigation was to describe in vitro interactions between NCSCs and insulin producing beta-TC6 cells that may mediate protection against cytokine-induced beta-cell death. PROCEDURES: Beta-TC6 and NCSC cells were cultured either alone or together, and either with or without cell culture inserts. The cultures were then exposed to the pro-inflammatory cytokines IL-1β and IFN-γ for 48 hours followed by analysis of cell death rates (flow cytometry, nitrite production (Griess reagent, protein localization (immunofluorescence and protein phosphorylation (flow cytometry. RESULTS: We observed that beta-TC6 cells co-cultured with NCSCs were protected against cytokine-induced cell death, but not when separated by cell culture inserts. This occurred in parallel with (i augmented production of nitrite from beta-TC6 cells, indicating that increased cell survival allows a sustained production of nitric oxide; (ii NCSC-derived laminin production; (iii decreased phospho-FAK staining in beta-TC6 cell focal adhesions, and (iv decreased beta-TC6 cell phosphorylation of ERK(T202/Y204, FAK(Y397 and FAK(Y576. Furthermore, co-culture also resulted in cadherin and beta-catenin accumulations at the NCSC/beta-TC6 cell junctions. Finally, the gap junction inhibitor carbenoxolone did not affect cytokine-induced beta-cell death during co-culture with NCSCs. CONCLUSION: In summary, direct contacts, but not soluble factors, promote improved beta-TC6 viability when co-cultured with NCSCs. We hypothesize that cadherin junctions between NCSC and beta-TC6 cells promote powerful signals that maintain beta-cell

  12. Osteocalcin protects pancreatic beta cell function and survival under high glucose conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kover, Karen, E-mail: [Division of Endocrine/Diabetes, Children' s Mercy Hospital & Clinics, Kansas City, MO 64108 (United States); University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108 (United States); Yan, Yun; Tong, Pei Ying; Watkins, Dara; Li, Xiaoyu [Division of Endocrine/Diabetes, Children' s Mercy Hospital & Clinics, Kansas City, MO 64108 (United States); University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108 (United States); Tasch, James; Hager, Melissa [Kansas City University Medical Biosciences, Kansas City, MO (United States); Clements, Mark; Moore, Wayne V. [Division of Endocrine/Diabetes, Children' s Mercy Hospital & Clinics, Kansas City, MO 64108 (United States); University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108 (United States)


    Diabetes is characterized by progressive beta cell dysfunction and loss due in part to oxidative stress that occurs from gluco/lipotoxicity. Treatments that directly protect beta cell function and survival in the diabetic milieu are of particular interest. A growing body of evidence suggests that osteocalcin, an abundant non-collagenous protein of bone, supports beta cell function and proliferation. Based on previous gene expression data by microarray, we hypothesized that osteocalcin protects beta cells from glucose-induced oxidative stress. To test our hypothesis we cultured isolated rat islets and INS-1E cells in the presence of normal, high, or high glucose ± osteocalcin for up to 72 h. Oxidative stress and viability/mitochondrial function were measured by H{sub 2}O{sub 2} assay and Alamar Blue assay, respectively. Caspase 3/7 activity was also measured as a marker of apoptosis. A functional test, glucose stimulated insulin release, was conducted and expression of genes/protein was measured by qRT-PCR/western blot/ELISA. Osteocalcin treatment significantly reduced high glucose-induced H{sub 2}O{sub 2} levels while maintaining viability/mitochondrial function. Osteocalcin also significantly improved glucose stimulated insulin secretion and insulin content in rat islets after 48 h of high glucose exposure compared to untreated islets. As expected sustained high glucose down-regulated gene/protein expression of INS1 and BCL2 while increasing TXNIP expression. Interestingly, osteocalcin treatment reversed the effects of high glucose on gene/protein expression. We conclude that osteocalcin can protect beta cells from the negative effects of glucose-induced oxidative stress, in part, by reducing TXNIP expression, thereby preserving beta cell function and survival. - Highlights: • Osteocalcin reduces glucose-induced oxidative stress in beta cells. • Osteocalcin preserves beta cell function and survival under stress conditions. • Osteocalcin reduces glucose

  13. Beta-cell ARNT is required for normal glucose tolerance in murine pregnancy.

    Directory of Open Access Journals (Sweden)

    Sue Mei Lau

    Full Text Available AIMS: Insulin secretion increases in normal pregnancy to meet increasing demands. Inability to increase beta-cell function results in gestational diabetes mellitus (GDM. We have previously shown that the expression of the transcription factor ARNT (Aryl-hydrocarbon Receptor Nuclear Translocator is reduced in the islets of humans with type 2 diabetes. Mice with a beta-cell specific deletion of ARNT (β-ARNT mice have impaired glucose tolerance secondary to defective insulin secretion. We hypothesised that ARNT is required to increase beta-cell function during pregnancy, and that β-ARNT mice would be unable to compensate for the beta-cell stress of pregnancy. The aims of this study were to investigate the mechanisms of ARNT regulation of beta-cell function and glucose tolerance in pregnancy. METHODS: β-ARNT females were mated with floxed control (FC males and FC females with β-ARNT males. RESULTS: During pregnancy, β-ARNT mice had a marked deterioration in glucose tolerance secondary to defective insulin secretion. There was impaired beta-cell proliferation in late pregnancy, associated with decreased protein and mRNA levels of the islet cell-cycle regulator cyclinD2. There was also reduced expression of Irs2 and G6PI. In contrast, in control mice, pregnancy was associated with a 2.1-fold increase in ARNT protein and a 1.6-fold increase in cyclinD2 protein, and with increased beta-cell proliferation. CONCLUSIONS: Islet ARNT increases in normal murine pregnancy and beta-cell ARNT is required for cyclinD2 induction and increased beta-cell proliferation in pregnancy.

  14. File list: InP.Pan.10.AllAg.Pancreatic_beta_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Pan.10.AllAg.Pancreatic_beta_cells mm9 Input control Pancreas Pancreatic beta c...ells SRX445036,SRX1035142,SRX1035147,SRX1035143,SRX1035148 ...

  15. File list: NoD.Pan.05.AllAg.Pancreatic_beta_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Pan.05.AllAg.Pancreatic_beta_cells mm9 No description Pancreas Pancreatic beta ...cells ...

  16. File list: NoD.Pan.50.AllAg.Pancreatic_beta_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Pan.50.AllAg.Pancreatic_beta_cells mm9 No description Pancreas Pancreatic beta ...cells ...

  17. File list: NoD.Pan.20.AllAg.Pancreatic_beta_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Pan.20.AllAg.Pancreatic_beta_cells mm9 No description Pancreas Pancreatic beta ...cells ...

  18. File list: InP.Pan.05.AllAg.Pancreatic_beta_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Pan.05.AllAg.Pancreatic_beta_cells mm9 Input control Pancreas Pancreatic beta c...ells SRX445036,SRX1035143,SRX1035147,SRX1035142,SRX1035148 ...

  19. File list: InP.Pan.50.AllAg.Pancreatic_beta_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Pan.50.AllAg.Pancreatic_beta_cells mm9 Input control Pancreas Pancreatic beta c...ells SRX1035148,SRX1035147,SRX445036,SRX1035143,SRX1035142 ...

  20. File list: InP.Pan.20.AllAg.Pancreatic_beta_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Pan.20.AllAg.Pancreatic_beta_cells mm9 Input control Pancreas Pancreatic beta c...ells SRX445036,SRX1035147,SRX1035148,SRX1035143,SRX1035142 ...

  1. File list: NoD.Pan.10.AllAg.Pancreatic_beta_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Pan.10.AllAg.Pancreatic_beta_cells mm9 No description Pancreas Pancreatic beta ...cells ...

  2. Lupeol inhibits proliferation of human prostate cancer cells by targeting beta-catenin signaling. (United States)

    Saleem, Mohammad; Murtaza, Imtiyaz; Tarapore, Rohinton S; Suh, Yewseok; Adhami, Vaqar Mustafa; Johnson, Jeremy James; Siddiqui, Imtiaz Ahmad; Khan, Naghma; Asim, Mohammad; Hafeez, Bilal Bin; Shekhani, Mohammed Talha; Li, Benyi; Mukhtar, Hasan


    Lupeol, a dietary triterpene, was shown to decrease serum prostate-specific antigen levels and inhibit the tumorigenicity of prostate cancer (CaP) cells in vivo. Here, we show that Lupeol inhibits the proliferative potential of CaP cells and delineated its mechanism of action. Employing a focused microarray of human CaP-associated genes, we found that Lupeol significantly modulates the expression level of genes such as ERBB2, tissue inhibitor of metalloproteinases-3, cyclin D1 and matrix metalloproteinase (MMP)-2 that are known to be associated with proliferation and survival. A common feature of these genes is that all of them are known to either regulate or act as downstream target of beta-catenin signaling that is highly aberrant in CaP patients. Lupeol treatment significantly (1) reduced levels of beta-catenin in the cytoplasmic and nuclear fractions, (2) modulated expression levels of glycogen synthase kinase 3 beta (GSK3beta)-axin complex (regulator of beta-catenin stability), (3) decreased the expression level and enzymatic activity of MMP-2 (downstream target of beta-catenin), (4) reduced the transcriptional activation of T Cell Factor (TCF) responsive element (marker for beta-catenin signaling) in pTK-TCF-Luc-transfected cells and (5) decreased the transcriptional activation of MMP-2 gene in pGL2-MMP-2-Luc-transfected cells. Effects of Lupeol treatment on beta-catenin degradation were significantly reduced in CaP cells where axin is knocked down through small interfering RNA transfection and GSK3beta activity is blocked. Collectively, these data suggest the multitarget efficacy of Lupeol on beta-catenin-signaling network thus resulting in the inhibition CaP cell proliferation. We suggest that Lupeol could be developed as an agent for chemoprevention as well as chemotherapy of human CaP.

  3. Characterization of beta-adrenergic receptors in dispersed rat testicular interstitial cells

    Energy Technology Data Exchange (ETDEWEB)

    Poyet, P.; Labrie, F.


    Recent studies have shown that beta-adrenergic agents stimulate steroidogenesis and cyclic AMP formation in mouse Leydig cells in culture. To obtain information about the possible presence and the characteristics of a beta-adrenergic receptor in rat testicular interstitial cells, the potent beta-adrenergic antagonist (/sup 125/I)cyanopindolol (CYP) was used as ligand. Interstitial cells prepared by collagenase dispersion from rat testis were incubated with the ligand for 2 h at room temperature. (/sup 125/I)cyanopindolol binds to a single class of high affinity sites at an apparent KD value of 15 pM. A number of sites of 6,600 sites/cell is measured when 0.1 microM (-) propranolol is used to determine non-specific binding. The order of potency of a series of agonists competing for (/sup 125/I)cyanopindolol binding is consistent with the interaction of a beta 2-subtype receptor: zinterol greater than (-) isoproterenol greater than (-) epinephrine = salbutamol much greater than (-) norepinephrine. In addition, it was observed that the potency of a large series of specific beta 1 and beta 2 synthetic compounds for displacing (/sup 125/I)cyanopindolol in rat interstitial cells is similar to the potency observed for these compounds in a typical beta 2-adrenergic tissue, the rat lung. For example, the potency of zinterol, a specific beta 2-adrenergic agonist, is 10 times higher in interstitial cells and lung than in rat heart, a typical beta 1-adrenergic tissue. Inversely, practolol, a typical beta 1-antagonist, is about 50 times more potent in rat heart than in interstitial cells and lung.

  4. Expression of {beta}{sub 1} integrins in human endometrial stromal and decidual cells

    Energy Technology Data Exchange (ETDEWEB)

    Shiokawa, Shigetatsu; Yoshimura, Yasunori; Nakamura, Yukio [Kyorin Univ. School of Medicine, Tokyo (Japan)] [and others


    The present study was undertaken to investigate the expression of {beta}{sub 1} integrins in human endometrium and decidua using flow cytometry, immunohistochemistry, and immunoprecipitation. Fluorescence-activated flow cytometry demonstrated the greater expression of the {beta}{sub 1}, {alpha}{sub 1}, {alpha}{sub 2}, and {alpha}{sub 5} subunits of the {beta}{sub 1} integrin family in cultured stromal cells from the midsecretory phase, than in those of the early proliferative phase. The addition of estradiol (E{sub 2}) and progesterone (P) to cultured stromal cells in the early proliferative phase increased the expression of {beta}{sub 1} integrins in vitro. Flow cytometry also demonstrated the expression of the {beta}{sub 1}, {alpha}{sub 1}, {alpha}{sub 2}, {alpha}{sub 3}, {alpha}{sub 5}, and {alpha}{sub 6} subunits of {beta}{sub 1} integrin family in cultured decidual cells, and the enriched-fraction of prolactin (PRL)-producing decidual cells isolated by Percoll gradients showed high levels of {beta}{sub 1} integrins expression. Immunohistochemistry confirmed the {beta}{sub 1} integrin cell surface phenotypes in cultured decidual cells observed by flow cytometry. In summary, the present study demonstrated that endometrial stromal and decidual cells expressed {beta}{sub 1} integrin subunits at their surfaces. The expression exhibited a variability throughout the menstrual cycles, being predominantly detected in the secretory phase, and was maintained highly in the decidua. Thus, {beta}{sub 1} integrins in human endometrium and decidua may be important in mediating the organization of extracellular matrix proteins derived from embryos during the early stage of implantation. 43 refs., 7 figs., 2 tabs.

  5. ADAM12 and alpha9beta1 integrin are instrumental in human myogenic cell differentiation

    DEFF Research Database (Denmark)

    Lafuste, Peggy; Sonnet, Corinne; Chazaud, Bénédicte;


    Knowledge on molecular systems involved in myogenic precursor cell (mpc) fusion into myotubes is fragmentary. Previous studies have implicated the a disintegrin and metalloproteinase (ADAM) family in most mammalian cell fusion processes. ADAM12 is likely involved in fusion of murine mpc and human...... rhabdomyosarcoma cells, but it requires yet unknown molecular partners to launch myogenic cell fusion. ADAM12 was shown able to mediate cell-to-cell attachment through binding alpha9beta1 integrin. We report that normal human mpc express both ADAM12 and alpha9beta1 integrin during their differentiation. Expression...... of alpha9 parallels that of ADAM12 and culminates at time of fusion. alpha9 and ADAM12 coimmunoprecipitate and participate to mpc adhesion. Inhibition of ADAM12/alpha9beta1 integrin interplay, by either ADAM12 antisense oligonucleotides or blocking antibody to alpha9beta1, inhibited overall mpc fusion...

  6. Effects of ORP150 on appearance and function of pancreatic beta cells following acute necrotizing pancreatitis. (United States)

    Deng, Wen-Hong; Chen, Chen; Wang, Wei-Xing; Yu, Jia; Li, Jin-You; Liu, Lei


    Pancreatic beta cells produce and release insulin, which decreases the blood glucose level. Endoplasmic reticulum stress caused pancreatic beta cell dysfunction and death in acute necrotizing pancreatitis (ANP). The 150kD oxygen-regulated protein (ORP150) took part in the process of endoplasmic reticulum stress. This study investigated the effect of ORP150 on appearance and function of pancreatic beta cells in ANP. Acute necrotizing pancreatitis relied on retrograde infusion of 5% sodium taurocholate into the bile-pancreatic duct. The severity of ANP was estimated by serum amylase, secretory phospholipase A(2,) and pancreatic histopathology. The changes in appearance and function of pancreatic beta cells were detected by light and electron microscopy and the levels of serum glucose, insulin, and C-peptide. ORP150 expression was studied using western blot and immunohistochemisty assay. The expression of ORP150 mainly appeared on pancreatic beta cells and decreased gradually during the pathogenesis of ANP. The results of light and electron microscopy indicated pancreatic beta cell dysfunction and death, concomitant with elevation of serum glucose, insulin, and C-peptide in ANP. These results imply a probable role of ORP150 in the changes in appearance and function of pancreatic beta cells following acute necrotizing pancreatitis, through the pathway of endoplasmic reticulum stress.

  7. Identification of Na(+)-K(+)-ATPase beta-subunit in alveolar epithelial cells. (United States)

    Zhang, X L; Danto, S I; Borok, Z; Eber, J T; Martín-Vasallo, P; Lubman, R L


    The Na(+)-K(+)-ATPase is a heterodimeric plasma membrane protein that consists of a catalytic alpha-subunit and a smaller glycosylated beta-subunit that has not been fully characterized in alveolar epithelial cells (AEC) to date. In this study, we identified the Na(+)-K(+)-ATPase beta-subunit protein in rat AEC and lung membranes using immunochemical techniques. Rat AEC grown in primary culture and rat lung, brain, and kidney membranes were solubilized in either 2% sodium dodecyl sulfate (SDS) sample buffer for SDS-polyacrylamide gel electrophoresis or in 1% Nonidet P-40 lysis buffer for immunoprecipitation studies. Na(+)-K(+)-ATPase beta-subunit was not detected in either AEC or lung membranes on Western blots when probed with a panel of antibodies (Ab) against beta-subunit isoforms, whereas brain and kidney beta-subunit were recognized as broad approximately 50-kDa bands. AEC, lung, and kidney membranes were immunoprecipitated with anti-beta Ab IEC 1/48, a monoclonal Ab that recognizes beta-subunit protein only in its undenatured state. The beta-subunit was detected in the immunoprecipitate (IP) from kidney membranes by several different anti-beta-subunit Ab. The beta-subunit was faintly detectable from AEC and lung IP as a broad approximately 50-kDa band when blotted with the polyclonal anti-beta 1-subunit Ab SpET but could not be detected by blotting with other anti-beta Ab. Treatment of the IP from kidney, lung, and AEC with N-glycosidase F for 2 h at 37 degrees C resulted in immunodetection of identical approximately 35 kDa bands when probed with all anti-beta 1 Ab on Western blots. From these results, we conclude that rat lung and AEC possess immunoreactive beta-subunit protein that is only readily detectable after deglycosylation. Because anti-beta Ab fail to detect the Na(+)-K(+)-ATPase beta-subunit in rat lung or AEC by standard Western blotting techniques under the conditions of these experiments, our results suggest that lung beta-subunit may be

  8. beta-cell hyperexcitability: from hyperinsulinism to diabetes. (United States)

    Nichols, C G; Koster, J C; Remedi, M S


    Nutrient oxidation in beta cells generates a rise in [ATP]:[ADP] ratio. This reduces K(ATP) channel activity, leading to depolarization, activation of voltage-dependent Ca(2+) channels, Ca(2+) entry and insulin secretion. Consistent with this paradigm, loss-of-function mutations in the genes (KCNJ11 and ABCC8) that encode the two subunits (Kir6.2 and SUR1, respectively) of the ATP-sensitive K(+) (K(ATP)) channel underlie hyperinsulinism in humans, a genetic disorder characterized by dysregulated insulin secretion. In mice with genetic suppression of K(ATP) channel subunit expression, partial loss of K(ATP) channel conductance also causes hypersecretion, but unexpectedly, complete loss results in an undersecreting, mildly glucose-intolerant phenotype. When challenged by a high-fat diet, normal mice and mice with reduced K(ATP) channel density respond with hypersecretion, but mice with more significant or complete loss of K(ATP) channels cross over, or progress further, to an undersecreting, diabetic phenotype. It is our contention that in mice, and perhaps in humans, there is an inverse U-shaped response to hyperexcitabilty, leading first to hypersecretion but with further exacerbation to undersecretion and diabetes. The causes of the overcompensation and diabetic susceptibility are poorly understood but may have broader implications for the progression of hyperinsulinism and type 2 diabetes in humans.

  9. Inflammatory Cytokines Stimulate Bone Morphogenetic Protein-2 Expression and Release from Pancreatic Beta Cells

    DEFF Research Database (Denmark)

    Urizar, Adriana Ibarra; Friberg, Josefine; Christensen, Dan Ploug;


    The proinflammatory cytokines interleukin-1 beta (IL-1β) and interferon gamma (IFN-γ) play important roles in the progressive loss of beta-cell mass and function during development of both type 1 and type 2 diabetes. We have recently showed that bone morphogenetic protein (BMP)-2 and -4...

  10. Absolute beta-catenin concentrations in Wnt pathway-stimulated and non-stimulated cells

    NARCIS (Netherlands)

    Sievers, S; Fritzsch, C; Grzegorczyk, M; Kuhnen, C; Muller, O


    The intracellular level of the proto-oncoprotein beta-catenin is a parameter for the activity of the Wnt pathway, which has been linked to carcinogenesis. The paper introduces a novel sandwich-based ELISA for the determination of the beta-catenin concentration in lysates from cells or tissues. The a

  11. Cdc42 controls progenitor cell differentiation and beta-catenin turnover in skin

    DEFF Research Database (Denmark)

    Wu, Xunwei; Quondamatteo, Fabio; Lefever, Tine


    Differentiation of skin stem cells into hair follicles (HFs) requires the inhibition of beta-catenin degradation, which is controlled by a complex containing axin and the protein kinase GSK3beta. Using conditional gene targeting in mice, we show now that the small GTPase Cdc42 is crucial...

  12. Proteomic profiling of bone marrow mesenchymal stem cells upon TGF-beta stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Daojing; Park, Jennifer S.; Chu, Julia S.F.; Ari, Krakowski; Luo, Kunxin; Chen, David J.; Li, Song


    Bone marrow mesenchymal stem cells (MSCs) can differentiate into different types of cells, and have tremendous potential for cell therapy and tissue engineering. Transforming growth factor {beta}1 (TGF-{beta}) plays an important role in cell differentiation and vascular remodeling. We showed that TGF-{beta} induced cell morphology change and an increase in actin fibers in MSCs. To determine the global effects of TGF-{beta} on MSCs, we employed a proteomic strategy to analyze the effect of TGF-{beta} on the human MSC proteome. By using two-dimensional gel electrophoresis and electrospray ionization coupled to Quadrupole/time-of-flight tandem mass spectrometers, we have generated a proteome reference map of MSCs, and identified {approx}30 proteins with an increase or decrease in expression or phosphorylation in response to TGF-{beta}. The proteins regulated by TGF-{beta} included cytoskeletal proteins, matrix synthesis proteins, membrane proteins, metabolic enzymes, etc. TGF-{beta} increased the expression of smooth muscle (SM) {alpha}-actin and decreased the expression of gelsolin. Over-expression of gelsolin inhibited TGF-{beta}-induced assembly of SM {alpha}-actin; on the other hand, knocking down gelsolin expression enhanced the assembly of {alpha}-actin and actin filaments without significantly affecting {alpha}-actin expression. These results suggest that TGF-{beta} coordinates the increase of {alpha}-actin and the decrease of gelsolin to promote MSC differentiation. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms.

  13. Planar Cell Polarity Controls Pancreatic Beta Cell Differentiation and Glucose Homeostasis

    Directory of Open Access Journals (Sweden)

    Cedric Cortijo


    Full Text Available Planar cell polarity (PCP refers to the collective orientation of cells within the epithelial plane. We show that progenitor cells forming the ducts of the embryonic pancreas express PCP proteins and exhibit an active PCP pathway. Planar polarity proteins are acquired at embryonic day 11.5 synchronously to apicobasal polarization of pancreas progenitors. Loss of function of the two PCP core components Celsr2 and Celsr3 shows that they control the differentiation of endocrine cells from polarized progenitors, with a prevalent effect on insulin-producing beta cells. This results in a decreased glucose clearance. Loss of Celsr2 and 3 leads to a reduction of Jun phosphorylation in progenitors, which, in turn, reduces beta cell differentiation from endocrine progenitors. These results highlight the importance of the PCP pathway in cell differentiation in vertebrates. In addition, they reveal that tridimensional organization and collective communication of cells are needed in the pancreatic epithelium in order to generate appropriate numbers of endocrine cells.

  14. Lysine deacetylases are produced in pancreatic beta cells and are differentially regulated by proinflammatory cytokines

    DEFF Research Database (Denmark)

    Lundh, M; Christensen, D P; Rasmussen, D N;


    Cytokine-induced beta cell toxicity is abrogated by non-selective inhibitors of lysine deacetylases (KDACs). The KDAC family consists of 11 members, namely histone deacetylases HDAC1 to HDAC11, but it is not known which KDAC members play a role in cytokine-mediated beta cell death. The aim...... of the present study was to examine the KDAC gene expression profile of the beta cell and to investigate whether KDAC expression is regulated by cytokines. In addition, the protective effect of the non-selective KDAC inhibitor ITF2357 and interdependent regulation of four selected KDACs were investigated....

  15. Characterization of GLP-1 effects on beta-cell function after meal ingestion in humans

    DEFF Research Database (Denmark)

    Ahrén, Bo; Holst, Jens Juul; Mari, Andrea


    OBJECTIVE: Glucagon-like peptide 1 (GLP-1) is an incretin that augments insulin secretion after meal intake and is developed for treatment of type 2 diabetes. As a novel therapeutic agent, characteristics of its beta-cell effects are important to establish. Previously, beta-cell effects of GLP-1...... overnight were served a breakfast (450 kcal) with intravenous infusion of saline or synthetic GLP-1 (0.75 pmol x kg(-1) x min(-1)), and beta-cell function was evaluated by estimating the relationship between glucose concentration and insulin secretion (calculated by deconvolution of C-peptide data). RESULTS...

  16. Regulation of pancreatic beta-cell mass and proliferation by SOCS-3

    DEFF Research Database (Denmark)

    Lindberg, K; Rønn, S G; Tornehave, D


    Growth hormone and prolactin are important growth factors for pancreatic beta-cells. The effects exerted by these hormones on proliferation and on insulin synthesis and secretion in beta-cells are largely mediated through the Janus kinase (JAK)/signal transducer and activator of transcription (ST......-type littermates following an oral glucose-tolerance test. Together these data suggest that SOCS-3 modulates cytokine signaling in pancreatic beta-cells and therefore potentially could be a candidate target for development of new treatment strategies for diabetes.......Growth hormone and prolactin are important growth factors for pancreatic beta-cells. The effects exerted by these hormones on proliferation and on insulin synthesis and secretion in beta-cells are largely mediated through the Janus kinase (JAK)/signal transducer and activator of transcription (STAT......) signaling pathway. Suppressors of cytokine signaling (SOCS) proteins are specific inhibitors of the JAK/STAT pathway acting through a negative-feedback loop. To investigate in vivo effects of SOCS-3 in growth hormone (GH)/prolactin signaling in beta-cells we generated transgenic mice with beta...

  17. Essential role of TGF-beta/Smad pathway on statin dependent vascular smooth muscle cell regulation.

    Directory of Open Access Journals (Sweden)

    Juan Rodríguez-Vita

    Full Text Available BACKGROUND: The 3-hydroxy-3-methylglutaryl CoA reductase inhibitors (also called statins exert proven beneficial effects on cardiovascular diseases. Recent data suggest a protective role for Transforming Growth Factor-beta (TGF-beta in atherosclerosis by regulating the balance between inflammation and extracellular matrix accumulation. However, there are no studies about the effect of statins on TGF-beta/Smad pathway in atherosclerosis and vascular cells. METHODOLOGY: In cultured vascular smooth muscle cells (VSMCs statins enhanced Smad pathway activation caused by TGF-beta. In addition, statins upregulated TGF-beta receptor type II (TRII, and increased TGF-beta synthesis and TGF-beta/Smad-dependent actions. In this sense, statins, through Smad activation, render VSMCs more susceptible to TGF-beta induced apoptosis and increased TGF-beta-mediated ECM production. It is well documented that high doses of statins induce apoptosis in cultured VSMC in the presence of serum; however the precise mechanism of this effect remains to be elucidated. We have found that statins-induced apoptosis was mediated by TGF-beta/Smad pathway. Finally, we have described that RhoA inhibition is a common intracellular mechanisms involved in statins effects. The in vivo relevance of these findings was assessed in an experimental model of atherosclerosis in apolipoprotein E deficient mice: Treatment with Atorvastatin increased Smad3 phosphorylation and TRII overexpression, associated to elevated ECM deposition in the VSMCs within atheroma plaques, while apoptosis was not detected. CONCLUSIONS: Statins enhance TGF-beta/Smad pathway, regulating ligand levels, receptor, main signaling pathway and cellular responses of VSMC, including apoptosis and ECM accumulation. Our findings show that TGF-beta/Smad pathway is essential for statins-dependent actions in VSMCs.

  18. Dynamics of glucose-induced membrane recruitment of protein kinase C beta II in living pancreatic islet beta-cells. (United States)

    Pinton, Paolo; Tsuboi, Takashi; Ainscow, Edward K; Pozzan, Tullio; Rizzuto, Rosario; Rutter, Guy A


    The mechanisms by which glucose may affect protein kinase C (PKC) activity in the pancreatic islet beta-cell are presently unclear. By developing adenovirally expressed chimeras encoding fusion proteins between green fluorescent protein and conventional (betaII), novel (delta), or atypical (zeta) PKCs, we show that glucose selectively alters the subcellular localization of these enzymes dynamically in primary islet and MIN6 beta-cells. Examined by laser scanning confocal or total internal reflection fluorescence microscopy, elevated glucose concentrations induced oscillatory translocations of PKCbetaII to spatially confined regions of the plasma membrane. Suggesting that increases in free cytosolic Ca(2+) concentrations ([Ca(2+)](c)) were primarily responsible, prevention of [Ca(2+)](c) increases with EGTA or diazoxide completely eliminated membrane recruitment, whereas elevation of cytosolic [Ca(2+)](c) with KCl or tolbutamide was highly effective in redistributing PKCbetaII both to the plasma membrane and to the surface of dense core secretory vesicles. By contrast, the distribution of PKCdelta.EGFP, which binds diacylglycerol but not Ca(2+), was unaffected by glucose. Measurement of [Ca(2+)](c) immediately beneath the plasma membrane with a ratiometric "pericam," fused to synaptic vesicle-associated protein-25, revealed that depolarization induced significantly larger increases in [Ca(2+)](c) in this domain. These data demonstrate that nutrient stimulation of beta-cells causes spatially and temporally complex changes in the subcellular localization of PKCbetaII, possibly resulting from the generation of Ca(2+) microdomains. Localized changes in PKCbetaII activity may thus have a role in the spatial control of insulin exocytosis.

  19. Involvement of interleukin 1 and interleukin 1 antagonist in pancreatic beta-cell destruction in insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Mandrup-Poulsen, T; Zumsteg, U; Reimers, J


    In this review we propose that the balance between the action of interleukin 1 (IL-1) and its natural antagonist IL-1ra on the level of the insulin-producing pancreatic beta-cell may play a decisive role in the pathogenesis of insulin-dependent diabetes mellitus (IDDM). We argue that IL-1...... by lymphocytic and monocytic cells beta-cells, (3) high molar excesses of IL-1ra over IL-1 needed to prevent IL-1 mediated beta-cell toxicity, (4) increased beta-cell sensitivity to free nitric oxide and oxygen radical formation induced by IL-1 and (5) inadequate oxidative stress response by beta...

  20. Effects of meal size and composition on incretin, alpha-cell, and beta-cell responses

    DEFF Research Database (Denmark)

    Rijkelijkhuizen, Josina M; McQuarrie, Kelly; Girman, Cynthia J


    of beta-cell function and incremental areas under the curve of glucose, insulin, C-peptide, glucagon, GLP-1, and GIP were calculated. Mixed models and Friedman tests were used to test for differences in meal responses. The large CH-rich meal and fat-rich meal resulted in a slightly larger insulin response......The incretins glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) regulate postprandial insulin release from the beta-cells. We investigated the effects of 3 standardized meals with different caloric and nutritional content in terms of postprandial glucose......, insulin, glucagon, and incretin responses. In a randomized crossover study, 18 subjects with type 2 diabetes mellitus and 6 healthy volunteers underwent three 4-hour meal tolerance tests (small carbohydrate [CH]-rich meal, large CH-rich meal, and fat-rich meal). Non-model-based and model-based estimates...

  1. Roles of Wnt/{beta}-catenin signaling in epithelial differentiation of mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yajing; Sun, Zhaorui; Qiu, Xuefeng [Immunology and Reproductive Biology Laboratory, Medical College of Nanjing University, Nanjing 210093 (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093 (China); Li, Yan [Jiangsu Centers for Diseases Prevention and Control, Nanjing 210009 (China); Qin, Jizheng [Immunology and Reproductive Biology Laboratory, Medical College of Nanjing University, Nanjing 210093 (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093 (China); Han, Xiaodong, E-mail: [Immunology and Reproductive Biology Laboratory, Medical College of Nanjing University, Nanjing 210093 (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093 (China)


    Bone marrow-derived mesenchymal stem cells (MSCs) have been demonstrated to be able to differentiate into epithelial lineage, but the precise mechanisms controlling this process are unclear. Our aim is to explore the roles of Wnt/{beta}-catenin in the epithelial differentiation of MSCs. Using indirect co-culture of rat MSCs with rat airway epithelial cells (RTE), MSCs expressed several airway epithelial markers (cytokeratin 18, tight junction protein occudin, cystic fibrosis transmembrance regulator). The protein levels of some important members in Wnt/{beta}-catenin signaling were determined, suggested down-regulation of Wnt/{beta}-catenin with epithelial differentiation of MSCs. Furthermore, Wnt3{alpha} can inhibit the epithelial differentiation of MSCs. A loss of {beta}-catenin induced by Dickkopf-1 can enhance MSCs differentiation into epithelial cells. Lithium chloride transiently activated {beta}-catenin expression and subsequently decreased {beta}-catenin level and at last inhibited MSCs to differentiate into airway epithelium. Taken together, our study indicated that RTE cells can trigger epithelial differentiation of MSCs. Blocking Wnt/{beta}-catenin signaling may promote MSCs to differentiate towards airway epithelial cells.

  2. Uptake of neutral alpha- and beta-amino acids by human proximal tubular cells

    DEFF Research Database (Denmark)

    Jessen, H; Røigaard, H; Jacobsen, Christian


    The transport characteristics of amino acids in primary cell cultures from the proximal tubule of human adults (AHKE cells) were examined, using alpha-aminoisobutyric acid (AIB) and beta-alanine as representatives of alpha- and beta-amino acids, respectively. The Na(+)-gradient dependent influx...... of AIB occurred by a single, saturable transport system, whereas the Na(+)-gradient dependent uptake data for beta-alanine could be described in terms of two-independent transport components as well as one-transport one-leak model with identical kinetic constants for the high-affinity system. Competition...... experiments revealed that all the neutral amino acids tested reduced the uptake of AIB, whereas there was no effect of taurine, L-aspartic acid, and L-arginine. By contrast, the influx of beta-alanine was only drastically reduced by beta-amino acids, whereas the inhibition by neutral alpha-amino acids...

  3. TGF-beta expression during rat pregnancy and activity on decidual cell survival

    Directory of Open Access Journals (Sweden)

    Déry Marie-Claude


    Full Text Available Abstract Background During early rat pregnancy, trophoblast of the tiny embryo joins with the endometrium and epithelial cells undergo apoptosis. Near the end of pregnancy, regression of the decidua basalis (DB is also observed (from day 14 to 20. However, little is known about the intra-cellular and molecular mechanisms involved in apoptosis regulation in the uterus during pregnancy. The objective of the present study was to investigate the presence and the developmental expression of transforming growth factor-beta isoforms (TGF-beta well known differentiation factor in the rat endometrium throughout pregnancy and its action in vitro using cultured endometrial stromal cells. Methods In vivo: Rats were killed at different days of pregnancy (days 2–20 and uteri removed to collect endometrial protein extracts or the uteri were fixed, embedded and sectioned for immunohistochemistry (IHC and in situ cell death analyses using TdT-mediated dUTP nick end labeling (TUNEL. In vitro: Rats were ovariectomized and decidualization was induced using sex steroids. Endometrial stromal decidual cells were then collected and cultured. Results An increase of apoptosis in the DB on days 14, 16 and 18 was observed. Cleaved caspase-3 was clearly detected during regression of the DB by Western analysis and immunofluorescence. Western analyses using endometrial protein extracts demonstrated that TGF-beta1, TGF-beta2 and TGF-beta3 were highly expressed at the time of DB regression (day 14. During early pregnancy, TGF-beta1 and -beta2 expressions raised at days 5.5 to 6.5. TGF-beta3 protein was not detected during early pregnancy. IHC analyses revealed that TGF-beta1 and -2 were found surrounding both epithelium (luminal and glandular in the stroma compartment at the implantation site, and TGF-beta3 was mainly located surrounding endometrial epithelium in the stroma compartment. Smad2 phosphorylation was increased at the time of DB regression. In vitro studies using

  4. GLP-1 derivative liraglutide in rats with beta-cell deficiencies: influence of metabolic state on beta-cell mass dynamics

    DEFF Research Database (Denmark)

    Sturis, Jeppe; Gotfredsen, Carsten F; Rømer, John


    (1) Liraglutide is a long-acting GLP-1 derivative, designed for once daily administration in type II diabetic patients. To investigate the effects of liraglutide on glycemic control and beta-cell mass in rat models of beta-cell deficiencies, studies were performed in male Zucker diabetic fatty (ZDF...... was 2-3-fold higher during a normal 24-h feeding period (PJudged by pair feeding, approximately 53% of the antihyperglycemic effect observed on 24-h glucose profiles was mediated by a reduction in food intake, which persisted throughout the study and averaged 16% (P

  5. New ways to test beta cell functionality in health and diabetes

    DEFF Research Database (Denmark)

    Korsgaard, Thomas Vagn

    . Within the context of control theory, the beta cell functionality is usually modelled as versions of a classic Proportional-Integral-Differential (PID) controller, and the different phases of insulin secretion are described in relation to the different control component, with the first phase of insulin......Beta cell functionality is often characterised by indices describing different phases of insulin secretion. The typical biphasic insulin secretion pattern observed with a square wave glucose stimulation has laid the foundation for most modelling work regarding quantification of beta cell function...... secretion being related to the differential control component, and the second (late) phase to the integral control component. This is, of course, a phenomenological description. We propose a model of the glucose sensing mechanisms in the beta cell describing the timedependent physiological processes...

  6. Proinflammatory cytokines activate the intrinsic apoptotic pathway in beta-cells

    DEFF Research Database (Denmark)

    Grunnet, Lars G; Aikin, Reid; Tonnesen, Morten F;


    of the intrinsic apoptotic pathway and the role of the two proapoptotic Bcl-2 proteins, Bad and Bax, were examined in beta-cells. RESEARCH DESIGN AND METHODS: Human and rat islets and INS-1 cells were exposed to a combination of proinflammatory cytokines (interleukin-1beta, interferon-gamma, and/or tumor necrosis......OBJECTIVE: Proinflammatory cytokines are cytotoxic to beta-cells and have been implicated in the pathogenesis of type 1 diabetes and islet graft failure. The importance of the intrinsic mitochondrial apoptotic pathway in cytokine-induced beta-cell death is unclear. Here, cytokine activation...... to investigate the role of Bad and Bax activation, respectively. RESULTS: We found that proinflammatory cytokines induced calcineurin-dependent dephosphorylation of Bad Ser136, mitochondrial stress, cytochrome c release, activation of caspase-9 and -3, and DNA fragmentation. Inhibition of Bad Ser136...

  7. Novel aspects on signal-transduction in the pancreatic beta-cell. (United States)

    Berggren, Per-Olof; Leibiger, Ingo B


    The glucose-stimulus/insulin-secretion-coupling by the pancreatic beta-cell, which guarantees the maintenance of glucose homeostasis in man, is regulated by a sophisticated interplay between glucose and a plethora of additional factors. Besides other nutrients, incretins, nerval innervation, systemic growth factors as well as autocrine and paracrine regulatory loops within the islet of Langerhans modulate the function of the insulin-producing beta-cell. Although the modulatory role of these factors is well appreciated, the underlying molecular mechanisms involved remain poorly understood. However, in most cases beta-cell membrane receptors coupled primarily to either G-proteins or tyrosine kinases, which subsequently activate respective second messenger cascades, are involved. In the present mini-review we will discuss the role of signaling through some of these receptor-operated effector systems in the light of pancreatic beta-cell signal-transduction.

  8. The effects of glucagon-like peptide-1 on the beta cell

    DEFF Research Database (Denmark)

    Vilsbøll, Tina


    Type 2 diabetes is a progressive disease characterized by insulin resistance and impaired beta-cell function. Treatments that prevent further beta-cell decline are therefore essential for the management of type 2 diabetes. Glucagon-like peptide-1 (GLP-1) is an incretin hormone that is known...... to stimulate glucose-dependent insulin secretion. Furthermore, GLP-1 appears to have multiple positive effects on beta cells. However, GLP-1 is rapidly degraded by dipeptidyl peptidase-4 (DPP-4), which limits the clinical relevance of GLP-1 for the treatment of type 2 diabetes. Two main classes of GLP-1-based...... therapies have now been developed: DPP-4 inhibitors and GLP-1 receptor agonists. Liraglutide and exenatide are examples of GLP-1 receptor agonists that have been developed to mimic the insulinotropic characteristics of endogenous GLP-1. Both have demonstrated improved beta-cell function in patients...

  9. Radioiodinated Naphthylalanine Derivatives Targeting Pancreatic Beta Cells in Normal and Nonobese Diabetic Mice (United States)

    Amartey, John K.; Shi, Yufei; Al-Jammaz, Ibrahim; Esguerra, Celestina; Al-Otaibi, Basem; Al-Mohanna, Futwan


    An imaging method capable of using a signal from pancreatic beta cells to determine their mass would be of immense value in monitoring the progression of diabetes as well as response to treatment. Somatostatin receptors (SSTRs) are expressed on beta cells and are a potential target for imaging. The main objective of this study was to investigate whether pancreatic beta cells are a target for radiolabeled naphthylalanine derivatives. The molecules were subjected to in vitro and ex vivo evaluations. Pancreatic uptake of radioactivity was lower in nonobese diabetic (NOD) mice than normal mice at all time points investigated (P < .05) and correlated with the number of islets in tissue sections of both control and NOD mice. Immunohistochemical and confocal fluorescent microscopic studies showed colocalization of insulin and the conjugate radioligand in the pancreas. The results demonstrated that pancreatic uptake is receptor-mediated, and that beta cells are the primary target. PMID:18483609

  10. Production of beta-globin and adult hemoglobin following G418 treatment of erythroid precursor cells from homozygous beta(0)39 thalassemia patients. (United States)

    Salvatori, Francesca; Breveglieri, Giulia; Zuccato, Cristina; Finotti, Alessia; Bianchi, Nicoletta; Borgatti, Monica; Feriotto, Giordana; Destro, Federica; Canella, Alessandro; Brognara, Eleonora; Lampronti, Ilaria; Breda, Laura; Rivella, Stefano; Gambari, Roberto


    In several types of thalassemia (including beta(0)39-thalassemia), stop codon mutations lead to premature translation termination and to mRNA destabilization through nonsense-mediated decay. Drugs (for instance aminoglycosides) can be designed to suppress premature termination, inducing a ribosomal readthrough. These findings have introduced new hopes for the development of a pharmacologic approach to the cure of this disease. However, the effects of aminoglycosides on globin mRNA carrying beta-thalassemia stop mutations have not yet been investigated. In this study, we have used a lentiviral construct containing the beta(0)39-thalassemia globin gene under control of the beta-globin promoter and a LCR cassette. We demonstrated by fluorescence-activated cell sorting (FACS) analysis the production of beta-globin by K562 cell clones expressing the beta(0)39-thalassemia globin gene and treated with G418. More importantly, after FACS and high-performance liquid chromatography (HPLC) analyses, erythroid precursor cells from beta(0)39-thalassemia patients were demonstrated to be able to produce beta-globin and adult hemoglobin after treatment with G418. This study strongly suggests that ribosomal readthrough should be considered a strategy for developing experimental strategies for the treatment of beta(0)-thalassemia caused by stop codon mutations. Am. J. Hematol., 2009. (c) 2009 Wiley-Liss, Inc.

  11. Does physiological beta cell turnover initiate autoimmune diabetes in the regional lymph nodes? (United States)

    Pearl-Yafe, Michal; Iskovich, Svetlana; Kaminitz, Ayelet; Stein, Jerry; Yaniv, Isaac; Askenasy, Nadir


    The initial immune process that triggers autoimmune beta cell destruction in type 1 diabetes is not fully understood. In early infancy there is an increased beta cell turnover. Recurrent exposure of tissue-specific antigens could lead to primary sensitization of immune cells in the draining lymph nodes of the pancreas. An initial immune injury to the beta cells can be inflicted by several cell types, primarily macrophages and T cells. Subsequently, infiltrating macrophages transfer antigens exposed by apoptotic beta cells to the draining lymph nodes, where antigen presenting cells process and amplify a secondary immune reaction. Antigen presenting cells evolve as dual players in the activation and suppression of the autoimmune reaction in the draining lymph nodes. We propose a scenario where destructive insulitis is caused by recurrent exposure of specific antigens due to the physiological turnover of beta cells. This sensitization initiates the evolution of reactive clones that remain silent in the regional lymph nodes, where they succeed to evade regulatory clonal deletion.

  12. Evaluation of beta-cell secretory capacity using glucagon-like peptide 1

    DEFF Research Database (Denmark)

    Vilsbøll, Tina; Nielsen, Mette Toft; Krarup, T


    Beta-cell secretory capacity is often evaluated with a glucagon test or a meal test. However, glucagon-like peptide 1 (GLP-1) is the most insulinotropic hormone known, and the effect is preserved in type 2 diabetic patients.......Beta-cell secretory capacity is often evaluated with a glucagon test or a meal test. However, glucagon-like peptide 1 (GLP-1) is the most insulinotropic hormone known, and the effect is preserved in type 2 diabetic patients....

  13. Glucocorticoids Inhibit Basal and Hormone-Induced Serotonin Synthesis in Pancreatic Beta Cells


    Moina Hasni Ebou; Amrit Singh-Estivalet; Jean-Marie Launay; Jacques Callebert; François Tronche; Pascal Ferré; Jean-François Gautier; Ghislaine Guillemain; Bernadette Bréant; Bertrand Blondeau; Jean-Pierre Riveline


    International audience; Diabetes is a major complication of chronic Glucocorticoids (GCs) treatment. GCs induce insulin resistance and also inhibit insulin secretion from pancreatic beta cells. Yet, a full understanding of this negative regulation remains to be deciphered. In the present study, we investigated whether GCs could inhibit serotonin synthesis in beta cell since this neurotransmitter has been shown to be involved in the regulation of insulin secretion. To this aim, serotonin synth...

  14. Adenoviruses Expressing PDX-1, BETA2/NeuroD and MafA Induces the Transdifferentiation of Porcine Neonatal Pancreas Cell Clusters and Adult Pig Pancreatic Cells into Beta-Cells

    Directory of Open Access Journals (Sweden)

    Young-Hye You


    Full Text Available BackgroundA limitation in the number of insulin-producing pancreatic beta-cells is a special feature of diabetes. The identification of alternative sources for the induction of insulin-producing surrogate beta-cells is a matter of profound importance. PDX-1/VP16, BETA2/NeuroD, and MafA overexpression have been shown to influence the differentiation and proliferation of pancreatic stem cells. However, few studies have been conducted using adult animal pancreatic stem cells.MethodsAdult pig pancreatic cells were prepared from the non-endocrine fraction of adult pig pancreata. Porcine neonatal pancreas cell clusters (NPCCs were prepared from neonatal pigs aged 1-2 days. The dispersed pancreatic cells were infected with PDX-1/VP16, BETA2/NeuroD, and MafA adenoviruses. After infection, these cells were transplanted under the kidney capsules of normoglycemic nude mice.ResultsThe adenovirus-mediated overexpression of PDX-1, BETA2/NeuroD and MafA induced insulin gene expression in NPCCs, but not in adult pig pancreatic cells. Immunocytochemistry revealed that the number of insulin-positive cells in NPCCs and adult pig pancreatic cells was approximately 2.6- and 1.1-fold greater than those in the green fluorescent protein control group, respectively. At four weeks after transplantation, the relative volume of insulin-positive cells in the grafts increased in the NPCCs, but not in the adult porcine pancreatic cells.ConclusionThese data indicate that PDX-1, BETA2/NeuroD, and MafA facilitate the beta-cell differentiation of NPCCs, but not adult pig pancreatic cells. Therefore PDX-1, BETA2/NeuroD, and MafA-induced NPCCs can be considered good sources for the induction of pancreatic beta-cells, and may also have some utility in the treatment of diabetes.

  15. Phospholipase C-beta 2 promotes mitosis and migration of human breast cancer-derived cells. (United States)

    Bertagnolo, Valeria; Benedusi, Mascia; Brugnoli, Federica; Lanuti, Paola; Marchisio, Marco; Querzoli, Patrizia; Capitani, Silvano


    Like most human neoplasm, breast cancer has aberrations in signal transduction elements that can lead to increased proliferative potential, apoptosis inhibition, tissue invasion and metastasis. Due to the high heterogeneity of this tumor, currently, no markers are clearly associated with the insurgence of breast cancer, as well as with its progression from in situ lesion to invasive carcinoma. We have recently demonstrated an altered expression of the beta2 isoform of the phosphoinositide-dependent phospholipase C (PLC) in invasive breast tumors with different histopathological features. In primary breast tumor cells, elevated amounts of this protein are closely correlated with a poor prognosis of patients with mammary carcinoma, suggesting that PLC-beta2 may be involved in the development and worsening of the malignant phenotype. Here we demonstrate that PLC-beta2 may improve some malignant characteristics of tumor cells, like motility and invasion capability, but it fails to induce tumorigenesis in non-transformed breast-derived cells. We also report that, compared with the G(0)/G(1) phases of the cell cycle, the cells in S/G(2)/M phases show high PLC-beta2 expressions that reach the greatest levels during the late mitotic stages. In addition, even if unable to modify the proliferation rate and the expression of cell cycle-related enzymes of malignant cells, PLC-beta2 may promote the G(2)/M progression, a critical event in cancer evolution. Since phosphoinositides, substrates of PLC, are involved in regulating cytoskeleton architecture, PLC-beta2 in breast tumor cells may mediate the modification of cell shape that characterizes cell division, motility and invasion. On the basis of these data, PLC-beta2 may constitute a molecular marker of breast tumor cells able to monitor the progression to invasive cancers and a target for novel therapeutic breast cancer strategies.

  16. Spatial Characterization of Polycyclic Aromatic Hydrocarbons in 2008 TC3 Samples (United States)

    Sabbah, Hassan; Morrow, A.; Zare, R. N.; Jenniskens, P.


    Hassan Sabbah1, Amy L. Morrow1, Richard N. Zare1 and Petrus Jenniskens2 1Stanford University, Stanford, California 94305, 2 SETI Institute, Carl Sagan Center, 515 North Whisman Road, Mountain View, California 94043, USA. In October 2006 a small asteroid (2-3 meters) was observed in outer space. On October 7, 2008, it entered the Earth's atmosphere creating a fireball over Northern Sudan. Some 280 meteorites were collected by the University of Khartoum. In order to explore the existence of organic materials, specifically polycyclic aromatic hydrocarbons (PAHs), we applied two-step laser desorption laser ionization mass spectrometry (L2MS) to some selected fragments. This technique consists of desorbing with a pulsed infrared laser beam the solid materials into a gaseous phase with no fragmentation followed by resonance enhanced multiphoton ionization to analyze the PAH content. L2MS was already applied to an array of extraterrestrial objects including interplanetary dust particles IDPs, carbonaceous chondrites and comet coma particles. Moreover, spatial resolution of PAHs in 2008 TC3 samples was achieved to explore the heterogeneity within individual fragments. The results of these studies and their contribution to understanding the formation of this asteroid will be discussed.

  17. Interleukin-1{beta} regulates cell proliferation and activity of extracellular matrix remodelling enzymes in cultured primary pig heart cells

    Energy Technology Data Exchange (ETDEWEB)

    Zitta, Karina; Brandt, Berenice [Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel (Germany); Wuensch, Annegret [Institute of Molecular Animal Breeding and Biotechnology, Ludwig Maximilians University, Munich (Germany); Meybohm, Patrick; Bein, Berthold; Steinfath, Markus; Scholz, Jens [Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel (Germany); Albrecht, Martin, E-mail: [Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel (Germany)


    Research highlights: {yields} Levels of IL-1{beta} are increased in the pig myocardium after infarction. {yields} Cultured pig heart cells possess IL-1 receptors. {yields} IL-1{beta} increases cell proliferation of pig heart cells in-vitro. {yields} IL-1{beta} increases MMP-2 and MMP-9 activity in pig heart cells in-vitro. {yields} IL-1{beta} may be important for tissue remodelling events after myocardial infarction. -- Abstract: After myocardial infarction, elevated levels of interleukins (ILs) are found within the myocardial tissue and IL-1{beta} is considered to play a major role in tissue remodelling events throughout the body. In the study presented, we have established a cell culture model of primary pig heart cells to evaluate the effects of different concentrations of IL-1{beta} on cell proliferation as well as expression and activity of enzymes typically involved in tissue remodelling. Primary pig heart cell cultures were derived from three different animals and stimulated with recombinant pig IL-1{beta}. RNA expression was detected by RT-PCR, protein levels were evaluated by Western blotting, activity of matrix metalloproteinases (MMPs) was quantified by gelatine zymography and cell proliferation was measured using colorimetric MTS assays. Pig heart cells express receptors for IL-1 and application of IL-1{beta} resulted in a dose-dependent increase of cell proliferation (P < 0.05 vs. control; 100 ng/ml; 24 h). Gene expression of caspase-3 was increased by IL-1{beta} (P < 0.05 vs. control; 100 ng/ml; 3 h), and pro-caspase-3 but not active caspase was detected in lysates of pig heart cells by Western blotting. MMP-2 gene expression as well as enzymatic activities of MMP-2 and MMP-9 were increased by IL-1{beta} (P < 0.05 vs. control; 100 ng/ml; 3 h for gene expression, 48 and 72 h for enzymatic activities of MMP-2 and MMP-9, respectively). Our in vitro data suggest that IL-1{beta} plays a major role in the events of tissue remodelling in the heart. Combined

  18. Accumulation of phosphorylated beta-catenin enhances ROS-induced cell death in presenilin-deficient cells.

    Directory of Open Access Journals (Sweden)

    Jung H Boo

    Full Text Available Presenilin (PS is involved in many cellular events under physiological and pathological conditions. Previous reports have revealed that PS deficiency results in hyperproliferation and resistance to apoptotic cell death. In the present study, we investigated the effects of PS on beta-catenin and cell mortality during serum deprivation. Under these conditions, PS1/PS2 double-knockout MEFs showed aberrant accumulation of phospho-beta-catenin, higher ROS generation, and notable cell death. Inhibition of beta-catenin phosphorylation by LiCl reversed ROS generation and cell death in PS deficient cells. In addition, the K19/49R mutant form of beta-catenin, which undergoes normal phosphorylation but not ubiquitination, induced cytotoxicity, while the phosphorylation deficient S37A beta-catenin mutant failed to induce cytotoxicity. These results indicate that aberrant accumulation of phospho-beta-catenin underlies ROS-mediated cell death in the absence of PS. We propose that the regulation of beta-catenin is useful for identifying therapeutic targets of hyperproliferative diseases and other degenerative conditions.

  19. Growth arrest- and DNA-damage-inducible 45beta gene inhibits c-Jun N-terminal kinase and extracellular signal-regulated kinase and decreases IL-1beta-induced apoptosis in insulin-producing INS-1E cells

    DEFF Research Database (Denmark)

    Larsen, Claus Morten; Døssing, M G; Papa, S;


    IL-1beta is a candidate mediator of apoptotic beta cell destruction, a process that leads to type 1 diabetes and progression of type 2 diabetes. IL-1beta activates beta cell c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38, all of which are members of the mitogen...

  20. The Cytotoxic Role of Intermittent High Glucose on Apoptosis and Cell Viability in Pancreatic Beta Cells

    Directory of Open Access Journals (Sweden)

    Zhen Zhang


    Full Text Available Objectives. Glucose fluctuations are both strong predictor of diabetic complications and crucial factor for beta cell damages. Here we investigated the effect of intermittent high glucose (IHG on both cell apoptosis and proliferation activity in INS-1 cells and the potential mechanisms. Methods. Cells were treated with normal glucose (5.5 mmol/L, constant high glucose (CHG (25 mmol/L, and IHG (rotation per 24 h in 11.1 or 25 mmol/L for 7 days. Reactive oxygen species (ROS, xanthine oxidase (XOD level, apoptosis, cell viability, cell cycle, and expression of cyclinD1, p21, p27, and Skp2 were determined. Results. We found that IHG induced more significant apoptosis than CHG and normal glucose; intracellular ROS and XOD levels were more markedly increased in cells exposed to IHG. Cells treated with IHG showed significant decreased cell viability and increased cell proportion in G0/G1 phase. Cell cycle related proteins such as cyclinD1 and Skp2 were decreased significantly, but expressions of p27 and p21 were increased markedly. Conclusions. This study suggested that IHG plays a more toxic effect including both apoptosis-inducing and antiproliferative effects on INS-1 cells. Excessive activation of cellular stress and regulation of cyclins might be potential mechanism of impairment in INS-1 cells induced by IHG.

  1. Glycemic control in diabetes is restored by therapeutic manipulation of cytokines that regulate beta cell stress. (United States)

    Hasnain, Sumaira Z; Borg, Danielle J; Harcourt, Brooke E; Tong, Hui; Sheng, Yonghua H; Ng, Choa Ping; Das, Indrajit; Wang, Ran; Chen, Alice C-H; Loudovaris, Thomas; Kay, Thomas W; Thomas, Helen E; Whitehead, Jonathan P; Forbes, Josephine M; Prins, Johannes B; McGuckin, Michael A


    In type 2 diabetes, hyperglycemia is present when an increased demand for insulin, typically due to insulin resistance, is not met as a result of progressive pancreatic beta cell dysfunction. This defect in beta cell activity is typically characterized by impaired insulin biosynthesis and secretion, usually accompanied by oxidative and endoplasmic reticulum (ER) stress. We demonstrate that multiple inflammatory cytokines elevated in diabetic pancreatic islets induce beta cell oxidative and ER stress, with interleukin-23 (IL-23), IL-24 and IL-33 being the most potent. Conversely, we show that islet-endogenous and exogenous IL-22, by regulating oxidative stress pathways, suppresses oxidative and ER stress caused by cytokines or glucolipotoxicity in mouse and human beta cells. In obese mice, antibody neutralization of IL-23 or IL-24 partially reduced beta cell ER stress and improved glucose tolerance, whereas IL-22 administration modulated oxidative stress regulatory genes in islets, suppressed ER stress and inflammation, promoted secretion of high-quality efficacious insulin and fully restored glucose homeostasis followed by restitution of insulin sensitivity. Thus, therapeutic manipulation of immune regulators of beta cell stress reverses the hyperglycemia central to diabetes pathology.

  2. Regulation of Pancreatic Beta Cell Stimulus-Secretion Coupling by microRNAs

    Directory of Open Access Journals (Sweden)

    Jonathan L. S. Esguerra


    Full Text Available Increased blood glucose after a meal is countered by the subsequent increased release of the hypoglycemic hormone insulin from the pancreatic beta cells. The cascade of molecular events encompassing the initial sensing and transport of glucose into the beta cell, culminating with the exocytosis of the insulin large dense core granules (LDCVs is termed “stimulus-secretion coupling.” Impairment in any of the relevant processes leads to insufficient insulin release, which contributes to the development of type 2 diabetes (T2D. The fate of the beta cell, when exposed to environmental triggers of the disease, is determined by the possibility to adapt to the new situation by regulation of gene expression. As established factors of post-transcriptional regulation, microRNAs (miRNAs are well-recognized mediators of beta cell plasticity and adaptation. Here, we put focus on the importance of comprehending the transcriptional regulation of miRNAs, and how miRNAs are implicated in stimulus-secretion coupling, specifically those influencing the late stages of insulin secretion. We suggest that efficient beta cell adaptation requires an optimal balance between transcriptional regulation of miRNAs themselves, and miRNA-dependent gene regulation. The increased knowledge of the beta cell transcriptional network inclusive of non-coding RNAs such as miRNAs is essential in identifying novel targets for the treatment of T2D.

  3. Role of metabolic programming in the pathogenesis of beta-cell failure in postnatal life. (United States)

    Simmons, Rebecca A


    Intrauterine growth retardation (IUGR) has been linked to later development of type 2 diabetes in adulthood. Human studies indicate that individuals who were growth retarded at birth have impaired insulin secretion and insulin resistance. Multiple animal models of IUGR demonstrate impaired beta-cell function and development. We have developed a model of IUGR in the rat that leads to diabetes in adulthood with the salient features of most forms of type 2 diabetes in the human: progressive defects in insulin secretion and insulin action prior to the onset of overt hyperglycemia. Decreased beta-cell proliferation leads to a progressive decline in beta-cell mass. Using this model, we have tested the hypothesis that uteroplacental insufficiency disrupts the function of the electron transport chain in the fetal beta-cell and leads to a debilitating cascade of events: increased production of reactive oxygen species, which in turn damage mitochondrial (mt) mtDNA and causes further production of reactive oxygen species (ROS). The net result is progressive loss of beta-cell function and eventual development of type 2 diabetes in the adult. Studies in the IUGR rat also demonstrate that an abnormal intrauterine environment induces epigenetic modifications of key genes regulating beta-cell development; experiments directly link chromatin remodeling with suppression of transcription. Future research will be directed at elucidating the mechanisms underlying epigenetic modifications in offspring.

  4. Acute overexpression of lactate dehydrogenase-A perturbs beta-cell mitochondrial metabolism and insulin secretion. (United States)

    Ainscow, E K; Zhao, C; Rutter, G A


    Islet beta-cells express low levels of lactate dehydrogenase and have high glycerol phosphate dehydrogenase activity. To determine whether this configuration favors oxidative glucose metabolism via mitochondria in the beta-cell and is important for beta-cell metabolic signal transduction, we have determined the effects on glucose metabolism and insulin secretion of acute overexpression of the skeletal muscle isoform of lactate dehydrogenase (LDH)-A. Monitored in single MIN6 beta-cells, LDH hyperexpression (achieved by intranuclear cDNA microinjection or adenoviral infection) diminished the response to glucose of both phases of increases in mitochondrial NAD(P)H, as well as increases in mitochondrial membrane potential, cytosolic free ATP, and cystolic free Ca2+. These effects were observed at all glucose concentrations, but were most pronounced at submaximal glucose levels. Correspondingly, adenoviral vector-mediated LDH-A overexpression reduced insulin secretion stimulated by 11 mmol/l glucose and the subsequent response to stimulation with 30 mmol/l glucose, but it was without significant effect when the concentration of glucose was raised acutely from 3 to 30 mmol/l. Thus, overexpression of LDH activity interferes with normal glucose metabolism and insulin secretion in the islet beta-cell type, and it may therefore be directly responsible for insulin secretory defects in some forms of type 2 diabetes. The results also reinforce the view that glucose-derived pyruvate metabolism in the mitochondrion is critical for glucose-stimulated insulin secretion in the beta-cell.

  5. Studies on responsiveness of hepatoma cells to catecholamines. II. Comparison of beta-adrenergic responsiveness of rat ascites hepatoma cells with cultured normal rat liver cells. (United States)

    Miyamoto, K; Matsunaga, T; Takemoto, N; Sanae, F; Koshiura, R


    The pharmacological properties of beta-adrenoceptors in rat ascites hepatoma cells were compared with those in normal rat liver cells which were cultured for 24 hr after collagenase digestion. Adenylate cyclases in the homogenates of cultured normal rat liver cells and rat ascites hepatoma cells, AH44, AH66, AH109A, AH130 and AH7974, were all activated by isoproterenol or NaF to different degrees. The enzyme in rat liver cells was activated by several beta 2-agonists but those in all hepatoma cells hardly responded. Furthermore, salbutamol, a beta 2-partial agonist, antagonized the cyclase activation by isoproterenol in AH130 cells. The Kact value of isoproterenol for the activation of adenylate cyclase in AH130 cells was smaller than that in rat liver cells. A comparison of the Ki values of beta-antagonists for the inhibition of isoproterenol-stimulated cyclase activity shows that while the Ki values of propranolol and butoxamine in AH130 cells were similar to those in rat liver cells, a significant difference was observed in the values for beta 1-selective antagonists between AH130 cells and rat liver cells. The Ki values of metoprolol and atenolol for AH130 cells were 137- and 90-fold lower, respectively, than for normal rat liver cells. From these findings, it is strongly suggested that beta-adrenoceptors in rat ascites hepatoma cells including AH130 cells have similar properties to the mammalian beta 1-receptor.

  6. The effect of smoking cessation pharmacotherapies on pancreatic beta cell function

    Energy Technology Data Exchange (ETDEWEB)

    Woynillowicz, Amanda K. [Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada L8N 3Z5 (Canada); Raha, Sandeep [Department of Pediatrics, McMaster University, Hamilton, ON, Canada L8N 3Z5 (Canada); Nicholson, Catherine J. [Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada L8N 3Z5 (Canada); Holloway, Alison C., E-mail: [Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada L8N 3Z5 (Canada)


    The goal of our study was to evaluate whether drugs currently used for smoking cessation (i.e., nicotine replacement therapy, varenicline [a partial agonist at nicotinic acetylcholine receptors (nAChR)] and bupropion [which acts in part as a nAChR antagonist]) can affect beta cell function and determine the mechanism(s) of this effect. INS-1E cells, a rat beta cell line, were treated with nicotine, varenicline and bupropion to determine their effects on beta cell function, mitochondrial electron transport chain enzyme activity and cellular/oxidative stress. Treatment of INS-1E cells with equimolar concentrations (1 μM) of three test compounds resulted in an ablation of normal glucose-stimulated insulin secretion by the cells. This disruption of normal beta cell function was associated with mitochondrial dysfunction since all three compounds tested significantly decreased the activity of mitochondrial electron transport chain enzyme activity. These results raise the possibility that the currently available smoking cessation pharmacotherapies may also have adverse effects on beta cell function and thus glycemic control in vivo. Therefore whether or not the use of nicotine replacement therapy, varenicline and bupropion can cause endocrine changes which are consistent with impaired pancreatic function warrants further investigation. -- Highlights: ► Smoking cessation drugs have the potential to disrupt beta cell function in vitro. ► The effects of nicotine, varenicline and bupropion are similar. ► The impaired beta cell function is mediated by mitochondrial dysfunction. ► If similar effects are seen in vivo, these drugs may increase the risk of diabetes.

  7. Tumor cell adhesion to endothelial cells is increased by endotoxin via an upregulation of beta-1 integrin expression.

    LENUS (Irish Health Repository)

    Andrews, E J


    BACKGROUND: Recent studies have demonstrated that metastatic disease develops from tumor cells that adhere to endothelial cells and proliferate intravascularly. The beta-1 integrin family and its ligand laminin have been shown to be important in tumor-to-endothelial cell adhesion. Lipopolysaccharide (LPS) has been implicated in the increased metastatic tumor growth that is seen postoperatively. We postulated that LPS increases tumor cell expression of beta-1 integrins and that this leads to increased adhesion. METHODS: The human metastatic colon cancer cell line LS174T was labeled with an enhanced green fluorescent protein (eGFP) using retroviral transfection. Cell cultures were treated with LPS for 1, 2, and 4 h (n = 6 each) and were subsequently cocultured for 30 or 120 min with confluent human umbilical vein endothelial cells (HUVECs), to allow adherence. Adherent tumor cells were counted using fluorescence microscopy. These experiments were carried out in the presence or absence of a functional blocking beta-1 integrin monoclonal antibody (4B4). Expression of beta-1 integrin and laminin on tumor and HUVECs was assessed using flow cytometric analysis. Tumor cell NF-kappaB activation after incubation with LPS was measured. RESULTS: Tumor cell and HUVEC beta-1 integrin expression and HUVEC expression of laminin were significantly (P < 0.05) enhanced after incubation with LPS. Tumor cell adhesion to HUVECs was significantly increased. Addition of the beta-1 integrin blocking antibody reduced tumor cell adhesion to control levels. LPS increased tumor cell NF-kappaB activation. CONCLUSIONS: Exposure to LPS increases tumor cell adhesion to the endothelium through a beta-1 integrin-mediated pathway that is NF-kappaB dependent. This may provide a target for immunotherapy directed at reducing postoperative metastatic tumor growth.

  8. Functional analysis of alpha 1 beta 1 integrin in human natural killer cells. (United States)

    Pérez-Villar, J J; Melero, I; Gismondi, A; Santoni, A; López-Botet, M


    Upon activation with interleukin (IL)-2 human natural killer (NK) cells acquire on their surface the alpha 1 beta 1 and alpha 2 beta 1 integrins and down-regulate the expression of alpha 6 beta 1. By employing alpha 1 beta 1-specific monoclonal antibody (mAb) HP-2B6, characterized in our laboratory, we examined the functional role of the alpha 1 beta 1 integrin in NK cells. Treatment with HP-2B6 mAb partially interfered with attachment of cultured NK cells to type I collagen, and combined with an anti-alpha 2 beta 1 (TEA 1/41) mAb, it completely abrogated cell adhesion to this extracelular matrix protein. In contrast, NK cell attachment to laminin was completely blocked by the anti-beta 1 LIA 1/2 mAb, but was unaffected by alpha 1 and alpha 2-specific mAb; as alpha 3 beta 1 and alpha 6 beta 1 were undetectable, the data indicate that the alpha 1 beta 1 integrin binding sites for type I collagen and laminin are different. Incubation with anti-alpha 1 HP-2B6 or its F(ab')2 fragments specifically induced a rapid homotypic aggregation of NK cells that was dependent on active metabolism, an intact cytoskeleton and the presence of divalent cations (Ca2+ and Mg2+); homotypic cell adhesion was selectively blocked by anti-CD18, CD11a or CD54 mAb. In addition, stimulation of cultured NK cells with the anti-alpha 1 HP-2B6 enhanced TNF-alpha production and induced tyrosine phosphorylation of a 110-kDa protein. Pretreatment with specific inhibitors of protein tyrosine kinase (PTK) activity (tyrphostin 25 and herbimycin A) completely abrogated the functional effects induced by the anti-alpha 1 HP-2B6 mAb. Our data show that ligation of the alpha 1 beta 1 integrin positively modulates IL-2-activated NK cell function via a PTK-dependent pathway.

  9. GDF11 modulates NGN3+ islet progenitor cell number and promotes beta-cell differentiation in pancreas development. (United States)

    Harmon, Erin B; Apelqvist, Asa A; Smart, Nora G; Gu, Xueying; Osborne, Douglas H; Kim, Seung K


    Identification of endogenous signals that regulate expansion and maturation of organ-specific progenitor cells is a major goal in studies of organ development. Here we provide evidence that growth differentiation factor 11 (GDF11), a member of the TGF-beta ligand family, governs the number and maturation of islet progenitor cells in mouse pancreas development. Gdf11 is expressed in embryonic pancreatic epithelium during formation of islet progenitor cells that express neurogenin 3. Mice deficient for Gdf11 harbor increased numbers of NGN3+ cells, revealing that GDF11 negatively regulates production of islet progenitor cells. Despite a marked expansion of these NGN3+ islet progenitors, mice lacking Gdf11 have reduced beta-cell numbers and evidence of arrested beta-cell development, indicating that GDF11 is also required for beta-cell maturation. Similar precursor and islet cell phenotypes are observed in mice deficient for SMAD2, an intracellular signaling factor activated by TGF-beta signals. Our data suggest that Gdf11 and Smad2 regulate islet cell differentiation in parallel to the Notch pathway, which previously has been shown to control development of NGN3+ cells. Thus, our studies reveal mechanisms by which GDF11 regulates the production and maturation of islet progenitor cells in pancreas development.

  10. The potential role of SOCS-3 in the interleukin-1beta-induced desensitization of insulin signaling in pancreatic beta-cells

    DEFF Research Database (Denmark)

    Emanuelli, Brice; Glondu, Murielle; Filloux, Chantal


    insulin-dependent IR autophosphorylation and IRS/PI3K pathway in a way comparable to IL-1beta treatment in RINm5F cells. We propose that IL-1beta decreases insulin action in beta-cells through the induction of SOCS-3 expression, and that this effect potentially alters insulin-induced beta-cell survival.......) proteins as well as phosphatidylinositol 3-kinase (PI3K) activation, and that this action is not due to the IL-1beta-dependent nitric oxide (NO) production in RINm5F cells. We next analyzed if suppressor of cytokine signaling (SOCS)-3, which can be induced by multiple cytokines and which we identified...... as an insulin action inhibitor, was implicated in the IL-1beta inhibitory effect on insulin signaling in these cells. We show that IL-1beta increases SOCS-3 expression and induces SOCS-3/IR complex formation in RINm5F cells. Moreover, we find that ectopically expressed SOCS-3 associates with the IR and reduces...

  11. Effect on pancreatic beta cells and nerve cells by low let x-ray

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kwang Hun [Dept. of Nuclear Medicine, Kyungbuk National University Hospital, Daegu (Korea, Republic of); Kim, Kgu Hwan [Dept. of Radiological Technology, Daegu health College, Daegu (Korea, Republic of)


    Cultured pancreatic beta cells and nerve cells, it is given normal condition of 10% FBS (fetal bovine serum), 11.1 mM glucose and hyperglycemia condition of 1% FBS, 30 mM glucose. For low LET X-ray irradiated with 0.5 Gy/hr dose-rate(total dose: 0.5 to 5 Gy). Survival rates were measured by MTT assay. When non irradiated, differentiated in the pancreatic beta cells experiment is hyperglycemia conditions survival rate compared to normal conditions survival rate seemed a small reduction. However increasing the total dose of X-ray, the survival rate of normal conditions decreased slightly compared to the survival rate of hyperglycemia conditions, the synergistic effect was drastically reduced. When non irradiated, undifferentiated in the nerve cells experiment is hyperglycemia conditions survival rate compared to normal conditions survival rate seemed a large reduction. As the cumulative dose of X-ray normal conditions and hyperglycemia were all relatively rapid cell death. But the rate of decreased survivals by almost parallel to the reduction proceed and it didn't show synergistic effect.

  12. Diabetes and beta cell function: from mechanisms to evaluation and clinical implications. (United States)

    Cernea, Simona; Dobreanu, Minodora


    Diabetes is a complex, heterogeneous condition that has beta cell dysfunction at its core. Many factors (e.g. hyperglycemia/glucotoxicity, lipotoxicity, autoimmunity, inflammation, adipokines, islet amyloid, incretins and insulin resistance) influence the function of pancreatic beta cells. Chronic hyperglycaemia may result in detrimental effects on insulin synthesis/secretion, cell survival and insulin sensitivity through multiple mechanisms: gradual loss of insulin gene expression and other beta-cell specific genes; chronic endoplasmic reticulum stress and oxidative stress; changes in mitochondrial number, morphology and function; disruption in calcium homeostasis. In the presence of hyperglycaemia, prolonged exposure to increased free fatty acids result in accumulation of toxic metabolites in the cells ("lipotoxicity"), finally causing decreased insulin gene expression and impairment of insulin secretion. The rest of the factors/mechanisms which impact on the course of the disease are also discusses in detail. The correct assessment of beta cell function requires a concomitant quantification of insulin secretion and insulin sensitivity, because the two variables are closely interrelated. In order to better understand the fundamental pathogenetic mechanisms that contribute to disease development in a certain individual with diabetes, additional markers could be used, apart from those that evaluate beta cell function. The aim of the paper was to overview the relevant mechanisms/factors that influence beta cell function and to discuss the available methods of its assessment. In addition, clinical considerations are made regarding the therapeutical options that have potential protective effects on beta cell function/mass by targeting various underlying factors and mechanisms with a role in disease progression.

  13. Radioprotection of {beta}-carotene evaluated on mouse somatic and germ cells

    Energy Technology Data Exchange (ETDEWEB)

    Salvadori, Daisy M.F.; Ribeiro, Lucia R. [Departamento de Patologia, Faculdade de Medicina, Universidade Estadual Paulista-UNESP, Botucatu-SP (Brazil); Xiao, Yun; Boei, Jan J.; Natarajan, A.T. [MGC Department of Radiation Genetics and Chemical Mutagenesis, Sylvius Laboratory, State University of Leiden, Leiden (Netherlands)


    In the present paper, the protective effect of {beta}-carotene was evaluated after whole body exposure of mice to 2 Gy of X-rays. Splenocytes, reticulocytes, bone marrow cells and spermatids were evaluated for the frequency of micronuclei (MN) induced by X-rays. Mice were treated (gavage) with {beta}-carotene (10, 25 and 50 mg/kg b.w.) for 5 consecutive days and, 4 h after the last treatment, the animals were irradiated. The results obtained showed different frequencies of X-ray-induced-MN between different cell populations analysed and also different response of these cells to the {beta}-carotene treatment. The radioprotective effect of {beta}-carotene was observed in splenocytes, reticulocytes, and spermatids but not in bone marrow cells. No dose-response relationship for {beta}-carotene was detected. The time of sampling, the sensitivity of the cells as well as the antioxidant activity of {beta}-carotene are discussed as important factors for the radioprotective action of this provitamin.

  14. CRFR1 is expressed on pancreatic beta cells, promotes beta cell proliferation, and potentiates insulin secretion in a glucose-dependent manner

    DEFF Research Database (Denmark)

    Huising, Mark O; van der Meulen, Talitha; Vaughan, Joan M


    Corticotropin-releasing factor (CRF), originally characterized as the principal neuroregulator of the hypothalamus-pituitary-adrenal axis, has broad central and peripheral distribution and actions. We demonstrate the presence of CRF receptor type 1 (CRFR1) on primary beta cells and show that acti...

  15. Effect of Nɛ-carboxymethyllysine on oxidative stress and the glutathione system in beta cells

    Directory of Open Access Journals (Sweden)

    Daniëlle M.P.H.J. Boesten


    Full Text Available One of the pathways involved in the pathogenesis of diabetic complications is the formation of excessive levels of advanced glycation end (AGE products. Nɛ-carboxymethyllysine (CML is one of the best-characterized AGEs. Because little is known about the effects of AGEs on pancreatic beta cells, we investigated the effect of CML on human pancreatic cells and determined the activity and gene expression of glutathione system components. CML at a concentration of 0.5 mM induced cell death in human pancreatic beta cells, which was accompanied by increased intracellular oxidative stress. No changes in the gene expression of the receptor for AGEs (RAGE were found, although an increase in the level of a target cytokine of RAGE after CML exposure was observed. Additionally we found that CML lowered the levels of GSH and affected the activity and expression of other components of the glutathione system. These changes indicate that the cells are even more vulnerable for oxidative stress after exposure to CML. Since beta cells are low in antioxidant enzymes and repair for oxidized DNA, CML, but most likely also other AGEs, accelerates beta cell dysfunction and increases beta cell death during chronic hyperglycemia.

  16. Pregnancy modifies the alpha2-beta-adrenergic receptor functional balance in rabbit fat cells. (United States)

    Bousquet-Mélou, A; Muñoz, C; Galitzky, J; Berlan, M; Lafontan, M


    The sympathetic nervous system controls lipolysis in fat by activation of four adrenergic receptors: beta1, beta2, beta3, and alpha2. During pregnancy, maternal metabolism presents anabolic and catabolic phases, characterized by modifications of fat responsiveness to catecholamines. The contributions of the four adrenergic receptors to adipocyte responsiveness during pregnancy have never been studied. Our aim was to evaluate the influence of pregnancy on adrenergic receptor-mediated lipolysis in rabbit white adipocytes. Functional studies were performed using subtype-selective and non-selective adrenergic receptor agonists. Overall adrenergic responsiveness was measured with the physiological agonist epinephrine. Non-adrenergic agents were used to evaluate different steps of the lipolytic cascade. The alpha2- and beta1/beta2-adrenergic receptor numbers were determined with selective radioligands. Non-adrenergic agents revealed that pregnancy induced an intracytoplasmic modification of the lipolytic cascade in inguinal but not in retroperitoneal adipocytes. Pregnancy induced an increase in beta1- and specially beta3-mediated lipolysis. The amounts of adipocyte beta1/beta2- and alpha2-adrenergic receptors were increased in pregnant rabbits. Epinephrine effects revealed an increased contribution of alpha2-adrenergic receptor-mediated antilipolysis in adipocytes from pregnant rabbits. These results indicate that pregnancy regulates adipocyte responsiveness to catecholamines mainly via the alpha2- and beta3-adrenergic pathways. Pregnancy induces an intracytoplasmic modification of the lipolytic cascade, probably via hormone-sensitive lipase, with differences according to fat location.-Bousquet-Mélou, A., C. Muñoz, J. Galitzky, M. Berlan, and M. Lafontan. Pregnancy modifies the alpha2-beta-adrenergic receptor functional balance in rabbit fat cells.

  17. Sustained beta-cell dysfunction but normalized islet mass in aged thrombospondin-1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Carl Johan Drott

    Full Text Available Pancreatic islet endothelial cells have in recent years been shown to support beta-cell mass and function by paracrine interactions. Recently, we identified an islets endothelial-specific glycoprotein, thrombospondin-1 (TSP-1, that showed to be of importance for islet angiogenesis and beta-cell function in young mice. The present study aimed to investigate long-term consequences for islet morphology and beta-cell function of TSP-1 deficiency. Islet and beta-cell mass were observed increased at 10-12 weeks of age in TSP-1 deficient mice, but were normalized before 16 weeks of age when compared to wild-type controls. Islet vascularity was normal in 10-12 and 16-week-old TSP-1 deficient animals, whereas islets of one-year-old animals lacking TSP-1 were hypervascular. Beta-cell dysfunction in TSP-1 deficient animals was present at similar magnitudes between 10-12 and 52 weeks of age, as evaluated by glucose tolerance tests. The insulin secretion capacity in vivo of islets in one-year-old TSP-1 deficient animals was only ∼15% of that in wild-type animals. Using a transplantation model, we reconstituted TSP-1 in adult TSP-deficient islets. In contrast to neonatal TSP-1 deficient islets that we previously reported to regain function after TSP-1 reconstitution, adult islets failed to recover. We conclude that TSP-1 deficiency in islets causes changing vascular and endocrine morphological alterations postnatally, but is coupled to a chronic beta-cell dysfunction. The beta-cell dysfunction induced by TSP-1 deficiency is irreversible if not substituted early in life.

  18. Enhancement of beta-sitosterol transformation in Mycobacterium vaccae with increased cell wall permeability. (United States)

    Korycka-Machała, M; Rumijowska-Galewicz, A; Lisowska, K; Ziolkowskit, A; Sedlacze, L


    Mycobacterium vaccae exposed to compounds which are known to disorganise the cell wall composition and architecture (protamine, glycine) showed increased specific activity in beta-sitosterol biotransformation to androstene derivatives, intennediates in the production of most medical steroids. GC/MS analysis of free lipid fatty acids revealed higher content of unsaturated compounds, mainly C16:1 and C18:1 in protamine- and glycine-treated cells than that in control cells, which seems to change the permeability features of the cell wall barrier, facilitating hydrophobic beta-sitosterol diffusion.

  19. Immune-mediated beta-cell destruction in vitro and in vivo-A pivotal role for galectin-3

    DEFF Research Database (Denmark)

    Karlsen, Allan E; Størling, Zenia M; Sparre, Thomas;


    Pro-apoptotic cytokines are toxic to the pancreatic beta-cells and have been associated with the pathogenesis of Type 1 diabetes (T1D). Proteome analysis of IL-1beta exposed isolated rat islets identified galectin-3 (gal-3) as the most up-regulated protein. Here analysis of human and rat islets...... and insulinoma cells confirmed IL-1beta regulated gal-3 expression of several gal-3 isoforms and a complex in vivo expression profile during diabetes development in rats. Over-expression of gal-3 protected beta-cells against IL-1beta toxicity, with a complete blockage of JNK phosphorylation, essential for IL-1...

  20. Species-Related Differences in the Proteome of Rat and Human Pancreatic Beta Cells

    Directory of Open Access Journals (Sweden)

    G. A. Martens


    Full Text Available The core proteomes of human and rat pancreatic beta cells were compared by label-free LC-MS/MS: this resulted in quantification of relative molar abundances of 707 proteins belonging to functional pathways of intermediary metabolism, protein synthesis, and cytoskeleton. Relative molar abundances were conserved both within and between pathways enabling the selection of a housekeeping network for geometric normalization and the analysis of potentially relevant differential expressions. Human beta cells differed from rat beta cells in their lower level of enzymes involved in glucose sensing (MDH1, PC, and ACLY and upregulation of lysosomal enzymes. Human cells also expressed more heat shock proteins and radical scavenging systems: apart from SOD2, they expressed high levels of H2O2-scavenger peroxiredoxin 3 (PRDX3, confirmed by microarray, Western blotting, and microscopy. Besides conferring lower susceptibility to oxidative stress to human cells PRDX3 might also play a role in physiological redox regulation as, in rat, its expression was restricted to a beta cell subset with higher metabolic glucose responsiveness. In conclusion, although their core proteomic architecture is conserved, human and rat beta cells differ in their molar expression of key enzymes involved in glucose sensing and redox control.

  1. Growth hormone is a growth factor for the differentiated pancreatic beta-cell

    DEFF Research Database (Denmark)

    Linde, S; Welinder, B S; Billestrup, N;


    The regulation of the growth of the pancreatic beta-cell is poorly understood. There are previous indications of a role of GH in the growth and insulin production of the pancreatic islets. In the present study we present evidence for a direct long-term effect of GH on proliferation and insulin...... biosynthesis of pancreatic beta-cells in monolayer culture. In culture medium RPMI 1640 supplemented with 2% normal human serum islets or dissociated islet cells from newborn rats maintained their insulin-producing capacity. When supplemented with 1-1000 ng/ml pituitary or recombinant human GH the islet cells....... It is concluded that GH is a potent growth factor for the differentiated pancreatic beta-cell....

  2. Abnormal mitochondrial function impairs calcium influx in diabetic mouse pancreatic beta cells

    Institute of Scientific and Technical Information of China (English)

    LI Fei; D. Marshall Porterfield; ZHENG Xi-yan; WANG Wen-jun; XU Yue; ZHANG Zong-ming


    Background Abnormal insulin secretion of pancreatic beta cells is now regarded as the more primary defect than the insulin function in the etiology of type 2 diabetes.Previous studies found impaired mitochondrial function and impaired Ca2+ influx in beta cells in diabetic patients and animal models,suggesting a role for these processes in proper insulin secretion.The aim of this study was to investigate the detailed relationship of mitochondrial function,Ca2+ influx,and defective insulin secretion.Methods We investigated mitochondrial function and morphology in pancreatic beta cell of diabetic KK-Ay mice and C57BL/6J mice.Two types of Ca2+ channel activities,L-type and store-operated Ca2+ (SOC),were evaluated using whole-cell patch-clamp recording.The glucose induced Ca2+ influx was measured by a non-invasive micro-test technique (NMT).Results Mitochondria in KK-Ay mice pancreatic beta cells were swollen with disordered cristae,and mitochondrial function decreased compared with C57BL/6J mice.Ca2+ channel activity was increased and glucose induced Ca2+ influx was impaired,but could be recovered by genipin.Conclusion Defective mitochondrial function in diabetic mice pancreatic beta cells is a key cause of abnormal insulin secretion by altering Ca2+ influx,but not via Ca2+ channel activity.

  3. Identification of new pancreatic beta cell targets for in vivo imaging by a systems biology approach. (United States)

    Bouckenooghe, Thomas; Flamez, Daisy; Ortis, Fernanda; Goldman, Serge; Eizirik, Decio L


    Systems biology is an emergent field that aims to understand biological systems at system-level. The increasing power of genome sequencing techniques and ranges of other molecular biology techniques is enabling the accumulation of in-depth knowledge of biological systems. This growing information, properly quantified, analysed and presented, will eventually allow the establishment of a system-based cartography of different cellular populations within the organism, and of their interactions at the tissue and organ levels. It will also allow the identification of specific markers of individual cell types. Systems biology approaches to discover diagnostic markers may have an important role in diabetes. There are presently no reliable ways to quantify beta cell mass (BCM) in vivo, which hampers the understanding of the pathogenesis and natural history of diabetes, and the development of novel therapies to preserve BCM. To solve this problem, novel and specific beta cell biomarkers must be identified to enable adequate in vivo imaging by methods such as Positron Emission Tomography (PET). The ideal biomarker should allow measurements by a minimally invasive technology enabling repeated examinations over time, should identify the early stages of decreased BCM, and should provide information on progression of beta cell loss and eventual responses to agents aiming to arrest or revert beta cell loss in diabetes. The present review briefly describes the "state-of-the-art" in the field, and then proposes a step-by-step systems biology approach for the identification and initial testing of novel candidates for beta cell imaging.

  4. The ToI-beta transgenic mouse: a model to study the specific role of NF-kappaB in beta-cells. (United States)

    Eldor, Roy; Baum, Ketty; Abel, Roy; Sever, Dror; Melloul, Danielle


    Type 1 diabetes is characterized by the infiltration of inflammatory cells into pancreatic islets of Langerhans, followed by the selective and progressive destruction of insulin-secreting beta-cells. Islet infiltrating leukocytes secrete cytokines including IL-1beta and IFN-gamma, which contribute to beta-cell death. In vitro evidence suggests that cytokine-induced activation of the transcription factor NF-kappaB is an important component of the signal triggering beta-cell apoptosis. To study the role of NF-kappaB in vivo we generated a transgenic mouse line expressing a degradation-resistant NF-kappaB protein inhibitor (DeltaNIkappaBalpha) and the luciferase gene, acting specifically in beta-cells, in an inducible and reversible manner, by using the tet-on regulation system. Using this new mouse model, termed the ToI-beta mouse (for Tet-Ondelta I kappaB in beta-cells) we have previously shown in vitro, that islets expressing the DeltaNIkappaBalpha protein were resistant to the deleterious effects of IL-1beta and IFN-gamma, as assessed by reduced NO production and beta-cell apoptosis. In vivo, a nearly complete protection against multiple low dose streptozocin-induced diabetes was observed, with reduced intra-islet lymphocytic infiltration. In the present study we demonstrate the tight regulated and reversible expression of the DeltaNIkappaBalpha transgene in the ToI-beta mouse model as well as the effect of its overexpression on glucose metabolism and insulin secretion. The results show a lack of effect of transgene induction on both in vivo glucose tolerance tests and in vitro islet insulin secretion and content. Furthermore, to prove the tight control of induction in the model, luciferase mediated light emission was only detected at constant levels in Dox-treated double transgenic mice or islets as well as in a model of islet transplantation. Upon removal of the inducing stimulus, complete reversal of both NF-kappaB inhibition and luciferase activity were

  5. An Abbreviated Protocol for In Vitro Generation of Functional Human Embryonic Stem Cell-Derived Beta-Like Cells

    DEFF Research Database (Denmark)

    Massumi, Mohammad; Pourasgari, Farzaneh; Nalla, Amarnadh;


    The ability to yield glucose-responsive pancreatic beta-cells from human pluripotent stem cells in vitro will facilitate the development of the cell replacement therapies for the treatment of Type 1 Diabetes. Here, through the sequential in vitro targeting of selected signaling pathways, we have ...

  6. Timing of Ca2+ response in pancreatic beta-cells is related to mitochondrial mass

    DEFF Research Database (Denmark)

    Gustavsson, N; Abedi, G; Larsson-Nyrén, G


    timing are disturbed in beta-cells from hyperglycemic mice and one of the causes is likely to be an altered mitochondrial metabolism. Mitochondria play a key role in the control of nutrient-induced insulin secretion. Here, we used confocal microscopy with the fluorescent probe MitoTracker Red CMXRos...... and Fluo-3 to study how the amount of active mitochondria is related to the lag-time and the magnitude of calcium response to 20mM glucose in isolated beta-cells and in cells within intact lean and ob/ob mouse islets. Results show that the mitochondrial mass is inversely correlated with the lag...

  7. New Therapeutic Approaches to Prevent or Delay Beta-Cell Failure in Diabetes

    Directory of Open Access Journals (Sweden)

    Ionica Floriana Elvira


    Full Text Available Background and aims: The most recent estimates of International Diabetes Federation indicate that 382 million people have diabetes, and the incidence of this disease is increasing. While in type 1 diabetes mellitus (T1DM beta-cell death is autoimmunemediated, type 2 diabetes mellitus (T2DM results from an interaction between genetic and environmental factors that impair beta-cell function and insulin action. Many people with T2DM remain unaware of their illness for a long time because symptoms may take years to appear or be recognized, while the body is affected by excess blood glucose. These patients are often diagnosed only when diabetes complications have already developed. The aim of this article was to perform a review based on literature data on therapeutic modalities to prevent/delay beta cell function decline. Material and Methods: We searched MEDLINE from 2000 to the present to identify the therapeutic approaches to prevent or delay beta-cell failure in patients with T2DM. Results and conclusions: Several common polymorphisms in genes linked to monogenic forms of diabetes appear to influence the response to T2DM pharmacotherapy. Recent studies report the role of the G protein coupled receptor 40 (GPR40, also known as Free Fatty Acids Receptor 1 (FFAR1 in the regulation of beta-cell function- CNX-011-67 (a GPR40 agonist has the potential to provide good and durable glycemic control in T2DM patients.

  8. Sumoylation regulates the transcriptional activity of MafA in pancreatic beta cells. (United States)

    Shao, Chunli; Cobb, Melanie H


    MafA is a transcriptional regulator expressed primarily in pancreatic beta cells. It binds to the RIPE3b/C1-binding site within the ins gene promoter, which plays a critical role in regulating ins gene expression in response to glucose. Here, we show that MafA is post-translationally modified by the small ubiquitin-related modifiers SUMO-1 and -2. Mutation of a single site in MafA, Lys(32), blocks its sumoylation in beta cells. Incubation of beta cells in low glucose (2 mm) or exposure to hydrogen peroxide increases sumoylation of endogenous MafA. Forced sumoylation of MafA results in reduced transcriptional activity toward the ins gene promoter and increased suppression of the CHOP-10 gene promoter. Sumoylation of MafA has no apparent effect on either its nuclear localization in beta cells or its ubiquitin-dependent degradation. This study suggests that modification of MafA by SUMO modulates gene transcription and thereby beta cell function.

  9. High fat programming of beta cell compensation, exhaustion, death and dysfunction. (United States)

    Cerf, Marlon E


    Programming refers to events during critical developmental windows that shape progeny health outcomes. Fetal programming refers to the effects of intrauterine (in utero) events. Lactational programming refers to the effects of events during suckling (weaning). Developmental programming refers to the effects of events during both fetal and lactational life. Postnatal programming refers to the effects of events either from birth (lactational life) to adolescence or from weaning (end of lactation) to adolescence. Islets are most plastic during the early life course; hence programming during fetal and lactational life is most potent. High fat (HF) programming is the maintenance on a HF diet (HFD) during critical developmental life stages that alters progeny metabolism and physiology. HF programming induces variable diabetogenic phenotypes dependent on the timing and duration of the dietary insult. Maternal obesity reinforces HF programming effects in progeny. HF programming, through acute hyperglycemia, initiates beta cell compensation. However, HF programming eventually leads to chronic hyperglycemia that triggers beta cell exhaustion, death and dysfunction. In HF programming, beta cell dysfunction often co-presents with insulin resistance. Balanced, healthy nutrition during developmental windows is critical for preserving beta cell structure and function. Thus early positive nutritional interventions that coincide with the development of beta cells may reduce the overwhelming burden of diabetes and metabolic disease.

  10. Distinct roles for dystroglycan, beta1 integrin and perlecan in cell surface laminin organization

    DEFF Research Database (Denmark)

    Henry, M D; Satz, J S; Brakebusch, C;


    Dystroglycan (DG) is a cell surface receptor for several extracellular matrix (ECM) molecules including laminins, agrin and perlecan. Recent data indicate that DG function is required for the formation of basement membranes in early development and the organization of laminin on the cell surface....... Here we show that DG-mediated laminin clustering on mouse embryonic stem (ES) cells is a dynamic process in which clusters are consolidated over time into increasingly more complex structures. Utilizing various null-mutant ES cell lines, we define roles for other molecules in this process. In beta1...... integrin-deficient ES cells, laminin-1 binds to the cell surface, but fails to organize into more morphologically complex structures. This result indicates that beta1 integrin function is required after DG function in the cell surface-mediated laminin assembly process. In perlecan-deficient ES cells...

  11. IL-1beta-induced pro-apoptotic signalling is facilitated by NCAM/FGF receptor signalling and inhibited by the C3d ligand in the INS-1E rat beta cell line

    DEFF Research Database (Denmark)

    Petersen, L G; Størling, J; Heding, P


    AIMS/HYPOTHESIS: IL-1beta released from immune cells induces beta cell pro-apoptotic signalling via mitogen-activated protein kinases (MAPKs) and nuclear factor-kappaB (NF-kappaB). In neurons, the neural cell adhesion molecule (NCAM) signals to several elements involved in IL-1beta-induced pro-ap...

  12. beta-Catenin/TCF pathway plays a vital role in selenium induced-growth inhibition and apoptosis in esophageal squamous cell carcinoma (ESCC) cells. (United States)

    Zhang, Wei; Yan, Shuang; Liu, Mei; Zhang, Guo; Yang, Shangbin; He, Shun; Bai, Jinfeng; Quan, Lanping; Zhu, Hongxia; Dong, Yan; Xu, Ningzhi


    Epidemiological and experimental studies have indicated selenium could reduce the risk of some cancers. In our present study, growth inhibition and apoptosis were detected upon methylseleninic acid (MSA) treatment in human esophageal squamous cell carcinoma cell lines EC9706 and KYSE150. MSA reduced beta-catenin protein levels, while there was no significant change observed on transcriptional levels. Moreover, we found MSA accelerated the degradation of beta-catenin and activated glycogen synthase kinase 3beta (GSK-3beta). Some targets of beta-catenin/TCF pathway and apoptosis-related genes altered after MSA treatment. Notably, utilizing the inducible 293-TR/beta-catenin cell line, we found the apoptotic phenotypes induced by MSA were partially reversed by the overexpression of beta-catenin. Overall, our data indicate the effects induced by MSA in ESCC cells may act on the inhibition of beta-catenin/TCF pathway.

  13. Transforming growth factor-beta as a differentiating factor for cultured smooth muscle cells. (United States)

    Gawaziuk, J P; X; Sheikh, F; Cheng, Z-Q; Cattini, P A; Stephens, N L


    The aim of the present study was to determine whether the development of supercontractile smooth muscle cells, contributing to the nonspecific hyperreactivity of airways in asthmatic patients, is due to transforming growth factor (TGF)-beta. In cultured smooth muscle cells starved by removal of 10% foetal bovine serum for 7 days, growth arrest was seen; 30% became elongated and demonstrated super contractility. Study of conditioned medium suggested that the differentiating factor was TGF-beta. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) was carried out on conditioned medium from the arrested cells. Two protein bands were identified as matrix metalloproteinase (MMP)-2 and TGF-beta1. To determine second messenger signalling by SMAD2, Western blotting and confocal microscopy were employed. Conditioned medium from arrested cultures showed the presence of MMP-2 and TGF-beta1, as revealed by SDS-PAGE; 68- and 25-kDa bands were seen. Differentiation was confirmed by upregulation of marker proteins, smooth muscle type myosin heavy chain and myosin light chain kinase. Confirmation was obtained by downregulating these proteins with decorin treatment, which reduces the levels of active TGF-beta and an adenoviral dominant-negative vector coding for a mutated type II TGF-beta-receptor. Activation of second messenger signalling was demonstrated immunocytochemically by the presence of phosphorylated SMAD2 and SMAD4. Transforming growth factor-beta is likely to be the differentiating factor responsible for the development of these supercontractile smooth muscle cells. The development of such cells in vivo after cessation of an asthmatic attack could contribute to the nonspecific hyperreactivity of airways seen in patients.

  14. Proteins differentially expressed in human beta-cells-enriched pancreatic islet cultures and human insulinomas

    DEFF Research Database (Denmark)

    Terra, Letícia F; Teixeira, Priscila C; Wailemann, Rosangela A M


    In view of the great demand for human beta-cells for physiological and medical studies, we generated cell lines derived from human insulinomas which secrete insulin, C-peptide and express neuroendocrine and islet markers. In this study, we set out to characterize their proteomes, comparing them t...

  15. Intestinal epithelial cell secretion of RELM-beta protects against gastrointestinal worm infection (United States)

    IL-4 and IL-13 protect against parasitic helminths, but little is known about the mechanism of host protection. We show that IL-4/IL-13 confer immunity against worms by inducing intestinal epithelial cells (IEC) to differentiate into goblet cells that secrete resistin-like molecule beta (RELMB). R...

  16. Effects of ultrasound on Transforming Growth Factor-beta genes in bone cells

    Directory of Open Access Journals (Sweden)

    J Harle


    Full Text Available Therapeutic ultrasound (US is a widely used form of biophysical stimulation that is increasingly applied to promote fracture healing. Transforming growth factor-beta (TGF-beta, which is encoded by three related but different genes, is known to play a major part in bone growth and repair. However, the effects of US on the expression of the TGF-beta genes and the physical acoustic mechanisms involved in initiating changes in gene expression in vitro, are not yet known. The present study demonstrates that US had a differential effect on these TGF-beta isoforms in a human osteoblast cell line, with the highest dose eliciting the most pronounced up-regulation of both TGF-beta1 and TGF-beta3 at 1 hour after treatment and thereafter declining. In contrast, US had no effect on TGF-beta2 expression. Fluid streaming rather than thermal effects or cavitation was found to be the most likely explanation for the gene responses observed in vitro.

  17. Inactivation of the transforming growth factor beta type II receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Hougaard, S; Nørgaard, P; Abrahamsen, N;


    Transforming growth factor beta (TGF-beta) exerts a growth inhibitory effect on many cell types through binding to two types of receptors, the type I and II receptors. Resistance to TGF-beta due to lack of type II receptor (RII) has been described in some cancer types including small cell lung...... cancer (SCLC). The purpose of this study was to examine the cause of absent RII expression in SCLC cell lines. Northern blot analysis showed that RII RNA expression was very weak in 16 of 21 cell lines. To investigate if the absence of RII transcript was due to mutations, we screened the poly-A tract...... for mutations, but no mutations were detected. Additional screening for mutations of the RII gene revealed a GG to TT base substitution in one cell line, which did not express RII. This mutation generates a stop codon resulting in predicted synthesis of a truncated RII of 219 amino acids. The nature...

  18. Hormone-sensitive lipase, the rate-limiting enzyme in triglyceride hydrolysis, is expressed and active in beta-cells. (United States)

    Mulder, H; Holst, L S; Svensson, H; Degerman, E; Sundler, F; Ahrén, B; Rorsman, P; Holm, C


    Triglycerides in the beta-cell may be important for stimulus-secretion coupling, through provision of a lipid-derived signal, and for pathogenetic events in NIDDM, where lipids may adversely affect beta-cell function. In adipose tissues, hormone-sensitive lipase (HSL) is rate-limiting in triglyceride hydrolysis. Here, we investigated whether this enzyme is also expressed and active in beta-cells. Northern blot analysis and reverse transcription-polymerase chain reaction demonstrated that HSL is expressed in rat islets and in the clonal beta-cell lines INS-1, RINm5F, and HIT-T15. Western blot analysis identified HSL in mouse and rat islets and the clonal beta-cells. In mouse and rat, immunocytochemistry showed a predominant occurrence of HSL in beta-cells, with a presumed cytoplasmic localization. Lipase activity in homogenates of the rodent islets and clonal beta-cells constituted 2.1 +/- 0.6% of that in adipocytes; this activity was immunoinhibited by use of antibodies to HSL. The established HSL expression and activity in beta-cells offer a mechanism whereby lipids are mobilized from intracellular stores. Because HSL in adipocytes is activated by cAMP-dependent protein kinase (PKA), PKA-regulated triglyceride hydrolysis in beta-cells may participate in the regulation of insulin secretion, possibly by providing a lipid-derived signal, e.g., long-chain acyl-CoA and diacylglycerol.

  19. Investigating the role of islet cytoarchitecture in its oscillation using a new beta-cell cluster model.

    Directory of Open Access Journals (Sweden)

    Aparna Nittala

    Full Text Available The oscillatory insulin release is fundamental to normal glycemic control. The basis of the oscillation is the intercellular coupling and bursting synchronization of beta cells in each islet. The functional role of islet beta cell mass organization with respect to its oscillatory bursting is not well understood. This is of special interest in view of the recent finding of islet cytoarchitectural differences between human and animal models. In this study we developed a new hexagonal closest packing (HCP cell cluster model. The model captures more accurately the real islet cell organization than the simple cubic packing (SCP cluster that is conventionally used. Using our new model we investigated the functional characteristics of beta-cell clusters, including the fraction of cells able to burst f(b, the synchronization index lambda of the bursting beta cells, the bursting period T(b, the plateau fraction p(f, and the amplitude of intracellular calcium oscillation [Ca]. We determined their dependence on cluster architectural parameters including number of cells n(beta, number of inter-beta cell couplings of each beta cell n(c, and the coupling strength g(c. We found that at low values of n(beta, n(c and g(c, the oscillation regularity improves with their increasing values. This functional gain plateaus around their physiological values in real islets, at n(beta approximately 100, n(c approximately 6 and g(c approximately 200 pS. In addition, normal beta-cell clusters are robust against significant perturbation to their architecture, including the presence of non-beta cells or dead beta cells. In clusters with n(beta> approximately 100, coordinated beta-cell bursting can be maintained at up to 70% of beta-cell loss, which is consistent with laboratory and clinical findings of islets. Our results suggest that the bursting characteristics of a beta-cell cluster depend quantitatively on its architecture in a non-linear fashion. These findings are

  20. Glucose stimulates human beta cell replication in vivo in islets transplanted into NOD–severe combined immunodeficiency (SCID) mice (United States)

    Levitt, H. E.; Cyphert, T. J.; Pascoe, J. L.; Hollern, D. A.; Abraham, N.; Lundell, R. J.; Rosa, T.; Romano, L. C.; Zou, B.; O’Donnell, C. P.; Stewart, A. F.; Garcia-Ocaña, A.; Alonso, L. C.


    Aims/hypothesis We determined whether hyperglycaemia stimulates human beta cell replication in vivo in an islet transplant model Methods Human islets were transplanted into streptozotocin-induced diabetic NOD–severe combined immunodeficiency mice. Blood glucose was measured serially during a 2 week graft revascularisation period. Engrafted mice were then catheterised in the femoral artery and vein, and infused intravenously with BrdU for 4 days to label replicating beta cells. Mice with restored normoglycaemia were co-infused with either 0.9% (wt/vol.) saline or 50% (wt/vol.) glucose to generate glycaemic differences among grafts from the same donors. During infusions, blood glucose was measured daily. After infusion, human beta cell replication and apoptosis were measured in graft sections using immunofluorescence for insulin, and BrdU or TUNEL. Results Human islet grafts corrected diabetes in the majority of cases. Among grafts from the same donor, human beta cell proliferation doubled in those exposed to higher glucose relative to lower glucose. Across the entire cohort of grafts, higher blood glucose was strongly correlated with increased beta cell replication. Beta cell replication rates were unrelated to circulating human insulin levels or donor age, but tended to correlate with donor BMI. Beta cell TUNEL reactivity was not measurably increased in grafts exposed to elevated blood glucose. Conclusions/interpretation Glucose is a mitogenic stimulus for transplanted human beta cells in vivo. Investigating the underlying pathways may point to mechanisms capable of expanding human beta cell mass in vivo. PMID:20936253

  1. Chronic antidiabetic sulfonylureas in vivo: reversible effects on mouse pancreatic beta-cells.

    Directory of Open Access Journals (Sweden)

    Maria Sara Remedi


    Full Text Available BACKGROUND: Pancreatic beta-cell ATP-sensitive potassium (K ATP channels are critical links between nutrient metabolism and insulin secretion. In humans, reduced or absent beta-cell K ATP channel activity resulting from loss-of-function K ATP mutations induces insulin hypersecretion. Mice with reduced K ATP channel activity also demonstrate hyperinsulinism, but mice with complete loss of K ATP channels (K ATP knockout mice show an unexpected insulin undersecretory phenotype. Therefore we have proposed an "inverse U" hypothesis to explain the response to enhanced excitability, in which excessive hyperexcitability drives beta-cells to insulin secretory failure without cell death. Many patients with type 2 diabetes treated with antidiabetic sulfonylureas (which inhibit K ATP activity and thereby enhance insulin secretion show long-term insulin secretory failure, which we further suggest might reflect a similar progression. METHODS AND FINDINGS: To test the above hypotheses, and to mechanistically investigate the consequences of prolonged hyperexcitability in vivo, we used a novel approach of implanting mice with slow-release sulfonylurea (glibenclamide pellets, to chronically inhibit beta-cell K ATP channels. Glibenclamide-implanted wild-type mice became progressively and consistently diabetic, with significantly (p < 0.05 reduced insulin secretion in response to glucose. After 1 wk of treatment, these mice were as glucose intolerant as adult K ATP knockout mice, and reduction of secretory capacity in freshly isolated islets from implanted animals was as significant (p < 0.05 as those from K ATP knockout animals. However, secretory capacity was fully restored in islets from sulfonylurea-treated mice within hours of drug washout and in vivo within 1 mo after glibenclamide treatment was terminated. Pancreatic immunostaining showed normal islet size and alpha-/beta-cell distribution within the islet, and TUNEL staining showed no evidence of apoptosis

  2. Beta-cryptoxanthin from citrus juices: assessment of bioaccessibility using an in vitro digestion/Caco-2 cell culture model. (United States)

    Dhuique-Mayer, Claudie; Borel, Patrick; Reboul, Emmanuelle; Caporiccio, Bertrand; Besancon, Pierre; Amiot, Marie-Josèphe


    Beta-Cryptoxanthin (beta-CX), a provitaminic carotenoid of potential interest for health, is found principally in Citrus fruit in both free and esterified forms. Little is known about the intestinal absorption of beta-CX especially with regard to the esterified forms. The aim of this study was to evaluate the absorption of free and esterified beta-CX using simulated digestion coupled with the Caco-2 model. Bioaccessibility was investigated by measuring the transfer of carotenoids from different citrus juices into micelles using an in vitro digestion system. Then, carotenoid uptake was evaluated by adding carotenoid-rich micelles (from the in vitro digestion) or synthetic micelles (made from synthetic lipids and carotenoids purified from citrus juice) to human intestinal cells (Caco-2 TC7 clone). Our results showed that beta-cryptoxanthin esters (beta-CXE) were partially hydrolysed during the in vitro digestion. The bioaccessibility of free beta-CX measured was significantly higher (40 (SD 1.05) %) than that of beta-carotene (30 (SD 1.9) %) and beta-CXE (16 (SD 1.5) %). In the same way, the incorporation of free beta-CX (27 (SD 1.01) %) into synthetic micelles exceeded (Pdigestion, the uptake of beta-carotene, free beta-CX and beta-CXE forms by Caco-2 cells was 14.3 (SD 1.8), 3.9 (SD 1.3), and 0.7 (SD 0.08) % respectively. These results showed a preferential uptake by Caco-2 cells of beta-carotene and free beta-CX compared with the two esters of beta-CX.

  3. Signal transduction and metabolic flux of beta-thujaplicin and monoterpene biosynthesis in elicited Cupressus lusitanica cell cultures. (United States)

    Zhao, Jian; Matsunaga, Yoko; Fujita, Koki; Sakai, Kokki


    beta-Thujaplicin is an antimicrobial tropolone derived from geranyl pyrophosphate(GPP) and monoterpene intermediate. Yeast elicitor-treated Cupressus lusitanica cell cultures accumulate high levels of beta-thujaplicin at early stages and other monoterpenes at later stages post-elicitation. The different regulation of beta-thujaplicin and monoterpene biosynthesis and signal transduction directing metabolic flux to beta-thujaplicin firstly and then shifting metabolic flow from beta-thujaplicin to other monoterpene biosynthesis were investigated. The earlier rapid induction of beta-thujaplicin accumulation and a later stimulation of monoterpene biosynthesis by yeast elicitor are in well agreement with elicitor-induced changes in activity of three monoterpene biosynthetic enzymes including isopentenyl pyrophosphate isomerase, GPP synthase, and monoterpene synthase. Yeast elicitor induces an earlier and stronger beta-thujaplicin production and monoterpene biosynthetic enzyme activity than methyl jasmonate (MeJA) does. Profiling all monoterpenes produced by C. lusitanica cell cultures under different conditions reveals that beta-thujaplicin biosynthesis parallels with other monoterpenes and competes for common precursor pools. Yet beta-thujaplicin is produced pre-dominantly at early stage of elicitation whereas other monoterpenes are mainly accumulated at late stage while beta-thujaplicin is metabolized. It is suggested that yeast elicitor-treated C. lusitanica cells preferentially accumulate beta-thujaplicin as a primary defense and other monoterpenes as a secondary defense. Inhibitor treatments suggest that immediate production of beta-thujaplicin post-elicitation largely depends on pre-existing enzymes and translation of pre-existing transcripts as well as recruitment of precursor pools from both the cytosol and plastids. The later beta-thujaplicin and other monoterpene accumulation strictly depends on active transcription and translation. Induction of beta

  4. Ethyl ether fraction of Gastrodia elata Blume protects amyloid beta peptide-induced cell death. (United States)

    Kim, Hyeon-Ju; Moon, Kwang-Deog; Lee, Dong-Seok; Lee, Sang-Han


    Alzheimer's disease is the most common cause of dementia in the elderly. Recently, it has been reported that Alzheimer's disease is associated with cell death in neuronal cells including the hippocampus. Amyloid beta-peptide stimulates neuronal cell death, but the underlying signaling pathways are poorly understood. In order to develop anti-dementia agents with potential therapeutic value, we examined the effect of the herbal compound Gastrodia elata Blume (GEB) on neuronal cell death induced by amyloid beta-peptide in IMR-32 neuroblastoma cells. The fractionation of GEB was carried out in various solvents. The hydroxyl radical scavenging effect of the ethyl ether fraction was more potent than any other fractions. In cells treated with amyloid beta-peptide, the neuroprotective effect of the ethyl ether, chloroform, and butanol fractions was 92, 44, and 39%, respectively, compared with control. Taken together, these results suggest that the ethyl ether fraction of GEB contains one or more compounds that dramatically reduce amyloid beta-peptide induced neuronal cell death in vitro.

  5. beta1-integrin-mediated signaling essentially contributes to cell survival after radiation-induced genotoxic injury

    DEFF Research Database (Denmark)

    Cordes, N; Seidler, J; Durzok, R;


    Integrin-mediated adhesion to extracellular matrix proteins confers resistance to radiation- or drug-induced genotoxic injury. To analyse the underlying mechanisms specific for beta1-integrins, wild-type beta1A-integrin-expressing GD25beta1A cells were compared to GD25beta1B cells, which express ...... in tumor cells may promote the development of innovative molecular-targeted therapeutic antitumor strategies.......Integrin-mediated adhesion to extracellular matrix proteins confers resistance to radiation- or drug-induced genotoxic injury. To analyse the underlying mechanisms specific for beta1-integrins, wild-type beta1A-integrin-expressing GD25beta1A cells were compared to GD25beta1B cells, which express...... signaling-incompetent beta1B variants. Cells grown on fibronectin, collagen-III, beta1-integrin-IgG or poly-l-lysine were exposed to 0-6 Gy X-rays in presence or depletion of growth factors and phosphatidylinositol-3 kinase (PI3K) inhibitors (LY294002, wortmannin). In order to test the relevance...

  6. Expression of transforming growth factor-beta receptors types II and III within various cells in the rat periodontium. (United States)

    Gao, J; Symons, A L; Bartold, P M


    This study reports the immunohistochemical localization of TGF-beta receptor type II (T beta R-II) and type III (T beta R-III) in cells of the forming periodontal ligament (PDL) in rat first molar roots. Mandibular periodontium was obtained from 3, 6 and 12-wk-old rats. This represented tissue from the initial, pre-mature and post-mature stages of root and periodontal development, respectively. Mandibular bone chips and molar roots were used to isolate osteoblasts, fibroblasts and cementoblasts. Cells were obtained using a 2-step trypsinization and explant technique, and cultured in Dulbecco's modification of Eagle's medium (DMEM) under routine cell culture conditions. Cells were cultured on coverslips for the purpose of detecting TGF-beta receptors, and compared with whole tissue sections using the same detection method. Cells which stained positively for T beta R-II and T beta R-III on both paraffin sections and cultured cell slides were counted. Both receptors were expressed in the various periodontal tissue compartments. PDL fibroblasts, cementoblasts and osteoblasts were stained positively for T beta R-II and T beta R-III. Endothelial cells were noted to be positive for T beta R-II only. T beta R-II was more widely distributed in cells than T beta R-III, but T beta R-III was extensively localized in the extracellular matrix. Both receptors were expressed on the cell membrane and also localized in the cytoplasm. The findings for paraffin sections were consistent with the immunohistochemical staining of cultured cells. The percentage of cells which stained positively for T beta R-II was greater (approximately 85%) than that for T beta R-III (approximately 60%) in all major types of the PDL cells on both paraffin sections and cultured cell slides. Extensive location of TGF-beta receptors in both cells and extracellular matrix suggests that several binding sites are available for TGF-beta s to interact with target cells during development and following maturation

  7. Impact of fetal and neonatal environment on beta cell function and development of diabetes

    DEFF Research Database (Denmark)

    Nielsen, Jens H; Haase, Tobias N; Jaksch, Caroline;


    that the intrauterine environment during pregnancy has an impact on the gene expression that may persist until adulthood and cause metabolic diseases like obesity and type 2 diabetes. As the pancreatic beta cells are crucial in the regulation of metabolism this article will describe the influence of normal pregnancy...... on the beta cells in both the mother and the fetus and how various conditions like diabetes, obesity, overnutrition and undernutrition during and after pregnancy may influence the ability of the offspring to adapt to changes in insulin demand later in life. The influence of environmental factors including...... nutrients and gut microbiota on appetite regulation, mitochondrial activity and the immune system that may affect beta cell growth and function directly and indirectly is discussed. The possible role of epigenetic changes in the transgenerational transmission of the adverse programming may be the most...

  8. IFN-beta inhibits T cell activation capacity of central nervous system APCs

    DEFF Research Database (Denmark)

    Teige, Ingrid; Liu, Yawei; Issazadeh-Navikas, Shohreh


    coculture with T cells, the effector functions of T cells are impaired as IFN-gamma, TNF-alpha, and NO productions are decreased. Induction of the T cell activation marker, CD25 is also reduced. This suppression of T cell response is cell-cell dependent, but it is not dependent on a decrease in glial...... expression of MHC class II or costimulatory molecules. We propose that IFN-beta might exert its beneficial effects mainly by reducing the Ag-presenting capacity of CNS-specific APCs, which in turn inhibits the effector functions of encephalitogenic T cells. This affect is of importance because activation...

  9. Beta-globin gene cluster haplotypes and alpha-thalassemia in sickle cell disease patients from Trinidad. (United States)

    Jones-Lecointe, Altheia; Smith, Erskine; Romana, Marc; Gilbert, Marie-Georges; Charles, Waveney P; Saint-Martin, Christian; Kéclard, Lisiane


    In this study, we have determined the frequency of beta(S) haplotypes in 163 sickle cell disease patients from Trinidad. The alpha(3.7) globin gene deletion status was also studied with an observed gene frequency of 0.17. Among the 283 beta(S) chromosomes analyzed, the Benin haplotype was the most prevalent (61.8%) followed by Bantu (17.3%), Senegal (8.5%), Cameroon (3.5%), and Arab-Indian (3.2%), while 5.7% of them were atypical. This beta(S) haplotypes distribution differed from those previously described in other Caribbean islands (Jamaica, Guadeloupe, and Cuba), in agreement with the known involvement of the major colonial powers (Spain, France, and Great Britain) in the slave trade in Trinidad and documented an Indian origin of the beta(S) gene.

  10. Mathematical Beta Cell Model for Insulin Secretion following IVGTT and OGTT

    DEFF Research Database (Denmark)

    Madsen, Henrik; Henriksen, Jan Erik; Karlsson, Mats


    Evaluation of beta cell function is conducted by a variety of glucose tolerance tests and evaluated by a number of different models with less than perfect consistency among results obtained from different tests. We formulated a new approximation of the distributed threshold model for insulin...... secretion in order to approach a model for quantifying beta cell function, not only for one, but for several different experiments. Data was obtained from 40 subjects that had both an oral glucose tolerance test (OGTT) and an intravenous tolerance test (IVGTT) performed. Parameter estimates from the two...

  11. Phentolamine and yohimbine inhibit ATP-sensitive K+ channels in mouse pancreatic beta-cells.


    Plant, T D; Henquin, J C


    1. The effects of phentolamine and yohimbine on adenosine 5'-triphosphate (ATP)-sensitive K+ channels were studied in normal mouse beta-cells. 2. In the presence of 3 mM glucose, many ATP-sensitive K+ channels are open in the beta-cell membrane. Under these conditions, phentolamine inhibited 86Rb efflux from the islets. This inhibition was faster with 100 than with 20 microM phentolamine but its steady-state magnitude was similar with both concentrations. Yohimbine (20-100 microM) also inhibi...

  12. Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Hasan Korkaya


    Full Text Available Recent evidence suggests that many malignancies, including breast cancer, are driven by a cellular subcomponent that displays stem cell-like properties. The protein phosphatase and tensin homolog (PTEN is inactivated in a wide range of human cancers, an alteration that is associated with a poor prognosis. Because PTEN has been reported to play a role in the maintenance of embryonic and tissue-specific stem cells, we investigated the role of the PTEN/Akt pathway in the regulation of normal and malignant mammary stem/progenitor cell populations. We demonstrate that activation of this pathway, via PTEN knockdown, enriches for normal and malignant human mammary stem/progenitor cells in vitro and in vivo. Knockdown of PTEN in normal human mammary epithelial cells enriches for the stem/progenitor cell compartment, generating atypical hyperplastic lesions in humanized NOD/SCID mice. Akt-driven stem/progenitor cell enrichment is mediated by activation of the Wnt/beta-catenin pathway through the phosphorylation of GSK3-beta. In contrast to chemotherapy, the Akt inhibitor perifosine is able to target the tumorigenic cell population in breast tumor xenografts. These studies demonstrate an important role for the PTEN/PI3-K/Akt/beta-catenin pathway in the regulation of normal and malignant stem/progenitor cell populations and suggest that agents that inhibit this pathway are able to effectively target tumorigenic breast cancer cells.

  13. Dependency of colorectal cancer on a TGF-beta-driven programme in stromal cells for metastasis initiation (United States)

    Calon, Alexandre; Espinet, Elisa; Palomo-Ponce, Sergio; Tauriello, Daniele V. F.; Iglesias, Mar; Céspedes, María Virtudes; Sevillano, Marta; Nadal, Cristina; Jung, Peter; Zhang, Xiang H.-F.; Byrom, Daniel; Riera, Antoni; Rossell, David; Mangues, Ramón; Massague, Joan; Sancho, Elena; Batlle, Eduard


    SUMMARY A large proportion of colorectal cancers (CRCs) display mutational inactivation of the TGF-beta pathway yet paradoxically, they are characterized by elevated TGF-beta production. Here, we unveil a prometastatic programme induced by TGF-beta in the microenvironment that associates with a high-risk of CRC relapse upon treatment. The activity of TGF-beta on stromal cells increases the efficiency of organ colonization by CRC cells whereas mice treated with a pharmacological inhibitor of TGFBR1 are resilient to metastasis formation. Secretion of IL11 by TGF-beta-stimulated cancer-associated fibroblasts (CAFs) triggers GP130/STAT3 signalling in tumour cells. This crosstalk confers a survival advantage to metastatic cells. The dependency on the TGF-beta stromal programme for metastasis initiation could be exploited to improve the diagnosis and treatment of CRC. PMID:23153532

  14. Investigation of the effect of beta source and phosphors on photovoltaic cells (United States)

    Yürük, Reyyan Kavak; Tütüncüler, Hayriye


    In this study, conversion of kinetic energy from the decay of a radioactive isotope to electricity is investigated by using the direct and the indirect conversion methods. In this context, simple nuclear battery models are designed. Analysis for the effect of low-activity radiation from Pm147 and Sr90 beta sources on photovoltaic Si solar cell is presented. Beta radioluminescence nuclear battery models consist of a beta source, a phosphor layer and a solar cell. Phosphor layers with different mass thicknesses are prepared from ZnS:CuCl and SrAl2O4:Eu2+,Dy3+ phosphors. Both the influence of beta sources and the phosphor layers on battery performance is analyzed separately. Effect of beta sources, phosphors are observed on solar cell by measuring the short circuit current and open circuit voltage. The efficiency of the battery models is determined with the obtained results. Furthermore, short circuit current values are analyzed at various times during the irradiation.

  15. Interleukin-1 beta stimulates glucose uptake of human peritoneal mesothelial cells in vitro. (United States)

    Kruse, M; Mahiout, A; Kliem, V; Kurz, P; Koch, K M; Brunkhorst, R


    To investigate whether the glucose uptake (GU) of human peritoneal mesothelial cells (HPMC) is mediated by glucose transporters and whether this uptake is influenced by interleukin 1-beta (IL-1 beta), we measured 2-deoxy-(3H)-GU of HPMC in vitro, after exposing the cells for different times (two and 12 hours) to increasing concentrations (0.1, 1.0, and 2.0 ng/mL) of IL-1 beta. To exclude a noncarrier-mediated transport, GU was also tested in the presence of cytochalasin B. All experiments were performed in triplicate in the cells of two donors. Cytochalasin B inhibits GU of HPMC almost completely. GU of HPMC is not stimulated by insulin. GU is stimulated by IL-1 beta in a dose-dependent manner. These data indicate a GU of HPMC, which is mediated by a glucose transporter and stimulated by IL-1 beta. The increased uptake of glucose from the dialysate in patients with peritonitis may be mediated by a (cytokine-induced) increased activity of HPMC glucose transporters.

  16. Distinct roles of HNF1beta, HNF1alpha, and HNF4alpha in regulating pancreas development, beta-cell function and growth. (United States)

    Maestro, Miguel Angel; Cardalda, Carina; Boj, Sylvia F; Luco, Reini F; Servitja, Joan Marc; Ferrer, Jorge


    Mutations in the genes encoding transcriptional regulators HNF1beta (TCF2), HNF1alpha (TCF1), and HNF4alpha cause autosomal dominant diabetes (also known as maturity-onset diabetes of the young). Herein, we review what we have learnt during recent years concerning the functions of these regulators in the developing and adult pancreas. Mouse studies have revealed that HNF1beta is a critical regulator of a transcriptional network that controls the specification, growth, and differentiation of the embryonic pancreas. HNF1beta mutations in humans accordingly often cause pancreas hypoplasia. By contrast, HNF1alpha and HNF4alpha have been shown to regulate the function of differentiated beta-cells. HNF1alpha and HNF4alpha mutations in patients thus cause decreased glucose-induced insulin secretion that leads to a progressive form of diabetes. HNF4alpha mutations paradoxically also cause in utero and neonatal hyperinsulinism, which later evolves to decreased glucose-induced secretion. Recent studies show that Hnf4alpha deficiency in mice causes not only abnormal insulin secretion, but also an impairment of the expansion of beta-cell mass that normally occurs during pregnancy. In line with this finding, we present data that Hnf1alpha-/- beta-cells expressing SV40 large T antigen show a severe impairment of proliferation and failure to form tumours. Collectively, these findings implicate HNF1beta as a regulator of pancreas organogenesis and differentiation, whereas HNF1alpha and HNF4alpha primarily regulate both growth and function of islet beta-cells.

  17. Susceptibility of pancreatic beta cells to fatty acids is regulated by LXR/PPARalpha-dependent stearoyl-coenzyme A desaturase.

    Directory of Open Access Journals (Sweden)

    Karine H Hellemans

    Full Text Available Chronically elevated levels of fatty acids-FA can cause beta cell death in vitro. Beta cells vary in their individual susceptibility to FA-toxicity. Rat beta cells were previously shown to better resist FA-toxicity in conditions that increased triglyceride formation or mitochondrial and peroxisomal FA-oxidation, possibly reducing cytoplasmic levels of toxic FA-moieties. We now show that stearoyl-CoA desaturase-SCD is involved in this cytoprotective mechanism through its ability to transfer saturated FA into monounsaturated FA that are incorporated in lipids. In purified beta cells, SCD expression was induced by LXR- and PPARalpha-agonists, which were found to protect rat, mouse and human beta cells against palmitate toxicity. When their SCD was inhibited or silenced, the agonist-induced protection was also suppressed. A correlation between beta cell-SCD expression and susceptibility to palmitate was also found in beta cell preparations isolated from different rodent models. In mice with LXR-deletion (LXRbeta(-/- and LXRalphabeta(-/-, beta cells presented a reduced SCD-expression as well as an increased susceptibility to palmitate-toxicity, which could not be counteracted by LXR or PPARalpha agonists. In Zucker fatty rats and in rats treated with the LXR-agonist TO1317, beta cells show an increased SCD-expression and lower palmitate-toxicity. In the normal rat beta cell population, the subpopulation with lower metabolic responsiveness to glucose exhibits a lower SCD1 expression and a higher susceptibility to palmitate toxicity. These data demonstrate that the beta cell susceptibility to saturated fatty acids can be reduced by stearoyl-coA desaturase, which upon stimulation by LXR and PPARalpha agonists favors their desaturation and subsequent incorporation in neutral lipids.

  18. Applied Developmental Biology: Making Human Pancreatic Beta Cells for Diabetics. (United States)

    Melton, Douglas A


    Understanding the genes and signaling pathways that determine the differentiation and fate of a cell is a central goal of developmental biology. Using that information to gain mastery over the fates of cells presents new approaches to cell transplantation and drug discovery for human diseases including diabetes.

  19. Novel monoclonal antibody against beta 1 integrin enhances cisplatin efficacy in human lung adenocarcinoma cells. (United States)

    Kim, Min-Young; Cho, Woon-Dong; Hong, Kwon Pyo; Choi, Da Bin; Hong, Jeong Won; Kim, Soseul; Moon, Yoo Ri; Son, Seung-Myoung; Lee, Ok-Jun; Lee, Ho-Chang; Song, Hyung Geun


    The use of anti-beta 1 integrin monoclonal antibody in lung cancer treatment has proven beneficial. Here, we developed a novel monoclonal antibody (mAb), called P5, by immunizing mice with human peripheral blood mononuclear cells (PBMC). Its anti-tumor effect is now being tested, in a clinical phase III trial, in combinatorial treatments with various chemical drugs. To confirm that P5 indeed binds to beta 1 integrin, cell lysates were immunoprecipitated with commercial anti-beta 1 integrin mAb (TS2/16) and immunoblotted against P5 to reveal a 140 kDa molecular weight band, as expected. Immunoprecipitation with P5 followed by LC/MS protein sequence analysis further verified P5 antigen to be beta 1 integrin. Cisplatin treatment upregulated cell surface expression of beta 1 integrin in A549 cells, while causing inhibition of cell growth. When cells were co-treated with different concentrations of P5 mAb, the cisplatin-mediated inhibitory effect was enhanced in a dose-dependent manner. Our findings show that a combinatorial treatment of P5 mAb and cisplatin in A549 cells resulted in a 30% increase in apoptosis, compared to baseline, and significantly more when compared to either the cisplatin or P5 alone group. The entire peptide sequences in CDR from variable region of Ig heavy and light chain gene for P5 mAb are also disclosed. Together, these results provide evidence of the beneficial effect of P5 mAb in combinatorial treatment of human lung adenocarcinoma.

  20. Transport of alpha- and beta-D-glucose by the intact human red cell

    Energy Technology Data Exchange (ETDEWEB)

    Carruthers, A.; Melchior, D.L.


    The kinetics of alpha- and beta-D-glucose mutarotation and the transport of these anomers by intact human red cells were determined at 0.6 and 36.6 degrees C. The mutarotation coefficients for alpha- and beta-D-glucose in cell-free tris(hydroxymethyl)aminomethane medium (pH 7.4) at 0.6 degrees C are (2.25 +/- 0.2) and (1.73 +/- 0.42) X 10(-3) min-1, respectively, and at 36.6 degrees C are (69 +/- 12) and (75 +/- 5) X 10(-3) min-1, respectively. These values are in good agreement with previous estimates. At 0.6 degrees C, the red cell contains no detectable mutarotase activity. Initial rates of sugar uptake were measured by using radiolabeled D-glucose and time courses of uptake by turbidimetry. The time courses of alpha- and beta-D-glucose and an equilibrium mixture of alpha- and beta-D-glucose infinite-cis entry are identical at 0.66 degrees C (n = 41) where negligible mutarotation is observed. The apparent Ki values for inhibition of radiolabeled D-glucose initial uptake by unlabeled alpha- or beta-D-glucose at 0.6 degrees C are identical (1.6 mM). The calculated Vmax parameters for uptake of the radiolabeled anomers at this temperature are also indistinguishable. The time courses of infinite-cis alpha- and beta-D-glucose uptake at 36.66 degrees C are identical (n = 40). While D-glucose mutarotation is more rapid at this temperature, the anomers of D-glucose are not transported differently by the red cell hexose transfer system.

  1. Effects of putrescine, cadaverine, spermine, spermidine and beta-phenylethylamine on cultured bovine mammary epithelial cells

    DEFF Research Database (Denmark)

    Fusi, Eleonora; Baldi, Antonella; Cheli, Federica;


    A bovine mammary epithelial cell line (BME-UV1) and three-dimensional collagen primary bovine organoids were used to evaluate the effects of cadaverine, putrescine, spermine, spermicline and beta-phenylethylamine on mammary epithelial cells. Each biogenic amine was diluted in several concentrations...... (0-50 mM in BME-UV1 and 0-4 mM in primary bovine organoids) in the appropriate saline solution for the cell culture considered. In order to determine the activity of each compound tritiated thymidine incorporation was used. At low concentrations, all amines induced cell proliferation in both cultures....... In BME-UV1, spermine significantly inhibited cell proliferation (Pamines inhibited at higher concentrations (50mM). In primary bovine organoids, beta-phenylethylamine significantly (Pamines...

  2. TGF-beta1 system in Leydig cells. Part II: TGF-beta1 and progesterone, through Smad1/5, are involved in the hyperplasia/hypertrophy of Leydig cells. (United States)

    Gonzalez, Candela R; Gonzalez, Betina; Rulli, Susana B; Dos Santos, Mara L; Mattos Jardim Costa, Guilherme; França, Luiz R; Calandra, Ricardo S; Gonzalez-Calvar, Silvia I


    Several reports indicate that transforming growth factor beta1 (TGF-beta1) participates in the regulation of cell cycle progression. In this work, we analyzed the in vitro effect of TGF-beta1 on Leydig cell proliferation markers and the in vivo effect of this cytokine in Leydig cell hyperplasia/hypertrophy. The in vitro effect of TGF-beta1 (1 ng/ml) plus progesterone (10(-6) M) on purified Leydig cells from 3 week-old mice increased the immunocytochemically detected PCNA and stimulated the phosphorylation of Smad 1/5. Progesterone (10(-6) M) in the presence or absence of TGF-beta1 diminished the ratio Bax/Bcl-2. Morphometric testicular studies of mice treated with progesterone (s.c.) plus TGF-beta1 (intratesticular), showed an increase in interstitial volume and a decrease in tubular volume. Furthermore, the cytoplasmic volume of Leydig cells showed an increment in this experimental group with a diminution in nuclear volume. Thus, it turned out that the administration of progesterone and TGF-beta1 augmented the volume of Leydig cells. These results indicate a clear effect of TGF-beta1 in the hypertrophy/hyperplasia of Leydig cells.

  3. The mechanism of beta-glycerophosphate action in mineralizing chick limb-bud mesenchymal cell cultures. (United States)

    Boskey, A L; Guidon, P; Doty, S B; Stiner, D; Leboy, P; Binderman, I


    Differentiating chick limb-bud mesenchymal cells plated in micromass culture form a cartilage matrix that can be mineralized in the presence of 4 mM inorganic phosphate (Pi), and 1 mM calcium. Previous studies showed that when beta-glycerophosphate (beta GP) is used in place of Pi, the mineral crystals formed are larger and differ in distribution. The present study shows that the difference in distribution is not associated with alterations in cell proliferation, protein synthesis, or with collagen, proteoglycan core protein, or alkaline phosphatase gene expression. Cultures with 2.5, 5, and 10 mM beta GP did show different levels of alkaline phosphatase activity, and in the presence of low (0.3 mM) Ca had different Pi contents (4, 6 and 9 mM, respectively), indicating that the increase in CaxP product may in part be responsible for the altered pattern of mineralization. However, cultures with beta GP in which alkaline phosphatase activity was inhibited with levamisole still had an altered mineral distribution as revealed by Fourier transform-infrared (FT-IR) microspectroscopy. The presence of a casein kinase II-like activity in the mineralizing cultures, the ability of specific inhibitors of this enzyme to block mineralization, and the known ability of beta GP to block phosphoprotein phosphatase activity suggests that altered patterns of matrix protein phosphorylation may influence mineral deposition in these cultures.

  4. The Microtubule-Associated Protein Tau and Its Relevance for Pancreatic Beta Cells. (United States)

    Maj, Magdalena; Hoermann, Gregor; Rasul, Sazan; Base, Wolfgang; Wagner, Ludwig; Attems, Johannes


    Structural and biochemical alterations of the microtubule-associated protein tau (MAPT) are associated with degenerative disorders referred to as tauopathies. We have previously shown that MAPT is present in human islets of Langerhans, human insulinomas, and pancreatic beta-cell line models, with biophysical similarities to the pathological MAPT in the brain. Here, we further studied MAPT in pancreatic endocrine tissue to better understand the mechanisms that lead to functional dysregulation of pancreatic beta cells. We found upregulation of MAPT protein expression in human insulinomas when compared to human pancreatic islets of Langerhans and an imbalance between MAPT isoforms in insulinomas tissue. We cloned one 3-repeat domain MAPT and transduced this into a beta-cell derived rodent cell line Rin-5F. Proliferation experiments showed higher growth rates and metabolic activities of cells overexpressing MAPT protein. We observed that a MAPT overexpressing cell line demonstrates altered insulin transcription, translation, and insulin secretion rates. We found the relative insulin secretion rates were significantly decreased in a MAPT overexpressing cell line and these findings could be confirmed using partial MAPT knock-down cell lines. Our findings support that MAPT may play an important role in insulin granule trafficking and indicate the importance of balanced MAPT phosphorylation and dephosphorylation for adequate insulin release.

  5. The Microtubule-Associated Protein Tau and Its Relevance for Pancreatic Beta Cells

    Directory of Open Access Journals (Sweden)

    Magdalena Maj


    Full Text Available Structural and biochemical alterations of the microtubule-associated protein tau (MAPT are associated with degenerative disorders referred to as tauopathies. We have previously shown that MAPT is present in human islets of Langerhans, human insulinomas, and pancreatic beta-cell line models, with biophysical similarities to the pathological MAPT in the brain. Here, we further studied MAPT in pancreatic endocrine tissue to better understand the mechanisms that lead to functional dysregulation of pancreatic beta cells. We found upregulation of MAPT protein expression in human insulinomas when compared to human pancreatic islets of Langerhans and an imbalance between MAPT isoforms in insulinomas tissue. We cloned one 3-repeat domain MAPT and transduced this into a beta-cell derived rodent cell line Rin-5F. Proliferation experiments showed higher growth rates and metabolic activities of cells overexpressing MAPT protein. We observed that a MAPT overexpressing cell line demonstrates altered insulin transcription, translation, and insulin secretion rates. We found the relative insulin secretion rates were significantly decreased in a MAPT overexpressing cell line and these findings could be confirmed using partial MAPT knock-down cell lines. Our findings support that MAPT may play an important role in insulin granule trafficking and indicate the importance of balanced MAPT phosphorylation and dephosphorylation for adequate insulin release.

  6. Telomere attrition in beta and alpha cells with age. (United States)

    Tamura, Yoshiaki; Izumiyama-Shimomura, Naotaka; Kimbara, Yoshiyuki; Nakamura, Ken-Ichi; Ishikawa, Naoshi; Aida, Junko; Chiba, Yuko; Matsuda, Yoko; Mori, Seijiro; Arai, Tomio; Fujiwara, Mutsunori; Poon, Steven S S; Ishizaki, Tatsuro; Araki, Atsushi; Takubo, Kaiyo; Ito, Hideki


    We have reported telomere attrition in β and α cells of the pancreas in elderly patients with type 2 diabetes, but it has not been explored how the telomere lengths of these islet cells change according to age in normal subjects. To examine the telomere lengths of β and α cells in individuals without diabetes across a wide range of ages, we conducted measurement of the telomere lengths of human pancreatic β and α cells obtained from 104 autopsied subjects without diabetes ranging in age from 0 to 100 years. As an index of telomere lengths, the normalized telomere-centromere ratio (NTCR) was determined for β (NTCRβ) and α (NTCRα) cells by quantitative fluorescence in situ hybridization (Q-FISH). We found NTCRβ and NTCRα showed almost the same levels and both decreased according to age (p telomeres of β and α cells become shortened with normal aging process.

  7. Transforming growth factor-beta inhibits human antigen-specific CD4(+) T cell proliferation without modulating the cytokine response

    NARCIS (Netherlands)

    Tiemessen, MM; Kunzmann, S; Schmidt-Weber, CB; Garssen, J; Bruijnzeel-Koomen, CAFM; Knol, EF; Van Hoffen, E


    Transforming growth factor (TGF)-beta has been demonstrated to play a key role in the regulation of the immune response, mainly by its suppressive function towards cells of the immune system. In humans, the effect of TGF-beta on antigen-specific established memory T cells has not been investigated y

  8. Cell cycle phase dependent role of DNA polymerase beta in DNA repair and survival after ionizing radiation.

    NARCIS (Netherlands)

    Vermeulen, C.; Verwijs-Janssen, M.; Begg, A.C.; Vens, C.


    PURPOSE: The purpose of the present study was to determine the role of DNA polymerase beta in repair and response after ionizing radiation in different phases of the cell cycle. METHODS AND MATERIALS: Synchronized cells deficient and proficient in DNA polymerase beta were irradiated in different pha

  9. Effects of meal size and composition on incretin, alpha-cell, and beta-cell responses. (United States)

    Rijkelijkhuizen, Josina M; McQuarrie, Kelly; Girman, Cynthia J; Stein, Peter P; Mari, Andrea; Holst, Jens J; Nijpels, Giel; Dekker, Jacqueline M


    The incretins glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) regulate postprandial insulin release from the beta-cells. We investigated the effects of 3 standardized meals with different caloric and nutritional content in terms of postprandial glucose, insulin, glucagon, and incretin responses. In a randomized crossover study, 18 subjects with type 2 diabetes mellitus and 6 healthy volunteers underwent three 4-hour meal tolerance tests (small carbohydrate [CH]-rich meal, large CH-rich meal, and fat-rich meal). Non-model-based and model-based estimates of beta-cell function and incremental areas under the curve of glucose, insulin, C-peptide, glucagon, GLP-1, and GIP were calculated. Mixed models and Friedman tests were used to test for differences in meal responses. The large CH-rich meal and fat-rich meal resulted in a slightly larger insulin response as compared with the small CH-rich meal and led to a slightly shorter period of hyperglycemia, but only in healthy subjects. Model-based insulin secretion estimates did not show pronounced differences between meals. Both in healthy individuals and in those with diabetes, more CH resulted in higher GLP-1 release. In contrast with the other meals, GIP release was still rising 2 hours after the fat-rich meal. The initial glucagon response was stimulated by the large CH-rich meal, whereas the fat-rich meal induced a late glucagon response. Fat preferentially stimulates GIP secretion, whereas CH stimulates GLP-1 secretion. Differences in meal size and composition led to differences in insulin and incretin responses but not to differences in postprandial glucose levels of the well-controlled patients with diabetes.

  10. Rev-erb beta regulates the Srebp-1c promoter and mRNA expression in skeletal muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Sathiya N.; Lau, Patrick; Crowther, Lisa M. [The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Qld 4072 (Australia); Cleasby, Mark E. [Diabetes and Obesity Research Program, Garvan Institute of Medical Research, St. Vincent' s Hospital, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010 (Australia); Millard, Susan; Leong, Gary M. [The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Qld 4072 (Australia); Cooney, Gregory J. [Diabetes and Obesity Research Program, Garvan Institute of Medical Research, St. Vincent' s Hospital, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010 (Australia); Muscat, George E.O., E-mail: [The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Qld 4072 (Australia)


    The nuclear hormone receptor, Rev-erb beta operates as a transcriptional silencer. We previously demonstrated that exogenous expression of Rev-erb{beta}{Delta}E in skeletal muscle cells increased Srebp-1c mRNA expression. We validated these in vitro observations by injection of an expression vector driving Rev-erb{beta}{Delta}E expression into mouse tibialis muscle that resulted in increased Srebp-1c mRNA expression. Paradoxically, Rev-erb{beta} siRNA expression in skeletal muscle cells repressed Srebp-1c expression, and indicated that Rev-erb{beta} expression was necessary for Srebp-1c expression. ChIP analysis demonstrated that Rev-erb{beta} was recruited to the Srebp-1c promoter. Moreover, Rev-erb{beta} trans-activated the Srebp-1c promoter, in contrast, Rev-erb{beta} efficiently repressed the Rev-erb{alpha} promoter, a previously characterized target gene. Finally, treatment with the Rev-erb agonist (hemin) (i) increased the trans-activation of the Srebp-1c promoter by Rev-erb{beta}; and (ii) increased Rev-erb{beta} and Srebp-1c mRNA expression. These data suggest that Rev-erb{beta} has the potential to activate gene expression, and is a positive regulator of Srebp-1c, a regulator of lipogenesis.

  11. Exercise-induced promotion of hippocampal cell proliferation requires beta-endorphin

    NARCIS (Netherlands)

    Koehl, M.; Meerlo, P.; Gonzales, D.; Rontal, A.; Turek, F. W.; Abrous, D. N.


    variety of stimuli, including exercise, but the mechanisms by which running affects neurogenesis are not yet fully understood. Because beta-endorphin, which is released in response to exercise, increases cell proliferation in vitro, we hypothesized that it could exert a similar effect in vivo and me

  12. Reproducibility of beta-cell function estimates in non-insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Gjessing, H J; Damsgaard, E M; Matzen, L E


    urinary C-peptide excretion was 22.1%. Because fasting plasma C-peptide correlated closely with plasma C-peptide 6 min after glucagon (test 1: r = .70, P less than .01; test 2: r = .76, P less than .01), it seems that these two values can be used equally well as assessment of beta-cell function in NIDDM...

  13. The beta-binomial convolution model for 2 × 2 tables with missing cell counts

    NARCIS (Netherlands)

    Eisinga, Rob


    This paper considers the beta-binomial convolution model for the analysis of 2×2 tables with missing cell counts.We discuss maximumlikelihood (ML) parameter estimation using the expectation–maximization algorithm and study information loss relative to complete data estimators. We also examine bias o

  14. Visualizing pancreatic {beta}-cell mass with [{sup 11}C]DTBZ

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Norman Ray [Department of Radiology, Columbia University Medical School, New York, NY 10032 (United States); Souza, Fabiola [Department of Surgery, Columbia University Medical School, New York, NY 10032 (United States); Witkowski, Piotr [Department of Medicine, Columbia University Medical School, New York, NY 10032 (United States); Maffei, Antonella [Institute of Genetics and Biophysics ' Adriano Buzzati-Traverso' , CNR, Naples 80131 (Italy); Raffo, Anthony [Department of Surgery, Columbia University Medical School, New York, NY 10032 (United States); Herron, Alan [Center for Comparative Medicine and The Department of Pathology, Baylor College of Medicine, Houston, TX 77030 (United States); Kilbourn, Michael [Department of Radiology, University of Michigan, Ann Arbor, MI 48109-0638 (United States); Jurewicz, Agata [Department of Radiology, Columbia University Medical School, New York, NY 10032 (United States); Herold, Kevan [Department of Surgery, Columbia University Medical School, New York, NY 10032 (United States); Liu, Eric [Diabetes Branch, NIDDK, National Institutes of Health, Bethesda, MD 20854 (United States); Hardy, Mark Adam [Department of Medicine, Columbia University Medical School, New York, NY 10032 (United States); Van Heertum, Ronald [Department of Radiology, Columbia University Medical School, New York, NY 10032 (United States); Harris, Paul Emerson [Department of Surgery, Columbia University Medical School, New York, NY 10032 (United States)]. E-mail:


    {beta}-Cell mass (BCM) influences the total amount of insulin secreted, varies by individual and by the degree of insulin resistance, and is affected by physiologic and pathologic conditions. The islets of Langerhans, however, appear to have a reserve capacity of insulin secretion and, overall, assessments of insulin and blood glucose levels remain poor measures of BCM, {beta}-cell function and progression of diabetes. Thus, novel noninvasive determinations of BCM are needed to provide a quantitative endpoint for novel therapies of diabetes, islet regeneration and transplantation. Built on previous gene expression studies, we tested the hypothesis that the targeting of vesicular monoamine transporter 2 (VMAT2), which is expressed by {beta} cells, with [{sup 11}C]dihydrotetrabenazine ([{sup 11}C]DTBZ), a radioligand specific for VMAT2, and the use of positron emission tomography (PET) can provide a measure of BCM. In this report, we demonstrate decreased radioligand uptake within the pancreas of Lewis rats with streptozotocin-induced diabetes relative to their euglycemic historical controls. These studies suggest that quantitation of VMAT2 expression in {beta} cells with the use of [{sup 11}C]DTBZ and PET represents a method for noninvasive longitudinal estimates of changes in BCM that may be useful in the study and treatment of diabetes.

  15. Glucagon-like peptide-1 receptor agonist treatment reduces beta cell mass in normoglycaemic mice

    NARCIS (Netherlands)

    Ellenbroek, J.H.; Tons, H.A.; Westerouen van Meeteren, M.J.; de Graaf, N.; Hanegraaf, M.A.; Rabelink, T.J.; Carlotti, F.; de Koning, E.J.


    AIMS/HYPOTHESIS: Incretin-based therapies improve glycaemic control in patients with type 2 diabetes. In animal models of diabetes, glucagon-like peptide-1 receptor agonists (GLP-1RAs) increase beta cell mass. GLP-1RAs are also evaluated in non-diabetic individuals with obesity and cardiovascular di

  16. [New aspects of pancreatic beta cell functions and their possible therapeutic applications]. (United States)

    Tiedge, M


    Using the metabolic stimulus-secretion coupling of pancreatic beta cells as an example, this review illustrates how new strategies in the treatment of type 2 diabetes mellitus can be developed from the results of basic research. Metabolic stimulus-secretion coupling presupposes the metabolizing of those stimuli of insulin secretion that have the properties of nutritional substances. Changes in the ATP/ADP ratio within the beta cells will then trigger the release of insulin granules from them. Glucokinase, a glucose phosphorylating enzyme, functions as a metabolic glucose sensor, which couples changes in physiological glucose concentration in the pancreatic beta cells and in the liver to the intermediary metabolism, i.e. glycolysis, the citrate cycle and respiratory-chain phosphorylation. In this way insulin secretion and hepatic metabolism are positively influenced. Several pharmaceutical companies (Roche, Merck, Astra-Zeneca, Lilly) have recently developed first examples of glucokinase-activating compounds and demonstrated in animal models their efficacy in the treatment of type 2 diabetes mellitus. These glucokinase activators prevent glucokinase from changing into a catalytically inactive structure. They also increase glucose affinity of the enzyme and stabilize a catalytically active form of glucokinase proteins. In this way glucokinase activators increase glucose-induced insulin secretion and inhibit hepatic glucogenesis. Glucokinase activators are an interesting innovation in the future treatment of type 2 diabetes, because their action on beta cells and the liver is caused by changes in blood glucose concentration.

  17. Vitamin D and diabetes: Its importance for beta cell and immune function

    DEFF Research Database (Denmark)

    Wolden-Kirk, Heidi; Overbergh, Lut; Christesen, Henrik Thybo;


    D supplementation may decrease the risk of these disorders. The protective effects of vitamin D are mediated through the regulation of several components such as the immune system and calcium homeostasis. However, an increasing amount of evidence suggests that vitamin D also affects beta cells...

  18. Cytokines and beta-cell biology: from concept to clinical translation

    DEFF Research Database (Denmark)

    Donath, M.Y.; Storling, J.; Berchtold, L.A.;


    The tale of cytokines and the beta-cell is a long story, starting with in vitro discovery in 1984, evolving via descriptive and phenomenological studies to detailed mapping of the signalling pathways, gene- and protein expression patterns, molecular and biochemical effector mechanisms to in vivo...

  19. Beta cell function and BMI in ethnically diverse children with newly diagnosed autoimmune type 1 diabetes (United States)

    The objective of our study was to examine the relationship between BMI and beta-cell function at diagnosis of autoimmune type 1 diabetes (T1D) in a large group of ethnically diverse children. Cross-sectional analysis of 524 children (60.8% White, 19.5% Hispanic, 14.5% African-American, 5.2% other n...

  20. Islet neogenesis: a possible pathway for beta-cell replenishment. (United States)

    Bonner-Weir, Susan; Guo, Lili; Li, Wan-Chun; Ouziel-Yahalom, Limor; Lysy, Philippe A; Weir, Gordon C; Sharma, Arun


    Diabetes, particularly type 1 diabetes, results from the lack of pancreatic β-cells. β-cell replenishment can functionally reverse diabetes, but two critical challenges face the field: 1. protection of the new β-cells from autoimmunity and allorejection, and 2. development of β-cells that are readily available and reliably functional. This chapter will examine the potential of endogenous replenishment of pancreatic β-cells as a possible therapeutic tool if autoimmunity could be blunted. Two pathways for endogenous replenishment exist in the pancreas: replication and neogenesis, defined as the formation of new islet cells from pancreatic progenitor/stem cells. These pathways of β-cell expansion are not mutually exclusive and both occur in embryonic development, in postnatal growth, and in response to some injuries. Since the β-cell population is dramatically reduced in the pancreas of type 1 diabetes patients, with only a small fraction of the β-cells surviving years after onset, replication of preexisting β-cells would not be a reasonable start for replenishment. However, induction of neogenesis could provide a starting population that could be further expanded by replication. It is widely accepted that neogenesis occurs in the initial embryonic formation of the endocrine pancreas, but its occurrence anytime after birth has become controversial because of discordant data from lineage tracing experiments. However, the concept was built upon many observations from different models and species over many years. Herein, we discuss the role of neogenesis in normal growth and regeneration, as learned from rodent models, followed by an analysis of what has been found in humans.

  1. Transforming growth factor-beta inhibits aromatase gene transcription in human trophoblast cells via the Smad2 signaling pathway

    Directory of Open Access Journals (Sweden)

    Fu Guodong


    Full Text Available Abstract Background Transforming growth factor-beta (TGF-beta is known to exert multiple regulatory functions in the human placenta, including inhibition of estrodial production. We have previously reported that TGF-beta1 decreased aromatase mRNA levels in human trophoblast cells. The objective of this study was to investigate the molecular mechanisms underlying the regulatory effect of TGF-beta1 on aromatase expression. Methods To determine if TGF-beta regulates aromatase gene transcription, several reporter constructs containing different lengths of the placental specific promoter of the human aromatase gene were generated. JEG-3 cells were transiently transfected with a promoter construct and treated with or without TGF-beta1. The promoter activity was measured by luciferase assays. To examine the downstream signaling molecule mediating the effect of TGF-beta on aromatase transcription, cells were transiently transfected with dominant negative mutants of TGF-beta type II (TbetaRII and type I receptor (ALK5 receptors before TGF-beta treatment. Smad2 activation was assessed by measuring phophorylated Smad2 protein levels in cytosolic and nuclear fractions. Smad2 expression was silenced using a siRNA expression construct. Finally, aromatase mRNA half-life was determined by treating cells with actinomycin D together with TGF-beta1 and measuring aromatase mRNA levels at various time points after treatment. Results and Discussion TGF-beta1 inhibited the aromatase promoter activity in a time- and dose-dependent manner. Deletion analysis suggests that the TGF-β1 response element resides between -422 and -117 nucleotides upstream from the transcription start site where a Smad binding element was found. The inhibitory effect of TGF-beta1 was blocked by dominant negative mutants of TbetaRII and ALK5. TGF-beta1 treatment induced Smad2 phosphorylation and translocation into the nucleus. On the other hand, knockdown of Smad2 expression reversed the

  2. The transcriptional landscape of alpha beta T cell differentiation

    NARCIS (Netherlands)

    Mingueneau, Michael; Kreslavsky, Taras; Gray, Daniel; Heng, Tracy; Cruse, Richard; Ericson, Jeffrey; Bendall, Sean; Spitzer, Matt; Nolan, Garry; Kobayashi, Koichi; von Boehmer, Harald; Mathis, Diane; Benoist, Christophe; Best, Adam J.; Knell, Jamie; Goldrath, Ananda; Jojic, Vladimir; Koller, Daphne; Shay, Tal; Regev, Aviv; Cohen, Nadia; Brennan, Patrick; Brenner, Michael; Kim, Francis; Rao, Tata Nageswara; Wagers, Amy; Heng, Tracy; Ericson, Jeffrey; Rothamel, Katherine; Ortiz-Lopez, Adriana; Mathis, Diane; Bezman, Natalie A.; Sun, Joseph C.; Min-Oo, Gundula; Kim, Charlie C.; Lanier, Lewis L.; Miller, Jennifer; Brown, Brian; Merad, Miriam; Gautier, Emmanuel L.; Jakubzick, Claudia; Randolph, Gwendalyn J.; Monach, Paul; Blair, David A.; Dustin, Michael L.; Shinton, Susan A.; Hardy, Richard R.; Laidlaw, David; Collins, Jim; Gazit, Roi; Rossi, Derrick J.; Malhotra, Nidhi; Sylvia, Katelyn; Kang, Joonsoo; Kreslavsky, Taras; Fletcher, Anne; Elpek, Kutlu; Bellemare-Pelletier, Angelique; Malhotra, Deepali; Turley, Shannon


    The differentiation of abT cells from thymic precursors is a complex process essential for adaptive immunity. Here we exploited the breadth of expression data sets from the Immunological Genome Project to analyze how the differentiation of thymic precursors gives rise to mature T cell transcriptomes

  3. Transforming growth factor-beta, but not ciliary neurotrophic factor, inhibits DNA synthesis of adrenal medullary cells in vitro

    DEFF Research Database (Denmark)

    Wolf, N; Krohn, K; Bieger, S;


    by the neuroendocrine chromaffin cells, which also express the transforming growth factor-beta receptor type II. In contrast to the developmentally related sympathetic neurons, chromaffin cells continue to proliferate throughout postnatal life. Using 5-bromo-2'-deoxyuridine pulse labeling and tyrosine hydroxylase...... regulator of chromaffin cell division.......Transforming growth factor-betas are members of a superfamily of multifunctional cytokines regulating cell growth and differentiation. Their functions in neural and endocrine cells are not well understood. We show here that transforming growth factor-betas are synthesized, stored and released...

  4. The effect of suppressor of cytokine signaling 3 on GH signaling in beta-cells

    DEFF Research Database (Denmark)

    Rønn, Sif G; Hansen, Johnny A; Lindberg, Karen


    GH is an important regulator of cell growth and metabolism. In the pancreas, GH stimulates mitogenesis as well as insulin production in beta-cells. The cellular effects of GH are exerted mainly through activation of the Janus kinase-signal transducer and activator of transcription (STAT) pathway....... Furthermore, using Northern blot analysis it was shown that SOCS-3 can completely inhibit GH-induced insulin production in these cells. Finally, 5-bromodeoxyuridine incorporation followed by fluorescence-activated cell sorting analysis showed that SOCS-3 inhibits GH-induced proliferation of INS-1 cells...

  5. Connexin 30.2 is expressed in mouse pancreatic beta cells. (United States)

    Coronel-Cruz, C; Hernández-Tellez, B; López-Vancell, R; López-Vidal, Y; Berumen, J; Castell, A; Pérez-Armendariz, E M


    Nowadays, connexin (Cx) 36 is considered the sole gap junction protein expressed in pancreatic beta cells. In the present research we investigated the expression of Cx30.2 mRNA and protein in mouse pancreatic islets. Cx30.2 mRNA and protein were identified in isolated islet preparations by qRT-PCR and Western blot, respectively. Immunohistochemical analysis showed that insulin-positive cells were stained for Cx30.2. Confocal images from double-labeled pancreatic sections revealed that Cx30.2 and Cx36 fluorescence co-localize at junctional membranes in islets from most pancreases. Abundant Cx30.2 tiny reactive spots were also found in cell cytoplasms. In beta cells cultured with stimulatory glucose concentrations, Cx30.2 was localized in both cytoplasms and cell membranes. In addition, Cx30.2 reactivity was localized at junctional membranes of endothelial or cluster of differentiation 31 (CD31) positive cells. Moreover, a significant reduction of Cx30.2 mRNA was found in islets preparations incubated for 24h in 22mM as compared with 3.3mM glucose. Therefore, it is concluded that Cx30.2 is expressed in beta and vascular endothelial cells of mouse pancreatic islets.

  6. Research of TGF-beta1 Inducing Lung Adencarcinoma PC9 Cells to Mesenchymal Cells Transition

    Directory of Open Access Journals (Sweden)

    Xiaofeng CHEN


    Full Text Available Background and objective It has been proven that epithelial-mesenchymal transition (EMT not only correlated with embryonic development but also could promote tumor invasion and metastasis. Transforming growth factor beta-1 (TGF-β1 has been identified as the main inducer of tumor EMT. The aim of this study was to investigate the effects of TGF-β1 on EMT and PI3K/AKT signaling pathway in lung adencarcinoma PC9 cells. Methods Cultured PC9 cells were treated with different concentrations of TGF-β1 for 48 h. The morphological changes were observed under phase-contrast microscopy; EMT relative marker protein changes were assessed by Western blot and immunoflurescence staining. In addition, the expression of AKT and P-AKT were also measured by Western blot. Results The data showed that TGF-β1 could induce PC9 morphological alteration from epithelial to mesenchymal and upregulate the expression of mesenchymal maker protein Fibronectin. Obviously, the expression of P-AKT was downregulated by TGF-β1 treatment for 48 h. Conclusion TGF-β1 might induce EMT of PC9 cells , accompanied by the changes of PI3K/AKT signaling pathway.

  7. Evidence for the molecular heterogeneity of sickle cell anemia chromosomes bearing the betaS/Benin haplotype. (United States)

    Patrinos, George P; Samperi, Piera; Lo Nigro, Luca; Kollia, Panagoula; Schiliro, Gino; Papadakis, Manoussos N


    There are at least four distinct African and one Asian chromosomal backgrounds (haplotypes) on which the sickle cell mutation has arisen. Additionally, previous data suggest that the beta(S)/Bantu haplotype is heterogeneous at the molecular level. Here, we report the presence of the (A)gamma -499 T-->A variation in sickle cell anemia chromosomes of Sicilian and North African origin bearing the beta(S)/Benin haplotype. Being absent from North American beta(S)/Benin chromosomes, which were studied previously, this variation is indicative for the molecular heterogeneity of the beta(S)/Benin haplotype.

  8. Electromotive force measurements on cells involving beta-alumina solid electrolyte (United States)

    Choudhury, N. S.


    Open-circuit emf measurements have been made to demonstrate that a two-phase, polycrystalline mixture of beta-alumina and alpha-alumina could be used as a solid electrolyte in galvanic cells with reversible electrodes fixing oxygen or aluminum chemical potentials. These measurements indicate that such a two-phase solid electrolyte may be used to monitor oxygen chemical potentials as low as that corresponding to Al and Al2O3 coexistence (potentials of about 10 to the minus 47th power atm at 1000 K). The activity of Na2O in beta-alumina in coexistence with alpha-alumina was also determined by emf measurements.

  9. Enhanced thermal stability of lysosomal beta-D-galactosidase in parenchymal cells of tumour bearing mice.



    The thermal stability of the enzyme beta-D-galactosidase varies among different organs in normal C57Bl/6 mice, and increases in the same organs in mice with Lewis Lung carcinoma. Thermal stability of this enzyme is also increased by treatment of the mice with cell-free extracts of tumour cells or with inflammatory compounds such as carrageenan or orosomucoid. After desialylation, orosomucoid more effectively increases the heat stability of the enzyme. By contrast talc, which has no galactosyl...

  10. Effects of beta interferon on human fibroblasts at different population doubling levels. Proliferation, cell volume, thymidine uptake, and DNA synthesis



    Cellular aging had no effect on the ability of beta interferon to increase cell volume and population doubling time in 76-109 cells, a line of human skin fibroblasts. However, DNA synthesis in cells at high population doubling levels (PDL 55-70) was inhibited after 72 h of beta interferon treatment (1,000 U/ml) while no inhibition of DNA synthesis was observed in cells at middle population doubling levels (PDL 30-40).

  11. Islet Stellate Cells Isolated from Fibrotic Islet of Goto-Kakizaki Rats Affect Biological Behavior of Beta-Cell

    Directory of Open Access Journals (Sweden)

    Feng-Fei Li


    Full Text Available We previously isolated islet stellate cells (ISCs from healthy Wistar rat islets. In the present study, we isolated “already primed by diabetic environment” ISCs from islets of Goto-Kakizaki rats, determined the gene profile of these cells, and assessed the effects of these ISCs on beta-cell function and survival. We detected gene expression of ISCs by digital gene expression. INS-1 cell proliferation, apoptosis, and insulin production were measured after being treated with ISCs supernatant (SN. We observed the similar expression pattern of ISCs and PSCs, but 1067 differentially expressed genes. Insulin production in INS-1 cells cultured with ISC-SN was significantly reduced. The 5-ethynyl-2′-deoxyuridine-positive INS-1 cells treated with ISC-SN were decreased. Propidium iodide- (PI- positive INS-1 cells were 2.6-fold higher than those in control groups. Caspase-3 activity was increased. In conclusion, ISCs presented in fibrotic islet of GK rats might be special PSCs, which impaired beta-cell function and proliferation and increased beta-cell apoptosis.

  12. Globin gene transfer for treatment of the beta-thalassemias and sickle cell disease. (United States)

    Sadelain, Michel; Rivella, Stefano; Lisowski, Leszek; Samakoglu, Selda; Rivière, Isabelle


    The beta-thalassemias and sickle cell disease are severe congenital anemias that are caused by mutations that alter the production of the beta chain of hemoglobin. Allogeneic hematopoietic stem cell (HSC) transplantation is curative, but this therapeutic option is not available to the majority of patients. The transfer of a functional globin gene in autologous HCSs thus represents a highly attractive alternative treatment. This strategy, simple in principle, raises major challenges in terms of controlling the expression of the globin transgene, which ideally should be erythroid specific, differentiation-stage restricted, elevated, position independent, and sustained over time. Using lentiviral vectors, we have demonstrated that an optimised combination of proximal and distal transcriptional control elements permits lineage-specific, elevated expression of the beta-globin gene, resulting in therapeutic hemoglobin production and correction of anemia in beta-thalassemic mice. Several groups have now confirmed and extended these findings in various mouse models of severe hemoglobinopathies, thus generating enthusiasm for a genetic treatment based on globin gene transfer. Furthermore, globin vectors represent a general paradigm for the regulation of transgene function and the improvement of vector safety by restricting transgene expression to the differentiated progeny within a single lineage, thereby reducing the risk of activating oncogenes in hematopoietic progenitors. Here we review the principles underlying the genesis of regulated vectors for stem cell therapy.

  13. Nonblack patients with sickle cell disease have African. beta. sup s gene cluster haplotypes

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Z.R.; Powars, D.R.; Williams, W.D. (Univ. of Southern California School of Medicine, Los Angeles (USA)); Kinney, T.R. (Duke Univ., Durham, NC (USA)); Schroeder, W.A. (California Institute of Technology, Pasadena (USA))


    Of 18 nonblack patients with sickle cell disease, 14 had sickle cell anemia, 2 had hemoglobin SC disease, and 2 had hemoglobin S-{beta}{sup o}-thalassemia. The {beta}{sup s} gene cluster haplotypes that were determined in 7 patients were of African origin and were identified as Central African Republic, Central African Republic minor II, Benin, and Senegal. The haplotype Central African Republic minor II was present on the {beta}{sup o}-thalassemia chromosome in 2 patients. None of 10 patients whose {alpha}-gene status was determined had {alpha}-thalassemia-2. These data strongly support the concept that the {beta}{sup s} gene on chromosome 11 of these individuals is of African origin and that the {alpha}-gene locus on chromosome 16 is of white or native American origin. The clinical severity of the disease in these nonblack patients is appropriate to their haplotype without {alpha}-thalassemia-2 and is comparable with that of black patients. All persons with congenital hemolytic anemia should be examined for the presence of sickle cell disease regardless of physical appearance or ethnic background.

  14. Molecular analysis of T-cell receptor beta genes in cutaneous T-cell lymphoma reveals Jbeta1 bias. (United States)

    Morgan, Suzanne M; Hodges, Elizabeth; Mitchell, Tracey J; Harris, Susan; Whittaker, Sean J; Smith, John L


    Molecular characterization of T-cell receptor junctional region sequences in cutaneous T-cell lymphoma had not been previously reported. We have examined in detail the features of the T-cell receptor beta (TCRB) gene rearrangements in 20 individuals with well-defined stages of cutaneous T-cell lymphoma (CTCL) comprising 10 cases with early-stage mycosis fungoides (MF) and 10 cases with late-stage MF or Sezary syndrome. Using BIOMED-2 PCR primers, we detected a high frequency of clonally rearranged TCR gamma and TCRB genes (17/20 and 15/20 cases, respectively). We carried out sequencing analysis of each complete clonal variable (V)beta-diversity (D)beta-joining(J)beta fingerprint generated by PCR amplification, and determined the primary structure of the Vbeta-Dbeta-Jbeta junctional regions. We observed considerable diversity in the T-cell receptor Vbeta gene usage and complementarity-determining region 3 loops. Although we found that TCRB gene usage in CTCL and normal individuals share common features, our analysis also revealed preferential usage of Jbeta1 genes in all cases with advanced stages of disease.

  15. Dystrophin Dp71f associates with the beta1-integrin adhesion complex to modulate PC12 cell adhesion. (United States)

    Cerna, Joel; Cerecedo, Doris; Ortega, Arturo; García-Sierra, Francisco; Centeno, Federico; Garrido, Efrain; Mornet, Dominique; Cisneros, Bulmaro


    Dystrophin Dp71 is the main product of the Duchenne muscular dystrophy gene in the brain; however, its function is unknown. To study the role of Dp71 in neuronal cells, we previously generated by antisense treatment PC12 neuronal cell clones with decreased Dp71 expression (antisense-Dp71 cells). PC12 cells express two different splicing isoforms of Dp71, a cytoplasmic variant called Dp71f and a nuclear isoform called Dp71d. We previously reported that antisense-Dp71 cells display deficient adhesion to substrate and reduced immunostaining of beta1-integrin in the cell area contacting the substrate. In this study, we isolated additional antisense-Dp71 clones to analyze in detail the potential involvement of Dp71f isoform with the beta1-integrin adhesion system of PC12 cells. Immunofluorescence analyses as well as immunoprecipitation assays demonstrated that the PC12 cell beta1-integrin adhesion complex is composed of beta1-integrin, talin, paxillin, alpha-actinin, FAK and actin. In addition, our results showed that Dp71f associates with most of the beta1-integrin complex components (beta1-integrin, FAK, alpha-actinin, talin and actin). In the antisense-Dp71 cells, the deficiency of Dp71 provokes a significant reduction of the beta1-integrin adhesion complex and, consequently, the deficient adhesion of these cells to laminin. In vitro binding experiments confirmed the interaction of Dp71f with FAK and beta1-integrin. Our data indicate that Dp71f is a structural component of the beta1-integrin adhesion complex of PC12 cells that modulates PC12 cell adhesion by conferring proper complex assembly and/or maintenance.

  16. Kinetics of cell lysis for Microcystis aeruginosa and Nitzschia palea in the exposure to {beta}-cyclocitral

    Energy Technology Data Exchange (ETDEWEB)

    Chang, De-Wei; Hsieh, Meng-Ling [Department of Environmental Engineering, National Cheng Kung University, Tainan City 70101, Taiwan (China); Chen, Yan-Min [Sustainable Environment Research Center, National Cheng Kung University, Tainan City 70101, Taiwan (China); Lin, Tsair-Fuh, E-mail: [Department of Environmental Engineering, National Cheng Kung University, Tainan City 70101, Taiwan (China); Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan (China)


    The effect of an algal metabolite, {beta}-cyclocitral, on the cell integrity of two cyanobacteria and one diatom was investigated. The cyanobacteria, Microcystis aeruginosa PCC 7005 and PCC 7820, and the diatom, Nitzschia palea, were exposed to various concentrations of {beta}-cyclocitral. Scanning electron microscope (SEM) results indicate that the cells of tested species were greatly altered after being exposed to {beta}-cyclocitral. A flow cytometer coupled with the SYTOX stain and chlorophyll-a auto-fluorescence was used to quantify the effect of {beta}-cyclocitral on cell integrity for the tested cyanobacteria and diatom. Kinetic experiments show that about 5-10 mg L{sup -1} of {beta}-cyclocitral for the two M. aeruginosa strains and a much lower concentration, 0.1-0.5 mg L{sup -1}, for N. palea were needed to cause 15-20% of cells to rupture. When the {beta}-cyclocitral concentration was increased to 200-1000 mg L{sup -1} for M. aeruginosa and 5-10 mg L{sup -1} for N. palea, almost all the cells ruptured between 8 and 24 h. A first-order kinetic model is able to describe the data of cell integrity over time. The extracted rate constant values well correlate with the applied {beta}-cyclocitral dosages. The obtained kinetic parameters may be used to estimate {beta}-cyclocitral dosage and contact time required for the control of cyanobacteria and diatoms in water bodies.

  17. Fetal and adult hematopoietic stem cells require beta1 integrin function for colonizing fetal liver, spleen, and bone marrow

    DEFF Research Database (Denmark)

    Potocnik, A J; Brakebusch, C; Fässler, R


    Homing of hematopoietic stem cells (HSCs) into hematopoietic organs is a prerequisite for the establishment of hematopoiesis during embryogenesis and after bone marrow transplantation. We show that beta1 integrin-deficient HSCs from the para-aortic splanchnopleura and the fetal blood had...... hematolymphoid differentiation potential in vitro and in fetal organ cultures but were unable to seed fetal and adult hematopoietic tissues. Adult beta1 integrin null HSCs isolated from mice carrying loxP-tagged beta1 integrin alleles and ablated for beta1 integrin expression by retroviral cre transduction...... failed to engraft irradiated recipient mice. Moreover, absence of beta1 integrin resulted in sequestration of HSCs in the circulation and their reduced adhesion to endothelioma cells. These findings define beta1 integrin as an essential adhesion receptor for the homing of HSCs....

  18. Factors associated with beta-cell dysfunction in type 2 diabetes: the BETADECLINE study.

    Directory of Open Access Journals (Sweden)

    Giuseppina T Russo

    Full Text Available AIMS: Beta-cell dysfunction is an early event in the natural history of type 2 diabetes. However, its progression is variable and potentially influenced by several clinical factors. We report the baseline data of the BetaDecline study, an Italian prospective multicenter study on clinical predictors of beta-cell dysfunction in type 2 diabetes. MATERIALS AND METHODS: Clinical, lifestyle, and laboratory data, including circulating levels of inflammatory markers and non-esterified fatty acids, were collected in 507 type 2 diabetic outpatients on stable treatment with oral hypoglycemic drugs or diet for more than 1 year. Beta-cell dysfunction was evaluated by calculating the proinsulin/insulin ratio (P/I. RESULTS: At baseline, the subjects in the upper PI/I ratio quartile were more likely to be men and receiving secretagogue drugs; they also showed a borderline longer diabetes duration (P = 0.06 and higher serum levels of glycated hemoglobin (HbA1c, fasting blood glucose, and triglycerides. An inverse trend across all PI/I quartiles was noted for BMI and serum levels of total cholesterol (T-C, LDL-C, HDL-C and C reactive protein (CRP, and with homeostatic model assessment (HOMA-B and HOMA of insulin resistance (HOMA-IR values (P<0.05 for all. At multivariate analysis, the risk of having a P/I ratio in the upper quartile was higher in the subjects on secretagogue drugs (odds ratio [OR] 4.2; 95% confidence interval [CI], 2.6-6.9 and in the males (OR 1.8; 95% CI, 1.1-2.9. CONCLUSIONS: In the BetaDecline study population, baseline higher PI/I values, a marker of beta-cell dysfunction, were more frequent in men and in patients on secretagogues drugs. Follow-up of this cohort will allow the identification of clinical predictors of beta-cell failure in type 2 diabetic outpatients.

  19. Beta1 integrins activate a MAPK signalling pathway in neural stem cells that contributes to their maintenance

    DEFF Research Database (Denmark)

    Campos, Lia S; Leone, Dino P; Relvas, Joao B;


    The emerging evidence that stem cells develop in specialised niches highlights the potential role of environmental factors in their regulation. Here we examine the role of beta1 integrin/extracellular matrix interactions in neural stem cells. We find high levels of beta1 integrin expression...... in the stem-cell containing regions of the embryonic CNS, with associated expression of the laminin alpha2 chain. Expression levels of laminin alpha2 are reduced in the postnatal CNS, but a population of cells expressing high levels of beta1 remains. Using neurospheres - aggregate cultures, derived from...... single stem cells, that have a three-dimensional architecture that results in the localisation of the stem cell population around the edge of the sphere - we show directly that beta1 integrins are expressed at high levels on neural stem cells and can be used for their selection. MAPK, but not PI3K...

  20. Molecular cloning and functional characterization of beta-N-acetylglucosaminidase genes from Sf9 cells. (United States)

    Aumiller, Jared J; Hollister, Jason R; Jarvis, Donald L


    Sf9, a cell line derived from the lepidopteran insect, Spodoptera frugiperda, is widely used as a host for recombinant glycoprotein expression and purification by baculovirus vectors. Previous studies have shown that this cell line has one or more beta-N-acetylglucosaminidase activities that may be involved in the degradation and/or processing of N-glycoprotein glycans. However, these enzymes and their functions remain poorly characterized. Therefore, the goal of this study was to isolate beta-N-acetylglucosaminidase genes from Sf9 cells, over-express the gene products, and characterize their enzymatic activities. A degenerate PCR approach yielded three Sf9 cDNAs, which appeared to encode two distinct beta-N-acetylglucosaminidases, according to bioinformatic analyses. Baculovirus-mediated expression of these two cDNA products induced membrane-associated beta-N-acetylglucosaminidase activities in Sf9 cells, which cleaved terminal N-acetylglucosamine residues from the alpha-3 and -6 branches of a biantennary N-glycan substrate with acidic pH optima and completely hydrolyzed chitotriose to its constituent N-acetylglucosamine monomers. GFP-tagged forms of both enzymes exhibited punctate cytoplasmic fluorescence, which did not overlap with either lysosomal or Golgi-specific dyes. Together, these results indicated that the two new Sf9 genes identified in this study encode broad-spectrum beta-N-acetylglucosaminidases that appear to have unusual intracellular distributions. Their relative lack of substrate specificity and acidic pH optima are consistent with a functional role for these enzymes in glycoprotein glycan and chitin degradation, but not with a role in N-glycoprotein glycan processing.

  1. A beta-induced meningoencephalitis is IFN-gammadependent and is associated with T cell-dependent clearance of A beta in a mouse model of Alzheimer's disease

    DEFF Research Database (Denmark)

    Monsonego, Alon; Imitola, Jaime; Petrovic, Sanja;


    Vaccination against amyloid beta-peptide (Abeta) has been shown to be successful in reducing Abeta burden and neurotoxicity in mouse models of Alzheimer's disease (AD). However, although Abeta immunization did not show T cell infiltrates in the brain of these mice, an Abeta vaccination trial resu...... to promote T cell-mediated immune infiltrates after Abeta immunization and provides a model to investigate both the beneficial and detrimental effects of Abeta-specific T cells....

  2. A Novel Anti-Beta2-Microglobulin Antibody Inhibition of Androgen Receptor Expression, Survival, and Progression in Prostate Cancer Cells (United States)


    308. 3. Gussow D, Rein R, Ginjaar I, et al. The human beta 2-microglobulin gene. Primary structure and definition of the transcriptional unit. J...microglobulin. Biochemistry 1973;12:4811–22. 3. Gussow D, Rein R, Ginjaar I, Hochstenbach F, Seemann G, Kottman A, et al. The human beta 2...Beta(2)-microglobulin and bone cell metabo- lism. Nephrol Dial Transplant 2001;16:1108–11. 34. Mundy GR. Metastasis to bone: causes, consequences

  3. Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic beta-cell turnover and function


    Maedler, Kathrin; Oberholzer, José; Bucher, Pascal Alain Robert; Spinas, Giatgen A.; Donath, Marc


    Glucotoxicity and lipotoxicity contribute to the impaired beta-cell function observed in type 2 diabetes. Here we examine the effect of saturated and monounsaturated fatty acids at different glucose concentrations on human beta-cell turnover and secretory function. Exposure of cultured human islets to saturated fatty acid and/or to an elevated glucose concentration for 4 days increased beta-cell DNA fragmentation and decreased beta-cell proliferation. In contrast, the monounsaturated palmitol...

  4. Glucose Driven Changes in Beta Cell Identity Are Important for Function and Possibly Autoimmune Vulnerability during the Progression of Type 1 Diabetes (United States)

    Weir, Gordon C.; Bonner-Weir, Susan


    This commentary explores the hypothesis that when autoimmunity leads to a fall of beta cell mass during the progression of type 1 diabetes (T1D), rising glucose levels cause major changes in beta cell identity. This then leads to profound changes in secretory function and less well-understood changes in beta cell susceptibility to autoimmune destruction, which may influence of rate of progression of beta cell killing. PMID:28174593

  5. In beta-cells, mitochondria integrate and generate metabolic signals controlling insulin secretion. (United States)

    Maechler, Pierre; Carobbio, Stefania; Rubi, Blanca


    Pancreatic beta-cells are unique neuroendocrine cells displaying the peculiar feature of responding to nutrients, principally glucose, as primary stimulus. This requires translation of a metabolic substrate into intracellular messengers recognized by the exocytotic machinery. Central to this signal transduction mechanism, mitochondria integrate and generate metabolic signals, thereby coupling glucose recognition to insulin secretion. In response to a glucose rise, nucleotides and metabolites are generated by mitochondria and participate, together with cytosolic calcium, to the stimulation of insulin exocytosis. This review describes the mitochondrion-dependent pathways of regulated insulin secretion. In particular, importance of cataplerotic and anaplerotic processes is discussed, with special attention to the mitochondrial enzyme glutamate dehydrogenase. Mitochondrial defects, such as mutations and reactive oxygen species production, are presented in the context of beta-cell failure in the course of type 2 diabetes.

  6. N-cadherin is dispensable for pancreas development but required for beta-cell granule turnover. (United States)

    Johansson, Jenny K; Voss, Ulrikke; Kesavan, Gokul; Kostetskii, Igor; Wierup, Nils; Radice, Glenn L; Semb, Henrik


    The cadherin family of cell adhesion molecules mediates adhesive interactions that are required for the formation and maintenance of tissues. Previously, we demonstrated that N-cadherin, which is required for numerous morphogenetic processes, is expressed in the pancreatic epithelium at E9.5, but later becomes restricted to endocrine aggregates in mice. To study the role of N-cadherin during pancreas formation and function we generated a tissue-specific knockout of N-cadherin in the early pancreatic epithelium by inter-crossing N-cadherin-floxed mice with Pdx1Cre mice. Analysis of pancreas-specific ablation of N-cadherin demonstrates that N-cadherin is dispensable for pancreatic development, but required for beta-cell granule turnover. The number of insulin secretory granules is significantly reduced in N-cadherin-deficient beta-cells, and as a consequence insulin secretion is decreased.

  7. Effect of beta-adrenergic stimulants on cytotoxicity of mitomycin C in HeLa cells. (United States)

    Miyamoto, K; Sanae, F; Iwasaki, M; Koshiura, R


    Effects of several autonomic agents on the cytotoxicity of mitomycin C in HeLa cells were studied. When beta-adrenergic stimulants such as isoproterenol, epinephrine, terbutaline and turobuterol were added at concentrations over 10(-14) M 15 to 60 min before mitomycin C, the colony-forming ability of HeLa cells was significantly inhibited more than by mitomycin C alone. The action of isoproterenol and epinephrine on the colony-forming ability of the cells was abolished by propranolol. The intracellular cyclic AMP level of HeLa cells reached the peak of about two-fold the basal level at 30 min after the addition of 10(-8) M isoproterenol. In combination with mitomycin C, the high level of intracellular cyclic AMP induced by isoproterenol was maintained for a significantly longer period in comparison with that by isoproterenol alone, while mitomycin C alone caused essentially no change in the cyclic AMP level. The pretreatment with dibutyryl cyclic AMP also enhanced the effect of mitomycin C. From these findings, it is strongly suggested that the synergistic effect of beta-adrenergic stimulants on the cytotoxicity of mitomycin C is mediated via stimulation of the beta-adrenoceptors of HeLa cells which elevates the intracellular cyclic AMP for a long time in combination with mitomycin C.

  8. Neurofilament heavy polypeptide regulates the Akt-beta-catenin pathway in human esophageal squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Myoung Sook Kim

    Full Text Available Aerobic glycolysis and mitochondrial dysfunction are common features of aggressive cancer growth. We observed promoter methylation and loss of expression in neurofilament heavy polypeptide (NEFH in a significant proportion of primary esophageal squamous cell carcinoma (ESCC samples that were of a high tumor grade and advanced stage. RNA interference-mediated knockdown of NEFH accelerated ESCC cell growth in culture and increased tumorigenicity in vivo, whereas forced expression of NEFH significantly inhibited cell growth and colony formation. Loss of NEFH caused up-regulation of pyruvate kinase-M2 type and down-regulation of pyruvate dehydrogenase, via activation of the Akt/beta-catenin pathway, resulting in enhanced aerobic glycolysis and mitochondrial dysfunction. The acceleration of glycolysis and mitochondrial dysfunction in NEFH-knockdown cells was suppressed in the absence of beta-catenin expression, and was decreased by the treatment of 2-Deoxyglucose, a glycolytic inhibitor, or API-2, an Akt inhibitor. Loss of NEFH activates the Akt/beta-catenin pathway and increases glycolysis and mitochondrial dysfunction. Cancer cells with methylated NEFH can be targeted for destruction with specific inhibitors of deregulated downstream pathways.

  9. [Analysis of the effect of diabetes type 2 duration on beta cell secretory function and insulin resistance]. (United States)

    Popović, Ljiljana; Zamaklar, Miroslava; Lalić, Katarina; Vasović, Olga


    Diabetes type 2 is a chronic metabolic disorder. Pathogenesis of diabetes type 2 results from the impaired insulin secretion, impaired insulin action and increased endogenous glucose production. Diabetes evolves through several phases characterized by qualitative and quantitative changes of beta cell secretory function. The aim of our study was to analyze the impact of diabetes duration on beta cell secretory function and insulin resistance. The results indicated significant negative correlation of diabetes duration and fasting insulinemia, as well as beta cell secretory function assessed by HOMA beta index. Our study also found significant negative correlation of diabetes duration and insulin resistance assessed by HOMA IR index. Significant positive correlation was established between beta cell secretory capacity (fasting insulinemia and HOMA beta) and insulin resistance assessed by HOMA IR index, independently of diabetes duration. These results indicate that: beta cell secretory capacity, assessed by HOMA beta index, significantly decreases with diabetes duration. In parallel with decrease of fasting insulinemia, reduction of insulin resistance assessed by HOMA IR index was found as well.

  10. Crystal Structure of Staphylococcal Enterotoxin G (SEG) in Complex with a Mouse T-cell Receptor Beta Chain

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, M.M.; Robinson, H.; Cho, S.; De Marzi, M. C.; Kerzic, M. C.; Mariuzza, R. A.; Malchiodi, E. L.


    Superantigens (SAgs) are bacterial or viral toxins that bind MHC class II (MHC-II) molecules and T-cell receptor (TCR) in a nonconventional manner, inducing T-cell activation that leads to inflammatory cytokine production, which may result in acute toxic shock. In addition, the emerging threat of purpura fulminans and community-associated meticillin-resistant Staphylococcus aureus emphasizes the importance of a better characterization of SAg binding to their natural ligands that may allow the development of reagents to neutralize their action. The three-dimensional structure of the complex between a mouse TCR {beta} chain (mV{beta}8.2) and staphylococcal enterotoxin G (SEG) at 2.0 {angstrom} resolution revealed a binding site that does not conserve the 'hot spots' present in mV{beta}8.2-SEC2, mV{beta}8.2-SEC3, mV{beta}8.2-SEB, and mV{beta}8.2-SPEA complexes. Analysis of the mV{beta}8.2-SEG interface allowed us to explain the higher affinity of this complex compared with the others, which may account for the early activation of T-cells bearing mV{beta}8.2 by SEG. This mode of interaction between SEG and mV{beta}8.2 could be an adaptive advantage to bestow on the pathogen a faster rate of colonization of the host.

  11. Induction of nuclear factor-kappaB and its downstream genes by TNF-alpha and IL-1beta has a pro-apoptotic role in pancreatic beta cells

    DEFF Research Database (Denmark)

    Ortis, F; Pirot, P; Naamane, N


    AIMS/HYPOTHESIS: IL-1beta and TNF-alpha contribute to pancreatic beta cell death in type 1 diabetes. Both cytokines activate the transcription factor nuclear factor-kappaB (NF-kappaB), but recent observations suggest that NF-kappaB blockade prevents IL-1beta + IFN-gamma- but not TNF-alpha + IFN-g...

  12. Beta-catenin relieves I-mfa-mediated suppression of LEF-1 in mammalian cells. (United States)

    Pan, Weijun; Jia, Yingying; Huang, Tao; Wang, Jiyong; Tao, Donglei; Gan, Xiaoqing; Li, Lin


    We have previously shown that beta-catenin interacts with a transcription suppressor I-mfa and, through this interaction, canonical Wnt signaling could relieve I-mfa-mediated suppression of myogenic regulatory factors (MRFs). In this study, we found that, based on this interaction, I-mfa-mediated suppression of the Wnt transcription factor T-cell factor/lymphoid enhancing factor-1 (TCF/LEF-1) can also be relieved. Our work showed that knocking down endogenous I-mfa expression mimics canonical Wnt treatment by inducing myogenesis and increasing Wnt reporter gene activity, endogenous Wnt target gene expression and expression of MRFs in P19 cells. More importantly, these I-mfa small interfering RNA (siRNA)-induced effects could be blocked by a dominant-negative mutant of LEF-1, confirming the involvement of the TCF/LEF-1 pathway. In addition, we found that beta-catenin could compete with I-mfa for binding to LEF-1 and relieve the inhibitory effects of I-mfa in overexpression systems. Furthermore, canonical Wnt was able to reduce the levels of endogenous I-mfa associated with LEF-1, while increasing that of I-mfa associated with beta-catenin. All of the evidence supports a conclusion that I-mfa can suppress myogenesis by inhibiting TCF/LEF-1 and that canonical Wnt signaling may relieve the suppression through elevating beta-catenin levels, which in turn relieve I-mfa-mediated suppression.

  13. An Abbreviated Protocol for In Vitro Generation of Functional Human Embryonic Stem Cell-Derived Beta-Like Cells (United States)

    Massumi, Mohammad; Pourasgari, Farzaneh; Nalla, Amarnadh; Batchuluun, Battsetseg; Nagy, Kristina; Neely, Eric; Gull, Rida; Nagy, Andras; Wheeler, Michael B.


    The ability to yield glucose-responsive pancreatic beta-cells from human pluripotent stem cells in vitro will facilitate the development of the cell replacement therapies for the treatment of Type 1 Diabetes. Here, through the sequential in vitro targeting of selected signaling pathways, we have developed an abbreviated five-stage protocol (25–30 days) to generate human Embryonic Stem Cell-Derived Beta-like Cells (ES-DBCs). We showed that Geltrex, as an extracellular matrix, could support the generation of ES-DBCs more efficiently than that of the previously described culture systems. The activation of FGF and Retinoic Acid along with the inhibition of BMP, SHH and TGF-beta led to the generation of 75% NKX6.1+/NGN3+ Endocrine Progenitors. The inhibition of Notch and tyrosine kinase receptor AXL, and the treatment with Exendin-4 and T3 in the final stage resulted in 35% mono-hormonal insulin positive cells, 1% insulin and glucagon positive cells and 30% insulin and NKX6.1 co-expressing cells. Functionally, ES-DBCs were responsive to high glucose in static incubation and perifusion studies, and could secrete insulin in response to successive glucose stimulations. Mitochondrial metabolic flux analyses using Seahorse demonstrated that the ES-DBCs could efficiently metabolize glucose and generate intracellular signals to trigger insulin secretion. In conclusion, targeting selected signaling pathways for 25–30 days was sufficient to generate ES-DBCs in vitro. The ability of ES-DBCs to secrete insulin in response to glucose renders them a promising model for the in vitro screening of drugs, small molecules or genes that may have potential to influence beta-cell function. PMID:27755557

  14. Ionizing radiation predisposes non-malignant human mammaryepithelial cells to undergo TGF beta-induced epithelial to mesenchymaltransition

    Energy Technology Data Exchange (ETDEWEB)

    Andarawewa, Kumari L.; Erickson, Anna C.; Chou, William S.; Costes, Sylvain; Gascard, Philippe; Mott, Joni D.; Bissell, Mina J.; Barcellos-Hoff, Mary Helen


    Transforming growth factor {beta}1 (TGF{beta}) is a tumor suppressor during the initial stage of tumorigenesis, but it can switch to a tumor promoter during neoplastic progression. Ionizing radiation (IR), both a carcinogen and a therapeutic agent, induces TGF{beta}, activation in vivo. We now show that IR sensitizes human mammary epithelial cells (HMEC) to undergo TGF{beta}-mediated epithelial to mesenchymal transition (EMT). Non-malignant HMEC (MCF10A, HMT3522 S1 and 184v) were irradiated with 2 Gy shortly after attachment in monolayer culture, or treated with a low concentration of TGF{beta} (0.4 ng/ml), or double-treated. All double-treated (IR+TGF{beta}) HMEC underwent a morphological shift from cuboidal to spindle-shaped. This phenotype was accompanied by decreased expression of epithelial markers E-cadherin, {beta}-catenin and ZO-1, remodeling of the actin cytoskeleton, and increased expression of mesenchymal markers N-cadherin, fibronectin and vimentin. Furthermore, double-treatment increased cell motility, promoted invasion and disrupted acinar morphogenesis of cells subsequently plated in Matrigel{trademark}. Neither radiation nor TGF{beta} alone elicited EMT, even though IR increased chronic TGF{beta} signaling and activity. Gene expression profiling revealed that double treated cells exhibit a specific 10-gene signature associated with Erk/MAPK signaling. We hypothesized that IR-induced MAPK activation primes non-malignant HMEC to undergo TGF{beta}-mediated EMT. Consistent with this, Erk phosphorylation were transiently induced by irradiation, persisted in irradiated cells treated with TGF{beta}, and treatment with U0126, a Mek inhibitor, blocked the EMT phenotype. Together, these data demonstrate that the interactions between radiation-induced signaling pathways elicit heritable phenotypes that could contribute to neoplastic progression.

  15. Effect of environmental estrogens on IL-1beta promoter activity in a macrophage cell line. (United States)

    Ruh, M F; Bi, Y; Cox, L; Berk, D; Howlett, A C; Bellone, C J


    Environmental estrogens or estrogen disrupters have recently received a great deal of attention because of their potential health impact on reproductive tissues. Few, if any, studies have been made on the impact of these compounds on the immune system. We sought to determine the activities of various environmental estrogens on the modulation of the interleukin-1beta (IL-1beta) gene in a model monocytic cell line, hER + IL-1beta-CAT+. This cell line stably transfected with the human estrogen receptor, and an IL-1beta promoter construct fused to the CAT reporter gene allows us to monitor the effect of estrogenic compounds on IL-1beta promoter activity. 17beta-estradiol (E2) markedly enhanced lipopolysaccharide- (LPS) induced IL-1beta promoter-driven CAT activity in a dose-dependent manner. The mycotoxins alpha-zearalenol and zearalenone both exhibited full agonist activity, but at lower potencies, with EC50 values of 1.8 and 54 nM, respectively, compared with E2 at 0.5 nM. In addition, genistein was a very low-potency agonist, having an EC50 of 1.5 microM. Similar to the E2 response, the slope factors for alpha-zearalenol, zearalenone, and genistein were close to 3.0, suggesting positive cooperativity in the estrogenic response. The activity of the mycotoxins appeared to be mediated through the estrogen receptor, since both the antiestrogens H1285 and ICI 182,780 effectively inhibited their agonist activity in a dose-dependent manner. Representative environmental estrogenic compounds both from plant and industrial sources were also tested. Unlike the mycoestrogens, none of the compounds, with the exception of genistein, synergized with LPS to enhance IL-1beta promoter activity. When tested for antiestrogenic activity, the industrial compound 4-octylphenol was able to antagonize the response to E2; however, the response was three orders of magnitude less potent than H 1285. Naringenin, a plant flavonoid, showed little or no ability to antagonize the response to E2

  16. Isoreserpine promotes {beta}-catenin degradation via Siah-1 up-regulation in HCT116 colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Gwak, Jungsug; Song, Taeyun [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Song, Jie-Young; Yun, Yeon-Sook [Laboratory of Radiation Cancer Science, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Choi, Il-Whan [Department of Microbiology, Center for Viral Disease Research, Inje University College of Medicine, Busan 614-735 (Korea, Republic of); Jeong, Yongsu [Department of Genetic Engineering, and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Shin, Jae-Gook [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan 614-735 (Korea, Republic of); Oh, Sangtaek, E-mail: [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of)


    Aberrant accumulation of intracellular {beta}-catenin in intestinal epithelial cells is a frequent early event during the development of colon cancer. To identify small molecules that decrease the level of intracellular {beta}-catenin, we performed cell-based chemical screening using genetically engineered HEK293 reporter cells to detect compounds that inhibit TOPFlash reporter activity, which was stimulated by Wnt3a-conditioned medium. We found that isoreserpine promoted the degradation of intracellular {beta}-catenin by up-regulation of Siah-1 in HEK293 and HCT116 colon cancer cells. Moreover, isoreserpine repressed the expression of {beta}-catenin/T-cell factor (TCF)-dependent genes, such as cyclin D1 and c-myc, resulting in the suppression of HCT116 cell proliferation. Our findings suggest that isoreserpine can potentially be used as a chemotherapeutic agent against colon cancer.

  17. Measuring phospholipase D activity in insulin-secreting pancreatic beta-cells and insulin-responsive muscle cells and adipocytes. (United States)

    Cazzolli, Rosanna; Huang, Ping; Teng, Shuzhi; Hughes, William E


    Phospholipase D (PLD) is an enzyme producing phosphatidic acid and choline through hydrolysis of phosphatidylcholine. The enzyme has been identified as a member of a variety of signal transduction cascades and as a key regulator of numerous intracellular vesicle trafficking processes. A role for PLD in regulating glucose homeostasis is emerging as the enzyme has recently been identified in events regulating exocytosis of insulin from pancreatic beta-cells and also in insulin-stimulated glucose uptake through controlling GLUT4 vesicle exocytosis in muscle and adipose tissue. We present methodologies for assessing cellular PLD activity in secretagogue-stimulated insulin-secreting pancreatic beta-cells and also insulin-stimulated adipocyte and muscle cells, two of the principal insulin-responsive cell types controlling blood glucose levels.

  18. Multiple signalling pathways mediate fungal elicitor-induced beta-thujaplicin biosynthesis in Cupressus lusitanica cell cultures. (United States)

    Zhao, Jian; Sakai, Kokki


    The biosynthesis of a phytoalexin, beta-thujaplicin, in Cupressus lusitanica cell cultures can be stimulated by a yeast elicitor, H(2)O(2), or methyl jasmonate. Lipoxygenase activity was also stimulated by these treatments, suggesting that the oxidative burst and jasmonate pathway may mediate the elicitor-induced accumulation of beta-thujaplicin. The elicitor signalling pathway involved in beta-thujaplicin induction was further investigated using pharmacological and biochemical approaches. Treatment of the cells with calcium ionophore A23187 alone stimulated the production of beta-thujaplicin. A23187 also enhanced the elicitor-induced production of beta-thujaplicin. EGTA, LaCl(3), and verapamil pretreatments partially blocked A23187- or yeast elicitor-induced accumulation of beta-thujaplicin. These results suggest that Ca(2+) influx is required for elicitor-induced production of beta-thujaplicin. Treatment of cell cultures with mastoparan, melittin or cholera toxin alone or in combination with the elicitor stimulated the production of beta-thujaplicin or enhanced the elicitor-induced production of beta-thujaplicin. The G-protein inhibitor suramin inhibited the elicitor-induced production of beta-thujaplicin, suggesting that receptor-coupled G-proteins are likely to be involved in the elicitor-induced biosynthesis of beta-thujaplicin. Indeed, both GTP-binding activity and GTPase activity of the plasma membrane were stimulated by elicitor, and suramin and cholera toxin affected G-protein activities. In addition, all inhibitors of G-proteins and Ca(2+) flux suppressed elicitor-induced increases in lipoxygenase activity whereas activators of G-proteins and the Ca(2+) signalling pathway increased lipoxygenase activity. These observations suggest that Ca(2+) and G-proteins may mediate elicitor signals to the jasmonate pathway, and the jasmonate signalling pathway may then lead to the production of beta-thujaplicin.

  19. Early peroxisome proliferator-activated receptor gamma regulated genes involved in expansion of pancreatic beta cell mass

    Directory of Open Access Journals (Sweden)

    Vivas Yurena


    Full Text Available Abstract Background The progression towards type 2 diabetes depends on the allostatic response of pancreatic beta cells to synthesise and secrete enough insulin to compensate for insulin resistance. The endocrine pancreas is a plastic tissue able to expand or regress in response to the requirements imposed by physiological and pathophysiological states associated to insulin resistance such as pregnancy, obesity or ageing, but the mechanisms mediating beta cell mass expansion in these scenarios are not well defined. We have recently shown that ob/ob mice with genetic ablation of PPARγ2, a mouse model known as the POKO mouse failed to expand its beta cell mass. This phenotype contrasted with the appropriate expansion of the beta cell mass observed in their obese littermate ob/ob mice. Thus, comparison of these models islets particularly at early ages could provide some new insights on early PPARγ dependent transcriptional responses involved in the process of beta cell mass expansion Results Here we have investigated PPARγ dependent transcriptional responses occurring during the early stages of beta cell adaptation to insulin resistance in wild type, ob/ob, PPARγ2 KO and POKO mice. We have identified genes known to regulate both the rate of proliferation and the survival signals of beta cells. Moreover we have also identified new pathways induced in ob/ob islets that remained unchanged in POKO islets, suggesting an important role for PPARγ in maintenance/activation of mechanisms essential for the continued function of the beta cell. Conclusions Our data suggest that the expansion of beta cell mass observed in ob/ob islets is associated with the activation of an immune response that fails to occur in POKO islets. We have also indentified other PPARγ dependent differentially regulated pathways including cholesterol biosynthesis, apoptosis through TGF-β signaling and decreased oxidative phosphorylation.

  20. Cytokines interleukin-1beta and tumor necrosis factor-alpha regulate different transcriptional and alternative splicing networks in primary beta-cells

    DEFF Research Database (Denmark)

    Ortis, Fernanda; Naamane, Najib; Flamez, Daisy


    OBJECTIVE: Cytokines contribute to pancreatic beta-cell death in type 1 diabetes. This effect is mediated by complex gene networks that remain to be characterized. We presently utilized array analysis to define the global expression pattern of genes, including spliced variants, modified by the cy...

  1. Lipoprotein receptor-related protein-1 mediates amyloid-beta-mediated cell death of cerebrovascular cells.

    NARCIS (Netherlands)

    Wilhelmus, M.M.; Otte-Holler, I.; Triel, J.J. van; Veerhuis, R.; Maat-Schieman, M.L.; Bu, G.; Waal, R.M.W. de; Verbeek, M.M.


    Inefficient clearance of A beta, caused by impaired blood-brain barrier crossing into the circulation, seems to be a major cause of A beta accumulation in the brain of late-onset Alzheimer's disease patients and hereditary cerebral hemorrhage with amyloidosis Dutch type. We observed association of r

  2. Analysis of Yersinia enterocolitica Effector Translocation into Host Cells Using Beta-lactamase Effector Fusions. (United States)

    Wolters, Manuel; Zobiak, Bernd; Nauth, Theresa; Aepfelbacher, Martin


    Many gram-negative bacteria including pathogenic Yersinia spp. employ type III secretion systems to translocate effector proteins into eukaryotic target cells. Inside the host cell the effector proteins manipulate cellular functions to the benefit of the bacteria. To better understand the control of type III secretion during host cell interaction, sensitive and accurate assays to measure translocation are required. We here describe the application of an assay based on the fusion of a Yersinia enterocolitica effector protein fragment (Yersinia outer protein; YopE) with TEM-1 beta-lactamase for quantitative analysis of translocation. The assay relies on cleavage of a cell permeant FRET dye (CCF4/AM) by translocated beta-lactamase fusion. After cleavage of the cephalosporin core of CCF4 by the beta-lactamase, FRET from coumarin to fluorescein is disrupted and excitation of the coumarin moiety leads to blue fluorescence emission. Different applications of this method have been described in the literature highlighting its versatility. The method allows for analysis of translocation in vitro and also in in vivo, e.g., in a mouse model. Detection of the fluorescence signals can be performed using plate readers, FACS analysis or fluorescence microscopy. In the setup described here, in vitro translocation of effector fusions into HeLa cells by different Yersinia mutants is monitored by laser scanning microscopy. Recording intracellular conversion of the FRET reporter by the beta-lactamase effector fusion in real-time provides robust quantitative results. We here show exemplary data, demonstrating increased translocation by a Y. enterocolitica YopE mutant compared to the wild type strain.

  3. Conditional beta1-integrin gene deletion in neural crest cells causes severe developmental alterations of the peripheral nervous system

    DEFF Research Database (Denmark)

    Pietri, Thomas; Eder, Olivier; Breau, Marie Anne;


    Integrins are transmembrane receptors that are known to interact with the extracellular matrix and to be required for migration, proliferation, differentiation and apoptosis. We have generated mice with a neural crest cell-specific deletion of the beta1-integrin gene to analyse the role of beta1-...

  4. Creatine kinase BB and beta-2-microglobulin as markers of CNS metastases in patients with small-cell lung cancer

    DEFF Research Database (Denmark)

    Pedersen, A G; Bach, F W; Nissen, Mogens Holst;


    Creatine kinase (CK) and its BB isoenzyme (CK-BB) were measured in CSF in 65 evaluable patients suspected of CNS metastases secondary to small-cell lung cancer (SCLC). In addition, CSF and plasma levels of beta-2-microglobulin (beta-2-m) were measured in a group of 73 evaluable patients. Of the 65...

  5. Decreased gene expression of human beta-defensin-1 in the development of squamous cell carcinoma of the oral cavity.

    NARCIS (Netherlands)

    Wenghoefer, M.H.; Pantelis, A.; Dommisch, H.; Reich, R.; Martini, M.; Allam, J.P.; Novak, N.; Berge, S.; Jepsen, S.; Winter, J.


    The aim of this study was to investigate the gene expression of human beta-defensin-1, -2, -3 (hBD-1, -2, -3), interleukin-1beta, tumour necrosis factor-alpha and cyclooxygenase-2 in oral squamous cell carcinoma (OSCC) compared to benign and premalignant lesions as well as healthy controls. Biopsies

  6. Dibenzocyclooctadiene lignans, gomisins J and N inhibit the Wnt/{beta}-catenin signaling pathway in HCT116 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyungsu; Lee, Kyung-Mi; Yoo, Ji-Hye; Lee, Hee Ju [Functional Food Center, Korea Institute of Science and Technology, Gangneung 210-340 (Korea, Republic of); Kim, Chul Young [Functional Food Center, Korea Institute of Science and Technology, Gangneung 210-340 (Korea, Republic of); College of Pharmacy, Hanyang University, Ansan 426-791 (Korea, Republic of); Nho, Chu Won, E-mail: [Functional Food Center, Korea Institute of Science and Technology, Gangneung 210-340 (Korea, Republic of)


    Graphical abstract: Schematic diagram of the possible molecular mechanism underlying the inhibition of the Wnt/{beta}-catenin signaling pathway and the induction of G0/G1-phase arrest by gomisins J and N, derived from the fruits of S. chinensis, in HCT116 human colon cancer cells. Highlights: Black-Right-Pointing-Pointer Gomisins J and N inhibited Wnt/{beta}-catenin signaling pathway in HCT116 cells. Black-Right-Pointing-Pointer Gomisins J and N disrupted the binding of {beta}-catenin to specific DNA sequences, TBE. Black-Right-Pointing-Pointer Gomisins J and N inhibited the HCT116 cell proliferation through G0/G1 phase arrest. Black-Right-Pointing-Pointer Gomisins J and N inhibited the expression of Cyc D1, a Wnt/{beta}-catenin target gene. -- Abstract: Here, we report that gomisin J and gomisin N, dibenzocyclooctadiene type lignans isolated from Schisandra chinensis, inhibit Wnt/{beta}-catenin signaling in HCT116 cells. Gomisins J and N appear to inhibit Wnt/{beta}-catenin signaling by disrupting the interaction between {beta}-catenin and its specific target DNA sequences (TCF binding elements, TBE) rather than by altering the expression of the {beta}-catenin protein. Gomisins J and N inhibit HCT116 cell proliferation by arresting the cell cycle at the G0/G1 phase. The G0/G1 phase arrest induced by gomisins J and N appears to be caused by a decrease in the expression of Cyclin D1, a representative target gene of the Wnt/{beta}-catenin signaling pathway, as well as Cdk2, Cdk4, and E2F-1. Therefore, gomisins J and N, the novel Wnt/{beta}-catenin inhibitors discovered in this study, may serve as potential agents for the prevention and treatment of human colorectal cancers.

  7. Lack of beta1 integrins in enteric neural crest cells leads to a Hirschsprung-like phenotype

    DEFF Research Database (Denmark)

    Breau, Marie A; Pietri, Thomas; Eder, Olivier


    crest cells fail to colonise the gut completely, leading to an aganglionosis of the descending colon, which resembles the human Hirschsprung's disease. Moreover, beta1-null enteric neural crest cells form abnormal aggregates in the gut wall, leading to a severe alteration of the ganglia network...... organisation. Organotypic cultures of gut explants reveal that beta1-null enteric neural crest cells show impaired adhesion on extracellular matrix and enhanced intercellular adhesion properties. They display migration defects in collagen gels and gut tissue environments. We also provide evidence that beta1...

  8. Chemokine receptor expression on B cells and effect of interferon-beta in multiple sclerosis

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Roed, Hanne; Sellebjerg, Finn


    We investigated the B-cell expression of chemokine receptors CXCR3, CXCR5 and CCR5 in the blood and cerebrospinal fluid (CSF) from patients in relapse of multiple sclerosis (MS) and in neurological controls. Chemokine receptor expression was also studied in interferon-beta-treated patients...... with relapsing-remitting or secondary progressive MS. We observed significantly higher expression of CXCR3 on B cells in the CSF in active MS than in controls. Patients with active MS also had higher B-cell expression of CCR5 in blood. No major differences between RRMS and SPMS patients were detected...

  9. Enhanced expression of the type II transforming growth factor beta receptor in human pancreatic cancer cells without alteration of type III receptor expression. (United States)

    Friess, H; Yamanaka, Y; Büchler, M; Berger, H G; Kobrin, M S; Baldwin, R L; Korc, M


    We have recently found that human pancreatic adenocarcinomas exhibit strong immunostaining for the three mammalian transforming growth factor beta (TGF-beta) isoforms. These important growth-regulating polypeptides bind to a number of proteins, including the type I TGF-beta receptor (T beta R-I), type II TGF-beta receptor (T beta R-II), and the type III TGF-beta receptor (T beta R-III). In the present study we sought to determine whether T beta R-II and T beta R-III expression is altered in pancreatic cancer. Northern blot analysis indicated that, by comparison with the normal pancreas, pancreatic adenocarcinomas exhibited a 4.6-fold increase (P beta R-II. In contrast, mRNA levels encoding T beta R-III were not increased. In situ hybridization showed that T beta R-II mRNA was expressed in the majority of cancer cells, whereas mRNA grains encoding T beta R-III were detectable in only a few cancer cells and were present mainly in the surrounding stroma. These findings suggest that enhanced levels of T beta R-II may have a role in regulating human pancreatic cancer cell growth, while T beta R-III may function in the extracellular matrix.

  10. Decreased differentiation of erythroid cells exacerbates ineffective erythropoiesis in beta-thalassemia. (United States)

    Libani, Ilaria V; Guy, Ella C; Melchiori, Luca; Schiro, Raffaella; Ramos, Pedro; Breda, Laura; Scholzen, Thomas; Chadburn, Amy; Liu, YiFang; Kernbach, Margrit; Baron-Lühr, Bettina; Porotto, Matteo; de Sousa, Maria; Rachmilewitz, Eliezer A; Hood, John D; Cappellini, M Domenica; Giardina, Patricia J; Grady, Robert W; Gerdes, Johannes; Rivella, Stefano


    In beta-thalassemia, the mechanism driving ineffective erythropoiesis (IE) is insufficiently understood. We analyzed mice affected by beta-thalassemia and observed, unexpectedly, a relatively small increase in apoptosis of their erythroid cells compared with healthy mice. Therefore, we sought to determine whether IE could also be characterized by limited erythroid cell differentiation. In thalassemic mice, we observed that a greater than normal percentage of erythroid cells was in S-phase, exhibiting an erythroblast-like morphology. Thalassemic cells were associated with expression of cell cycle-promoting genes such as EpoR, Jak2, Cyclin-A, Cdk2, and Ki-67 and the antiapoptotic protein Bcl-X(L). The cells also differentiated less than normal erythroid ones in vitro. To investigate whether Jak2 could be responsible for the limited cell differentiation, we administered a Jak2 inhibitor, TG101209, to healthy and thalassemic mice. Exposure to TG101209 dramatically decreased the spleen size but also affected anemia. Although our data do not exclude a role for apoptosis in IE, we propose that expansion of the erythroid pool followed by limited cell differentiation exacerbates IE in thalassemia. In addition, these results suggest that use of Jak2 inhibitors has the potential to profoundly change the management of this disorder.

  11. Dynamin-association with agonist-mediated sequestration of beta-adrenergic receptor in single-cell eukaryote Paramecium. (United States)

    Wiejak, Jolanta; Surmacz, Liliana; Wyroba, Elzbieta


    Evidence that dynamin is associated with the sequestration of the Paramecium beta(2)-adrenergic receptor (betaAR) immunoanalogue is presented. We previously reported a dramatic change in the distribution of betaAR analogue in the subcellular fractions upon isoproterenol treatment: it is redistributed from the membraneous to the cytosolic fraction, as revealed by quantitative image analysis of western blots. Here we confirm and extend this observation by laser scanning confocal and immunogold electron microscopy. In the presence of isoproterenol (10 micro mol l(-1)) betaAR translocated from the cell surface into dynamin-positive vesicles in the cytoplasmic compartment, as observed by dual fluorochrome immunolabeling in a series of the confocal optical sections. Colocalization of betaAR and dynamin in the tiny endocytic vesicles was detected by further electron microscopic studies. Generally receptor sequestration follows its desensitization, which is initiated by receptor phosphorylation by G-protein-coupled receptor kinase. We cloned and sequenced the gene fragment of 407 nucleotides homologous to the beta-adrenergic receptor kinase (betaARK): its deduced amino acid sequence shows 51.6% homology in 126 amino acids that overlap with the human betaARK2 (GRK3), and may participate in Paramecium betaAR desensitization. These results suggest that the molecular machinery for the desensitization/sequestration of the receptor immunorelated to vertebrate betaAR exists in unicellular PARAMECIUM:

  12. Effect of resveratrol and beta-sitosterol in combination on reactive oxygen species and prostaglandin release by PC-3 cells. (United States)

    Awad, Atif B; Burr, Andrew T; Fink, Carol S


    The objective of this project was to identify some possible mechanisms by which two common phytochemicals, resveratrol and beta-sitosterol, inhibit the growth of human prostate cancer PC-3 cells. These mechanisms include the effect of the phytochemicals on apoptosis, cell cycle progression, prostaglandin synthesis and the production of reactive oxygen species (ROS). Prostaglandins have been known to play a role in regulating cell growth and apoptosis. PC-3 cells were supplemented with 50 microM resveratrol or 16 microM beta-sitosterol alone or in combination for up to 5 days. Phytochemical supplementation resulted in inhibition in cell growth. beta-Sitosterol was more potent than resveratrol and the combination of the two resulted in greater inhibition than supplementation with either alone. Long-term supplementation with resveratrol or beta-sitosterol elevated basal prostaglandin release but beta-sitosterol was much more potent than resveratrol in this regard. beta-Sitosterol was more effective than resveratrol in inducing apoptosis and the combination had an intermediate effect after 1 day of supplementation. Cells supplemented with resveratrol were arrested at the G1 phase and at the G2/M phase in the case of beta-sitosterol while the combination resulted in cell arrest at the two phases of the cell cycle. beta-Sitosterol increased ROS production while resveratrol decreased ROS production. The combination of the two phytochemicals resulted in an intermediate level of ROS. The observed changes in prostaglandin levels and ROS production by these two phytochemicals may suggest their mediation in the growth inhibition. The reduction in ROS level and increase by resveratrol supplementation in PC-3 cells reflects the antioxidant properties of resveratrol. It was concluded that these phytochemicals may induce the inhibition of tumor growth by stimulating apoptosis and arresting cells at different locations in the cell cycle and the mechanism may involve alterations in

  13. Thymosin Beta-4 Recombinant Adeno-associated Virus Enhances Human Nucleus Pulposus Cell Proliferation and Reduces Cell Apoptosis and Senescence

    Institute of Scientific and Technical Information of China (English)

    Yuan-Yi Wang; Qing-San Zhu; Yi-Wei Wang; Ruo-Feng Yin


    Background:Thymosin beta-4 (TB-4) is considered key roles in tissue development,maintenance and pathological processes.The study aimed to prove TB-4 positive biological function on nucleus pulposus (NP) cell apoptosis and slowing the process of cell aging while increasing the cell proliferation.Methods:TB-4 recombinant adeno-associated virus (AAV) was constructed and induced to human NP cells.Cell of same group were cultured without gene modification as controlled group.Proliferation capacity and cell apoptosis were observed during 6 passages of the cells.Morphology and expression of the TB-4 gene were documented as parameter of cell activity during cell passage.Results:NP cells with TB-4 transfection has normal TB-4 expression and exocytosis.NP cells with TB-4 transfection performed significantly higher cell activity than that at the control group in each generation.TB-4 recombinant AAV-transfected human NP cells also show slower cell aging,lower cell apoptosis and higher cell proliferation than control group.Conclusions:TB-4 can prevent NP cell apoptosis,slow NP cell aging and promote NP cell proliferation.AAV transfection technique was able to highly and stably express TB-4 in human NP cells,which may provide a new pathway for innovation in the treatment of intervertebral disc degenerative diseases.

  14. A high-throughput chemical screen reveals that harmine-mediated inhibition of DYRK1A increases human pancreatic beta cell replication. (United States)

    Wang, Peng; Alvarez-Perez, Juan-Carlos; Felsenfeld, Dan P; Liu, Hongtao; Sivendran, Sharmila; Bender, Aaron; Kumar, Anil; Sanchez, Roberto; Scott, Donald K; Garcia-Ocaña, Adolfo; Stewart, Andrew F


    Types 1 and 2 diabetes affect some 380 million people worldwide. Both ultimately result from a deficiency of functional pancreatic insulin-producing beta cells. Beta cells proliferate in humans during a brief temporal window beginning around the time of birth, with a peak percentage (∼2%) engaged in the cell cycle in the first year of life. In embryonic life and after early childhood, beta cell replication is barely detectable. Whereas beta cell expansion seems an obvious therapeutic approach to beta cell deficiency, adult human beta cells have proven recalcitrant to such efforts. Hence, there remains an urgent need for antidiabetic therapeutic agents that can induce regeneration and expansion of adult human beta cells in vivo or ex vivo. Here, using a high-throughput small-molecule screen (HTS), we find that analogs of the small molecule harmine function as a new class of human beta cell mitogenic compounds. We also define dual-specificity tyrosine-regulated kinase-1a (DYRK1A) as the likely target of harmine and the nuclear factors of activated T cells (NFAT) family of transcription factors as likely mediators of human beta cell proliferation and differentiation. Using three different mouse and human islet in vivo-based models, we show that harmine is able to induce beta cell proliferation, increase islet mass and improve glycemic control. These observations suggest that harmine analogs may have unique therapeutic promise for human diabetes therapy. Enhancing the potency and beta cell specificity of these compounds are important future challenges.

  15. Ghrelin inhibits insulin secretion through the AMPK-UCP2 pathway in beta cells. (United States)

    Wang, Ying; Nishi, Masahiro; Doi, Asako; Shono, Takeshi; Furukawa, Yasushi; Shimada, Takeshi; Furuta, Hiroto; Sasaki, Hideyuki; Nanjo, Kishio


    Ghrelin inhibits insulin secretion partly via induction of IA-2beta. However, the orexigenic effect of ghrelin is mediated by the AMP-activated protein kinase (AMPK)-uncoupling protein 2 (UCP2) pathway. Here, we demonstrate that ghrelin's inhibitory effect on insulin secretion also occurs through the AMPK-UCP2 pathway. Ghrelin increased AMPK phosphorylation and UCP2 mRNA expression in MIN6 insulinoma cells. Overexpression or downregulation of UCP2 attenuated or enhanced insulin secretion, respectively. Furthermore, AMPK activator had a similar effect to ghrelin on UCP2 and insulin secretion in MIN6 cells. In conclusion, ghrelin's inhibitory effect on insulin secretion is partly mediated by the AMPK-UCP2 pathway, which is independent of the IA-2beta pathway.

  16. Laminin-511 and integrin beta-1 in hair follicle development and basal cell carcinoma formation

    Directory of Open Access Journals (Sweden)

    Williams Samantha


    Full Text Available Abstract Background Initiation of the hair follicle placode and its subsequent growth, maturation and cycling in post-natal skin requires signaling interactions between epithelial cells and adjacent dermal cells and involves Shh signaling via the primary cilium. Previous reports have implicated laminins in hair follicle epithelial invagination. Results Here we use a human BCC model system and mouse mutants to re-evaluate the role of laminin-511 in epithelial invagination in the skin. Blocking laminin 511 and 332 in BCCs maintains primary cilia and Shh signalling, but prevents invagination. Similarly, in laminin-511 and dermal beta-1 integrin mutants, dermal papilla development and primary cilia formation are normal. Dermal beta-1 integrin mutants have normal hair follicle development. Conclusions Our data provides support for a primary role of laminin-511 promoting hair follicle epithelial downgrowth without affecting dermal primary cilia and Shh target gene induction.

  17. MicroRNAs as regulators of beta-cell function and dysfunction

    DEFF Research Database (Denmark)

    Osmai, Mirwais; Osmai, Yama; Bang-Berthelsen, Claus Heiner


    In the last decade, there has been an explosion in both the number of and knowledge about miRNAs associated with both type 1 and type 2 diabetes. Even though we are presently in the initial stages of understanding how this novel class of posttranscriptional regulators are involved in diabetes......, recent studies have demonstrated that miRNAs are important regulators of the islet transcriptome, controlling apoptosis, differentiation and proliferation, as well as regulating unique islet and beta-cell functions and pathways such as insulin expression, processing and secretion. Furthermore, a large...... number of miRNAs have been linked to diabetogenic processes induced by elevated levels of glucose, free fatty acids and inflammatory cytokines. Thus, miRNAs are novel therapeutic targets with the potential of protecting the beta-cell, and there is proof of principle that miRNA antagonists, so...

  18. Iron Regulation of Pancreatic Beta-Cell Functions and Oxidative Stress

    DEFF Research Database (Denmark)

    Backe, Marie Balslev; Moen, Ingrid Wahl; Ellervik, Christina


    Dietary advice is the cornerstone in first-line treatment of metabolic diseases. Nutritional interventions directed at these clinical conditions mainly aim to (a) improve insulin resistance by reducing energy-dense macronutrient intake to obtain weight loss and (b) reduce fluctuations in insulin...... secretion through avoidance of rapidly absorbable carbohydrates. However, even in the majority of motivated patients selected for clinical trials, massive efforts using this approach have failed to achieve lasting efficacy. Less attention has been given to the role of micronutrients in metabolic diseases....... Here, we review the evidence that highlights (a) the importance of iron in pancreatic beta-cell function and dysfunction in diabetes and (b) the integrative pathophysiological effects of tissue iron levels in the interactions among the beta cell, gut microbiome, hypothalamus, innate and adaptive immune...

  19. RF tests of the beta - 0.5 five cell TRASCO cavities

    Energy Technology Data Exchange (ETDEWEB)

    A. Bosotti; Carlo Pagani; P. Pierini; J.P. Charrier; B. Visentin; Gianluigi Ciovati; Peter Kneisel


    Two complete 5 cell superconducting cavities at {beta} = 0.5 have been fabricated in the TRASCO INFN program. The cavities have been designed to minimize peak electric and magnetic fields, with a goal of 8.5 MV/m of accelerating gradient, at a Q > 5 10{sup 9}. The cavities have been tested in vertical cryostats at TJNAF and Saclay and the results are summarized here.

  20. Gluco-incretins regulate beta-cell glucose competence by epigenetic silencing of Fxyd3 expression.

    Directory of Open Access Journals (Sweden)

    David Vallois

    Full Text Available Gluco-incretin hormones increase the glucose competence of pancreatic beta-cells by incompletely characterized mechanisms.We searched for genes that were differentially expressed in islets from control and Glp1r-/-; Gipr-/- (dKO mice, which show reduced glucose competence. Overexpression and knockdown studies; insulin secretion analysis; analysis of gene expression in islets from control and diabetic mice and humans as well as gene methylation and transcriptional analysis were performed.Fxyd3 was the most up-regulated gene in glucose incompetent islets from dKO mice. When overexpressed in beta-cells Fxyd3 reduced glucose-induced insulin secretion by acting downstream of plasma membrane depolarization and Ca++ influx. Fxyd3 expression was not acutely regulated by cAMP raising agents in either control or dKO adult islets. Instead, expression of Fxyd3 was controlled by methylation of CpGs present in its proximal promoter region. Increased promoter methylation reduced Fxyd3 transcription as assessed by lower abundance of H3K4me3 at the transcriptional start site and in transcription reporter assays. This epigenetic imprinting was initiated perinatally and fully established in adult islets. Glucose incompetent islets from diabetic mice and humans showed increased expression of Fxyd3 and reduced promoter methylation.Because gluco-incretin secretion depends on feeding the epigenetic regulation of Fxyd3 expression may link nutrition in early life to establishment of adult beta-cell glucose competence; this epigenetic control is, however, lost in diabetes possibly as a result of gluco-incretin resistance and/or de-differentiation of beta-cells that are associated with the development of type 2 diabetes.

  1. Increased glucocorticoid sensitivity in pancreatic beta-cells : Effects on glucose metabolism and insulin release


    Davani, Behrous


    Type 2 diabetes mellitus (T2DM) is characterized by three pathological alterations: (1) insulin resistance in peripheral tissues, (2) increased hepatic glucose production and (3) impaired insulin secretion from the pancreatic beta-cells. Glucocorticoids (GCs) exert profound effects on glucose homeostasis. They decrease glucose uptake and increase hepatic glucose production. In addition, they may directly inhibit insulin release. The main aim of this thesis was to investigate...

  2. Reference intervals for glucose, beta-cell polypeptides, and counterregulatory factors during prolonged fasting

    DEFF Research Database (Denmark)

    Højlund, Kurt; Wildner-Christensen, M; Eshøj, O


    To establish reference intervals for the pancreatic beta-cell response and the counterregulatory hormone response to prolonged fasting, we studied 33 healthy subjects (16 males, 17 females) during a 72-h fast. Glucose, insulin, C-peptide, and proinsulin levels decreased (P ... of counterregulatory factors increased during the fast [P fasting (P ... decreased from the second to third day of fasting (P = 0.03). Males had higher glucose and glucagon levels and lower FFA levels during the fast (P

  3. Voltage-dependent metabolic regulation of Kv2.1 channels in pancreatic beta-cells. (United States)

    Yoshida, Masashi; Nakata, Masanori; Yamato, Shiho; Dezaki, Katsuya; Sugawara, Hitoshi; Ishikawa, San-e; Kawakami, Masanobu; Yada, Toshihiko; Kakei, Masafumi


    Voltage-gated potassium channels (Kv channels) play a crucial role in formation of action potentials in response to glucose stimulation in pancreatic beta-ells. We previously reported that the Kv channel is regulated by glucose metabolism, particularly by MgATP. We examined whether the regulation of Kv channels is voltage-dependent and mechanistically related with phosphorylation of the channels. In rat pancreatic beta-cells, suppression of glucose metabolism with low glucose concentrations of 2.8mM or less or by metabolic inhibitors decreased the Kv2.1-channel activity at positive membrane potentials, while increased it at potentials negative to -10 mV, suggesting that modulation of Kv channels by glucose metabolism is voltage-dependent. Similarly, in HEK293 cells expressing the recombinant Kv2.1 channels, 0mM but not 10mM MgATP modulated the channel activity in a manner similar to that in beta-cells. Both steady-state activation and inactivation kinetics of the channel were shifted toward the negative potential in association with the voltage-dependent modulation of the channels by cytosolic dialysis of alkaline phosphatase in beta-cells. The modulation of Kv-channel current-voltage relations were also observed during and after glucose-stimulated electrical excitation. These results suggest that the cellular metabolism including MgATP production and/or channel phosphorylation/dephosphorylation underlie the physiological modulation of Kv2.1 channels during glucose-induced insulin secretion.

  4. Usefulness and limitations of {sup 99m}Tc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy in the aetiological diagnosis of amyloidotic cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Rapezzi, Claudio; Quarta, Candida Cristina; Longhi, Simone; Gallo, Pamela; Gagliardi, Christian; Branzi, Angelo [University of Bologna and Policlinico S. Orsola-Malpighi Hospital, Institute of Cardiology, Bologna (Italy); Guidalotti, Pier Luigi; Pettinato, Cinzia [S. Orsola-Malpighi Hospital, Nuclear Medicine Unit, Bologna (Italy); Leone, Ornella [University of Bologna and S. Orsola-Malpighi Hospital, Department of Pathology, Bologna (Italy); Ferlini, Alessandra [University of Ferrara, Department of Diagnostic and Experimental Medicine, Section of Medical Genetics, Ferrara (Italy); Salvi, Fabrizio [Ospedale Bellaria, Department of Neurology, Bologna (Italy)


    We previously reported in a small series of patients that {sup 99m}Tc-3,3-diphosphono-1,2-propanodicarboxylic acid ({sup 99m}Tc-DPD) scintigraphy tested positive in transthyretin-related (TTR) (both mutant and wild-type) but not in primary (AL) amyloidotic cardiomyopathy (AC). We extended our study to a larger cohort of patients with AC. We evaluated (1) 45 patients with TTR-related AC (28 mutant and 17 wild-type), (2) 34 with AL-related AC and (3) 15 non-affected controls. Myocardial uptake of {sup 99m}Tc-DPD (740 MBq i.v.) was semiquantitatively and visually assessed at 5 min and at 3 h. Heart retention (HR) and heart to whole-body retention ratio (H/WB) of late {sup 99m}Tc-DPD uptake were higher among TTR-related AC (HR 7.8%; H/WB 10.4) compared with both unaffected controls (HR 3.5%; H/WB 5.7; p < 0.0001) and AL-related AC (HR 4.0%; H/WB 6.1; p < 0.0001). For the diagnosis of TTR-related AC, positive and negative predictive accuracy of visual scoring of cardiac retention were: 80 and 100% (visual score {>=}1); 88 and 100% (visual score {>=}2); and 100 and 68% (visual score = 3). At adjusted linear regression analysis, TTR aetiology turned out to be the only positive predictor of increasing {sup 99m}Tc-DPD uptake in terms of both HR [{beta} 2.5, 95% confidence interval (CI) 1.5-3.5; p < 0.0001] and H/WB ({beta} 3.5, 95% CI 2.1-4.9; p < 0.0001). While {sup 99m}Tc-DPD scintigraphy was confirmed to be useful for differentiating TTR from AL-related AC, diagnostic accuracy was lower than previously reported due to a mild degree of tracer uptake in about one third of AL patients. {sup 99m}Tc-DPD scintigraphy can provide an accurate differential diagnosis in cases of absent or intense uptake evaluated by visual score. (orig.)

  5. Nanoscale organization of {beta}{sub 2}-adrenergic receptor-Venus fusion protein domains on the surface of mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Vobornik, Dusan; Rouleau, Yanouchka; Haley, Jennifer [Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 (Canada); Bani-Yaghoub, Mahmud [Institute for Biological Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 (Canada); Taylor, Rod [Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 (Canada); Johnston, Linda J., E-mail: [Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 (Canada); Pezacki, John Paul, E-mail: [Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 (Canada)


    Adrenergic receptors are a key component of nanoscale multiprotein complexes that are responsible for controlling the beat rate in a mammalian heart. We demonstrate the ability of near-field scanning optical microscopy (NSOM) to visualize {beta}{sub 2}-adrenergic receptors ({beta}{sub 2}AR) fused to the GFP analogue Venus at the nanoscale on HEK293 cells. The expression of the {beta}{sub 2}AR-Venus fusion protein was tightly controlled using a tetracycline-induced promoter. Both the size and density of the observed nanoscale domains are dependent on the level of induction and thus the level of protein expression. At concentrations between 100 and 700 ng/ml of inducer doxycycline, the size of domains containing the {beta}{sub 2}AR-Venus fusion protein appears to remain roughly constant, but the number of domains per cell increase. At 700 ng/ml doxycycline the functional receptors are organized into domains with an average diameter of 150 nm with a density similar to that observed for the native protein on primary murine cells. By contrast, larger micron-sized domains of {beta}{sub 2}AR are observed in the membrane of the HEK293 cells that stably overexpress {beta}{sub 2}AR-GFP and {beta}{sub 2}AR-eYFP. We conclude that precise chemical control of gene expression is highly advantageous for the use {beta}{sub 2}AR-Venus fusion proteins as models for {beta}{sub 2}AR function. These observations are critical for designing future cell models and assays based on {beta}{sub 2}AR, since the receptor biology is consistent with a relatively low density of nanoscale receptor domains.

  6. Xanthophylls are preferentially taken up compared with beta-carotene by retinal cells via a SRBI-dependent mechanism. (United States)

    During, Alexandrine; Doraiswamy, Sundari; Harrison, Earl H


    The purpose of this study was to investigate the mechanisms by which carotenoids [xanthophylls vs. beta-carotene(beta-C)] are taken up by retinal pigment epithelial (RPE) cells. The human RPE cell line, ARPE-19, was used. When ARPE-19 cells were fully differentiated (7-9 weeks), the xanthophylls lutein (LUT) and zeaxanthin (ZEA) were taken up by cells to an extent 2-fold higher than beta-C (P < 0.05). At 9 weeks, cellular uptakes were 1.6, 2.5, and 3.2%, respectively, for beta-C, LUT, and ZEA. Similar extents were observed when carotenoids were delivered in either Tween 40 or "chylomicrons" produced by Caco-2 cells. Differentiated ARPE-19 cells did not exhibit any detectable beta-C 15,15'-oxygenase activity or convert exogenous beta-C into vitamin A. When using specific antibodies against the lipid transporters cluster determinant 36 (CD36) and scavenger receptor class B type I (SR-BI), cellular uptake of beta-C and ZEA were significantly decreased (40-60%) with anti-SR-BI but not with anti-CD36. Small interfering RNA transfection for SR-BI led to marked knockdown of SR-BI protein expression (approximately 90%), which resulted in decreased beta-C and ZEA uptakes by 51% and 87%, respectively. Thus, the present data show that RPE cells preferentially take up xanthophylls versus the carotene by a process that appears to be entirely SR-BI-dependent for ZEA and partly so for beta-C. This mechanism may explain, in part, the preferential accumulation of xanthophylls in the macula of the retina.

  7. Ghrelin secretion stimulated by {beta}1-adrenergic receptors in cultured ghrelinoma cells and in fasted mice. (United States)

    Zhao, Tong-Jin; Sakata, Ichiro; Li, Robert Lin; Liang, Guosheng; Richardson, James A; Brown, Michael S; Goldstein, Joseph L; Zigman, Jeffrey M


    Ghrelin, an octanoylated peptide hormone produced in the stomach, rises dramatically in mouse plasma during chronic severe calorie deprivation, an event that is essential to maintain life. The mechanism for this increase is not understood. Here, we study the control of ghrelin secretion in tissue culture cells derived from mice bearing ghrelinomas induced by a tissue-specific SV40 T-antigen transgene. We found that the ghrelin-secreting cells express high levels of mRNA encoding beta(1)-adrenergic receptors. Addition of norepinephrine or epinephrine to the culture medium stimulated ghrelin secretion, and this effect was blocked by atenolol, a selective beta(1)-adrenergic antagonist. When WT mice were treated with reserpine to deplete adrenergic neurotransmitters from sympathetic neurons, the fasting-induced increase in plasma ghrelin was blocked. Inhibition was also seen following atenolol administration. We conclude that ghrelin secretion during fasting is induced by adrenergic agents released by sympathetic neurons and acting directly on beta(1) receptors on the ghrelin-secreting cells of the stomach.

  8. Cell and Gene Therapy for the Beta-Thalassemias: Advances and Prospects. (United States)

    Mansilla-Soto, Jorge; Riviere, Isabelle; Boulad, Farid; Sadelain, Michel


    The beta-thalassemias are inherited anemias caused by mutations that severely reduce or abolish expression of the beta-globin gene. Like sickle cell disease, a related beta-globin gene disorder, they are ideal candidates for performing a genetic correction in patient hematopoietic stem cells (HSCs). The most advanced approach utilizes complex lentiviral vectors encoding the human β-globin gene, as first reported by May et al. in 2000. Considerable progress toward the clinical implementation of this approach has been made in the past five years, based on effective CD34+ cell mobilization and improved lentiviral vector manufacturing. Four trials have been initiated in the United States and Europe. Of 16 evaluable subjects, 6 have achieved transfusion independence. One of them developed a durable clonal expansion, which regressed after several years without transformation. Although globin lentiviral vectors have so far proven to be safe, this occurrence suggests that powerful insulators with robust enhancer-blocking activity will further enhance this approach. The combined discovery of Bcl11a-mediated γ-globin gene silencing and advances in gene editing are the foundations for another gene therapy approach, which aims to reactivate fetal hemoglobin (HbF) production. Its clinical translation will hinge on the safety and efficiency of gene targeting in true HSCs and the induction of sufficient levels of HbF to achieve transfusion independence. Altogether, the progress achieved over the past 15 years bodes well for finding a genetic cure for severe globin disorders in the next decade.

  9. Vanadyl Sulfate Treatment Stimulates Proliferation and Regeneration of Beta Cells in Pancreatic Islets

    Directory of Open Access Journals (Sweden)

    Samira Missaoui


    Full Text Available We examined the effects of vanadium sulfate (VOSO4 treatment at 5 and 10 mg/kg for 30 days on endocrine pancreas activity and histology in nondiabetic and STZ-induced diabetic rats. In diabetic group, blood glucose levels significantly increased while insulinemia level markedly decreased. At the end of treatment, VOSO4 at a dose of 10 mg/Kg normalized blood glucose level in diabetic group, restored insulinemia, and significantly improved insulin sensitivity. VOSO4 also increased in a dose-dependent manner the number of insulin immunopositive beta cells in pancreatic islets of nondiabetic rats. Furthermore, in the STZ-diabetic group, the decrease in the number of insulin immunopositive beta cells was corrected to reach the control level mainly with the higher dose of vanadium. Therefore, VOSO4 treatment normalized plasma glucose and insulin levels and improved insulin sensitivity in STZ-experimental diabetes and induced beta cells proliferation and/or regeneration in normal or diabetic rats.

  10. Early-life origins of type 2 diabetes: fetal programming of the beta-cell mass. (United States)

    Portha, Bernard; Chavey, Audrey; Movassat, Jamileh


    A substantial body of evidence suggests that an abnormal intrauterine milieu elicited by maternal metabolic disturbances as diverse as undernutrition, placental insufficiency, diabetes or obesity, may program susceptibility in the fetus to later develop chronic degenerative diseases, such as obesity, hypertension, cardiovascular diseases and diabetes. This paper examines the developmental programming of glucose intolerance/diabetes by disturbed intrauterine metabolic condition experimentally obtained in various rodent models of maternal protein restriction, caloric restriction, overnutrition or diabetes, with a focus on the alteration of the developing beta-cell mass. In most of the cases, whatever the type of initial maternal metabolic stress, the beta-cell adaptive growth which normally occurs during gestation, does not take place in the pregnant offspring and this results in the development of gestational diabetes. Therefore gestational diabetes turns to be the ultimate insult targeting the offspring beta-cell mass and propagates diabetes risk to the next generation again. The aetiology and the transmission of spontaneous diabetes as encountered in the GK/Par rat model of type 2 diabetes, are discussed in such a perspective. This review also discusses the non-genomic mechanisms involved in the installation of the programmed effect as well as in its intergenerational transmission.

  11. Early-Life Origins of Type 2 Diabetes: Fetal Programming of the Beta-Cell Mass

    Directory of Open Access Journals (Sweden)

    Bernard Portha


    Full Text Available A substantial body of evidence suggests that an abnormal intrauterine milieu elicited by maternal metabolic disturbances as diverse as undernutrition, placental insufficiency, diabetes or obesity, may program susceptibility in the fetus to later develop chronic degenerative diseases, such as obesity, hypertension, cardiovascular diseases and diabetes. This paper examines the developmental programming of glucose intolerance/diabetes by disturbed intrauterine metabolic condition experimentally obtained in various rodent models of maternal protein restriction, caloric restriction, overnutrition or diabetes, with a focus on the alteration of the developing beta-cell mass. In most of the cases, whatever the type of initial maternal metabolic stress, the beta-cell adaptive growth which normally occurs during gestation, does not take place in the pregnant offspring and this results in the development of gestational diabetes. Therefore gestational diabetes turns to be the ultimate insult targeting the offspring beta-cell mass and propagates diabetes risk to the next generation again. The aetiology and the transmission of spontaneous diabetes as encountered in the GK/Par rat model of type 2 diabetes, are discussed in such a perspective. This review also discusses the non-genomic mechanisms involved in the installation of the programmed effect as well as in its intergenerational transmission.

  12. Expression of the alpha 6 beta 4 integrin by squamous cell carcinomas and basal cell carcinomas: possible relation to invasive potential?

    DEFF Research Database (Denmark)

    Rossen, K; Dahlstrøm, K K; Mercurio, A M;


    We have studied the expression of alpha 6 beta 4 integrin, a carcinoma laminin receptor in ten squamous cell carcinomas (SCCs) and ten basal cell carcinomas (BCCs) of the skin in order to examine whether changes in alpha 6 beta 4 integrin expression may be related to invasive and metastatic...... the expression of the alpha 6 and the beta 4 subunits paralleled each other, showing an increased intensity and loss of polarity. The BCCs, however, showed consistently decreased expression of both the alpha 6 and the beta 4 subunits. The results of our study, as well as those of other studies, support...

  13. Expression of a TGF-{beta} regulated cyclin-dependent kinase inhibitor in normal and immortalized airway epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, L.A.; Bloomfield, C.; Johnson, N.F. [and others


    Tumors arising from epithelial cells, including lung cancers are frequently resistant to factors that regulate growth and differentiation in normal in normal cells. Once such factor is transforming growth factor-{Beta} (TGF-{Beta}). Escape from the growth-inhibitory effects of TGF-{Beta} is thought to be a key step in the transformation of airway epithelial cells. most lung cancer cell lines require serum for growth. In contrast, normal human bronchial epithelial (NHBE) cells are exquisitely sensitive to growth-inhibitory and differentiating effects of TGF-{Beta}. The recent identification of a novel cyclin-dependent kinase inhibitor, p15{sup INK4B}, which is regulated by TGF-{Beta}, suggests a mechanism by which TGF-{Beta} mediates growth arrest in NHBE cells. The purpose of this study was two-fold: (1) to determine if p15{sup INK4B} is induced by TGF-{Beta} in NHBE cells or immortalized bronchial epithelial (R.1) cells and if that induction corresponds to a G1/S cell-cycle arrest; (2) to determine the temporal relationship between p15{sup INK4B} induction, cell-cycle arrest, and the phosphorylation state of the pRB because it is thought that p15{sup INK4B} acts indirectly by preventing phosphorylation of the RB gene product. In this study, expression of p15{sup INK4B} was examined in NHBE cells and R.1 cells at different time intervals following TGF-{Beta} treatment. The expression of this kinase inhibitor and its relationship to the cell and the pRb phosphorylation state were examined in cells that were both sensitive (NHBE) and resistant (R.1) to the effects of TGF-{Beta}. These results suggest that the cyclin-dependent kinase inhibitor, p15{sup INK4B}, is involved in airway epithelial cell differentiation and that loss or reduction of expression plays a role in the resistance of transformed or neoplastic cells to the growth-inhibitory effects of TGF-{Beta}.

  14. Decrease in the production of beta-amyloid by berberine inhibition of the expression of beta-secretase in HEK293 cells

    Directory of Open Access Journals (Sweden)

    Zhu Feiqi


    Full Text Available Abstract Background Berberine (BER, the major alkaloidal component of Rhizoma coptidis, has multiple pharmacological effects including inhibition of acetylcholinesterase, reduction of cholesterol and glucose levels, anti-inflammatory, neuroprotective and neurotrophic effects. It has also been demonstrated that BER can reduce the production of beta-amyloid40/42, which plays a critical and primary role in the pathogenesis of Alzheimer's disease. However, the mechanism by which it accomplishes this remains unclear. Results Here, we report that BER could not only significantly decrease the production of beta-amyloid40/42 and the expression of beta-secretase (BACE, but was also able to activate the extracellular signal-regulated kinase1/2 (ERK1/2 pathway in a dose- and time-dependent manner in HEK293 cells stably transfected with APP695 containing the Swedish mutation. We also find that U0126, an antagonist of the ERK1/2 pathway, could abolish (1 the activation activity of BER on the ERK1/2 pathway and (2 the inhibition activity of BER on the production of beta-amyloid40/42 and the expression of BACE. Conclusion Our data indicate that BER decreases the production of beta-amyloid40/42 by inhibiting the expression of BACE via activation of the ERK1/2 pathway.

  15. Snail/beta-catenin signaling protects breast cancer cells from hypoxia attack

    Energy Technology Data Exchange (ETDEWEB)

    Scherbakov, Alexander M., E-mail: [Laboratory of Clinical Biochemistry, Institute of Clinical Oncology, N.N. Blokhin Cancer Research Centre, Kashirskoye sh. 24, Moscow 115478 (Russian Federation); Stefanova, Lidia B.; Sorokin, Danila V.; Semina, Svetlana E. [Laboratory of Molecular Endocrinology, Institute of Carcinogenesis, N.N. Blokhin Cancer Research Centre, Kashirskoye sh. 24, Moscow 115478 (Russian Federation); Berstein, Lev M. [Laboratory of Oncoendocrinology, N.N. Petrov Research Institute of Oncology, St. Petersburg 197758 (Russian Federation); Krasil’nikov, Mikhail A. [Laboratory of Molecular Endocrinology, Institute of Carcinogenesis, N.N. Blokhin Cancer Research Centre, Kashirskoye sh. 24, Moscow 115478 (Russian Federation)


    The tolerance of cancer cells to hypoxia depends on the combination of different factors – from increase of glycolysis (Warburg Effect) to activation of intracellular growth/apoptotic pathways. Less is known about the influence of epithelial–mesenchymal transition (EMT) and EMT-associated pathways on the cell sensitivity to hypoxia. The aim of this study was to explore the role of Snail signaling, one of the key EMT pathways, in the mediating of hypoxia response and regulation of cell sensitivity to hypoxia, using as a model in vitro cultured breast cancer cells. Earlier we have shown that estrogen-independent HBL-100 breast cancer cells differ from estrogen-dependent MCF-7 cells with increased expression of Snail1, and demonstrated Snail1 involvement into formation of hormone-resistant phenotype. Because Snail1 belongs to hypoxia-activated proteins, here we studied the influence of Snail1 signaling on the cell tolerance to hypoxia. We found that Snail1-enriched HBL-100 cells were less sensitive to hypoxia-induced growth suppression if compared with MCF-7 line (31% MCF-7 vs. 71% HBL-100 cell viability after 1% O{sub 2} atmosphere for 3 days). Snail1 knock-down enhanced the hypoxia-induced inhibition of cell proliferation giving the direct evidence of Snail1 involvement into cell protection from hypoxia attack. The protective effect of Snail1 was shown to be mediated, at least in a part, via beta-catenin which positively regulated expression of HIF-1-dependent genes. Finally, we found that cell tolerance to hypoxia was accompanied with the failure in the phosphorylation of AMPK – the key energy sensor, and demonstrated an inverse relationship between AMPK and Snail/beta-catenin signaling. Totally, our data show that Snail1 and beta-catenin, besides association with loss of hormone dependence, protect cancer cells from hypoxia and may serve as an important target in the treatment of breast cancer. Moreover, we suggest that the level of these proteins as well

  16. Beta Cell Formation in vivo Through Cellular Networking, Integration and Processing (CNIP) in Wild Type Adult Mice. (United States)

    Doiron, Bruno; Hu, Wenchao; DeFronzo, Ralph A


    Insulin replacement therapy is essential in type 1 diabetic individuals and is required in ~40- 50% of type 2 diabetics during their lifetime. Prior attempts at beta cell regeneration have relied upon pancreatic injury to induce beta cell proliferation, dedifferentiation and activation of the embryonic pathway, or stem cell replacement. We report an alternative method to transform adult non-stem (somatic) cells into pancreatic beta cells. The Cellular Networking, Integration and Processing (CNIP) approach targets cellular mechanisms involved in pancreatic function in the organ's adult state and utilizes a synergistic mechanism that integrates three important levels of cellular regulation to induce beta cell formation: (i) glucose metabolism, (ii) membrane receptor function, and (iii) gene transcription. The aim of the present study was to induce pancreatic beta cell formation in vivo in adult animals without stem cells and without dedifferentiating cells to recapitulate the embryonic pathway as previously published (1-3). Our results employing CNIP demonstrate that: (i) insulin secreting cells can be generated in adult pancreatic tissue in vivo and circumvent the problem of generating endocrine (glucagon and somatostatin) cells that exert deleterious effects on glucose homeostasis, and (ii) longterm normalization of glucose tolerance and insulin secretion can be achieved in a wild type diabetic mouse model. The CNIP cocktail has the potential to be used as a preventative or therapeutic treatment or cure for both type 1 and type 2 diabetes.

  17. Regulation of MCF-7 breast cancer cell growth by beta-estradiol sulfation. (United States)

    Falany, Josie L; Macrina, Nancy; Falany, Charles N


    Estrogen stimulation is an important factor in human breast cancer cell growth and development. Metabolism of beta-estradiol (E2), the major endogenous human estrogen, is important in regulating both the level and activity of the hormone in breast tissues. Conjugation of E2 with a sulfonate moiety is an inactivation process since the sulfate ester formed by this reaction can not bind and activate the estrogen receptor. In human tissues including the breast, estrogen sulfotransferase (EST, SULT1E1) is responsible for high affinity E2 sulfation activity. EST is expressed in human mammary epithelial (HME) cells but not in most cultured breast cancer cell lines, including estrogen responsive MCF-7 cells. Stable expression of EST in MCF-7 cells at levels similar to those detected in HME cells significantly inhibits cell growth at physiologically relevant E2 concentrations. The mechanism of cell growth inhibition involves the abrogation of responses observed in growth factor expression in MCF-7 cells following E2 stimulation. MCF-7 cells expressing EST activity did not show a decrease in estrogen receptor-alpha levels, nor a characteristic increase in progesterone receptor or decrease in transforming growth factor-beta expression upon exposure to 100 pM or 1 nM E2. The lack of response in these MCF-7 cells is apparently due to the rapid sulfation and inactivation of free E2 by EST. These results suggest that loss of EST expression in the transformation of normal breast tissues to breast cancer may be an important factor in increasing the growth responsiveness of preneoplastic or tumor cells to estrogen stimulation.

  18. {sup 99m}Tc-3PRGD{sub 2} SPECT to monitor early response to neoadjuvant chemotherapy in stage II and III breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Bin; Chen, Bin; Wang, Ting; Chen, Minglong; Ji, Tiefeng; Gao, Shi; Ma, Qingjie [China-Japan Union Hospital of Jilin University, Department of Nuclear Medicine, Changchun (China); Song, Yan [China-Japan Union Hospital of Jilin University, Department of Breast Surgery, Changchun (China); Wang, Xueju [China-Japan Union Hospital of Jilin University, Department of Pathology, Changchun (China)


    Monitoring of response to neoadjuvant chemotherapy (NCT) is important for optimal management of patients with breast cancer. {sup 99m}Tc-3PRGD{sub 2} SPECT is a newly developed imaging modality for evaluating tumor vascular status. In this study, we investigated the application of {sup 99m}Tc-3PRGD{sub 2} SPECT in evaluating therapy response to NCT in patients with stage II or III breast cancer. Thirty-three patients were scheduled to undergo {sup 99m}Tc-3PRGD{sub 2} SPECT at baseline, after the first and second cycle of NCT. Four patients had extremely low {sup 99m}Tc-3PRGD{sub 2} uptake at baseline, and were not included in the subsequent studies. Changes in tumor to nontumor (T/N) ratio were compared with pathological tumor responses classified using the residual cancer burden system. Receiver operator characteristic analysis was used to compare the power to identify responders between the end of the first and the end of the second cycle of NCT. The impact of breast cancer subtype on {sup 99m}Tc-3PRGD{sub 2} uptake was evaluated. The correlation between {sup 99m}Tc-3PRGD{sub 2} uptake and pathological tumor response was also evaluated in each breast cancer subtype. Surgery was performed after four cycles of NCT and pathological analysis revealed 18 responders and 15 nonresponders. In patients with clearly visible {sup 99m}Tc-3PRGD{sub 2} uptake at baseline, the sensitivity, specificity, and negative predictive value of {sup 99m}Tc-3PRGD{sub 2} SPECT were 86.7 %, 85.7 % and 86.7 % after the first cycle of NCT, and 92.9 %, 93.3 % and 93.3 % after the second cycle, respectively. Among these patients, the HER-2-positive group demonstrated both higher T/N ratios and a greater change in T/N ratio than patients with other breast cancer subtypes (P < 0.05). A strong correlation was found between changes in T/N ratio and pathological tumor response in the HER-2-positive group (P < 0.03). {sup 99m}Tc-3PRGD{sub 2} SPECT seems to be useful for determining the pathological

  19. Electrical Stimulation Decreases Coupling Efficiency Between Beta-Adrenergic Receptors and Cyclic AMP Production in Cultured Muscle Cells (United States)

    Young, R. B.; Bridge, K. Y.


    Electrical stimulation of skeletal muscle cells in culture is an effective way to simulate the effects of muscle contraction and its effects on gene expression in muscle cells. Expression of the beta-adrenergic receptor and its coupling to cyclic AMP synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this project was to determine if electrical stimulation altered the beta-adrenergic response in muscle cells. Chicken skeletal muscle cells that had been grown for seven days in culture were subjected to electrical stimulation for an additional two days at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. At the end of this two-day stimulation period, beta-adrenergic receptor population was measured by the binding of tritium-labeled CGP-12177 to muscle cells, and coupling to cAMP synthesis was measured by Radioimmunoassay (RIA) after treating the cells for 10 min with the potent (beta)AR agonist, isoproterenol. The number of beta adrenergic receptors and the basal levels of intracellular cyclic AMP were not affected by electrical stimulation. However, the ability of these cells to synthesize cyclic AMP was reduced by approximately 50%. Thus, an enhanced level of contraction reduces the coupling efficiency of beta-adrenergic receptors for cyclic AMP production.

  20. Structural Basis of the CD8[alpha beta]/MHC Class I Interaction: Focused Recognition Orients CD8[beta] to a T Cell Proximal Position[superscript 1,2

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rui; Natarajan, Kannan; Margulies, David H.; (NIH)


    In the immune system, B cells, dendritic cells, NK cells, and T lymphocytes all respond to signals received via ligand binding to receptors and coreceptors. Although the specificity of T cell recognition is determined by the interaction of T cell receptors with MHC/peptide complexes, the development of T cells in the thymus and their sensitivity to Ag are also dependent on coreceptor molecules CD8 (for MHC class I (MHCI)) and CD4 (for MHCII). The CD8{alpha}{beta} heterodimer is a potent coreceptor for T cell activation, but efforts to understand its function fully have been hampered by ignorance of the structural details of its interactions with MHCI. In this study we describe the structure of CD8{alpha}{beta} in complex with the murine MHCI molecule H-2D{sup d} at 2.6 {angstrom} resolution. The focus of the CD8{alpha}{beta} interaction is the acidic loop (residues 222-228) of the {alpha}3 domain of H-2D{sup d}. The {beta} subunit occupies a T cell membrane proximal position, defining the relative positions of the CD8{alpha} and CD8{beta} subunits. Unlike the CD8{alpha}{alpha} homodimer, CD8{alpha}{beta} does not contact the MHCI {alpha}{sub 2}- or {beta}{sub 2}-microglobulin domains. Movements of the CD8{alpha} CDR2 and CD8{beta} CDR1 and CDR2 loops as well as the flexibility of the H-2D{sup d} CD loop facilitate the monovalent interaction. The structure resolves inconclusive data on the topology of the CD8{alpha}{beta}/MHCI interaction, indicates that CD8{beta} is crucial in orienting the CD8{alpha}{beta} heterodimer, provides a framework for understanding the mechanistic role of CD8{alpha}{beta} in lymphoid cell signaling, and offers a tangible context for design of structurally altered coreceptors for tumor and viral immunotherapy.

  1. Glucose-induced repression of PPARalpha gene expression in pancreatic beta-cells involves PP2A activation and AMPK inactivation

    DEFF Research Database (Denmark)

    Ravnskjaer, Kim; Boergesen, Michael; Dalgaard, Louise T;


    Tight regulation of fatty acid metabolism in pancreatic beta-cells is important for beta-cell viability and function. Chronic exposure to elevated concentrations of fatty acid is associated with beta-cell lipotoxicity. Glucose is known to repress fatty acid oxidation and hence to augment the toxi......Tight regulation of fatty acid metabolism in pancreatic beta-cells is important for beta-cell viability and function. Chronic exposure to elevated concentrations of fatty acid is associated with beta-cell lipotoxicity. Glucose is known to repress fatty acid oxidation and hence to augment...... but not AMPKalpha1 using RNAi suppressed PPARalpha expression, thereby mimicking the effect of glucose. These results indicate that activation of protein phosphatase 2A and subsequent inactivation of AMPK is necessary for glucose repression of PPARalpha expression in pancreatic beta-cells....

  2. Trichostatin A inhibits beta-casein expression in mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Pujuguet, Philippe; Radisky, Derek; Levy, Dinah; Lacza, Charlemagne; Bissell, Mina J.


    Many aspects of cellular behavior are affected by information derived from association of the extracellular matrix (ECM) and with cell membrane receptors. When cultured in the presence of laminin-containing ECM and prolactin (Prl), normal mammary epithelial cells express the milk protein beta-casein. Previously, we defined the minimal ECM- and Prl-responsive enhancer element BCE-1 from the upstream region of the beta-casein gene. We also found that BCE-1 was only active when stably integrated into chromatin, and that trichostatin A (TSA), a reagent that leads to alterations in chromatin structure, was able to activate the integrated enhancer element. We now show that endogenous b-casein gene, which is controlled by a genetic assembly that is highly similar to that of BCE-1 and which is also activated by incubation in ECM and Prl, is instead inhibited by TSA. We provide evidence that the differing response of b-casein and BCE-1 to TSA is neither due to an unusual effect of TSA on mammary epithelial cells, nor to secondary consequences from the expression of a separate gene, nor to a particular property of the BCE-1 construct. As a component of this investigation, we also showed that ECM could mediate rapid histone deacetylation in mammary epithelial cells. These results are discussed in combination with previous work showing that TSA mediates the differentiation of many types of cancer cells but inhibits differentiation of some nonmalignant cell types.

  3. Oxidative stress in plant cell culture: a role in production of beta-thujaplicin by Cupresssus lusitanica suspension culture. (United States)

    Zhao, Jian; Fujita, Koki; Sakai, Kokki


    Oxidative stress is a common physiological stress that often challenges plants. Reactive oxygen species (ROS) are major factors in oxidative stress that significantly affect plant cell growth and secondary metabolism. Here we used beta-thujaplicin production by Cupressus lusitanica cell culture as an example to demonstrate the common occurrence of oxidative stress in cultivated plant cells and its effect on multiple aspects of cell culture process. C. lusitanica cells cultivated under Fe(2+) stress generate a significant level of ROS, and oxidative stress also occurs at late stages of C. lusitanica cell cultures under normal conditions. ROS production inhibited cell growth, induced lipid peroxidation and cell death, and enhanced ethylene and beta-thujaplicin production. It is demonstrated that Fe(2+) stress enhances ROS production via the Fenton reaction and promotes beta-thujaplicin production via ROS-induced lipid peroxidation that may activate cyclic oxylipin and ethylene pathways. Results further indicate that H(2)O(2) is a positive signal for beta-thujaplicin production, whereas superoxide anion radical (O(2) (- )) negatively affects beta-thujaplicin induction and strongly induces cell death. The study suggests that evaluating the oxidative stress and plant responses in a cell culture process is very necessary and important for understanding biochemical processes and for gaining the maximal productivity of target secondary metabolites.

  4. alpha2beta1 integrin controls association of Rac with the membrane and triggers quiescence of endothelial cells. (United States)

    Cailleteau, Laurence; Estrach, Soline; Thyss, Raphael; Boyer, Laurent; Doye, Anne; Domange, Barbara; Johnsson, Nils; Rubinstein, Eric; Boucheix, Claude; Ebrahimian, Teni; Silvestre, Jean-Sebastien; Lemichez, Emmanuel; Meneguzzi, Guerrino; Mettouchi, Amel


    Integrin receptors and their extracellular matrix ligands provide cues to cell proliferation, survival, differentiation and migration. Here, we show that alpha2beta1 integrin, when ligated to the basement membrane component laminin-1, triggers a proliferation arrest in primary endothelial cells. Indeed, in the presence of strong growth signals supplied by growth factors and fibronectin, alpha2beta1 engagement alters assembly of mature focal adhesions by alpha5beta1 and leads to impairment of downstream signaling and cell-cycle arrest in the G1 phase. Although the capacity of alpha5beta1 to signal for GTP loading of Rac is preserved, the joint engagement of alpha2beta1 interferes with membrane anchorage of Rac. Adapting the 'split-ubiquitin' sensor to screen for membrane-proximal alpha2 integrin partners, we identified the CD9 tetraspanin and further establish its requirement for destabilization of focal adhesions, control of Rac subcellular localization and growth arrest induced by alpha2beta1 integrin. Altogether, our data establish that alpha2beta1 integrin controls endothelial cell commitment towards quiescence by triggering a CD9-dependent dominant signaling.

  5. Islet autoantibodies and residual beta cell function in type 1 diabetes children followed for 3-6 years

    DEFF Research Database (Denmark)

    Sørensen, Jesper Sand; Vaziri-Sani, Fariba; Maziarz, M


    To test if islet autoantibodies at diagnosis of type 1 diabetes (T1DM) and after 3-6 years with T1D predict residual beta-cell function (RBF) after 3-6 years with T1D.......To test if islet autoantibodies at diagnosis of type 1 diabetes (T1DM) and after 3-6 years with T1D predict residual beta-cell function (RBF) after 3-6 years with T1D....

  6. Growth suppression by transforming growth factor beta 1 of human small-cell lung cancer cell lines is associated with expression of the type II receptor

    DEFF Research Database (Denmark)

    Nørgaard, P; Damstrup, L; Rygaard, K;


    was observed in two cell lines expressing only type III receptor and in TGF-beta-r negative cell lines. In two cell lines expressing all three receptor types, growth suppression was accompanied by morphological changes. To evaluate the possible involvement of the retinoblastoma protein (pRb) in mediating...... the growth-suppressive effect of TGF-beta 1, the expression of functional pRb, as characterised by nuclear localisation, was examined by immunocytochemistry. Nuclear association of pRb was only seen in two of the five TGF-beta 1-responsive cell lines. These results indicate that in SCLC pRb is not required...

  7. Enhanced expression of beta2-microglobulin and HLA antigens on human lymphoid cells by interferon

    DEFF Research Database (Denmark)

    Heron, I; Hokland, M; Berg, K


    Mononuclear cells from the blood of healthy normal humans were kept in cultures under nonstimulating conditions for 16 hr in the presence or absence of human interferon. The relative quantities of HLA antigens and beta(2)-microglobulin on the cultured cells were determined by quantitative...... was observed on B- and T-enriched lymphocyte populations and was found to be dose dependent with the optimum with "physiological" concentrations of interferon. Pretreatment of lymphocytes with interferon for 2 hr was found to be as effective as having interferon present during the total culture period...

  8. Biotin uptake by mouse and human pancreatic beta cells/islets: a regulated, lipopolysaccharide-sensitive carrier-mediated process. (United States)

    Ghosal, Abhisek; Sekar, Thillai V; Said, Hamid M


    Biotin is essential for the normal function of pancreatic beta cells. These cells obtain biotin from their surroundings via transport across their cell membrane. Little is known about the uptake mechanism involved, how it is regulated, and how it is affected by internal and external factors. We addressed these issues using the mouse-derived pancreatic beta-TC-6 cells and freshly isolated mouse and human primary pancreatic beta cells as models. The results showed biotin uptake by pancreatic beta-TC-6 cells occurs via a Na(+)-dependent, carrier-mediated process, that is sensitive to desthiobiotin, as well as to pantothenic acid and lipoate; the process is also saturable as a function of concentration (apparent Km = 22.24 ± 5.5 μM). These cells express the sodium-dependent multivitamin transporter (SMVT), whose knockdown (with doxycycline-inducible shRNA) led to a sever inhibition in biotin uptake. Similarly, uptake of biotin by mouse and human primary pancreatic islets is Na(+)-dependent and carrier-mediated, and both cell types express SMVT. Biotin uptake by pancreatic beta-TC-6 cells is also adaptively regulated (via transcriptional mechanism) by extracellular substrate level. Chronic treatment of pancreatic beta-TC-6 cells with bacterial lipopolysaccharides (LPS) leads to inhibition in biotin uptake. This inhibition is mediated via a Toll-Like receptor 4-mediated process and involves a decrease in membrane expression of SMVT. These findings show, for the first time, that pancreatic beta cells/islets take up biotin via a specific and regulated carrier-mediated process, and that the process is sensitive to the effect of LPS.

  9. Autocrine production of beta-chemokines protects CMV-Specific CD4 T cells from HIV infection.

    Directory of Open Access Journals (Sweden)

    Joseph P Casazza


    Full Text Available Induction of a functional subset of HIV-specific CD4+ T cells that is resistant to HIV infection could enhance immune protection and decrease the rate of HIV disease progression. CMV-specific CD4+ T cells, which are less frequently infected than HIV-specific CD4+ T cells, are a model for such an effect. To determine the mechanism of this protection, we compared the functional response of HIV gag-specific and CMV pp65-specific CD4+ T cells in individuals co-infected with CMV and HIV. We found that CMV-specific CD4+ T cells rapidly up-regulated production of MIP-1alpha and MIP-1beta mRNA, resulting in a rapid increase in production of MIP-1alpha and MIP-1beta after cognate antigen stimulation. Production of beta-chemokines was associated with maturational phenotype and was rarely seen in HIV-specific CD4+ T cells. To test whether production of beta-chemokines by CD4+ T cells lowers their susceptibility to HIV infection, we measured cell-associated Gag DNA to assess the in vivo infection history of CMV-specific CD4+ T cells. We found that CMV-specific CD4+ T cells which produced MIP-1beta contained 10 times less Gag DNA than did those which failed to produce MIP-1beta. These data suggest that CD4+ T cells which produce MIP-1alpha and MIP-1beta bind these chemokines in an autocrine fashion which decreases the risk of in vivo HIV infection.

  10. Tumor necrosis factor-alpha upregulates 11beta-hydroxysteroid dehydrogenase type 1 expression by CCAAT/enhancer binding protein-beta in HepG2 cells. (United States)

    Ignatova, Irena D; Kostadinova, Radina M; Goldring, Christopher E; Nawrocki, Andrea R; Frey, Felix J; Frey, Brigitte M


    The enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) catalyzes the conversion of inactive to active glucocorticoids. 11beta-HSD1 plays a crucial role in the pathogenesis of obesity and controls glucocorticoid actions in inflammation. Several studies have demonstrated that TNF-alpha increases 11beta-HSD1 mRNA and activity in various cell models. Here, we demonstrate that mRNA and activity of 11beta-HSD1 is increased in liver tissue from transgenic mice overexpressing TNF-alpha, indicating that this effect also occurs in vivo. To dissect the molecular mechanism of this increase, we investigated basal and TNF-alpha-induced transcription of the 11beta-HSD1 gene (HSD11B1) in HepG2 cells. We found that TNF-alpha acts via p38 MAPK pathway. Transient transfections with variable lengths of human HSD11B1 promoter revealed highest activity with or without TNF-alpha in the proximal promoter region (-180 to +74). Cotransfection with human CCAAT/enhancer binding protein-alpha (C/EBPalpha) and C/EBPbeta-LAP expression vectors activated the HSD11B1 promoter with the strongest effect within the same region. Gel shift and RNA interference assays revealed the involvement of mainly C/EBPalpha, but also C/EBPbeta, in basal and only of C/EBPbeta in the TNF-alpha-induced HSD11B1 expression. Chromatin immunoprecipitation assay confirmed in vivo the increased abundance of C/EBPbeta on the proximal HSD11B1 promoter upon TNF-alpha treatment. In conclusion, C/EBPalpha and C/EBPbeta control basal transcription, and TNF-alpha upregulates 11beta-HSD1, most likely by p38 MAPK-mediated increased binding of C/EBPbeta to the human HSD11B1 promoter. To our knowledge, this is the first study showing involvement of p38 MAPK in the TNF-alpha-mediated 11beta-HSD1 regulation, and that TNF-alpha stimulates enzyme activity in vivo.

  11. Phenotypic and gene expression changes between low (glucose-responsive) and High (glucose non-responsive) MIN-6 beta cells

    DEFF Research Database (Denmark)

    O´Driscoll, L.; Gammell, p.; McKierman, E.


    The long-term potential to routinely use replacement beta cells/islets as cell therapy for type 1 diabetes relies on our ability to culture such cells/islets, in vitro, while maintaining their functional status. Previous beta cell studies, by ourselves and other researchers, have indicated......, high passage) were determined by ELISA (assessing GSIS and cellular (pro)insulin content), proliferation assays, phase contrast light microscopy and analysis of alkaline phosphatase expression. Differential mRNA expression was investigated using microarray, bioinformatics and real-time PCR technologies......, to be significantly affected by passaging/ long-term culture. Loss/reduced levels, in high passage cells, of certain transcripts associated with the mature beta cell, together with increased levels of neuron/glia-associated mRNAs, suggest that, with time in culture, MIN-6 cells may revert to an early (possibly multi...

  12. Monte Carlo investigation of single cell beta dosimetry for intraperitoneal radionuclide therapy

    Energy Technology Data Exchange (ETDEWEB)

    Syme, A M [Department of Physics, University of Alberta, 412 Avadh Bhatia Physics Laboratory, Edmonton, Alberta, T6G 2J1 (Canada); Kirkby, C [Department of Physics, University of Alberta, 412 Avadh Bhatia Physics Laboratory, Edmonton, Alberta, T6G 2J1 (Canada); Riauka, T A [Department of Medical Physics, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2 (Canada); Fallone, B G [Department of Physics, University of Alberta, 412 Avadh Bhatia Physics Laboratory, Edmonton, Alberta, T6G 2J1 (Canada); McQuarrie, S A [Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 3118 Dentistry/Pharmacy Centre, Edmonton, Alberta, T6G 2N8 (Canada)


    Single event spectra for five beta-emitting radionuclides (Lu-177, Cu-67, Re-186, Re-188, Y-90) were calculated for single cells from two source geometries. The first was a surface-bound isotropically emitting point source and the second was a bath of free radioactivity in which the cell was submerged. Together these represent a targeted intraperitoneal radionuclide therapy. Monoenergetic single event spectra were calculated over an energy range of 11 keV to 2500 keV using the EGSnrc Monte Carlo system. Radionuclide single event spectra were constructed by weighting monoenergetic single event spectra according to radionuclide spectra appropriate for each source geometry. In the case of surface-bound radioactivity, these were radionuclide beta decay spectra. For the free radioactivity, a continuous slowing down approximation spectrum was used that was calculated based on the radionuclide decay spectra. The frequency mean specific energy per event increased as the energy of the beta emitter decreased. This is because, at these energies, the stopping power of the electrons decreases with increasing energy. The free radioactivity produced a higher frequency mean specific energy per event than the corresponding surface-bound value. This was primarily due to the longer mean path length through the target for this geometry. This information differentiates the radionuclides in terms of the physical process of energy deposition and could be of use in the radionuclide selection procedure for this type of therapy.

  13. Enhanced thermal stability of lysosomal beta-D-galactosidase in parenchymal cells of tumour bearing mice. (United States)

    Lenti, L; Lipari, M; Lombardi, D; Zicari, A; Dotta, A; Pontieri, G M


    The thermal stability of the enzyme beta-D-galactosidase varies among different organs in normal C57Bl/6 mice, and increases in the same organs in mice with Lewis Lung carcinoma. Thermal stability of this enzyme is also increased by treatment of the mice with cell-free extracts of tumour cells or with inflammatory compounds such as carrageenan or orosomucoid. After desialylation, orosomucoid more effectively increases the heat stability of the enzyme. By contrast talc, which has no galactosyl groups, is without effect on the stability of the enzyme in vivo. Macrophages of tumour bearing mice release into the culture medium a more heat resistant enzyme than macrophages from control mice. In both cases the heat resistance of the secreted enzyme is higher when fetal calf serum is present in the culture medium. Bovine serum does not modify the thermal stability of beta-D-galactosidase in this system. Incubation of lysosomal fractions of various organs with the synthetic beta-D-galactosidase substrate, p-nitrophenyl-galactopyranoside, also strongly increases the heat resistance of the enzyme. The results suggest that one factor influencing the heat resistance of this enzyme may be complex formation between the enzyme and its substrates, an example of substrate protection of the enzyme. This may not be the only factor involved in enzyme stabilization in vivo.

  14. Exogenous thymosin beta4 prevents apoptosis in human intervertebral annulus cells in vitro. (United States)

    Tapp, H; Deepe, R; Ingram, J A; Yarmola, E G; Bubb, M R; Hanley, E N; Gruber, H E


    Loss of cells in the human disc due to programmed cell death (apoptosis) is a major factor in the aging and degenerating human intervertebral disc. Our objective here was to determine if thymosin beta(4) (TB4), a small, multifunctional 5 kDa protein with diverse activities, might block apoptosis in human annulus cells cultured in monolayer or three-dimensional (3D) culture. Apoptosis was induced in vitro using hydrogen peroxide or serum starvation. Annulus cells were processed for identification of apoptotic cells using the TUNEL method. The percentage of apoptotic cells was determined by cell counts. Annulus cells also were treated with TB4 for determination of proliferation, and proteoglycan production was assessed using cell titer and 1,2 dimethylmethylamine (DMB) assays and histological staining. A significant reduction in disc cell apoptosis occurred after TB4 treatment. The percentage of cells undergoing apoptosis decreased significantly in TB4 treated cells in both apoptosis induction designs. TB4 exposure did not alter proteoglycan production as assessed by either DMB measurement or histological staining. Our results indicate the need for further studies of the anti-apoptotic effect of TB4 and suggest that TB4 may have therapeutic application in future biological therapies for disc degeneration.

  15. Increased androgen levels in rats impair glucose-stimulated insulin secretion through disruption of pancreatic beta cell mitochondrial function. (United States)

    Wang, Hongdong; Wang, Xiaping; Zhu, Yunxia; Chen, Fang; Sun, Yujie; Han, Xiao


    Although insulin resistance is recognized to contribute to the reproductive and metabolic phenotypes of polycystic ovary syndrome (PCOS), pancreatic beta cell dysfunction plays an essential role in the progression from PCOS to the development of type 2 diabetes. However, the role of insulin secretory abnormalities in PCOS has received little attention. In addition, the precise changes in beta cells and the underlying mechanisms remain unclear. In this study, we therefore attempted to elucidate potential mechanisms involved in beta cell alterations in a rat model of PCOS. Glucose-induced insulin secretion was measured in islets isolated from DHT-treated and control rats. Oxygen consumption rate (OCR), ATP production, and mitochondrial copy number were assayed to evaluate mitochondrial function. Glucose-stimulated insulin secretion is significantly decreased in islets from DHT-treated rats. On the other hand, significant reductions are observed in the expression levels of several key genes involved in mitochondrial biogenesis and in mitochondrial OCR and ATP production in DHT-treated rat islets. Meanwhile, we found that androgens can directly impair beta cell function by inducing mitochondrial dysfunction in vitro in an androgen receptor dependent manner. For the first time, our study demonstrates that increased androgens in female rats can impair glucose-stimulated insulin secretion partly through disruption of pancreatic beta cell mitochondrial function. This work has significance for hyperandrogenic women with PCOS: excess activation of the androgen receptor by androgens may provoke beta cell dysfunction via mitochondrial dysfunction.

  16. Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates beta cell loss in type 2 diabetes. (United States)

    Jourdan, Tony; Godlewski, Grzegorz; Cinar, Resat; Bertola, Adeline; Szanda, Gergő; Liu, Jie; Tam, Joseph; Han, Tiffany; Mukhopadhyay, Bani; Skarulis, Monica C; Ju, Cynthia; Aouadi, Myriam; Czech, Michael P; Kunos, George


    Type 2 diabetes mellitus (T2DM) progresses from compensated insulin resistance to beta cell failure resulting in uncompensated hyperglycemia, a process replicated in the Zucker diabetic fatty (ZDF) rat. The Nlrp3 inflammasome has been implicated in obesity-induced insulin resistance and beta cell failure. Endocannabinoids contribute to insulin resistance through activation of peripheral CB1 receptors (CB₁Rs) and also promote beta cell failure. Here we show that beta cell failure in adult ZDF rats is not associated with CB₁R signaling in beta cells, but rather in M1 macrophages infiltrating into pancreatic islets, and that this leads to activation of the Nlrp3-ASC inflammasome in the macrophages. These effects are replicated in vitro by incubating wild-type human or rodent macrophages, but not macrophages from CB₁R-deficient (Cnr1(-/-)) or Nlrp3(-/-) mice, with the endocannabinoid anandamide. Peripheral CB₁R blockade, in vivo depletion of macrophages or macrophage-specific knockdown of CB₁R reverses or prevents these changes and restores normoglycemia and glucose-induced insulin secretion. These findings implicate endocannabinoids and inflammasome activation in beta cell failure and identify macrophage-expressed CB₁R as a therapeutic target in T2DM.

  17. Transforming growth factor beta1 regulates melanocyte proliferation and differentiation in mouse neural crest cells via stem cell factor/KIT signaling. (United States)

    Kawakami, Tamihiro; Soma, Yoshinao; Kawa, Yoko; Ito, Masaru; Yamasaki, Emiko; Watabe, Hidenori; Hosaka, Eri; Yajima, Kenji; Ohsumi, Kayoko; Mizoguchi, Masako


    Stem cell factor is essential to the migration and differentiation of melanocytes during embryogenesis based on the observation that mutations in either the stem cell factor gene, or its ligand, KIT, result in defects in coat pigmentation in mice. Stem cell factor is also required for the survival of melanocyte precursors while they are migrating towards the skin. Transforming growth factor beta1 has been implicated in the regulation of both cellular proliferation and differentiation. NCC-melb4, an immortal cloned cell line, was cloned from a mouse neural crest cell. NCC-melb4 cells provide a model to study the specific stage of differentiation and proliferation of melanocytes. They also express KIT as a melanoblast marker. Using the NCC-melb4 cell line, we investigated the effect of transforming growth factor beta1 on the differentiation and proliferation of immature melanocyte precursors. Immunohistochemically, NCC-melb4 cells showed transforming growth factor beta1 expression. The anti-transforming growth factor beta1 antibody inhibited the cell growth, and downregulated the KIT protein and mRNA expression. To investigate further the activation of autocrine transforming growth factor beta1, NCC-melb4 cells were incubated in nonexogenous transforming growth factor beta1 culture medium. KIT protein decreased with anti-transforming growth factor beta1 antibody concentration in a concentration-dependent manner. We concluded that in NCC-melb4 cells, transforming growth factor beta1 promotes melanocyte precursor proliferation in autocrine and/or paracrine regulation. We further investigated the influence of transforming growth factor beta1 in vitro using a neural crest cell primary culture system from wild-type mice. Anti-transforming growth factor beta1 antibody decreased the number of KIT positive neural crest cell. In addition, the anti-transforming growth factor beta1 antibody supplied within the wild-type neural crest explants abolished the growth of the neural

  18. Dystroglycan loss disrupts polarity and beta-casein induction inmammary epithelial cells by perturbing laminin anchoring

    Energy Technology Data Exchange (ETDEWEB)

    Weir, M. Lynn; Oppizzi, Maria Luisa; Henry, Michael D.; Onishi,Akiko; Campbell, Kevin P.; Bissell, Mina J.; Muschler, John L.


    Precise contact between epithelial cells and their underlying basement membrane is critical to the maintenance of tissue architecture and function. To understand the role that the laminin receptor dystroglycan (DG) plays in these processes, we assayed cell responses to laminin-111 following conditional ablation of DG expression in cultured mammary epithelial cells (MECs). Strikingly, DG loss disrupted laminin-111-induced polarity and {beta}-casein production, and abolished laminin assembly at the step of laminin binding to the cell surface. DG re-expression restored these deficiencies. Investigations of mechanism revealed that DG cytoplasmic sequences were not necessary for laminin assembly and signaling, and only when the entire mucin domain of extracellular DG was deleted did laminin assembly not occur. These results demonstrate that DG is essential as a laminin-111 co-receptor in MECs that functions by mediating laminin anchoring to the cell surface, a process that allows laminin polymerization, tissue polarity, and {beta}-casein induction. The observed loss of laminin-111 assembly and signaling in DG-/-MECs provides insights into the signaling changes occurring in breast carcinomas and other cancers, where DG's laminin-binding function is frequently defective.

  19. The Mitochondrial Peptidase Pitrilysin Degrades Islet Amyloid Polypeptide in Beta-Cells.

    Directory of Open Access Journals (Sweden)

    Hanjun Guan

    Full Text Available Amyloid formation and mitochondrial dysfunction are characteristics of type 2 diabetes. The major peptide constituent of the amyloid deposits in type 2 diabetes is islet amyloid polypeptide (IAPP. In this study, we found that pitrilysin, a zinc metallopeptidase of the inverzincin family, degrades monomeric, but not oligomeric, islet amyloid polypeptide in vitro. In insulinoma cells when pitrilysin expression was decreased to 5% of normal levels, there was a 60% increase in islet amyloid polypeptide-induced apoptosis. In contrast, overexpression of pitrilysin protects insulinoma cells from human islet amyloid polypeptide-induced apoptosis. Since pitrilysin is a mitochondrial protein, we used immunofluorescence staining of pancreases from human IAPP transgenic mice and Western blot analysis of IAPP in isolated mitochondria from insulinoma cells to provide evidence for a putative intramitochondrial pool of IAPP. These results suggest that pitrilysin regulates islet amyloid polypeptide in beta cells and suggest the presence of an intramitochondrial pool of islet amyloid polypeptide involved in beta-cell apoptosis.

  20. Age-related changes in the expression of 11beta-hydroxysteroid dehydrogenase type 2 in rat Leydig cells.

    Directory of Open Access Journals (Sweden)

    Katerina Georgieva


    Full Text Available Previous studies in rats have shown that the ability of Leydig cells (LCs to produce testosterone significantly declines with age. To address the possible mechanisms by which aging LCs lose their steroidogenic function, we determined the effect of aging on the expression of 11beta-hydroxysteroid dehydrogenase (11beta-HSD type 2. The enzyme plays a protective role in blunting the suppressive effects of glucocorticoids on LCs steroidogenesis. Our immunohistochemical analysis revealed progressive decline in 11beta-HDS type 2 expression in LCs of the 18 months of age rats and the most significant reduction in 11beta-HSD2 immunoreactivity was evident in the testicular interstitium of 24- month-old rats. The decrease in the 11beta-HDS type 2 immunostaining in LCs during aging coincided with decline in insulin-like 3/relaxin-like factor (INSL3/RLF expression, an independent marker for LCs differentiation status. Concomitant with the age-related decrease of 11beta-HDS type 2 immunoreactivity in the LCs population, the immunoexpression of 3beta-hydroxysteroid dehydrogenase (3beta-HSD, marker for LCs steroidogenic activity, was greatly reduced at 24 months compared to 3-month-old control. Similar pattern of expression exhibited also androgen receptor (AR which is localized in the nuclei of Sertoli cells (SCs, LCs, and peritubular cells. During ages we observed progressive decrease in the immunoreactivity for AR in the testicular types and there was a loss of stage specificity in SCs at age of 24 months. It now seems evident that a variety of factors are likely to be involved in age-related decreases in LCs steroidogenesis, including 11beta-HSD type 2. The observed reduction in 11beta-HSD type 2 expression in aging LCs reflects the decline in their protection ability, opposing the suppressive effect of glucocorticoids on testosterone production.

  1. Dopamine D2-like receptors are expressed in pancreatic beta cells and mediate inhibition of insulin secretion. (United States)

    Rubí, Blanca; Ljubicic, Sanda; Pournourmohammadi, Shirin; Carobbio, Stefania; Armanet, Mathieu; Bartley, Clarissa; Maechler, Pierre


    Dopamine signaling is mediated by five cloned receptors, grouped into D1-like (D1 and D5) and D2-like (D2, D3 and D4) families. We identified by reverse transcription-PCR the presence of dopamine receptors from both families in INS-1E insulin-secreting cells as well as in rodent and human isolated islets. D2 receptor expression was confirmed by immunodetection revealing localization on insulin secretory granules of INS-1E and primary rodent and human beta cells. We then tested potential effects mediated by the identified receptors on beta cell function. Dopamine (10 microM) and the D2-like receptor agonist quinpirole (5 microM) inhibited glucose-stimulated insulin secretion tested in several models, i.e. INS-1E beta cells, fluorescence-activated cell-sorted primary rat beta cells, and pancreatic islets of rat, mouse, and human origin. Insulin exocytosis is controlled by metabolism coupled to cytosolic calcium changes. Measurements of glucose-induced mitochondrial hyperpolarization and ATP generation showed that dopamine and D2-like agonists did not inhibit glucose metabolism. On the other hand, dopamine decreased cell membrane depolarization as well as cytosolic calcium increases evoked by glucose stimulation in INS-1E beta cells. These results show for the first time that dopamine receptors are expressed in pancreatic beta cells. Dopamine inhibited glucose-stimulated insulin secretion, an effect that could be ascribed to D2-like receptors. Regarding the molecular mechanisms implicated in dopamine-mediated inhibition of insulin release, our results point to distal steps in metabolism-secretion coupling. Thus, the role played by dopamine in glucose homeostasis might involve dopamine receptors, expressed in pancreatic beta cells, modulating insulin release.

  2. Beta Blockers Suppress Dextrose-Induced Endoplasmic Reticulum Stress, Oxidative Stress, and Apoptosis in Human Coronary Artery Endothelial Cells. (United States)

    Haas, Michael J; Kurban, William; Shah, Harshit; Onstead-Haas, Luisa; Mooradian, Arshag D

    Beta blockers are known to have favorable effects on endothelial function partly because of their capacity to reduce oxidative stress. To determine whether beta blockers can also prevent dextrose-induced endoplasmic reticulum (ER) stress in addition to their antioxidative effects, human coronary artery endothelial cells and hepatocyte-derived HepG2 cells were treated with 27.5 mM dextrose for 24 hours in the presence of carvedilol (a lipophilic beta blockers with alpha blocking activity), propranolol (a lipophilic nonselective beta blockers), and atenolol (a water-soluble selective beta blockers), and ER stress, oxidative, stress and cell death were measured. ER stress was measured using the placental alkaline phosphatase assay and Western blot analysis of glucose regulated protein 78, c-Jun-N-terminal kinase (JNK), phospho-JNK, eukaryotic initiating factor 2α (eIF2α), and phospho-eIF2α and measurement of X-box binding protein 1 (XBP1) mRNA splicing using reverse transcriptase-polymerase chain reaction. Superoxide (SO) generation was measured using the superoxide-reactive probe 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-A]pyrazin-3-one hydrochloride (MCLA) chemiluminescence. Cell viability was measured by propidium iodide staining method. The ER stress, SO production, and cell death induced by 27.5 mM dextrose were inhibited by all 3 beta blockers tested. The antioxidative and ER stress reducing effects of beta blockers were also observed in HepG2 cells. The salutary effects of beta blockers on endothelial cells in reducing both ER stress and oxidative stress may contribute to the cardioprotective effects of these agents.

  3. Concentrations of cyclosporin A and FK506 that inhibit IL-2 induction in human T cells do not affect TGF-beta1 biosynthesis, whereas higher doses of cyclosporin A trigger apoptosis and release of preformed TGF-beta1. (United States)

    Minguillón, Jordi; Morancho, Beatriz; Kim, Seong-Jin; López-Botet, Miguel; Aramburu, José


    Cyclosporin A (CsA) and FK506 suppress T cell activation by inhibiting calcineurin and the calcineurin-dependent transcription factors nuclear factor of activated T cells (NFATc), which are central regulators of T cell function. It was reported that CsA up-regulated the transcription of transforming growth factor-beta1 (TGF-beta1) in lymphocytes and other cells and activated its promoter in A549 lung carcinoma cells, but the mechanisms involved are poorly understood, and it is unclear whether calcineurin plays any role. We have studied the regulation of TGF-beta1 in normal human lymphocytes and cell lines. In Jurkat T cells, the TGF-beta1 promoter was activated by calcineurin and NFATc and inhibited by CsA and FK506. However, the promoter was insensitive to both drugs in A549 cells. In human T cells preactivated with phytohemagglutinin, biosynthesis of TGF-beta1, induced by the T cell receptor (TCR) or the TGF-beta receptor, was not substantially affected by CsA and FK506 concentrations (< or = 1 microM) that effectively inhibited interleukin-2 production. However, pretreatment of fresh lymphocytes with CsA or FK506 during primary TCR stimulation reduced their production of TGF-beta1 during secondary TCR activation. Finally, high concentrations of CsA (10 microM), in the range attained in vivo in experiments in rodents, caused apoptosis in human T cells and the release of preformed, bioactive TGF-beta1. These effects are unlikely to owe to calcineurin inhibition, as they were not observed with FK506. Our results indicate that CsA and FK506 are not general inducers of TGF-beta1 biosynthesis but can cause different effects on TGF-beta1 depending on the cell type and concentrations used.

  4. The growth of stem cells within {beta}-TCP scaffolds in a fluid-dynamic environment

    Energy Technology Data Exchange (ETDEWEB)

    Xu Shanglong [School of Mechatronics Engineering, University of Electronic Science and Technology, Chengdu (China); State Key Laboratory of Mechanical Manufacture System Engineering, Xi' an Jiaotong University, Xi' an (China); Li Dichen [State Key Laboratory of Mechanical Manufacture System Engineering, Xi' an Jiaotong University, Xi' an (China)], E-mail:; Xie Youzhuan; Lu Jianxi; Dai Kerong [Department of Orthopaedic Surgery, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China)


    A three-dimensional dynamic perfusion system was developed to provide mass transport and nutrient supply to permit the cell proliferation during the long-term culture inside a {beta}-tricalcium phosphate ({beta}-TCP) scaffold. Also the flow field throughout the scaffold was studied. The porous cylindrical scaffold with a central channel was seeded with the sheep mesenchymal stem cells (MSCs). Then the cell-seeded scaffolds were continuously perfused with the complete {alpha}-MEM medium by a peristaltic pump for 7, 14 and 28 days, respectively. Histological study showed that the cell proliferation rates were different throughout the whole scaffolds and the different cell coverage was shown in different positions of the scaffold. Unoccupied spaces were found in many macropores. A computational fluid dynamics (CFD) modeling was used to simulate the flow conditions within perfused cell-seeded scaffolds to give an insight into the mechanisms of these cell growth phenomena. Relating the simulation results to perfusion experiments, the even fluid velocity (approximately 0.52 mm/s) and shear stress (approximately 0.0055 Pa) were found to correspond to increased cell proliferation within the cell-scaffold constructs. Flow speeds were between 0.25 and 0.75 mm/s and shear stresses were between 0.003 and 0.008 Pa in approximately 75% of the regions. This method exhibits novel capabilities to compare the results obtained for different perfusion rates or different scaffold microarchitectures. It may allow specific fluid velocities and shear stresses to be determined to optimize the perfusion flow rate, porous scaffold architecture and distribution of in vitro tissue growth.

  5. Ionizing Radiation Promotes Migration and Invasion of Cancer Cells Through Transforming Growth Factor-Beta-Mediated Epithelial-Mesenchymal Transition

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Yongchun [Department of Radiation Oncology, Xijing Hospital Fourth Military Medical University, Xi' an (China); Department of Radiation Medicine, College of Preventive Medicine, Xijing Hospital Fourth Military Medical University, Xi' an (China); Liu Junye; Li Jing; Zhang Jie [Department of Radiation Medicine, College of Preventive Medicine, Xijing Hospital Fourth Military Medical University, Xi' an (China); Xu Yuqiao [Department of Pathology, Xijing Hospital Fourth Military Medical University, Xi' an (China); Zhang Huawei; Qiu Lianbo; Ding Guirong [Department of Radiation Medicine, College of Preventive Medicine, Xijing Hospital Fourth Military Medical University, Xi' an (China); Su Xiaoming [Department of Radiation Oncology, 306th Hospital of PLA, Beijing (China); Mei Shi [Department of Radiation Oncology, Xijing Hospital Fourth Military Medical University, Xi' an (China); Guo Guozhen, E-mail: [Department of Radiation Medicine, College of Preventive Medicine, Xijing Hospital Fourth Military Medical University, Xi' an (China)


    Purpose: To examine whether ionizing radiation enhances the migratory and invasive abilities of cancer cells through transforming growth factor (TGF-{beta})-mediated epithelial-mesenchymal transition (EMT). Methods and Materials: Six cancer cell lines originating from different human organs were irradiated by {sup 60}Co {gamma}-ray at a total dose of 2 Gy, and the changes associated with EMT, including morphology, EMT markers, migration and invasion, were observed by microscope, Western blot, immunofluorescence, scratch assay, and transwell chamber assay, respectively. Then the protein levels of TGF-{beta} in these cancer cells were detected by enzyme-linked immunosorbent assay, and the role of TGF-{beta} signaling pathway in the effect of ionizing radiation on EMT was investigate by using the specific inhibitor SB431542. Results: After irradiation with {gamma}-ray at a total dose of 2 Gy, cancer cells presented the mesenchymal phenotype, and compared with the sham-irradiation group the expression of epithelial markers was decreased and of mesenchymal markers was increased, the migratory and invasive capabilities were strengthened, and the protein levels of TGF-{beta} were enhanced. Furthermore, events associated with EMT induced by IR in A549 could be reversed through inhibition of TGF-{beta} signaling. Conclusions: These results suggest that EMT mediated by TGF-{beta} plays a critical role in IR-induced enhancing of migratory and invasive capabilities in cancer cells.

  6. Alpha1beta1 integrin is crucial for accumulation of epidermal T cells and the development of psoriasis. (United States)

    Conrad, Curdin; Boyman, Onur; Tonel, Giulia; Tun-Kyi, Adrian; Laggner, Ute; de Fougerolles, Antonin; Kotelianski, Victor; Gardner, Humphrey; Nestle, Frank O


    Psoriasis is a common T cell-mediated autoimmune inflammatory disease. We show that blocking the interaction of alpha1beta1 integrin (VLA-1) with collagen prevented accumulation of epidermal T cells and immunopathology of psoriasis. Alpha1beta1 integrin, a major collagen-binding surface receptor, was exclusively expressed by epidermal but not dermal T cells. Alpha1beta1-positive T cells showed characteristic surface markers of effector memory cells and contained high levels of interferon-gamma but not interleukin-4. Blockade of alpha1beta1 inhibited migration of T cells into the epidermis in a clinically relevant xenotransplantation model. This was paralleled by a complete inhibition of psoriasis development, comparable to that caused by tumor necrosis factor-alpha blockers. These results define a crucial role for alpha1beta1 in controlling the accumulation of epidermal type 1 polarized effector memory T cells in a common human immunopathology and provide the basis for new strategies in psoriasis treatment focusing on T cell-extracellular matrix interactions.

  7. Stabilized beta-catenin in thymic epithelial cells blocks thymus development and function. (United States)

    Zuklys, Saulius; Gill, Jason; Keller, Marcel P; Hauri-Hohl, Mathias; Zhanybekova, Saule; Balciunaite, Gina; Na, Kyung-Jae; Jeker, Lukas T; Hafen, Katrin; Tsukamoto, Noriyuki; Amagai, Takashi; Taketo, Makoto M; Krenger, Werner; Holländer, Georg A


    Thymic T cell development is dependent on a specialized epithelial microenvironment mainly composed of cortical and medullary thymic epithelial cells (TECs). The molecular programs governing the differentiation and maintenance of TECs remain largely unknown. Wnt signaling is central to the development and maintenance of several organ systems but a specific role of this pathway for thymus organogenesis has not yet been ascertained. In this report, we demonstrate that activation of the canonical Wnt signaling pathway by a stabilizing mutation of beta-catenin targeted exclusively to TECs changes the initial commitment of endodermal epithelia to a thymic cell fate. Consequently, the formation of a correctly composed and organized thymic microenvironment is prevented, thymic immigration of hematopoietic precursors is restricted, and intrathymic T cell differentiation is arrested at a very early developmental stage causing severe immunodeficiency. These results suggest that a precise regulation of canonical Wnt signaling in thymic epithelia is essential for normal thymus development and function.

  8. Assessment of TCR-beta clonality in a diverse group of cutaneous T-Cell infiltrates. (United States)

    Plaza, Jose Antonio; Morrison, Carl; Magro, Cynthia M


    While some unequivocally benign infiltrates are easy to distinguish from cutaneous T-cell lymphoma (CTCL), drug-associated lymphomatoid hypersensitivity reaction and cutaneous lesions of collagen vascular disease can show cytologic atypia, clonality and an immunophenotypic profile that closely simulates CTCL and cause diagnostics difficulties. Similar immunophenotypic and molecular abnormalities to those of malignant lymphoma can also be observed in pityriasis lichenoides chronica (PLC), large plaque parapsoriasis (LPP), pigmented purpuric dermatosis (PPD) and atypical lymphocytic lobular panniculitis leading one to consider these entities as forms of cutaneous lymphoid dyscrasia. The purpose of our study was to evaluate the distinction of these various subcategories of cutaneous T-cell infiltrates by assessment of T-cell receptor (TCR)-beta gene rearrangement. Formalin-fixed paraffin-embedded skin biopsies from 80 patients containing a T-cell dominant lymphocytic infiltrate were analyzed for TCR-beta gene rearrangement. Our findings indicate that monoclonality is a reliable characteristic of CTCL with polyclonality being very infrequent. However, some cases of drug associated lymphomatoid hypersensitivity, collagen vascular disease and the various cutaneous lymphoid dyscrasias (i.e. PLC, PPD and atypical lymphocytic lobular panniculitis) could manifest restricted molecular profiles in the context of an oligoclonal process or frank monoclonality.

  9. Unexpected expression of alpha- and beta-globin in mesencephalic dopaminergic neurons and glial cells. (United States)

    Biagioli, Marta; Pinto, Milena; Cesselli, Daniela; Zaninello, Marta; Lazarevic, Dejan; Roncaglia, Paola; Simone, Roberto; Vlachouli, Christina; Plessy, Charles; Bertin, Nicolas; Beltrami, Antonio; Kobayashi, Kazuto; Gallo, Vittorio; Santoro, Claudio; Ferrer, Isidro; Rivella, Stefano; Beltrami, Carlo Alberto; Carninci, Piero; Raviola, Elio; Gustincich, Stefano


    The mesencephalic dopaminergic (mDA) cell system is composed of two major groups of projecting cells in the substantia nigra (SN) (A9 neurons) and the ventral tegmental area (VTA) (A10 cells). A9 neurons form the nigrostriatal pathway and are involved in regulating voluntary movements and postural reflexes. Their selective degeneration leads to Parkinson's disease. Here, we report that gene expression analysis of A9 dopaminergic neurons (DA) identifies transcripts for alpha- and beta-chains of hemoglobin (Hb). Globin immunoreactivity decorates the majority of A9 DA, a subpopulation of cortical and hippocampal astrocytes and mature oligodendrocytes. This pattern of expression was confirmed in different mouse strains and in rat and human. We show that Hb is expressed in the SN of human postmortem brain. By microarray analysis of dopaminergic cell lines overexpressing alpha- and beta-globin chains, changes in genes involved in O(2) homeostasis and oxidative phopshorylation were observed, linking Hb expression to mitochondrial function. Our data suggest that the most famed oxygen-carrying globin is not exclusively restricted to the blood, but it may play a role in the normal physiology of the brain and neurodegenerative diseases.

  10. Assembly, intracellular processing, and expression at the cell surface of the human alpha beta T cell receptor/CD3 complex. Function of the CD3-zeta chain

    DEFF Research Database (Denmark)

    Geisler, C; Kuhlmann, J; Rubin, B


    The TCR/CD3 complex is a multimeric protein complex composed of a minimum of seven transmembrane chains (TCR alpha beta-CD3 gamma delta epsilon zeta 2). Whereas earlier studies have demonstrated that both the TCR-alpha and -beta chains are required for the cell surface expression of the TCR/CD3 c...... to form the heptameric complex (TCR alpha beta-CD3 gamma delta epsilon----TCR alpha beta-CD3 gamma delta epsilon 2); and 5) CD3-zeta is required for the export of the TCR/CD3 complex from the endoplasmic reticulum to the Golgi apparatus for subsequent processing....

  11. Expression of transient receptor potential ankyrin 1 (TRPA1 and its role in insulin release from rat pancreatic beta cells.

    Directory of Open Access Journals (Sweden)

    De-Shou Cao

    Full Text Available OBJECTIVE: Several transient receptor potential (TRP channels are expressed in pancreatic beta cells and have been proposed to be involved in insulin secretion. However, the endogenous ligands for these channels are far from clear. Here, we demonstrate the expression of the transient receptor potential ankyrin 1 (TRPA1 ion channel in the pancreatic beta cells and its role in insulin release. TRPA1 is an attractive candidate for inducing insulin release because it is calcium permeable and is activated by molecules that are produced during oxidative glycolysis. METHODS: Immunohistochemistry, RT-PCR, and Western blot techniques were used to determine the expression of TRPA1 channel. Ca²⁺ fluorescence imaging and electrophysiology (voltage- and current-clamp techniques were used to study the channel properties. TRPA1-mediated insulin release was determined using ELISA. RESULTS: TRPA1 is abundantly expressed in a rat pancreatic beta cell line and freshly isolated rat pancreatic beta cells, but not in pancreatic alpha cells. Activation of TRPA1 by allyl isothiocyanate (AITC, hydrogen peroxide (H₂O₂, 4-hydroxynonenal (4-HNE, and cyclopentenone prostaglandins (PGJ₂ and a novel agonist methylglyoxal (MG induces membrane current, depolarization, and Ca²⁺ influx leading to generation of action potentials in a pancreatic beta cell line and primary cultured pancreatic beta cells. Activation of TRPA1 by agonists stimulates insulin release in pancreatic beta cells that can be inhibited by TRPA1 antagonists such as HC030031 or AP-18 and by RNA interference. TRPA1-mediated insulin release is also observed in conditions of voltage-gated Na⁺ and Ca²⁺ channel blockade as well as ATP sensitive potassium (K(ATP channel activation. CONCLUSIONS: We propose that endogenous and exogenous ligands of TRPA1 cause Ca²⁺ influx and induce basal insulin release and that TRPA1-mediated depolarization acts synergistically with K(ATP channel blockade to

  12. Overexpression of estrogen receptor beta alleviates the toxic effects of beta-amyloid protein on PC12 cells via non-hormonal ligands

    Institute of Scientific and Technical Information of China (English)

    Hui Wang; Lihui Si; Xiaoxi Li; Weiguo Deng; Haimiao Yang; Yuyan Yang; Yan Fu


    After binding to the estrogen receptor, estrogen can alleviate the toxic effects of beta-amyloid protein, and thereby exert a therapeutic effect on Alzheimer's disease patients. Estrogen can increase the incidence of breast carcinoma and endometrial cancer in post-menopausal women, so it is not suitable for clinical treatment of Alzheimer's disease. There is recent evidence that the estrogen receptor can exert its neuroprotective effects without estrogen dependence. Real-time quantitative PCR and flow cytometry results showed that, compared with non-transfected PC12 cells, adenovirus-mediated estrogen receptor β gene-transfected PC12 cells exhibited lower expression of tumor necrosis factor α and interleukin 1β under stimulation with beta-amyloid protein and stronger protection from apoptosis. The Akt-specific inhibitor Abi-2 decreased the anti-inflammatory and anti-apoptotic effects of estrogen receptor β gene-transfection. These findings suggest that overexpression of estrogen receptor β can alleviate the toxic effect of beta-amyloid protein on PC12 cells, without estrogen dependence. The Akt pathway is one of the potential means for the anti-inflammatory and anti-apoptotic effects of the estrogen receptor.

  13. Transcriptomic profiling of pancreatic alpha, beta and delta cell populations identifies delta cells as a principal target for ghrelin in mouse islets

    DEFF Research Database (Denmark)

    Adriaenssens, Alice E; Svendsen, Berit; Lam, Brian Y H;


    and delta cells. METHODS: Sst-Cre mice crossed with fluorescent reporters were used to identify delta cells, while Glu-Venus (with Venus reported under the control of the Glu [also known as Gcg] promoter) mice were used to identify alpha and beta cells. Alpha, beta and delta cells were purified using flow...... cytometry and analysed by RNA sequencing. The role of the ghrelin receptor was validated by imaging delta cell calcium concentrations using islets with delta cell restricted expression of the calcium reporter GCaMP3, and in perfused mouse pancreases. RESULTS: A database was constructed of all genes...... expressed in alpha, beta and delta cells. The gene encoding the ghrelin receptor, Ghsr, was highlighted as being highly expressed and enriched in delta cells. Activation of the ghrelin receptor raised cytosolic calcium levels in primary pancreatic delta cells and enhanced somatostatin secretion in perfused...

  14. Phytoestrogens induce differential estrogen receptor alpha- or Beta-mediated responses in transfected breast cancer cells. (United States)

    Harris, D M; Besselink, E; Henning, S M; Go, V L W; Heber, D


    Increased intake of phytoestrogens may be associated with a lower risk of cancer in the breast and several other sites, although there is controversy surrounding this activity. One of the mechanisms proposed to explain the activity of phytoestrogens is their ability to bind and activate human estrogen receptor alpha (ERalpha) and human estrogen receptor beta (ERbeta). Nine phytoestrogens were tested for their ability to transactivate ERalpha or ERbeta at a range of doses. Mammary adenocarcinoma (MCF-7) cells were co-transfected with either ERalpha or ERbeta, and an estrogen-response element was linked to a luciferase reporter gene. Dose-dependent responses were compared with the endogenous ligand 17beta-estradiol. Purified genistein, daidzein, apigenin, and coumestrol showed differential and robust transactivation of ERalpha- and ERbeta-induced transcription, with an up to 100-fold stronger activation of ERbeta. Equol, naringenin, and kaempferol were weaker agonists. When activity was evaluated against a background of 0.5 nM 17beta-estradiol, the addition of genistein, daidzein, and resveratrol superstimulated the system, while kaempferol and quercetin were antagonists at the highest doses. This transfection assay provides an excellent model to evaluate the activation of ERalpha and ERbeta by different phytoestrogens in a breast cancer context and can be used as a screening bioassay tool to evaluate the estrogenic activity of extracts of herbs and foods.

  15. Haplotypes of beta S chromosomes among patients with sickle cell anemia from Georgia. (United States)

    Hattori, Y; Kutlar, F; Kutlar, A; McKie, V C; Huisman, T H


    Fetal hemoglobin and G gamma levels have been correlated with the presence or absence of eight restriction sites within the beta globin gene cluster (haplotypes) for numerous sickle cell anemia patients from Georgia. The most common haplotypes were #19 (Benin) and #20 (CAR); all patients with haplotype combinations 19/19, 20/20, and 19/20 were severely affected with low Hb F and low G gamma levels. A modified #19 beta S chromosome with a -G gamma-G gamma- globin gene arrangement, instead of -G gamma-A gamma-, was present in SS and SC newborn babies with G gamma values above 80%. Haplotype #3 (Senegal) was present among 15% of the beta S chromosomes; the two adult patients with the 3/3 combination were mildly affected with high Hb F and G gamma values. The haplotype AT with the variant A gamma T chain was a rarity. A new haplotype was found in one 17-year-old SS patient and five of his Hb S heterozygous relatives. This haplotype is associated with an increased production of Hb F in heterozygous and homozygous Hb S individuals; this Hb F contained primarily A gamma chains. A comparison was made between the different haplotypes among SS patients and normal Black individuals, and a remarkable similarity was noted in the fetal hemoglobin data for subjects with these different chromosomes.

  16. SIRT1 inhibits proliferation of pancreatic cancer cells expressing pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, by suppression of {beta}-catenin

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Il-Rae [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Koh, Sang Seok [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333 (Korea, Republic of); Department of Functional Genomics, University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Malilas, Waraporn; Srisuttee, Ratakorn; Moon, Jeong [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Choi, Young-Whan [Department of Horticultural Bioscience, Pusan National University, Miryang 627-706 (Korea, Republic of); Horio, Yoshiyuki [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan); Oh, Sangtaek [Department of Advanced Fermentation Fusion Science and Technology, Kookmin University, Seoul 136-702 (Korea, Republic of); Chung, Young-Hwa, E-mail: [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of)


    Highlights: Black-Right-Pointing-Pointer SIRT1 inhibits protein levels of {beta}-catenin and its transcriptional activity. Black-Right-Pointing-Pointer Nuclear localization of SIRT1 is not required for the decrease of {beta}-catenin expression. Black-Right-Pointing-Pointer SIRT1-mediated degradation of {beta}-catenin is not required for GSK-3{beta} and Siah-1 but for proteosome. Black-Right-Pointing-Pointer SIRT1 activation inhibits proliferation of pancreatic cancer cells expressing PAUF. -- Abstract: Because we found in a recent study that pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, induces a rapid proliferation of pancreatic cells by up-regulation of {beta}-catenin, we postulated that {beta}-catenin might be a target molecule for pancreatic cancer treatment. We thus speculated whether SIRT1, known to target {beta}-catenin in a colon cancer model, suppresses {beta}-catenin in those pancreatic cancer cells that express PAUF (Panc-PAUF). We further evaluated whether such suppression would lead to inhibition of the proliferation of these cells. The ectopic expression of either SIRT1 or resveratrol (an activator of SIRT1) suppressed levels of {beta}-catenin protein and its transcriptional activity in Panc-PAUF cells. Conversely, suppression of SIRT1 expression by siRNA enhanced {beta}-catenin expression and transcriptional activity. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for reduction of {beta}-catenin. Treatment with MG132, a proteasomal inhibitor, restored {beta}-catenin protein levels, suggesting that SIRT1-mediated degradation of {beta}-catenin requires proteasomal activity. It was reported that inhibition of GSK-3{beta} or Siah-1 stabilizes {beta}-catenin in colon cancer cells, but suppression of GSK-3{beta} or Siah-1 using siRNA in the presence of resveratrol instead diminished {beta}-catenin protein levels in Panc-PAUF cells. This suggests that GSK-3{beta} and Siah-1 are not involved in SIRT1

  17. Estrogen protects neuronal cells from amyloid beta-induced apoptosis via regulation of mitochondrial proteins and function

    Directory of Open Access Journals (Sweden)

    Iwamoto Sean


    Full Text Available Abstract Background Neurodegeneration in Alzheimer's disease is associated with increased apoptosis and parallels increased levels of amyloid beta, which can induce neuronal apoptosis. Estrogen exposure prior to neurotoxic insult of hippocampal neurons promotes neuronal defence and survival against neurodegenerative insults including amyloid beta. Although all underlying molecular mechanisms of amyloid beta neurotoxicity remain undetermined, mitochondrial dysfunction, including altered calcium homeostasis and Bcl-2 expression, are involved in neurodegenerative vulnerability. Results In this study, we investigated the mechanism of 17β-estradiol-induced prevention of amyloid beta-induced apoptosis of rat hippocampal neuronal cultures. Estradiol treatment prior to amyloid beta exposure significantly reduced the number of apoptotic neurons and the associated rise in resting intracellular calcium levels. Amyloid beta exposure provoked down regulation of a key antiapoptotic protein, Bcl-2, and resulted in mitochondrial translocation of Bax, a protein known to promote cell death, and subsequent release of cytochrome c. E2 pretreatment inhibited the amyloid beta-induced decrease in Bcl-2 expression, translocation of Bax to the mitochondria and subsequent release of cytochrome c. Further implicating the mitochondria as a target of estradiol action, in vivo estradiol treatment enhanced the respiratory function of whole brain mitochondria. In addition, estradiol pretreatment protected isolated mitochondria against calcium-induced loss of respiratory function. Conclusion Therefore, we propose that estradiol pretreatment protects against amyloid beta neurotoxicity by limiting mitochondrial dysfunction via activation of antiapoptotic mechanisms.

  18. PED/PEA-15 induces autophagy and mediates TGF-beta1 effect on muscle cell differentiation. (United States)

    Iovino, S; Oriente, F; Botta, G; Cabaro, S; Iovane, V; Paciello, O; Viggiano, D; Perruolo, G; Formisano, P; Beguinot, F


    TGF-beta1 has been shown to induce autophagy in certain cells but whether and how this action is exerted in muscle and whether this activity relates to TGF-beta1 control of muscle cell differentiation remains unknown. Here, we show that expression of the autophagy-promoting protein phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes (PED/PEA-15) progressively declines during L6 and C2C12 skeletal muscle cell differentiation. PED/PEA-15 underwent rapid induction upon TGF-beta1 exposure of L6 and C2C12 myoblasts, accompanied by impaired differentiation into mature myotubes. TGF-beta1 also induced autophagy in the L6 and C2C12 cells through a PP2A/FoxO1-mediated mechanism. Both the TGF-beta1 effect on differentiation and that on autophagy were blocked by specific PED/PEA-15 ShRNAs. Myoblasts stably overexpressing PED/PEA-15 did not differentiate and showed markedly enhanced autophagy. In these same cells, the autophagy inhibitor 3-methyladenine rescued TGF-beta1 effect on both autophagy and myogenesis, indicating that PED/PEA-15 mediates TGF-beta1 effects in muscle. Muscles from transgenic mice overexpressing PED/PEA-15 featured a significant number of atrophic fibers, accompanied by increased light chain 3 (LC3)II to LC3I ratio and reduced PP2A/FoxO1 phosphorylation. Interestingly, these mice showed significantly impaired locomotor activity compared with their non-transgenic littermates. TGF-beta1 causes transcriptional upregulation of the autophagy-promoting gene PED/PEA-15, which in turn is capable to induce atrophic responses in skeletal muscle in vivo.

  19. BetaS-haplotypes in sickle cell anemia patients from Salvador, Bahia, Northeastern Brazil. (United States)

    Gonçalves, M S; Bomfim, G C; Maciel, E; Cerqueira, I; Lyra, I; Zanette, A; Bomfim, G; Adorno, E V; Albuquerque, A L; Pontes, A; Dupuit, M F; Fernandes, G B; dos Reis, M G


    BetaS-Globin haplotypes were studied in 80 (160 betaS chromosomes) sickle cell disease patients from Salvador, Brazil, a city with a large population of African origin resulting from the slave trade from Western Africa, mainly from the Bay of Benin. Hematological and hemoglobin analyses were carried out by standard methods. The betaS-haplotypes were determined by PCR and dot-blot techniques. A total of 77 (48.1%) chromosomes were characterized as Central African Republic (CAR) haplotype, 73 (45.6%) as Benin (BEN), 1 (0.63%) as Senegal (SEN), and 9 (5.63%) as atypical (Atp). Genotype was CAR/CAR in 17 (21.3%) patients, BEN/BEN in 17 (21.3%), CAR/BEN in 37 (46.3%), BEN/SEN in 1 (1.25%), BEN/Atp in 1 (1.25%), CAR/Atp in 6 (7.5%), and Atp/Atp in 1 (1.25%). Hemoglobin concentrations and hematocrit values did not differ among genotype groups but were significantly higher in 25 patients presenting percent fetal hemoglobin (%HbF) > or = 10% (P = 0.002 and 0.003, respectively). The median HbF concentration was 7.54+/-4.342% for the CAR/CAR genotype, 9.88 3.558% for the BEN/BEN genotype, 8.146 4.631% for the CAR/BEN genotype, and 4.180+/-2.250% for the CAR/Atp genotype (P = 0.02), although 1 CAR/CAR individual presented an HbF concentration as high as 15%. In view of the ethnic and geographical origin of this population, we did not expect a Hardy-Weinberg equilibrium for CAR/CAR and BEN/BEN homozygous haplotypes and a high proportion of heterozygous CAR/BEN haplotypes since the State of Bahia historically received more slaves from Western Africa than from Central Africa.

  20. 5-Androstene-3{beta},17{beta}-diol Promotes Recovery of Immature Hematopoietic Cells Following Myelosuppressive Radiation and Synergizes With Thrombopoietin

    Energy Technology Data Exchange (ETDEWEB)

    Aerts-Kaya, Fatima S.F.; Visser, Trudi P.; Arshad, Shazia [Department of Hematology, Erasmus University Medical Center, Rotterdam (Netherlands); Frincke, James; Stickney, Dwight R.; Reading, Chris L. [Harbor Therapeutics, Inc, San Diego, California (United States); Wagemaker, Gerard, E-mail: [Department of Hematology, Erasmus University Medical Center, Rotterdam (Netherlands)


    Purpose: 5-Androstene-3{beta},17{beta}-diol (5-AED) stimulates recovery of hematopoiesis after exposure to radiation. To elucidate its cellular targets, the effects of 5-AED alone and in combination with (pegylated) granulocyte colony-stimulating factor and thrombopoietin (TPO) on immature hematopoietic progenitor cells were evaluated following total body irradiation. Methods and Materials: BALB/c mice were exposed to radiation delivered as a single or as a fractionated dose, and recovery of bone marrow progenitors and peripheral blood parameters was assessed. Results: BALB/c mice treated with 5-AED displayed accelerated multilineage blood cell recovery and elevated bone marrow (BM) cellularity and numbers of progenitor cells. The spleen colony-forming unit (CFU-S) assay, representing the life-saving short-term repopulating cells in BM of irradiated donor mice revealed that combined treatment with 5-AED plus TPO resulted in a 20.1-fold increase in CFU-S relative to that of placebo controls, and a 3.7 and 3.1-fold increase in comparison to 5-AED and TPO, whereas no effect was seen of Peg-G-CSF with or without 5-AED. Contrary to TPO, 5-AED also stimulated reconstitution of the more immature marrow repopulating (MRA) cells. Conclusions: 5-AED potently counteracts the hematopoietic effects of radiation-induced myelosuppression and promotes multilineage reconstitution by stimulating immature bone marrow cells in a pattern distinct from, but synergistic with TPO.

  1. Glucose-induced lipogenesis in pancreatic beta-cells is dependent on SREBP-1

    DEFF Research Database (Denmark)

    Sandberg, Maria B; Fridriksson, Jakob; Madsen, Lise


    binding proteins in glucose-induced lipogenesis in the pancreatic beta-cell line INS-1E. We show that glucose induces SREBP-1c expression and SREBP-1 activity independent of insulin secretion and signaling. Using adenoviral expression of SREBP-1c and a SREBP-mutant we show that lipogenic gene expression......, de novo fatty acid synthesis and lipid accumulation are induced primarily through sterol-regulatory elements (SREs) and not E-Boxes. Adenoviral expression of a dominant negative SREBP compromises glucose induction of some lipogenic genes and significantly reduces glucose-induction of de novo fatty...

  2. Beta-globin gene cluster haplotypes in Venezuelan sickle cell patients from the State of Aragua


    Nancy Moreno; Martínez, José A.; Zorella Blanco; Leidys Osorio; Patrick Hackshaw


    Seven polymorphic sites in the beta-globin gene cluster were analyzed on a sample of 96 chromosomes of Venezuelan sickle cell patients from the State of Aragua. The Benin haplotype was predominant with a frequency of 0.479, followed by the Bantu haplotype (0.406); a minority of cases with other haplotypes was also identified: atypical Bantu A2 (0.042), Senegal (0.031), atypical Bantu A7 (0.021) and Saudi Arabia/Indian (0.021) haplotypes; however, the Cameroon haplotype was not identified in t...

  3. Dominant negative inhibition of the association between beta-catenin and c-erbB-2 by N-terminally deleted beta-catenin suppresses the invasion and metastasis of cancer cells. (United States)

    Shibata, T; Ochiai, A; Kanai, Y; Akimoto, S; Gotoh, M; Yasui, N; Machinami, R; Hirohashi, S


    Aberrant tyrosine phosphorylation of beta-catenin inactivates the E-cadherin-mediated cell adhesion and invasion suppressor system in cancer cells. Elucidation of the association between beta-catenin and c-erbB-2 protein prompted us to investigate whether interference with this interaction can change the invasive phenotype. In a human gastric cancer cell line, TMK-1, N-terminally deleted beta-catenin, which binds to c-erbB-2 but not to cadherin, inhibited the association between endogenous beta-catenin and c-erbB-2 protein, and suppressed the tyrosine phosphorylation of beta-catenin. Cells expressing truncated beta-catenin exhibited markedly reduced invasiveness in vitro and peritoneal metastasis in vivo, and developed an epithelial morphology. These results suggest that tyrosine phosphorylation of beta-catenin regulated by c-erbB-2 protein may play an important role in the invasion, metastasis and morphogenesis of cancer cells and that inhibition of the aberrant tyrosine phosphorylation of beta-catenin effectively prevents invasion and metastasis of cancer cells.

  4. Hispidin produced from Phellinus linteus protects pancreatic beta-cells from damage by hydrogen peroxide. (United States)

    Jang, Jae Soon; Lee, Jong Seok; Lee, Jung Hyun; Kwon, Duck Soo; Lee, Keun Eok; Lee, Shin Young; Hong, Eock Kee


    Phellinus linteus, which is a traditional medicinal mushroom used in Asian countries for the treatment of various diseases, has attracted a lot of attention due to its antioxidant, anti-inflammatory, anti-mutagenicity, and cell-mediated immunity properties in addition to its ability to inhibit tumor growth and metastasis. However, the antidiabetic efficacy of P. linteus has not yet been examined. In this study, hispidin from P. linteus exhibited quenching effects against DPPH radicals, superoxide radicals, and hydrogen peroxide in a dose-dependent manner. Intracellular reactive oxygen species scavenging activity of hispidin was approximately 55% at a concentration of 30 microM. In addition, hispidin was shown to inhibit hydrogen peroxide-induced apoptosis and increased insulin secretion in hydrogen peroxide-treated cells. These combined results indicate that hispidin may act as an antidiabetic and that this property occurs through preventing beta-cells from the toxic action of reactive oxygen species in diabetes.

  5. Low-power laser irradiation inhibits amyloid beta-induced cell apoptosis (United States)

    Zhang, Heng; Wu, Shengnan


    The deposition and accumulation of amyloid-β-peptide (Aβ) in the brain are considered a pathological hallmark of Alzheimer's disease(AD). Apoptosis is a contributing pathophysiological mechanism of AD. Low-power laser irradiation (LPLI), a non-damage physical therapy, which has been used clinically for decades of years, is shown to promote cell proliferation and prevent apoptosis. Recently, low-power laser irradiation (LPLI) has been applied to moderate AD. In this study, Rat pheochromocytoma (PC12) cells were treated with amyloid beta 25-35 (Aβ25-35) for induction of apoptosis before LPLI treatment. We measured cell viability with CCK-8 according to the manufacture's protocol, the cell viability assays show that low fluence of LPLI (2 J/cm2 ) could inhibit the cells apoptosis. Then using statistical analysis of proportion of apoptotic cells by flow cytometry based on Annexin V-FITC/PI, the assays also reveal that low fluence of LPLI (2 J/cm2 ) could inhibit the Aβ-induced cell apoptosis. Taken together, we demonstrated that low fluence of LPLI (2 J/cm2 ) could inhibit the Aβ-induced cell apoptosis, these results directly point to a therapeutic strategy for the treatment of AD through LPLI.

  6. Alpha beta T-cell development is not affected by inversion of TCR beta gene enhancer sequences: polar enhancement of gene expression regardless of enhancer orientation. (United States)

    Huang, Fang; Cabaud, Olivier; Verthuy, Christophe; Hueber, Anne-Odile; Ferrier, Pierre


    V(D)J recombination and expression of the T-cell receptor beta (TCRbeta) gene are required for the development of the alphabeta T lymphocyte lineage. These processes depend on a transcriptional enhancer (Ebeta) which acts preferentially on adjacent upstream sequences, and has little impact on the 5' distal and 3' proximal regions of the TCRbeta locus. Using knock-in mice, we show that alphabeta T-cell differentiation and TCRbeta gene recombination and expression are not sensitive to the orientation of Ebeta sequences. We discuss the implication of these results regarding the mode of enhancer function at this locus during T lymphocyte development.

  7. Nitric oxide mediates the survival action of IGF-1 and insulin in pancreatic beta cells. (United States)

    Cahuana, Gladys M; Tejedo, Juan R; Hmadcha, Abdelkrim; Ramírez, Remedios; Cuesta, Antonio L; Soria, Bernat; Martin, Franz; Bedoya, Francisco J


    Generation of low levels of nitric oxide (NO) contributes to beta cell survival in vitro. The purpose of this study was to explore the link between NO and the survival pathway triggered by insulin-like growth factor-1 (IGF-1) and insulin in insulin producing RINm5F cells and in pancreatic islets. Results show that exposure of cells to IGF-1/insulin protects against serum deprivation-induced apoptosis. This action is prevented with inhibitors of NO generation, PI3K and Akt. Moreover, transfection with the negative dominant form of the tyrosine kinase c-Src abrogates the effect of IGF-1 and insulin on DNA fragmentation. An increase in the expression level of NOS3 protein and in the enzyme activity is observed following exposure of serum-deprived RINm5F cells to IGF-1 and insulin. Phosphorylation of IRS-1, IRS-2 and to less extent IRS-3 takes place when serum-deprived RINm5F cells and rat pancreatic islets are exposed to either IGF-1, insulin, or diethylenetriamine nitric oxide adduct (DETA/NO). In human islets, IRS-1 and IRS-2 proteins are present and tyrosine phosphorylated upon exposure to IGF-1, insulin and DETA/NO. Both rat and human pancreatic islets undergo DNA fragmentation when cultured in serum-free medium and IGF-1, insulin and DETA/NO protect efficiently from this damage. We then conclude that generation of NO participates in the activation of survival pathways by IGF-1 and insulin in beta cells.

  8. Inhibition of amyloid-beta-induced cell death in human brain pericytes in vitro.

    NARCIS (Netherlands)

    Rensink, A.A.M.; Verbeek, M.M.; Otte-Holler, I.; Donkelaar, H.J. ten; Waal, R.M.W. de; Kremer, H.P.H.


    Amyloid-beta protein (A beta) deposition in the cerebral vascular walls is one of the key features of Alzheimer's disease and hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D). A beta(1-40) carrying the 'Dutch' mutation (HCHWA-D A beta(1-40)) induces pronounced degeneration of cul

  9. Transforming growth factor beta 1 prevents cytokine-mediated inhibitory effects and induction of nitric oxide synthase in the RINm5F insulin-containing beta-cell line. (United States)

    Mabley, J G; Cunningham, J M; John, N; Di Matteo, M A; Green, I C


    The aim of this study was to examine if the growth factor, transforming growth factor beta 1 (TGF beta 1), could prevent induction of nitric oxide synthase and cytokine-mediated inhibitory effects in the insulin-containing, clonal beta cell line RINm5F. Treatment of RINm5F cells for 24 h with interleukin-1 beta (IL-1 beta) (100 pM) induced expression of nitric oxide synthase and inhibited glyceraldehyde-stimulated insulin secretion. Combinations of IL-1 beta (100 pM), tumour necrosis factor-alpha (100 pM) and interferon-gamma (100 pM) reduced RINm5F cell viability (determined by the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium (MTT) reduction assay) and de novo protein synthesis, as measured by incorporation of radiolabelled amino acids into perchloric acid-precipitable protein. Pretreatment of RINm5F cells with TGF beta 1 (10 pM) for 18 or 24 h, prior to the addition of either IL-1 beta or combined cytokines, prevented cytokine-induced inhibition of insulin secretion, protein synthesis and the loss of cell viability. TGF beta 1 pretreatment inhibited cytokine-induced expression and activity of nitric oxide synthase in RINm5F cells as determined by Western blotting and by cytosolic conversion of radiolabelled arginine into labelled citrulline and nitric oxide. Chemically generated superoxide also induced expression of nitric oxide synthase possibly due to direct activation of the nuclear transcription factor NF kappa B, an effect prevented by both an antioxidant and TGF beta 1 pretreatment. In conclusion, the mechanism of action of TGF beta 1 in blocking cytokine inhibitory effects was by preventing induction of nitric oxide synthase.

  10. LXR/RXR ligand activation enhances basolateral efflux of beta-sitosterol in CaCo-2 cells. (United States)

    Field, F Jeffrey; Born, Ella; Mathur, Satya N


    To examine whether intestinal ABCA1 was responsible for the differences observed between cholesterol and beta-sitosterol absorption, ABCA1-facilitated beta-sitosterol efflux was investigated in CaCo-2 cells following liver X receptor/retinoid X receptor (LXR/RXR) activation. Both the LXR agonist T0901317 and the natural RXR/LXR agonists 22-hydroxycholesterol and 9-cis retinoic acid enhanced the basolateral efflux of beta-sitosterol without altering apical efflux. LXR-mediated enhanced beta-sitosterol efflux occurred between 6 h and 12 h after activation, suggesting that transcription, protein synthesis, and trafficking was likely necessary prior to facilitating efflux. The transcription inhibitor actinomycin D prevented the increase in beta-sitosterol efflux by T0901317. Glybenclamide, an inhibitor of ABCA1 activity, and arachidonic acid, a fatty acid that interferes with LXR activation, also prevented beta-sitosterol efflux in response to the LXR ligand activation. Influx of beta-sitosterol mass did not alter the basolateral or apical efflux of the plant sterol, nor did it alter ABCA1, ABCG1, ABCG5, or ABCG8 gene expression or ABCA1 mass. Similar to results observed with intestinal ABCA1-facilitated cholesterol efflux, LXR/RXR ligand activation enhanced the basolateral efflux of beta-sitosterol without affecting apical efflux. The results suggest that ABCA1 does not differentiate between cholesterol and beta-sitosterol and thus is not responsible for the selectivity of sterol absorption by the intestine. ABCA1, however, may play a role in beta-sitosterol absorption.

  11. Estrogen Receptor Beta Displays Cell Cycle-Dependent Expression and Regulates the G1 Phase through a Non-Genomic Mechanism in Prostate Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Antoni Hurtado


    Full Text Available Background: It is well known that estrogens regulate cell cycle progression, but the specific contributions and mechanisms of action of the estrogen receptor beta (ERβ remain elusive.

  12. Beta-catenin regulates myogenesis by relieving I-mfa-mediated suppression of myogenic regulatory factors in P19 cells. (United States)

    Pan, Weijun; Jia, Yingying; Wang, Jiyong; Tao, Donglei; Gan, Xiaoqing; Tsiokas, Leonidas; Jing, Naihe; Wu, Dianqing; Li, Lin


    Wnt/beta-catenin signaling plays a critical role in embryonic myogenesis. Here we show that, in P19 embryonic carcinoma stem cells, Wnt/beta-catenin signaling initiates the myogenic process depends on beta-catenin-mediated relief of I-mfa (inhibitor of MyoD Family a) suppression of myogenic regulatory factors (MRFs). We found that beta-catenin interacted with I-mfa and that the interaction was enhanced by Wnt3a. In addition, we found that the interaction between beta-catenin and I-mfa was able to attenuate the interaction of I-mfa with MRFs, relieve I-mfa-mediated suppression of the transcriptional activity and cytosolic sequestration of MRFs, and initiate myogenesis in a P19 myogenic model system that expresses exogenous myogenin. This work reveals a mechanism for the regulation of MRFs during myogenesis by elucidating a beta-catenin-mediated, but lymphoid enhancing factor-1/T cell factor independent, mechanism in regulation of myogenic fate specification and differentiation of P19 mouse stem cells.

  13. The alpha3 laminin subunit, alpha6beta4 and alpha3beta1 integrin coordinately regulate wound healing in cultured epithelial cells and in the skin

    DEFF Research Database (Denmark)

    Goldfinger, L E; Hopkinson, S B; deHart, G W


    Previously, we demonstrated that proteolytic processing within the globular domain of the alpha3 subunit of laminin-5 (LN5) converts LN5 from a cell motility-inducing factor to a protein complex that can trigger the formation of hemidesmosomes, certain cell-matrix attachment sites found in epithe......-inhibiting antibodies, we provide evidence that LN5 and its two integrin receptors (alpha6beta4 and alpha3beta1) appear necessary for wound healing to occur in MCF-10A cell culture wounds. We propose a model for healing of wounded epithelial tissues based on these results....... in epithelial cells. We have prepared a monoclonal antibody (12C4) whose epitope is located toward the carboxy terminus of the globular domain of the alpha3 laminin subunit. This epitope is lost from the alpha3 subunit as a consequence of proteolytic processing. Antibody 12C4 stains throughout the matrix...... the wound site. A similar phenomenon is observed in human skin wounds, since we also detect expression of the unprocessed alpha3 laminin subunit at the leading tip of the sheet of epidermal cells that epithelializes skin wounds in vivo. In addition, using alpha3 laminin subunit and integrin function...

  14. Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function

    DEFF Research Database (Denmark)

    Neve, Bernadette; Fernandez-Zapico, Martin E; Ashkenazi-Katalan, Vered


    a role in free radical clearance that may render beta cells more sensitive to oxidative stress. Thus, both functional and genetic analyses reveal that KLF11 plays a role in the regulation of pancreatic beta cell physiology, and its variants may contribute to the development of diabetes.......KLF11 (TIEG2) is a pancreas-enriched transcription factor that has elicited significant attention because of its role as negative regulator of exocrine cell growth in vitro and in vivo. However, its functional role in the endocrine pancreas remains to be established. Here, we report, for the first...... in beta cells. Genetic analysis of the KLF11 gene revealed two rare variants (Ala347Ser and Thr220Met) that segregate with diabetes in families with early-onset type 2 diabetes, and significantly impair its transcriptional activity. In addition, analysis of 1,696 type 2 diabetes mellitus and 1...

  15. The time has come to test the beta cell preserving effects of exercise in patients with new onset type 1 diabetes

    DEFF Research Database (Denmark)

    Narendran, Parth; Solomon, Thomas; Kennedy, Amy


    Type 1 diabetes is characterised by immune-mediated destruction of insulin-producing beta cells. Significant beta cell function is usually present at the time of diagnosis with type 1 diabetes, and preservation of this function has important clinical benefits. The last 30 years have seen a number...... for physical exercise as a therapy for the preservation of beta cell function in patients with newly diagnosed type 1 diabetes. We highlight possible mechanisms by which exercise could preserve beta cell function and then present evidence from other models of diabetes that demonstrate that exercise preserves...... beta cell function. We conclude by proposing that there is now a need for studies to explore whether exercise can preserve beta cell in patients newly diagnosed with type 1 diabetes....

  16. Experimental Study of Rat Beta Islet Cells Cultured under Simulated Microgravity Conditions

    Institute of Scientific and Technical Information of China (English)

    ChunSONG; Xiu-QingDUAN; XiLI; Li-OuHAN; PingXU; Chun-FangSONG:; Lian-HongJIN


    To observe the effects of simulated microgravity on beta islet cell culture, we have compared the survival rates and the insulin levels of the isolated rat islet cells cultured at micro- and normal gravity conditions. The survival rates of the cells cultured were determined by acridine orange-propidium iodide double-staining on day 3,7 and 14. The morphology of the cells was observed by electron microscopy.Insulin levels were measured by radio immuno assays. Our results show that the cell number cultured underthe microgravity condition is significantly higher than that under the routine condition (P<0.01). Some tubular structure shown by transmission electron microscopy, possibly for the transport of nutrients, were formed intercellularly in the microgravity cultured group on day 7. There were also abundant secretion particles and mitochondria in the cytoplasm of the cells. Scanning electron microscopy showed that there were holes formed between each islet, possibly connecting with the nutrient transport tubules. The microgravity cultured group also has higher insulin levels in the media as compared with the control group (P<0.01). Our results indicate that microgravity cultivation of islet cells has advantages over the routine culture methods.

  17. Experimental Study of Rat Beta Islet Cells Cultured under Simulated Microgravity Conditions

    Institute of Scientific and Technical Information of China (English)

    Chun SONG; Xiu-Qing DUAN; Xi LI; Li-Ou HAN; Ping XU; Chun-Fang SONG; Lian-Hong JIN


    To observe the effects of simulated microgravity on beta islet cell culture, we have compared the survival rates and the insulin levels of the isolated rat islet cells cultured at micro- and normal gravity conditions. The survival rates of the cells cultured were determined by acridine orange-propidium iodide double-staining on day 3, 7 and 14. The morphology of the cells was observed by electron microscopy.Insulin levels were measured by radio immuno assays. Our results show that the cell number cultured under the microgravity condition is significantly higher than that under the routine condition (P<0.01). Some tubular structure shown by transmission electron microscopy, possibly for the transport of nutrients, were formed intercellularly in the microgravity cultured group on day 7. There were also abundant secretion particles and mitochondria in the cytoplasm of the cells. Scanning electron microscopy showed that there were holes formed between each islet, possibly connecting with the nutrient transport tubules. The microgravity cultured group also has higher insulin levels in the media as compared with the control group(P<0.01). Our results indicate that microgravity cultivation of islet cells has advantages over the routine culture methods.

  18. Lycopene and beta-carotene induce growth inhibition and proapoptotic effects on ACTH-secreting pituitary adenoma cells.

    Directory of Open Access Journals (Sweden)

    Natália F Haddad

    Full Text Available Pituitary adenomas comprise approximately 10-15% of intracranial tumors and result in morbidity associated with altered hormonal patterns, therapy and compression of adjacent sella turcica structures. The use of functional foods containing carotenoids contributes to reduce the risk of chronic diseases such as cancer and vascular disorders. In this study, we evaluated the influence of different concentrations of beta-carotene and lycopene on cell viability, colony formation, cell cycle, apoptosis, hormone secretion, intercellular communication and expression of connexin 43, Skp2 and p27(kip1 in ACTH-secreting pituitary adenoma cells, the AtT20 cells, incubated for 48 and 96 h with these carotenoids. We observed a decrease in cell viability caused by the lycopene and beta-carotene treatments; in these conditions, the clonogenic ability of the cells was also significantly decreased. Cell cycle analysis revealed that beta-carotene induced an increase of the cells in S and G2/M phases; furthermore, lycopene increased the proportion of these cells in G0/G1 while decreasing the S and G2/M phases. Also, carotenoids induced apoptosis after 96 h. Lycopene and beta-carotene decreased the secretion of ACTH in AtT20 cells in a dose-dependent manner. Carotenoids blocked the gap junction intercellular communication. In addition, the treatments increased the expression of phosphorylated connexin43. Finally, we also demonstrate decreased expression of S-phase kinase-associated protein 2 (Skp2 and increased expression of p27(kip1 in carotenoid-treated cells. These results show that lycopene and beta-carotene were able to negatively modulate events related to the malignant phenotype of AtT-20 cells, through a mechanism that could involve changes in the expression of connexin 43, Skp2 and p27(kip1; and suggest that these compounds might provide a novel pharmacological approach to the treatment of Cushing's disease.

  19. Analysis of the effect of diabetes type 2 duration on beta cell secretory function and insulin resistance

    Directory of Open Access Journals (Sweden)

    Popović Ljiljana


    Full Text Available Diabetes type 2 is a chronic metabolic disorder. Pathogenesis of diabetes type 2 results from the impaired insulin secretion, impaired insulin action and increased endogenous glucose production. Diabetes evolves through several phases characterized by qualitative and quantitative changes of beta cell secretory function. The aim of our study was to analyze the impact of diabetes duration on beta cell secretory function and insulin resistance. The results indicated significant negative correlation of diabetes duration and fasting insulinemia, as well as beta cell secretory function assessed by HOMA β index. Our study also found significant negative correlation of diabetes duration and insulin resistance assessed by HOMA IR index. Significant positive correlation was established between beta cell secretory capacity (fasting insulinemia and HOMA β and insulin resistance assessed by HOMA IR index, independently of diabetes duration. These results indicate that: beta cell secretory capacity, assessed by HOMA β index, significantly decreases with diabetes duration. In parallel with decrease of fasting insulinemia, reduction of insulin resistance assessed by HOMA IR index was found as well.

  20. Bioluminescence imaging reveals dynamics of beta cell loss in the non-obese diabetic (NOD) mouse model. (United States)

    Virostko, John; Radhika, Armandla; Poffenberger, Greg; Dula, Adrienne N; Moore, Daniel J; Powers, Alvin C


    We generated a mouse model (MIP-Luc-VU-NOD) that enables non-invasive bioluminescence imaging (BLI) of beta cell loss during the progression of autoimmune diabetes and determined the relationship between BLI and disease progression. MIP-Luc-VU-NOD mice displayed insulitis and a decline in bioluminescence with age which correlated with beta cell mass, plasma insulin, and pancreatic insulin content. Bioluminescence declined gradually in female MIP-Luc-VU-NOD mice, reaching less than 50% of the initial BLI at 10 weeks of age, whereas hyperglycemia did not ensue until mice were at least 16 weeks old. Mice that did not become diabetic maintained insulin secretion and had less of a decline in bioluminescence than mice that became diabetic. Bioluminescence measurements predicted a decline in beta cell mass prior to the onset of hyperglycemia and tracked beta cell loss. This model should be useful for investigating the fundamental processes underlying autoimmune diabetes and developing new therapies targeting beta cell protection and regeneration.

  1. Photovoltaic Performance of ZnO Nanosheets Solar Cell Sensitized with Beta-Substituted Porphyrin

    Directory of Open Access Journals (Sweden)

    Arumugam Mahesh


    Full Text Available The photoanode of dye-sensitized solar cell (DSSC was fabricated using two-dimensional ZnO nanosheets (2D ZnO NSs sensitized with beta-substituted porphyrins photosensitizer, and its photovoltaic performance in solid-state DSSC with TiO2 nanotubes (TiO2 TNs modified poly (ethylene oxide (PEO polymer electrolyte was studied. The ZnO NSs were synthesized through hydrothermal method and were characterized through high-resolution scanning electron microscopy (HRSEM, diffused reflectance spectra (DRS, photoluminescence spectra (PL, and X-ray diffraction (XRD analysis. The crystallinity of the polymer electrolytes was investigated using X-ray diffraction analysis. The photovoltaic performance of the beta-substituted porphyrins sensitized solar cells was evaluated under standard AM1.5G simulated illumination (100 mW cm−2. The efficiency of energy conversion from solar to electrical due to 2D ZnO NSs based DSSCs is 0.13%, which is about 1.6 times higher than that of the control DSSC using ZnO nanoparticles (ZnO NPs as photoanode (0.08%, when TiO2 NTs fillers modified PEO electrolyte was incorporated in the DSSCs. The current-voltage (- and photocurrent-time (- curves proved stable with effective collection of electrons, when the 2D ZnO nanostructured photoanode was introduced in the solid-state DSSC.

  2. INS-gene mutations: from genetics and beta cell biology to clinical disease. (United States)

    Liu, Ming; Sun, Jinhong; Cui, Jinqiu; Chen, Wei; Guo, Huan; Barbetti, Fabrizio; Arvan, Peter


    A growing list of insulin gene mutations causing a new form of monogenic diabetes has drawn increasing attention over the past seven years. The mutations have been identified in the untranslated regions of the insulin gene as well as the coding sequence of preproinsulin including within the signal peptide, insulin B-chain, C-peptide, insulin A-chain, and the proteolytic cleavage sites both for signal peptidase and the prohormone convertases. These mutations affect a variety of different steps of insulin biosynthesis in pancreatic beta cells. Importantly, although many of these mutations cause proinsulin misfolding with early onset autosomal dominant diabetes, some of the mutant alleles appear to engage different cellular and molecular mechanisms that underlie beta cell failure and diabetes. In this article, we review the most recent advances in the field and discuss challenges as well as potential strategies to prevent/delay the development and progression of autosomal dominant diabetes caused by INS-gene mutations. It is worth noting that although diabetes caused by INS gene mutations is rare, increasing evidence suggests that defects in the pathway of insulin biosynthesis may also be involved in the progression of more common types of diabetes. Collectively, the (pre)proinsulin mutants provide insightful molecular models to better understand the pathogenesis of all forms of diabetes in which preproinsulin processing defects, proinsulin misfolding, and ER stress are involved.

  3. Chemiluminescence Imaging of Superoxide Anion Detects Beta-Cell Function and Mass. (United States)

    Bronsart, Laura L; Stokes, Christian; Contag, Christopher H


    Superoxide anion is produced during normal cellular respiration and plays key roles in cellular physiology with its dysregulation being associated with a variety of diseases. Superoxide anion is a short-lived molecule and, therefore, its homeostatic regulation and role in biology and disease requires dynamic quantification with fine temporal resolution. Here we validated coelenterazine as a reporter of intracellular superoxide anion concentration and used it as a dynamic measure both in vitro and in vivo. Chemiluminescence was dependent upon superoxide anion levels, including those produced during cellular respiration, and concentrations varied both kinetically and temporally in response to physiologically relevant fluctuations in glucose levels. In vivo imaging with coelenterazine revealed that beta cells of the pancreas have increased levels of superoxide anion, which acted as a measure of beta-cell function and mass and could predict the susceptibility of mice to diabetes mellitus. Glucose response and regulation are key elements of cellular physiology and organismal biology, and superoxide anion appears to play a fundamental and dynamic role in both of these processes.

  4. The Role of Helicobacter pylori Seropositivity in Insulin Sensitivity, Beta Cell Function, and Abnormal Glucose Tolerance

    Directory of Open Access Journals (Sweden)

    Lou Rose Malamug


    Full Text Available Infection, for example, Helicobacter pylori (H. pylori, has been thought to play a role in the pathogenesis of type 2 diabetes mellitus (T2DM. Our aim was to determine the role of H. pylori infection in glucose metabolism in an American cohort. We examined data from 4,136 non-Hispanic white (NHW, non-Hispanic black (NHB, and Mexican Americans (MA aged 18 and over from the NHANES 1999-2000 cohort. We calculated the odds ratios for states of glucose tolerance based on the H. pylori status. We calculated and compared homeostatic model assessment insulin resistance (HOMA-IR and beta cell function (HOMA-B in subjects without diabetes based on the H. pylori status. The results were adjusted for age, body mass index (BMI, poverty index, education, alcohol consumption, tobacco use, and physical activity. The H. pylori status was not a risk factor for abnormal glucose tolerance. After adjustment for age and BMI and also adjustment for all covariates, no difference was found in either HOMA-IR or HOMA-B in all ethnic and gender groups except for a marginally significant difference in HOMA-IR in NHB females. H. pylori infection was not a risk factor for abnormal glucose tolerance, nor plays a major role in insulin resistance or beta cell dysfunction.

  5. Effects of exendin-4 on glucose tolerance, insulin secretion, and beta-cell proliferation depend on treatment dose, treatment duration and meal contents

    Energy Technology Data Exchange (ETDEWEB)

    Arakawa, Masayuki; Ebato, Chie; Mita, Tomoya [Department of Medicine, Metabolism and Endocrinology, Juntendo University School of Medicine, Tokyo (Japan); Hirose, Takahisa [Department of Medicine, Metabolism and Endocrinology, Juntendo University School of Medicine, Tokyo (Japan); Center for Therapeutic Innovations in Diabetes, Juntendo University School of Medicine, Tokyo (Japan); Kawamori, Ryuzo [Department of Medicine, Metabolism and Endocrinology, Juntendo University School of Medicine, Tokyo (Japan); Center for Therapeutic Innovations in Diabetes, Juntendo University School of Medicine, Tokyo (Japan); Center for Beta Cell Biology and Regeneration, Juntendo University School of Medicine, Tokyo (Japan); Sportology Center, Juntendo University School of Medicine, Tokyo (Japan); Fujitani, Yoshio, E-mail: [Department of Medicine, Metabolism and Endocrinology, Juntendo University School of Medicine, Tokyo (Japan); Center for Therapeutic Innovations in Diabetes, Juntendo University School of Medicine, Tokyo (Japan); Watada, Hirotaka, E-mail: [Department of Medicine, Metabolism and Endocrinology, Juntendo University School of Medicine, Tokyo (Japan); Sportology Center, Juntendo University School of Medicine, Tokyo (Japan)


    Beta-cell proliferation is regulated by various metabolic demands including peripheral insulin resistance, obesity, and hyperglycemia. In addition to enhancement of glucose-induced insulin secretion, agonists for glucagon-like peptide-1 receptor (GLP-1R) stimulate proliferation and inhibit apoptosis of beta-cells, thereby probably preserve beta-cell mass. To evaluate the beta-cell preserving actions of GLP-1R agonists, we assessed the acute and chronic effects of exendin-4 on beta-cell proliferation, mass and glucose tolerance in C57BL/6J mice under various conditions. Short-term administration of high-dose exendin-4 transiently stimulated beta-cell proliferation. Comparative transcriptomic analysis showed upregulation of IGF-1 receptor and its downstream effectors in islets. Treatment of mice with exendin-4 daily for 4 weeks (long-term administration) and feeding high-fat diet resulted in significant inhibition of weight gain and improvement of glucose tolerance with reduced insulin secretion and beta-cell mass. These findings suggest that long-term GLP-1 treatment results in insulin sensitization of peripheral organs, rather than enhancement of beta-cell proliferation and function, particularly when animals are fed high-fat diet. Thus, the effects of exendin-4 on glucose tolerance, insulin secretion, and beta-cell proliferation largely depend on treatment dose, duration of treatment and meal contents. While GLP-1 enhances proliferation of beta-cells in some diabetic mice models, our results suggest that GLP-1 stimulates beta-cell growth only when expansion of beta-cell mass is required to meet metabolic demands.

  6. Multifunctional interleukin-1beta promotes metastasis of human lung cancer cells in SCID mice via enhanced expression of adhesion-, invasion- and angiogenesis-related molecules. (United States)

    Yano, Seiji; Nokihara, Hiroshi; Yamamoto, Akihiko; Goto, Hisatsugu; Ogawa, Hirohisa; Kanematsu, Takanori; Miki, Toyokazu; Uehara, Hisanori; Saijo, Yasuo; Nukiwa, Toshihiro; Sone, Saburo


    We examined whether interleukin-1 (IL-1), a multifunctional proinflammatory cytokine, progresses or regresses metastasis of lung cancer. Exogenous IL-1beta enhanced expression of various cytokines (IL-6, IL-8, and vascular endothelial growth factor (VEGF)) and intracellular adhesion molecule-1 (ICAM-1) by A549, PC14, RERF-LC-AI, and SBC-3 cells expressing IL-1 receptors. A549 cells transduced with human IL-1beta-gene with the growth-hormone signaling-peptide sequence (A549/IL-1beta) secreted a large amount of IL-1beta protein. Overexpression of IL-1beta resulted in augmentation of expression of the cytokines, ICAM-1, and matrix metalloproteinase-2 (MMP-2). A549/IL-1beta cells intravenously inoculated into severe combined immunodeficiency (SCID) mice distributed to the lung more efficiently and developed lung metastasis much more rapidly than did control A549 cells. Treatment of SCID mice with anti-IL-1beta antibody inhibited formation of lung metastasis by A549/IL-1beta cells. Moreover, A549/IL-1beta cells inoculated in the subcutis grew more rapidly, without necrosis, than did control A549 cells, which produced smaller tumors with central necrosis, suggesting involvement of angiogenesis in addition to enhanced binding in the high metastatic potential of A549/IL-1beta cells. Histological analyses showed that more host-cell infiltration, fewer apoptotic cells, more vascularization, and higher MMP activity were observed in tumors derived from A549/IL-1beta cells, compared with tumors derived from control A549 cells. These findings suggest that IL-1beta facilitates metastasis of lung cancer via promoting multiple events, including adhesion, invasion and angiogenesis.

  7. Distinct ErbB2 receptor populations differentially interact with beta1 integrin in breast cancer cell models (United States)

    Toscani, Andrés Martín; Sampayo, Rocío G.; Barabas, Federico Martín; Fuentes, Federico; Simian, Marina


    ErbB2 is a member of the ErbB family of tyrosine kinase receptors that plays a major role in breast cancer progression. Located at the plasma membrane, ErbB2 forms large clusters in spite of the presence of growth factors. Beta1 integrin, membrane receptor of extracellular matrix proteins, regulates adhesion, migration and invasiveness of breast cancer cells. Physical interaction between beta1 integrin and ErbB2 has been suggested although published data are contradictory. The aim of the present work was to study the interaction between ErbB2 and beta1 integrin in different scenarios of expression and activation. We determined that beta1 integrin and ErbB2 colocalization is dependent on the expression level of both receptors exclusively in adherent cells. In suspension cells, lack of focal adhesions leave integrins free to diffuse on the plasma membrane and interact with ErbB2 even at low expression levels of both receptors. In adherent cells, high expression of beta1 integrin leaves unbound receptors outside focal complexes that diffuse within the plasma membrane and interact with ErbB2 membrane domains. Superresolution imaging showed the existence of two distinct populations of ErbB2: a major population located in large clusters and a minor population outside these structures. Upon ErbB2 overexpression, receptors outside large clusters can freely diffuse at the membrane and interact with integrins. These results reveal how expression levels of beta1 integrin and ErbB2 determine their frequency of colocalization and show that extracellular matrix proteins shape membrane clusters distribution, regulating ErbB2 and beta1 integrin activity in breast cancer cells. PMID:28306722

  8. Serum albumin protects from cytokine-induced pancreatic beta cell death by a phosphoinositide 3-kinase-dependent mechanism

    DEFF Research Database (Denmark)

    Kiaer, Caroline; Thams, Peter


    ) inhibitors LY294002 (25 micromol/l) and wortmannin (1 micromol/l), suggesting that albumin may rescue beta cells from cytokine-induced cell death by activation of PI3K. In accordance, albumin stimulated phosphorylation of Akt, a down-stream target for PI3K. In conclusion, it is suggested that albumin may...

  9. Studies of Antibiotic Resistance of Beta-Lactamase Bacteria under Different Nutrition Limitations at the Single-Cell Level. (United States)

    Wang, Ying; Ran, Min; Wang, Jun; Ouyang, Qi; Luo, Chunxiong


    Drug resistance involves many biological processes, including cell growth, cell communication, and cell cooperation. In the last few decades, bacterial drug resistance studies have made substantial progress. However, a major limitation of the traditional resistance study still exists: most of the studies have concentrated on the average behavior of enormous amounts of cells rather than surveying single cells with different phenotypes or genotypes. Here, we report our study of beta-lactamase bacterial drug resistance in a well-designed microfluidic device, which allows us to conduct more controllable experiments, such as controlling the nutrient concentration, switching the culture media, performing parallel experiments, observing single cells, and acquiring time-lapse images. By using GFP as a beta-lactamase indicator and acquiring time-lapse images at the single-cell level, we observed correlations between the bacterial heterogeneous phenotypes and their behavior in different culture media. The feedback loop between the growth rate and the beta-lactamase production suggests that the beta-lactamase bacteria are more resistant in a rich medium than in a relatively poor medium. In the poorest medium, the proportion of dormant cells may increase, which causes a lower death rate in the same generation. Our work may contribute to assaying the antibiotic resistance of pathogenic bacteria in heterogeneous complex media.

  10. Analysis of the noise-induced bursting-spiking transition in a pancreatic beta-cell model

    DEFF Research Database (Denmark)

    Aguirre, J.; Mosekilde, Erik; Sanjuan, M.A.F.


    A stochastic model of the electrophysiological behavior of the pancreatic beta cell is studied, as a paradigmatic example of a bursting biological cell embedded in a noisy environment. The analysis is focused on the distortion that a growing noise causes to the basic properties of the membrane po...

  11. Amyloid beta resistance in nerve cell lines is mediated by the Warburg effect.

    Directory of Open Access Journals (Sweden)

    Jordan T Newington

    Full Text Available Amyloid beta (Aβ peptide accumulation in the brains of patients with Alzheimer's disease (AD is closely associated with increased nerve cell death. However, many cells survive and it is important to understand the mechanisms involved in this survival response. Recent studies have shown that an anti-apoptotic mechanism in cancer cells is mediated by aerobic glycolysis, also known as the Warburg effect. One of the major regulators of aerobic glycolysis is pyruvate dehydrogenase kinase (PDK, an enzyme which represses mitochondrial respiration and forces the cell to rely heavily on glycolysis, even in the presence of oxygen. Recent neuroimaging studies have shown that the spatial distribution of aerobic glycolysis in the brains of AD patients strongly correlates with Aβ deposition. Interestingly, clonal nerve cell lines selected for resistance to Aβ exhibit increased glycolysis as a result of activation of the transcription factor hypoxia inducible factor 1. Here we show that Aβ resistant nerve cell lines upregulate Warburg effect enzymes in a manner reminiscent of cancer cells. In particular, Aβ resistant nerve cell lines showed elevated PDK1 expression in addition to an increase in lactate dehydrogenase A (LDHA activity and lactate production when compared to control cells. In addition, mitochondrial derived reactive oxygen species (ROS were markedly diminished in resistant but not sensitive cells. Chemically or genetically inhibiting LDHA or PDK1 re-sensitized resistant cells to Aβ toxicity. These findings suggest that the Warburg effect may contribute to apoptotic-resistance mechanisms in the surviving neurons of the AD brain. Loss of the adaptive advantage afforded by aerobic glycolysis may exacerbate the pathophysiological processes associated with AD.

  12. Androgens and estradiol-17beta production by porcine uterine cells: In vitro study. (United States)

    Franczak, A; Kotwica, G


    Porcine (Sus scrofa domestica) uterine slices harvested during both early pregnancy and luteolysis produce steroid hormones. The aim of the present study was to determine (1) which porcine separated uterine cells secrete androgens: androstenedione (A(4)) and testosterone (T), and estradiol-17beta (E(2)) in culture; (2) if the production of A(4), T and E(2) in the uterine cells is regulated by P4 and OT; (3) if uterine tissues expressed cytochrome P450arom gene (CYP19). Uteri were collected on Days 14 to 16 of early pregnancy and the estrous cycle. Enzymatically separated epithelial cells, stromal cells, and myocytes were cultured in vitro for 2, 6, and 12h with control medium, progesterone (P(4); 10(-5) M), oxytocin (OT; 10(-7) M), and both hormones (P(4)+OT). The studied cells secreted A(4), T, and E(2) in vitro. Progesterone served as a substrate for steroid synthesis in the uterine cells. Isolated uterine cells, cultured separately, contributed in equal portion to the basal production of androgens (A(4) and T) during both early pregnancy and luteolysis. In pregnant pigs, the epithelial and stromal cells were rich sources of E(2) compared with myocytes. Myocytes produced E(2) mainly during luteolysis. Pregnant porcine endometrium and myometrium expressed the gene CYP19, which encodes for P450 aromatase, a steroidogenic enzyme. The results indicate an active steroidogenic pathway in porcine uterine cells. The epithelial cells, stromal cells, and myocytes participate in steroid production as an alternative source for their action in pigs.

  13. 17-Beta-estradiol inhibits transforming growth factor-beta signaling and function in breast cancer cells via activation of extracellular signal-regulated kinase through the G protein-coupled receptor 30. (United States)

    Kleuser, Burkhard; Malek, Daniela; Gust, Ronald; Pertz, Heinz H; Potteck, Henrik


    Breast cancer development and breast cancer progression involves the deregulation of growth factors leading to uncontrolled cellular proliferation, invasion and metastasis. Transforming growth factor (TGF)-beta plays a crucial role in breast cancer because it has the potential to act as either a tumor suppressor or a pro-oncogenic chemokine. A cross-communication between the TGF-beta signaling network and estrogens has been postulated, which is important for breast tumorigenesis. Here, we provide evidence that inhibition of TGF-beta signaling is associated with a rapid estrogen-dependent nongenomic action. Moreover, we were able to demonstrate that estrogens disrupt the TGF-beta signaling network as well as TGF-beta functions in breast cancer cells via the G protein-coupled receptor 30 (GPR30). Silencing of GPR30 in MCF-7 cells completely reduced the ability of 17-beta-estradiol (E2) to inhibit the TGF-beta pathway. Likewise, in GPR30-deficient MDA-MB-231 breast cancer cells, E2 achieved the ability to suppress TGF-beta signaling only after transfection with GPR30-encoding plasmids. It is most interesting that the antiestrogen fulvestrant (ICI 182,780), which possesses agonistic activity at the GPR30, also diminished TGF-beta signaling. Further experiments attempted to characterize the molecular mechanism by which activated GPR30 inhibits the TGF-beta pathway. Our results indicate that GPR30 induces the stimulation of the mitogen-activated protein kinases (MAPKs), which interferes with the activation of Smad proteins. Inhibition of MAPK activity prevented the ability of E2 from suppressing TGF-beta signaling. These findings are of great clinical relevance, because down-regulation of TGF-beta signaling is associated with the development of breast cancer resistance in response to antiestrogens.

  14. IL-1 beta-induced chemokine and Fas expression are inhibited by suppressor of cytokine signalling-3 in insulin-producing cells

    DEFF Research Database (Denmark)

    Jacobsen, M.L.B.; Ronn, S.G.; Bruun, C.


    -induced Fas and chemokine expression in beta cells. Using a beta cell line with inducible Socs3 expression or primary neonatal rat islet cells transduced with a Socs3-encoding adenovirus, we employed real-time RT-PCR analysis to investigate whether SOCS-3 affects cytokine-induced chemokine and Fas m...

  15. Alpha-interferon induces enhanced expression of HLA-ABC antigens and beta-2-microglobulin in vivo and in vitro in various subsets of human lymphoid cells

    DEFF Research Database (Denmark)

    Nissen, Mogens Holst; Larsen, J K; Plesner, T;


    The effect of cloned alpha-interferon (alpha-IFN) on the in vitro and in vivo expression of HLA-ABC antigens and beta-2-microglobulin (beta-2-m) on subpopulations of human lymphoid cells was studied by flow cytometry. Mononuclear cells isolated from patients and cell cultures were labelled...

  16. Rapid agonist-induced loss of sup 125 I-. beta. -endorphin opioid receptor sites in NG108-15, but not SK-N-SH neuroblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Cone, R.I.; Lameh, J.; Sadee, W. (Univ. of California, San Francisco (United States))


    The authors have measured {mu} and {delta} opioid receptor sites on intact SK-N-SH and NG108-15 neuroblastoma cells, respectively, in culture. Use of {sup 125}I-{beta}-endorphin ({beta}E) as a tracer, together with {beta}E(6-31) to block high-affinity non-opioid binding in both cell lines, permitted the measurement of cell surface {mu} and {delta} opioid receptor sites. Labeling was at {delta} sites in NG108-15 cells and predominantly at {mu} sites in SK-N-SH cells. Pretreatment with the {mu} and {delta} agonist, DADLE, caused a rapid loss of cell surface {delta} receptor sites in NG108-15 cells, but failed to reduce significantly {mu} receptor density in SK-N-SH cells.

  17. Suppressor of cytokine signalling-3 inhibits Tumor necrosis factor-alpha induced apoptosis and signalling in beta cells

    DEFF Research Database (Denmark)

    Bruun, Christine; Heding, Peter E; Rønn, Sif G


    Tumor necrosis factor-alpha (TNFalpha) is a pro-inflammatory cytokine involved in the pathogenesis of several diseases including type 1 diabetes mellitus (T1DM). TNFalpha in combination with interleukin-1-beta (IL-1beta) and/or interferon-gamma (IFNgamma) induces specific destruction of the pancr......Tumor necrosis factor-alpha (TNFalpha) is a pro-inflammatory cytokine involved in the pathogenesis of several diseases including type 1 diabetes mellitus (T1DM). TNFalpha in combination with interleukin-1-beta (IL-1beta) and/or interferon-gamma (IFNgamma) induces specific destruction...... in INSr3#2 cells and in primary rat islets. Furthermore, SOCS-3 repressed TNFalpha-induced degradation of IkappaB, NFkappaB DNA binding and transcription of the NFkappaB-dependent MnSOD promoter. Finally, expression of Socs-3 mRNA was induced by TNFalpha in rat islets in a transient manner with maximum...

  18. Random length assortment of human and mouse T cell receptor for antigen alpha and beta chain CDR3. (United States)

    Johnson, G; Wu, T T


    In view of the recently determined three-dimensional structures of complexes formed by the T cell receptor for antigen (TCR), the processed peptide and the MHC class I molecule, it is expected that the combined configuration formed by the third complementarity determining regions (CDR3) of TCR alpha and beta chains will be very restricted in size and shape due to the limited length variations of the processed peptides. Thus, the combined TCR alpha and beta chain CDR3 lengths should have a fairly narrow distribution. This feature can be due to the selective association of long alpha chain CDR3 with short beta chain CDR3 and vice versa or due to random assortment of alpha and beta chain CDR3 of even narrower length distribution. Based on existing translated amino acid sequence data, it has been found that the latter mechanism is responsible.

  19. Adaptive regulation of taurine and beta-alanine uptake in a human kidney cell line from the proximal tubule

    DEFF Research Database (Denmark)

    Jessen, H; Jacobsen, Christian


    homeostasis occurs predominantly via changes in the activity of the high-affinity taurine transport system by alterations in the uptake capacity and with an unaffected half-saturation constant. An adaptive response was not observed for the structurally related beta-alanine. 3. Only colchicine, which......), mimicking the effects of diacylglycerol, induced inhibition of both beta-alanine and taurine uptake. By contrast, the Ca2(+)-ionophore A23187, mimicking the effects of IP3, only stimulated the uptake of taurine but not the influx of beta-alanine. However, the effect of PMA down-regulation and A23187 up......1. The underlying mechanisms involved in the adaptive regulation of beta-amino acid uptake in the human proximal tubule were examined by use of an immortalized human embryonic kidney epithelial cell line (IHKE). 2. The results indicated that the adaptive response to maintain whole-body taurine...

  20. Integrin {beta}1-dependent invasive migration of irradiation-tolerant human lung adenocarcinoma cells in 3D collagen matrix

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, Seiichiro [Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo 060-0810 (Japan); Haga, Hisashi, E-mail: [Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo 060-0810 (Japan); Yasuda, Motoaki [Department of Oral Pathobiological Science, Graduate School of Dental Medicine, Hokkaido University, N13-W7, Kita-ku, Sapporo 060-8586 (Japan); Mizutani, Takeomi; Kawabata, Kazushige [Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo 060-0810 (Japan); Shirato, Hiroki [Department of Radiology, Hokkaido University Graduate School of Medicine, N15-W7, Kita-ku, Sapporo 060-8638 (Japan); Nishioka, Takeshi [Department of Biomedical Sciences and Engineering, Faculty of Health Sciences, Hokkaido University, N12-W5, Kita-ku, Sapporo 060-0812 (Japan)


    Radiotherapy is one of the effective therapies used for treating various malignant tumors. However, the emergence of tolerant cells after irradiation remains problematic due to their high metastatic ability, sometimes indicative of poor prognosis. In this study, we showed that subcloned human lung adenocarcinoma cells (A549P-3) that are irradiation-tolerant indicate high invasive activity in vitro, and exhibit an integrin {beta}1 activity-dependent migratory pattern. In collagen gel overlay assay, majority of the A549P-3 cells displayed round morphology and low migration activity, whereas a considerable number of A549P-3IR cells surviving irradiation displayed a spindle morphology and high migration rate. Blocking integrin {beta}1 activity reduced the migration rate of A549P-3IR cells and altered the cell morphology allowing them to assume a round shape. These results suggest that the A549P-3 cells surviving irradiation acquire a highly invasive integrin {beta}1-dependent phenotype, and integrin {beta}1 might be a potentially effective therapeutic target in combination with radiotherapy.

  1. Fine specificity of monoclonal antibodies directed at human T cell receptor variable regions: comparison with oligonucleotide-driven amplification for evaluation of V beta expression. (United States)

    Diu, A; Romagné, F; Genevée, C; Rocher, C; Bruneau, J M; David, A; Praz, F; Hercend, T


    Seven distinct anti-human T cell receptor (TcR) V region monoclonal antibodies (mAb) were generated by immunizing mice with either human T cell lines or transfected murine cells expressing human TcR V beta genes. The specificity of these reagents was determined as follows: T cells recognized by each mAb were purified from the peripheral blood of healthy donors and TcR transcripts expressed in these cells were analyzed using oligonucleotide-driven amplification and cDNA sequencing. Four mAb were found to delineate the V beta 3, V beta 8, V beta 17 and V beta 19 subfamilies, respectively. The remaining reagents recognize subsets within the V beta 2, V beta 5 and V beta 13 subfamilies. Reactivity of the mAb with circulating T cells from 18 unrelated healthy individuals was determined. Limited variability was found from an individual to another. In four donors, mAb staining was compared to oligonucleotide-driven amplification for evaluation of V beta 3, V beta 8, V beta 17 and V beta 19 subfamily expression in the peripheral blood. Although the V gene subfamily-specific oligonucleotides used in this study belong to a carefully controlled series, our results show that this method does not give an accurate estimate of the percentage of peripheral T cells expressing a given TcR beta chain. The present data confirm the necessity to establish a complete set of well-characterized monoclonal reagents to study human T cell responses.

  2. TGF-{beta}1 increases invasiveness of SW1990 cells through Rac1/ROS/NF-{kappa}B/IL-6/MMP-2

    Energy Technology Data Exchange (ETDEWEB)

    Binker, Marcelo G. [Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8 (Canada); CBRHC Research Center, Buenos Aires (Argentina); Binker-Cosen, Andres A. [CBRHC Research Center, Buenos Aires (Argentina); Gaisano, Herbert Y. [Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8 (Canada); Cosen, Rodica H. de [CBRHC Research Center, Buenos Aires (Argentina); Cosen-Binker, Laura I., E-mail: [Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8 (Canada); CBRHC Research Center, Buenos Aires (Argentina)


    Research highlights: {yields} Rac1 mediates TGF-{beta}1-induced SW1990 invasion through MMP-2 secretion and activation. {yields} NADPH-generated ROS act downstream of Rac1 in TGF-{beta}1-challenged SW1990 cells. {yields} TGF-{beta}1-stimulated ROS activate NF-{kappa}B in SW1990 cells. {yields} NF{kappa}B-induced IL-6 release is required for secretion and activation of MMP-2 in SW1990 cells. -- Abstract: Human pancreatic cancer invasion and metastasis have been found to correlate with increased levels of active matrix metalloproteinase 2 (MMP-2). The multifunctional cytokine transforming growth factor beta 1 (TGF-{beta}1) has been shown to increase both secretion of MMP-2 and invasion by several pancreatic cancer cell types. In the present study, we investigated the signaling pathway involved in TGF-{beta}1-promoted MMP-2 secretion and invasion by human pancreatic cancer cells SW1990. Using specific inhibitors, we found that stimulation of these tumor cells with TGF-{beta}1 induced secretion and activation of the collagenase MMP-2, which was required for TGF-{beta}1-stimulated invasion. Our results also indicate that signaling events involved in TGF-{beta}1-enhanced SW1990 invasiveness comprehend activation of Rac1 followed by generation of reactive oxygen species through nicotinamide adenine dinucleotide phosphate-oxidase, activation of nuclear factor-kappa beta, release of interleukin-6, and secretion and activation of MMP-2.

  3. Fasting serum levels of ferritin are associated with impaired pancreatic beta cell function and decreased insulin sensitivity

    DEFF Research Database (Denmark)

    Bonfils, Linéa; Ellervik, Christina; Friedrich, Nele


    Aims/hypothesis: Elevated serum ferritin levels are associated with an increased risk of type 2 diabetes, but the nature of this association remains elusive. The aim of this study was to test the hypothesis that an elevated fasting serum ferritin level is associated with an increased risk of type 2...... diabetes due to its association with impaired beta cell function and decreased insulin sensitivity. Methods: We investigated 6,392 individuals from the Danish general population. Surrogate measures of beta cell function and insulin sensitivity were calculated for approximately 6,100 individuals based...... glucose levels at 0, 30 and 120 min (p beta cell function estimated as the insulinogenic index and corrected insulin response (p 

  4. Impact of incretin hormones on beta-cell function in subjects with normal or impaired glucose tolerance

    DEFF Research Database (Denmark)

    Muscelli, Elza; Mari, Andrea; Natali, Andrea


    The mechanisms by which the enteroinsular axis influences beta-cell function have not been investigated in detail. We performed oral and isoglycemic intravenous (IV) glucose administration in subjects with normal (NGT; n = 11) or impaired glucose tolerance (IGT; n = 10), using C-peptide deconvolu......The mechanisms by which the enteroinsular axis influences beta-cell function have not been investigated in detail. We performed oral and isoglycemic intravenous (IV) glucose administration in subjects with normal (NGT; n = 11) or impaired glucose tolerance (IGT; n = 10), using C...... +/- 2 nmol/m(2) (32 +/- 4% of oral response), and its time course matched that of total insulin secretion. The beta-cell glucose sensitivity (OGTT/IV ratio = 1.52 +/- 0.26, P = 0.02), rate sensitivity (response to glucose rate of change, OGTT/IV ratio = 2.22 +/- 0.37, P = 0.06), and glucose...

  5. The pancreatic beta cell is a key site for mediating the effects of leptin on glucose homeostasis. (United States)

    Covey, Scott D; Wideman, Rhonda D; McDonald, Christine; Unniappan, Suraj; Huynh, Frank; Asadi, Ali; Speck, Madeleine; Webber, Travis; Chua, Streamson C; Kieffer, Timothy J


    The hormone leptin plays a crucial role in maintenance of body weight and glucose homeostasis. This occurs through central and peripheral pathways, including regulation of insulin secretion by pancreatic beta cells. To study this further in mice, we disrupted the signaling domain of the leptin receptor gene in beta cells and hypothalamus. These mice develop obesity, fasting hyperinsulinemia, impaired glucose-stimulated insulin release, and glucose intolerance, similar to leptin receptor null mice. However, whereas complete loss of leptin function causes increased food intake, this tissue-specific attenuation of leptin signaling does not alter food intake or satiety responses to leptin. Moreover, unlike other obese models, these mice have reduced fasting blood glucose. These results indicate that leptin regulation of glucose homeostasis extends beyond insulin sensitivity to influence beta cell function, independent of pathways controlling food intake. These data suggest that defects in this adipoinsular axis could contribute to diabetes associated with obesity.

  6. Intact proinsulin and beta-cell function in lean and obese subjects with and without type 2 diabetes

    DEFF Research Database (Denmark)

    Røder, M E; Dinesen, B; Hartling, S G;


    OBJECTIVE: Type 2 diabetes is a heterogeneous disease in which both beta-cell dysfunction and insulin resistance are pathogenetic factors. Disproportionate hyperproinsulinemia (elevated proinsulin/insulin) is another abnormality in type 2 diabetes whose mechanism is unknown. Increased demand due...... to obesity and/or insulin resistance may result in secretion of immature beta-cell granules with a higher content of intact proinsulin. RESEARCH DESIGN AND METHODS: We investigated the impact of obesity on beta-cell secretion in normal subjects and in type 2 diabetic patients by measuring intact proinsulin......, total proinsulin immunoreactivity (PIM), intact insulin, and C-peptide (by radioimmunoassay) by specific enzyme-linked immunosorbent assays in the fasting state and during a 120-min glucagon (1 mg i.v.) stimulation test. Lean (BMI 23.5 +/- 0.3 kg/m2) (LD) and obese (30.1 +/- 0.4 kg/m2) (OD) type 2...

  7. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic {beta} cells

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Divya P.; Rajagopal, Senthilkumar; Mahavadi, Sunila [Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Mirshahi, Faridoddin [Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Grider, John R. [Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Murthy, Karnam S., E-mail: [Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Sanyal, Arun J., E-mail: [Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA (United States)


    Highlights: Black-Right-Pointing-Pointer G protein coupled receptor TGR5 is expressed in mouse and human islets. Black-Right-Pointing-Pointer TGR5 is coupled to activation of Gs and Ca{sup 2+} release via cAMP/Epac/PLC-{epsilon} pathway. Black-Right-Pointing-Pointer Activation of TGR5 by bile salts and selective ligands causes insulin secretion. Black-Right-Pointing-Pointer TGR5 could be a potential therapeutic target to treat diabetes. -- Abstract: Bile acids act as signaling molecules and stimulate the G protein coupled receptor, TGR5, in addition to nuclear farnesoid X receptor to regulate lipid, glucose and energy metabolism. Bile acid induced activation of TGR5 in the enteroendocrine cells promotes glucagon like peptide-1 (GLP-1) release, which has insulinotropic effect in the pancreatic {beta} cells. In the present study, we have identified the expression of TGR5 in pancreatic {beta} cell line MIN6 and also in mouse and human pancreatic islets. TGR5 selective ligands, oleanolic acid (OA) and INT-777 selectively activated G{alpha}{sub s} and caused an increase in intracellular cAMP and Ca{sup 2+}. OA and INT-777 also increased phosphoinositide (PI) hydrolysis and the increase was blocked by NF449 (a selective G{alpha}{sub s} inhibitor) or (U73122) (PI hydrolysis inhibitor). OA, INT-777 and lithocholic acid increased insulin release in MIN6 and human islets and the increase was inhibited by treatment with NF449, (U73122) or BAPTA-AM (chelator of calcium), but not with myristoylated PKI (PKA inhibitor), suggesting that the release is dependent on G{sub s}/cAMP/Ca{sup 2+} pathway. 8-pCPT-2 Prime -O-Me-cAMP, a cAMP analog, which activates Epac, but not PKA also stimulated PI hydrolysis. In conclusion, our study demonstrates that the TGR5 expressed in the pancreatic {beta} cells regulates insulin secretion and highlights the importance of ongoing therapeutic strategies targeting TGR5 in the control of glucose homeostasis.

  8. A novel beta-glucosidase from the cell wall of maize (Zea mays L.): rapid purification and partial characterization (United States)

    Nematollahi, W. P.; Roux, S. J.


    Plants have a variety of glycosidic conjugates of hormones, defense compounds, and other molecules that are hydrolyzed by beta-glucosidases (beta-D-glucoside glucohydrolases, E.C. Workers have reported several beta-glucosidases from maize (Zea mays L.; Poaceae), but have localized them mostly by indirect means. We have purified and partly characterized a 58-Ku beta-glucosidase from maize, which we conclude from a partial sequence analysis, from kinetic data, and from its localization is not identical to any of those already reported. A monoclonal antibody, mWP 19, binds this enzyme, and localizes it in the cell walls of maize coleoptiles. An earlier report showed that mWP19 inhibits peroxidase activity in crude cell wall extracts and can immunoprecipitate peroxidase activity from these extracts, yet purified preparations of the 58 Ku protein had little or no peroxidase activity. The level of sequence similarity between beta-glucosidases and peroxidases makes it unlikely that these enzymes share epitopes in common. Contrary to a previous conclusion, these results suggest that the enzyme recognized by mWP19 is not a peroxidase, but there is a wall peroxidase closely associated with the 58 Ku beta-glucosidase in crude preparations. Other workers also have co-purified distinct proteins with beta-glucosidases. We found no significant charge in the level of immunodetectable beta-glucosidase in mesocotyls or coleoptiles that precedes the red light-induced changes in the growth rate of these tissues.

  9. 17beta-estradiol enhances the response of plasmacytoid dendritic cell to CpG.

    Directory of Open Access Journals (Sweden)

    Xiaoxi Li

    Full Text Available Gender differences in immune capabilities suggest that sex hormones such as estrogens were involved in the regulation of the immunocompetence. Numerous studies also suggest that plasmacytoid dendritic cells (PDCs play a pathogenic role in SLE. However, it is unclear whether estrogen can modulate the function of PDCs to influence the development of SLE. In the present study, PDCs from murine spleens were treated with 17beta-estradiol (E2 and CpG respectively or both in vitro, then cell viability, costimulatory molecule expression, cytokine secretion of PDCs, as well as stimulatory capacity of PDCs to B cells were analyzed. Results showed that E2 and CpG increased the cell viability and costimulatory molecule expression on PDCs synergistically. Moreover, the intracellular and extracellular secretion of IFN-alpha was increased by E2 or E2 plus CpG. In addition, E2 and CpG also increased the stimulatory capacity of PDCs to B cells, and the viability of B cells was decreased after neutralizing IFN-alpha significantly. In the experiments in vivo, mice received daily s.c. injections of E2 and CpG respectively or both, then we found that the plasma concentration of IgM were elevated by E2 and CpG synergistically and the expression of IFN-alpha/beta in spleens were noticeably increased by CpG plus E2 compared with the treatment of E2 or CpG only. This study indicates that E2 could exacerbate PDCs' activation with CpG, which further activates B cells to upregulate susceptibility to autoantigens. IFN-alpha plays an important role in the stimulatory effect of PDCs on B cells. E2 stimulation of IFN-alpha production may result in female prevalence in autoimmune diseases such as SLE through activation of PDCs. This study provides novel evidence of relationship between estrogen and SLE and also sheds light on gender biases among SLE patients.

  10. Interleukin-1beta can mediate growth arrest and differentiation via the leukemia inhibitory factor/JAK/STAT pathway in medullary thyroid carcinoma cells. (United States)

    Park, Jong-In; Strock, Christopher J; Ball, Douglas W; Nelkin, Barry D


    Interleukin-1beta (IL-1beta) is a pleiotropic cytokine that can induce several cellular signal transduction pathways. Here, we show that IL-1beta can induce cell cycle arrest and differentiation in the human medullary thyroid carcinoma (MTC) cell line, TT. IL-1beta induces cell cycle arrest accompanied by morphological changes and expression of the neuroendocrine marker calcitonin. These changes are blocked by the MEK1/2 specific inhibitor U0126, indicating that MEK1/2 is essential for IL-1beta signaling in TT cells. IL-1beta induces expression of leukemia inhibitory factor (LIF) and activation of STAT3 via the MEK/ERK pathway. This activation of STAT3 could be abrogated by treatment with anti-LIF neutralizing antibody or anti-gp130 blocking antibody, indicating that induction of LIF expression is sufficient and essential for STAT3 activation by IL-1beta. In addition to activation of the LIF/JAK/STAT pathway, IL-1beta also induced an MEK/ERK-mediated intracellular cell-autonomous signaling pathway that is independently sufficient for growth arrest and differentiation. Thus, IL-1beta activates the MEK/ERK pathway to induce growth arrest and differentiation in MTC cells via dual independent signaling mechanisms, the cell-extrinsic LIF/JAK/STAT pathway, and the cell-intrinsic autonomous signaling pathway.

  11. Modulation of ovine SBD-1 expression by 17beta-estradiol in ovine oviduct epithelial cells

    Directory of Open Access Journals (Sweden)

    Wen Shiyong


    Full Text Available Abstract Background Mucosal epithelia, including those of the oviduct, secrete antimicrobial innate immune molecules (AIIMS. These have bactericidal/bacteriostatic functions against a variety of pathogens. Among the AIIMs, sheep β-defensin-1 (SBD-1 is one of the most potent. Even though the SBD-1 is an important AIIM and it is regulated closely by estrogenic hormone, the regulation mechanism of 17β-estradiol has not been clearly established. We investigated the effects of E2 and agonist or inhibitor on ovine oviduct epithelial cells in regard to SBD-1 expression using reverse transcription quantitative PCR (RT-qPCR. In addition, three different pathways were inhibited separately or simultaneously to confirm the effect of different inhibitors in the regulation mechanism. Results 17beta-estradiol (E2 induced release of SBD-1 in ovine oviduct epithelial cells. SBD-1 expression was mediated through G-protein-coupled receptor 30 (GPR30 and Estrogen Receptors (ERs activation in ovine oviduct epithelial cell. Inhibition of gene expression of protein kinase A (PKA, protein kinase C (PKC, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB led to a decreased SBD-1 expression. Conclusions Taken together, E2-induced up-regulation of SBD-1 expressions were GPR30-dependent during prophase and ERs-dependent during later-stage in ovine oviduct epithelial cells, and we assume that the effect was completed by the PKA, PKC, and NF-κB pathways simultaneous.

  12. SLC30A3 responds to glucose- and zinc variations in beta-cells and is critical for insulin production and in vivo glucose-metabolism during beta-cell stress.

    Directory of Open Access Journals (Sweden)

    Kamille Smidt

    Full Text Available BACKGROUND: Ion transporters of the Slc30A- (ZnT- family regulate zinc fluxes into sub-cellular compartments. beta-cells depend on zinc for both insulin crystallization and regulation of cell mass. METHODOLOGY/PRINCIPAL FINDINGS: This study examined: the effect of glucose and zinc chelation on ZnT gene and protein levels and apoptosis in beta-cells and pancreatic islets, the effects of ZnT-3 knock-down on insulin secretion in a beta-cell line and ZnT-3 knock-out on glucose metabolism in mice during streptozotocin-induced beta-cell stress. In INS-1E cells 2 mM glucose down-regulated ZnT-3 and up-regulated ZnT-5 expression relative to 5 mM. 16 mM glucose increased ZnT-3 and decreased ZnT-8 expression. Zinc chelation by DEDTC lowered INS-1E insulin content and insulin expression. Furthermore, zinc depletion increased ZnT-3- and decreased ZnT-8 gene expression whereas the amount of ZnT-3 protein in the cells was decreased. Zinc depletion and high glucose induced apoptosis and necrosis in INS-1E cells. The most responsive zinc transporter, ZnT-3, was investigated further; by immunohistochemistry and western blotting ZnT-3 was demonstrated in INS-1E cells. 44% knock-down of ZnT-3 by siRNA transfection in INS-1E cells decreased insulin expression and secretion. Streptozotocin-treated mice had higher glucose levels after ZnT-3 knock-out, particularly in overt diabetic animals. CONCLUSION/SIGNIFICANCE: Zinc transporting proteins in beta-cells respond to variations in glucose and zinc levels. ZnT-3, which is pivotal in the development of cellular changes as also seen in type 2 diabetes (e.g. amyloidosis in Alzheimer's disease but not previously described in beta-cells, is present in this cell type, up-regulated by glucose in a concentration dependent manner and up-regulated by zinc depletion which by contrast decreased ZnT-3 protein levels. Knock-down of the ZnT-3 gene lowers insulin secretion in vitro and affects in vivo glucose metabolism after

  13. Serum CA19-9 Level Associated with Metabolic Control and Pancreatic Beta Cell Function in Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Haoyong Yu


    Full Text Available CA19-9 is a tumor-associated antigen. It is also a marker of pancreatic tissue damage that might be caused by diabetes. Long-term poor glycemic control may lead to pancreatic beta cell dysfunction which is reflected by elevated serum CA19-9 level. Intracellular cholesterol accumulation leads to islet dysfunction and impaired insulin secretion which provide a new lipotoxic model. This study firstly found total cholesterol was one of the independent contributors to CA19-9. Elevated serum CA19-9 level in diabetic patients may indicate further investigations of glycemic control, pancreatic beta cell function, and total cholesterol level.

  14. Serum CA19-9 Level Associated with Metabolic Control and Pancreatic Beta Cell Function in Diabetic Patients (United States)

    Yu, Haoyong; Li, Ruixia; Zhang, Lei; Chen, Haibing; Bao, Yuqian; Jia, Weiping


    CA19-9 is a tumor-associated antigen. It is also a marker of pancreatic tissue damage that might be caused by diabetes. Long-term poor glycemic control may lead to pancreatic beta cell dysfunction which is reflected by elevated serum CA19-9 level. Intracellular cholesterol accumulation leads to islet dysfunction and impaired insulin secretion which provide a new lipotoxic model. This study firstly found total cholesterol was one of the independent contributors to CA19-9. Elevated serum CA19-9 level in diabetic patients may indicate further investigations of glycemic control, pancreatic beta cell function, and total cholesterol level. PMID:22778715

  15. PDGF-BB induces expression of LTBP-1 but not TGF-beta1 in a rat cirrhotic fat storing cell line. (United States)

    Westhoff, Jens H; Sawitza, Iris; Keski-Oja, Jorma; Gressner, Axel M; Breitkopf, Katja


    TGF-beta, a profibrogenic cytokine is predominantly secreted as a latent molecule complexed with one of the latent TGF-beta binding proteins (LTBP). Due to the proposed functions of LTBP-1 and -3 in regulating TGF-beta-bioavailability and -activity, we investigated the effects of PDGF-BB and TGF-beta1 on their expression levels in Cirrhotic fat storing cells (CFSC). CFSC basally express LTBP-1 and -3 and TGF-beta1. LTBP-1 colocalizes with LAP and the cells secrete some active TGF-beta1. Promoter studies showed no strong induction of the LTBP-1 promoters after stimulation, although mRNA and protein levels were increased by PDGF-BB treatment without affecting TGF-beta1 expression. Vice versa, TGF-beta1 treatment did not alter LTBP-1 expression while an autocrine induction was found. Our data indicate that LTBP-1 but not TGF-beta1 is induced by PDGF-BB and that TGF-beta1 autoinduction does not affect the expression of LTBP-beta1. This divergent regulation may represent an important mechanism for modulation of TGF-beta bioavailability.

  16. beta-d-Glucan Antibodies Inhibit Auxin-Induced Cell Elongation and Changes in the Cell Wall of Zea Coleoptile Segments. (United States)

    Hoson, T; Nevins, D J


    Antiserum was raised against the Avena sativa L. caryopsis beta-d-glucan fraction with an average molecular weight of 1.5 x 10(4). Polyclonal antibodies recovered from the serum after Protein A-Sepharose column chromatography precipitated when cross-reacted with high molecular weight (1-->3), (1-->4)-beta-d-glucans. These antibodies were effective in suppression of cell wall autohydrolytic reactions and auxin-induced decreases in noncellulosic glucose content of the cell wall of maize (Zea mays L.) coleoptiles. The results indicate antibody-mediated interference with in situ beta-d-glucan degradation. The antibodies at a concentration of 200 micrograms per milliliter also suppress auxin-induced elongation by about 40% and cell wall loosening (measured by the minimum stress-relaxation time of the segments) of Zea coleoptiles. The suppression of elongation by antibodies was imposed without a lag period. Auxin-induced elongation, cell wall loosening, and chemical changes in the cell walls were near the levels of control tissues when segments were subjected to antibody preparation precipitated by a pretreatment with Avena caryopsis beta-d-glucans. These results support the idea that the degradation of (1-->3), (1-->4)-beta-d-glucans by cell wall enzymes is associated with the cell wall loosening responsible for auxin-induced elongation.

  17. Gut-homing CD4+ T cell receptor alpha beta+ T cells in the pathogenesis of murine inflammatory bowel disease

    DEFF Research Database (Denmark)

    Rudolphi, A; Boll, G; Poulsen, S S;


    We studied which T cell subsets from the gut-associated lymphoid tissue (GALT) can migrate out of the gut mucosa and repopulate GALT compartments of an immunodeficient (semi)syngeneic host. Many distinct lymphocyte subsets were found in GALT of immunocompetent H-2d (BALB/c, BALB/cdm2, C.B-17......+/+) mice. No antigen receptor-expressing lymphoid cells were found in GALT of congenic C.B-17 scid/scid (scid) mice. The heterotopic transplantation of a full-thickness gut wall graft from the ileum or colon of immunocompetent (C.B-17+/+, BALB/cdm2) donor mice onto immunodeficient scid mice selectively...... reconstituted a CD3+ T cell receptor alpha beta+ CD4+ T cell subset. CD4+ cells of this subset expressed the surface phenotype of mucosa-seeking, memory T cells. In the immunodeficient scid host, this gut-derived CD4+ T cell subset was found in spleen, peritoneal cavity, mesenteric lymph nodes (LN), epithelial...

  18. Secretion of beta-human chorionic gonadotropin by non-small cell lung cancer: a case report

    Directory of Open Access Journals (Sweden)

    Varma Seema


    Full Text Available Abstract Introduction We describe a case of non-small cell lung cancer that was found to stain positive for beta-human chorionic gonadotropin on immunohistochemistry. Only a few case reports have described lung cancers that secrete beta-human chorionic gonadotropin. Case presentation A 68-year-old Caucasian man presented with symptoms of weakness, fatigue and weight loss for the past two months. On examination, he was found to have generalized lymphadenopathy, and radiologic workup revealed numerous metastases in the lungs, liver and kidneys. Biopsy of the supraclavicular lymph node revealed metastatic large cell lung cancer with beta-human chorionic gonadotropin hormone positivity. The serum beta-human chorionic gonadotropin level was 11,286 mIU/ml (upper limit of normal, 0.5 mIU/ml in non-pregnant females. He was diagnosed with stage 4 lung non-small cell lung cancer. The patient refused chemotherapy. He was discharged home with hospice care. Conclusion The markedly elevated serum values of beta-human chorionic gonadotropin initially prompted the medical team to investigate germinal tumors. In the presence of a negative testicular ultrasound, workup was performed to find an extratesticular source of the tumor. Finally, the diagnosis was made with a tissue biopsy. This case illustrates that atypical markers can be seen in many cancers, emphasizing the role of immunohistochemistry and tissue biopsy in establishing the diagnosis.

  19. Menin expression is regulated by transforming growth factor beta signaling in leukemia cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui; LIU Zu-guo; HUA Xian-xin


    Background Menin is a ubiquitously expressed protein encoded by the multiple endocrine neoplasia type 1 (MEN1)gene. Besides its importance in endocrine organs, menin has been shown to interact with the mixed lineage leukemia (MLL) protein, a histone H3 lysine 4 methyltransferase, and plays a critical role in hematopoiesis and leukemogenesis.Previous studies have shown that menin promotes transforming growth factor beta (TGF-β) signaling in endocrine cells.However, little is known regarding the impact of TGF-β pathway on menin in hematopoietic system. Here, with leukemia cell lines generated from conditional MEN1 or TGF-p receptor (TβRII) knockout mouse models, we investigated the possible cross-talk of these two pathways in leukemia cells.Methods MEN1 or TβRII conditional knockout mice were bred and the bone marrow cells were transduced with retroviruses expressing oncogeneic MLL-AF9 (a mixed lineage leukemia fusion protein) to generate two leukemia cell lines. Cell proliferation assays were performed to investigate the effect of TGF-β treatment on MLL-AF9 transformed leukemia cells with/without MEN1 or TβRII excision. Menin protein was detected with Western blotting and mRNA levels of cell proliferation-related genes Cyclin A2 and Cyclin E2 were examined with real-time RT-PCR for each treated sample.In vivo effect of TGF-p signal on menin expression was also investigated in mouse liver tissue after TβRII excision.Results TGF-β not only inhibited the proliferation of wild type MLL-AF9 transformed mouse bone marrow cells, but also up-regulated menin expression in these cells. Moreover, TGF-P failed to further inhibit the proliferation of Men1-null cells as compared to Men1-expressing control cells. Furthermore, excision of TβRII, a vital component in TGF-β signaling pathway, down-regulated menin expression in MLL-AF9 transformed mouse bone marrow cells. In vivo data also confirmed that menin expression was decreased in liver samples of conditional T

  20. The organization of the gamma-delta-beta gene complex in normal and thalassemia cells. (United States)

    Bank, A; Mears, J G; Ramirez, F; Burns, A L; Spence, S; Feldenzer, J; Baird, M


    Restriction enzyme digestion analysis and direct human globin gene cloning have permitted analysis of the physical arrangement of nucleotide sequences within and surrounding the human globin genes. With these methods it has been shown that the linear arrangement 5' to 3' of the globin genes is G gamma-A gamma-delta-beta. The G gamma and A gamma genes are separated by about 3.5 kilobases (kb), while the A gamma and delta genes are 15 kb apart, and the delta and beta 6.5 kb apart. Each of these genes contains a large intervening sequence (IVS) of approximately 1 kb in precisely the same position between condons 104 and 105. In addition, each of these genes has a small IVS between codons 30 and 31. In homozygous delta beta thalassemia DNA, there is deletion of all of the normal delta and beta gene fragments. However, a new fragment 4.2 kb in size containing the 5' end of the delta globin gene is retained. Retention of this fragment in delta beta thalassemia, but not in HPFH is consistent with a role for sequences in this region for limiting gamma globin gene expression. Studies to date suggest that the beta + and beta 0 thalassemias will be due to a heterogeneous group of DNA defects affecting either beta globin gene transcription or beta mRNA processing. In most cases of beta + and beta 0 thalassemia DNA analyzed, there is no detectable deletion of beta or delta genes. In three India beta 0 patients, deletion of the 3' end of the beta gene has been found. Analysis of cloned beta globin genes from a patient with beta + thalasseia shows differences from normal in the fragments generated by restriction enzymes which cut frequently. Whether these differences are responsible for the defect in thalassemia or are polymorphisms unrelated to thalassemia remains to be determined.

  1. Disruption of the regulatory beta subunit of protein kinase CK2 in mice leads to a cell-autonomous defect and early embryonic lethality

    DEFF Research Database (Denmark)

    Buchou, Thierry; Vernet, Muriel; Blond, Olivier


    Protein kinase CK2 is a ubiquitous protein kinase implicated in proliferation and cell survival. Its regulatory beta subunit, CK2beta, which is encoded by a single gene in mammals, has been suspected of regulating other protein kinases. In this work, we show that knockout of the CK2beta gene in m....... Thus, our study demonstrates that in mammals, CK2beta is essential for viability at the cellular level, possibly because it acquired new functions during evolution.......Protein kinase CK2 is a ubiquitous protein kinase implicated in proliferation and cell survival. Its regulatory beta subunit, CK2beta, which is encoded by a single gene in mammals, has been suspected of regulating other protein kinases. In this work, we show that knockout of the CK2beta gene...

  2. Allele-specific enzymatic amplification of beta-globin genomic DNA for diagnosis of sickle cell anemia.



    A rapid nonradioactive approach to the diagnosis of sickle cell anemia is described based on an allele-specific polymerase chain reaction (ASPCR). This method allows direct detection of the normal or the sickle cell beta-globin allele in genomic DNA without additional steps of probe hybridization, ligation, or restriction enzyme cleavage. Two allele-specific oligonucleotide primers, one specific for the sickle cell allele and one specific for the normal allele, together with another primer co...

  3. Rearrangement and expression of beta-T-cell receptor and immunoglobulin genes in established Ph1 chronic myelogenous leukemia cell lines. (United States)

    Berenson, J; Koeffler, H P


    We have determined the arrangement and expression of immunoglobulin (Ig) and beta-T-cell receptor (TCR) genes in six established Philadelphia chromosome-positive (Ph1) chronic myelogenous leukemia (CML) cell lines, and correlated these results with their phenotypic characteristics. Three cell lines with nonlymphoid characteristics, EM2, EM3, and K562, did not demonstrate rearrangement or expression of Ig or beta-TCR genes. A new cell line, MB, with a mature B-cell phenotype recently established in our laboratory, contained light and heavy chain immunoglobulin gene rearrangements and expressed mature Ig RNA. In a cell line with an early lymphoid phenotype, BV173, this analysis showed rearrangement of Ig heavy chain and beta-TCR genes, unrearranged Ig light chain DNA, and expression of only an immature beta-TCR transcript. This line provides evidence for T-cell lineage involvement in Ph1 CML. One cell line without markers of any cell type, KCL-22, demonstrated rearranged, unexpressed Ig heavy chain genes, suggesting these cells are at the very earliest stages of lymphoid differentiation. These lines should provide valuable tools to dissect the molecular biology of differentiation in CML and in early lymphocytes.

  4. A novel dual-color reporter for identifying insulin-producing beta-cells and classifying heterogeneity of insulinoma cell lines.

    Directory of Open Access Journals (Sweden)

    Nan Sook Lee

    Full Text Available Many research studies use immortalized cell lines as surrogates for primary beta- cells. We describe the production and use of a novel "indirect" dual-fluorescent reporter system that leads to mutually exclusive expression of EGFP in insulin-producing (INS(+ beta-cells or mCherry in non-beta-cells. Our system uses the human insulin promoter to initiate a Cre-mediated shift in reporter color within a single transgene construct and is useful for FACS selection of cells from single cultures for further analysis. Application of our reporter to presumably clonal HIT-T15 insulinoma cells, as well as other presumably clonal lines, indicates that these cultures are in fact heterogeneous with respect to INS(+ phenotype. Our strategy could be easily applied to other cell- or tissue-specific promoters. We anticipate its utility for FACS purification of INS(+ and glucose-responsive beta-like-cells from primary human islet cell isolates or in vitro differentiated pluripotent stem cells.

  5. Marked over expression of uncoupling protein-2 in beta cells exerts minor effects on mitochondrial metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Hals, Ingrid K., E-mail: [Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Ogata, Hirotaka; Pettersen, Elin [Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Ma, Zuheng; Bjoerklund, Anneli [Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm (Sweden); Skorpen, Frank [Department of Laboratory Medicine, NTNU, Trondheim (Norway); Egeberg, Kjartan Wollo [Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Grill, Valdemar [Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm (Sweden)


    Highlights: Black-Right-Pointing-Pointer The impact of UCP-2 over expression on mitochondrial function is controversial. Black-Right-Pointing-Pointer We tested mitochondrial functions at defined levels of overexpression. Black-Right-Pointing-Pointer We find minor increases of fatty acid oxidation and uncoupling. Black-Right-Pointing-Pointer Effects were seen only at high level (fourfold) of over expression. Black-Right-Pointing-Pointer Hence it is doubtful whether these effects are of importance in diabetes. -- Abstract: Evidence is conflicting as to the impact of elevated levels of uncoupling protein-2 (UCP-2) on insulin-producing beta cells. Here we investigated effects of a fourfold induction of UCP-2 protein primarily on mitochondrial parameters and tested for replication of positive findings at a lower level of induction. We transfected INS-1 cells to obtain a tet-on inducible cell line. A 48 h exposure to 1 {mu}g/ml of doxycycline (dox) induced UCP-2 fourfold (424 {+-} 113%, mean {+-} SEM) and 0.1 {mu}g/ml twofold (178 {+-} 29%, n = 3). Fourfold induced cells displayed normal viability (MTT, apoptosis), normal cellular insulin contents and, glucose-induced insulin secretion (+27 {+-} 11%) as well as D-[U-{sup 14}C]-glucose oxidation (+5 {+-} 9% at 11 mM glucose). Oxidation of [1-{sup 14}C]-oleate was increased from 4088 to 5797 fmol/{mu}g prot/2 h at 3.3 mM glucose, p < 0.03. Oxidation of L-[{sup 14}C(U)]-glutamine was unaffected. Induction of UCP-2 did not significantly affect measures of mitochondrial membrane potential (Rhodamine 123) or mitochondrial mass (Mitotracker Green) and did not affect ATP levels. Oligomycin-inhibited oxygen consumption (a measure of mitochondrial uncoupling) was marginally increased, the effect being significant in comparison with dox-only treated cells, p < 0.05. Oxygen radicals, assessed by dichlorofluorescin diacetate, were decreased by 30%, p < 0.025. Testing for the lower level of UCP-2 induction did not reproduce any of the

  6. Investigation on apoptosis of neuronal cells induced by Amyloid beta-Protein

    Institute of Scientific and Technical Information of China (English)

    罗本燕; 徐增斌; 陈智; 陈峰; 唐敏


    Objective: To construct a PC12 cell strain with neuronal differentiation, and observe the apoptosis and pro-liferation activity effects induced these cells by Amyloid beta-Protein (Aβ3-43). Methods: 1) PC12 cells in logarithmic growth phase were subcultured for 24 h. After the culture fluid was changed, the cells were treated with Rat-β-NGF and cultured for 9 days. 2) Neuronal differentiation of PC 12 cells in logarithmic growth phase were divided into four groups:control group (0), experimental group (1), experimental group (2) and experimental group (3). The concentrations of Aβ in the four groups were 0 μmol/L, 1.25 μmol/L, 2.5 μmol/L and 5 μmol/L, respectively. The cells were harvested at 24, 48 and 72 h later and stained with AnnexinV-FITC/PI after centrifugation and washing. Then flow cytometry was conducted to examine the apoptosis percentage. 3) NGF-induced PC12 cells were selected and Aβ with different concentrations was added. The final concentrations of Aβ were 0 μmol/L, 1.25 μmol/L, 2.5 μmol/L and 5 μmol/L, respectively. After the cells were incubated in an atmosphere of 5% CO2 at 37 ℃ in an incubator for 72 h, the OD values were examined. Results: 1)Neuronal differentiated PC12 cell lines were successfully established. 2) Flow cytometric examination indicated that Aβ(1.25, 2.5, and 5.0 μmol/L) could effectively induce apoptosis of neuronal-differented cells at the 24 h, 48 h and 72 h time points. 3) Aβ (0-5.00 μmol/L) had no obvious effect on proliferation or restraining of the neuronal differentiation of the PC 12 cells after a 72 h interacting process. Conclusion: This investigation revealed successful neuronal differentiation of the PC12 cell strain. The induction of apoptosis of the neurocytes by various concentrations of Aβ was observed and the in-fluence of Aβ on induced proliferation of PC 12 cells by Rat-β-NGF was revealed. This study may provide basis for future research on the molecular cure of AD and interdiction of AD

  7. Recombinant expression of human nerve growth factor beta in rabbit bone marrow mesenchymal stem cells. (United States)

    Fan, Bo-Sheng; Lou, Ji-Yu


    Nerve growth factor (NGF) is required for the differentiation and maintenance of sympathetic and sensory neurons. In the present study, the recombinant expression of human nerve growth factor beta (hNGF-β) gene in rabbit bone marrow mesenchymal stem cells (rMSCs) was undertaken. Recombinant vector containing hNGF-β was constructed and transferred into rMSCs, the expressions of the exogenous in rMSCs were determined by reverse transcriptase PCR (RT-PCR), ELISA and Western blot, whereas the biological activity of recombinant hNGF-β was confirmed using PC12 cells and cultures of dorsal root ganglion neurons from chicken embryos. The results showed that the hNGF-β gene expressed successfully in the rMSCs, a polypeptide with a molecular weight of 13.2 kDa was detected. The maximal expression level of recombinant hNGF-β in rMSCs reached 126.8012 pg/10(6) cells, the mean concentration was 96.4473 pg/10(6) cells. The recombinant hNGF-β in the rMSCs showed full biological activity when compared to commercial recombinant hNGF-β.

  8. Stabilized Conversion Efficiency and Dye-Sensitized Solar Cells from Beta vulgaris Pigment

    Directory of Open Access Journals (Sweden)

    Susana Vargas


    Full Text Available Dye-Sensitized Solar Cells (DSSCs, based on TiO2 and assembled using a dye from Beta vulgaris extract (BVE with Tetraethylorthosilicate (TEOS, are reported. The dye BVE/TEOS increased its UV resistance, rendering an increase in the cell lifetime; the performance of these solar cells was compared to those prepared with BVE without TEOS. The efficiency η for the solar energy conversion was, for BVE and BVE/TEOS, of 0.89% ± 0.006% and 0.68% ± 0.006% with a current density Jsc of 2.71 ± 0.003 mA/cm2 and 2.08 ± 0.003 mA/cm2, respectively, using in both cases an irradiation of 100 mW/cm2 at 25 °C. The efficiency of the BVE solar cell dropped from 0.9 ± 0.006 to 0.85 ± 0.006 after 72 h of operation, whereas for the BVE/TEOS, the efficiency remained practically constant in the same period of time.

  9. Cx43, ZO-1, alpha-catenin and beta-catenin in cataractous lens epithelial cells

    Indian Academy of Sciences (India)

    Anshul I Arora; Kaid Johar; Devarshi U Gajjar; Darshini A Ganatra; Forum B Kayastha; Anuradha K Pal; Alpesh R Patel; Rajkumar S; Abhay R Vasavada


    Specimens of the anterior lens capsule with an attached monolayer of lens epithelial cells (LECs) were obtained from patients (=52) undergoing cataract surgery. Specimens were divided into three groups based on the type of cataract: nuclear cataract, cortical cataract and posterior subcapsular cataract (PSC). Clear lenses (=11) obtained from donor eyes were used as controls. Expression was studied by immunofluorescence, real-time PCR and Western blot. Statistical analysis was done using the student’s -test. Immunofluorescence results showed punctate localization of Cx43 at the cell boundaries in controls, nuclear cataract and PSC groups. In the cortical cataract group, cytoplasmic pools of Cx43 without any localization at the cell boundaries were observed. Real-time PCR results showed significant up-regulation of Cx43 in nuclear and cortical cataract groups. Western blot results revealed significant increase in protein levels of Cx43 and significant decrease of ZO-1 in all three cataract groups. Protein levels of alpha-catenin were decreased significantly in nuclear and cortical cataract group. There was no significant change in expression of beta-catenin in the cataractous groups. Our findings suggest that ZO-1 and alpha-catenin are important for gap junctions containing Cx43 in the LECs. Alterations in cell junction proteins may play a role during formation of different types of cataract.

  10. Inefficiency in GM2 ganglioside elimination by human lysosomal beta-hexosaminidase beta-subunit gene transfer to fibroblastic cell line derived from Sandhoff disease model mice. (United States)

    Itakura, Tomohiro; Kuroki, Aya; Ishibashi, Yasuhiro; Tsuji, Daisuke; Kawashita, Eri; Higashine, Yukari; Sakuraba, Hitoshi; Yamanaka, Shoji; Itoh, Kohji


    Sandhoff disease (SD) is an autosomal recessive GM2 gangliosidosis caused by the defect of lysosomal beta-hexosaminidase (Hex) beta-subunit gene associated with neurosomatic manifestations. Therapeutic effects of Hex subunit gene transduction have been examined on Sandhoff disease model mice (SD mice) produced by the allelic disruption of Hexb gene encoding the murine beta-subunit. We demonstrate here that elimination of GM2 ganglioside (GM2) accumulated in the fibroblastic cell line derived from SD mice (FSD) did not occur when the HEXB gene only was transfected. In contrast, a significant increase in the HexB (betabeta homodimer) activity toward neutral substrates, including GA2 (asialo-GM2) and oligosaccharides carrying the terminal N-acetylglucosamine residues at their non-reducing ends (GlcNAc-oligosaccharides) was observed. Immunoblotting with anti-human HexA (alphabeta heterodimer) serum after native polyacrylamide gel electrophoresis (Native-PAGE) revealed that the human HEXB gene product could hardly form the chimeric HexA through associating with the murine alpha-subunit. However, co-introduction of the HEXA encoding the human alpha-subunit and HEXB genes caused significant corrective effect on the GM2 degradation by producing the human HexA. These results indicate that the recombinant human HexA could interspeciesly associate with the murine GM2 activator protein to degrade GM2 accumulated in the FSD cells. Thus, therapeutic effects of the recombinant human HexA isozyme but not human HEXB gene product could be evaluated by using the SD mice.

  11. Mechanism of neuronal versus endothelial cell uptake of Alzheimer's disease amyloid beta protein.

    Directory of Open Access Journals (Sweden)

    Karunya K Kandimalla

    Full Text Available Alzheimer's disease (AD is characterized by significant neurodegeneration in the cortex and hippocampus; intraneuronal tangles of hyperphosphorylated tau protein; and accumulation of beta-amyloid (Abeta proteins 40 and 42 in the brain parenchyma as well as in the cerebral vasculature. The current understanding that AD is initiated by the neuronal accumulation of Abeta proteins due to their inefficient clearance at the blood-brain-barrier (BBB, places the neurovascular unit at the epicenter of AD pathophysiology. The objective of this study is to investigate cellular mechanisms mediating the internalization of Abeta proteins in the principle constituents of the neurovascular unit, neurons and BBB endothelial cells. Laser confocal micrographs of wild type (WT mouse brain slices treated with fluorescein labeled Abeta40 (F-Abeta40 demonstrated selective accumulation of the protein in a subpopulation of cortical and hippocampal neurons via nonsaturable, energy independent, and nonendocytotic pathways. This groundbreaking finding, which challenges the conventional belief that Abeta proteins are internalized by neurons via receptor mediated endocytosis, was verified in differentiated PC12 cells and rat primary hippocampal (RPH neurons through laser confocal microscopy and flow cytometry studies. Microscopy studies have demonstrated that a significant proportion of F-Abeta40 or F-Abeta42 internalized by differentiated PC12 cells or RPH neurons is located outside of the endosomal or lysosomal compartments, which may accumulate without degradation. In contrast, BBME cells exhibit energy dependent uptake of F-Abeta40, and accumulate the protein in acidic cell organelle, indicative of endocytotic uptake. Such a phenomenal difference in the internalization of Abeta40 between neurons and BBB endothelial cells may provide essential clues to understanding how various cells can differentially regulate Abeta proteins and help explain the vulnerability of cortical

  12. Functionally graded beta-TCP/PCL nanocomposite scaffolds: in vitro evaluation with human fetal osteoblast cells for bone tissue engineering. (United States)

    Ozkan, Seher; Kalyon, Dilhan M; Yu, Xiaojun


    The engineering of biomimetic tissue relies on the ability to develop biodegradable scaffolds with functionally graded physical and chemical properties. In this study, a twin-screw-extrusion/spiral winding (TSESW) process was developed to enable the radial grading of porous scaffolds (discrete and continuous gradations) that were composed of polycaprolactone (PCL), beta-tricalciumphosphate (beta-TCP) nanoparticles, and salt porogens. Scaffolds with interconnected porosity, exhibiting myriad radial porosity, pore-size distributions, and beta-TCP nanoparticle concentration could be obtained. The results of the characterization of their compressive properties and in vitro cell proliferation studies using human fetal osteoblast cells suggest the promising nature of such scaffolds. The significant degree of freedom offered by the TSESW process should be an additional enabler in the quest toward the mimicry of the complex elegance of the native tissues.

  13. Beta-lactam type molecular scaffolds for antiproliferative activity: synthesis and cytotoxic effects in breast cancer cells. (United States)

    Meegan, Mary J; Carr, Miriam; Knox, Andrew J S; Zisterer, Daniela M; Lloyd, David G


    A series of novel beta-lactam containing compounds are described as antiproliferative agents and potential selective modulators of the oestrogen receptor. The purpose of the study is to evaluate the antiproliferative effects of these compounds on human MCF-7 and MDA MB-231 breast cancer cells. The compounds are designed to contain three aryl ring substituents arranged on the heterocyclic azetidin-2-one (beta-lactam), thus providing conformationally restrained analogues of the triarylethylene arrangement exemplified in the tamoxifen type structure. The compounds demonstrated potency in antiproliferative assays against MCF-7 human breast cancer cell line at low micromolar to nanomolar concentrations with low cytotoxicity and moderate binding affinity to the oestrogen receptor. The effect of a number of aryl and amine functional group substitutions on the antiproliferative activity of the beta-lactam products was explored and a brief computational structure-activity relationship investigation with molecular simulation was investigated.

  14. A novel human protease similar to the interleukin-1 beta converting enzyme induces apoptosis in transfected cells. (United States)

    Faucheu, C; Diu, A; Chan, A W; Blanchet, A M; Miossec, C; Hervé, F; Collard-Dutilleul, V; Gu, Y; Aldape, R A; Lippke, J A


    We have identified a novel cDNA encoding a protein (named TX) with > 50% overall sequence identity with the interleukin-1 beta converting enzyme (ICE) and approximately 30% sequence identity with the ICE homologs NEDD-2/ICH-1L and CED-3. A computer homology model of TX was constructed based on the X-ray coordinates of the ICE crystal recently published. This model suggests that TX is a cysteine protease, with the P1 aspartic acid substrate specificity retained. Transfection experiments demonstrate that TX is a protease which is able to cleave itself and the p30 ICE precursor, but not to generate mature IL-1 beta from pro-IL-1 beta. In addition, this protein induces apoptosis in transfected COS cells. TX therefore delineates a new member of the growing Ice/ced-3 gene family coding for proteases with cytokine processing activity or involved in programmed cell death.

  15. Adult Human Pancreatic Islet Beta-Cells Display Limited Turnover and Long Lifespan as Determined by In-Vivo Thymidine Analog Incorporation and Radiocarbon Dating

    Energy Technology Data Exchange (ETDEWEB)

    Perl, S; Kushner, J A; Buchholz, B A; Meeker, A K; Stein, G M; Hsieh, M; Kirby, M; Pechhold, S; Liu, E H; Harlan, D M; Tisdale, J F


    Diabetes mellitus results from an absolute or relative deficiency of insulin producing pancreatic beta-cells. The adult human beta-cell's turnover rate remains unknown. We employed novel techniques to examine adult human islet beta-cell turnover and longevity in vivo. Subjects enrolled in NIH clinical trials received thymidine analogues [iododeoxyuridine (IdU) or bromodeoxyuridine (BrdU)] 8-days to 4-years prior to death. Archival autopsy samples from ten patients (aged 17-74 years) were employed to assess beta-cell turnover by scoring nuclear analog labeling within insulin staining cells. Human adult beta-cell longevity was determined by estimating the cells genomic DNA integration of atmospheric carbon-14 ({sup 14}C). DNA was purified from pancreatic islets isolated from cadaveric donors; whole islet prep DNA was obtained from a 15 year old donor, and purified beta-cell DNA was obtained from two donors (age 48 and 80 years). {sup 14}C levels were then determined using accelerator mass spectrometry (AMS). Cellular 'birth date' was determined by comparing the subject's DNA {sup 14}C content relative to a well-established {sup 14}C atmospheric prevalence curve. In the two subjects less than age 20 years, 1-2% of the beta-cell nuclei co-stained for BrdU/IdU. No beta-cell nuclei co-stained in the eight patients more than 30 years old. Consistent with the BrdU/IdU turnover data, beta-cell DNA {sup 14}C content indicated the cells 'birth date' occurred within the subject's first 30 years of life. Under typical circumstances, adult human beta-cells and their cellular precursors are established by young adulthood.